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ABSTRACT

Project Code: RMU4980012

Project Title: Aerodynamic Analysis and Design of Cable-Supported Bridges by Wind-
Tunnel Test

Investigator: Assoc. Prof. Dr. Virote Boonyapinyo, Faculty of Engineering, Thammasat
University

E-mail Address: bvirote@engr.tu.ac.th
Project Period:  July 2006 — January 2010

This study proposes the system identification technique and the experimental method
for extracting the aerodynamic parameters of bridge decks. Flutter derivatives and aerostatic
force coefficients are the essential aerodynamic parameters in the design of long-span cable
supported bridges and the estimations of the flutter-instability critical wind velocity. These
parameters can be experimentally estimated from wind tunnel test results. In this study, a
theoretical model based on the stochastic subspace identification was used to extract the
flutter derivatives of bridge deck sectional models from the two-degree-of-freedom free decay
and buffeting responses. An advantage of the stochastic subspace identification technique is
that it considers the buffeting forces and the responses as inputs instead of as noises as
typically assumed in previous researches. The data-driven stochastic subspace identification
technique (SSI-DATA) was proposed to directly extract the flutter derivatives of bridge deck
sections model from their random vibration responses under wind flows. The results were
then compared to those from the previous up-to-date covariance-driven stochastic subspace
identification (SSI-COV).

Wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road cable-
stayed bridge (IRR) with 398 m center span length were conducted under both smooth and
turbulence flows. The results from numerical simulation and wind tunnel tests show that
applying the SSI-DATA vyields better results than those of the SSI-COV. Moreover, the root-
mean-square responses of a bridge deck can be obtained simultaneously from the same test
without requiring separated tests as in case of the free decay method.

The results of study can be summarized as follows. a) the blunt type IRR Bridge
section is susceptible to flutter instability at high wind speed of 118 m/s; b) the torsional
vortex-shedding response was also observed at the full scale velocity of 41 m/s; c¢) compared
with the smooth flow, the turbulence flow delays the onset of the flutter instability and
reduces the vortex-shedding response; however, it raises the amplitude of the bridge
responses progressively over the speed range; d) the combined fairing and soffit plate
modified section is the most aerodynamic shape; this modified section can suppress the
vortex shedding significantly and greatly increase the flutter velocity. Therefore, the
aerodynamically-stable bridge section is the essential parameter for design of long-span cable-
supported bridges under wind load.

Keywords:  Flutter derivatives, cable-stayed bridge, stochastic subspace identification,
wind tunnel, aerodynamic appendages
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CHAPTER 1

INTRODUCTION

1.1 General Review and Problem Statement

Long-span cable-supported bridges are highly susceptible to wind excitations
because of their inherent flexibility and low structural damping. Wind loads play an
important role in the design of these structures. A wind-induced aerodynamic force
can be divided into two parts: a buffeting force that depends on the turbulence of the
incoming flow, and an aeroelastic force that originates from the interactions between
the airflow and the bridge motion. The motion-dependent forces feed back into the
dynamics of the bridge as aerodynamic damping and stiffness; the effect is termed
‘aeroelasticity’ and is commonly described via “flutter derivatives’. The problems of
aerodynamic stability including vortex-induced vibrations, galloping, flutter, and
buffeting, may have serious effects on the safety and the serviceability of the bridges.
A brief description of each of these phenomena is as follows. A more comprehensive
treatment is given in Simiu and Scanlan (1996).

Flutter instability describes an exponentially growing response of a bridge
deck where one or more vibration modes participate at a particular critical wind
velocity resulting in a failure due to the overstress of the main structural system.

Buffeting describes a random response of a bridge to the fluctuating incoming
cross wind. This also includes the response of a bridge to an additional turbulence
caused in the flow because of its bluff shape, usually referred to as the signature
turbulence. (Sarkar 1993, Singh 1997)

Vortex-induced response occurs due to the synchronization of the frequency
of Karman-type vertices being shed from the bridge deck to one of its natural
frequencies of vibration. Moderate-amplitude oscillation results for a range of
shedding frequencies around the natural frequency of vibration. This phenomenon is
more popularly known as “lock-in”. The motion, however, is self-limiting in
amplitude.

Fig. 1.1 Failure of Tacoma Narrow Bridge under wind flow



Among these, flutter is the most serious wind-induced vibration of bridges and
may destroy the bridges due to the diverging motions in either single or torsion-
bending coupled mode. Notorious examples of the flutter phenomenon are the failures
of the Brighton Chain Pier Bridge in 1836 and the original Tacoma Narrow Bridge in
1940 (Fig. 1.1).

Unlike flutter, buffeting and the vortex-induced responses do not tend to cause
catastrophic failures but are nevertheless important from design serviceability
considerations. In order to reasonably predict the flutter critical wind velocity and
buffeting response of the bridge, the flutter derivatives shall be determined in first
place. The flutter derivatives depend primarily upon the wind conditions, the cross-
sectional shape and the dynamic characteristics of the bridges. Nevertheless, no
theoretical values exist for these derivatives for various bridge shapes except only for
a simple thin plate section. A major research tool in these studies is, therefore, a wind
tunnel test, in which a geometrically and aerodynamically representative scale model
of a length of a bridge deck is built, mounted, and then tested in a wind tunnel. The
flutter derivatives are non-dimensional functions of the wind speed, the geometry of
bridge, and the frequency of vibrations; therefore they can be applied directly to the
full-scale bridge in a piecewise manner.

The experimental methods used for determining flutter derivatives can be
grouped into two types, i.e. forced (Chen and Yu 2002) and free vibration methods
(Scanlan 1971, Poulsen et al. 1992, Sarkar et al. 1994, Gu et al., 2000). Having less
emphasis on elaborate equipments required, and the amount of both time and work
involved,; the free vibration method seems to be more tractable than the forced method.
In the determination of flutter derivatives by the free vibration method, the system
identification method is the most important part required to extract these parameters
from the response output of the section model. The free vibration method depends on
the system identification techniques and can be classified into two types, i.e. the free
decay and the buffeting tests. In the free decay test method, the bridge deck is given
initial vertical and torsional displacements. The flutter derivatives are based on the
transient (i.e. free decay) behavior that occurs when the bridge deck is released. The
buffeting test, on the other hand, uses only the steady random responses (i.e. buffeting
responses) of bridge deck under wind flow without any initial displacement given to
the model. Compared with the free decay method, the buffeting test is simpler in the
test methodology, is more cost effective, and is more closely related to the real bridge
behaviors under wind flow, but with a disadvantage that the outputs appear random-
like. This makes the parameters extraction more difficult and a more advanced system
identification technique is required.

In most of the previous studies, flutter derivatives were estimated by the
deterministic system identification techniques that can be applied to the free decay
method only. Examples of previous deterministic system identification techniques that
were applied to the free decay method included the Scanlan’s method (1971), the
Poulsen’s method (1992), the Modified Ibrahim Time Domain method (MITD)
(Sarkar et al. 1994), and the Unified Least Square method (ULS) (Gu et al., 2000). In
these system identification techniques, the buffeting forces and their responses are
regarded as external noises which then require many iterations in the identification
process to obtain appropriate results. It also confronted with difficulties at high wind



speeds where the initial free decay is drowned by buffeting responses. Besides, at high
reduced wind speed, the vertical bending motion of the structure will decay rapidly
due to the effect of the positive vertical aerodynamic damping, and thus the length of
decay time history available for system identifications will decrease. This causes more
difficulties to the deterministic system identification techniques (Gu and Qin, 2004).
In case of turbulence flow, the presence of the turbulence in the flow is equivalent to a
more noisy-input signal to the deterministic system identification. This made the
extraction process more complicated and most likely reduced the accuracy of the
flutter derivatives identified (Sarkar, et al., 1994). In addition, due to the test
technique, the free decay method is impractical to determine flutter derivatives of real
bridges in the field.

On the other hand, the buffeting test uses random responses data of bridge
motion from wind turbulence only. This mechanism is more closely related to a real
bridge under a wind flow and is applicable to real prototype bridges. The method costs
less and is simpler than the free decay since no operator interrupts in exciting the
model. However, as wind is the only excited source, it results in low signal-to-noise
ratio, especially at low velocity, and therefore a very effective system identification
technique is required. None of the aforementioned system identification techniques is
applicable to the buffeting responses tests.

System identification techniques can be divided into two groups, i.e.
deterministic and stochastic. If the stochastic system identification technique (Juang
and Pappa 1985, Overchee 1991, Peeters 1999) is employed to estimate the flutter
derivatives of a bridge deck from their steady random responses under the action of
turbulent wind, the above-mentioned shortcomings of the deterministic system
identification technique can be overcome. The reason is that the random aerodynamic
loads are regarded as inputs rather than as noises, which are more coincident with the
fact. Therefore, the signal-to-noise ratio is not affected by the wind speed, and the
flutter derivatives at high reduced wind speeds are more readily available. These
aspects give the stochastic system identification methods an advantage over the
deterministic system identification.

Many stochastic system identification methods have been developed during the
past decades, among which the stochastic subspace identification (SSI in short)
(Overchee 1996, Peeters 2001) has proven to be a method that is very appropriate for
civil engineering. The merit points of SSI are: (1) the assumptions of inputs are
congruent with practical wind-induced aerodynamic forces, i.e. stationary and
independent on the outputs; (2) identified modes are given in frequency stabilization
diagram, from which the operator can easily distinguish structural modes from the
computational ones; (3) since the maximum order of the model is changeable for the
operator, a relatively large model order will give an exit for noise, which in some
cases can dramatically improve the quality of the identified modal parameters; (4)
mode shapes are simultaneously available with the poles, without requiring a second
step to identify them.

There are two kinds of SSI methods, one is data-driven (SSI-DATA), and the
other is covariance-driven (SSI-COV). The similarity of the covariance- and the data-
driven SSI methods is that they both are aimed to cancel out the (uncorrelated) noise



using a stochastic realization. In the SSI-COV algorithm, the raw time histories are
converted to the covariances of the Toeplitz matrix. The implementation of SSI-COV
consists of estimating the covariances, computing the singular value decomposition
(SVD) of the Toeplitz matrix, truncate the SVD to the model order n, estimating the
observability and the controllability matrices by splitting the SVD into two parts, and
finally estimating the system matrix(A,C). The modal parameters are found from A and
C.

As opposed to SSI-COV, the data-driven stochastic subspace identification
(SSI-DATA) avoids the computation of covariances between the outputs; since the
error and noises may be squared up from the covariance estimation (Golub 1989). It is
replaced by projecting the row space of the future outputs into the row space of the
past outputs. This projection is computed in favor from the numerically robust square
root algorithm, i.e. QR factorization. Theoretically, the numerical behavior of SSI-
DATA should then be better than that of SSI-COV.

In this study, the data-driven stochastic subspace identification method is used
to estimate the flutter derivatives from random responses (buffeting) under the action
of smooth and turbulent wind. Tests are also carried out with the free decay method
(single and two-degree-of-freedom) in order to examine the robustness of the present
technique that the results are not affected by test methods used. To validate the
applicability of the present technique, numerical simulations were performed. Then
sectional-model tests of a quasi-streamlined thin plate model, which is the only section
that theoretical flutter derivatives exist, were performed under smooth flow.
Encouraged by the success in the evaluation process, the flutter derivatives of a real
bridge were determined. The two-edge-girder type blunt section model of Industrial-
Ring-Road Bridge (IRR in short), a cable-supported bridge with a main span of 398 m
in Samutprakan province, Thailand, was tested both in the smooth and the turbulence
flows. Tests were conducted in TU-AIT Boundary Layer Wind Tunnel in Thammasat
University, the longest and the largest wind tunnel in Thailand.

1.2 Objectives

The main experimental parameters needed for examining whether a bridge is
flutter-prone below a certain mean velocity are the flutter derivatives. The flutter
derivatives associated with at least two degrees of freedom (vertical and torsional)
needed to be determined rather reliably. Moreover, for the estimation of buffeting
response of bridge decks, the static force coefficients should also be known.

Up to the present, all cable-stayed bridges in Thailand, such as the Rama IX
Bridge, the RamaVIIl Bridge, and the two Industrial Ring Road Bridges, were
designed and conducted in wind tunnel test by oversea consultants. Therefore, there is
a real need to increase the number of researchers in this field in order to minimize the
oversea consultant dependency and the associated design cost. Since the TU-AIT
boundary layer wind tunnel was jointly constructed under an academic collaboration
between Thammasat University (TU) and the Asian Institute of Technology (AIT), a
number of advance research of wind resistant design of long span bridges in Thailand
have been significantly increased.



The present study concentrates on two major thrusts: First, the various state-of-
the-art experimental techniques for accurate determinations of the parameters
mentioned above (flutter derivatives and static coefficients) from section-model tests
in the wind tunnel; Second, and the more important contribution of this study, was the
system identification technique for extracting the flutter derivatives from the output
response of the section model. Therefore, the objectives of the study are as follows:

- To propose a new system identification method, that overcomes the
shortcomings of the previous deterministic system identification techniques
those are commonly used, to identify flutter derivatives from a dynamic wind
tunnel model test both in smooth and turbulent flows. Results from the
application of the present system identification method to various experimental
techniques are then compared.

- To identify aerostatic force coefficients, C., Cp, Cwy, of bridge decks from wind
tunnel test in both smooth and turbulent wind.

- To estimate some major aerodynamic phenomena (vortex shredding, flutter
instability) of the bridge decks based on test results.

- To study main effects of two different aerodynamic shapes (e.g. streamlined
and bluff section) upon aerodynamic behavior of bridge decks.

- To study effects of flow conditions (smooth and turbulence) on the
aerodynamic phenomena and aerodynamic parameters of the bridge deck.

- To investigate the effectiveness of aerodynamic appendages on the responses
of bridge deck, vortex shedding and flutter phenomenon

1.3 Scope of Study
The scope of the study can be summarized as follows.

1. The most advanced stochastic subspace identification technique was theoretically
formulated to identify flutter derivatives of bridge decks under wind flows. The
new proposed data-driven stochastic subspace identification (SSI-DATA) was
used to extract flutter derivatives and results were compared with those from the
popular covariance-driven stochastic subspace identification (SSI-COV).

2. The computer software of both SSI algorithms were developed to identify flutter
derivatives of bridge decks from the response outputs of the section model from
wind tunnel tests.

3. To validate the applicability of the present method to various experimental
techniques (i.e. the free decay and the buffeting tests), numerical simulations of
various signal outputs were adopted. Then, the present stochastic subspace



identification was applied to identify the modal parameter and system matrices
from the simulated responses, and results were compared with the pre-set values.

4. In order to validate the present system identification technique and the
experimental set-up, wind tunnel tests of a section model of a streamlined thin
plate model were performed to extract flutter derivatives from various test
techniques under smooth flows, i.e. the single-degree-of-freedom free decay
method, the coupled-degree-of-freedom free decay and buffeting test methods. The
results are then compared with the theoretical values.

5. Wind tunnel tests of the section model of the blunt type Industrial Ring Road
Bridge (IRR) were conducted to extract flutter derivatives under smooth and
turbulence flows. The results from the present method will be compared with those
from the previous research in case of smooth flow.

6. The static aerodynamic force coefficients (Cp, C, Cy) of both the streamlined thin
plate under smooth flow and the blunt type IRR Bridge under smooth and
turbulent flow were determined from static test set-up. Effects of wind angle of
attacks were also examined.

7. Identify the critical flutter wind speed and flutter derivatives of aerodynamic
appendages modified sections, including fairings, soffit plates and combination of
those two sections and compare their responses in smooth flow.

The study mainly focused on the Industrial Ring Road cable—stayed bridge.
One of the two cable-stayed bridges (South Bridge) with the main span length of 398
m, was selected to perform in this study. This bridge is an example of bluff type cross
section which exhibits difference aerodynamic mechanism compared to a thin plate
model. Fig. 1.3 shows the general view of the deck cross section.
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CHAPTER 2

LITERATURE REVIEW

The discipline of aeroelasticity refers to the study of phenomenon wherein
aerodynamic forces and structural motions interact significantly. Flutter is an
aeroelastic self-excited oscillation of a structural system. The frequency-domain
approach has been widely used for estimating flutter speed of structures. The
frequency-domain method uses flutter derivatives, which may be experimentally
obtained from wind tunnel testing of section model. System identification technique is
the crucial mean for the identification of bridge deck flutter derivatives and can be
classified into two groups; i.e. deterministic and stochastic ones.

In most of the previous studies, flutter derivatives were estimated by
deterministic system identification techniques. Deterministic system identification
techniques involved in flutter derivative estimations can be group under two types, i.e.
forced vibration method (Chen and Yu 2002) and free vibration method (Scanlan and
Tomko 1970; Gu et al. 2000; Gu et al. 2001; Sarkar 1994; Scanlan and Lin 1978). The
forced vibration method is somewhat expensive since they involve sizeable equipment
and considerable time and work. Moreover, the forced vibration method is different
from their kinetic characteristics in the natural wind.

2.1 Free Vibration Method

In the 1970s, R.H. Scanlan proposed a semi-experimental and semi-analytical
approach for critical flutter wind speed and another approach for buffeting response
(Scan lan et al. 1971; Scanlan and Gade 1977).

These two approaches are presently widely used. Flutter derivatives of bridge
decks are parameters in these approaches essential for the flutter and buffeting analysis
of long-span bridges. In the original technique, to extract the flutter derivatives in
Scanlan's method (Scanlan et al.; 1971) , a spring-suspended sectional model was
tested and the free decay vibration signals were used. A great advantage of the free
vibration technique is its simplicity, requiring no expensive and complicated driving
machine. But Scanlan's method need three groups of test. Torsional and vertical
bending motions have to be constrained, respectively, to obtain the so-called direct
derivatives. Furthermore, to obtain cross derivatives, the vertical and torsion motions
of the model must have the same frequency at all wind velocities. In view of this
situation, many efforts have been made to simplify the identification procedure.
ARMA model was used by M. Shinozuka et al. (1982) to try to identify the flutter
derivatives. But the results seemed unsatisfactory for high noise.

H. Yamada et al. (1992) introduced the extended EKF method into the
identification procedure of these derivatives based on the coupled vibration time
histories. In this method, the time histories of the displacement and velocity as well as
the information of the initial condition are simultaneously required.
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Poulsen et al. (1992) used a method which combines control theory and system
identification techniques to extract flutter derivatives from section model tests for the
Great Belt East Bridge.

In 1994, P.P. Sarkar and R.H. Scanlan developed Modified Ibrahim Time-
domain (MITD) method to extract all the direct and cross derivatives from the coupled
free vibration data of 2-DOF model (Sarkar et al. 1994). This method requires
selection of the time shifts N1 and N2. Sarkar and Scanlan have found a way to select
these two time shifts close to optimal values.

Imai et al. (1989). have been reviewed other system identification (SID)
methods that can be applied to problems in structural dynamics ;least squares (LS),
instrumental variable (1), maximum likelihood (ML), and extended Kalman filtering
(EKF).

Hsia (1976) described different least squares algorithms for system parameter
identification. Extended Kalman filtering techniques were used by Yamada and
Ichikawa (1992), Diana et al. (1995), lwamoto and Fujino (1995) and Jones et
al.(1995).

Jakobsen and Hjorth-Hansen (1995) and Brownjohn and Jakobsen (2001) have
used covariance block Hankel matrix (CBHM) method for parameter extraction of a
two-DOF system. The CBHM method has also been extended to cater for three-DOF
flutter derivatives. However the principles were illustrated for a two-DOF system and
eight flutter derivatives were experimentally extracted.

Gu et al. (2000) and Zhu et al. (2002) have used an identification method based
on unifying least squares (ULS) theory to extract flutter derivatives of a two-DOF
model. Though the ULS method could theoretically identify all 18 flutter derivatives
using a three-DOF section model, only eight flutter derivatives were extracted due to
lack of a more inclusive experimental set-up to accommodate the three-DOF section
model. In this method, a unified error function which is linearly composed of two
errors component of vertical bending and torsional motions is defined as the objective
function to optimize the flutter derivatives. Nevertheless, if distinct difference exists in
quantity between the two error components, unsatisfactory identification precision
may occur. In order to improve the precision, the modified least-square method for
adding weights to error components was proposed subsequently (Ding, et. al., 2001),
In addition, the weighting ensemble least-square method was developed to extract
eight flutter derivatives of bridge decks (Li, et al. 2003). In this method, several
vibration records at the same wind speed are regarded as an ensemble. It is
simultaneously fitted to identify the mode parameters by nonlinear least square
method in the sense of minimizing the total error function.

The Iterative Least Square approach (ILS) was presented to identify all 18
flutter derivatives for a streamlined bridge deck and an airfoil section model
(Chowdhury and Sarkar 2004). In the identification process, the time histories of the
displacement, velocity as well as accelerations are simultaneously required.

The above least-square methods commonly apply alternate iteration technique
to obtain solutions, and the same lengths of the vertical bending and torsional vibration
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histories are necessary. Nevertheless, the solution precision of these alternate iteration
techniques are closely relevant with and sensitive to the initial selected values of
modal parameters, and the solution may not be converged sometimes.

Chen et al. (2006) have used empirical mode decomposition (EMD) method
developed by Huang et al. (1989) to filter and reduce the noises from the free decay
signal and the filtered signal were used to extract flutter derivatives based on unifying-
least square method.

Generally, the free vibration method seems to be more tractable than forced
vibration testing. However, at high reduced wind speeds, the vertical bending motion
of the structure will decay rapidly due to the effect of positive vertical bending
aerodynamic damping, and thus the length of time history available for system
identifications will decrease, which therefore add more difficulties to the system
identification. Furthermore, the free vibration method regards the buffeting forces and
the responses as external noises, and it is therefore confronted with great difficulties at
higher wind speeds (Sarkar 1992).

In summary most of the above-mentioned methods are subsections of so-called
output-only system identification (as input such as wind load are not exactly known
and available parameters are output responses only). In a civil engineering context,
the civil structures (e.g. bridges, towers) are the systems; that is excited by a not
measurable input force and that only output measurements (e.g. accelerations) are
available. Then some output-only identification methods are reviewed in next section.

2.2 Output-Only Modal Identification Methods

The ambient excitation has commonly a multiple input nature and wide band
frequency content, stimulating a significant number of modes of vibration. For
simplicity, output-only modal identification methods assume the excitation input as a
zero mean Gaussian white noise, which means that the real excitation can be
interpreted as the output of a suitable filter excited with that white noise input.
Modelling the behaviour of the filter-structure system, one may conclude that some
additional computational poles, without structural physical meaning, appear as
consequence of the white noise assumption.

There are two main groups of output-only modal identification methods:
nonparametric methods essentially developed in frequency domain and parametric
methods in time domain.

The basic frequency domain method (Peak-Picking), though already applied
some decades ago to the modal identification of buildings and bridges, was only
conveniently systematized by Felber (1993) about twelve years ago. This approach,
which leads in fact to estimates of operational mode shapes, is based on the
construction of average normalized power spectral densities (ANPSDs) and ambient
response transfer functions involving all the measurement points, and allowed the
development of software for modal identification and visualization used at UBC and
EMPA (13). The frequency domain approach was subsequently improved (Prevosto
1982) by performing a single value decomposition of the matrix of response spectra,
so as to obtain power spectral densities of a set of SDOF systems. This method
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(Frequency Domain Decomposition (FDD)) was better detailed and systematized by
Brincker et al. (Brincker 2001), and subsequently enhanced (Brincker 2000) in order
to extract modal damping factors estimates. In this last approach (EFDD) these
estimates are obtained through inspection of the decay of auto-correlation functions,
evaluated by performing the inverse Fourier transform of the SDOF systems’ power
spectral densities.

The time domain parametric methods involve the choice of an appropriate
mathematical model to idealize the dynamic structural behavior (usually time discrete
state space stochastic models, ARMAYV or ARV models) and the identification of the
values of the modal parameters so as that model fits as much as possible the
experimental data, following some appropriate criterion. These methods can be
directly applied to discrete response time series or, alternatively, to response
correlation functions. The evaluation of these functions can be made based on their
definition, using the FFT algorithm (Brincker 1982) or applying the Random
Decrement method (RD) (Asmussen 1992). A peculiar aspect of output-only modal
identification based on the fitting of response correlation functions is the possibility to
use methods that stem from classical input-output identification methods, based on
impulse response functions. Some of these methods are the lbrahim Time Domain
(ITD) (lbrahim 1977), the Multiple Reference Ibrahim Time Domain (MRITD)
(Fukuzono 1986), the Least-Squares Complex Exponential (LSCE) (Brown 1979), the
Polyreference Complex Exponential (PRCE) (Vold 1982) or the Covariance-Driven
Stochastic Subspace Identification (SSI-COV) (Peeters 2000). An alternative method
that allows direct application to the response time series is the Data-Driven Stochastic
Subspace Identification (SSI-DATA) (Overschee 1996). It’s still worth noting that the
Random Decrement technique, usually associated to the application of time domain
methods like Ibrahim’s, can be also the base for the application of frequency domain
methods, like PP, FDD or EFDD, as it leads to free vibration responses, from which
power spectral densities can be evaluated using the FFT algorithm (Rodrigues 2004),
reducing noise effect (methods RD-PP, RD-FDD and RD-EFDD).

These methods, schematically represented in Fig. 2.1, have been recently
systematized, applied and compared by Rodrigues (Rodrigues 2004). Fig. 2.1 also
indicates the five different types of numerical techniques employed in their
development (FFT, SVD, LS, EVD and QR).
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Fig. 2.1 Summary of output-only system identifications scheming apply to modal
parameters estimation

2.3 Stochastic Methods

None of the aforementioned methods can simultaneously extract aerodynamic
admittances and flutter derivatives, or other important aeroelastic parameters in flutter
and buffeting analysis of long-span cable-supported bridges. If the stochastic system
identification techniques are employed to extract flutter derivatives and aerodynamic
admittances, then the above-mentioned shortcomings of the force measurement
methods and the transient motivation system identification technique may be
overcome. The stochastic system identification techniques (Juang and Pappa 1985;
Overschee 1991; Peeters 1999) directly extract the required dynamic parameters from
the steady random responses of the bridge section model subjected to turbulent wind.
For this kind of identification methods, the random aerodynamic loads are regarded as
input rather than noise, which are more coincident with the fact, so the signal-to-noise
ratio is not affected by wind speed, and the flutter derivatives at high reduced wind
speeds can thus be available. These aspects give the stochastic system identification
methods an advantage over the deterministic methods in estimating the flutter
derivatives and aerodynamic admittances of bridge decks. Moreover, flutter
derivatives and aerodynamic admittances can be simultaneously obtained with the
same random response data.

Many stochastic system identification methods have been developed during the
past decades, among which the stochastic subspace identification (SSI in short)
technique (Overschee 1991; Peeters 1999; Gu and Qin 2004 ) has proven to be a
method very appropriate for civil engineering. The merit points of SSI are: (1) the
assumptions of inputs are congruent with practical wind-induced aerodynamic forces,
i.e. stationary and independent on the outputs; (2) identified modes are given in
frequency stabilization diagram, from which the operator can easily distinguish
structural modes from the computational ones; (3) since the maximum order of the
model is changeable for the operator, a relatively large model order will give an exit
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for noise, which in some cases can dramatically improve the quality of the identified
modal parameters; (4) mode shapes are simultaneously available with the poles,
without requiring a second step to identify them. There are two kinds of SSI methods,
one is data-driven, and the other is covariance-driven.

2.4 Aerodynamic Appendages

The investigation in aerodynamic appendages had been considered for a long
time and many studies are used in an effort to suppress the oscillation in real
structures. Bronx-Whitestone Bridge which had to use poor aerodynamic I-girder to
keep construction in tight schedule, the stiffening systems including fairings are
installed along bridge deck. Another illustration is Deer Isle Bridge, which is stated
below. Some investigations had been reviewed as listed:

Wardlaw R. L. and Goettler L. L. (1968) had purposed the experimental study
of the effects of aerodynamic appendages. They measured the amplitude of oscillation
of Long’s Creek Bridge before and after installing aerodynamic appendages, which
consisted of the soffit plates and various types of fairings, under the wind velocity of 8
to 18 m/s in wind tunnel test. The results of this study showed that the bridge
responses via the vibration amplitude approached 11 cm of original section under 16
m/s wind speed. In the other hand, with fairings installed, the amplitude was decreased
more and more following the fairings length. Since 3.0m fairings installed, the
structure responded with amplitude less than 1 cm. The Long’s Creek Bridge is a
representative of satisfactory performance of the triangular fairing on bridge
aerodynamic instability. Many said that Long’s Creek Bridge is a representative of
satisfactory performance of the triangular fairing on bridge aerodynamic instability.

The investigation of effects on geometry modification on aerodynamics of
cable-stayed bridge deck had been carried out by Bienkiewicz in 1987. A 1:140 scale
of Weirton-Steubenville cable-stayed bridge model was a case study which its original
section behaved an unstable oscillation in torsional direction, including high vortex-
induced response. The wind tunnel tests were carried out in smooth flow for four
sections including original section, partially streamlined, enclosed lower cavity and
fully streamlined section. Streamlining of deck resulted in improved aerodynamic
performance, with an increase in the critical flutter wind speed for torsional flutter and
decrease in vortex response.

Houston D. R. and Bosch H. R. had published the effects of fairings and of
turbulence on the flutter derivatives of a notably unstable bridge deck in 1988. This
study aimed to identify the flutter derivatives of Isle-Sedgwick Bridge by sectional
model test in wind tunnel. Its deck had a same plate girder profile as the Tacoma
Narrows Bridge, which was subsequently shown to have such poor aerodynamic
characteristics. Like the Tacoma Narrows Bridge, the Deer Isle Bridge was built
during the depression and has a relatively light and flexible stiffening structure.
Almost immediately after its construction, the Deer Isle Bridge experienced large
wind-induced oscillations. Therefore, the fairing-modified section was tested for
comparison. The result of the torsional aerodynamic stability represented via flutter
coefficient A,* as a function of wind speed whose positive values indicate unstable
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conditions. It is clear that the fairing modification produces a more stable section.
Furthermore, the fairing coverage effects are also carried out where the section with
100% covered with fairing introduced the most stable section.

Nagao F. et al. had investigated the effects of triangular edge fairing on bridge
box girder aerodynamic stabilities in 1993. Various angles of triangular fairings were
mounted to different type of bridge deck sections. The results showed that fairing
which the upper slope angle is 0° showed only a little increase in onset flutter
velocities. Generally speaking, the modification of flow properties along the upper
deck is effective in preventing the flutter. In addition, fairing effects on flutter
increased with the slenderness ratio of cross section. Moreover, the results show that
an inner angle of 60° fairing gave the most effects of flutter onset velocity. This type
of fairing can furthermore execute almost vortex shedding. Nonetheless, this study
was carried out in the uniform flow and due to no flutter derivatives were indentified
from this study; hence the effects of turbulence on the aerodynamic instability for
bridge deck and flutter derivatives should be clarified in the next place.

Fang F. et al. had investigated on the aerodynamic instability of a suspension
bridge with a hexagonal cross-section in 2007. Measurements of the dynamic
responses of a sectional bridge model in the cross-wind and torsional directions were
firstly carried out in wind tunnel. Three sections were mounted and tested for a
comparison including bluff rectangular 180° side angle section, 90°, 60°, and 30° side
angle sections. Among the hexagonal decks studied, it was found that one with 30°
side angle leads to the greatest critical flutter speed. Beside wind tunnel model tests,
the method of computational fluid dynamics (CFD) had also been used to examine the
aerodynamic performance of the sections where the results of numerical predictions
agreed well with those from the experiments.

From the investigations reviewed above, geometry modifications of cable-
stayed bridges are suggested to mount on a considered section due to their efficiency
in reducing static and dynamic responses. Fairings, soffit plates and combined sections
are consequently first-rated. Most of previous studies had focused on the effects of
geometry modifications on critical flutter velocities, where flutter derivatives were not
widely judged due to lack of motivation on the simplicities and stabilities of extracted
values. This thesis additionally carries out static responses, an overall response of
bridge deck and all eight flutter derivatives which are affected by deck shape
modifications as well.
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CHAPTER 3

THEORETICAL BACKGROUND FOR WIND EFFECTS
ON LONG-SPAN CABLE-SUPPORTED BRIDGES

In the design of long-span cable stayed bridges or suspended bridges, the wind
effects are of primary concern. The failure of the Tacoma Narrows suspension bridge
in 1940 is an example of wind effects on structures. Therefore to understand the
response of long span suspension bridges under wind excitation, the basic wind
phenomena needs to be clearly understood. Hence this chapter focuses on and reviews
a number of topics connected with the effect of the wind on long-span cable stayed
bridges. The aerodynamic effects of wind on the bridges are primarily vortex
shedding, galloping, torsional-divergence, flutter and buffeting.

3.1 Design Concept of a Cable Stayed Bridges

The criteria for the design of long span cable stayed bridges are concerned with
the static and dynamic responses of the bridge under wind loading. A basic
knowledge of the wind forces are required to understand wind effects on these
structures. The Aerodynamic design involves experimental results of aerodynamic
coefficients and flutter derivatives. The wind velocity may cause the aerodynamic
instability of bridge deck, which does not exceed the predicted critical velocity in
order to avoid failure of the structures. The frequencies other than the fundamental
one should be considered in design. There are static and dynamic behaviors that
should be considered for design of bridges (ASCE 1987; Walther 1999).

3.2 Static Behavior

Wind flow exerts on the bridge deck and alters the pressure between sides of the
body. The results of this phenomenon are aerodynamic forces that can be expressed
by static wind load. Usually the fist consideration is the static phenomena that are not
critical for the design of bridges. The static loads are lift force, drag force, and
moment.

. 1
Lift force L= EpU ’BC, (3.1)
1 2
Drag force D = E’OU BC, (3.2)
Moment M = %pU ’B?C,, (3.3)

where U is mean velocity of wind flow; B is characteristic dimension; C_,C,,C,, are

lift, drag and moment coefficients, respectively. These coefficients are defined from
experimental results using wind tunnel model test.
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3.3 Dynamic Behavior

The methods of analysis of cable-stayed bridge are not only limited to
consideration with static loads but also dynamic loads. Therefore, the dynamic
analysis of cable-stayed bridge is concerned with their aerodynamic behavior.
Dynamic studies include the determinations of the natural modes and modal
frequencies, mode shapes under aerodynamic forces.

Under the wind loads, which are considered as forces varying with time, the
cable-stayed bridge will oscillate. The oscillation excited by wind usually occurs in
one of the following types of displacements:

- Vertical bending of the cable-stayed bridge in which the deck moves up
and down.

- Torsion of the cable-stayed bridge in which the deck twists above a span-
wise axis.

- Coupled motion of cable-stayed bridge in vertical bending and in torsion.

For the fist type, vertical bending oscillation is assumed as single-degree-of
freedom (SDOF). Therefore, the equation of motion of SDOF can be written as

mh+c h+kh =L, (3.4)

Where L, is the lift force, m is the body mass, k, is the stiffness coefficient and c, is
the damping coefficient.

Similar to the first type, the torsional oscillation also is considered as SDOF, the
equation of motion of SDOF can be written as

la+c,a+ka = M (3.5)

a

Where M is aerodynamic moment, | is moment of inertia, k, is the stiffness
coefficient and c_ is the coefficient of damping.

The third type of motion is two DOFs, therefore the equations of motion are
coupled as follow:

mh +chh+khh= I_h (3.6)

la+c a+ka= M (3.7)
where m,I,L, and M, represents mass, moment of inertia, lift and moment

respectively; ¢ and k represents damping and stiffness coefficients with the subscripts
hand « meaning vertical and rotation displacements, respectively.
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3.4 Aerodynamic Instability

Aeroelasticity is the discipline concerned with the study of the aerodynamic
forces and structural motions interact significantly. When a structure is subjected to
wind flow, it may vibrate or suddenly deflect in the airflow. This structural motion
results in a change in the flow pattern around the structure. If the modification of
wind pattern around the structure by aerodynamic forces, effects of which is
increasing rather than decreasing the vibration of the structure, then the aeroelastic
instability occurs. The aeroelastic phenomena that are considered in wind engineering
are vortex shedding, torsional divergence, galloping, flutter and buffeting.

3.4.1 Vortex Shedding

When a body is subjected to wind flow, the separation of flow occurs around
the body. Vortices are formed at points where the wind flow separates from the
surface of a structure. They may break away at regular intervals causing a periodic
variation of force on the structure. Excitation due to periodic formation of vortices in
the wind flow in the wake of structure is primary depend on details of the shape of
cross-section. If the structure is rigid and the incident flow steady, the vortex
formation would be very precisely periodic at a frequency proportional with the wind
velocity. With a flexible structure as cable-stayed bridge, the effect of motion of the
structure is to modify the vortex frequency. This change is produced by movement of
the structure, which may cause aerodynamic forces (lift, drag, moment) tending to
increase the motion.

When the natural frequency f of structure differs significantly from vortex
frequency called Strouhal frequency, the structure oscillates rather small. The Strouhal
frequency fs is defined as:

— (3.8)
D

where S is Strouhal number, D is typical cross flow dimension, fs is frequency of
vortex shedding, U is oncoming flow velocity.

When the vortex-induced and the natural frequencies coincide, the resonance
will occur. This phenomenon is called lock-in. During lock-in condition, the
structural member oscillates with increased amplitude but rarely exceeding half of the
across wind dimension of the body (Simiu and Scanlan, 1996). The lock-in condition
is illustrated in Fig. 2.1.
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Fig. 3.1: Evolution of vortex-shedding frequency with wind velocity over elastic
structure.

In the Fig. 3.1, the frequency of vortex-shedding at lock-in remains equal to
natural frequency while wind velocities increases. The nature and extent of the vortex
shedding phenomenon for different ranges of Reynolds number for a cylinder are
shown in Fig3.2. The vortex-shedding phenomenon is describable in terms of a
nondimensional number R, which is defined as;

r - ~D _ UD (3.9)

e /,[ v

where U is characteristic velocity, D is characteristic body dimension, « is dynamic
viscosity of fluid, p is fluid density, v is kinematics viscosity.

From Fig. 3.2, as illustrated by Simiu and Scanlan (1996), it is seen that for a
very low Reynolds number, the flow remains the same. For higher Reynolds numbers,
the flow starts to separate around the edges of the obstruction and vortices are
generated in the immediate wake of the obstruction. Thereafter further increase in the
Reynolds number causes the creation of cyclically alternating vortices and they are
carried over with the flow downstream. From there on, the inertial effects become
dominant over the viscous effects and turbulence sets in, resulting in shear of the flow.
So this reasonably illustrates the vortices phenomenon starting from a smooth and low
speed flow to a turbulent and high-speed flow.
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Fig. 3.2 Effects of Reynolds number

For wind engineering, the Reynolds number is in range from 10 to 10° then the
inertial effects become dominant over the viscous effects. The periodic shedding of



21

vortices alternatively from the upper and lower surfaces of the bridge deck causes
periodic fluctuation of aerodynamic forces on the structure. For this reason, the
pressures on the upper and lower surfaces are unbalanced periodically that can cause
transverse and torsional oscillation of the bridge deck that may lead to bridge deck
instability. If this instability causes excessive deformations then it may lead to
destruction of the bridge. It is the most serious problem for long-span bridges because
of slenderness of structure.

3.4.2 Galloping

According Simiu and Scanlan, (1996), galloping is instability typical of slender
structures having special cross sectional shape such as, for example, rectangular or D-
section. Under certain conditions, these structures can exhibit large amplitude
oscillations in the direction normal to the flow at frequency much lower than those
vortex-shedding from the same direction. It is in this sense that galloping may be
considered a low-frequency phenomenon.

The across wind galloping in a bridge causes a crosswise vibration in the body.
As the section vibrates crosswise in a steady wind velocity U. By the relative reasons,
when the velocity changes and the angle of attack « is also changed. Due to the
change in a, the flow now is not symmetric, so that the pressure at top and bottom of
section does not equal, that results lift force along y direction. This force accelerates
the incipient motion of the body with the velocity y* and has the destabilizing effects.
The action of structure is against this motion by restoring force (Fig 3.3). Thus the
body will oscillate in the y direction. And the equation of motion can be written as
follow:

my+cy+ky = F(t) (3.10)

Fig. 3.3 Effective angle of attack on an oscillating bluff object
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Analytical formulation of galloping

Drag force
1
D(a)= AU BCo(a) (3.11)
Lift force
1
L(a)= EprBCL(a) (3.12)

Denote that the aerodynamic force F, (a) is sum of projected of lift and drag forces
on y-axis

~ . (3.13)
F (@)= -Dl@sina-L(a)sa
and
Fl@)= - pU,’BC, (@) (3.14)
where U =U, cosa and a:arctanlul (3.15)
Let consider the case y << U Sazt
u? 2 .
Then Cg(a) = U' [Cp(@)sina+C, (a)cosa]= UfTrsa)z[CD(O{)Slna-{-CL(O{)COSO[]
...... (3.16)
Cyla) = L [C (x)tana+C, (a)]——[DL(a)+DD(a)tana]SECa
Ccosg 0T T LR (3.17)

U - wind velocity

Ur - relative wind velocity with respect to moving body y velocity across-wind
y - velocity across wind

B - dimension of the section

L - liftforce

D - drag fore

If the prism is sprung and the equation of motion is given as

dC (@) +Cy (a )}

> (3.18)

m(y+2¢m, y+aly) = pu B[

The total damping ratio

y
S

&= mey+t pus[dc () cD(a)} (3.19)
da 0
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The system is stable is ¢; >0 it means that the energy of motion is dissipated.
If the system is unstable when ¢&; < 0, i.e. the lift force acts in the same sense at the

motion and tend to increase amplitude of the oscillation. Due to 2{mw is mechanic

damping then always positive. The second term of the equation is aerodynamic
damping that may be negative. If £, <0 then

dD,
|: dc(xa) + CD (0{):|O <0 (320)

The galloping occur when ratio B/h is in range 0.75 to 3.0, where B is section
width and h is section height, galloping may occur. At B/h > 3.0, the separated flow
reattaches to the down stream of section. Therefore galloping is vanished (Ito and
Nakamura 1982).For this reason, galloping only relates to pylon instability in cable-
stayed bridge.

3.4.3 Torsional Divergence

Torsional divergence is an instance of a static response of a structure.
Torsional divergence was at first associated with aircraft wings due to their
susceptibility to twisting off at excessive air speeds. When the wind flow comes, drag,
lift, and moment are produced on the structure. This moment induces a twist on the
structure and causes the angle of incidencea to increase. The increasing of « is
results of higher torsional moment and flexible structure. This phenomenon can be
considered as the wind velocity increases. If the structure does not have sufficient
torsional stiffness to resist this increasing moment, the structure becomes unstable and
will be twisted to failure. The phenomenon depends upon structural flexibility and the
manner in which the aerodynamic moments develop with twist. In most cases the
critical divergence velocities are extremely high, well beyond the range of velocities
normally considered in design (Simiu and Scanlan, 1996).

Wind

Fig. 3.4 Bridge deck under wind flow

The aerodynamic moment per unit span is given by

M, = %pU *B°Cy (@) (3.21)
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where p is air density, U is the mean wind velocity, B is the deck width; « is the

angle of twist and Cy, is the aerodynamic moment coefficient about the twisting axis.
At zero angle of attack the value of this moment is

M, (0) = % PU’B*C,,, where  C,,, = C,,(0) (3.22)
For a small change in  away from o =0, M is approximated as given by
M, - 1puZBZ[CMO+(dCM°j a} (3.23)
2 da ),
Now equating the aerodynamic moment to the structural resisting moment gives
1 d
EAJZBZ[CMO +( gg{ojwa}zkaa (3.24)
%pUZBZ[CMO +Chott] =k, (3.25)
where C,, = %m:o (3.26)
da
Denote A =%pUZBZ
Equation then becomes
(ka—AC,,)a = AC,, (3.27)
or
- #Cwo (3.28)
(ka _;LCM:O)
Divergence occurs when « approaches infinity
A= K“ (3.29)
Cuzo
Thus the critical divergence velocity is given as
u, = |2 (3.30)
PBCyo

3.4.4 Flutter

The most dangerous dynamic instabilities of structure under wind effects are
aeroelastic flutter. Flutter is an aeroelastic instability typical of structures such as
airfoil or bridge deck that may oscillate in both translation and torsional
displacements. This phenomenon can be explained as that the periodic shedding of
vortices alternatively from the upper and lower surfaces of the bridge deck causes
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periodic fluctuation of aerodynamic forces on the structure. Therefore, the pressures
on the upper and lower surfaces are unbalanced periodically that can cause vertical
and torsional oscillation of the bridge deck. This is the most serious problem for long-
span bridges and is a very serious concern in the design of cable-stayed bridges. The
failure of the Tacoma’s narrows bridge was due to the flutter. The term flutter has
been variously used to describe different types of wind-induced behavior. The most
common type of flutter in design of the long-span bridge is classical flutter (Simiu and
Scanlan, 1996).

Classical flutter applied to suspended span bridge decks. It implies an aeroelastic
phenomenon in which two degrees of freedom of a structure, rotation and vertical
translation, couple together in flow driven, unstable oscillation.

Flutter analysis is commonly based on the assumption of linear elastic system
behavior. It is justified because the oscillations of the structures are usually harmonic.
The governing equations of motion for translation and rotation of a bridge deck
subjected to wind flow (Fig. 3.5) are given in Egs. (3.6) and (3.7) repeated here as

mh+C, h+kh = L, (3.6)

la+C,a+k,a = M (3.7)

a0

=

Fig. 3.5 Definitions of wind and deflections

where m, I, h, «, Lpand M represents mass, moment of inertia, heave, pitch, lift and

moment respectively, ¢ and k represents damping and stiffness coefficients with the
subscripts h and « meaning heave and rotation respectively.

1 . h . Ba . . h
L, :E,JUZE{KHl ot KH, ot K*H, a+K°H, E} (3.31)

« Ba

1 22 *h 2* z*h
M,=— B | KA —+KA, —+K KA, — 3.32
=5/ {AIU+A2U+A3a+ /&B} (332)
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In the classical theoretical case (Theodorsen 1934, Dyrbye 1996) of steady
sinusoidal oscillation of and airfoil these coefficients is given as

e 7F(K) 7F(K)

Hik) = -8 A(K) = -T2

. 2G (k) 2G(k)
H2<K)—4k{1 49+ 28 } A )“H[l F(k)——}
. kG(K) . KG(K)
H:(K) = - 2kz[F(k) : } A (K) = 8k2[F(k) o }
H:(K) =—§[1+—26k(k)] Ak)=ZE0 (3:39)

in which F(k) + iG(k) = C(k) is the Theodorsen circulation function defined by
Bessel function and k is based on the half chord, i.e. k = K/2. F(k) and G(k) are given

by

Jl(‘]1+YO)+ Yl(Yl_‘]O)

(J1+Yo)2+ (Yl_‘]o)2
JJ, + Y)Y,

(‘]1+Yo)2+ (Yl_‘]o)2

F(k) =

G(K) =

where J,,Y; are Bessel functions of the first and second kind, respectively of order i.

If the coefficients, H,"and A are non dimensional function of the reduced frequency

K then the equation hold not only for sinusoidal oscillation but for general motions of
the form:

h = h,e™ sin wt (3.34)
a = ae™ sin(ot—0) (3.35)

Where hy, «,is initial amplitudes, @ - relative phase, A is the rate of decay or buildup
of the oscillation (linear regime)

Lasen and Walther (1998) proposed that

h « Ba h} (3.36)

1 .
== pU’B| KH, —+KH, —+K’H,'a + K°H, =
27 { v U B

Ma:—pUZB[KAfUDWL KA;%+ K2Ao + KZAAH (3.37)
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where K = BUw is reduced frequency coefficient, H,”, A"are flutter derivatives, U is

wind velocity, B is deck width of bridhe=h, exp(iat ), @ = «, exp(iat)

Assuming that the motion are harmonic in time h =h, exp(iot), @ = o, exp(iot) .

Under these assumptions, the above equation can be arranged in non-dimensional form
to yield.

Co ) <2K7 R+ MO DM, s HJa o (338)
Ce -2 (A AT (AT ADa o ()

Dividing the above equations by e , substituting e by (cosg—ising) Then the
aerodynamic derivatives can be defined

H = -C, sin(2¢) E(ij H, = C,_cos(¢) B [i} (3.40)
2(2z)* h|{ B 2(2m)* fB

o~ ~Cusing) B ( u T a = Cucos9) B (gj (3.41)
2(27)> h| fB 2(27)? f

Hz* _ —CLsin(¢2§) (i]z Hs* _ =L \Y) CLSIn(¢) (i] (3_42)
2a(27) 2a(27)* \ 1B

. —Cysin@)(U Y ._Cysin@)( U
A = 2a(21) { j A 2a(27)? { Bj -

3.4.5 Flutter Derivatives at VVortex Lock-in

As vortex-induced vibration are presented above, the most critical dynamic
instability of body is when the natural frequency of oscillation differs a little from the
Strouhal frequency (f = f,). Then flutter derivatives are determined from experiment,

but not always at lock-in. From the failure of Tacoma Narrow bridge, which was
collapsed under rather low velocity in vortex shedding stage, state by (Billan and
Scanlan 1991). Therefore the flutter derivatives will be considered at lock in and the

equation of motion is given the same but o =@, and @ =,
mﬁ+chh+khh =L, (3.44)

lg+c,a+ka=M, (3.45)
or
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m(h+2¢, oh+w?h) = L, (3.46)
l(a+20,0a+oa)=M, (3.47)
where
1 . h . Ba . h
L ==pU’B| KH,'—+KH, ==+ K?H, 2 +K*H, — 3.48
h ZPU { lU U o B} ( )
1., . h .Ba ., . ,. h
=— B| KA’ —+KA, —+K + KA, — 3.49
2pU [ A U A, T A a A4B (3.49)

3.4.6 Effect of Turbulence on Bridge Flutter Derivatives

Buffeting is defined as the unsteady loading of a structure by velocity
fluctuations in the incoming flow and not self-induced. Buffeting vibration is the
vibration produced by turbulence. The buffeting is caused by turbulence in the airflow
and can produce significant vertical and torsional motions of a bridge even at low
speeds. This buffeting induced motion results in a gradual transition to large
amplitude torsional oscillations, which could lead to the failure of a bridge. The
natural wind is random process then the wind velocity is varied randomly with time.
And the wind velocity and be expressed as U =U +u(t), where U - mean velocity

and u(t) — velocity fluctuation. Buffeting is defined as unsteady loading of a structure
by fluctuation in oncoming flow (Scanlan and Lin 1978) .Then Ly, and M _ becomes.

1 . h .Ba )
L, =5pU B[ KH, — 5 KH S+ +K’H, '@ ]+ L(t) (3.50)
1 =, . h .Ba .-
Ma=5pu B [KAI— KA, —+K*A'a |+ M(t) (3.51)
U

where L(t) and M(t) are respectively buffeting lift and buffeting moment.

LS (ao){l PG t)} { —c ( 0)} wix.t) (3.52)
1 _2 da
—pU U U
2
M A 1 t
] t_2 _ [CM(ao)+CC(aO)B—£ } {1 2“(X )} = | W(f ) (3.53)

where B is deck width, A is across wind area, r is distance of the deck mass to the
effective rotation axis; u(t), w(t) are fluctuation velocities along wind and vertical
respectively.
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3.5 Section Model Tests to Determine Aerodynamic Derivatives

Various methods (Jakobsen 1995) are used to extract the flutter derivatives
from wind tunnel tests on geometrically and aerodynamically representative models of
short sections of the deck. While it is possible to identify the forces from the
difference of inertial and excitation forces on a structure forced to vibrate at a single
frequency (Falco et al. 1992), or potentially from pressure taps on the section (Holmes
1995) it is usually experimentally simpler to obtain and analyses free vibration
response records (Scanlan and Sabzevari 1969). The free vibration may be in response
to a transient deflection (step relaxation) or to buffeting caused by the airflow
turbulence. Having less emphasis on elaborate equipment and more on the signal
processing and data reduction techniques, these procedures are more applicable to full-
scale data.

The flutter derivatives are usually identified through the effect they have on the
free decay vibration characteristics of the model section. A typical wind tunnel test
involves suspending a rigid section model from a set of springs so that it can oscillate
vertically and in torsion (about a transverse axis) as flutter traditionally involves only
these two degrees of freedom. The section can be considered as a rigid body, having
(in still air) a pair of uncoupled rigid-body vibration modes each with corresponding
natural frequency and damping ratio.

When set in motion in airflow, changes in the frequency and damping of the
two vibration modes and interaction effects between them are identified and flutter
derivatives are obtained. If the model is restrained to move in pure torsion the effect of
the wind will typically be to increase the damping ratio and reduce the natural
frequency of the oscillation, and each effect is described by one derivative. From the
study of damping and stiffness effects in pure vertical or torsional motion the four so-
called “direct derivatives’ can be obtained for the two degrees of freedom (DOF).
When motional restraints are removed the aerodynamic cross-coupling effects
between the DOF inherent in the recorded response can be used to identify all the
flutter derivatives including the additional set of four ‘cross-derivatives’ linking the
DOF. A different approach is to estimate all flutter derivatives ‘simultaneously’ from
the response data of a model moving freely in both vertical and torsional direction, due
to buffeting loading or an initial excitation or deflection (Jakobsen and Hansen 1995;
Sarkar et al. 1992; Iwamoto and Fujino 1995).

3.5.1 Test Arrangement for Free Vibration Response

Fig. 3.6 shows a schematic arrangement of a bridge section model in a wind
tunnel with horizontal incident wind having mean speed U. The deck has chord B,
mass m and moment of inertia | about the geometric centreline. Accidental or
deliberate mass eccentricity is described by a mass m at radius re leading to total
inertia It and total mass my. The section is attached to a rigid test frame at each corner
by linear springs with stiffness k arranged at distance e upstream or downstream of the
geometric centreline. The contributions of spring mass to total mass and inertia are
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accounted for by adding one-third of their mass at their point of attachment. Vertical
and torsional displacements and their time derivatives at mid-chord are, respectively,
denoted h,h,h,8,8,0 and can be recovered from measurement and subsequent signal

processing of acceleration records V1,y> from the leading and trailing edges of the
section. It is also possible to obtain motion records via optical displacement
transducers or load cells.

1 2e ‘] .
I 4k = total trailing/leading edge stiffness
mr=m+ mg k= 8k
7k 4k Ir= T+ mer‘z; ko= 8le?
wind _ 8k
v > 7 1/ : " omr
m, = _8_k_63
T
' h » U=wind speed
B B=deck width (chord)

I m=deck inertia and mass
me=mass eccentricity at radius re.
YL,

Fig. 3.6 Arrangement and conventions for section model

In still air without aerodynamic influence and zero (resultant) mass eccentricity
the natural frequencies of the deck for rigid body vibration are in theory obtained as

f=(1/2r)fk I

and

f =(1/2z)fk Im

where ky= 8ke? and kn=8k

In practice the test rig and model do not present exact rigid body modes and
there may be a degree of torsion or bending present in the model. These effects can be
minimized by good construction but may have to be accounted for if measured motion
parameters are not representative of the whole section.

In particular test rig flexibility at the connections with the model will lead to
apparent spring rates different from nominal values of k. The exact effective values
can be identified via the still-air natural vertical natural frequency given the known
mass of the deck. Likewise the effective torsional inertia would be obtained from the
torsional natural frequency once k is known.

Note that the above convention is not unique; a popular convention used in aeronautics
is obtained by simple rotation about the wind axis.
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3.5.2 Choice of Structural/Geometric Parameters for Section Test

For a wind tunnel with maximum wind speed U the values of k and e are
chosen to obtain a range of non-dimensional wind speeds U/fB consistent with
prototype values of f and design wind speed. For example, if the prototype has vertical
mode frequency 0.2 Hz, a chord of 40 m and a design wind speed of 60 m/s, a model
with chord 0.6 m used in a wind tunnel with top speed of 22.5 m/s should have a
maximum vertical mode frequency fi set via (U/fy B)prototype=7.5=(U/fh B)model i.€. =5
Hz, with similar factors applying to f,. To provide stability against torsional
divergence and for other practical considerations it is better that f, > f;.

The model mass depends on B and the recommended range (Hansen 1992) of
3-8 for the ratio of chord to span, to minimize the effect of deck flexibility in rigid
body modes. For best detailing in a limited tunnel width the lower limit may be
approached, although the end effects at extremities of the section then become more
significant. Appropriate materials are used to achieve geometric accuracy with
adequate stiffness to prevent occurrence of the low frequency deformation modes in
the model. Given the resulting model mass the spring rate k can be chosen to achieve
fh, fo.

Additional considerations for the test rig and suspension arrangement are that a
good linear range of spring deflection should be allowed and that the ratio of 7 to fj,
should be adjustable in a wide range either side of unity to suit the requirements of
different identification techniques.

The set of eight vertical springs offers no restraint against small lateral or
longitudinal deflections nor against rotation about a vertical axis and mechanical
arrangements are used to restrain or restrict these. For example, drag wires can
installed to resist but not entirely constrain these motions. Practical issues relating to
constraints and geometric effects of the springs are well documented by Hjorth-
Hansen (1992). In case it is desirable to provide restraint against rotation, a set of four
additional drag wires may be connected to a rigid vertical bar attached to the section.
Likewise, vertical motion may be restrained by anchoring a pair of roller bearings (to
allow free rotation about a centroidal cross-wind axis). The drag wires do not offer
complete restraint but they increase the stiffness of the restrained DOF to the extent
that it cannot contribute significantly to the aerodynamic effects.

3.5.3 General Equations of Motion

For identification of all eight derivatives involving only vertical and torsional
motion, the equations of motion for a 2DOF section with length L and width B, in air
flow with density o and speed U according to the conventions of Fig. 3.5, are

2 | |
mﬁ+ch+kh+mré=@[hﬂ+h BO h N ihol+L (3.54)
T h h ee lU 2U 4B 3 buf
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2 . 2
pu’BL[_ Bh _ B
2 |[*Uu U

| 6+c f+k O+mrh= +a,h+aBo|+M (3:55)

On the left-hand side the mechanical damping coefficients are cy,, ¢y for each
DOF. The right-hand sides are aerodynamic lift and moment forces Lae, Mg Which
evidently depend on non-dimensional coefficients or flutter derivatives. The ‘direct
derivatives’ hy, hy, ay, as represent effects within a single DOF response while ‘cross-
derivatives’ h,, hs, aj, a4 represent coupling between the DOF. Buffeting lift and
moment forces are denoted Lyut, Myus, respectively.

An alternative form for aerodynamic lift and drag forces uses flutter
derivatives which are frequency dependent coefficients:

L, = pU’BL KHl*(K)UﬁJrKHZ*(K)BTeJrKZHS*(K)9+K2H4*(K)% (3.56)
%+K2A;(K)6?+K2AA*(K)% (3.57)

M, = pU?B2L KA[(K)U£+KA;(K)

Note that there are different forms of (3.54) and (3.56) using for example the
half-chord B/2 as reference instead of B and using pU’BL/2 instead of pU?BL. Some
alternate forms are presented by Zasso (1996).

Simple algebraic relations such as h;=2KH;"(K) link the A;",H;" in (3.56) and
(3.57) to the a;,h; in (3.54) and (3.55) whereK = Bow/U =27 B / U is the reduced
frequency. In (3.54), (3.55), (3.56) and (3.57), the effect of p-derivatives i.e. those
relating to lateral (drag) motion, are not considered since this type of motion is
restrained. A few treatments (Singh et al. 1996 and Jain et al. 1996) relating to ultra-
long span suspension bridges where interactions with lateral motion are believed to be
important are beginning to use the full formulation. Also at least one identification
method for the full set of 18 derivatives for 3DOF has been presented (Singh 1994) .

However, cases of classical vertical/torsional flutter are still practically covered
using only the vertical and torsional DOF hence the principles are illustrated for 2DOF
systems. Whereas both the A;",H;" and a;,h; are functions of wind speed the form of
(3.54) and (3.55) is used here with the convention of Fig. 3.6 , as it delays a decision
about which frequency to use in K.
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3.5.4 Equations of Motion for SDOF Response

Egs. (3.54) and (3.55) are examined in single degree of freedom (SDOF) and
2DOFs form for parameter identification. Considering SDOF vibration with zero
resultant mass eccentricity, Egs. (3.54) and (3.55) simplify to

. _pUPBL|,_ h  h
mh+ch+kh= 5 hlU+h4E +L (3.58)
Lo+ ok 0=LIBL 3 B o gplim
L0+co+k 0= 5 a, U +a, +M (3.59)

having solution for free vibration (transient) decay from an initial deflections ho, &,
respectively

h(t)= hoe}“t cos(at+¢) (3.60)

6(t)=06e" cos(wt+¢) (3.61)
For still-air vertical response, —1=¢ @, and a)za)h\/l—éz where & =c /2m o
o = /kh/mT
For still-air torsional response, —A=¢ o and a):a)gwll—fz where. 59:c9/2ITa)9,
w =k [/l
[ 1 T

For response to random excitation such as by turbulent buffeting the auto-spectrum of
vertical response is

SII
k2 [(1—(60/% ) )2 +(2&,0! o, )2} (3.62)

S (@)=

where Sy, is the spectrum of lift forces. The factor Sy/kn? depends on static aerodynamic
coefficients but is taken as constant around the model frequencies and a,.,&,. are

natural frequency and damping ratios assumed to be aerodynamically modified. A
similar result is obtained for torsion response.
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3.5.5 System ldentification from 1DOF Response

In a wind stream with velocity U and vertical response given by Eqg. (3.60) the
direct vertical derivatives h;, hy are found from the shifts in A, o, given by

—/1=§a)—pUBth and wzzk—“——’ouzl'h“
" am, m o 2m

Similarly the direct torsional derivatives a,, as are identified from the shifts in natural
frequency and damping ratio from the still-air values:

(3.63)

3 2p?2
—zzgg%—% and o =Ko AU BLE (3.64)

I, L2l

Hence the identification of h;, hs, a, asz is thus relatively straightforward,
almost trivial. To obtain vertical direct derivatives the torsional DOF is restrained and
the model is pulled down and released in a steady wind. This method is termed ‘step
relaxation’. If an acceleration response data acquisition system is used it can be
triggered by the sudden large acceleration. Standard curve fitting tools can be used to
obtain the best fit of Eq. (3.60) to the response signal. From a practical point of view
this process is very simple, and it is possible to use the second derivative of Eq. (3.60)
with acceleration data directly. Extraction of torsional direct derivatives uses an
analogous process.

The free decay method is simple and accurate provided there is a clear decay
signal. In the case where the wind speed is very large and the damping coefficient
similarly large the useable portion of the trace may be very short and may have a poor
signal to noise ratio, the noise being response to buffeting. It is also practically
difficult to set a trigger threshold large enough to avoid triggering on buffeting and
small enough to be mechanically achievable.

For low wind speeds the slight discrepancy which can be observed between the
monitored and fitted curves is a result of the mechanical damping of the model being
non-linear, i.e. amplitude dependent. A linear fit is however assumed to be
satisfactory, according to the linearised equations of motion (3.54) and (3.55) and
errors due to mechanical non-linearity as well as amplitude-dependent aerodynamic
damping can be minimised by starting from a standard amplitude. For the decay with
high wind speed the fit is also not exact, but for different reasons. At higher wind
speeds, even for flows with very low turbulence the response is driven by the
turbulence as it decays. Hence the *better’ part of the data with high ‘signal’ to noise
ratio is rather short and also probably displays non-linear damping.

At the stage where buffeting response dominates, it is simpler to use the
buffeting response data and find the values ofw,.,&,. to obtain the best fit of Eq.

(3.62) to the auto-power spectrum obtained from the data. Satisfactory identification
of @, &, using this method is subject to a number of conditions (Brownjohn 1994)

such as stationary of input, flatness of input spectrum, adequate averaging to reduce
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variance errors, and using sufficient spectral resolution with respect to the width of the
peak in the spectrum. Since the wind speed and turbulence spectrum are well
controlled in a wind tunnel and the damping is high it is only necessary to record a few
minutes of response data, which would (by scaling of frequencies from prototype to
model) represent much longer full-scale time series. These data are divided into n
records of length T and the minimum value of n is found to obtain a ‘confident’ fit and
the same is repeated for torsional direct derivatives. Given good estimates of
., &, 0,,&, , the direct derivatives are obtained from

hy =4m; (0,8, - @y &, )/ PUBL h, =2m, (o — @) UL (3.652)
a, =41, (0,¢, —w,¢, )1 pUB°L a, =21, (o} -} )/ PU?BL (3.65b)

As an alternative to frequency domain analysis of the random response,
random decrement signature and auto-correlation function could also be used to obtain
the single mode impulse response function. The auto- and cross-correlation functions
are the starting point for the 2DOF time domain identification method discussed next

3.5.6 Equations of Motion for 2DOF Response

The equations of motion (3.54) and (3.55) may be rewritten in matrix form as

MZ+C,2+K,z=C,2+K,z+p(t) (3.66)
in which
m, mfr, : . .
M= or represents the mass with mechanical coupling.
ee T

2
C, :{ Sh@hlMy represents mechanical damping

0 28,0, IT:|

2
0 l; 0,

2
) . .
Ky :[mT " } represents mechanical stiffness

ae

:P{ h/U hB/U

aB/U a,B? /U} represents aerodynamic damping and
2
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ae

h,/B h, L. . 1
N 5 represents aerodynamic stiffness, with P = oU“BL
4

Vectors of measurable response and of buffeting load are

h Lbuf |:ghi|
= , p: = u t
|:9j| |:Mbuf:| ga ( )
The buffeting input is represented by a common (wind dependent) forcing
function u(t) and two gain factors gn, ga Which depend on mean wind speed, section

shapes and static aerodynamic coefficients and it is implied that the lift force and
moment due to buffeting are coherent.

Eqg. (3.66) can be transformed to ‘state space’ form:

x=Ax+Bu, (3.67a)
y=Cx+Du, (3.67b)
where
A= M_l(Cae _Cstr) M_l(Kae - Kstr) X = z
I 0 ' z
and

B{M'l[gh ga]}
0

For the case of free vibration response to a transient, B and D are null matrices,
otherwise they connect with the common forcing function u(t). C depends on which

response parameter is observed. Initial conditions are given as x,=[h, 6, h, 6,]. For

the case of response where u(t) is approximately described as a Gaussian white noise
process, such as excitation by turbulence in the air stream, the initial conditions are
taken as zero.

3.5.7 System lIdentification from 2DOF Response

Three methods are used for identifying the system matrix A. The first method
uses time domain free decay records, the second uses either free vibration decay or
random response (from turbulent buffeting and the third, in frequency domain, uses
turbulent buffeting response.
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3.5.7.1. Direct Curve Fit to 2DOF Equations of Motion

Poulsen’s method

This represents the first application of system identification and control theory
techniques to the problem of extracting aerodynamic derivatives from bridge-section
model tests. The method is used to apply with free decay signals (step response) of
section model under wind flow.

The mathematical model is given by following coupled differential equations
proposed by Scanlan (1971, 1977):

h +uh+ph =Hh+H,g+H,a +H,h (3.68)
d +o,a+y,a = Ah+ Ad +Aa +Ah (3.69)

These equations represent a general linearized form for self-excited forces
under the assumption of small sinusoidal vertical (h) and torsional () motions with
negligible horizontal motion effects.

The structural modal parameters ( ,, 5,,0,.7,) are presented in the following

from:

ﬂo = a)hz
=2lw
;‘0 ) 52“ (3.70)
0o - (]
o, = 2w,

It is a basic assumption that the aerodynamic parameters are zero under zero
wind conditions so r,, 5, 0,, 7, describe the test rig. In the common formulation of

Egs. 2.1 and 2.2 (Scanlan, 1977) the derivatives H, and A, are omitted as it is
expected that the vertical position of the deck (h) has no effect on the torsional
frequency, torsional damping or vertical stiffness. However, Eq (3.68) already
contains the term Soh on the left-hand side, so he maintains H, term that does not
change his solution technique. Consequently, only the A," parameter was omitted in
his study.

For wind velocities greater than zero, the motion of the bridge is then given by:

h+(u,—H)h + (B, -H,)h —H,¢ —H,a =0 (3.71)
i +(o,—A)a+(y,—A)a—Ah—Ah =10 (3.72)

The wind effect is a shift in frequencies and damping terms - and a coupling
between the two directions of motions. The analysis is consequently divided into two
sub-problems, namely system identification and parameter determination.

The system identification problem is to estimate from the data, the parameters
u, B, p, o, y, and ¢ in the following equations:
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h+uh+ Bh + pa —xka =0 (3.73)
d +od+ya+sh=0 (3.74)

The estimation procedure is performed for each value of the wind velocity for
which tests are conducted including zero wind conditions.

The parameter determination problem involves two parts. The first is simple to
compute the aerodynamic derivatives for a specific test by comparing the estimates

obtained in the system identification analysis with the estimates obtained with zero
wind conditions:

A=-97,

A =0,-0,

A =y-7,

Hy = uy—u, (3.75)
H, =-p,

H, =-«x,

H, = ﬂo_ﬂ

The second part of the parameter determination problem is to ensure that the
parameters are extracted for similar amplitudes of vibration since some of the

parameters may be amplitude dependent and to use statistical procedures to extract
reliable estimates for the parameters.

System identification

The system identification starts with assumed model structure and Eqgs. (2.6)
and (2.7) are converted to continuous state space equations:

X(t) = Ax(t)
y(t) = Cx(t) + e(t) (3.76)
or
0 1 0 0
| B —H —p
X(®) = 0 0 0 1 x(t)
0 5 o (3.77)

(h®) |1 000
y(t)_(a(t)J{o 01 o} x(t)
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where  x(t) = (h(t),h(t),a(t),a(t))and x(0) = x,is the initial state(operator
excitation). The disturbances from wind flow is regarded as noise in the output
equation, e(t). The system matrix, A, is dependent on the parameters in the &-vector.

0= (ﬂ,ﬂ,7,0,5,K,p)

which is to be estimated. Since the data sampled are discrete in time, then the model is
formulated in discrete time as:

X = X
k+1 Aj k (378)
Y, = Cx, +¢

where A, = exp(AAt) and e, is noise in the output equation assumed to be zero-mean

stochastic variable.

The solution to (3.77) or (3.78) depends on the parameters in 8. The method
consists in adjusting the elements in & until the solution to Eq. 3.77 matches the
measurements, i.e. to minimize the loss function:

18-
Iy = E§|yi_yi| (3.79)

Here V. is a vector containing the actual measurements of heave and pitch and vy, is

the solution to (2.10) or (2.14). The method requires iterations by using Newton-
Raphson technique in searching the parameters in & which minimize the loss function.
The validity of the results of the method is naturally dependent on the assumption that
the model structure is correct. The model is suitable for free decay signals which have
good signal to noise ratio. However, if the system is poorly excited (e.g. primarily
excited by the wind as in case of buffeting responses) then the loss function becomes
less sensitive to change in specific (combinations of) parameters and results in large
variance of estimate value. The results of method apply to identify seven flutter
derivatives (H, -Hs and A;" to As) for Great Belt Bridge section model under smooth
wind are reported (Poulsen et.al. 1992).

For the case of free vibration due to an initial deflection, MATLAB system
identification routines such as ‘PEM’ (Ljung 1995) are also used to identify the values
of A and X, for which the time histories generated using Eq. (3.67) give the best match
to the observed data. The quality of the fit is judged both visually in terms of overlays
of fitted and measured data as well as by error norm values. Software ‘PEM’ was
written around this technique based on software developed at Politecnico di Milano
(Brownjohn and Jakobsen, 2001).
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3.5.7.2 Covariance block Hankel matrix method: CBHM

When free vibration is due to turbulence, two more methods described here are
available. In the first of these, the covariance block Hankel matrix (CBHM) method
(Jakobsen and Hansen, 1995), it is shown that the state matrices can be recovered from
the cross-covariance estimates obtained from the two motion signals such as
acceleration or displacement. The program uses MATLAB elementary functions. The
cross-covariance functions are known to be the same for both transient and buffeting
response so the method can also be used for transient response signals.

The solution to Eq. (3.67a) is
t
X(t)= "X, +[ e Bu(r)dr (3.80)
0

where eigenvalues of A are.
Ap= =l £ io1-&

A discrete time version of Eq. (3.67) representing sampled data is

x(i+1)=Fx(i)+Gu(i) (3.81)
where

At
F=e™ and G:J'eAA‘drB
0

The identification method computes, from at least N, response data points
sampled at intervals of At, a sequence of covariance matrices which (for no signal
noise and a state variable covariance matrix Cyy) depend on the system matrices as
defined in Eq. (3.67) as follows:

Cin (k) Cpp(k)

C,( ):{cgh(k) C%(k)}:CF C,CT, k=1.2-1, 210 N, (3.82)

By taking the sequence C,y(k) as blocks of a Hankel matrix with dimension
2Ix2l, the CBHM method (Jakobsen, 1995) finds a suitable decomposition of the
Cyy(k) to yield F, hence A. This technique is implemented in software CBHM
developed at Norwegian Institute of Technology.

The heart of the algorithm is essentially the same as the eigensystem realisation
algorithm (ERA) (Juang and Pappa, 1985) and shares its advantages of simplicity and
efficiency.
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3.6. Methodology for Section Model Test in Wind tunnel

3.6.1 Description

The section model consists of a typical rigid section model of the deck of
cable-stayed bridge, of which scaled geometric and elastic behavior are simulated to
the prototype. This section is supported by four equal coil springs (Fig. 3.5), in order
that the vertical and torsional motions of the full-scale bridge are simulated by vertical
and pitching motions of the model.

3.6.2 Model Simulation

The Law of similitude of which govern the scaling model are determined by
laws of mechanics with particular regard to the specific characteristics of those forces
involved in the mechanism under investigation. These forces include elastic force,
inertia forces of the air and the structure, viscosity force and damping force. The
relationships between them are represented in the five dimensionless parameters given
in Table 3.1 in order to ensure similarity of the model to prototype.

Table 3.1 Similarity requirements

Parameter Symbol Physical meaning
1 Elasticit E Elastic force of the structure
' y pU? Inertia force of the air
2. Inertia Ps Inertia force of the structure
( Density ratio) Yol Inertia force of the air
3. Gravitational u? Inertia force of the air
( Froude number) gB Gravitational force on the structure
4. Viscosity UB Inertia force of the air
(Reynolds number) v Viscous force of the air
5. Structural Damping S Dissipated energy per cycle
(Logarithm Decrement) s Total energy of oscillation

The notations in Table 3.1 are defined as that E is young’s modulus of
material; U is characteristic speed; B is characteristic dimension of body; v is
kinematic viscosity; p,p, are density of air and structure, respectively, g is

gravitational acceleration and &, is logarithm decrement.

For a study of aerodynamic instability to be properly conducted, it is necessary
that the model be appropriately scaled. Typically model-to-prototype scale ratios
include
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- A, ('geometric length scale)
4, (density scale)

A, (velocity scale)
A; (frequency scale)

As in most model tests, the first scale to be considered is geometric length scale. This
value is usually in the range of 1/100 to 1/25 to ensure that all significant structural
details can be reproduced adequately. Since testing is performed in natural air and
within Earth’s gravity field, both the air density ratio 4, and gravity ratio 4, are

equal to unity.
Then length scale A4, is determined as follow:

A= (8], (3.83)

[B],

where B is deck width, the subscripts m and p denote the model and prototype,
respectively.

The modeling of the mass of the structure is determined by the requirement
that the inertia force of the structure and those of the flow be scaled consistently.
Similarity of inertia forces is achieved by maintaining a constant ratio of the bulk
density of the structure to the air density. An equation to express density scaling is

BeO
Pl Lel,

where p, and p are structural density and air density, respectively.

The modeling of the A, - mass scale, A, - mass moment of inertia become,

for mass scale
3

LIl L .

" m], [e], BT,

and for mass moment of inertia scaling

| B’

|_[ ]m :[p]m[ ]? :)f (386)
'], Ll [B];

In Table 3.1, the velocity scale A, can be computed by either equivalence of

Froude number or Reynolds number. It is not possible to satisfy both the Froude
number and Reynolds number simultaneously. In practice the selection between them
is based on information as to which type of forces is dominated in the phenomenon
under investigation. For bridge deck, the flow separation is caused by sharp edge; lift,
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drag and moment coefficients are relatively insensitive to Reynolds number. Then the
velocity scale 4, is calculated according to equivalence of Froude number.

gB| _| 9B
#1451

[Vl _ Bl _
ﬂ“v_[u]p \/E Ji (3.88)

When the resistance to deformation is dominated the result of the action of
elastic forces and essentially independent of gravity effects or self-weight, consistent
scaling of stiffness and flow-induced forces is achieved by maintaining elasticity in

model and in full scale.
[ EZ} :{ EZ} (3.89)
pJs | [ pU )

This is equivalent to the reduced velocity

U U
HH 90

Hence, the scale of the oscillation frequency, A, becomes

[f]._ [[Bl, _ 1
zf—[fn]p—\/;—ﬁ (3.97)

where f is the frequency.

Similarity of damping forces is maintain by requiring that &, the logarithm
decrement for a particular mode of vibration, in the model is the same as that in full
scale,i.e. A; =1

hence,

The section model is rigidly constructed and scaled elastic behavior is
simulated. The vertical and torsional frequencies o, and @, are defined by adjusted

spring.
3.6.3 Turbulent Flow Simulation in Wind Tunnel
To achieve similarity between the model and prototype , It is desirable to

reproduce at the requisite scale the characteristics of the atmospheric flows expected to
affect the structure of concern. In case of section model testing of bridge, to simulate
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the turbulence flows in natural wind, the variation of turbulence intensities and
integral scale as well as spectra of along wind and vertical direction are the main
factors concerned.

3.6.3.1 Turbulence Intensity

The simplest descriptor of atmospheric turbulence is the turbulence intensity.
Let
u(z) denote the velocity fluctuations parallel to the direction of the mean speed in a
turbulent flow passing a point with elevation z. The longitudinal turbulence intensity is
defined as

"0

where U(z) = mean wind speed at elevation z and /u® (z) = root mean square value of

u. Vertical and lateral turbulence intensities are similarly defined.
The longitudinal fluctuations can be written as

u? = pu
where u. = friction velocity. It is commonly assumed that £ does not vary with

height. Values of g suggested by Simiu et al. (1978) on the basis of a large number of
measurements are listed in Table 5.2

Table 3.2. Values of S corresponding to various roughness lengths

Zy 0.005 0.07 0.30 1.00 2.50

Yij 6.5 6.0 5.25 4.85 4.00

For example, if z=30 m, z, = 0.07m, and U(30) = 20 m/s, it follows that
turbulence intensity is 1(30) = 0.162 (Simiu and Scanlan, 1996).

3.6.3.2 Integrals Scale of Turbulence

The velocity fluctuations in a flow passing a point may be considered to be
caused by a superposition of conceptual eddies transported by the mean wind. Each
eddy is viewed as causing at that point a periodic fluctuation with circular frequency
w=2zn, where n is the frequency. By analogy with the case of the traveling wave,
we define the eddy wavelength asA =U /n, where U = wind speed, and the eddy wave

number, K =2z/A.The wave length is a measure of eddy size.
Integral scales of turbulence are measures of the average size of the turbulent

eddy of the flow. There are altogether nine integral scales of turbulence,
corresponding to the three dimensions of the eddies associated with the longitudinal,
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transverse, and vertical components of the fluctuating velocity, u, v, and w. For
example, L;,L’andL; are respectively, measures of the average longitudinal,

transverse, and vertical size of the eddies associated with the longitudinal velocity
fluctuations ( x is the direction of the mean wind U and of the longitudinal fluctuation

u)

Mathematically L; can be defined as

=L [R (1)ds
U o

where R, () is the autocovariance function of the fluctuation u(x,,t).

Fig. 3.7. Section model test setup

Fig. 3.8. The TU-AIT wind tunnel at Thammasat University



Fig. 3.9 Suspension device of the model in the dynamic system
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CHAPTER 4

SYSTEM IDENTIFICATION TECHNIQUES FOR
FLUTTER DERIVATIVES IDENTIFICATION
OF BRIDGE DECK

4.1 INTRODUCTION

This chapter deals with propose system identification techniques using for
extracting flutter derivatives of bridge deck. In a civil engineering context, structures
such as bridges and towers are the systems; the estimation of the modal parameters is
the particular type of identification and stochastic means that the structure is excited
by an immeasurable input force and that only output measurements (e.g. accelerations)
are available. In these methods the deterministic knowledge of the input is replaced
by the assumption that the input is a realization of a stochastic process (white noise).

System identification starts by adopting a certain model that is believed to
represent the system. Next, values are assigned to the parameters of the model as to
match the measurements. Section 4.2 starts with continuous state-space model for a
vibrating structure, and then converted to discrete time state space model to match real
world measurements in section 4.3. Concept of stochastic process is applied to state
space model in section 4.4. Section 4.5 contains the main theorem for stochastic
subspace identification. This method can be divided according to the type of data that
they require: raw time data or covariances. We start with covariance-driven methods
(SSI-COV) to end with time-domain data-driven methods (SSI-DATA). This
presentation order corresponds to the historical application of stochastic system
identification methods. Application of both SSI methods to extract flutter derivatives
of bridge deck are explained in section 4.6 together with implementation of developed
computer program. Finally, numerical tests are performed to confirm applicability of
proposed methods.

4.2 Continuous —Time State Space model

4.2.1 A State-Space Model of a Vibrating Structure

The state equation

The dynamic behaviour of a discrete mechanical system consisting of n masses
connected through springs and dampers is described by following matrix differential
equation:

Mj(t) + Cq(t) + Kq(t) = f(t) = Bu(t) (4.1)
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By casting the second order equation of motion (4.1) in first order form (2.12), an
equation similar to the state equation from control theory is obtained. This equation
usually has a normalized term in Xx(t) to yield the :

%(t) = AX(t) + Bu(t) (4.2)

where A eR™ and B, eR™ are defined as:

[0 ! 4.3
A _(—M‘lK —M-ch (4.3)

The subindex ‘c’ denotes continuous time. In next section, the discrete-time
equivalents of these matrices will be introduced. Using the modal decomposition, A is
rewritten as:

A =YA V! (4.4)

which is in fact a standard eigenvalue problem (AY =YWYA,_). This shows that
A _contains the eigenvalues and ‘¥ the eigenvectors of A.

The observation equation

In a practical vibration experiment, not all n DOFs of the structure are
measured, but only a subset. If it is assumed that measurements are taken at | locations
and that the sensors can be either accelerometers, velocity or displacements
transducers (to keep it general) the observation equation is:

y(t) = Cd(t) + C,q(1) + Cya() (4.5)

where y(t)eR'are the outputs; C,,C,,C, eR""*are the output location matrices for

acceleration, velocity and displacement, respectively. These matrices consist of a lot of
zeros and a few ones and are in fact just selecting the measured DOFs out of the FE
model DOFs to store them as the elements of the output vector y(t) . In reality it can
happen that, for instance, both accelerations and velocities are simultaneously
measured. Using Eq. (4.1) to eliminate ¢j(t) and with the definition of the state vector,

Eqg. (4.5) can be transformed into

y(t) = C.x(t) + D u(t) (4.6)

where C_eR"" is the output matrix and D, eR"™"is the direct transmission matrix.
They are related to the FE model matrices as:

C.=(C,-C,M*K C,-C,M'C,), D,=C,M'B 4.7)
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In many publications this direct transmission matrix D. is omitted for some
reason. However the modeling of a vibration experiment where accelerometers are
used (and these are the most widely used sensors) requires a direct transmission term.
If Ca = 0 (i.e. displacements and/or velocities are measured), there is no direct
transmission.

The state-space model

The classical continuous-time state-space model is found by combining Egs.
(4.2) and (4.6):

X(t) = AX(t) + Bu(t)

(4.8)
y(t) = Cx(t) + DU()

The order of the state-space model n is defined as the dimension of the state
vector. The equations of motion are now written in state-space form and can be used to
compute the response y(t) of the structure to a given input u(t) . The state vector x(t)
contains the displacements and the velocities of all DOFs.

A new state vector can be defined such that:

x(t) = Tz(t) (4.9)

where T eC™"is a non-singular complex square matrix. This is called a similarity
transformation. Substitution of this coordinate transformation into Eq. (4.9) yields:

2(t) = TATz(t) + T'B.u(t)

(4.10)
y(t) = C.Tz(t) + D.u(t)

It is important to see that the transformed matrices (T ‘AT, T'B,, C.T,D,)

describe the same input-output relationship as the original matrices. However, unlike
X(t) the new state vector z(t) has not the meaning of physical displacements and
velocities.

4.2.2 Modal Parameters and Model Reduction

Relation to classical modal analysis

A special similarity transformation is the transformation to (complex) modal
states x,, (t)eC" :

X(t) =¥x, (1)
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The modal state-space model is obtained by substituting T by Win Eq. (4.10) and
inserting the modal decomposition of A; (4.4):

X, (1) = A, (t) + L u(t)

(4.11)
y(t) = Vex,(t) + Du(t)

where L =¥'B,, V. are modal input and modal output matrix respectively and the
following definitions have been introduced:

L' =¥"'B
¢ ¢ (4.12)
V., =C.¥
The eigenvalue matrix has the following structure:
\
A A0 A Ew + joJ1-&
= . y = —C. Q- —C. -
C O A (] J I 1
\
and the eigenvector matrix can be written in case of general viscous damping as:
Y= © @ . (4.13)
OA OA

4.3 Discrete-Time State-Space Models

4.3.1 About Sampling

Up to now all equations were expressed in continuous time, whereas in reality,
measurements are taken at discrete time instants. In order to fit models to
measurements (i.e. system identification), these models need to be converted to
discrete time. Another reason for looking at discrete models is that they are needed for
performing simulations. If it would be possible to find an analytical solution for the
response of a structure to a given input, this analytical expression could be evaluated
at any time instant t, without the need to convert the model to discrete time. However
in most cases there is no analytical solution and one has to rely upon a numerical
solution method to simulate the response of a structure. For instance, time integration
schemes with a possible adaptive time step could be used. The approach that is useful
for this thesis starts by choosing a certain fixed sampling period(s). The continuous-
time equations are discretized and solved at all discrete time instants k (-), where t=kt,
keN. Typical for the sampling of a continuous time equation is that a certain

behaviour of the time-dependent variables between two samples has to be assumed. A
Zero-Order Hold (ZOH) assumption for instance, means that the input is piecewise
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constant over the sampling period. Under this assumption, the continuous-time state-
space model (4.8) is converted to the discrete-time state-space model:

X, = AX, + Bu,

(4.14)
Y, =Cx, + Du,

where xk:x(kAt):(qkT 4.’ ) is the discrete-time state vector containing the

sampled displacements and velocities; ux, Yk are the sampled input and output; A is the
discrete state matrix; B is the discrete input matrix; C is the discrete output matrix; D
is the direct transmission matrix. They are related to their continuous-time
counterparts (4.8) as:

At
A=eM B=[er5rB =(A-1)A'B
i !e rB. = (A-DATE, (4.15)

C=C, ,D=D,

These relations are classical and are, for instance, derived in (Juan, 1994). The second
equality for B is only valid if A; is invertible. The matrices C. and D, are not
influenced by ZOH-sampling.

4.3.2 Modal Parameters and Model Reduction

The eigenvalue decomposition of the discrete state matrix A is found by
inserting the eigenvalue decomposition of the continuous state matrix A¢ into Equation
(4.15)

\
A=ehtt =P - WA oy, |9t (4.16)

The third equality can be proven by the series expansion of the exponential function

by the McLaurin series expansion, e" = Z%M ¥ the two last equalities define the
k=0

notation of the discrete eigenvalue matrix. So, the discrete eigenvectors are equal to

the continuous ones and the discrete eigenvalues, denoted as x; are related to the

continuous eigenvalues as:

Similar to definition (4.12), the discrete modal participation matrix and the observed
mode shapes are written as:
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L' =¥'B
(4.17)

V =CV¥
The discrete modal participation factors are different from the continuous ones due to
the different B-matrix. The observed mode shapes, on the contrary, are the same in

discrete as in continuous time. In the acceleration-only case, the modal decomposition
of D is found as follows:

n
D=D,=VA]'L, =V(A,-NL' =) 1 1{vi}<|f>
i=1 M
The notation for the columns and rows of a matrix has been introduced before. The
discrete-time model reduction is similar to the continuous one. This reduction can be
formally proven by putting the next states (that have to eliminated) equal to the current
states. This is the discrete-time equivalent of setting the derivative of the continuous
states to zero.

4.4 Stochastic State Space Models

Stochastic subspace identification algorithms compute state space models from
given output data. Fig. 4.1 states the stochastic (subspace) identification problem.

Stochastic identification problem:
Given: measurements of the output y, € R'generated by

the unknown stochastic system of order n
X1 = AX + W

Yo =CXx + v,
with w, and v, zero mean, white vector sequences with covariance

matrix;
Wy T T\ _ Q S
E[(vp (w" W l={g g o
Determine:

e The order n of the unknown system
e The system matrices AeR™", CeR"" up to within a
similarity transformation and Q e R™", SeR™, Re R s0

that the second order statistics of the output of the model and
of the given output are equal.

Fig. 4.1 The stochastic subspace identification problem
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4.4.1 The Stochastic Components

This section describes the final step towards the experimental world: noise is
added. Up to now it was assumed that the system was only driven by a deterministic
input ux. However, the deterministic models are not able to exactly describe real
measurement data. Stochastic components have to be included in the models and
following discrete-time
combined deterministic-stochastic state-space model is obtained:

X = AX, + Bu, +w, (4.18)
Y. =Cx, +Du, + v,

where w, € R"is the process noise due to disturbances and modelling inaccuracies;

v, eR' is the measurement noise due to sensor inaccuracy. They are both
unmeasurable vector signals assumed to be zero mean, white and with covariance

matrices:
S
E[[\\'/Vp](w; v, )1 = (SQT RJ% (4.19)

p

where E is the expected value operator; 6, is the Kronecker delta (if p=q then, 5, =
1, otherwise &,,=0); p, g are two arbitrary time instants.

However, the primary case of interest for this thesis is a purely stochastic
system. In a civil engineering context, the only vibration information that is available
is the responses of a structure excited by some immeasurable inputs. Due to the lack of
input information it is not possible (from a system identification point of view) to
distinguish between the terms in ukx and the noise terms wg , v in Eq. (4.18). The
discrete-time stochastic state-space model reads:

X .= AX, + W
k+1 k k (420)
Y. =Cx + Vv,

The input is now implicitly modeled by the noise terms. However the white
noise assumptions of these terms can not be omitted: it is necessary for the proofs of
the system identification methods of next chapter. The consequence is that if this white
noise assumption is violated, for instance if the input contains additional to white noise
also some dominant frequency components, these frequency components cannot be
separated from the eigenfrequencies of the system and they will appear as (spurious)
poles of the state matrix A.
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4.4.2 Properties of Stochastic Systems

In this section, we summarize the main properties of stochastic processes of
linear time invariant system, including the non-uniqueness of the state space
description. Some important properties of stochastic systems are briefly resumed.
They are well-known and can, for instance, be found in Overchee and Peeters (1996).

It is assumed that the stochastic process is stationary: noise terms have zero
mean and their covariance matrices are given by:

E[x]=0,E[xx'] =2 (4.21)

where the state covariance matrix X is independent of the time k. This implies that A
is a stable matrix (all of its poles are strictly inside the unit circle). There are many
representations of stochastic state space models. All of the representations are
equivalent, in the sense that the second order statistics of the output generated by the
models is the same, i.e. the covariance sequence of the output is identical. There are
many stochastic model; the forward model, the backward model, the forward
innovation model and the backward innovation model. In this thesis, we introduce
only the forward model, and the forward innovation model.

Forward model

First we will develop some (well known) structural relations for linear time
invariant stochastic processes. Since wg, vk are zero mean white noise vector
sequences, and independent of the actual state, x , we have:

Elxw,']=0,E[xv']=0 (4.22)
Then we find the Lyapunov equation for the state covariance matrix =

2 = EX X' ]
= E[(AX, +W,) (AX, +Wk)T]
= AE[x, x.' A" + E[w, w,']
=AA" +Q

(4.23)

The output covariance matrices A, e R'' are defined as:

A; = E[y,, YkT] (4.24)
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where i is an arbitrary time lag. We find for A, :
Ay =ED, Y]
= E[(ka +Vk) (ka + Vi )T]
=CE[x, x'1C" + E[v, v,"]
=CXC" +R
Defining the "next state - output” covariance matrix GeR"™' as:

(4.25)

G = E[Xk+1 YkT]
= E[(AX +W, ) (Cx, +V,)']
= AE[x, X ICT + E[w, v,']
= AXC" +S

(4.26)

Similarly, for other time lag i (i =1,2,....) covariances, we get:

A, =CA™G
A = GT (Ai—l)T CT (4'27)

The last observation, indicates that the output covariances can be considered as
Markov parameters of the deterministic linear time invariant system A, G, C, A,. The

factorization of output covariance matrices into state-space matrices is similar to the
factorization property of impulse responses. For stochastic systems, the matrices
(A,G,C, A,) play the role of the deterministic system matrices (A,B,C,D). This is an

important observation that will play a major role in the derivation of stochastic
subspace identification algorithms. This equation alone nearly constitutes the solution
to the identification problem: the output covariance sequence can be estimated from
the measurement data; so if we would be able to decompose the estimated output
covariance sequence according to (4.27), the state-space matrices are found. This idea
will be translated into output-only covariance-driven methods (SSI-COV).

The Forward innovation model

An alternative model for stochastic systems of Equations (4.20) that is more
suitable for some applications is the so-called forward innovation model. It is
obtained by applying the steady-state Kalman filter'to the stochastic state-space model
(4.20):

Z..,,= Az, + Ke,

(4.28)
y, =Cz, + ¢

! The Kalman filter is standard in control theory.
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The elements of the sequence ey are called innovations, hence the name of the model.
It is a white noise vector sequence, with covariance matrix:

Ele,e,'] = A6, (4.29)

The computation of the forward innovation model (A,K,C,A¢) from the stochastic state
space model (A,G,C, Ay )starts by finding the positive definite solution P of the
discrete Riccati equation®:

P = APA" + (G- APC")(A,-CPC") (G- APCT)" (4.30)

The matrix P eR"™" is the forward state covariance matrix P=E[z,z,"]. The Kalman
gain is then computed as:

K =(G-APC")(A,-CPC")™ (4.31)
and the covariance matrix of the innovations equals:

A, = A,—CPCT (4.32)

4.5 Stochastic Subspace System Identification

In previous sections, several models and main properties of stochastic system were
presented. In this section stochastic system identification methods are discussed and
compared. Starting with the primary data types that are required by the identification
methods: time data or covariance sequences, next covariance-driven methods are
presented and then data-driven methods. Finally, two methods are compared.

4.5.1 Data Types
In principle (output) data yi is available as discrete samples of the time signal.

This section deals with the transformation of time data to covariances or spectra. Also
some notations are introduced.

45.1.1 Time Data

Since there is no external inputs for purely stochastic system, it is useful in the
development of some of the identification methods to gather the output measurements

2 An implementation to find the solution of this equation can, for instance, be found in Control system
Toolbox of Matlab.
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(I outputs) in a block Hankel® matrix with 2i block rows and j columns. For the
statistical proves of the methods, it is assumed that j— . The Hankel matrix

H €0 *™ can be divided into a past (Y,) and a future part (Y;). For convenience, we
define the shorthand notation Y, Y," and Ys, Ys

Yo Y1 o Yja
i Yo o Y
H :i. Yia Vi e Vg | _ Yo‘ifl _ Y_p Thi _ " past” (4.33)
\/T Yi Yia o Yiuja Yi\zi—l Y, ]Sl " future”
yi+l yi+2 yi+j
Yoia  Ya o Yaisj2

Note that the output data is scaled by a factor 1//j . The subscripts of Yip €™

are the subscripts of the first and last element in the first column of the block Hankel
matrix. The subscripts p and f stand for past and future. The matrices Y, and Y; are
defined by splitting H in two parts of i block rows. Another division is obtained by
adding one block row to the past outputs and omitting the first block row of the future
outputs.

Yo Y1 o VYia
Yia Vi o Yo
oL Y e e Ve | Y ][V 120G (4.34)
\/T Vi Yz o Vi YHMH Y. )TIi-0)
yi+2 yi+3 yi+j+1
Yoia Yo o Yoirjo

45.1.2 Covariance Estimates

Output covariances are defined in Equation (4.24) as:

RS
A =Eli Y 1= Emszk” v
k=0

® A Hankel matrix is a matrix that is constant along its anti-diagonal.
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The second equality follows from the ergodicity® assumption. Then, the output
covariances are gathered in a block Toeplitz’> matrix Tyl "I that can be computed

from the data block Hankel matrix (Y, and Ys). Indeed, for j— oo and assuming
ergodicity, we have:

Ai Ai—l Al

A, A A
o= (4.35)

A2i—1 AZi—Z Ai

Then one can infer from the definition of covariance matrix that T, ; can be expressed
as the product of two block Hankel matrices Ysand Y,

AN (4.36)

Of course, in reality a finite number j of data is available and a covariance estimate Ai
is simply obtained by dropping the limit:

A 142
A = Tz Yisi ykT (4.37)
k=0

Instead of computing the covariance estimate by multiplication and summation
of time samples, a high-speed implementation of the convolution in Eq. (4.37) is
possible by applying the FFT to the time signals, cross-multiplying the Fourier
transforms and applying the inverse FFT to the cross-products. The inverse FFT
results in a periodic covariance function estimate. The bias error due to this circular
convolution is avoided by zero-padding the original signals (Bendat and Piersol,
1993). A disadvantage of using covariances as primary data in identification is that it
squares up the data. This may affect the numerical accuracy (Golub and Van Loan
1989).

4.5.1.3 Spectrum Estimates

Another useful data format is the spectrum of the outputs S elJ M In
discrete-time, the spectrum of a stationary stochastic process is defined as the double

4 .. . . . .

Ergodicity means that the expected value of a time sample of a stationary stochastic process (i.e. the
average over an infinite number of processes) can be replaced by the average over one infinitely long
record of the process.

> A Toeplitz matrix is a matrix that is constant along its diagonal.
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sided z-transform of its covariance sequence. Therefore the discrete-time output
spectrum equals:

S,(2) = kf AT (4.38)

where A, is the output covariance at time lag k, defined in Eq. (4.24). By substituting
z according to (Juang and Pappa 1994) :

z =el™ (4.39)

Then, the Fourier transform in discrete-time is obtained

S, (€M) = > A, el (4.40)
k=—o0

In case of a stationary process, the following property holds:

A=A (4.41)

and the spectrum (4.38) can be written as:
S,(z) = S,/ (2) +(8,"(z M)
where S " is defined as:
S ()= 20 p YA (4.42)
=
The important factorization property of the output covariances was given in Eq. (4.27):
A, =CA“'G
If A is a stable matrix®, we have the following series expansion:

(zl-A)" =D Az
k=1

This series is found after inserting the factorization property (4.27) into (4.42).
Consequently, following closed-form expression is found for the spectrum (4.48):

® A'is a stable matrix if all of its poles are strictly inside the unit circle
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S,(e"") =C(zZI -A)'G + A, +G' (z'1-AT)'CT (4.43)

In Eq. 4.48 the numbers of covariances go to infinite time lag. Again, only a finite
number of data is available: the covariances are estimated as in (4.37) and cannot be
computed up to infinite time lag. There is a whole literature on estimating spectra
from data (Bendat and Piersol, 1993). Two popular non-parametric spectrum estimates
are the weighted averaged periodogram (also known as modified Welch’s
periodogram) and the weighted correlogram. Weighting means that the signal is
weighted by one of the classical windows (Bartlett, Hamming, Hanning) to reduce
leakage.

Welch’s method starts with computing the Discrete Fourier Transform (DFT) of the
weighted output signal:

. 1 :
Y(eJa)At) — Zwk yke—kaAt (444)

k=0

where wy denotes the window function in this context. If j is a power of 2, the DFT
can be efficiently computed at the discrete frequencies

by using the FFT. An unbiased estimate of the spectrum is the weighted periodogram,
i.e. the DFT of (4.44) times its complex conjugate transpose and scaled by the squared
norm of the window:

S jo 1 jo -jo
Sy(eJ ) :j_l—Y(eJ A YT (eI (4.45)
2
2|
k=0

The variance of the estimate is reduced by splitting the signal in segments, computing
the weighted periodograms of all segments and taking the average. The spectrum
estimate in (4.45) yields a rank-one matrix (a column vector multiplied by a row
vector). Segment averaging increases the rank of the estimate because several rank-
one estimates are added.

The weighted correlogram method starts by computing the covariance estimates as in
(4.40). The weighted correlogram is defined as the DFT of the weighted covariance
estimates:

~ . L ~ .
Sy(eja)At) — Z Wk Akefjkat
k=—L

(4.46)

where L is the maximum number of time lags.
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These two algorithms are normally basic of many measurement hardware such
as frequency analysers which deliver spectra instead of the original time data. Also as
they are easily implemented in MATLAB, it is the common procedure in methods of
non-parametric frequency-domain identification. However, they have to be considered
as estimates and not as true spectra. Limitations and drawbacks of the DFT related to
modal analysis are discussed in Mitchell (1986) and Pandit (1991). Advantages of
frequency-domain identification are discussed in Schoukens (1991) and also
recapitulated in McKelvey (1995) and Ljung (1999). Evidently, the frequency-domain
advantages related to the use of a periodic input signal are not carrying over to the
output-only case.

4.5.2 Covariance-Driven-Stochastic-Subspace Identification (SSI-
COoVv)

Up to present, stochastic subspace theory are formulated, in this section time-
domain covariance-driven method (SSI-COV) are presented. Most output-only system
identification methods developed in the past utilize covariance matrix as important
feature such as Covariance Block Hankel Method,CBHM, (Brownjohn and Jakobsen,
2001), the instrumental variable method, 1V, (Peeters, 2000). An important feature is
that a covariance matrix can be factorized into the system matrices, as point out in Eq.
(4.27). Although some method such as instrumental variable used covariances in
formulating main algorithm, it does not use the factorization property. The IV method
use the ARMA model to “fit” measured data yx The SSI-COV, on the contrary, is
completely based on the factorization property. It is a so-called subspace method.

The SSI-COV method is addressing the so-called stochastic realization
problem, i.e. the problem of identifying a stochastic state-space model from output-
only data. Stochastic realization is closely related to deterministic (input-output)
realization that goes back to Ho and Kalman (Ho and Kalman, 1966) and was
extended with the SVD to treat noisy data in Zeiger (1974) and Kung (1978). The so-
called Eigensystem Realization Algorithm (ERA), developed by Juang (Juang and
Pappa 1985, 1994), is a modal analysis application of these deterministic realization
algorithms. The stochastic (output-only) realization problem is solved in Akaike
(1974), Aoki (1987), and Arun (1990). Application of stochastic realization to modal
parameter estimation was reported by Benveniste and Fuchs (1985). They also proved
that their algorithm is robust against non-stationary inputs (e.g. a white noise sequence
with time-varying covariance).

The SSI-COV method identifies a stochastic state-space model from output-
only data. The stochastic state-space model, introduced in Subsection 4.4.3.1, has the
following form:

X ..= AX, + W
k+1 k k (4'20)
Y, =Cx + Vv,

where wy and vi are vector signals assumed to be zero mean, white and with
covariance matrices:
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S
E[(\\I/vp)(qu vqT )] - [SQT Rjé‘pq (4.19)

Stochastic realization theory

In classical modal (input-output) analysis, the impulse response matrices hy are
rectangular matrices having | rows (i.e. the number of outputs) and m columns (i.e. the
number of inputs). In output-only cases, the impulse responses are substituted by
output covariances and the inputs by the (reference) outputs (see also Jame (1995),
Hermans (1999)). The algorithm starts with gathering the output covariances in a
block Toeplitz matrix T, .

Ai Ai—l Al

Ai+ A| Az

Tl\i = . ' :
A2i—1 A2i—2 Ai

Applying the factorization property (4.20) to Ty yields:

C
CA i1
CAi—l

<~ n

where the definitions of the extended (i>n) observability matrix G el "M and the
reversed extended stochastic controllability matrix T e[1™" are obvious from

(4.47). For li >n,and if the system is observable and controllable, the rank of the lixli

Toeplitz matrix equals n, since it is the product of a matrix with n columns and a
matrix with n rows. The SVD is a numerically reliable tool to estimate the rank of a
matrix. The application of the SVD to the block Toeplitz matrix yields:

T Sl O VlT T
Ti=UsV =L U)| v 7 UsS (4.48)

where U el"™"and VeO"™"are orthonormal matrices (U'U=UU" =I

VIV.=WT=1,) and Se(*)"™" is a diagonal matrix containing the positive
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singular values in descending order. The rank of a matrix is found as the number of
non-zero singular values. In the last equality of (4.48), the zero singular values and

corresponding singular vectors are omitted: U, el ™" , S, (0 ,")™" , V, e[l ™". By
comparing (4.47) to (4.48), the matrices G; and I can be computed by splitting the
SVD in two parts:

O, =U,SMT
(4.49)

r, =TSV
where T €[] ™" is a non-singular matrix. It is easy to see that this matrix T can be

considered as a similarity transformation that is applied to the identified state-space
model. In other words, whatever the choice of T may be, similarity equivalent state-
space models will result and we can simply set: T=I. The solution of the identification
problem is now straightforward. From the definitions of the extended observability

matrix O, and the reversed extended stochastic controllability matrix I';, we know

that C equals the first | rows of O, and G equals the last | columns of I'; ; or written
in MATLAB notation:

C=0(@1:1;)

: : (4.50)
G=rI,C,10-)+1:1)

Zeiger (1974) proposed method to compute the state transition matrix A from the
decomposition property of a shifted block Toeplitz matrix:

Tyin = O,AT; (4.51)

where the shifted matrix TZ‘i+1

covariances A, from lag 2 to 2i. Matrix A is found by introducing (4.59) in (4.61) and
solving for A:

has a similar structure as (4.45), but is composed of

A=0/T

2i+l

(Fi )T = S171/2U1TT

2li+l

VS, (4.52)

where (0)"denotes the Moore-Penrose pseudo-inverse of a matrix.

At this point the identification problem is theoretically solved: the system order
n is found as the number of non-zero singular values in (4.48) and the system matrices
A,G,C, A,can be computed as in Eq.s (4.50) and (4.52). The fourth system matrix
A,is simply the zero-lag output covariance matrix. The two matrices A,C are
sufficient to compute the modal parameters. As discussed in Subsection 4.4.2, the
discrete poles A, and the observed mode shapes V are computed as (see also (4.16),
(4.17)):
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A=WPAWP!

4.53
V=CY¥Y (4:53)

Implementation and stabilization

In reality the number of measurements is not infinite and the output
covariances have to be estimated (4.37). Since these output covariances form the basis
of the realization method (4.47), it is evident that the identified system matrices also

have to be considered as estimates: A G C A

Another remark is that in theory the system order n can be determined by
inspecting the number of non-zero singular values of T (4.58). In practice however,

the estimated covariance Toeplitz matrix Tl‘i is affected by "noise" leading to singular
values that are all different from zero. As typical noise sources we have:

= Modelling inaccuracies. It is possible that the true system that generated the
data cannot be modeled exactly as a stochastic state-space model. An attempt
to model this system by a state-space model introduces an error in these cases.

= Measurement noise: introduced by the sensors and the electronics of the
measurement hardware.

= Computational noise due to the finite precision of any computer. The finite
number of data. The covariances have to be estimated, so that the factorization
property (4.27) does not hold exactly. As a consequence the rank of the
covariance Toeplitz matrix will not be exactly n; see Eq. (4.47).

In practice, the order can be determined by looking at a "gap" between two
successive singular values. The singular value where the maximal gap occurs yields
the model order. This criterion should however not be applied too dogmatically. For
large, real structures there is generally no clear gap.

To obtain a good model for modal analysis applications, it is probably a better idea to
construct a stabilization diagram, by identifying a whole set of models with different
order. In case of the SSI-COV method, an efficient construction of the stabilization
diagram is achieved by computing the SVD of the covariance Toeplitz matrix (4.48)
only once. The number of block rows and columns i of T,; should be such that li > n

max, the maximum model order. Models of different order are then obtained by
including a different number of singular values and vectors in the computation of O,

and I'; (4.49), from which the system matrices and the modal parameters are deduced
as described in previous subsection.
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4.5.3 Data-driven Stochastic Subspace Identification (SSI-DATA)

While most of output-only system identification main algorithms are based on
formulation of spectra and covariances. The main advantage of data-driven algorithms
is that they do not require any further preprocessing in order to obtain spectra or
covariances. One disadvantage of using covariances as primary data in identification
of system matrices is that it squares up the data. This may affect the numerical
accuracy (Golub and Van Loan, 1989). The data-driven methods identify models
directly from the time signals. One classical method is prediction error method PEM
(Ljung, 1999) that identifies AR(MA) models from time data. This method identifies
the parameters of a model by minimizing the so-called prediction error’. The
straightforward application of PEM to estimate an ARMA model from data results in
a highly nonlinear optimization problem with related problems as: convergence not
being guaranteed, local minima, sensitivity to initial values and a high computational
load (Peeteers, 1999).

Recently a lot of research effort in the system identification community was
spent to subspace identification as evidenced by Overschee and De Moor (1996) and
Ljung (1999). Subspace methods, originating from electrical engineering field,
identify state-space models from (input and) output data by applying robust numerical
techniques such as QR factorization, SVD and least squares. As opposed to SSI-COV,
the DATA driven Stochastic Subspace Identification method (SSI-DATA) avoid the
computation of covariances between the outputs. It is replaced by projecting the row
space of future outputs into the row space of past outputs. In fact, the notions
covariances and projections are closely related in aiming that: they both are aimed to
cancel out the (uncorrelated) noise. The first SSI-DATA algorithms can be found in
(Overchee 1991, 1993). A general overview of data-driven subspace identification
(both deterministic and stochastic) is provided in Van Overschee and De Moor (1996).
Although somewhat more involved as compared to previous methods, it is also
possible with SSI-DATA to reduce the dimensions of the matrices by introducing the
idea of the reference sensors. This is demonstrated in (Peeteers 1996).

Since the pioneering papers by Akaike (1975), canonical correlations (which
were first introduced by Jordan (1975) in linear algebra and then by Hotelling (1936)
in the statistical community) have been used as a mathematical tool in the stochastic
realization problem. Overchee (1996) have shown how the approach by Akaike
(1975) and others (e.g. Akaike 1990, Larimore 1983, Larimore 1990) boils down to
applying canonical correlation analysis to two matrices that are (implicitly assumed to
be) double infinite (i.e. have an infinite number of rows and columns). In his work,
careful analysis reveals the nature of this double infinity and manages to reduce the
canonical correlation approach to a semi infinite matrix problem, i.e. only the number
of columns needs to be very large while the number of block rows remains sufficiently
small. This observation is extremely relevant with respect to (for instance) the use of
updating techniques.

" Prediction errors are the part of the output data that cannot be predicted from past data.
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In order to find the state space model, Overchee derive a finite dimensional
vector sequence which, in the case of double infinite block Hankel matrices, would be
a valid state sequence of the stochastic model. This sequence would correspond to the
outputs of an infinite number of steady state Kalman filters with an infinite number of
output measurements as inputs. For the semi infinite matrix problem, the sequence
corresponds to the output of an infinite number of nonsteady state Kalman filters that
have only used a finite number of output data as input. These state sequences are
obtained directly from the output data, without any need for the state space model. The
state space model is then derived from these sequences by solving a least squares
problem.

In this thesis, we use main algorithm proposed by Overchee (1996) in
identification of state matrix (A,G,C,K) as positive real sequence is guaranteed.
Indeed, for an identified covariance sequence to be physically meaningful, it should be
a positive real sequence. Almost all subspace algorithms presented in the literature
(Akaike 1975, Aoki 1987, Akaike 90) do not guarantee this property, which implies
that the spectral factor of the identified covariance sequence does not exist. With this
algorithm it computes a slightly asymptotically biased solution (the bias decreases
when the number of block rows increases), but the positive realness of the solution is
guaranteed (if the identified system matrix A is stable).

Kalman filter states

In the derivation of the data-driven stochastic subspace identification
algorithms for stochastic system identification, the Kalman filter plays a crucial role.
In subsection 4.4.3.2, it was indicated how the forward innovation model (4.28) can be
obtained by applying the steady state Kalman filter to the stochastic state-space model
(4.28). In this section, the nonsteady state Kalman filter is introduced. The Kalman
filter is described in many books. A nice derivation can be found in Appendix B of
Juang (1994). The aim of the Kalman filter is to produce an optimal prediction for the
state vector xx by making use of observations of the outputs up to time k-1 and the
available system matrices together with the known noise covariances. These optimal
predictions are denoted by a hat: X, When the initial state estimate X, = 0, the initial
covariance of the state estimate P, = E[X, X,' ]=0and the output measurements Yp,...,
Yk-1 are given, the non-steady-state Kalman filter state estimates X, are obtained by the

following recursive formulas (see Egs. (4.30) and (4.31)):

A~

X = A)zk—l + Kk—l(yk—l_C)’zk—l)
ka1 =(G- APHCT )(A0 — CPHCT )_l (4.54)
F’k = AF’k_lcT + (G — AF’HCT )(A0 - CF’HCT )_l (G - AF’k_lcT )T

expressing the Kalman state estimate, the Kalman filter gain matrix and the Kalman
state covariance matrix. The Kalman filter state sequence X, e[ ™ is defined as:
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Xi = (R Rig e Riyja) (4.55)

The correct interpretation of the (gq+1)™ column of this matrix is that this state Xi.q 1S
estimated according to Eq. (4.64) by using only i previous outputs: yq, ..., Yi+q1. BY
consequence, two consecutive elements of X,cannot be considered as consecutive

iterations of Eq. (4.64). More details can be found in Overchee (1996). Important to
note is that a closed-form expression exists for this Kalman filter state sequence and
that it is this sequence that will be recovered by the SSI-DATA algorithm (see
further).

Data-Driven Stochastic Subspace Identification Theory

The SSI-DATA algorithm starts by projecting the row space of the future
outputs into the row space of the past. The idea behind this projection is that it retains
all the information in the past that is useful to predict the future.

Orthogonal projections

1, denotes the operator that projects the row space of a matrix onto the row
space of the matrix B

I,=B".(BB")".B

where (0)'denotes the Moore-Penrose pseudo-inverse of a matrix. U . A/B is

shorthand for the projection of the row space of the matrix A on the row space of the
matrix B :

A/B= AB".(BB")'.B

The projection operator can be interpreted in the ambient j dimensional space
as indicated in Fig. 4.2 (where j =2). The QR decomposition is the natural numerical
tool for this orthogonal projection as will be shown in section of implementation. Note
that in the notation A/B, the matrix B is printed bold face, which indicates that the
result of the operation A/B lies in the row space of B .

Similarly, by projecting the row space of the future outputs into the row space
of the past outputs, the notation and definition of this projection is:

I = Y /Y, =YY YY)y, (4.56)

The matrices Y,,Y, e[l are partitions matrices of the output data block Hankel
matrix, as indicated in (4.33).
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v

A/B B

Fig. 4.2 Interpretation of the orthogonal projection A/B in the j-dimensional space

(i=2).

Note that the expression of Eq. (4.56) is only the definition of IT,; it does not
indicate how the projection is computed. From the definition (4.56), it is shown that
projections and covariances are related. The matrix product Y, .YpT is in fact block

Toeplitz matrices containing covariances between outputs; (see Eq. 4.46).

The mian theorem of stochastic subspace identification (Overchee, 1996) states
that the projection IT, can be factorized as the product of the extended observability

matrix O; (4.57) and the Kalman filter state sequence )Zi (4.65):

I, = O.X; = (X Xy oo Ri+j—1)$n

(4.57)
CAi—l
<N

The prove of this theorem can be found in (Overchee, 1996) and graphical
illustration is shown in Fig. 4.3.

Since the projection matrix is the product of a matrix with n columns and a
matrix with n rows (4.57), its rank equals n (if li > n). The SVD is a numerically
reliable tool to estimate the rank of a matrix. After omitting the zero singular values
and corresponding singular vectors, the application of the SVD to the projection
matrix yields:

I, =U,SV, (4.58)

where U, el]™" | S ([, )™, V, el]"™". The extended observability matrix and
the Kalman filter state sequence are obtained by splitting the SVD in two parts:

O, =U,S"T

. (4.59)
X;=0/IJ,
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v

rank( Y¢/Yp) = n
row space ( Y¢/Yp) row space X;
column space ( Yi/Yy) column space O;

Fig. 4.3 Projection of the future outputs on the past determines the forward state
sequence >Zi

Up to now, the system order n (as the number of non-zero singular values in
Eq. (4.58)), the observability matrix O; and the state sequence X, are determined.

However, the identification problem is to recover the system matrices A,G,C, A .
Through a similar reasoning and proof of Eq. (4.57), it can be shown that the
following holds:

M, =Y, /Y, =0 X, (4.60)

This new projection can be easily defined by shifting the separation between
past and future outputs in the Hankel matrix one block row down. It is also easy to
check that O, , is simply obtained after deleting the last I rows of O;:

0., = O,(L:I(i-D)

Now the state sequence X.., can be calculated from:

i+1
XAi+1 = Oi—lin—l

At this moment the Kalman state sequences Xi, )2.+l are calculated using only

the output data. The system matrices can now be recovered from following
overdetermined set of linear equations, obtained by stacking the state-space models for

time instants i to i+j-1
X, A, (W
=] X ] (4.61)
Vi C V,
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where Y, 0" is a Hankel matrix with only one block row. This set of equations

i
can be easily solved for A,C . Intuitively, since the Kalman filter residuals
W, e[1™ V. e (the innovations) are uncorrelated with X, , it seems natural to
solve this set of equations in a least squares sense (since the least squares residuals are
orthogonal and thus uncorrelated with the regressors )Zi). In Overschee and Moor
(1993), it is shown that the least squares solution indeed computes an asymptotically

unbiased estimate of A and C as:
A X ) o«
= X (4.62)
C Yi‘i

The noise covariances Q, R and S are recovered as the covariances of the least-squares

residuals:
S W.
[SQT R):(V'J(wj V) (4.63)

From the (Subsection 4.4.3.2), it is easy to see how the matrices A,C,Q,R,S can be
transformed to A,G,C, A, . First the Lyapunov equation is solved for X:

T =ASC’ +Q
after which G and A can be computed as:

A, =C=C" +R

) (4.64)
G = ASCT +5S

At this point the identification problem is theoretically solved: based on the outputs,
the system order n and the system matrices A,G,C, A, are found.

The matrices A,C are sufficient to compute the modal parameters. As discussed
in Subsection 2.4.2, the discrete poles A, and the observed mode shapes V are

computed as (see also Eqgs. (4.16), (4.17), (4.53) ):

A=WYA VP!
V =CV¥
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Positive realness

The computation of Q,R,S according to (4.73) only leads to asymptotically®
unbiased estimates if the number of block rows in the Hankel matrices goes to infinity:
I —>oo0. So in practice, since i # o, a bias will be introduced on Q,R,S (and thus also
on G, A,). The modal parameters are only determined from A, C, then if only modal

parameters are required, they are not suffering from this bias on G, A,.

Other algorithms exist that compute asymptotically unbiased estimates.
Unfortunately these algorithms do not guarantee the positive realness of the identified
covariance sequence. More details on positive realness can be found in Overcheee
(1996). Important for the following of this thesis is that only positive real sequences
have a corresponding spectrum matrix that is positive definite for all frequencies .
If a matrix is positive definite, then all its diagonal entries are positive (Golub and
Vanloan 1989). Peeters (2000), has shown that model identified with the SSI-COV
method does not guarantee the positive realness of the identified covariance sequence.
Then, an identified power spectrum becomes negative at certain frequencies (which
has of course no physical meaning). A power spectrum is a diagonal entry of the
spectrum matrix and therefore this matrix cannot be positive definite.

Also important is that only positive real sequences can be converted to a
forward innovation state-space model. Such a model is sometimes useful, as we will

see further. The conversion starts by solving the Riccati equation for P (see also
Subsection 4.4.3.2 for forward innovation model):

P = APA" + (G- APC")(A,-CPC") (G - APC")" (4.30)

The matrix PeR™ is the forward state covariance matrix P=E[zz']. the
covariance matrix of the innovations equals:

A, =A,-CPC’ (4.32)
And finally The Kalman gain is then computed as:

K= (G-APCT)A,™

(4.31)
= (G- APC")(A,-CPC")?

Implementation

Really implementation of data-driven subspace algorithms in general is the QR
factorization of data Hankel matrices. Such a factorization applied to the output
Hankel matrix of Eq. (4.33), (4.34) reads:

& Asymptotic means that the number of data (theoretically) goes to infinity: j — oo,
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Ho | o] o [Y | _pyr 4.65
_W_Yf_‘_Q (4.65)

where Qell ™! is an orthonormal matrix: Q'Q =QQ" =1,and Rel *™!is a lower

triangular matrix. Since 2li< j, it is possible to omit the zeros in R and the
corresponding rows in Q :

Y N Y
R e
Y
i 1 1(i-1) jooo
e d <> e d

>
. 0 0 (Q )i
21 R22 0 QZT I
R R33 Q3T I I

Y

O O

31 32

The division in block rows and columns is made such that the submatrices in
(4.65) can all be expressed in terms of the R and Q submatrices. It is easy to show that
the QR factorization yields following very simple expressions for the projections of
future row spaces into past row spaces:

_ R, T . QlT _ ﬁ
n-(p e me e m (S e

Also Y, €0 | the output sequence that is present in the least-squares equations in A,

C (4.62) is easily written in terms of the QR factors:

Yy = (R Rzz)[%] (4.68)

Since X, =01, and X,, =0_,TI_,, all right-hand-side quantities of the least-
squares Eq. (4.62) can be expressed in terms of the QR factors. Because of their
orthonormality, the Q factors cancel out in this equation. So in this first step (4.65) the
Q matrix should not be calculated. The MATLAB function qr (MatLab 1996), for
instance, allows for the computation of the R factor only. Since typically (2li)«j , an
important data reduction is obtained by replacing the 2lixj data Hankel matrix by its

R factor of dimension 2li x 2li.
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Evidently, due to the finite data length, the identified state-space model is only
an estimate of the true underlying state-space model that generated the data. This is

denoted as A, é,é,]\ofor a covariance model and as A, é,é,]\e for a forward

innovation on model. The matrices A, C, are asymptotically unbiased estimates, but

as stated before, a small bias introduced on the estimates of the other matrices (unless
the number of block rows in the Hankel matrices goes to infinity: i — ). In practice
however, the (small) bias which is a function of the convergence of the nonsteady state
Kalman filter, is a prize worth paying for the more guaranteed positive realness of the
resulting covariance sequence.

The same remark as in the SSI-COV method concerning the determination of
the model order n applies here. Due to noise (modelling inaccuracies, measurement
noise and computational noise) none of the singular values in Eqg. (4.58) are exactly
zero and the order can only be determined by looking at a "gap" between two
successive singular values. The singular value where the maximal gap occurs yields
the model order. However in many practical cases (included in this thesis), no gap is
visible. As previously, the problem of order determination is better solved by
constructing a stabilization diagram. The number of block rows i of H should be such
that li>nma , the maximum model order. Models of different order are then obtained
by including a different number of singular values and vectors in the computation of

O, and )Zi (4.59), from which the system matrices and modal parameters are deduced
as described previously.

In practice, amplitudes of singular values depend on amplitude of output
signals. In case of very low signal to noise outputs, no gap is clearly visible. Several
variants of stochastic subspace identification exist (see next Subsection). They differ
in the weighing of the T1 factor before application of the SVD. One of these variants
that used in this thesis is so called Canonical Variate Analysis (CVA), in which the
singular values can be interpreted as the cosines of the principal angles between two
subspaces: the row space of the future outputs Y; and the row space of the past outputs
Yp.

4.5.4 Covariance-Driven VS. Data-Driven Subspace

This section points out some of the similarities and differences between the
SSI-COV (Subsection 4.5.2) and the SSI-DATA method (Subsection 4.5.3). First are
the similarities. Both methods are based on stochastic (output-only) state space model
(linear time invariant system loaded with white noise sequence with number of output
and number of blolck . j,i —» ). In the SSI-COV algorithm the raw time histories y,
consisting of | channels of j data points, are converted to the covariances of the

Toeplitz matrix Tm:YprT. In the SSI-DATA algorithm a similar reduction is

obtained, but by projecting the row space of the future outputs into the row space of
the past outputsII; =Y, /Yp . This projection is computed from the QR factorization of

the data Hankel matrix. A more significant data reduction is obtained because only a
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part of the R factor is needed in the sequel of the algorithm. Both methods then
proceed with an SVD. The decomposition of T, reveals the order of the system, the

column space of O, and the row space of I';. Similarly the decomposition of IT,
reveals the order of the system, the column space of O, and the row space of Xi :

Several variants of stochastic subspace identification exist. They differ in the
weighting of the data matrices (Tl‘i for SSI-COV and IT, for SSI-DATA) before the

application of the SVD. The weighting determines the state-space basis in which the
identified model will be identified. More details can be found in Arun (1990) and
Overchee (1996). One of these variants is so-called Canonical Variate Analysis
(CVA), in which the singular values can be interpreted as the cosines of the principal
angles between two subspaces: the row space of the future outputs Y and the row
space of the past outputs Y, . In the SSI-DATA implementation of CVA, the weighting
of the projection matrix before the application of the SVD goes as follows (Overchee,
1996):

(YfoT )71/2Hi

Also the other subspace variants exists for implementations of both SSI-COV
and SSI-DATA: principal component PC (Aoki 1987, Arun and Kung 1990),
Unweighted principal component UPC (Arun and Kung, 1990). While, these methods
give asymptotically unbiased system matrix, however positive real covariances are not
guaranteed.

There are also differences between the covariance-driven and data-driven
approaches. As indicated in Subsection 4.5.1.2, the covariance Toeplitz matrix
computed by multiplying and sum up the time history outputs y, required more time
consuming than SSI-DATA. However, this is not the significant for this thesis. Also,
SSI-COV can be computed in a very fast way by using the FFT algorithm.

In favour of the data-driven method is that it is implemented as a numerically
robust square root (QR) algorithm: the output data is not squared up as in the
covariance-driven algorithm. More advantages of the data-driven method become
clear in next section, where some postprocessing tools for the identified state-space
model are presented: an analytical expression for the spectrum matrix and the
separation of the total response in modal contributions.

4.5.5 Postprocessing

This section deals with some useful postprocessing tools that come after the
identification of a parametric model. In the present context, once such a model is
available, it can be analytically converted to other presentation forms. Modal analysis,
a first type of postprocessing, was in fact already discussed in previous subsection.
The state-space matrices identified with SSI-COV or SSI-DATA allow us to compute
the modal parameters, as formulated in (4.63). Once the modal parameters computed,
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the stiffness and damping matrices can be determined from pseudo inverse method
(see next section) Other postprocessing tools such as spectrum analysis and modal
responses are subsequently treated. First, response spectrum that are crucial tool for
determining aerodynamic admittance, then modal responses that can only be applied to
models that are identified with the SSI-DATA method.

45.5.1 Spectrum analysis

The covariance-driven and data-driven system identification methods use time-
domain data to identify a model. It is however theoretically converted to frequency-
domain model, hereto; the identified models are converted to a spectrum model. In
previous section, a closed-form expression for the spectrum of a discrete-time
stochastic state space model was derived:

S,(e") =C(zl —A) "G+ A+ GT (1 =AT)'CT| (4.69)

By introducing the eigenvalue decomposition of A (A = WA W), following "modal”
spectrum is obtained:

S,(&") =V (2l —A) G+ A+ G (21 =A) VT | (470)

4.5.5.2 Modal response and prediction errors

This subsection presents a technique to split the total measured response in
modal responses. A modal response is defined as the response of a single DOF
system, having the same eigenfrequency and damping ratio as the considered mode, to
the same force as applied to the full system. The technique assumes that the identified
model is written in forward innovation form Eq. (4.28) (see Subsection 4.4.3.2):

Z,.,= Az, + Ke,

y, =Cz, + ¢
where Kell™is the Kalman gain and e, is the white noise innovation sequence
covariance matrix E[epeqT] = A6, This model can be written in the modal basis:

yA =Nz, + K.

m,k+1

(4.71)
Yo =Vz,, + &

where ¥z, =z, and YK =K. Because A, is a diagonal matrix, each element of
the modal state vector z , represents the contribution of a single mode. By

eliminating the innovations e, in the first equation and re-arranging the second,
following state-space model is obtained:
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Z = (A, - KmV)zmyk + K.Y,

it (4.72)
& = _Vzm,k + Yy

This modal state-space model (A, -K,V, K. ,-V,I) can be simulated once

all state-space matrices are known from the identification and the measured output yy
serves as input in the simulation. The results from the simulation are the modal state
sequence z,, and the innovation sequencee,. The innovations can be interpreted as

one-step-ahead prediction errors (Ljung, 1999). The one-step-ahead predicted output
is defined as:

Ve =Vz,, (4.73)

The prediction errors are the differences between the true output and the
predicted output: e, =y, — ¥, . Because each element of the modal state vector z"_,

represents the contribution of a single mode, the predicted output can be split in modal
responses as:

9k = Z 9ik = Z{Vi} Z(i)m,k (4-74)

where 9ik is the (complex) response of the i " mode. By combining the responses of

a complex conjugated pair, a real output is obtained.

The modal response approach of this section can only be applied to models that
are identified with the SSI-DATA method. In order to obtain the forward innovation
model, the full G matrix is needed and not only as obtained with the SSI-COV
method.  Another more important problem, which could not be overcome by
considering all sensors as references, is that the implementation of SSI-COV does not
guarantee the positive realness of the identified covariance sequence. One of the
consequences is that it is not always possible to obtain a forward innovation model
(Peeters 2000, Overchee 1996).

4.6 Flutter Derivatives ldentification
4.6.1 Theoretical Formulation of Covariance-Driven SSI

The dynamic behavior of a bridge deck with two degrees-of-freedom (DOF in
short), i.e. h (bending) and « (torsion), in turbulent flow can be described by the
following differential equations (Scanlan 1977)

m[ﬁ(t)+2§ha)h h(t)+a)§h(t)} L (4L, (1) (4.75)
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é(t)+28,m,a(t)+afa(t)] = M, (1)+M,(t)

where m and | are the mass and mass moment of inertia of the deck per unit span,
respectively; wi is the natural frequency; & is the modal damping ratio (i=h,«); Ls and
M are the self-excited lift and moment, respectively; while L, and M, are the
aerodynamic lift and moment. The self-excited lift and moment are given as follows
(Simiu and Scanlan 1996)

L, = pUZB{KH;(K)Uﬂ+ KH;(K)%+ K*H, (K)6+ K2H4*(K)%
_ _ - (4.76)

2p2 * h * BO . o,- 2p h

M, = pU’B L[KAi (K)U+KAZ (K)T+K A (K)O+K2A, (K)E

where 0O is air mass density; B is the width of the bridge deck; U is the mean wind

speed at the bridge deck level; ki = @B/U is the reduced frequency (i =h,a); and H;"
and A" (i=1,2,3) are the so-called flutter derivatives, which can be regarded as the
implicit functions of the deck’s modal parameters. The aerodynamic lift and moment
can be defined as (Scanlan 1977)

L= ve]oc 2 p -(eive o)
, o) (1) 4.77)
0 = 2026, 501, 000 " 0

where C., Cp and Cy are the steady aerodynamic force coefficients; C'. and C'y are
the derivatives of C,_ and Cy with respect to attack angles, respectively; u(t) and w(t)
are the longitudinal and vertical fluctuations of wind speed, respectively; y, and y,,

are the lift and moment aerodynamic admittances of the bridge deck.

By moving Ls and Mg, to the left side, and merging the congeners into column
vectors or matrices, Eg. (4.75) can be rewritten as follows

[MI{y@}+[c* J{y O+ K {y@p={f (O} (4.78)

where  {y(t)j={h(t) a(t)}Tis the  generalized  buffeting  response;

()} ={L (1) Mb(t)}T is the generalized aerodynamic force; [M] is the mass

matrix; [C®] is the gross damping matrix, i.e. the sum of the mechanical and
aerodynamic damping matrices; and [K®] is the gross stiffness matrix.
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The fluctuations of wind speed u(t) and w(t) in Eq. (4.77) are random functions
of time, so the identification of flutter derivatives and aerodynamic admittances of
bridge decks can be simplified as a typical inverse problem in the theory of random
vibration, and thus can be solved by stochastic system identification techniques.

Let

A e e
“|-M7K® -MmCe (4.79)

[C.]=[ O]
and

{x} ={y} (4.80)

then Eq. (4.78) is transformed into the following stochastic state equations

Xy =[A TG+ {w)

(4.81)

{yp=[C]ixj+1{v

The discrete form of Eq. (4.81) can be written as
e ) =[AlIX G+ {w } (4.82)

e =[CHx S+ 1)
where [Aclaxs, [Ccloxa and {x} are known as state matrix, output shape matrix and state
vector, respectively; {w} and {vw} are the input and output noise sequences,
respectively. Subscript *x denotes the value of * at time kAt, where At means the
sampling interval. O and | are the zero and identity matrices, respectively.

It is common to assume that {x}, {w«} and {vi} in Eq. (4.82) are mutually
independent and hence

E[xw |=0 E[xw |=0 (4.83)
Defining

L= E[XkaT] Q= E[WkaT]

A =ElYi¥ ] R =E[v,v] (4.84)

G =E[X; ykT] S = E[WkaT]

then we get the following Lyapunov equations for the state and output covariance
matrices
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T=AAT +Q
A, =CZC" +R (4.85)
G=AC" +S

From (4.82) and (4.83), it can be deduced

{yk+1}{yk}T}
(c{xk+1}+{vk+1}){yk}1 (4.86)
= [C D f LV }T}

=CE (A{Xk+1

b (v} |
=CE[ A{x}{n}']
{

—CAE[{xkﬂ} V']
=CA™'G (4.87)

and

A= CA™'G (4.88)
Defining a block Toeplitz T, as

To=| (4.89)
Apy Doy 0 A
then one can infer from the definition of covariance matrix that T,; can be expressed

as the product of two block Hankel matrices Y¢and Y,

Ty =YeYy (4.90)

where Yr and Y, are composed of the ‘future’ and *past’ measurements, respectively.
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Yio Yia o Yija Yo i o Yia
1 i 2 it 1 i
Y, =k | S e : y:’ Y = Bfl )fz : 3{‘ (4.91)
\/T il Do :
Yoia Yo o Yaisj2 Yia Yi o Yo

In a manner similar to the classical eigensystem realization algorithm (ERA in
short) (Juang and Pappa, 1985), one can find

A=0/T,q =S U, VS (4.92)
where N is model order, i.e. the maximum number of modes to be computed. U, S and

V are matrices derived from the singular value decomposition (SVD in short) of matrix
.

1i

Ty =Usv’ (4.93)

Thus, the modal parameters can be determined by solving the eigenvalue
problem of state matrix A. By now, the theoretical formulation of covariance-driven
SSI has been achieved. According to (4.90), (4.91) and (4.92), a different combination
of i, j and N will give a different state matrix, and thus a different pair of modal
parameters. Therefore, modal parameters should be derived from a series of
combinations, rather than a single combination. In the process of identification, N or i
should be given in series for certain j to get the frequency stability chart.

Once the modal parameters are identified, the gross damping matrix C® and the
gross stiffness matrix K° in Eq. (4.4) can be readily determined by the pseudo-inverse
method.

Let
C:=M71C® K:=M71K®

_ _ 4.94
C=M?C*® K=MK (4.94)

where C® and K° are the ‘inherent’” damping and stiffness matrices, respectively. Thus,
the flutter derivatives can be extracted from the following equations
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. 2 — = . 2~ =

Hl (kh) :_—rgn(cu_cu)' Ai(kh) :_—3(C21_C21)
pB o,

. 2 — = 2 _
HZ(ka) :_pB—3ma) Clez _C1z)v Az( ) == (C zz)

) om ¢ ) (4.95)
H3(ka) =_pB—3a)j( 12 12)1 A’S(ka) == B4 2 ( 2~ 22)

N 2 N
H4(kh) :_pB—rgT;)hz( 11~ 11)l A4(kh) __pB4 2 ( 21~ 21)

The pseudo-inverse method is here briefly described. It can be readily
concluded from (4.88) and (4.89) that state matrix A will be different for different i, |
and N. Therefore, it is impossible to directly determine matrix K® and matrix C® from
the state matrix, i.e. Eq. (4.79). In this study, an alternative technique is utilized to
estimate the gross stiffness and damping matrices.

Firstly, the modal parameters of the system are determined by solving the
eigenvalue problem of state matrix A

A=YAY?

4.96
O=CY¥ ( )
where W is the complex eigenvector matrix, @ is the mode shape matrix, and A is a
diagonal matrix composed of the complex poles of the system. Different combination
of i, j and N are employed to derive the modal parameters statistically. For more
details, see Refs. (Sarkar, 1994 and Jaung and Pappa, 1985).

Secondly, the gross damping matrix C® and the gross stiffness matrix K® in Eq.
(4.78) are estimated from the modal parameters by the pseudo-inverse method

(4.97)

oo mlonar ] © @]
[KeCe]= M[(I)AQD(A)}L)A @*A*}

where the superscript * denotes the complex conjugate.

4.6.2 Theoretical formulation of data-driven SSI

Theoretical formulation of data-driven SSI applied to flutter derivatives
identification of bridge decks is similar to previous covariance-driven SSI, (see Egs.
4.75-4.78). However in identification process, SSI-DATA start with defying output
block Hankel matrix:
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Yo Yoo Y
Yi Y2 oY
H :i. Yia Y - Vo _ Yo‘ifl _ Y_p E: " past™ (4.33)
\/T Yi o Yia o Vi Yi‘ZH Y, )Tl "future”
yi+l yi+2 yi+j
Yoia Yo o Yairjo2

Then applying QR factorization to data Hankel Matrices. Such a factorization reads:

TR A I L 4.65
- || = |y ] =re (4.65)

where Qell ™! is an orthonormal matrix: Q'Q =QQ" =1,and Rel *™!is a lower

triangular matrix. Since 2li< j, it is possible to omit the zeros in R and the
corresponding rows in Q :

\ (4.66)
ifRy 0 O i
=1|R, R, 0 ||Q I
II R3l R32 R33 Q3T II

One can infer from previous subsection that:

IT;, = (an QlT, IT;, = (R31 RSZ) [QlTj: (%J (4-67)

R31 QzT

where Yi‘i e | the output sequence that is present in the least-squares equations in
A, C (4.62) is easily written in terms of the RQ factors:

Yi\i = (R21 RZZ)(SZT] (4.68)

In @ manner similar to the SSI-COV, SVD is applied to the projection matrix
yields:
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I, =U,SV,

The extended observability matrix and the Kalman filter state sequence are
obtained by splitting the SVD in two parts:
O, =US T

. (4.59)
X;=0/IT,

where the similarity transform matrix T =1 . The extended observability matrix O, , is
simply obtained after deleting the last | rows of O;:

0., = O, (L:I(i-1)

Now the state sequence X.., can be calculated from:

i+1
)2i+l = Oi—lTHi—l

Now, the system matrices A, C can be determined simultaneousely by solving the sets
of equations in a least square sense:

A _ Xi+1 XA-T

C Yii '
Thus, the modal parameters can be determined by solving the eigenvalue problem of
state matrix A. By now, the theoretical formulation of data-driven SSI has been

achieved. The remaining parameters can be determined in similar manner to SSI-COV
method.

Implementation

Both algorithms for SSI-COV and SSI-DATA are implemented in MATLAB
named ssi_cov and ssi_data. These functions are executed by typing their names. For
instance (for SSI-COV) method:

>> ssi_cov

Applies the covariance-driven stochastic subspace identification. The program will
promptly for recorded motion file (in.txt) as input.
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The measured data shall be arranged in columns with each columns corresponding to
each recorded data step for each channel. For instance:

200

-2.54E-12 6.63E-12
-4.33E-11 1.21E-10
-3.78E-10 1.08E-09
-2.25E-09 6.43E-09
-1.02E-08 2.86E-08
-3.79E-08 1.03E-07
-1.19E-07 3.10E-07
-3.27E-07 8.16E-07
-8.02E-07 1.91E-06
-1.79E-06 4.08E-06
-3.66E-06 8.02E-06
-6.98E-06 1.47E-05
-1.25E-05 2.54E-05
-2.13E-05 4.16E-05
-3.44E-05 6.51E-05
-5.35E-05 0.78E-05
-8.00E-05 0.0001419
-0.00011577 0.0001993
-0.00016254 0.00027188
-0.00022208 0.00036117
-0.00029601 0.00046822
-0.00038571 0.00059343

The first row contains sampling frequency of signal.

Preprocessing

Preprocessing is the data treatment before system identification and it highly
influences the identification result. Following possibilities are implemented:

Decimate: the data is low-pass filtered and resampled at a lower rate. The
identification can concentrate on a limited frequency band.

Detrend: the best straight line fit is removed from the data. This removes the
DCcomponent that can badly influence the identification results.
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Preprocessing output

The effect of a preprocessing procedure can be seen immediately, both in time
and frequency domain. The recorded signal is shown in time-history as shown in Fig.
4.4

The frequency domain representation of the signals is also available for
preliminary check of signal before starting system identification process. The
frequency domain representation is determined by average periodogram (Welch’s
method) where the variance of estimated spectrum is reduced by splitting the signal in
10 segements, computing the weighted periodograms of all segments and taking the
average.

Fig.4.4 Preprocessing with time history representation of signals



86

“ 0-@ 0§k vl ]
o ol | | | | 0df o e ]
0 10 20 30 40 0 10 20 30 40
N o.y ] O'é
o ‘ ‘ ‘ 1 0. ‘ ‘ ‘ ‘
50 60 70 80 50 60 70 80
« O ] O'é
o -0.1; ‘ ‘ ‘ L1 -0. ‘ ‘ ‘ ‘
90 100 110 120 130 90 100 110 120 130
< O-é ] 0.§
a -0. ‘ ‘ ‘ ‘ ] -0. ‘ ‘ ‘ ‘
140 150 160 170 140 150 160 170
2ol | o
o -0.1f ‘ ‘ ‘ . -0.1f ‘ ‘ ‘ ‘
180 190 200 210 220 180 190 200 210 220
© O'é O'é
a -0 ‘ ‘ ‘ ‘ -0. ‘ ‘ ‘ ‘
230 240 250 260 230 240 250 260
~ o.y ] Oé
o -01f ‘ ‘ ‘ R -0.1f ‘ ‘ ‘ ‘
270 280 290 300 310 270 280 290 300 310
© O-é% ] O-é
o -0If ‘ ‘ ‘ ] -0. ‘ ‘ ‘ ‘
320 330 340 350 320 330 340 350
o Oé% O.é
a -0.If ‘ ‘ ‘ ‘ 0.1} ‘ ‘ ‘ ‘
360 370 380 390 400 360 370 380 390 400
o 0.1 o§ -
e I | e
410 420 430 440 410 420 430 440

Fig. 4.5 Divided signals in (10) segments for averaged spectrum.

The user has options such as: frequency all signal sections, individual section,
delete (cut) some of segments from averaging and even number of spectral estimate.
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Based on number of choices from user’s selection, response spectrums for each
channel are plotted. Fig. 4.6 shows example of spectrum plot for vertical (channel 1)
motion and torsional motion (channel 2) of IRR bridge section model and thin flat

plate under smooth wind.

Fig.4.6a Example of spectrum representation of signals: flatplate model
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Frequency

|
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Fig.4.6b Example of spectrum representation of signals: IRR bridge model
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System identification

First, the user has to specify some input-parameters of the algorithm: The
numbers of block rows i (which determine the maximum number of orders that can be
calculated), maximum number of order and the model order range. The numbers of
block row i and model order are depend on user’s choice. It is practically experience
that it is better to over-specify the model order and to eliminate spurious numerical
poles afterwards. The poles corresponding to a certain model order are compared to
the poles of a one-order-lower model. If the eigenfrequency, the damping ratio and
the related mode shape differences are within preset limits, the pole is labeled as a
stable one and the system matrix is determined. In this thesis, the preset limits are 1%
for eigenfrequencies, 5% for damping ratio. However depend on the quality of data at
high wind speed 10% for damping ratio are set.

The number of block i has also effects the value of system matrix. As stated
before in theoretical formulation these value are in asymptotically converged. Fig. 4.7
shows example of analyzing that each elements in system matrix are converged at
number of block equal to 100. Fig. 4.8 shows that the number of block that modal
parameters ( frequency and damping ratio in this Fig.) are stable also depended on
sampling rate.

K11;H4 K12;H3 % C11;H1 4 C12;H2
-1.82 0.043 PEEL L X10 ;
0.042 6l
183 \ 5 21\
/ \ \
f 0.0a1] | 8} | \
-1.84 \ \/ of
0.04 jz\% 10t |/ — ]
/
f
-1.85 0.039 -12 2
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
K21;A4 K22;A3 2 C21;A1 3 C22,A2
0.4 -9.09 15720 ok
0.2 -9.095 \ ]
- 2f [
. /\ |
of | 9.1 A |
\ |
-4
0.2 -9.105|
0.4 -5 6L
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

No.of blocks: i No.of blocks: i No.of blocks: i No.of blocks: i

Fig. 4.7 lllustration of the asymptotically property of system matrix.

ver'req;Hz verdamp;%
2.138 0.8

\ 0.6
2.1361 |

L 04| T
21341 /o
0.2 /7
v 1/
2.132 0
0 50 100 150 200 0 50 100 150 200
tor;req;Hz tor,amp;%
4.735 0.2

0
0 50 100 150 200 0 50 100 150 200
No.of blocks: i No.of blocks: i

Fig. 4.8 lllustration of the asymptotically property of modal properties (...fs = 25 Hz,
---fs =50 Hz and solid line for fs = 100 Hz)
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After some computations, a stabilization diagram is constructed (Fig. 4.9). The
diagram is represented together with the averaged of the response spectrum for visual
reference. Singular values of the covariance Toeplitz matrix are also plotted on a log
scale with the model order (Fig. 4.10).

Fig. 4.9 Stabilization diagram obtained with the SSI-COV method (the model order
are ranging from 2 to 20).

Fig. 4.10 Singular values of the covariance Toeplitz matrix.

Finally, the program reports the corresponding eigenfrequency, damping ratio
for each pole and system matrix for combination of poles in each order. Outputs are
arranged in rows in the following format:
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- Number of blocks ,i,:
the number of block rows, i, used in system identification.

- Ordern:
The order of the system where system identification are calculated.

- Frequencies of each poles,
Eigenfrequencies of each pole are arranged in ascending order.

- Damping ratio for each poles
Damping ratio corresponding to each modal (eigenfrequency) report in

previous line.

- TEXT:“0” line
This line with “0” text is intentionally for easy visualization without any
meaning.

- Mode shape value
Mode shape values for each channel are report for each mode in
columnvise.

- Text:“SYSTEM MATRIX”
The system matrix reported is in following format:

e e
-M7K* -M"C? 21x2l

where | = number of outputs. Fig.4.11 shows example of output report where 1=2 (
vertical and torsional motion)

The second method is SSI-DATA method which can be executed by typing
function name in MATLAB command line as:

>>ssi_data

The preprocessing, preprocessing output and system identification output are
analogous to SSI-COV method except that principle angles between the row space of
future outputs and the row space of past reference outputs are plotted with the model
order, n, instead of singular values.
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Order =
4
: At number of block = 100
: At System-Order = 4
1.7042 2.5731
5.6070 2.3899
0 0
-0.0009 0.0002
0.0002 -0.0024
SYSTEM MATRIX
1.0e+002 *
-0.0000 + 0.0000F -0.0000 + 0.0000i 0.0100 + 0.0000i 0.0000 - 0.0000i
0.0000 - 0.0000i -0.0000 + 0.0000i 0.0000 + 0.00001 0.0100 - 0.0000i
-1.1465 - 0.0000i 0.1073 - 0.0000i -0.0102 - 0.0000i 0.0020 - 0.0000i
-0.0569 - 0.0000F -2.6089 + 0.0000i -0.0236 + 0.0000i -0.0095 + 0.0000i

Fig. 4.11 Example of output from both the SSI-DATA and SSI-COV methods

4.7 Verification of the Method by Numerical Tests

Before the method are applying to analyze both the free decay and the buffeting
response time histories recorded in the wind tunnel, simulated data have been tested
first in order to validate and check the performance of the method.

4.7.1 Free Decay Response Data

The preliminary tests included two synthetic but well controlled cases: two
uncoupled degrees of freedom, excited first in transient motion (free decay) and then
by a white noise loading process.

Free decay response time-series were obtained by direct calculation of
displacement values for j =4096 discrete time stations, with ‘sampling’ interval At
=0.02 s (fs = 50Hz.). Structural modal parameters used in this simulation were chosen
as representative for the practical section model setup used in the aeroelastic tests. In
this thesis, we selected the modal properties of section model based on test of Golden
Gate Bridge by Jakobsen (1995). The modal matrices are given per unit length:

0

03616 O ~ [397.0573 0 [26526 0
0 00072 ° 0 2473151" ° | 0  0.0189

i.e. fho = 1.9472 Hz, feo = 5.7573 Hz, oo = 0.035, S = 0.033, where modal
logarithmic decrements & are representative for the range of small amplitudes. The
damping ratio ¢ were then multiplied in turn with 5, 10, 20 and 40, in order to cover
values of total damping (structural + aerodynamic) which could be present in vibration
of model section under wind flow. Values as high as ¢ = 0.2 could be expected for the
vertical degree of freedom.
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Free decay (transient) responses without noise corrupted

First, the preliminary numerical tests were tested with free vibration signals
with initial displacement fixed at 15 mm and 0.08 radian for vertical and torsional
motion, respectively, and with lowest and highest damping values. This was
performed to check the applicability of the method to the free decay signal. The results
are displayed in Table 4.1, in which values of preset eigenfrequencies and damping
ratios are given together with the estimates based on both the SSI-COV and the SSI-
DATA methods. Table 4.2 displayed pre-set and identified values of system matrices
(Kand C). The response signals for both damping ratios are shown in Fig. 4.12.
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Fig. 4.12 Example of free decay responses simulated: a) &,=0.0053, &,= 0.0056,
b) ¢,= 0.2228, ¢p=0.2101

Table 4.1a Preset and identified values of frequencies, damping ratios and system
matrices for free decay response without noise, jAt = 4096 x0.02 s = 81.92
S. &= 0.0053, £y= 0.0056

SSI1-COV SSI-DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep error f | errorép fp Ep error f | errorép
1.9472 | 0.0056 | 1.9472 | 0.0056 | 0.00% | 0.00% | 1.9472 | 0.0056 | 0.00% | 0.00%
5.7573 | 0.0053 | 5.7573 | 0.0053 | 0.00% | 0.00% | 5.7573 | 0.0053 | 0.00% | 0.00%
SSI-COV SSI -DATA
preset
recovered error[%] recovered error[%]
K 397.0573 0 397.056 0 0.00% 397.06 0 0.00%
0 24.73 0 24.73 0.00% 0 24.73 0.00%
C 0.3616 0 0.3616 0 0.00% 0.3616 0 0.00%
0 0.0072 0 0.0072 0.00% 0 0.0072 0.00%
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Table 4.1b Preset and identified values of frequencies, damping ratios and system
matrices for free decay response without noise, jAt = 4096 x0.02 s = 81.92
S. &,=0.2232, £9=0.2112

SSI -CoVv SSI -DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep error f | error Ep fp Ep error f | errorgp
1.9472 | 0.2232 | 1.9462 | 0.224 | -0.05% | 0.36% | 1.9469 | 0.2228 | -0.02% | -0.18%
57573 | 0.2112 | 5.7612 | 0.212 | 0.07% | 0.38% | 5.7565 | 0.2107 | -0.01% | -0.24%
SSI -CoVv SSI -DATA
preset
recovered error[%] recovered error[%]
K 397.0573 0 396.611  0.22 | -0.11% 396.94 -0.04 | -0.03%
0 2473 | -0.068  24.76 0.12% | -0.02 24.73 -0.02%
C 14.464 0 14.47797 0.007 | 0.10% 14.4619 0.0002 | -0.01%
0 0.288 0.002 0.289 0.35% | -0.0003 0.2880 0.01%

Frequency and damping ratio estimates are practically identical to the preset
values (less than 0.5% for the highest damping case). The system matrices are also
excellent even for the short useful signal case with only a few cycles of vibration
motion. However in case of highest damping with only short useful data, the estimate
values of off-diagonal terms have small difference from zero-preset values where less
scatter from SSI-DATA are noticed. The above estimates were obtained with number
of block i=4 and order n=4.

Free decay (transient) responses with noise corrupted

In order to investigate the effect of measurement noise, free decay responses
were modified by a white noise process with the standard deviation equal to 10% of
the standard deviation of the original response. Structural data were taken as in the
previous case; N and At were the same as the previous case except that noises were
added to signals. Most of the previous works were tested with 5% -noise (see
Jacobsen 1995). In this thesis, we decided to test with 10% noise corrupting as would
represent the worsen case. Tests are performed in 20 sets; the preset and identified
parameters are shown in Table.4.2. Identified frequencies were changed at lesser than
0.8% on both estimates by the SSI-COV and the SSI-DATA. Damping ratios were
changed at most by 2% by both the SSI-COV and the SSI-DATA except in case of
lowest damping case which are 5.4 %, respectively. The higher difference in estimates
for the lowest damping case would result from assumption of noise added. In that
case, the standard deviations of the original signals are higher than the other cases
which resulting in higher standard deviation of noise added. The standard deviation
from 20 tests for frequency estimates are less than 0.5% and 1.5% for the SSI-DATA
and the SSI-COV method, respectively. The highest standard deviation of damping
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ratio estimates from the SSI-COV is 13.2% that seemed more scatter than those from
SSI-DATA which is 5.7%.

The diagonal terms of system matrices (frequency and damping matrices)
estimated by both methods are also identical to the preset values. Estimates of
diagonal terms are distorted within 1% by both methods except only for case with the
lowest damping case which values are 2.82% by the SSI-COV method. The values of
off-diagonal terms which are distorted from the zero-preset value are also noted which
terms related to Hs are highest.

Table 4.2a Preset and identified values of frequencies and damping ratios for free
decay response with 10%-noise added, jAt = 4096 x0.02 s = 81.92 s. ¢, =
0.2228, £p=0.2101

SSI-COV method
Preset Identify Error(%) standard deviation
(%0)
fp Ep fp Ep error fp error £p fp Ep

0.0056 1.9496 0.0053 0.1% -5.4% 0.2% 13.2%

0.028 1.9509 | 0.0275 0.2% -1.8% 0.2% 4.7%

1.9472 0.0557 1.9417 0.0556 -0.3% -0.2% 0.2% 2.5%
0.1114 1.9414 0.1093 -0.3% -1.9% 0.5% 2.7%

0.2228 1.9621 0.2276 0.8% 2.2% 1.3% 0.6%

0.0053 5.7570 0.0052 0.0% -1.9% 0.0% 1.9%

0.0263 | 5.7560 | 0.0266 0.0% 1.1% 0.0% 0.8%

5.7573 0.0525 5.7581 0.0534 0.0% 1.7% 0.0% 0.6%
0.105 5.7492 0.1042 -0.1% -0.8% 0.1% 0.7%

0.2101 | 5.7593 | 0.2107 0.0% 0.3% 1.3% 0.5%

SSI-DATA method

Preset \dentify Error(%) ?g/?)ndard deviation

fp Ep fp Ep error f error &p fp Ep
0.0056 | 1.9460 0.0053 -0.1% -5.4% 0.0% 5.7%
0.028 1.9465 0.0285 0.0% 1.8% 0.1% 1.9%
1.9472 | 0.0557 | 1.9332 0.0570 -0.7% 2.3% 0.3% 1.9%
0.1114 1.9472 0.1134 0.0% 1.8% 0.4% 1.3%
0.2228 1.9453 0.2258 -0.1% 1.3% 0.2% 1.8%
0.0053 | 5.7557 0.0053 0.0% 0.0% 0.0% 1.9%
0.0263 5.7579 0.0264 0.0% 0.4% 0.0% 0.8%
5.7573 | 0.0525 | 5.7547 0.0530 0.0% 1.0% 0.1% 0.8%
0.105 5.7519 0.1046 -0.1% -0.4% 0.1% 0.6%
0.2101 5.7719 0.2137 0.3% 1.7% 0.0% 0.7%
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Table 4.2b Preset and identified values of system matrices for free decay response
with 10%-noise added, jAt = 4096 x0.02 s = 81.92 s. &, = 0.2228, ¢y =

0.2101
CASE SSI -COV SSI -DATA
preset
Ep recovered error[%] recovered error[%]

ver = 397.0573 0 397.5447 -0.0054 | 0.12% 396.99 -0.22 -0.02%

0.0056 0 24.73 0.0323 24.73 0.00% -0.01 24.73 0.00%
tor = 0.3616 0 0.3514 0.0116 | -2.82% 0.3594  0.0094 | -0.60%

0.0053 0 0.0072 | -0.0009 0.0072 0.57% | -0.0038 0.0073 1.30%
ver = 397.0573 0 397.2700 0.1200 | 0.05% 396.93 0.23 -0.03%

0.028 0 24.73 0.0000 24.73 0.00% -0.02 24.73 0.00%
tor = 1.808 0 1.8023 0.0013 | -0.32% 1.8094 -0.0006 | 0.08%

0.0263 0 0.036 -0.0012 0.0360 0.00% | 0.0006  0.0361 0.40%
ver = 397.0573 0 396.7300 -0.1700 | -0.08% 395.79 0.49 -0.32%

0.0557 0 24.73 -0.0700 24.74 0.04% -0.03 24.74 0.04%
tor = 3.616 0 3.6051 -0.0034 | -0.30% 3.6055 0.0073 | -0.29%

0.0525 0 0.072 0.0029 0.0720 0.00% | -0.0012 0.0719 -0.15%
ver = 397.0573 0 397.1800 0.5900 | 0.03% 397.16 0.33 0.02%

0.1114 0 24.73 0.0100 24.74 0.04% 0.02 24.75 0.08%
tor = 7.232 0 7.2472 -0.0074 | 0.21% 7.2499  -0.0001 | 0.25%

0.105 0 0.144 0.0012 0.1439 -0.07% | 0.0052 0.1444 0.25%
ver = 397.0573 0 397.9101 1.9795 | 0.21% 396.35 0.83 -0.18%

0.2228 0 24.73 -0.0098 24.74 0.04% -0.11 24.74 0.03%
tor = 14.464 0| 145081 -0.0348 | 0.30% 145076 0.0125 | 0.30%

0.2101 0 0.288 | -0.0010 0.2886 0.20% 0.0052 0.2896 0.57%

4.7.2 Simulated response including the motion-induced forces

Next step in the simulation was a test with full effective stiffness and damping

matrices (i.e. coupled degrees of freedom) and with lift and moment forces of the
white noise type, as assumed in the SSI-method.

For the mean-wind speed equal to U=10.26 m/s, air density p=1.18 kg/m?, and

aerodynamic derivatives assumed according to the values reported for a similar bridge
cross-section (see Jakobsen 1995), the effective stiffness and damping matrices, per
unit length, were pre-set as:
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e

{8.9308 —0.0799}
1 Ke

420.1002 —59.1805 26526 0
0.4345 0.0386 R

1.7552  19.6652 0 0.0189

The mass matrix was as in section 4.7.1. The response time-series were
simulated with 10% turbulence intensity wind; then measurement white noises were
superimposed on the simulated response.

Free decay (transient) response with noise corrupted

Preset and identified parameters are shown in Table 4.3, 4.4 and 4.5 for free
decay responses to fix initial displacement with noise-free, 5% and 10% noise,
respectively. Results are compared for those estimated by both SSI methods.
Estimates of vertical frequency and damping by both methods are still excellence with
precision within 1%. Estimates of the torsional frequency are still identical to the pre-
set value while torsional damping are effected by noise added to less precision within
3% where estimated values from SSI-COV seemed to have more effected than SSI-
DATA.

The stiffness and damping matrices estimated are also agree well with preset
values with only few percent differences in noise-free case where most differences are
in terms those related to A;” and . H,". The noises added to the simulated signals are
tentatively decreased the precision of these matrices. However, the precision of the
diagonal terms still in good precision which are around 1% differences.
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Fig. 4.13 Example of transient responses simulated under wind flow
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Table 4.3 Preset and identified values of modal parameters and matrices for free decay
response without noise added, jAt = 4096 x0.02 s =81.92 s.

SSI-CoV SSI -DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep error f | errorép fp Ep error f | errorép
2.0157 | 0.1559 2.0152 0.1561 | -0.04% | 0.64% | 2.0147 | 0.1552 | -0.05% | -0.45%
5.1332 | 0.0226 5.1351 0.0230 | -0.04% | -0.44% | 5.1334 | 0.0229 | 0.00% | 1.33%
oreset SSI-COV SSI -DATA
recovered error[%] recovered error[%]
K 420.1002 -59.1805 | 419.51 -59.15 | -0.14% -0.05% | 419.99 -59.23 | -0.03%  0.08%
1.7552 19.6652 1.83 19.65 | 4.26% -0.08% | 1.78 19.62 | 1.42% -0.25%
c 8.9308 -0.0799 | 8.9896 -0.0775 | 0.66% -3.00% | 8.8956 -0.0819 | -0.39%  2.56%
0.4345 0.0386 0.4352 0.0385 | 0.16% -0.26% | 0.4363 0.0391 | 0.42%  1.24%
Table 4.4 Preset and identified values of modal parameters and matrices for free decay
response with 5% noise added, jAt = 4096 x0.02 s =81.92 s.
SsI-cov SSI-DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep error f | errorép fp &p error f | errorgp
2.0157 | 0.1559 2.0149 | 0.1569 | -0.02% | 0.13% | 2.0142 | 0.1567 | -0.07% | 0.51%
51332 | 0.0226 | 5.1312 | 0.0225 | 0.04% | 1.77% | 5.1295 | 0.0223 | -0.07% | -1.33%
preset SSI -COV SSI -DATA
recovered error[%] recovered error[%]
K 420.1002 -59.1805 | 2.0174 0.1564 | -0.15% 0.02% | 419.63 -59.09 | -0.11% -0.15%
1.7552 19.6652 | 5.1339 0.0232 | 7.11%  0.08% 1.71 19.64 | -2.58% -0.13%
C 8.9308 -0.0799 | 8.9445 -0.0793 | 0.15% -0.75% | 8.9874 -0.0781 | 0.63% -2.25%
0.4345 0.0386 | 0.4335 0.039 | -0.23% 1.04% | 0.4325 0.0381 | -0.46% -1.30%
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Table 4.5 Preset and identified values of modal parameters and matrices for free decay
response with 10% noise added, jAt = 4096 x0.02 s = 81.92 s.

SSI-CoV SSI -DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep error f | errorép fp &p error f | errorgp
2.0157 0.1559 2.0149 | 0.1569 | 0.08% | 0.32% | 2.0131 | 0.1560 | -0.13% | 0.06%
5.1332 0.0226 5.1312 | 0.0225 | 0.01% | 2.65% | 5.1327 | 0.0227 | -0.01% | 0.44%
preset SSI -COV SSI -DATA
recovered error[%] recovered error[%]
K 420.1002 -59.1805 | 421.15 -59 0.25% -0.30% | 418.51 -59.17 | -0.38% -0.02%
1.7552 19.6652 1.64 19.67 | -6.56%  0.02% 1.89 19.67 7.68%  0.02%
C 8.9308 -0.0799 | 8.9963 -0.0743 | 0.73% -7.01% | 8.9488 -0.0779 | 0.20% -2.50%
0.4345 0.0386 | 0.4302 0.0392 | -0.99% 1.55% | 0.4276 0.0386 | -1.59%  0.00%

Buffet response

Finally, the response time-series were also simulated for the case of buffeting
responses (without initial displacement) to check performance of both the SSI-COV
and the SSI-DATA. The effective stiffness and damping matrices as well as At were
taken as in the case of free decay; examples of response time-series are as shown in
Fig. 4.14. Tests are performed for noise-free and 10%-noise added case. As predicted
in theory, buffeting responses required longer recorded data to yield acceptable results.
Tests with very short period of data as in transients response (N=4096) result in
relatively large differences between preset and recovered values.

Buffet responses without noise corrupted

Table 4.6 displays estimated parameters by both the SSI-COV and SSI-DATA
for N=20000 discrete time-stations in noise-free case. Several tests by varying
simulated length were performed and the results show that parameters estimation are
improved according to the time recorded until at N=20000 where estimated parameters
are not much further improved beyond this point.
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Fig. 4.14 Example of buffet responses simulated under wind flow; a) total response, b)

part of response for noise-free case, c) part of response for 10%-noise added .
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Table 4.6 Preset and identified values of modal parameters and matrices for buffeting
response without noise, jAt = 20000 x0.02 s = 400 s.

SSI-Cov SSI -DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep error f | errorép fp Ep error f | errorép
2.0157 | 0.1559 2.0183 | 0.1585 | 0.13% | 1.67% | 2.0062 | 0.1562 | -0.47% | 0.19%
5.1332 | 0.0226 51326 | 0.023 | -0.01% | 0.44% | 5.1336 | 0.0228 | 0.01% | 0.88%
SSI-CoV SSI -DATA
preset
recovered error[%] recovered error[%]
K 420.1002 -59.1801 | 421.54 -59.13 | 0.34% -0.08% | 420.62 -59.17 | 0.12% -0.02%
1.7552  19.6652 | 1.72 19.66 | -2.01% -0.03% | 1.83 19.67 | 3.99% 0.03%
C 8.9308  -0.0799 | 9.156 -0.0745 | 2.52% -6.76% | 8.9972 -0.0774 | 0.74% -3.12%
0.4345 0.0386 | 0.431 0.0387 | -0.81% 0.26% | 0.4374 0.0390 | 0.66% 1.14%

Estimates of the frequencies and damping ratio by both methods agree well
with preset values where precisions are within 0.5% and 2%, respectively. The
diagonal terms in stiffness and damping matrices also agree well with preset values
where differences almost in 1% except in case of Cjj(related to vertical damping)
estimated by the SSI-COV which is around 2.5%. The most differences in off-
diagonal terms are K; and Cy; that relate to A4* and Hy*, respectively.

Buffet responses with noise corrupted

Next, the measurement white noise were superimposed to the simulated
responses under ~10%-turbulence wind flow. Sample of simulated signals with 10%
noise added is shown in Fig. 4.13c. N and At are same as noise-free case except that
100 simulations are performed instead of 20 as in previous cases. Table 5.7 shows
parameters estimated by both the SSI-DATA and the SSI-COV methods. Frequencies
estimated from the SSI-DATA are practically identical to preset values with precision
within 1% while damping estimatation are more affected by noise with precision
within 4%. The frequencies precision estimated by the SSI-COV are more vulnerable
to noise; the precision were reduced to within 3% in case of vertical. This effect is
more pronounced in case of estimated damping ratio where large difference between
preset and recovered values are seen especially in vertical mode as damping ratio is
very high.

For stiffness and damping matrices estimation, the SSI-DATA shows more
sustainable to noise added compared with the SSI-COV. For the SSI-DATA, the most
differences between preset and estimated values are term relating to As* and H,* as
similar to those from noise-free case; maximum 5% for As*-related term. In case of
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the SSI-COV, not only term relating to As* and Hy* but also H;* were affected by
noise added with relatively large differences from preset values.

percents even when simulated signals were corrupted with large noise.

These results show that the SSI-DATA are tentatively more sustainable to
noise than the SSI-COV. The precision of estimated parameters are within few

Fig. 4.15

shows frequencies and damping ratio estimated by both SSI methods where more
scatter are seen in vertical damping estimated by the SSI-COV.

Table 4.7 Preset and identified values of modal parameters and matrices for buffeting
response with 10%-noise noise, jAt = 20000 x0.02 s = 400 s.

SSI -CoVv SSI -DATA
Preset Identify Error(%) Identify Error(%)
fp Ep fp Ep errorf | errorép fp Ep error f | errorép
2.0157 | 0.1559 | 1.9557 0.133 -2.98% | -14.69% | 2.0320 | 0.1597 | 0.81% | 2.44%
5.1332 | 0.0226 | 5.1392 0.021 0.12% | -5.31% | 5.1292 | 0.0235 | -0.08% | 3.98%
oreset SSI -CoOV SSI -DATA
recovered error[%] recovered error[%]
K 420.1002 -59.18 | 429.45 -58.95 | 2.23% -0.38% [ 420.34 -59.20 | 0.06%  0.04%
1.7552  19.6652 | 1.5591  19.66 | -11.17% -0.03% 1.86 19.67 | 5.74% 0.03%
C 8.9308 -0.0799 | 9.6940 -0.0576 | 8.55%  -27.86% | 8.9964 -0.0782 | 0.73% -2.16%
0.4345  0.0386 | 0.4333 0.0388 | -0.28% 0.50% | 0.4392 0.0385 | 1.09% -0.27%
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CHAPTER 5

INDUSTRIAL RING ROAD BRIDGE:
Prototype and Modeling

5.1 Description of the Bridge

5.1.1 Location

The Industrial Ring Road Bridges are part of the royally-initiated, the
Industrial Ring Road Project, that aims to solve traffic problems within Bangkok and
surrounding areas. The project comprises a new road and bridge network which links
up the major industrial areas of Klong Toey Port, Pu Chao Saming Phrai Road in
Samut Prakarn, Suksawad Road to the west and Rama 111 Road to the north. In future
the system will link up to the southern ring road. The total length is around 25
kilometers (Fig.5.1). The outstanding and unique feature of the industrial Ring Road
project is the two suspension bridges, one after another, crossing an oxbow in the
Chao Phraya River. The bridges are designed with 173 meter tall diamond shaped
pylons with double plane I-shape cable stays. The back spans of both bridges are of
pre-stressed concrete while the main spans are steel/concrete composite deck
structures. The main spans are 398 meters and 326 meters in length, for the South
Bridge and the North Bridge (Fig.5.2 and Fig. 5.3), respectively. The project is owned
by the Department of Rural Roads, Ministry of Transport (formerly the Public Works
Department, Minister of Interior) and funded by the Thai Government and loans from
the Japan bank for International Cooperation (JBIC). Engineering is being undertaken
by the Association of Consulting Engineers, a consortium of Asian Engineering
Consultant Corp., Ltd., TEAM Consulting Engineering and Management Co.,Ltd.,
Thai Engineering Consultant Co.,Ltd. Index International Group Co.,Ltd. and Jean
Muller International.

5.1.2 Dimensioning Details

The North Bridge has a center span of 326 m and two side spans of 125.1
m each. To accommodate large vessels, navigation channel was required to be 220 m
wide and 46.27 m high, necessitating the length of the center span of the bridge; which
is designed as double-plane cable-stayed type. The deck is supported by two diamond
shaped pylons, each 164 m in height (above sea level) which rest on bored pile
foundations. These towers are constructed using reinforced concrete.

The South Bridge that used as prototype in this study has a center span of
398 m and two side spans of 155.6 m each. The navigation channel was 250 m wide
and 50.50 m high. The deck is supported by two diamond shaped pylons, each 173 m
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in height (above sea level) which rest on bored pile foundations. These towers are
constructed using reinforced concrete as same as those of the North bridge.

The bridges are suspended from the pylons by three types of cable stay,
with comprises of 61, 75 and 91 strands. Each strand itself composes of 7 cable
quality strands with a HDPE sheath and wax coating. Fig. 5.2 and 5.3 gives an
elevation of the bridges. The side spans of both bridges are of pre-stressed concrete
while the main spans are concrete composite deck with I-shaped steel girders. The
deck is supported by two cable planes. The deck was designed to accommodate 7-lane
traffic with 35.9 m in width and the maximum height is 3.26 m. Fig. 5.4 shows the
full scale dimensions of the deck of South Bridge. The tower details are as shown in
Figs. 5.5. The mass and mass moment of inertia per unit length of the deck are 43000
kg/m and 4.11x10° kg-m2 /m, respectively.

There are three railings: one on each side of the deck and one at the center
which will act as a traffic divide (three and four lanes on each side). The side railings
are provided mainly as guard rails for the traffic. The railings are made of steel beams
of circular cross section supported on steel columns placed on top of concrete barrier.
Details are given in Fig. 5.6. The geometry described in this section and the dynamic
characteristics mentioned in the following section are according to the initial design of
the prototype-bridge (DMI, 1995).

5.2 Bridge Modeling

5.2.1 General

It is well established that careful bridge modeling plays an essential role in
the wind resistant design of long-span bridges. Usually the design process begins with
the selection of a deck configuration after fixing the dimensions of the deck width,
span lengths, height of the tower and other bridge parameters. These are usually
governed by serviceability requirements. In order to verify whether the given
configuration of the deck is safe against flutter instability and exhibits acceptable
levels of buffeting response, a section model and a full model of the bridge are often
made. Sometimes, in addition to these models, a "taut-strip model” is also made. A
description of the essential features of each of these models and their advantages and
limitations may be found in Scanlan (1983), Hjorth-Hansen (1992), Davenport et al.
(1992) and Irwin (1992). Since making a full model of the bridge is a time-consuming
and expensive process, usually only a section model is made in the initial design stage.
After appropriate modifications of the deck configuration are made, and deck design is
finalized, a full model may be made and subjected to a properly scaled three-
dimensional turbulent flow for checking of the design. Making a section model is
therefore usually the starting point for any wind-induced response analysis of flexible
bridges. The next section will deal with the essential background needed to
understand the section modeling technique and how the modeling features can
possibly be improved so that the end result is a more accurate estimation of the
prototype response.
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Section Model

The primary purpose of this model is to establish that the proposed contour
of the bridge deck has aerodynamically stable characteristics. Acceptance of a deck is
based upon considerations of flutter stability and the impact of vortex-induced
oscillations. Thus, a rapid check is first made on the preliminary design of the deck
configuration. After establishing that the deck is aerodynamically acceptable, usually
small modifications or any other added requirements are made to the deck for aesthetic
reasons or other constraints that the bridge might need to satisfy. The section model
also serves this intermediate design process by providing feedback as to whether or
not these local changes render the deck aerodynamically unstable. The section model,
in effect, is an analog simulator that reveals aerodynamic mechanisms affecting bridge
stability and general response. After the final design of the deck is fixed, the section
model serves as a means to investigate the static and dynamic forces expected on the
prototype deck.

A section model represents a typical section of the bridge, including its
proper degrees of freedom. It must duplicate faithfully, to scale, the local geometric
forms and details of the prototype deck. In fact, it is in principle intended to represent
the prototype aerodynamically, not simply geometrically. Two end plates are usually
attached on each side of the section model parallel to the flow to reduce the end effects
and enhance the two-dimensionality of the flow. The size of the end plates is usually
decided based on the model dimensions. The model is then suspended from a set of
springs configured so as to give the proper degrees of freedom, usually one (vertical or
torsional) or at most two (vertical and torsional). With the increased importance of the
sway motion in the context of very long cable-stayed bridges an additional along-wind
or sway degree of freedom may be added. This requires an additional sway degree of
freedom in experimental set up, however this is not usually the case.

The frequencies of oscillation of the model, determined by selecting the
proper stiffness and spacing of the springs, should be decided very carefully and are
chosen as discussed below. It is known from the principles of similitude (Simiu and
Scanlan 1996) that the reduced velocities of the prototype [U/], and the model [U(]n

should match, which means
U u
U], = {EL = {El =[U,], (5.1)

where f is the frequency (Hz). The non-dimensional flutter derivatives, the
aerodynamic admittance functions and the normalized spectra of the buffeting forces
are functions of the reduced velocity or reduced frequency (=fB/U). In some
circumstances this may require that the ratios of all three frequencies (bending,
torsion, sway) of the section model subjected to a coupled motion be close to unity, so
that while estimating the flutter derivatives associated with different degrees of
freedom, one can use anyone of the frequencies to calculate the reduced velocity.

For example, if the two frequencies are different for a two-degree-of-
freedom (vertical and torsional) model then an appropriate choice for calculating the
reduced velocity would be to use the frequency associated with the vertical mode for
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the flutter derivatives H;,H;, A, A, and the frequency associated with the torsional
mode for the flutter derivatives H,,H;,A,A;. This implies that the range of flow

velocities over which the model should be tested for a fixed range of reduced velocity
will vary according to the associated oscillation frequency.

The purpose of the section model is to reliably duplicate the static or
dynamic forces according to the velocity scaling and the geometric scaling. Since the
static coefficients depend strongly on Reynolds Number - particularly in the lower
range- it should be ensured that the scaled forces acting on the small details of the
model are not too different from what they would be in the prototype. It can be shown
that the prototype static force,

Wl | %
Cm
I:FL,D . :[FL,D mx|: CL'D:| = = (5.2)
p

where

C.p are the static lift, drag coefficients,
FLp are the corresponding static forces,
A, = [B]m /[B], is the geometric scale,

A = [U]m /[U]p, is the velocity scale and

¢, =[CLpIwICLp Ip

where the subscripts p and m denote prototype and model, respectively. Thus,
depending upon the Reynolds numbers holding in the field and in the wind tunnel, the
A, may be much different from unity (usually> 1). To overcome this difficulty, a

cross section of modified shape and scaled area of its details relative to the prototype
may be used. This procedure was used in the design of the railings of the IRR Bridge
section model and is discussed in the next section.

5.2.2 Industrial Ring Road Bridge Section Model

A 1:90 geometrically scaled section model of the Industrial Ring Road
Bridge (IRR Bridge) was constructed of wood. The width and the maximum depth of
the model are 399 mm and 32 mm, respectively. The length of the section model was
selected as 2260 mm to be compatible with the wind tunnel used (2.5 m width,
Appendix B). All details were scaled down geometrically, with exception of some
details such as edge parapets and railing. The walkway beneath the deck was not
included in the model. A walkway with an open steel grid is judged to have
negligible effect on the results as the walkway is behind the internal girders and the
edge girder. Furthermore, it is partially covered by the flanges of the cross-girders.

The thickness of the deck slab, the internal girders and the edge girders
were exaggerated in the model design as a pure geometrical scaling of these items
would results in impractically the dimensions with too little stiffness. However, the
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edge of the deck slab was modeled with correct thickness and the outer part of the
bottom flange on the edge girders was also modeled correctly.

The inside was included in the exaggerated web thickness. For the internal
girders the web thickness was given as same the bottom flange width. The cross
girders were modeled with correct flange width and only slightly exaggerated web
thickness. The dimensions of the model are shown in Fig.5.7

In order to simplify the production of the railings, the number of vertical
posts were halved (two lumped into one) and the windward dimensions were doubled
given the same wind area. The horizontal round elements in the railings were modeled
to match the drag of the model item with that of the full-scale item such that

[CoA], =[CoA], xFD/ A

where Cp is the drag force coefficient of the item and A is the projected area normal
to wind, i.e. length x diameter. FD is a factor which indicates how well the drag
forces match (it should be ideally equal to 1.0). In this process the two lower rail
elements were lumped into one. Details of railings are outlined in next section.

All elements in the model were manufactured from wood, except the lower
horizontal element in the railings and bottom plates of edge girders which were made
from plastic wire mesh and aluminum.

In order to have sufficient vertical and torsional stiffness of the model a
so-called”’king-post” was installed. A king-post is a stiffening system composed of
two posts and 16 gauges wires, see Figs. 5.8 and 5.9. As the king-post is symmetric
from above and below the deck, and as it only consists of round members lift / vertical
motion and moment / torsional motion are not influenced by the king-post.

The measured drag force coefficients are corrected for the increased drag
caused by the king-post as described later in this study. The model cross section
dimensions are shown in Fig. 5.7 and the section model is shown in Fig. 5.8 and 5.9.
The design of the railings for the model needs further discussion.

Railing Design

It was difficult to make a geometrically scaled model of the railing because
of the small dimensions involved: the smallest scaled dimension was 0.67 mm.
Further, since the Reynolds number in the wind tunnel corresponding to this
dimension was very small, the coefficient of drag would have changed significantly if
a geometrically-faithful cross section of the railing had been used. The alternative was
to use a replacement which was readily available and yet duplicated the aerodynamic
and aeroelastic forces scaled according to the velocity and length scales only. It was
decided to use a portion of a wire mesh for the railings. According to this, the
numbers of vertical posts were halved (two lumped into one) and the windward
dimensions were doubled given the same wind area. The horizontal round elements in
the railings were modeled to match the drag of the model item with that of the full-
scale item such that FD is closed to 1. The method for selecting a particular wire mesh
size is demonstrated below:
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[R], = [Fo]mxw—:jz X(%jszD

uy (AY
%pUICEA, :%pUiCQA;x[—pJ x{—pj xFD
U, A,
2
FD = inﬁ’ (5.3)
ey A
where
C) and CJ are the static coefficients of drag as function of Reynolds number
corresponding to prototype and model, respectively,

U, and U, are the mean wind velocities acting on the prototype and model,

respectively,
A, isthe area of unit length of the prototype railing,

p
A, is the area according to geometric scale and A, is the area actually provided for

the railing of unit length on the model, and
FD is a factor which indicates how well the drag forces match (it should be ideally
equal to 1.0).

The wire meshes used to model these railings are shown in Fig. 5.7. The
selection process for the wire mesh for railing is outlined below.

Design of Railing

The Reynolds Number for the prototype, Re, , is 2.24 x 10* < %e, < 3.36
x 10° for a typical railing dimension of 168 mm and wind velocity ranging between 2
m/s and 30 m/s. For this range of Re, the static drag coefficient CJ is 1.20. The wire

mesh selected has a wire diameter of 1.0 mm. If the velocity for the wind tunnel
testing varies between 1 m/s to 10 m/s (typically) then the Reynolds number for the
model Re, varies between 67 to 675. The drag coefficient for a circular cylinder CJ

varies in the range 1.2 and 2.0 i.e, 1.0 < 2, < 1.67. Since A,= 0.703 m? per 2 m

length of prototype railing, A, = 58.37 mm? per 22.2 mm length of model railing and
A, = 1/90, then by using Eqg. (5.3) it can be shown that FD varies between 0.89 and

1.48 where 1.48 corresponds to the highest velocity of the section-model tests. Thus,
the values of FD and is close to one, as desired, especially at desired velocities.
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Fig. 5.1: Industrial Ring Road Bridge: location and plan
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Fig. 5.5 Tower details of the South Bridge.
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Fig. 5.6 Railing details of IRR-South Bridge : a) Side rail details b) center barrier
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a) b)

Fig. 5.8 The Industrial Ring Road Bridge: section model with king-post before the
end plates installed. a) top of bridge b) bottom of bridge

a) b)

Fig. 5.9 The Industrial Ring Road Bridge after the end plates installed a) seen from
above Db) seen from below
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CHAPTER 6

METHODOLOGY AND
WIND TUNNEL TEST METHODS

The wind-tunnel experiments described in this chapter were conducted to
extract the aeroelastic and aerodynamic parameters required for the analysis of the
prototype bridge. All the flutter derivatives were found simultaneously from two-
degree-of-freedom coupled-motion section-model tests using the system identification
method described in the previous chapter. These tests were performed under both
smooth and turbulence flows. Single-degree-of-freedom tests — vertical and torsional —
were also performed to extract the direct flutter derivatives which were then compared
with those found from coupled-motion tests. The static aerodynamic coefficients
required to estimate the buffeting response were determined from fixed section-model
tests under smooth and turbulent flows. In all the experiments performed under the
turbulent flows the approximate two-dimensional turbulent flows were generated
using grids and spires.

To evaluate the applicability of the present technique in flutter derivatives and
aerodynamic coefficient estimation of bridge decks, wind tunnel tests of a quasi-
streamlined thin plate model were first performed under smooth flow and results were
then compared with the literature. Encouraged by the success in the thin plate model
the flutter derivatives and the static aerodynamic coefficients of the IRR Bridge were
estimated using the present technique.

6.1 Flow Conditions

The experiments were performed in the TU-AIT Wind Tunnel at Thammasat
University. This tunnel is an open type wind tunnel with a cross-section of 2.50 m
(width) x 2.50 m (height) and 22 m (length). A schematic diagram and additional
details of the tunnel are given in Appendix A. The maximum wind speed is 20 m/s.

6.1.1 Smooth Flow

The section model was tested in smooth flow to determine the static load
coefficients, the stability (flutter) limits, flutter derivatives and also to identify any
potential vortex-shedding oscillations. The smooth flow was achieved with an empty
wind tunnel. The turbulence intensities were measured with an x-wire hot-wire
anemometer at the position of the section model which is approximately 4.0 m
downstream from the wind-tunnel inlet. The turbulence intensities at the test section
are of the order < 0.5 %. Figs. 6.1 and 6.2 show the mean wind speed and turbulence
intensities across the tunnel section.
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6.1.2 Turbulence Flow

The IRR Bridge section model were also tested to determine the static load
coefficients, the stability (flutter) limits, flutter derivatives and to identify any
potential vortex-shedding oscillations in two turbulent flows. The lower turbulence
intensity was achieved by installing three spires at the wind-tunnel inlet. The spires
are triangular-shape with 1.8 m high, and the width is 0.35 m at the base. The position
and dimensions of the spires are shown in Fig. 6.3. The horizontal velocity profile
across the tunnel section of the mean wind speed and turbulence intensities were
measured and shown in Figs. 6.4 and 6.5. The measured longitudinal and vertical
turbulence intensities at the model deck level were 5.2% and 5.1%, respectively. In
this study this turbulence referred to as “5%-turbulence”.

The measured velocity spectrums have been fitted with both the Kaimal-and
von Karman-type spectra as (Stremmen 2006):

Kaimal spectra

For longitudinal component:

fS,(f) _ 6.8 f
o, (1+1.5- 6.8 fA)S/3

For vertical component:

fS,(f) 94f
O (1+1.5-9.4f)5’3

Karman spectra

For longitudinal component:

fS,(f) 4f
o, (1+70.8f2)5'6

For vertical component:

ts,(f) 4f(1+755.27)

2 ~ 11/6
o 1+ 283.2f2)

where f=fL /U and L is the integral length scale of the relevance turbulence
component.



118

44 80 80 46

section model level

Fig 6.3 Spires in the wind tunnel. (dimension in centimeters).

1.30 ! . : ! :
T e S T
[ 1 1 1 1 1
£ ‘ i ‘ ‘ i
afg 110 f--------dmmmm oo pEEEEEEl EEEE L Ll P
IS : A DX :
§ 100 +--—-————- % ______ 6-& ________ ,?____18___,:_0 ______ §i :r _________
E ‘ i ‘ ‘ i
o) I 1 I I 1
~ 090 f-------- et [ttt i Eiiaiaiaii i
< : : : ! X4.48m/s
I 1 1 1 1
:E) 0.80 F---mmmmm e A F xX6.27m/s |
| i i i 08.06 m/s
0.70 — 5 I R
-1500 -1000 -500 0 500 1000 1500

Distance from Wind Tunnel Centre

Fig 6.4 Horizontal mean wind speed profiles at the section model position: 5%-
turbulence flow.



119

]

2

S T

N ———

S T

X4.48m/s -

x6.27m/s |
08.06 m/s

|
500

|
-500
Distance from Wind Tunnel Centre

1500

1000

-1000

7.0

6.0 f--------

30 f--------

(9%) NI ‘sanisuaul aduUa|NGINY

-1500

a) Longitudinal turbulence

1 1 1 1 w w w

1 1 1 1 = = =

i | 1 ! E E E

| i i i ® ~ ©

| i i i RS
---L,----_r----"----h---m © oOo 4

1 Q 1 1 VA

1 1 1 1 1 1

1 1 1 1 1 1

X 1 1 1 1
F-—~"" 1=~~~ fr=-===|=-=~="=t~-===|===°%1=-=-=--7T

1 1 1 1 1 1

,OVNA_ 1 1 1 1
||||J|||QA||||_||||4||||_|||||_|||||
I SR PR SRR

1 K 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

& i i | |
F-——"=" "~~~ ~"~"r=-=—"~="= "~ ~~=~=7T- """ r="7"1°"°°7T

1 1 1 1 1 1

1 1 1 1 1 1

} } } ; } }
2 o 9o 9 o o o 9
~ o mn <t o N — o

(9%) M| ‘sanisuaul 8duaNQIN}

-1000 -500 500 1000 1500
Distance from Wind Tunnel Centre

-1500

b) Vertical turbulence

Fig 6.5 Turbulent flow intensities across the wind tunnel section at the section model

position: 5%-turbulence flow.

Fig. 6.6 .shows the longitudinal and vertical measured spectra of the 5%-

turbulence flow.
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The higher turbulence was obtained by placing a grid at 0.5 m downstream of
the spires. The grid is illustrated in Fig. 6.7. The mean wind speed and the turbulence
intensities were measured prior to the tests. The results are shown in Figs 6.8 to 6.10.
The measured longitudinal and vertical turbulence intensities at the model deck level
were 7.9% and 7.0%, respectively. In this study, this turbulence referred to as “8%-
turbulence”. The measured velocity spectra have been fitted with both the Kaimal-and
von Karméan-type spectra as (Stremmen, 2006) as shown in Figs. 6.9 and 6.10.
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6.2 Test Procedures

The streamlined thin flat plate which main parameters are shown in Table 6.1
were firstly tested under smooth flow. The width-to-height ratio is equal to 22.5. The
experiments can be classified in the following categories:

(i) Single-degree-of-freedom vertical- or torsional-motion tests to extract the
direct flutter derivatives under smooth flow.
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(if) Coupled-motion two-degree-of-freedom vertical and torsional motion tests
to extract both the direct- and cross-flutter derivatives under smooth flow by both
initial (free decay) and without initial displacement (buffeting) methods.

(iii) Fixed section-model tests under smooth flow to determine the static
aerodynamic coefficients (Cp, C, Cu) with angles of attack vary from -12° to +12° in
steps of 3°.

Tests i) and ii) were performed in the dynamic rig. Test iii) were performed
in the static rig. The wind tunnel equipments and the test procedures are described in
Appendix B.

Having success in verification of the streamlined thin flat plate model, the
bridge model under study was of the IRR Bridge, details of which are given in chapter
5. The main parameters are shown in Table 6.2. The experiments were performed
under smooth and two turbulence flows included

(i) Coupled-motion two-degree-of-freedom vertical and torsional motion tests
to simultaneously extract both the direct- and cross-flutter derivatives under smooth
flow by both the free decay and the buffeting methods and only the buffeting method
under two turbulence flows.

(iii) Fixed section-model tests under both smooth and two turbulence flows
with angles of attack vary from -12° to +12° in steps of 3°.

Table 6.1 Main parameters of the quasi-streamlined thin plate model

Parameter Mark Unit Value
Length | m 2.30
Width B m 0.45
Height H m 0.02
Mass per unit length M kg/m 6.7391
Inertial moment of mass per unit length N kg m? m 0.11832
Inertial radius R m 0.1325
First bending frequency fr, Ny Hz 1.65
First torsional frequency o, Ny Hz 2.73

First torsion-bending frequency ratio £ 1.65
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Table 6.2 Main parameters of the IRR Bridge section model

Parameter Mark Unit Prototype Value
Length | m - 2.26
Width B m 0.399
Height H m 0.032
Mass per unit length M kg/m 43000 5.6801
Ilgr?gtir?l moment of mass per unit 3, kg m% m 4 11x10° 0.17262
First bending frequency f, Ny Hz 0.376 2.13
First torsional frequency fu, Ny Hz 0.850 4.73
First torsion-bending frequency ratio £ 2.26 2.22

6.3 Experimental Configuration

6.3.1 Static Tests

The section model was installed about its centre of rotation in the static rig
inside the wind tunnel. The force gauges of the static rig were connected to a data-
acquisition PC through amplifiers and filters. Samplings were performed at 200 Hz
and the signals are filtered at 10 Hz.

Two six-components force gauges (JR3 sensor, Model No. 45E15 ) were used.
Each sensor was installed at both ends of section model and connected to External
Electronic Box of JR3 sensor by a special cable provided. Overload Alarm & Power
supply were also connected to External Electronic Box. Analog signals from External
Electronic Box were then passed through analog amplifiers and filter, digitized by A/D
converter and stored in PC by special software (LabView).

The force gauges were calibrated in order to establish the relation between the
Volt signals read on the PC and the forces on model. Since the sensor is a six-
component load cell, all six components in directions (+ve and —ve) (total of 12
calibrations) was individually calibrated to determine calibration matrix. This was
performed with calibration apparatus designed to apply each component of forces
(total 12) almost purely as shown in Fig. 6.1. The calibration was performed under 3
load (or moment) level. Once the calibration was finished, the calibration matrix is
calculated using regression analysis.
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After the model installation was completed, calibration of force gauges was
again conducted to confirm accuracy of test-setup and the calibration matrix. This is
because the JR3-sensor is very sensitive to tightening force. The drag forces were
calibrated by pulling the model in the along-wind direction with known masses, using
a string attached to the model centre and run over a pulley mounted at the corrected
height for a horizontal pull. The lift forces were calibrated by hanging known masses
to the model. The torsion forces were calibrated by applying known masses at fix
distance from centre of the model. This set-up results in both torsion and vertical
force readings. The applied moment is calculated as the applied masses times the
distance (arm) from the center of rotation of the model to the point of load application.

The basic arrangement for the fixed section-model tests (static rig) consisted of
the following:

(i) Two force gauges (JR3 sensors) to which the section model could be fixed
via hollow cylinder arms. These arms are made of aluminum with smooth surface.

(i) Data acquisition system consisted of External Electronic Box, Overload
Alarm & Power supply, Analog amplifier and filters, A/D converter and PC.

The instrumentation and other equipments which were common to both
suspended- model (dynamic rig) and fixed-model (static rig) tests are listed below.

(i) A pitot tube connected to pressure sensors and data acquisition systems
consisting of a personal computer and Analog to Digital Converter. The pitot tube
was kept downstream of the model along the center line of the tunnel and was used to
measure the mean wind velocity of the flow. Also the mean wind speed was recorded
using “ Hot-sphere” type wind anemometer.

(i) A multichannel data acquisition systems supported by a PC and data
acquisition software.

(iii) A set of grids and spires, one of which could be inserted upstream of the
model to generate a two-dimensional turbulent flow.

(iv) A hot-wire anemometer to measure the turbulence intensities of the flow.

Full descriptions of the set-up and instrumentation are given in Appendix B.

6.3.2 Dynamic Tests

The section model was installed in the dynamic rig about the centre of rotation
of the section. The basic set-up for the suspended-model tests consisted of the
following:

(i) The section model, suspended from a set of four supports with upper and
lower springs at each support, thus it can oscillate vertically and in torsion (about a
transverse axis). Piano wires were used to arrest the motion of the model in the along-
wind direction. The vertical length of the spring can be adjusted to set proper vertical
frequency. The torsional frequency is set by adjusting spacing between the springs at
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each end of the model. In case of single-degree-of-freedom tests, additional wires
were used to arrest one of vertical or torsional motion and allow another motion.

(if) An electromagnetic release system which could be operated from outside the
tunnel to give an initial vertical or torsional (or both) displacements to the model.

The instrumentation which used in tests besides those common with static tests
are listed below.

(i) The laser displacement sensors were used in recording displacement time
histories of the model. The laser displacement sensor consisted of sensor head and
control block. The sensor head was attached on fix-frame at a distance from measured
object. This distance is depended on type and model of sensor. Two laser used are
KEYENCE LB300 with measured displacement range of + 100 mm and the
resolution of 50 xm. Each sensor was set up at equal distance from the center of

rotation.

(i) Two acceleration transducers were used in recording acceleration time
histories at the mid-section of the model. The acceleration sensor consisted of the
acceleration transducer model AS-2GB, the PCD 300A sensor interface and control
software. The transducer has almost constant frequency response (within +5%) up to
80 Hz.

Full descriptions of the set-up and instrumentation are given in Appendix B.

6.4 Determination of Stiffness, Mass and Mass Moment of Inertia

After the bridge section model was completely set in the dynamic support
system with the piano wires limited the along wind motion. Then the mass and the
mass moment of inertia have to be determined. It was necessary to determine the
vertical and torsional stiffness, mass and mass moment of inertia of this system. If a
mass m; is added to the model along its centerline (so that the center of mass does not
displace), the frequency of vertical oscillation (mn;) of the model assembly with the
added mass mj is given by

Kh

o'y = (6.1)
m-+m,

where K, and m are the vertical stiffness and mass of the model assembly,
respectively. Eqgn. (6.1) can be rewritten in the form

R L (6.2)

2
Wy h Ky



128

By the linear least-squares method, m and Ky can be determined using different
values of m; and recording wpi. The vertical motion is then restrained at the center of
mass and the above procedure is repeated to obtain torsional frequencies, wui,
corresponding to different added mass moment of inertias ( I;) to the assembly. The
increment in mass moment of inertia of the assembly could be obtained by adding
known weights at fixed distances from the model centerline. Using an equivalent form
of Eqn. 6.2 the torsional stiffness (K,) and mass inertia (I) of the model assembly can
be found as

|+ (6.3)

6.5 Flutter Derivative ldentification

In order to determine the flutter derivatives of bridge decks, the following
procedure was followed:

The coupled motion test with initial displacement method (the free decay method)

(i) The section model was given a fixed initial displacement both in heave and
pitch responses for the coupled motion tests using the electromagnetic release system.
The voltage outputs of the lasers (KEYENCE LB-300) and accelerometers were
recorded simultaneously at zero wind speed (U =0) using the data acquisition system.
The calibration factor of these instruments can then be used to determine heave and
pitch responses from these voltage outputs. Typical acceleration time histories for a
representative coupled motion at U = 0 are given in Figs. 7.5 and 7.19a for the thin
plate and the IRR bridge section respectively.

(i) The approximate natural frequencies were ascertained using the spectrum
analyzer (FFT) program. This was performed for preliminary checking of results
before more advanced and detailed analysis, the SSI-DATA and the SSI-COV method,
were used in flutter-derivative extraction.

(ili) The mechanical stiffness and damping matrices of the two-degree-of-
freedom system were then found from the free vibration time histories of h(t) and o(t)
at U = 0 using both the SSI-DATA and the SSI-COV methods. Since the values of
these matrices in the wind-off condition was very important, this step was repeated
several times to ensure consistency of results. An average of stiffness and damping
matrices was obtained whenever the results varied slightly (maximum 10%) because
of experimental errors.

(iv) Steps (i) — (iii) were repeated but for non-zero wind speed values. The only
difference was that at a particular wind speed, the effective stiffness and damping
matrices of the system were found instead of their purely mechanicals counterparts.
Typical acceleration time histories of heave and pitch responses for thin plate are
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plotted in Figs. 7.7. Fig 7.19 shows samples of acceleration time histories of the IRR
Bridge section model at various wind speed.

(v) The effective (wind-on) stiffness and damping matrices for a two-degree-of-
freedom system and the mechanical ones (wind-off) provides the necessary data to
estimate all the flutter derivatives at a particular reduced velocity value. Both the
modal frequencies (vertically and torsionally) were used to calculate two sets of flutter
derivatives corresponding to the respective reduced velocities.

The coupled motion test without initial displacement method (the buffetting test)

(vi) The procedure is same as step (i) — (v) of initial displacement method except
that no initial displacement was given to the model under wind flow.

The single deqgree of freedom test

(vii) All the above steps from (i)-(v) were repeated to obtain the direct flutter
derivatives H;” and H," by allowing only single-degree-of-freedom vertical motion (o
- 0) to the model, and A;", As" by allowing only torsional motion ( h = 0) about the
center of rotation of the model.

Turbulence flow tests

(vii) Steps (i) — (v) were repeated for grids generating turbulent flow conditions.
Each grid configuration had a characteristic relationship between turbulence intensity
and wind speed.

Data acquisition

For the streamlined thin plate model, in each of the above experiments the
signal outputs from the sensors were:

i.  Sampled at 1000 Hz and 200 Hz, filtered at 10 Hz for the free decay and the
buffeting test, respectively;

ii.  AC coupled, i.e., DC component removed,
ii.  Amplified, then

iv.  Re-sampled at 250 Hz and 50 Hz for the free decay and the buffeting test,
respectively.

For the IRR bridge model, the signals were:

v.  Sampled at 1000 Hz and 200 Hz, filtered at 6 Hz for the free decay and the
buffeting test, respectively;

vi.  AC coupled, i.e., DC component removed;
vii.  Amplified, then

viii.  Re-sampled at 250 Hz and 50 Hz for the free decay and the buffeting test,
respectively.
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6.6 Determination of Aerodynamic Force Coefficients

The aerodynamic force coefficients, which are the coefficients of lift (C.),
moment (Cy) and drag (Cp) and their first derivatives with respect to angle of attack
(o) at o =0 as denoted by C/,C{,,C{ , were determined from the section-model test

as described below:

(i) The section model was fixed to the force gauges sensors at both ends with
a = 0 and subjected to wind flow with three different wind velocities. At each of
these velocities, the mean values of the voltage outputs of the lift, moment and drag
channels from sensors were recorded. These voltage outputs at each wind speed were
converted to mean forces values by multiplying the sensor’s calibration matrix, which
were found separately, with mean value of output voltages. Summing of mean forces
at both ends yield the total forces act upon the model. The aerodynamic force
coefficients were then found using the normalization:

L

Lift coefficient CL=r—=—
0.50U°BI

Drag coefficient Co D __ 2 (6.4)
0.5pU2BI

Moment coefficient Cy =—M I~
0.50U°B

where B and | are the deck width and length of the section model, respectively, L, D,
M are total lift, drag and moment forces respectively.

The mean values of the force coefficients were obtained by averaging the values from
three different wind speeds.

(if) Step (i) was repeated with different values of « varying between -12° to
+12° in steps of 3°. The angle « was measured by the scale provided with the force
gauges supports at both sides. Each of the mean values of C., Cy and Cp was plotted
with respect to the angle of attack «, and from the curves at « = 0 the values of
C,.C},,C, were obtained.
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Fig. 6.11: Equipment setup for force sensor calibration.
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6.7 Modified Sections by Aerodynamic Appendages

In this study, three types of aerodynamic appendages were mounted to the
bridge sectional model, including fairings, soffit plate, and combination of those two
types. Tests of those mentioned sections were performed statically and dynamically.
Due to the literature appraisals, illustrated in section 2.2, the equilateral triangle
fairings made from bagasse were mounted to a model, in both windward and leeward
side. Fairing height is designed to fit the bridge model, 29.9 mm with the upper slope
angle of 30°. The schematics of fairings and fairing-installed sections are respectively
illustrated in figures 6.12 and 6.13 (a and b). Furthermore, soffit plates were fully
mounted under the model with an intention to smoothen the wind attack to model’s
girders. Figure 6.13 (c and d) shows the bottom view of a model mounted with fairings
and soffit plates.

30°

29.9

A
Y

Fig. 6.12 Schematic of fairings (diameters in mm)

(a) (b)

Fig. 6.13 Fairing-modified section; (a) side view of the section, (b) zoom-in at end plate,
(c and d) combination of fairings and soffit plates section
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Fig. 6.13 (Continued)

(d)
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CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Introduction

In this chapter the experimentally obtained results for the streamlined thin plate
and a plate-girder type IRR Bridge section are presented and discussed. The thin plate
was used to validate the reliability and applicability of the present system
identification method in flutter derivatives estimation of bridge decks. Aerodynamic
coefficients were also obtained by static tests. The thin plate model were conducted
under smooth flow whereas the IRR Bridge model were conducted under smooth and
turbulent flows.

The experimental arrangements and instrumentation, which were used in this
study are presented in this chapter, are described in Chapter 6 and in Appendix B.

7.2 Thin Flat Plate

7.2.1 Flutter Derivatives: Smooth Flow

Three different sets of experiments were performed for the thin-plate-deck
configuration under smooth flow for zero angle of attack:

i.  Single-degree-of-freedom tests (vertical and torsional motion); to identify
direct flutter derivatives H;*, Hs*, A,* and Az*,

ii.  Coupled-motion tests in both vertical and torsional degrees of freedom
simultaneously; with initial displacements (the free decay method); to
identify eight flutter derivatives, and

iii.  Coupled-motion tests in both vertical and torsional degrees of freedom
without initial displacements (the buffeting method).
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Fig. 7.1(a) Thin flat plate model with king-post in wind tunnel
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« 410 -
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Fig. 7.1(b) Cross section of the thin plate model (unit in mm.)

In all cases piano wires were used to restrain the undesirable motions. The
following experimental parameters were used for the coupled motion model tests:
Mass = 15.50 kgs; mass moment of inertia about center of mass = 0.11832 kg m?*
modal frequencies (U =0): n; = 1.65 Hz, n,= 2.73 Hz; modal damping (U=0): ¢, =

0.33%, ¢, =0.28% for vertical and torsional respectively; separation between springs

(d) =250 mm; length (span) of model = 2.30 m.; laser sensors were separated at 125
mm. Each acceleration transducers, installed at the mid-section of model, was placed
at 62.5 mm apart from center of rotation. Determination of mass was performed
method described in section 3.6.1. Determination of mass moment inertia was
obtained by both methods describing in section 3.6.1 and 6.2 which results were
agreed well.

In coupled-motion tests, two types of tests were conducted by fixed initial
displacement (free decay) and without initial displacement (buffeting response tests).
This was conducted to confirm applicability of the system identification method
proposed to various types of tests.
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As model was manufactured from wood and very long, in order to have
sufficient vertical and torsional stiffness of the model a so-called “king-post” was
installed. A Kking-post is a stiffening system composed of two posts and 8 gauged
wires (see Fig.7.1). The king-post is symmetric from above and below the deck, and
as it is only consists of rounded members, lift / vertical motion and moment / torsional
motion are not influenced by the king-post. Fig. 7.1.b shows cross section of thin flat
plate model in mm.

Single deqgree of freedom test

Single-degree-of-freedom tests (vertical and torsional) were performed first for
‘smooth flow” with turbulence intensity | less than 0.05%. Test methods are similar to
Scanlan’s method (Scanlan and Tomko 1977). Detail procedures are described in
subsection 6.5. It involves the measurement of the decay in amplitude with time of an
initial displacement of the deck in heave and torsion-only case. To obtain vertical
direct derivatives, the torsional motion is restrained and the model is pulled down and
release; both ‘in ‘still air’ and ‘in wind’ conditions. Extraction of torsional direct
derivatives uses an analogous process. Fig. 7.2 shows experimental setups for each
vertical and torsional motion restrained.

Additional wires to restrain
vertical motion
Model ’\
] < QQ > [T
Extension /
arm Center of
rotation Supporting spring
Fixed Support

Fig. 7.2(a) Experimental setup for vertical motion restrained.
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] ]

Additional wires to restrain
torsional motion

L

2 % Model N §
] < [(H)) > [l
g é K——Extension arm / ' g J\—%
/ L
Center of
rotation <«— Supporting spring

U |_|<— Fixed Support

Fig. 7.2(b) Experimental setup for torsional motion restrained.

In order to ensure that model can vibrate only in torsion mode, the restraining
cross wires are used where both ends are attached to fixed supports and connected to
model at center of rotation (see Fig. 7.2a). Vertical SDOF tests were then done with
restrained on torsional motion provided by an arrangement of drag wires attached to
upper and lower ends of a vertical bar (Fig. 7.2b). Modal frequencies and damping
ratios (U = 0 ) were slightly difference from 2DOF-coupled motion test due to effect
of restraining wires as: n; = 1.65 Hz, n, = 2.37 Hz; modal damping (U =0): &, =
0.41%, ¢, =0.61% for vertical and torsional respectively. Responses were sampling
at 1000Hz in 60 sec-duration, low-pass filter at 10Hz and then re-sampling at 250 Hz.
Only four direct flutter derivatives Hi*, Hs*, Ay* and As* were determined from

vertical-motion-only (h) and torsion-motion-only (a )-SDOF tests (see subsection
3.6.5) as

N 2m . 2m
Hl = sza) (Zghwh _zé:h‘a)h') H4 = sza)z (a)h2
21 . 21
26 w,-2¢ o, =— (w’-w?
pB4a)( é:a a ga a ) A3 pB4C() 2 ( a a )

_a)h‘z)

A =

where &, ,,@,, and &.,,., @, .. are damping ratios and frequency of the record motion

in still air and under wind conditions respectively, m, I are mass and mass moment of
inertia per unit length, B is deck width.

Note that all flutter derivatives expressed above are expressing in form of Egs.
(3.31) and (3.32):
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1 . h . Ba . . h
Lh =EIOUZB|:KH1 U+ KHZ F‘i‘ K2H3 05+K2H4 E:|
(3.31)
M, :%pUZB{KAl*UD-i- KA{%+ KA a + K%{%} (3.32)

The direct flutter derivatives Hi*, Hg*, extracted from vertical-motion-only
tests are plotted in Fig. 7.3a against non-dimensional (reduced) wind speed U/nB,
where n being the vertical mode eigenfrequency. The results also plotted with
theoretical values from Theodorsen’s theory. The H;* results show well agreement
with theoretical values where H4* have a good trend corresponding to theoretical ones.

0 2 4 6 8 10 12 14 16

H1
&
H4
&

12 10 4+
—— THEORETICAL
16 + 15 ——THEORETICAL
+ SDOFTEST
+ SDOF TEST
20 20
uinB 0 2 4 6 8 10 12 14 16

u/nB

Fig.7.3a  Direct Flutter derivatives (Hi*, Hs*) of the thin plate model singled
motion tests with initial displacement (transience resp.) under smooth flow

10

——THEORETICAL

-05 T
+ SDOF TEST

A2*
A3*

-15 T

—— THEORETICAL

2+ 2+
2 + SDOFTEST +

25 0 T
u/nB

U/inB

Fig.7.3b Direct Flutter derivatives (A;*, As*) of the thin plate model singled motion
tests with initial displacement (transience resp.) under smooth flow
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Fig. 7.3b shows direct flutter derivatives A,* and As*, extracted from torsional-
motion-only tests against reduced wind speed where n being the torsional mode
eigenfrequency. The results show that A,* and As* are also in well agreement to the
theoretical values.

The trends for H;* and Ay*, which related to aerodynamic damping in vertical
and tosional motion, respectively, are continuing increased (more negatively) and the
trends are clear and strong. Hence there is no risk of SDOF instabilities; both stall
(torsional) and galloping (vertical). The cross derivatives which would responsible for
classical 2DOF flutter would be examined next in coupled motion tests.

Coupled motion test with initial displacement method (free decay or transient

response)

In order to recover a full set of derivatives simultaneously, coupled (2DOF)
tests were performed with no restrain on torsional or vertical motion. Transience
response time-series were recorded for the model suspended in the dynamic rig by
initial excitation both in heave and torsion simultaneously. Fig. 7.4 shows the
supporting system of tests. The initial excitation is carefully controlled in order to
have same level of excitation in each test. The acceleration response of the model was
sampled at 1000 Hz, low-pass filtering with nominal cut-off frequency of 10 Hz and
then re-sampled at 250 Hz. Time histories, approximately 60 sec, of the decayed
motion were recorded for the model scaled velocities varying from 0 m/s to 9 m/s.

Fig. 7.4 Suspension device of the model

Fig. 7.5 shows example of free decay response at U=0 (still air). Fig. 7.6
plotted damping ratio with amplitude of vibrations, the damping ratios exhibit
nonlinearities in ranges of small amplitudes as same as what reported in previous
researches (Jakobsen 1995, Sarkar 1994) even in the case of electromagnetic dampers
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were added. However, the damping ratios are practically accepted as damping vary
from 0.33 to 0.45 and 0.24 to 0.30 for heave (vertical) and pitch (torsional) motion,
respectively, in the range of amplitude tests. The inherent damping ratios were used
by considering that adding special dampers such as electromagnetic dampers or
silicone oil would increase damping to the system and results in very low amplitudes
of motions. This would affect available range of wind speed for buffeting tests
because wind is only a source of model exciting.

Fig. 7.5 The thin flat plate model under smooth flow : free decay acceleration time
histories for heave and pitch motions at U = 0 m/s.

0.5

0.05
045 1 0045 1
04 1 0.04 +
LR 0035 1
203y 503
E 025 + ”“;o.ozs
E“ 027 ;; 0.02 1
T 015 4T T ol s
01T | 001 4 14
0.05 + _: 0.005 1+ :_-I
0 . : : : : : o L
0 03 06 09 12 15 18 0 06 12 . 2

damping (% of critical) damping (% of critical)

Fig. 7.6 Torsional (left) and vertical (right) damping ratio in still-air (zero wind speed)

Fig. 7.7 shows example of free decay response at some wind speed. Degrees of
coupling are clearly seen as wind speed increased.
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U=3.6m/s

U=8.1 m/s

Fig. 7.7 The thin flat plate model under smooth flow : free decay acceleration time
histories for heave and pitch motions at U = 3.6 m/s and 8.1 m/s

All derivatives were evaluated by system identification of the A matrix as
described in chapter 4 by both the SSI-COV and the SSI-DATA method. The modal
parameters can be determined by solving the eigenvalue problem of state matrix A.
Once the modal parameters are identified, the mechanical damping matrix C° and the
mechanical stiffness matrix K° can be readily determined in “still-air’ condition. The
gross damping matrix C°® and the gross stiffness matrix K® can then be determined
analogously under wind condition. Thus, the flutter derivatives can be extracted from
the following equations:

Hl*(kh) :_Z—T(C_:lel _611)1 Ai*(kh) :_2—:(651_621)
pB w,

H;(ka) :_2—3m(61e2_c_:12)’ Az(k )_ 2I (C 622)
pB o

H; (k,) =——ar (R Ko, Al) = o o (KR
pB’o pB

. 2m — “

H4(kh) ,DB (K Kll)! AA(kh)_ B4 2( 217 21)
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where m and | are mass and mass moment of inertia per unit length determined as in
section 6.2. Fig. 7.7 shows examples of acceleration responses in wind flow at U=3.6
and 8.1 m/s. It is worth noting that the sign convention used in this study, where lift
force and vertical movement are both positive upwards, gives H,, Hs, A:, As
opposite signs to those by Simiu and Scanlan (1996).

All eight flutter derivatives H;", i = 1,.....4 and A", i =1,....,4, as obtained
from the free decay coupled-motion tests for the thin plate deck, by both the SSI-COV
and the SSI-DATA method are plotted in Figs. 7.8-7.9. These flutter derivatives also
compared with those from theory. Unless otherwise noted, H:, Hy, A:, As
associated with vertical motion were calculated using the frequency ny (lower) and
H,", Hs, A,", As associated with torsional motion were calculated using the frequency
n, (higher) at any wind speeds. The frequencies n, and n, are aerodynamically
modified from their values at U = 0 at any other wind speeds. This was done because
in the corresponding single-degree-of-freedom motions, the natural frequencies of
vibration for vertical and torsional motion were closed to n, and n,, respectively.

0 2 4 6 8 10 12 14 16
0 . . . . ‘ ‘ ‘ 16
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Fig. 7.8a Flutter derivatives (H:*, Ho*,Hs*, Hy*) of the thin plate model from the
free decay coupled motion tests under smooth flow: SSI COV method
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Fig. 7.8b Flutter derivatives (A1*, A*,As*, As*) of the thin plate model from the
free decay coupled motion tests under smooth flow: SSI COV method
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Fig. 7.10 and 7.11 plotted all derivatives from the free decay coupled-motion
tests extracted by the SSI-DATA and the SSI-COV method, compared with those from
theory and the single-degree-of-freedom tests. The result shows that all derivatives
extracted by both SSI methods from various tests are in very well agreement with the
theoretical values.

The direct flutter derivatives H,", Hs, A, and A;" as found from single-degree-
of-freedom tests compared with those from coupled-motion tests (Figs. 7.10 and 7.11)
have near perfect match. This result shows that the direct-flutter derivatives are
indeed not affected by the motion along the other degree of freedom, as predicted by
theory i.e., those direct flutter derivatives associated with h motion are not affected by
a motion, and vice versa.

All flutter derivatives of the thin plate — except Hs*- from initial-coupled-
motion tests by both SSI-methods are in well agreement with Theodorson’s theoretical
values. However, Hs* extracted from SDOF and coupled motion tests are in good
agreement and showing good agreement in trend with theoretical value. The factors
made the extraction of H,* difficult are as follows. The change in the natural
frequency due to the aeroelastic effect from which Hs* were calculated was found to
be very small.
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Coupled motion test without initial displacement method (buffeting or ambient

response)

The advantage of the buffeting test is that not only all flutter derivatives are
simultaneously extracts, but also the aerodynamic admittance and root-mean-square
responses can be determined at the same time. Besides, their mechanisms are closer to
the real behavior of prototype bridges under wind flow. However, as wind is only the
excited source and a relatively heavy model of the thin plate, the amplitudes of
response are very low especially at the low wind speeds. Unlike the free decay
responses where good signal to noise ratio are obtained, the signals at low wind speed
are mostly in the same order with measurement noise. This makes the extraction of
flutter derivatives of the thin plate model difficult or impractical in a very low wind
speed range.

The experimental setup is same as coupled-free decay test except that no initial
displacement has given to the model. Fig. 7.12 shows sample of buffet responses at
U=5.6 m/s.
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m/s

All derivatives were extracted by both the SSI-COV and the SSI-DATA
methods in similar manner as in the free decay test. The sampling frequency was
reduced to 200 Hz and recording time was 360 sec. The signals were low-pass at
nominal frequency 10 Hz and then re-sampling at 50 Hz. The‘still-air’ free decay
records were used in determining mechanical stiffness and damping matrices. Fig.
7.13 and 7.14 plotted all flutter derivatives extracted by the SSI-COV and the SSI-
DATA methods together with those from the SDOF tests and theoretical values.
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by the SSI -DATA and the SSI COV method under smooth flow

The six important flutter derivatives; Hi*~ Hsz*, A;*~ Ag* found from buffeting
responses by both the SSI-COV and the SSI-DATA match very well with both the
theoretical and those from free decay responses. The results show very well
agreement between two types of tests. This verifies the ability of the system
identification methods (both the SSI-COV and the SSI-DATA) to apply with the free
decay signal though it developed from stochastic model (white noise loading
assumption). Nonetheless, at very low reduced velocities it difficult to extract the
flutter derivatives by the buffeting response tests due to the relatively heavy of the thin
plate model as well as the low energy from the wind to excite the model, then useful
signal are almost embedded in noise. The Hs*-derivatives by both the SSI-COV and
the SSI-DATA are generally agreed in trend with theoretical value similar to free
decay response tests. However, the A*, in turn, found from the SSI-COV are more
scatter without clearing trend compared to the SSI-DATA method. The effects of
these derivatives are seemed to be less significant and negligible compared to the
remaining. This was the reason where Hs* and As* were usually neglected in previous
studies (Scanlan and Tomko 1971, Sarkar 1994, Jakobsen 1995, Gu 2000).
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Summary of the thin plate test results

All eight flutter derivatives Hi*, i = 1,....,4 and A*, i =1,....,4, as obtained
from three type of experimental setups: the free decay-SDOF, the free decay- and the
buffeting-coupled motion tests were identified and compared by two most up-to-date
system identification methods: the SSI-COV and the SSI-DATA methods. The results
show that free decay responses provided the best results as there are clearer signal to
noise ratios. The difficulty in extraction of flutter derivatives at high wind speed due
to short usable length of data, reported in the past, is improved by the SSI methods. In
buffeting tests, less signal to noise ratios especially at low wind speed make extraction
of flutter derivatives are more difficult and limit the range of wind speed test. This
may be overcome by carefully select scale ratio and reducing model mass.

Generally, in the range of wind speed tests, the SSI-DATA method shows a
good capability in extracting all flutter derivatives even in buffeting responses while
the SSI-COV method shows similar performance in main derivatives except for very
sensitive As* in case of buffeting response.

Test results show that the thin flat plate model exhibits tentative of coupled
flutter instability as predicted in theory where Hy and A, are negative. The coupled
terms Hs', A, and A" play the next important role in the coupled flutter phenomena of
the section (Boonyapinyo et.al, 1999). This could be happened in synchronized
responses between vertical and torsional motions at a frequency between the two
eigenfrequencies in still air. A synchronized appearance of the two degrees of freedom
is forced by the self-excited wind forces. Rotation is accompanied by a self- excited
moment which corresponds to a reduction of the torsional stiffness (positive value of
As*). At the same time, vertical motion (i.e. vertical velocity; positive value of A;*)
give rise to an additional moment, and this is absent in the case of restrained coupling.
Regarding the vertical DOF, coupling is primarily felt through a lift caused by rotation
(where the aeroelastic resultant force acts at some distance from shear center), this
eccentric forcing which is become more dominant when wind speed increased up to
the *stability limit’. This is clearly seen by strongly increased in positive value of Hs*.
The original vertical motion (at the still-air eigenfrequency) is aerodynamically
damped out by strong negative value of Hy*.

7.2.2 Aerodynamic Force Coefficients: Smooth Flow

The static aerodynamic force coefficients of the thin flat plate were obtained
under the smooth flow. The method used to obtain these static coefficients is described
in Chapter 5. The experimental configuration is outlined in section 5.1.1. Fig. 7.15a
shows experimental setup of thin flat plate model in wind tunnel. The results of the
tests are presented in the form of drag, lift and moment coefficients. The section
model was installed about its centre of rotation, then, the pitching moment is
considered with respect this centre of rotation. The sign convention used in the
presentation of the test results is shown in Figs. 7.15(e).
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Fig. 7.15(a) Thin flat plate model with king-post in wind tunnel : static test setup

Fig. 7.15(b) Thin flat plate model with king-post in wind tunnel : static test setup with
various wind angle of attack
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Fig. 7.15(c) Static force balance device of the model

Fig. 7.15(d) Load cell supported by universal joint with angle-adjustable device.
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Fig. 7.15(e) Sign convention for static force coefficients

Two different sets of experiment were performed, model with and without
king-post. In each set, static coefficients were determined in steps of 3° from -12° to

+12°. In each angle of wind attack, model was subjected to three different wind
velocities: U = 3.61, 5.65 and 8.14 m/s. At each of these velocities, the mean values
of the voltage outputs of the lift, moment and drag channels from sensors were
recorded. These voltage outputs at each of the wind speed values mentioned above
were converted to mean force values using the calibration matrix, which were found
separately, multiplied with mean value of voltage outputs. Summing of mean forces at
both ends yield the total mean forces act upon the model. The aerodynamic force
coefficients were then found using Eqg. 6.4 as:

L

Lift coefficient CL=——=—
0.5pU “BI
Drag coefficient Co D 2
0.50U ?BI
. M
Moment coefficient Ch=—"——"7=
0.50U°B

where B and | are the deck width and length of the section model, respectively, L, D,
M are total lift, drag and moment forces respectively

Table 7.1 lists the coefficients obtained from tests and Fig.7.16 shows
aerodynamic coefficients obtained for various wind angles of attack. The mean value
of the force coefficients are obtained by averaging the values measure at different
wind speed. The mean values of the static tests are presented in Fig. 7.16, where the
determined coefficients of both models - with and without king-post - are plotted
versus wind angles of attack. Table 7.1 summarized the test results of the streamlined
thin flat plate with various angles of attack. All presented drag coefficients have been
corrected for the additional drag on the king-post. In an initial test, the drag on the
section with king-post was measured. This was followed by a measurement without
the king-post installed.
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Table 7.1 Static load coefficients of the thin flat plate model : smooth flow

Coefficient angle of attack [a., deg]
12 | 9 | w5 | 3 | o | 3 | & | 9 12

With king-post

Co 0.204 0.141 0.048 0.040 0.040 0.039 0.062 0.141 0.209
CL -0.775 -0.744 -0.415 -0.189 0.062 0.318 0.581 0.837 0.876
Cwm -0.069 -0.151 -0.116 -0.056 0.003 0.070 0.142 0.155 0.122

Without king-post

Co 0.211 0.128 0.040 0.024 0.027 0.028 0.053 0.134 0.203
CL -0.751 -0.729 -0.432 -0.178 0.053 0.318 0.561 0.836 0.861
Cwm -0.084 -0.141 -0.118 -0.052 0.008 0.071 0.155 0.161 0.139

The measured drag on the king-post matches very well the theoretical
estimation. The Reynolds Number for the king-post, Re , is 2.16 X 10° < R, < 4.86 X
10°® for a typical diameter of 9 mm and wind velocity ranging between 3.61 m/s and
8.14 m/s. For this range of R, the static drag coefficient (Cp) is 1.10. The drag force
on kingpost is calculated based on this coefficient and then converted to equivalent
drag coefficient based on the thin plate dimension for comparison. The equivalent
drag coefficient equals 0.0126 compared to 0.0127 from test results. The measured lift
and moment coefficients at various angles of attack are also plotted (Fig. 7.16) for
both with and without kingpost models together with the theoretical values see e.g.
Joukowski (1916) and Dyrbye and Hansen (1996). These theoretical values are valid
for small angles of attack only. The sudden drop in pitching moment and lift force at

an angle of attack of approximately 7° is due to flow separation occurring at angles of

attack larger than approximately 7°. Flow separation has not been taken into account
in the theoretical calculations presented. The results are shown that effects of king-
post are negligible for lift and pitching coefficients.
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7.3 Industrial Ring Road Bridge Deck

Encouraged by the success in the thin plate model, the flutter derivatives of the
IRR Bridge, a cable-supported bridge with a 2-edge girder, as shown in Fig. 5.4, were
estimated by both the SSI-DATA and the SSI-COV techniques. The IRR Bridge has a
main span of 398 m. The deck consists of a concrete deck slab and a web of steel
girders. The deck is supported by two cable planes at the outside edge girders. A 2-
edge-girder bridge section with A-shape pylons has a good cost performance, but at
the same time the bridge cross-section is known to be aerodynamically unstable at
high wind speed. Table 6.2 lists the main parameters of the prototype bridge and the
section model. Tests were conducted under smooth and two levels of turbulence wind
flows. The turbulent flow conditions were generated by grids and spires. The
longitudinal and wvertical turbulence intensities were both about 5% and 8%,
respectively.

Using both SSI techniques, the flutter derivatives of the IRR Bridge were
estimated for 2DOFs responses by both the free decay and the buffeting tests under
smooth and two levels of turbulence flows. The results between two test methods were
then compared.

Piano wires were used to restrain the undesirable lateral motions. The
following experimental parameters were used for the coupled motion tests: Mass =
12.84 kgs; mass moment of inertia about center of mass = 0.17262-kg m% modal
frequencies (U = 0 ): ny = 2.13 Hz, n, = 4.73 Hz; modal damping (U =0): &, =
0.40%, ¢, = 0.13%, separation between springs (d) = 380 mm; length (span) of

model = 2.26 m.; laser sensors were separated at 380 mm. Each acceleration
transducers, installed at the mid-section of model, was placed at 125 mm apart from
center of rotation.

Determination of mass was performed by the method described in section
3.6.1. However, determination of the mass moment inertia describing in section 6.2
are somewhat difficult to apply as the top surface of bridge deck has 2.5%-slope.
Then, the method described in section 3.6.1 was applied. First, the mass of model was
obtained, and then the vertical stiffness can be determined. Having known separated
distance of supported spring and torsional frequency of model from the free vibration
test, the mass moment of inertia can be determined.

As model was manufactured from wood and very long, the geometrical scaling
also results in thin dimensions with too little stiffness. The original model has local
vertical bending mode around 9 Hz. In order to eliminate this local mode and having
sufficient vertical and torsional stiffness of the model a so-called “king-post” was
installed. A king-post is a stiffening system composed of two posts and 16 gauged
wires as seen in Fig 7.17a. The model is supported by gauged wires at 4 points with
equidistance. T he king-post is symmetric from above and below the deck, and as it is
only consists of rounded members lift / vertical motion and moment / torsional motion
are not influenced by the king-post.
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Fig. 7.17a The IRR Bridge section model with king-post in wind tunnel

€h,h"

Fig. 7.17b Sign convention for IRR bridge section
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a) b)

Fig. 7.18 The IRR Bridge section model details: a) model connection at end plate
b) bottom view

Fig. 7.19 shows examples of free decay responses at various wind speeds. The
amplitude dependence of the damping ratio was also checked. Fig. 7.20 plotted the
damping ratios with the root mean square of response amplitude in ‘still-air’. The
damping ratios are considered to be practically acceptable as they are varying from
0.1-0.15% and 0.33-0.40% in range of responses in tests. The testing procedures are
in similar as those in the thin flat plate case. The sampling frequencies were 1000 Hz
and 200 Hz with the total time records equal to 60 s and 500 s for the free decay and
the buffeting tests, respectively. The recorded data were then removed trend, re-
sampled at 250 and 50 Hz, and then low pass filtered at 6 Hz by the 8-ordered
butterworth filter. The low pass filter introduced no amplitude modification at n =
2.13 Hz, while there was a 3% amplitude reduction at n, = 4.73 Hz. This filtered
frequency was selected due to the reason that at high wind speed, there was presence
of small amplitude of local torsional mode at 6.7 Hz. This mode was believed to be
the local mode of the king post/thin deck slab system that could not be fully fixed at
base due to the deck slab are thin and top-sloped. Many attempts have been made to
eliminate this mode such as more guy wires added, nailing deck slab to cross girders
and even increasing of the base plate thickness, but resulting only in lesser amplitude
of this mode.

Carefully review of previous research found that such a low ratio of highest
modal frequency to nominal cut-off frequency as 0.7 has been used as long as
amplitude distortion are not much affects and the linear phase delay filter are used
(Sakkar 1994, King 1995, Brownjohn and Jakobsen 1995). In order to check the
effect of low pass filter used, a simple signal was simulated by combining two
sinusoidal signals with the same frequencies of vertical and torsional mode, then this
signal was pass through the 8-order low-pass filter with the cut-off frequency at 6 Hz.
Fig. 7.21 compares the time-histories of the original and the filtered signals. The
result shows that the filtered signal agreed well with the original signal with only the
small distortion found at the end of signals.



160

Vertical

30 40 50 60 0 2 8 10 12
Time(sec) . Frequency (Hz)

Fig. 7.19 The IRR bridge model : free decay acceleration time histories and frequency
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Fig.7.20 Damping ratio of the IRR Bridge model with amplitudes (rms in g)

Fig.7.21 Example of low-pass filter effect to simulated signal.
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7.3.1 Flutter Derivatives of the IRR Bridge Model: Smooth Flow

7.3.1.1 Comparisons of Flutter Derivatives between the SSI-DATA
and the SSI-COV Method from the Free Decay Test Method.

Figs. 7.22a and 7.22b show samples of the typical test results from free decay
responses of the bridge model at various wind speed. All eight flutter derivatives H;*,
i=1,..4and A*, i=1,....4, identified by both the SSI-DATA and the SSI-COV
from the free decay tests of the IRR bridge deck, are plotted and compared in Figs.
7.23 and-7.24. The notation used in case of the IRR Bridge model is in the form;

L = pu%B| KH, L kH, B ko g kom D (3.31)
U U B
M, =pUZB{KA1*U£+ KA;'E—“+ K2A3*a+K2A;H (3.32)

Fig. 7.22a The IRR Bridge model under smooth flow: free decay acceleration time
historiesh and ¢ at U = 1.67 m/s
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Fig. 7.22b The IRR Bridge model under smooth flow: acceleration time histories h
and aat U =6.20 m/s

This was done as the results will be compared later with the previous test (DMI
1995), the same notation was then used. This alternate form differs from the thin flat
plate case where the definition of the flutter derivatives is 2 times higher.

From Figs. 7.23 and 7.24, it can be seen that the most important factor A,
extracted by both SSI methods match very well with each other. It is steadily
increased (more negative) up to reduced velocity around 3, and then started to
decreased. This sign reversal is the outstanding factor toward the SDOF-torsional
instability (stall flutter) reported in the next section. The vertical aerodynamic
damping term, H;" extracted by both methods remain negative in all reduced wind
speed and match well to each other up to a certain wind speed where small difference
can be seen. This is because at high wind speed, the vertical mode are rapidly damped
out but the coupling of rotation motion by Hs* were increased (as seen by the presence
of torsion mode in vertical mode). The short useful length of recorded signal and the
strongly presence of another mode made extraction of vertical damping more difficult.
The frequency-related aerodynamic terms: H, *and Ag* also match well between the
two methods. However, the coupled aerodynamic terms (H.*, Ar*, As*), in turn,
found from the SSI-COV method are more scattered than those from the SSI-DATA
method. The largest scatter among the extracted parameters are A;* and A4*.
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7.3.1.2 Comparisons of Flutter Derivatives between the SSI-DATA and the SSI-
COV Method from the Buffeting Test.

The buffeting response data were analyzed both by the SSI-COV and the SSI-
DATA methods. The mass of the IRR Bridge model is approximately 25% lesser than
the thin plate section. This makes possibility for extraction of flutter derivatives in
lower wind speed range. Typical test results showing responses from the IRR Bridge
model are in Fig. 7.25.

Fig. 7.25a Part of vertical (top) and torsional (bottom) buffeting acceleration
responses of the IRR Bridge model at 1.72 m/s wind speed under smooth
flow. (unitin g)
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Fig. 7.25b Part of vertical (top) and torsional (bottom) buffeting acceleration
responses of the IRR Bridge model at 3.95 m/s wind speed under smooth
flow. (unitin g)

Fig. 7.25c Part of vertical (top) and torsional (bottom) buffeting acceleration responses
of the IRR Bridge model at 5.32 m/s wind speed under smooth flow. (unit

ing).
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Fig. 7.25d Part of vertical (top) and torsional (bottom) buffeting acceleration responses
of the IRR Bridge model at 6.88 m/s wind speed under smooth flow. (unit

ing).

All eight flutter derivatives Hi*, i = 1,....,4 and Ai*, i=1,....,4, as obtained by
the SSI-COV and the SSI-DATA from the buffeting test, are plotted in Figs. 7.26-
7.27. The torsional aerodynamic damping A, and the vertical damping term H;"
extracted by the two SSI methods match well to each other. The identified torsional
aerodynamic stiffness term As* are also almost identical by the two methods. The
vertical aerodynamic stiffness H, extracted by both methods also in good agreement
with small scatter. The cross-coupling derivatives H, and Hs also agree well except
small difference of Hs* at reduced wind speed around 2-3. On the other hand, the
identified A;” term are somewhat different at high wind speeds. The largest difference
is the most sensitive term As*.
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U/ngB,
0 2 4UnB ¢ 8 0 12 0 1 27773
: : L \ ' 06

05

ABuffeting-SSI DATA

0.4 T opuffeting_ssI_cov

02 T

| | y
,02 +

AA

-15 +  ABuffeting-SSI DATA

OBuffeting_SSI_COV

-2.0 0.4
10 16
ABuffeting-SSI DATA ABuffeting-SSI DATA
08 1 12 +
OBuffeting_SSI_COV OBuffeting_SSI_COV

08 T

N

A4*

-04 T
0.2 + -0.8 T
-0.4 ; t } ! } 12
0 1 2 3 4 5 6 0 2 4 6 8 10 12
U/ngB U/n,B
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buffeting test by the SSI-DATA and the SSI-COV under smooth flow.
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7.3.1.3 Comparisons of Flutter Derivatives between the Free Decay
and the Buffeting Tests under Smooth Flow.

All flutter derivatives found from the free decay (by the SSI DATA technique)
and the buffeting tests (by the SSI DATA and the SSI-COV) are plotted and compared
in Figs. 7.28 and 7.29. The results show that the flutter derivatives identified by the
SSI-DATA from the buffeting test matched well with those from the free decay test.
This result helped validate the reliability and applicability of the SSI-DATA technique
to various experimental methods. This confirms the ability of the SSI-DATA to apply
with the free decay signal though it developed from stochastic model (white noise
loading assumption) as do the thin flat plate results. Besides, this result allowed

focusing on applying the SSI-DATA technique to the buffeting test method.

On the other hand, there are more variations in the values of the A;", A, and
H, derivatives obtained by the SSI-COV between the free decay and the buffeting
tests (see Figs. 7.24, 7.28 and 7.29).
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Fig.7.28 Comparison of Hi* from couple-degree-of-freedom tests with initial
displacement (SSI DATA) and without initial displacement (SSI-DATA,
SSI-COV) under smooth flow
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Fig.7.29 Comparison of A* from couple-degree-of-freedom tests with initial
displacement (SSI DATA) and without initial displacement (SSI-DATA,
SSI-COV) under smooth flow

7.3.1.4 Comparisons of Flutter Derivatives with the Previous Method.

In order to validate the present system identification technique, the identified
flutter derivatives were then compared with the previous work. The free decay test of
the same bridge model had been previously carried out in smooth flow by DMI (1995)
at the zero angle of attack. The system identification method used in extracting the
flutter derivatives was based on that proposed by Poulsen and Damsgaard (1992).
This method was briefly described in previous chapter. (see chapter 2) and
identification process are iteration in nature to minimize the prediction error. The
vertical and torsional frequencies of the model are 2.29 Hz and 5.18 Hz, respectively.
The ratio of the torsional to vertical frequency is 2.26. Tests were performed with the
inherent damping ratios that were found to vary from 0.2% at small amplitude to 0.3%
of critical at higher amplitudes for heave (vertical) motion and range from 0.21% to
0.24% for pitch (torsional) motion.

Figs. 7.30 and 7.31 show the flutter derivatives of the IRR Bridge deck
estimated by both SSI methods from the free decay tests as well as those by Poulsen’s
method. The derivatives obtained by Poulsen’s method shown in Figs 7.30 and 7.31,
have been fit by least square method, then the original extracted values were not
known. All flutter derivatives — except H,", H, and A, - from the SSI techniques
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match well in trend with those from Poulsen’s method (DMI 1995). The H;* and Hy*
coefficients are those related to the aeroelastic damping and frequency of vertical
mode, respectively. From DMI’s results, the aeroelastic damping increases with
velocity at low reduced velocities up to the value around 6, and then decrease at higher
velocities. This shall be resulted in the classical flutter (coupled mode instability).
However, both buffeting responses from the present study and the DMI’s tests show
only flutter instability in the torsional mode (stall flutter), see Fig 7.44. The factor that
made the difference in the extracted values of H;" and H,  is the system identification
technique employed. For the system identification method proposed by Poulsen and
Damsgaard (1992), it involves iterations in fitting the measurement of free decay time
—histories of bridge deck in heave and torsion. This analysis procedure is complicated,
requires good initial guess-values, and was found to work quite well for tests where
the initial excitation produced a clearly defined initial condition where both heave and
pitch responses decayed in a somewhat regular manner following the excitation. As
reported by the authors of the method, according to the free decay method, the bridge
model had to be excited initially in both modes to sufficient amplitudes to allow that
the initial response to the excitation is well defined. This is usually not the case for
tests at high velocities of bridge sections those exhibit strongly aeroelastic damping as
the responses are damped very fast and meaning full signal are too short. In addition,
the presence of torsional motion in vertical motion due to the effect of H; made the
identification more difficult. The factor that made the extraction of As* difficult by
the Poulsen’s method is that this derivative is very sensitive. Besides, the As* term
was not included in the original works of the authors of the method.
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Fig.7.30. Comparison of H* from the free decay test with difference system
identification methods; SSI-DATA, SSI-COV and Poulsen’s method.
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Summary of the test results of the IRR Bridge deck under smooth flow

Application of both the SSI-DATA and the SSI-COV to real bluff bridge
section learned that both SSI methods have good capability in extracting derivatives
from buffeting responses even they have less clear signal to noise ratio compared with
free decay response. Generally, the flutter derivatives identified by the SSI-DATA
match well with those from the free decay method. On the other hand, there are more
variations in the values of the A;, As and H," derivatives obtained by the SSI-COV.
There are also some difference for H;* from the free decay by two SSI methods and
the Poulsen’s method. This is the same as what reported in most previous research,
where some difference exit. The factor that made extraction of H;" more difficult is
that most of bridge sections shows that H;, " remains negative in all various wind speed,
resulting in very short useful length of recorded data in the free decay response.
Besides, at high wind speed the trigger initial excitation was suddenly buried to
buffeting response excited by wind. Therefore, it is clearly seen that the concept of
stochastic response in SSI identification can dramatically improve the ability in
extracting these parameters at high wind speed. Based on the identification algorithm,
this identification process does not require cleared decay signals and factorization of
signals are used instead of fitting the original signals. In case of Poulsen’s method, as
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original vertical mode are rapidly damped out and the s}rongly presence of another
mode (coupling torsional mode) made the extraction of H; difficult.

The methods will next be applied to analyze response of this bridge deck in
turbulence wind flows.

7.3.2 Flutter Derivatives of the IRR Bridge Model:
Effects of Turbulence

Fig. 7.32 The IRR Bridge model and grids to generate turbulent flow in wind tunnel.

Most of the prototype bridges are submerged in turbulent wind; therefore,
detailed investigations of the effects of turbulence on the flutter derivatives are
significant. Almost all the wind tunnel tests for flutter derivatives have been generally
carried out in smooth flows. Although few researchers have studied the problem using
wind tunnel tests, results and the identification methods were individually proposed
(Scanlan and Lin 1978, Sarkar et al. 1994, Gu et al. 2000), and the results are still
debatable and inconclusive. For streamlined section, tests showed little effect (Sarkar
et al., 1994), while tests on a rectangular box girder bridge showed galloping in
smooth flow (Jakobsen and Hjort-Hansen 1998). For IT type section, Gu and Qin
(2004) found that the effects of turbulence on the Hsz* and As* seemed to be
negligible; whereas the other four derivatives related to aerodynamic damping
characteristics showed some deviations from those in smooth flow, especially at high
reduced wind speed.

In order to examine the effects of turbulence to the identified flutter derivatives
of the IRR Bridge deck, the buffeting test were performed. Tests were conducted
under two levels of turbulence wind flows. The turbulent flow conditions were
generated by two different obstacles i.e. spires and grids. Figs. 6.3 and 6.7 show the
configuration of spires and grids, respectively. The longitudinal and vertical
turbulence intensities were both about 5% and 8% for spires and grids, respectively.
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Figs 6.6 and 6.10 show the wind-velocity power spectrum at various wind speed. The
installation of bridge model is as shown in Fig. 7.32.

The buffeting responses from tests were sampled at the rates of 200 Hz. The
results were then removed trend, re-sampled at 50 Hz, and low-pass filter as same as
in the case of smooth flow. However, the total time records of buffeting responses
were 500 sec (~8 min.) instead of 360 sec as in the case of smooth flow.

Figs. 7.33 and 7.34 present the identified flutter derivatives of the bridge deck
by the SSI-DATA method from buffeting responses under smooth flow and two
turbulence wind flows with both the longitudinal and the vertical turbulence intensities
of 5% and 8%, respectively. Generally, the flutter derivatives of the bridge in
turbulent flows identified by the SSI-DATA are in agreement with those in smooth
flow. From Figs. 7.33 and 7.34, it can be found that the influence of the flow type on
H, and A3, i.e. flutter derivatives related to the direct aerodynamic stiffness, seems to
be negligible. Though, the value of H," obtained from the turbulence flow is somewnhat
less than that in the smooth flow case, it affected only the second decimal digit of the
frequency value. The influence also has negligible effect on H; and H;" i.e. direct and
cross derivatives that are related to the vertical and the torsional aerodynamic
dampings, respectively. On the other hand, the more important A;” A;" and Hs , show
rather noticeable deviations from those in the smooth flow, especially at high reduced
wind speeds. The most important effect is that the reduced wind speed, which
corresponds to the reversed sign of the torsional aerodynamic damping A,, increased
in the turbulent flow. It shows that turbulence tends to make bridges more
aerodynamically stable by delaying the torsional flutter. The deviations of flutter
derivatives may reveal the fact that for those bridges with bluff type sections similar to
the IRR Bridge, the effects of turbulence can be significant. Hence, wind tunnel tests
of such bridges for flutter derivative estimation should also be carried out in turbulent
flows.

Figs. 7.35 and 7.36 present the identified flutter derivatives of the bridge deck
by the SSI-COV method from buffeting responses under smooth flow and two
turbulence wind flows. Figs. 7.37 and 7.38 compare the flutter derivatives extracted
by the SSI-DATA and the SSI-COV methods under 8%-turbulence flow. Generally,
the flutter derivatives obtained by the SSI-COV agree with those from the SSI-DATA.
However, the coupled aerodynamic derivatives; A;” and A4, extracted by the SSI-
COV in turn seem to be difference from those obtained by the SSI-DATA.

Figs. 7.39 and 7.40 compare the A;” and A, derivatives identified by the SSI-
COV and the SSI-DATA under different flows. It can be seen that these two
derivatives are more scattered than those obtained from the SSI-DATA. This result
shows that, in the case of the 2-edge girder blunt type section, applying the SSI-DATA
yields better results especially for the coupling derivatives.
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Fig.7.37 Comparisons of flutter derivatives (H;*) of the IRR Bridge model from the
buffeting test by the SSI-DATA and the SSI-COV under 8%-turbulent flow.
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7.3.3 Vortex Responses and Stability Limits of the IRR Bridge

The stability limit, i.e. the wind speed for onset of critical oscillations such as

coupled flutter (classical) and torsional stability was determined in smooth flow for 0°
angle of wind incidence. The stability limit was determined with rig inherent damping
in order to have a more conservative determination of the stability limit and vortex
shredding shall be seen.

Initially, the stability limit was determined roughly by increasing the wind
speed and observing the behavior of the section. Subsequently, recordings were made
of the response starting below the stability limit up to wind speed where the bridge
deck exhibits clear unstable behavior.
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The vortex response test was in a similar manner, where small increasing of
wind speed around point that the bridge deck shows clearly strong vortex response.
Figs. 7.41 and 7.42a show displacement response at slightly lower wind speed and at
wind speed at vortex occurs, respectively. Fig 7.42b plotted frequency of each mode
at vortex response. The strongly presence of torsional mode was noted. The velocity
at vortex-shedding response was found at 2.58 m/s and the Strouhal number from the
dynamic test was St = 0.065.

Fig. 7.43 plotted normalized-heave and pitch responses with reduced velocity.
Heave response has been normalized with deck height (H) and the wind speed is
presented as reduced velocity i.e. the wind speed is normalized with heave frequency,
fn and deck height. The pitch (torsional) response in deg. is plotted with reduced
velocity where f, is pitch frequency.
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Fig. 7.44 Heave and pitch responses of the IRR Bridge model under smooth flow at
flutter speed, U = 7.45 m/s.

Figs. 7.43 shows comparisons of the root-mean-square (RMS) torsional and
vertical buffeting responses of the IRR Bridge model versus the reduced velocity
between smooth and turbulence flows. Under smooth flow, the very abrupt transition
with increasing velocity from the effectively zero torsional response amplitude to the
clear instability occurs in the near neighborhood of the reduced velocity value (U/f,H)
of 45 (see Fig. 7.33b). From Fig. 7.44 it was found that the instability of the IRR
Bridge model is the torsional flutter type. The stability limit has been defined as the
mean wind speed at which this abrupt transition of torsional response was beginning.
This is usually the case of actual response instead of the theoretical unstable limit that
defined as a point where model exhibits an increasing in response with time. This
stability limit velocity of the model was 7.45 m/s, which equivalent to 118 m/s in full
scale. The result agrees with that from DMI test results. The stability limit is
considered relatively high compared to the design wind speed, and showing that the
IRR Bridge section was safely design regarding the flutter instability. Fig. 7.44 plots
the responses of the IRR Bridge model at the onset of the flutter instability. It is
clearly seen from Fig. 7.45 that the abrupt change in the vertical response at high wind
speed is the effect of the cross derivative Hs which causes the coupling of the high-
amplitude torsional responses on the vertical responses.

Compared with the smooth flow, the turbulence flow reduces the vortex-
shedding response, because the turbulence tends to enhance the reattachment of flow
and weaken the vortex shedding formulation. However, it raises the amplitude of the
bridge responses progressively over the speed range. The turbulent flow results
indicate that the torsional flutter is postponed to a slightly higher wind speed than that
found in smooth flow in case of 5%-turbulence intensity. On the other hand, no clear
and uniquely definable “flutter instability” was made evident by the experiment in
case of 8%-turbulence intensity. It is worth noting however, that the largest amplitudes
reach under this turbulence are probably additionally restrained by the nonlinear
structural effects of test-setup.
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7.3.4 Aerodynamic Force Coefficients of the IRR Bridge

The static aerodynamic force coefficients of the IRR Bridge were also obtained
under different type of wind flow (see Fig. 7.45). The method used to obtain these
static coefficients is described in Chapter 5 and similar to that the thin flat plate case.
The experimental configuration is outlined in section 5.1.1. In each set, the static

coefficients were determined in steps of wind angle of attack of 3" from -12° to +12°.
In each angle of wind attack, model was subjected to three different wind velocities
and average values are shown in Fig.7.47. The results of the tests are presented in the
form of drag, lift and moment coefficients. The section model was installed about its
centre of rotation, then, the pitching moment is considered with respect to this centre
of rotation. The sign convention used in the presentation of the test results is as same
as in the thin flat plate case (Figs. 7.15(b)).

a) b)
Fig. 7.45 The static test set-up of the IRR Bridge model under turbulent flows in wind

tunnel: a) with spires (at 3” angle of attack) b) with grids (at 0° angle of
attack).

7.3.4.1 Smooth Flow

The force coefficients of the IRR Bridge section model measured in smooth
flow are shown in Figs. 7.46. It shows that as the absolute value of wind attack angle
increases; drag coefficient, Cp, (normalized with respect to a constant bridge width)
increases due to the increase of front projected area. The absolute values of lift and
torsional moment coefficients (C. and Cy) also increase with wind angles of attack but
in the range of small attack angles. The sudden drop in lift force and torsional moment

at an angle of attack of approximately 3, is due to flow separation occurring at angles
of attack larger than this angle. Moreover, the model is subjected to a smaller torsional



183

moment at positive wind angle of attack, but a larger torsional moment at negative

wind angle of attack.
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Fig. 7.46 The static force coefficients of the IRR Bridge model under smooth flow
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7.3.4.1 Effect of Turbulence

The influence of the oncoming turbulence on the aerodynamic force
coefficients are shown in Fig. 7.46. Two different level of turbulence flows were
conducted, which values are 5% and 8%, respectively. In each set, static coefficients

were determined in steps of 3° from -12° to +12°. In each angle of wind attack,
model was subjected to three different wind velocities and average values are shown
in Fig.7.47. The aerodynamic force coefficients were then determined using Eq. 6.4 as
in case of the thin flat plate.

From Fig. 7.47, the drag coefficients of the IRR Bridge model under turbulent
flow are slightly different from those in smooth flow. The absolute value of lift force
coefficients under turbulent flow is slightly lower than those from smooth flow except

at the highest angle of attack (x12°). On the other hand, the absolute values of
moment coefficients under turbulent flow at high angle of attack are higher than those
under smooth flow. The turbulence tends to enhance the reattachment of the flow by

increasing the angle where the flow separation occurs from 3°to 6° for smooth and
turbulence flow, respectively.
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7.4 Modified Sections of Industrial Ring Road Bridge Deck by
Aerodynamic Appendages

7.4.1 Flutter Derivatives: Smooth Flow
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Fig.7.48 Comparisons of flutter derivatives (H;*) of the IRR Bridge model among
original section and three modified sections.
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Fig.7.49 Comparisons of flutter derivatives (Ai*) of the IRR Bridge model among
original section and three modified sections.

The results of flutter derivatives are presented in this section and their
comparisons among four sections are presented as well. The aerodynamic derivatives
were calculated for each wind speed as the average value of 10 tests at each velocity.
Unless visual inspection of the results indicated some irregularities, the average values
were carried forward in the analysis. For smooth flow condition, flutter derivatives of
four sections are presented in figure 7.49. The most important terms are Hy* and Ay*
which refer respectively on vertical and torsional damping of the section. Their
positive values indicate unstable conditions. For vertical aerodynamic damping
coefficient, Hi*, the modification effects considered to be negligible, which all
sections show in negative region. However, the section are influenced by the
modifications in A;* which is most considerable in long-span bridges.

The original section and fairing modified section lead to a single torsional
flutter at high wind velocity because A,* change from negative values to positive
values. Flutter derivatives Hy* term, cross derivatives to a torsional aerodynamic
damping, are conversely agree well with Ay* results. Fairing modified section shows a
little improvement on the unstable behavior, delaying the unstable of bridge deck from
reduced velocity of 4.5 to 5. Also, it was clearly found that soffit plate modified
section, and combination of soffit plate and fairings modified sections produce more
stable sections, whereas the classical flutter rather than the single torsional flutter will
occur because of Hy* and Ay*
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The results was found some dispersive in As* and Hs* terms between original
section and modified ones, this coefficients are considered insignificant and usually
neglected and in most of previous researches. Moreover, all modified sections show a
little influence in A;* and As*, which agree altogether well in trend. For Hs* term, the
fairings section agrees in trend with an original one, while soffit plates and combined
sections are agree in trend to each other.

7.4.2 Structural Dynamic Responses and Stability Limits

The tests were carried on for aerodynamic appendage installed sections.
Structural response of fairing-modified section, soffit plate-modified section,
combined section and the comparisons between four sections are in ordered shown in
figures 7.50, 7.51, 7.52 and 7.53. Similar to the original section, vortex shedding
phenomenon and stability limit can be roughly identified from this test. The effects of
fairing, soffit plates and combined section are then carried out.
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Fig.7.50 Comparisons of dynamic responses of IRR bridge deck with fairings;
smooth flow (a) Heave responses and (b) Pitch responses
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Fig. 7.53 Comparisons of dynamic responses of IRR bridge deck with various types
of aerodynamic appendages mounted; smooth flow (a) Heave responses and
(b) Pitch responses

The instability of the model was found not involved coupled motion
between vertical and torsional degree-of-freedom, i.e. the observed instability is not
classical flutter. A stability limit can be extended by all type of modifications. Since
the frequency scale of this model can be identified from the ratio of model to the
prototype frequency, which equals to 5.715, the velocity scale can be accordingly
identified. 1:90 length scales regard 15.75 of velocity scale. For fairing mounted
section, critical wind speed is 135 m/s, around 16% is extended from original section.
For soffit plate and combined case, the flutter could not be found even in very high
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wind speed. Hence, soffit plate and combined case are effective in delaying a torsional
instability of bridge. For buffeting and vortex shedding response, three types of
modifications can suppress the dynamic response of bridge significantly. That is, if we
consider the effective of three modifications on buffeting response and structural
stability, the results shall be: combine > soffit plate > fairing. Though combined case
seem to be the most effective, but it still hold a numerous weight. The most suitable
modification of bridge should be carried out in design and construction in boundary of
architectural point of view and safety of passenger cars.
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7.4.3 Aerodynamic Force Coefficients

The aerostatic experiment was then carried on for aerodynamic appendages
mounted sections. The comparisons of static coefficients among original section and
three modified sections are shown in figure 7.54
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The study was found that, according to figure 7.54 (smooth flow condition),
fairings can significantly reduce drag coefficient. A combined section seems to be the
most effective one since the approaching wind can be more smoothly flew through a
section than those through an original bluff section. For lift and moment coefficient,
the modifications mounted to a model however represent a little improvement, except
at zero angle of attack of moment coefficient which the modifications show a
considerable improvement. Hence, it can be concluded that fairing can effectively
reduce the drag coefficients.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The research work described herein consists principally of identification of
aeroelastic and aerodynamic parameters of bridge decks. This work was pursued with
the aim of improving the tools required for the identification of experimental
parameters used for the wind-induced response prediction of long-span bridges.

8.1 Conclusions for Flutter Derivatives

8.1.1 System ldentification Method

A theoretical model based on the stochastic subspace identification was used to
extract the flutter derivatives of bridge deck sectional models from the two-degree-of-
freedom free decay and buffeting responses. An advantage of the stochastic subspace
identification technique is that it considers the buffeting forces and the responses as
inputs instead of as noises as typically assumed in previous research. The efficiency
and simplicity of the stochastic subspace identification (SSI) lie in output-only
measurements and its non-iterative nature in computations. For the first times, the
data-driven stochastic system identification technique (SSI-DATA) was employed to
directly extract the flutter derivatives of bridge deck sections model from their random
vibration responses under wind flows and the results were then compared to those
from the previous up-to-date covariance-driven-stochastic system identification (SSI-
COV). Comparing with the SSI-COV, the SSI- DATA method avoids the
computation of covariances between the outputs. It is replaced by projecting the row
space of the future outputs into the row space of the past outputs. This projection is
computed from the numerically robust square root algorithm, QR factorization instead
of squared up the output data as in the SSI-COV algorithm. Moreover, this reduces
both the dimensions of the matrices and the computation time considerably. The
conclusions of the present study are as follows.

1) Numerical simulations of the bridge deck responses confirmed that the SSI-DATA
technique can be used to estimate flutter derivatives from buffeting and free decay
responses with reliable results. This shows the applicability of the SSI-DATA
method with various test techniques, though it was developed from a stochastic
model. Comparing with the SSI-COV, the identified modal parameter and system
matrices from the SSI-DATA are more precise and less scattered.

2) For the thin plate model under smooth flow, wind tunnel tests showed that flutter
derivatives identified by the SSI-DATA technique from both the free decay and the
buffeting tests matched well with theoretical values. The flutter derivatives
identified by the SSI-COV method from both tests also agreed with theoretical
values, except in the case of A, that was identified from buffeting responses.
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3) When apply to the bluff section model of the IRR Bridge under smooth flow, the
flutter derivatives estimated by the SSI-DATA from the buffeting test agreed with
those obtained from the free decay test. This result allowed focusing on applying
the SSI-DATA technique to the buffeting test method. On the other hand, there are
more variations in the values of the A;, A, and H, derivatives obtained by the
SSI-COV. From the test results, the sign reversal of the A," derivative was
observed as the reduced wind speed reached the value of 4.5. This indicates that
this bridge section is susceptible to flutter instability at high wind speed.

4) Under turbulence wind, the identified flutter derivatives by the SSI-DATA of a
blunt section model of the IRR Bridge are generally in agreement with those in
smooth flow. Though, there are small deviations from those in smooth flow at high
reduced wind speeds. The most important effect is that the reduced wind speed,
which corresponds to the reversed sign of the torsional aerodynamic damping A,
increased in the turbulent flows. It shows that turbulence tends to make bridges
more aerodynamically stable by delaying the torsional flutter. Comparing with the
SSI-COV, the identified flutter derivatives from the SSI-DATA are more precise
and less scattered, especially for the very sensitive A; and A, .

In summary, the numerical simulation tests showed that the precision of modal
parameters and system matrices can be clearly improved by using the SSI-DATA
technique when compared with those from the SSI-COV. From the results of wind
tunnel tests, it was found that for a simple streamlined section, the flutter derivatives
identified from both the SSI-DATA and the SSI-COV agreed well together. However,
in the case of the 2-edge girder blunt type section, the SSI-DATA technique yields
better results especially for the coupling derivatives. Applying the proposed SSI-
DATA technique to the buffeting test yields a straightforward, cost effective, and
reliable system identification process that can be used to identify flutter derivatives of
various bridge decks. The method uses only output measurements. Instrument and
extra efforts of input measurements are therefore not required as in case of the free
decay and the force vibration tests. Moreover, the root-mean-square responses of
bridge deck can be obtained simultaneously from the same test without requiring
separated tests as in case of the free decay method.

8.1.2 Effect of Experimental Techniques : SDOF and 2-DOF

The direct-flutter derivatives of the thin plate model as found from the single-
degree of freedom tests matched well with those found from the two-degree-of-
freedom coupled motion tests (i.e. the free decay and the buffeting tests) which
clarified two points:

1) The direct-flutter derivatives are independent of other motions incidental to the
principal degree of freedom with which they are associated. The result shows that
the direct-flutter derivatives are indeed not affected by the motion along the other
degree of freedom, as predicted by theory i.e., those flutter derivatives associated
with h motion are not affected by « motion, and vice versa.
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2) The present system identification method is well applicable to various experimental
test methods.

8.1.3 Effect of Deck Shape

For the streamlined thin plate section under smooth flow, the values of the
most important flutter derivatives H;" and A, - related to aerodynamic damping in
vertical and torsional mode, respectively- remained negative at all wind speed tests. In
case of the blunt type IRR Bridge model the vertical aerodynamic damping, H; ,
remained negative at all wind speed test. However, the torsional aerodynamic
damping, A, remained negative at low reduced wind speed but showed the sign
reversal at high reduced wind speed. The sign-reversal phenomenon is the outstanding
factor toward the flutter instability of bridge decks. This result show that the relatively
streamlined bridge section exhibits more aerodynamic stability than that of blunt type
section. Then, the streamlined bridge sections seemed to be an obvious choice for the
ultra-long span bridges.

Flutter derivatives of four sections are investigated. For vertical aerodynamic
damping coefficient, H,*, the modification effects considered to be negligible, which
all sections show in negative region. However, the section are influenced by the
modifications in A,* which is most considerable in long-span bridges. Fairing
modified section shows a little improvement on the unstable behavior, delaying the
unstable of bridge deck from reduced velocity of 4.5 to 5. Also, it was clearly found
that soffit plate modified section, and combination of soffit plate and fairings modified
sections produce more stable sections, whereas the classical flutter rather than the
single torsional flutter will occur because of H,* and A;*. In case of the blunt type
bridge deck, modifying the cross-sectional geometry to be more streamlined design by
aerodynamic appendages can significantly improve the aerodynamic stability of
bridge.

8.1.4 Effect of Flow Conditions: Smooth and Turbulence Flow

The flutter derivatives of the IRR Bridge deck under smooth and turbulent flow
were determined and then compared. The IRR Bridge is a 2-edge-girder bridge
section with A-shape pylons. This bridge is an example of blunt type section that has
a good cost performance, but at the same time the bridge cross-section is known to be
aerodynamically unstable at high wind speed.

From the test results under smooth flow, the sign reversal of the A, derivative
was observed as the reduced wind speed reached the value of 4.5 (i.e. at velocity
equals 118 m/s in full scale). This indicates that this bridge section is susceptible to
flutter instability at high wind speed. The instability of the IRR Bridge was found to
be torsional SDOF-type (“stall flutter”). Under turbulence wind, the identified flutter
derivatives —except A, - are generally in agreement with those in smooth flow. The
most important and positive effect of the turbulence is that it tends to make the bridge
more aerodynamically stable by delaying the sign reversal of the aerodynamic
damping A, . This may reveal that for those bridges with bluff type sections similar to
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the IRR Bridge, the effects of turbulence can be significant. Hence, the wind tunnel
tests of such bridges for flutter derivatives estimation should also be carried out in
turbulent flow

It is important to note that the results presents in this study are based on the
wind-tunnel investigations of only the IRR Bridge deck section under the conditions of
the present experiments and the turbulence generated by grids and spires.

8.2 Conclusions for Buffeting

8.2.1 Static Force Coefficients

Buffeting is the random response of the bridge due to wind forces associated
with the pressure fluctuations on the bridge deck caused by the turbulence of the wind
flow over the section. This turbulence may be due to the gustiness in the incident
natural wind, and may also contain contributions from the so-called signature or the
self-induced turbulence. Wind flow over the bluff sections such as bridge decks
generally causes separation of the flow at or near the leading edge of the section. This
separated flow around the section is turbulent and causes forces of random nature on
the section. The total buffeting forces on a section will depend on the level of the
turbulence and the bridge deck section shape. For the estimation of buffeting forces
and responses of bridge decks, the aerodynamic force coefficients are one of the
important factors that should be experimentally determined.

The aerodynamic forces (static forces coefficient) on the rigidly mounted
section model (static test set-up) of both a streamlined thin plate under smooth flow
and a bluff ( IRR) bridge deck section under smooth and turbulence flow were
investigated. The conclusions are as follows.

1) For the streamlined thin plate model, generally, the static force coefficients agree
with the theoretical values at the small angles of wind attack. The sudden drop of
lift forces and pitching moment (torsion a) from theoretical values occur at wind

angle of attack around 7°. The sudden drop in pitching moment and lift force is
due to flow separation occurring at angles of attack larger than this angle. The
flow separation has not been taken into account in the theoretical calculations.
Then, the theoretical values for the thin plate model are valid for small angles of
attack only and wind tunnel test is still an effective way in determining the
aerodynamic force coefficient of bridge deck.

2) For the bluff type section of the IRR Bridge under smooth flow, the angle of

attack where the flow separation occurs is reduced to 3° comparing to that of 7" in
case of thin plate model. This smaller angle of wind separation is due to the sharp
leading edge of bluff type section that generally causes the flow separation occurs
more easily.



199

3) Under the turbulence flow, the static force coefficients of the IRR Bridge were
moderately different from those determined under smooth flow. The turbulence
tends to enhance the reattachment of the flow by increasing the angle where the

flow separation occurs from 3° in case of smooth flow to that of 6° in case of
turbulence flow, respectively.

4) Fairings can significantly reduce drag coefficient. A combined section seems to
be the most effective one since the approaching wind can be more smoothly flew
through a section than those through an original bluff section. For lift and moment
coefficient, the modifications mounted to a model however represent a little
improvement, except at zero angle of attack of moment coefficient which the
modifications show a considerable improvement. Hence, it can be concluded that
fairing can effectively reduce the drag coefficients.

8.2.2 Buffeting Responses, Vortex-Shedding and Flutter Instability

The effects of turbulence upon various aerodynamic phenomena based on a
model study of the IRR Bridge were also studied. The model was tested under smooth
and two levels of turbulence flows.

Under smooth flow, the torsional vortex-shedding response of the blunt type
IRR Bridge was observed at velocity value of 2.58 m/s (i.e. the full scale velocity =
41m/s). The approximate Strouhal number from the dynamic test which was St =
0.065. The very abrupt transition with increasing velocity from the effectively zero
torsional response amplitude to the clear instability occurs in the near neighborhood of
the velocity value of 7.45 m/s. (i.e. the full scale velocity =118 m/s). This result
indicates that the blunt type IRR Bridge section is susceptible to flutter instability at
high wind speed.

For fairing mounted section, critical wind speed is 135 m/s, around 16% is
extended from original section. For soffit plate and combined case, the flutter could
not be found even in very high wind speed. Hence, soffit plate and combined case are
effective in delaying a torsional instability of bridge. For buffeting and vortex
shedding response, three types of modifications can suppress the dynamic response of
bridge significantly. That is, if we consider the effective of three modifications on
buffeting response and structural stability, the results shall be: combine > soffit plate >
fairings. Though combined case seem to be the most effective, but it still hold a
numerous weight. The most suitable modification of bridge should be carried out in
design and construction in boundary of architectural point of view and safety of
passenger cars.

Compared with the smooth flow, the turbulence flow reduces the vortex-
shedding response, because the turbulence tends to enhance the reattachment of flow
and weaken the vortex shedding formulation. However, it raises the amplitude of the
bridge responses progressively over the speed range. The results from the turbulent
flows indicate that the serious torsional oscillations (flutter instability) are postponed
to a slightly higher wind speed than that found in smooth flow in case of 5%-
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turbulence flow. However, no clear and uniquely definable “flutter instability” was
made evident by the experiment in case of 8%-turbulent flow.

8.3 Recommendations and Suggestions for Future Works

From the study of this research, the following issues may be noted and

investigated further to enhance a better understanding of the bridge aerodynamics:

1)

2)

3)

4)

In this study, in order to reveal the vortex shedding-response phenomena, the low-
inherent damping of model was selected. This vortex-shedding amplitude is well-
known as damping dependence, then tests may be carried out in the case of higher
structural damping of real bridge.

The effect of incident turbulence on the aerodynamic parameters should be further
examined for a wide range of bluff sections and different turbulent intensities.
The results presented and suggestions made in this study are based on the wind-
tunnel investigations of only two bridge deck sections under the conditions of the
present experiments. The experimental set-up in this study is suitable only for a
small range of amplitude responses and exhibit an amplitude dependence of the
structural damping at high amplitude. It is probably the effects of additional
restrain by the nonlinear structural effects of the test-setup. This limits the
maximum reduced velocity that can be tested to identify flutter derivatives in this
study, especially for high turbulence intensities where a large amplitude of the
buffeting response occurs. In order to identify flutter derivatives of a bridge deck
under high turbulence intensities, a new experimental set-up or an additional
artificial damping such as electro-magnetic may be required.

From this study, it is found that there are some limitations for the identification of
flutter derivatives from the buffeting test. For example, it becomes more difficult
to extract the flutter derivatives from the buffeting responses in the situation when
a relatively heavy model (i.e. the thin plate model in this study) is excited at a
very low reduced wind velocity, i.e. low wind energy. The useful signal is in the
same order as the measurement noises. In this case, using the SSI-DATA
technique with the free decay method will yield more accurate results in this low
wind speed range.

Theoretically, both the SSI-DATA and the SSI-COV can be applied to extract
eighteen flutter derivatives. Then, they may be applied further to experimentally
determine all the eighteen flutter derivatives for a wide range of bridge deck cross
sections shapes to gain further insights into the complex phenomena of flutter and
buffeting. However, a more extensive experimental set-up is required. Besides,
this system identification technique may be applied further to identify flutter
derivatives of real bridge decks in the field.
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5) In this study, the effects of turbulence upon the aeroelastic and the aerodynamic
phenomena of a blunt type bridge deck of IRR Bridge were investigated. The
turbulence has positive effects when concerning bridge stability. It delays the
onset of flutter and reduces the vortex-shedding response when compared with the
smooth flow. On the other hand, the turbulence raises the amplitude of response
progressively over the wind speed range and may causes problem to the
serviceability of the bridge. Then, an improving of bridge stability as well as the
reduction of bridge responses by the other methods such as the tuned mass
damper (Malhortra 1987, Boonyapinyo et.al. 2001) are expected in future.
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Appendix A

Schematic diagram of TU-AIT Wind Tunnel
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Appendix B

THE WIND TUNNEL AND THE EXPERIMENTAL APPARATUS

All the experiments were performed in the TU-AIT Wind tunnel at the
Thammasat University. Brief descriptions with illustrations of the wind tunnel,
measurement of the wind speed and wind turbulence, the force sensor system, the
aeroelastic support systems and the data-acquisition software, are given in this
appendix.

B.1 The TU-AIT Wind Tunnel

This wind tunnel is an opened-circuit tunnel capable of producing wind speed
as high as 20 m/s with a very low level of turbulence over the testing length. A
schematic of the wind tunnel is given in appendix A.

B.2 Wind-Speed and Wind-Turbulence Measurements

A pressure transducer (VaLidyne system, Model no.DP45-14) was used in
conjunction with the pitot-static tube to measure the horizontal mean wind velocity
(V) in smooth flow. Hot-sphere anemometer as shown in Fig. B1 was also used to
measure the horizontal mean wind velocity. A hot-wire X-probe was used to measure
the mean wind velocity, the horizontal (u) and the vertical (w) wind turbulences for
two cases: (a) without a turbulence grid, and (b) with a turbulence grid.

Fig. B.1 Hot-sphere anemometer

The basic working principle of the pitot-static tube and hot-wire anemometer is
described below.

Pitot-Static Tube
A pitot-static tube is an instrument that yields both the total and the static pressure

heads. A standard pitot-static tube is shown in Fig. B.2. It was used to measure the
mean wind speed for a smooth-flow case. The orifice at A yields the total head
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(p,+1/2pU%), and the orifices at B yield the static pressure ( p,). If the pressure
differential (p) of pressures at A and B is measured using an electronic manometer,
1/2pU % will be represented in terms of voltage output. This pressure differential (p)
of pressures at A and B is measured using an electronic manometer, 1/2,0U° will be
represented in terms of voltage output. This pressure differential (p) as displayed by
the electronic manometer in VVolts can be converted to actual pressure units

s = rmrrombe oo

Eight holes
3p Equally Speced
on Periphery

Static
Conaection

Electronic
Manomatar

o[-[op[7]

Pitot-Static Tube

Fig. B.2 A standard pitot-static tube

p, mmH,0O = 4.9515x Volts
p (kg/m?) = 4.9515xVolts

Then,
u= [P

Yo
where p is the air density at the temperature and pressure of the air flowing through

the tunnel. The air density varies according to

where T=T°(F)+459.6 is the temperature in ‘R. p,,F,,T, are the air density,
pressure and temperature at sea level and p is the air density at any pressure (P) and
temperature (T). p, = 1.22557 kg/m® P, = 101.32kPaand T, = 59°F (518.6°R).

Voltage corrections are applied to manometer output p if there is a non-zero voltage
output at zero wind velocity.
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Hot-Sphere Anemometer

A hot-sphere anemometer (FlowMaster, Model 54N60) contains velocity
sensor and a temperature compensator made of nickel wire coils-both are clad with
metal. The electronics is operated from the front plate which incorporates keyboard
and LCD-display. Connections for transducer and output signals are found on the
back plate. It’s range of application covers velocities from 0.1 m/s to 30 m/s and
temperatures from -15 to 85°C, with compensation for pressure and humidity
variations. Integration times shall be selected from 1-180 seconds in either continuous
or single-period modes; calculation of mean velocity and temperature together with
minimum and maximum values.

Hot-Wire Anemometer
Hot-wire anemometers have some special features which makes them a very

common tool in any modern wind tunnel. These are:

e Small sensing element dimensions, hence high spatial resolution and little
interference to flow

e Short response time due to small sensor mass.

<

Y Tri-axfal Probe
A Single-sensor Probe f §
L]

— A o
. S l__»%% g ) »
v A— = X

/

Sensor ID Alignment
X-aray Probe T face
et SensoriD v 2)= Probe coordinate
VT system
Uz A X (U.V, W) = Laboratory coordinate
\ system

wire 2

Fig. B.3 Probe array and orientation with respect to laboratory coordinate system

There are various types of hot-wire X-probes which are commercially available
(see Fig. B.3). The selection of a particular probe is based upon: fluid medium,
number of velocity components to be measured (1-, 2- or 3), expected velocity range,
turbulence intensity and fluctuation frequency in the flow, etc.. Based upon the above
selection criteria, a Dantec/DISA 55P51 type hot-wire X-probe was selected for the
present experiment. DISA 55P51 is a dual-sensor X-array probe with the cylindrical
sensors. It has two platinum plated tungsten wires (sensors) of diameter 5um of
overall length 3 mm. The sensitive wire length is 1.25 mm; it is copper and gold
plated at the ends to a diameter of approximately 30um. The mounting is a 6 mm
diameter cylindrical probe. The probe connected to the constant temperature
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anemometer (CTA) as shown in Fig. B3. The CTA anemometer works on the basis of
convective heat transfer from a heated sensor to the surrounding fluid, the heat transfer
being primarily related to the fluid velocity. The measuring equipment constitutes a
measuring chain (see Fig. B.4). It consists typically of a probe with probe support and
cabling, a CTA anemometer, a signal conditioner, an A/D converter, and a computer.

Compuier
Anemometer \\
CTA Signal Connector A/D W
Prche  Probe Support Probe Cable \ Conditioner Box \ Board

A N\
o e = \Fﬂi%— &0 = 011000111

Filter Gain

Aridge loop

cTA @
Application

Software

Fig. B.4 Typical CTA measuring chain

Calibration is required to establish a relation between CTA output and the flow
velocity. It is performed by exposing the probe to a set of known velocities, U, and
then record the voltage, E. A curve fit through points (E,U) represents the transfer
function to be used when converting data records from voltages into velocities.
Calibration may be carried out in wind tunnel with for example a pitot-static tube or
hot sphere anemometer as the velocity reference. It is important to keep track of the
temperature during calibration. If it varies from calibration to measurement, it may be
necessary to correct the CTA data records for temperature variations.

Data Acquisition

The hardware used was a PC/AT computer system with 2GB of disk, 1 MB
RAM, Pentium IV coprocessor and an enhanced color monitor. AT-MIO-16XE-50
A/D card was used for analog-to-digital conversion. The data-acquisition software
used was LabView.

The Aeroelastic Support System (Dynamic Rig)

The dynamic rig and its components are illustrated in Fig. 3.7. The model
section (1) forms an integral part of the test rig which is double symmetric with regard
to the model span and cord, except for the drag wires (5,6) having different lengths.

The dominated flexibility of the rig is given by the set of helical springs in
which the model section is suspended. Secondary flexibilities are given by the rig
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arms and the model section itself and need to be considered when determining the
modal stiffness of the rig. This is the purpose of setting acceleration transducers at
mid-section of the model to detect local mode of model section. Model vibration
frequencies are adjusted by varying the spring lengths / dimensions and the spring
spacing.

Both the section model and the rig components are constructed with emphasis
on keeping the mass low and stiffness high. Adjustment of model mass and mass

moment inertia is done by adding masses (8,9) to the rig such that the scaling
requirements are met within the given tolerances.

Some of the features of the aeroelastic support system are mentioned below.

(i) The length of the extension springs can be adjusted, thereby changing the
vertical stiffness (K, ) value.

(if) The distance between springs, d, can be adjusted, thereby adjusting the
torsional stiffness (K, ) keeping K, constant. The offset r, between the elastic center

and mass center can be adjusted in such a way that the amount of coupling between h
and o motions can be varied.

(iii) Movable weights on the bars fixed perpendicularly to the model axis can
change the mass moment of inertia about the axis of rotation without changing the
total weight.

(iv) A release system exists to impose the desired initial conditions on the
displacements.

(v) For restraining the h motion and allowing only o motion, the cross wires
fixed to the supporting frame and crossed the center of rotation of model are provided.
For restraining the o motion and allowing only h motion, two pairs of horizontal drag
wires are provided at distance a above and below the center of model.

Two laser displacement sensors consists of head and control box are used for h
and « measurements. The sensor head is attached on frame at a distance from
measured object, which depends on type of sensor. Two lasers sensors used for this
experiment are LB300 with measured displacement range of =100 mm and resolution
of 50 um. Each sensor is placed at distance | from center of rotation, and then the
vertical and torsional responses can be respectively calculated by

— X% a X =%

2 21
where x;,X, are the measurements of laser displacement sensor, respectively; 2l is
the space between sensor 1 and sensor 2.

h

Two acceleration transducers consisted of acceleration transducer, PCD 300A
sensor interface and control software are used (option) for acceleration in h and «
directions at mid-section of model. Each sensor is placed at distance | from center of
section, and then the vertical and torsional responses can be respectively calculated
similar to the displacement responses whereas x,X, are the measurements of

acceleration transducers.
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In this paper, the covariance-driven stochastic subspace identification technique (SSI-COV) was
presented to extract the flutter derivatives of bridge decks from the buffeting test results. An advantage
of this method is that it considers the buffeting forces and responses as inputs rather than as noises.
Numerical simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth
flows by the free decay and the buffeting tests were used to validate the applicability of the SSI-COV
method. Then the wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road Bridge
deck (IRR) were conducted under smooth and turbulence flows. The flutter derivatives of the thin plate
model identified by the SSI-COV technique agree well with those obtained theoretically. The results
obtained for the thin plate and the IRR Bridge deck validated the reliability and applicability of the SSI-
COV technique to various wind tunnel tests and conditions of wind flows. The results also show that
for blunt type of IRR Bridge deck, the turbulence wind will delay the onset of flutter, compared with
the smooth wind.

Keywords: Flutter instability; flutter derivatives; covariance-driven stochastic subspace identification;
wind tunnel test; bridge decks; turbulent flow

1. Introduction

Long-span cable-supported bridges are highly susceptible to wind excitations because of their
inherent flexibility and low structural damping. Wind loads play an important role in the design
of these structures. A wind-induced aerodynamic force can be divided into two parts: the
buffeting force that depends on the turbulence of incoming flow, and the aeroelastic force that
originates from the interaction between the airflow and bridge motion. The motion-dependent
forces feed back into the dynamics of the bridge as aerodynamic damping and stiffness; the
effect is termed ‘aeroelasticity’ and is commonly described via ‘flutter derivatives’. The
problems of aerodynamic stability including the vortex-induced vibration, galloping, flutter,
and buffeting, may have serious effects on the safety and serviceability of bridges. Among
these, flutter is the most serious wind-induced vibration for bridges and may destroy a bridge
due to diverging motions either in single or torsion-bending coupled mode. Notorious
examples of flutter failures are the collapse of the Brighton Chain Pier Bridge in 1836 and the
original Tacoma Narrow Bridge in 1940. The buffeting response, on the other hand, may affect
serviceability and fatigue strength of a bridge. Flutter derivatives are essential parameters and
shall be determined at first place in order to estimate the flutter-instability critical wind velocity
and the responses of long-span cable supported bridges. Analysis can be performed in the



frequency” or the time domain®. More detail may be found in Yang et al., Boonyapinyo et al.?
and Michaltsos et al.>. The flutter derivatives depend primarily upon the conditions of wind,
cross-sectional shape and dynamic characteristics of the bridge. Nevertheless, no theoretical
formulas exist for these derivatives for various bridge shapes except for a simple thin plate
section. A major research tool in these studies is, therefore, a wind tunnel test, in which a
geometrically and aerodynamically representative scale model of a segment of the bridge deck
is mounted in a wind tunnel. The flutter derivatives are non-dimensional functions of wind
speed, geometry and frequency of vibrations; therefore they can be applied directly to full-scale
bridge in a piecewise manner.

The experimental methods used to determine the flutter derivatives can be grouped under
two types, i.e., the forced * and free vibration methods.>® Having less emphasis on elaborate
equipment, time and effort, the free vibration method seems to be more tractable than the
forced method. In determining flutter derivatives by the free vibration method, system
identification techniques are required to extract these parameters from the response measured
for the section model. The free vibration method depends on the system identification
techniques used and can be classified into two types, i.e., the free decay and buffeting tests. In
the free decay method, the bridge deck is given an initial vertical and torsional displacement.
The flutter derivatives are calculated from transient (i.e. free decay) response that occurs when
the bridge deck is released. The buffeting test, on the other hand, uses only the steady random
responses (i.e. buffeting responses) of the bridge deck under the wind flow with no initial
displacement given to the model. Compared with the free decay method, the buffeting test is
simpler in the test methodology, more cost effective, and more closely related to real bridge
behaviors under the wind flow, except that the output responses appear random-like. This
makes the parameters extraction more difficult and a more advanced system identification is
required.

In most of the previous studies, flutter derivatives were estimated by deterministic system
identification techniques that can be applied to the free decay method only. Examples of
previous deterministic system identification techniques that were applied to the free decay
method include Scanlan’s method,® Poulsen’s method,® Modified Ibrahim Time Domain
method (MITD),” and Unified Least Square method (ULS).? In these system identification
techniques, the buffeting forces and their responses are regarded as external noises, and the
identification process requires many iterations.>”® It also confronted with difficulties at high
wind speeds where the initial free decay is drowned by the buffeting response.®® Moreover, at
high reduced wind speed, the vertical bending motion of the structure decays rapidly due to the
effect of positive vertical aerodynamic damping, and thus the length of decaying time history
available for system identification decreases. This causes more difficulties to the deterministic
system identification techniques.”® In case of turbulence flows, the presence of turbulence in
the flow is equivalent to a more noisy-input signal to the deterministic system identification.
This made the extraction process more complicated and most likely reduced the accuracy of the
flutter derivatives identified.®” In addition, due to the restraint of the test technique itself, the
free decay method can hardly be applied to determining the flutter derivatives of real bridges in
field.

On the other hand, the buffeting test uses the random responses data of a bridge under the
wind turbulence only. This mechanism is more closely related to the real behavior of the bridge
under wind flows and is applicable to real prototype bridges. The buffeting method costs less
and is simpler than the free decay method, since no artificial interruptions are required in
exciting the model. However, as wind is the only excited source, the signal-to-noise ratio is
generally low, especially at low velocity, and therefore a very effective system identification is
required. None of the aforementioned system identification techniques is applicable to the
buffeting response tests.



System identification techniques can be divided into two groups, i.e. deterministic and
stochastic. If the stochastic system identification technique *** is employed to estimate the
flutter derivatives of a bridge deck from their steady random responses under the action of a
turbulent wind, the above-mentioned shortcomings of the deterministic system identification
technique can be overcome. The reason is that the random aerodynamic loads are regarded as
inputs rather than noises, which are closer to the fact. Therefore, the signal-to-noise ratio is not
affected by the wind speed, and the flutter derivatives at high reduced wind speeds are more
likely to be available. As such, the stochastic system identification methods is more
advantageous than the deterministic system identification methods.

Many stochastic system identification methods have been developed during the past
decades, among which the stochastic subspace identification (SSI in short)® ' has proven to
be a method that is appropriate for civil engineering. The merits of SSI include: (1) the
assumptions of inputs are congruent with practical wind-induced aerodynamic forces, i.e.
stationary and independent of the outputs; (2) identified modes are given in frequency
stabilization diagram, from which the operator can easily distinguish structural modes from the
computational ones; (3) since the maximum order of the model can be adjusted by the operator,
a relatively large model order will give an exit for noise, which in some cases can dramatically
improve the quality of the identified modal parameters; and (4) mode shapes are
simultaneously available with the poles, without requiring a second step to identify them.

There are two kinds of SSI methods, one is data-driven (SSI-DATA), and the other is
covariance-driven (SSI-COV). Theoretically, the SSI is developed and applicable to the
random responses under the turbulent wind only. In the first application, Gu and Qin*? have
applied the SSI-COV method to determine flutter derivatives of a bridge deck from random
responses under the turbulent wind. The results were then compared with those from the
smooth wind by the deterministic system identification technique (ULS)? with the free decay
method. However, the effect of turbulence found may raise questions regarding difference in
test methods and system identifications used, perhaps because of the reliability of different
techniques. Answers to such questions are sought as part of this study.

In this paper, the covariance-driven stochastic subspace identification method is used to
estimate the flutter derivatives from random responses (buffeting) under the action of smooth
and turbulent winds. Tests are also carried out with the free decay method (single and two-
degree-of-freedom) in order to examine the robustness of the present technique, i.e., to see if
the results are not affected by test methods used. To validate the applicability of the present
technique, numerical simulations are performed first, followed by sectional-model tests of a
quasi-streamlined thin plate model, which is the only section for which theoretical flutter
derivatives exist, under smooth flows. Encouraged by the success in the evaluation process, the
flutter derivatives of a real bridge are determined. The two-edge-girder type blunt section
model of the Industrial-Ring-Road Bridge (IRR in short), a cable-supported bridge with a main
span of 398 m in Samutprakan province, Thailand, was tested both in smooth and turbulence
flows. Tests were conducted in the TU-AIT Boundary Layer Wind Tunnel in Thammasat
University, the longest and largest wind tunnel in Thailand.

2. Theoretical Formulation of Covariance-Driven SSI

2.1 Flutter and buffeting forces

The dynamic behavior of a bridge deck with two degrees-of-freedom (DOF in short), i.e. h
(bending) and « (torsion), in turbulent flow can be described by the following differential
equations: 2%



m[A(t) +2&,0,h(t) + @Zh(t) |= L, (1) +L, 1)
1 é(t) + 28, 0,a(t) + wla(t) |= My () + M, () (1)

where m and | are the mass and mass moment of inertia of the deck per unit span, respectively;
w; is the natural circular frequency; & is the modal damping ratio (i=h,q); Ls and Mg, are the
self-excited lift and moment, respectively; while L, and M, are the aerodynamic lift and
moment. The self-excited lift and moment are given as follows:**

. h . Ba . . h
L =%pUZB{KhH1 (Kh)U+ KaHz(Ka)T+ KiH; (K, )a + KﬁHa(Kh)E} (2.9)

Mse:%pUZBZ{KhAJ(Kh>Uﬂ+KaA;<Ka>%+ KiAJ(Ka)wKﬁA:(Kh)H (2b)

where p is the air mass density; B is the width of the bridge deck; U is the mean wind speed at
the bridge deck level; Ki= @B/U is the reduced frequency (i=h,c); and H; and A;" (i=1,2,3,4)
are the so-called flutter derivatives, which can be regarded as the implicit functions of the
deck’s modal parameters. The alternate form of self-excited forces is as given in Eq. (2) but
without the factor 1/2, (see Ref. 3).

The aerodynamic lift and moment can be defined as **

u(t)

L (t) = ;pUZB{ZCLUzL (H)+(c +CD)$1L (t) }
0 = Sorerf e, S0, (i) 0 @

where C, Cp and Cy are the steady aerodynamic force coefficients; C’. and C'y are the
derivatives of C_ and Cy with respect to the attack angle, respectively; u(t) and w(t) are the
longitudinal and vertical fluctuations of wind speed, respectively; y and yy are the lift and
moment aerodynamic admittances of the bridge deck.

By moving L and My, to the left side, and merging the congeners into column vectors or
matrices, Eq. (1) can be rewritten as follows:

[MI{Y®) + [CTHYOF +[K Ny} ={ f (1)} (4)

where {y()} ={h(t) a(t)}" is the generalized buffeting response; {f(t)} ={Ly(t) My(t)}" is the
generalized aerodynamic force; [M] is the mass matrix; [C°] is the gross damping matrix, i.e.
the sum of the mechanical and aerodynamic damping matrices; and [K®] is the gross stiffness
matrix.

2.2 Stochastic state space models

The fluctuations of wind speed u(t) and w(t) in Eq. (3) are random functions of time, so the
identification of flutter derivatives for the bridge deck can be simplified as a typical inverse
problem in the theory of random vibration, and thus solved by the stochastic system
identification techniques. Let
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then Eq. (4) is transformed into the following stochastic state equations

P =[Ax) + {w )
v} =[C]{x}+{v}

The discrete form of Eq. (7) can be written as

X} =[AJ{0 +{w ]
{yh =[CI{xd +{v 8)

where [Aclaxs, [Celoxa and {x} are known as the state matrix, output shape matrix and state
vector, respectively; {w,} and {v} are the input and output noise sequences, respectively. The
subscript in (¢), denotes the value of (¢) at time kAt, where At means the sampling interval. 0
and | are the zero and identity matrices, respectively.

An assumption of the stochastic model is that {x}, {wi} and {v} in Eq. (8) are mutually
independent and hence

E[xw,'1=0 E[xVv']1=0 9)

Defining the output covariance matrix of lag i, A;, and the “next state-output” covariance
matrix G as

X= E[XkaT] Q= E[WkaT]
A= E[ym ykT] R= E[VkaT]
G= E[an)’kT] S = E[WkaT] (10)

and combining Eqgs. (9) and (10), we obtain the following Lyapunov equations for the state (X)
and output covariance matrices

T =ASAT +Q
A, =CiC" +R
G=AC"+S (11)

From Egs. (8) and (9), it can be deduced
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A= E[ (Yo 0 ]=E[(C %} + e (i) ]
= E[C{xea 1 |=CE[{x} (0} ]

= CE[ (Al + W) v ]
- CE[A{XM}{yk V' } CAE [{Xm}{yk }T}
=CA™'G (13)
and
A,= CA"G (14)

2.3 Covariance-driven stochastic subspace identification

The main algorithm of SSI-COV proceeds with defining a covariance block Toeplitz Tl‘ ; as

A Ay A
Ai+1 Ai Az (15)
Tl\i = C
A2i71 Azpz Ai

One can infer from the definition of the covariance matrix that T, can be expressed as the
product of two block Hankel matrices Y and Y,

Ty =YY (16)

where Y; and Y, are composed of the ‘future’ and ‘past’ measurements, respectively,

Vi VYia o VYija Yo Y1 o Yia
yoo LY Ve o Vg |, J LY Y Y, (17)
f \/] : : : : P \/T :

Yoiir Yo 0 VYaisj-2 Yia Y o VYo

Next, applying the factorization property to Tqi by the singular value decomposition yields

S, O T
TJJi =usv' = (Ul Uz) (01 Oj{xlT ]z UlslvlT (18)
2



where U, S and V are orthonormal matrices. S is a diagonal matrix containing positive singular
values in descending order. The number of nonzero singular values indicates the rank of the
Toeplitz matrix Tﬂi' The reduced diagonal matrix S; is obtained by omitting the zero singular

values from the matrix S. Matrices U; and V; are obtained by omitting the corresponding
columns from the matrices U and V respectively. Now the identification of system matrices is
almost achieved. In practice however, the estimated covariance Toeplitz matrix Tm is affected

by "noise" leading to singular values that are all different from zero. Actually, some of the
singular values associated with the noise modals are small, or very small. Generally, the model
order can be determined by looking at a “gap” between two successive singular values. The
singular value where the maximal gap occurs yields the model order. To obtain a good model
for modal analysis applications, a better idea is to construct a stabilization diagram’, by
identifying a whole set of models with different orders. Matrix A is then obtained by

factorizing a shifted Toeplitz matrix T, that has similar structure as of T, but consists of

covariance from lag 2 to 2i. In a manner similar to the classical eigensystem realization
algorithm (ERA in short), one can find

A= oiTTz\ i1Si = Sﬁl/ZUTTz\ iV Sﬁl/z (19)
where N is the model order, i.e. the maximum number of modes to be computed and (s)*
denotes the Moore-Penrose pseudo-inverse of a matrix. Thus, the modal parameters can be
determined by solving the eigenvalue problem of the state matrix A. By now, the theoretical
formulation of the covariance-driven SSI has been achieved.

According to Egs. (16)-(19), a different combination of i, j and N will give a different state
matrix, and thus a different pair of modal parameters. Therefore, modal parameters should be
derived from a series of combinations, rather than a single combination. In the process of
identification, N or i should be given in series for certain values of j in order to obtain a
frequency stability chart. Solving the eigenvalue problem of the state matrix A by the pseudo-
inverse method yields

A=FA P

o =C¥ (20)
where ¥ is the complex eigenvector matrix, ® is the mode shape matrix, and A is a diagonal
matrix composed of the complex poles of the system. Different combinations of i, j and N are
employed to derive the modal parameters statistically. For more details, see Refs. 7 and 9.

Once the modal parameters are identified, the gross damping matrix C® and the gross
stiffness matrix K® in Eq. (4) can be readily determined by the pseudo-inverse method

« Tt
(O] o
K® C*]=-M[®A* ®"(A")? .. 21
[ ] [ ( )]{ OA @ A} (21)
where the superscript * denotes the complex conjugate of the corresponding term. Let
C ' =M7'C, K = M7K®
C =M™’ K =M?K° (22)



where C° and K° are the ‘inherent’ damping and stiffness matrices, respectively. Thus, the
flutter derivatives can be extracted from the following equations

. 2m  —, = N 21 —. =
H1 (kh) :_—Z(Cn_cn)v Ai(kh) :_—3(C21_C21)
pB o, pB

@,
Hi(k,) =-—2(Ce-Cy) AK,) =——a—(C; -Cy)
pBw, pBw,
HI(K,) =—— Ry -Ky), A(K,) =——2— (K5~ K,y)
pPB @, pB @,
Hi(k) = —2M(Re —R.), A(Ky) = —2— (R, - Ky) (23)
pB pB o,

2.4 Constitution of Toeplitz matrices and selection of model order

A good knowledge of the model order (system order) is essential for modal analysis. First, the
numbers of block rows i (which determine the maximum number of orders that can be
calculated) have to be specified. The numbers of block row i in T, in Eq. (18) and model order

N in Eq. (19) are depend on user’s choice. According to experience, it is better to over-specify
the model order and then to eliminate spurious numerical poles afterwards. The operation was
carried out with the help of MATLAB. In each number of block row i selected, for construction
of stability diagram, the poles corresponding to a certain model order are compared with the
poles of a one-order-lower model. If the frequencies and the damping ratios differences are
within preset limits, the pole is labeled as a stable one and the model order is determined. The
modal frequency (. ) and damping ratio (£;) corresponding to each pole can be obtained by

o= Ja 0, =2 (24)
2

(25)

where j=\/—_1 and g is the discrete time poles (eigenvalue), corresponding to the ith mode

of A. The preset limits are normally 1% for frequencies and 5% for damping ratios. However,
depending on the quality of data, at high wind speed, a difference of 10% for damping ratio
may be set’. A brief description follows:

1. For aselected number of time history data recorded, n, select the number of block row
i. Accordingly, the maximum number of orders is specified. The output covariances
were determined for lags k =1, 2,....i.

2. In each i, the Toeplitz matrix is formulated once as per Eq. (16). Models of different
orders (N=2...i) were then obtained by including different numbers of singular values
Sy in the computation of matrix A. Thus the modal parameters can be determined by



solving the eigenvalue of the state matrix A. The poles corresponding to a certain
model order are compared with the poles of a one-order-lower model and the stable
poles and system order are then determined.

3. The frequencies and damping coefficients corresponding to the stable poles are
reported as stable ones for selected value of i.

4. To assess if a suitable number of block rows is selected, steps 1-3 are repeated by
varying i, and the model order, stable poles, modal frequencies and damping for each
value of i. Theoretically, the number of block rows i is related to the precision level
of the SSI method and generally shows asymptotic convergence.

Figure 1 shows a sample of the identified (stable) modal frequencies and damping
coefficients of the two modes (vertical and torsion) as a function of i. The variability of the
modal frequencies looks small but the modal damping coefficients are uncertain and
illegitimate when a small number i is used. However, they do show asymptotic convergence
after certain value of i. The number of block i, for which the modal parameters have
converged, is also affected by the sampling frequency. From Fig. 1, the convergence starts at
number of block rows i = 2f;, where f; is the sampling rate (Hz) which is usually taken as ten
times that of the highest expected modal frequency or higher’.
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Fig. 1 Asymptotic convergence property of modal properties (...fs = 25 Hz, ---fs =50 Hz  and solid line for fs = 100
Hz)

2.5 Determination of System Matrices and Extraction of Flutter Derivatives

Once the model order and stable poles are identified as in Section 2.4, only the ¥, @, and A
matrices of the stable poles are used to obtain the K and C matrices in Eq. (21) in order to
eliminate noises. The stable poles are regarded as the true modes whereas the spurious poles
represent the effects of noises. The flutter derivatives are then estimated by using Eq. (23).



3. Numerical Simulation Test

In order to validate the applicability of the covariance-driven SSI technique in flutter
derivatives estimation, the numerical tests are first carried out. The response signals of bridge
decks from different wind-tunnel test methods were simulated. The numerical tests included
two synthetic but well controlled cases: two uncoupled degrees of freedom and two coupled
degrees of freedom (simulated response including the motion induced aeroelastic terms). Both
cases are first excited in the transient (i.e. free decay) motion and then by a white noise loading
process. Measurement noises are also added by a white noise process with a standard deviation
equal to 10% of the standard deviation of the original responses, in order to investigate the
effect of measurement noise.

3.1 Two uncoupled degrees of freedom: free decay

Time-history free decay responses were obtained by direct calculations of the displacement
values for n=4096 discrete time stations, with a ‘sampling’ interval At=0.02s (fs= 50Hz).
Structural modal properties used in this simulation were chosen from the previously tested
sectional model of the Great Belt Bridge.' The modal matrices are given per unit length as:

0.3616 0 397.0573 0 2.6526 0
Co = s Ko = , M 0=
0 0.0072 0 24.7315 0 0.0189

i.e. f,o =1.9472 Hz, f4 =5.7573 Hz, &,=0.0053, {x = 0.0056, where damping ratios, &, are
representatives for the range of small amplitudes. The damping ratios were then multiplied in
turn by 5, 10, 20 and 40 to cover the total damping (structural + aerodynamic) effect which will
be present in vibration of the model section under wind flows. Values as high as £=0.2 can be
expected for the vertical degree of freedom under the wind flow. The Liepmann approximation
of Sear’s function™ is further assumed to be the aerodynamic admittance of the model.

Table 1a Preset and identified values of frequencies and damping ratios for free decay responses, nAt = 4096 x0.02 s

=81.92s.
case Mode Preset values Identify values Error(%).
fP ép fP ép fP gp

1 Vertical mode 1.9472 0.0056 1.9472 0.0056 0% 0%

Torsional mode 5.7573 0.0053 5.7573 0.0053 0% 0%
2. Vertical mode 1.9472 0.2228 1.9462 0.2236 -0.05% 0.36%
Torsional mode 5.7573 0.2120 5.7612 0.2128 0.07% 0.38%
casel+10% noise Vertical mode 1.9472 0.0056 1.9496 0.0053 -0.1% -5.4%
Torsional mode 5.7573 0.0053 5.7570 0.0052 0% -1.9%

case2+10% noise Vertical mode 1.9472 0.2228 1.9621 0.2276 0.8% 2.2%
Torsional mode 5.7573 0.2120 5.7593 0.2126 0% 0.3%
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Table 1b Preset and identified values of stiffness and damping matrices for free decay responses, nAt = 4096 x0.02 s

=81.92s.
case Preset sti_ffness Preset dampinq Recover s_tiffness Recover dfampinq
matrix. matrix. matrix matrix
Kt Kaz Cu Cx Ku Kaz Cu Cx
1 397.057 24.73 0.3616 0.0072 397.056 24.73 0.3616 0.0072
2 397.057 24.73 14.464 0.288 396.611 24.76 14.477 0.289

case1+10% noise 397.057 24.73 0.3616 0.0072  397.5447 24.73 0.3514 0.0072

Case2+10% noise 397.057 24.73 14.464 0.288 397.0573 24.73 14.5081 0.2886

Tables 1a and b show the identified values of modal parameters and system matrices for
the lowest and highest preset damping ratios cases (casel and case 2 respectively). As can be
seen, the estimated frequency and damping ratio are practically identical to the preset values
(less than 0.5% for the highest damping case). The system matrices are also good even for the
short useful signal case with only a few cycles of vibration. For the case where 10%-
measurement noises are added, the variations in identified frequencies are less than 0.8%. The
variations in damping ratios are no more than 2%, except for the lowest damping case for
which the variation is 5.4 %. The diagonal terms of the estimated system matrices (frequency
and damping matrices) are also identical to the preset values. The estimates of diagonal terms
are distorted within 1% except for the lowest damping case in which values are within 2.82%.

3.2 Two Coupled Degrees of Freedom: Free decay and Buffeting responses

The next step was a simulation test with full effective stiffness and damping matrices (i.e.
coupled degrees of freedom) and with lift and moment forces of the white noise type, as
assumed in the SSI-method. For the mean-wind speed of 10.26 m/s and the aerodynamic
derivatives assumed to be those reported for a similar bridge cross-section,”® the effective
structural matrices were pre-set as

8.9308 -0.0799
° 104345 00386 | °

~1420.1002 -59.1805 | 2.6526 0
| 17552 196652 | ° 0 0.0189

The time-history response were simulated for both free decay and buffeting responses
under turbulence winds with 10% turbulence intensity; then measurement white noises were
superimposed on the simulated response. The time-history free decay response were computed
by constant acceleration method, for which some results are shown in Fig.2a. With the SSI-
COV method applied to these responses data, we can obtain the effective structural matrices
with the deviation from the pre-set ones (C and K) in percentage as

086 -300]  _[-014 -005
016 -026| ~ * | 426 -0.08

scy=|
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Fig.2a. Example of vertical (top) and torsional Fig.2b. Example of vertical (top) and torsional
(bottom) free decay responses simulated under wind (bottom) buffeting responses simulated under wind
flow.(time step =0.02 sec.) flow. (time step =0.02 sec.)

Superimposing 10% measurement white noise on the simulated response made the
structural matrices differ from those of the noise-free cases within 3%. The time-history
response was also simulated for the case of buffeting responses where wind turbulence is the
only exciting source. The effective stiffness and damping matrices were taken as in the case of
transient response; examples of the time-history response are shown in Fig. 2b. The buffeting
responses required longer data records (20,000 data points in the present study) as compared to
that in the free decay case (4096 data points) to yield acceptable results. The computed
frequencies and damping ratios agree well with preset values with precisions within 0.5% and
2%, respectively. The diagonal terms in the stiffness and damping matrices also agree well
with preset values, showing a difference of less than 1%, except for the Cy; (related to vertical
damping) where the difference is around 2.5%. The largest differences in the off-diagonal
terms are K,; and C,;, which are related to A,” and H,", respectively. In the case with 10%-
measurement noise added, the deviations of the reconstructed matrices from the pre-set ones, in
percentage, are

855 -27.86 223 -0.38
AC, = , AK, =
-0.28 05 -11.17 -0.03

4, Wind Tunnel Tests

To evaluate further the applicability of the present method in estimating the flutter derivatives
of bridge decks, wind tunnel tests of a quasi-streamlined thin plate model and a two-edge
girder type blunt bridge section model were performed.

4.1 Outline of wind tunnel tests

The wind tunnel tests were performed in the TU-AIT wind tunnel in Thammasat University.
The working section of the wind tunnel has a width of 2.5 m, a height of 2.5 m and a length of
25.5 m. The required turbulent flow was generated by grids, as shown in Fig. 3. A hot-sphere
anemometer was applied to measuring the mean wind speed of the flow, and a hot-wire
anemometer was used to measure the fluctuations of wind speed. The longitudinal and vertical
turbulence intensities are both less than 0.05% for smooth flows and about 8% for turbulence
flows. Typical normal spectral densities of the longitudinal and vertical fluctuation components
of 8%-turbulence flow are presented in Fig. 5 and compared with both the Von Karman and
Kaimal spectrum®.
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The model was suspended by eight springs outside the wind tunnel (see Fig. 4). To simulate
a bridge section model with 2DOFs, i.e. vertical bending and torsion, piano wires were used to
prevent the motion of the model in the longitudinal direction, as can be seen from the
schematic diagram of the top view of the test setup in Fig. 6. Two piezoelectric acceleration
transducers were mounted at the mid length of the model to capture the acceleration signals.
The responses of the models were captured by the acceleration transducers, and then the
vertical and torsional responses can be respectively obtained by

I T . S (26)
2 |

where x; and x, are the measurements of transducers 1 and 2, respectively; and | is the space
between transducers.

l 7y & ——

[ B AV e v o= r=—
Fig. 4. Suspension device of the model.

Fig. 3. IRR bridge model and grids to generate
turbulent flow in wind tunnel.
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Fig 5 Normalized power spectrum of the longitudinal and vertical velocity component: 8%-turbulence flow.

4.2 CASE 1: Thin plate model under smooth flow

A quasi-streamlined thin plate with a width to height (thickness) ratio of about 22.5 (see Fig. 7)
was first selected for the wind tunnel test. The Table 2 lists the main parameters of the model.
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Fig. 6 Top view of the test setup. Fig. 7 Cross-section of the thin plate.

The flutter derivatives of the thin plate were extracted using the SSI-COV technique from
the results of three types of tests, namely, a) single-degree-of-freedom (SDOF) motion tests,”
b) free decay coupled-motion test (2DOFs), and c) buffeting coupled-motion test (2DOFs).
Typical test results showing the responses from the bridge model have been plotted in Figs. 8
and 9. The responses for the free decay and buffeting tests are sampled at the rates of 1000 Hz
and 200 Hz, respectively. The results are then removed mean and re-sampled at 250 Hz and 50
Hz, respectively. The covariance-driven SSI technique is applied to identifying modal
parameters from these data, and a pseudo-inverse method is applied to estimating the stiffness
and damping matrices. The flutter derivatives are estimated by Eq. (23) and reported in the

form of Eq. (2) but without the factor 1/2.

Table 2. Main parameters of the thin plate model

Parameter Mark  Unit Value
Length L m 2.30
Width B m 0.45
Height H m 0.02
Mass per unit length M kg/m 6.7391
Inertial moment of mass per unit length I kg m?%/ m 0.1183
Inertial radius R m 0.1325
First bending frequency fo,nn  Hz 1.65
First torsional frequency f,,n, Hz 2.73
First torsion-bending frequency ratio € 1.65
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Fig. 8 Vertical (top) and torsional (bottom) free decay Fig. 9 Vertical (top) and torsional (bottom) buffeting
acceleration responses of the thin plate at 8.1 m/s wind acceleration responses of the thin plate at 5.6 m/s wind
speed under smooth flow.(unit in g) speed under smooth flow.(unit in g)

4.2.1 Comparisons between SDOF and 2DOF-coupled-motion tests: free decay method

Figures 10 and 11 show the flutter derivatives of the thin plate computed by the SSI-COV
technique using the aforementioned three test methods against Theodorsen’s theoretical
values.™® Unless otherwise noted, at any wind speed, the flutter derivatives associated with the
vertical motion, i.e., Hy", Hy, A", and A", were calculated using the frequency ny, (lower). In
addition, the derivatives associated with the torsional motion, i.e., H,", Hs , A,, and A;", were
calculated using the frequency n,, (higher).

In Figs. 10 and 11, the direct flutter derivatives H," and H," as found from the SDOF
vertical-motion tests and A,” and A;" as found from the SDOF torsional-motion tests were also
plotted and compared with those from the coupled-motion tests. The near perfect match shows
that the direct flutter derivatives are indeed not affected by the motion along the other degrees
of freedom, as was predicted by the theory, namely, the flutter derivatives associated with the h
motion are not affected by the « motion, and vice versa. It also demonstrates the reliability of
both the coupled-motion tests and the system identification method (SSI-COV).

4.2.2 Comparisons of coupled-2DOF motion tests between the free decay and buffeting tests

The flutter derivatives obtained from both the free decay and buffeting tests for the coupled-
2DOF cases were compared in Figs. 10 and 11. The results show good agreement between the
two methods, which validates the reliability of the system identification method (SSI-COV) in
application to both the free decay and buffeting tests, although it was developed from a
stochastic model (i.e. white noise loading assumption). However, when a relatively heavy
model is excited at a very low reduced wind velocity, i.e., with low wind energy, it becomes
more difficult to extract the flutter derivatives from the buffeting responses.

The results also show that calculated flutter derivatives agree well with the theoretical ones.
The six important flutter derivatives H, ~ Hy'and A, "~ A;” identified by the SSI from different
tests match well with theoretical ones. The H, derivatives agree generally in trend with the
theoretical ones. However, the A, derivatives obtained from the buffeting responses are more
scattered compared with those from the free decay responses. The impacts of the H,” and A,
derivatives, however, seem to be less significant when compared with those of the other
derivatives. This explains the reason why H,” and A, were usually neglected in previous
studies.>®813
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Fig. 10 Flutter derivatives (H;") of the thin plate by SDOF test and coupled test by free decay and buffeting responses
under smooth flow.
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Fig. 11 Flutter derivatives (A;") of the thin plate by SDOF test and coupled test by free decay and buffeting responses
under smooth flow.
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4.3 CASE 2: Section model of IRR Bridge

Encouraged by the success in the thin plate model testing, the flutter derivatives of the IRR
Bridge, a cable-supported bridge with 2-edge girder, as shown in Fig. 12, were estimated by
the SSI-COV technique. The IRR Bridge has a main span of 398 m. The deck consists of a
concrete deck slab and a web of steel girders. The deck is supported by two cable planes at
outside edge girders. A 2-edge-girder bridge section with A-shape pylons is known to be
economically competitive, but also aerodynamically unstable at high wind speeds. Table 3 lists
the main parameters of the prototype bridge and the section model. Tests were conducted under
both the smooth and turbulence wind flows.

a) b)
35.90m |
17.95m i 17.95m
: 0.57
—a e
4 O [ BT s
0.50
c)

Fig.12. a) Three dimensional view of IRR Bridge, b) IRR bridge deck model in wind tunnel and ¢) Schematic cross-
section of IRR Bridge.

Table 3. Main parameters of the IRR Bridge model

Parameter Mark  Unit Prototype  Model
Length L m - 2.26
Width B m 35.9 0.399
Height H m 3.20 0.035
Mass per unit length M kg/m 43000 5.6801
Inertial moment of mass per unit length I, kgm¥m 4.11x10° 0.1726
First bending frequency fo, Ny Hz 0.376 2.13
First torsional frequency feon, Hz 0.850 4.73
First torsion-bending-frequency ratio & 2.26 222
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Using the SSI-COV technique, the flutter derivatives of the IRR Bridge were estimated for
the 2DOF responses under the smooth flow by both the free decay and buffeting tests, and
under the turbulence flow by the buffeting test only.
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Fig. 13 Flutter derivatives (H;") of the IRR Bridge by free decay and buffeting responses under smooth and turbulence
flows.

4.3.1 Comparisons of test method: Smooth flow

Figures 13 and 14 present the identified flutter derivatives of the bridge deck from the free
decay and buffeting tests under smooth flows, and from the buffeting tests under turbulent
flows. The term “buffeting test under smooth flow”, though not theoretically precise, is weakly
implied by considering the existence of very small turbulence (<0.05%) in the smooth flow.
The flutter derivatives were calculated using Eq. (23) and reported in the form of Eq. (2) but
without the factor 1/2.

Generally, the flutter derivatives of the bridge identified by the SSI method from both the
free decay and buffeting tests in smooth flow are in good agreement. The difference of A,
identified from both tests, seems to be negligible, as the effect of this derivative is usually
considered to be less significant. For smooth flows, the most important derivative A,” has
increased steadily (more negative) up to the reduced wind velocity around 3, and then started to
decrease. This sign reversal is the primary factor toward the SDOF-torsional instability (“stall
flutter”) for bluff type sections.
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Fig. 14 Flutter derivatives (A;") of the IRR Bridge by free decay and buffeting responses under smooth and turbulence
flows.

10 12

In Figs. 15 and 16, the root-mean-square (RMS) torsional and vertical buffeting responses
of the IRR bridge model were plotted against the reduced wind velocity. Under smooth flow,
the sharp abrupt transition with increasing velocity from virtually zero torsional response to
clear instability occurs in the neighborhood of reduced velocity of 4.5 (see Fig. 16). Figure 17
shows the responses of the IRR bridge model at the onset of flutter instability. As is evident
from the response Fourier spectrum in Fig. 18, the IRR bridge model exhibits the SDOF-
torsional instability. The abrupt change in the vertical response at high wind speed is due to the
effect of cross derivatives H,'and H;~ which causes the coupling of the torsional responses
with the vertical responses in terms of damping and stiffness, respectively’.

4.3.2 Effect of turbulence

Most of the real bridges are submerged in turbulent winds. Therefore, a detailed investigation
of the effects of turbulence on the flutter derivatives is necessary. Almost all the wind tunnel
tests for flutter derivatives have been carried out in smooth flow. Although some researchers
have studied the problem using the wind tunnel tests,”*” in general, the results are still
debatable and inconclusive. For instance, for streamlined sections, the wind tunnel tests
showed little effect,”*” while the tests conducted on a rectangular box girder bridge showed
galloping in smooth flow.*®

Figures 15 and 16 show the responses of the IRR Bridge model under the smooth and
turbulence flows. The turbulence flow reduces the vortex-shedding response, compared with
the smooth flow, but it raises the amplitude of bridge responses progressively over the speed
range. However, no clear and uniquely definable “flutter instability” can be identified from the
test results. From Figs. 13 and 14, it is found that the influence of flow types on H,” and A;",
i.e. flutter derivatives related to direct aerodynamic stiffness, is generally negligible. Though,
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the value of H,” from the turbulence flow is somewhat less than that in the smooth flow case, it
affects the frequency value only up to the second decimal digit. The flow type influence is also
negligible for H,"and H,", i.e., the direct and cross derivatives related to the vertical and
torsional aerodynamic damping, respectively. On the other hand, the more important
derivatives A, A,” and H; show rather noticeable deviations from those in smooth flow,
especially at high reduced wind speeds. The most important effect is that the reduced wind
speed corresponding to the reversed sign of the torsional aerodynamic damping A," increased
in the turbulent flow. This means that turbulence tends to make bridges aerodynamically more
stable by delaying the torsional flutter.
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The deviations of flutter derivatives may reveal the fact that for those bridges with bluff
type sections similar to the IRR Bridge, the effects of turbulence can be significant. Hence, the
wind tunnel tests of such bridges for flutter derivative estimation should be carried out in
turbulent flow as well.
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5. Conclusions

A theoretical model based on the covariance-driven SSI technique was proposed to extract the
flutter derivatives of bridge deck sectional models from two-degree-of-freedom free decay and
buffeting responses under both the smooth and turbulent winds. An advantage of the adopted
SSI-COV technique is that it considers the buffeting forces and responses as inputs, instead of
as noises as typically assumed. The conclusions of this study are as follows:

1) Numerical simulations of bridge deck responses confirmed that the SSI-COV technique can
be used to estimate the flutter derivatives from the buffeting and free decay responses with
reliable results. This shows the applicability of the SSI-COV method with various test
techniques, though it was originally developed from a stochastic model.

2) For the thin plate model under smooth flow, wind tunnel tests showed that the flutter
derivatives identified by the SSI technique from both the free decay and the buffeting tests
match well with theoretical values. Although some variations exist in the values of the
derivative A, obtained from the buffeting test, this derivative is considered insignificant
and has been neglected by most of the previous studies.

3) For the bluff section model of the IRR Bridge under smooth flow, the flutter derivatives
estimated from the buffeting test agreed with those from the free decay test. This result
allowed us to focus on applying the SSI-COV technique to the buffeting test method.
Variations exist in the values of the A,” derivative as obtained from the two test methods,
but they agree in trend. We also observed the sign reversal of the A,” derivative as the
reduced wind speed reached the value of 4.5. This indicates that this bridge section is
susceptible to flutter instability at high wind speeds.

4) The test result of the blunt section model of the IRR Bridge in turbulence wind revealed the
most important and positive effect for the turbulence in that it tends to make the bridge
aerodynamically more stable by delaying the sign reversal of the aerodynamic damping A,
The implication is that for bridges with bluff type sections similar to the IRR Bridge, the
effect of turbulence is significant, and should be included in the wind tunnel tests for
estimating the flutter derivatives.

Applying the proposed SSI-COV technique to the buffeting test yields a straightforward,
cost effective, and reliable system identification process that can be adopted to identify the
flutter derivatives for various bridge decks. This technique also has some limitations. For
example, it becomes more difficult to extract the flutter derivatives from the buffeting
responses for the case when a relatively heavy model is excited at a very low reduced wind
velocity, i.e., with low wind energy. For this case, using the SSI-COV technique with the free
decay test will yield more accurate results than those with the buffeting test.
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Abstract: Most of the previous studies on flutter derivatives have used the deterministic system identification
techniques, in which the buffeting forces and the responses are considered as noises. In this paper, one of the most
advanced stochastic system identification, the data-driven stochastic subspace identification technique (SSI-DATA)
was proposed to extract the flutter derivatives of bridge decks from the buffeting test results. An advantage of this
method is that it considers the buffeting forces and the responses as inputs rather than as noises. Numerical
simulations and wind tunnel tests of a streamlined thin plate model conducted under a smooth flow by the free decay
and the buffeting tests were used to validate the applicability of the SSI-DATA method. The results were compared
with those from the popular covariance-driven SSI method. Wind tunnel tests of a two-edge girder blunt type of
Industrial-Ring-Road Bridge deck (IRR) were then conducted under both smooth and turbulence flows. The
identified flutter derivatives of the thin plate model based on the SSI-DATA technique agree well with those
obtained theoretically. The results from the thin plate and the IRR Bridge deck helped validate the reliability and
applicability of the SSI-DATA technique to various experimental methods and wind flow conditions. The results
for the two-edge girder blunt type section show that applying the SSI-DATA yields better results than those of the
SSI-COV. The results also indicate that the turbulence tends to delay the onset of flutter compared with the smooth
flow case.

Keywords: Flutter derivatives; data-driven stochastic subspace identification; wind tunnel test; bridge decks;
turbulent flow

1. Introduction

Long-span cable-supported bridges are highly susceptible to wind excitations because of their
inherent flexibility and low structural damping. Wind loads play an important role in the design of these
structures. The actions of wind load are broadly divided into aerostatic and aerodynamic loads. Effects of
aerostatic wind load are given by Boonyapinyo et al. (1994, 2006), among others. The wind-induced
aerodynamic force can be divided into two parts: a buffeting force that depends on the turbulence of the
incoming flow, and an aeroelastic force that originates from the interactions between the airflow and the
bridge motion. The motion-dependent forces feed back into the dynamics of the bridge as aerodynamic
damping and stiffness; the effect is termed ‘aeroelasticity’ and is commonly described via ‘flutter
derivatives’. The problems of aerodynamic stability including vortex-induced vibrations, galloping,
flutter, and buffeting, may have serious effects on the safety and the serviceability of the bridges. Among
these, flutter is the most serious wind-induced vibration of bridges and may destroy the bridges due to the
diverging motions in either single or torsion-bending coupled mode. Notorious examples of the flutter
phenomenon are the failures of the Brighton Chain Pier Bridge in 1836 and the original Tacoma Narrow
Bridge in 1940. The flutter derivatives depend primarily upon the wind conditions, the cross-sectional
shape and the dynamic characteristics of the bridges. Nevertheless, no theoretical values exist for these
derivatives for various bridge shapes except only for a simple thin plate section. A major research tool in
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these studies is, therefore, a wind tunnel test, in which a geometrically and aerodynamically
representative scale model of a length of a bridge deck is built, mounted, and then tested in a wind tunnel.
The flutter derivatives are non-dimensional functions of the wind speed, the geometry of bridge, and the
frequency of vibrations; therefore they can be applied directly to the full-scale bridge in a piecewise
manner.

The experimental methods used for a determination of flutter derivatives can be grouped under two
types, i.e. forced (Chen & Yu, 2002) and free vibration methods (Scanlan and Tomko, 1971; Poulsen et
al., 1992; Sarkar et al., 1994; Gu et al., 2000). Having less emphasis on elaborate equipments required,
time, and the amount of work involved; the free vibration method seems to be more tractable than the
forced method. In the determination of flutter derivatives by the free vibration method, the system
identification method is the most important part required to extract these parameters from the response
output of the section model. The free vibration method depends on the system identification techniques
and can be classified into two types, i.e. the free decay and the buffeting tests. In the free decay test
method, the bridge deck is given initial vertical and torsional displacements. The flutter derivatives are
based on the transient (i.e. free decay) behavior that occurs when the bridge deck is released. The
buffeting test, on the other hand, uses only the steady random responses (i.e. buffeting responses) of
bridge deck under wind flow without any initial displacement given to the model. Compared with the free
decay method, the buffeting test is simpler in the test methodology, is more cost effective, and is more
closely related to the real bridge behaviors under wind flow, but with a disadvantage that the outputs
appear random-like. This makes the parameters extraction more difficult and a more advanced system
identification technique is required.

In most of the previous studies, flutter derivatives were estimated by the deterministic system
identification techniques that can be applied to the free decay method only. Examples of the previous
deterministic system identification techniques that were applied to the free decay method included the
Scanlan’s method (Scanlan & Tomko, 1971), the Poulsen’s method (Poulsen et al., 1992), the Modified
Ibrahim Time Domain method (MITD) (Sarkar et al., 1994), the Unified Least Square method (ULS) (Gu
et al., 2000), and the Iterative Least Square method (ILS) (Chowdhurry and Sarkar, 2003). In these
system identification techniques, the buffeting forces and their responses are regarded as external noises,
the identification process then requires many iterations. It also confronted with difficulties at high wind
speeds where the initial free decay is drowned by buffeting responses. Besides, at high reduced wind
speed, the vertical bending motion of the structure will decay rapidly due to the effect of the vertical
aerodynamic damping, and thus the length of decaying time history available for system identifications
will decrease. This causes more difficulties to the deterministic system identification techniques (Gu and
Qin, 2004). In the case of turbulence flow, the presence of the turbulence in the flow is equivalent to a
more noisy-input signal to the deterministic system identification. This made the extraction process more
complicated and most likely reduced the accuracy of the flutter derivatives identified (Sarkar et al., 1994).
In addition, due to the test technique, the free decay method is impractical to determine flutter derivatives
of real bridges in the field.

On the other hand, the buffeting test uses random responses data of bridge motion from wind
turbulence only. This mechanism is more closely related to a real bridge under wind flow and is
applicable to real prototype bridges. The buffeting method costs less and is simpler than the free decay
method since no operator interrupts in exciting the model. However, as wind is the only excited source, it
results in low signal-to-noise ratio, especially at low velocity, and therefore a very effective system
identification technique is required. None of the aforementioned system identification techniques is
applicable to the buffeting responses tests. System identification techniques can be divided into two
groups, i.e. deterministic and stochastic.

If the stochastic system identification technique (Juang and Pappa, 1985; Overschee, 1991; Peeters,
1999) is employed to estimate the flutter derivatives of a bridge deck from their steady random responses
under the action of turbulent wind, the above-mentioned shortcomings of the deterministic system
identification technigue can be overcome. The reason is that the random aerodynamic loads are regarded
as inputs rather than noises, which are more coincident with the fact. Therefore, the signal-to-noise ratio



is not affected by the wind speed, and the flutter derivatives at high reduced wind speeds are more readily
available. These aspects give the stochastic system identification methods an advantage over the
deterministic system identification.

Many stochastic system identification methods have been developed during the past decades, among
which the stochastic subspace identification (SSI in short) (Overschee, 1991; Peeters, 1999) has proven to
be a method that is very appropriate for civil engineering. The merit points of SSI are: (1) the assumptions
of inputs are congruent with practical wind-induced aerodynamic forces, i.e. stationary and independent
on the outputs; (2) identified modes are given in frequency stabilization diagram, from which the operator
can easily distinguish structural modes from the computational ones; (3) since the maximum order of the
model is changeable for the operator, a relatively large model order will give an exit for noise, which in
some cases can dramatically improve the quality of the identified modal parameters; (4) mode shapes are
simultaneously available with the poles, without requiring a second step to identify them. There are two
kinds of SSI methods, one is data-driven, and the other is covariance-driven.

The similarity of the covariance- and the data-driven SSI methods is that they both are aimed to
cancel out the (uncorrelated) noise using stochastic realization. In the SSI-COV algorithm, the raw time
histories are converted to the covariances of the Toeplitz matrix. The implementation of SSI-COV
consists of estimating the covariances, computing the singular value decomposition (SVD) of the Toeplitz
matrix, truncate the SVD to the model order n, estimating the observability and the controllability
matrices by splitting the SVD into two parts and finally estimating the system matrices (A,C). The modal
parameters are then found from A and C. Gu and Qin (2004) applied the SSI-COV to extract six
derivatives (Hy*~ Hz*, A*~ As*). Mishra et at. (2006) used the SSI-COV to extract 18 flutter derivatives
from wind tunnel tests, but the identified flutter derivatives seem to be scattered.

As opposed to SSI-COV, the data-driven stochastic subspace identification (SSI-DATA) avoids the
computation of covariances between the outputs; since the error and noises may be squared up from the
covariance estimation (Golub and Van Loan, 1996). It is replaced by projecting the row space of the
future outputs into the row space of the past outputs. This projection is computed in favor from the
numerically robust square root algorithm, i.e. QR factorization. Theoretically, the numerical behavior of
SSI-DATA should then be better than that of SSI-COV (Peeters and De Roeck, 2001). However, very few
researchers, if any, have applied the SSI-DATA for identification of the flutter derivatives of bridge
decks.

In this paper, the data-driven stochastic subspace identification method is proposed to estimate the
flutter derivatives from random responses (buffeting) under the action of smooth and turbulent wind.
Tests are also carried out with the free decay method (single and two-degree-of-freedom) in order to
examine the robustness of the present technique that the results are not affected by test methods used. To
validate the applicability of the present technique, numerical simulations were firstly performed. Then,
sectional-model tests of a quasi-streamlined thin plate model, which is the only section that theoretical
flutter derivatives exist, were performed under smooth flow. Encouraged by the success in the evaluation
process, the flutter derivatives of a real bridge were determined. The two-edge-girder type blunt section
model of Industrial-Ring-Road Bridge (IRR in short), a cable-supported bridge with a main span of 398 m
in Samutprakan province of Thailand, was tested both in the smooth and the turbulence flows. Tests were
conducted in TU-AIT Boundary Layer Wind Tunnel in Thammasat University, the longest and the largest
wind tunnel in Thailand.

2. Theoretical formulation of data-driven stochastic subspace identification.
2.1 Flutter and buffeting forces
The dynamical behaviors of a bridge deck with two degrees-of-freedom (DOF in short), i.e. h

(bending) and « (torsion), in turbulent flow can be described by the following differential equations
(Scanlan, 1977)
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where m and | are the mass and the mass moment of inertia of the deck per unit span, respectively; @ is
the natural circular frequency; & is the modal damping ratio (i=h,); L and Mg, are the self-excited lift
and moment, respectively; while Ly and M, are the aerodynamic lift and moment. The self-excited lift and
moment are given as follows (Simiu and Scanlan, 1996).
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where p is the air mass density; B is the width of the bridge deck; U is the mean wind speed at the bridge
deck level; Ki= aB/U is the reduced frequency (i=h,«); and H; and A;" (i=1,2,3,4) are the so-called flutter
derivatives, which can be regarded as the implicit functions of the deck’s modal parameters. An alternate
form of the self-excited forces is as in Eq. (2) but without the factor 1/2 (Poulsen et al., 1992).

The aerodynamic lift and moment can be defined as (Scanlan, 1977)

L, (t) = %pUZB{ch?ZL (t)+(C! +cD)$;{L (t)}
M, (t) = %pUZB{ZCM #zm (t)+(Cy )M;{M (t)} (3)

where C, Cp and Cy, are the steady aerodynamic force coefficients; C_ and C’y are the derivatives of C_
and Cy with respect to the attack angles, respectively; u(t) and w(t) are the longitudinal and vertical
fluctuations of the wind speed, respectively; y andyy are the lift and moment aerodynamic admittances
of the bridge deck.

By moving L and Mg to the left side, and merging the congeners into column vectors or matrices,
Eqg. (1) can be rewritten as follows

[MI{g ()} +[c iy ) +[K Ty (O={f (1) “)
where {y(t)} ={h(t) a(t)}" is the generalized buffeting response; {f(t)} ={L(t) My(t)}" is the generalized

aerodynamic force; [M] is the mass matrix; [C°] is the gross damping matrix, i.e. the sum of the
mechanical and the aerodynamic damping matrices; and [K?] is the gross stiffness matrix.

2.2 Stochastic state space models
The fluctuations of the wind speed u(t) and w(t) in Eq. (3) are random functions of time, so the

identification of flutter derivatives of bridge decks can be simplified as a typical inverse problem in the
theory of random vibration, and thus can be solved by the stochastic system identification techniques. Let
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then Eq. (4) is transformed into the following stochastic state equations

Xp=[AT{x +{w} )
{y}=[C1{x+{v}

The discrete form of Eq. (7) can be written as

Dt =[Al{x + {wi
Y =[CTx + {w (8)

where [Aclaxs, [Ccloxsa and {x} are known as state matrix, output shape matrix and state vector,
respectively; {wi} and {v} are the input and output noise sequences, respectively. Subscript *k denotes
the value of * at time kAt, where At means the sampling interval. 0 and | are the zero and identity
matrices, respectively.

It is an assumption of the stochastic model that {x}, {wi} and {v} in Eq. (8) are mutually
independent and hence

E[XkaT] =0, E[XkaT] =0 (9)

The output covariance matrix of lag i, A;, and the “next state-output” covariance matrix G are defined as:

T = E[xx ] Q =E[w,w;] 10
A =ElYy, y;] R :E[VkaT] 10
G =E[x,,Y,] S =Elwy,]

By combining Egs. (9) and (10), we obtain the following Lyapunov equations for the state and output
covariance matrices

T=AZAT +Q
A, =CZC" +R (11)
G=AXC" +S
From (8) and (9), it can be deduced
A1 = E[{yk+1}{yk}]: CG
A, =E[{¥,.}{y.}]=CA"G (12)

2.3 Data-driven stochastic subspace identification
The main algorithm of the data-driven stochastic subspace identification (SSI DATA) proceeds with

projecting the row space of the future outputs, Y, into the row space of the past outputs, Y,. This
projection is noted and defined as (Overschee and Moor, 1996):

I =Y, /Y, =Y Y, LY,y DY, (13)



where (+)' represents the pseudo-inverse of a matrix. The idea behind this projection is that it retains all
the information in the past that is useful to predict the future. The matrices Y, ,Yp eR"™ are partitions
matrices of the output data block Hankel matrix, H, defined as:
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\/T yi+l yi+2 ij Yi+u2i—l Yf $ I(I)
yi+2 yi+3 ves yi+j+1
Yoia Yo o Yaisjo2

where | is the number outputs. The main theorem of the stochastic subspace identification states that the
projection II; can be factorized as the observability matrix O; and the Kalman filter state sequence

X, (Peeters and De Roeck, 2001):

(15)
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Both factors of Eq.(15), O; and )2i, are obtained by applying the singular value decomposition (SVD) to
the projection matrix:

SEATAVA
I, =UsV' = (U, U,) (01 Oj[vlT } U,SV, (16)
2
Combining Eq. (15) and (16) gives:
0 =UsSMT, X, =01, 17)

where U, S and V are orthonormal matrices. S is a diagonal matrix containing positive singular values in
descending order. The number of nonzero singular values indicates the rank of the matrix (the order of
system). The reduced diagonal matrix S; is obtained by omitting the zero singular values from the matrix
S. Matrices U, and V; are obtained by omitting the corresponding columns and rows from the matrices U
and V respectively. Up to now we found the order of the system n (as the number of non-zero singular

values in Eq.(16)), O; and >2i. In practice however, the effect of "noise" leads to singular values that are

all different from zero. Actually, some of singular values associated with the noise modals are small, or
very small. Generally, the model order can be determined by looking at a “gap” between two successive
singular values. The singular value where the maximal gap occurs yields the model order. To obtain a
good model for modal analysis applications, it is probably a better idea to construct a stabilization
diagram (Peeters and De Roeck, 2001), by identifying a whole set of models with different order. If the
separation between the past and future outputs is shifted one block row down in Eq.(14), another
projection can be defined as:

I, = Yfi/Yer = Yi+u2i—l/Y0\i = Oi—1xi+1 (18)



where the last equation is similar to the main theorem (Eq.15). O;; is obtained after deleting the last |
rows of O; computed as in Eq. (17).

O, =0 LI(i-1) (19)
Now the shifted state sequence )2”1 can be calculated from:

Xiﬂ = Oi—lTHi—l (20)

N

At this moment the Kalman state sequences )2“ X,,, are calculated using only the output data (Egs. (17)

and (20)). The system matrices can now be recovered from following the overdetermined set of linear
equations. These can be obtained by extending Eq.(7).

okt

where Y;; € R"™ is a Hankel matrix with only one block row. Since the Kalman state sequences and the

A

outputs are known and the Kalman filter residuals W, , V, are uncorrelated with X,, the set of equations
can be solved for A,C in a least square sense:

A XAi+1 7t
= X (22)
C Yii
Now the realizations of the system matrices (A, C) are achieved. Thus, the modal parameters can be
determined by solving the eigenvalue problem of the state matrix A.

A=YA¥Y"' , d=CV¥ (23)

where V¥ is the complex eigenvector matrix, @ is the mode shape matrix, and A is a diagonal matrix
composed of the complex poles of the system. According to Egs. (16)-(23), a different combination of i, j
and n will give a different state matrix, and thus a different pair of modal parameters. The order n are
determined by inspecting the singular values in S and obtain U;= U, and S;= S,. Therefore, modal
parameters should be derived from a series of combinations, rather than a single combination. In the
process of identification, n or i should be given in series for certain values of j in order to obtain a
frequency stability chart.

Once the modal parameters are identified, the gross damping matrix C°® and the gross stiffness matrix
K®in Eq. (4) can be readily determined by the pseudo-inverse method

* T
d O
K C®l=—-M[DA? O (A")? . 24
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Let C=MT, K=MK (25)
C =M, K=MK



where C° and K° are the ‘inherent’ damping and stiffness matrices, respectively. Thus, the flutter
derivatives can be extracted from the following equations

. 2m =, = . 21 -
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2.4 Implementation issues

Very important in the implementation of the data-driven subspace algorithms in general is the QR-
factorization of the data Hankel matrices. Such a factorization applied to the Hankel matrix of Eq. (14)

yi6|dSZ
H — Yp _ Yp+ _ RQT 27
Yf Yf - ( )

where QeR ™ is an orthonormal matrix: Q'Q = QQ" =1,and ReR*™/is a lower triangular matrix.
Since 2li<j, itis possible to omit the zeros in R and the corresponding rows in Q' :
li I 1(i-1) jooo
L d <> e d <>
i (Ry 0 0)(Q") i
= 1 |R, R, 0 [|Q ] I
Ii-D(R, R, Ry)|QS JI(i-1

(28)

The division in block rows and columns is made such that the submatrices in Eq. (14) can all be expressed
in terms of the R and Q submatrices. It is easy to show that the QR factorization yields the following very
simple expressions for the projections of the future row spaces into the past row spaces:

_ R21 T _ QlT _ i
n- (e mas e m ([ @)

Also Yi‘i eR"™ | the output sequence that is present in the least-squares equations in A, C of Eq. (22), is
easily written in terms of the RQ factors:
QT
Yi\i = (R21 Rzz)(QlT (30)
2

2.5 Constitution of projection matrices and selection of model order

Knowledge of a good model order (system order) is desired for modal analysis. First, the numbers of
block rows i (which determine the maximum number of orders that can be calculated) have to be
specified. The numbers of block row i in 11, in Eq. (16) and model order n in Eq. (17) are depend on



user’s choice. It is practically experience that it is better to over-specify the model order and to eliminate
spurious numerical poles afterwards. The operation was carried out with the help of MATLAB. In each
number of block row i selected, for construction of stability diagram, the poles corresponding to a certain
model order are compared to the poles of a one-order-lower model. If the frequencies and the damping
ratios differences are within preset limits, the pole is labeled as a stable one and the model order is
determined. The modal frequency( . )and damping ratio (& )corresponding to each pole can be obtained

by

o= \al+bf | E= (31)

@;

where a and b are real and imaginary parts of the continuous time poles, 4 defined as

In(w)
==t =a b (32)

where j=+-1 and 4 is the discrete time poles (eigenvalue), corresponding to the i th mode of A. The

preset limits are normally 1% for frequencies and 5% for damping ratios. However depend on the quality
of data, at high wind speed, 10% differences for damping ratio may be set (Sarkar et al., 1994). A brief
description follows:

1. For a selected value of number of time history data recorded, N, select number of block row i,
then maximum number of orders is specified. The projection matrix were determined for lags k
=1, 2,....I.

2. In each i, the projection matrix is formulated once as per Eq.(29). Models of different orders
(n=2...1) were then obtained by including different number of singular values S, in the
computation of matrix A. Thus the modal parameters can be determined by solving eigenvalue of
the state matrix A. The poles corresponding to a certain model order are compared to the poles of
a one-order-lower model and the stable poles and system order are determined.

3. The frequencies and damping corresponding to the stable poles are reported as stable ones for
selected value of i.

4. To asses if a suitable number of block rows is selected, step 1-3 are repeated with the varying of i,
and the model order, stable poles, modal frequencies and damping for each i is reported.
Theoretically, the number of block rows i is related to the precision of SSI method and generally
shows asymptotic convergence.

Fig. 1 shows sample of the identified (stable) modal frequencies and damping coefficients of the two
modes (vertical and torsion) as a function of i. The variability of the modal frequencies looks small but
the modal damping coefficients are uncertain and illegitimate when a small number i is used. However,
they show the asymptotic convergence after certain value of i. The number of block i, where the modal
parameters are converged, is also affected by the sampling frequency. From Fig. 1, the convergent starts
at number of block rows i = 2f;, where f; is sampling rate (Hz.) that usually taken as ten times higher of
the highest expected modal frequency or higher (Sarkar et al., 1994).

2.6 Determination of System Matrices and Extraction of Flutter Derivatives

Once, the model order and the stable poles are identified from section 2.5, only the ¥, @, and A
matrices of the stable poles are used to obtain K and C matrices in Eq. (24) in order to eliminate noises.



The stable poles are regarded as true modes whereas the spurious poles are effects of noises. The flutter
derivatives are then estimated by using Eq. (26).

3.  Numerical simulation tests

In order to validate the applicability of the data-driven SSI technique in the flutter derivatives
estimation of bridge decks, numerical simulations of signals from different test methods are first carried
out. The numerical tests included two syntheses but well controlled cases: two uncoupled degrees of
freedom and two coupled degrees of freedom (simulated response including the motion induced
aeroelastic terms). Both cases are first excited in the transient (i.e. free decay) motion and then by a white
noise loading process (buffeting). Measurement noises are also added by a white noise process with a
standard deviation equal to 10% of the standard deviation of the original responses, in order to investigate
the effect of the measurement noise. The parameters estimated by the SSI-DATA were also compared
with those by the SSI-COV method.

3.1 Two uncoupled degrees of freedom; free decay

Free decay response time-series were obtained by direct calculations of the displacement values for
N=4096 discrete time stations, with the ‘sampling’ interval At = 0.02s (i.e. f; = 50Hz). Structural modal
properties used in this simulation were chosen from the previously tested sectional model of the Great
Belt Bridge (Jacobsen and Hjorth-Hansen, 1995). The modal matrices are given per unit length as:

03616 0 ‘ 397.0573 0 [26526 0
| o oo0072| ° 0 247315 ° | 0  0.0189

0

ie. f, =19472Hz, f, =5.7573Hz, & =0.0053, &, =0.0056, where the damping ratios, &, are

representatives for the range of small amplitudes. The damping ratios were then multiplied in turn with 5,
10, 20 and 40, in order to cover the values of the total damping (structural + aerodynamic) which could be
presented in the vibration of the model section under wind flow. Values as high as £= 0.2 could be
expected for the vertical degree of freedom under wind flow.

Frequencies and damping ratios that were estimated from the SSI-DATA and the SSI-COV are
practically identical to the preset values (errors are less than 0.5% for the highest damping case). The
system matrices are also excellent even for the short useful signal case with only a few cycles of vibration
motion. In the case where 10%-measurement noise was added, the estimated parameters by both SSI
methods were also in good agreements, though more distortion was found in the SSI-COV. The
identified frequencies by the SSI-COV were changed at lesser than 0.8%. Damping ratios were changed
at most by 2% except in the case of the lowest damping case which was 5.4 %. The diagonal terms of the
estimated system matrices (i.e. frequency and damping matrices) are also identical to the preset values.
Estimates of the diagonal terms are distorted within 1% except only in the case with lowest damping case
in which the values are within 2.82%. However, the standard deviations of the damping ratios from 20-
simulation tests estimated by the SSI-COV are larger than that by the SSI-DATA which the values are
13.2% and 5.7%, respectively.

3.2 Simulated responses including the motion-induced forces

The next step in the simulation was a simulation test with full effective stiffness and damping
matrices (i.e. coupled degrees of freedom) and with lift and moment forces of the white noise type, as
assumed in the SSI-method. For the mean-wind speed of 10.26 m/s, and the aerodynamic derivatives
assumed according to the values reported for a similar bridge cross-section (Jacobsen and Hjorth-Hansen,
1995), the effective structural matrices were pre-set at

10
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The response time-series were simulated for both the free decay and the buffeting responses under
turbulence wind with 10% turbulence intensity; then the measurement white noises were superimposed on
the simulated response. The free decay response time-series were computed by the constant acceleration
method and samples are as shown in Fig.2. The SSI-DATA and the SSI-COV methods, applied to these
responses data, returned the modal parameters (i.e. frequency and damping ratio) that are practically
identical to the preset values (error are less than 1%). Table 1 shows the deviation of identified system
matrices from the pre-set values for the simulated free decay responses by both the SSI-COV and the SSI-
DATA in case of with and without noise. The structural matrices identified by the SSI-DATA are agreed
well with the preset values (see Table 1). Superimposing 10% measurement white noise on the simulated
response results in insignificant changes to system matrices identified by the SSI-DATA. However, the
effect of noises to the identified matrices is more pronounced in the case of the SSI-COV, especially in
the coupling terms Ky;, Cyo.

The response time-series were also simulated for the case of the buffeting responses where wind
turbulence is the only exciting source. The effective stiffness, K, and damping matrices, C, were taken as
in the case of transients; examples of the response time-series are as shown in Fig. 3. Buffeting responses
required longer data records (20,000 data points in the present study) as compared to those in the free
decay case (4096 data points) in order to yield acceptable results. Tables 2 and 3 show the deviations of
the identified modal parameters and system matrices from the pre-set values, respectively. In the noise-
free case, estimates of the frequencies and damping ratios by both SSI methods agreed well with the
preset values where precisions are within 0.5% and 1% for the SSI-DATA and 0.5% and 2% for the SSI-
COV, respectively (see Table 2). Table 3 shows the deviation of the identified system matrices ([K], [C])
from the pre-set values by both the SSI-DATA and the SSI-COV methods. In the noise-free case, the
system matrices identified by both SSI methods agreed well with the pre-set values. The most difference
parameters are K,; (related to A;") and Cy (related to H,") identified by the SSI-COV which equal 3.99%
and -6.76%, respectively.

In the case of 10%-measurement noise added, all parameters (frequencies, damping and system
matrices) estimated by the SSI-DATA are still in good agreements with the pre-set values (see Table 2
and 3). On the other hand, these parameters that were estimated by the SSI-COV are more affected by
noise. Fig. 4 shows frequencies and damping ratios estimated by both SSI methods from 100 simulations,
where more scattered of estimated values from the SSI-COV are found, especially the vertical frequency
and damping ratios. The differences of mean values for the vertical frequency and damping ratio from the
pre-set value were 2.98% and 14.69%, respectively. Moreover, comparing with the SSI-DATA, the
estimated system matrices by the SSI-COV are also more distorted by noise. The most deviated
parameters are Cy;, Ky, and Cy; which are related to H,", A," and H;, respectively (see Table 3). It can be
seen that the precision of the estimated parameters by the SSI-DATA are more reliable and more
sustainable to noises as comparing to those from the SSI-COV.

4.  Wind tunnel tests

To further evaluate the applicability of the data-driven stochastic subspace identification method in
the flutter derivatives estimation of bridge decks, wind tunnel tests of a quasi-streamlined thin plate model
and a two-edge girder type blunt bridge section model were performed.

4.1 Outline of wind tunnel tests

The wind tunnel tests were performed in the TU-AIT wind tunnel at Thammasat University. The
working section of the wind tunnel has a width of 2.5 m, a height of 2.5 m and a length of 25.5 m. The
required turbulent flow was generated by grids, as shown in Fig. 5. A hot-sphere and a hot-wire
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anemometers were used to measure the mean wind speed of the flow and the fluctuations of the wind
speed, respectively. The longitudinal and vertical turbulence intensities are both less than 0.05% in the
case of smooth flow and both are about 5% and 8% in two levels of turbulence flows, respectively. The
typical normal spectral densities of the longitudinal and vertical fluctuation components of 8%-turbulence
flow are presented in Fig.7 and compared with both Von Karman and Kaimal spectrum (Strgmmen,
2006).

The model was suspended by eight springs outside the wind tunnel (see Fig. 6). To simulate a bridge
section model with 2DOFs, i.e. vertical bending and torsion, piano wires were used to prevent the motion
of the model in longitudinal direction; this can be seen in Fig.8, i.e. the schematic diagram of the top view
of the test setup. Two piezoelectric acceleration transducers were mounted at the mid-length of the model
to capture the acceleration signals. The responses of the models were captured by the acceleration
transducers, and then the vertical and torsional responses can be respectively obtained by

h=tt% A% (33)
2 |

where x; and X, are the measurements of the acceleration transducers 1 and 2, respectively; | is the
horizontal distance between transducers.

4.2 CASE 1: Thin plate model under smooth flow

A quasi-streamlined thin plate (see Fig. 9) was first selected for wind tunnel test under smooth flow.
The width to height (thickness) ratio of the plate is about 22.5. Table 4 lists the main parameters of the
model.

4.2.1 Comparisons of flutter derivatives between the free decay and the buffeting test methods
under smooth flow

The extraction of flutter derivatives of the thin plate , using the SSI-DATA techniques, were
performed on results from three types of tests, namely, a) single-degree-of-freedom (SDOF) motion tests
(Scanlan and Tomko, 1971), b) free decay coupled-motion test (2DOFs), and ¢) buffeting coupled-motion
test (2DOFs). The term “buffeting test under smooth flow”, though not theoretically concise, is weakly
implied by considering the existence of very small turbulence (<0.05%) in smooth flow. The flutter
derivatives were also estimated using the SSI-COV techniques for comparing the results between the two
SSI techniques. Typical test results showing responses from the thin plate model are in Figs. 10 and 11.
The responses for the free decay and the buffeting tests were sampled at the rates of 1000 Hz and 200 Hz,
respectively. The results were then removed trend and re-sampled at 250 Hz and 50 Hz, respectively. The
data-driven and covariance-driven SSI techniques were applied to identify the modal parameters from
these data, and a pseudo-inverse method was applied to estimate the stiffness and damping matrices. The
flutter derivatives were estimated by Eq. (26) and reported in the form of Eq. (2).

Figs. 12 and 13 compare the flutter derivatives of the thin plate that were estimated by the SSI-
DATA technique using the three test methods mentioned above and those identified by the SSI-COV
method, as well as the Theodorsen’s theoretical values (Dyrbye and Hansen, 1996). Unless otherwise
noted, at any wind speed, the derivatives H,", H,, A,", and A,", which are associated with the vertical
motion were calculated using the frequency ny, (lower). In addition, the derivatives H,", Hs", A,", and As"
which are associated with the torsional motion were calculated using the frequency n,, (higher).

The direct flutter derivatives H,” and H,, as found from the single-degree-of-freedom vertical-
motion tests, and A, and A;’, as found from the single-degree-of-freedom torsional-motion tests, were
also plotted and compared with those from the coupled-motion tests. The results are shown in Figs. 12
and 13. The near perfect match shows that the direct-flutter derivatives are indeed not affected by the
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motion along the other degree of freedom, as predicted by theory i.e., those flutter derivatives associated
with the h motion are not affected by the & motion, and vice versa.

All flutter derivatives of the thin plate — except H,*- from free decay-motion tests by both SSI-
methods are in good agreements with Theodorsen’s theoretical values. However, H,* extracted from the
SDOF and the coupled motion tests are in good agreement and showing good agreement in trend with the
theoretical value. The factor that made the extraction of H,* difficult is due to the very small change in
the natural frequency from which H,* were calculated.

4.2.2 Comparisons of flutter derivatives between the SSI-DATA and the SSI-COV method.

From Figs. 12 and 13, the six important flutter derivatives; Hy*~ Hs*, A;*~ As* determined by the
buffeting responses by both the SSI-COV and the SSI-DATA matched very well with both the theoretical
values and those from the free decay responses. The results show very good agreements between the two
types of tests. This verifies the ability of the system identification methods (both the SSI-COV and the
SSI-DATA) to apply to the free decay signal though it was developed from a stochastic model (white
noise loading assumption). Nonetheless, as the thin plate model is relatively heavy, it is difficult to
accurately extract the flutter derivatives by the buffeting response tests at the very low reduced velocities
due to the low energy from the wind that is available to excite the model. The useful signal is embedded
in the noise. The Hy*-derivatives by both the SSI-COV and the SSI-DATA are generally agreed in trend
with the theoretical values similar to the free decay tests. However, the A,*, in turn, found from the SSI-
COV are more scattered without an obvious trend as compared to that from the SSI-DATA.

4.3 CASE 2: Section model of the IRR Bridge

Encouraged by the success in the thin plate model, the flutter derivatives of the IRR Bridge, a cable-
supported bridge with a 2-edge girder, as shown in Fig. 14, were estimated by the SSI-DATA technique.
The IRR Bridge has a main span of 398 m. The deck consists of a concrete deck slab and a web of steel
girders. The deck is supported by two cable planes at the outside edge girders. A 2-edge-girder bridge
section with A-shape pylons has a good cost performance, but at the same time the bridge cross-section is
known to be aerodynamically unstable at high wind speed. Table 5 lists the main parameters of the
prototype bridge and the section model. Tests were conducted under smooth and two levels of turbulence
wind flow. The turbulent flow conditions were generated by two different grids. The longitudinal and
vertical turbulence intensities were both about 5% and 8%, respectively.

Using the SSI-DATA technique, the flutter derivatives of the IRR Bridge were estimated for 2DOFs
responses under smooth flow by both the free decay and the buffeting tests, and under two levels of
turbulence flow by the buffeting test only. The results were also compared with those from the SSI-COV
in the case of the free decay responses under smooth flow.

4.3.1 Comparisons of flutter derivatives between the free decay and the buffeting test methods
under smooth flow

Figs. 15 and 16 present the identified flutter derivatives of the bridge deck by the SSI-DATA method
from both the free decay and the buffeting tests under smooth flow. The flutter derivatives were estimated
by Eq. (26) and reported in the form of Eq. (2) but without the factor 1/2. The identified flutter derivatives
were also compared with those by the SSI-COV from the free decay responses.

Generally, all flutter derivatives of the bridge in smooth flow identified by the SSI-DATA method
from both the free decay and the buffeting tests are in good agreements. This verifies the ability of the SSI
DATA system identification method under different type of tests. In smooth flow, the most important
derivative A, is steadily increased (more negative) up to the reduced wind velocity around 3, and then
started to decrease. This sign reversal at reduced wind speed of 4.5 (Fig. 16) is the primary factor toward
the SDOF-torsional instability (“stall flutter) for bluff type sections.
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4.3.2 Comparisons of flutter derivatives between the SSI-DATA and the SSI-COV method.

From Figs. 15 and 16, they were shown that the flutter derivatives identified by the SSI-COV method
are generally agreed in trend with those identified by the SSI-DATA method. However, the coupled
aerodynamic derivatives; Hy*, Aj*, As*, extracted by the SSI-COV in turn seem to be more scattered than
those obtained from the SSI-DATA. The largest scatter among the extracted parameters were A;* and
Ag*.

4.3.3 Effects of turbulence flow on flutter derivatives and responses of bridge deck

Most of the prototype bridges are submerged in turbulent wind; therefore, detailed investigations of
the effects of turbulence on the flutter derivatives are significant. Almost all the wind tunnel tests for
flutter derivatives have been generally carried out in smooth flows. Although few researchers have
studied the problem using wind tunnel tests (Sarkar et al. 1994; Gu et al., 2000; Scanlan & Lin, 1978), in
general, the results are still debatable and inconclusive. For streamlined section, tests showed little effect
(Sarkar et al., 1994), while tests on a rectangular box girder bridge showed galloping in smooth flow
(Jacobsen & Hjorth-Hansen, 1998). For II type section, Gu and Qin (2004) found that the effects of
turbulence on the Hi* and A;* seemed to be negligible; whereas the other four derivatives related to
aerodynamic damping characteristics showed some deviations from those in smooth flow, especially at
high reduced wind speed.

Figs. 17 and 18 present the identified flutter derivatives of the bridge deck by the SSI-DATA method
from buffeting responses under smooth flow and two turbulence wind flows with both the longitudinal
and the vertical turbulence intensities of 5% and 8%, respectively. Generally, the flutter derivatives of the
bridge in turbulent flow identified by the SSI-DATA are in agreement with those in smooth flow. From
Figs.17 and 18, it can be found that the influence of the flow type on H," and A, i.e. flutter derivatives
related to the direct aerodynamic stiffness, seems to be negligible. Though, the value of H," obtained from
the turbulence flow is somewhat less than that in the smooth flow case, it affected only the second
decimal digit of the frequency value. The influence also has negligible effect on H;"and H, " i.e. direct and
cross derivatives that are related to the vertical and the torsional aerodynamic dampings, respectively. On
the other hand, the more important A;” A;” and Hs~ show rather noticeable deviations from those in the
smooth flow, especially at high reduced wind speeds. The most important effect is that the reduced wind
speed, which corresponds to the reversed sign of the torsional aerodynamic damping A", increased from
4.5 in the smooth flow to 5.1 in the 5% turbulent flow (Fig. 18). It shows that turbulence tends to make
bridges more aerodynamically stable by delaying the torsional flutter. The deviations of flutter derivatives
may reveal the fact that for those bridges with bluff type sections similar to the IRR Bridge, the effects of
turbulence can be significant. Hence, the wind tunnel tests of such bridges for flutter derivative estimation
should also be carried out in turbulent flows.

Figs. 19 and 20 show comparisons of the root-mean-square (RMS) torsional and vertical buffeting
responses of the IRR bridge model versus the reduced velocity between smooth and turbulence flow.
Under a smooth flow, the very abrupt transition with increasing velocity from the effectively zero
torsional response amplitude to the clear instability occurs in the near neighborhood of the reduced
velocity value of 4.5 (Figs. 16 and 20). The abrupt change in the vertical response at high wind speed is
due to the effect of cross derivatives H , and H;~ which causes the coupling of the torsional responses
with the vertical responses in terms of damping and stiffness, respectively (Boonyapinyo et al. 1999).
Compared with the smooth flow, the turbulence flow reduces the vortex-shedding response, because the
turbulence tends to enhance the reattachment of flow and weaken the vortex shedding formulation.
However, it raises the amplitude of the bridge responses progressively over the speed range. No clear and
uniquely definable “flutter instability” was made evident in the range of wind velocity test.
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5. Conclusions

A theoretical model based on the data-driven SSI technique was proposed to extract the flutter
derivatives of bridge deck sectional models from the two-degree-of-freedom free decay and buffeting
responses. An advantage of the stochastic subspace identification technique is that it considers the
buffeting forces and the responses as inputs instead of as noises as typically assumed. Therefore, the
signal-to-noise ratio is not affected by the wind speed, and the flutter derivatives at high reduced wind
speeds are more readily available. These aspects give the stochastic system identification methods an
advantage over the deterministic system identification. Comparing with the SSI-COV, the SSI- DATA
method avoids the computation of covariances between the outputs. It is replaced by projecting the row
space of the future outputs into the row space of the past outputs. This projection is computed from the
numerically robust square root algorithm, QR factorization instead of squaring up the output data as in the
SSI-COV algorithm. Moreover, this reduces both the dimensions of the matrices and the computation
time considerably. The conclusions of the present study are as follows.

1) Numerical simulations of the bridge deck responses confirmed that the SSI-DATA technique can be
used to estimate flutter derivatives from buffeting and free decay responses with reliable results. This
shows the applicability of the SSI-DATA method with various test techniques, though it was
developed from a stochastic model. Comparing with the SSI-COV, the identified modal parameter
and system matrices from the SSI-DATA are more precise and less scattered.

2) For the thin plate model under smooth flow, wind tunnel tests showed that flutter derivatives
identified by the SSI-DATA technique from both the free decay and the buffeting tests matched well
with theoretical values. The flutter derivatives identified by the SSI-COV method from both tests
also agreed with theoretical values, except in the case of A, that was identified from buffeting
responses

3) When applied to the bluff section model of the IRR Bridge under smooth flow, the flutter derivatives
estimated by the SSI-DATA from the buffeting test agreed with those obtained from the free decay
test. This result allowed focusing on applying the SSI-DATA technique to the buffeting test method.
On the other hand, there are more variations in the values of the A;", A, and H," derivatives obtained
by the SSI-COV. The sign reversal of the A, derivative is observed as the reduced wind speed
reached the value of 4.5. This indicates that this bridge section is susceptible to the SDOF-torsional
flutter instability at high wind speed.

4) Under turbulence wind, the identified flutter derivatives by the SSI-DATA of a blunt section model
of the IRR Bridge revealed that the most important and positive effect of the turbulence is that it
tends to make the bridge more aerodynamically stable by delaying the sign reversal of the
aerodynamic damping A, from 4.5 in the smooth flow to 5.1 in the 5% turbulent flow. This may
help explain that for those bridges with bluff type sections similar to the IRR Bridge, the effects of
turbulence can be significant. Hence, the wind tunnel tests of such bridges for flutter derivatives
estimation should also be carried out in turbulent flow.

In summary, the numerical simulation tests showed that the precision of modal parameters and
system matrices can be clearly improved by using the SSI-DATA technique, compared with the SSI-
COV. From the results of wind tunnel tests, it was found that for a simple streamlined section, the flutter
derivatives identified from both the SSI-DATA and the SSI-COV agreed well together. However, in the
case of the 2-edge girder blunt type section, applying the SSI-DATA yields better results especially for
the coupling derivatives. Applying the proposed SSI-DATA technique to the buffeting test yields a
straightforward, cost effective, and reliable system identification process that can be used to identify
flutter derivatives of various bridge decks.
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Table 1 Deviation of identified system matrices (A[K], A[C]) (in %) from the pre-set values for the simulated free

decay responses.

case SSI-CoOV SSI-DATA
% error of [K] % error of [C] % error of [K] % error of [C]
1. without noise -0.14%  -0.05% | 0.66%  -3.00% | -0.03% 0.08% | -0.39%  2.56%
' 426%  -0.08% | 0.16%  -0.26% | 1.42%  -0.25% | 0.42% 1.24%
5 with 10% noise 025%  -0.30% | 0.73%  -7.01% | -0.38% -0.02% | 0.20%  -2.50%
' -6.56%  0.02% | -0.99%  1.55% 6.68% 0.02% | -1.59% 0.0%

Table 2 Deviation of identified modal parameters (frequencies, f,, f, and damping ratio &, & ) (in %) from pre-set
values for simulated buffeting responses.

SSI-COV SSI-DATA

Parameters AW%)  AG(%) AT (%) AG(%) | M%)  AG(%)  AR(%)  AG(%)

Case 1) without noise 013%  1.67% -001% 044% | -047% 019%  001%  0.88%
Case 2) with 10% noise | -2.98% -14.69% 0.12% -531% | 0.81%  2.44%  -0.08% -3.98%

Table 3 Deviation of identified system matrices (A[K], A[C]) (in %) from pre-set values for simulated buffeting
responses.

case SSI-CoV SSI-DATA
% error of [K] % error of [C] % error of [K] % error of [C]
Case 1) without noise 0.34%  -0.08% | 252%  -6.76% | 0.12%  -0.02% | 0.74%  -3.12%
399%  -0.03% | -081% 0.26% | -2.01%  0.03% 0.66% 1.14%
Case 2) with 10% noise 2.23%  -0.38% | 855% -27.86% | 0.06% 0.04% 0.73%  -2.16%
-11.17%  -0.03% | -0.28%  0.50% 5.74% 0.03% 1.09%  -0.27%
Table 4 Main parameters of the thin plate model
Parameter Mark  Unit Value
Length L m 2.30
Width B m 0.45
Height H m 0.02
Mass per unit length M kg/m 6.7391
Inertial moment of mass per unit length 1, kgm%¥m 0.1183
Inertial radius R m 0.1325
First bending freq. fo,n, Hz 1.65
First torsional freq. f,,n, Hz 2.73
First torsion-bending frequency ratio € 1.65

18




Table 5 Main parameters of the IRR Bridge model

Parameter Mark  Unit Prototype Model
Length L m - 2.26
Width B m 35.9 0.399
Height H m 3.20 0.035
Mass per unit length M kg/m 43000 5.6801
Inertial moment of mass per unit length I, kgm¥m 4.11x10° 0.1726
First bending frequency fo,nn Hz 0.376 2.13
First torsional frequency f,,n, Hz 0.850 4.73
First torsion-bending-frequency ratio £ 2.26 2.22
Ver. freq (f , Hz) Ver. damp (&, ,%)
2.138 0.80
:'1 | 0.60
213611
' 0.40
2.134 )
0.20 //
2.132 0 ’
0 50 100 150 200 0 50 100 150 200
Tor. freq (f , Hz) Tor. damp (&, ,%)
4.735 0.20

0.15
4.730

00| & .-~

4.725 <=
0.05|/,
’

4.720 0 /
0 50 100 150 200 0 50 100 150 200

no.of blocks: i no.of blocks: i

Fig. 1 Ilustration of the asymptotically property of modal properties (...fs = 25 Hz, ---fs =50 Hz and solid line for
fs = 100 Hz)
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Fig. 5 IRR bridge model and grids to generate
turbulent flow in wind tunnel.

Fig. 6 Suspension device of the model.
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Abstract: Problem statement: Flutter derivatives are the essential parameters in the estimations of
the flutter critical wind velocity and the responses of long-span cable supported bridges. These
derivatives can be experimentally estimated from wind tunnel test results. Generally, wind tunnel test
methods can be divided into free decay test and buffeting test. Compared with the free decay method,
the buffeting test is simpler but its outputs appear random-like. This makes the flutter derivatives
extraction from its outputs more difficult and then a more advanced system identification is required.
Most of previous studies have used deterministic system identification techniques, in which buffeting
forces and responses are considered as noises. These previous techniques were applicable only to the
free decay method. They also confronted some difficulties in extracting flutter derivatives at high wind
speeds and under turbulence flow cases where the buffeting responses ddpimedach: In this

study, the covariance-driven stochastic subspace identification technique (SSI-COV) was presented to
extract the flutter derivatives of bridge decks from the buffeting test results. An advantage of this
method is that it considers the buffeting forces and responses as inputs rather than as noises. Numerical
simulations and wind tunnel tests of a streamlined thin plate model conducted under smooth flow by
the free decay and the buffeting tests were used to validate the applicability of the SSI-COV method.
Then, wind tunnel tests of a two-edge girder blunt type of Industrial-Ring-Road Bridge deck (IRR)
were conducted under smooth and turbulence fRegults: The identified flutter derivatives of the

thin plate model by the SSI-COV technique agree well with those obtained theoretically. The results
from the thin plate and the IRR Bridge deck validated the reliability and applicability of the SSI-COV
technique to various experimental methods and conditions of wind flow.
Conclusion/Recommendations. The SSI-COV was successfully employed to identify flutter
derivatives of bridge decks with reliable results. It is a proven technique that can be readily applied to
identify flutter derivatives of other bridge decks either by the free decay or the buffeting tests.

Key words: Flutter derivatives, covariance-driven stochastic subspace identification, wind tunnel test,
bridge decks, turbulent flow

INTRODUCTION derivatives’. The problems of aerodynamic stability

including vortex-induced vibrations, galloping, flutter
Long-span cable-supported bridges are highlyand buffeting, may have serious effects on the safety
susceptible to wind excitation because of their inherenand the serviceability of the bridges. Among these,
flexibility and low structural damping. Wind loads play flutter is the most serious wind-induced vibration of
an important role in the design of these structures. Aridges and may destroy the bridges due to diverging
wind-induced aerodynamic force can be divided intomotions either in single or torsion-bending coupled
two parts: a buffeting force that depends on themode. Notorious examples by the flutter phenomenon
turbulence of incoming flow and an aeroelastic forceare the failures of the Brighton Chain Pier Bridge in
that originates in the interaction between the airflowl836 and the original Tacoma Narrow Bridge in 1940.
and the bridge motion. The motion-dependent forceFhe flutter derivatives depend primarily upon the
feed back into the dynamics of the bridge asconditions of wind, the cross-sectional shape and the
aerodynamic damping and stiffness; the effect is termedynamic characteristics of the bridges. Nevertheless, no
‘aeroelasticity’ and is commonly described via ‘flutter theoretical values exist for these derivatives for various
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bridge shapes except only for a simple thin platedime history available for system identifications will
section. A major research tool in these studies isdecrease. This causes more difficulties to the
therefore, a wind tunnel test, in which a geometricallydeterministic system identification technigqés In
and aerodynamically representative scale model of aase of turbulence flow, the presence of turbulence in
length of a bridge deck is mounted in a wind tunnelthe flow is equivalent to a more noisy-input signal to
The flutter derivatives are non-dimensional functions ofthe deterministic system identification. This made the
wind speed, geometry and frequency of vibrationsgxtraction process more complicated and most likely
therefore they can be applied directly to full-scalereduced the accuracy of the flutter derivatives
bridge in a piecewise manner. identified®*. In addition, due to test technique, the free
The experimental method used for a determinatiomlecay method is impractical to determine flutter
of flutter derivatives can be grouped under two typesderivatives of real bridges in field.
i.e. forced and free vibration methods'. Having less On the other hand, the buffeting test uses random
emphasis on elaborate equipment, time and work; theesponses data of bridge motion from wind turbulence
free vibration method seems to be more tractable thaonly. This mechanism is more closely related to a real
the forced method. In the determination of flutterbridge under wind flow and is applicable to real
derivatives by free vibration method, the systemprototype bridges. The method costs less and simpler
identification method is the most important partthan the free decay since no operator interrupts in
required to extract these parameters from the responsciting the model. However, as wind is the only
output of the section model. The free vibration methodexcited source, it results in low signal-to-noise ratio,
depends on system identification techniques and can laspecially at low velocity and therefore a very effective
classified into two types, i.e. free decay and buffetingsystem identification is required. None of the
tests. In the free decay method, the bridge deck is giveaforementioned system identification techniques is
an initial vertical and torsional displacement. The flutterapplicable to the buffeting responses tests. System
derivatives are based on the transient (i.e., free decaidentification techniques can be divided into two
behavior that occurs when the bridge deck is releasedroups, i.e., deterministic and stochastic.
The buffeting test, on the other hand, uses only the If the stochastic system identification technifjtle
steady random responses (i.e., buffeting responses) &f employed to estimate the flutter derivatives of a
bridge deck under wind flow without any initial bridge deck from their steady random responses under
displacement given to the model. Compared with theéhe action of turbulent wind, the above-mentioned
free decay method, the buffeting test is simpler in theshortcomings of the deterministic system identification
test methodology, more cost effective and more closelyechnique can be overcome. The reason is that the
related to real bridge behaviors under wind flow, butrandom aerodynamic loads are regarded as inputs rather
with a disadvantage that the outputs appear randonthan noises, which are more coincident with the fact.
like. This makes the parameters extraction moreTherefore, the signal-to-noise ratio is not affected by
difficult and a more advanced system identification iswind speed and the flutter derivatives at high reduced
required. wind speeds are more readily available. These aspects
In most of the previous studies, flutter derivativesgive the stochastic system identification methods an
were estimated by deterministic system identificationadvantage over the deterministic system identification.
techniques that can be applied to the free decay method Many stochastic system identification methods
only. Examples of previous deterministic systemhave been developed during the past decades, among
identification that were applied to the free decaywhich the Stochastic Subspace Identification (SSI in
method included Scanlan’s metffdd Poulsen’s short}’® has proven to be a method that is very
method, Modified Ibrahim method (MITD} and  appropriate for civil engineering. The merit points of
Unified Least Square method (UL%)In these system SSI are: (1) The assumptions of inputs are congruent
identification techniques, the buffeting forces and theiwith practical wind-induced aerodynamic forces, i.e.
responses are regarded as external noises, tlsgationary and independent on the outputs; (2)
identification process then requires many iterafichs Identified modes are given in frequency stabilization
It also confronted with difficulties at high wind speedsdiagram, from which the operator can easily distinguish
where the initial free decay is drowned by buffetingstructural modes from the computational ones; (3)
responsds®. Moreover, at high reduced wind speed,Since the maximum order of the model is changeable
the vertical bending motion of the structure will decayfor the operator, a relatively large model order will give
rapidly due to the effect of the positive vertical an exit for noise, which in some cases can dramatically
aerodynamic damping and thus the length of decayingmprove the quality of the identified modal parameters;
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(4) Mode shapes are simultaneously available with the
poles, without requiring a second step to identify them. _, U%B
There are two kinds of SSI methods, one is data-driverr="2°

. h . Ba .
KhHl(Kn)U*Kqu(Kc)v‘LKj":(K Ja

. h

and the other is covariance-driven. 2)
In this study, the covariance-driven stochastic . h . Ba
subspace identification method is used to estimate the |, [ KiAK) [ +HKALK ) T H ALK ) a
flutter derivatives from random responses (buffeting)'vlse_EpU B e h
under the action of smooth and turbulent wind. Tests +K“A4(K*)E
are also carried out with the free decay method (single
and two-degree-of-freedom) in order to examine thenhere:
robustness of the present technique that the results age = Air mass density; B is the width of
not affected by test methods used. To validate the the bridge deck
applicability of the present technique, first numericalU = The mean wind speed at the bridge
simulations are performed then sectional-model tests deck level

of a quasi-streamlined thin plate model, which is thek;= wB/U The reduced frequency (i =dn)
only section that theoretical flutter derivatives exist,H; and A’ The so-called flutter derivatives,
are performed under smooth flow. Encouraged by théi = 1, 2, 3,4)  which can be regarded as the implicit
success in the evaluation process, the flutter functions of the deck’s modal
derivatives of a real bridge are determined. The two- parameters

edge-girder type blunt section model of Industrial-

Ring-Road Bridge (IRR in short), a cable-supported The alternate form of self-excited forces is as Eq.
bridge with a main span of 398 m in Samutprakar2 but without the factor 1/2.

province, Thailand, was tested both in smooth and  The aerodynamic lift and moment can be defined
turbulence flow. Tests were conducted in TU-AIT as'%:

Boundary Layer Wind Tunnel in Thammasat

_LrJr?;\:gr?gy the longest and the largest wind tunnel g () =*pUzB[ZCL?XL ©+(C +C, )%XL (t)}

u(t) w(t) ®)

— 2 3
MATERIALSAND METHODS M(0) =—pU B{ZCMTXM O+ (G = Xm (t)}

Theoretical formulation of covariance-driven SSI: \where:
The dynamic behavior of a bridge deck with twoc  C,and G, = The steady aerodynamic force

Degrees-Of-Freedom (DOF in short), i.e., h (bending) coefficients
anda (torsion), in turbulent flow can be described by ', and C,, = The derivatives of Cand G, with
the following differential equatiofis-%: respect to the attack angles,
respectively
m[ﬁ(t)+ %, w0, h(t)+ of h(t)]z L, (1 L, (1) ut) and w(t) = The _Iongitudinal _and vertical
Q) fluctuations of wind  speed,
I 6i(t) +28,0,a(t) + ha(t) |= M () +M 1) respectively
XL andyuy = The lift and moment aerodynamic
Where: admittances of the bridge deck
m and | = The mass and mass moment of inertia of . ) ]
the deck per unit span, respectively By moving Le and Mgto the left side and_merglng
@ = The natural circular frequency the congeners into columrl vectors or matrices, Eq. 1
£ = The modal damping ratio (i = br) can be rewritten as follows:
e T ety AN MmN oy ¢ Ty K 1) o) (4)
L,and M, = The aerodynamic lift and moment Where-
{y®}={ht) a®)}" = The generalized buffeting

The self-excited lift and moment are given as

response
follows*Y: P
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(O} 4L ()M ()} T = The generalized aerodynamic and combining I_Eq. 9 and 10 we obtain the foIIov_ving
Lyapunov equations for the state and output covariance

force o
[M] = The mass matrix matrices:
[C9 = The gross damping matrix, i.e., _ _ T

the sum of the mechanical and Z'AZAT+Q

aerodynamic damping matrices /o =CXC +R (11)
K9 = The gross stiffness matrix G=AXC'+S

The fluctuations of wind speed u(t) and w(t) in Eq. From (8) and (9), it can be deduced:
3 are random functions of time, so the identification of
flutter derivatives of bridge decks can be simplified as aA, = E[{y,.}{y } "]

typical inverse problem in the theory of random  _ T
vibration and thus can be solved by the stochastic _E[(C{Xk”} HV DY J (12)
system identification techniques. Let: = E[C{xkﬂ}{y } T]
| | =CG
97 e e © : :
1= O] N=E[yedy }TE (O W v Dy Y ]
=E[ (Cix My } 7]
and =CE[x, Hy 1 7]
— T
0 = {y} ®) = CE[ (Al Hw Pl J "] (13)
y = CE[ Al {y } 7]
then Eq. 4 is transformed into the following stochastic = CAE[{x,.{y } "]
state equations: = CAZIG
& HA G fw} %) and
{ HC ¢ ¢
— i-1
The discrete form of Eq. 7 can be written as: A =CATG (14)
X3 JAKX ) @}, Defining a block Toeplitz f; as:
’ 8
C
{yd JCHx } &} A AL e A
where, [Alsa [Cdaw and {x} are known as state 1 —|Na N A, (15)
matrix, output shape matrix and state vector, " : : o
respectively; {w} and {v} are the input and output Ny Nyy - N

noise sequences, respectively. Subscript *k denotes the

value of * at time Wt, whereAt means the sampling gne can infer from the definition of covariance matrix
interval. O and | are the zero and identity matricespat T, can be expressed as the product of two block

respectively. _ Hankel matrices Yand Y,

It is assumption of stochastic model thag}{Xw \}
and {v} in Eq. 8 are mutually independent and hence: Tyi= YprT (16)
E(xw') =0  E[xvi'] =0 )

where, ¥ and Y, are composed of the ‘future’ and
‘past’ measurements, respectively:

Defining:

Yi Yia = VYisja Yo Y1 Yia
Z=Exoq]  Q=EDx] v oY Y Yoo U1 BN v | @an
A =ElaiYe] R=Evv] (10) SN/ S S S A RV

G:E[Xkﬂy:] S= E[WkWI] Yoa Ya 0 Yaisj Yia Yi 0 Y=
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Next, applying the factorization property tg; Dy Once the modal parameters are identified, the gross
the singular value decomposition yields: damping matrix €and the gross stiffness matrix K
Eq. 4 can be readily determined by the pseudo-inverse
S o\V/ method:
T, =USV' = (U U)( ](1 = USV/ (18)
] 1527\ g ¢ VzT = Va T
O] (o)
Where: [KeC€]=—M[¢/\2¢t/\)ZJ{¢A q)*/\*} (21)
U, S and V = Orthonormal matrices
S = A diagonal matrix containing positive i .
singular values in descending order where the superscript*denotes the complex conjugate of

the corresponding term. Let:

The number of nonzero singular values indicates
the rank of the Toeplitz matrix. The reduced diagonalc® = pmc® K° = MK ®
matrix § is obtained by omitting the zero singular C = M K = MK® (22)
values from the matrix S. Matrices,lhnd \, are
obtained by omitting the corresponding columns from . , .
the matrices U and V respectively. Now realizations otvhere, ¢ and K are the inherent’ damping and
the system matrices are almost achieved. Matrix A istiffness  matrices, respectively. Thus, the flutter
realized by using factorization of a shifted Toeplitzderivatives can be extracted from the following
matrix Toui that has similar structure as ofyTout equations:
consists of covariance from lag 2-2i. In a manner
similar to the classical Eigensystem Realization;(k,)=-—2" (C¢,-C,). A(k,)=-—2 (G- Cy)
Algorithm (ERA in short), one can find: PBG, pPBw,

. 2m =, = . 21— =
Hy(Ky) == —5—(C;, - Cp,), ALk, )=-———(C, - C
A :OI-*-T21IZ' :S:IIIZ UT-I—ZUVSIIIZ (19) 2( a) pB3 y ( 12 12) 2( u) pB4C0u (QZ 22) (23)
. 2m . = . 21 e
Hy(k,) =-—5 5 (K5 -K,), Alfk,) =—-——(K5, K ,)
where, N is model order, i.e., the maximum number of pBiw; Y pBlay
modes to be computed. Thus, the modal parameters cafk ) =-—2™ (e -K ), A'(k ) =-—a (K5, -K )
. . . 4\ h Bs 2 11 v BA 2 21 2
be determined by solving the eigenvalue problem of the pEw; pea,
state matrix A. By now, the theoretical formulation of
covariance-driven SSI has been achieved. Numerical simulation tests: In order to validate the

According to Eq. 16-19, a different combination of applicability of the covariance-driven SSI technique in

i, j and N will give a different state matrix and thus aflutter derivatives estimation of bridge decks, numerical
different pair of modal parameters. Therefore, modabimulations of signals from different test methods are
parameters should be derived from a series ofirst carried out. The numerical tests included two
combinations, rather than a single combination. In theyntheses but well controlled cases: two uncoupled
process of identification, N or i should be given indegrees of freedom and two coupled degrees of
series for certain values of j in order to obtain afreedom (simulated response including the motion
frequency stability chart. Solving the eigenvalueinduced aeroelastic terms). Both cases are first excited
problem of the state matrix A by the pseudo-inversdn the transient (i.e., free decay) motion and then by a
method yields: white noise loading process. Measurement noises are
also added by a white noise process with a standard

A=WYAW? 20) deviation equal to 10% of the standard deviation of the
&= CY original responses, in order to investigate the effect of
measurement noise.

Where: Two uncoupled degrees of freedom; free decay:

¥ = The complex eigenvector matrix Transient responses time-series were obtained by direct

® = The mode shape matrix calculations of the displacement values for N = 4096

A = A diagonal matrix composed of the complex polesdiscrete  time  stations, with ‘sampling’ interval
of the system At = 0.02 sec (fs = 50 Hz). Structural modal properties

used in this simulation were chosen from the previously
Different combinations of i, j and N are employed tested sectional model of the Great Belt Bri&geThe
to derive the modal parameters statisti¢afly modal matrices are given per unit length as:
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c [03616 0
°"1 0o  0.0072

v o[26526 0
°"| 0 0.018

i.e., f0=1.9472 Hz,  =5.7573 Hz,§,,= 0.0053 &¢o
= 0.0056, where damping ratids, are representatives

for the range of small amplitudes. The damping ratios  SuPerimposing 10% measurement white noise on
were then multiplied in turn with 5, 10, 20 and 40, inthe simulated response made the structural matrices

order to cover the values of total damping (structural (iffered from those of the noise-free cases within 3%.

aerodynamic) which could be presented in vibration ofl "€ re?pbor}?ef time-series weri also ;u(;mﬂat;dl for the
model section under wind flow. Values as hightas case ol bufleting responses where wind turbulence 1s

0.2 could be expected for the vertical degree of freedorﬂje oply exc't‘?d source. The effectl\{e stiffness and
under wind flow. amping matrices were taken as in the case of

Frequency and damping ratio estimates aréransmnts, examples of response time-series are as

: . : hown in Fig. 2. Buffeting responses required longer
ractically identical to the preset values (less than 0.5% Co
?or the hiéhest damping Cgse). The systfem matrices af2 records (20’00.0 data points in the present study) as
also excellent even for the short useful signal case Witﬁompared to that in the free decay case (4096 data

only a few cycles of vibration motion. In the case WhereDO'ntS) to yield accep_table _results. Est|mate_s of the
10%-measurement noises were added, idemiﬁegequenmes and damping ratios agree well with preset

isi ithi 0,
frequencies were changed at lesser than 0.8%. Dampiﬁ' Iuest_ wTereTﬁre(i;_smns Iar? W"“'U 0.t5ff and 2/‘3
ratios were changed at most by 2% except in the case spectively. ~The diagonal terms in Stliness an
the lowest damping case which was 5.4%. The diagon amping matrices also agree well with preset values

i 0
terms of the estimated system matrices (frequency an here the dn‘ferenpes are I_ess than 1% ex_cept for t_he
damping matrices) are also identical to the presef™ (related to vertical damping) where the difference is

0 : : o
values. Estimates of diagonal terms are distorted withir"ilround 2.5%. The most differences in the off-diagonal

1% except only for the case with lowest damping castS'ms ?_re :51 alndt%l which a:celrgl)?ted to Aand F% o
in which values are within 2.82%. respectively. In the case o b-measurement noise

Two coupled degrees of freedom; free decay an dded, the deV|at!on of the reconstructed matrices from
e pre-set ones, in percentage, is:

buffeting responses: The next step in the simulation wa
a simulation test with full effective stiffness and
damping matrices (i.e., coupled degrees of freedom), - {8-55 —27-8€j A { 2.23 —0-3§
and with lift and moment forces of the white noise type, *© |-028 05 |~ * |-11.17 -0.0
as assumed in the SSl-method. For the mean-wind

speed of 10.26 m sécand the aerodynamic derivatives
assumed according to the values reported for a similar 002
bridge cross-sectiéfl, the effective structural matrices 001 ]
were pre-set at:

397.0573 0 to these responses data, returned the effective structural
0= 0 247315’ matrices with the deviation from the pre-set ones (C
and K) in percentage as:

0.66 -3.0 -0.14 -0.0
AC,,= , DK, =
0.16 -0.2 426 -0.0

£ o ]

={8.9308 —0.079T « :{ 420.1002- 59.155? 001 ]

" (04345 0.0384 ’ 1.7552 19.6652 0025 500 1000 1500 2000 2500 3000 3500 4000 4500
2.6526 0 timestep
0{ 0 0.0189i| o

0.05

r(rad)
o

The response time-series were simulated for both
free decay and buffeting responses under turbulence®
wind with 10% turbulence intensity; then measurement
white noises were superimposed on the simulated %550 1000 1500 2000 2500 3000 3500 4000 4500

0.05

response. The free decay response time-series were timestep
computed by constant acceleration method and samplggg. 1: Example of vertical (top) and torsional (bottom)
are as shown in Fig. 1. The SSI-COV method, applied transient responses simulated under wind flow
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ver.(m)
o

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
timestep

0.05- R

tor(rad)
o

-0.05

Fig. 4: Suspension device of the model

| | I | | | I I I
0 100 200 300 400 500 600 700 800 900 1000
timestep

[— ]
Piano Wires
End Plate

Fig. 2: Example of vertical (top) and torsional (bottom)

buffeting responses simulated under wind flow

Q
————

Bridge Sectional Model

!

T

L
Flow Direction[

¥ Acceleration Transducers
Connecting Rodg :
Wall of Wind Tunnel
X
i 3 EI 3 ] H
Laser Displacement Sensor 1 ! Laser Displacement Sensor 2

‘ a ‘
€

Fig. 3: IRR bridge model and grids to generateFig 5: Top view of the test setup
turbulent flow in wind tunnel T

) S The model was suspended by eight springs outside
Wind tunnel tests: To evaluate further the applicability the wind tunnel (Fig. 4). To simulate a bridge section
of the present method in flutter derivatives estimationynggel with 2DOFs, i.e. vertical bending and torsion,
of bridge decks, wind tunnel tests of a quasi-pjano wires were used to prevent the motion of the
streamlined thin plate model and a two-edge girder typgnodel in longitudinal direction; this can be shown from
blunt bridge section model are performed. Fig. 5, the schematic diagram of the top view of the test

setup. Two piezoelectric acceleration transducers were
Outlined of wind tunnel tests: The wind tunnel tests mounted at the mid length of the model to capture the
were performed in TU-AIT wind tunnel in Thammasat acceleration signals. The responses of the models were
University. The working section of the wind tunnel hascaptured by the acceleration transducers and then the
a width of 2.5 m, a height of 2.5 m and a length ofvertical and torsional responses can be respectively
25.5 m. The required turbulent flow was generated bybtained by:
grids, as shown in Fig. 3. A hot-sphere anemometer was
applied to measure the mean wind speed of the flow and _x, +x, X=X, o
a hot-wire anemometer was used to measure the 2 a= I (24)
fluctuations of wind speed. The longitudinal and vertical
turbulence intensities are both less than 0.05% in case there, X and % are the measurements of transducers 1
smooth flow and about 8% in turbulence flow. and 2, respectively; | is the space between transducers.
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RESULTSAND DISCUSSION The results are then removed trend and re-sampled at

. ~ 250 and 50 Hz, respectively. The covariance-driven SSI
Case 1: Thin plate model under smooth flow: A quasi- technique is applied to identify modal parameters from
streamlined thin plate (Fig. 6) was first selected forthese data and a pseudo-inverse method is applied to
wind tunnel test. The width to height (thickness) ratioestimate the stiffness and damping matrices. The flutter
of the plate is about 22.5. Table 1 shows the maiRyerivatives are estimated by Eq. 23 and reported in the
parameters of the model. form of Eq. 2 but without the factor 1/2.

The extraction of flutter derivatives of the thin plate,
using the SSI-COV technique, were performed on resu“@omparisons between SDOF and 2DOF-coupled-
from three types of tests, namely, (a) Single-Degree-Ofmotion tests: free decay method: Figure 9 and 10
Freedom (SDOF) motion teSts(b) free decay coupled- compare the flutter derivatives of the thin plate that are
motion test (2DOFs) and (c) buffeting coupled-motionestimated by the SSI-COV technique using the above
test (2DOFs). Typical test results showing responsegentioned three test methods together with the
from the bridge model are in Fig. 7 and 8. TheTheodorsen's theoretical vallis Unless otherwise
responses for the free decay and the buffeting tests aggyted, at any wind speed;HH,, A, and A" which
sampled at the rates of 1000 and 200 Hz, respectivelyre associated with the vertical motion were calculated
using the frequency in (lower). In addition, the
derivatives H', Hs', A, and A" which are associated
with the torsional motion were calculated using the
frequency a (higher).

The direct flutter derivatives Hand H~ as found
from the single-degree-of-freedom vertical-motion tests
and A" and A as found from the single-degree-of-
freedom torsional-motion tests are also plotted and

Fig. 6 Cross-section of the streamlined thin plate

Table 1: Main parameters of the thin plate model

Parameter Mark  Unit value  compared with those from the coupled-motion tests.
Length L m 23000 The results are shown in Fig. 9 and 10. The near perfect
Width B m 0.4500 match shows that the direct-flutter derivatives are
Height lonath H l’(“ ., 00200 indeed not affected by the motion along the other
m::’tisa?‘ri:ouggnfg?tmass urfitlength ’\l: kgg];nr:Fm‘1 gﬁgé degree of_fre_edom, as PrediCteq by theo.ry Le., those
Inertial radius R m 0.1325 flutter derivatives associated with h motion are not

First bending frequency f,w  Hz 16500 affected by a motion and vice versa. It also
First torsional frequency o fam Hz 2.7300  demonstrates the reliability of both the coupled-motion
First torsion-bending frequency ratio € 16500  tests and the system identification method (SSI-COV).
x 10°
5
2.5 B
2.5 B
5 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60
time(s)
0.04
0.02 B
0.02 B
0.08 ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60

Time(sec)

Fig. 7: Vertical (top) and torsional (bottom) free decayFig. 8: Part of vertical (top) and torsional (bottom)

acceleration responses of the thin plate at buffeting acceleration responses of the thin plate
8.1 m sec wind speed under smooth flow. at 5.6 m se¢ wind speed under smooth flow.
(Unitin g) (Unitin g)
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Fig. 9: Flutter derivatives (H of the thin plate by SDOF
responses under smooth flow
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Fig. 10: Flutter derivatives (A of the thin plate by SDOF test and coupled test by free decay and buffeting
responses under smooth flow
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Comparisons of coupled-2DOF motion tests between Table 2: Main parameters of the IRR Bridge model
the free decay and the buffeting tests. The flutter ~ Parameter Mark _ Unit Prototype Model
derivatives found from both the free decay and thé-endth L m : 2.2600
buffeting tests for the coupled-2DOF cases arem?th B m 3.9 0.3990
N ght H m 3.20 0.0350
compared in Fig. 9 and 10. The results show googass per unit length M kg th 43000 5.6801
agreement between the two methods. This validates theertial moment of i) kgnfm?® 4.11x10° 0.1726
ability of the system identification method (SSI-COV) mass unit length
to apply with both the free decay and the buffeting testg:g ?Oer’;i‘l'zglffrfez“uee’:% “]f:lz Ei 8'228 421'%288
although it was dgveloped from a stochastic model (i.e; o torsion-bending- . 2 260 29900
white noise loading assumption). However, when &equency ratio
relatively heavy model is excited at a very low reduced
wind velocity, i.e., low wind energy, it becomes more
difficult to extract the flutter derivatives from the
buffeting responses.

The results also show that identified flutter
derivatives agree well with the theoretical ones. The six
important flutter derivatives f+ Hs;and A~ Ag
identified by SSI from different tests match well with
theoretical values. The Jtlerivatives are generally
agreed in trend with theoretical values. However, the
A, in turn, found from buffeting responses are more
scattered compared to those from free decay responses.
The impacts of the 4 and A derivatives, however, @
seem to be less significant when compared to those of
other derivatives. This was the reason why &hd A, 35.90m
were usually neglected in previous stuligs'®

17.95m L, 17.95m
»

Case 2: Section model of IRR Bridge: Encouraged by W
the success in the thin plate model, the flutter
derivatives of IRR Bridge, a cable-supported bridge
with 2-edge girder, as shown in Fig. 11, were estimated o.k¢
by the SSI-COV technique. The IRR Bridge has a main (b)
span of 398 m. The deck consists of a concrete deck
slab and a web of steel girders. The deck is supported
by two cable planes at outside edge girders. A 2-edge-
girder bridge section with A-shape pylons has good cost
performance, but at the same time the bridge cross-
section is known to be aerodynamically unstable at high
wind speed. Table 2 shows the main parameters of the
prototype bridge and the section model. Tests were
conducted under smooth and turbulence wind flow.
Using the SSI-COV technique, the flutter
derivatives of the IRR Bridge were estimated for
2DOFs responses under smooth flow by both the free
decay and the buffeting tests and under turbulence flow ©)
by the buffeting test only.

Fig. 11: (a): Three dimensional view of IRR Bridge;

Comparisons of test method; Smooth flow: Figure 12 (b): Schematic cross-section of IRR Bridge;
and 13 show the identified flutter derivatives of the (c): IRR Bridge sectional model in wind
bridge deck by free decay and buffeting responses tunnel

under smooth flow and by buffeting responses under

turbulent flow. The flutter derivatives are estimated by  Generally, the flutter derivatives of the bridge in

Eq. 23 and reported in the form of Eq. 2 but without thesmooth flow identified by the SSI method from both the

factor 1/2. free decay and the buffeting tests are in good agreements.
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Fig. 12: Flutter derivatives (H of the IRR Bridge by free decay and buffeting responses under smooth and
turbulence flow
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Fig. 13: Flutter derivatives (A of the IRR Bridge by free decay and buffeting responses under smooth and
turbulence flow
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The difference of A identified from both tests, seems SSI-COV technique is that it considers the buffeting
to be negligible as effect of this derivative is usuallyforces and responses as inputs instead of as noises as
considered to be less significant. In smooth flow, thetypically assumed. The conclusions of this study are as
most important derivative A are steadily increased follows:

(more negative) up to the reduced wind velocity around

3 and then started to decrease. This sign reversal is the Numerical simulations of bridge deck responses

primary factor toward the SDOF-torsional instability
(“stall flutter”) for bluff type sections. The torsional
flutter was found at the reduced wind speed around 4.7.

Effect of turbulence: Most of the prototype bridges are
submerged in turbulent wind, therefore, detailed
investigations of the effects of turbulence on the flutter
derivatives is significant. Almost all the wind tunnel
tests for flutter derivatives have been generally carried
out in smooth flow. Although few researchers have
studied the problem using wind tunnel tests, results and
the identification methods were individually
proposett*? and the results are still debatable and
inconclusive. For streamlined section, tests showed
little effect*'¥, while tests on a rectangular box girder
bridge showed galloping in smooth flBw: .

From Fig. 12 and 13, it can be found that the
influence of flow type on i and A, i.e., flutter
derivatives related to direct aerodynamic stiffness,
seems to be negligible. Though, the value gf frbm
turbulence flow is somewhat lesser than that in the
smooth flow case, it affected only the second decimal
digit of the frequency value. The influence also has
negligible effect on KHand H' i.e., direct and cross
derivatives related to vertical and torsional aerodynamic
dampings, respectively. On the other hand, the more
important A~ A, and H, show rather noticeable
deviations from those in smooth flow, especially at high
reduced wind speeds. The most important effect is that
the reduced wind speed corresponding to the reversed
sign of the torsional aerodynamic damping, A
increased in turbulent flow. It shows that turbulence
tends to make bridges more aerodynamically stable by
delaying torsional flutter. The deviations of flutter
derivatives may reveal the fact that for those bridges with
bluff type sections similar to IRR Bridge, the effects of
turbulence can be significant. Hence, the wind tunnel
tests of such bridges for flutter derivative estimation
should be carried out in turbulent flow as well.

CONCLUSION

confirmed that the SSI-COV technique can be used
to estimate flutter derivatives from buffeting and
free decay responses with reliable results. This
shows the applicability of the SSI-COV method
with various test techniques, though it was
developed from a stochastic model

For the thin plate model under smooth flow, wind
tunnel tests showed that flutter derivatives
identified by the SSI technique from both the free
decay and the buffeting tests matched well with
theoretical values. Although there are some
variations in the values of /Aobtained from the
buffeting test, this derivative is considered as
insignificant and is usually neglected in most of the
previous studies

When apply to the bluff section model of the IRR
Bridge under smooth flow, the flutter derivatives
estimated from the buffeting test agreed with those
obtained from the free decay test. This result
allowed focusing on applying the SSI-COV
technique to the buffeting test method. There are
variations in the values of the,Aderivative as
obtained from the two test methods but they agree
in trend. We also observed the sign reversal of the
A, derivative as the reduced wind speed reached
the value of 4.7. This indicates that this bridge
section is susceptible to flutter instability at high
wind speed

The test result of bluff section model of the IRR
Bridge under turbulence wind revealed that the
most important and positive effect of the
turbulence is that it tends to make the bridge more
aerodynamically stable by delaying the sign
reversal of the aerodynamic damping .AThis
may help explain that for those bridges with bluff
type sections similar to the IRR Bridge, the effects
of turbulence can be significant. Hence, the wind
tunnel tests of such bridges for flutter derivatives
estimation should be carried out in turbulent flow
as well

Applying the proposed SSI-COV technique to the

A theoretical model based on the covariance-driverbuffeting test yields a straightforward, cost effective
SSI technique was proposed to extract the flutteand reliable system identification process that can be
derivatives of bridge deck sectional models fromused to identify flutter derivatives of various bridge
coupled two-degree-of-freedom system by free decaglecks. It, however, has some limitations. For example,
and buffeting responses. An advantage of the adoptdtl becomes more difficult to extract the flutter
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derivatives from the buffeting responses in the situatiory.
when a relatively heavy model is excited at a very low
reduced wind velocity, i.e., low wind energy. In this
case, using the SSI-COV technique with the free decay
method will yield more accurate results.
8.
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ABSTRACT

Flutter derivatives are the essential parameters in the estimations of the critical wind velocity for flutter-
instability and the responses of long-span cable supported bridges. These derivatives can be experimentally
estimated from wind tunnel tests results. Most of previous studies have used deterministic system identification
techniques, in which buffeting forces and responses are considered as noises. In this paper, the covariance-
driven stochastic subspace identification technique (SSI-COV) was presented to extract the flutter derivatives of
bridge decks from the buffeting test results. An advantage of this method is that it considers the buffeting forces
and responses as inputs rather than as noises. The Industrial Ring Road (IRR) cable-stayed bridge crossed Chao
Phraya River with main span of 398m was applied for 1:90 scale sectional model test in TU-AIT wind tunnel
test as the study case. Wind tunnel tests were performed for four section bridge models, i.e. original section,
fairing-modified section, soffit plate modified section, and combination of those two modified section. The
results found that the original section result in high vortex-shedding response and lead to a single torsional
flutter at high wind velocity. The results also indicated that the combined fairing and soffit plate modified
section is the most aerodynamic shape.

KEYWORDS: FLUTTER DERIVATIVES, STOCHASTIC SUBSPACE METHOD, CABLE-STAYED
BRIDGE, AERODYNAMIC APPENDAGES

Introduction

Long-span cable supported bridges are highly susceptible to wind excitation because
of their inherent flexibility and low structural damping. Wind loads play an important role in
the design of these structures. In the most previous studies, flutter derivatives were estimated
by deterministic system identification techniques that can be applied to the free decay method
only. Examples of previous deterministic system identification that were applied to the free
decay method included Scanlan’s method [Scanlan (1971)], Modified lbrahim method
(MITD) [Sarkar et al. (1994)], and Unified Least Square method [Gu et al. (2000)]. In these
system identification techniques, the buffeting forces and their responses are regarded as
external noises, the identification process then requires many iteration [Sarkar et al. (1994)
and Gu et al. (2000)]. Moreover, at high reduced wind speed, the vertical bending motion of
the structure will decay rapidly due to the effect of the positive vertical aerodynamic
damping, and thus the length of decaying time history available for system identification will
decrease.

If the stochastic system identification technique [Overschee (1991), Peeters (1999)
and Gu et al. (2004)] is employed to estimate the flutter derivatives of bridge deck from their
steady random responses under the action of turbulent wind, the above-mentioned short
coming of the deterministic system identification technique can be overcame. The reason is
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that the random aerodynamic loads are regarded as inputs rather than noises, which are more
coincident with the fact. Therefore, the signal-to-noise ratio is not affected by wind speed,
and the flutter derivatives at high reduced wind speeds are more readily available. These
aspects give the stochastic system identification methods an advantage over the deterministic
system identification.

Vibration control of long-span bridges have been widely manufactured by
aerodynamic appendages. The investigations of aerodynamic appendages have been
considered in an effort to suppress the oscillation in the real bridges [Houston et al. (1988)
and Sakai et al. (1993)]. Many tried to modify the deck shape neighborhood to ideal flat
plate model. The illustrations, among others, are Bronx-Whitestone Bridge and Deer Isle
Bridge [Bosch (1990)], which recognized as an achievement for fairing-modified section.

In this paper, the covariance-driven stochastic subspace identification technique (SSI-
COV) was presented to extract the flutter derivatives from random responses (buffeting)
under the action of smooth wind. The two-edge girder type blunt section model of Industrial
Ring Road Bridge (IRR in short, Fig. 1), a cable stayed bridge with a main span of 398m,
Thailand, was tested in smooth flow. Wind tunnel tests were performed for four section
bridge models, i.e. original section, fairing-modified section, soffit plate modified section and
combination of those two modified section. Tests were conducted in TU-AIT Boundary
Layer Wind Tunnel in Thammasat University, the longest and the largest wind tunnel in
Thailand.

Theoretical Formulation of Covariance-driven Stochastic Subspace Identification

Flutter and Buffeting Forces
The dynamic behavior of a bridge deck with two degrees-of-freedom (DOF in short), i.e. h

(bending) and « (torsion), in turbulent flow can be described by the following differential
equations [Scanlan (1971) and Gu et al. (2004)]

m[h‘(t) +2£ o B+ wﬁh(t)}: L, 0+, (1)

|[d(t)+2§awad(t)+w§a(t)}: M O+M, O "
where m and | are the mass and mass moment
of inertia of the deck per unit span,
respectively; @; 1is the natural circular
frequency; & is the modal damping ratio
(i=h,a); Le and Mg are the self-excited lift and
moment, respectively; while L, and M, are the
Figure 1: Three-dimensional view of IRR  aerodynamic lift and moment. The self-excited
cable-stayed bridge lift and moment are given as follows:

1 . h . Ba . . h
Lse(t)—szzE{KhHl (Kh)U+ KaHz(Ka)7+ KIH; (K, e + KiHA(Kh)B} (2)

Mse(t):;pUZBZ[KhA;(Kh)S+ KA (K,) 2 KA (K, Ja + KfAJ(Kng}

where p is air mass density; B is the width of the bridge deck; U is the mean wind speed at
the bridge deck level; ki= @B/U is the reduced frequency (i=h,«); and H; and A;” (i=1,2,3,4)
are the so-called flutter derivatives, which can be regarded as the implicit functions of the
deck’s modal parameters. The alternate form of self-excited forces is as Eq. (2) but without
the factor 1/2. The aerodynamic lift and moment can be defined as [Simiu & Scanlan (1996)]
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where C., Cp and Cy are the steady aerodynamic force coefficients; C'. and C'y are the
derivatives of C_ and Cy with respect to the attack angles, respectively; u(t) and w(t) are the
longitudinal and vertical fluctuations of wind speed, respectively; yand yv are the lift and
moment aerodynamic admittances of the bridge deck. By moving L and Mg to the left side,
and merging the congeners into column vectors or matrices, Eg. (1) can be rewritten as

follows

O} [ JyO)+[K* iy )= (1)} (4)
where {y(t)} ={h(t) a(t)}" is the generalized buffeting response; {f(t)} ={Ln(t) Mp(t)}" is the
generalized aerodynamic force; [M] is the mass matrix; [C®] is the gross damping matrix, i.e.
the sum of the mechanical and aerodynamic damping matrices; and [K°] is the gross stiffness
matrix.

Stochastic State Space Models

The fluctuations of wind speed u(t) and w(t) in Eq. (3) are random functions of time,
so the identification of flutter derivatives of bridge decks can be simplified as a typical
inverse problem in the theory of random vibration, and thus can be solved by the stochastic
system identification techniques. Let

0]
= d =Y 5
[A] {_MlKe ) A [c.]=1 o]an {x}—{y} 5)
Eqg. (4) is then transformed into the following stochastic state equations in discrete form as
e f=[ARx )+ {w, | and {y, j=[Clix, }+{v,} (6)

where [A]axsa, [Claxa and {x} are known as state matrix, output shape matrix and state vector,
respectively; {wi} and {v} are the input and output noise sequences, respectively. Subscript
*k denotes the value of * at time kAt, where At means the sampling interval. O and | are the
zero and identity matrices, respectively. It is assumption of stochastic model that {xx}, {wi}
and {vi} are mutually independent and hence
E[xw,]1=0 E[xVv,']1=0 @)

Defining
X= E[Xk X:] Q= E[WkW:] Ai = E[kay:] G= E[anyl] R= E[VkV:] and S= E[WkaT] (8)
and combining Egs. (7) and (8) we obtain the following Lyapunov equations for the state and
output covariance matrices

T=AZA" +Q A,=CEZC"+R and G=A=C"+S 9)

From (6) and (7), it can be deduced
A, = CA'G (10)

Covariance-driven Stochastic State Space Identification
The main algorithm of SSI-COV proceeds with defining a covariance block Toeplitz

Ai Ai—l : A1
as Ay A Ay (11)
Tl\i = : C
A A A

2i-1 2ic2 7T i
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one can infer from the definition of covariance matrix that T, can be expressed as the product

of two block Hankel matrices Ys and Y, as Ty =YY, where Ys and Y, are composed of the

“future’” and ‘past’ measurements, respectively.

Vi Yia o VYija Yo Vi o Yia
v :i Yia Y2 0 Vi y :i Vi Y. oY (12)
UV S A A VI A R
Yoir Yo 0 Yairj2 Yia Yi o VYiije
Next, applying the factorization property to T, by the singular value decomposition yields
T
T, =UsVT = (U, U )[0 gj[v ] u,sV, (13)

where U, S and V are orthonormal matrices. S is a diagonal matrix containing positive
singular values in descending order. The number of nonzero singular values indicates the
rank of the Toeplitz matrix. The reduced diagonal matrix S; is obtained by omitting the zero
singular values from the matrix S. Matrices U; and V; are obtained by omitting the
corresponding columns from the matrices U and V respectively. Now realizations of the
system matrices are almost achieved. Matrix A is realized by using factorization of a shifted
Toeplitz matrix T, that has similar structure as of T, but consists of covariance from lag 2 to

2li+1
2i. In a manner similar to the classical eigensystem realization algorithm (ERA in short), one
can find

A= 0i+ z\igu -9 1/2U TT‘ VS -1/2 (14)
where N is model order, i.e. the maximum number of modes to be computed. Thus, the modal
parameters can be determined by solving the eigenvalue problem of the state matrix A. By
now, the theoretical formulation of covariance-driven SSI has been achieved.

According to Equations (12)-(14), a different combination of i, j and N will give a
different state matrix, and thus a different pair of modal parameters. Therefore, modal
parameters should be derived from a series of combinations, rather than a single combination.
In the process of identification, N or i should be given in series for certain values of j in order
to obtain a frequency stability chart. Solving the eigenvalue problem of the state matrix A by
the pseudo-inverse method yields

A=¥YA,¥* and @®=CV¥ (15)
where W is the complex eigenvector matrix, @ is the mode shape matrix, and A is a diagonal
matrix composed of the complex poles of the system. Different combinations of i, j and N are
employed to derive the modal parameters statistically.

Once the modal parameters are identified, the gross damping matrix C° and the gross
stiffness matrix K® in Eq. (4) can be readily determined by the pseudo-inverse method

« Tt
D
K® C®] = —M[®A? & (A"
[ ] [ (A) ]LDA @*A*} (16)
where the superscrlpt * denotes the complex conjugate of the corresponding term. Let
C'=M'C* C=M'C" K =M'K* K=MK® (17)

where C° and K° are the ‘inherent’ damping and stiffness matrices, respectively. Thus, the
flutter derivatives can be extracted from the following equations

. am . — . - . om o =
H1 (kh) == Bz (cu 11) HZ(ka) = 12 _C102) Hs(ka) - Ba 2 (Klz 12) HA(kh) = _pBawz (Ku - K101)
a h
. — . 2l — — . - . -
A1 (kh) = ,DBSZU 21 _Czol) AZ(ka) = pB4w_ 2 _ng) As(ka) == B4 2 (Kzz 22) A4(k11) = _pB4 2 (K21 21)
h @y,

(18)
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Outline of Wind Tunnel Tests

The wind tunnel tests were performed in TU-AIT wind tunnel in Thammasat
University. The working section of the wind tunnel has a width of 2.5 m, a height of 2.5 m
and a length of 25.5 m. A hot-sphere anemometer was applied to measure the mean wind
speed of the flow, and a hot-wire anemometer was used for a measurement of wind
fluctuations. The longitudinal and vertical turbulence intensities are both less than 0.05%. All
main parameters of IRR bridge model and prototype are shown in Table 1.

The sectional bridge model of IRR cable-stayed bridge in wind tunnel is shown in
Fig. 2. To simulate a bridge section model with 2DOFs, i.e. vertical bending and torsion,
piano wires were used to prevent the motion of the model in longitudinal direction. Two
piezoelectric acceleration transducers are located at mid-span of a model, placed on both
sides by an equal distance from the center of rotation, to capture the acceleration signals.

Besides, two laser displacement sensors were mounted on both two sides of dynamic
arms for displacement acquisitions. The responses of the models were captured by the
sensors, and then the vertical and torsional responses can be respectively obtained by h =
(X1+X2)/2 and a = (x1-x2)/l, whereas x; and X, are the measurements of sensors 1 and 2,
respectively and | represents the space between transducers.

To increase the aerodynamic stability of IRR cable-stayed bridge, wind tunnel tests
were performed for original section bridge model (Fig. 2) and three types of aerodynamic
appendages, i.e., fairing-modified section, soffit plate modified section, and combination of
those two modified section (Fig. 3). Fairing height of 29.9 mm is designed to fit the bridge
model with the upper and lower slope angles of 30°. The equilateral triangle fairings made
from hard paper were mounted to a model, in both windward and leeward side. Soffit plates
were mounted under the model with an intention to smoothen the wind attack to model’s
girders.

Table 1 Main parameters of the IRR Bridge

Parameter Notation  Unit  Prototype Model
Length L m - 2.26
Width B m 35.9 0.399
Height H m 3.20 0.035
Mass per unit length M kg/m 43000 5.6801
Inertial moment of mass per unit length I kgm’/m 4.11x10° 0.1726
First bending frequency f Hz 0.376 2.13
First torsional frequency fa Hz 0.850 4.73
First torsion-bending-frequency ratio £ 2.26 2.22

Results of Wind Tunnel Test
Flutter Derivatives

The aerodynamic derivatives were calculated for each wind speed as the average
value of 10 tests at each velocity. Flutter derivatives of four sections are presented and
compared in Fig. 4. The most important terms are H;* and A,* which refer respectively on
vertical and torsional damping of the section. Their positive values indicate unstable
conditions. For vertical aerodynamic damping coefficient, Hi*, the modification effects
considered to be negligible, which all sections show in negative region. However, the section
are influenced by the modifications in A,* which is most considerable in long-span bridges.
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Figure 2: Original section of IRR bridge in Figure 3: Fairings and soffit plates modified
wind tunnel section in wind tunnel

Fig. 4 shows that the original section and fairing modified section lead to a single
torsional flutter at high wind velocity because A,* change from negative values to positive
values. Flutter derivatives Hy* term, cross derivatives to a torsional aerodynamic damping,
are conversely agree well with Ax* results. Fairing modified section shows a little
improvement on the unstable behavior, delaying the unstable of bridge deck from reduced
velocity of 4.5 to 5. Also, it was clearly found that soffit plate modified section, and
combination of soffit plate and fairings modified sections produce more stable sections,
whereas the classical flutter rather than the single torsional flutter will occur because of Hy*
and A*

The results was found some dispersive in A4* and Hs* terms between original section
and modified ones, this coefficients are considered insignificant and usually neglected in
most of previous researches. Moreover, all modified sections show a little influence in A;*
and Asz*, which agree altogether well in trend. For Hs* term, the fairings section agrees in
trend with an original one, while soffit plates and combined sections are agree in trend to
each other.

Structural Responses and Critical Wind Speeds

The data acquired from two laser displacement sensors was produced and was
described via their standard deviations, both heave and pitch. The stability limit was
determined roughly by increasing the wind speed and observing the behavior of the section.
Subsequently, acquisition were made of the response starting below the stability limit up to
wind speed where the bridge deck exhibits clear unstable behavior. The responses under
smooth flow condition are described in Fig. 5 and their comparisons among four sections
were also carried out.

Since IRR cable-stayed bridge was manufactured with great considerations, critical
wind speed was found at very high velocity, 118 m/s in full-scale (7.45 m/s in model scale).
Flutter was found under single degree-of-freedom, torsional condition. However, the tests
were conducted with aimed to increase that velocity. On one hand, fairing-modified section



The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 2009, Taipei, Taiwan

Reduced Velocity (U/f;B)

Hy* Hy*
Reduced Velocity (U/fi,B) 060 —————————— —
0.00 4.00 8.00 12.00 Original
0.00 L L ) ) —-A— Fairing
Tl —=@— Original --B-- SoffitPlate
2100 N —-A—- Fairing — |- %~ Combined
--E- SoffitPlate '
200 grem e ---3%--- Combined Z
*, o T T T T TN T o
800 o RN
400 f———————————————— ——— e e
500 f————————— % |00+l
X 6.00
-6.00 F-—-m e Reduced Velocity (U/f,B)
Hy* Hy*
140 o e e e e 050 1
—&— Original x..x
T L g5 000 e g XK X
120 —-A— Fairing V,Ex 000 A ‘ T, %
1.00 1 --Er- SoffitPlae |~~~ ;ﬁ e 050 1~ “eitpee oo
R
0.80 | %~ Combined | — /A 100 4 —————— E\:Z - B’ S
7 NN ol
150 o SONCE
—e—Original | ® ‘o
2.00 - A s
—A— Fairing N .
280 1| —-er- soffitPlate | 7T NN T
-3.00 4| ---%--- Combined |—————— 1\. ,,,,,,
I\
850 L m
0.00 2.00 4.00 6.00 0.00 3.00 6.00 9.00 12.00
Reduced Velocity (U/f,B) Reduced Velocity (U/f;,B)
* *
A; A,
080 7~~~ — Original 020 - e e e e
040 +—————————————————- —A—- Fairing
0.00 o . — - ~EF- SoffitPlate
= x PEI. i
040 1 e~ Combined
N
< -0.80 + -
120 1 A
-0.20 1| —e— Original |—& & ng 777777
-1.60 A - = 3
—-A—- Fairing
200 f-- s 030 - g soffitPlate |~ T
240 - 040 —-%--Combined |
0.00 3.00 6.00 9.00 12.00 0.00 2.00 400 6.00
Reduced Velocity (U/fB) Reduced Velocity (Uff,B)
* *
Ag Ay
090 o 080 T——————
0.80 || =@ Original b
0.70 1 —-A—~Fa|r|.ng . S
0.60 --E-- SoffitPlate #
|| ---%--- Combined ’

—=@— Original
080 1 _a- Faiing |
120 H --B-- SoffitPlate |
---%--- Combined
160 e e
0.00 3.00 6.00 9.00 12.00

Reduced Velocity (U/f,B)

Figure 4: Comparisons of flutter derivatives among original
section and modified sections

Conclusions

can delay the critical
wind speed up to
velocity of 135 m/s in
full scale or around 15%
increased, compared
with original section.
On the other, for soffit
plate modified section,
and combination  of
soffit plate and fairings
modified sections, flutter
phenomenon was not
found in testing velocity
range.

In additional to
suppression of flutter
instability, the results
show a reduction in
buffeting responses for
all modified sections.
Moreover, vortex
shedding was
significantly suppressed
by these modifications.
This  concludes  the
highly achievement of
aerodynamic appendages
modification to stabilize
flutter phenomenon and

vortex shedding
responses. When
comparisons  of  the
effectivenes of three

modifications on
suppression of buffeting
response and structural
instability, the results are
combine > soffit plate >
fairing > original.

The covariance-driven stochastic subspace identification technique (SSI-COV) was
presented to extract the flutter derivatives from buffeting responses of bridge deck. The two-
edge girder type blunt section model of Industrial Ring Road Bridge, a cable stayed bridge
with a main span of 398m, Thailand, was tested in smooth flow. Applying the proposed SSI-
COV technique to the buffeting test yields a straightforward, cost effective, and reliable
system identification process that can be used to identify flutter derivatives of various bridge

decks.
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Figure 5: Comparisons of normalized heave and pitch responses among original section and
three modified sections

The results found that the original section result in high vortex-shedding response and
lead to a single torsional flutter at high wind velocity. The results also indicated that the
combined fairing and soffit plate modified section is the most aerodynamic shape. When
compared with the original section, this modified section can: a) suppress the vortex shedding
significantly, b) result in the classical flutter rather than the single torsional flutter, and c)
greatly increase the flutter velocity.
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ABSTRACT: The new development of DPT Standard 1311-50 for wind loading calculation
and response of buildings in Thailand is financially supported by Department of Public
Works and Town & Country Planning. The new standard is more accurate than the building
code No.6 because it considers the wind speed zoning, surrounding terrain, building shapes,
and dynamic properties. The new standard format is widely used in the international codes.
The new standard consists of 3 parts, namely, 1. Wind loading standard for building design,
2. Commentaries to the standard and 3. Numerical examples. Three different approaches for
determining design wind loads on buildings are given in the standard, namely, the simple
procedure for low- and mid-rise buildings, the detailed procedure for high-rise buildings, and
wind-tunnel test procedure. Examples of wind load studies of buildings and bridges by TU-
AIT wind tunnel test are also presented. Finally, losses due to wind storms in Thailand are
shown.

1. INTRODUCTION

The wind load specified in the existing building code under the Building Control Act (BCA)
1979 is obsolete because it does not consider the terrain conditions and the typhoon
influence. In addition, the code value is too low for very tall building, and for building in
open exposure, as well as buildings in the Southern part of Thailand which is prone to
typhoon attack [1, 2]. Therefore, the subcommittee on wind and earthquake effects on
structures of the Engineering Institute of Thailand published the wind loading standard for
building design in 2003 [3]. It considers the wind speed zoning, surrounding terrain,
dynamic properties, and building shapes. The standard is mainly based on the National
Building Code of Canada 1995 [4].

However, the wind loading standard for building design in 2003 has been revised
again for up-to-date wind loading standard. At present, DPT standard 1311-50 for wind
loading calculation and response of buildings in Thailand is newly published by Department
of Public Works and Town & Country Planning [5]. To develop the new wind loading
standard for building design, an evaluation and comparison of wind load and responses for
building among several codes/sta