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ABSTRACT 

 

Project Code:  RMU4980012  
Project Title:   Aerodynamic Analysis and Design of Cable-Supported Bridges by Wind-

Tunnel Test 

Investigator: Assoc. Prof. Dr. Virote Boonyapinyo, Faculty of Engineering, Thammasat 
University 

E-mail Address: bvirote@engr.tu.ac.th 

Project Period: July 2006 – January 2010 

 

This study proposes the system identification technique and the experimental method 
for extracting the aerodynamic parameters of bridge decks.  Flutter derivatives and aerostatic 
force coefficients are the essential aerodynamic parameters in the design of long-span cable 
supported bridges and the estimations of the flutter-instability critical wind velocity.  These 
parameters can be experimentally estimated from wind tunnel test results. In this study, a 
theoretical model based on the stochastic subspace identification was used to extract the 
flutter derivatives of bridge deck sectional models from the two-degree-of-freedom free decay 
and buffeting responses. An advantage of the stochastic subspace identification technique is 
that it considers the buffeting forces and the responses as inputs instead of as noises as 
typically assumed in previous researches.  The data-driven stochastic subspace identification 
technique (SSI-DATA) was proposed to directly extract the flutter derivatives of bridge deck 
sections model from their random vibration responses under wind flows. The results were 
then compared to those from the previous up-to-date covariance-driven stochastic subspace 
identification (SSI-COV).   

Wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road cable-
stayed bridge (IRR) with 398 m center span length were conducted under both smooth and 
turbulence flows.  The results from numerical simulation and wind tunnel tests show that 
applying the SSI-DATA yields better results than those of the SSI-COV.  Moreover, the root-
mean-square responses of a bridge deck can be obtained simultaneously from the same test 
without requiring separated tests as in case of the free decay method. 

The results of study can be summarized as follows. a) the blunt type IRR Bridge 
section is susceptible to flutter instability at high wind speed of 118 m/s;  b) the torsional 
vortex-shedding response was also observed at the full scale velocity of 41 m/s;  c) compared 
with the smooth flow, the turbulence flow delays the onset of the flutter instability and 
reduces the vortex-shedding response; however, it raises the amplitude of the bridge 
responses progressively over the speed range;  d) the combined fairing and soffit plate 
modified section is the most aerodynamic shape;  this modified section can suppress the 
vortex shedding significantly and greatly increase the flutter velocity.  Therefore, the 
aerodynamically-stable bridge section is the essential parameter for design of long-span cable-
supported bridges under wind load. 

 

Keywords: Flutter derivatives, cable-stayed bridge, stochastic subspace identification, 
wind tunnel, aerodynamic appendages 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1   General Review and Problem Statement 
 

Long-span cable-supported bridges are highly susceptible to wind excitations 
because of their inherent flexibility and low structural damping. Wind loads play an 
important role in the design of these structures. A wind-induced aerodynamic force 
can be divided into two parts: a buffeting force that depends on the turbulence of the 
incoming flow, and an aeroelastic force that originates from the interactions between 
the airflow and the bridge motion. The motion-dependent forces feed back into the 
dynamics of the bridge as aerodynamic damping and stiffness; the effect is termed 
‘aeroelasticity’ and is commonly described via ‘flutter derivatives’. The problems of 
aerodynamic stability including vortex-induced vibrations, galloping, flutter, and 
buffeting, may have serious effects on the safety and the serviceability of the bridges. 
A brief description of each of these phenomena is as follows. A more comprehensive 
treatment is given in Simiu and Scanlan (1996). 

 
Flutter instability describes an exponentially growing response of a bridge 

deck where one or more vibration modes participate at a particular critical wind 
velocity resulting in a failure due to the overstress of the main structural system. 

Buffeting describes a random response of a bridge to the fluctuating incoming 
cross wind. This also includes the response of a bridge to an additional turbulence 
caused in the flow because of its bluff shape, usually referred to as the signature 
turbulence. (Sarkar 1993, Singh 1997) 

Vortex-induced response occurs due to the synchronization of the frequency 
of Kármán-type vertices being shed from the bridge deck to one of its natural 
frequencies of vibration.  Moderate-amplitude oscillation results for a range of 
shedding frequencies around the natural frequency of vibration.  This phenomenon is 
more popularly known as “lock-in”.  The motion, however, is self-limiting in 
amplitude. 

 

  
 

Fig. 1.1 Failure of Tacoma Narrow Bridge under wind flow 
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Among these, flutter is the most serious wind-induced vibration of bridges and 
may destroy the bridges due to the diverging motions in either single or torsion-
bending coupled mode. Notorious examples of the flutter phenomenon are the failures 
of the Brighton Chain Pier Bridge in 1836 and the original Tacoma Narrow Bridge in 
1940 (Fig. 1.1).  

Unlike flutter, buffeting and the vortex-induced responses do not tend to cause 
catastrophic failures but are nevertheless important from design serviceability 
considerations.  In order to reasonably predict the flutter critical wind velocity and 
buffeting response of the bridge, the flutter derivatives shall be determined in first 
place.  The flutter derivatives depend primarily upon the wind conditions, the cross-
sectional shape and the dynamic characteristics of the bridges.  Nevertheless, no 
theoretical values exist for these derivatives for various bridge shapes except only for 
a simple thin plate section.  A major research tool in these studies is, therefore, a wind 
tunnel test, in which a geometrically and aerodynamically representative scale model 
of a length of a bridge deck is built, mounted, and then tested in a wind tunnel.  The 
flutter derivatives are non-dimensional functions of the wind speed, the geometry of 
bridge, and the frequency of vibrations; therefore they can be applied directly to the 
full-scale bridge in a piecewise manner.  

The experimental methods used for determining flutter derivatives can be 
grouped into two types, i.e. forced (Chen and Yu 2002) and free vibration methods 
(Scanlan 1971, Poulsen et al. 1992, Sarkar et al. 1994, Gu et al., 2000). Having less 
emphasis on elaborate equipments required, and the amount of both time and work 
involved; the free vibration method seems to be more tractable than the forced method. 
In the determination of flutter derivatives by the free vibration method, the system 
identification method is the most important part required to extract these parameters 
from the response output of the section model. The free vibration method depends on 
the system identification techniques and can be classified into two types, i.e. the free 
decay and the buffeting tests. In the free decay test method, the bridge deck is given 
initial vertical and torsional displacements. The flutter derivatives are based on the 
transient (i.e. free decay) behavior that occurs when the bridge deck is released. The 
buffeting test, on the other hand, uses only the steady random responses (i.e. buffeting 
responses) of bridge deck under  wind flow without any initial displacement given to 
the model. Compared with the free decay method, the buffeting test is simpler in the 
test methodology, is more cost effective, and is more closely related to the real bridge 
behaviors under wind flow, but with a disadvantage that the outputs appear random-
like. This makes the parameters extraction more difficult and a more advanced system 
identification technique is required. 

In most of the previous studies, flutter derivatives were estimated by the 
deterministic system identification techniques that can be applied to the free decay 
method only. Examples of previous deterministic system identification techniques that 
were applied to the free decay method included the Scanlan’s method (1971), the 
Poulsen’s method (1992), the Modified Ibrahim Time Domain method (MITD) 
(Sarkar et al. 1994), and the Unified Least Square method (ULS) (Gu et al., 2000). In 
these system identification techniques, the buffeting forces and their responses are 
regarded as external noises which then require many iterations in the identification 
process to obtain appropriate results. It also confronted with difficulties at high wind 
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speeds where the initial free decay is drowned by buffeting responses. Besides, at high 
reduced wind speed, the vertical bending motion of the structure will decay rapidly 
due to the effect of the positive vertical aerodynamic damping, and thus the length of 
decay time history available for system identifications will decrease. This causes more 
difficulties to the deterministic system identification techniques (Gu and Qin, 2004). 
In case of turbulence flow, the presence of the turbulence in the flow is equivalent to a 
more noisy-input signal to the deterministic system identification. This made the 
extraction process more complicated and most likely reduced the accuracy of the 
flutter derivatives identified (Sarkar, et al., 1994). In addition, due to the test 
technique, the free decay method is impractical to determine flutter derivatives of real 
bridges in the field. 

On the other hand, the buffeting test uses random responses data of bridge 
motion from wind turbulence only. This mechanism is more closely related to a real 
bridge under a wind flow and is applicable to real prototype bridges. The method costs 
less and is simpler than the free decay since no operator interrupts in exciting the 
model. However, as wind is the only excited source, it results in low signal-to-noise 
ratio, especially at low velocity, and therefore a very effective system identification 
technique is required. None of the aforementioned system identification techniques is 
applicable to the buffeting responses tests.  

System identification techniques can be divided into two groups, i.e. 
deterministic and stochastic. If the stochastic system identification technique (Juang 
and Pappa 1985, Overchee 1991, Peeters 1999) is employed to estimate the flutter 
derivatives of a bridge deck from their steady random responses under the action of 
turbulent wind, the above-mentioned shortcomings of the deterministic system 
identification technique can be overcome. The reason is that the random aerodynamic 
loads are regarded as inputs rather than as noises, which are more coincident with the 
fact. Therefore, the signal-to-noise ratio is not affected by the wind speed, and the 
flutter derivatives at high reduced wind speeds are more readily available. These 
aspects give the stochastic system identification methods an advantage over the 
deterministic system identification.  

Many stochastic system identification methods have been developed during the 
past decades, among which the stochastic subspace identification (SSI in short) 
(Overchee 1996, Peeters 2001) has proven to be a method that is very appropriate for 
civil engineering. The merit points of SSI are: (1) the assumptions of inputs are 
congruent with practical wind-induced aerodynamic forces, i.e. stationary and 
independent on the outputs; (2) identified modes are given in frequency stabilization 
diagram, from which the operator can easily distinguish structural modes from the 
computational ones; (3) since the maximum order of the model is changeable for the 
operator, a relatively large model order will give an exit for noise, which in some 
cases can dramatically improve the quality of the identified modal parameters; (4) 
mode shapes are simultaneously available with the poles, without requiring a second 
step to identify them.  

There are two kinds of SSI methods, one is data-driven (SSI-DATA), and the 
other is covariance-driven (SSI-COV). The similarity of the covariance- and the data-
driven SSI methods is that they both are aimed to cancel out the (uncorrelated) noise 
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using a stochastic realization. In the SSI-COV algorithm, the raw time histories are 
converted to the covariances of the Toeplitz matrix. The  implementation of SSI-COV 
consists of estimating the covariances, computing the singular value decomposition 
(SVD) of the Toeplitz matrix, truncate the SVD to the model order n, estimating the 
observability and the controllability matrices by splitting the SVD into two parts, and 
finally estimating the system matrix(A,C). The modal parameters are found from A and 
C.   

As opposed to SSI-COV, the data-driven stochastic subspace identification 
(SSI-DATA) avoids the computation of covariances between the outputs; since the 
error and noises may be squared up from the covariance estimation (Golub 1989). It is 
replaced by projecting the row space of the future outputs into the row space of the 
past outputs. This projection is computed in favor from the numerically robust square 
root algorithm, i.e. QR factorization. Theoretically, the numerical behavior of SSI-
DATA should then be better than that of SSI-COV.  

In this study, the data-driven stochastic subspace identification method is used 
to estimate the flutter derivatives from random responses (buffeting) under the action 
of smooth and turbulent wind. Tests are also carried out with the free decay method 
(single and two-degree-of-freedom) in order to examine the robustness of the present 
technique that the results are not affected by test methods used. To validate the 
applicability of the present technique, numerical simulations were performed. Then 
sectional-model tests of a quasi-streamlined thin plate model, which is the only section 
that theoretical flutter derivatives exist, were performed under smooth flow. 
Encouraged by the success in the evaluation process, the flutter derivatives of a real 
bridge were determined. The two-edge-girder type blunt section model of Industrial-
Ring-Road Bridge (IRR in short), a cable-supported bridge with a main span of 398 m 
in Samutprakan province, Thailand, was tested both in the smooth and the turbulence 
flows. Tests were conducted in TU-AIT Boundary Layer Wind Tunnel in Thammasat 
University, the longest and the largest wind tunnel in Thailand.  

 
 

1.2   Objectives     
The main experimental parameters needed for examining whether a bridge is 

flutter-prone below a certain mean velocity are the flutter derivatives.  The flutter 
derivatives associated with at least two degrees of freedom (vertical and torsional) 
needed to be determined rather reliably.  Moreover, for the estimation of buffeting 
response of bridge decks, the static force coefficients should also be known.  

Up to the present, all cable-stayed bridges in Thailand, such as the Rama IX 
Bridge, the RamaVIII Bridge, and the two Industrial Ring Road Bridges, were 
designed and conducted in wind tunnel test by oversea consultants.  Therefore, there is 
a real need to increase the number of researchers in this field in order to minimize the 
oversea consultant dependency and the associated design cost.  Since the TU-AIT 
boundary layer wind tunnel was jointly constructed under an academic collaboration 
between Thammasat University (TU) and the Asian Institute of Technology (AIT), a 
number of advance research of wind resistant design of long span bridges in Thailand 
have been significantly increased. 
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The present study concentrates on two major thrusts: First, the various state-of-
the-art experimental techniques for accurate determinations of the parameters 
mentioned above (flutter derivatives and static coefficients) from section-model tests 
in the wind tunnel; Second, and the more important contribution of this study, was the 
system identification technique for extracting the flutter derivatives from the output 
response of the section model.  Therefore, the objectives of the study are as follows: 

 
- To propose a new system identification method, that overcomes the 

shortcomings of the previous deterministic system identification techniques 
those are commonly used, to identify flutter derivatives from a dynamic wind 
tunnel model test both in smooth and turbulent flows.  Results from the 
application of the present system identification method to various experimental 
techniques are then compared. 

 
- To identify aerostatic force coefficients, CL, CD, CM, of bridge decks from wind 

tunnel test in both smooth and turbulent wind. 
 

- To estimate some major aerodynamic phenomena (vortex shredding, flutter 
instability) of the bridge decks based on test results. 
 

- To study main effects of two different aerodynamic shapes (e.g. streamlined 
and bluff section) upon aerodynamic behavior of bridge decks. 
 

- To study effects of flow conditions (smooth and turbulence) on the 
aerodynamic phenomena and aerodynamic parameters of the bridge deck. 
 

- To investigate the effectiveness of aerodynamic appendages on the responses 
of bridge deck, vortex shedding and flutter phenomenon 
 

 
1.3  Scope of Study 

 
The scope of the study can be summarized as follows. 

 
1. The most advanced stochastic subspace identification technique was theoretically 

formulated to identify flutter derivatives of bridge decks under wind flows. The 
new proposed data-driven stochastic subspace identification (SSI-DATA) was 
used to extract flutter derivatives and results were compared with those from the 
popular covariance-driven stochastic subspace identification (SSI-COV). 
 

2. The computer software of both SSI algorithms were developed to identify flutter 
derivatives of bridge decks from the response outputs of the section model from 
wind tunnel tests. 

 
3. To validate the applicability of the present method to various experimental 

techniques (i.e. the free decay and the buffeting tests), numerical simulations of 
various signal outputs were adopted. Then, the present stochastic subspace 
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identification was applied to identify the modal parameter and system matrices 
from the simulated responses, and results were compared with the pre-set values. 

 
4. In order to validate the present system identification technique and the 

experimental set-up, wind tunnel tests of a section model of a streamlined thin 
plate model were performed to extract flutter derivatives from various test 
techniques under smooth flows, i.e. the single-degree-of-freedom free decay 
method, the coupled-degree-of-freedom free decay and buffeting test methods. The 
results are then compared with the theoretical values.  

 
5. Wind tunnel tests of the section model of the blunt type Industrial Ring Road 

Bridge (IRR) were conducted to extract flutter derivatives under smooth and 
turbulence flows. The results from the present method will be compared with those 
from the previous research in case of smooth flow.  

 
6. The static aerodynamic force coefficients (CD, CL, CM) of both the streamlined thin 

plate under smooth flow and the blunt type IRR Bridge under smooth and 
turbulent flow were determined from static test set-up. Effects of wind angle of 
attacks were also examined. 

 
7. Identify the critical flutter wind speed and flutter derivatives of aerodynamic 

appendages modified sections, including fairings, soffit plates and combination of 
those two sections and compare their responses in smooth flow. 

 
 

The study mainly focused on the Industrial Ring Road cable–stayed bridge. 
One of the two cable-stayed bridges (South Bridge) with the main span length of 398 
m, was selected to perform in this study. This bridge is an example of bluff type cross 
section which exhibits difference aerodynamic mechanism compared to a thin plate 
model. Fig. 1.3 shows the general view of the deck cross section. 
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Fig. 1.2  General arrangement of the IRR cable-stayed bridges 
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Fig. 1.3  Typical cross section of Industrial Ring Road bridges (unit in meter) 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

The discipline of aeroelasticity refers to the study of phenomenon wherein 
aerodynamic forces and structural motions interact significantly. Flutter is an 
aeroelastic self-excited oscillation of a structural system. The frequency-domain 
approach has been widely used for estimating flutter speed of structures. The 
frequency-domain method uses flutter derivatives, which may be experimentally 
obtained from wind tunnel testing of section model. System identification technique is 
the crucial mean for the identification of bridge deck flutter derivatives and can be 
classified into two groups; i.e. deterministic and stochastic ones. 

In most of the previous studies, flutter derivatives were estimated by 
deterministic system identification techniques. Deterministic system identification 
techniques involved in flutter derivative estimations can be group under two types, i.e. 
forced vibration method (Chen and Yu 2002) and free vibration method (Scanlan and 
Tomko 1970; Gu et al. 2000; Gu et al. 2001; Sarkar 1994; Scanlan and Lin 1978). The 
forced vibration method is somewhat expensive since they involve sizeable equipment 
and considerable time and work. Moreover, the forced vibration method is different 
from their kinetic characteristics in the natural wind.  
 

2.1  Free Vibration Method 
 

In the 1970s, R.H. Scanlan proposed a semi-experimental and semi-analytical 
approach for critical flutter wind speed and another approach for buffeting response 
(Scan lan et al.  1971; Scanlan and Gade 1977). 

These two approaches are presently widely used. Flutter derivatives of bridge 
decks are parameters in these approaches essential for the flutter and buffeting analysis 
of long-span bridges. In the original technique, to extract the flutter derivatives in 
Scanlan's method (Scanlan et al.; 1971) , a spring-suspended sectional model was 
tested and the free decay vibration signals were used. A great advantage of the free 
vibration technique is its simplicity, requiring no expensive and complicated driving 
machine. But Scanlan's method need three groups of test. Torsional and vertical 
bending motions have to be constrained, respectively, to obtain the so-called direct 
derivatives. Furthermore, to obtain cross derivatives, the vertical and torsion motions 
of the model must have the same frequency at all wind velocities. In view of this 
situation, many efforts have been made to simplify the identification procedure. 
ARMA model was used by M. Shinozuka et al. (1982) to try to identify the flutter 
derivatives.  But the results seemed unsatisfactory for high noise.  

H. Yamada et al. (1992) introduced the extended EKF method into the 
identification procedure of these derivatives based on the coupled vibration time 
histories. In this method, the time histories of the displacement and velocity as well as 
the information of the initial condition are simultaneously required.   
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Poulsen et al. (1992) used a method which combines control theory and system 
identification techniques to extract flutter derivatives from section model tests for the 
Great Belt East Bridge.  

In 1994, P.P. Sarkar and R.H. Scanlan developed Modified Ibrahim Time-
domain (MITD) method to extract all the direct and cross derivatives from the coupled 
free vibration data of 2-DOF model (Sarkar et al. 1994). This method requires 
selection of the time shifts N1 and N2. Sarkar and Scanlan have found a way to select 
these two time shifts close to optimal values. 

Imai et al. (1989). have been reviewed other system identification (SID) 
methods that can be applied to problems in structural dynamics ;least squares (LS), 
instrumental variable (IV), maximum likelihood (ML), and extended Kalman filtering 
(EKF).   

Hsia (1976) described different least squares algorithms for system parameter 
identification. Extended Kalman filtering techniques were used by Yamada and 
Ichikawa (1992), Diana et al. (1995), Iwamoto and Fujino (1995) and Jones et 
al.(1995).  

Jakobsen and Hjorth-Hansen (1995) and Brownjohn and Jakobsen (2001) have 
used covariance block Hankel matrix (CBHM) method for parameter extraction of a 
two-DOF system. The CBHM method has also been extended to cater for three-DOF 
flutter derivatives. However the principles were illustrated for a two-DOF system and 
eight flutter derivatives were experimentally extracted.  

Gu et al. (2000) and Zhu et al. (2002) have used an identification method based 
on unifying least squares (ULS) theory to extract flutter derivatives of a two-DOF 
model. Though the ULS method could theoretically identify all 18 flutter derivatives 
using a three-DOF section model, only eight flutter derivatives were extracted due to 
lack of a more inclusive experimental set-up to accommodate the three-DOF section 
model. In this method, a unified error function which is linearly composed of two 
errors component of vertical bending and torsional motions is defined as the objective 
function to optimize the flutter derivatives. Nevertheless, if distinct difference exists in 
quantity between the two error components, unsatisfactory identification precision 
may occur.  In order to improve the precision, the modified least-square method for 
adding weights to error components was proposed subsequently (Ding, et. al., 2001), 
In addition, the weighting ensemble least-square method was developed to extract 
eight flutter derivatives of bridge decks (Li, et al. 2003).  In this method, several 
vibration records at the same wind speed are regarded as an ensemble.  It is 
simultaneously fitted to identify the mode parameters by nonlinear least square 
method in the sense of minimizing the total error function.  

The Iterative Least Square approach (ILS) was presented to identify all 18 
flutter derivatives for a streamlined bridge deck and an airfoil section model 
(Chowdhury and Sarkar 2004). In the identification process, the time histories of the 
displacement, velocity as well as accelerations are simultaneously required. 

The above least-square methods commonly apply alternate iteration technique 
to obtain solutions, and the same lengths of the vertical bending and torsional vibration 
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histories are necessary. Nevertheless, the solution precision of these alternate iteration 
techniques are closely relevant with and sensitive to the initial selected values of 
modal parameters, and the solution may not be converged sometimes. 

Chen et al. (2006) have used empirical mode decomposition (EMD) method 
developed by Huang et al. (1989) to filter and reduce the noises from the free decay 
signal and the filtered signal were used to extract flutter derivatives based on unifying-
least square method. 

Generally, the free vibration method seems to be more tractable than forced 
vibration testing. However, at high reduced wind speeds, the vertical bending motion 
of the structure will decay rapidly due to the effect of positive vertical bending 
aerodynamic damping, and thus the length of time history available for system 
identifications will decrease, which therefore add more difficulties to the system 
identification. Furthermore, the free vibration method regards the buffeting forces and 
the responses as external noises, and it is therefore confronted with great difficulties at 
higher wind speeds (Sarkar 1992). 

In summary most of the above-mentioned methods are subsections of so-called 
output-only system identification (as input such as wind load are not exactly known 
and available parameters are output responses only).  In a civil engineering context, 
the civil structures (e.g. bridges, towers) are the systems; that is excited by a not 
measurable input force and that only output measurements (e.g. accelerations) are 
available. Then some output-only identification methods are reviewed in next section. 
 

2.2  Output-Only Modal Identification Methods 
 

The ambient excitation has commonly a multiple input nature and wide band 
frequency content, stimulating a significant number of modes of vibration. For 
simplicity, output-only modal identification methods assume the excitation input as a 
zero mean Gaussian white noise, which means that the real excitation can be 
interpreted as the output of a suitable filter excited with that white noise input.  
Modelling the behaviour of the filter-structure system, one may conclude that some 
additional computational poles, without structural physical meaning, appear as 
consequence of the white noise assumption. 

There are two main groups of output-only modal identification methods: 
nonparametric methods essentially developed in frequency domain and parametric 
methods in time domain. 

The basic frequency domain method (Peak-Picking), though already applied 
some decades ago to the modal identification of buildings and bridges, was only 
conveniently systematized by Felber (1993) about twelve years ago. This approach, 
which leads in fact to estimates of operational mode shapes, is based on the 
construction of average normalized power spectral densities (ANPSDs) and ambient 
response transfer functions involving all the measurement points, and allowed the 
development of software for modal identification and visualization used at UBC and 
EMPA (13). The frequency domain approach was subsequently improved (Prevosto 
1982) by performing a single value decomposition of the matrix of response spectra, 
so as to obtain power spectral densities of a set of SDOF systems. This method 
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(Frequency Domain Decomposition (FDD)) was better detailed and systematized by 
Brincker et al. (Brincker 2001), and subsequently enhanced (Brincker 2000) in order 
to extract modal damping factors estimates. In this last approach (EFDD) these 
estimates are obtained through inspection of the decay of auto-correlation functions, 
evaluated by performing the inverse Fourier transform of the SDOF systems’ power 
spectral densities. 

The time domain parametric methods involve the choice of an appropriate 
mathematical model to idealize the dynamic structural behavior (usually time discrete 
state space stochastic models, ARMAV or ARV models) and the identification of the 
values of the modal parameters so as that model fits as much as possible the 
experimental data, following some appropriate criterion. These methods can be 
directly applied to discrete response time series or, alternatively, to response 
correlation functions. The evaluation of these functions can be made based on their 
definition, using the FFT algorithm (Brincker 1982) or applying the Random 
Decrement method (RD) (Asmussen 1992). A peculiar aspect of output-only modal 
identification based on the fitting of response correlation functions is the possibility to 
use methods that stem from classical input-output identification methods, based on 
impulse response functions. Some of these methods are the Ibrahim Time Domain 
(ITD) (Ibrahim 1977), the Multiple Reference Ibrahim Time Domain (MRITD) 
(Fukuzono 1986), the Least-Squares Complex Exponential (LSCE) (Brown 1979), the 
Polyreference Complex Exponential (PRCE) (Vold 1982) or the Covariance-Driven 
Stochastic Subspace Identification (SSI-COV) (Peeters 2000). An alternative method 
that allows direct application to the response time series is the Data-Driven Stochastic 
Subspace Identification (SSI-DATA) (Overschee 1996). It’s still worth noting that the 
Random Decrement technique, usually associated to the application of time domain 
methods like Ibrahim’s, can be also the base for the application of frequency domain 
methods, like PP, FDD or EFDD, as it leads to free vibration responses, from which 
power spectral densities can be evaluated using the FFT algorithm (Rodrigues 2004), 
reducing noise effect (methods RD-PP, RD-FDD and RD-EFDD). 

These methods, schematically represented in Fig. 2.1, have been recently 
systematized, applied and compared by Rodrigues (Rodrigues 2004). Fig. 2.1 also 
indicates the five different types of numerical techniques employed in their 
development (FFT, SVD, LS, EVD and QR). 
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    Fig. 2.1   Summary of output-only system identifications scheming apply to modal 

parameters estimation 
 
 
 

2.3  Stochastic Methods 
 

None of the aforementioned methods can simultaneously extract aerodynamic 
admittances and flutter derivatives, or other important aeroelastic parameters in flutter 
and buffeting analysis of long-span cable-supported bridges. If the stochastic system 
identification techniques are employed to extract flutter derivatives and aerodynamic 
admittances, then the above-mentioned shortcomings of the force measurement 
methods and the transient motivation system identification technique may be 
overcome. The stochastic system identification techniques (Juang and Pappa 1985; 
Overschee 1991; Peeters 1999) directly extract the required dynamic parameters from 
the steady random responses of the bridge section model subjected to turbulent wind. 
For this kind of identification methods, the random aerodynamic loads are regarded as 
input rather than noise, which are more coincident with the fact, so the signal-to-noise 
ratio is not affected by wind speed, and the flutter derivatives at high reduced wind 
speeds can thus be available. These aspects give the stochastic system identification 
methods an advantage over the deterministic methods in estimating the flutter 
derivatives and aerodynamic admittances of bridge decks. Moreover, flutter 
derivatives and aerodynamic admittances can be simultaneously obtained with the 
same random response data.  

Many stochastic system identification methods have been developed during the 
past decades, among which the stochastic subspace identification (SSI in short) 
technique (Overschee 1991; Peeters 1999; Gu and Qin 2004 ) has proven to be a 
method very appropriate for civil engineering. The merit points of SSI are: (1) the 
assumptions of inputs are congruent with practical wind-induced aerodynamic forces, 
i.e. stationary and independent on the outputs; (2) identified modes are given in 
frequency stabilization diagram, from which the operator can easily distinguish 
structural modes from the computational ones; (3) since the maximum order of the 
model is changeable for the operator, a relatively large model order will give an exit 
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for noise, which in some cases can dramatically improve the quality of the identified 
modal parameters; (4) mode shapes are simultaneously available with the poles, 
without requiring a second step to identify them. There are two kinds of SSI methods, 
one is data-driven, and the other is covariance-driven.   

 
2.4  Aerodynamic  Appendages 

 
The investigation in aerodynamic appendages had been considered for a long 

time and many studies are used in an effort to suppress the oscillation in real 
structures. Bronx-Whitestone Bridge which had to use poor aerodynamic I-girder to 
keep construction in tight schedule, the stiffening systems including fairings are 
installed along bridge deck. Another illustration is Deer Isle Bridge, which is stated 
below. Some investigations had been reviewed as listed: 

Wardlaw R. L. and Goettler L. L. (1968) had purposed the experimental study 
of the effects of aerodynamic appendages. They measured the amplitude of oscillation 
of Long’s Creek Bridge before and after installing aerodynamic appendages, which 
consisted of the soffit plates and various types of fairings, under the wind velocity of 8 
to 18 m/s in wind tunnel test. The results of this study showed that the bridge 
responses via the vibration amplitude approached 11 cm of original section under 16 
m/s wind speed. In the other hand, with fairings installed, the amplitude was decreased 
more and more following the fairings length. Since 3.0m fairings installed, the 
structure responded with amplitude less than 1 cm. The Long’s Creek Bridge is a 
representative of satisfactory performance of the triangular fairing on bridge 
aerodynamic instability. Many said that Long’s Creek Bridge is a representative of 
satisfactory performance of the triangular fairing on bridge aerodynamic instability. 

The investigation of effects on geometry modification on aerodynamics of 
cable-stayed bridge deck had been carried out by Bienkiewicz in 1987. A 1:140 scale 
of Weirton-Steubenville cable-stayed bridge model was a case study which its original 
section behaved an unstable oscillation in torsional direction, including high vortex-
induced response. The wind tunnel tests were carried out in smooth flow for four 
sections including original section, partially streamlined, enclosed lower cavity and 
fully streamlined section. Streamlining of deck resulted in improved aerodynamic 
performance, with an increase in the critical flutter wind speed for torsional flutter and 
decrease in vortex response. 

Houston D. R. and Bosch H. R. had published the effects of fairings and of 
turbulence on the flutter derivatives of a notably unstable bridge deck in 1988. This 
study aimed to identify the flutter derivatives of Isle-Sedgwick Bridge by sectional 
model test in wind tunnel. Its deck had a same plate girder profile as the Tacoma 
Narrows Bridge, which was subsequently shown to have such poor aerodynamic 
characteristics. Like the Tacoma Narrows Bridge, the Deer Isle Bridge was built 
during the depression and has a relatively light and flexible stiffening structure. 
Almost immediately after its construction, the Deer Isle Bridge experienced large 
wind-induced oscillations. Therefore, the fairing-modified section was tested for 
comparison. The result of the torsional aerodynamic stability represented via flutter 
coefficient A2* as a function of wind speed whose positive values indicate unstable 
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conditions. It is clear that the fairing modification produces a more stable section. 
Furthermore, the fairing coverage effects are also carried out where the section with 
100% covered with fairing introduced the most stable section.  

Nagao F. et al. had investigated the effects of triangular edge fairing on bridge 
box girder aerodynamic stabilities in 1993. Various angles of triangular fairings were 
mounted to different type of bridge deck sections. The results showed that fairing 
which the upper slope angle is 0o showed only a little increase in onset flutter 
velocities. Generally speaking, the modification of flow properties along the upper 
deck is effective in preventing the flutter. In addition, fairing effects on flutter 
increased with the slenderness ratio of cross section. Moreover, the results show that 
an inner angle of 60o fairing gave the most effects of flutter onset velocity. This type 
of fairing can furthermore execute almost vortex shedding. Nonetheless, this study 
was carried out in the uniform flow and due to no flutter derivatives were indentified 
from this study; hence the effects of turbulence on the aerodynamic instability for 
bridge deck and flutter derivatives should be clarified in the next place. 

Fang F. et al. had investigated on the aerodynamic instability of a suspension 
bridge with a hexagonal cross-section in 2007. Measurements of the dynamic 
responses of a sectional bridge model in the cross-wind and torsional directions were 
firstly carried out in wind tunnel. Three sections were mounted and tested for a 
comparison including bluff rectangular 180o side angle section, 90o, 60o, and 30o side 
angle sections. Among the hexagonal decks studied, it was found that one with 30o 
side angle leads to the greatest critical flutter speed. Beside wind tunnel model tests, 
the method of computational fluid dynamics (CFD) had also been used to examine the 
aerodynamic performance of the sections where the results of numerical predictions 
agreed well with those from the experiments. 

From the investigations reviewed above, geometry modifications of cable-
stayed bridges are suggested to mount on a considered section due to their efficiency 
in reducing static and dynamic responses. Fairings, soffit plates and combined sections 
are consequently first-rated. Most of previous studies had focused on the effects of 
geometry modifications on critical flutter velocities, where flutter derivatives were not 
widely judged due to lack of motivation on the simplicities and stabilities of extracted 
values. This thesis additionally carries out static responses, an overall response of 
bridge deck and all eight flutter derivatives which are affected by deck shape 
modifications as well. 
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CHAPTER 3 
 

THEORETICAL BACKGROUND FOR WIND EFFECTS 
ON LONG-SPAN CABLE-SUPPORTED BRIDGES  

 
In the design of long-span cable stayed bridges or suspended bridges, the wind 

effects are of primary concern.  The failure of the Tacoma Narrows suspension bridge 
in 1940 is an example of wind effects on structures.  Therefore to understand the 
response of long span suspension bridges under wind excitation, the basic wind 
phenomena needs to be clearly understood.  Hence this chapter focuses on and reviews 
a number of topics connected with the effect of the wind on long-span cable stayed 
bridges.  The aerodynamic effects of wind on the bridges are primarily vortex 
shedding, galloping, torsional-divergence, flutter and buffeting. 

 
3.1  Design Concept of  a Cable Stayed Bridges 

  
 The criteria for the design of long span cable stayed bridges are concerned with 
the static and dynamic responses of the bridge under wind loading.  A basic 
knowledge of the wind forces are required to understand wind effects on these 
structures.  The Aerodynamic design involves experimental results of aerodynamic 
coefficients and flutter derivatives. The wind velocity may cause the aerodynamic 
instability of bridge deck, which does not exceed the predicted critical velocity in 
order to avoid failure of the structures.  The frequencies other than the fundamental 
one should be considered in design.  There are static and dynamic behaviors that 
should be considered for design of bridges (ASCE 1987; Walther 1999).         
 

3.2  Static Behavior 
 

 Wind flow exerts on the bridge deck and alters the pressure between sides of the 
body.  The results of this phenomenon are aerodynamic forces that can be expressed 
by static wind load.  Usually the fist consideration is the static phenomena that are not 
critical for the design of bridges.  The static loads are lift force, drag force, and 
moment.    
                       
 

   Lift force                                                     (3.1) 
 
    

   Drag force                                              (3.2) 
                                  
   Moment                                                (3.3) 
 

where U is mean velocity of wind flow; B is characteristic dimension; , ,L D MC C C are 
lift, drag and moment coefficients, respectively.  These coefficients are defined from 
experimental results using wind tunnel model test. 

21
2 LL U BCρ≡

21
2 DD U BCρ=

2 21
2 MM U B Cρ≡
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3.3  Dynamic Behavior 
 
 The methods of analysis of cable–stayed bridge are not only limited to 
consideration with static loads but also dynamic loads.  Therefore, the dynamic 
analysis of cable-stayed bridge is concerned with their aerodynamic behavior.  
Dynamic studies include the determinations of the natural modes and modal 
frequencies, mode shapes under aerodynamic forces.   
 Under the wind loads, which are considered as forces varying with time, the 
cable-stayed bridge will oscillate.  The oscillation excited by wind usually occurs in 
one of the following types of displacements: 
  

- Vertical bending of the cable-stayed bridge in which the deck moves up 
and down.  

- Torsion of the cable-stayed bridge in which the deck twists above a span-
wise axis.    

- Coupled motion of cable-stayed bridge in vertical bending and in torsion. 
   
For the fist type, vertical bending oscillation is assumed as single-degree-of 

freedom (SDOF).  Therefore, the equation of motion of SDOF can be written as 

               
...

h h hm h c h k h L+ + =               (3.4) 
  
Where hL   is the lift force, m  is the body mass, hk  is the stiffness coefficient and hc  is 
the damping coefficient. 
             
 Similar to the first type, the torsional oscillation also is considered as SDOF, the 
equation of motion of SDOF can be written as 
 
                            (3.5) 
 
 Where Mα  is aerodynamic moment, I  is moment of inertia, kα  is the stiffness 
coefficient and cα  is the coefficient of damping. 
  
 The third type of motion is two DOFs, therefore the equations of motion are 
coupled as follow: 

           
                        (3.6) 

 

             
...

I c k M
α α α

α α α+ + =               (3.7) 
 
where , , hm I L   and  Mα  represents mass, moment of inertia, lift and moment 
respectively; c and k represents damping and stiffness coefficients with the subscripts 
h and  α  meaning vertical and rotation displacements, respectively. 
 
 

.. .
I c k Mα α αα α α+ + =

.. .

h h h
mh c h k h L+ + =
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3.4  Aerodynamic Instability 
                                                    
  Aeroelasticity is the discipline concerned with the study of the aerodynamic 
forces and structural motions interact significantly.  When a structure is subjected to 
wind flow, it may vibrate or suddenly deflect in the airflow.  This structural motion 
results in a change in the flow pattern around the structure.  If the modification of 
wind pattern around the structure by aerodynamic forces, effects of which is 
increasing rather than decreasing the vibration of the structure, then the aeroelastic 
instability occurs.  The aeroelastic phenomena that are considered in wind engineering 
are vortex shedding, torsional divergence, galloping, flutter and buffeting. 
 
3.4.1 Vortex Shedding  
 
  When a body is subjected to wind flow, the separation of flow occurs around 
the body.   Vortices are formed at points where the wind flow separates from the 
surface of a structure.  They may break away at regular intervals causing a periodic 
variation of force on the structure.  Excitation due to periodic formation of vortices in 
the wind flow in the wake of structure is primary depend on details of the shape of 
cross-section.  If the structure is rigid and the incident flow steady, the vortex 
formation would be very precisely periodic at a frequency proportional with the wind 
velocity.  With a flexible structure as cable-stayed bridge, the effect of motion of the 
structure is to modify the vortex frequency.  This change is produced by movement of 
the structure, which may cause aerodynamic forces (lift, drag, moment) tending to 
increase the motion. 
 
  When the natural frequency f of structure differs significantly from vortex 
frequency called Strouhal frequency, the structure oscillates rather small. The Strouhal 
frequency  fs  is defined as:                                                           
 
                       (3.8) 
 
 
where S is Strouhal number, D is typical cross flow dimension, fs is frequency of 
vortex shedding, U  is oncoming flow velocity.    
 
  When the vortex-induced and the natural frequencies coincide, the resonance 
will occur.  This phenomenon is called lock-in.  During lock-in condition, the 
structural member oscillates with increased amplitude but rarely exceeding half of the 
across wind dimension of the body (Simiu and Scanlan, 1996).  The lock-in condition 
is illustrated in Fig. 2.1. 
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Fig. 3.1: Evolution of vortex-shedding frequency with wind velocity over elastic 

structure. 
  
 
 In the Fig. 3.1, the frequency of vortex-shedding at lock-in remains equal to 
natural frequency while wind velocities increases.  The nature and extent of the vortex 
shedding phenomenon for different ranges of Reynolds number for a cylinder are 
shown in Fig3.2.  The vortex-shedding phenomenon is describable in terms of a 
nondimensional number Re, which is defined as; 
 
 
                      (3.9) 
 
  
 
where U is characteristic velocity, D is characteristic body dimension, μ  is dynamic 
viscosity of fluid, ρ  is fluid density, ν   is kinematics viscosity. 
 From Fig. 3.2, as illustrated by Simiu and Scanlan (1996), it is seen that for a 
very low Reynolds number, the flow remains the same.  For higher Reynolds numbers, 
the flow starts to separate around the edges of the obstruction and vortices are 
generated in the immediate wake of the obstruction.  Thereafter further increase in the 
Reynolds number causes the creation of cyclically alternating vortices and they are 
carried over with the flow downstream.  From there on, the inertial effects become 
dominant over the viscous effects and turbulence sets in, resulting in shear of the flow.  
So this reasonably illustrates the vortices phenomenon starting from a smooth and low 
speed flow to a turbulent and high-speed flow. 
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Fig. 3.2  Effects of Reynolds number 
 

   
  For wind engineering, the Reynolds number is in range from 104 to 105 then the 
inertial effects become dominant over the viscous effects.  The periodic shedding of 
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vortices alternatively from the upper and lower surfaces of the bridge deck causes 
periodic fluctuation of aerodynamic forces on the structure.  For this reason, the 
pressures on the upper and lower surfaces are unbalanced periodically that can cause 
transverse and torsional oscillation of the bridge deck that may lead to bridge deck 
instability.  If this instability causes excessive deformations then it may lead to 
destruction of the bridge.  It is the most serious problem for long-span bridges because 
of slenderness of structure. 
 
3.4.2 Galloping  
 
  According Simiu and Scanlan, (1996), galloping is instability typical of slender 
structures having special cross sectional shape such as, for example, rectangular or D- 
section.  Under certain conditions, these structures can exhibit large amplitude 
oscillations in the direction normal to the flow at frequency much lower than those 
vortex-shedding from the same direction.  It is in this sense that galloping may be 
considered a low-frequency phenomenon. 
 
  The across wind galloping in a bridge causes a crosswise vibration in the body.  
As the section vibrates crosswise in a steady wind velocity U.  By the relative reasons, 
when the velocity changes and the angle of attack α   is also changed.  Due to the 
change in α, the flow now is not symmetric, so that the pressure at top and bottom of 
section does not equal, that results lift force along y direction.  This force accelerates 
the incipient motion of the body with the velocity y˙ and has the destabilizing effects.  
The action of structure is against this motion by restoring force (Fig 3.3).  Thus the 
body will oscillate in the y direction.  And the equation of motion can be written as 
follow: 
 
 
                    (3.10) 
 
 
 
 
 
 
    
 
     
 
     
 
        

Fig. 3.3  Effective angle of attack on an oscillating bluff object 
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Analytical formulation of galloping 
 
 Drag force 
 
                    (3.11) 
 Lift force 
 
                    (3.12) 
 
Denote that  the aerodynamic force ( )yF α   is sum of projected of lift and drag forces 
on y-axis  
                                                                                        (3.13) 
 
    and            
                    (3.14) 
    

where   cosrU U α=   and   
.

1arctan y
U

α −=                                                  (3.15) 

Let consider the case   
.
yy U

U
α<< → ≅  

 
Then  
 
             .…..(3.16) 
 

                   
……(3.17) 

 
U    -   wind velocity 
Ur   -   relative wind velocity with respect to moving body y velocity across-wind 
 y&   -   velocity across wind 
B    -   dimension of the section  
L    -   lift force 
D   -   drag fore 

 
If the prism is sprung and the equation of motion is given as 

   
.
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The total damping ratio 
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 The system is stable is Tζ  > 0  it means that the energy of motion is dissipated.  
If the system is unstable when  Tζ  <  0 , i.e. the lift force acts in the same sense at the 
motion and tend to increase amplitude of the oscillation.  Due to 2 mζ ω  is mechanic 
damping then always positive.  The second term of the equation is aerodynamic 
damping that may be negative.  If Tζ  < 0  then 
 
 
                     (3.20) 
 
 

The galloping occur when ratio B/h is in range 0.75 to 3.0, where B is section  
width and h is section height, galloping may occur.  At B/h ≥  3.0, the separated flow 
reattaches to the down stream of section.  Therefore galloping is vanished (Ito and 
Nakamura 1982).For this reason, galloping only relates to pylon instability in cable-
stayed bridge. 

 
3.4.3 Torsional Divergence 
    
  Torsional divergence is an instance of a static response of a structure.  
Torsional divergence was at first associated with aircraft wings due to their 
susceptibility to twisting off at excessive air speeds.  When the wind flow comes, drag, 
lift, and moment are produced on the structure.  This moment induces a twist on the 
structure and causes the angle of incidenceα  to increase. The increasing of α  is 
results of higher torsional moment and flexible structure.  This phenomenon can be 
considered as the wind velocity increases.  If the structure does not have sufficient 
torsional stiffness to resist this increasing moment, the structure becomes unstable and 
will be twisted to failure.  The phenomenon depends upon structural flexibility and the 
manner in which the aerodynamic moments develop with twist.  In most cases the 
critical divergence velocities are extremely high, well beyond the range of velocities 
normally considered in design (Simiu and Scanlan, 1996). 
 
 
 
 
 
 
 
 
     Fig.  3.4 Bridge deck under wind flow 
 
 
The aerodynamic moment per unit span is given by 
 
                        (3.21) 
 

[ ]18

0

( ) ( ) 0L
D

dD C
d

α α
α

⎡ ⎤+ <⎢ ⎥⎣ ⎦

2 21 ( )
2 MM U B Cα ρ α=



24 

 

where ρ  is air density, U  is the mean wind velocity, B is the deck width; α  is the 
angle of twist and CM is the aerodynamic moment coefficient about the twisting axis.   
At zero angle of attack the value of this moment is 
                                                                        

   2 2
0

1(0)
2 MM U B Cα ρ=  where                                (3.22) 

For a small change in α  away from  0α = , Mα  is approximated as given by 
 
                    (3.23) 
 
Now equating the aerodynamic moment to the structural resisting moment gives 
 
                    (3.24) 
 
 
                       (3.25) 
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0 0M

M
dCC

d
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== =                (3.26) 
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2
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Equation then becomes 
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                        (3.28) 

 
Divergence occurs when α  approaches infinity 
 

                                                  '
0M

k
C

αλ
=

=              (3.29) 

Thus the critical divergence velocity is given as 
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3.4.4 Flutter 
 
  The most dangerous dynamic instabilities of structure under wind effects are 
aeroelastic flutter.  Flutter is an aeroelastic instability typical of structures such as 
airfoil or bridge deck that may oscillate in both translation and torsional 
displacements.  This phenomenon can be explained as that the periodic shedding of 
vortices alternatively from the upper and lower surfaces of the bridge deck causes 
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periodic fluctuation of aerodynamic forces on the structure.  Therefore, the pressures 
on the upper and lower surfaces are unbalanced periodically that can cause vertical 
and torsional oscillation of the bridge deck.  This is the most serious problem for long-
span bridges and is a very serious concern in the design of cable-stayed bridges.  The 
failure of the Tacoma’s narrows bridge was due to the flutter. The term flutter has 
been variously used to describe different types of wind-induced behavior.  The most 
common type of flutter in design of the long-span bridge is classical flutter (Simiu and 
Scanlan, 1996). 
 
Classical flutter  applied to suspended span bridge decks.  It implies an aeroelastic 
phenomenon in which two degrees of freedom of a structure, rotation and vertical 
translation, couple together in flow driven, unstable oscillation. 
 
  Flutter analysis is commonly based on the assumption of linear elastic system 
behavior.  It is justified because the oscillations of the structures are usually harmonic. 
The governing equations of motion for translation and rotation of a bridge deck 
subjected to wind flow (Fig. 3.5) are given in Eqs. (3.6) and (3.7)  repeated here as 
 

 
.. .

h h hm h C h k h L+ + =                                     (3.6) 

 
.. .

I C k Mα α αα α α+ + =                (3.7) 
 
 
 

 
 

Fig. 3.5  Definitions of wind and deflections 
 
where m, I, h, α , Lh and Mα  represents mass, moment of inertia, heave, pitch, lift and 
moment respectively, c and k represents damping and stiffness coefficients with the 
subscripts h and α  meaning heave and rotation respectively. 
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 In the classical theoretical case (Theodorsen 1934, Dyrbye 1996) of steady 
sinusoidal oscillation of and airfoil these coefficients is given as 
    

        *
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in which F(k) + iG(k)  =  C(k) is the Theodorsen circulation function defined by 
Bessel function and k is based on the half chord, i.e. k = K/2. F(k) and G(k)  are given 
by 
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where  ,i iJ Y  are Bessel  functions of the first and second kind, respectively of order i. 
 
If the coefficients, *

iH and *
iA are non dimensional function of the reduced frequency 

K then the equation hold not only for sinusoidal oscillation but for general motions of 
the form: 
     
     0 sinth h e tλ ω=  (3.34) 
          ( )0 sinte tλα α ω θ= −  (3.35) 
 
Where  h0, 0α is initial amplitudes, θ - relative phase, λ is the rate of decay or buildup 
of the oscillation (linear regime)  
   
Lasen and Walther (1998) proposed that 
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where BK
U
ω

=  is reduced frequency coefficient, *
iH , *

iA are flutter derivatives, U is 

wind velocity, B is deck width of bridge. 
 
 Assuming that the motion are harmonic in time 0 0exp( ), exp( )h h i t i tω α α ω= = . 
Under these assumptions, the above equation can be arranged in non-dimensional form 
to yield. 
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Dividing the above equations by i te ω  , substituting ( )ie ϕ−  by (cos sin )iϕ ϕ−  Then the 
aerodynamic derivatives can be defined 
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3.4.5 Flutter Derivatives at Vortex Lock-in 

 
As vortex-induced vibration are presented above, the most critical dynamic 

instability of body is when the natural frequency of oscillation differs a little from the 
Strouhal frequency ( )sf f≅ . Then flutter derivatives are determined from experiment, 
but not always at lock-in.  From the failure of Tacoma Narrow bridge, which was 
collapsed under rather low velocity in vortex shedding stage, state by (Billan and 
Scanlan 1991).  Therefore the flutter derivatives will be considered at lock in and the 
equation of motion is given the same but hω ω= and αω ω=  
  
 h h hmh c h k h L+ + =&& &  (3.44) 
  
 I c k Mα αα α α+ + =&& &  (3.45) 
or 
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.

2( 2 )h hm h h h Lζ ω ω+ + =&&  (3.46) 

 
.. .

2( 2 )hI Mαα ζ ωα ω α+ + =  (3.47) 
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3.4.6   Effect of Turbulence on Bridge Flutter Derivatives 
 
 Buffeting is defined as the unsteady loading of a structure by velocity 
fluctuations in the incoming flow and not self-induced.  Buffeting vibration is the 
vibration produced by turbulence.  The buffeting is caused by turbulence in the airflow 
and can produce significant vertical and torsional motions of a bridge even at low 
speeds.  This buffeting induced motion results in a gradual transition to large 
amplitude torsional oscillations, which could lead to the failure of a bridge.  The 
natural wind is random process then the wind velocity is varied randomly with time.  
And the wind velocity and be expressed as ( )U U u t= + , where U  - mean velocity 
and  u(t) – velocity fluctuation.  Buffeting is defined as unsteady loading of a structure 
by fluctuation in oncoming flow (Scanlan and Lin 1978) .Then Lh  and Mα becomes. 
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where L(t) and M(t) are respectively buffeting lift and buffeting moment. 
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where B is deck width, A is across wind area, r is distance of the deck mass to the 
effective rotation axis; u(t), w(t) are fluctuation velocities along wind and vertical 
respectively. 
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3.5  Section Model Tests to  Determine Aerodynamic Derivatives 
 

Various methods (Jakobsen 1995) are used to extract the flutter derivatives 
from wind tunnel tests on geometrically and aerodynamically representative models of 
short sections of the deck.  While it is possible to identify the forces from the 
difference of inertial and excitation forces on a structure forced to vibrate at a single 
frequency (Falco et al. 1992), or potentially from pressure taps on the section (Holmes 
1995) it is usually experimentally simpler to obtain and analyses free vibration 
response records (Scanlan and Sabzevari 1969). The free vibration may be in response 
to a transient deflection (step relaxation) or to buffeting caused by the airflow 
turbulence. Having less emphasis on elaborate equipment and more on the signal 
processing and data reduction techniques, these procedures are more applicable to full-
scale data.  

 The flutter derivatives are usually identified through the effect they have on the 
free decay vibration characteristics of the model section. A typical wind tunnel test 
involves suspending a rigid section model from a set of springs so that it can oscillate 
vertically and in torsion (about a transverse axis) as flutter traditionally involves only 
these two degrees of freedom. The section can be considered as a rigid body, having 
(in still air) a pair of uncoupled rigid-body vibration modes each with corresponding 
natural frequency and damping ratio.  

 When set in motion in airflow, changes in the frequency and damping of the 
two vibration modes and interaction effects between them are identified and flutter 
derivatives are obtained. If the model is restrained to move in pure torsion the effect of 
the wind will typically be to increase the damping ratio and reduce the natural 
frequency of the oscillation, and each effect is described by one derivative. From the 
study of damping and stiffness effects in pure vertical or torsional motion the four so-
called ‘direct derivatives’ can be obtained for the two degrees of freedom (DOF). 
When motional restraints are removed the aerodynamic cross-coupling effects 
between the DOF inherent in the recorded response can be used to identify all the 
flutter derivatives including the additional set of four ‘cross-derivatives’ linking the 
DOF. A different approach is to estimate all flutter derivatives ‘simultaneously’ from 
the response data of a model moving freely in both vertical and torsional direction, due 
to buffeting loading or an initial excitation or deflection (Jakobsen and Hansen 1995;  
Sarkar et al. 1992; Iwamoto and Fujino 1995). 

 

3.5.1   Test Arrangement for Free Vibration Response 
 

 Fig. 3.6 shows a schematic arrangement of a bridge section model in a wind 
tunnel with horizontal incident wind having mean speed U. The deck has chord B, 
mass m and moment of inertia I about the geometric centreline. Accidental or 
deliberate mass eccentricity is described by a mass me at radius re leading to total 
inertia IT and total mass mT. The section is attached to a rigid test frame at each corner 
by linear springs with stiffness k arranged at distance e upstream or downstream of the 
geometric centreline. The contributions of spring mass to total mass and inertia are 
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accounted for by adding one-third of their mass at their point of attachment. Vertical 
and torsional displacements and their time derivatives at mid-chord are, respectively, 
denoted , , , , ,& && & &&h h h θ θ θ and can be recovered from measurement and subsequent signal 
processing of acceleration records ÿ1,ÿ2 from the leading and trailing edges of the 
section. It is also possible to obtain motion records via optical displacement 
transducers or load cells.  

 

 
 

Fig. 3.6  Arrangement and conventions for section model 
 

 In still air without aerodynamic influence and zero (resultant) mass eccentricity 
the natural frequencies of the deck for rigid body vibration are in theory obtained as 
 
   ( )1/ 2 /

T
f k I
θ θ

π=        

and 
 

   ( )1/ 2 /
h h T

f k mπ=        

 

where  kθ = 8ke2 and kh=8k 
 In practice the test rig and model do not present exact rigid body modes and 
there may be a degree of torsion or bending present in the model. These effects can be 
minimized by good construction but may have to be accounted for if measured motion 
parameters are not representative of the whole section.  

In particular test rig flexibility at the connections with the model will lead to 
apparent spring rates different from nominal values of k.  The exact effective values 
can be identified via the still-air natural vertical natural frequency given the known 
mass of the deck.  Likewise the effective torsional inertia would be obtained from the 
torsional natural frequency once k is known.  

Note that the above convention is not unique; a popular convention used in aeronautics 
is obtained by simple rotation about the wind axis.  
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3.5.2   Choice of Structural/Geometric Parameters for Section Test 
 
 For a wind tunnel with maximum wind speed Û the values of k and e are 
chosen to obtain a range of non-dimensional wind speeds U/fB consistent with 
prototype values of f and design wind speed. For example, if the prototype has vertical 
mode frequency 0.2 Hz, a chord of 40 m and a design wind speed of 60 m/s, a model 
with chord 0.6 m used in a wind tunnel with top speed of 22.5 m/s should have a 
maximum vertical mode frequency fh set via (U/fh B)prototype=7.5=(Û/fh B)model i.e. fh=5 
Hz, with similar factors applying to fθ. To provide stability against torsional 
divergence and for other practical considerations it is better that fθ > fh.  

 The model mass depends on B and the recommended range (Hansen 1992) of 
3–8 for the ratio of chord to span, to minimize the effect of deck flexibility in rigid 
body modes. For best detailing in a limited tunnel width the lower limit may be 
approached, although the end effects at extremities of the section then become more 
significant. Appropriate materials are used to achieve geometric accuracy with 
adequate stiffness to prevent occurrence of the low frequency deformation modes in 
the model. Given the resulting model mass the spring rate k can be chosen to achieve 
fh, fθ. 

 Additional considerations for the test rig and suspension arrangement are that a 
good linear range of spring deflection should be allowed and that the ratio of fθ to fh 
should be adjustable in a wide range either side of unity to suit the requirements of 
different identification techniques.  

 The set of eight vertical springs offers no restraint against small lateral or 
longitudinal deflections nor against rotation about a vertical axis and mechanical 
arrangements are used to restrain or restrict these. For example, drag wires can 
installed to resist but not entirely constrain these motions. Practical issues relating to 
constraints and geometric effects of the springs are well documented by Hjorth-
Hansen (1992). In case it is desirable to provide restraint against rotation, a set of four 
additional drag wires may be connected to a rigid vertical bar attached to the section. 
Likewise, vertical motion may be restrained by anchoring a pair of roller bearings (to 
allow free rotation about a centroidal cross-wind axis). The drag wires do not offer 
complete restraint but they increase the stiffness of the restrained DOF to the extent 
that it cannot contribute significantly to the aerodynamic effects.  

 

3.5.3   General Equations of Motion 
 
 For identification of all eight derivatives involving only vertical and torsional 
motion, the equations of motion for a 2DOF section with length L and width B, in air 
flow with density ρ and speed U according to the conventions of Fig. 3.5, are 
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 On the left-hand side the mechanical damping coefficients are ch, cθ for each 
DOF. The right-hand sides are aerodynamic lift and moment forces Lae, Mae which 
evidently depend on non-dimensional coefficients or flutter derivatives. The ‘direct 
derivatives’ h1, h4, a2, a3 represent effects within a single DOF response while ‘cross-
derivatives’ h2, h3, a1, a4 represent coupling between the DOF. Buffeting lift and 
moment forces are denoted Lbuf, Mbuf, respectively.  
 
 An alternative form for aerodynamic lift and drag forces uses flutter 
derivatives which are frequency dependent coefficients: 
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 Note that there are different forms of (3.54) and (3.56) using for example the 
half-chord B/2 as reference instead of B and using ρU2BL/2 instead of ρU2BL. Some 
alternate forms are presented by Zasso (1996).  

 Simple algebraic relations such as h1=2KH1
*(K) link the Ai

*,Hi
* in (3.56) and 

(3.57) to the ai,hi in (3.54) and (3.55) whereK = Bω / U =2π fB / U   is the reduced 
frequency. In (3.54), (3.55), (3.56) and (3.57), the effect of p-derivatives i.e. those 
relating to lateral (drag) motion, are not considered since this type of motion is 
restrained. A few treatments (Singh et al. 1996 and Jain et al. 1996) relating to ultra-
long span suspension bridges where interactions with lateral motion are believed to be 
important are beginning to use the full formulation. Also at least one identification 
method for the full set of 18 derivatives for 3DOF has been presented (Singh 1994) . 

 However, cases of classical vertical/torsional flutter are still practically covered 
using only the vertical and torsional DOF hence the principles are illustrated for 2DOF 
systems. Whereas both the Ai

*,Hi
* and ai,hi are functions of wind speed the form of 

(3.54) and (3.55) is used here with the convention of Fig. 3.6 , as it delays a decision 
about which frequency to use in K.  

 

 

 



33 

 

3.5.4   Equations of Motion for SDOF Response 
 

 Eqs. (3.54) and (3.55) are examined in single degree of freedom (SDOF) and 
2DOFs form for parameter identification. Considering SDOF vibration with zero 
resultant mass eccentricity,  Eqs. (3.54) and (3.55) simplify to 
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having solution for free vibration (transient) decay from an initial deflections h0,θ0, 
respectively 
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For still-air vertical response, 
h h
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For still-air torsional response, 
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For response to random excitation such as by turbulent buffeting the auto-spectrum of 
vertical response is 
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(3.62)

 
where Sll is the spectrum of lift forces. The factor Sll/kh

2 depends on static aerodynamic 
coefficients but is taken as constant around the model frequencies and ' ',h hω ξ  are 
natural frequency and damping ratios assumed to be aerodynamically modified. A 
similar result is obtained for torsion response.  
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3.5.5   System Identification from 1DOF Response 
 
 In a wind stream with velocity U and vertical response given by Eq. (3.60) the 
direct vertical derivatives h1, h4 are found from the shifts in λ, ω, given by 

2
21 4and

4 2
h

h h
T T T

kUBLh U Lh
m m m

ρ ρλ ξ ω ω− = − = −  (3.63)

Similarly the direct torsional derivatives a2, a3 are identified from the shifts in natural 
frequency and damping ratio from the still-air values: 
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 Hence the identification of h1, h4, a2, a3 is thus relatively straightforward, 
almost trivial. To obtain vertical direct derivatives the torsional DOF is restrained and 
the model is pulled down and released in a steady wind. This method is termed ‘step 
relaxation’. If an acceleration response data acquisition system is used it can be 
triggered by the sudden large acceleration. Standard curve fitting tools can be used to 
obtain the best fit of Eq. (3.60) to the response signal. From a practical point of view 
this process is very simple, and it is possible to use the second derivative of Eq. (3.60) 
with acceleration data directly. Extraction of torsional direct derivatives uses an 
analogous process.  

 The free decay method is simple and accurate provided there is a clear decay 
signal. In the case where the wind speed is very large and the damping coefficient 
similarly large the useable portion of the trace may be very short and may have a poor 
signal to noise ratio, the noise being response to buffeting. It is also practically 
difficult to set a trigger threshold large enough to avoid triggering on buffeting and 
small enough to be mechanically achievable.  

 For low wind speeds the slight discrepancy which can be observed between the 
monitored and fitted curves is a result of the mechanical damping of the model being 
non-linear, i.e. amplitude dependent. A linear fit is however assumed to be 
satisfactory, according to the linearised equations of motion (3.54) and (3.55) and 
errors due to mechanical non-linearity as well as amplitude-dependent aerodynamic 
damping can be minimised by starting from a standard amplitude.  For the decay with 
high wind speed the fit is also not exact, but for different reasons.  At higher wind 
speeds, even for flows with very low turbulence the response is driven by the 
turbulence as it decays. Hence the ‘better’ part of the data with high ‘signal’ to noise 
ratio is rather short and also probably displays non-linear damping.  

 At the stage where buffeting response dominates, it is simpler to use the 
buffeting response data and find the values of ' ',h hω ξ   to obtain the best fit of Eq. 
(3.62) to the auto-power spectrum obtained from the data. Satisfactory identification 
of ' ',h hω ξ using this method is subject to a number of conditions (Brownjohn 1994) 
such as stationary of input, flatness of input spectrum, adequate averaging to reduce 
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variance errors, and using sufficient spectral resolution with respect to the width of the 
peak in the spectrum.  Since the wind speed and turbulence spectrum are well 
controlled in a wind tunnel and the damping is high it is only necessary to record a few 
minutes of response data, which would (by scaling of frequencies from prototype to 
model) represent much longer full-scale time series. These data are divided into n 
records of length T and the minimum value of n is found to obtain a ‘confident’ fit and 
the same is repeated for torsional direct derivatives. Given good estimates of   

, , ,h h θ θω ξ ω ξ′ ′ ′ ′ , the direct derivatives are obtained from 
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(3.65a)

(3.65b)

 
 As an alternative to frequency domain analysis of the random response, 
random decrement signature and auto-correlation function could also be used to obtain 
the single mode impulse response function. The auto- and cross-correlation functions 
are the starting point for the 2DOF time domain identification method discussed next 
 
 
3.5.6   Equations of Motion for 2DOF Response 
 

The equations of motion (3.54) and (3.55) may be rewritten in matrix form as 
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Vectors of measurable response and of buffeting load are 
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The buffeting input is represented by a common (wind dependent) forcing 

function u(t) and two gain factors gh, ga which depend on mean wind speed, section 
shapes and static aerodynamic coefficients and it is implied that the lift force and 
moment due to buffeting are coherent.  
Eq. (3.66) can be transformed to ‘state space’ form:  

 
x=Ax+Bu, 
y=Cx+Du, 

(3.67a)
(3.67b)

where 
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 For the case of free vibration response to a transient, B and D are null matrices, 
otherwise they connect with the common forcing function u(t). C depends on which 
response parameter is observed. Initial conditions are given as 0 0 0 0 0x [ ]& &h hθ θ= . For 
the case of response where u(t) is approximately described as a Gaussian white noise 
process, such as excitation by turbulence in the air stream, the initial conditions are 
taken as zero.  
 
3.5.7   System Identification from 2DOF Response 

 
Three methods are used for identifying the system matrix A. The first method 

uses time domain free decay records, the second uses either free vibration decay or 
random response (from turbulent buffeting and the third, in frequency domain, uses 
turbulent buffeting response.  
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3.5.7.1.   Direct Curve Fit to 2DOF Equations of Motion 
  
Poulsen’s method  
 

This represents the first application of system identification and control theory 
techniques to the problem of extracting aerodynamic derivatives from bridge-section 
model tests.  The method is used to apply with free decay signals (step response) of 
section model under wind flow.  

The mathematical model is given by following coupled differential equations 
proposed by Scanlan (1971, 1977): 

 
   0 0 1 2 3 4h h h H h H H H hμ β α α+ + = + + +&& & & &            (3.68) 

   0 0 1 2 3 4A h A A A hα σ α γ α α α+ + = + + +&&& & &            (3.69) 
 

These equations represent a general linearized form for self-excited forces 
under the assumption of small sinusoidal vertical (h) and torsional (α) motions with 
negligible horizontal motion effects. 

The structural  modal parameters ( 0 0 0 0, , ,μ β σ γ ) are presented in the following 
from: 
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                 (3.70) 

 
It is a basic assumption that the aerodynamic parameters are zero under zero 

wind conditions so 0 0 0 0, , ,μ β σ γ describe the test rig. In the common formulation of 
Eqs. 2.1 and 2.2 (Scanlan, 1977) the derivatives H4

* and A4
* are omitted as it is 

expected that the vertical position of the deck (h) has no effect on the torsional 
frequency, torsional damping or vertical stiffness. However, Eq (3.68) already 
contains the term β0h on the left-hand side, so he maintains H4

* term that does not 
change his solution technique. Consequently, only the A4

* parameter was omitted in 
his study. 
 For wind velocities greater than zero, the motion of the bridge is then given by: 
 
  0 1 0 4 2 3( ) ( ) 0h H h H h H Hμ β α α+ − + − − − =&& & &            (3.71) 

  0 2 0 3 1 4( ) ( ) 0A A A h A hα σ α γ α+ − + − − − =&&& &             (3.72) 
 

The wind effect is a shift in frequencies and damping terms - and a coupling 
between the two directions of motions.  The analysis is consequently divided into two 
sub-problems, namely system identification and parameter determination. 

The system identification problem is to estimate from the data, the parameters 
μ, β, ρ, σ, γ, and δ in the following equations: 
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  0 0h h hμ β ρα κα+ + + − =&& & &              (3.73) 

  0hα σα γα δ+ + + =&&& &                          (3.74) 
 
 The estimation procedure is performed for each value of the wind velocity for 
which tests are conducted including zero wind conditions. 

The parameter determination problem involves two parts. The first is simple to 
compute the aerodynamic derivatives for a specific test by comparing the estimates 
obtained in the system identification analysis with the estimates obtained with zero 
wind conditions: 
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                 (3.75) 

 
The second part of the parameter determination problem is to ensure that the 

parameters are extracted for similar amplitudes of vibration since some of the 
parameters may be amplitude dependent and to use statistical procedures to extract 
reliable estimates for the parameters.  
 
System identification 
 
 The system identification starts with assumed model structure and Eqs. (2.6) 
and (2.7)  are converted to continuous state space equations: 
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where ( ) ( ( ), ( ), ( ), ( ))x t h t h t t tα α= & && and 0(0)x x= is the initial state(operator 
excitation). The disturbances from wind flow is regarded as noise in the output 
equation, e(t). The system matrix, A, is dependent on the parameters in the θ-vector.  
 
    ( , , , , , , )θ β μ γ σ δ κ ρ=  
 
which is to be estimated. Since the data sampled are discrete in time, then the model is 
formulated in discrete time as: 
 

           1k d k

k k k

x A x
y Cx e

+ =
= +

             (3.78) 

 
where exp( )dA A t= Δ   and ke  is noise in the output equation assumed to be zero-mean 
stochastic variable. 
 The solution to (3.77) or (3.78) depends on the parameters in θ.  The method 
consists in adjusting the elements in θ until the solution to Eq. 3.77 matches the 
measurements, i.e. to minimize the loss function: 
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=

= −∑             (3.79) 

 
Here ˆiy  is a vector containing the actual measurements of heave and pitch and iy  is 
the solution to (2.10) or (2.14).  The method requires iterations by using Newton-
Raphson technique in searching the parameters in θ which minimize the loss function. 
The validity of the results of the method is naturally dependent on the assumption that 
the model structure is correct. The model is suitable for free decay signals which have 
good signal to noise ratio.  However, if the system is poorly excited (e.g. primarily 
excited by the wind as in case of buffeting responses) then the loss function becomes 
less sensitive to change in specific (combinations of) parameters and results in large 
variance of estimate value. The results of method apply to identify seven flutter 
derivatives (H1

*-H4
* and A1

* to A3
*) for Great Belt Bridge section model under smooth 

wind are reported (Poulsen et.al. 1992).  
For the case of free vibration due to an initial deflection, MATLAB system 

identification routines such as ‘PEM’ (Ljung 1995)  are also used to identify the values 
of A and x0 for which the time histories generated using Eq. (3.67) give the best match 
to the observed data. The quality of the fit is judged both visually in terms of overlays 
of fitted and measured data as well as by error norm values. Software ‘PEM’ was 
written around this technique based on software developed at Politecnico di Milano 
(Brownjohn and Jakobsen, 2001).  

 

 

 



40 

 

3.5.7.2  Covariance block Hankel matrix method: CBHM 
  

When free vibration is due to turbulence, two more methods described here are 
available. In the first of these, the covariance block Hankel matrix (CBHM) method 
(Jakobsen and Hansen, 1995), it is shown that the state matrices can be recovered from 
the cross-covariance estimates obtained from the two motion signals such as 
acceleration or displacement. The program uses MATLAB elementary functions. The 
cross-covariance functions are known to be the same for both transient and buffeting 
response so the method can also be used for transient response signals.  

The solution to Eq. (3.67a) is 

( ) A A( )
0

0

x x B ( )d
t

t tt e e uτ τ τ−= +∫  (3.80)

where eigenvalues of A are.  

                 2
A i 1-λ ξω ω ξ= − ±  

A discrete time version of Eq. (3.67) representing sampled data is 

 
x(i+1)=Fx(i)+Gu(i) (3.81)

where  
t
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Δ Δ∫  

 The identification method computes, from at least Np response data points 
sampled at intervals of Δt, a sequence of covariance matrices which (for no signal 
noise and a state variable covariance matrix Cxx) depend on the system matrices as 
defined in Eq. (3.67) as follows: 
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 By taking the sequence Cyy(k) as blocks of a Hankel matrix with dimension 
2l×2l, the CBHM method (Jakobsen, 1995) finds a suitable decomposition of the 
Cyy(k) to yield F, hence A. This technique is implemented in software CBHM 
developed at Norwegian Institute of Technology.  

 The heart of the algorithm is essentially the same as the eigensystem realisation 
algorithm (ERA) (Juang and Pappa, 1985) and shares its advantages of simplicity and 
efficiency.  
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3.6. Methodology for Section Model Test in Wind tunnel 
 
3.6.1   Description 
 

The section model consists of a typical rigid section model of the deck of 
cable-stayed bridge, of which scaled geometric and elastic behavior are simulated to 
the prototype.  This section is supported by four equal coil springs (Fig. 3.5), in order 
that the vertical and torsional motions of the full-scale bridge are simulated by vertical 
and pitching motions of the model. 
 
3.6.2 Model Simulation  
 
 The Law of similitude of which govern the scaling model are determined by 
laws of mechanics with particular regard to the specific characteristics of those forces 
involved in the mechanism under investigation. These forces include elastic force, 
inertia forces of the air and the structure, viscosity force and damping force. The 
relationships between them are represented in the five dimensionless parameters given 
in Table 3.1 in order to ensure similarity of the model to prototype. 
 
 

Table 3.1 Similarity requirements 
 

Parameter Symbol Physical meaning 

1.  Elasticity 2

E
Uρ

 Elastic force of the structure 
Inertia force of the air 

2.  Inertia 
( Density ratio) 

sρ
ρ

 Inertia force of the structure 
Inertia force of the air 

3.  Gravitational 
( Froude number) 

2U
gB

 Inertia force of the air 
Gravitational force on the structure 

4.  Viscosity 
(Reynolds number) 

U B
ν

 Inertia force of the air 
Viscous force of the air 

5.  Structural Damping 
(Logarithm Decrement) sδ  Dissipated energy per cycle 

Total energy of oscillation 
 

The notations in Table 3.1 are defined as that E  is young’s modulus of 
material; U is characteristic speed;  B is characteristic dimension of body;  ν  is 
kinematic viscosity;  , sρ ρ  are density of air and structure, respectively, g is 
gravitational acceleration and sδ is logarithm decrement. 
 For a study of aerodynamic instability to be properly conducted, it is necessary 
that the model be appropriately scaled.  Typically model-to-prototype scale ratios 
include  
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 -  Lλ  ( geometric length scale) 
 -  ρλ  ( density  scale) 
 -  Vλ  ( velocity scale) 
 -  fλ  ( frequency  scale) 
 
As in most  model tests, the first scale to be considered is geometric length scale.  This 
value is usually in the range of 1/100 to 1/25 to ensure that all significant structural 
details can be reproduced adequately. Since testing is performed in natural air and 
within Earth’s gravity field, both the air density ratio ρλ   and gravity ratio gλ  are 
equal to unity. 
 Then length scale  Lλ  is determined as follow: 
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λ =               (3.83) 

 
where B is deck width, the subscripts m and p denote the model and prototype, 
respectively. 
 The modeling of the mass of the structure is determined by the requirement 
that the inertia force of the structure and those of the flow be scaled consistently.  
Similarity of inertia forces is achieved by maintaining a constant ratio of the bulk 
density of the structure to the air density.  An equation to express density scaling is 
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where  sρ  and  ρ  are structural density and air density, respectively. 
 The modeling of the  mλ  - mass scale,  Iλ  -  mass moment of inertia become, 
for mass scale  
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and for mass moment of inertia scaling 
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 In Table 3.1, the velocity scale Vλ  can be computed by either equivalence of 
Froude number or Reynolds number.  It is not possible to satisfy both the Froude 
number and Reynolds number simultaneously.  In practice the selection between them 
is based on information as to which type of forces is dominated in the phenomenon 
under investigation.  For bridge deck, the flow separation is caused by sharp edge; lift, 
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drag and moment coefficients are relatively insensitive to Reynolds number. Then the 
velocity scale Vλ  is calculated according to equivalence of Froude number. 
 

     2 2
m p

gB gB
U U

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
            (3.87) 

hence,  
 

    
[ ]
[ ]

[ ]
[ ]

m m
V

p p

U B
U B

λ λ= = =             (3.88) 

 
 When the resistance to deformation is dominated the result of the action of 
elastic forces and essentially independent of gravity effects or self-weight, consistent 
scaling of stiffness and flow-induced forces is achieved by maintaining elasticity in 
model and in full scale. 
 

    2 2
m p

E E
U Uρ ρ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
             (3.89) 

 
This is equivalent to the reduced velocity 
 

      
n nm p

U U
f B f B

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
             (3.90) 

 
Hence, the scale of the oscillation frequency,  Vλ   becomes 
  

    
[ ]
[ ]

[ ]
[ ]

1n pm
f

n p m

Bf
f B

λ
λ

= = =             (3.91) 

where nf  is the frequency. 
 Similarity of damping forces is maintain by requiring that δ , the logarithm 
decrement for a particular mode of vibration, in the model is the same as that in full 
scale, i.e.  δλ  = 1 
  
 The section model is rigidly constructed and scaled elastic behavior is 
simulated.  The vertical and torsional frequencies hω  and αω  are defined by adjusted 
spring. 
 
3.6.3 Turbulent Flow Simulation in Wind Tunnel 
 
 To achieve similarity between the model and prototype , It is desirable to 
reproduce at the requisite scale the characteristics of the atmospheric flows expected to 
affect  the structure of concern. In case of section model testing of bridge, to simulate 
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the turbulence flows in natural wind, the variation of turbulence intensities and 
integral scale as well as spectra of along wind and vertical direction are the main 
factors concerned. 
  
3.6.3.1  Turbulence Intensity 
  
 The simplest descriptor of atmospheric turbulence is the turbulence intensity. 
Let  
u(z) denote the velocity fluctuations parallel to the direction of the mean speed in a 
turbulent flow passing a point with elevation z. The longitudinal turbulence intensity is 
defined as 

           ( ) ( )
( )

2u z
I z

U z
=  

where U(z) = mean wind speed at elevation z and ( )2u z = root mean square value of 
u.  Vertical and lateral turbulence intensities are similarly defined.  
 The longitudinal fluctuations can be written as 
 
     2 2

*u uβ=   

where  *u = friction velocity. It is commonly assumed that β  does not vary with 
height. Values of β  suggested by Simiu et al. (1978) on the basis of a large number of 
measurements are listed in Table 5.2 
 
 

Table 3.2. Values of β corresponding to various roughness lengths 
 

z0 0.005 0.07 0.30 1.00 2.50 
β 6.5 6.0 5.25 4.85 4.00 

 
 For example, if z = 30 m,  z0  = 0.07m, and U(30)  =  20 m/s, it follows that 
turbulence intensity is I(30)  = 0.162 (Simiu and Scanlan, 1996). 
 
 
3.6.3.2  Integrals Scale of Turbulence 
 
 The velocity fluctuations in a flow passing a point may be considered to be 
caused by a superposition of conceptual eddies transported by the mean wind.  Each 
eddy is viewed as causing at that point a periodic fluctuation with circular frequency 

2 nω π= , where n is the frequency.  By analogy with the case of the traveling wave, 
we define the eddy wavelength as /U nλ = , where U = wind speed, and the eddy wave 
number,  2 /K π λ= . The wave length is a measure of eddy size. 

  Integral scales of turbulence are measures of the average size of the turbulent 
eddy of the flow.  There are altogether nine integral scales of turbulence, 
corresponding to the three dimensions of the eddies associated with the longitudinal, 
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transverse, and vertical components of the fluctuating velocity, u, v, and w. For 
example, , andx y z

u u uL L L  are respectively, measures of the average longitudinal, 
transverse, and vertical size of the eddies associated with the longitudinal velocity 
fluctuations ( x is the direction of the mean wind U and of the longitudinal fluctuation 
u ) 
  Mathematically x

uL  can be defined as 
 

                 
2

0

( )x
u u

UL R d
u

τ τ
∞

= ∫       

where  ( )uR τ is the autocovariance function of the fluctuation ( )1,u x t . 
 

 
 

Fig. 3.7.  Section model test setup 
 

 

 
Fig. 3.8. The TU-AIT wind tunnel at Thammasat University 
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Fig. 3.9   Suspension device of the model in the dynamic system 
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CHAPTER 4 
 

SYSTEM IDENTIFICATION TECHNIQUES FOR 
FLUTTER DERIVATIVES IDENTIFICATION  

OF BRIDGE DECK  
 

4.1 INTRODUCTION 
 

This chapter deals with propose system identification techniques using for 
extracting flutter derivatives of bridge deck.  In a civil engineering context, structures 
such as bridges and towers are the systems; the estimation of the modal parameters is 
the particular type of identification and stochastic means that the structure is excited 
by an immeasurable input force and that only output measurements (e.g. accelerations) 
are available.  In these methods the deterministic knowledge of the input is replaced 
by the assumption that the input is a realization of a stochastic process (white noise). 

System identification starts by adopting a certain model that is believed to 
represent the system.  Next, values are assigned to the parameters of the model as to 
match the measurements.  Section 4.2 starts with continuous state-space model for a 
vibrating structure, and then converted to discrete time state space model to match real 
world measurements in section 4.3.  Concept of stochastic process is applied to state 
space model in section 4.4.  Section 4.5 contains the main theorem for stochastic 
subspace identification.  This method can be divided according to the type of data that 
they require: raw time data or covariances.  We start with covariance-driven methods 
(SSI-COV) to end with time-domain data-driven methods (SSI-DATA).  This 
presentation order corresponds to the historical application of stochastic system 
identification methods.  Application of both SSI methods to extract flutter derivatives 
of bridge deck are explained in section 4.6 together with implementation of developed 
computer program.  Finally, numerical tests are performed to confirm applicability of 
proposed methods. 

   
4.2   Continuous –Time State Space model 

 
4.2.1  A State-Space Model of a Vibrating Structure 
 
The state equation 
 

The dynamic behaviour of a discrete mechanical system consisting of n masses 
connected through springs and dampers is described by following matrix differential 
equation: 

 
( ) ( ) ( ) ( ) ( )Mq t Cq t Kq t f t Bu t+ + = =&& &              (4.1) 
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By casting the second order equation of motion (4.1) in first order form (2.12), an 
equation similar to the state equation from control theory is obtained. This equation 
usually has a normalized term in ( )x t& to yield the : 
 

( ) ( ) ( )c cx t A x t B u t= +&               (4.2) 
 
where  nxn

cA R∈   and nxm
cB R∈  are defined as: 

 

             

1 1

0
c

I
A

M K M C− −

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

              (4.3) 

 
The subindex ‘c’ denotes continuous time. In next section, the discrete-time 
equivalents of these matrices will be introduced. Using the modal decomposition, Ac is 
rewritten as: 
 

     1
c cA −= ΨΛ Ψ                (4.4) 

 
which is in fact a standard eigenvalue problem ( c cA Ψ = ΨΛ ). This shows that 

cΛ contains the eigenvalues and Ψ the eigenvectors of Ac 
 
The observation equation 
 

In a practical vibration experiment, not all n DOFs of the structure are 
measured, but only a subset. If it is assumed that measurements are taken at l locations 
and that the sensors can be either accelerometers, velocity or displacements 
transducers (to keep it general) the observation equation is: 
 
          ( ) ( ) ( ) ( )a v dy t C q t C q t C q t= + +&& &              (4.5) 
 
where ( ) ly t R∈ are the outputs; / 2, , lxn

a v dC C C R∈ are the output location matrices for 
acceleration, velocity and displacement, respectively. These matrices consist of a lot of 
zeros and a few ones and are in fact just selecting the measured DOFs out of the FE 
model DOFs to store them as the elements of the output vector y(t) .  In reality it can 
happen that, for instance, both accelerations and velocities are simultaneously 
measured. Using Eq. (4.1) to eliminate ( )q t&& and with the definition of the state vector, 
Eq. (4.5) can be transformed into 
 
    ( ) ( ) ( )c cy t C x t D u t= +               (4.6) 
 
where xl n

cC R∈  is the output matrix and xl m
cD R∈ is the direct transmission matrix. 

They are related to the FE model matrices as: 
 
      1 1 1

2( ) ,c d a v a c aC C C M K C C M C D C M B− − −= − − =             (4.7) 
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In many publications this direct transmission matrix Dc is omitted for some 
reason. However the modeling of a vibration experiment where accelerometers are 
used (and these are the most widely used sensors) requires a direct transmission term. 
If Ca = 0 (i.e. displacements and/or velocities are measured), there is no direct 
transmission. 
 
The state-space model 
 

The classical continuous-time state-space model is found by combining Eqs. 
(4.2)  and (4.6): 
 

    
( ) ( ) ( )
( ) ( ) ( )

c c

c c

x t A x t B u t
y t C x t D u t

= +
= +

&
              (4.8) 

 
The order of the state-space model n is defined as the dimension of the state 

vector. The equations of motion are now written in state-space form and can be used to 
compute the response y(t) of the structure to a given input u(t) . The state vector x(t) 
contains the displacements and the velocities of all DOFs. 
 
A new state vector can be defined such that: 
 
      ( ) ( )x t Tz t=                            (4.9) 
 
where  xn nT C∈ is a non-singular complex square matrix. This is called a similarity 
transformation.  Substitution of this coordinate transformation into Eq. (4.9) yields: 
 

    
1 1( ) ( ) ( )

( ) ( ) ( )
c c

c c

z t T A Tz t T B u t
y t C Tz t D u t

− −= +
= +

&
           (4.10) 

 
It is important to see that the transformed matrices ( 1 1, , ,c c c cT A T T B C T D− − ) 

describe the same input-output relationship as the original matrices. However, unlike 
x(t) the new state vector z(t) has not the meaning of physical displacements and 
velocities. 
 
4.2.2 Modal Parameters and Model Reduction 

 
Relation to classical modal analysis 
 

A special similarity transformation is the transformation to (complex) modal 
states ( ) n

mx t C∈ :  
 
     ( )( ) mx t x t= Ψ     
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The modal state-space model is obtained by substituting T by Ψ in Eq. (4.10) and 
inserting the modal decomposition of Ac (4.4):  
 

( )( ) ( )
( ) ( ) ( )

T
m c m c

c m c

x t x t L u t
y t V x t D u t

= Λ +

= +

&
            (4.11) 

 
where 1 ,T

c c cL B V−= Ψ  are modal input and modal output matrix respectively and the 
following definitions have been introduced:  
 

    
1T

c c

c c

L B
V C

−= Ψ
= Ψ

              (4.12) 

 
The eigenvalue matrix has the following structure:  
 

  2
*

\
0

, 1
0

\
c i i i ijξ ω ξ ω

⎡ ⎤
⎢ ⎥Λ⎛ ⎞

Λ = Λ = − + −⎢ ⎥⎜ ⎟Λ⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

and the eigenvector matrix can be written in case of general viscous damping as: 
 

         
*

* *

⎛ ⎞Θ Θ
Ψ = ⎜ ⎟

ΘΛ Θ Λ⎝ ⎠
             (4.13) 

 
 

4.3 Discrete-Time State-Space  Models 
 

4.3.1 About  Sampling 
 
Up to now all equations were expressed in continuous time, whereas in reality, 

measurements are taken at discrete time instants.  In order to fit models to 
measurements (i.e. system identification), these models need to be converted to 
discrete time.  Another reason for looking at discrete models is that they are needed for 
performing simulations.  If it would be possible to find an analytical solution for the 
response of a structure to a given input, this analytical expression could be evaluated 
at any time instant t, without the need to convert the model to discrete time.  However 
in most cases there is no analytical solution and one has to rely upon a numerical 
solution method to simulate the response of a structure.  For instance, time integration 
schemes with a possible adaptive time step could be used. The approach that is useful 
for this thesis starts by choosing a certain fixed sampling period(s). The continuous-
time equations are discretized and solved at all discrete time instants k (-), where t=kt, 
k N∈ .  Typical for the sampling of a continuous time equation is that a certain 
behaviour of the time-dependent variables between two samples has to be assumed. A 
Zero-Order Hold (ZOH) assumption for instance, means that the input is piecewise 
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constant over the sampling period. Under this assumption, the continuous-time state-
space model (4.8) is converted to the discrete-time state-space model: 

 
1k k k

k k k

x Ax Bu
y Cx Du

+ = +
= +

             (4.14) 

 
where ( )( ) T T

k k kx x k t q q= Δ = &  is the discrete-time state vector containing the 
sampled displacements and velocities; uk , yk are the sampled input and output; A is the 
discrete state matrix; B is the discrete input matrix; C is the discrete output matrix; D 
is the direct transmission matrix. They are related to their continuous-time 
counterparts (4.8) as: 
 

  
( ) 1

0

,

,

c c

t
A t A t

c c c

c c

A e B e B A I A B

C C D D

δτ
Δ

Δ Δ −= = = −

= =

∫             (4.15) 

 
These relations are classical and are, for instance, derived in (Juan, 1994). The second 
equality for B is only valid if Ac is invertible. The matrices Cc  and Dc are not 
influenced by ZOH-sampling. 
 
 
4.3.2 Modal  Parameters  and  Model  Reduction 

 
The eigenvalue decomposition of the discrete state matrix A is found by 

inserting the eigenvalue decomposition of the continuous state matrix Ac into Equation 
(4.15) 

 

 1 1 1

\

\

c cA t t
d iA e e μ

−Δ ΨΛ Ψ Δ − −

⎡ ⎤
⎢ ⎥= = = ΨΛ Ψ = Ψ Ψ⎢ ⎥
⎢ ⎥⎣ ⎦

          (4.16) 

 
The third equality can be proven by the series expansion of the exponential function 

by the McLaurin series expansion, 1
!

0

M k
k

k
e M

∞

=

= ∑ ; the two last equalities define the 

notation of the discrete eigenvalue matrix.  So, the discrete eigenvectors are equal to 
the continuous ones and the discrete eigenvalues, denoted as μi  are related to the 
continuous eigenvalues as: 
 

   ( )ln it
i ie

t
λ μ

μ λΔ= ⇔ =
Δ

 

 
Similar to definition (4.12), the discrete modal participation matrix and the observed 
mode shapes are written as: 
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1TL B

V C

−= Ψ
= Ψ

             (4.17) 

 
The discrete modal participation factors are different from the continuous ones due to 
the different B-matrix. The observed mode shapes, on the contrary, are the same in 
discrete as in continuous time.  In the acceleration-only case, the modal decomposition 
of D is found as follows: 
 

  { }1

1

1( )
1

n
T T T

c c c c d i i
i i

D D V L V I L v l
μ

−

=

= = Λ = Λ − =
−∑  

 
The notation for the columns and rows of a matrix has been introduced before.  The 
discrete-time model reduction is similar to the continuous one. This reduction can be 
formally proven by putting the next states (that have to eliminated) equal to the current 
states. This is the discrete-time equivalent of setting the derivative of the continuous 
states to zero. 
 
 

4.4 Stochastic State Space Models 
 
Stochastic subspace identification algorithms compute state space models from 

given output data. Fig. 4.1 states the stochastic (subspace) identification problem.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
          Fig. 4.1  The stochastic subspace identification problem 

Stochastic identification problem: 
Given:  measurements of the output  l

ky R∈ generated by 
the unknown stochastic system of order n 

1k k k

k k k

x Ax w
y Cx v

+ = +
= +

 

with kw  and kv zero mean, white vector sequences with covariance 
matrix: 

( )E[ ]p T T
q q pqT

p

w Q S
w v

v S R
δ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Determine: 
• The order n of the unknown system  
• The system matrices x x,n n l nA R C R∈ ∈ up to within a 

similarity transformation and x x x, ,n n n l l lQ R S R R R∈ ∈ ∈ so 
that the second order statistics of the output of the model and 
of the given output are equal. 
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4.4.1 The  Stochastic Components 
 

This section describes the final step towards the experimental world: noise is 
added.  Up to now it was assumed that the system was only driven by a deterministic 
input uk.  However, the deterministic models are not able to exactly describe real 
measurement data.  Stochastic components have to be included in the models and 
following discrete-time 
combined deterministic-stochastic state-space model is obtained:  
 

     1k k k k

k k k k

x Ax Bu w
y Cx Du v

+ = + +
= + +

            (4.18) 

 
where n

kw R∈ is the process noise due to disturbances and modelling inaccuracies; 
l

kv R∈  is the measurement noise due to sensor inaccuracy. They are both 
unmeasurable vector signals assumed to be zero mean, white and with covariance 
matrices: 
 

       ( )E[ ]p T T
q q pqT

p

w Q S
w v

v S R
δ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
               (4.19) 

 
where E is the expected value operator; pqδ  is the Kronecker delta (if p=q then , pqδ = 
1, otherwise pqδ = 0 ); p, q are two arbitrary time instants. 
 

However, the primary case of interest for this thesis is a purely stochastic 
system. In a civil engineering context, the only vibration information that is available 
is the responses of a structure excited by some immeasurable inputs. Due to the lack of 
input information it is not possible (from a system identification point of view) to 
distinguish between the terms in uk and the noise terms wk , vk  in Eq. (4.18). The 
discrete-time stochastic state-space model reads: 
 

             1k k k

k k k

x Ax w
y Cx v

+ = +
= +

            (4.20) 

 
The input is now implicitly modeled by the noise terms.  However the white 

noise assumptions of these terms can not be omitted: it is necessary for the proofs of 
the system identification methods of next chapter. The consequence is that if this white 
noise assumption is violated, for instance if the input contains additional to white noise 
also some dominant frequency components, these frequency components cannot be 
separated from the eigenfrequencies of the system and they will appear as (spurious) 
poles of the state matrix A. 

 
 
 
 



54 

 

4.4.2 Properties  of  Stochastic  Systems 
 

In this section, we summarize the main properties of stochastic processes of 
linear time invariant system, including the non-uniqueness of the state space 
description. Some important properties of stochastic systems are briefly resumed. 
They are well-known and can, for instance, be found in Overchee and Peeters (1996). 

 
It is assumed that the stochastic process is stationary: noise terms have zero 

mean and their covariance matrices are given by: 
 

             E[ ] 0 , E[ ]T
k k kx x x= = Σ             (4.21) 

 
where the state covariance matrix  Σ  is independent of the time k.  This implies that A  
is a stable matrix (all of its poles are strictly inside the unit circle). There are many 
representations of stochastic state space models.  All of the representations are 
equivalent, in the sense that the second order statistics of the output generated by the 
models is the same, i.e. the covariance sequence of the output is identical. There are 
many stochastic model; the forward model, the backward model, the forward 
innovation model and the backward innovation model.  In this thesis, we introduce 
only the forward model, and the forward innovation model.  
 
 
Forward model 
 

First we will develop some (well known) structural relations for linear time 
invariant stochastic processes.  Since wk, vk  are zero mean white noise vector 
sequences, and independent of the actual state, xk , we have: 
 
            E[ ] 0 , E[ ] 0T T

k k k kx w x v= =             (4.22) 
 
Then we find the Lyapunov equation for the state covariance matrix Σ  
 

                  

1 1E[ ]

E[(A ) (A ) ]

E[ ] E[ ]

T
k k

T
k k k k

T T T
k k k k

T

x x

x w x w

A x x A w w

A A Q

+ +Σ =

= + +

= +

= Σ +

           (4.23) 

 
The output covariance matrices l xl

i RΛ ∈ are defined as: 
 
                                                  E[ ]T

i k i ky y+Λ =              (4.24) 
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where i is an arbitrary time lag. We find for  0Λ  : 

             

0 E[ ]

E[(C ) (C ) ]

E[ ] E[ ]

T
k k

T
k k k k

T T T
k k k k
T

y y

x v x v

C x x C v v

C C R

Λ =

= + +

= +

= Σ +

           (4.25) 

Defining the "next state - output" covariance matrix n xlG R∈  as: 
 

             

1E[ ]

E[(A ) (C ) ]

E[ ] E[ ]

T
k k

T
k k k k

T T T
k k k k
T

G x y

x w x v

A x x C w v

A C S

+=

= + +

= +

= Σ +

            (4.26) 

 
Similarly, for other time lag i ( i = 1,2,….) covariances, we get: 
 

               
1

1( )

i
i

T i T T
i

CA G

G A C

−

−
−

Λ =

Λ =
             (4.27) 

 
The last observation, indicates that the output covariances can be considered as 

Markov parameters of the deterministic linear time invariant system A, G, C, 0Λ . The 
factorization of output covariance matrices into state-space matrices is similar to the 
factorization property of impulse responses.  For stochastic systems, the matrices 
(A,G,C, 0Λ ) play the role of the deterministic system matrices (A,B,C,D). This is an 
important observation that will play a major role in the derivation of stochastic 
subspace identification algorithms. This equation alone nearly constitutes the solution 
to the identification problem: the output covariance sequence can be estimated from 
the measurement data; so if we would be able to decompose the estimated output 
covariance sequence according to (4.27), the state-space matrices are found. This idea 
will be translated into output-only covariance-driven methods (SSI-COV). 
 
The Forward innovation model 
 
 An alternative model for stochastic systems of Equations (4.20) that is more 
suitable for some applications is the so-called forward innovation model.  It is 
obtained by applying the steady-state Kalman filter1to the stochastic state-space model 
(4.20): 
 

     1k k k

k k k

z Az Ke
y Cz e

+ = +
= +

            (4.28) 

 

                                                           
1 The Kalman filter is standard in control theory. 
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The elements of the sequence ek are called innovations, hence the name of the model. 
It is a white noise vector sequence, with covariance matrix: 
 
    E[ ]T

p q e pqe e δ= Λ               (4.29) 
 
The computation of the forward innovation model (A,K,C,Λe) from the stochastic state 
space model (A,G,C,Λ0 )starts by finding the positive definite solution P of the 
discrete Riccati equation2:  
 

         
1

0( )( ) ( )T T T T TP APA G APC CPC G APC−= + − Λ − −           (4.30) 
 
The matrix n xnP R∈ is the forward state covariance matrix [ ]T

k kP E z z= .  The Kalman 
gain is then computed as: 
 
         1

0( )( )T TK G APC CPC −= − Λ −                     (4.31) 
 
and the covariance matrix of the innovations equals: 
 
     0

T
e CPCΛ = Λ −             (4.32) 

 
 

4.5 Stochastic Subspace System Identification 
 

In previous sections, several models and main properties of stochastic system were 
presented. In this section stochastic system identification methods are discussed and 
compared. Starting with the primary data types that are required by the identification 
methods: time data or covariance sequences, next covariance-driven methods are 
presented and then data-driven methods.  Finally, two methods are compared. 
 
4.5.1 Data Types 

 
In principle (output) data yk  is available as discrete samples of the time signal.  

This section deals with the transformation of time data to covariances or spectra. Also 
some notations are introduced. 
 
4.5.1.1 Time Data 

 
Since there is no external inputs for purely stochastic system, it is useful in the 

development of some of the identification methods to gather the output measurements 

                                                           
2 An implementation to find the solution of this equation can, for instance, be found in Control system 
Toolbox of  Matlab. 
 



57 

 

(l outputs) in a block Hankel3 matrix with 2i block rows and j columns. For the 
statistical proves of the methods, it is assumed that j → ∞ . The Hankel matrix 

2li x jH ∈�  can be divided into a past (Yp) and a future part (Yf). For convenience, we 

define the shorthand notation Yp , Yp
+  and Yf , Yf

 -  : 
 

0 1 1

1 2

0 11 2

1 1 2 1

1 2

2 1 2 2 2

...

...
... ... ... ...

...1 " "
... " "
...

... ... ... ...
...

j

j

ii i i j p

i i i j fi i

i i i j

i i i j

li

li

y y y
y y y

Yy y y Y pastH y y y Y Y futurej
y y y

y y y

−

−− + −

+ + − −

+ + +

− + −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

b
            (4.33) 

 
Note that the output data is scaled by a factor 1/ j  . The subscripts of 2 1

li x j
i iY − ∈ �  

are the subscripts of the first and last element in the first column of the block Hankel 
matrix. The subscripts p and f stand for past and future.  The matrices Yp  and Yf are 
defined by splitting H  in two parts of i block rows.   Another division is obtained by 
adding one block row to the past outputs and omitting the first block row of the future 
outputs. 
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          (4.34) 

 
 

4.5.1.2 Covariance Estimates 
 

Output covariances are defined in Equation (4.24) as: 
 

   
1

0

1E[ ] lim
j

T T
i k i k k i kj k

y y y y
j

−

+ +→∞
=

Λ = = ∑  

                                                           
3 A Hankel matrix is a matrix that is constant along its anti-diagonal. 
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The second equality follows from the ergodicity4 assumption. Then, the output 
covariances are gathered in a block Toeplitz5 matrix 1

li xli
iT ∈ �  that can be computed 

from the data block Hankel matrix (Yp  and Yf). Indeed, for j → ∞  and assuming 
ergodicity, we have: 
 

1 1

1 2
1

2 1 2 2

i i

i i
i

i i i
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+

− −
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M M M M

L                      

(4.35) 

 
Then one can infer from the definition of covariance matrix that 1 iT   can be expressed 
as the product of two block Hankel matrices Yf and Yp 
 
     T

f p1 iT Y Y=
             

(4.36) 
 
Of course, in reality a finite number j of data is available and a covariance estimate ˆ

iΛ  
is simply obtained by dropping the limit: 
 

              
1

0

1ˆ
j

T
i k i k

k
y y

j

−

+
=

Λ = ∑             (4.37) 

 
Instead of computing the covariance estimate by multiplication and summation 

of time samples, a high-speed implementation of the convolution in Eq. (4.37) is 
possible by applying the FFT to the time signals, cross-multiplying the Fourier 
transforms and applying the inverse FFT to the cross-products.  The inverse FFT 
results in a periodic covariance function estimate.  The bias error due to this circular 
convolution is avoided by zero-padding the original signals (Bendat and Piersol, 
1993).  A disadvantage of using covariances as primary data in identification is that it 
squares up the data. This may affect the numerical accuracy (Golub and Van Loan 
1989). 
 
4.5.1.3 Spectrum  Estimates 

 
Another useful data format is the spectrum of the outputs l xl

yS ∈ � .,  In 
discrete-time, the spectrum of a stationary stochastic process is defined as the double 

                                                           
4 Ergodicity means that the expected value of a time sample of a stationary stochastic process (i.e. the 
average over an infinite number of processes) can be replaced by the average over one infinitely long 
record of the process. 
 
5 A Toeplitz matrix is a matrix that is constant along its diagonal. 
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sided z-transform of its covariance sequence.  Therefore the discrete-time output 
spectrum equals: 

 

     ( )
k

k
y k

k

S z z
=∞

−

=−∞

= Λ∑             (4.38) 

 
where kΛ  is the output covariance at time lag k, defined in Eq. (4.24). By substituting  
z according to (Juang and Pappa 1994) : 
 
                  j tz e ωΔ=              (4.39) 
 
Then, the Fourier transform in discrete-time is obtained 
 

             ( )j t j k t
y k

k

S e eω ω
∞

Δ − Δ

=−∞

= Λ∑             (4.40) 

 
In case of a stationary process, the following property holds: 
 
     T

k k−Λ = Λ              (4.41) 
 
and the spectrum (4.38) can be written as: 
 
    1( ) ( ) ( ( ) )T

y y yS z S z S z+ + −= +  
 
where  yS +  is defined as:  
 

    0

1
( )

2
k

y k
k

S z z
∞

+ −

=

Λ
= + Λ∑                     (4.42) 

 
The important factorization property of the output covariances was given in Eq. (4.27): 
 

      1k
k CA G−Λ =      

 
If A is a stable matrix6, we have the following series expansion: 
 

                1

1

( ) k k

k

zI A A z
∞

− −

=

− = ∑  

 
This series is found after inserting the factorization property (4.27) into (4.42).  
Consequently, following closed-form expression is found for the spectrum (4.48): 
 

                                                           
6  A is a stable matrix if all of  its poles are strictly inside the unit circle 
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       1 1 1
0( ) ( ) ( )j t T T T

yS e C zI A G G z I A CωΔ − − −= − + Λ + −                (4.43) 
 
In Eq. 4.48 the numbers of covariances go to infinite time lag.  Again, only a finite 
number of data is available: the covariances are estimated as in (4.37) and cannot be 
computed up to infinite time lag.  There is a whole literature on estimating spectra 
from data (Bendat and Piersol, 1993). Two popular non-parametric spectrum estimates 
are the weighted averaged periodogram (also known as modified Welch’s 
periodogram) and the weighted correlogram. Weighting means that the signal is 
weighted by one of the classical windows (Bartlett, Hamming, Hanning) to reduce 
leakage. 

Welch’s method starts with computing the Discrete Fourier Transform (DFT) of the 
weighted output signal: 
 

    
1

0

( )
j

j t j k t
k k

k

Y e w y eω ω
−

Δ − Δ

=

= ∑             (4.44) 

 
where wk denotes the window function in this context.  If j is a power of 2, the DFT 
can be efficiently computed at the discrete frequencies 
 

    2 , 0,...., 1l l j
j t

πω = = −
Δ

 

 
by using the FFT.  An unbiased estimate of the spectrum is the weighted periodogram, 
i.e. the DFT of (4.44) times its complex conjugate transpose and scaled by the squared 
norm of the window: 
 

    1
2

0

1ˆ ( ) ( ) ( )j t j t T j t
y j

k
k

S e Y e Y e
w

ω ω ωΔ Δ − Δ
−

=

=

∑
          (4.45) 

 
The variance of the estimate is reduced by splitting the signal in segments, computing 
the weighted periodograms of all segments and taking the average. The spectrum 
estimate in (4.45) yields a rank-one matrix (a column vector multiplied by a row 
vector). Segment averaging increases the rank of the estimate because several rank-
one estimates are added. 
 
The weighted correlogram method starts by computing the covariance estimates as in 
(4.40). The weighted correlogram is defined as the DFT of the weighted covariance 
estimates: 
 

ˆ ˆ( )
L

j t j k t
y k k

k L

S e w eω ωΔ − Δ

=−

= Λ∑         

(4.46) 
 
where L is the maximum number of time lags. 
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These two algorithms are normally basic of many measurement hardware such 
as frequency analysers which deliver spectra instead of the original time data.  Also as 
they are easily implemented in MATLAB, it is the common procedure in methods of 
non-parametric frequency-domain identification. However, they have to be considered 
as estimates and not as true spectra.  Limitations and drawbacks of the DFT related to 
modal analysis are discussed in Mitchell (1986) and Pandit (1991).  Advantages of 
frequency-domain identification are discussed in Schoukens (1991) and also 
recapitulated in McKelvey (1995) and Ljung (1999).  Evidently, the frequency-domain 
advantages related to the use of a periodic input signal are not carrying over to the 
output-only case. 

 
4.5.2 Covariance-Driven-Stochastic-Subspace Identification (SSI-

COV) 
 
Up to present, stochastic subspace theory are formulated, in this section time-

domain covariance-driven method (SSI-COV) are presented. Most output-only system 
identification methods developed in the past utilize covariance matrix as important 
feature such as Covariance Block Hankel Method,CBHM, (Brownjohn and Jakobsen, 
2001), the instrumental variable method, IV, (Peeters, 2000). An important feature is 
that a covariance matrix can be factorized into the system matrices, as point out in Eq. 
(4.27).  Although some method such as instrumental variable used covariances in 
formulating main algorithm, it does not use the factorization property. The IV method 
use the ARMA model to “fit” measured data yk  The SSI-COV, on the contrary, is 
completely based on the factorization property.  It is a so-called subspace method. 

 
The SSI-COV method is addressing the so-called stochastic realization 

problem, i.e. the problem of identifying a stochastic state-space model from output-
only data.  Stochastic realization is closely related to deterministic (input-output) 
realization that goes back to Ho and Kalman (Ho and Kalman, 1966) and was 
extended with the SVD to treat noisy data in Zeiger (1974) and Kung (1978). The so-
called Eigensystem Realization Algorithm (ERA), developed by Juang (Juang and 
Pappa 1985, 1994), is a modal analysis application of these deterministic realization 
algorithms. The stochastic (output-only) realization problem is solved in Akaike 
(1974), Aoki (1987), and Arun (1990).  Application of stochastic realization to modal 
parameter estimation was reported by Benveniste and Fuchs (1985).  They also proved 
that their algorithm is robust against non-stationary inputs (e.g. a white noise sequence 
with time-varying covariance). 
 

The SSI-COV method identifies a stochastic state-space model from output-
only data. The stochastic state-space model, introduced in Subsection 4.4.3.1, has the 
following form: 
 

     1k k k

k k k

x Ax w
y Cx v

+ = +
= +

            (4.20) 

 
where wk and vk are vector signals assumed to be zero mean, white and with 
covariance matrices: 
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   ( )E[ ]p T T
q q pqT

p

w Q S
w v

v S R
δ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
           (4.19) 

 
Stochastic realization theory 
 
 In classical modal (input-output) analysis, the impulse response matrices hk are 
rectangular matrices having l rows (i.e. the number of outputs) and m columns (i.e. the 
number of inputs).  In output-only cases, the impulse responses are substituted by 
output covariances and the inputs by the (reference) outputs (see also Jame (1995), 
Hermans (1999)).  The algorithm starts with gathering the output covariances in a 
block Toeplitz matrix 1 iT . 
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  Applying the factorization property (4.20)  to 1 iT  yields: 
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       (4.47) 

 
where the definitions of the extended (i>n) observability matrix xli nOi ∈ �  and the 

reversed extended stochastic controllability matrix xn li
iΓ ∈ �  are obvious from 

(4.47). For li n> , and if the system is observable and controllable, the rank of the li×li 
Toeplitz matrix equals n, since it is the product of a matrix with n columns and a 
matrix with n rows. The SVD is a numerically reliable tool to estimate the rank of a 
matrix. The application of the SVD to the block Toeplitz matrix yields: 
 
 

          1 1
1 2 1 1 11

2

0
( )

0 0

T
T T

i T

S V
T USV U U U S V

V
=

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
           (4.48) 

 
where xli liU ∈� and xli liV ∈� are orthonormal matrices ( T T

l iU U UU I= = , 
T T

l iV V VV I= = ) and  x( )li liS +∈ �  is a diagonal matrix containing the positive 
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singular values in descending order.  The rank of a matrix is found as the number of 
non-zero singular values.  In the last equality of (4.48), the zero singular values and 
corresponding singular vectors are omitted: x

1
li nU ∈�  , x

1 0( )n nS +∈ �  , x
1

li nV ∈� . By 
comparing (4.47) to (4.48), the matrices Oi  and iΓ can be computed by splitting the 
SVD in two parts: 
 

              
1/ 2

1 1
1 1/ 2

1 1

i
T

i

O U S T

T S V−

=

Γ =
            (4.49) 

 
where xn nT ∈�  is a non-singular matrix. It is easy to see that this matrix T can be 
considered as a similarity transformation that is applied to the identified state-space 
model. In other words, whatever the choice of T may be, similarity equivalent state-
space models will result and we can simply set: T=I.  The solution of the identification 
problem is now straightforward. From the definitions of the extended observability 
matrix iO  and the reversed extended stochastic controllability matrix iΓ , we know 
that C equals the first l rows of iO  and G equals the last l columns of iΓ  ; or written 
in MATLAB notation: 
 

              
(1: ,:)
(: , ( 1) 1 : )

i

i

C O l
G l i li

=
= Γ − +

           (4.50) 

 
Zeiger (1974) proposed method to compute the state transition matrix A from the 
decomposition property of a shifted block Toeplitz matrix: 
 
             2 1 i iiT O A+ = Γ                    (4.51) 
 
where the shifted matrix 2 1iT +  has a similar structure as (4.45), but is composed of 

covariances kΛ  from lag 2 to 2i. Matrix A is found by introducing (4.59) in (4.61) and 
solving for A: 
 
   † † 1/ 2 1/ 2

1 1 1 12 1 2 1( ) T
i ii iA O T S U T V S− −

+ += Γ =            (4.52) 
 
where †( )� denotes the Moore-Penrose pseudo-inverse of a matrix. 
 

At this point the identification problem is theoretically solved: the system order 
n is found as the number of non-zero singular values in (4.48) and the system matrices 
A,G,C, 0Λ can be computed as in Eq.s (4.50) and (4.52). The fourth system matrix 

0Λ is  simply the zero-lag output covariance matrix. The two matrices A,C are 
sufficient to compute the modal parameters. As discussed in Subsection 4.4.2, the 
discrete poles dΛ  and the observed mode shapes V are computed as (see also (4.16), 
(4.17)): 
 



64 

 

               
1

dA
V C

−= ΨΛ Ψ
= Ψ

             (4.53) 

 
Implementation and stabilization 
 

In reality the number of measurements is not infinite and the output 
covariances have to be estimated (4.37). Since these output covariances form the basis 
of the realization method (4.47), it is evident that the identified system matrices also 
have to be considered as estimates: 0

ˆ ˆ ˆ ˆ, , ,A G C Λ . 
 

Another remark is that in theory the system order n can be determined by 
inspecting the number of non-zero singular values of 1 iT  (4.58).  In practice however, 

the estimated covariance Toeplitz matrix 1̂ iT  is affected by "noise" leading to singular 
values that are all different from zero.  As typical noise sources we have: 
 

 Modelling inaccuracies. It is possible that the true system that generated the 
data cannot be modeled exactly as a stochastic state-space model.  An attempt 
to model this system by a state-space model introduces an error in these cases. 
 

 Measurement noise: introduced by the sensors and the electronics of the 
measurement hardware. 

 
 Computational noise due to the finite precision of any computer. The finite 

number of data. The covariances have to be estimated, so that the factorization 
property (4.27) does not hold exactly.  As a consequence the rank of the 
covariance Toeplitz matrix will not be exactly n; see Eq. (4.47). 

 
In practice, the order can be determined by looking at a "gap" between two 

successive singular values. The singular value where the maximal gap occurs yields 
the model order. This criterion should however not be applied too dogmatically. For 
large, real structures there is generally no clear gap. 
 
To obtain a good model for modal analysis applications, it is probably a better idea to 
construct a stabilization diagram, by identifying a whole set of models with different 
order. In case of the SSI-COV method, an efficient construction of the stabilization 
diagram is achieved by computing the SVD of the covariance Toeplitz matrix (4.48) 
only once.  The number of block rows and columns i of 1 iT  should be such that li > n 

max, the maximum model order.  Models of different order are then obtained by 
including a different number of singular values and vectors in the computation of iO  
and iΓ   (4.49), from which the system matrices and the modal parameters are deduced 
as described in previous subsection. 
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4.5.3 Data-driven Stochastic Subspace Identification (SSI-DATA) 
 

While most of output-only system identification main algorithms are based on 
formulation of spectra and covariances.  The main advantage of data-driven algorithms 
is that they do not require any further preprocessing in order to obtain spectra or 
covariances. One disadvantage of using covariances as primary data in identification 
of system matrices is that it squares up the data.  This may affect the numerical 
accuracy (Golub and Van Loan, 1989).  The data-driven methods identify models 
directly from the time signals.  One classical method is prediction error method  PEM 
(Ljung, 1999) that identifies AR(MA) models from time data.  This method identifies 
the parameters of a model by minimizing the so-called prediction error7.  The 
straightforward application of PEM to estimate an ARMA model from data results in 
a highly nonlinear optimization problem with related problems as: convergence not 
being guaranteed, local minima, sensitivity to initial values and a high computational 
load (Peeteers, 1999). 

 
Recently a lot of research effort in the system identification community was 

spent to subspace identification as evidenced by Overschee and De Moor (1996) and 
Ljung (1999).  Subspace methods, originating from electrical engineering field, 
identify state-space models from (input and) output data by applying robust numerical 
techniques such as QR factorization, SVD and least squares. As opposed to SSI-COV, 
the DATA driven Stochastic Subspace Identification method (SSI-DATA) avoid the 
computation of covariances between the outputs. It is replaced by projecting the row 
space of future outputs into the row space of past outputs. In fact, the notions 
covariances and projections are closely related in aiming that: they both are aimed to 
cancel out the (uncorrelated) noise.  The first SSI-DATA algorithms can be found in 
(Overchee 1991, 1993).  A general overview of data-driven subspace identification 
(both deterministic and stochastic) is provided in Van Overschee and De Moor (1996).  
Although somewhat more involved as compared to previous methods, it is also 
possible with SSI-DATA to reduce the dimensions of the matrices by introducing the 
idea of the reference sensors. This is demonstrated in (Peeteers 1996).  

 
Since the pioneering papers by Akaike (1975), canonical correlations (which 

were first introduced by Jordan (1975) in linear algebra and then by Hotelling (1936) 
in the statistical community) have been used as a mathematical tool in the stochastic 
realization problem.  Overchee (1996) have shown how the approach by Akaike 
(1975) and others (e.g. Akaike 1990, Larimore 1983, Larimore 1990) boils down to 
applying canonical correlation analysis to two matrices that are (implicitly assumed to 
be) double infinite (i.e. have an infinite number of rows and columns).  In his work, 
careful analysis reveals the nature of this double infinity and manages to reduce the 
canonical correlation approach to a semi infinite matrix problem, i.e. only the number 
of columns needs to be very large while the number of block rows remains sufficiently 
small. This observation is extremely relevant with respect to (for instance) the use of 
updating techniques.  

                                                           
7  Prediction errors are the part of the output data that cannot be predicted from past data. 
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In order to find the state space model, Overchee derive a finite dimensional 

vector sequence which, in the case of double infinite block Hankel matrices, would be 
a valid state sequence of the stochastic model.  This sequence would correspond to the 
outputs of an infinite number of steady state Kalman filters with an infinite number of 
output measurements as inputs.  For the semi infinite matrix problem, the sequence 
corresponds to the output of an infinite number of nonsteady state Kalman filters that 
have only used a finite number of output data as input.  These state sequences are 
obtained directly from the output data, without any need for the state space model. The 
state space model is then derived from these sequences by solving a least squares 
problem.  

 
 In this thesis, we use main algorithm proposed by Overchee (1996) in 
identification of state matrix (A,G,C,K) as positive real sequence is guaranteed.  
Indeed, for an identified covariance sequence to be physically meaningful, it should be 
a positive real sequence. Almost all subspace algorithms presented in the literature 
(Akaike 1975, Aoki 1987, Akaike 90) do not guarantee this property, which implies 
that the spectral factor of the identified covariance sequence does not exist. With this 
algorithm it computes a slightly asymptotically biased solution (the bias decreases 
when the number of block rows increases), but the positive realness of the solution is 
guaranteed (if the identified system matrix A is stable). 
 
Kalman filter states 
 
 In the derivation of the data-driven stochastic subspace identification 
algorithms for stochastic system identification, the Kalman filter plays a crucial role. 
In subsection 4.4.3.2, it was indicated how the forward innovation model (4.28) can be 
obtained by applying the steady state Kalman filter to the stochastic state-space model 
(4.28). In this section, the nonsteady state Kalman filter is introduced.  The Kalman 
filter is described in many books.  A nice derivation can be found in Appendix B of 
Juang (1994).  The aim of the Kalman filter is to produce an optimal prediction for the 
state vector xk by making use of observations of the outputs up to time k-1 and the 
available system matrices together with the known noise covariances.  These optimal 
predictions are denoted by a hat: 1ˆkx + . When the initial state estimate 0x̂  = 0, the initial 

covariance of the state estimate 0 0 0ˆ ˆE[ ] 0TP x x= = and the output measurements y0,..., 
yk-1 are given, the non-steady-state Kalman filter state estimates ˆkx  are obtained by the 
following recursive formulas (see Eqs. (4.30) and (4.31)): 
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            (4.54) 

 
expressing the Kalman state estimate, the Kalman filter gain matrix and the Kalman 
state covariance matrix. The Kalman filter state sequence ˆ n x j

iX ∈� is defined as: 
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    1 1
ˆ ˆ ˆ ˆ( .... )i i i i jX x x x+ + −=             (4.55) 

 
The correct interpretation of the (q+1)th column of this matrix is that this state ˆi qx +  is 
estimated according to Eq. (4.64) by using only i previous outputs: yq, ..., yi+q-1.  By 
consequence, two consecutive elements of ˆ

iX cannot be considered as consecutive 
iterations of Eq. (4.64). More details can be found in Overchee (1996).  Important to 
note is that a closed-form expression exists for this Kalman filter state sequence and 
that it is this sequence that will be recovered by the SSI-DATA algorithm (see 
further). 
 
Data-Driven Stochastic Subspace Identification Theory 
 

The SSI-DATA algorithm starts by projecting the row space of the future 
outputs into the row space of the past.  The idea behind this projection is that it retains 
all the information in the past that is useful to predict the future.  
 
Orthogonal projections 
 

BΠ  denotes the operator that projects the row space of a matrix onto the row 
space of the matrix B 
 
    †.( ) .T T

B B BB BΠ =  
 
where †( )� denotes the Moore-Penrose pseudo-inverse of a matrix. � .  A/B is 
shorthand for the projection of the row space of the matrix A on the row space of the 
matrix B : 
 
    †/ . .( ) .T TA A B BB B=B  
 

The projection operator can be interpreted in the ambient j dimensional space 
as indicated in Fig. 4.2 (where j =2). The QR decomposition is the natural numerical 
tool for this orthogonal projection as will be shown in section of implementation. Note 
that in the notation A/B, the matrix B is printed bold face, which indicates that the 
result of the operation A/B  lies in the row space of B . 
 

Similarly, by projecting the row space of the future outputs into the row space 
of the past outputs, the notation and definition of this projection is: 
 
    †. .( ) .T T

i f p f p p p pY Y Y Y Y Y YΠ = =            (4.56) 
 
The matrices , li x j

f pY Y ∈� are partitions matrices of the output data block Hankel 
matrix, as indicated in (4.33). 
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    Fig. 4.2  Interpretation of the orthogonal projection A/B in the j-dimensional space      

(j =2 ). 
 

Note that the expression of Eq. (4.56) is only the definition of iΠ ; it does not 
indicate how the projection is computed.  From the definition (4.56), it is shown that 
projections and covariances are related. The matrix product . T

f pY Y is in fact block 
Toeplitz matrices containing covariances between outputs; (see Eq. 4.46). 
 

The mian theorem of  stochastic subspace identification (Overchee, 1996) states 
that the projection iΠ  can be factorized as the product of the extended observability 

matrix Oi (4.57) and the Kalman filter state sequence ˆ
iX  (4.65): 
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O X x x xi i

CA

+ + −

−

↔

⎛ ⎞
⎜ ⎟
⎜ ⎟Π = =
⎜ ⎟
⎜ ⎟
⎝ ⎠

b
          (4.57) 

The prove of this theorem can be found in (Overchee, 1996) and graphical 
illustration is shown in Fig. 4.3. 

 
Since the projection matrix is the product of a matrix with n columns and a 

matrix with n rows (4.57), its rank equals n (if li > n). The SVD is a numerically 
reliable tool to estimate the rank of a matrix.  After omitting the zero singular values 
and corresponding singular vectors, the application of the SVD to the projection 
matrix yields: 
 
     1 1 1

T
i U S VΠ =              (4.58) 

 
where  x

1
li nU ∈�  , x

1 0( )n nS +∈ �  , x
1

li nV ∈� . The extended observability matrix and 
the Kalman filter state sequence are obtained by splitting the SVD in two parts: 
 

     
1/ 2

1 1

†ˆ
i

i i i

O U S T

X O

=

= Π
             (4.59) 

A 

B A/B 
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Fig. 4.3 Projection of the future outputs on the past determines the forward state 

sequence ˆ
iX  

 
Up to now, the system order n (as the number of non-zero singular values in 

Eq. (4.58)), the observability matrix Oi and the state sequence ˆ
iX  are determined.  

However, the identification problem is to recover the system matrices A,G,C, Λ  . 
Through a similar reasoning and proof of Eq. (4.57), it can be shown that the 
following holds: 
 
    1 1 1

ˆ
i f p i iY Y O X− +
− − +Π = =             (4.60) 

 
This new projection can be easily defined by shifting the separation between 

past and future outputs in the Hankel matrix one block row down.  It is also easy to 
check that 1iO −  is simply obtained after deleting the last l rows of  iO : 
 
         1 (1: ( 1))i iO O l i− = −  

Now the state sequence 1
ˆ

iX +  can be calculated from: 
 
         †

1 1 1
ˆ

i i iX O+ − −= Π       
 

At this moment the Kalman state sequences 1
ˆ ˆ,i iX X +  are calculated using only 

the output data. The system matrices can now be recovered from following 
overdetermined set of linear equations, obtained by stacking the state-space models for 
time instants i to i+j-1 
 

       1
ˆ

ˆi i
i

ii i

X WA
X

Y VC
+

⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

            (4.61) 

Yf 

Yp 

  
    rank( Yf /Yp)   =    n 

      row space ( Yf /Yp)   =    row space ˆ
iX  

column space ( Yf /Yp)   =    column space Oi 
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where l x j

i iY ∈�  is a Hankel matrix with only one block row.  This set of equations 
can be easily solved for A,C .  Intuitively, since the Kalman filter residuals 

,nxj lxj
i iW V∈ ∈� �  (the innovations) are uncorrelated with  ˆ

iX  , it seems natural to 
solve this set of equations in a least squares sense (since the least squares residuals are 
orthogonal and thus uncorrelated with the regressors ˆ

iX ).  In Overschee and Moor 
(1993), it is shown that the least squares solution indeed computes an asymptotically 
unbiased estimate of A and C as: 
 

            1 †
ˆ

ˆi
i

i i

XA
X

YC
+

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

            (4.62) 

 
The noise covariances Q, R and S are recovered as the covariances of the least-squares 
residuals: 
 

    ( )i T T
i iT

i

WQ S
W V

VS R
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (4.63) 

 
From the (Subsection 4.4.3.2), it is easy to see how the matrices A,C,Q,R,S can be 
transformed to A,G,C, 0Λ  . First the Lyapunov equation is solved for  Σ :  
 
     TA C QΣ = Σ +  
 
after which G and 0Λ can be computed as:  
 

     0
T

T

C C R

G A C S

Λ = Σ +

= Σ +
            (4.64) 

 
At this point the identification problem is theoretically solved: based on the outputs, 
the system order n and the system matrices A,G,C, 0Λ  are found.  
 

The matrices A,C are sufficient to compute the modal parameters. As discussed 
in Subsection 2.4.2, the discrete poles dΛ  and the observed mode shapes V are 
computed as  (see also Eqs. (4.16), (4.17), (4.53) ): 
 

                 
1

dA
V C

−= ΨΛ Ψ
= Ψ
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Positive realness 
 

The computation of Q,R,S according to (4.73) only leads to asymptotically8 
unbiased estimates if the number of block rows in the Hankel matrices goes to infinity: 
i → ∞ .  So in practice, since i ≠ ∞ , a bias will be introduced on Q,R,S (and thus also 
on G, 0Λ ).  The modal parameters are only determined from A, C , then if only modal 
parameters are required, they are not suffering from this bias on G, 0Λ .   

Other algorithms exist that compute asymptotically unbiased estimates. 
Unfortunately these algorithms do not guarantee the positive realness of the identified 
covariance sequence.  More details on positive realness can be found in Overcheee 
(1996). Important for the following of this thesis is that only positive real sequences 
have a corresponding spectrum matrix that is positive definite for all frequencies ω .  
If a matrix is positive definite, then all its diagonal entries are positive (Golub and 
Vanloan 1989). Peeters (2000), has shown that model identified with the SSI-COV 
method does not guarantee the positive realness of the identified covariance sequence.  
Then, an identified power spectrum becomes negative at certain frequencies (which 
has of course no physical meaning).  A power spectrum is a diagonal entry of the 
spectrum matrix and therefore this matrix cannot be positive definite. 
 

Also important is that only positive real sequences can be converted to a 
forward innovation state-space model. Such a model is sometimes useful, as we will 
see further. The conversion starts by solving the Riccati equation for P (see also 
Subsection 4.4.3.2 for forward innovation model): 

 
    1

0( )( ) ( )T T T T TP APA G APC CPC G APC−= + − Λ − −           (4.30) 
 
The matrix n xnP R∈ is the forward state covariance matrix [ ]T

k kP E z z= . the 
covariance matrix of the innovations equals: 
 
            0

T
e CPCΛ = Λ −             (4.32) 

 
And finally The Kalman gain is then computed as: 
 

    
1

1
0

( )

( )( )

T
e

T T

K G APC

G APC CPC

−

−

= − Λ

= − Λ −
           (4.31) 

 
Implementation 
 

Really implementation of data-driven subspace algorithms in general is the QR 
factorization of data Hankel matrices.  Such a factorization applied to the output 
Hankel matrix of Eq. (4.33), (4.34) reads: 
 

                                                           
8 Asymptotic means that the number of data (theoretically) goes to infinity: j → ∞ . 
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           p p T

f f

Y Y
H RQ

Y Y

+

−

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
            (4.65) 

 
where j x jQ∈�  is an orthonormal matrix: T T

jQ Q QQ I= = and  2li x jR∈� is a lower 
triangular matrix.  Since  2li< j,  it is possible to omit the zeros in R and the 
corresponding rows in Q : 
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⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

           

(4.66)

 

 
The division in block rows and columns is made such that the submatrices in 

(4.65) can all be expressed in terms of the R and Q submatrices. It is easy to show that 
the QR factorization yields following very simple expressions for the projections of 
future row spaces into past row spaces: 
 

  ( )21 1
1 1 31 32

31 2

,
T

pT
i i T

f

YR Q
Q R R

R YQ

+

− −

⎛ ⎞⎛ ⎞⎛ ⎞
Π = Π = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

          (4.67) 

 
Also l x j

i iY ∈�  , the output sequence that is present in the least-squares equations in A, 
C (4.62) is easily written in terms of the QR factors: 
 

    ( ) 1
21 22

2

T

i i T

Q
Y R R

Q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

             (4.68) 

 
Since †ˆ

i i iX O= Π  and †
1 1 1

ˆ
i i iX O+ − −= Π , all right-hand-side quantities of the least-

squares Eq. (4.62) can be expressed in terms of the QR factors.  Because of their 
orthonormality, the Q factors cancel out in this equation.  So in this first step (4.65) the 
Q matrix should not be calculated. The MATLAB function qr (MatLab 1996), for 
instance, allows for the computation of the R factor only. Since typically (2li)«j , an 
important data reduction is obtained by replacing the  2li×j data Hankel matrix  by its 
R factor of dimension 2li × 2li. 
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Evidently, due to the finite data length, the identified state-space model is only 
an estimate of the true underlying state-space model that generated the data.  This is 
denoted as 0

ˆ ˆ ˆ ˆ, , ,A G C Λ for a covariance model and as ˆ ˆ ˆ ˆ, , , eA G C Λ  for a forward 

innovation on model.  The matrices ˆ ˆ, ,A C are asymptotically unbiased estimates, but 
as stated before, a small bias introduced on the estimates of the other matrices (unless 
the number of block rows in the Hankel matrices goes to infinity: i → ∞ ).  In practice 
however, the (small) bias which is a function of the convergence of the nonsteady state 
Kalman filter, is a prize worth paying for the more guaranteed positive realness of the 
resulting covariance sequence. 
 

The same remark as in the SSI-COV method concerning the determination of 
the model order n applies here. Due to noise (modelling inaccuracies, measurement 
noise and computational noise) none of the singular values in Eq. (4.58) are exactly 
zero and the order can only be determined by looking at a "gap" between two 
successive singular values.  The singular value where the maximal gap occurs yields 
the model order.  However in many practical cases (included in this thesis), no gap is 
visible.  As previously, the problem of order determination is better solved by 
constructing a stabilization diagram. The number of block rows i of H should be such 
that li>nmax , the maximum model order. Models of different order are then obtained 
by including a different number of singular values and vectors in the computation of 

iO  and  ˆ
iX  (4.59), from which the system matrices and modal parameters are deduced 

as described previously. 
 

In practice, amplitudes of singular values depend on amplitude of output 
signals. In case of very low signal to noise outputs, no gap is clearly visible. Several 
variants of stochastic subspace identification exist (see next Subsection).  They differ 
in the weighing of the  Π   factor before application of the SVD.  One of these variants 
that used in this thesis is so called Canonical Variate Analysis (CVA), in which the 
singular values can be interpreted as the cosines of the principal angles between two 
subspaces: the row space of the future outputs Yf  and the row space of the past outputs 
Yp . 
 
 
4.5.4 Covariance-Driven VS. Data-Driven Subspace 

 
This section points out some of the similarities and differences between the 

SSI-COV (Subsection 4.5.2) and the SSI-DATA method (Subsection 4.5.3). First are 
the similarities.  Both methods are based on stochastic (output-only) state space model 
(linear time invariant system loaded with white noise sequence with number of output 
and number of blolck . ,j i → ∞ ).  In the SSI-COV algorithm the raw time histories y, 
consisting of l channels of j data points, are converted to the covariances of the 
Toeplitz matrix 1

T
p fiT Y Y= .  In the SSI-DATA algorithm a similar reduction is 

obtained, but by projecting the row space of the future outputs into the row space of 
the past outputs i f pY YΠ = .  This projection is computed from the QR factorization of 
the data Hankel matrix.  A more significant data reduction is obtained because only a 
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part of the R factor is needed in the sequel of the algorithm.  Both methods then 
proceed with an SVD.  The decomposition of 1 iT reveals the order of the system, the 

column space of iO  and the row space of iΓ . Similarly the decomposition of iΠ  

reveals the order of the system, the column space of iO and the row space of ˆ
iX . 

 
Several variants of stochastic subspace identification exist. They differ in the 

weighting of the data matrices ( 1 iT  for SSI-COV and iΠ for SSI-DATA) before the 
application of the SVD. The weighting determines the state-space basis in which the 
identified model will be identified. More details can be found in Arun (1990) and 
Overchee (1996).  One of these variants is so-called Canonical Variate Analysis 
(CVA), in which the singular values can be interpreted as the cosines of the principal 
angles between two subspaces: the row space of the future outputs Yf  and the row 
space of the past outputs Yp . In the SSI-DATA implementation of CVA, the weighting 
of the projection matrix before the application of the SVD goes as follows (Overchee, 
1996): 

 
    1/ 2( )T

f f iY Y − Π     
 
Also the other subspace variants exists for implementations of both SSI-COV 

and SSI-DATA: principal component PC (Aoki 1987, Arun and Kung 1990),  
Unweighted  principal component UPC (Arun and Kung, 1990). While, these methods 
give asymptotically unbiased system matrix, however positive real covariances are not 
guaranteed. 
 

There are also differences between the covariance-driven and data-driven 
approaches. As indicated in Subsection 4.5.1.2, the covariance Toeplitz matrix 
computed by multiplying and sum up the time history outputs y, required more time 
consuming than SSI-DATA.  However, this is not the significant for this thesis.  Also, 
SSI-COV can be computed in a very fast way by using the FFT algorithm. 
 

In favour of the data-driven method is that it is implemented as a numerically 
robust square root (QR) algorithm: the output data is not squared up as in the 
covariance-driven algorithm.  More advantages of the data-driven method become 
clear in next section, where some postprocessing tools for the identified state-space 
model are presented: an analytical expression for the spectrum matrix and the 
separation of the total response in modal contributions. 

 
4.5.5 Postprocessing 
 

This section deals with some useful postprocessing tools that come after the 
identification of a parametric model.  In the present context, once such a model is 
available, it can be analytically converted to other presentation forms. Modal analysis, 
a first type of postprocessing, was in fact already discussed in previous subsection. 
The state-space matrices identified with SSI-COV or SSI-DATA allow us to compute 
the modal parameters, as formulated in (4.63). Once the modal parameters computed, 
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the stiffness and damping matrices can be determined from pseudo inverse method 
(see next section) Other postprocessing tools such as spectrum analysis and modal 
responses are subsequently treated. First, response spectrum that are crucial tool for 
determining aerodynamic admittance, then modal responses that can only be applied to 
models that are identified with the SSI-DATA method. 

 
4.5.5.1 Spectrum analysis 

 
The covariance-driven and data-driven system identification methods use time-

domain data to identify a model. It is however theoretically converted to frequency-
domain model, hereto; the identified models are converted to a spectrum model.  In 
previous section, a closed-form expression for the spectrum of a discrete-time 
stochastic state space model was derived: 

 
 1 1 1

0( ) ( ) ( ) | j t
j t T T T

y z e
S e C zI A G G z I A C ω

ω
Δ

Δ − − −
=

= − + Λ + −           (4.69) 
 
By introducing the eigenvalue decomposition of A ( 1

dA −= ΨΛ Ψ ), following "modal" 
spectrum is obtained: 
 
  1 1 1

0( ) ( ) ( ) | j t
j t T T

y d m m d z e
S e V zI G G z I V ω

ω
Δ

Δ − − −
=

= − Λ + Λ + − Λ        (4.70) 
 

4.5.5.2 Modal  response and prediction errors 
 

This subsection presents a technique to split the total measured response in 
modal responses.  A modal response is defined as the response of a single DOF 
system, having the same eigenfrequency and damping ratio as the considered mode, to 
the same force as applied to the full system.  The technique assumes that the identified 
model is written in forward innovation form Eq. (4.28) (see Subsection 4.4.3.2): 

 

           1k k k

k k k

z Az Ke
y Cz e

+ = +
= +

 

where nxlK ∈� is the Kalman gain and ke  is the white noise innovation sequence 
covariance matrix [ ]T

p q e pqe e δΕ = Λ This model can be written in the modal basis: 
 

           , 1 ,

,

m k d m k m k

k m k k

z z K e

y Vz e
+ = Λ +

= +
            (4.71) 

 
where 1

,k m kz z−Ψ =  and 1
mK K−Ψ = .  Because dΛ  is a diagonal matrix, each element of 

the modal state vector ,m kz  represents the contribution of a single mode. By 
eliminating the innovations ke in the first equation and re-arranging the second, 
following state-space model is obtained: 
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    , 1 ,

,

( )m k d m m k m k

k m k k

z K V z K y

e Vz y
+ = Λ − +

= − +
           (4.72) 

 
This modal state-space model ( , , , )d m mK V K V IΛ − −  can be simulated once 

all state-space matrices are known from the identification and the measured output yk 
serves as input in the simulation.  The results from the simulation are the modal state 
sequence ,m kz  and the innovation sequence ke . The innovations can be interpreted as 
one-step-ahead prediction errors (Ljung, 1999).  The one-step-ahead predicted output 
is defined as: 
 
     ,ˆk m ky Vz=              (4.73) 
 

The prediction errors are the differences between the true output and the 
predicted output: ˆk k ke y y= − . Because each element of the modal state vector ( )

,
i

m kz  
represents the contribution of a single mode, the predicted output can be split in modal 
responses as: 
 

    { } ( )
,

1 1

ˆ ˆ
k

n n
i

k i i m k
i i

y y v z
= =

= =∑ ∑             (4.74) 

 
where  ˆ

kiy  is the (complex) response of the i th mode.  By combining the responses of 

a complex conjugated pair, a real output is obtained. 
  

The modal response approach of this section can only be applied to models that 
are identified with the SSI-DATA method.  In order to obtain the forward innovation 
model, the full G matrix is needed and not only as obtained with the SSI-COV 
method.  Another more important problem, which could not be overcome by 
considering all sensors as references, is that the implementation of SSI-COV does not 
guarantee the positive realness of the identified covariance sequence.  One of the 
consequences is that it is not always possible to obtain a forward innovation model 
(Peeters 2000, Overchee 1996). 

 
 

4.6 Flutter Derivatives Identification 
 
4.6.1   Theoretical Formulation of Covariance-Driven SSI 
 
 The dynamic behavior of a bridge deck with two degrees-of-freedom (DOF in 
short), i.e. h (bending) and α (torsion), in turbulent flow can be described by the 
following differential equations (Scanlan 1977) 
 

                        ( ) ( ) ( ) ( ) ( )
.. .

22 h h h se bm h t h t h t L t L tξ ω ω⎡ ⎤+ + = +⎢ ⎥⎣ ⎦
            (4.75)
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                        ( ) ( ) ( ) ( ) ( )22 h se bI t t t M t M tα αα ξ ω α ω α⎡ ⎤+ + = +⎣ ⎦&& &  
 
where m and I are the mass and mass moment of inertia of the deck per unit span, 
respectively; ω i is the natural frequency; ξi is the modal damping ratio (i=h,α); Lse and 
Mse are the self-excited lift and moment, respectively; while Lb and Mb are the 
aerodynamic lift and moment. The self-excited lift and moment are given as follows 
(Simiu and Scanlan 1996) 
 

( ) ( ) ( ) ( )
. .

2 * * 2 * 2 *
1 2 3 4ae

h B hL U BL KH K KH K K H K K H K
U U B
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1 2 3 4ae

h B hM U B L KA K KA K K A K K A K
U U B

θρ θ
⎡ ⎤
⎢ ⎥= + + +
⎢ ⎥
⎣ ⎦

 

(4.76)

 
where ρ  is air mass density; B is the width of the bridge deck; U is the mean wind 
speed at the bridge deck level; ki = ωiB/U is the reduced frequency (i =h,α); and Hi

* 
and Ai

* (i=1,2,3) are the so-called flutter derivatives, which can be regarded as the 
implicit functions of the deck’s modal parameters. The aerodynamic lift and moment 
can be defined as (Scanlan 1977) 
 

( ) ( ) ( ) ( ) ( ) ( )21 2
2b L L L D L

u t w t
L t U B C t C C t

U U
ρ χ χ
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( ) ( ) ( ) ( ) ( ) ( )2 21 2
2b M M M M

u t w t
M t U B C t C t

U U
ρ χ χ

⎡ ⎤
′= +⎢ ⎥

⎣ ⎦
 

(4.77)

where  CL, CD and CM  are the steady aerodynamic force coefficients; C′L and C′M are 
the derivatives of CL and CM with respect to attack angles, respectively; u(t) and w(t) 
are the longitudinal and vertical fluctuations of wind speed, respectively; Lχ  and Mχ  
are the lift and moment aerodynamic admittances of the bridge deck.  

By moving Lse and Mse to the left side, and merging the congeners into column 
vectors or matrices, Eq. (4.75) can be rewritten as follows 
 

[ ] ( ){ } ( ){ } ( ){ } ( ){ }e eM y t C y t K y t f t⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦&& &  (4.78)
 

where ( ){ } ( ) ( ){ }T
y t h t tα= is the generalized buffeting response; 

( ){ } ( ) ( ){ }T
b bf t L t M t= is the generalized aerodynamic force; [M] is the mass 

matrix; [Ce] is the gross damping matrix, i.e. the sum of the mechanical and 
aerodynamic damping matrices; and [Ke] is the gross stiffness matrix.  
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The fluctuations of wind speed u(t) and w(t) in Eq. (4.77) are random functions 
of time, so the identification of flutter derivatives and aerodynamic admittances of 
bridge decks can be simplified as a typical inverse problem in the theory of random 
vibration, and thus can be solved by stochastic system identification techniques.  

Let 
 

[ ]

[ ] [ ]

-1 -1

O I
- -

I O

c e e

c

A
M K M C

C

⎡ ⎤
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⎣ ⎦
=

  (4.79)

and 
 

{ }
y

x
y

⎧ ⎫
= ⎨ ⎬

⎩ ⎭&
  (4.80)

then Eq. (4.78) is transformed into the following stochastic state equations 
 

{ } [ ]{ } { }
{ } [ ]{ } { }

c

c

x A x w

y C x v

= +

= +

&
 (4.81)

The discrete form of Eq. (4.81) can be written as 
 

{ } [ ]{ } { }
{ } [ ]{ } { }

1k k k

k k k

x A x w

y C x v
+ = +

= +

&
 (4.82)

where [Ac]4×4, [Cc]2×4 and {x} are known as state matrix, output shape matrix and state 
vector, respectively; {wk} and {vk} are the input and output noise sequences, 
respectively. Subscript *k denotes the value of * at time kΔt, where Δt means the 
sampling interval. O and I are the zero and identity matrices, respectively.  

It is common to assume that {xk}, {wk} and {vk} in Eq. (4.82) are mutually 
independent and hence 
 

T TO Ok k k kE x w E x w⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  (4.83)

Defining 
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+
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 (4.84)

 
then we get the following Lyapunov equations for the state and output covariance 
matrices 
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= Σ +

 (4.85)

From (4.82) and (4.83), it can be deduced 
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 (4.86)
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(4.87)
and 
 

1i
i CA G−Λ =  (4.88)

Defining a block Toeplitz  1 iT  as 

 
1 1

1 2
1

2 1 2 2

i i

i i
i

i i i

T

−

+

− −

Λ Λ Λ⎡ ⎤
⎢ ⎥Λ Λ Λ⎢ ⎥=
⎢ ⎥
⎢ ⎥Λ Λ Λ⎣ ⎦

L

L

M M M M

L

 (4.89)

 
then one can infer from the definition of covariance matrix that 1 iT   can be expressed 
as the product of two block Hankel matrices Yf and Yp 
 

T
f p1 iT Y Y=  (4.90)

 
where Yf and Yp are composed of the ‘future’ and ‘past’ measurements, respectively. 
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 (4.91)

 

In a manner similar to the classical eigensystem realization algorithm (ERA in 
short) (Juang and Pappa, 1985), one can find 
 

1/ 2 T 1/ 2
2 2 Vi i N Ni iA o T S U T Sς+ − −= =  (4.92)

 
where N is model order, i.e. the maximum number of modes to be computed. U, S and 
V are matrices derived from the singular value decomposition (SVD in short) of matrix 

1 iT  
 

T
1 iT USV=  (4.93)

 
Thus, the modal parameters can be determined by solving the eigenvalue 

problem of state matrix A. By now, the theoretical formulation of covariance-driven 
SSI has been achieved.  According to (4.90), (4.91) and (4.92), a different combination 
of i, j and N will give a different state matrix, and thus a different pair of modal 
parameters. Therefore, modal parameters should be derived from a series of 
combinations, rather than a single combination. In the process of identification, N or i 
should be given in series for certain j to get the frequency stability chart.  

Once the modal parameters are identified, the gross damping matrix Ce and the 
gross stiffness matrix Ke in Eq. (4.4) can be readily determined by the pseudo-inverse 
method.  

Let 
1 1

1 0 1 0

e e e eC M C K M K
C M C K M K

− −

− −

= =

= =
 (4.94)

 
where C0 and K0 are the ‘inherent’ damping and stiffness matrices, respectively. Thus, 
the flutter derivatives can be extracted from the following equations 
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(4.95)

 

The pseudo-inverse method is here briefly described. It can be readily 
concluded from (4.88) and (4.89) that state matrix A will be different for different i, j 
and N. Therefore, it is impossible to directly determine matrix Ke and matrix Ce from 
the state matrix, i.e. Eq. (4.79). In this study, an alternative technique is utilized to 
estimate the gross stiffness and damping matrices.  

Firstly, the modal parameters of the system are determined by solving the 
eigenvalue problem of state matrix A 
 

1A
C

−= ΨΛΨ
Φ = Ψ

 (4.96)

where Ψ is the complex eigenvector matrix, Φ  is the mode shape matrix, and Λ  is a 
diagonal matrix composed of the complex poles of the system. Different combination 
of i, j and N are employed to derive the modal parameters statistically. For more 
details, see Refs. (Sarkar, 1994 and Jaung and Pappa, 1985).  

Secondly, the gross damping matrix Ce and the gross stiffness matrix Ke in Eq. 
(4.78) are estimated from the modal parameters by the pseudo-inverse method 
 

*
2 * * 2

* *( )e eK C M
+

⎡ ⎤Φ Φ
⎡ ⎤ ⎡ ⎤= − ΦΛ Φ Λ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ΦΛ Φ Λ⎣ ⎦

 (4.97)

 
where the superscript * denotes the complex conjugate.  
 
 
4.6.2  Theoretical formulation of data-driven SSI 
 
 Theoretical formulation of data-driven SSI applied to flutter derivatives 
identification of bridge decks is similar to previous covariance-driven SSI, (see Eqs. 
4.75-4.78).  However in identification process, SSI-DATA start with defying output 
block Hankel matrix: 
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Then applying QR factorization to data Hankel Matrices.  Such a factorization reads: 
 

   p p T

f f

Y Y
H RQ

Y Y

+

−

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
             (4.65) 

 
where j x jQ∈�  is an orthonormal matrix: T T

jQ Q QQ I= = and  2li x jR∈� is a lower 
triangular matrix.  Since  2li< j,  it is possible to omit the zeros in R and the 
corresponding rows in Q : 
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           (4.66) 

 
One can infer from previous subsection that: 
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              (4.67) 

 
where l x j

i iY ∈�  , the output sequence that is present in the least-squares equations in 
A, C (4.62) is easily written in terms of the RQ factors: 
 

    ( ) 1
21 22

2

T

i i T

Q
Y R R

Q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

             (4.68) 

In a manner similar to the SSI-COV, SVD is applied to the projection matrix 
yields: 
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     1 1 1
T

i U S VΠ =  
 

The extended observability matrix and the Kalman filter state sequence are 
obtained by splitting the SVD in two parts: 
 

     
1/ 2

1 1

†ˆ
i

i i i

O U S T

X O

=

= Π
             (4.59) 

 
where the similarity transform matrix T = I . The extended observability matrix 1iO −  is 
simply obtained after deleting the last l rows of  iO : 
 
    1 (1: ( 1))i iO O l i− = −  

Now the state sequence 1
ˆ

iX +  can be calculated from: 
 
    †

1 1 1
ˆ

i i iX O+ − −= Π       
 
Now, the system matrices A, C can be determined simultaneousely by solving the sets 
of equations in a least square sense: 
 

    1 †
ˆ

ˆi
i

i i

XA
X

YC
+

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
Thus, the modal parameters can be determined by solving the eigenvalue problem of 
state matrix A. By now, the theoretical formulation of data-driven SSI has been 
achieved. The remaining parameters can be determined in similar manner to SSI-COV 
method.  
 
Implementation 
 
 Both algorithms for SSI-COV and SSI-DATA are implemented in MATLAB 
named ssi_cov and ssi_data. These functions are executed by typing their names. For 
instance (for SSI-COV) method: 
 
 >>  ssi_cov 
 
Applies the covariance-driven stochastic subspace identification.  The program will 
promptly for recorded motion file (in.txt) as input. 
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The measured data shall be arranged in columns with each columns corresponding to 
each recorded data step for each channel. For instance: 
 

   
 
The first row contains sampling frequency of signal. 
 
Preprocessing 
 
 Preprocessing is the data treatment before system identification and it highly 
influences the identification result. Following possibilities are implemented: 
 
 Decimate: the data is low-pass filtered and resampled at a lower rate. The 
identification can concentrate on a limited frequency band. 
 

Detrend: the best straight line fit is removed from the data. This removes the 
DCcomponent that can badly influence the identification results. 
 
 
 



85 

 

Preprocessing output 
 

The effect of a preprocessing procedure can be seen immediately, both in time 
and frequency domain.  The recorded signal is shown in time-history as shown in Fig. 
4.4 

The frequency domain representation of the signals is also available for 
preliminary check of signal before starting system identification process. The 
frequency domain representation is determined by average periodogram (Welch’s 
method) where the variance of estimated spectrum is reduced by splitting the signal in 
10 segements, computing the weighted periodograms of all segments and taking the 
average.  

  
 
 

 
 

Fig.4.4  Preprocessing with time history representation of signals 
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  Fig. 4.5 Divided signals in (10) segments for averaged spectrum. 
 

    
 
 The user has options such as: frequency all signal sections, individual section, 
delete (cut) some of segments from averaging and even number of spectral estimate. 
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 Based on number of choices from user’s selection, response spectrums for each 
channel are plotted. Fig. 4.6 shows example of spectrum plot for vertical (channel 1) 
motion and torsional motion (channel 2) of IRR bridge section model and thin flat 
plate under smooth wind. 

 

 
Fig.4.6a  Example of spectrum representation of signals: flatplate model 
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Fig.4.6b  Example of spectrum representation of signals: IRR bridge model 
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System identification 
 
 First, the user has to specify some input-parameters of the algorithm:  The 
numbers of block rows i (which determine the maximum number of orders that can be 
calculated), maximum number of order and the model order range.  The numbers of 
block row i and model order are depend on user’s choice.  It is practically experience 
that it is better to over-specify the model order and to eliminate spurious numerical 
poles afterwards. The poles corresponding to a certain model order are compared to 
the poles of a one-order-lower model.  If the eigenfrequency, the damping ratio and 
the related mode shape differences are within preset limits, the pole is labeled as a 
stable one and the system matrix is determined. In this thesis, the preset limits are 1%  
for eigenfrequencies, 5% for damping ratio. However depend on the quality of data at 
high wind speed 10% for damping ratio are set. 

 The number of block i has also effects the value of system matrix.  As stated 
before in theoretical formulation these value are in asymptotically converged. Fig. 4.7 
shows example of analyzing that each elements in system matrix are converged at 
number of block equal to 100.  Fig. 4.8 shows that the number of block that modal 
parameters ( frequency and damping ratio in this Fig.) are stable also depended on 
sampling rate. 
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 Fig. 4.7  Illustration of the asymptotically property of system matrix.  

0 50 100 150 200
2.132

2.134

2.136

2.138
verfreq;Hz

0 50 100 150 200
0

0.2

0.4

0.6

0.8
verdamp;%

0 50 100 150 200
4.72

4.725

4.73

4.735
torfreq;Hz

No.of blocks: i
0 50 100 150 200

0

0.05

0.1

0.15

0.2
tordamp;%

No.of blocks: i  
 

Fig. 4.8  Illustration of the asymptotically property of modal properties (…fs =  25 Hz, 
---fs = 50 Hz  and solid line for fs = 100 Hz) 
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 After some computations, a stabilization diagram is constructed (Fig. 4.9).  The 
diagram is represented together with the averaged of the response spectrum for visual 
reference. Singular values of the covariance Toeplitz matrix are also plotted on a log 
scale with the model order (Fig. 4.10).   
 
 

 
Fig. 4.9 Stabilization diagram obtained with the SSI-COV method (the model order 
are ranging from 2 to 20). 
 

 
Fig. 4.10  Singular values of the covariance Toeplitz matrix. 

 
Finally, the program reports the corresponding eigenfrequency, damping ratio 

for each pole and system matrix for combination of poles in each order. Outputs are 
arranged in rows in the following format: 
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- Number of blocks ,i,: 
the number of block rows, i, used in system identification. 
 

- Order n : 
The order of the system where system identification are calculated. 
 

- Frequencies of each poles, 
Eigenfrequencies of each pole are arranged in ascending order. 
 

- Damping ratio for each poles 
Damping ratio corresponding to each modal (eigenfrequency) report in 
previous line. 
 

- TEXT : “0”  line 
This line with “0” text is intentionally for easy visualization without any 
meaning. 
 

- Mode shape value 
Mode shape values for each channel are report for each mode in 
columnvise. 
 

- Text : “ SYSTEM MATRIX” 
The system matrix reported is in following format: 

 

              1 1
2 2

0
e e

lx l

I
M K M C− −

⎡ ⎤
⎢ ⎥− −⎣ ⎦

 

 
where l = number of outputs. Fig.4.11 shows example of output report where l=2 ( 
vertical and torsional motion) 
 
 

The second method is SSI-DATA method which can be executed by typing 
function name in MATLAB command line as: 
 
 >> ssi_data 
 
The preprocessing, preprocessing output and system identification output are 
analogous to SSI-COV method except that principle angles between the row space of 
future outputs and the row space of past reference outputs are plotted with the model 
order, n, instead of singular values. 
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Order =
     4
: At number of block = 100 
: At System-Order = 4 

    1.7042    2.5731
    5.6070    2.3899
         0         0
   -0.0009    0.0002
    0.0002   -0.0024
SYSTEM MATRIX
1.0e+002 *
-0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0100 + 0.0000i   0.0000 - 0.0000i
0.0000 - 0.0000i  -0.0000 + 0.0000i   0.0000 + 0.0000i   0.0100 - 0.0000i
-1.1465 - 0.0000i   0.1073 - 0.0000i  -0.0102 - 0.0000i   0.0020 - 0.0000i
-0.0569 - 0.0000i  -2.6089 + 0.0000i  -0.0236 + 0.0000i  -0.0095 + 0.0000i  

 
Fig. 4.11  Example of output from both the SSI-DATA and SSI-COV methods 

 
 

4.7 Verification of the Method by Numerical Tests 
 

Before the method are applying to analyze both the free decay and the buffeting 
response time histories recorded in the wind tunnel, simulated data have been tested 
first in order to validate and check the performance of the method. 

 
4.7.1 Free Decay Response Data  
 
 The preliminary tests included two synthetic but well controlled cases:  two 
uncoupled degrees of freedom, excited first in transient motion (free decay) and then 
by a white noise loading process. 

 Free decay response time-series were obtained by direct calculation of 
displacement values for j =4096 discrete time stations, with ‘sampling’ interval Δt 
=0.02 s (fs = 50Hz.).  Structural modal parameters used in this simulation were chosen 
as representative for the practical section model setup used in the aeroelastic tests.  In 
this thesis, we selected the modal properties of section model based on test of Golden 
Gate Bridge by Jakobsen (1995). The modal matrices are given per unit length: 
 

0 0 0

0.3616 0 397.0573 0 2.6526 0
, ,

0 0.0072 0 24.7315 0 0.0189
C K M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
i.e.  fho = 1.9472  Hz, fθ0 = 5.7573 Hz, δho = 0.035 , δθ0 = 0.033,  where modal 
logarithmic decrements δ are representative for the range of small amplitudes.  The 
damping ratio ξ were then multiplied in turn with 5, 10, 20 and 40, in order to cover 
values of total damping (structural + aerodynamic) which could be present in vibration 
of model section under wind flow.  Values as high as ξ = 0.2 could be expected for the 
vertical degree of freedom. 
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Free decay (transient) responses without noise corrupted 
 
 First, the preliminary numerical tests were tested with free vibration signals 
with initial displacement fixed at 15 mm and 0.08 radian for vertical and torsional 
motion, respectively, and with lowest and highest damping values. This was 
performed to check the applicability of the method to the free decay signal. The results 
are displayed in Table 4.1, in which values of preset eigenfrequencies and damping 
ratios are given together with the estimates based on both the SSI-COV and the SSI-
DATA methods.  Table 4.2 displayed pre-set and identified values of system matrices 
( K and C). The response signals for both damping ratios are shown in Fig. 4.12. 
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Fig. 4.12 Example of free decay responses simulated: a) ξh = 0.0053, ξθ = 0.0056,  
    b) ξh = 0.2228, ξθ = 0.2101 

 
 
Table 4.1a Preset and identified values of frequencies, damping ratios and system 

matrices for free decay response without noise,  jΔt = 4096 x0.02 s = 81.92 
s. ξh = 0.0053, ξθ = 0.0056 

 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 
fp ξp fp ξp error f errorξp fp ξp error f errorξp 

1.9472 0.0056 1.9472 0.0056 0.00% 0.00% 1.9472 0.0056 0.00% 0.00% 
5.7573 0.0053 5.7573 0.0053 0.00% 0.00% 5.7573 0.0053 0.00% 0.00% 

 
  preset SSI -COV SSI -DATA 
  recovered error[%] recovered error[%] 

K 397.0573 0 397.056 0 0.00%   397.06 0 0.00%   
  0 24.73 0 24.73   0.00% 0 24.73   0.00% 

C 0.3616 0 0.3616 0 0.00%   0.3616 0 0.00%   
  0 0.0072 0 0.0072 0.00% 0 0.0072 0.00% 
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Table 4.1b Preset and identified values of frequencies, damping ratios and system 
matrices for free decay response without noise,  jΔt = 4096 x0.02 s = 81.92 
s. ξh = 0.2232, ξθ = 0.2112 

 
 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 
fp ξp fp ξp error f error ξp fp ξp error f errorξp 

1.9472 0.2232 1.9462 0.224 -0.05% 0.36% 1.9469 0.2228 -0.02% -0.18% 
5.7573 0.2112 5.7612 0.212 0.07% 0.38% 5.7565 0.2107 -0.01% -0.24% 

 
  preset SSI -COV SSI -DATA 
  recovered error[%] recovered error[%] 

K 397.0573 0 396.611 0.22 -0.11%   396.94 -0.04 -0.03%   
  0 24.73 -0.068 24.76   0.12% -0.02 24.73   -0.02% 

C 14.464 0 14.47797 0.007 0.10%   14.4619 0.0002 -0.01%   
  0 0.288 0.002 0.289 0.35% -0.0003 0.2880 0.01% 
                      

 
 
Frequency and damping ratio estimates are practically identical to the preset 

values (less than 0.5% for the highest damping case).  The system matrices are also 
excellent even for the short useful signal case with only a few cycles of vibration 
motion.  However in case of highest damping with only short useful data, the estimate 
values of off-diagonal terms have small difference from zero-preset values where less 
scatter from SSI-DATA are noticed.  The above estimates were obtained with number 
of block i=4 and order n=4. 
 
Free decay (transient) responses with noise corrupted 
 
 In order to investigate the effect of measurement noise, free decay responses 
were modified by a white noise process with the standard deviation equal to 10% of 
the standard deviation of the original response.  Structural data were taken as in the 
previous case; N and Δt were the same as the previous case except that noises were 
added to signals.  Most of the previous works were tested with 5% -noise (see 
Jacobsen 1995).  In this thesis, we decided to test with 10% noise corrupting as would 
represent the worsen case. Tests are performed in 20 sets; the preset and identified 
parameters are shown in Table.4.2. Identified frequencies were changed at lesser than 
0.8% on both estimates by the SSI-COV and the SSI-DATA.  Damping ratios were 
changed at most by 2% by both the SSI-COV and the SSI-DATA except in case of 
lowest damping case which are 5.4 %, respectively. The higher difference in estimates 
for the lowest damping case would result from assumption of noise added.  In that 
case, the standard deviations of the original signals are higher than the other cases 
which resulting in higher standard deviation of noise added. The standard deviation 
from 20 tests for frequency estimates are less than 0.5% and 1.5% for the SSI-DATA 
and the SSI-COV method, respectively.  The highest standard deviation of damping 
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ratio estimates from the SSI-COV is 13.2% that seemed more scatter than those from 
SSI-DATA which is 5.7%.  

 The diagonal terms of system matrices (frequency and damping matrices) 
estimated by both methods are also identical to the preset values.  Estimates of 
diagonal terms are distorted within 1% by both methods except only for case with the 
lowest damping case which values are 2.82% by the SSI-COV method.  The values of 
off-diagonal terms which are distorted from the zero-preset value are also noted which 
terms related to H3

*are highest.   
 
Table 4.2a Preset and identified values of frequencies and damping ratios for free 

decay response with 10%-noise added,  jΔt = 4096 x0.02 s = 81.92 s. ξh = 
0.2228, ξθ = 0.2101 

 
 

Preset 
SSI-COV method 

Identify Error(%) standard deviation 
(%) 

fp ξp fp ξp error fp error ξp fp ξp 

1.9472 

0.0056 1.9496 0.0053 0.1% -5.4% 0.2% 13.2% 
0.028 1.9509 0.0275 0.2% -1.8% 0.2% 4.7% 
0.0557 1.9417 0.0556 -0.3% -0.2% 0.2% 2.5% 
0.1114 1.9414 0.1093 -0.3% -1.9% 0.5% 2.7% 
0.2228 1.9621 0.2276 0.8% 2.2% 1.3% 0.6% 

5.7573 

0.0053 5.7570 0.0052 0.0% -1.9% 0.0% 1.9% 
0.0263 5.7560 0.0266 0.0% 1.1% 0.0% 0.8% 
0.0525 5.7581 0.0534 0.0% 1.7% 0.0% 0.6% 
0.105 5.7492 0.1042 -0.1% -0.8% 0.1% 0.7% 
0.2101 5.7593 0.2107 0.0% 0.3% 1.3% 0.5% 

 

Preset 
SSI-DATA method 

Identify Error(%) standard deviation 
(%) 

fp ξp fp ξp error f error ξp fp ξp 

1.9472 

0.0056 1.9460 0.0053 -0.1% -5.4% 0.0% 5.7% 
0.028 1.9465 0.0285 0.0% 1.8% 0.1% 1.9% 
0.0557 1.9332 0.0570 -0.7% 2.3% 0.3% 1.9% 
0.1114 1.9472 0.1134 0.0% 1.8% 0.4% 1.3% 
0.2228 1.9453 0.2258 -0.1% 1.3% 0.2% 1.8% 

5.7573 

0.0053 5.7557 0.0053 0.0% 0.0% 0.0% 1.9% 
0.0263 5.7579 0.0264 0.0% 0.4% 0.0% 0.8% 
0.0525 5.7547 0.0530 0.0% 1.0% 0.1% 0.8% 
0.105 5.7519 0.1046 -0.1% -0.4% 0.1% 0.6% 
0.2101 5.7719 0.2137 0.3% 1.7% 0.0% 0.7% 
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Table 4.2b Preset and identified values of system matrices for free decay response 
with 10%-noise added,  jΔt = 4096 x0.02 s = 81.92 s. ξh = 0.2228, ξθ = 
0.2101 

 
 

CASE  preset SSI -COV SSI -DATA 
ξp recovered error[%] recovered error[%] 

ver = K 397.0573 0 397.5447 -0.0054 0.12%   396.99 -0.22 -0.02%   
0.0056   0 24.73 0.0323 24.73 0.00% -0.01 24.73 0.00% 

                        
tor = C 0.3616 0 0.3514 0.0116 -2.82%   0.3594 0.0094 -0.60%   
0.0053   0 0.0072 -0.0009 0.0072 0.57% -0.0038 0.0073   1.30% 
                        
ver = K 397.0573 0 397.2700 0.1200 0.05%   396.93 0.23 -0.03%   
0.028   0 24.73 0.0000 24.73 0.00% -0.02 24.73 0.00% 

                        
tor = C 1.808 0 1.8023 0.0013 -0.32%   1.8094 -0.0006 0.08%   
0.0263   0 0.036 -0.0012 0.0360 0.00% 0.0006 0.0361   0.40% 
                        
ver = K 397.0573 0 396.7300 -0.1700 -0.08%   395.79 0.49 -0.32%   
0.0557   0 24.73 -0.0700 24.74 0.04% -0.03 24.74 0.04% 

                        
tor = C 3.616 0 3.6051 -0.0034 -0.30%   3.6055 0.0073 -0.29%   
0.0525   0 0.072 0.0029 0.0720 0.00% -0.0012 0.0719   -0.15% 
                        
ver = K 397.0573 0 397.1800 0.5900 0.03%   397.16 0.33 0.02%   
0.1114   0 24.73 0.0100 24.74 0.04% 0.02 24.75 0.08% 

                        
tor = C 7.232 0 7.2472 -0.0074 0.21%   7.2499 -0.0001 0.25%   
0.105   0 0.144 0.0012 0.1439 -0.07% 0.0052 0.1444   0.25% 

                        
ver = K 397.0573 0 397.9101 1.9795 0.21%   396.35 0.83 -0.18%   
0.2228   0 24.73 -0.0098 24.74 0.04% -0.11 24.74 0.03% 

                        
tor = C 14.464 0 14.5081 -0.0348 0.30%   14.5076 0.0125 0.30%   
0.2101   0 0.288 -0.0010 0.2886 0.20% 0.0052 0.2896   0.57% 
                        

 
 
4.7.2 Simulated response including the motion-induced forces 
 
 Next step in the simulation was a test with full effective stiffness and damping 
matrices (i.e. coupled degrees of freedom) and with lift and moment forces of the 
white noise type, as assumed in the SSI-method. 

 For the mean-wind speed equal to U=10.26 m/s, air density ρ=1.18 kg/m3, and 
aerodynamic derivatives assumed according to the values reported for a similar bridge 
cross-section (see Jakobsen 1995), the effective stiffness and damping matrices, per 
unit length, were pre-set as: 
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 The mass matrix was as in section 4.7.1.  The response time-series were 
simulated with 10% turbulence intensity wind; then measurement white noises were 
superimposed on the simulated response. 
 
Free decay (transient) response with noise corrupted 
 
 Preset and identified parameters are shown in Table 4.3, 4.4 and 4.5 for free 
decay responses to fix initial displacement with noise-free, 5% and 10% noise, 
respectively.  Results are compared for those estimated by both SSI methods. 
Estimates of vertical frequency and damping by both methods are still excellence with 
precision within 1%.  Estimates of the torsional frequency are still identical to the pre-
set value while torsional damping are effected by noise added to less precision within 
3% where estimated values from SSI-COV seemed to have more effected than SSI-
DATA. 

 The stiffness and damping matrices estimated are also agree well with preset 
values with only few percent differences in noise-free case where most differences are 
in terms those related to A4

* and . H2
*.  The noises added to the simulated signals are 

tentatively decreased the precision of these matrices.  However, the precision of the 
diagonal terms still in good precision which are around 1% differences. 
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Fig. 4.13  Example of transient responses simulated under wind flow 
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Table 4.3 Preset and identified values of modal parameters and matrices for free decay  
response without noise added, jΔt = 4096 x0.02 s = 81.92 s. 

 
 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 

fp ξp fp ξp error f errorξp fp ξp error f errorξp 

2.0157 0.1559 2.0152 0.1561 -0.04% 0.64% 2.0147 0.1552 -0.05% -0.45% 

5.1332 0.0226 5.1351 0.0230 -0.04% -0.44% 5.1334 0.0229 0.00% 1.33% 

  preset SSI -COV SSI -DATA 

  recovered error[%] recovered error[%] 

K 420.1002 -59.1805 419.51 -59.15 -0.14% -0.05% 419.99 -59.23 -0.03% 0.08% 

  1.7552 19.6652 1.83 19.65 4.26% -0.08% 1.78 19.62 1.42% -0.25% 

C 8.9308 -0.0799 8.9896 -0.0775 0.66% -3.00% 8.8956 -0.0819 -0.39% 2.56% 

  0.4345 0.0386 0.4352 0.0385 0.16% -0.26% 0.4363 0.0391 0.42% 1.24% 
                      

 
 
 
Table 4.4 Preset and identified values of modal parameters and matrices for free decay 

response with 5% noise added,  jΔt = 4096 x0.02 s = 81.92 s. 
 
 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 

fp ξp fp ξp error f errorξp fp ξp error f errorξp 

2.0157 0.1559 2.0149 0.1569 -0.02% 0.13% 2.0142 0.1567 -0.07% 0.51% 

5.1332 0.0226 5.1312 0.0225 0.04% 1.77% 5.1295 0.0223 -0.07% -1.33% 

  preset SSI -COV SSI -DATA 

  recovered error[%] recovered error[%] 

K 420.1002 -59.1805 2.0174 0.1564 -0.15% 0.02% 419.63 -59.09 -0.11% -0.15% 

  1.7552 19.6652 5.1339 0.0232 7.11% 0.08% 1.71 19.64 -2.58% -0.13% 

C 8.9308 -0.0799 8.9445 -0.0793 0.15% -0.75% 8.9874 -0.0781 0.63% -2.25% 

  0.4345 0.0386 0.4335 0.039 -0.23% 1.04% 0.4325 0.0381 -0.46% -1.30% 
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Table 4.5 Preset and identified values of modal parameters and matrices for free decay 
response with 10% noise added, jΔt = 4096 x0.02 s = 81.92 s. 

 
 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 

fp ξp fp ξp error f errorξp fp ξp error f errorξp 

2.0157 0.1559 2.0149 0.1569 0.08% 0.32% 2.0131 0.1560 -0.13% 0.06% 

5.1332 0.0226 5.1312 0.0225 0.01% 2.65% 5.1327 0.0227 -0.01% 0.44% 

  preset SSI -COV SSI -DATA 

  recovered error[%] recovered error[%] 

K 420.1002 -59.1805 421.15 -59 0.25% -0.30% 418.51 -59.17 -0.38% -0.02% 

  1.7552 19.6652 1.64 19.67 -6.56% 0.02% 1.89 19.67 7.68% 0.02% 

C 8.9308 -0.0799 8.9963 -0.0743 0.73% -7.01% 8.9488 -0.0779 0.20% -2.50% 

  0.4345 0.0386 0.4302 0.0392 -0.99% 1.55% 0.4276 0.0386 -1.59% 0.00% 

                      
 
 
Buffet response 
 
 Finally, the response time-series were also simulated for the case of buffeting 
responses (without initial displacement) to check performance of both the SSI-COV 
and the SSI-DATA. The effective stiffness and damping matrices as well as Δt were 
taken as in the case of free decay; examples of response time-series are as shown in 
Fig. 4.14.  Tests are performed for noise-free and 10%-noise added case.  As predicted 
in theory, buffeting responses required longer recorded data to yield acceptable results. 
Tests with very short period of data as in transients response (N=4096) result in 
relatively large differences between preset and recovered values.  
 
Buffet responses without noise corrupted 
 
 Table 4.6 displays estimated parameters by both the SSI-COV and SSI-DATA 
for N=20000 discrete time-stations in noise-free case.  Several tests by varying 
simulated length were performed and the results show that parameters estimation are 
improved according to the time recorded until at N=20000 where estimated parameters 
are not much further improved beyond this point.  
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Fig. 4.14 Example of buffet responses simulated under wind flow; a) total response, b) 

part  of response for noise-free case, c) part of response for 10%-noise added . 
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Table 4.6 Preset and identified values of modal parameters and matrices for buffeting 
response without noise, jΔt = 20000 x0.02 s = 400 s. 

 
 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 
fp ξp fp ξp error f errorξp fp ξp error f errorξp 

2.0157 0.1559 2.0183 0.1585 0.13% 1.67% 2.0062 0.1562 -0.47% 0.19% 
5.1332 0.0226 5.1326 0.023 -0.01% 0.44% 5.1336 0.0228 0.01% 0.88% 

  
preset 

SSI -COV SSI -DATA 
  recovered error[%] recovered error[%] 

K 420.1002 -59.1801 421.54 -59.13 0.34% -0.08% 420.62 -59.17 0.12% -0.02% 
  1.7552 19.6652 1.72 19.66 -2.01% -0.03% 1.83 19.67 3.99% 0.03% 

C 8.9308 -0.0799 9.156 -0.0745 2.52% -6.76% 8.9972 -0.0774 0.74% -3.12% 
  0.4345 0.0386 0.431 0.0387 -0.81% 0.26% 0.4374 0.0390 0.66% 1.14% 
                      

 
 

Estimates of the frequencies and damping ratio by both methods agree well 
with preset values where precisions are within 0.5% and 2%, respectively. The 
diagonal terms in stiffness and damping matrices also agree well with preset values 
where differences almost in 1% except in case of C11(related to vertical damping) 
estimated by the SSI-COV which is around 2.5%.  The most differences in off-
diagonal terms are K21 and C21 that relate to A4* and H2*, respectively. 
 
 
Buffet responses with noise corrupted 
 
 Next, the measurement white noise were superimposed to the simulated 
responses under ∼10%-turbulence wind flow. Sample of simulated signals with 10% 
noise added is shown in Fig. 4.13c. N and Δt are same as noise-free case except that 
100 simulations are performed instead of 20 as in previous cases. Table 5.7 shows 
parameters estimated by both the SSI-DATA and the SSI-COV methods.  Frequencies 
estimated from the SSI-DATA are practically identical to preset values with precision 
within 1% while damping estimatation are more affected by noise with precision 
within 4%. The frequencies precision estimated by the SSI-COV are more vulnerable 
to noise; the precision were reduced to within 3% in case of vertical. This effect is 
more pronounced in case of estimated damping ratio where large difference between 
preset and recovered values are seen especially in vertical mode as damping ratio is 
very high.   

 For stiffness and damping matrices estimation, the SSI-DATA shows more 
sustainable to noise added compared with the SSI-COV. For the SSI-DATA, the most 
differences between preset and estimated values are term relating to A4* and H2* as 
similar to those from noise-free case; maximum 5% for A4*-related term. In case of 
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the SSI-COV, not only term relating to A4* and H2* but also H1* were affected by 
noise added with relatively large differences from preset values. 

 These results show that the SSI-DATA are tentatively more sustainable to 
noise than the SSI-COV. The precision of estimated parameters are within few 
percents even when simulated signals were corrupted with large noise.  Fig. 4.15 
shows frequencies and damping ratio estimated by both SSI methods where more 
scatter are seen in vertical damping estimated by the SSI-COV.  
 
Table 4.7 Preset and identified values of modal parameters and matrices for buffeting 

response with 10%-noise noise, jΔt = 20000 x0.02 s = 400 s. 
 
 
    SSI -COV SSI -DATA 

Preset Identify Error(%) Identify Error(%) 
fp ξp fp ξp error f errorξp fp ξp error f errorξp 

2.0157 0.1559 1.9557 0.133 -2.98% -14.69% 2.0320 0.1597 0.81% 2.44% 
5.1332 0.0226 5.1392 0.021 0.12% -5.31% 5.1292 0.0235 -0.08% 3.98% 

  preset SSI -COV SSI -DATA 
  recovered error[%] recovered error[%] 

K 420.1002 -59.18 429.45 -58.95 2.23% -0.38% 420.34 -59.20 0.06% 0.04% 
  1.7552 19.6652 1.5591 19.66 -11.17% -0.03% 1.86 19.67 5.74% 0.03% 

C 8.9308 -0.0799 9.6940 -0.0576 8.55% -27.86% 8.9964 -0.0782 0.73% -2.16% 
  0.4345 0.0386 0.4333 0.0388 -0.28% 0.50% 0.4392 0.0385 1.09% -0.27% 
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 Fig. 4.15  Frequencies and damping ratio estimation results from 100 simulations:  
                 buffeting response with 10% noise added. 
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CHAPTER 5 
 

INDUSTRIAL RING ROAD BRIDGE: 

Prototype and Modeling 

 
5.1 Description of the Bridge 

 
5.1.1 Location 
 

The Industrial Ring Road Bridges are part of the royally-initiated, the 
Industrial Ring Road Project, that aims to solve traffic problems within Bangkok and 
surrounding areas.  The project comprises a new road and bridge network which links 
up the major industrial areas of Klong Toey Port, Pu Chao Saming Phrai Road in 
Samut Prakarn, Suksawad Road to the west and Rama III Road to the north.  In future 
the system will link up to the southern ring road. The total length is around 25 
kilometers (Fig.5.1). The outstanding and unique feature of the industrial Ring Road 
project is the two suspension bridges, one after another, crossing an oxbow in the 
Chao Phraya River. The bridges are designed with 173 meter tall diamond shaped 
pylons with double plane I-shape cable stays. The back spans of both bridges are of 
pre-stressed concrete while the main spans are steel/concrete composite deck 
structures. The main spans are 398 meters and 326 meters in length, for the South 
Bridge and the North Bridge (Fig.5.2 and Fig. 5.3), respectively.  The project is owned 
by the Department of Rural Roads, Ministry of Transport (formerly the Public Works 
Department, Minister of Interior) and funded by the Thai Government and loans from 
the Japan bank for International Cooperation (JBIC). Engineering is being undertaken 
by the Association of Consulting Engineers, a consortium of Asian Engineering 
Consultant Corp., Ltd., TEAM Consulting Engineering and Management Co.,Ltd., 
Thai Engineering Consultant Co.,Ltd. Index International Group Co.,Ltd. and Jean 
Muller International.  
 
 
5.1.2  Dimensioning Details 
 

The North Bridge has a center span of 326 m and two side spans of 125.1 
m each. To accommodate large vessels, navigation channel was required to be 220 m 
wide and 46.27 m high, necessitating the length of the center span of the bridge; which 
is designed as double-plane cable-stayed type.  The deck is supported by two diamond 
shaped pylons, each 164 m in height (above sea level) which rest on bored pile 
foundations. These towers are constructed using reinforced concrete. 

The South Bridge that used as prototype in this study has a center span of 
398 m and two side spans of 155.6 m each.  The navigation channel was 250 m wide 
and 50.50 m high. The deck is supported by two diamond shaped pylons, each 173 m 
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in height (above sea level) which rest on bored pile foundations. These towers are 
constructed using reinforced concrete as same as those of the North bridge. 

The bridges are suspended from the pylons by three types of cable stay, 
with comprises of 61, 75 and 91 strands.  Each strand itself composes of 7 cable 
quality strands with a HDPE sheath and wax coating.  Fig. 5.2 and 5.3 gives an 
elevation of the bridges.  The side spans of both bridges are of pre-stressed concrete 
while the main spans are concrete composite deck with I-shaped steel girders.  The 
deck is supported by two cable planes.  The deck was designed to accommodate 7-lane 
traffic with 35.9 m in width and the maximum height is 3.26 m.  Fig. 5.4 shows the 
full scale dimensions of the deck of South Bridge.  The tower details are as shown in 
Figs. 5.5.  The mass and mass moment of inertia per unit length of the deck are 43000 
kg/m and 4.11x109 kg-m2 /m, respectively.  

There are three railings: one on each side of the deck and one at the center 
which will act as a traffic divide (three and four lanes on each side).  The side railings 
are provided mainly as guard rails for the traffic.  The railings are made of steel beams 
of circular cross section supported on steel columns placed on top of concrete barrier.  
Details are given in Fig. 5.6.  The geometry described in this section and the dynamic 
characteristics mentioned in the following section are according to the initial design of 
the prototype bridge (DMI, 1995).  
 
 

5.2  Bridge Modeling 
 
5.2.1  General 
 

It is well established that careful bridge modeling plays an essential role in 
the wind resistant design of long-span bridges.  Usually the design process begins with 
the selection of a deck configuration after fixing the dimensions of the deck width, 
span lengths, height of the tower and other bridge parameters.  These are usually 
governed by serviceability requirements.  In order to verify whether the given 
configuration of the deck is safe against flutter instability and exhibits acceptable 
levels of buffeting response, a section model and a full model of the bridge are often 
made.  Sometimes, in addition to these models, a "taut-strip model" is also made.  A 
description of the essential features of each of these models and their advantages and 
limitations may be found in Scanlan (1983), Hjorth-Hansen (1992), Davenport et al. 
(1992) and Irwin (1992).  Since making a full model of the bridge is a time-consuming 
and expensive process, usually only a section model is made in the initial design stage.  
After appropriate modifications of the deck configuration are made, and deck design is 
finalized, a full model may be made and subjected to a properly scaled three-
dimensional turbulent flow for checking of the design.  Making a section model is 
therefore usually the starting point for any wind-induced response analysis of flexible 
bridges.  The next section will deal with the essential background needed to 
understand the section modeling technique and how the modeling features can 
possibly be improved so that the end result is a more accurate estimation of the 
prototype response. 
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Section Model 
 

The primary purpose of this model is to establish that the proposed contour 
of the bridge deck has aerodynamically stable characteristics.  Acceptance of a deck is 
based upon considerations of flutter stability and the impact of vortex-induced 
oscillations.  Thus, a rapid check is first made on the preliminary design of the deck 
configuration.  After establishing that the deck is aerodynamically acceptable, usually 
small modifications or any other added requirements are made to the deck for aesthetic 
reasons or other constraints that the bridge might need to satisfy.  The section model 
also serves this intermediate design process by providing feedback as to whether or 
not these local changes render the deck aerodynamically unstable.  The section model, 
in effect, is an analog simulator that reveals aerodynamic mechanisms affecting bridge 
stability and general response.  After the final design of the deck is fixed, the section 
model serves as a means to investigate the static and dynamic forces expected on the 
prototype deck. 

A section model represents a typical section of the bridge, including its 
proper degrees of freedom.  It must duplicate faithfully, to scale, the local geometric 
forms and details of the prototype deck.  In fact, it is in principle intended to represent 
the prototype aerodynamically, not simply geometrically.  Two end plates are usually 
attached on each side of the section model parallel to the flow to reduce the end effects 
and enhance the two-dimensionality of the flow.  The size of the end plates is usually 
decided based on the model dimensions.  The model is then suspended from a set of 
springs configured so as to give the proper degrees of freedom, usually one (vertical or 
torsional) or at most two (vertical and torsional).  With the increased importance of the 
sway motion in the context of very long cable-stayed bridges an additional along-wind 
or sway degree of freedom may be added.  This requires an additional sway degree of 
freedom in experimental set up, however this is not usually the case. 

The frequencies of oscillation of the model, determined by selecting the 
proper stiffness and spacing of the springs, should be decided very carefully and are 
chosen as discussed below.  It is known from the principles of similitude (Simiu and 
Scanlan 1996) that the reduced velocities of the prototype [Ur]p and the model [Ur]m 
should match, which means 
 

[ ] [ ]r rm p
m p

U UU U
fB fB

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
              (5.1) 

 
where f is the frequency (Hz).  The non-dimensional flutter derivatives, the 
aerodynamic admittance functions and the normalized spectra of the buffeting forces 
are functions of the reduced velocity or reduced frequency (=fB/U).  In some 
circumstances this may require that the ratios of all three frequencies (bending, 
torsion, sway) of the section model subjected to a coupled motion be close to unity, so 
that while estimating the flutter derivatives associated with different degrees of 
freedom, one can use anyone of the frequencies to calculate the reduced velocity. 

For example, if the two frequencies are different for a two-degree-of-
freedom (vertical and torsional) model then an appropriate choice for calculating the 
reduced velocity would be to use the frequency associated with the vertical mode for 
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the flutter derivatives * * * *
1 4 1 4, , ,H H A A  and the frequency associated with the torsional 

mode for the flutter derivatives * * * *
2 3 2 3, , ,H H A A .  This implies that the range of flow 

velocities over which the model should be tested for a fixed range of reduced velocity 
will vary according to the associated oscillation frequency. 

The purpose of the section model is to reliably duplicate the static or 
dynamic forces according to the velocity scaling and the geometric scaling.  Since the 
static coefficients depend strongly on Reynolds Number - particularly in the lower 
range- it should be ensured that the scaled forces acting on the small details of the 
model are not too different from what they would be in the prototype.  It can be shown 
that the prototype static force,  
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,
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, , 2 2 2 2
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L D
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             (5.2) 

where 
 
CL,D  are the static lift, drag coefficients, 
FL,D  are the corresponding static forces, 

Lλ  = [B]m /[B]p is the geometric scale, 
Uλ  = [U]m /[U]p is the velocity scale and 

,L DCλ  = [CL,D ]m/[CL,D ]p 
 
where the subscripts p and m denote prototype and model, respectively. Thus, 
depending upon the Reynolds numbers holding in the field and in the wind tunnel, the 

,L DCλ  may be much different from unity (usually> 1).  To overcome this difficulty, a 
cross section of modified shape and scaled area of its details relative to the prototype 
may be used.  This procedure was used in the design of the railings of the IRR Bridge 
section model and is discussed in the next section. 
 
 
5.2.2  Industrial Ring Road Bridge Section Model 
 

A 1:90 geometrically scaled section model of the Industrial Ring Road 
Bridge (IRR Bridge) was constructed of wood.  The width and the maximum depth of 
the model are 399 mm and 32 mm, respectively. The length of the section model was 
selected as 2260 mm to be compatible with the wind tunnel used (2.5 m width, 
Appendix B).  All details were scaled down geometrically, with exception of some 
details such as edge parapets and railing.  The walkway beneath the deck was not 
included in the model.   A walkway with an open steel grid is judged to have 
negligible effect on the results as the walkway is behind the internal girders and the 
edge girder.  Furthermore, it is partially covered by the flanges of the cross-girders. 

The thickness of the deck slab, the internal girders and the edge girders 
were exaggerated in the model design as a pure geometrical scaling of these items 
would results in impractically the dimensions with too little stiffness.  However, the 
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edge of the deck slab was modeled with correct thickness and the outer part of the 
bottom flange on the edge girders was also modeled correctly. 

The inside was included in the exaggerated web thickness.  For the internal 
girders the web thickness was given as same the bottom flange width. The cross 
girders were modeled with correct flange width and only slightly exaggerated web 
thickness.  The dimensions of the model are shown in Fig.5.7 

In order to simplify the production of the railings, the number of vertical 
posts were halved (two lumped into one) and the windward dimensions were doubled 
given the same wind area. The horizontal round elements in the railings were modeled 
to match the drag of the model item with that of the full-scale item such that  
   

[ ] [ ] 2/D D Lp m
C A C A FD λ= ×  

 
where  CD is the drag force coefficient of the item and A is the projected area normal 
to wind, i.e. length x diameter.  FD is a factor which indicates how well the drag 
forces match (it should be ideally equal to 1.0).  In this process the two lower rail 
elements were lumped into one.  Details of railings are outlined in next section. 

All elements in the model were manufactured from wood, except the lower 
horizontal element in the railings and bottom plates of edge girders which were made 
from plastic wire mesh and aluminum. 

In order to have sufficient vertical and torsional stiffness of the model a 
so-called”king-post” was installed.  A king-post is a stiffening system composed of 
two posts and 16 gauges wires, see Figs. 5.8 and 5.9.  As the king-post is symmetric 
from above and below the deck, and as it only consists of round members lift / vertical 
motion and moment / torsional motion are not influenced by the king-post. 

The measured drag force coefficients are corrected for the increased drag 
caused by the king-post as described later in this study.  The model cross section 
dimensions are shown in Fig. 5.7 and the section model is shown in Fig. 5.8 and 5.9.  
The design of the railings for the model needs further discussion.  
  
Railing Design 
 

It was difficult to make a geometrically scaled model of the railing because 
of the small dimensions involved: the smallest scaled dimension was 0.67 mm.  
Further, since the Reynolds number in the wind tunnel corresponding to this 
dimension was very small, the coefficient of drag would have changed significantly if 
a geometrically-faithful cross section of the railing had been used.  The alternative was 
to use a replacement which was readily available and yet duplicated the aerodynamic 
and aeroelastic forces scaled according to the velocity and length scales only.  It was 
decided to use a portion of a wire mesh for the railings.  According to this, the 
numbers of vertical posts were halved (two lumped into one) and the windward 
dimensions were doubled given the same wind area.  The horizontal round elements in 
the railings were modeled to match the drag of the model item with that of the full-
scale item such that FD is closed to 1.  The method for selecting a particular wire mesh 
size is demonstrated below: 
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where 
p
DC  and m

DC   are the static coefficients of drag as function of Reynolds number 
corresponding to prototype and model, respectively, 

pU  and mU    are the mean wind velocities acting on the prototype and model, 
respectively, 

pA    is the area of unit length of the prototype railing, 

mA    is the area according to geometric scale and mA′  is the area actually provided for 
the railing  of unit length on the model, and 

FD  is a factor which indicates how well the drag forces match (it should be ideally 
equal to 1.0). 

 
The wire meshes used to model these railings are shown in Fig. 5.7. The 

selection process for the wire mesh for railing is outlined below. 
 
 
Design of Railing  
 

The Reynolds Number for the prototype, peℜ , is 2.24 x 104 < peℜ  < 3.36 
x 106 for a typical railing dimension of 168 mm and wind velocity ranging between 2 
m/s and 30 m/s.  For this range of peℜ  the static drag coefficient p

DC  is 1.20. The wire 
mesh selected has a wire diameter of 1.0 mm.  If the velocity for the wind tunnel 
testing varies between 1 m/s to 10 m/s (typically) then the Reynolds number for the 
model meℜ  varies between 67 to 675.  The drag coefficient for a circular cylinder m

DC  
varies in the range 1.2 and 2.0 i.e., 1.0 < 

DCλ  < 1.67.  Since pA = 0.703 m2 per 2 m 
length of prototype railing, mA′  = 58.37 mm2 per 22.2 mm length of model railing and 

Lλ , = 1/90, then by using Eq. (5.3) it can be shown that FD varies between 0.89 and 
1.48 where 1.48 corresponds to the highest velocity of the section-model tests.  Thus, 
the values of FD and is close to one, as desired, especially at desired velocities. 
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Fig.  5.1: Industrial Ring Road Bridge: location and plan 
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Fig.  5.2   Industrial Ring Road Bridge: North Bridge Elevation 
 
 

 
 
 

Fig.  5.3  Industrial Ring Road Bridge: South Bridge Elevation 
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Fig.  5.4 Deck cross section of the South Bridge (unit in meter) 
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Fig.  5.5  Tower details of the South Bridge. 
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a)           b) 
 

Fig.  5.6 Railing details of IRR-South Bridge : a )  Side rail details b)  center barrier 
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Fig. 5.7  Industrial Ring Road bridge: section model dimensions a) cross section, b) 

model dimensions c) rail dimensions 
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a) b) 
 

 
Fig. 5.8  The Industrial Ring Road Bridge: section model with king-post before the 

end plates installed. a) top of bridge  b) bottom of bridge 
 
 
 

  
 

a)          b) 
 
 
Fig. 5.9  The Industrial Ring Road Bridge after the end plates installed a) seen from 

above  b) seen from below 
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CHAPTER 6 
 

METHODOLOGY AND  
WIND TUNNEL TEST METHODS 

 

The wind-tunnel experiments described in this chapter were conducted to 
extract the aeroelastic and aerodynamic parameters required for the analysis of the 
prototype bridge.  All the flutter derivatives were found simultaneously from two-
degree-of-freedom coupled-motion section-model tests using the system identification 
method described in the previous chapter.  These tests were performed under both 
smooth and turbulence flows. Single-degree-of-freedom tests – vertical and torsional – 
were also performed to extract the direct flutter derivatives which were then compared 
with those found from coupled-motion tests.  The static aerodynamic coefficients 
required to estimate the buffeting response were determined from fixed section-model 
tests under smooth and turbulent flows.  In all the experiments performed under the 
turbulent flows the approximate two-dimensional turbulent flows were generated 
using grids and spires. 

 To evaluate the applicability of the present technique in flutter derivatives and 
aerodynamic coefficient estimation of bridge decks, wind tunnel tests of a quasi-
streamlined thin plate model were first performed under smooth flow and results were 
then compared with the literature.  Encouraged by the success in the thin plate model 
the flutter derivatives and the static aerodynamic coefficients of the IRR Bridge were 
estimated using the present technique. 

 

6.1  Flow  Conditions 
 

The experiments were performed in the TU-AIT Wind Tunnel at Thammasat 
University.  This tunnel is an open type wind tunnel with a cross-section of 2.50 m 
(width) x 2.50 m (height) and 22 m (length).  A schematic diagram and additional 
details of the tunnel are given in Appendix A.  The maximum wind speed is 20 m/s. 

 

6.1.1   Smooth Flow 
  

The section model was tested in smooth flow to determine the static load 
coefficients, the stability (flutter) limits, flutter derivatives and also to identify any 
potential vortex-shedding oscillations.  The smooth flow was achieved with an empty 
wind tunnel.  The turbulence intensities were measured with an x-wire hot-wire 
anemometer at the position of the section model which is approximately 4.0 m 
downstream from the wind-tunnel inlet.  The turbulence intensities at the test section 
are of the order < 0.5 %.  Figs. 6.1 and 6.2 show the mean wind speed and turbulence 
intensities across the tunnel section. 
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Fig. 6.1  Mean wind speed across the wind-tunnel section: smooth flow. 
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Fig. 6.2  Turbulence intensities across the wind-tunnel section: smooth flow. 
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6.1.2  Turbulence Flow 
 

The IRR Bridge section model were also tested to determine the static load 
coefficients, the stability (flutter) limits, flutter derivatives and to identify any 
potential vortex-shedding oscillations in two turbulent flows.  The lower turbulence 
intensity was achieved by installing three spires at the wind-tunnel inlet.  The spires 
are triangular-shape with 1.8 m high, and the width is 0.35 m at the base.  The position 
and dimensions of the spires are shown in Fig. 6.3.  The horizontal velocity profile 
across the tunnel section of the mean wind speed and turbulence intensities were 
measured and shown in Figs. 6.4 and 6.5.  The measured longitudinal and vertical 
turbulence intensities at the model deck level were 5.2% and 5.1%, respectively.  In 
this study this turbulence referred to as “5%-turbulence”. 
 The measured velocity spectrums have been fitted with both the Kaimal-and 
von Kármán-type spectra as (Strømmen 2006): 

Kaimal spectra 

For longitudinal component: 

( )2 5 / 3
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Kármán spectra 
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where  ˆ /nf f L U=  and nL is the integral length scale of the relevance turbulence 
component. 
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Fig 6.3  Spires in the wind tunnel. (dimension in centimeters). 
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Fig 6.4  Horizontal mean wind speed profiles at the section model position: 5%-
turbulence flow. 
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a) Longitudinal turbulence 
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b) Vertical turbulence 

 Fig 6.5  Turbulent flow intensities across the wind tunnel section at the section model 
position: 5%-turbulence flow. 

 

 Fig. 6.6 .shows the longitudinal and vertical measured spectra of the 5%-
turbulence flow.   
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     Fig 6.6   Normalized power spectra of the longitudinal and vertical velocity 
component: 5%-turbulence. 

 
 

The higher turbulence was obtained by placing a grid at 0.5 m downstream of 
the spires.  The grid is illustrated in Fig. 6.7.  The mean wind speed and the turbulence 
intensities were measured prior to the tests.  The results are shown in Figs 6.8 to 6.10.  
The measured longitudinal and vertical turbulence intensities at the model deck level 
were 7.9% and 7.0%, respectively.  In this study, this turbulence referred to as “8%-
turbulence”.  The measured velocity spectra have been fitted with both the Kaimal-and 
von Kármán-type spectra as (Strømmen, 2006) as shown in Figs. 6.9 and 6.10. 
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Fig 6.7   Schematic of the turbulence-generating grid: a) dimensions in mm. and b) 
after installation 
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 Fig 6.8  Horizontal mean wind speed profiles at the section model position: 8%-
turbulence flow. 
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a)  Longitudinal turbulence 
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b) Vertical turbulence 

 

   Fig 6.9  Turbulent flow intensities across the wind tunnel section at the section 
model position: 8%-turbulence flow. 
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  Fig 6.10  Normalized power spectrum of the longitudinal and vertical velocity 
component: 8%-turbulence.  

 

6.2  Test  Procedures 
  

The streamlined thin flat plate which main parameters are shown in Table 6.1 
were firstly tested under smooth flow.  The width-to-height ratio is equal to 22.5.  The 
experiments can be classified in the following categories: 

 (i)  Single-degree-of-freedom vertical- or torsional-motion tests to extract the 
direct flutter derivatives under smooth flow. 
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 (ii)  Coupled-motion two-degree-of-freedom vertical and torsional motion tests 
to extract both the direct- and cross-flutter derivatives under smooth flow by both 
initial (free decay) and without initial displacement (buffeting) methods. 

 (iii)  Fixed section-model tests under smooth flow to determine the static 
aerodynamic coefficients (CD, CL, CM) with angles of attack vary from -12 o  to +12 o  in 
steps of 3 o . 

 Tests i)  and ii) were performed in the dynamic rig.  Test  iii) were performed 
in the static rig.  The wind tunnel equipments and the test procedures are described in 
Appendix B. 

Having success in verification of the streamlined thin flat plate model, the 
bridge model under study was of the IRR Bridge, details of which are given in chapter 
5. The main parameters are shown in Table 6.2.  The experiments were performed 
under smooth and two turbulence flows included 

(i)  Coupled-motion two-degree-of-freedom vertical and torsional motion tests 
to simultaneously extract both the direct- and cross-flutter derivatives under smooth 
flow by both the free decay and the buffeting methods and only the buffeting method 
under two turbulence flows. 

(iii)  Fixed section-model tests under both smooth and two turbulence flows 
with angles of attack vary from -12 o  to +12 o  in steps of 3 o . 

 

Table 6.1  Main parameters of the quasi-streamlined thin plate model 

Parameter Mark Unit Value 

Length l m 2.30 

Width B m 0.45 

Height H m 0.02 

Mass per unit length M kg / m 6.7391 

Inertial moment of mass per unit length Jm kg m2/ m 0.11832 

Inertial  radius R m 0.1325 

First bending frequency fh , n1 Hz 1.65 

First torsional frequency fα , n2 Hz 2.73 

First torsion-bending frequency ratio ε  1.65 
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Table 6.2  Main parameters of the IRR Bridge section model 

Parameter Mark Unit Prototype Value 

Length l m - 2.26 

Width B m  0.399 

Height H m  0.032 

Mass per unit length M kg / m 43000 5.6801 

Inertial moment of mass per unit 
length Jm kg m2/ m 4.11x109 0.17262 

First bending frequency fh , n1 Hz 0.376 2.13 

First torsional frequency fα , n2 Hz 0.850 4.73 

First torsion-bending frequency ratio ε  2.26 2.22 

 

 

6.3 Experimental Configuration 

 

6.3.1  Static Tests 

 

The section model was installed about its centre of rotation in the static rig 
inside the wind tunnel.  The force gauges of the static rig were connected to a data-
acquisition PC through amplifiers and filters.  Samplings were performed at 200 Hz 
and the signals are filtered at 10 Hz. 

Two six-components force gauges (JR3 sensor, Model No. 45E15 ) were used. 
Each sensor was installed at both ends of section model and connected to External 
Electronic Box of JR3 sensor by a special cable provided. Overload Alarm & Power 
supply were also connected to External Electronic Box.  Analog signals from External 
Electronic Box were then passed through analog amplifiers and filter, digitized by A/D 
converter and stored in PC by special software (LabView). 

The force gauges were calibrated in order to establish the relation between the 
Volt signals read on the PC and the forces on model.  Since the sensor is a six-
component load cell, all six components in directions (+ve and –ve) (total of 12 
calibrations) was individually calibrated to determine calibration matrix.  This was 
performed with calibration apparatus designed to apply each component of forces 
(total 12) almost purely as shown in Fig. 6.1.  The calibration was performed under 3 
load (or moment) level.  Once the calibration was finished, the calibration matrix is 
calculated using regression analysis. 
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After the model installation was completed, calibration of force gauges was 
again conducted to confirm accuracy of test-setup and the calibration matrix.  This is 
because the JR3-sensor is very sensitive to tightening force.  The drag forces were 
calibrated by pulling the model in the along-wind direction with known masses, using 
a string attached to the model centre and run over a pulley mounted at the corrected 
height for a horizontal pull.  The lift forces were calibrated by hanging known masses 
to the model.  The torsion forces were calibrated by applying known masses at fix 
distance from centre of the model.  This set-up results in both torsion and vertical 
force readings.  The applied moment is calculated as the applied masses times the 
distance (arm) from the center of rotation of the model to the point of load application. 

The basic arrangement for the fixed section-model tests (static rig) consisted of 
the following: 

(i)   Two force gauges (JR3 sensors) to which the section model could be fixed 
via hollow cylinder arms.  These arms are made of aluminum with smooth surface. 

(ii)  Data acquisition system consisted of External Electronic Box, Overload 
Alarm & Power supply, Analog amplifier and filters, A/D converter and PC. 

The instrumentation and other equipments which were common to both 
suspended- model (dynamic rig) and fixed-model (static rig) tests are listed below. 

(i)  A pitot tube connected to pressure sensors and data acquisition systems 
consisting of a personal computer and Analog to Digital Converter.  The pitot tube 
was kept downstream of the model along the center line of the tunnel and was used to 
measure the mean wind velocity of the flow.  Also the mean wind speed was recorded 
using “ Hot-sphere” type wind anemometer. 

(ii)  A multichannel data acquisition systems supported by a PC and data 
acquisition software. 

(iii)  A set of grids and spires, one of which could be inserted upstream of the 
model to generate a two-dimensional turbulent flow. 

(iv)   A hot-wire anemometer to measure the turbulence intensities of the flow. 

 Full descriptions of the set-up and instrumentation are given in Appendix B. 

6.3.2   Dynamic Tests 

The section model was installed in the dynamic rig about the centre of rotation 
of the section.  The basic set-up for the suspended-model tests consisted of the 
following: 

(i)  The section model, suspended from a set of four supports with upper and 
lower springs at each support, thus it can oscillate vertically and in torsion (about a 
transverse axis).  Piano wires were used to arrest the motion of the model in the along-
wind direction.  The vertical length of the spring can be adjusted to set proper vertical 
frequency.  The torsional frequency is set by adjusting spacing between the springs at 
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each end of the model.  In case of single-degree-of-freedom tests, additional wires 
were used to arrest one of vertical or torsional motion and allow another motion. 

(ii)  An electromagnetic release system which could be operated from outside the 
tunnel to give an initial vertical or torsional (or both) displacements to the model. 

The instrumentation which used in tests besides those common with static tests 
are listed below. 

(i)  The laser displacement sensors were used in recording displacement time 
histories of the model.  The laser displacement sensor consisted of sensor head and 
control block.  The sensor head was attached on fix-frame at a distance from measured 
object. This distance is depended on type and model of sensor.  Two laser used are 
KEYENCE LB300 with measured displacement range of  ±  100 mm and the 
resolution of 50 μ m.  Each sensor was set up at equal distance from the center of 
rotation. 

(ii)  Two acceleration transducers were used in recording acceleration time 
histories at the mid-section of the model.  The acceleration sensor consisted of the 
acceleration transducer model AS-2GB, the PCD 300A sensor interface and control 
software. The transducer has almost constant frequency response (within ± 5%) up to 
80 Hz.   

 

Full descriptions of the set-up and instrumentation are given in Appendix B. 

 

6.4  Determination of Stiffness, Mass and Mass Moment of Inertia 

 

After the bridge section model was completely set in the dynamic support 
system with the piano wires limited the along wind motion.  Then the mass and the 
mass moment of inertia have to be determined.  It was necessary to determine the 
vertical and torsional stiffness, mass and mass moment of inertia of this system.  If a 
mass mi is added to the model along its centerline (so that the center of mass does not 
displace), the frequency of vertical oscillation (ωhi) of the model assembly with the 
added mass mi is given by 

 2 h
hi

i

K
m m

ω =
+

              (6.1) 

where Kh and m are the vertical stiffness and mass of the model assembly, 
respectively.  Eqn. (6.1) can be rewritten in the form 

 2

1 1
i

hi h h

mm
K Kω

= +               (6.2) 
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 By the linear least-squares method, m and Kh can be determined using different 
values of mi  and recording ωhi.  The vertical motion is then restrained at the center of 
mass and the above procedure is repeated to obtain torsional frequencies, ωα i, 
corresponding to different added mass moment of inertias ( Ii) to the assembly.  The 
increment in mass moment of inertia of the assembly could be obtained by adding 
known weights at fixed distances from the model centerline.  Using an equivalent form 
of  Eqn. 6.2 the torsional stiffness (Kα) and mass inertia (I) of the model assembly can 
be found as  

 2

1 1
i

i

II
K Kα α αω

= +               (6.3) 

    

6.5   Flutter Derivative Identification 

 

In order to determine the flutter derivatives of bridge decks, the following 
procedure was followed: 

The coupled motion test with initial displacement method (the free decay method) 

(i)  The section model was given a fixed initial displacement both in heave and 
pitch responses for the coupled motion tests using the electromagnetic release system. 
The voltage outputs of the lasers (KEYENCE LB-300) and accelerometers were 
recorded simultaneously at zero wind speed (U =0) using the data acquisition system.  
The calibration factor of these instruments can then be used to determine heave and 
pitch responses from these voltage outputs.  Typical acceleration time histories for a 
representative coupled motion at U = 0 are given in Figs. 7.5 and 7.19a for the thin 
plate and the IRR bridge section respectively. 

(ii)  The approximate natural frequencies were ascertained using the spectrum 
analyzer (FFT) program.  This was performed for preliminary checking of results 
before more advanced and detailed analysis, the SSI-DATA and the SSI-COV method, 
were used in flutter-derivative extraction. 

(iii) The mechanical stiffness and damping matrices of the two-degree-of-
freedom system were then found from the free vibration time histories of h(t) and α(t) 
at U = 0 using both the SSI-DATA and the SSI-COV methods.  Since the values of 
these matrices in the wind-off condition was very important, this step was repeated 
several times to ensure consistency of results.  An average of stiffness and damping 
matrices was obtained whenever the results varied slightly (maximum 10%) because 
of experimental errors. 

(iv)  Steps (i) – (iii) were repeated but for non-zero wind speed values.  The only 
difference was that at a particular wind speed, the effective stiffness and damping 
matrices of the system were found instead of their purely mechanicals counterparts.  
Typical acceleration time histories of heave and pitch responses for thin plate are 
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plotted in Figs. 7.7.  Fig 7.19 shows samples of acceleration time histories of the IRR 
Bridge section model at various wind speed.  

(v)   The effective (wind-on) stiffness and damping matrices for a two-degree-of- 
freedom system and the mechanical ones (wind-off) provides the necessary data to 
estimate all the flutter derivatives at a particular reduced velocity value.  Both the 
modal frequencies (vertically and torsionally) were used to calculate two sets of flutter 
derivatives corresponding to the respective reduced velocities.   

The coupled motion test without initial displacement method (the buffetting test) 

(vi) The procedure is same as step (i) – (v) of initial displacement method except 
that no initial displacement was given to the model under wind flow. 

The single degree of freedom test 

(vii)  All the above steps from (i)-(v) were repeated to obtain the direct flutter 
derivatives H1

* and H4
* by allowing only single-degree-of-freedom vertical motion (α 

≡  0)  to the model, and A2
*, A3

* by allowing only torsional motion ( h ≡  0) about the 
center of rotation of the model. 

Turbulence flow tests 

(vii)  Steps (i) – (v) were repeated for grids generating turbulent flow conditions. 
Each grid configuration had a characteristic relationship between turbulence intensity 
and wind speed. 

Data acquisition 

For the streamlined thin plate model, in each of the above experiments the 
signal outputs from the sensors were: 

i. Sampled at 1000 Hz and 200 Hz, filtered at 10 Hz for the free decay and the 
buffeting test, respectively; 

ii. AC coupled, i.e., DC component removed; 

iii. Amplified, then 

iv. Re-sampled at 250 Hz and 50 Hz for the free decay and the buffeting test, 
respectively. 

For the IRR bridge model, the signals were: 

v. Sampled at 1000 Hz and 200 Hz, filtered at 6 Hz for the free decay and the 
buffeting test, respectively; 

vi. AC coupled, i.e., DC component removed; 

vii. Amplified, then 

viii. Re-sampled at 250 Hz and 50 Hz for the free decay and the buffeting test, 
respectively. 



130 

 

6.6   Determination of Aerodynamic Force Coefficients 

 The aerodynamic force coefficients, which are the coefficients of lift (CL), 
moment (CM) and drag (CD) and their first derivatives with respect to angle of attack 
(α) at α  = 0 as denoted by , , DL MC C C′ ′ ′ , were determined from the section-model test 
as described below: 

 (i)  The section model was fixed to the force gauges sensors at both ends with 
α  = 0 and subjected to wind flow with three different wind velocities.  At each of 
these velocities, the mean values of the voltage outputs of the lift, moment and drag 
channels from sensors were recorded.  These voltage outputs at each wind speed were 
converted to mean forces values by multiplying the sensor’s calibration matrix, which 
were found separately, with mean value of output voltages.  Summing of mean forces 
at both ends yield the total forces act upon the model.  The aerodynamic force 
coefficients were then found using the normalization: 

 
 Lift coefficient   20.5L

LC
U Blρ

=    

 Drag coefficient  20.5D
DC
U Blρ

=             (6.4) 

Moment coefficient  2 20.5M
MC
U B lρ

=    

where B and l are the deck width and length of the section model, respectively, L, D, 
M are total lift, drag and moment forces respectively. 

The mean values of the force coefficients were obtained by averaging the values from 
three different wind speeds. 

 (ii)  Step (i) was repeated with different values of α varying between -12 o  to 
+12 o  in steps of 3 o .  The angle α was measured by the scale provided with the force 
gauges supports at both sides.  Each of the mean values of CL, CM and CD was plotted 
with respect to the angle of attack α, and from the curves at α = 0 the values of 

, , DL MC C C′ ′ ′  were obtained. 
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Fig. 6.11: Equipment setup for force sensor calibration. 
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6.7   Modified Sections by Aerodynamic Appendages 

In this study, three types of aerodynamic appendages were mounted to the 
bridge sectional model, including fairings, soffit plate, and combination of those two 
types. Tests of those mentioned sections were performed statically and dynamically. 
Due to the literature appraisals, illustrated in section 2.2, the equilateral triangle 
fairings made from bagasse were mounted to a model, in both windward and leeward 
side. Fairing height is designed to fit the bridge model, 29.9 mm with the upper slope 
angle of 30o. The schematics of fairings and fairing-installed sections are respectively 
illustrated in figures 6.12 and 6.13 (a and b). Furthermore, soffit plates were fully 
mounted under the model with an intention to smoothen the wind attack to model’s 
girders. Figure 6.13 (c and d) shows the bottom view of a model mounted with fairings 
and soffit plates. 

 
Fig. 6.12 Schematic of fairings (diameters in mm) 

 

 

(a) (b) 

Fig. 6.13 Fairing-modified section; (a) side view of the section, (b) zoom-in at end plate, 
(c and d) combination of fairings and soffit plates section 
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(c) (d) 

 

Fig. 6.13  (Continued) 
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CHAPTER 7 
 

EXPERIMENTAL RESULTS  
 
 

7.1  Introduction 
 
 

In this chapter the experimentally obtained results for the streamlined thin plate 
and a plate-girder type IRR Bridge section are presented and discussed.  The thin plate 
was used to validate the reliability and applicability of the present system 
identification method in flutter derivatives estimation of bridge decks.  Aerodynamic 
coefficients were also obtained by static tests.  The thin plate model were conducted 
under smooth flow whereas the IRR Bridge model were conducted under smooth and 
turbulent flows.  

The experimental arrangements and instrumentation, which were used in this 
study are presented in this chapter, are described in Chapter 6 and in Appendix B. 
 

7.2  Thin Flat Plate 
 
7.2.1 Flutter Derivatives: Smooth Flow 
 

Three different sets of experiments were performed for the thin-plate-deck 
configuration under smooth flow for zero angle of attack:   

 
i. Single-degree-of-freedom tests (vertical and torsional motion); to identify 

direct flutter derivatives  H1*, H4*, A2* and A3*, 

ii. Coupled-motion tests in both vertical and torsional degrees of freedom 
simultaneously; with initial displacements (the free decay method); to 
identify eight flutter derivatives, and 

iii. Coupled-motion tests in both vertical and torsional degrees of freedom 
without initial displacements (the buffeting method). 
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Fig. 7.1(a) Thin flat plate model with king-post in wind tunnel 

450
410

20

 
 

Fig. 7.1(b)  Cross section of the thin plate model (unit in mm.) 
 

 
  In all cases piano wires were used to restrain the undesirable motions.  The 
following experimental parameters were used for the coupled motion model tests:  
Mass = 15.50 kgs; mass moment of inertia about center of mass = 0.11832 kg m2; 
modal frequencies (U = 0 ):  n1 = 1.65 Hz, n2 = 2.73 Hz; modal damping (U = 0 ): 1ζ = 
0.33%,  2ζ = 0.28% for vertical and torsional respectively; separation between springs 
(d) = 250 mm;  length (span) of model = 2.30 m.; laser sensors were separated at 125 
mm.  Each acceleration transducers, installed at the mid-section of model, was placed 
at 62.5 mm apart from center of rotation.  Determination of mass was performed 
method described in section 3.6.1.  Determination of mass moment inertia was 
obtained by both methods describing in section 3.6.1 and 6.2 which results were 
agreed well.  

In coupled-motion tests, two types of tests were conducted by fixed initial 
displacement (free decay) and without initial displacement (buffeting response tests). 
This was conducted to confirm applicability of the system identification method 
proposed to various types of tests. 
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As model was manufactured from wood and very long, in order to have 
sufficient vertical and torsional stiffness of the model a so-called “king-post” was 
installed.  A king-post is a stiffening system composed of two posts and 8 gauged 
wires (see Fig.7.1).  The king-post is symmetric from above and below the deck, and 
as it is only consists of rounded members, lift / vertical motion and moment / torsional 
motion are not influenced by the king-post.  Fig. 7.1.b shows cross section of thin flat 
plate model in mm. 

 
Single degree of freedom  test 
 
 Single-degree-of-freedom tests (vertical and torsional) were performed first for 
‘smooth flow’ with turbulence intensity I less than 0.05%.  Test methods are similar to 
Scanlan’s method (Scanlan and Tomko 1977).  Detail procedures are described in 
subsection 6.5. It involves the measurement of the decay in amplitude with time of an 
initial displacement of the deck in heave and torsion-only case.  To obtain vertical 
direct derivatives, the torsional motion is restrained and the model is pulled down and 
release; both ‘in ‘still air’ and ‘in wind’ conditions.  Extraction of torsional direct 
derivatives uses an analogous process.  Fig. 7.2 shows experimental setups for each 
vertical and torsional motion restrained.  

  
 

   

 
 

Fig. 7.2(a)  Experimental setup for vertical motion restrained. 
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Fig. 7.2(b)  Experimental setup for torsional motion restrained. 
 

 
In order to ensure that model can vibrate only in torsion mode, the restraining 

cross wires are used where both ends are attached to fixed supports and connected to 
model at center of rotation (see Fig. 7.2a).  Vertical SDOF tests were then done with 
restrained on torsional motion provided by an arrangement of drag wires attached to 
upper and lower ends of a vertical bar (Fig. 7.2b).  Modal frequencies and damping 
ratios (U = 0 ) were slightly difference from 2DOF-coupled motion test due to  effect 
of restraining wires as:  n1 = 1.65 Hz, n2 = 2.37 Hz; modal damping (U = 0 ): 1ζ = 
0.41%,  2ζ = 0.61% for vertical and torsional respectively.  Responses were sampling 
at 1000Hz in 60 sec-duration, low-pass filter at 10Hz and then re-sampling at 250 Hz.  
Only four direct flutter derivatives H1*, H4*, A2* and A3* were determined from 
vertical-motion-only (h) and torsion-motion-only (α )-SDOF tests (see subsection 
3.6.5) as 
 

  

* * 2 2
1 ' ' 4 '2 3 2

* * 2 2
2 ' ' 3 '4 4 2

2 2(2 2 ) ( )

2 2(2 2 ) ( )

h h h h h h
m mH H

B B
I IA A

B Bα α α α α α

ξ ω ξ ω ω ω
ρ ω ρ ω

ξ ω ξ ω ω ω
ρ ω ρ ω

= − = −

= − = −
 

 
where , ,,h hα αξ ω  and ' ' ', ', ,h hα αξ ω  are damping ratios and frequency of the record motion 
in still air and under wind conditions respectively, m , I are mass and mass moment of 
inertia per unit length,  B is deck width. 
 
 Note that all flutter derivatives expressed above are expressing in form of Eqs. 
(3.31) and (3.32): 
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 2 * * 2 * 2 *
1 2 3 4

1
2h

h B hL U B KH KH K H K H
U U B

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

& &
 

 (3.31) 

                           2 2 * * 2 * 2 *
1 2 3 4

1
2

h B hM U B KA KA K A K A
U U Bα

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

& &
        (3.32) 

 
 The direct flutter derivatives H1*, H4*, extracted from vertical-motion-only 
tests are plotted in Fig. 7.3a against non-dimensional (reduced) wind speed U/nB, 
where n being the vertical mode eigenfrequency. The results also plotted with 
theoretical values from Theodorsen’s theory. The H1* results show well agreement 
with theoretical values where H4* have a good trend corresponding to theoretical ones.   
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Fig.7.3a   Direct Flutter derivatives (H1*, H4*) of the thin plate model singled 
motion tests with initial displacement (transience resp.) under smooth flow 
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Fig.7.3b   Direct Flutter derivatives (A2*, A3*) of the thin plate model singled motion 
tests with initial displacement (transience resp.) under smooth flow 
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 Fig. 7.3b shows direct flutter derivatives A2* and A3*, extracted from torsional-
motion-only tests against reduced wind speed where n being the torsional mode 
eigenfrequency. The results show that A2* and A3* are also in well agreement to the 
theoretical values. 

 The trends for H1* and A2*, which related to aerodynamic damping in vertical 
and tosional motion, respectively, are continuing increased (more negatively) and the 
trends are clear and strong.  Hence there is no risk of SDOF instabilities; both stall 
(torsional) and galloping (vertical). The cross derivatives which would responsible for 
classical 2DOF flutter would be examined next in coupled motion tests. 
  
Coupled motion test with initial displacement method (free decay or transient 
response) 
 

In order to recover a full set of derivatives simultaneously, coupled (2DOF) 
tests were performed with no restrain on torsional or vertical motion.  Transience 
response time-series were recorded for the model suspended in the dynamic rig by 
initial excitation both in heave and torsion simultaneously.  Fig. 7.4 shows the 
supporting system of tests.  The initial excitation is carefully controlled in order to 
have same level of excitation in each test.  The acceleration response of the model was 
sampled at 1000 Hz, low-pass filtering with nominal cut-off frequency of 10 Hz and 
then re-sampled at 250 Hz. Time histories, approximately 60 sec, of the decayed 
motion were recorded for the model scaled velocities varying from 0 m/s to 9 m/s.   

 
 

 
 

Fig. 7.4  Suspension device of the model 
 

Fig. 7.5 shows example of free decay response at U=0 (still air).  Fig. 7.6 
plotted damping ratio with amplitude of vibrations, the damping ratios exhibit 
nonlinearities in ranges of small amplitudes as same as what reported in previous 
researches (Jakobsen 1995, Sarkar 1994) even in the case of electromagnetic dampers 
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were added.  However, the damping ratios are practically accepted as damping vary 
from 0.33 to 0.45 and 0.24 to 0.30 for heave (vertical) and pitch (torsional) motion, 
respectively, in the range of amplitude tests.  The inherent damping ratios were used 
by considering that adding special dampers such as electromagnetic dampers or 
silicone oil would increase damping to the system and results in very low amplitudes 
of motions.  This would affect available range of wind speed for buffeting tests 
because wind is only a source of model exciting.  

 

 
Fig. 7.5  The thin flat plate model under smooth flow : free decay acceleration time 

histories for heave and pitch motions at U = 0 m/s. 
 

  
 

Fig. 7.6  Torsional (left) and vertical (right) damping ratio in still-air (zero wind speed) 
 
 
Fig. 7.7 shows example of free decay response at some wind speed. Degrees of 

coupling are clearly seen as wind speed increased.  
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   U= 3.6 m/s 

 U=8.1 m/s 

 
Fig. 7.7  The thin flat plate model under smooth flow : free decay acceleration time 

histories for heave and pitch motions at U = 3.6 m/s and 8.1 m/s 
 

 All derivatives were evaluated by system identification of the A matrix as 
described in chapter 4 by both the SSI-COV and the SSI-DATA method.  The modal 
parameters can be determined by solving the eigenvalue problem of state matrix A. 
Once the modal parameters are identified, the mechanical damping matrix C0 and the 
mechanical stiffness matrix K0 can be readily determined in ‘still-air’ condition.  The 
gross damping matrix Ce and the gross stiffness matrix Ke can then be determined 
analogously under wind condition.  Thus, the flutter derivatives can be extracted from 
the following equations: 
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where m and I are mass and mass moment of inertia per unit length determined as in 
section 6.2.  Fig. 7.7 shows examples of acceleration responses in wind flow at U=3.6 
and 8.1 m/s.  It is worth noting that the sign convention used in this study, where lift 
force and vertical movement are both positive upwards, gives H2

*, H3
*, A1

*, A4
* 

opposite signs to those by Simiu and Scanlan (1996). 

All eight flutter derivatives Hi
*, i = 1,….,4 and  Ai

*,  i =1,….,4, as obtained 
from the free decay coupled-motion tests for the thin plate deck, by both the SSI-COV 
and the SSI-DATA method are plotted in Figs. 7.8-7.9.  These flutter derivatives also 
compared with those from theory.  Unless otherwise noted, H1

*, H2
*, A1

*, A4
* 

associated with vertical motion were calculated using the frequency nh (lower) and 
H2

*, H3
*, A2

*, A3
* associated with torsional motion were calculated using the frequency 

nα (higher) at any wind speeds. The frequencies nh and nα are aerodynamically 
modified from their values at U = 0 at any other wind speeds.  This was done because 
in the corresponding single-degree-of–freedom motions, the natural frequencies of 
vibration for vertical and torsional motion were closed to nh and nα, respectively.  
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Fig. 7.8a  Flutter derivatives (H1*, H2*,H3*, H4*) of the thin plate model from the 

free decay coupled motion tests under smooth flow: SSI COV method 
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Fig. 7.8b  Flutter derivatives (A1*, A2*,A3*, A4*) of the thin plate model from the 

free decay coupled motion tests under smooth flow: SSI COV method 
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Fig. 7.9a  Flutter derivatives (H1*, H2*,H3*, H4*) of the thin plate model from the 
free decay coupled motion tests under smooth flow: SSI DATA method 
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Fig. 7.9b  Flutter derivatives (A1*, A2*,A3*, A4*) of the thin plate model from the 
free decay coupled motion tests under smooth flow: SSI DATA method 

 
Fig. 7.10 and 7.11 plotted all derivatives from the free decay coupled-motion 

tests extracted by the SSI-DATA and the SSI-COV method, compared with those from 
theory and the single-degree-of-freedom tests.  The result shows that all derivatives 
extracted by both SSI methods from various tests are in very well agreement with the 
theoretical values.  

The direct flutter derivatives H1
*, H4

*, A2
* and A3

* as found from single-degree-
of-freedom tests compared with those from coupled-motion tests (Figs. 7.10 and 7.11) 
have near perfect match.  This result shows that the direct-flutter derivatives are 
indeed not affected by the motion along the other degree of freedom, as predicted by 
theory i.e., those direct flutter derivatives associated with h motion are not affected by 
α motion, and vice versa.  

All flutter derivatives of the thin plate – except H4*- from initial-coupled-
motion tests by both SSI-methods are in well agreement with Theodorson’s theoretical 
values.  However, H4* extracted from SDOF and coupled motion tests are in good 
agreement and showing good agreement in trend with theoretical value.  The factors 
made the extraction of H4* difficult are as follows. The change in the natural 
frequency due to the aeroelastic effect from which H4* were calculated was found to 
be very small.   
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Fig. 7.10  Comparison of Hi* for thin plate model from SDOF test and couple-degree-
of-freedom tests with initial displacement for  under smooth flow 
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Fig. 7.11  Comparison of Ai* for thin plate model from SDOF test and couple-degree-
of-freedom tests with initial displacement for  under smooth flow 

 
 

Coupled motion test without initial displacement method (buffeting or ambient 
response) 
 

The advantage of the buffeting test is that not only all flutter derivatives are 
simultaneously extracts, but also the aerodynamic admittance and root-mean-square 
responses can be determined at the same time.  Besides, their mechanisms are closer to 
the real behavior of prototype bridges under wind flow.  However, as wind is only the 
excited source and a relatively heavy model of the thin plate, the amplitudes of 
response are very low especially at the low wind speeds.  Unlike the free decay 
responses where good signal to noise ratio are obtained, the signals at low wind speed 
are mostly in the same order with measurement noise. This makes the extraction of 
flutter derivatives of the thin plate model difficult or impractical in a very low wind 
speed range. 

The experimental setup is same as coupled-free decay test except that no initial 
displacement has given to the model.  Fig. 7.12 shows sample of buffet responses at 
U=5.6 m/s. 
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Fig. 7.12  Thin flat plate model under smooth flow: buffeting acceleration time 

histories   and frequency spectrum for heave and pitch motions at U = 5.62 
m/s  

 
All derivatives were extracted by both the SSI-COV and the SSI-DATA 

methods in similar manner as in the free decay test. The sampling frequency was 
reduced to 200 Hz and recording time was 360 sec. The signals were low-pass at 
nominal frequency 10 Hz and then re-sampling at 50 Hz.  The‘still-air’ free decay 
records were used in determining mechanical stiffness and damping matrices. Fig. 
7.13 and 7.14 plotted all flutter derivatives extracted by the SSI-COV and the SSI-
DATA methods together with those from the SDOF tests and theoretical values.  
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Fig. 7.13  Comparison of Hi
* for the thin plate model from couple-degree-of-freedom 

tests: from the free decay test by SSI DATA and from the buffeting test by 
the SSI –DATA and the  SSI COV method under smooth flow 
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Fig. 7.14 Comparison of Ai
* for the thin flat plate model from couple-degree-of-

freedom : from the free decay test by SSI DATA and from the buffeting test 
by the SSI –DATA and the  SSI COV method under smooth flow 

 
 
The six important flutter derivatives; H1*~ H3*, A1*~ A3* found from buffeting 

responses by both the SSI-COV and the SSI-DATA match very well with both the 
theoretical and those from free decay responses.  The results show very well 
agreement between two types of tests.  This verifies the ability of the system 
identification methods (both the SSI-COV and the SSI-DATA) to apply with the free 
decay signal though it developed from stochastic model (white noise loading 
assumption).  Nonetheless, at very low reduced velocities it difficult to extract the 
flutter derivatives by the buffeting response tests due to the relatively heavy of the thin 
plate model as well as the low energy from the wind to excite the model, then useful 
signal are almost embedded in noise.  The H4*-derivatives by both the SSI-COV and 
the SSI-DATA are generally agreed in trend with theoretical value similar to free 
decay response tests.  However, the A4*, in turn, found from the SSI-COV are more 
scatter without clearing trend compared to the SSI-DATA method.  The effects of 
these derivatives are seemed to be less significant and negligible compared to the 
remaining. This was the reason where H4* and A4* were usually neglected in previous 
studies (Scanlan and Tomko 1971, Sarkar 1994, Jakobsen 1995, Gu 2000). 
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Summary of  the thin plate test results 
 

 All eight flutter derivatives Hi*, i = 1,….,4 and Ai*,  i =1,….,4, as obtained 
from three type of experimental setups: the free decay-SDOF, the free decay- and the 
buffeting-coupled motion tests were identified and compared by two most up-to-date 
system identification methods: the SSI-COV and the SSI-DATA methods.  The results 
show that free decay responses provided the best results as there are clearer signal to 
noise ratios.  The difficulty in extraction of flutter derivatives at high wind speed due 
to short usable length of data, reported in the past, is improved by the SSI methods.  In 
buffeting tests, less signal to noise ratios especially at low wind speed make extraction 
of flutter derivatives are more difficult and limit the range of wind speed test. This 
may be overcome by carefully select scale ratio and reducing model mass. 

Generally, in the range of wind speed tests, the SSI-DATA method shows a 
good capability in extracting all flutter derivatives even in buffeting responses while 
the SSI-COV method shows similar performance in main derivatives except for very 
sensitive A4* in case of buffeting response. 

 Test results show that the thin flat plate model exhibits tentative of coupled 
flutter instability as predicted in theory where H1

*and A2
* are negative.  The coupled 

terms H3
*, A1

* and A3
* play the next important role in the coupled flutter phenomena of 

the section (Boonyapinyo et.al, 1999).  This could be happened in synchronized 
responses between vertical and torsional motions at a frequency between the two 
eigenfrequencies in still air. A synchronized appearance of the two degrees of freedom 
is forced by the self-excited wind forces.  Rotation is accompanied by a self- excited 
moment which corresponds to a reduction of the torsional stiffness (positive value of 
A3*).  At the same time, vertical motion (i.e. vertical velocity; positive value of A1*) 
give rise to an additional moment, and this is absent in the case of restrained coupling. 
Regarding the vertical DOF, coupling is primarily felt through a lift caused by rotation 
(where the aeroelastic resultant force acts at some distance from shear center), this 
eccentric forcing which is become more dominant when wind speed increased up to 
the ‘stability limit’.  This is clearly seen by strongly increased in positive value of H3*.  
The original vertical motion (at the still-air eigenfrequency) is aerodynamically 
damped out by strong negative value of H1*. 
 
 
7.2.2 Aerodynamic Force Coefficients: Smooth Flow 
 
 The static aerodynamic force coefficients of the thin flat plate were obtained 
under the smooth flow. The method used to obtain these static coefficients is described 
in Chapter 5. The experimental configuration is outlined in section 5.1.1.  Fig. 7.15a 
shows experimental setup of thin flat plate model in wind tunnel. The results of the 
tests are presented in the form of drag, lift and moment coefficients.  The section 
model was installed about its centre of rotation, then, the pitching moment is 
considered with respect this centre of rotation.  The sign convention used in the 
presentation of the test results is shown in Figs. 7.15(e).  
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Fig. 7.15(a) Thin flat plate model with king-post in wind tunnel : static test setup  
 

 
 
 

Fig. 7.15(b)  Thin flat plate model with king-post in wind tunnel : static test setup with 
various wind angle of attack 
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Fig. 7.15(c)  Static force balance device of the model 
 

 
 

Fig. 7.15(d)  Load cell supported by universal joint with angle-adjustable device. 
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Fig. 7.15(e)  Sign convention for static force coefficients 
 

 Two different sets of experiment were performed, model with and without 
king-post.  In each set, static coefficients were determined in steps of 3 o  from -12 o  to 
+12 o .  In each angle of wind attack, model was subjected to three different wind 
velocities: U = 3.61, 5.65 and 8.14 m/s.  At each of these velocities, the mean values 
of the voltage outputs of the lift, moment and drag channels from sensors were 
recorded. These voltage outputs at each of the wind speed values mentioned above 
were converted to mean force values using the calibration matrix, which were found 
separately, multiplied with mean value of voltage outputs.  Summing of mean forces at 
both ends yield the total mean forces act upon the model.  The aerodynamic force 
coefficients were then found using Eq. 6.4 as: 

 

Lift coefficient   20.5L
LC
U Blρ

=    

 Drag coefficient  20.5D
DC
U Blρ

=              

Moment coefficient  2 20.5M
MC
U B lρ

=   

where B and l are the deck width and length of the section model, respectively, L, D, 
M are total lift, drag and moment forces respectively 

Table 7.1 lists the coefficients obtained from tests and Fig.7.16 shows 
aerodynamic coefficients obtained for various wind angles of attack.  The mean value 
of the force coefficients are obtained by averaging the values measure at different 
wind speed.  The mean values of the static tests are presented in Fig. 7.16, where the 
determined coefficients of both models - with and without king-post - are plotted 
versus wind angles of attack.   Table 7.1 summarized the test results of the streamlined 
thin flat plate with various angles of attack.  All presented drag coefficients have been 
corrected for the additional drag on the king-post.  In an initial test, the drag on the 
section with king-post was measured.  This was followed by a measurement without 
the king-post installed.  
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Table 7.1 Static load coefficients of the thin flat plate model : smooth flow 
 

Coefficient angle of attack [α, deg] 
  -12 -9 -5.5 -3 0 3 6 9 12 

With king-post                 
CD 0.204 0.141 0.048 0.040 0.040 0.039 0.062 0.141 0.209 
CL -0.775 -0.744 -0.415 -0.189 0.062 0.318 0.581 0.837 0.876 
CM -0.069 -0.151 -0.116 -0.056 0.003 0.070 0.142 0.155 0.122 

Without king-post                 
CD 0.211 0.128 0.040 0.024 0.027 0.028 0.053 0.134 0.203 
CL -0.751 -0.729 -0.432 -0.178 0.053 0.318 0.561 0.836 0.861 
CM -0.084 -0.141 -0.118 -0.052 0.008 0.071 0.155 0.161 0.139 

 
 

The measured drag on the king-post matches very well the theoretical 
estimation. The Reynolds Number for the king-post, Re , is 2.16 X 103 < Re < 4.86 X 
103 for a typical diameter of 9 mm and wind velocity ranging between 3.61 m/s and 
8.14 m/s. For this range of Re the static drag coefficient (CD) is 1.10.  The drag force 
on kingpost is calculated based on this coefficient and then converted to equivalent 
drag coefficient based on the thin plate dimension for comparison.  The equivalent 
drag coefficient equals 0.0126 compared to 0.0127 from test results.  The measured lift 
and moment coefficients at various angles of attack are also plotted (Fig. 7.16) for 
both with and without kingpost models together with the theoretical values see e.g. 
Joukowski (1916) and Dyrbye and Hansen (1996).  These theoretical values are valid 
for small angles of attack only.  The sudden drop in pitching moment and lift force at 
an angle of attack of approximately 7 o  is due to flow separation occurring at angles of 
attack larger than approximately 7 o .  Flow separation has not been taken into account 
in the theoretical calculations presented.  The results are shown that effects of king-
post are negligible for lift and pitching coefficients. 
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Fig. 7.16  Static load coefficients of the thin flat plate model: smooth flow 
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7.3   Industrial Ring Road Bridge Deck 
 

Encouraged by the success in the thin plate model, the flutter derivatives of the 
IRR Bridge, a cable-supported bridge with a 2-edge girder, as shown in Fig. 5.4, were 
estimated by both the SSI-DATA and the SSI-COV techniques. The IRR Bridge has a 
main span of 398 m.  The deck consists of a concrete deck slab and a web of steel 
girders. The deck is supported by two cable planes at the outside edge girders.  A 2-
edge-girder bridge section with A-shape pylons has a good cost performance, but at 
the same time the bridge cross-section is known to be aerodynamically unstable at 
high wind speed.  Table 6.2 lists the main parameters of the prototype bridge and the 
section model.  Tests were conducted under smooth and two levels of turbulence wind 
flows. The turbulent flow conditions were generated by grids and spires. The 
longitudinal and vertical turbulence intensities were both about 5% and 8%, 
respectively. 

Using both SSI techniques, the flutter derivatives of the IRR Bridge were 
estimated for 2DOFs responses by both the free decay and the buffeting tests under 
smooth and two levels of turbulence flows. The results between two test methods were 
then compared. 

Piano wires were used to restrain the undesirable lateral motions.  The 
following experimental parameters were used for the coupled motion tests:  Mass = 
12.84 kgs; mass moment of inertia about center of mass = 0.17262 kg m2; modal 
frequencies (U = 0 ):  nh = 2.13 Hz, nα = 4.73 Hz; modal damping (U = 0 ): hζ = 
0.40%,  αζ = 0.13%; separation between springs (d) = 380 mm;  length (span) of 
model = 2.26 m.; laser sensors were separated at 380 mm.  Each acceleration 
transducers, installed at the mid-section of model, was placed at 125 mm apart from 
center of rotation.   

Determination of mass was performed by the method described in section 
3.6.1.  However, determination of the mass moment inertia describing in section 6.2 
are somewhat difficult to apply as the top surface of bridge deck has 2.5%-slope.  
Then, the method described in section 3.6.1 was applied.  First, the mass of model was 
obtained, and then the vertical stiffness can be determined.  Having known separated 
distance of supported spring and torsional frequency of model from the free vibration 
test, the mass moment of inertia can be determined.  

As model was manufactured from wood and very long, the geometrical scaling 
also results in thin dimensions with too little stiffness.  The original model has local 
vertical bending mode around 9 Hz.  In order to eliminate this local mode and having 
sufficient vertical and torsional stiffness of the model a so-called “king-post” was 
installed.  A king-post is a stiffening system composed of two posts and 16 gauged 
wires as seen in Fig 7.17a.  The model is supported by gauged wires at 4 points with 
equidistance. T he king-post is symmetric from above and below the deck, and as it is 
only consists of rounded members lift / vertical motion and moment / torsional motion 
are not influenced by the king-post. 
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Fig. 7.17a  The IRR Bridge section model with king-post in wind tunnel 
 
 
 
 

 
 

Fig. 7.17b Sign convention for IRR bridge section 
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   a)         b) 
 
Fig. 7.18  The IRR Bridge section model details: a) model connection at end plate     

b) bottom view 
 
Fig. 7.19 shows examples of free decay responses at various wind speeds. The 

amplitude dependence of the damping ratio was also checked.  Fig. 7.20 plotted the 
damping ratios with the root mean square of response amplitude in ‘still-air’.  The 
damping ratios are considered to be practically acceptable as they are varying from 
0.1-0.15% and 0.33-0.40% in range of responses in tests.  The testing procedures are 
in similar as those in the thin flat plate case.  The sampling frequencies were 1000 Hz 
and 200 Hz with the total time records equal to 60 s and 500 s for the free decay and 
the buffeting tests, respectively.  The recorded data were then removed trend, re-
sampled at 250 and 50 Hz, and then low pass filtered at 6 Hz by the 8-ordered 
butterworth filter.  The low pass filter introduced no amplitude modification at nh = 
2.13 Hz, while there was a 3% amplitude reduction at nα = 4.73 Hz.  This filtered 
frequency was selected due to the reason that at high wind speed, there was presence 
of small amplitude of local torsional mode at 6.7 Hz.  This mode was believed to be 
the local mode of the king post/thin deck slab system that could not be fully fixed at 
base due to the deck slab are thin and top-sloped.  Many attempts have been made to 
eliminate this mode such as more guy wires added, nailing deck slab to cross girders 
and even increasing of the base plate thickness, but resulting only in lesser amplitude 
of this mode. 

 
Carefully review of previous research found that such a low ratio of highest 

modal frequency to nominal cut-off frequency as 0.7 has been used as long as 
amplitude distortion are not much affects and the linear phase delay filter are used 
(Sakkar 1994, King 1995, Brownjohn and Jakobsen 1995).  In order to check the 
effect of low pass filter used, a simple signal was simulated by combining two 
sinusoidal signals with the same frequencies of vertical and torsional mode, then this 
signal was pass through the 8-order low-pass filter with the cut-off frequency at 6 Hz. 
Fig. 7.21 compares the time-histories of the original and the filtered signals.  The 
result shows that the filtered signal agreed well with the original signal with only the 
small distortion found at the end of signals. 
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Fig. 7.19  The IRR bridge model : free decay acceleration time histories and frequency 

spectrum for h and α at U = 0 m/s  
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Fig.7.20  Damping ratio of the IRR Bridge model with amplitudes (rms in g)  
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Fig.7.21 Example of low-pass filter effect to simulated signal.  
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7.3.1    Flutter Derivatives of the IRR Bridge Model: Smooth Flow 
 
7.3.1.1   Comparisons of Flutter Derivatives between the SSI-DATA 

and the SSI-COV Method from the Free Decay Test Method. 
 

Figs. 7.22a and 7.22b show samples of the typical test results from free decay 
responses of the bridge model at various wind speed.  All eight flutter derivatives Hi*, 
i = 1,….,4 and Ai*,  i =1,….,4, identified by both the SSI-DATA and the SSI-COV 
from the free decay tests of the IRR bridge deck, are plotted and compared in Figs. 
7.23 and-7.24.  The notation used in case of the IRR Bridge model is in the form; 

 

        2 * * 2 * 2 *
1 2 3 4h

h B hL U B KH KH K H K H
U U B

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

& &
            (3.31) 

                           2 2 * * 2 * 2 *
1 2 3 4

h B hM U B KA KA K A K A
U U Bα

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

& &
           (3.32) 

 
 

 
 
Fig. 7.22a  The IRR Bridge model under smooth flow: free decay acceleration time 

histories h and α at U = 1.67  m/s  
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Fig. 7.22b  The IRR Bridge model under smooth flow: acceleration time histories h 

and α at U = 6.20 m/s  
 

This was done as the results will be compared later with the previous test (DMI 
1995), the same notation was then used.  This alternate form differs from the thin flat 
plate case where the definition of the flutter derivatives is 2 times higher.   

From Figs. 7.23 and 7.24, it can be seen that the most important factor A2
* 

extracted by both SSI methods match very well with each other.  It is steadily 
increased (more negative) up to reduced velocity around 3, and then started to 
decreased.  This sign reversal is the outstanding factor toward the SDOF-torsional 
instability (stall flutter) reported in the next section. The vertical aerodynamic 
damping term, H1

* extracted by both methods remain negative in all reduced wind 
speed and match well to each other up to a certain wind speed where small difference 
can be seen.  This is because at high wind speed, the vertical mode are rapidly damped 
out but the coupling of rotation motion by H3* were increased (as seen by the presence 
of torsion mode in vertical mode).  The short useful length of recorded signal and the 
strongly presence of another mode made extraction of vertical damping more difficult. 
The frequency-related aerodynamic terms: H4 *and A3* also match well between the 
two methods.  However, the coupled aerodynamic terms (H2*, A1*, A4*), in turn, 
found from the SSI-COV method are more scattered than those from the SSI-DATA 
method.  The largest scatter among the extracted parameters are A1* and A4*. 
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Fig. 7.23  Flutter derivatives (H1

*, H2
*,H3

*, H4
*) of the IRR Bridge model from the free 

decay tests by the SSI-DATA and the SSI-COV under smooth flow 
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Fig. 7.24  Flutter derivatives (A1

*, A2
*,A3

*, A4
*) of the IRR Bridge model from the free 

decay tests by the SSI-DATA and the SSI-COV under smooth flow. 
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7.3.1.2  Comparisons of Flutter Derivatives between the SSI-DATA and the SSI- 
COV Method from the Buffeting Test. 

 
The buffeting response data were analyzed both by the SSI-COV and the SSI-

DATA methods. The mass of the IRR Bridge model is approximately 25% lesser than 
the thin plate section. This makes possibility for extraction of flutter derivatives in 
lower wind speed range.  Typical test results showing responses from the IRR Bridge 
model are in Fig. 7.25.  

 

 
 

Fig. 7.25a  Part of vertical (top) and torsional (bottom) buffeting acceleration 
responses of the IRR Bridge model at 1.72 m/s wind speed under smooth 
flow. (unit in g)  
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Fig. 7.25b  Part of vertical (top) and torsional (bottom) buffeting acceleration 

responses of the IRR Bridge model at 3.95 m/s wind speed under smooth 
flow. (unit in g)  

 

 
 

Fig. 7.25c Part of vertical (top) and torsional (bottom) buffeting acceleration responses 
of the IRR Bridge model at 5.32 m/s wind speed under smooth flow. (unit 
in g).  
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Fig. 7.25d Part of vertical (top) and torsional (bottom) buffeting acceleration responses 
of the IRR Bridge model at 6.88 m/s wind speed under smooth flow. (unit 
in g). 

 
 
All eight flutter derivatives Hi*, i = 1,….,4 and Ai*,  i =1,….,4, as obtained by 

the SSI-COV and the SSI-DATA from the buffeting test, are plotted in Figs. 7.26-
7.27.  The torsional aerodynamic damping A2

* and the vertical damping term H1
* 

extracted by the two SSI methods match well to each other.  The identified torsional 
aerodynamic stiffness term A3* are also almost identical by the two methods.  The 
vertical aerodynamic stiffness H4

* extracted by both methods also in good agreement 
with small scatter.  The cross-coupling derivatives H2

* and H3
* also agree well except 

small difference of H3* at reduced wind speed around 2-3.  On the other hand, the 
identified A1

* term are somewhat different at high wind speeds.  The largest difference 
is the most sensitive term A4*.  
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Fig. 7.26  Flutter derivatives (H1*, H2*,H3*, H4*) of the IRR Bridge model from the 
buffeting test by the SSI-DATA and the SSI-COV under smooth flow. 
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Fig. 7.27  Flutter derivatives (A1*, A2*,A3*, A4*) of the IRR Bridge model from the 

buffeting test by the SSI-DATA and the SSI-COV under smooth flow. 
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7.3.1.3   Comparisons of Flutter Derivatives between the  Free Decay 
and the  Buffeting Tests under Smooth Flow. 

 
All flutter derivatives found from the free decay (by the SSI DATA technique) 

and the buffeting tests (by the SSI DATA and the SSI–COV) are plotted and compared 
in Figs. 7.28 and 7.29.  The results show that the flutter derivatives identified by the 
SSI-DATA from the buffeting test matched well with those from the free decay test.  
This result helped validate the reliability and applicability of the SSI-DATA technique 
to various experimental methods.  This confirms the ability of the SSI-DATA to apply 
with the free decay signal though it developed from stochastic model (white noise 
loading assumption) as do the thin flat plate results. Besides, this result allowed 
focusing on applying the SSI-DATA technique to the buffeting test method. 

On the other hand, there are more variations in the values of the A1
*, A4

* and 
H2

* derivatives obtained by the SSI-COV between the free decay and the buffeting 
tests (see Figs. 7.24, 7.28 and 7.29).   
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Fig.7.28 Comparison of Hi* from couple-degree-of-freedom tests with initial 
displacement (SSI DATA) and without initial displacement (SSI-DATA, 
SSI-COV) under smooth flow 
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Fig.7.29 Comparison of Ai* from couple-degree-of-freedom tests with initial 
displacement (SSI DATA) and without initial displacement (SSI-DATA, 
SSI-COV) under smooth flow 

 
7.3.1.4  Comparisons of Flutter Derivatives with the Previous Method. 
 
 In order to validate the present system identification technique, the identified 
flutter derivatives were then compared with the previous work.  The free decay test of 
the same bridge model had been previously carried out in smooth flow by DMI (1995) 
at the zero angle of attack.  The system identification method used in extracting the 
flutter derivatives was based on that proposed by Poulsen and Damsgaard (1992).  
This method was briefly described in previous chapter. (see chapter 2) and 
identification process are iteration in nature to minimize the prediction error.  The 
vertical and torsional frequencies of the model are 2.29 Hz and 5.18 Hz, respectively. 
The ratio of the torsional to vertical frequency is 2.26. Tests were performed with the 
inherent damping ratios that were found to vary from 0.2% at small amplitude to 0.3% 
of critical at higher amplitudes for heave (vertical) motion and range from 0.21% to 
0.24% for pitch (torsional) motion.  
 

Figs. 7.30 and 7.31 show the flutter derivatives of the IRR Bridge deck 
estimated by both SSI methods from the free decay tests as well as those by Poulsen’s 
method.  The derivatives obtained by Poulsen’s method shown in Figs 7.30 and 7.31, 
have been fit by least square method, then the original extracted values were not 
known.  All flutter derivatives – except H1

*, H4
* and A4

* - from the SSI techniques 
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match well in trend with those from Poulsen’s method (DMI 1995).  The H1* and H4* 
coefficients are those related to the aeroelastic damping and frequency of vertical 
mode, respectively.  From DMI’s results, the aeroelastic damping increases with 
velocity at low reduced velocities up to the value around 6, and then decrease at higher 
velocities.  This shall be resulted in the classical flutter (coupled mode instability). 
However, both buffeting responses from the present study and the DMI’s tests show 
only flutter instability in the torsional mode (stall flutter), see Fig 7.44.  The factor that 
made the difference in the extracted values of H1

* and H4
* is the system identification 

technique employed.  For the system identification method proposed by Poulsen and 
Damsgaard (1992), it involves iterations in fitting the measurement of free decay time 
–histories of bridge deck in heave and torsion.  This analysis procedure is complicated, 
requires good initial guess-values, and was found to work quite well for tests where 
the initial excitation produced a clearly defined initial condition where both heave and 
pitch responses decayed in a somewhat regular manner following the excitation.  As 
reported by the authors of the method, according to the free decay method, the bridge 
model had to be excited initially in both modes to sufficient amplitudes to allow that 
the initial response to the excitation is well defined.  This is usually not the case for 
tests at high velocities of bridge sections those exhibit strongly aeroelastic damping as 
the responses are damped very fast and meaning full signal are too short.  In addition, 
the presence of torsional motion in vertical motion due to the effect of H3

* made the 
identification more difficult.  The factor that made the extraction of A4* difficult by 
the Poulsen’s method is that this derivative is very sensitive.  Besides, the A4* term 
was not included in the original works of the authors of the method.  
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Fig.7.30. Comparison of Hi* from the free decay test with difference system 

identification methods; SSI-DATA, SSI-COV and Poulsen’s method. 
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Fig.7.31 Comparison of Ai* from from the free decay test with difference system 

identification methods; SSI-DATA, SSI-COV and Poulsen’s method. 
 
Summary of the test results of the IRR Bridge deck under smooth flow 

 
 Application of both the SSI-DATA and the SSI-COV to real bluff bridge 
section learned that both SSI methods have good capability in extracting derivatives 
from buffeting responses even they have less clear signal to noise ratio compared with 
free decay response.  Generally, the flutter derivatives identified by the SSI-DATA 
match well with those from the free decay method.  On the other hand, there are more 
variations in the values of the A1

*, A4
* and H2

* derivatives obtained by the SSI-COV.  
There are also some difference for H1* from the free decay by two SSI methods and 
the Poulsen’s method.  This is the same as what reported in most previous research, 
where some difference exit.  The factor that made extraction of H1

* more difficult is 
that most of bridge sections shows that H1

* remains negative in all various wind speed, 
resulting in very short useful length of recorded data in the free decay response.  
Besides, at high wind speed the trigger initial excitation was suddenly buried to 
buffeting response excited by wind.  Therefore, it is clearly seen that the concept of 
stochastic response in SSI identification can dramatically improve the ability in 
extracting these parameters at high wind speed. Based on the identification algorithm, 
this identification process does not require cleared decay signals and factorization of 
signals are used instead of fitting the original signals.  In case of Poulsen’s method, as 
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original vertical mode are rapidly damped out and the strongly presence of another 
mode (coupling torsional mode) made the extraction of H1

* difficult. 

 The methods will next be applied to analyze response of this bridge deck in 
turbulence wind flows. 
 
7.3.2  Flutter Derivatives of the IRR Bridge Model: 

Effects of Turbulence 
 

 

 
 
 

Fig. 7.32 The IRR Bridge model and grids to generate turbulent flow in wind tunnel. 
 

 Most of the prototype bridges are submerged in turbulent wind; therefore, 
detailed investigations of the effects of turbulence on the flutter derivatives are 
significant.  Almost all the wind tunnel tests for flutter derivatives have been generally 
carried out in smooth flows.  Although few researchers have studied the problem using 
wind tunnel tests, results and the identification methods were individually proposed 
(Scanlan and Lin 1978, Sarkar et al. 1994, Gu et al. 2000), and the results are still 
debatable and inconclusive.  For streamlined section, tests showed little effect (Sarkar 
et al., 1994), while tests on a rectangular box girder bridge showed galloping in 
smooth flow (Jakobsen and Hjort-Hansen 1998).  For П type section, Gu and Qin 
(2004) found that the effects of turbulence on the H3* and A3* seemed to be 
negligible; whereas the other four derivatives related to aerodynamic damping 
characteristics showed some deviations from those in smooth flow, especially at high 
reduced wind speed. 

In order to examine the effects of turbulence to the identified flutter derivatives 
of the IRR Bridge deck, the buffeting test were performed.  Tests were conducted 
under two levels of turbulence wind flows. The turbulent flow conditions were 
generated by two different obstacles i.e. spires and grids.  Figs. 6.3 and 6.7 show the 
configuration of spires and grids, respectively.  The longitudinal and vertical 
turbulence intensities were both about 5% and 8% for spires and grids, respectively.  
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Figs 6.6 and 6.10 show the wind-velocity power spectrum at various wind speed.  The 
installation of bridge model is as shown in Fig. 7.32. 

The buffeting responses from tests were sampled at the rates of 200 Hz. The 
results were then removed trend, re-sampled at 50 Hz, and low-pass filter as same as 
in the case of smooth flow.  However, the total time records of buffeting responses 
were 500 sec (~8 min.) instead of 360 sec as in the case of smooth flow. 

 
Figs. 7.33 and 7.34 present the identified flutter derivatives of the bridge deck 

by the SSI-DATA method from buffeting responses under smooth flow and two 
turbulence wind flows with both the longitudinal and the vertical turbulence intensities 
of 5% and 8%, respectively.  Generally, the flutter derivatives of the bridge in 
turbulent flows identified by the SSI-DATA are in agreement with those in smooth 
flow.  From Figs. 7.33 and 7.34, it can be found that the influence of the flow type on 
H4

* and A3
*, i.e. flutter derivatives related to the direct aerodynamic stiffness, seems to 

be negligible. Though, the value of H4
* obtained from the turbulence flow is somewhat 

less than that in the smooth flow case, it affected only the second decimal digit of the 
frequency value.  The influence also has negligible effect on H1

*and H2
* i.e. direct and 

cross derivatives that are related to the vertical and the torsional aerodynamic 
dampings, respectively.  On the other hand, the more important A1

* A2
* and H3

*, show 
rather noticeable deviations from those in the smooth flow, especially at high reduced 
wind speeds. The most important effect is that the reduced wind speed, which 
corresponds to the reversed sign of the torsional aerodynamic damping A2

*, increased 
in the turbulent flow. It shows that turbulence tends to make bridges more 
aerodynamically stable by delaying the torsional flutter. The deviations of flutter 
derivatives may reveal the fact that for those bridges with bluff type sections similar to 
the IRR Bridge, the effects of turbulence can be significant.  Hence, wind tunnel tests 
of such bridges for flutter derivative estimation should also be carried out in turbulent 
flows. 

Figs. 7.35 and 7.36 present the identified flutter derivatives of the bridge deck 
by the SSI-COV method from buffeting responses under smooth flow and two 
turbulence wind flows.  Figs. 7.37 and 7.38 compare the flutter derivatives extracted 
by the SSI-DATA and the SSI-COV methods under 8%-turbulence flow.  Generally, 
the flutter derivatives obtained by the SSI-COV agree with those from the SSI-DATA. 
However, the coupled aerodynamic derivatives; A1

* and A4
*, extracted by the SSI-

COV in turn seem to be difference from those obtained by the SSI-DATA.  

Figs. 7.39 and 7.40 compare the A1
* and A4

* derivatives identified by the SSI-
COV and the SSI-DATA under different flows.  It can be seen that these two 
derivatives are more scattered than those obtained from the SSI-DATA.  This result 
shows that, in the case of the 2-edge girder blunt type section, applying the SSI-DATA 
yields better results especially for the coupling derivatives.  
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Fig. 7.33  Flutter derivatives (Hi

*) of the IRR Bridge model by the SSI-DATA from 
buffeting responses under smooth and turbulent flows. 
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Fig. 7.34  Flutter derivatives (Ai

*) of the IRR Bridge model by the SSI-DATA from 
buffeting responses under smooth and turbulent flows. 
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Fig. 7.35  Flutter derivatives (Hi

*) of the IRR Bridge model by the SSI-COV from 
buffeting responses under smooth and turbulent flows. 
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Fig. 7.36  Flutter derivatives (Ai

*) of the IRR Bridge model by the SSI-COV from 
buffeting responses under smooth and turbulent flows. 
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Fig.7.37  Comparisons of flutter derivatives (Hi*) of the IRR Bridge model from the 
buffeting test by the SSI-DATA and the SSI-COV under 8%-turbulent flow. 
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Fig.7.38  Comparisons flutter derivatives (Ai*) of the IRR Bridge model from the 
buffeting test by the SSI-DATA and the SSI-COV under 8%-turbulent flow. 
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Fig. 7.39  Flutter derivatives (A1

*) of the IRR Bridge model by the SSI-COV and the 
SSI-DATA methods  from buffeting responses under smooth and turbulent 
flows. 

 

        
-0.8

-0.2

0.4

1.0

1.6

0 2 4 6 8 10 12

A
4*

U/nhB

Smooth flow
Turbulence flow(5%)
Turbulence flow(8%)

      
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12

A
4*

U/nB

Smooth flow
Turbulence flow (5%)
Turbulence flow (8%)

 
                          a) by SSI-COV    b) by  SSI-DATA 
 
Fig. 7.40  Flutter derivatives (A4

*) of the IRR Bridge model by the SSI-COV and the 
SSI-DATA methods from buffeting responses under smooth and turbulent 
flows. 

 
 
7.3.3  Vortex Responses  and  Stability Limits of the IRR Bridge 
 

The stability limit, i.e. the wind speed for onset of critical oscillations such as 
coupled flutter (classical) and torsional stability was determined in smooth flow for 0 o  
angle of wind incidence. The stability limit was determined with rig inherent damping 
in order to have a more conservative determination of the stability limit and vortex 
shredding shall be seen. 

Initially, the stability limit was determined roughly by increasing the wind 
speed and observing the behavior of the section.  Subsequently, recordings were made 
of the response starting below the stability limit up to wind speed where the bridge 
deck exhibits clear unstable behavior.  
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The vortex response test was in a similar manner, where small increasing of 
wind speed around point that the bridge deck shows clearly strong vortex response. 
Figs. 7.41 and 7.42a show displacement response at slightly lower wind speed and at 
wind speed at vortex occurs, respectively.  Fig 7.42b plotted frequency of each mode 
at vortex response. The strongly presence of torsional mode was noted.  The velocity 
at vortex-shedding response was found at 2.58 m/s and the Strouhal number from the 
dynamic test was St = 0.065. 

Fig. 7.43 plotted normalized-heave and pitch responses with reduced velocity. 
Heave response has been normalized with deck height (H) and the wind speed is 
presented as reduced velocity i.e. the wind speed is normalized with heave frequency, 
fh and deck height. The pitch (torsional) response in deg. is plotted with reduced 
velocity where fα is pitch frequency. 
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Fig. 7.41  The IRR bridge model under smooth flow: displacement time histories h and 
α at U = 2.37 m/s 
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Fig. 7.42a  The IRR bridge model under smooth flow: displacement time histories h 

and α at U = 2.58 m/s 
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Fig.7.42b  The IRR Bridge model frequency spectrum plot of  h (vertical) and α 
(torsional) at U = 2.58 m/s 
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Fig. 7.43   The normalized heave (above) and pitch (below) responses of the IRR 
Bridge model under smooth and turbulent flows 
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Fig. 7.44   Heave and pitch responses of  the IRR Bridge model under smooth flow at 
flutter speed, U = 7.45 m/s. 

 
Figs. 7.43 shows comparisons of the root-mean-square (RMS) torsional and 

vertical buffeting responses of the IRR Bridge model versus the reduced velocity 
between smooth and turbulence flows.  Under smooth flow, the very abrupt transition 
with increasing velocity from the effectively zero torsional response amplitude to the 
clear instability occurs in the near neighborhood of the reduced velocity value (U/fαH) 
of 45 (see Fig. 7.33b).  From Fig. 7.44 it was found that the instability of the IRR 
Bridge model is the torsional flutter type.  The stability limit has been defined as the 
mean wind speed at which this abrupt transition of torsional response was beginning.  
This is usually the case of actual response instead of the theoretical unstable limit that 
defined as a point where model exhibits an increasing in response with time.  This 
stability limit velocity of the model was 7.45 m/s, which equivalent to 118 m/s in full 
scale.  The result agrees with that from DMI test results. The stability limit is 
considered relatively high compared to the design wind speed, and showing that the 
IRR Bridge section was safely design regarding the flutter instability.  Fig. 7.44 plots 
the responses of the IRR Bridge model at the onset of the flutter instability. It is 
clearly seen from Fig. 7.45 that the abrupt change in the vertical response at high wind 
speed is the effect of the cross derivative H3

*which causes the coupling of the high-
amplitude torsional responses on the vertical responses. 

Compared with the smooth flow, the turbulence flow reduces the vortex-
shedding response, because the turbulence tends to enhance the reattachment of flow 
and weaken the vortex shedding formulation.  However, it raises the amplitude of the 
bridge responses progressively over the speed range. The turbulent flow results 
indicate that the torsional flutter is postponed to a slightly higher wind speed than that 
found in smooth flow in case of 5%-turbulence intensity. On the other hand, no clear 
and uniquely definable “flutter instability” was made evident by the experiment in 
case of 8%-turbulence intensity. It is worth noting however, that the largest amplitudes 
reach under this turbulence are probably additionally restrained by the nonlinear 
structural effects of test-setup.  
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7.3.4  Aerodynamic Force Coefficients of the IRR Bridge 

 
The static aerodynamic force coefficients of the IRR Bridge were also obtained 

under different type of wind flow (see Fig. 7.45). The method used to obtain these 
static coefficients is described in Chapter 5 and similar to that the thin flat plate case. 
The experimental configuration is outlined in section 5.1.1.  In each set, the static 
coefficients were determined in steps of wind angle of attack of 3 o  from -12 o  to +12 o .  
In each angle of wind attack, model was subjected to three different wind velocities 
and average values are shown in Fig.7.47.  The results of the tests are presented in the 
form of drag, lift and moment coefficients.  The section model was installed about its 
centre of rotation, then, the pitching moment is considered with respect to this centre 
of rotation.  The sign convention used in the presentation of the test results is as same 
as in the thin flat plate case (Figs. 7.15(b)).  

 

  
a)                                                                b) 

Fig. 7.45  The static test set-up of the IRR Bridge model under turbulent flows in wind 
tunnel: a) with spires (at 3 o angle of attack) b) with grids (at 0 o angle of 
attack). 

 

7.3.4.1  Smooth Flow 

The force coefficients of the IRR Bridge section model measured in smooth 
flow are shown in Figs. 7.46.  It shows that as the absolute value of wind attack angle 
increases; drag coefficient, CD, (normalized with respect to a constant bridge width) 
increases due to the increase of front projected area. The absolute values of lift and 
torsional moment coefficients (CL and CM) also increase with wind angles of attack but 
in the range of small attack angles. The sudden drop in lift force and torsional moment 
at an angle of attack of approximately 3 o , is due to flow separation occurring at angles 
of attack larger than this angle. Moreover, the model is subjected to a smaller torsional 
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moment at positive wind angle of attack, but a larger torsional moment at negative 
wind angle of attack. 
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Fig. 7.46  The static force coefficients of the IRR Bridge model under smooth flow 
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7.3.4.1  Effect of Turbulence  

 The influence of the oncoming turbulence on the aerodynamic force 
coefficients are shown in Fig. 7.46.  Two different level of turbulence flows were 
conducted, which values are 5% and 8%, respectively.  In each set, static coefficients 
were determined in steps of 3 o  from -12 o  to +12 o .  In each angle of wind attack, 
model was subjected to three different wind velocities and average values are shown 
in Fig.7.47.  The aerodynamic force coefficients were then determined using Eq. 6.4 as 
in case of the thin flat plate. 

From Fig. 7.47, the drag coefficients of the IRR Bridge model under turbulent 
flow are slightly different from those in smooth flow.  The absolute value of lift force 
coefficients under turbulent flow is slightly lower than those from smooth flow except 
at the highest angle of attack (±12 o ). On the other hand, the absolute values of 
moment coefficients under turbulent flow at high angle of attack are higher than those 
under smooth flow.  The turbulence tends to enhance the reattachment of the flow by 
increasing the angle where the flow separation occurs from 3 o to 6 o for smooth and 
turbulence flow, respectively. 
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Fig.7.47 The static force coefficients of the IRR Bridge under smooth and turbulent 
flows 
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7.4  Modified Sections of Industrial Ring Road Bridge Deck by 
Aerodynamic Appendages 

 
7.4.1 Flutter Derivatives: Smooth Flow 
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Fig.7.48  Comparisons of flutter derivatives (Hi*) of the IRR Bridge model among 
original section and three modified sections. 
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Fig.7.49  Comparisons of flutter derivatives (Ai*) of the IRR Bridge model among 
original section and three modified sections. 

 
The results of flutter derivatives are presented in this section and their 

comparisons among four sections are presented as well. The aerodynamic derivatives 
were calculated for each wind speed as the average value of 10 tests at each velocity. 
Unless visual inspection of the results indicated some irregularities, the average values 
were carried forward in the analysis. For smooth flow condition, flutter derivatives of 
four sections are presented in figure 7.49. The most important terms are H1* and A2* 
which refer respectively on vertical and torsional damping of the section. Their 
positive values indicate unstable conditions. For vertical aerodynamic damping 
coefficient, H1*, the modification effects considered to be negligible, which all 
sections show in negative region. However, the section are influenced by the 
modifications in A2* which is most considerable in long-span bridges.   

The original section and fairing modified section lead to a single torsional 
flutter at high wind velocity because A2* change from negative values to positive 
values. Flutter derivatives H2* term, cross derivatives to a torsional aerodynamic 
damping, are conversely agree well with A2* results. Fairing modified section shows a 
little improvement on the unstable behavior, delaying the unstable of bridge deck from 
reduced velocity of 4.5 to 5. Also, it was clearly found that soffit plate modified 
section, and combination of soffit plate and fairings modified sections produce more 
stable sections, whereas the classical flutter rather than the single torsional flutter will 
occur because of H2* and A1* 
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The results was found some dispersive in A4* and H4* terms between original 
section and modified ones, this coefficients are considered insignificant and usually 
neglected and in most of previous researches. Moreover, all modified sections show a 
little influence in A1* and A3*, which agree altogether well in trend. For H3* term, the 
fairings section agrees in trend with an original one, while soffit plates and combined 
sections are agree in trend to each other. 

 

7.4.2 Structural Dynamic Responses and Stability Limits 
 

The tests were carried on for aerodynamic appendage installed sections. 
Structural response of fairing-modified section, soffit plate-modified section, 
combined section and the comparisons between four sections are in ordered shown in 
figures 7.50, 7.51, 7.52 and 7.53. Similar to the original section, vortex shedding 
phenomenon and stability limit can be roughly identified from this test. The effects of 
fairing, soffit plates and combined section are then carried out. 
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Fig.7.50 Comparisons of dynamic responses of IRR bridge deck with fairings; 

smooth flow (a) Heave responses and (b) Pitch responses 
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Fig. 7.51 Comparisons of dynamic responses of IRR bridge deck with soffit plates; 

smooth flow (a) Heave responses and (b) Pitch responses 
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Fig. 7.52 Comparisons of dynamic responses of IRR bridge deck with combined 

section; smooth flow (a) Heave responses and (b) Pitch responses 
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Fig. 7.53 Comparisons of dynamic responses of IRR bridge deck with various types 
of aerodynamic appendages mounted; smooth flow (a) Heave responses and 
(b) Pitch responses 

 
The instability of the model was found not involved coupled motion 

between vertical and torsional degree-of-freedom, i.e. the observed instability is not 
classical flutter. A stability limit can be extended by all type of modifications. Since 
the frequency scale of this model can be identified from the ratio of model to the 
prototype frequency, which equals to 5.715, the velocity scale can be accordingly 
identified. 1:90 length scales regard 15.75 of velocity scale. For fairing mounted 
section, critical wind speed is 135 m/s, around 16% is extended from original section. 
For soffit plate and combined case, the flutter could not be found even in very high 
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wind speed. Hence, soffit plate and combined case are effective in delaying a torsional 
instability of bridge. For buffeting and vortex shedding response, three types of 
modifications can suppress the dynamic response of bridge significantly. That is, if we 
consider the effective of three modifications on buffeting response and structural 
stability, the results shall be: combine > soffit plate > fairing. Though combined case 
seem to be the most effective, but it still hold a numerous weight. The most suitable 
modification of bridge should be carried out in design and construction in boundary of 
architectural point of view and safety of passenger cars. 
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7.4.3 Aerodynamic Force Coefficients 
 

The aerostatic experiment was then carried on for aerodynamic appendages 
mounted sections. The comparisons of static coefficients among original section and 
three modified sections are shown in figure 7.54  
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Fig. 7.54 Comparison of static coefficients of original section, fairing-modified 
section, soffit plate section and combined section; smooth flow 
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The study was found that, according to figure 7.54 (smooth flow condition), 
fairings can significantly reduce drag coefficient. A combined section seems to be the 
most effective one since the approaching wind can be more smoothly flew through a 
section than those through an original bluff section. For lift and moment coefficient, 
the modifications mounted to a model however represent a little improvement, except 
at zero angle of attack of moment coefficient which the modifications show a 
considerable improvement. Hence, it can be concluded that fairing can effectively 
reduce the drag coefficients. 
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CHAPTER 8 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 The research work described herein consists principally of identification of 
aeroelastic and aerodynamic parameters of bridge decks.  This work was pursued with 
the aim of improving the tools required for the identification of experimental 
parameters used for the wind-induced response prediction of long-span bridges.  
 
 

8.1  Conclusions for Flutter Derivatives 
 
8.1.1  System Identification Method 
  

 A theoretical model based on the stochastic subspace identification was used to 
extract the flutter derivatives of bridge deck sectional models from the two-degree-of-
freedom free decay and buffeting responses.  An advantage of the stochastic subspace 
identification technique is that it considers the buffeting forces and the responses as 
inputs instead of as noises as typically assumed in previous research.  The efficiency 
and simplicity of the stochastic subspace identification (SSI) lie in output-only 
measurements and its non-iterative nature in computations.  For the first times, the 
data-driven stochastic system identification technique (SSI-DATA) was employed to 
directly extract the flutter derivatives of bridge deck sections model from their random 
vibration responses under wind flows and the results were then compared to those 
from the previous up-to-date covariance-driven-stochastic system identification (SSI-
COV).  Comparing with the SSI-COV, the SSI- DATA method avoids the 
computation of covariances between the outputs. It is replaced by projecting the row 
space of the future outputs into the row space of the past outputs.  This projection is 
computed from the numerically robust square root algorithm, QR factorization instead 
of squared up the output data as in the SSI-COV algorithm.  Moreover, this reduces 
both the dimensions of the matrices and the computation time considerably.  The 
conclusions of the present study are as follows. 

1) Numerical simulations of the bridge deck responses confirmed that the SSI-DATA 
technique can be used to estimate flutter derivatives from buffeting and free decay 
responses with reliable results. This shows the applicability of the SSI-DATA 
method with various test techniques, though it was developed from a stochastic 
model.  Comparing with the SSI-COV, the identified modal parameter and system 
matrices from the SSI-DATA are more precise and less scattered. 

2) For the thin plate model under smooth flow, wind tunnel tests showed that flutter 
derivatives identified by the SSI-DATA technique from both the free decay and the 
buffeting tests matched well with theoretical values. The flutter derivatives 
identified by the SSI-COV method from both tests also agreed with theoretical 
values, except in the case of A4

* that was identified from buffeting responses. 
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3) When apply to the bluff section model of the IRR Bridge under smooth flow, the 
flutter derivatives estimated by the SSI-DATA from the buffeting test agreed with 
those obtained from the free decay test. This result allowed focusing on applying 
the SSI-DATA technique to the buffeting test method. On the other hand, there are 
more variations in the values of the A1

*, A4
* and H2

* derivatives obtained by the 
SSI-COV.  From the test results, the sign reversal of the A2

* derivative was 
observed as the reduced wind speed reached the value of 4.5.  This indicates that 
this bridge section is susceptible to flutter instability at high wind speed. 

4) Under turbulence wind, the identified flutter derivatives by the SSI-DATA of a 
blunt section model of the IRR Bridge are generally in agreement with those in 
smooth flow.  Though, there are small deviations from those in smooth flow at high 
reduced wind speeds.  The most important effect is that the reduced wind speed, 
which corresponds to the reversed sign of the torsional aerodynamic damping A2

*, 
increased in the turbulent flows.  It shows that turbulence tends to make bridges 
more aerodynamically stable by delaying the torsional flutter.  Comparing with the 
SSI-COV, the identified flutter derivatives from the SSI-DATA are more precise 
and less scattered, especially for the very sensitive A1

*and A4
*. 

 
In summary, the numerical simulation tests showed that the precision of modal 

parameters and system matrices can be clearly improved by using the SSI-DATA 
technique when compared with those from the SSI-COV.  From the results of wind 
tunnel tests, it was found that for a simple streamlined section, the flutter derivatives 
identified from both the SSI-DATA and the SSI-COV agreed well together.  However, 
in the case of the 2-edge girder blunt type section, the SSI-DATA technique yields 
better results especially for the coupling derivatives.  Applying the proposed SSI-
DATA technique to the buffeting test yields a straightforward, cost effective, and 
reliable system identification process that can be used to identify flutter derivatives of 
various bridge decks.  The method uses only output measurements.  Instrument and 
extra efforts of input measurements are therefore not required as in case of the free 
decay and the force vibration tests.  Moreover, the root-mean-square responses of 
bridge deck can be obtained simultaneously from the same test without requiring 
separated tests as in case of the free decay method. 

 
 

8.1.2  Effect of Experimental Techniques : SDOF and 2-DOF 
 

The direct-flutter derivatives of the thin plate model as found from the single-
degree of freedom tests matched well with those found from the two-degree-of-
freedom coupled motion tests (i.e. the free decay and the buffeting tests) which 
clarified two points: 

1) The direct-flutter derivatives are independent of other motions incidental to the 
principal degree of freedom with which they are associated. The result shows that 
the direct-flutter derivatives are indeed not affected by the motion along the other 
degree of freedom, as predicted by theory i.e., those flutter derivatives associated 
with h motion are not affected by α motion, and vice versa.  
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2) The present system identification method is well applicable to various experimental 
test methods.  

 

8.1.3  Effect of Deck Shape 

 For the streamlined thin plate section under smooth flow, the values of the 
most important flutter derivatives H1

* and A2
*- related to aerodynamic damping in 

vertical and torsional mode, respectively- remained negative at all wind speed tests.  In 
case of the blunt type IRR Bridge model the vertical aerodynamic damping, H1

*, 
remained negative at all wind speed test.  However, the torsional aerodynamic 
damping, A2

*, remained negative at low reduced wind speed but showed the sign 
reversal at high reduced wind speed.  The sign-reversal phenomenon is the outstanding 
factor toward the flutter instability of bridge decks.  This result show that the relatively 
streamlined bridge section exhibits more aerodynamic stability than that of blunt type 
section.  Then, the streamlined bridge sections seemed to be an obvious choice for the 
ultra-long span bridges.   

Flutter derivatives of four sections are investigated. For vertical aerodynamic 
damping coefficient, H1*, the modification effects considered to be negligible, which 
all sections show in negative region. However, the section are influenced by the 
modifications in A2* which is most considerable in long-span bridges. Fairing 
modified section shows a little improvement on the unstable behavior, delaying the 
unstable of bridge deck from reduced velocity of 4.5 to 5. Also, it was clearly found 
that soffit plate modified section, and combination of soffit plate and fairings modified 
sections produce more stable sections, whereas the classical flutter rather than the 
single torsional flutter will occur because of H2* and A1*. In case of the blunt type 
bridge deck, modifying the cross-sectional geometry to be more streamlined design by 
aerodynamic appendages can significantly improve the aerodynamic stability of 
bridge. 
 

8.1.4  Effect of Flow Conditions: Smooth and Turbulence Flow 

 The flutter derivatives of the IRR Bridge deck under smooth and turbulent flow 
were determined and then compared.  The IRR Bridge is a 2-edge-girder bridge 
section with A-shape pylons.  This bridge is an example of blunt type section that has 
a good cost performance, but at the same time the bridge cross-section is known to be 
aerodynamically unstable at high wind speed.   

 From the test results under smooth flow, the sign reversal of the A2
* derivative 

was observed as the reduced wind speed reached the value of 4.5 (i.e. at velocity 
equals 118 m/s in full scale).  This indicates that this bridge section is susceptible to 
flutter instability at high wind speed.  The instability of the IRR Bridge was found to 
be torsional SDOF-type (“stall flutter”).  Under turbulence wind, the identified flutter 
derivatives –except A2

*- are generally in agreement with those in smooth flow.  The 
most important and positive effect of the turbulence is that it tends to make the bridge 
more aerodynamically stable by delaying the sign reversal of the aerodynamic 
damping A2

*.  This may reveal that for those bridges with bluff type sections similar to 
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the IRR Bridge, the effects of turbulence can be significant.  Hence, the wind tunnel 
tests of such bridges for flutter derivatives estimation should also be carried out in 
turbulent flow 

 It is important to note that the results presents in this study are based on the 
wind-tunnel investigations of only the IRR Bridge deck section under the conditions of 
the present experiments and the turbulence generated by grids and spires. 

 

8.2  Conclusions for Buffeting 
 
8.2.1  Static Force Coefficients 

 
 Buffeting is the random response of the bridge due to wind forces associated 

with the pressure fluctuations on the bridge deck caused by the turbulence of the wind 
flow over the section.  This turbulence may be due to the gustiness in the incident 
natural wind, and may also contain contributions from the so-called signature or the 
self-induced turbulence.  Wind flow over the bluff sections such as bridge decks 
generally causes separation of the flow at or near the leading edge of the section.  This 
separated flow around the section is turbulent and causes forces of random nature on 
the section.  The total buffeting forces on a section will depend on the level of the 
turbulence and the bridge deck section shape.  For the estimation of buffeting forces 
and responses of bridge decks, the aerodynamic force coefficients are one of the 
important factors that should be experimentally determined. 

 The aerodynamic forces (static forces coefficient) on the rigidly mounted 
section model (static test set-up) of both a streamlined thin plate under smooth flow 
and a bluff ( IRR) bridge deck section under smooth and turbulence flow were 
investigated.  The conclusions are as follows. 

 
1) For the streamlined thin plate model, generally, the static force coefficients agree 

with the theoretical values at the small angles of wind attack.  The sudden drop of 
lift forces and pitching moment (torsion a) from theoretical values occur at wind 
angle of attack around 7 o .  The sudden drop in pitching moment and lift force is 
due to flow separation occurring at angles of attack larger than this angle.  The 
flow separation has not been taken into account in the theoretical calculations.  
Then, the theoretical values for the thin plate model are valid for small angles of 
attack only and wind tunnel test is still an effective way in determining the 
aerodynamic force coefficient of bridge deck. 

2) For the bluff type section of the IRR Bridge under smooth flow, the angle of 
attack where the flow separation occurs is reduced to 3 o comparing to that of 7 o in 
case of thin plate model.  This smaller angle of wind separation is due to the sharp 
leading edge of bluff type section that generally causes the flow separation occurs 
more easily. 
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3) Under the turbulence flow, the static force coefficients of the IRR Bridge were 
moderately different from those determined under smooth flow.  The turbulence 
tends to enhance the reattachment of the flow by increasing the angle where the 
flow separation occurs from 3 o  in case of smooth flow to that of 6 o  in case of 
turbulence flow, respectively. 
 

4) Fairings can significantly reduce drag coefficient. A combined section seems to 
be the most effective one since the approaching wind can be more smoothly flew 
through a section than those through an original bluff section. For lift and moment 
coefficient, the modifications mounted to a model however represent a little 
improvement, except at zero angle of attack of moment coefficient which the 
modifications show a considerable improvement. Hence, it can be concluded that 
fairing can effectively reduce the drag coefficients. 

 
 
8.2.2  Buffeting Responses, Vortex-Shedding  and  Flutter Instability 
 

The effects of turbulence upon various aerodynamic phenomena based on a 
model study of the IRR Bridge were also studied. The model was tested under smooth 
and two levels of turbulence flows. 

Under smooth flow, the torsional vortex-shedding response of the blunt type 
IRR Bridge was observed at velocity value of 2.58 m/s (i.e. the full scale velocity = 
41m/s). The approximate Strouhal number from the dynamic test which was St = 
0.065.  The very abrupt transition with increasing velocity from the effectively zero 
torsional response amplitude to the clear instability occurs in the near neighborhood of 
the velocity value of 7.45 m/s. (i.e. the full scale velocity =118 m/s).  This result 
indicates that the blunt type IRR Bridge section is susceptible to flutter instability at 
high wind speed. 

For fairing mounted section, critical wind speed is 135 m/s, around 16% is 
extended from original section. For soffit plate and combined case, the flutter could 
not be found even in very high wind speed. Hence, soffit plate and combined case are 
effective in delaying a torsional instability of bridge. For buffeting and vortex 
shedding response, three types of modifications can suppress the dynamic response of 
bridge significantly. That is, if we consider the effective of three modifications on 
buffeting response and structural stability, the results shall be: combine > soffit plate > 
fairings. Though combined case seem to be the most effective, but it still hold a 
numerous weight. The most suitable modification of bridge should be carried out in 
design and construction in boundary of architectural point of view and safety of 
passenger cars. 

Compared with the smooth flow, the turbulence flow reduces the vortex-
shedding response, because the turbulence tends to enhance the reattachment of flow 
and weaken the vortex shedding formulation.  However, it raises the amplitude of the 
bridge responses progressively over the speed range.  The results from the turbulent 
flows indicate that the serious torsional oscillations (flutter instability) are postponed 
to a slightly higher wind speed than that found in smooth flow in case of 5%-
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turbulence flow.  However, no clear and uniquely definable “flutter instability” was 
made evident by the experiment in case of 8%-turbulent flow.  

 

8.3  Recommendations and Suggestions for Future Works 
 

 
 From the study of this research, the following issues may be noted and 
investigated further to enhance a better understanding of the bridge aerodynamics:  

 
1) In this study, in order to reveal the vortex shedding-response phenomena, the low-

inherent damping of model was selected.  This vortex-shedding amplitude is well-
known as damping dependence, then tests may be carried out in the case of higher 
structural damping of real bridge. 
 

2) The effect of incident turbulence on the aerodynamic parameters should be further 
examined for a wide range of bluff sections and different turbulent intensities.  
The results presented and suggestions made in this study are based on the wind-
tunnel investigations of only two bridge deck sections under the conditions of the 
present experiments.  The experimental set-up in this study is suitable only for a 
small range of amplitude responses and exhibit an amplitude dependence of the 
structural damping at high amplitude. It is probably the effects of additional 
restrain by the nonlinear structural effects of the test-setup. This limits the 
maximum reduced velocity that can be tested to identify flutter derivatives in this 
study, especially for high turbulence intensities where a large amplitude of the 
buffeting response occurs.  In order to identify flutter derivatives of a bridge deck 
under high turbulence intensities, a new experimental set-up or an additional 
artificial damping such as electro-magnetic may be required. 

 
3) From this study, it is found that there are some limitations for the identification of 

flutter derivatives from the buffeting test.  For example, it becomes more difficult 
to extract the flutter derivatives from the buffeting responses in the situation when 
a relatively heavy model (i.e. the thin plate model in this study) is excited at a 
very low reduced wind velocity, i.e. low wind energy.  The useful signal is in the 
same order as the measurement noises.  In this case, using the SSI-DATA 
technique with the free decay method will yield more accurate results in this low 
wind speed range. 

 
4) Theoretically, both the SSI-DATA and the SSI-COV can be applied to extract 

eighteen flutter derivatives.  Then, they may be applied further to experimentally 
determine all the eighteen flutter derivatives for a wide range of bridge deck cross 
sections shapes to gain further insights into the complex phenomena of flutter and 
buffeting.  However, a more extensive experimental set-up is required.  Besides, 
this system identification technique may be applied further to identify flutter 
derivatives of real bridge decks in the field. 
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5) In this study, the effects of turbulence upon the aeroelastic and the aerodynamic 
phenomena of a blunt type bridge deck of IRR Bridge were investigated.  The 
turbulence has positive effects when concerning bridge stability.  It delays the 
onset of flutter and reduces the vortex-shedding response when compared with the 
smooth flow.  On the other hand, the turbulence raises the amplitude of response 
progressively over the wind speed range and may causes problem to the 
serviceability of the bridge.  Then, an improving of bridge stability as well as the 
reduction of bridge responses by the other methods such as the tuned mass 
damper (Malhortra 1987, Boonyapinyo et.al. 2001) are expected in future. 



202 

 

REFERENCES 
 

Asmussen, J.C. (1997). Modal Analysis based on the Random Decrement 
Technique.Application to Civil Engineering Structures, Ph.D. Thesis, Univ. 
Aalborg  

Ayorinde, E.O., and Warburton, G.B. (1980), Minimizing Structural Vibrations 
with Absorbers, J. of Earthquake Engineering and Structural Dynamics, 8, pp. 
219-236. 

Bienkiewicz, B. (1987). Wind Tunnel Study of Effects on Geometry Modifications 
on Aerodynamics of Cable-stayed Bridge Deck. Journal of Wind Engineering and 
Industrial Aerodynamics , 26, pp. 325-339. 

Billan K.Y and Scalan R.H. (1991), Resonance, Tacoma Narrow bridge failure, 
and under graduate physics textbooks. Journal of Physics, 59, No 2. 

Boonyapinyo V., Miyata T. and Yamada H. (1999), Advanced Aerodynamic 
Analysis of Suspension Bridges by State-Space Approach. Journal of Structural 
Engineering, ASCE, 125(12), pp. 1357-1366. 

Boonyapinyo, V., Phanichtripop, P. and Lukkunaprasit, P. (2001), Tuned Mass 
Dampers for Suppression of Buffeting and Flutter Response of Long-Span 
Suspension Bridges under Wind Load, Proc. of 3rd World Conference on 
Structural Control, Como Italy, pp.35-44 

Brincker, R., Krenk, S., Kirkegaard, P.H. & Rytter, A. (1992), Identification of the 
Dynamical Properties from Correlation Function Estimates, Bygningsstatiske 
Meddelelser, Danish Society for Structural Science and Engineering, Vol.63,N.1, 
pp.1-38  

Brincker, R., Zhang, L. & Andersen, P. (2000), Modal Identification from 
Ambient Responses using Frequency Domain Decomposition, Proc. 18th Int. 
Modal Analysis Conference, Kissimmee, USA.  

Brincker, R., Ventura, C. & Andersen, P. (2001), Damping Estimation by 
Frequency Domain Decomposition, Proc. 19th Int. Modal Analysis Conference, 
San Antonio, USA. 

Brown, D.L., Allemang, R.J. , Zimmerman, R. & Mergeay, M. (1979) Parameter 
Estimation Techniques for Modal Analysis, SAE Technical Paper Series, 
N.790221 

Brownjohn J.M.W. (1994), Estimation of Damping in Suspension Bridges, 
Buildings Struct. Proc. Inst. Civil Eng., 104, pp. 401–415 



203 

 

Brownjohn J.M.W. and Jakobsen J.B. (2001), Strategies for Aeroelastic Parameter 
Identification from Bridge Deck Free Vibration Data. J Wind Eng Ind Aerodyn, 89, 
pp. 1113–1136. 

Chen Z.Q. and Yu X.D. (2002), A New Method for Measuring Flutter Self-Excited 
Forces of Long-Span Bridges. China Civil Engineering Journal, 35, pp. 34–41. 

Chen A.R., Xu F.Y. and Ma R.J. (2006), Identification of flutter derivatives of 
bridge decks using stochastic search technique., Wind and Structures, 9(6), 
pp.441-455. 

Danish Maritime Institute (1995), Wind-Tunnel Study for the IRR Cable-Stayed 
Bridges, DMI 97034, Lyngby, Denmark. 

Davenport A.G., King J.P.C. and Larose G. (1992), Taut strip model testing, 
Aerodynamics of Large Bridges, Balkema, Rotterdam. 

Diana G., Cheli F. and Resta  F. (1995), Time Domain Aeroelastic Force 
Identification on Bridge Decks.  Proce 9th Int Conf Wind Eng, New Delhi, India, 
Wiley Eastern Ltd., pp. 938–949.  

Ding, Q.S., Chen, A.R., and Xiang, H.F. (2001),  Modified least-square method for 
identification of bridge deck aerodynamic derivatives. J. of Tongji University, 
29(1),pp. 25-29. 

Dryver, R. H., & Harold, R. B. (1996). Aerodynamic Design of Highway 
Structures. U.S. Department of Transportation, Federal Highway Administration , 
59 (3). 

Dyrbye C. and  Hansen S.O., (1996), Wind loads on structures., John   Wiley, New 
Jersey. 

Falco M., Curami A. and Zasso A. (1992), Nonlinear Effects in Sectional Model 
Aeroelastic Parameter Identification. J. Wind Eng. Ind. Aerodyn., 42, pp. 1321–
1332. 
Fang, F.-M., Li, Y.-C., Liang, T.-C., & Chen, C.-C. (2007). Investigation on the 
Aerodynamic Instability of a Suspension Bridge with a Hexagonal Cross-section. 
Journal of the Chinese Institute of Engineers , 30 (6), pp. 1009-1022. 

Felber, A. (1993), Development of a Hybrid Bridge Evaluation System”, Ph.D. 
Thesis, University of British Columbia (UBC), Vancouver, Canada,  

Fukuzono, K. (1986), Investigation of Multiple-Reference Ibrahim Time Domain 
Modal Parameter Estimation Technique”, M.Sc. Thesis, Univ. Cincinnati, USA 

Gu M., Zhang R.X. and Xiang H.F. (2001), Parametric Study on Flutter 
Derivatives of Bridge Decks. Engineering Structures, 23, pp. 1607–1613.  



204 

 

Gu M. and Qin X.R. (2004), Direct Identification of Flutter Derivatives and 
Aerodynamic Admittances of Bridge Decks. Engineering Structures, 26, pp. 
2161–2172. 

Gu  M., Zhang R.X. and Xiang H. (2000),  Identification of Flutter Derivatives of 
Bridge Decks. J Wind Eng Ind Aerodyn, 84 , pp. 151–162. 

Hjorth-Hansen E. (1992), Section model tests, Aerodynamics of Large Bridges, 
Balkema, Rotterdam.  

Holmes J.D. (1994) Methods of Fluctuating Pressure Measurements in Wind 
Engineering, Davenport Sixtieth Anniversary: A State of Art in Wind Engineering, 
Ninth International Conference on Wind Engineering, New Delhi, 1995, Wiley 
Eastern Limited, New Delhi. 

Hsia T.C. (1976), On Least Squares Algorithms for System Parameter 
Identification. IEEE Trans Autom Contr ,21 (1), pp. 104–108. 

Imai H., Yun C.B., Maruyama O. and Shinozuka M. (1989), Fundamentals of 
System Identification in Structural Dynamics. Prob Eng Mech ,4, pp. 162–173. 

Irwin H.P.A.H. (1992), Full aeroelastic model test, Aerodynamics of Large 
Bridges, Balkema, Rotterdam  

Iwamoto M. and Fujino Y. (1995),   Identification of Flutter Derivatives of Bridge 
Deck from Free Vibration Data. J Wind Eng Ind Aerodyn ,54/55, pp. 55–63 

Jain A., Jones N.P. and Scanlan R.H. (1996), Coupled Aeroelastic and 
Aerodynamic Response Analysis of Long Span Bridges. J. Wind Eng. Ind. 
Aerodyn,. 60, pp. 81–89. 

Jakobsen J.B. and Hjorth-Hansen E. (1995),  Determination of the Aerodynamic 
Derivatives by a System Identification Method. J Wind Eng Ind Aerodyn, 57, pp. 
295–305. 

Jakobsen J. B. (1995).  Fluctuating Wind Load and Response of a Line-like 
Engineering Structure with Emphasis on Motion-Induced Wind Forces, NTH 
1995:62, Department of Structural Engineering, Norwegian Institute of 
Technology, University of Trondheim, Norway.  

Jones N.P., Shi T., Ellis J.H. and Scanlan R.H. (1995),   System-Identification 
Procedure for System and Input Parameters in Ambient Vibration Surveys. J Wind 
Eng Ind Aerodyn ,54/55, pp. 91–99. 

Juang J.N. and Pappa R.S. (1985),   An Eigensystem Realization Algorithm for 
Modal Parameter Identification and Model Reduction. Journal of Guidance, 
Control, and Dynamics, 85,  pp. 620–627.   

Larsen A. (1992), Aerodynamic of Large bridges. Proceeding of the fist 
international symposium on aerodynamic of large bridges, 19-21 Feb 1992, AA 
Balkema Rotterdam/Copenhagen/Denmark. 



205 

 

Larsen A and Walther J.H. (1998), Discrete Vortex Simulation of Flow Around 
Five Generic Bridge Deck Sections. Journal of Wind Engineering and Industrial 
Aerodynamics., 77 & 78, pp. 591-602. 

Ljung L. (1995), System Identification Toolbox, For use with MATLAB, The 
Mathworks, USA.  

Ljung L. (1999) System Identification: Theory for the User. 2nd  Ed., Prentice Hall, 
Upper Saddle River, NJ, USA. 

Li Q.S. (1995), Measuring Flutter Derivatives for Bridge Section Models in Water 
Channel. J. Eng. Mech., ASCE 121 (1), pp. 102–116. 

Li Y.L., Liao H.L., and Qiang S.Z. (2003), Weighting ensemble of least-square 
method for flutter derivatives of bridge decks. J. Wind Eng. Ind. Aerodyn, 91, pp. 
713-721. 

Malhortra, L., and Wieland, M. (1987), Tuned Mass Damper for Suppressing 
Wind Effects in a Cable-Stayed Bridges, Proc. Int. Conf. on Cable-Stayed Bridges, 
Bangkok. 

McKelvey T. (1995), Identification of State-Space Models From Time and 
Frequency Data. PhD thesis, Department of Electrical Engineering, Linköping 
University,Sweden, 
[ftp://ftp.control.isy.liu.se/pub/Reports/Ph.D.Thesis/PhD380.ps.Z]. 
Mitchell L.D. (1986), Signal processing and the Fast-Fourier-Transform (FFT) 
analyzer - a survey. Modal Analysis: the International Journal of Analytical and 
Experimental Modal Analysis, 1(1), 24-36. 
 
Nagao, F., Utsonomiya, H., Oryu, T., & Manabe, S. (1993). Aerodynamic 
Efficiency of Triangular Fairing on Box Girder Bridge. Journal of Wind 
Engineering and Industrial Aerodynamics , 49, pp. 565-574. 

Overschee P.V. (1991), Subspace Algorithms for the Stochastic Identification 
Problem. Proc., 30th Conference on Decision and Control, Brighton, England, pp. 
1321–1326. 

Overschee P.V. and Moor D.B. (1996), Subspace Identification for Linear System: 
Theory-Implementation-Applications. Kluwer Academic Publishers,The 
Netherlands. 

Pandit S.M. (1991), Modal and Spectrum Analysis: Data Dependent Systems in 
State Space. John Wiley & Sons, New York, USA. 

Peeters B. (1999), Reference-based Stochastic Subspace Identification for Out-put 
only Modal Analysis. Mechanical Systems and Signal Processing, 13 (6), pp. 855–
878.  

Prevosto, M. (1982), Algorithmes d’Identification des Caractéristiques Vibratoires 
deStructures Mécaniques Complexes, Ph.D. Thesis, Univ. de Rennes I, France.  



206 

 

Rodrigues, J., Brincker, R. and Anderson, P. (2004). Improvement of Frequency 
Domain Output-Only Modal Identification from the Apllication of the Random 
Decrement Technique. Proc. 22th Int. Modal Analysis Conference, Dearborn, USA.  

Sarkar PP. (1992). New-identification Methods Applied to the Response of 
Flexible Bridges to Wind. PhD thesis. Baltimore, MD: The Johns Hopkins 
University.  

Sarkar P.P., Jones N.P. and Scanlan R.H. (1992), System Identification for 
Estimation of Flutter Derivatives. J Wind Eng Ind Aerodyn, 41-44., pp. 1243–
1254. 

Sarkar P.P., Jones N., and Scanlan R.H. (1994),  Identification of Aeroelastic 
Parameters of Flexible Bridges. Journal of Engineering Mechanics, ASCE ,120 
(8), pp. 1718–1741.    

Scanlan, R.H and Sabzevari (1969). Experimental Aerodynamic Coefficients in the 
Analytical of Suspension Bridge Flutter.  Journal of Mechanical Engineering 
Science, ASCE, 11,(3). 

Scanlan, R.H and Tomko J.J. (1971), Airfoil and Bridge Deck Flutter Derivatives. 
Journal of The Engineering Mechanics Division, ASCE, EM6, Proc. 

Scanlan RH. (1977), Motion of Suspended Bridge Spans under Gusty Wind. 
Journal of the Structural Division, ASCE ,,103(9), pp.1867–83. 

Scanlan R.H. (1978), Bridge flutter derivatives.Journal of Engineering Mechanics,  
ASCE, 104 (4),  pp. 719–733.    

Scanlan, R.H. and Lin W.H. (1978). Effects of Turbulence on Bridge Flutter 
Derivatives. Journal of The Engineering Mechanics Division, ASCE, 104, EM4. 

Scanlan, R.H. (1987). Interpreting Aerodynamic Models of Cable Stayed Bridge. 
Journal of the Engineering Mechanics, ASCE, 113, No 4. 

Schoukens J. and Pintelon R. (1991), Identification of Linear Systems: a Practical 
Guideline to Accurate Modelling. Pergamon Press, London, UK. 

Simiu E.  and Scanlan R.H. (1996),  Wind effects on structures, 3rd Ed., John   
Wiley, New Jersey. 

Singh L., Jones N.P., Scanlan R.H. and Lorendeaux O. (1996), Identification of 
Lateral Flutter Derivatives of Bridge Decks. J. Wind Eng. Ind. Aerodyn,.60, pp. 
69–80.  

Strømmen E., (2006), Theory of Bridge Aerodynamics, First edition, New York, 
Springer. 

Tanaka H. (1992), Similitude and modelling in bridge aerodynamics, 
Aerodynamics of Large Bridges, Balkema, Rotterdam. 



207 

 

Vold, H., Kundrat, J., Rocklin, G.T. & Russel, R. (1982), A Multi-Input Modal 
Estimation Algorithm for Mini-Computers, SAE Technical Paper Series, 
N.820194  

Walther R. (1999), Cable-Stayed Bridges. 2nd  Ed., London, ThomasTelford. 

Wardlaw, R. L., & Goettler, L. L. (1968). A Wind Tunnel Study of Modifications to 
Improve the Aerodynamic Stability of Long's Creek Bridge. NAE, National 
Research Council, Ottawa, Canada. 

Yamada H. and Ichikawa H. (1992), Measurement of aerodynamic parameters by 
extended Kalman filter algorithm. J Wind Eng Ind Aerodyn , 42 ,pp. 1255–1263. 

Zhu L.D., Xu Y.L., Zhang  F. and Xiang H.F. (2002),  Tsing Ma bridge Deck 
under Skew Winds. Part II: Flutter derivatives. J Wind Eng Ind Aerodyn, 90., pp. 
807–837. 

 
 



208 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 



209 

 

Appendix  A 
 

Schematic diagram of  TU-AIT Wind Tunnel 
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Appendix  B 
 
THE WIND TUNNEL AND THE EXPERIMENTAL APPARATUS 
 
 All the experiments were performed in the TU-AIT Wind tunnel at the 
Thammasat University.  Brief descriptions with illustrations of the wind tunnel, 
measurement of the wind speed and wind turbulence, the force sensor system, the 
aeroelastic support systems and the data-acquisition software, are given in this 
appendix. 
 
B.1  The  TU-AIT  Wind  Tunnel 
 
 This wind tunnel is an opened-circuit tunnel capable of producing wind speed 
as high as 20 m/s with a very low level of turbulence over the testing length. A 
schematic of the wind tunnel is given in appendix A. 
 
B.2  Wind-Speed and Wind-Turbulence Measurements 
 
 A pressure transducer (VaLidyne system, Model no.DP45-14) was used in 
conjunction with the pitot-static tube to measure the horizontal mean wind velocity 
(U) in smooth flow. Hot-sphere anemometer as shown in Fig. B1 was also used to 
measure the horizontal mean wind velocity.  A hot-wire X-probe was used to measure 
the mean wind velocity, the horizontal (u) and the vertical (w) wind turbulences for 
two cases:  (a) without a turbulence grid, and (b) with a turbulence grid. 
 

  
 

Fig. B.1 Hot-sphere anemometer 
 
The basic working principle of the pitot-static tube and hot-wire anemometer is 
described below. 
 
Pitot-Static Tube 
 
A pitot-static tube is an instrument that yields both the total and the static pressure 
heads.  A standard pitot-static tube is shown in Fig. B.2.  It was used to measure the 
mean wind speed for a smooth-flow case.  The orifice at A yields the total head 
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( 2
0 1/ 2p Uρ+ ), and the orifices at B yield the static pressure ( 0p ).  If the pressure 

differential ( p ) of pressures at A and B is measured using an electronic manometer, 
21/ 2 Uρ  will be represented in terms of voltage output.  This pressure differential ( p ) 

of pressures at A and B is measured using an electronic manometer, 21/ 2 Uρ  will be 
represented in terms of voltage output.  This pressure differential ( p ) as displayed by 
the electronic manometer in Volts can be converted to actual pressure units  
 

 
 

Fig. B.2  A standard pitot-static tube 
 

   
p , mm H2O   =  4.9515x Volts 

 
p  (kg /m2)      =  4.9515xVolts 

 
Then, 

   2 pU
ρ

=  

where  p  is the air density at the temperature and pressure of the air flowing through 
the tunnel.  The air density varies according to 
 

   0
0

0

TP
P T

ρ ρ=  

 
where  ( ) 459.6T T F= +o   is the temperature in Ro . 0 0 0, ,P Tρ   are the air density,  
pressure and temperature at sea level and ρ  is the air density at any pressure (P) and 
temperature (T).  0ρ  = 1.22557  kg/m3 , 0P  =  101.32 kPa and 0T   =  59 Fo  (518.6 Ro ).  
Voltage corrections are applied to manometer output p  if there is a non-zero voltage 
output at zero wind velocity.  
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Hot-Sphere Anemometer 
 
 A hot-sphere anemometer (FlowMaster, Model 54N60) contains velocity 
sensor and a temperature compensator made of nickel wire coils-both are clad with 
metal. The electronics is operated from the front plate which incorporates keyboard 
and LCD-display.  Connections for transducer and output signals are found on the 
back plate.  It’s range of application covers velocities from 0.1 m/s to 30 m/s and 
temperatures from -15 to 85 Co , with compensation for pressure and humidity 
variations.  Integration times shall be selected from 1-180 seconds in either continuous 
or single-period modes; calculation of mean velocity and temperature together with 
minimum and maximum values. 
 
Hot-Wire Anemometer 
 
 Hot-wire anemometers have some special features which makes them a very 
common tool in any modern wind tunnel.  These are: 

• Small sensing element dimensions, hence high spatial resolution and little 
interference to flow 

• Short response time due to small sensor mass. 

 

 
Fig. B.3  Probe array and orientation with respect to laboratory coordinate system 

 

There are various types of hot-wire X-probes which are commercially available 
(see Fig. B.3). The selection of a particular probe is based upon: fluid medium, 
number of velocity components to be measured (1-, 2- or 3), expected velocity range, 
turbulence intensity and fluctuation frequency in the flow, etc..  Based upon the above 
selection criteria, a Dantec/DISA 55P51 type hot-wire X-probe was selected for the 
present experiment. DISA 55P51 is a dual-sensor X-array probe with the cylindrical 
sensors.  It has two platinum plated tungsten wires (sensors) of diameter 5μm of 
overall length 3 mm.  The sensitive wire length is 1.25 mm; it is copper and gold 
plated at the ends to a diameter of approximately 30μm. The mounting is a 6 mm 
diameter cylindrical probe. The probe connected to the constant temperature 
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anemometer (CTA) as shown in Fig. B3. The CTA anemometer works on the basis of 
convective heat transfer from a heated sensor to the surrounding fluid, the heat transfer 
being primarily related to the fluid velocity.  The measuring equipment constitutes a 
measuring chain (see Fig. B.4). It consists typically of a probe with probe support and 
cabling, a CTA anemometer, a signal conditioner, an A/D converter, and a computer.  

 
Fig. B.4  Typical CTA measuring chain 

 

 Calibration is required to establish a relation between CTA output and the flow 
velocity.  It is performed by exposing the probe to a set of known velocities, U, and 
then record the voltage, E.  A curve fit through points (E,U) represents the transfer 
function to be used when converting data records from voltages into velocities. 
Calibration may be carried out in wind tunnel with for example a pitot-static tube or 
hot sphere anemometer as the velocity reference.  It is important to keep track of the 
temperature during calibration. If it varies from calibration to measurement, it may be 
necessary to correct the CTA data records for temperature variations. 

 

Data  Acquisition 
 
 The hardware used was a PC/AT computer system with 2GB of disk, 1 MB 
RAM, Pentium IV coprocessor and an enhanced color monitor.  AT-MIO-16XE-50 
A/D card was used for analog-to-digital conversion. The data-acquisition software 
used was LabView. 
 
The Aeroelastic Support System (Dynamic Rig) 
 
 The dynamic rig and its components are illustrated in Fig. 3.7. The model 
section (1) forms an integral part of the test rig which is double symmetric with regard 
to the model span and cord, except for the drag wires (5,6) having different lengths.  

 The dominated flexibility of the rig is given by the set of helical springs in 
which the model section is suspended.  Secondary flexibilities are given by the rig 
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arms and the model section itself and need to be considered when determining the 
modal stiffness of the rig.  This is the purpose of setting acceleration transducers at 
mid-section of the model to detect local mode of model section.  Model vibration 
frequencies are adjusted by varying the spring lengths / dimensions and the spring 
spacing. 

 Both the section model and the rig components are constructed with emphasis 
on keeping the mass low and stiffness high.  Adjustment of model mass and mass 
moment inertia is done by adding masses (8,9) to the rig such that the scaling 
requirements are met within the given tolerances. 

 Some of the features of the aeroelastic support system are mentioned below. 

(i) The length of the extension springs can be adjusted, thereby changing the 
vertical stiffness ( hK ) value. 

(ii) The distance between springs, d, can be adjusted, thereby adjusting the 
torsional stiffness ( Kα ) keeping hK  constant.  The offset hr  between the elastic center 
and mass center can be adjusted in such a way that the amount of coupling between h 
and α motions can be varied. 

(iii) Movable weights on the bars fixed perpendicularly to the model axis can 
change the mass moment of inertia about the axis of rotation without changing the 
total weight. 

(iv) A release system exists to impose the desired initial conditions on the 
displacements. 

(v)  For restraining the h motion and allowing only α motion, the cross wires 
fixed to the supporting frame and crossed the center of rotation of model are provided.  
For restraining the α motion and allowing only h motion, two pairs of horizontal drag 
wires are provided at distance a above and below the center of model.   

 Two laser displacement sensors consists of head and control box are used for h  
and α measurements.  The sensor head is attached on frame at a distance from 
measured object, which depends on type of sensor. Two lasers sensors used for this 
experiment are LB300 with measured displacement range of ± 100 mm and resolution 
of 50 μm.  Each sensor is placed at distance l from center of rotation, and then the 
vertical and torsional responses can be respectively calculated by  
 

    1 2 1 2

2 2
x x x xh

l
α+ −

= =   

where 1 2,x x   are the measurements of laser displacement sensor, respectively;  2l is 
the space between sensor 1 and sensor 2.  

 Two acceleration transducers consisted of acceleration transducer, PCD 300A 
sensor interface and control software are used (option) for acceleration in h and α 
directions at mid-section of model. Each sensor is placed at distance l from center of 
section, and then the vertical and torsional responses can be respectively calculated 
similar to the displacement responses whereas  1 2,x x  are the measurements of 
acceleration transducers. 
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C.4  การนําผลงานวจิยัไปใช้ประโยชน์  
 
C.4.1  เชิงพาณชิย์  

ปัจจุบนัประเทศไทยมีสะพานขึงชวงยาวจาํนวน ่ 5 สะพาน การพฒันางานวจิยัน้ีสามารถนาํไปใชใ้นการ
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3.  ผลิตบณัฑิตท่ีมีคุณภาพระดบัปริญญาเอกจาํนวน 1 คน และปริญญาโทจาํนวน 3 คน ทางดา้นวิศวกรรม
แรงลม อากาศพลศาสตร์ และพลศาสตร์ของโครงสร้าง  
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In this paper, the covariance-driven stochastic subspace identification technique (SSI-COV) was 
presented to extract the flutter derivatives of bridge decks from the buffeting test results.  An advantage 
of this method is that it considers the buffeting forces and responses as inputs rather than as noises.  
Numerical simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth 
flows by the free decay and the buffeting tests were used to validate the applicability of the SSI-COV 
method.  Then the wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road Bridge 
deck (IRR) were conducted under smooth and turbulence flows. The flutter derivatives of the thin plate 
model identified by the SSI-COV technique agree well with those obtained theoretically.  The results 
obtained for the thin plate and the IRR Bridge deck validated the reliability and applicability of the SSI-
COV technique to various wind tunnel tests and conditions of wind flows.  The results also show that 
for blunt type of IRR Bridge deck, the turbulence wind will delay the onset of flutter, compared with 
the smooth wind.  

Keywords:  Flutter instability; flutter derivatives; covariance-driven stochastic subspace identification; 
wind tunnel test; bridge decks; turbulent flow 

 

1. Introduction 

Long-span cable-supported bridges are highly susceptible to wind excitations because of their 
inherent flexibility and low structural damping. Wind loads play an important role in the design 
of these structures. A wind-induced aerodynamic force can be divided into two parts: the 
buffeting force that depends on the turbulence of incoming flow, and the aeroelastic force that 
originates from the interaction between the airflow and bridge motion. The motion-dependent 
forces feed back into the dynamics of the bridge as aerodynamic damping and stiffness; the 
effect is termed ‘aeroelasticity’ and is commonly described via ‘flutter derivatives’. The 
problems of aerodynamic stability including the vortex-induced vibration, galloping, flutter, 
and buffeting, may have serious effects on the safety and serviceability of bridges. Among 
these, flutter is the most serious wind-induced vibration for bridges and may destroy a bridge 
due to diverging motions either in single or torsion-bending coupled mode. Notorious 
examples of flutter failures are the collapse of the Brighton Chain Pier Bridge in 1836 and the 
original Tacoma Narrow Bridge in 1940. The buffeting response, on the other hand, may affect 
serviceability and fatigue strength of a bridge.  Flutter derivatives are essential parameters and 
shall be determined at first place in order to estimate the flutter-instability critical wind velocity 
and the responses of long-span cable supported bridges.  Analysis can be performed in the 
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frequency1 or the time domain2.  More detail may be found in Yang et al.1, Boonyapinyo et al.2 
and Michaltsos et al.3. The flutter derivatives depend primarily upon the conditions of wind, 
cross-sectional shape and dynamic characteristics of the bridge. Nevertheless, no theoretical 
formulas exist for these derivatives for various bridge shapes except for a simple thin plate 
section.  A major research tool in these studies is, therefore, a wind tunnel test, in which a 
geometrically and aerodynamically representative scale model of a segment of the bridge deck 
is mounted in a wind tunnel. The flutter derivatives are non-dimensional functions of wind 
speed, geometry and frequency of vibrations; therefore they can be applied directly to full-scale 
bridge in a piecewise manner.  

The experimental methods used to determine the flutter derivatives can be grouped under 
two types, i.e., the forced 4 and free vibration methods.5-8 Having less emphasis on elaborate 
equipment, time and effort, the free vibration method seems to be more tractable than the 
forced method. In determining flutter derivatives by the free vibration method, system 
identification techniques are required to extract these parameters from the response measured 
for the section model. The free vibration method depends on the system identification 
techniques used and can be classified into two types, i.e., the free decay and buffeting tests. In 
the free decay method, the bridge deck is given an initial vertical and torsional displacement. 
The flutter derivatives are calculated from transient (i.e. free decay) response that occurs when 
the bridge deck is released. The buffeting test, on the other hand, uses only the steady random 
responses (i.e. buffeting responses) of the bridge deck under the wind flow with no initial 
displacement given to the model. Compared with the free decay method, the buffeting test is 
simpler in the test methodology, more cost effective, and more closely related to real bridge 
behaviors under the wind flow, except that the output responses appear random-like. This 
makes the parameters extraction more difficult and a more advanced system identification is 
required. 

In most of the previous studies, flutter derivatives were estimated by deterministic system 
identification techniques that can be applied to the free decay method only. Examples of 
previous deterministic system identification techniques that were applied to the free decay 
method include Scanlan’s method,5 Poulsen’s method,6 Modified Ibrahim Time Domain 
method (MITD),7 and Unified Least Square method (ULS).8 In these system identification 
techniques, the buffeting forces and their responses are regarded as external noises, and the 
identification process requires many iterations.6,7,8 It also confronted with difficulties at high 
wind speeds where the initial free decay is drowned by the buffeting response.6-8  Moreover, at 
high reduced wind speed, the vertical bending motion of the structure decays rapidly due to the 
effect of positive vertical aerodynamic damping, and thus the length of decaying time history 
available for system identification decreases. This causes more difficulties to the deterministic 
system identification techniques.7,8  In case of turbulence flows, the presence of turbulence in 
the flow is equivalent to a more noisy-input signal to the deterministic system identification. 
This made the extraction process more complicated and most likely reduced the accuracy of the 
flutter derivatives identified.6,7  In addition, due to the restraint of the test technique itself, the 
free decay method can hardly be applied to determining the flutter derivatives of real bridges in 
field. 

On the other hand, the buffeting test uses the random responses data of a bridge under the 
wind turbulence only. This mechanism is more closely related to the real behavior of the bridge 
under wind flows and is applicable to real prototype bridges. The buffeting method costs less 
and is simpler than the free decay method, since no artificial interruptions are required in 
exciting the model. However, as wind is the only excited source, the signal-to-noise ratio is 
generally low, especially at low velocity, and therefore a very effective system identification is 
required. None of the aforementioned system identification techniques is applicable to the 
buffeting response tests.  
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System identification techniques can be divided into two groups, i.e. deterministic and 
stochastic. If the stochastic system identification technique 9-12 is employed to estimate the 
flutter derivatives of a bridge deck from their steady random responses under the action of a 
turbulent wind, the above-mentioned shortcomings of the deterministic system identification 
technique can be overcome. The reason is that the random aerodynamic loads are regarded as 
inputs rather than noises, which are closer to the fact. Therefore, the signal-to-noise ratio is not 
affected by the wind speed, and the flutter derivatives at high reduced wind speeds are more 
likely to be available. As such, the stochastic system identification methods is more 
advantageous than the deterministic system identification methods.  

Many stochastic system identification methods have been developed during the past 
decades, among which the stochastic subspace identification (SSI in short)10, 11  has proven to 
be a method that is appropriate for civil engineering. The merits of SSI include: (1) the 
assumptions of inputs are congruent with practical wind-induced aerodynamic forces, i.e. 
stationary and independent of the outputs; (2) identified modes are given in frequency 
stabilization diagram, from which the operator can easily distinguish structural modes from the 
computational ones; (3) since the maximum order of the model can be adjusted by the operator, 
a relatively large model order will give an exit for noise, which in some cases can dramatically 
improve the quality of the identified modal parameters; and (4) mode shapes are 
simultaneously available with the poles, without requiring a second step to identify them.  

There are two kinds of SSI methods, one is data-driven (SSI-DATA), and the other is 
covariance-driven (SSI-COV). Theoretically, the SSI is developed and applicable to the 
random responses under the turbulent wind only. In the first application, Gu and Qin12 have 
applied the SSI-COV method to determine flutter derivatives of a bridge deck from random 
responses under the turbulent wind. The results were then compared with those from the 
smooth wind by the deterministic system identification technique (ULS)8 with the free decay 
method. However, the effect of turbulence found may raise questions regarding difference in 
test methods and system identifications used, perhaps because of the reliability of different 
techniques. Answers to such questions are sought as part of this study.  

In this paper, the covariance-driven stochastic subspace identification method is used to 
estimate the flutter derivatives from random responses (buffeting) under the action of smooth 
and turbulent winds. Tests are also carried out with the free decay method (single and two-
degree-of-freedom) in order to examine the robustness of the present technique, i.e., to see if 
the results are not affected by test methods used. To validate the applicability of the present 
technique, numerical simulations are performed first, followed by sectional-model tests of a 
quasi-streamlined thin plate model, which is the only section for which theoretical flutter 
derivatives exist, under smooth flows. Encouraged by the success in the evaluation process, the 
flutter derivatives of a real bridge are determined. The two-edge-girder type blunt section 
model of the Industrial-Ring-Road Bridge (IRR in short), a cable-supported bridge with a main 
span of 398 m in Samutprakan province, Thailand, was tested both in smooth and turbulence 
flows. Tests were conducted in the TU-AIT Boundary Layer Wind Tunnel in Thammasat 
University, the longest and largest wind tunnel in Thailand.  
 
2. Theoretical Formulation of Covariance-Driven SSI 

2.1 Flutter and buffeting forces 

The dynamic behavior of a bridge deck with two degrees-of-freedom (DOF in short), i.e. h 
(bending) and α (torsion), in turbulent flow can be described by the following differential 
equations: 12,13 
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where m and I are the mass and mass moment of inertia of the deck per unit span, respectively; 
ω i is the natural circular frequency; ξi is the modal damping ratio (i=h,α); Lse and Mse are the 
self-excited lift and moment, respectively; while Lb and Mb are the aerodynamic lift and 
moment. The self-excited lift and moment are given as follows:14  

2 * * 2 * 2 *1
1 2 3 42 ( ) ( ) ( ) ( )se h h h h

h B hL U B K H K K H K K H K K H K
U U Bα α α α

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

& &

    
(2.a)

 

2 2 * * 2 * 2 *1
1 2 3 42 ( ) ( ) ( ) ( )se h h h h

h B hM U B K A K K A K K A K K A K
U U Bα α α α

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

& &

        
(2.b) 

where  ρ is the air mass density; B is the width of the bridge deck; U is the mean wind speed at 
the bridge deck level; Ki= ωiB/U is the reduced frequency (i=h,α); and Hi

* and Ai
* (i=1,2,3,4) 

are the so-called flutter derivatives, which can be regarded as the implicit functions of the 
deck’s modal parameters. The alternate form of self-excited forces is as given in Eq. (2) but 
without the factor 1/2, (see Ref. 3). 

The aerodynamic lift and moment can be defined as 13 

( ) ( ) ( ) ( ) ( ) ( )21 2
2b L L L D L

u t w t
L t U B C t C C t

U U
ρ χ χ

⎡ ⎤
′= + +⎢ ⎥

⎣ ⎦

 

( ) ( ) ( ) ( ) ( ) ( )2 21 2
2b M M M M

u t w t
M t U B C t C t

U U
ρ χ χ

⎡ ⎤
′= +⎢ ⎥

⎣ ⎦

      (3) 

where CL, CD and CM are the steady aerodynamic force coefficients; C′L and C′M are the 
derivatives of CL and CM with respect to the attack angle, respectively; u(t) and w(t) are the 
longitudinal and vertical fluctuations of wind speed, respectively; χL and χM   are the lift and 
moment aerodynamic admittances of the bridge deck. 

By moving Lse and Mse to the left side, and merging the congeners into column vectors or 
matrices, Eq. (1) can be rewritten as follows: 

{ } { } { } { }[ ] ( ) [ ] ( ) [ ] ( ) ( )e eM y t C y t K y t f t+ + =&& &                (4) 

where {y(t)} ={h(t) α(t)}T is the generalized buffeting response; {f(t)} ={Lb(t) Mb(t)}T is the 
generalized aerodynamic force; [M] is the mass matrix; [Ce] is the gross damping matrix, i.e. 
the sum of the mechanical and aerodynamic damping matrices; and [Ke] is the gross stiffness 
matrix. 
 
2.2  Stochastic state space models 
 
The fluctuations of wind speed u(t) and w(t) in Eq. (3) are random functions of time, so the 
identification of flutter derivatives for the bridge deck can be simplified as a typical inverse 
problem in the theory of random vibration, and thus solved by the stochastic system 
identification techniques.  Let 
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and 

{ }
y

x
y

⎧ ⎫
= ⎨ ⎬

⎩ ⎭&
                                                                         (6) 

then Eq. (4) is transformed into the following stochastic state equations 

{ } [ ]{ } { }
{ } [ ]{ } { }

c

c

x A x w

y C x v

= +

= +

&                                               (7) 

The discrete form of Eq. (7) can be written as 

{ } [ ]{ } { }
{ } [ ]{ } { }

1k k k

k k k

x A x w

y C x v
+ = +

= +

&                    
(8)

 

where [Ac]4×4, [Cc]2×4 and {x} are known as the state matrix, output shape matrix and state 
vector, respectively; {wk} and {vk} are the input and output noise sequences, respectively. The 
subscript in (•)k denotes the value of (•) at time kΔt, where Δt means the sampling interval. 0 
and I are the zero and identity matrices, respectively.  

An assumption of the stochastic model is that {xk}, {wk} and {vk} in Eq. (8) are mutually 
independent and hence 

T T[ ] [ ]k k k kE x w E x v= =0 0                                       (9) 

Defining the output covariance matrix of lag i, Λi, and the “next state-output” covariance 
matrix G as 

T T

T T

T T

[ ] [ ]

[ ] [ ]

[ ] [ ]

k k k k

i k i k k k

k i k k k

E x x Q E w w

E y y R E v v

G E x y S E w v
+

+

Σ = =

Λ = =

= =

                                 

(10)

 

and combining Eqs. (9) and (10), we obtain the following Lyapunov equations for the state (Σ) 
and output covariance matrices 

 
T

T
0

T

A A Q
C C R

G A C S

Σ = Σ +

Λ = Σ +

= Σ +

                                          

(11)

 

From Eqs. (8) and (9), it can be deduced 
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(13)

 

and 

1i
i CA G−Λ =                                                                 (14) 

2.3  Covariance-driven stochastic subspace identification 
 
The main algorithm of SSI-COV proceeds with defining a covariance block Toeplitz  1 iT  as 

1 1

1 2
1

2 1 2 2

i i

i i
i

i i i

T

−

+

− −

Λ Λ Λ⎡ ⎤
⎢ ⎥Λ Λ Λ⎢ ⎥=
⎢ ⎥
⎢ ⎥Λ Λ Λ⎣ ⎦

L

L

M M M M

L

           (15) 

One can infer from the definition of the covariance matrix that 1 iT  can be expressed as the 
product of two block Hankel matrices Yf and Yp 

 T
f p1 iT Y Y=         (16) 

where Yf and Yp are composed of the ‘future’ and ‘past’ measurements, respectively, 

1 1 0 1 1

1 2 1 2
f p

2 1 2 2 2 1 2

1 1

L L

L L

M M M M M M M M

L L

i i i j j

i i i j j

i i i j i i i j

y y y y y y
y y y y y y

Y Y
j j

y y y y y y

+ + − −

+ + +

− + − − + −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

      (17) 

Next, applying the factorization property to 1 iT by the singular value decomposition yields 

1 1
1 2 1 1 11

2

0
( )

0 0

T
T T

i T

S V
T USV U U U S V

V
≈

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
          (18) 
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where U, S and V are orthonormal matrices. S is a diagonal matrix containing positive singular 
values in descending order. The number of nonzero singular values indicates the rank of the 
Toeplitz matrix 1 iT . The reduced diagonal matrix S1 is obtained by omitting the zero singular 
values from the matrix S. Matrices U1 and V1 are obtained by omitting the corresponding 
columns from the matrices U and V respectively. Now the identification of system matrices is 
almost achieved.  In practice however, the estimated covariance Toeplitz matrix 1 iT  is affected 
by "noise" leading to singular values that are all different from zero. Actually, some of the 
singular values associated with the noise modals are small, or very small. Generally, the model 
order can be determined by looking at a “gap” between two successive singular values. The 
singular value where the maximal gap occurs yields the model order. To obtain a good model 
for modal analysis applications, a better idea is to construct a stabilization diagram7, by 
identifying a whole set of models with different orders. Matrix A is then obtained by 
factorizing a shifted Toeplitz matrix 2 1iT + that has similar structure as of 1 iT , but consists of 
covariance from lag 2 to 2i. In a manner similar to the classical eigensystem realization 
algorithm (ERA in short), one can find 

† 1/ 2 1/ 2
2 1 2 1

T
i i N Ni iA T S U T V Sο ς − −

+ += =                           (19) 

where N is the model order, i.e. the maximum number of modes to be computed and (•)+ 
denotes the Moore-Penrose pseudo-inverse of a matrix. Thus, the modal parameters can be 
determined by solving the eigenvalue problem of the state matrix A. By now, the theoretical 
formulation of the covariance-driven SSI has been achieved. 

According to Eqs. (16)-(19), a different combination of i, j and N will give a different state 
matrix, and thus a different pair of modal parameters. Therefore, modal parameters should be 
derived from a series of combinations, rather than a single combination. In the process of 
identification, N or i should be given in series for certain values of j in order to obtain a 
frequency stability chart. Solving the eigenvalue problem of the state matrix A by the pseudo-
inverse method yields 

1
dA

C

−= ΨΛ Ψ

Φ = Ψ
      (20) 

where Ψ is the complex eigenvector matrix, Φ  is the mode shape matrix, and Λ is a diagonal 
matrix composed of the complex poles of the system. Different combinations of i, j and N are 
employed to derive the modal parameters statistically. For more details, see Refs. 7 and 9. 

Once the modal parameters are identified, the gross damping matrix Ce and the gross 
stiffness matrix Ke in Eq. (4) can be readily determined by the pseudo-inverse method 

†*
2 * * 2

* *[ ] [ ( ) ]e eK C M
⎡ ⎤Φ Φ

= − ΦΛ Φ Λ ⎢ ⎥ΦΛ Φ Λ⎣ ⎦
        (21) 

where the superscript * denotes the complex conjugate of the corresponding term. Let 

1 1

1 0 1 0

,

,

e ee eC M C K M K

C M C K M K

− −

− −

= =

= =
          

(22)
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where C0 and K0 are the ‘inherent’ damping and stiffness matrices, respectively. Thus, the 
flutter derivatives can be extracted from the following equations 

* *
1 11 11 1 21 212 3

* *
2 12 12 2 22 223 4

* *
3 12 12 3 22 223 2 4 2

* *
4 11 11 43 2

2 2( ) ( ), ( ) ( )

2 2( ) ( ), ( ) ( )

2 2( ) ( ), ( ) ( )
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e e
h h

h h

e e

e e

e
h h
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B B

m IH k C C A k C C
B B

m IH k K K A k K K
B B

m IH k K K A k
B

α α
α α

α α
α α

ρ ω ρ ω

ρ ω ρ ω

ρ ω ρ ω

ρ ω

= − − = − −

= − − = − −

= − − = − −

= − − = − 21 214 2 ( )e

h

K K
Bρ ω

−

           
(23) 

2.4  Constitution of Toeplitz matrices and selection of model order 

A good knowledge of the model order (system order) is essential for modal analysis. First, the 
numbers of block rows i (which determine the maximum number of orders that can be 
calculated) have to be specified.  The numbers of block row i in 

1 iT in Eq. (18) and model order 
N in Eq. (19) are depend on user’s choice.  According to experience, it is better to over-specify 
the model order and then to eliminate spurious numerical poles afterwards. The operation was 
carried out with the help of MATLAB. In each number of block row i selected, for construction 
of stability diagram, the poles corresponding to a certain model order are compared with the 
poles of a one-order-lower model.  If the frequencies and the damping ratios differences are 
within preset limits, the pole is labeled as a stable one and the model order is determined. The 
modal frequency ( iω ) and damping ratio ( iζ ) corresponding to each pole can be obtained by 

    2 2 , i
i i i i

i

a
a bω ζ

ω
= + =

    
(24) 

where ia  and  ib   are real and imaginary parts of the continuous time poles iλ defined as         

    
ln( )i

i i ia jb
t
μ

λ = = +
Δ     

(25) 

where 1j = −  and iμ  is the discrete time poles (eigenvalue), corresponding to the ith mode 
of  Λ.  The preset limits are normally 1% for frequencies and 5% for damping ratios. However, 
depending on the quality of data, at high wind speed, a difference of 10% for damping ratio 
may be set4.  A brief description follows: 

1. For a selected number of time history data recorded, n, select the number of block row 
i. Accordingly, the maximum number of orders is specified. The output covariances 
were determined for lags k =1, 2,….i. 

2. In each i, the Toeplitz matrix is formulated once as per Eq. (16). Models of different 
orders (N=2…i) were then obtained by including different numbers of singular values 
SN in the computation of matrix A. Thus the modal parameters can be determined by 
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solving the eigenvalue of the state matrix A. The poles corresponding to a certain 
model order are compared with the poles of a one-order-lower model and the stable 
poles and system order are then determined. 

3. The frequencies and damping coefficients corresponding to the stable poles are 
reported as stable ones for selected value of i. 

4. To assess if a suitable number of block rows is selected, steps 1-3 are repeated by 
varying i, and the model order, stable poles, modal frequencies and damping for each 
value of i. Theoretically, the number of block rows i is related to the precision level 
of the SSI method and generally shows asymptotic convergence.   

Figure 1 shows a sample of the identified (stable) modal frequencies and damping 
coefficients of the two modes (vertical and torsion) as a function of i. The variability of the 
modal frequencies looks small but the modal damping coefficients are uncertain and 
illegitimate when a small number i is used. However, they do show asymptotic convergence 
after certain value of i. The number of block i, for which the modal parameters have 
converged, is also affected by the sampling frequency. From Fig. 1, the convergence starts at 
number of block rows i = 2fs, where fs is the sampling rate (Hz) which is usually taken as ten 
times that of the highest expected modal frequency or higher7.   
 

 
Fig. 1  Asymptotic convergence property of modal properties (…fs =  25 Hz, ---fs = 50 Hz    and solid line for fs = 100 
Hz)   
 

2.5  Determination of System Matrices and Extraction of Flutter Derivatives 
 

Once the model order and stable poles are identified as in Section 2.4, only the Ψ, Φ, and Λ 
matrices of the stable poles are used to obtain the K and C matrices in Eq. (21) in order to 
eliminate noises. The stable poles are regarded as the true modes whereas the spurious poles 
represent the effects of noises.  The flutter derivatives are then estimated by using Eq. (23).  
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3. Numerical Simulation Test 
 

In order to validate the applicability of the covariance-driven SSI technique in flutter 
derivatives estimation, the numerical tests are first carried out.  The response signals of bridge 
decks from different wind-tunnel test methods were simulated. The numerical tests included 
two synthetic but well controlled cases: two uncoupled degrees of freedom and two coupled 
degrees of freedom (simulated response including the motion induced aeroelastic terms). Both 
cases are first excited in the transient (i.e. free decay) motion and then by a white noise loading 
process. Measurement noises are also added by a white noise process with a standard deviation 
equal to 10% of the standard deviation of the original responses, in order to investigate the 
effect of measurement noise. 
 
3.1 Two uncoupled degrees of freedom: free decay 

Time-history free decay responses were obtained by direct calculations of the displacement 
values for n=4096 discrete time stations, with a ‘sampling’ interval Δt=0.02s (fs= 50Hz). 
Structural modal properties used in this simulation were chosen from the previously tested 
sectional model of the Great Belt Bridge.15 The modal matrices are given per unit length as: 

0 0 0

0.3616 0 397.0573 0 2.6526 0
, ,

0 0.0072 0 24.7315 0 0.0189
C K M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

i.e.  fho = 1.9472  Hz, fθ0 = 5.7573 Hz, ξh0 = 0.0053, ξθ0 = 0.0056,  where damping ratios, ξ , are 
representatives for the range of small amplitudes.  The damping ratios were then multiplied in 
turn by 5, 10, 20 and 40 to cover the total damping (structural + aerodynamic) effect which will 
be present in vibration of the model section under wind flows.  Values as high as ξ = 0.2 can be 
expected for the vertical degree of freedom under the wind flow. The Liepmann approximation 
of Sear’s function14 is further assumed to be the aerodynamic admittance of the model. 
 
Table 1a  Preset and identified values of frequencies and damping ratios for free decay responses,  nΔt = 4096 x0.02 s 

= 81.92 s. 

case Mode Preset values Identify values Error(%). 

  fp ξp fp ξp fp ξp 

1.  Vertical mode 1.9472 0.0056 1.9472 0.0056 0 % 0 % 

 Torsional mode 5.7573 0.0053 5.7573 0.0053 0 % 0 % 

2. Vertical mode 1.9472 0.2228 1.9462 0.2236 -0.05% 0.36% 

 Torsional mode 5.7573 0.2120 5.7612 0.2128 0.07% 0.38% 

case1+10% noise Vertical mode 1.9472 0.0056 1.9496 0.0053 -0.1% -5.4% 

 Torsional mode 5.7573 0.0053 5.7570 0.0052 0 % -1.9% 

case2+10% noise Vertical mode 1.9472 0.2228 1.9621 0.2276 0.8% 2.2% 

 Torsional mode 5.7573 0.2120 5.7593 0.2126 0 % 0.3% 
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Table 1b  Preset and identified values of stiffness and damping matrices for free decay responses,  nΔt = 4096 x0.02 s 
= 81.92 s. 

case Preset stiffness 
matrix. 

Preset damping 
matrix. 

Recover  stiffness 
matrix 

Recover damping 
matrix 

 K11 K22 C11 C22 K11 K22 C11 C22 

1 397.057 24.73 0.3616 0.0072 397.056 24.73 0.3616 0.0072 

2 397.057 24.73 14.464 0.288 396.611 24.76 14.477 0.289 

case1+10% noise 397.057 24.73 0.3616 0.0072 397.5447 24.73 0.3514 0.0072 

Case2+10% noise 397.057 24.73 14.464 0.288 397.0573 24.73 14.5081 0.2886 

 

Tables 1a and b show the identified values of modal parameters and system matrices for 
the lowest and highest preset damping ratios cases (case1 and case 2 respectively). As can be 
seen, the estimated frequency and damping ratio are practically identical to the preset values 
(less than 0.5% for the highest damping case).  The system matrices are also good even for the 
short useful signal case with only a few cycles of vibration. For the case where 10%-
measurement noises are added, the variations in identified frequencies are less than 0.8%. The 
variations in damping ratios are no more than 2%, except for the lowest damping case for 
which the variation is 5.4 %.  The diagonal terms of the estimated system matrices (frequency 
and damping matrices) are also identical to the preset values.  The estimates of diagonal terms 
are distorted within 1% except for the lowest damping case in which values are within 2.82%. 

3.2 Two Coupled Degrees of Freedom: Free decay and Buffeting responses 

The next step was a simulation test with full effective stiffness and damping matrices (i.e. 
coupled degrees of freedom) and with lift and moment forces of the white noise type, as 
assumed in the SSI-method. For the mean-wind speed of 10.26 m/s and the aerodynamic 
derivatives assumed to be those reported for a similar bridge cross-section,15  the effective 
structural matrices were pre-set as 

0

8.9308 0.0799 420.1002 59.1805 2.6526 0
, ,

0.4345 0.0386 1.7552 19.6652 0 0.0189e eC K M
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The time-history response were simulated for both free decay and buffeting responses 
under turbulence winds with 10% turbulence intensity; then measurement white noises were 
superimposed on the simulated response.  The time-history free decay response were computed 
by constant acceleration method, for which some results are shown in Fig.2a. With the SSI-
COV method applied to these responses data, we can obtain the effective structural matrices 
with the deviation from the pre-set ones (C and K) in percentage as 

% %

0.66 3.00 0.14 0.05
,

0.16 0.26 4.26 0.08
C K

− − −⎡ ⎤ ⎡ ⎤
Δ = Δ =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦  
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Fig.2a. Example of vertical (top) and torsional 
(bottom) free decay responses simulated under wind 
flow.(time step =0.02 sec.) 

Fig.2b. Example of vertical (top) and torsional 
(bottom) buffeting responses simulated under wind 
flow. (time step =0.02 sec.) 

Superimposing 10% measurement white noise on the simulated response made the 
structural matrices differ from those of the noise-free cases within 3%. The time-history 
response was also simulated for the case of buffeting responses where wind turbulence is the 
only exciting source. The effective stiffness and damping matrices were taken as in the case of 
transient response; examples of the time-history response are shown in Fig. 2b. The buffeting 
responses required longer data records (20,000 data points in the present study) as compared to 
that in the free decay case (4096 data points) to yield acceptable results. The computed 
frequencies and damping ratios agree well with preset values with precisions within 0.5% and 
2%, respectively. The diagonal terms in the stiffness and damping matrices also agree well 
with preset values, showing a difference of less than 1%, except for the C11 (related to vertical 
damping) where the difference is around 2.5%.  The largest differences in the off-diagonal 
terms are K21 and C21, which are related to A4

* and H2
*, respectively. In the case with 10%-

measurement noise added, the deviations of the reconstructed matrices from the pre-set ones, in 
percentage, are 

% %

8.55 27.86 2.23 0.38
,

0.28 0.5 11.17 0.03
C K

− −⎡ ⎤ ⎡ ⎤
Δ = Δ =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦  

4. Wind Tunnel Tests 

To evaluate further the applicability of the present method in estimating the flutter derivatives 
of bridge decks, wind tunnel tests of a quasi-streamlined thin plate model and a two-edge 
girder type blunt bridge section model were performed. 

4.1 Outline of wind tunnel tests 

The wind tunnel tests were performed in the TU-AIT wind tunnel in Thammasat University. 
The working section of the wind tunnel has a width of 2.5 m, a height of 2.5 m and a length of 
25.5 m. The required turbulent flow was generated by grids, as shown in Fig. 3. A hot-sphere 
anemometer was applied to measuring the mean wind speed of the flow, and a hot-wire 
anemometer was used to measure the fluctuations of wind speed. The longitudinal and vertical 
turbulence intensities are both less than 0.05% for smooth flows and about 8% for turbulence 
flows. Typical normal spectral densities of the longitudinal and vertical fluctuation components 
of 8%-turbulence flow are presented in Fig. 5 and compared with both the Von Karman and 
Kaimal spectrum19. 
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The model was suspended by eight springs outside the wind tunnel (see Fig. 4). To simulate 
a bridge section model with 2DOFs, i.e. vertical bending and torsion, piano wires were used to 
prevent the motion of the model in the longitudinal direction, as can be seen from the 
schematic diagram of the top view of the test setup in Fig. 6. Two piezoelectric acceleration 
transducers were mounted at the mid length of the model to capture the acceleration signals. 
The responses of the models were captured by the acceleration transducers, and then the 
vertical and torsional responses can be respectively obtained by  

1 2 1 2,
2

x x x x
h

l
α

+ −
= =      (26) 

where x1 and x2 are the measurements of transducers 1 and 2, respectively; and l is the space 
between transducers. 

 

  
Fig. 3. IRR bridge model and grids to generate 
turbulent flow in wind tunnel. 

Fig. 4.  Suspension device of the model. 
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  Fig  5  Normalized power spectrum of the longitudinal and vertical velocity component: 8%-turbulence flow. 

 
4.2 CASE 1: Thin plate model under smooth flow 

A quasi-streamlined thin plate with a width to height (thickness) ratio of about 22.5 (see Fig. 7) 
was first selected for the wind tunnel test. The Table 2 lists the main parameters of the model. 
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 Fig. 6 Top view of the test setup. 

 

 

 

 

 

 

 

Fig. 7 Cross-section of the thin plate.

The flutter derivatives of the thin plate were extracted using the SSI-COV technique from 
the results of three types of tests, namely, a) single-degree-of-freedom (SDOF) motion tests,5  
b) free decay coupled-motion test (2DOFs), and c) buffeting coupled-motion test (2DOFs). 
Typical test results showing the responses from the bridge model have been plotted in Figs. 8 
and 9.  The responses for the free decay and buffeting tests are sampled at the rates of 1000 Hz 
and 200 Hz, respectively. The results are then removed mean and re-sampled at 250 Hz and 50 
Hz, respectively. The covariance-driven SSI technique is applied to identifying modal 
parameters from these data, and a pseudo-inverse method is applied to estimating the stiffness 
and damping matrices.  The flutter derivatives are estimated by Eq. (23) and reported in the 
form of Eq. (2) but without the factor 1/2. 

 

Table 2.  Main parameters of the thin plate model 

Parameter Mark Unit Value 
Length L m 2.30 
Width B m 0.45 
Height H m 0.02 
Mass per unit length M kg / m 6.7391 
Inertial moment of mass per unit length Im kg m2/ m 0.1183 
Inertial  radius R m 0.1325 
First bending frequency fh , nh Hz 1.65 
First torsional frequency fα , nα Hz 2.73 
First torsion-bending frequency ratio ε  1.65 

(unit in mm.) 
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  Fig. 8  Vertical (top) and torsional (bottom) free decay 
acceleration responses of the thin plate at 8.1 m/s wind 
speed under smooth flow.(unit in g) 

Fig. 9  Vertical (top) and torsional (bottom) buffeting 
acceleration responses of the thin plate at 5.6 m/s wind 
speed under smooth flow.(unit in g) 

4.2.1 Comparisons between SDOF and 2DOF-coupled-motion tests: free decay method 

Figures 10 and 11 show the flutter derivatives of the thin plate computed by the SSI-COV 
technique using the aforementioned three test methods against Theodorsen’s theoretical 
values.13 Unless otherwise noted, at any wind speed, the flutter derivatives associated with the 
vertical motion, i.e., H1

*, H4
*, A1

*, and A4
*, were calculated using the frequency nh (lower). In 

addition, the derivatives associated with the torsional motion, i.e., H2
*, H3

*, A2
*, and A3

*,  were 
calculated using the frequency nα (higher).  

In Figs. 10 and 11, the direct flutter derivatives H1
* and H4

* as found from the SDOF 
vertical-motion tests and A2

* and A3
* as found from the SDOF torsional-motion tests were also 

plotted and compared with those from the coupled-motion tests.  The near perfect match shows 
that the direct flutter derivatives are indeed not affected by the motion along the other degrees 
of freedom, as was predicted by the theory, namely, the flutter derivatives associated with the h 
motion are not affected by the α motion, and vice versa. It also demonstrates the reliability of 
both the coupled-motion tests and the system identification method (SSI-COV). 

 
4.2.2 Comparisons of coupled-2DOF motion tests between the free decay and buffeting tests 

The flutter derivatives obtained from both the free decay and buffeting tests for the coupled-
2DOF cases were compared in Figs. 10 and 11. The results show good agreement between the 
two methods, which validates the reliability of the system  identification method (SSI-COV)  in 
application to both the free decay and buffeting tests, although it was developed from a 
stochastic model (i.e. white noise loading assumption). However, when a relatively heavy 
model is excited at a very low reduced wind velocity, i.e., with low wind energy, it becomes 
more difficult to extract the flutter derivatives from the buffeting responses. 

The results also show that calculated flutter derivatives agree well with the theoretical ones. 
The six important flutter derivatives H1

*~ H3
*and A1

*~ A3
* identified by the SSI from different 

tests match well with theoretical ones. The H4
* derivatives agree generally in trend with the 

theoretical ones. However, the A4
* derivatives obtained from the buffeting responses are more 

scattered compared with those from the free decay responses.  The impacts of the H4
* and A4

* 
derivatives, however, seem to be less significant when compared with those of the other 
derivatives. This explains the reason why H4

* and A4
* were usually neglected in previous 

studies.5,6,8,13 
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Fig. 10 Flutter derivatives (Hi

*) of the thin plate by SDOF test and coupled test by free decay and buffeting responses 
under smooth flow. 
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Fig. 11 Flutter derivatives (Ai

*) of the thin plate by SDOF test and coupled test by free decay and buffeting responses 
under smooth flow. 
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4.3 CASE 2: Section model of IRR Bridge 

Encouraged by the success in the thin plate model testing, the flutter derivatives of the IRR 
Bridge, a cable-supported bridge with 2-edge girder, as shown in Fig. 12, were estimated by 
the SSI-COV technique. The IRR Bridge has a main span of 398 m. The deck consists of a 
concrete deck slab and a web of steel girders. The deck is supported by two cable planes at 
outside edge girders. A 2-edge-girder bridge section with A-shape pylons is known to be 
economically competitive, but also aerodynamically unstable at high wind speeds. Table 3 lists 
the main parameters of the prototype bridge and the section model. Tests were conducted under 
both the smooth and turbulence wind flows.  

 

   

a) b) 

 

c) 

Fig.12.  a) Three dimensional view of  IRR Bridge,  b) IRR bridge deck model in wind tunnel and c)  Schematic cross-
section of  IRR Bridge. 

Table 3.  Main parameters of the IRR Bridge model 

Parameter Mark Unit Prototype Model 
Length L m - 2.26 
Width B m 35.9 0.399 
Height H m 3.20 0.035 
Mass per unit length M kg / m 43000 5.6801 

Inertial moment of mass per unit length Im kg m2/ m 4.11x109 0.1726 
First bending frequency fh , nh Hz 0.376 2.13 
First torsional frequency fα , nα Hz 0.850 4.73 
First torsion-bending-frequency ratio ε  2.26 2.22 
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Using the SSI-COV technique, the flutter derivatives of the IRR Bridge were estimated for 
the 2DOF responses under the smooth flow by both the free decay and buffeting tests, and 
under the turbulence flow by the buffeting test only. 
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Fig. 13 Flutter derivatives (Hi

*) of the IRR Bridge by free decay and buffeting responses under smooth and turbulence 
flows. 
 

4.3.1  Comparisons of test method: Smooth flow 

Figures 13 and 14 present the identified flutter derivatives of the bridge deck from the free 
decay and buffeting tests under smooth flows, and from the buffeting tests under turbulent 
flows. The term “buffeting test under smooth flow”, though not theoretically precise, is weakly 
implied by considering the existence of very small turbulence (<0.05%) in the smooth flow. 
The flutter derivatives were calculated using Eq. (23) and reported in the form of Eq. (2) but 
without the factor 1/2. 

Generally, the flutter derivatives of the bridge identified by the SSI method from both the 
free decay and buffeting tests in smooth flow are in good agreement. The difference of A4

* 
identified from both tests, seems to be negligible, as the effect of this derivative is usually 
considered to be less significant. For smooth flows, the most important derivative A2

* has 
increased steadily (more negative) up to the reduced wind velocity around 3, and then started to 
decrease. This sign reversal is the primary factor toward the SDOF-torsional instability (“stall 
flutter”) for bluff type sections.   
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Fig. 14  Flutter derivatives (Ai

*) of the IRR Bridge by free decay and buffeting responses under smooth and turbulence 
flows. 
 

In Figs. 15 and 16, the root-mean-square (RMS) torsional and vertical buffeting responses 
of the IRR bridge model were plotted against the reduced wind velocity. Under smooth flow, 
the sharp abrupt transition with increasing velocity from virtually zero torsional response to 
clear instability occurs in the neighborhood of reduced velocity of 4.5 (see Fig. 16).  Figure 17 
shows the responses of the IRR bridge model at the onset of flutter instability. As is evident 
from the response Fourier spectrum in Fig. 18, the IRR bridge model exhibits the SDOF-
torsional instability. The abrupt change in the vertical response at high wind speed is due to the 
effect of cross derivatives H 2

*and H3
* which causes the coupling of the torsional responses 

with the vertical responses in terms of damping and stiffness, respectively2. 
 

4.3.2  Effect of turbulence  

Most of the real bridges are submerged in turbulent winds. Therefore, a detailed investigation 
of the effects of turbulence on the flutter derivatives is necessary.  Almost all the wind tunnel 
tests for flutter derivatives have been carried out in smooth flow. Although some researchers 
have studied the problem using the wind tunnel tests,7,17 in general, the results are still 
debatable and inconclusive. For instance, for streamlined sections, the wind tunnel tests 
showed little effect,7,17 while the tests conducted on a rectangular box girder bridge showed 
galloping in smooth flow.18 

Figures 15 and 16 show the responses of the IRR Bridge model under the smooth and 
turbulence flows. The turbulence flow reduces the vortex-shedding response, compared with 
the smooth flow, but it raises the amplitude of bridge responses progressively over the speed 
range. However, no clear and uniquely definable “flutter instability” can be identified from the 
test results.  From Figs. 13 and 14, it is found that the influence of flow types on H4

* and A3
*, 

i.e. flutter derivatives related to direct aerodynamic stiffness, is generally negligible. Though, 
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the value of H4
* from the turbulence flow is somewhat less than that in the smooth flow case, it 

affects the frequency value only up to the second decimal digit. The flow type influence is also 
negligible for H1

*and H2
*, i.e., the direct and cross derivatives related to the vertical and 

torsional aerodynamic damping, respectively. On the other hand, the more important 
derivatives A1

* A2
* and H3

* show rather noticeable deviations from those in smooth flow, 
especially at high reduced wind speeds. The most important effect is that the reduced wind 
speed corresponding to the reversed sign of the torsional aerodynamic damping A2

* increased 
in the turbulent flow. This means that turbulence tends to make bridges aerodynamically more 
stable by delaying the torsional flutter.  
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Fig. 15. Vertical RMS responses of IRR bridge model 
under smooth and turbulence flows. 

Fig. 16. Torsional RMS responses of IRR bridge 
model under smooth and turbulence flows. 
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Fig. 18. Fourier spectrum of heave (vertical) and 
pitch (torsional) responses of IRR bridge model at 
flutter wind speed. 

 
The deviations of flutter derivatives may reveal the fact that for those bridges with bluff 

type sections similar to the IRR Bridge, the effects of turbulence can be significant. Hence, the 
wind tunnel tests of such bridges for flutter derivative estimation should be carried out in 
turbulent flow as well. 
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5. Conclusions 

A theoretical model based on the covariance-driven SSI technique was proposed to extract the 
flutter derivatives of bridge deck sectional models from two-degree-of-freedom free decay and 
buffeting responses under both the smooth and turbulent winds.  An advantage of the adopted 
SSI-COV technique is that it considers the buffeting forces and responses as inputs, instead of 
as noises as typically assumed. The conclusions of this study are as follows: 

1) Numerical simulations of bridge deck responses confirmed that the SSI-COV technique can 
be used to estimate the flutter derivatives from the buffeting and free decay responses with 
reliable results. This shows the applicability of the SSI-COV method with various test 
techniques, though it was originally developed from a stochastic model. 

2) For the thin plate model under smooth flow, wind tunnel tests showed that the flutter 
derivatives identified by the SSI technique from both the free decay and the buffeting tests 
match well with theoretical values. Although some variations exist in the values of the 
derivative A4

* obtained from the buffeting test, this derivative is considered insignificant 
and has been neglected by most of the previous studies. 

3) For the bluff section model of the IRR Bridge under smooth flow, the flutter derivatives 
estimated from the buffeting test agreed with those from the free decay test. This result 
allowed us to focus on applying the SSI-COV technique to the buffeting test method. 
Variations exist in the values of the A4

* derivative as obtained from the two test methods, 
but they agree in trend. We also observed the sign reversal of the A2

* derivative as the 
reduced wind speed reached the value of 4.5. This indicates that this bridge section is 
susceptible to flutter instability at high wind speeds. 

4) The test result of the blunt section model of the IRR Bridge in turbulence wind revealed the 
most important and positive effect for the turbulence in that it tends to make the bridge 
aerodynamically more stable by delaying the sign reversal of the aerodynamic damping A2

*. 
The implication is that for bridges with bluff type sections similar to the IRR Bridge, the 
effect of turbulence is significant, and should be included in the wind tunnel tests for 
estimating the flutter derivatives. 

Applying the proposed SSI-COV technique to the buffeting test yields a straightforward, 
cost effective, and reliable system identification process that can be adopted to identify the 
flutter derivatives for various bridge decks.  This technique also has some limitations.  For 
example, it becomes more difficult to extract the flutter derivatives from the buffeting 
responses for the case when a relatively heavy model is excited at a very low reduced wind 
velocity, i.e., with low wind energy.  For this case, using the SSI-COV technique with the free 
decay test will yield more accurate results than those with the buffeting test. 
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Virote Boonyapinyo a*

,  Tharach Janesupasaeree b
  

 
a Department of Civil Engineering, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand 

b Toyo-Thai Corporation Public Company Limited, 28th Serm-Mitr Tower , Bangkok 10110, Thailand 
 
 

Abstract: Most of the previous studies on flutter derivatives have used the deterministic system identification 
techniques, in which the buffeting forces and the responses are considered as noises.  In this paper, one of the most 
advanced stochastic system identification, the data-driven stochastic subspace identification technique (SSI-DATA) 
was proposed to extract the flutter derivatives of bridge decks from the buffeting test results.  An advantage of this 
method is that it considers the buffeting forces and the responses as inputs rather than as noises.  Numerical 
simulations and wind tunnel tests of a streamlined thin plate model conducted under a smooth flow by the free decay 
and the buffeting tests were used to validate the applicability of the SSI-DATA method.  The results were compared 
with those from the popular covariance-driven SSI method. Wind tunnel tests of a two-edge girder blunt type of 
Industrial-Ring-Road Bridge deck (IRR) were then conducted under both smooth and turbulence flows. The 
identified flutter derivatives of the thin plate model based on the SSI-DATA technique agree well with those 
obtained theoretically.  The results from the thin plate and the IRR Bridge deck helped validate the reliability and 
applicability of the SSI-DATA technique to various experimental methods and wind flow conditions.  The results 
for the two-edge girder blunt type section show that applying the SSI-DATA yields better results than those of the 
SSI-COV.  The results also indicate that the turbulence tends to delay the onset of flutter compared with the smooth 
flow case. 
 
Keywords: Flutter derivatives; data-driven stochastic subspace identification; wind tunnel test; bridge decks; 

turbulent flow   
 
 
1. Introduction 

Long-span cable-supported bridges are highly susceptible to wind excitations because of their 
inherent flexibility and low structural damping.  Wind loads play an important role in the design of these 
structures.  The actions of wind load are broadly divided into aerostatic and aerodynamic loads. Effects of 
aerostatic wind load are given by Boonyapinyo et al. (1994, 2006), among others.  The wind-induced 
aerodynamic force can be divided into two parts: a buffeting force that depends on the turbulence of the 
incoming flow, and an aeroelastic force that originates from the interactions between the airflow and the 
bridge motion. The motion-dependent forces feed back into the dynamics of the bridge as aerodynamic 
damping and stiffness; the effect is termed ‘aeroelasticity’ and is commonly described via ‘flutter 
derivatives’. The problems of aerodynamic stability including vortex-induced vibrations, galloping, 
flutter, and buffeting, may have serious effects on the safety and the serviceability of the bridges. Among 
these, flutter is the most serious wind-induced vibration of bridges and may destroy the bridges due to the 
diverging motions in either single or torsion-bending coupled mode. Notorious examples of the flutter 
phenomenon are the failures of the Brighton Chain Pier Bridge in 1836 and the original Tacoma Narrow 
Bridge in 1940. The flutter derivatives depend primarily upon the wind conditions, the cross-sectional 
shape and the dynamic characteristics of the bridges. Nevertheless, no theoretical values exist for these 
derivatives for various bridge shapes except only for a simple thin plate section.  A major research tool in 
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these studies is, therefore, a wind tunnel test, in which a geometrically and aerodynamically 
representative scale model of a length of a bridge deck is built, mounted, and then tested in a wind tunnel. 
The flutter derivatives are non-dimensional functions of the wind speed, the geometry of bridge, and the 
frequency of vibrations; therefore they can be applied directly to the full-scale bridge in a piecewise 
manner.  

The experimental methods used for a determination of flutter derivatives can be grouped under two 
types, i.e. forced (Chen & Yu, 2002) and free vibration methods (Scanlan and Tomko, 1971; Poulsen et 
al., 1992; Sarkar et al., 1994; Gu et al., 2000). Having less emphasis on elaborate equipments required, 
time, and the amount of work involved; the free vibration method seems to be more tractable than the 
forced method. In the determination of flutter derivatives by the free vibration method, the system 
identification method is the most important part required to extract these parameters from the response 
output of the section model. The free vibration method depends on the system identification techniques 
and can be classified into two types, i.e. the free decay and the buffeting tests. In the free decay test 
method, the bridge deck is given initial vertical and torsional displacements. The flutter derivatives are 
based on the transient (i.e. free decay) behavior that occurs when the bridge deck is released. The 
buffeting test, on the other hand, uses only the steady random responses (i.e. buffeting responses) of 
bridge deck under wind flow without any initial displacement given to the model. Compared with the free 
decay method, the buffeting test is simpler in the test methodology, is more cost effective, and is more 
closely related to the real bridge behaviors under wind flow, but with a disadvantage that the outputs 
appear random-like. This makes the parameters extraction more difficult and a more advanced system 
identification technique is required. 

In most of the previous studies, flutter derivatives were estimated by the deterministic system 
identification techniques that can be applied to the free decay method only. Examples of the previous 
deterministic system identification techniques that were applied to the free decay method included the 
Scanlan’s method (Scanlan & Tomko, 1971), the Poulsen’s method (Poulsen et al., 1992), the Modified 
Ibrahim Time Domain method (MITD) (Sarkar et al., 1994), the Unified Least Square method (ULS) (Gu 
et al., 2000), and the Iterative Least Square method (ILS) (Chowdhurry and Sarkar, 2003). In these 
system identification techniques, the buffeting forces and their responses are regarded as external noises, 
the identification process then requires many iterations. It also confronted with difficulties at high wind 
speeds where the initial free decay is drowned by buffeting responses.  Besides, at high reduced wind 
speed, the vertical bending motion of the structure will decay rapidly due to the effect of the vertical 
aerodynamic damping, and thus the length of decaying time history available for system identifications 
will decrease. This causes more difficulties to the deterministic system identification techniques (Gu and 
Qin, 2004). In the case of turbulence flow, the presence of the turbulence in the flow is equivalent to a 
more noisy-input signal to the deterministic system identification. This made the extraction process more 
complicated and most likely reduced the accuracy of the flutter derivatives identified (Sarkar et al., 1994). 
In addition, due to the test technique, the free decay method is impractical to determine flutter derivatives 
of real bridges in the field. 

On the other hand, the buffeting test uses random responses data of bridge motion from wind 
turbulence only. This mechanism is more closely related to a real bridge under wind flow and is 
applicable to real prototype bridges. The buffeting method costs less and is simpler than the free decay 
method since no operator interrupts in exciting the model. However, as wind is the only excited source, it 
results in low signal-to-noise ratio, especially at low velocity, and therefore a very effective system 
identification technique is required. None of the aforementioned system identification techniques is 
applicable to the buffeting responses tests. System identification techniques can be divided into two 
groups, i.e. deterministic and stochastic. 

If the stochastic system identification technique (Juang and Pappa, 1985; Overschee, 1991; Peeters, 
1999) is employed to estimate the flutter derivatives of a bridge deck from their steady random responses 
under the action of turbulent wind, the above-mentioned shortcomings of the deterministic system 
identification technique can be overcome. The reason is that the random aerodynamic loads are regarded 
as inputs rather than noises, which are more coincident with the fact. Therefore, the signal-to-noise ratio 
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is not affected by the wind speed, and the flutter derivatives at high reduced wind speeds are more readily 
available. These aspects give the stochastic system identification methods an advantage over the 
deterministic system identification.  

Many stochastic system identification methods have been developed during the past decades, among 
which the stochastic subspace identification (SSI in short) (Overschee, 1991; Peeters, 1999) has proven to 
be a method that is very appropriate for civil engineering. The merit points of SSI are: (1) the assumptions 
of inputs are congruent with practical wind-induced aerodynamic forces, i.e. stationary and independent 
on the outputs; (2) identified modes are given in frequency stabilization diagram, from which the operator 
can easily distinguish structural modes from the computational ones; (3) since the maximum order of the 
model is changeable for the operator, a relatively large model order will give an exit for noise, which in 
some cases can dramatically improve the quality of the identified modal parameters; (4) mode shapes are 
simultaneously available with the poles, without requiring a second step to identify them. There are two 
kinds of SSI methods, one is data-driven, and the other is covariance-driven. 

The similarity of the covariance- and the data-driven SSI methods is that they both are aimed to 
cancel out the (uncorrelated) noise using stochastic realization. In the SSI-COV algorithm, the raw time 
histories are converted to the covariances of the Toeplitz matrix. The  implementation of SSI-COV 
consists of estimating the covariances, computing the singular value decomposition (SVD) of the Toeplitz 
matrix, truncate the SVD to the model order n, estimating the observability and the controllability 
matrices by splitting the SVD into two parts and finally estimating the system matrices (A,C). The modal 
parameters are then found from A and C.  Gu and Qin (2004) applied the SSI-COV to extract six 
derivatives (H1*~ H3*, A1*~ A3*). Mishra et at. (2006) used the SSI-COV to extract 18 flutter derivatives 
from wind tunnel tests, but the identified flutter derivatives seem to be scattered.  

As opposed to SSI-COV, the data-driven stochastic subspace identification (SSI-DATA) avoids the 
computation of covariances between the outputs; since the error and noises may be squared up from the 
covariance estimation (Golub and Van Loan, 1996). It is replaced by projecting the row space of the 
future outputs into the row space of the past outputs. This projection is computed in favor from the 
numerically robust square root algorithm, i.e. QR factorization.  Theoretically, the numerical behavior of 
SSI-DATA should then be better than that of SSI-COV (Peeters and De Roeck, 2001). However, very few 
researchers, if any, have applied the SSI-DATA for identification of the flutter derivatives of bridge 
decks. 

In this paper, the data-driven stochastic subspace identification method is proposed to estimate the 
flutter derivatives from random responses (buffeting) under the action of smooth and turbulent wind. 
Tests are also carried out with the free decay method (single and two-degree-of-freedom) in order to 
examine the robustness of the present technique that the results are not affected by test methods used. To 
validate the applicability of the present technique, numerical simulations were firstly performed. Then, 
sectional-model tests of a quasi-streamlined thin plate model, which is the only section that theoretical 
flutter derivatives exist, were performed under smooth flow. Encouraged by the success in the evaluation 
process, the flutter derivatives of a real bridge were determined. The two-edge-girder type blunt section 
model of Industrial-Ring-Road Bridge (IRR in short), a cable-supported bridge with a main span of 398 m 
in Samutprakan province of Thailand, was tested both in the smooth and the turbulence flows. Tests were 
conducted in TU-AIT Boundary Layer Wind Tunnel in Thammasat University, the longest and the largest 
wind tunnel in Thailand.  

 
2. Theoretical formulation of data-driven stochastic subspace identification. 

 
2.1    Flutter and buffeting forces 

 
The dynamical behaviors of a bridge deck with two degrees-of-freedom (DOF in short), i.e. h 

(bending) and α (torsion), in turbulent flow can be described by the following differential equations 
(Scanlan, 1977) 
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2( ) 2 ( ) ( ) ( ) ( )

2( ) 2 ( ) ( ) ( ) ( )

h h h se b

se b

m h t h t h t L t L t

I t t t M t M tα α α

ξ ω ω

α ξ ω α ω α

⎡ ⎤+ + = +⎣ ⎦
⎡ ⎤+ + = +⎢ ⎥⎣ ⎦  

(1)
 

where m and I are the mass and the mass moment of inertia of the deck per unit span, respectively; ωi is 
the natural circular frequency; ξi is the modal damping ratio (i=h,α); Lse and Mse are the self-excited lift 
and moment, respectively; while Lb and Mb are the aerodynamic lift and moment. The self-excited lift and 
moment are given as follows (Simiu and Scanlan, 1996). 
 

2 * * 2 * 2 *1
1 2 3 42 ( ) ( ) ( ) ( )se h h h h

h B hL U B K H K K H K K H K K H K
U U Bα α α α

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

2 2 * * 2 * 2 *1
1 2 3 42 ( ) ( ) ( ) ( )se h h h h

h B hM U B K A K K A K K A K K A K
U U Bα α α α

αρ α
⎡ ⎤

= + + +⎢ ⎥
⎣ ⎦

  (2) 

 
where  ρ  is the air mass density; B is the width of the bridge deck; U is the mean wind speed at the bridge 
deck level; Ki= ωiB/U is the reduced frequency (i=h,α); and Hi

* and Ai
* (i=1,2,3,4) are the so-called flutter 

derivatives, which can be regarded as the implicit functions of the deck’s modal parameters. An alternate 
form of the self-excited forces is as in Eq. (2) but without the factor 1/2 (Poulsen et al., 1992). 

The aerodynamic lift and moment can be defined as (Scanlan, 1977) 
 

( ) ( ) ( ) ( ) ( ) ( )21 2
2b L L L D L

u t w t
L t U B C t C C t

U U
ρ χ χ

⎡ ⎤
′= + +⎢ ⎥

⎣ ⎦  ,  

( ) ( ) ( ) ( ) ( ) ( )2 21 2
2b M M M M

u t w t
M t U B C t C t

U U
ρ χ χ

⎡ ⎤
′= +⎢ ⎥

⎣ ⎦              
(3) 

 
where CL, CD and CM are the steady aerodynamic force coefficients; C′L and C′M are the derivatives of CL 
and CM with respect to the attack angles, respectively; u(t) and w(t) are the longitudinal and vertical 
fluctuations of the wind speed, respectively; χL andχM   are the lift and moment aerodynamic admittances 
of the bridge deck. 

By moving Lse and Mse to the left side, and merging the congeners into column vectors or matrices, 
Eq. (1) can be rewritten as follows 

      [ ] ( ){ } ( ){ } ( ){ } ( ){ }e eM y t C y t K y t f t⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦                   (4) 

where {y(t)} ={h(t) α(t)}T    is the generalized buffeting response; {f(t)} ={Lb(t) Mb(t)}T   is the generalized 
aerodynamic force; [M] is the mass matrix; [Ce] is the gross damping matrix, i.e. the sum of the 
mechanical and the aerodynamic damping matrices; and [Ke] is the gross stiffness matrix. 
 

2.2    Stochastic state space models 
 

The fluctuations of the wind speed u(t) and w(t) in Eq. (3) are random functions of time, so the 
identification of flutter derivatives of bridge decks can be simplified as a typical inverse problem in the 
theory of random vibration, and thus can be solved by the stochastic system identification techniques.  Let 

[ ]

[ ] [ ]

-1 -1

O I
- -

I O

c e e

c

A
M K M C

C

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
=

                                                      (5) 
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and     { }
y

x
y

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
                                                                                    (6) 

then Eq. (4) is transformed into the following stochastic state equations 

{ } [ ]{ } { }
{ } [ ]{ } { }

c

c

x A x w

y C x v

= +

= +
                                           (7) 

The discrete form of Eq. (7) can be written as 

{ } [ ]{ } { }
{ } [ ]{ } { }

1k k k

k k k

x A x w

y C x v
+ = +

= +
                (8) 

where [Ac]4×4, [Cc]2×4 and {x} are known as state matrix, output shape matrix and state vector, 
respectively; {wk} and {vk} are the input and output noise sequences, respectively. Subscript *k denotes 
the value of * at time kΔt, where Δt means the sampling interval. 0 and I are the zero and identity 
matrices, respectively.  

It is an assumption of the stochastic model that {xk}, {wk} and {vk} in Eq. (8) are mutually 
independent and hence 

T T[ ] , [ ]k k k kE x w E x v= =0 0                                            (9) 

The output covariance matrix of lag i, Λi, and the “next state-output” covariance matrix G are defined as: 

T T

T T

T T

[ ] [ ]

[ ] [ ]

[ ] [ ]

k k k k

i k i k k k

k i k k k

E x x Q E w w

E y y R E v v

G E x y S E w v
+

+

Σ = =

Λ = =

= =

                                                  (10) 

By combining Eqs. (9) and (10), we obtain the following Lyapunov equations for the state and output 
covariance matrices 

T

T
0

T

A A Q
C C R

G A C S

Σ = Σ +

Λ = Σ +

= Σ +

                                        (11) 

From (8) and (9), it can be deduced 
{ }{ }1 1k kE y y CG+⎡ ⎤⎣ ⎦Λ = =

     
       

{ }{ } 1i
i k i kE y y CA G−

+⎡ ⎤⎣ ⎦Λ = =
     

       (12) 
 

2.3    Data-driven stochastic subspace identification  
 

The main algorithm of the data-driven stochastic subspace identification (SSI DATA) proceeds with 
projecting the row space of the future outputs, Yf, into the row space of the past outputs, Yp. This 
projection is noted and defined as (Overschee and Moor, 1996): 

 
   †. .( ) .T T

i f p f p p p pY Y Y Y Y Y YΠ = =           (13) 
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where (•)† represents the pseudo-inverse of a matrix. The idea behind this projection is that it retains all 
the information in the past that is useful to predict the future. The matrices , li x j

f pY Y ∈ are partitions 
matrices of the output data block Hankel matrix, H, defined as: 

0 1 1

1 2
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2 1 2 2 2
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−
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⎜ ⎟⎜ ⎟
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        (14) 

where l is the number outputs. The main theorem of the stochastic subspace identification states that the 
projection Пi can be factorized as the observability matrix Oi and the Kalman filter state sequence 
ˆ

iX (Peeters and De Roeck, 2001): 

1 1

1

ˆ ˆ ˆ( .... )
...

ˆ
i i i i j

i

n

n

C
CA

x x x

CA

O Xi i + + −

−

↔

⎛ ⎞
⎜ ⎟
⎜ ⎟Π = =
⎜ ⎟
⎜ ⎟
⎝ ⎠

            (15) 

Both factors of Eq.(15), Oi and ˆ
iX , are obtained by applying the singular value decomposition (SVD) to 

the projection matrix: 
1 1

1 2 1 1 1
2

0
( )

0 0

T
T T

i T

S V
USV U U U S V

V
≈

⎛ ⎞⎛ ⎞
Π = = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠          
(16) 

Combining Eq. (15) and (16) gives: 
    1/ 2 †

1 1
ˆ,i i i iO U S T X O= = Π           (17) 

 
where U, S and V are orthonormal matrices. S is a diagonal matrix containing positive singular values in 
descending order. The number of nonzero singular values indicates the rank of the matrix (the order of 
system). The reduced diagonal matrix S1 is obtained by omitting the zero singular values from the matrix 
S. Matrices U1 and V1 are obtained by omitting the corresponding columns and rows from the matrices U 
and V respectively. Up to now we found the order of the system n (as the number of non-zero singular 
values in Eq.(16)), Oi and ˆ

iX . In practice however, the effect of "noise" leads to singular values that are 
all different from zero.  Actually, some of singular values associated with the noise modals are small, or 
very small. Generally, the model order can be determined by looking at a “gap” between two successive 
singular values. The singular value where the maximal gap occurs yields the model order. To obtain a 
good model for modal analysis applications, it is probably a better idea to construct a stabilization 
diagram (Peeters and De Roeck, 2001), by identifying a whole set of models with different order.  If the 
separation between the past and future outputs is shifted one block row down in Eq.(14), another 
projection can be defined as: 

1 1 2 1 0 1 1
ˆ

i f p i i i i iY Y Y Y O X− +
− + − − +Π = = =         (18) 
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where the last equation is similar to the main theorem (Eq.15). Oi-1 is obtained after deleting the last l 
rows of Oi computed as in Eq. (17).  

     1 (1: ( 1))i i l iO O− = −           (19) 

Now the shifted state sequence 1
ˆ

iX +  can be calculated from: 

     †
1 1 1

ˆ
i i iX O+ − −= Π            (20) 

At this moment the Kalman state sequences 1
ˆ ˆ,i iX X +  are calculated using only the output data (Eqs. (17)  

and (20)). The system matrices can now be recovered from following the overdetermined set of linear 
equations. These can be obtained by extending Eq.(7). 

     1
ˆ

ˆi i
i

ii i

X WA
X

Y VC
+

⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

         (21) 

where l x j
i iY ∈  is a Hankel matrix with only one block row. Since the Kalman state sequences and the 

outputs are known and the Kalman filter residuals ,i iW V are uncorrelated with ˆ
iX , the set of equations 

can be solved for A,C in a least square sense:  

     1 †
ˆ

ˆi
i

i i

XA
X

YC
+

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

           (22) 

Now the realizations of the system matrices (A, C) are achieved. Thus, the modal parameters can be 
determined by solving the eigenvalue problem of the state matrix A.   

     1 ,A C−= ΨΛΨ Φ = Ψ           (23) 

where Ψ is the complex eigenvector matrix, Φ  is the mode shape matrix, and Λ is a diagonal matrix 
composed of the complex poles of the system.  According to Eqs. (16)-(23), a different combination of i, j 
and n will give a different state matrix, and thus a different pair of modal parameters. The order n are 
determined by inspecting the singular values in S and obtain U1= Un and S1= Sn. Therefore, modal 
parameters should be derived from a series of combinations, rather than a single combination. In the 
process of identification, n or i should be given in series for certain values of j in order to obtain a 
frequency stability chart.  

Once the modal parameters are identified, the gross damping matrix Ce and the gross stiffness matrix 
Ke in Eq. (4) can be readily determined by the pseudo-inverse method 

    
†*

2 * * 2
* *[ ] [ ( ) ]e eK C M

⎡ ⎤Φ Φ
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where C0 and K0 are the ‘inherent’ damping and stiffness matrices, respectively. Thus, the flutter 
derivatives can be extracted from the following equations 

* *
1 11 11 1 21 212 3

* *
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* *
4 11 11 43 2

2 2( ) ( ), ( ) ( )

2 2( ) ( ), ( ) ( )

2 2( ) ( ), ( ) ( )

2 2( ) ( ), ( )

e e
h h

h h

e e

e e

e
h h

h

m IH k C C A k C C
B B

m IH k C C A k C C
B B

m IH k K K A k K K
B B

m IH k K K A k
B

α α
α α

α α
α α

ρ ω ρ ω

ρ ω ρ ω

ρ ω ρ ω

ρ ω

=− − =− −

=− − =− −

=− − =− −

=− − =− 21 214 2 ( )e

h
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(26) 

 
2.4    Implementation issues 

 
Very important in the implementation of the data-driven subspace algorithms in general is the QR-

factorization of the data Hankel matrices. Such a factorization applied to the Hankel matrix of Eq. (14) 
yields: 

    p p T

f f

Y Y
H RQ

Y Y

+

−

⎛ ⎞ ⎛ ⎞
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          (27) 

where j x jQ∈  is an orthonormal matrix: T T
jQ Q QQ I= = and  2li x jR∈ is a lower triangular matrix.  

Since  2li< j,  it is possible to omit the zeros in R and the corresponding rows in QT : 
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(28) 

The division in block rows and columns is made such that the submatrices in Eq. (14) can all be expressed 
in terms of the R and Q submatrices. It is easy to show that the QR factorization yields the following very 
simple expressions for the projections of the future row spaces into the past row spaces: 

   ( )21 1
1 1 31 32

31 2

,
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i i T
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YR Q
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+

− −
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         (29) 

Also l x j
i iY ∈  , the output sequence that is present in the least-squares equations in A, C of Eq. (22), is 

easily written in terms of the RQ factors: 

    ( ) 1
21 22

2

T

i i T

Q
Y R R

Q
⎛ ⎞
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           (30) 

2.5   Constitution of projection matrices and selection of model order 

Knowledge of a good model order (system order) is desired for modal analysis. First, the numbers of 
block rows i (which determine the maximum number of orders that can be calculated) have to be 
specified.  The numbers of block row i in iΠ in Eq. (16) and model order n in Eq. (17) are depend on 
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user’s choice.  It is practically experience that it is better to over-specify the model order and to eliminate 
spurious numerical poles afterwards. The operation was carried out with the help of MATLAB. In each 
number of block row i selected, for construction of stability diagram, the poles corresponding to a certain 
model order are compared to the poles of a one-order-lower model.  If the frequencies and the damping 
ratios differences are within preset limits, the pole is labeled as a stable one and the model order is 
determined. The modal frequency( iω )and damping ratio ( iξ )corresponding to each pole can be obtained 
by 

      2 2 , i
i i i i

i

aa bω ξ
ω

= + =
           

(31) 

where ia  and  ib   are real and imaginary parts of the continuous time poles, iλ defined as         

     
ln( )i

i i ia jb
t
μ

λ = = +
Δ             

(32) 

where 1j = −  and iμ  is the discrete time poles (eigenvalue), corresponding to the i th mode of  Λ.  The 
preset limits are normally 1% for frequencies and 5% for damping ratios. However depend on the quality 
of data, at high wind speed, 10% differences for damping ratio may be set (Sarkar et al., 1994).  A brief 
description follows: 

1. For a selected value of number of time history data recorded, N, select number of block row i, 
then maximum number of orders is specified. The projection matrix were determined for lags k 
=1, 2,….i. 

2. In each i, the projection matrix is formulated once as per Eq.(29). Models of different orders 
(n=2…i) were then obtained by including different number of singular values Sn in the 
computation of matrix A. Thus the modal parameters can be determined by solving eigenvalue of 
the state matrix A. The poles corresponding to a certain model order are compared to the poles of 
a one-order-lower model and the stable poles and system order are determined. 

3. The frequencies and damping corresponding to the stable poles are reported as stable ones for 
selected value of i. 

4. To asses if a suitable number of block rows is selected, step 1-3 are repeated with the varying of i, 
and the model order, stable poles, modal frequencies and damping for each i is reported. 
Theoretically, the number of block rows i is related to the precision of SSI method and generally 
shows asymptotic convergence.   

 Fig. 1 shows sample of the identified (stable) modal frequencies and damping coefficients of the two 
modes (vertical and torsion) as a function of  i. The variability of the modal frequencies looks small but 
the modal damping coefficients are uncertain and illegitimate when a small number i is used. However, 
they show the asymptotic convergence after certain value of i. The number of block i, where the modal 
parameters are converged, is also affected by the sampling frequency. From Fig. 1, the convergent starts 
at number of block rows i = 2fs, where fs is sampling rate (Hz.) that usually taken as ten times higher of 
the highest expected modal frequency or higher (Sarkar et al., 1994). 
 

2.6     Determination of System Matrices and Extraction of Flutter Derivatives 
 

Once, the model order and the stable poles are identified from section 2.5, only the Ψ, Φ, and Λ 
matrices of the stable poles are used to obtain K and C matrices in Eq. (24) in order to eliminate noises. 
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The stable poles are regarded as true modes whereas the spurious poles are effects of noises.  The flutter 
derivatives are then estimated by using Eq. (26).  

3. Numerical simulation tests 
 

In order to validate the applicability of the data-driven SSI technique in the flutter derivatives 
estimation of bridge decks, numerical simulations of signals from different test methods are first carried 
out. The numerical tests included two syntheses but well controlled cases: two uncoupled degrees of 
freedom and two coupled degrees of freedom (simulated response including the motion induced 
aeroelastic terms). Both cases are first excited in the transient (i.e. free decay) motion and then by a white 
noise loading process (buffeting). Measurement noises are also added by a white noise process with a 
standard deviation equal to 10% of the standard deviation of the original responses, in order to investigate 
the effect of the measurement noise. The parameters estimated by the SSI-DATA were also compared 
with those by the SSI-COV method. 

3.1    Two uncoupled degrees of freedom; free decay 
 

Free decay response time-series were obtained by direct calculations of the displacement values for 
N=4096 discrete time stations, with the ‘sampling’ interval Δt = 0.02s (i.e. fs = 50Hz). Structural modal 
properties used in this simulation were chosen from the previously tested sectional model of the Great 
Belt Bridge (Jacobsen and Hjorth-Hansen, 1995).  The modal matrices are given per unit length as: 

0 0 0

0.3616 0 397.0573 0 2.6526 0
, ,

0 0.0072 0 24.7315 0 0.0189
C K M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

i.e.  9472.1
0

=hf Hz, 7573.5
0

=θf Hz, 0053.0
0

=hξ , 0056.0
0

=θξ , where the damping ratios, ξ , are 
representatives for the range of small amplitudes.  The damping ratios were then multiplied in turn with 5, 
10, 20 and 40, in order to cover the values of the total damping (structural + aerodynamic) which could be 
presented in the vibration of the model section under wind flow.  Values as high as ξ = 0.2 could be 
expected for the vertical degree of freedom under wind flow. 

Frequencies and damping ratios that were estimated from the SSI-DATA and the SSI-COV are 
practically identical to the preset values (errors are less than 0.5% for the highest damping case).  The 
system matrices are also excellent even for the short useful signal case with only a few cycles of vibration 
motion. In the case where 10%-measurement noise was added, the estimated parameters by both SSI 
methods were also in good agreements, though more distortion was found in the SSI-COV.  The 
identified frequencies by the SSI-COV were changed at lesser than 0.8%. Damping ratios were changed 
at most by 2% except in the case of the lowest damping case which was 5.4 %. The diagonal terms of the 
estimated system matrices (i.e. frequency and damping matrices) are also identical to the preset values.  
Estimates of the diagonal terms are distorted within 1% except only in the case with lowest damping case 
in which the values are within 2.82%. However, the standard deviations of the damping ratios from 20-
simulation tests estimated by the SSI-COV are larger than that by the SSI-DATA which the values are 
13.2% and 5.7%, respectively.  

3.2    Simulated responses including the motion-induced forces 
 

The next step in the simulation was a simulation test with full effective stiffness and damping 
matrices (i.e. coupled degrees of freedom) and with lift and moment forces of the white noise type, as 
assumed in the SSI-method. For the mean-wind speed of 10.26 m/s, and the aerodynamic derivatives 
assumed according to the values reported for a similar bridge cross-section (Jacobsen and Hjorth-Hansen, 
1995), the effective structural matrices were pre-set at 
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0

8.9308 0.0799 420.1002 59.1805 2.6526 0
, ,

0.4345 0.0386 1.7552 19.6652 0 0.0189e eC K M
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 
The response time-series were simulated for both the free decay and the buffeting responses under 

turbulence wind with 10% turbulence intensity; then the measurement white noises were superimposed on 
the simulated response. The free decay response time-series were computed by the constant acceleration 
method and samples are as shown in Fig.2. The SSI-DATA and the SSI-COV methods, applied to these 
responses data, returned the modal parameters (i.e. frequency and damping ratio) that are practically 
identical to the preset values (error are less than 1%). Table 1 shows the deviation of identified system 
matrices from the pre-set values for the simulated free decay responses by both the SSI-COV and the SSI-
DATA in case of with and without noise. The structural matrices identified by the SSI-DATA are agreed 
well with the preset values (see Table 1). Superimposing 10% measurement white noise on the simulated 
response results in insignificant changes to system matrices identified by the SSI-DATA. However, the 
effect of noises to the identified matrices is more pronounced in the case of the SSI-COV, especially in 
the coupling terms K21, C12. 

The response time-series were also simulated for the case of the buffeting responses where wind 
turbulence is the only exciting source. The effective stiffness, K, and damping matrices, C, were taken as 
in the case of transients; examples of the response time-series are as shown in Fig. 3. Buffeting responses 
required longer data records (20,000 data points in the present study) as compared to those in the free 
decay case (4096 data points) in order to yield acceptable results. Tables 2 and 3 show the deviations of 
the identified modal parameters and system matrices from the pre-set values, respectively. In the noise-
free case, estimates of the frequencies and damping ratios by both SSI methods agreed well with the 
preset values where precisions are within 0.5% and 1% for the SSI-DATA and 0.5% and 2% for the SSI-
COV, respectively (see Table 2). Table 3 shows the deviation of the identified system matrices ([K], [C]) 
from the pre-set values by both the SSI-DATA and the SSI-COV methods. In the noise-free case, the 
system matrices identified by both SSI methods agreed well with the pre-set values. The most difference 
parameters are K21 (related to A4

*) and C21 (related to H2
*) identified by the SSI-COV which equal 3.99% 

and -6.76%, respectively. 
In the case of 10%-measurement noise added, all parameters (frequencies, damping and system 

matrices) estimated by the SSI-DATA are still in good agreements with the pre-set values (see Table 2 
and 3). On the other hand, these parameters that were estimated by the SSI-COV are more affected by 
noise. Fig. 4 shows frequencies and damping ratios estimated by both SSI methods from 100 simulations, 
where more scattered of estimated values from the SSI-COV are found, especially the vertical frequency 
and damping ratios. The differences of mean values for the vertical frequency and damping ratio from the 
pre-set value were 2.98% and 14.69%, respectively. Moreover, comparing with the SSI-DATA, the 
estimated system matrices by the SSI-COV are also more distorted by noise. The most deviated 
parameters are C21, K21 and C11 which are related to H2

*, A4
* and H1

*, respectively (see Table 3). It can be 
seen that the precision of the estimated parameters by the SSI-DATA are more reliable and more 
sustainable to noises as comparing to those from the SSI-COV. 

 
4. Wind tunnel tests 

 
 To further evaluate the applicability of the data-driven stochastic subspace identification method in 

the flutter derivatives estimation of bridge decks, wind tunnel tests of a quasi-streamlined thin plate model 
and a two-edge girder type blunt bridge section model were performed. 

4.1    Outline of wind tunnel tests 

The wind tunnel tests were performed in the TU-AIT wind tunnel at Thammasat University. The 
working section of the wind tunnel has a width of 2.5 m, a height of 2.5 m and a length of 25.5 m. The 
required turbulent flow was generated by grids, as shown in Fig. 5. A hot-sphere and a hot-wire 
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anemometers were used to measure the mean wind speed of the flow and the fluctuations of the wind 
speed, respectively. The longitudinal and vertical turbulence intensities are both less than 0.05% in the 
case of smooth flow and both are about 5% and 8% in two levels of turbulence flows, respectively. The 
typical normal spectral densities of the longitudinal and vertical fluctuation components of 8%-turbulence 
flow are presented in Fig.7 and compared with both Von Karman and Kaimal spectrum (Strømmen, 
2006). 

 
The model was suspended by eight springs outside the wind tunnel (see Fig. 6). To simulate a bridge 

section model with 2DOFs, i.e. vertical bending and torsion, piano wires were used to prevent the motion 
of the model in longitudinal direction; this can be seen in Fig.8, i.e. the schematic diagram of the top view 
of the test setup. Two piezoelectric acceleration transducers were mounted at the mid-length of the model 
to capture the acceleration signals. The responses of the models were captured by the acceleration 
transducers, and then the vertical and torsional responses can be respectively obtained by  

1 2 1 2,
2

x x x xh
l

α+ −
= =                  (33) 

where x1 and x2 are the measurements of the acceleration transducers 1 and 2, respectively; l is the 
horizontal distance between transducers. 

4.2    CASE 1: Thin plate model under smooth flow 
 

A quasi-streamlined thin plate (see Fig. 9) was first selected for wind tunnel test under smooth flow. 
The width to height (thickness) ratio of the plate is about 22.5. Table 4 lists the main parameters of the 
model. 

 
4.2.1 Comparisons of flutter derivatives between the free decay and the buffeting test methods 

under smooth flow 

The extraction of flutter derivatives of the thin plate , using  the SSI-DATA techniques, were 
performed on results from three types of tests, namely, a) single-degree-of-freedom (SDOF) motion tests 
(Scanlan and Tomko, 1971), b) free decay coupled-motion test (2DOFs), and c) buffeting coupled-motion 
test (2DOFs). The term “buffeting test under smooth flow”, though not theoretically concise, is weakly 
implied by considering the existence of very small turbulence (<0.05%) in smooth flow. The flutter 
derivatives were also estimated using the SSI-COV techniques for comparing the results between the two 
SSI techniques. Typical test results showing responses from the thin plate model are in Figs. 10 and 11.  
The responses for the free decay and the buffeting tests were sampled at the rates of 1000 Hz and 200 Hz, 
respectively. The results were then removed trend and re-sampled at 250 Hz and 50 Hz, respectively. The 
data-driven and covariance-driven SSI techniques were applied to identify the modal parameters from 
these data, and a pseudo-inverse method was applied to estimate the stiffness and damping matrices.  The 
flutter derivatives were estimated by Eq. (26) and reported in the form of Eq. (2). 

Figs. 12 and 13 compare the flutter derivatives of the thin plate that were estimated by the SSI-
DATA technique using the three test methods mentioned above and those identified by the SSI-COV 
method, as well as the Theodorsen’s theoretical values (Dyrbye and Hansen, 1996).  Unless otherwise 
noted, at any wind speed, the derivatives H1

*, H4
*, A1

*, and A4
*, which are associated with the vertical 

motion were calculated using the frequency nh (lower). In addition, the derivatives H2
*, H3

*, A2
*, and A3

* 
which are associated with the torsional motion were calculated using the frequency nα (higher).  

The direct flutter derivatives H1
* and H4

*, as found from the single-degree-of-freedom vertical-
motion tests, and A2

* and A3
*, as found from the single-degree-of-freedom torsional-motion tests, were 

also plotted and compared with those from the coupled-motion tests. The results are shown in Figs. 12 
and 13.  The near perfect match shows that the direct-flutter derivatives are indeed not affected by the 
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motion along the other degree of freedom, as predicted by theory i.e., those flutter derivatives associated 
with the h motion are not affected by the α motion, and vice versa.  

All flutter derivatives of the thin plate – except H4*- from free decay-motion tests by both SSI-
methods are in good agreements with Theodorsen’s theoretical values. However, H4* extracted from the 
SDOF and the coupled motion tests are in good agreement and showing good agreement in trend with the 
theoretical value. The factor that made the extraction of H4* difficult is due to the very small change in 
the natural frequency from which H4* were calculated. 

 
4.2.2 Comparisons of flutter derivatives between the SSI-DATA and the SSI-COV method. 

From Figs. 12 and 13, the six important flutter derivatives; H1*~ H3*, A1*~ A3* determined by the 
buffeting responses by both the SSI-COV and the SSI-DATA matched very well with both the theoretical 
values and those from the free decay responses. The results show very good agreements between the two 
types of tests.  This verifies the ability of the system identification methods (both the SSI-COV and the 
SSI-DATA) to apply to the free decay signal though it was developed from a stochastic model (white 
noise loading assumption). Nonetheless, as the thin plate model is relatively heavy, it is difficult to 
accurately extract the flutter derivatives by the buffeting response tests at the very low reduced velocities 
due to the low energy from the wind that is available to excite the model. The useful signal is embedded 
in the noise.  The H4*-derivatives by both the SSI-COV and the SSI-DATA are generally agreed in trend 
with the theoretical values similar to the free decay tests. However, the A4*, in turn, found from the SSI-
COV are more scattered without an obvious trend as compared to that from the SSI-DATA.  

4.3    CASE 2: Section model of the IRR Bridge 
 

Encouraged by the success in the thin plate model, the flutter derivatives of the IRR Bridge, a cable-
supported bridge with a 2-edge girder, as shown in Fig. 14, were estimated by the SSI-DATA technique. 
The IRR Bridge has a main span of 398 m. The deck consists of a concrete deck slab and a web of steel 
girders. The deck is supported by two cable planes at the outside edge girders. A 2-edge-girder bridge 
section with A-shape pylons has a good cost performance, but at the same time the bridge cross-section is 
known to be aerodynamically unstable at high wind speed. Table 5 lists the main parameters of the 
prototype bridge and the section model. Tests were conducted under smooth and two levels of turbulence 
wind flow. The turbulent flow conditions were generated by two different grids. The longitudinal and 
vertical turbulence intensities were both about 5% and 8%, respectively. 

Using the SSI-DATA technique, the flutter derivatives of the IRR Bridge were estimated for 2DOFs 
responses under smooth flow by both the free decay and the buffeting tests, and under two levels of 
turbulence flow by the buffeting test only. The results were also compared with those from the SSI-COV 
in the case of the free decay responses under smooth flow. 

 
4.3.1 Comparisons of flutter derivatives between the free decay and the buffeting test methods 

under smooth flow 

Figs. 15 and 16 present the identified flutter derivatives of the bridge deck by the SSI-DATA method 
from both the free decay and the buffeting tests under smooth flow. The flutter derivatives were estimated 
by Eq. (26) and reported in the form of Eq. (2) but without the factor 1/2. The identified flutter derivatives 
were also compared with those by the SSI-COV from the free decay responses.  

Generally, all flutter derivatives of the bridge in smooth flow identified by the SSI-DATA method 
from both the free decay and the buffeting tests are in good agreements. This verifies the ability of the SSI 
DATA system identification method under different type of tests. In smooth flow, the most important 
derivative A2

* is steadily increased (more negative) up to the reduced wind velocity around 3, and then 
started to decrease. This sign reversal at reduced wind speed of 4.5 (Fig. 16) is the primary factor toward 
the SDOF-torsional instability (“stall flutter”) for bluff type sections.  
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4.3.2 Comparisons of flutter derivatives between the SSI-DATA and the SSI-COV method. 

From Figs. 15 and 16, they were shown that the flutter derivatives identified by the SSI-COV method 
are generally agreed in trend with those identified by the SSI-DATA method.  However, the coupled 
aerodynamic derivatives; H2*, A1*, A4*, extracted by the SSI-COV in turn seem to be more scattered than 
those obtained from the SSI-DATA.  The largest scatter among the extracted parameters were A1* and 
A4*. 

4.3.3 Effects of turbulence flow on flutter derivatives and responses of bridge deck 

Most of the prototype bridges are submerged in turbulent wind; therefore, detailed investigations of 
the effects of turbulence on the flutter derivatives are significant. Almost all the wind tunnel tests for 
flutter derivatives have been generally carried out in smooth flows. Although few researchers have 
studied the problem using wind tunnel tests (Sarkar et al. 1994; Gu et al., 2000; Scanlan & Lin, 1978), in 
general, the results are still debatable and inconclusive. For streamlined section, tests showed little effect 

(Sarkar et al., 1994), while tests on a rectangular box girder bridge showed galloping in smooth flow 
(Jacobsen & Hjorth-Hansen, 1998). For П type section, Gu and Qin (2004) found that the effects of 
turbulence on the H3* and A3* seemed to be negligible; whereas the other four derivatives related to 
aerodynamic damping characteristics showed some deviations from those in smooth flow, especially at 
high reduced wind speed. 

Figs. 17 and 18 present the identified flutter derivatives of the bridge deck by the SSI-DATA method 
from buffeting responses under smooth flow and two turbulence wind flows with both the longitudinal 
and the vertical turbulence intensities of 5% and 8%, respectively. Generally, the flutter derivatives of the 
bridge in turbulent flow identified by the SSI-DATA are in agreement with those in smooth flow. From 
Figs.17 and 18, it can be found that the influence of the flow type on H4

* and A3
*, i.e. flutter derivatives 

related to the direct aerodynamic stiffness, seems to be negligible. Though, the value of H4
* obtained from 

the turbulence flow is somewhat less than that in the smooth flow case, it affected only the second 
decimal digit of the frequency value. The influence also has negligible effect on H1

*and H2
* i.e. direct and 

cross derivatives that are related to the vertical and the torsional aerodynamic dampings, respectively. On 
the other hand, the more important A1

* A2
* and H3

* show rather noticeable deviations from those in the 
smooth flow, especially at high reduced wind speeds. The most important effect is that the reduced wind 
speed, which corresponds to the reversed sign of the torsional aerodynamic damping A2

*, increased from 
4.5 in the smooth flow to 5.1 in the 5% turbulent flow (Fig. 18). It shows that turbulence tends to make 
bridges more aerodynamically stable by delaying the torsional flutter. The deviations of flutter derivatives 
may reveal the fact that for those bridges with bluff type sections similar to the IRR Bridge, the effects of 
turbulence can be significant. Hence, the wind tunnel tests of such bridges for flutter derivative estimation 
should also be carried out in turbulent flows. 

Figs. 19 and 20 show comparisons of the root-mean-square (RMS) torsional and vertical buffeting 
responses of the IRR bridge model versus the reduced velocity between smooth and turbulence flow. 
Under a smooth flow, the very abrupt transition with increasing velocity from the effectively zero 
torsional response amplitude to the clear instability occurs in the near neighborhood of the reduced 
velocity value of 4.5 (Figs. 16 and 20). The abrupt change in the vertical response at high wind speed is 
due to the effect of cross derivatives H 2

*and H3
* which causes the coupling of the torsional responses 

with the vertical responses in terms of damping and stiffness, respectively (Boonyapinyo et al. 1999). 
Compared with the smooth flow, the turbulence flow reduces the vortex-shedding response, because the 
turbulence tends to enhance the reattachment of flow and weaken the vortex shedding formulation.  
However, it raises the amplitude of the bridge responses progressively over the speed range. No clear and 
uniquely definable “flutter instability” was made evident in the range of wind velocity test. 
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5. Conclusions 
 

A theoretical model based on the data-driven SSI technique was proposed to extract the flutter 
derivatives of bridge deck sectional models from the two-degree-of-freedom free decay and buffeting 
responses.  An advantage of the stochastic subspace identification technique is that it considers the 
buffeting forces and the responses as inputs instead of as noises as typically assumed.  Therefore, the 
signal-to-noise ratio is not affected by the wind speed, and the flutter derivatives at high reduced wind 
speeds are more readily available.  These aspects give the stochastic system identification methods an 
advantage over the deterministic system identification.  Comparing with the SSI-COV, the SSI- DATA 
method avoids the computation of covariances between the outputs.  It is replaced by projecting the row 
space of the future outputs into the row space of the past outputs.  This projection is computed from the 
numerically robust square root algorithm, QR factorization instead of squaring up the output data as in the 
SSI-COV algorithm.  Moreover, this reduces both the dimensions of the matrices and the computation 
time considerably.  The conclusions of the present study are as follows. 

1) Numerical simulations of the bridge deck responses confirmed that the SSI-DATA technique can be 
used to estimate flutter derivatives from buffeting and free decay responses with reliable results. This 
shows the applicability of the SSI-DATA method with various test techniques, though it was 
developed from a stochastic model. Comparing with the SSI-COV, the identified modal parameter 
and system matrices from the SSI-DATA are more precise and less scattered. 

2) For the thin plate model under smooth flow, wind tunnel tests showed that flutter derivatives 
identified by the SSI-DATA technique from both the free decay and the buffeting tests matched well 
with theoretical values. The flutter derivatives identified by the SSI-COV method from both tests 
also agreed with theoretical values, except in the case of A4

* that was identified from buffeting 
responses 

3) When applied to the bluff section model of the IRR Bridge under smooth flow, the flutter derivatives 
estimated by the SSI-DATA from the buffeting test agreed with those obtained from the free decay 
test. This result allowed focusing on applying the SSI-DATA technique to the buffeting test method. 
On the other hand, there are more variations in the values of the A1

*, A4
*  and H2

* derivatives obtained 
by the SSI-COV.  The sign reversal of the A2

* derivative is observed as the reduced wind speed 
reached the value of 4.5. This indicates that this bridge section is susceptible to the SDOF-torsional 
flutter instability at high wind speed. 

4)  Under turbulence wind, the identified flutter derivatives by the SSI-DATA of a blunt section model 
of the IRR Bridge revealed that the most important and positive effect of the turbulence is that it 
tends to make the bridge more aerodynamically stable by delaying the sign reversal of the 
aerodynamic damping A2

* from 4.5 in the smooth flow to 5.1 in the 5% turbulent flow. This may 
help explain that for those bridges with bluff type sections similar to the IRR Bridge, the effects of 
turbulence can be significant. Hence, the wind tunnel tests of such bridges for flutter derivatives 
estimation should also be carried out in turbulent flow. 

In summary, the numerical simulation tests showed that the precision of modal parameters and 
system matrices can be clearly improved by using the SSI-DATA technique, compared with the SSI-
COV. From the results of wind tunnel tests, it was found that for a simple streamlined section, the flutter 
derivatives identified from both the SSI-DATA and the SSI-COV agreed well together. However, in the 
case of the 2-edge girder blunt type section, applying the SSI-DATA yields better results especially for 
the coupling derivatives.  Applying the proposed SSI-DATA technique to the buffeting test yields a 
straightforward, cost effective, and reliable system identification process that can be used to identify 
flutter derivatives of various bridge decks.  
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Table 1   Deviation of identified system matrices (Δ[K], Δ[C]) (in %) from the pre-set values for the simulated free 
decay responses.

 
case SSI-COV SSI-DATA 

% error of [K] % error of [C] % error of [K] % error of [C] 

1.  without noise -0.14% -0.05% 0.66% -3.00% -0.03% 0.08% -0.39% 2.56% 
4.26% -0.08% 0.16% -0.26% 1.42% -0.25% 0.42% 1.24% 

2.  with 10% noise 0.25% -0.30% 0.73% -7.01% -0.38% -0.02% 0.20% -2.50% 
-6.56% 0.02% -0.99% 1.55% 6.68% 0.02% -1.59% 0.0% 

 
Table 2   Deviation of identified modal parameters (frequencies, fh, fθ  and damping ratio ξh, ξθ  ) (in %) from pre-set 
values for simulated buffeting responses. 

 SSI-COV SSI-DATA 
Parameters Δfh(%) Δξh(%) Δfθ(%) Δξθ(%) Δfh(%) Δξh(%) Δfθ(%) Δξθ(%) 

Case 1) without noise 0.13% 1.67% -0.01% 0.44% -0.47% 0.19% 0.01% 0.88% 
Case 2) with 10% noise -2.98% -14.69% 0.12% -5.31% 0.81% 2.44% -0.08% -3.98% 
 

Table 3 Deviation of identified system matrices (Δ[K], Δ[C]) (in %) from pre-set values for simulated buffeting 
responses. 

case SSI-COV SSI-DATA 
% error of [K] % error of [C] % error of [K] % error of [C] 

Case 1) without noise 0.34% -0.08% 2.52% -6.76% 0.12% -0.02% 0.74% -3.12% 
3.99% -0.03% -0.81% 0.26% -2.01% 0.03% 0.66% 1.14% 

Case 2) with 10% noise 2.23% -0.38% 8.55% -27.86% 0.06% 0.04% 0.73% -2.16% 
-11.17% -0.03% -0.28% 0.50% 5.74% 0.03% 1.09% -0.27% 

 

 

Table 4  Main parameters of the thin plate model 

Parameter Mark Unit Value 
Length L m 2.30 
Width B m 0.45 
Height H m 0.02 
Mass per unit length M kg / m 6.7391 
Inertial moment of mass per unit length Im kg m2/ m 0.1183 
Inertial  radius R m 0.1325 
First bending freq. fh , nh Hz 1.65 
First torsional freq. fα , nα Hz 2.73 
First torsion-bending frequency ratio ε  1.65 
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Table 5  Main parameters of the IRR Bridge model 

Parameter Mark Unit Prototype Model 
Length L m - 2.26 
Width B m 35.9 0.399 
Height H m 3.20 0.035 
Mass per unit length M kg / m 43000 5.6801 
Inertial moment of mass per unit length Im kg m2/ m 4.11x109 0.1726 
First bending frequency fh , nh Hz 0.376 2.13 
First torsional frequency fα , nα Hz 0.850 4.73 
First torsion-bending-frequency ratio ε  2.26 2.22 

 
 

 
Fig. 1  Illustration of the asymptotically property of modal properties (…fs =  25 Hz, ---fs = 50 Hz   and solid line for 

fs = 100 Hz) 
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Fig.2 Example of vertical (top) and torsional (bottom) 
free decay responses simulated under wind 
flow. 

Fig.3 Example of vertical (top) and torsional (bottom) 
buffeting responses simulated under wind flow. 
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 a) b) 
Fig. 4  Estimated frequencies and damping ratio from 100 buffeting response simulations with 10% noise added.;   
a) by SSI-DATA, b) by SSI-COV. 

            

Fig. 5 IRR bridge model and grids to generate 
turbulent flow in wind tunnel. 

Fig. 6  Suspension device of the model. 
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Fig.  7  Normalized power spectrum of the longitudinal and vertical velocity component: 8%-turbulence flow. 

vertical 

torsional 

vertical 

torsional 

vertical 

torsional 

vertical 

torsional 



 

21 
 

 

Fig. 8 Top view of the test setup. 

 

  

Fig. 9 Cross-section of the thin plate (Unit in mm). 
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Fig.10 Vertical (top) and torsional (bottom) free 
decay acceleration responses of the thin plate 
at 8.1 m/s wind speed under smooth flow.(unit 
in g) 

Fig.11 Part of vertical (top) and torsional (bottom) 
buffeting acceleration responses of the thin 
plate at 5.6 m/s wind speed under smooth 
flow. (unit in g) 
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Fig. 12 Flutter derivatives (Hi

*) of the thin plate by SDOF test and coupled test by free decay and buffeting 
responses under smooth flow by both the SSI-DATA and the SSI-COV. 
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Fig. 13 Flutter derivatives (Ai

*) of the thin plate by SDOF test and coupled test by free decay and buffeting responses 
under smooth flow by both the SSI-DATA and the SSI-COV. 
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a) b) 

 
c) 

Fig. 14 a) Three dimensional view of IRR Bridge,  b) IRR bridge deck model in wind tunnel and c)  Schematic 
cross-section of  IRR Bridge. 
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Fig. 15 Flutter derivatives (Hi

*) of the IRR Bridge model from coupled free decay test by the SSI-DATA and the 
SSI-COV and from buffeting test by the SSI-DATA under smooth flow. 
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Fig. 16 Flutter derivatives (Ai

*) of the IRR Bridge model from coupled free decay test by the SSI-DATA and the 
SSI-COV and from buffeting test by the SSI-DATA under smooth flow. 
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Fig. 17 Flutter derivatives (Hi

*) of the IRR Bridge model by SSI-DATA from buffeting responses under smooth and 
turbulent flows. 
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Fig. 18 Flutter derivatives (Ai

*) of the IRR Bridge model by SSI-DATA from buffeting responses under smooth and 
turbulent flows. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6 8 10 12

N
or

m
al

iz
ed

  H
ea

ve
 (h

/H
) 

Reduced Velocity (U/fhB)

Smooth flow

Turbuelnce flow (8%)

   

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

Pi
tc

h 
(d

eg
)

Reduced Velocity (U/fαB)

Smooth flow

Turbulenc flow(8%)

Fig.19 Vertical RMS responses of the IRR bridge 
model under smooth and turbulence flows. 

Fig.20 Torsional RMS responses of the IRR bridge  
model under smooth and turbulence flows. 
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Identification of Flutter Derivatives of Bridge Decks in Wind 

Tunnel Test by Stochastic Subspace Identification 
 

T. Janesupasaeree and V. Boonyapinyo 
Faculty of Engineering, 

Thammasat University, Rangsit Campus, Pathumthani, 12120, Thailand 
 

Abstract: Problem statement: Flutter derivatives are the essential parameters in the estimations of 
the flutter critical wind velocity and the responses of long-span cable supported bridges. These 
derivatives can be experimentally estimated from wind tunnel test results. Generally, wind tunnel test 
methods can be divided into free decay test and buffeting test. Compared with the free decay method, 
the buffeting test is simpler but its outputs appear random-like. This makes the flutter derivatives 
extraction from its outputs more difficult and then a more advanced system identification is required. 
Most of previous studies have used deterministic system identification techniques, in which buffeting 
forces and responses are considered as noises. These previous techniques were applicable only to the 
free decay method. They also confronted some difficulties in extracting flutter derivatives at high wind 
speeds and under turbulence flow cases where the buffeting responses dominate. Approach: In this 
study, the covariance-driven stochastic subspace identification technique (SSI-COV) was presented to 
extract the flutter derivatives of bridge decks from the buffeting test results. An advantage of this 
method is that it considers the buffeting forces and responses as inputs rather than as noises. Numerical 
simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth flow by 
the free decay and the buffeting tests were used to validate the applicability of the SSI-COV method. 
Then, wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road Bridge deck (IRR) 
were conducted under smooth and turbulence flow. Results: The identified flutter derivatives of the 
thin plate model by the SSI-COV technique agree well with those obtained theoretically. The results 
from the thin plate and the IRR Bridge deck validated the reliability and applicability of the SSI-COV 
technique to various experimental methods and conditions of wind flow. 
Conclusion/Recommendations: The SSI-COV was successfully employed to identify flutter 
derivatives of bridge decks with reliable results. It is a proven technique that can be readily applied to 
identify flutter derivatives of other bridge decks either by the free decay or the buffeting tests. 
 
Key words: Flutter derivatives, covariance-driven stochastic subspace identification, wind tunnel test, 

bridge decks, turbulent flow 
 

INTRODUCTION 
 
 Long-span cable-supported bridges are highly 
susceptible to wind excitation because of their inherent 
flexibility and low structural damping. Wind loads play 
an important role in the design of these structures. A 
wind-induced aerodynamic force can be divided into 
two parts: a buffeting force that depends on the 
turbulence of incoming flow and an aeroelastic force 
that originates in the interaction between the airflow 
and the bridge motion. The motion-dependent forces 
feed back into the dynamics of the bridge as 
aerodynamic damping and stiffness; the effect is termed 
‘aeroelasticity’ and is commonly described via ‘flutter 

derivatives’. The problems of aerodynamic stability 
including vortex-induced vibrations, galloping, flutter 
and buffeting, may have serious effects on the safety 
and the serviceability of the bridges. Among these, 
flutter is the most serious wind-induced vibration of 
bridges and may destroy the bridges due to diverging 
motions either in single or torsion-bending coupled 
mode. Notorious examples by the flutter phenomenon 
are the failures of the Brighton Chain Pier Bridge in 
1836 and the original Tacoma Narrow Bridge in 1940. 
The flutter derivatives depend primarily upon the 
conditions of wind, the cross-sectional shape and the 
dynamic characteristics of the bridges. Nevertheless, no 
theoretical values exist for these derivatives for various 
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bridge shapes except only for a simple thin plate 
section. A major research tool in these studies is, 
therefore, a wind tunnel test, in which a geometrically 
and aerodynamically representative scale model of a 
length of a bridge deck is mounted in a wind tunnel. 
The flutter derivatives are non-dimensional functions of 
wind speed, geometry and frequency of vibrations; 
therefore they can be applied directly to full-scale 
bridge in a piecewise manner.  
 The experimental method used for a determination 
of flutter derivatives can be grouped under two types, 
i.e. forced[1] and free vibration methods[2-5]. Having less 
emphasis on elaborate equipment, time and work; the 
free vibration method seems to be more tractable than 
the forced method. In the determination of flutter 
derivatives by free vibration method, the system 
identification method is the most important part 
required to extract these parameters from the response 
output of the section model. The free vibration method 
depends on system identification techniques and can be 
classified into two types, i.e. free decay and buffeting 
tests. In the free decay method, the bridge deck is given 
an initial vertical and torsional displacement. The flutter 
derivatives are based on the transient (i.e., free decay) 
behavior that occurs when the bridge deck is released. 
The buffeting test, on the other hand, uses only the 
steady random responses (i.e., buffeting responses) of 
bridge deck under wind flow without any initial 
displacement given to the model. Compared with the 
free decay method, the buffeting test is simpler in the 
test methodology, more cost effective and more closely 
related to real bridge behaviors under wind flow, but 
with a disadvantage that the outputs appear random-
like. This makes the parameters extraction more 
difficult and a more advanced system identification is 
required. 
 In most of the previous studies, flutter derivatives 
were estimated by deterministic system identification 
techniques that can be applied to the free decay method 
only. Examples of previous deterministic system 
identification that were applied to the free decay 
method included Scanlan’s method[2], Poulsen’s 
method[3], Modified Ibrahim method (MITD)[4] and 
Unified Least Square method (ULS)[5]. In these system 
identification techniques, the buffeting forces and their 
responses are regarded as external noises, the 
identification process then requires many iterations[3-5]. 
It also confronted with difficulties at high wind speeds 
where the initial free decay is drowned by buffeting 
responses[3-5]. Moreover, at high reduced wind speed, 
the vertical bending motion of the structure will decay 
rapidly due to the effect of the positive vertical 
aerodynamic damping and thus the length of decaying 

time history available for system identifications will 
decrease. This causes more difficulties to the 
deterministic system identification techniques[4,5]. In 
case of turbulence flow, the presence of turbulence in 
the flow is equivalent to a more noisy-input signal to 
the deterministic system identification. This made the 
extraction process more complicated and most likely 
reduced the accuracy of the flutter derivatives 
identified[3,4]. In addition, due to test technique, the free 
decay method is impractical to determine flutter 
derivatives of real bridges in field. 
 On the other hand, the buffeting test uses random 
responses data of bridge motion from wind turbulence 
only. This mechanism is more closely related to a real 
bridge under wind flow and is applicable to real 
prototype bridges. The method costs less and simpler 
than the free decay since no operator interrupts in 
exciting the model. However, as wind is the only 
excited source, it results in low signal-to-noise ratio, 
especially at low velocity and therefore a very effective 
system identification is required. None of the 
aforementioned system identification techniques is 
applicable to the buffeting responses tests. System 
identification techniques can be divided into two 
groups, i.e., deterministic and stochastic. 
 If the stochastic system identification technique[6-9] 
is employed to estimate the flutter derivatives of a 
bridge deck from their steady random responses under 
the action of turbulent wind, the above-mentioned 
shortcomings of the deterministic system identification 
technique can be overcome. The reason is that the 
random aerodynamic loads are regarded as inputs rather 
than noises, which are more coincident with the fact. 
Therefore, the signal-to-noise ratio is not affected by 
wind speed and the flutter derivatives at high reduced 
wind speeds are more readily available. These aspects 
give the stochastic system identification methods an 
advantage over the deterministic system identification.  
 Many stochastic system identification methods 
have been developed during the past decades, among 
which the Stochastic Subspace Identification (SSI in 
short)[7,8] has proven to be a method that is very 
appropriate for civil engineering. The merit points of 
SSI are: (1) The assumptions of inputs are congruent 
with practical wind-induced aerodynamic forces, i.e. 
stationary and independent on the outputs; (2) 
Identified modes are given in frequency stabilization 
diagram, from which the operator can easily distinguish 
structural modes from the computational ones; (3) 
Since the maximum order of the model is changeable 
for the operator, a relatively large model order will give 
an exit for noise, which in some cases can dramatically 
improve the quality of the identified modal parameters; 
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(4) Mode shapes are simultaneously available with the 
poles, without requiring a second step to identify them. 
There are two kinds of SSI methods, one is data-driven 
and the other is covariance-driven. 
 In this study, the covariance-driven stochastic 
subspace identification method is used to estimate the 
flutter derivatives from random responses (buffeting) 
under the action of smooth and turbulent wind. Tests 
are also carried out with the free decay method (single 
and two-degree-of-freedom) in order to examine the 
robustness of the present technique that the results are 
not affected by test methods used. To validate the 
applicability of the present technique, first numerical 
simulations are performed then sectional-model tests 
of a quasi-streamlined thin plate model, which is the 
only section that theoretical flutter derivatives exist, 
are performed under smooth flow. Encouraged by the 
success in the evaluation process, the flutter 
derivatives of a real bridge are determined. The two-
edge-girder type blunt section model of Industrial-
Ring-Road Bridge (IRR in short), a cable-supported 
bridge with a main span of 398 m in Samutprakan 
province, Thailand, was tested both in smooth and 
turbulence flow. Tests were conducted in TU-AIT 
Boundary Layer Wind Tunnel in Thammasat 
University, the longest and the largest wind tunnel in 
Thailand.  
 

MATERIALS AND METHODS 
 
 Theoretical formulation of covariance-driven SSI: 
The dynamic behavior of a bridge deck with two 
Degrees-Of-Freedom (DOF in short), i.e., h (bending) 
and α (torsion), in turbulent flow can be described by 
the following differential equations[9,10]: 
 

2
h h h se b

2
se b

m h(t) 2 h(t) h(t) L (t) L (t)

I (t) 2 (t) (t) M (t) M (t)α α α

 + ξ ω + ω = + 

 α + ξ ω α + ω α = + 

&& &

&& &
 (1) 

 
Where: 
m and I = The mass and mass moment of inertia of 

the deck per unit span, respectively 
ωi = The natural circular frequency 
ξi = The modal damping ratio (i = h, α) 
Lse and Mse = The self-excited lift and moment, 

respectively 
Lb and Mb = The aerodynamic lift and moment 
 
 The self-excited lift and moment are given as 
follows[11]: 
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se 2

2 *
h 4 h

* * 2 *
h 1 h 2 3

2 21
se 2

2 *
h 4 h

h B
K H (K ) K H (K ) K H (K )

U UL U B
h

K H (K )
B

h B
K A (K ) K A (K ) K A (K )

U UM U B
h

K A (K )
B

α α α α

α α α α

 α+ + α 
 = ρ
 +  

 α+ + α 
 = ρ
 +  

& &

& &

 (2) 

 
Where: 
ρ = Air mass density; B is the width of 

the bridge deck 
U = The mean wind speed at the bridge 

deck level 
ki = ωiB/U = The reduced frequency (i = h, α) 
Hi

* and Ai
*  = The so-called flutter derivatives, 

(i = 1, 2, 3, 4)  which can be regarded as the implicit 
functions of the deck’s modal 
parameters 

 
 The alternate form of self-excited forces is as Eq. 
2 but without the factor 1/2[3]. 
  The aerodynamic lift and moment can be defined 
as[10]: 
 

2 '
b L L L D L

2 '
b M M M M

u(t) w(t)
L (t) U B 2C (t) (C C ) (t)

U U

u(t) w(t)
M (t) U B 2C (t) (C ) (t)

U U

 = ρ χ + + χ 
 

 = ρ χ + χ 
 

 (3) 

 
Where: 
CL, CD and CM = The steady aerodynamic force 

coefficients 
C′L and C′M = The derivatives of CL and CM with 

respect to the attack angles, 
respectively 

u(t) and w(t) = The longitudinal and vertical 
fluctuations of wind speed, 
respectively 

χL and χM = The lift and moment aerodynamic 
admittances of the bridge deck 

 
 By moving Lse and Mse to the left side and merging 
the congeners into column vectors or matrices, Eq. 1 
can be rewritten as follows: 
 

e e[M]{y(t)} [C ]{y(t)} [K ]{y(t)} {f (t)}+ + =&& &  (4) 
 
Where: 
{y(t)} = {h(t) α(t)} T = The generalized buffeting 

response 
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T
b b{f (t)} {L (t)M (t)}=  = The generalized aerodynamic 

force 
[M] = The mass matrix 
[Ce] = The gross damping matrix, i.e., 

the sum of the mechanical and 
aerodynamic damping matrices 

[K e] = The gross stiffness matrix 
 
 The fluctuations of wind speed u(t) and w(t) in Eq. 
3 are random functions of time, so the identification of 
flutter derivatives of bridge decks can be simplified as a 
typical inverse problem in the theory of random 
vibration and thus can be solved by the stochastic 
system identification techniques. Let: 
 

c 1 e 1 e

c

I I
[A ]

M K M C

[C ] [I O]

− −

 
=  − − 

=

 (5) 

 
and 
 

y
{x}

y

 
=  
 &

 (6) 

 
then Eq. 4 is transformed into the following stochastic 
state equations: 
 

c

c

{x} [A ]{x} {w}

{y} [C ]{x} {v}

= +

= +

&
 (7) 

 
 The discrete form of Eq. 7 can be written as: 
 

k 1 k k

k k k

{x } [A]{x } {w }

{y } [C]{x } {v }

+ = +

= +

&
 (8) 

 
where, [Ac]4×4, [Cc]2×4 and {x} are known as state 
matrix, output shape matrix and state vector, 
respectively; {wk} and {vk} are the input and output 
noise sequences, respectively. Subscript *k denotes the 
value of * at time k∆t, where ∆t means the sampling 
interval. O and I are the zero and identity matrices, 
respectively.  
 It is assumption of stochastic model that {xk}, {w k} 
and {vk} in Eq. 8 are mutually independent and hence: 
 
E(xkwk

T) = 0    E[xkvk
T] =0 (9) 

 
Defining: 
 

T T
k k k k

T T
i k i k k k

T T
k i k k k

E[x x ] Q E[x x ]

E[y y ] R E[v v ]

G E[x y ] S E[w w ]
+

+

∑ = =
Λ = =

= =
 (10) 

and combining Eq. 9 and 10 we obtain the following 
Lyapunov equations for the state and output covariance 
matrices: 
 

T

T
0

T

A A Q

C C R

G A C S

∑ = ∑ +
Λ = ∑ +

= ∑ +
 (11) 

 
 From (8) and (9), it can be deduced: 
 

T
1 k 1 k

T
k 1 k 1 k

T
k 1 k
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E C{x }{y }

CG

+

+ +

+
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 =  

=

 (12) 
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T
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CE {x }{y }
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+ + +

+

+

+

+

+

−

   Λ = = +   

 =  

 =  

 = + 

 =  

 =  

=

 (13) 

 
and 
 

i 1
i CA G−Λ =  (14) 

 
 Defining a block Toeplitz T1|i as: 
 

i i 1 1

i 1 i 2
1|i

2i 1 2i 2 i

T

−

+

− −

 Λ Λ Λ
 Λ Λ Λ =
 
 
Λ Λ Λ  

L

L

M M M M

L

 (15) 

 
one can infer from the definition of covariance matrix 
that T1|i can be expressed as the product of two block 
Hankel matrices Yf and Yp: 
 
T1|i = YfYp

T (16) 
 
where, Yf and Yp are composed of the ‘future’ and 
‘past’ measurements, respectively: 
 

i i 1 i j 1 0 1 j 1

i 1 i 2 i j 1 2 j
f p

2i 1 2i 2i j 2 i 1 i i j 2

y y y y y y

y y y y y y1 1
Y Y

j j
y y y y y y

+ + − −

+ + +

− + − − + −

   
   
   = =
   
   
      

L L

L L

M M M M M M M M

L L

 (17) 
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 Next, applying the factorization property to T1|i by 
the singular value decomposition yields: 
 

T
1T T1

1 2 1 1 11 i T
2

S 0 V
T USV (U U ) U S V

0 0 V
≈

  
= =   

  
 (18) 

 
Where: 
U, S and V = Orthonormal matrices 
S = A diagonal matrix containing positive 

singular values in descending order 
 
 The number of nonzero singular values indicates 
the rank of the Toeplitz matrix. The reduced diagonal 
matrix S1 is obtained by omitting the zero singular 
values from the matrix S. Matrices U1 and V1 are 
obtained by omitting the corresponding columns from 
the matrices U and V respectively. Now realizations of 
the system matrices are almost achieved. Matrix A is 
realized by using factorization of a shifted Toeplitz 
matrix T2|i+1 that has similar structure as of T1|i but 
consists of covariance from lag 2-2i. In a manner 
similar to the classical Eigensystem Realization 
Algorithm (ERA in short), one can find: 
 

1/2 T 1/2
i i N N2 i 2 iA O T S U T VS+ − −= ζ =  (19) 

 
where, N is model order, i.e., the maximum number of 
modes to be computed. Thus, the modal parameters can 
be determined by solving the eigenvalue problem of the 
state matrix A. By now, the theoretical formulation of 
covariance-driven SSI has been achieved. 
 According to Eq. 16-19, a different combination of 
i, j and N will give a different state matrix and thus a 
different pair of modal parameters. Therefore, modal 
parameters should be derived from a series of 
combinations, rather than a single combination. In the 
process of identification, N or i should be given in 
series for certain values of j in order to obtain a 
frequency stability chart. Solving the eigenvalue 
problem of the state matrix A by the pseudo-inverse 
method yields: 
 

1
dA

C

−= ΨΛ Ψ
Φ = Ψ

 (20) 

 
Where: 
Ψ = The complex eigenvector matrix 
Φ = The mode shape matrix 
Λ = A diagonal matrix composed of the complex poles 

of the system 
 
 Different combinations of i, j and N are employed 
to derive the modal parameters statistically[3,6]. 

 Once the modal parameters are identified, the gross 
damping matrix Ce and the gross stiffness matrix Ke in 
Eq. 4 can be readily determined by the pseudo-inverse 
method: 
 

†*
e e 2 * * 2

* *
[K C ] M[ ( ) ]

 Φ Φ
= − ΦΛ Φ Λ  ΦΛ Φ Λ 

 (21) 

 
where the superscript*denotes the complex conjugate of 
the corresponding term. Let: 
 

e e1 e 1 e

1 0 1 0

C M C K M K

C M C K M K

− −

− −

= =

= =
 (22) 

 
where, C0 and K0 are the ‘inherent’ damping and 
stiffness matrices, respectively. Thus, the flutter 
derivatives can be extracted from the following 
equations: 
 

* e * e
1 h 11 11 1 h 21 212 3

h h

* e * e
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* e * e
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* e *
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B B

2m 2I
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2m 2I
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B B
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α α
α α

α α
α α
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ρ ω ρ ω

=− − = − −
ρ ω ρ ω

=− − =− −
ρ ω ρ ω

=− − =−
ρ ω

e
21 214 2

h

(K K )
B

−
ρ ω

 (23) 

 
Numerical simulation tests: In order to validate the 
applicability of the covariance-driven SSI technique in 
flutter derivatives estimation of bridge decks, numerical 
simulations of signals from different test methods are 
first carried out. The numerical tests included two 
syntheses but well controlled cases: two uncoupled 
degrees of freedom and two coupled degrees of 
freedom (simulated response including the motion 
induced aeroelastic terms). Both cases are first excited 
in the transient (i.e., free decay) motion and then by a 
white noise loading process. Measurement noises are 
also added by a white noise process with a standard 
deviation equal to 10% of the standard deviation of the 
original responses, in order to investigate the effect of 
measurement noise. 
 Two uncoupled degrees of freedom; free decay: 
Transient responses time-series were obtained by direct 
calculations of the displacement values for N = 4096 
discrete    time    stations,   with   ‘sampling’   interval 
∆t = 0.02 sec (fs = 50 Hz). Structural modal properties 
used in this simulation were chosen from the previously 
tested sectional model of the Great Belt Bridge[12]. The 
modal matrices are given per unit length as: 
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0 0

0

0.3616 0 397.0573 0
C , K ,

0 0.0072 0 24.7315

2.6526 0
M

0 0.0189

   
= =   
   

 
=  
 

 

 
i.e.,  fho = 1.9472 Hz,  fθ0 = 5.7573 Hz,  ξh0 = 0.0053, ξθ0 

= 0.0056, where damping ratios, ξ, are representatives 
for the range of small amplitudes. The damping ratios 
were then multiplied in turn with 5, 10, 20 and 40, in 
order to cover the values of total damping (structural + 
aerodynamic) which could be presented in vibration of 
model section under wind flow. Values as high as ξ = 
0.2 could be expected for the vertical degree of freedom 
under wind flow. 
 Frequency and damping ratio estimates are 
practically identical to the preset values (less than 0.5% 
for the highest damping case). The system matrices are 
also excellent even for the short useful signal case with 
only a few cycles of vibration motion. In the case where 
10%-measurement noises were added, identified 
frequencies were changed at lesser than 0.8%. Damping 
ratios were changed at most by 2% except in the case of 
the lowest damping case which was 5.4%. The diagonal 
terms of the estimated system matrices (frequency and 
damping matrices) are also identical to the preset 
values. Estimates of diagonal terms are distorted within 
1% except only for the case with lowest damping case 
in which values are within 2.82%. 
 Two coupled degrees of freedom; free decay and 
buffeting responses: The next step in the simulation was 
a simulation test with full effective stiffness and 
damping matrices (i.e., coupled degrees of freedom) 
and with lift and moment forces of the white noise type, 
as assumed in the SSI-method. For the mean-wind 
speed of 10.26 m sec−1 and the aerodynamic derivatives 
assumed according to the values reported for a similar 
bridge cross-section[12], the effective structural matrices 
were pre-set at: 
 

e e

0

8.9308 0.0799 420.1002 59.1805
C , K ,

0.4345 0.0386 1.7552 19.6652

2.6526 0
M

0 0.0189

− −   
= =   
   

 
=  
 

 

 
 The response time-series were simulated for both 
free decay and buffeting responses under turbulence 
wind with 10% turbulence intensity; then measurement 
white noises were superimposed on the simulated 
response. The free decay response time-series were 
computed by constant acceleration method and samples 
are as shown in Fig. 1. The SSI-COV method, applied 

to these responses data, returned the effective structural 
matrices with the deviation from the pre-set ones (C 
and K) in percentage as: 
 

% %

0.66 3.00 0.14 0.05
C , K

0.16 0.26 4.26 0.08

− − −   
∆ = ∆ =   − −   

 
 
 Superimposing 10% measurement white noise on 
the simulated response made the structural matrices 
differed from those of the noise-free cases within 3%. 
The response time-series were also simulated for the 
case of buffeting responses where wind turbulence is 
the only excited source. The effective stiffness and 
damping matrices were taken as in the case of 
transients; examples of response time-series are as 
shown in Fig. 2. Buffeting responses required longer 
data records (20,000 data points in the present study) as 
compared to that in the free decay case (4096 data 
points) to yield acceptable results. Estimates of the 
frequencies and damping ratios agree well with preset 
values where precisions are within 0.5 and 2%, 
respectively. The diagonal terms in stiffness and 
damping matrices also agree well with preset values 
where the differences are less than 1% except for the 
C11 (related to vertical damping) where the difference is 
around 2.5%. The most differences in the off-diagonal 
terms are K21 and C21 which are related to A4

* and H2
*, 

respectively. In the case of 10%-measurement noise 
added, the deviation of the reconstructed matrices from 
the pre-set ones, in percentage, is: 
 

% %

8.55 27.86 2.23 0.38
C , K

0.28 0.5 11.17 0.03

− −   
∆ = ∆ =   − − −   
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Fig. 1: Example of vertical (top) and torsional (bottom) 

transient responses simulated under wind flow 
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Fig. 2: Example of vertical (top) and torsional (bottom) 

buffeting responses simulated under wind flow 
 

 
 
Fig. 3: IRR bridge model and grids to generate 

turbulent flow in wind tunnel 
 
Wind tunnel tests: To evaluate further the applicability 
of the present method in flutter derivatives estimation 
of bridge decks, wind tunnel tests of a quasi-
streamlined thin plate model and a two-edge girder type 
blunt bridge section model are performed. 
 
Outlined of wind tunnel tests: The wind tunnel tests 
were performed in TU-AIT wind tunnel in Thammasat 
University. The working section of the wind tunnel has 
a  width  of  2.5 m, a height of 2.5 m and a length of 
25.5 m. The required turbulent flow was generated by 
grids, as shown in Fig. 3. A hot-sphere anemometer was 
applied to measure the mean wind speed of the flow and 
a hot-wire anemometer was used to measure the 
fluctuations of wind speed. The longitudinal and vertical 
turbulence intensities are both less than 0.05% in case of 
smooth flow and about 8% in turbulence flow.  

 
 
Fig. 4: Suspension device of the model 
 

End Plate
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Bridge Sectional Model

Wall of Wind Tunnel

Flow Direction
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L

e

l

Acceleration Transducers

 
 
Fig. 5: Top view of the test setup 
  
 The model was suspended by eight springs outside 
the wind tunnel (Fig. 4). To simulate a bridge section 
model with 2DOFs, i.e. vertical bending and torsion, 
piano wires were used to prevent the motion of the 
model in longitudinal direction; this can be shown from 
Fig. 5, the schematic diagram of the top view of the test 
setup. Two piezoelectric acceleration transducers were 
mounted at the mid length of the model to capture the 
acceleration signals. The responses of the models were 
captured by the acceleration transducers and then the 
vertical and torsional responses can be respectively 
obtained by: 
 

1 2 1 2x x x x
h ,

2 l

+ −= α =  (24) 

 
where, x1 and x2 are the measurements of transducers 1 
and 2, respectively; l is the space between transducers. 
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RESULTS AND DISCUSSION 
 
Case 1: Thin plate model under smooth flow: A quasi-
streamlined thin plate (Fig. 6) was first selected for 
wind tunnel test. The width to height (thickness) ratio 
of the plate is about 22.5. Table 1 shows the main 
parameters of the model. 
 The extraction of flutter derivatives of the thin plate, 
using the SSI-COV technique, were performed on results 
from three types of tests, namely, (a) Single-Degree-Of-
Freedom (SDOF) motion tests[2], (b) free decay coupled-
motion test (2DOFs) and (c) buffeting coupled-motion 
test (2DOFs). Typical test results showing responses 
from the bridge model are in Fig. 7 and 8. The 
responses for the free decay and the buffeting tests are 
sampled  at  the  rates of 1000 and 200 Hz, respectively. 
 

 
 
Fig. 6 Cross-section of the streamlined thin plate 
 
Table 1: Main parameters of the thin plate model 
Parameter Mark Unit Value 
Length L m 2.3000 
Width B m 0.4500 
Height H m 0.0200 
Mass per unit length M kg m−1 6.7391 
Inertial moment of mass unit−1 length Im kg m2 m−1 0.1183 
Inertial radius R m 0.1325 
First bending frequency fh, n1 Hz 1.6500 
First torsional frequency fα, n2 Hz 2.7300 
First torsion-bending frequency ratio ε  1.6500 
 

 
 
Fig. 7: Vertical (top) and torsional (bottom) free decay 

acceleration   responses  of   the  thin  plate  at 
8.1 m sec−1 wind speed under smooth flow. 
(Unit in g) 

The results are then removed trend and re-sampled at 
250 and 50 Hz, respectively. The covariance-driven SSI 
technique is applied to identify modal parameters from 
these data and a pseudo-inverse method is applied to 
estimate the stiffness and damping matrices. The flutter 
derivatives are estimated by Eq. 23 and reported in the 
form of Eq. 2 but without the factor 1/2. 
 
Comparisons between SDOF and 2DOF-coupled-
motion tests: free decay method: Figure 9 and 10 
compare the flutter derivatives of the thin plate that are 
estimated by the SSI-COV technique using the above 
mentioned three test methods together with the 
Theodorsen’s theoretical values[13]. Unless otherwise 
noted, at any wind speed, H1

*, H4
*, A1

* and A4
* which 

are associated with the vertical motion were calculated 
using the frequency n1 (lower). In addition, the 
derivatives H2

*, H3
*, A2

* and A3
*  which are associated 

with the torsional motion were calculated using the 
frequency n2 (higher).  
 The direct flutter derivatives H1

* and H4
* as found 

from the single-degree-of-freedom vertical-motion tests 
and A2

* and A3
*  as found from the single-degree-of-

freedom torsional-motion tests are also plotted and 
compared with those from the coupled-motion tests. 
The results are shown in Fig. 9 and 10. The near perfect 
match shows that the direct-flutter derivatives are 
indeed not affected by the motion along the other 
degree of freedom, as predicted by theory i.e., those 
flutter derivatives associated with h motion are not 
affected by α motion and vice versa. It also 
demonstrates the reliability of both the coupled-motion 
tests and the system identification method (SSI-COV). 
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Fig. 8: Part of vertical (top) and torsional (bottom) 
buffeting acceleration responses of the thin plate 
at 5.6 m sec−1 wind speed under smooth flow. 
(Unit in g) 
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Fig. 9: Flutter derivatives (Hi

*) of the thin plate by SDOF test and coupled test by free decay and buffeting 
responses under smooth flow 
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Fig. 10: Flutter derivatives (Ai

*) of the thin plate by SDOF test and coupled test by free decay and buffeting 
responses under smooth flow 
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Comparisons of coupled-2DOF motion tests between 
the free decay and the buffeting tests: The flutter 
derivatives found from both the free decay and the 
buffeting tests for the coupled-2DOF cases are 
compared in Fig. 9 and 10. The results show good 
agreement between the two methods. This validates the 
ability of the system identification method (SSI-COV) 
to apply with both the free decay and the buffeting tests 
although it was developed from a stochastic model (i.e., 
white noise loading assumption). However, when a 
relatively heavy model is excited at a very low reduced 
wind velocity, i.e., low wind energy, it becomes more 
difficult to extract the flutter derivatives from the 
buffeting responses. 
 The results also show that identified flutter 
derivatives agree well with the theoretical ones. The six 
important flutter derivatives H1

*~ H3
*and A1

*~ A3
*  

identified by SSI from different tests match well with 
theoretical values. The H4

*derivatives are generally 
agreed in trend with theoretical values. However, the 
A4

*, in turn, found from buffeting responses are more 
scattered compared to those from free decay responses. 
The impacts of the H4

* and A4
* derivatives, however, 

seem to be less significant when compared to those of 
other derivatives. This was the reason why H4

*  and A4
* 

were usually neglected in previous studies[2,3,5,10]. 
 
Case 2: Section model of IRR Bridge: Encouraged by 
the success in the thin plate model, the flutter 
derivatives of IRR Bridge, a cable-supported bridge 
with 2-edge girder, as shown in Fig. 11, were estimated 
by the SSI-COV technique. The IRR Bridge has a main 
span of 398 m. The deck consists of a concrete deck 
slab and a web of steel girders. The deck is supported 
by two cable planes at outside edge girders. A 2-edge-
girder bridge section with A-shape pylons has good cost 
performance, but at the same time the bridge cross-
section is known to be aerodynamically unstable at high 
wind speed. Table 2 shows the main parameters of the 
prototype bridge and the section model. Tests were 
conducted under smooth and turbulence wind flow.  
 Using the SSI-COV technique, the flutter 
derivatives of the IRR Bridge were estimated for 
2DOFs responses under smooth flow by both the free 
decay and the buffeting tests and under turbulence flow 
by the buffeting test only. 
 
Comparisons of test method; Smooth flow: Figure 12 
and 13 show the identified flutter derivatives of the 
bridge deck by free decay and buffeting responses 
under smooth flow and by buffeting responses under 
turbulent flow. The flutter derivatives are estimated by 
Eq. 23 and reported in the form of Eq. 2 but without the 
factor 1/2. 

Table 2: Main parameters of the IRR Bridge model 
Parameter Mark Unit Prototype Model 
Length L m - 2.2600 
Width B m 35.9 0.3990 
Height H m 3.20 0.0350 
Mass per unit length M kg m−1 43000 5.6801 
Inertial moment of Im kg m2 m−1 4.11×109 0.1726 
mass unit−1 length 
First bending frequency fh, n1 Hz 0.376 2.1300 
First torsional frequency fα, n2 Hz 0.850 4.7300 
First torsion-bending- ε  2.260 2.2200 
frequency ratio 
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Fig. 11: (a): Three dimensional view of IRR Bridge; 

(b): Schematic cross-section of IRR Bridge; 
(c): IRR Bridge sectional model in wind 
tunnel 

 
 Generally, the flutter derivatives of the bridge in 
smooth flow identified by the SSI method from both the 
free decay and the buffeting tests are in good agreements. 
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Fig. 12: Flutter derivatives (Hi

*) of the IRR Bridge by free decay and buffeting responses under smooth and 
turbulence flow 
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Fig. 13: Flutter derivatives (Ai

*) of the IRR Bridge by free decay and buffeting responses under smooth and 
turbulence flow 
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The difference of A4
* identified from both tests, seems 

to be negligible as effect of this derivative is usually 
considered to be less significant. In smooth flow, the 
most important derivative A2

* are steadily increased 
(more negative) up to the reduced wind velocity around 
3 and then started to decrease. This sign reversal is the 
primary factor toward the SDOF-torsional instability 
(“stall flutter”) for bluff type sections. The torsional 
flutter was found at the reduced wind speed around 4.7. 
 
Effect of turbulence: Most of the prototype bridges are 
submerged in turbulent wind, therefore, detailed 
investigations of the effects of turbulence on the flutter 
derivatives is significant. Almost all the wind tunnel 
tests for flutter derivatives have been generally carried 
out in smooth flow. Although few researchers have 
studied the problem using wind tunnel tests, results and 
the identification methods were individually 
proposed[4,14] and the results are still debatable and 
inconclusive. For streamlined section, tests showed 
little effect[4,14], while tests on a rectangular box girder 
bridge showed galloping in smooth flow[15].  
 From Fig. 12 and 13, it can be found that the 
influence of flow type on H4

* and A3
*, i.e., flutter 

derivatives related to direct aerodynamic stiffness, 
seems to be negligible. Though, the value of H4

* from 
turbulence flow is somewhat lesser than that in the 
smooth flow case, it affected only the second decimal 
digit of the frequency value. The influence also has 
negligible effect on H1

*and H2
* i.e., direct and cross 

derivatives related to vertical and torsional aerodynamic 
dampings, respectively. On the other hand, the more 
important A1

* A2
* and H3

*, show rather noticeable 
deviations from those in smooth flow, especially at high 
reduced wind speeds. The most important effect is that 
the reduced wind speed corresponding to the reversed 
sign of the torsional aerodynamic damping A2

*  
increased in turbulent flow. It shows that turbulence 
tends to make bridges more aerodynamically stable by 
delaying torsional flutter. The deviations of flutter 
derivatives may reveal the fact that for those bridges with 
bluff type sections similar to IRR Bridge, the effects of 
turbulence can be significant. Hence, the wind tunnel 
tests of such bridges for flutter derivative estimation 
should be carried out in turbulent flow as well. 
 

CONCLUSION 
 
 A theoretical model based on the covariance-driven 
SSI technique was proposed to extract the flutter 
derivatives of bridge deck sectional models from 
coupled two-degree-of-freedom system by free decay 
and buffeting responses. An advantage of the adopted 

SSI-COV technique is that it considers the buffeting 
forces and responses as inputs instead of as noises as 
typically assumed. The conclusions of this study are as 
follows: 
 
• Numerical simulations of bridge deck responses 

confirmed that the SSI-COV technique can be used 
to estimate flutter derivatives from buffeting and 
free decay responses with reliable results. This 
shows the applicability of the SSI-COV method 
with various test techniques, though it was 
developed from a stochastic model 

• For the thin plate model under smooth flow, wind 
tunnel tests showed that flutter derivatives 
identified by the SSI technique from both the free 
decay and the buffeting tests matched well with 
theoretical values. Although there are some 
variations in the values of A4

* obtained from the 
buffeting test, this derivative is considered as 
insignificant and is usually neglected in most of the 
previous studies 

• When apply to the bluff section model of the IRR 
Bridge under smooth flow, the flutter derivatives 
estimated from the buffeting test agreed with those 
obtained from the free decay test. This result 
allowed focusing on applying the SSI-COV 
technique to the buffeting test method. There are 
variations in the values of the A4

* derivative as 
obtained from the two test methods but they agree 
in trend. We also observed the sign reversal of the 
A2

*  derivative as the reduced wind speed reached 
the value of 4.7. This indicates that this bridge 
section is susceptible to flutter instability at high 
wind speed 

• The test result of bluff section model of the IRR 
Bridge under turbulence wind revealed that the 
most important and positive effect of the 
turbulence is that it tends to make the bridge more 
aerodynamically stable by delaying the sign 
reversal of the aerodynamic damping A2

*. This 
may help explain that for those bridges with bluff 
type sections similar to the IRR Bridge, the effects 
of turbulence can be significant. Hence, the wind 
tunnel tests of such bridges for flutter derivatives 
estimation should be carried out in turbulent flow 
as well 

 
 Applying the proposed SSI-COV technique to the 
buffeting test yields a straightforward, cost effective 
and reliable system identification process that can be 
used to identify flutter derivatives of various bridge 
decks. It, however, has some limitations. For example, 
it becomes more difficult to extract the flutter 
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derivatives from the buffeting responses in the situation 
when a relatively heavy model is excited at a very low 
reduced wind velocity, i.e., low wind energy. In this 
case, using the SSI-COV technique with the free decay 
method will yield more accurate results.  
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ABSTRACT 

Flutter derivatives are the essential parameters in the estimations of the critical wind velocity for flutter-
instability and the responses of long-span cable supported bridges.  These derivatives can be experimentally 
estimated from wind tunnel tests results.  Most of previous studies have used deterministic system identification 
techniques, in which buffeting forces and responses are considered as noises.  In this paper, the covariance-
driven stochastic subspace identification technique (SSI-COV) was presented to extract the flutter derivatives of 
bridge decks from the buffeting test results.  An advantage of this method is that it considers the buffeting forces 
and responses as inputs rather than as noises.  The Industrial Ring Road (IRR) cable-stayed bridge crossed Chao 
Phraya River with main span of 398m was applied for 1:90 scale sectional model test in TU-AIT wind tunnel 
test as the study case.  Wind tunnel tests were performed for four section bridge models, i.e. original section, 
fairing-modified section, soffit plate modified section, and combination of those two modified section.  The 
results found that the original section result in high vortex-shedding response and lead to a single torsional 
flutter at high wind velocity.  The results also indicated that the combined fairing and soffit plate modified 
section is the most aerodynamic shape. 
 
KEYWORDS: FLUTTER DERIVATIVES, STOCHASTIC SUBSPACE METHOD, CABLE-STAYED 

BRIDGE, AERODYNAMIC APPENDAGES 
 
Introduction 

Long-span cable supported bridges are highly susceptible to wind excitation because 
of their inherent flexibility and low structural damping. Wind loads play an important role in 
the design of these structures. In the most previous studies, flutter derivatives were estimated 
by deterministic system identification techniques that can be applied to the free decay method 
only. Examples of previous deterministic system identification that were applied to the free 
decay method included Scanlan’s method [Scanlan (1971)], Modified Ibrahim method 
(MITD) [Sarkar et al. (1994)], and Unified Least Square method [Gu et al. (2000)]. In these 
system identification techniques, the buffeting forces and their responses are regarded as 
external noises, the identification process then requires many iteration [Sarkar et al. (1994) 
and Gu et al. (2000)]. Moreover, at high reduced wind speed, the vertical bending motion of 
the structure will decay rapidly due to the effect of the positive vertical aerodynamic 
damping, and thus the length of decaying time history available for system identification will 
decrease. 

If the stochastic system identification technique [Overschee (1991), Peeters (1999) 
and Gu et al. (2004)] is employed to estimate the flutter derivatives of bridge deck from their 
steady random responses under the action of turbulent wind, the above-mentioned short 
coming of the deterministic system identification technique can be overcame. The reason is 
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that the random aerodynamic loads are regarded as inputs rather than noises, which are more 
coincident with the fact. Therefore, the signal-to-noise ratio is not affected by wind speed, 
and the flutter derivatives at high reduced wind speeds are more readily available. These 
aspects give the stochastic system identification methods an advantage over the deterministic 
system identification. 

Vibration control of long-span bridges have been widely manufactured by 
aerodynamic appendages. The investigations of aerodynamic appendages have been 
considered in an effort to suppress the oscillation in the real bridges [Houston et al. (1988) 
and Sakai et al. (1993)].  Many tried to modify the deck shape neighborhood to ideal flat 
plate model.  The illustrations, among others, are Bronx-Whitestone Bridge and Deer Isle 
Bridge [Bosch (1990)], which recognized as an achievement for fairing-modified section. 

In this paper, the covariance-driven stochastic subspace identification technique (SSI-
COV) was presented to extract the flutter derivatives from random responses (buffeting) 
under the action of smooth wind. The two-edge girder type blunt section model of Industrial 
Ring Road Bridge (IRR in short, Fig. 1), a cable stayed bridge with a main span of 398m, 
Thailand, was tested in smooth flow. Wind tunnel tests were performed for four section 
bridge models, i.e. original section, fairing-modified section, soffit plate modified section and 
combination of those two modified section. Tests were conducted in TU-AIT Boundary 
Layer Wind Tunnel in Thammasat University, the longest and the largest wind tunnel in 
Thailand. 
 
 
Theoretical Formulation of Covariance-driven Stochastic Subspace Identification 

Flutter and Buffeting Forces 
The dynamic behavior of a bridge deck with two degrees-of-freedom (DOF in short), i.e. h 

(bending) and α (torsion), in turbulent flow can be described by the following differential 
equations [Scanlan (1971) and Gu et al. (2004)] 

Figure 1: Three-dimensional view of IRR 
cable-stayed bridge 
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where m and I are the mass and mass moment 
of inertia of the deck per unit span, 
respectively; ω i is the natural circular 
frequency; ξi is the modal damping ratio 
(i=h,α); Lse and Mse are the self-excited lift and 
moment, respectively; while Lb and Mb are the 
aerodynamic lift and moment. The self-excited 
lift and moment are given as follows: 
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where  ρ is air mass density; B is the width of the bridge deck; U is the mean wind speed at 
the bridge deck level; ki= ωiB/U is the reduced frequency (i=h,α); and Hi

* and Ai
* (i=1,2,3,4) 

are the so-called flutter derivatives, which can be regarded as the implicit functions of the 
deck’s modal parameters. The alternate form of self-excited forces is as Eq. (2) but without 
the factor 1/2. The aerodynamic lift and moment can be defined as [Simiu & Scanlan (1996)] 
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where CL, CD and CM are the steady aerodynamic force coefficients; C′L and C′M are the 
derivatives of CL and CM with respect to the attack angles, respectively; u(t) and w(t) are the 
longitudinal and vertical fluctuations of wind speed, respectively; χL and χM   are the lift and 
moment aerodynamic admittances of the bridge deck. By moving Lse and Mse to the left side, 
and merging the congeners into column vectors or matrices, Eq. (1) can be rewritten as 
follows 

[ ] ( ){ } ( ){ } ( ){ } ( ){ }e eM y t C y t K y t f t⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦&& &  
(4) 

where {y(t)} ={h(t) α(t)}T is the generalized buffeting response; {f(t)} ={Lb(t) Mb(t)}T is the 
generalized aerodynamic force; [M] is the mass matrix; [Ce] is the gross damping matrix, i.e. 
the sum of the mechanical and aerodynamic damping matrices; and [Ke] is the gross stiffness 
matrix. 
 
Stochastic State Space Models 

The fluctuations of wind speed u(t) and w(t) in Eq. (3) are random functions of time, 
so the identification of flutter derivatives of bridge decks can be simplified as a typical 
inverse problem in the theory of random vibration, and thus can be solved by the stochastic 
system identification techniques.  Let 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−−

ΙΟ
= −− eec CMKM

A 11
, [ ] [ ]ΟΙ=cC  and { }

⎭
⎬
⎫

⎩
⎨
⎧

=
y
y

x
&

 (5) 

Eq. (4) is then transformed into the following stochastic state equations in discrete form as 

{ } [ ]{ } { }kkk wxAx +=+1&  and { } [ ]{ } { }kkk vxCy +=  (6) 
where [A]4×4, [C]2×4 and {x} are known as state matrix, output shape matrix and state vector, 
respectively; {wk} and {vk} are the input and output noise sequences, respectively. Subscript 
*k denotes the value of * at time kΔt, where Δt means the sampling interval. O and I are the 
zero and identity matrices, respectively.  It is assumption of stochastic model that {xk}, {wk} 
and {vk} are mutually independent and hence 

T T[ ] [ ]k k k kE x w E x v= =0 0  (7) 
Defining 

][ T
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kk wwEQ =     ][ T
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kik yxEG +=    ][ T
kk vvER =   and ][ T

kk vwES =  (8) 
and combining Eqs. (7) and (8) we obtain the following Lyapunov equations for the state and 
output covariance matrices 

QAA T +Σ=Σ          RCC T +Σ=Λ 0    and     SCAG T +Σ=  (9) 

From (6) and (7), it can be deduced 
1i

i CA G−Λ =  (10) 

Covariance-driven Stochastic State Space Identification 
The main algorithm of SSI-COV proceeds with defining a covariance block Toeplitz 

as 
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one can infer from the definition of covariance matrix that 1 iT  can be expressed as the product 
of two block Hankel matrices Yf and Yp as T

f p1 iT Y Y=  where Yf and Yp are composed of the 
‘future’ and ‘past’ measurements, respectively. 
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Next, applying the factorization property to 1 iT by the singular value decomposition yields 
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where U, S and V are orthonormal matrices. S is a diagonal matrix containing positive 
singular values in descending order. The number of nonzero singular values indicates the 
rank of the Toeplitz matrix. The reduced diagonal matrix S1 is obtained by omitting the zero 
singular values from the matrix S. Matrices U1 and V1 are obtained by omitting the 
corresponding columns from the matrices U and V respectively. Now realizations of the 
system matrices are almost achieved. Matrix A is realized by using factorization of a shifted 
Toeplitz matrix 2 1iT + that has similar structure as of 1 iT  but consists of covariance from lag 2 to 
2i. In a manner similar to the classical eigensystem realization algorithm (ERA in short), one 
can find 

1/ 2 T 1/ 2
2 2 Vi i N Ni iA o T S U T Sς+ − −= =  (14) 

where N is model order, i.e. the maximum number of modes to be computed. Thus, the modal 
parameters can be determined by solving the eigenvalue problem of the state matrix A. By 
now, the theoretical formulation of covariance-driven SSI has been achieved. 

According to Equations (12)-(14), a different combination of i, j and N will give a 
different state matrix, and thus a different pair of modal parameters. Therefore, modal 
parameters should be derived from a series of combinations, rather than a single combination. 
In the process of identification, N or i should be given in series for certain values of j in order 
to obtain a frequency stability chart. Solving the eigenvalue problem of the state matrix A by 
the pseudo-inverse method yields 

1−ΨΨΛ= dA
    

and    Ψ=Φ C  (15) 
where Ψ is the complex eigenvector matrix, Φ  is the mode shape matrix, and Λ is a diagonal 
matrix composed of the complex poles of the system. Different combinations of i, j and N are 
employed to derive the modal parameters statistically. 

Once the modal parameters are identified, the gross damping matrix Ce and the gross 
stiffness matrix Ke in Eq. (4) can be readily determined by the pseudo-inverse method 

†*
2 * * 2

* *[ ] [ ( ) ]e eK C M
⎡ ⎤Φ Φ

= − ΦΛ Φ Λ ⎢ ⎥ΦΛ Φ Λ⎣ ⎦
 (16) 

where the superscript * denotes the complex conjugate of the corresponding term. Let 
ee

CMC 1−=        01CMC −=        ee
KMK 1−=        01KMK −=  (17)  

where C0 and K0 are the ‘inherent’ damping and stiffness matrices, respectively. Thus, the 
flutter derivatives can be extracted from the following equations 
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Outline of Wind Tunnel Tests 
The wind tunnel tests were performed in TU-AIT wind tunnel in Thammasat 

University. The working section of the wind tunnel has a width of 2.5 m, a height of 2.5 m 
and a length of 25.5 m.  A hot-sphere anemometer was applied to measure the mean wind 
speed of the flow, and a hot-wire anemometer was used for a measurement of wind 
fluctuations. The longitudinal and vertical turbulence intensities are both less than 0.05%. All 
main parameters of IRR bridge model and prototype are shown in Table 1. 

The sectional bridge model of IRR cable-stayed bridge in wind tunnel is shown in 
Fig. 2. To simulate a bridge section model with 2DOFs, i.e. vertical bending and torsion, 
piano wires were used to prevent the motion of the model in longitudinal direction. Two 
piezoelectric acceleration transducers are located at mid-span of a model, placed on both 
sides by an equal distance from the center of rotation, to capture the acceleration signals.   

Besides, two laser displacement sensors were mounted on both two sides of dynamic 
arms for displacement acquisitions. The responses of the models were captured by the 
sensors, and then the vertical and torsional responses can be respectively obtained by h = 
(x1+x2)/2 and α = (x1-x2)/l, whereas x1 and x2 are the measurements of sensors 1 and 2, 
respectively and l represents the space between transducers. 

To increase the aerodynamic stability of IRR cable-stayed bridge, wind tunnel tests 
were performed for original section bridge model (Fig. 2) and three types of aerodynamic 
appendages, i.e., fairing-modified section, soffit plate modified section, and combination of 
those two modified section (Fig. 3).  Fairing height of 29.9 mm is designed to fit the bridge 
model with the upper and lower slope angles of 30o.  The equilateral triangle fairings made 
from hard paper were mounted to a model, in both windward and leeward side.  Soffit plates 
were mounted under the model with an intention to smoothen the wind attack to model’s 
girders. 

 
Table 1 Main parameters of the IRR Bridge 

Parameter Notation Unit Prototype Model 
Length L m - 2.26 
Width B m 35.9 0.399 
Height H m 3.20 0.035 
Mass per unit length M kg / m 43000 5.6801 
Inertial moment of mass per unit length Im kg m2/ m 4.11x109 0.1726 
First bending frequency fh Hz 0.376 2.13 
First torsional frequency fα Hz 0.850 4.73 
First torsion-bending-frequency ratio ε  2.26 2.22 

 

Results of Wind Tunnel Test 

Flutter Derivatives 

The aerodynamic derivatives were calculated for each wind speed as the average 
value of 10 tests at each velocity. Flutter derivatives of four sections are presented and 
compared in Fig. 4. The most important terms are H1* and A2* which refer respectively on 
vertical and torsional damping of the section. Their positive values indicate unstable 
conditions. For vertical aerodynamic damping coefficient, H1*, the modification effects 
considered to be negligible, which all sections show in negative region.  However, the section 
are influenced by the modifications in A2* which is most considerable in long-span bridges.    
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Figure 2: Original section of IRR bridge in 
wind tunnel 

Figure 3: Fairings and soffit plates modified 
section in wind tunnel 

 
Fig. 4 shows that the original section and fairing modified section lead to a single 

torsional flutter at high wind velocity because A2* change from negative values to positive 
values.  Flutter derivatives H2* term, cross derivatives to a torsional aerodynamic damping, 
are conversely agree well with A2* results.  Fairing modified section shows a little 
improvement on the unstable behavior, delaying the unstable of bridge deck from reduced 
velocity of 4.5 to 5.  Also, it was clearly found that soffit plate modified section, and 
combination of soffit plate and fairings modified sections produce more stable sections, 
whereas the classical flutter rather than the single torsional flutter will occur because of H2* 
and A1* 

The results was found some dispersive in A4* and H4* terms between original section 
and modified ones, this coefficients are considered insignificant and usually neglected in 
most of previous researches.  Moreover, all modified sections show a little influence in A1* 
and A3*, which agree altogether well in trend.  For H3* term, the fairings section agrees in 
trend with an original one, while soffit plates and combined sections are agree in trend to 
each other. 
 
Structural Responses and Critical Wind Speeds 

The data acquired from two laser displacement sensors was produced and was 
described via their standard deviations, both heave and pitch. The stability limit was 
determined roughly by increasing the wind speed and observing the behavior of the section. 
Subsequently, acquisition were made of the response starting below the stability limit up to 
wind speed where the bridge deck exhibits clear unstable behavior. The responses under 
smooth flow condition are described in Fig. 5 and their comparisons among four sections 
were also carried out. 

Since IRR cable-stayed bridge was manufactured with great considerations, critical 
wind speed was found at very high velocity, 118 m/s in full-scale (7.45 m/s in model scale).  
Flutter was found under single degree-of-freedom, torsional condition. However, the tests 
were conducted with aimed to increase that velocity. On one hand, fairing-modified section  



The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan 

 

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00
0.00 4.00 8.00 12.00

H
1*

Reduced Velocity (U/fhB)

H1*

Original

Fairing

Soffit Plate

Combined

-3.50

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

0.00 3.00 6.00 9.00 12.00

H
4*

Reduced Velocity (U/fhB)

H4*

Original

Fairing

Soffit Plate

Combined

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 2.00 4.00 6.00

H
2*

Reduced Velocity (U/fαB)

H2*

Original

Fairing

Soffit Plate

Combined

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 2.00 4.00 6.00

H
3*

Reduced Velocity (U/fαB)

H3*

Original

Fairing

Soffit Plate

Combined

 

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.00 2.00 4.00 6.00

A
2*

Reduced Velocity (U/fαB)

A2*

Original

Fairing

Soffit Plate

Combined-2.40

-2.00

-1.60

-1.20

-0.80

-0.40

0.00

0.40

0.80

0.00 3.00 6.00 9.00 12.00

A
1*

Reduced Velocity (U/fhB)

A1*
Original

Fairing

Soffit Plate

Combined

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00 2.00 4.00 6.00

A
3*

Reduced Velocity (U/fαB)

A3*

Original

Fairing

Soffit Plate

Combined

-1.60

-1.20

-0.80

-0.40

0.00

0.40

0.80

0.00 3.00 6.00 9.00 12.00

A
4*

Reduced Velocity (U/fhB)

A4*

Original

Fairing

Soffit Plate

Combined

 
Figure 4: Comparisons of flutter derivatives among original 

section and modified sections 
 

can delay the critical 
wind speed up to 
velocity of 135 m/s in 
full scale or around 15% 
increased, compared 
with original section.  
On the other, for soffit 
plate modified section, 
and combination of 
soffit plate and fairings 
modified sections, flutter 
phenomenon was not 
found in testing velocity 
range.  

In additional to 
suppression of flutter 
instability, the results 
show a reduction in 
buffeting responses for 
all modified sections. 
Moreover, vortex 
shedding was 
significantly suppressed 
by these modifications.  
This concludes the 
highly achievement of 
aerodynamic appendages 
modification to stabilize 
flutter phenomenon and 
vortex shedding 
responses.  When 
comparisons of the 
effectivenes of three 
modifications on 
suppression of buffeting 
response and structural 
instability, the results are 
combine > soffit plate > 
fairing > original. 

 

Conclusions 
The covariance-driven stochastic subspace identification technique (SSI-COV) was 

presented to extract the flutter derivatives from buffeting responses of bridge deck.  The two-
edge girder type blunt section model of Industrial Ring Road Bridge, a cable stayed bridge 
with a main span of 398m, Thailand, was tested in smooth flow.  Applying the proposed SSI-
COV technique to the buffeting test yields a straightforward, cost effective, and reliable 
system identification process that can be used to identify flutter derivatives of various bridge 
decks. 
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Figure 5: Comparisons of normalized heave and pitch responses among original section and 

three modified sections 
 
The results found that the original section result in high vortex-shedding response and 

lead to a single torsional flutter at high wind velocity.  The results also indicated that the 
combined fairing and soffit plate modified section is the most aerodynamic shape. When 
compared with the original section, this modified section can: a) suppress the vortex shedding 
significantly, b) result in the classical flutter rather than the single torsional flutter, and c) 
greatly increase the flutter velocity. 
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ABSTRACT:  The new development of DPT Standard 1311-50 for wind loading calculation 
and response of buildings in Thailand is financially supported by Department of Public 
Works and Town & Country Planning.  The new standard is more accurate than the building 
code No.6 because it considers the wind speed zoning, surrounding terrain, building shapes, 
and dynamic properties.  The new standard format is widely used in the international codes.  
The new standard consists of 3 parts, namely, 1. Wind loading standard for building design, 
2. Commentaries to the standard and 3. Numerical examples.  Three different approaches for 
determining design wind loads on buildings are given in the standard, namely, the simple 
procedure for low- and mid-rise buildings, the detailed procedure for high-rise buildings, and 
wind-tunnel test procedure.  Examples of wind load studies of buildings and bridges by TU-
AIT wind tunnel test are also presented.  Finally, losses due to wind storms in Thailand are 
shown. 
 
 
1.   INTRODUCTION 
 
The wind load specified in the existing building code under the Building Control Act (BCA) 
1979 is obsolete because it does not consider the terrain conditions and the typhoon 
influence.  In addition, the code value is too low for very tall building, and for building in 
open exposure, as well as buildings in the Southern part of Thailand which is prone to 
typhoon attack [1, 2].  Therefore, the subcommittee on wind and earthquake effects on 
structures of the Engineering Institute of Thailand published the wind loading standard for 
building design in 2003 [3].  It considers the wind speed zoning, surrounding terrain, 
dynamic properties, and building shapes.  The standard is mainly based on the National 
Building Code of Canada 1995 [4].   
 However, the wind loading standard for building design in 2003 has been revised 
again for up-to-date wind loading standard.  At present, DPT standard 1311-50 for wind 
loading calculation and response of buildings in Thailand is newly published by Department 
of Public Works and Town & Country Planning [5].  To develop the new wind loading 
standard for building design, an evaluation and comparison of wind load and responses for 
building among several codes/standards were studied by Boonyapinyo et al. [5-7], among 
others.  The comparisons include National Building Code of Canada [8], International 
Standard [9], ASCE Standard [10], AIJ Recommendation [11], Australian Standard [12] and 
European Standard [13].  The new development of DPT standard 1311-50 for wind loading 
calculation and response of buildings over 2003 version includes the specified wind load and 
response, reference wind speed map, natural frequency and damping of building, table for 
design wind loads for main structures, secondary members and claddings for low-rise 
buildings, wind tunnel test procedure, commentary, numerical examples, computer program 
for calculation of wind load and response, and wind load on miscellaneous structures such as, 
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large billboards, cylinders, poles, structural member, two- and three-dimensional trusses.  The 
reference wind speed is based on the study of the wind climate in Thailand [1, 5, 14].  The 
wind speed for the Southern Thailand reflects the influence of the rare event of the typhoons 
in the region.  The natural frequency and damping for building in Thailand are based on the 
measurements of 50 buildings in Bangkok [15]. 
 
 
2.   WIND  LOADING  CALCULATION  PROCEDURE 

 
Three different approaches for determining design wind loads on buildings and structures are 
given in the standard as follows. 
 
2.1 Simple procedure 
 
The simple procedure is appropriate for use with the majority of wind loading applications, 
including the structure and cladding of low and medium rise building and the cladding design 
of high rise buildings.  These are situations where the structure is relatively rigid.  Thus, 
dynamic actions of the wind do not require detailed knowledge of the dynamic properties of 
the buildings and can be dealt with by equivalent static loads. 
 
2.2 Detailed procedure 
 
The detailed procedure is appropriated for buildings whose height is greater than 4 times their 
minimum effective width or greater than 80 m and other buildings whose light weight, low 
frequency and low damping properties make them susceptible to vibration  
 
 

      
 
Figure 1. Boundary-layer long-wind tunnel of TU-AIT. 
 
2.3 Wind tunnel test procedure 
 
Wind tunnel testing is appropriate when more exact definition of dynamic response is needed 
and for determining exterior pressure coefficients for cladding design on buildings whose 
geometry deviates markedly from more common shapes for which information is already 
available.  Detail of wind tunnel test procedure is given in [5]. 
 Figure 1 shows the boundary-layer long-wind tunnel that was jointly built by 
Thammasat university (TU) and Asian Institute of Technology (AIT) at Thammasat 
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University.  The test section is 2.5x2.5 m with 25.5 m in length. Wind speed is in the range of 
0.5 to 20 m/s.   
 
 
3.     SPECIFIED  WIND  LOADING  
 
The specified external pressure or suction due to wind on part or all of a surface of a building 
shall be calculated from 
 
p  = IwqCeCgCp                                (1) 
 
where 

p   =  the specified external pressure acting statically and in a direction normal to the 
surface either as a pressure directed to wards the surface or as a suction directed 
away from the surface, 

Iw  =importance factor for wind load, as provided in Table 1,   
 q   =  the reference velocity pressure, 
            Ce   =  the exposure factor,  
            Cg  =  the gust effect factor,  
                CP  =  the external pressure coefficient, averaged over the area of the surface 

considered 
             The net wind load for the building as a whole shall be the algebraic difference of the 
loads on the windward and the leeward surfaces, and in some cases may be calculated as the 
sum of the products of the external pressures or suctions and the areas of the surfaces over 
which they are averaged  
 The net specified pressure due to wind on part or all of a surface of a building shall be 
the algebraic difference of the external pressure or suction as given in Equation (1) and the 
specified internal pressure or suction due to wind calculated from 
 
pi   =  Iw qCeCgCpi                        (2) 
 
where 

pi   =  the specified internal pressure, acting statically and in a direction normal to the 
surface either as a pressure (directed outwards) or as a suction (directed in 
wards), 

q    =  the reference velocity pressure, 
Ce  =  the exposure factor, evaluated at the building mid-height instead of the height 

of the element considered, 
Cg  =  the gust effect factor,  
Cpi =  the internal pressure coefficient 

 
Table 1. Importance factor 

 
Importance Category Importance factor, Iw 

 Ultimate limit states Serviceability limit states 
Low 

Normal 
High 

Post-disaster 

0.8 
1 

1.15 
1.15  

0.75 
0.75 
0.75 
0.75 
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Figure 2. Reference (or design) wind speed for Thailand. 
 
 
4.    REFERENCE  VELOCITY  PRESSURE 
 
The reference wind pressure, q, is determined from reference (or design) wind speed, V  by 
the following equation:  
 
 
                        (3) 
 
where  
                           =   air density = 1.25 kg/m3 
   =   acceleration due to gravity = 9.81 m/s2 

      50VV =    for serviceability limit state   
      50VTV F ⋅=    for ultimate (strength) limit state  
 

50V  and typhoon factor ( FT ) are shown in Table 2. 
In this study, the annual maximum wind speeds from 73 stations were used in extreme 

wind analysis [5].  The data were converted to one-hour average speed at 10 m. in open 
terrain according to anemometer height and terrain of each station, and were fitted to a Type I 
extreme-value distribution using probability weighted moment method.  The analysis of 
dispersion map and the 30-years return period speeds indicate that the area can be divided in 
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to four zones.  The 50-year return period speed for each zone was then estimated by the 
representative values of dispersion and location parameters of that zone.  The higher wind 
speeds for Zone 2 and 3 are due to the mixed effect of the weakening tropical storm entering 
the region from the east and the severe thunder storm happening in summer (from March to 
May) of every year.  
 
Table 2.  Reference wind speeds and typhoon factor 

 
Zone Area 

50V  FT  
Zone 1 
Zone 2 
Zone 3 
Zone 4 A 
Zone 4 B 

Central region     
Lower part of Northern region and  East west border region 
Upper part of Northern region 
East coast of Southern peninsula 
Petchaburi and West coast of Southern peninsula 

25 
27 
29 
25 
25 

1.0 
1.0 
1.0 
1.2 

1.08 
 

The design wind speed of Zone 4 is governed by the South-west and the North-east 
Monsoons which give a design wind speed as low as 25 m/s.  However, the historical records 
indicate that tropical cyclone may affect this region especially in November and December. 
In 1989, Typhoon Gay which developed in the Gulf of Thailand had crashed into Chumporn. 
It is reported that Typhoon Gay has a one-minute sustained surface wind speed of 100 knots 
(51.4 m/s.) [16], which corresponding to a one-hour average speed of 41.1 m/s.  At least 600 
people were killed, and more than 46,000 houses were either totally or partially destroyed by 
this typhoon. The design wind speed of this zone must take into account the effect of tropical 
cyclone to ensure that the post-disaster buildings must not collapse if a typhoon with the 
same intensification as Typhoon Gay would happen again.  As a result, it is considered that 
the post-disaster buildings in this zone must be able to sustain the wind pressure developed 
by a wind speed of 41.1 m/s. at ultimate state. With the load factor of 1.6 and importance 
factor for post-disaster of 1.15, the corresponding design wind speed for zone 4 is thus 

303.3015.1*6.1/1.41 ≈= m/s.  Therefore, the typhoon factor for east coast of southern 
peninsula = 30/25 = 1.2.  However, the typhoon factor in Table 2 should be applied for 
buildings and structures that have importance category as post-disaster.  For others, it is 
subjected to designer judgment.   
 
 
5.    EXPOSURE  FACTOR 
 
The exposure factor, Ce, reflects changes in wind speed and height, and also the effects of 
variations in the surrounding terrain and topography.  The exposure factors for use with either 
the simple or detailed procedure are given as follows. 
 
5.1  Simple procedure 
 
Exposure A: (open or standard exposure): open level terrain with only scattered buildings, 
trees or other obstructions, open water or shorelines thereof.   

 
                          (4) 
 
 
Exposure B: suburban and urban areas, wooded terrain or center of large towns. 

 
              (5) 
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In Equations (4) to (5), Z is the height above ground in metre. 
 
5.2  Detailed procedure 
 
For the detailed procedure, the exposure factor, Ce, is based on the mean wind speed profile, 
which varies considerable depending on the general roughness of the terrain over which the 
wind has been blowing before it reaches the building.  To determine the exposure factor, 
three categories have been established as follows:      
 Exposure A: (open or standard exposure): open level terrain with only scattered 
buildings, trees or other obstructions, open water or shorelines thereof.  This is the exposure 
on which the reference wind speeds are based. 

 
 
                          (6) 
 
 
Exposure B: suburban and urban areas, wooded terrain or center of large towns. 

 
 

              (7) 
 
 

Exposure C: center of large cities with heavy concentrations of tall buildings.  At least 
50% of the buildings should exceed 4 stories.  This exposure is only applicable to the heavily 
built-up center of large cities and should be used with caution because of local channeling 
and wake buffeting effects that can occur near tall buildings. 

 
                          (8) 
 
 

In Equations (6) to (8), Z is the height above ground in metre. 
Exposure B or C should not be used unless the appropriate terrain roughness persists in 

the upwind direction for at least 1 km or 10 times the height of the building, whichever is 
larger, and the exposure factor should be recalculated if the roughness of terrain differs from 
one direction to another. 
 
 
6 GUST  EFFECT  FACTOR 

 
The gust effect factor, Cg, is defined as the ratio of the maximum effect of the loading to the 
mean effect of the loading.  The dynamic response includes the action of  

a)    random wind gusts action for short durations over all or part of the structure. 
b)  fluctuating pressures induced by the wake of the structure, including “vortex 

shedding forces,” and  
c)  fluctuating forces induced by the motion of the structure itself through the wind. 
The gust effect factor for use with either the simple or detailed procedure are given as 

follows. 
 
6.1  Simple procedure 
 

0.28

for 1.0  2.5
10e e
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⎝ ⎠

0.50

0.5 for 0.5  2.5
12.7e e
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⎝ ⎠
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The gust effect factor Cg is one of the following values:  
     a)    2.0 for the building as a whole and main structural member, 

b)  2.5 for external pressures and suctions on small elements including cladding  
c) 2.0 or a value determined by detailed calculation for internal pressures (see 

standard [5]) 
 
6.2  Detailed procedure 
 
The gust effect factor is calculated as 
 
                          (9) 
 
where  
               μ  =     the mean loading effect, 
        =     the “root-mean square” loading effect, and  

           =    a statistical peak factor for the loading effect obtained from figure in the 
standard. 

The value of  /σ μ   can be expressed as 
 
 
             (10) 
 
where 
 K  =    a factor related to the surface roughness coefficient of the terrain, 
   =    0.08 for Exposure A, 
   =    0.10 for Exposure B, 
   =    0.14 for Exposure C, 
           CeH       =    exposure factor at the top of the building,  H,  
             B       =  background turbulence factor obtained from figure in the standard as a 

function of W/H, 
 W         =   width of windward face of the building,  
 H         =   height of windward face of the building, 
 s          =  size reduction factor obtained from figure in the standard as a function of 

W/H and the reduced frequency noH/VH, 
 n o        = natural frequency of vibration, Hz.  Values recommended in the design of 

concrete building = 44/H  [5, 15],  
           VH         =    mean wind speed (m/s) at the top of structure, H, 
 F          =   gust energy ratio at the natural frequency of the structure obtained from 

Figure in the standard as a function of the wave number, no/VH, and 
         β        =   damping ratio.  Suggested values for β  must be based mainly on 

experiments on real structures.  Values commonly used in the design of 
building with steel frames and concrete frames are in the range of 0.005 
and 0.015  [5, 15]. 

 
 
7 PRESSURE  COEFFICIENTS 
 
Pressure coefficients are the non-dimensional ratios of wind-induced pressures on a building 
to the dynamic pressure (velocity pressure) of the wind speed at the reference height.  

( )1 /g pC g σ μ= +

σ
pg

/
eH

K sFB
C

σ μ
β

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
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Pressures on the surfaces of structures vary considerably with the shape.  Wind direction and 
profile of the wind velocity.   
 The information on external and internal pressure coefficients given in the standard 
covers requirements for the design of the cladding and the structure as a whole for a variety 
of simple building geometries. 
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                              (a) Elevation of building                                   (b) Plan view of building 
 
Figure 3. External pressure coefficients, *  and  pp CC , for flat-roofed buildings greater in height than 
in width 
 
 
For rectangular shape building, the external pressure coefficients for windward and leeward 
walls are 0.8 and –0.5, respectively, as shown in figure 3.  Reference heights for exposure 
factor for the calculation of both spatially-averaged and local pressures are as follows.  
Leeward walls use at 0.5 H, roof and side walls use at H, any area at height Z above ground 
on the windward wall use at Z. 
 A local pressure coefficient, 9.0 * ±=pC , applicable to the design of small cladding 
areas (about the size of a window), can occur almost anywhere at any elevation.  However, 
the local 2.1 * −=pC  given for corners apply to an edge zone of 0.1D wide. 
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8.   LATERAL  DEFECTION  
 
Lateral deflection of tall buildings under wind loading may require consideration from the 
standpoints of serviceability or comfort.  A maximum lateral deflection limitation of 1/500 of 
the building height with importance factor of 0.75 for serviceability limit states is specified. 
 
 
9.   BUILDING  MOTION 
 
While the maximum lateral wind-loading and deflection are generally in the direction parallel 
with the wind (along-wind direction), the maximum acceleration of a building leading to 
possible human perception of motion or even discomfort may occur in the direction 
perpendicular to the wind (across-wind direction) if HWD / is less than one-third, where W 
and D  are the across-wind and along-wind building dimensions and H is the height of the 
building. 
  The maximum acceleration in the along-wind direction can be found from the 
expression 
 
        
                                               (11) 
 
where 
  aD =  peak acceleration in along wind direction, m/s2, 
   Bρ  =  average density of the building, kg/m3, 
           =  damping ratio in along-wind direction,    
                Dn    =   fundamental natural frequencies in along-wind direction, Hz. 
           =   maximum wind-induced lateral deflection at the top of the building in 

along-wind direction, m.  
 An acceleration limitation of 1.5 to 2 % of gravity is specified for use in conjunction 
with Equation (11) and in the across-wind direction with importance factor of 0.75 for 
serviceability limit states.  The lower value is considered appropriate for apartment buildings, 
the higher value for office buildings. 
 
 
10.   ACROSS-WIND  AND  TORSIONAL  LOAD  AND  RESPONSE 
 
Across-wind and torsional load and response in DPT standard 1311-50 are based on the AIJ 
Recommendation [17].  Details are given in Reference 5. 
 
 
11.    EXAMPLES  OF  WIND  LOAD  STUDY  BY  TU-AIT  WIND  TUNNEL  TEST 
 
11.1  Wind load study for cladding design 
 
a. MahaNakhon Building in Bangkok 
Wind load study for cladding design of MahaNakhon Building was performed by TU-AIT 
wind tunnel test as shown in Figures 1 and 4 [18].  The MahaNakhon Building is located in 
the embassy/financial district in the centre of Bangkok between the Sathon and Silom roads.  
The area surrounding the studied building generally consists of urban development in all 
directions from the site.  The studied building has 39 m square in plan, 309.9 m in roof 
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height, and has surface “pixellations”.  The studied building was specially constructed by an 
acrylic rigid model.  The 1:400 scale models of studied building and its surrounding buildings 
within 400 m radius from the studied building were mounted on a 2-m diameter turntable, 
allowing any wind direction to be simulated by rotating the model to the appropriate angle in 
the wind tunnel.  The studied building model and its surroundings were tested in a boundary 
layer wind tunnel where the mean wind velocity profile, turbulence intensity profile, and 
turbulence spectrum density function of the winds approaching the study site are simulated 
for urban exposure based on the ASCE7 Standard [10] and ASCE Manual and Reports on 
Engineering Practice No. 67.  In this study, overall wind load obtained from a wind tunnel 
test were measured on a direction-by-direction basis for 36 directions at 10-degree intervals, 
on the 1:400 scale model of the building exposed to an approaching wind. 

According to the DPT Standard 1311-50 [5], the reference velocity pressure, q, for the 
design of main structure and cladding shall be based on a probability of being exceeded in 
any one year of 1 in 50 (50-year return period) corresponding to reference wind speed of 25 
m/s at the height of 10 m in open terrain.  Because the proposed building is located in the 
Central Bangkok with heavy concentrations of tall buildings, the exposure C (center of large 
cities) was applied in this study, and the typhoon factor = 1.0.  Then design wind speed is 25 
m/s, and corresponding to design wind speed of 36.65 m/s at the 309.9 m roof height in the 
exposure C.   

The results of recommended peak maximum pressures and peak minimum pressures 
(negative or suctions) in kPa (1 kPa = 1,000 N/m2) for cladding design of walls of studied 
building are presented graphically (figure 4).  The recommended peak maximum pressures 
are generally in the range of 1,000 to 1,750 N/m2.  The recommended peak minimum 
pressures (negative or suctions) are in the range of 2,250 to 3,500 N/m2 in most part of the 
tower, in the range of 3,500  to 4,000 N/m2 in some areas, and in the range of 4,000 to 5,750 
N/m2 in some areas of edge zones of building walls.  The largest peak maximum pressure and 
peak minimum pressures (negative or suctions) are 2,490 and 6,910 N/m2, respectively.   
 Finally, it was found that: 1) the local peak maximum pressures in most part of the 
tower obtained from wind tunnel test for studied building agree well in general with those 
based on the ASCE7 standard [10];  2) the local peak minimum pressures (suctions) in most 
part of the tower obtained from wind tunnel test agree well in general with those based on the 
ASCE7 standard;  3) the local peak minimum pressures (suctions) in some areas of edge zone 
obtained from wind tunnel test are slightly to moderately higher than those based on the 
ASCE7 standard. 
 

 
 
Figure 4. Rigid model of MahaNakhon building in Bangkok  
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Figure 5.  Recommended peak minimum pressures (negative or suctions) for cladding design (kPa) 
 

             
 

Figure 6. Rigid model of                                                      Figure 7. Rigid model of  
Gramercy building in Manila                                               Knightbridge building in Manila 
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b. Gramercy building and Knighrbridge building 
In addition, wind load studies for cladding design of Gramercy building and Knighrbridge 
building in Manila were performed by TU-AIT wind tunnel test as shown in Figures 6 and 7 
[19].  

 
11.2  Wind load study for overall fluctuating loads and dynamic response  
 
a. MahaNakhon Building in Bangkok 
Wind load study for overall fluctuating loads and dynamic response of MahaNakhon 
Building was performed by TU-AIT wind tunnel test as shown in Figure 8 [18].  The studied 
building has 39 m square in plan, 309.9 m in roof height, and has surface “pixellations”.  The 
studied building was specially constructed by a light-weight rigid model, such as balsa wood 
model, and the studied model was mounted on a high-frequency base balance.  The 1:400 
scale models of studied building and its surrounding buildings within 400 m radius from the 
studied building were mounted on a 2-m diameter turntable, allowing any wind direction to 
be simulated by rotating the model to the appropriate angle in the wind tunnel.  The studied 
building model and its surroundings were tested in a boundary layer wind tunnel where the 
mean wind velocity profile, turbulence intensity profile, and turbulence spectrum density 
function of the winds approaching the study site are simulated.  In this study, overall wind 
load obtained from a wind tunnel test were measured on a direction-by-direction basis for 36 
directions at 10-degree intervals, on the 1:400 scale model of the building exposed to an 
approaching wind. 
 

        
(a)                                                                             (b) 

 
Figure 8. (a) Overall wind load study of MahaNakhon building in Bangkok by wind tunnel test, and 
(b) high-frequency force balance model  
 

According to the DPT Standard 1311-50 [5], the reference velocity pressure, q, for the 
design of main structure and cladding shall be based on a probability of being exceeded in 
any one year of 1 in 50 (50-year return period) corresponding to reference wind speed of 25 
m/s at the height of 10 m in open terrain.  Because the proposed building is located in the 
Central Bangkok with heavy concentrations of tall buildings, the exposure C (center of large 
cities) was applied in this study, and the typhoon factor = 1.0.  Then design wind speed is 25 
m/s, and corresponding to design wind speed of 36.65 m/s at the 309.9 m roof height in the 
exposure C.  For the serviceability design, the reference velocity pressure, q, shall be based 
on 10-year return period corresponding to reference wind speed of 20.25 m/s at the height of 
10 m in open terrain.  Therefore, corresponding design wind speed is 29.69 m/s at the 309.9 
m roof height in the exposure C. 
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For strength consideration with V50 (i.e. high return periods of wind velocity and high 
stress levels), three natural frequencies (0.8 fo , fo , and 1.25 fo ) of studied building in each 
direction of motion, and two damping ratios (ξ = 0.01 and 0.02) are considered.  Therefore, 
they are 6 cases of results.  The results of expected peak base moments and torques for these 
six cases are shown and compared in Table 3.  The results show that the peak base moments 
Mx and My are strongly dependent on both building natural frequencies and damping ratio.  
This is because both peak Mx and My are mainly caused by the acrosswind load, in which the 
acrosswind spectra exhibit an evident peak around the reduced frequency (Strouhal number) 
of 0.1 . 

 
Table 3. Comparison of the expected peak base moments and torques for three values of natural 
frequencies fo and two values of damping ratios ξ 
 

Absolute Peak Base Moments Damping ratio ξ  Damping ratio ξ 

or Torques = 0.01 = 0.02 

(MN-m) 0.8 fo fo 1.25 fo 0.8 fo fo 1.25 fo 

My 9,223 5,601 3,701 6,580 4,047 2,741 

Mx 7,066 4,508 3,278 5,051 3,271 2,852 

Mz 82 77 72 71 68 64 

 
For damping ratio ξ = 0.02 for strength consideration, the results found that the 

absolute peak base moments Mx of 3,271 MN-m, My of 4,047 MN-m and torque Mz of 68 
MN-m occur at wind direction 0, 90, and 290 degree, respectively.  The peak base moments 
Mx and My are strongly caused by the acrosswind load.   

For serviceability consideration with V5 and V10 (i.e. low return periods of wind 
velocity and low stress levels), three natural frequencies (0.8 fo , fo , and 1.25 fo ) of studied 
building in each direction of motion, four damping ratios (ξ = 0.005, 0.0075, 0.01, and 0.03 
(with additional damping)), are considered.  Therefore, they are 24 cases of results.  The 
predicted peak acceleration responses for two values of return periods of V5  and V10 , and 
four values of damping ratios ξ are shown and compared in the Figure 9 for natural 
frequencies fo.  The results show that the predicted peak acceleration responses are strongly 
dependent on the building natural frequencies, damping ratio, and return periods of wind 
velocity.  This is because the peak acceleration responses are mainly caused by the 
acrosswind load, in which the acrosswind spectra exhibit an evident peak around the reduced 
frequency (Strouhal number) of 0.1.   

According to the DPT Standard 1311-50 [5], the recommended serviceability design 
for human comfort criteria for the studied building is that the peak acceleration under a 10 
year return period should be less than 15 mg and 25 mg for residential buildings and 
commercial buildings, respectively.  For natural frequencies of building = 0.8 fo , fo , and 1.25 
fo , the predicted peak accelerations are found below the recommended criteria of 15 mg for 
the residential studied building when damping ratios are greater than about 0.015, 0.0075, 
and 0.005, respectively.   

The ISO recommended serviceability design for human comfort criteria [20] 
depending on the building’s lowest natural frequency is that the peak acceleration under a 5 
year return period should not exceed 412.0928.0 −f  (in % of g) where f is the lowest natural 
frequency in Hz, and corresponding to 22 mg, 20 mg, and 18 mg when natural frequencies of 
studied building = 0.8 fo , fo , and 1.25 fo , respectively.  The predicted peak accelerations for 
three values of natural frequencies are found below the recommended criteria when damping 
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ratio is greater than 0.005.  The criteria of DPT Standard are more conservative than the ISO 
criteria especially for the residential studied building. 
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Figure 9. Comparison of predicted peak acceleration responses for two values of return periods of V5  

and V10 , and four values of damping ratios ξ (natural frequencies fo) 
 
b. Plot C42 building and Central Man-U building  
In addition, wind load studies for overall fluctuating loads and dynamic response of plot C42 
building in Abu Dhabi, UAE [20], and Central Man-U building in Bangkok [21] were 
performed by TU-AIT wind tunnel test as shown in Figures 10 and 11, respectively.   
 

      
 

Figure 10. High-frequency force balance                      Figure 11. High-frequency force balance  
model of plot C42 building in Abu Dhabi                     model of Central Man-U building in Bangkok  
 
 
11.3  Wind load study for aerodynamic response of cable-supported bridges  
 
Flutter derivatives are the essential parameters in the estimations of the critical wind velocity 
for flutter-instability and the responses of long-span cable supported bridges.  These 
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derivatives can be experimentally estimated from wind tunnel tests results.  Most of previous 
studies have used deterministic system identification techniques, in which buffeting forces 
and responses are considered as noises.  In this research [23], the covariance-driven 
stochastic subspace identification technique (SSI-COV) was presented to extract the flutter 
derivatives of bridge decks from the buffeting test results.  An advantage of this method is 
that it considers the buffeting forces and responses as inputs rather than as noises.  The 
Industrial Ring Road (IRR) cable-stayed bridge crossed Chao Phraya River with main span of 
398 m (Figure 12) was applied for 1:90 scale sectional model test in TU-AIT wind tunnel test 
as the study case.  Wind tunnel tests were performed for four section bridge models, i.e. 
original section (Figure 13), fairing-modified section, soffit plate modified section, and 
combination of those two modified section (Figure 14).   
 

 
 
Figure 12. Three-dimensional view of IRR cable-stayed bridge 
 

 

 

 
 
 
 

Figure 13. Original section of IRR bridge in  
wind tunnel 

Figure 14. Fairings and soffit plates modified 
section in wind tunnel 
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Figure 15. Comparisons of flutter derivatives among original section and modified sections 
 
a. Flutter derivatives 
The most important terms are H1* and A2* which refer respectively on vertical and torsional 
damping of the section. Their positive values indicate unstable conditions. For vertical 
aerodynamic damping coefficient, H1*, the modification effects considered to be negligible, 
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which all sections show in negative region.  However, the section are influenced by the 
modifications in A2* which is most considerable in long-span bridges.  The original section 
and fairing modified section lead to a single torsional flutter at high wind velocity because 
A2* change from negative values to positive values (Figure 15).  Flutter derivatives H2* term, 
cross derivatives to a torsional aerodynamic damping, are conversely agree well with A2* 
results.  Fairing modified section shows a little improvement on the unstable behavior, 
delaying the unstable of bridge deck from reduced velocity of 4.5 to 5.  Also, it was clearly 
found that soffit plate modified section, and combination of soffit plate and fairings modified 
sections produce more stable sections, whereas the classical flutter rather than the single 
torsional flutter will occur because of H2* and A1*  Moreover, all modified sections show a 
little influence in A1* and A3*, which agree altogether well in trend.  For H3* term, the 
fairings section agrees in trend with an original one, while soffit plates and combined sections 
are agree in trend to each other. 
 
b. Structural responses and critical wind speeds 
Critical wind speed of original section was found at reduced wind velocity of 4.5 (Figure 16), 
corresponding to 118 m/s in full-scale (7.45 m/s in model scale).  Flutter was found under 
single degree-of-freedom, torsional condition.  On one hand, fairing-modified section can 
delay the critical wind speed up to velocity of 135 m/s in full scale or around 15% increased, 
compared with original section.  On the other, for soffit plate modified section, and 
combination of soffit plate and fairings modified sections, flutter phenomenon was not found 
in testing velocity range. 

The results found that the original section result in high vortex-shedding response and 
lead to a single torsional flutter at high wind velocity.  The results also indicated that the 
combined fairing and soffit plate modified section is the most aerodynamic shape. When 
compared with the original section, this modified section can: a) suppress the vortex shedding 
significantly, b) result in the classical flutter rather than the single torsional flutter, and c) 
greatly increase the flutter velocity. 
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Figure 16. Comparisons of normalized heave and pitch responses among original section and three 
modified sections 
 
 
12.  LOSSES  DUE  TO  WIND  STORMS 

 
Losses due to strong winds in Thailand are associated with two types of storms, tropical 
cyclone and non-tropical cyclone.   
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Figure 17. Occurrence rate of tropical cyclone in Thailand (1951-2006)  (Source: Thai Meteorological 
Department) 

 
Table 4. Significant storms in Thailand during 1951-2009 
 

Date Name Type Origin Entrance Effects 
22 /10/1952   Vae 

(5218) 
Tropical 
storm 

Pacific 
Ocean 

Trad (East) Several dead, some damage in 
Bangkok 

25/10/1962 Harriet 
(6225) 

Tropical 
storm 

South 
China Sea 

Nakhon Sri Thamarat 
(South)   

Wind speed of 93 Km/hr, storm surge, 
12 provinces were affected, 935 
deaths, 50,000 houses were damaged, 
loss about 1320 M. Baht 

23/09/1964 Tilda 
(6419) 

Tropical 
storm 

Pacific 
Ocean 

Nakhon Panom 
(North-East) 

9 

03/09/1969 Doris 
(6910) 

Tropical 
storm 

South 
China Sea 

Nakhon Panom 
(North-East) 

 

30/11/1970 Ruth 
(7026) 

Tropical 
storm 

South 
China Sea 

Surat Thani (South)  

05/12/1972 Sally 
(7299) 

Tropical 
storm 

South 
China Sea 

Surat Thani (South)  

04/11/1989 Gay 
(8929) 

Typhoon Thai Gulf Chumporn (South) 602 deaths, 46,000 houses were 
damaged, loss 11,739 M. Baht 

30/08/1990 Becky 
(9016) 

Tropical 
storm 

Pacific 
Ocean 

Nong Kai (North-
East) 

 

1990 Ira & Loa Tropical 
depression 

  38 Deaths, loss 7,326 M. Baht 

17/08/1991 Fred 
(9111) 

Tropical 
storm 

Pacific 
Ocean 

Nakhon Panom  
(North-East) 

27 Deaths, loss 1,745 M. Baht 

15/11/1992 Forrest 
(9229) 

Tropical 
storm 

Pacific 
Ocean 

Nakhon Sri Thamarat 
(South)  

Loss 3,000 M. Baht 

04/11/1997 Linda 
(9728) 

Tropical 
storm 

South 
China Sea 

Prachuab Kirikhan 
(South) 

58 Deaths, loss 211 M. Baht 

13/06/2004 Chanthu 
(0405) 

Tropical 
storm 

Pacific 
Ocean 

Ubon Ratchatani 
(North-East) 

2 deaths, loss 74 M. Baht 

02/10/2006 Xangsane 
(0615) 

Tropical 
storm 

Pacific 
Ocean 

Ubon Ratchatani 
(North-East) 

 

30/09/2009 Ketsana  Tropical 
storm 

Pacific 
Ocean 

Ubon Ratchatani 
(North-East) 

 

(Source: Thai Meteorological Department and Department of Disaster Prevention and Mitigation) 
 

 



5th International Workshop on Regional Harmonization of Wind Loading and Wind 
 Environmental Specifications in Asia-Pacific Economies, Taipei, Taiwan, 2009 

 19 

Although typhoon represents rare incident, Thailand experienced a number of wind 
disasters from several tropical storms and one typhoon in the past 56 year’s history (1951-
2006).  From the record of Thai Meteorological Department (TMD), 177 tropical cyclones 
have affected the country, among them there were one typhoon, 12 tropical storms and 164 
tropical depressions.  Figure 17 shows the distribution of rate of occurrence by month of a 
year and average rate of occurrence per year.  Table 4 lists the significant storms.  Some of 
the devastated events are detailed as follows. 

The tropical cyclone Harriet was originate in the South China Sea as a topical 
depression and became tropical storms on October 25, 1962, just off the east coast of 
Thailand. It moved inland that night as a 93 km/hr tropical storm, and crossed into the Indian 
Ocean. During landfall its storm surge flooded the Laem Talumphuk peninsula in Nakhon Si 
Thammarat Province and cause more than 900 fatalities with the loss about 1320 million 
baht. 

Typhoon Gay developed from a tropical depression in the Gulf of Thailand and 
intensified into a typhoon on November 3, 1989, and then it crossed the peninsular into the 
Bay of Bengal with peak sustain winds of 140 kt (about 70 m/s) when it reached India.  It is 
unique because of its small size, intensity and point of origin.  Generally, an occasional 
tropical cyclone may move into the Gulf of Thailand from the South China Sea, but it is rare 
for genesis and intensification to occur in the Gulf, a relatively small body of water 
surrounded by land on three sides.  At least 600 people were killed, more than 46,000 houses 
were either totally or partially destroyed, many public buildings were damage, and a large 
number of transmission line tower under construction were damaged. 

Although the devastated tropical cyclones have caused considerable disasters, it was 
found that, however, almost all extreme winds in the country are caused by thunderstorms 
[1].  In general, thunderstorms are frequently occurred in the tropics than in higher latitudes.  
In Thailand, the mean annual number of thunderstorm days is over 100 in most parts, where a 
thunderstorm day is defined as an observation day during which thunder is heard at a station.  
Thunderstorms may produce a strong downdraft from air mass reaching the ground, known as 
microburst or macroburst depending on their size.  Damages from the downdrafts are limited 
in relatively small area due to its size, therefore, most of the time the losses are small 
compared to the large-scale winds.  However, due to more frequent occurrence, the 
cumulative losses are significant.  From the report of TMD, thunderstorms, sometime 
associated with hails, damaged more than 3000 houses and killed 1 person during February to 
April of 2005 [24], and damaged more than 4000 houses and killed 3 people during February 
to April of 2006 [25].  Additionally, strong downdraft has been investigating as a cause of 
collapse of large billboard in Bangkok and other urbanized areas.  A typical structure of 
billboard is quite vulnerable to wind loads because it has large windward area and it always 
be placed at several ten meters above ground.  Recently, several cases of collapse of large 
billboards due to strong wind have been reported with a number of injuries and deaths. 
 
 
13. CONCLUSIONS 
 
The new development of DPT standard 1311-50 for wind loading calculation and response of 
buildings in Thailand is newly published by Department of Public Works and Town & 
Country Planning.  Three different approaches for determining design wind loads on building 
are given in the standard, namely, the simple procedure for low-rise building, the detailed 
procedure for high-rise building, and wind-tunnel test procedure.  The standard includes the 
calculation of: (1) wind load of the main wind resistant system and cladding; (2) lateral 
deflection; and (3) building motion in the along-wind and across-wind directions. 
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The new development of wind loading standard for building design in Thailand 
includes the specified wind load and response, reference wind speed map, natural frequency 
and damping of building, table for design wind loads for main structures, secondary members 
and claddings for low-rise buildings, wind tunnel test procedure, commentary, numerical 
examples, computer program for calculation of wind load and response, and wind load on 
miscellaneous structures such as, large billboards, cylinders, poles, structural member, two- 
and three-dimensional trusses.   

Since the new development of DPT standard 1311-50, wind load standard and wind 
load studies of buildings and bridges by TU-AIT wind tunnel test have been increasingly 
interesting to Thai engineers.   
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