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Abstract 

 

Project Code : MRU4980027 

 

Project Title : Performance Improvement of Automatic Fingerprint Verification Algorithm 
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The goal of this project is to research and develop automatic fingerprint identification 

algorithm for practical implementation for Thai people. This research is focusing on fingerprint 

enhancement research, reference point localization research, and including research on the new 

fingerprint matching method. The new algorithm gives high accuracy, low computation 

complexity, and suitable for practical implementation. The new algorithm is tested with standard 

Fingerprint Verification Competition (FVC) databases. Finally, the results of this research will be 

used in biometric system for Thai people in the near future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords : Automatic Fingerprint Identification Algorithm, Fingerprint Enhancement, Fingerprint 

Reference Search, Fingerprint Matching Method. 
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Executive Summary 
������������;�����#������!����*�
,���#6�
�#��'* �����;�6	�������;���#=�"�,>��������
�"+<�"�!�

+��
�
 10 +W-!;� 6���������'>"��>
#'&�
&$��	��
-������;�����#������!����*�
,���#6�
�#�"
,>�+W 2542 

����������"
/'������'*:�;�����������:���
+W�'>C=��
� ��;"�;����&�%����!������
:�;
'+�����/���&���"�'�
���

3��������#� ��*�:�"���	��
)?�#;��-
=����-!�	��
"�X�:����+��
�!C! 6��&����
���:�;��?=:�!������?���� 

10 ������-��:�	��
-
=���� 6����
��)�����;���B��3;�
?!!����*�
,�
�#�B���'>
'���-3=�3�����:�+W 	.�. 

2004 (FVC2004) 6����;+���+����=��3�*�#����/'�!�� Y 	,� ���+���+�����&!����*�
,� ���	;�������;����� 

-!����"+�'��"�'��!����*�
,� -!���;������#'&�
&$�+-!;���*��
� 7 ��	��
 6��
'��	��
�'>���	�Z�����

������#�-!�C=�����)?�+��"
��6���������������6!�����;��!����*�
,���?= 3 ��	��
 A�>���*��
�#'&�
&$:�

-�� Lecture Notes on Computer Science (LNCS) :����+����
��������'>���	�Z�'>�������;����6�"
#��� 

(International Conference on Biometrics) A�>������� Y ���+W A�>�"+<��'>�=�"�'�����=�:�+_������ LNCS �
=
' 

Impact Factor -!;� -#=��"�X�	��
���	�Z3����	��
�'>#'&�
&$�+-!;�������)?��;�����6�������,� Handbook 

of Fingerprint Recognition, 2
nd

 Ed., 2009 A�>�"+<������,��!���'>
'	��
���	�Z����;�����#������!����*�
,�

��#6�
�#�3��6!�:�+_������ ��=�����X#�
�����;�6	�������;"3'����	��
�'>���!�����=� Journal �'>���	�Z

����;���'*	,� Pattern Recognition 
' Impact Factor = 3.279 (2008) A�>�+_�����������?=:�����=��#������ 

-!�
'C!������������'��!���=���'>
'C!-!;� -#=�
=
'"�!����
�"�'��"�'��"3'����	��
�=� A�>�����;-�;�:�; ���-

��� �����'�	��*�"
,>���;������#����� ��,�C!��� Journal �'>��;������#'&�
&$"&�>
"#�
:����	# 

���>� �'>���������'*����
=�
�?�
$��,�"3'�� Journal ��;�;����=��'>��;��ZZ���;"�,>�����:��=��+��
�


���>�+W�'>C=��
� ��;"3;��+�������'>+����������������������������"�	6�6!�'�����"��-!�����,>���� "�,>�� 

“��������	�
�����
���	
����������������������������������������������
 �!
!�"����!#$���#����

��
�%�&������'” 6����"�#��'>"3;��+���6	������'*"�,>�����
'	�
�
��#��'>+�����#������'>���������� | #;����� 

-!�"+<�6	�������;:�;	��
�?;	��
��
��)�'>�����
�"&,>��=����=�����3����B�'>:�;"�	6�6!�'��6�"
#���

�����
���	:�+_������ ���"���#��-!���;���"!,�� A�>����:�;�=�����>�+W�'>C=��
�
'"�!��;��!�:������������ #;��

�+������#�
�=�����-����>�+��"��-!���=�����#=�� Y �'>:�;��6�"
#��������
���	 -#=:�����!����� 

����������'*���:�;��;6���$������'>#��	��
#;�����3��+��"�� -!������;�?;���3;�������C?;:�;�������

#������!����*�
,������
���	��*���	������+������-!���#���������#�$ ���:�;��
��)"+<�#���!��"3;�

+������=��"�!,�6��:�;"�	6�6!�'-!�	��
�?;�'>
'��?=��; A�>���"�X���;�����������

��:�;3;�������
'	��
�?;

	��
"3;�:�:�"�	6�6!�'-!�
�#�B�� �����;���"��Z�+&?���*�:�-!�#=��+��"�� ������+����
��"A'��"&,>�

����=�

,�:����-!�"+!'>��3;�
?!��6�"
#��� (The 1
st
 ASEAN Forum on Biometric Interoperability) -!�

6	������'>���?�
����3;�
?!��6�"
#�������=����=�����3����B:����	# �������'*:������������#� �����;

"3;��=�
:�B������
���#��-��+��"�����:����+����
������
�#�B���!�� ISO/IEC JTC1 SC37 

Biomtrics -!�"+<� Executive Committee :� Asia Biometric Consortium #��-��+��"����� -!�
'���

�������=�
���:������������#��������������6�"
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������� 1. ����
��������	� 
 

1.1 ������	���������� 

��#)�+����	$:�3;�"���3������������6	������'*:�+W&.�. 2549 
'���#=��+�'* 

1.1.1) #;�����&�%����!������
���#������!����*�
,����&,*�B��"��
�'>
'��?= -!;�:�;
'+�����/���&

�?���� #�*�"+���
���=�����?=:� 10 ������-��3��6!� "+�'��"�'��6��:�;B��3;�
?!���-3=�3��

��!������
#������!����*�
,�+W 2004 (FVC2004) -!�������+:�;���#;�-�����$�-��$"���

��#������
�'>��;&�%����;�����������3�� NECTEC "&,>�:�;��
��)-3=�3�����C!�#��
�$���

������#���;��=��#=�"�,>�� 

1.1.2) #;�������;��-!�-���������&:�������������'>��
��)-3=�3��:������������#���; 6�����

#'&�
&$C!�����������'>
' Impact Factor -!�"3;��=�
���-3=�3�� Fingerprint Verification 

Competition (FVC) );����	�
'���-3=�3����?= 

1.1.3) #;�����&�%��"�	6�6!�'��6�"
#���:�;"+<�3�������*��
�6�����&�>�&�#�"�� "&,>�:�;���:�

+��"��-!�!�������"3;�3��������6�"
#���3��#=����#� 6����"��>
��������:�;������

��=�����:�
�������!��"��#����#�$�=�� 

 

1.2 ���!	"��#	���
���$���������
�%������&�

	�'�&	�� 

:��=��"�!���
+W�'>C=���+ ��;������&�%��3�*�#����/' ��,� ��!������
���#������!����*�
,� :�"���

!�� 6��6	����;��3����!������
���#������!����*�
,�"+<������&�'> 1 

 

 
 

 �!&�" 1 �������������#�����&)������
*�����+��,
������-&+ 
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:��=����
+W�'>��;��������;&�%������=��3����!������
:�;��
��):�;�����; 6��
'	���/����3��-#=!�

�!X�����#=��+�'* 

 

1.2.1) Feature Extraction & Segmentation 

�=���'*"+<��=��-��"
,>���;���!����*�
,�"3;�
� 6��"+<��=���'>��������"	����$�����!�"�'�� ��,�

�=��+��������	�Z�'>��
��):�;�=��'*3;�
?!�'>#;��������!����*�
,�"&,>�:�;:����������#=��+ "�=� 	=�"�!'>� 	=�

�=��"�'>��"��
�#�B�� ������3��"�;�!����*�
,� 	��
"3;
3�����
������ 	��
)'>3��!����*�
,� "�;�����?+

"�;�!����*�
,� 	=�	��
"+<�"�;�!����*�
,� "+<�#;� 6��	=�"�!=��'*��
��)��������;-��"+<��!X�� (Block Base) 

��,�"+<�-�������& (Pixel Base) 

�=��#=�
�"+<��=���'>"�'���=� ������ Segmentation ��,������	��+� �! ��������&����
��=�&,*��'>

:�"+<�&,*��!�� "+<�!����*�
,��'>
'	�
��&�' ��,�	�
��&�
=�'-#=��
��)-�;�3��; ��
��*��'>�
=�'-!��
=��
��)

-�;�3��; 6��:�;3;�
?!����=��-���'>
'���!�"�'�����
�:�;��"	����$�=���-�=�-����&��=���� :�+_������
'��*�

������-��"+<��!X�� (Block Base Segmentation) ��,�"+<�-�������& (Pixel Base Segmentation) 

�
��"�#� ��!������
:��=���'* �
=
'	��
-#�#=���'>6��"�=������/'����'>#'&�
&$:�"���������� �������
=��;#'&�
&$ 

 

1.2.2) Fingerprint Enhancement 

�=���'*"+<��=���'>���	�Z:����+���+�����&!����*�
,��'>
'+_Z��"�,>��	�
��&:�;"�=�"�'�
"�
������,�

&����
A=�
-A
��&!����*�
,�:�;�'�'>���"�=��'>"+<��+��; A�>���;���"�����/':�
=6��#'&�
&$��/'���������+���+���

��&!����*�
,�:�-��"+<��!X�� (Block Base Segmentation) �!����/'"�=� ��/'���+���+�����&!����*�
,�:�

6�"
����-+!�6	A���$�
=#=�"�,>�� (Discrete Cosine Transform) [1] ��
��*�
'��/':���'#�'>"	����"����+"�=� 

���-+!����$���$-��-�=�-����; (Separable Gabor Transform) -!���;������+���+���&�%��"&�>
"#�
"&,>�

"&�>
+�����/���&:� [4] -!���;��������!�����-+!�-���?��"��$#�
�'>
'��������C?;�,>�"���-!;����
�

"+�'��"�'����� 6��#'&�
&$C!"+�'��"�'��-!���"	����$3;��'3;�"�'�:� [2] :�+_������"��>
&�%�����+���+�����&

:�����������&6��
'-��	����/':�
= -#=C!�����?=:�����=�������!�� 

 

1.2.3) Focal Point Detection/ Reference Detection 

�=���'*"+<��'��=���'>���	�Z-!���;�����������:�"���!�� "�,>�������;���"������6���� (Focal Point) [9] 

#�*�-#=+W	.�. 2000 -!���;������&�%����!������
:����	;������6���������!������
�'>A��A;��-!�
'���

	����
������!��
�"+<��
=)�� 0.1 �����' 6�����	�	��
"�)'��-!�	��
-
=�����'>�?���=���,�"�'��"�=���/'�,>� 

Y �'>
':����������� 6����;#'&�
&$-!;���*��
� 3 ��	��
 ���!�"�'��3����/'�����?=:� [3,6,7] 

 

1.2.4) Minutiae & Ridge Extraction 

�=���'*"+<��=��&,*�B����>��+�'� 6��"�	��	�=��:�Z=�
=-#�#=��:���	��
#=�� Y �'> #'&�
&$ A�>�);�

3�*�#����/'���+���+�����&!����*�
,���;�' �X����
��)���
��?"�'��$ ��,�����������-��3��"�;�
���;��=��

-
=���� ��
��*�"�;�#=�� Y �;�� -#=);�"�	��	
'+_Z�� 3;�
?!"�;�-!�
��?"�'��$��
'+_Z���+�;�����:�;

+�����/���&����#>��#�
	�
��&3����&�+�;�� :��=���'*	���=����
=��;#'&�
&$��,�);�#'&�
&$��"+<�

�=��+�����3����	��
�,>� Y "�=���*� 
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1.2.5) Classification 

�������3;�
?!�'>��;
�A�>����6���� -!�#�����6����"�� ��;	;�&��=���
��)���3;�
?!"�!=��'*�+������-�=�

+��"��!����*�
,� (Fingerprint Classification) ��,����"!,��!����*�
,�"&,>��'>��
�"+�'��"�'����; (Fingerprint 

Retrieval) 6����
��)��;�����!�"�'��"&�>
"#�
���3;�
?!���#��:�3�*�#����/'��������6���� 3
��'*��?=:�

����=���������� 6�����-C��=���"3'����	��
 Journal #=��+:����	#���:�!;"
,>�C!�����!���
�?�
$

-!;� :��=���'*����
=
'���#'&�
&$ 

 

1.2.6) Feature Generation & Fingerprint Template Encoding 

"
,>���;3;�
?!#=�� Y 
�-!;� �X�����
���;��	��
��
&��/$�������������"3;�����"�
"&!�"&,>�:�;&�;�


:����"+�'��"�'��:����	# A�>�"�	��	#=�� Y "�!=��'*-#�#=�������	��
�,>� Y -!���;���+"+<������/' ��/'-��

"+<���/'"�=��'>�;��������6����"+<��!�� A�>�"�'���=� FVA v.1.6 (Fingerprint Verification Algorithm version 1.6)

-!���;#'&�
&$:� [5] -!�:�;��!������
�'*:�����=�-3=�3�� Fingerprint Verification Competition 2006 [10] 

���������/'�'>��� A�>�"�'���=� FVA v.2.0 (Fingerprint Verification Algorithm version 2.0) ��;���-��:�;�����

#=�������"�'*��3���?+!����*�
,�A�>����!�"�'��:���	��
�����=�� [8] A�>����!��+���+���-!��=� Pattern 

Recognition Journal "�X� Y �'* 

 

1.2.7) Fingerprint Template Matching 

�=���'*"
,>����3;�
?!������"�
"&!� ��#;��)?����-��:�;��
��)������"+�'��"�'����;"�X�-!�
'

6	����;���'>"�
���
���	�
&��"#��$ A�>��=���'*����
=��;������+���+���:�;
'������&�?��'>���"�,>��������3��

����������?= -!�
'����=���/������?=:���	��
�����=�� [8] �'>���!�����=� 

 

1.3 (%���!	"��#	���
���$���������
�%������&�

	�'�&	�� 

C!���&�%��3�*�#����/'���#������!����*�
,�!=���� ��
��)���"�'�����B��3;�
?!
�#�B�� FVC 

2004 ��*� 4 B��3;�
?! C!����������!������
 FVSv1.6 ("��
�'>&�%��:��=��+W-��3�������;���) ��� 

FVSv2.0 (:�
= A�>�"+<�3�*�#����/'!=����:�+_������) "+<����#�����'> 1 ���#=��+�'* 

�������� 1 	��
����

���
	������
���	������
���	�
���	�����������
����	����������
��	�!".#. 2004 
Database Sensor 

Type 

Image 

Size 

Resolution Database 

Size 

(Finger � 

Images) 

Number of 

Attns. 

FVA v1.6 

(Old) 

%EER 

(Rank) 

FVA v2.0 

(Current) 

%EER 

(Rank) 

FVC2004db

1 

Optic 640�480 500 dpi 100�8 42 7.49% 

(14th) 

4.78% 

(9th) 

FVC2004db

2 

Optic 256�364 500 dpi 100�8 42 7.45% 

(25th) 

4.74% 

(13th) 

FVC2004db

3 

TM-Sweep 448�478 512 dpi 100�8 42 5.9% 

(20th) 

5.21% 

(19th) 

FVC2004db

4 

Synthetic 240�320 � 500 dpi 100�8 42 8.2% 

(34th) 

5.25% 

(29th) 

FVC2004 All - - - - 42 7.26% 

(24th) 

4.99% 

(17th) 
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�
��"�#�  

1. �������B��3;�
?! FVC 2004 Db1 ��*�),��=�"+<�B��3;�
?!�'>
'+_Z��	��
�,����=�3��!����*�
,���=��
�� 

-#="�,>�������&:�Z=��=� FVC2004 Db2 ���:�;��
��)��;+�����/���&:�!������'>�'��=�"
,>�"+�'��"�'��

���-3=�3��	��*���*� ����?=�'> 9 A�>���?=:� Top Ten 3�����-3=�3��:�"�!���*� 

2. ��!������
 FVAv1.6 ��� FVAv2.0 :�;��/'-#�#=�����6����*�"��� 6����!������
 FVAv2.0 :�;3;�
?!"�;�

!����*�
,� A�>��������#=�������"�'*��C��"&'*��3��!����*�
,���;�'��=� ���:�;+�����/���&�?���=�6����
 

6��
'"�!�"�!'>�:����"+�'��"�'�� 1:1 ��?=�'> 76.6 milli-second A�>���
��)&�%��������&�+��;�'���*�

:����+�����/���&-!�	��
"�X� 

3. ������� FVA v2.0 ����
=��;������	����
���B��3;�
?! FVC 2006 "�,>�����3��C?;�=����������:����

+���-#=�&���
�"#��$:�;"�
���
��*����� 
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������� 2. Output ���)
����������	� 
 

�������C!����'>��;����������� �=��:�Z=��"+<���	��
 -!�C!����,>� Y �'>"�'>��3;�� 

 

2.1 �����&�����!�&!����'��������� 

��	��
�'>��;������#'&�
&$:�������6	�����������'*:��=��"�!���*��
� 3 +W 
'��*��
� 7 ��	��
 -!�

���!�����=��'����>���	��
 6����*��
�-�=�"+<���	��
-�� Lecture Note on Computer Science ������ 3 

��	��
 ("	���?=:� ISI :�+W 2006 -#=:�+_�������
=��?=-!;�) ��	��
 Proceedings of International 

Conference �'� 3 ��	��
 -!�"+<���	��
+����
�������:�+��"���'� 1 ��	��
 -!��;��������!���=� 

Journal �'���������=���;�� 1 ��	��
 ���#=��+�'* 

[1] S. Jirachaweng and V. Areekul, “Fingerprint Enhancement Based on Discrete Cosine Transform,” 

Advances in Biometrics, Lecture Notes in Computer Science (LNCS4642), Springer-Verlag Berlin 

Heidelberg, pp. 96-105. (Scopus Citation = 1) 

[2] S. Jirachaweng T. Leelasawassuk, and V. Areekul, “Performance and Computational Complexity 

Comparison of Block-based Fingerprint Enhancement,” Advances in Biometrics, Lecture Notes in 

Computer Science (LNCS5558), Springer-Verlag Berlin Heidelberg, pp. 656-665. 

[3] N. Boonchaiseree and V. Areekul, “Focal Point Detection Based on Half Concentric Lens Model 

for Singular Point Extraction in Fingerprint,” Advances in Biometrics, Lecture Notes in Computer 

Science (LNCS5558), Springer-Verlag Berlin Heidelberg, pp.637-646. 

[4] S. Jirachaweng and V. Areekul, “Regional Adaptive Gabor Filtering for Fingerprint Enhancement,” 

Proceedings of International Workshop on Advanced Image Technology (IWAIT 2007), Bangkok, 

Thailand, January 8-9, 2007, pp. 614-619. 

[5] T. Leelasawassuk and V. Areekul, “Looped Minutiae Matching in Fingerprint Verification,” 

Proceedings of International Workshop on Advanced Image Technology (IWAIT 2007), Bangkok, 

Thailand, January 8-9, 2007, pp. 924-928. 

[6] V.Areekul and N. Boonchaiseree, “Fast Focal Point Localization Algorithm for Fingerprint 

Registration,” Proceedings of the 3rd IEEE International Conference on Industrial Electronics and 

Applications (ICIEA 2008), Singapore, June 3-5, 2008, 2089-2094. (Invited Paper in Special 

Session on Pattern Analysis and Biometrics-1) 

[7] ��B&��$ ��Z���"��' -!���%�&��$ ���'��!, “��������6����3��!����*�
,�6��:�;���
������,” ���+����


�����������������
�����	��*��'> 30 (EECON-30) 25-26 #�!�	
 2550, 
�������!��"�	6�6!�'&��

��
"�!;�/����', ��;� 729-732. 

[8] Suksan Jirachaweng and Vutipong Areekul, “Fingerprint Matching Using Minutiae-Ridge Graph 

Representation,” Submitted to Pattern Recognition Journal, (Impact Factor =3.279 (2008)) 
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�
��"�#� ��	��
 [1] ��;�������;�����:������,� Handbook of Fingerprint Recognition, 2
nd

 Ed, Davide 

Maltoni, Dario Maio, Anil K. Jain, and Salil Prabhakar, Springer, 2009. ���#=��+�'* 
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2.2 (%���
��� * ���������#�
� 

�������'>����������;�����#������!����*�
,�
�"+<�"�!����-!���;#'&�
&$���:������������#�

��=��#=�"�,>��#�*�-#=+W 2542 ���:�;
'�������;����6�"
#����������#�"3;�
�"�'>��3;��-!�:�;���	��	?=���

��������:��=��+W�;�� Y 3����������� ���#=��+�'* 

 

2.2.1) �����������,����
���)�'
�&������
	�����,��� 

:��=��"�!� 3 +W�'>��������,�#�*�-#= 20 ���(�	
 2549 ��;�����������������������;����6�"
#���

�����������#� ���!�"�'�����-���:�#�����'> 2 

�������� 2 ���
��	��$�%�	������&��'
��
����	����
����%��� ��(���� 20 	�	)�"� 2548-�����
�� 
# �L �;�+���� ��������/��� �������;� ������%� 

1 2007 

(2550) 

Executive 

Committee/Thailand 

Representative 

ASIA Biometric Consortium 

http://www.asianbc.com 

��������	��
�= �

,�

����;����6�"
#���:�

"�"A'� 

/����	
 2550 )��

+_������ 

2 2007 

(2550) 

Reviewer IEEE/IAPR International Conference 

on Biometrics 2007 

http://image.korea.ac.kr/ICB2007/ 

#�����	��
�;����6�

" 
 # �� � � � � � � � #�  6 

��	��
 

1 "�,��/ &����	
 

2550 

3 2009 

(2552) 

Committee/Thailand 

Representative 

ISO/IEC JTC1 SC37 Biometrics 

(International Standard) 

http://www.iso.org 

&����
�
�#�B�� ISO 

����;����6�"
#��� 


���	
 2552 )��

+_������ 

4 2009 

(2552) 

Vice Chair and 

Organizer 

The 1st ASEAN Forum on Biometric 

Interoperability 2009 

http://asean-fbi.mict.go.th 

" +< � C?; �� � � � � + � � �� 
 

ASEAN �� ��; �� �� 6�

" 
 # �� �  - ! � " +< � � � �

+��/��:����+����
�;�� 

25-26 
�)����� 2552 

 

2.2.2) �����������,����
���)�'
�&������
	�,��� 

:��=��"�!� 3 +W�'>��������,�#�*�-#= 20 ���(�	
 2549 ��;�����������������������;����6�"
#���

�������#�6	�����:�Z= 	,� '�������������&���&���&&�
����;���
&���Q���%��+%�����U�W����

#�
&U%,��=�!�!��
���!	"���	Q��%
��%X���
����� 6���,>�"�,>������������"�	6�6!�'�����"��-!����

�,>���� ��;3�"��Z:�;
�������!����,���=�����#=�� Y :�;�,>�3;�"���"&,>�	��"!,��"+<��'>+��������"���6	����� 

6��#;��
'	�
�
��#�	,� 

1) 
'	��
"�'>����Z-!�+�������
$:�����;��
�#�B��-!��?�
����3;�
?!�;��"�	6�6!�'

�����"��-!�����,>���� 

2) 
'+�������
$:�����'>"�'>��3;�����"�	6�6!�'3;�
?!�'���& (Biometric Data) 

3) 
'+�������
$�;�����+��������	��
�=�

,�����=��+�������:#;����	��
�=�

,���"A'��

�;��6��	
��	
-!�"�	6�6!�'�����"�� 

"�,>�����	�
�
��#�#��#�
������-!�	���=���#;��������:�;+��"����#�"
,>�
'6���� ���3�"���#��

-!���;���"!,������������| �����;"AX���ZZ� -!���;"��>
���"
,>�����'> 25 ������� 2551 -!�������-!;�"��X�

���:�����'> 21 ���(�	
 2552 6��
'	��
���C������'>#;��������#=��+�'* 

 



  

���������	
����
������
����� 

������������������������������� 

��	�����������
����� 


�������!��"��#����#�$  
 

Page : 13/20 

 

1. "&,>������ ��"	����$-!�������3;�
?!���:�;���3;�
?!�'���&:����:�;������+������C=������

��"!X��������$ 6��+��������-!��=�
������
	��
	��"�X������=�������	��B�'>"�'>��3;��"&,>�

"+<�3;�
?!:����������
�#�B���!�� -!�-���������?�
����3;�
?!�'���&"&,>������������

&�%����B��!��"!X��������$3��+��"����� -!��!�=
+��"����"A'�� 

2. "&,>��������=��3;�"���-��-��������������
�#�B���!�� -!�����?�
����3;�
?!�'���& 

"&,>����&�%����B��!��"!X��������$�������+��"����� -!�+��"���
������"A'�� 6�������

��"	����$"+�'��"�'�����-��	��/���(' ��,���
'�����:�#=��+��"�� -!�C!��������

��"	����$-!�������3;�
?! #�
���3;��'> 1. 

3. "&,>�������+����
"���+����#���� ASEAN Forum on Biometrics Interoperability 6��"��Z

C?;"�'>����Z-!�C?;
'�=��"�'>��3;��������:�;���3;�
?!�'���& ���+��"���
������
��*�	?="���� 

(Dialogue Partners) "3;��=�
���+����
 "&,>��=�
-!�"+!'>��	��
�?;-!�+�������
$ -!����,�

-��������������
�#�B���!�� -!�����?�
����3;�
?!�'���&:����:�;���3;�
?!�'���&

"&,>������������&�%����B��!��"!X��������$ #�
�=��3;�"���-��-�����| #�
���3;��'> 2. 

4. "&,>����3;����+�'>��;���������+����
"���+����#��������!=�� 
����"�����������"&�>
"#�
"&,>�������

"+<�3;�"���-��-��������������
�#�B���!�� -!�����?�
����3;�
?!�'���& "&,>�

�����������&�%����B��!��"!X��������$ �������+��"�����-!�+��"���
������"A'�� 

 

��������������������'*  ���:�;��;"�X���&��
3��������6�"
#����������#� ��;�?;���C?; :�;

"�	6�6!�'��6�"
#���:���=�����3����B��*��
� -!���;���-C�����?�
����3;�
?!�'���&��,���6�"
#���

:�;���+��"����� 
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2.2.3) ���)
��	��,�Y)���Z��������
���)�'
�&������
	�,��� +%�����,��� 

:��=��"�!� 3 +W�'>��������,�#�*�-#= 20 ���(�	
 2549 ��;���"��Z:�;�+&?�:����3;�"�,>������;����6�

"
#�����*�:�-!�#=��+��"�� ��
��)���+���!�"�'����;���#�����'> 3 

�������� 3 $����	��&��'
��
����	����
%����������%��� ��(���� 20 	�	)�"� 2548-�����
�� 
# �	�/�
�
�/ �L �	�#�
����
����!U
 ��������/ ������� 

1 12 ��
��&��/$ 2550 Biometrics 6	�������
��#����� ��	�����������
����� 	
�

�������
���#�$ 
�������!��/��
���#�$ �?��$�����# 

/ ����"�&| 

2 6 
�)����� 2551 A Focal Point, Good and Reliable Reference 

Point for Fingerprint Registration 

Computer Vision and Image Understanding 

Department (CVIU), Institute of Inforcomm 

Research / Singapore 

3 30-31 
'��	
 2552 1) Introduction to Biometric Technology 

2) Automatic Fingerprint Recognition 

Technology 

3) Survey of Large Scale Biometric 

Implemented in Royal Thai Government 

4) International Biometric Standards 

5) Draft of Biometric Interoperability in Royal 

Thai Government 

������
3; �������-!�&������3���� B�'> :�;

"�	6�6!�'��6�"
#��������
���	"�=� ��
���

+�	��� ��
�������! ���������#���	�"3;�"
,�� 

���������#�����-�=���#� -!��)������#���������#�$ 

��
��*��������"�	6�6!�'�����"��-!�����,>���� 

��*��
�+��
�
 30 	� / ��	�����������


	�
&��"#��$ 
�������!��"��#����#�$ ����"�&| 

4 26 
�)����� 2552 Preliminary Report for the Large Scale 

Biometric Usage in ASEAN 

The 1st ASEAN Forum on Biometric 

Interoperability 2009/ ����"�&| 

5 30 �����	
 2552 ���&��?��$"��!���
$����'���&�;��"�	6�6!�' ��	!����;��"�	6�6!�'-!�����,>���� ������������

�����"�'�� ��
���+�	��� ������ 160 	� 

6��-�
"	'����"!�'���$� / ����� 

6 17 ������� 2552 Biometric Implementation in Thailand and 

Future Trend 

The 3rd Asia Biometric Conference (ABC), 

Funding by Japan Automatic Identification 

Systems Association, / Tokyo, Japan 
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2.3 ���)����
(%���+%�����#�����&���,�&���

��&��,����
���)�'
�&���� 

:��=��"�!� 3 +W�'>��������,�#�*�-#= 20 ���(�	
 2549 ��;�+���"���C!��� "3;��=�
���+����
 

��
��*����
����;����6�"
#�����*�:�-!�#=��+��"�� ��
��)���+���!�"�'����;���#�����'> 4 

 

�������� 4 	��'�
�&���$�/�*�
���+����/�
���&��'
��
����	����
%����������
����%��� 
# �	�/�
�
�/ �L Presentation Topic / Status ������,�&��,���� / ������� 

1 8-9 January 

2007 

1) Regional Adaptive Gabor Filtering for Fingerprint 

Enhancement 

2) Looped Minutiae Matching in Fingerprint 

Verification 

International Workshop on Advance Image 

Technology 2007/ Bangkok, Thailand 

2 12-13 January 

2007 

Participant in “Biometric Data Security and Privacy 

Course” By A.K. Jain, Arun Ross, and Stan Z. Li 
Special Course at Hong Kong Baptist 

University, Funding by Croucher Advanced 

Study Institute & Faculty of Eng. Kasetsart 

University / Hong Kong 

3 27-29 August 

2007 

Fingerprint Enhancement Based on Discrete Cosine 

Transform 

IEEE/IAPR International Conference on 

Biometrics (ICB2007)/ Seoul, Korea 

4 3-5 June 2008 Fast Focal Point Localization Algorithm for Fingerprint 

Registration 

the 3rd IEEE International Conference on 

Industrial Electronics and Applications (ICIEA 

2008), Singapore (Invited Paper in Special 

Session on Pattern Analysis and Biometrics-1) 

5 18-24 January 

2009 

Observed Member/Committee, the 1st Thailand 

Representative for the first time 

ISO/IEC JTC1 SC37 Biometrics Meeting/ 

Hawaii, USA 

6 20 April – 1 

May 2009 

Participant in “International Fingerprint Identification 

Course” by Mr. Scott Osborn and Mr. Kerry Wilson, 

Fingerprint expert from Australia Police 

Special Course by Automated Fingerprint and 

Palmprint Identification Center, Central Institute 

of Forensic Science, Thailand 

7 2-5 June 2009 1) Performance and Computational Complexity 

Comparison of Block-based Fingerprint 

Enhancement 

2) Focal Point Detection Based on Half Concentric 

Lens Model for Singular Point Extraction in 

Fingerprint 

IEEE/IAPR International Conference on 

Biometrics (ICB2009)/ Alghero, Italy 

 

�
��"�#� ���+����
 IEEE/IAPR International Conference on Biometrics (ICB) "+<����+����
��������'>

"3;
-3X�-!����	�Z�'>���3��6!�����;����6�"
#��� 6�����
���"+<�������������6�"
#���-)���;�3��6!�

-!�
'��#����������	��
�
="��� 50% 
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2.4 ����,��
&'�������,����)�'
�&�����	��	���,����
��� * �	��-�+%����������/ 

���"�,>�
6�������������������������:�+��"�����:�+_������ ��
��)���+���!�"�'����;���#����

�'> 5 -!����"�,>�
6�������������������������#=��+��"�� ��
��)���+���!�"�'����;���#�����'> 6 

�������� 5 	��
%,���������$�%�	��	�
��	$�%�	��'���������
�� 
# ,��
 ��&���% �������� �,��
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2.5 ����#�����&���+#��#	� Fingerprint Verification Competition 2006 (FVC2006) 

��;�=� Algorithm �'>&�%��3�*�"�'���=� FVA v1.6 "3;�-3=�3�� Fingerprint Verification Contest 2006 

(FVC2006) [10] 6���=�6+�-��
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�������� 7 +�	��
�&�������� Fingerprint Verification Competition 2006 (FVC2006) 
FVC2006 Fingerprint Database 

Database Sensor Type Image Size Resolution Size 

Finger/Images 

Our 

P036  

Rank 

Total 

Participants 

DB1 Electric Field 96�96 250 dpi 140�12 39 44 

DB2 Optical 400�560 569 dpi 140�12 36 44 

DB3 Thermal Sweeping  400�500 500 dpi 140�12 43 44 

DB4 Synthetic Generation 288�384 � 500 dpi 140�12 30 44 

Average Results over four Databases 39 44 
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Fingerprint Enhancement Based on Discrete Cosine 
Transform 
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Abstract. This paper proposes a novel fingerprint enhancement algorithm 
based on contextual filtering in DCT domain. All intrinsic fingerprint features 
including ridge orientation and frequency are estimated simultaneously from 
DCT analysis, resulting in fast and efficient implementation. In addition, the 
proposed approach takes advantage of frequency-domain enhancement resulting 
in best performance in high curvature area. Comparing with DFT domain, DCT 
has better signal energy compaction and perform faster transform with real 
coefficients. Moreover, the experimental results show that the DCT approach is 
out-performed the traditional Gabor filtering, including the fastest separable 
Gabor filter, in both quality and computational complexity. 

Keywords: Fingerprint Enhancement, Discrete Cosine Transform Enhance-
ment, Frequency-Domain Fingerprint Enhancement. 

1   Introduction 

Inevitably, many fingerprint identification applications are playing an important role 
in our everyday life from personal access control, office time attendance, to country 
boarder control. To pursue this goal, automatic fingerprint identification system 
(AFIS) must be proved to be highly reliable. Since most automatic fingerprint 
identification systems are based on the minutiae and ridge matching, these systems 
rely on good quality of input fingerprint images for minutiae and ridge extraction. 
Unfortunately, bad quality of fingerprint and elastic distortion are now major 
problems for most AFISs especially large database systems. In order to reduce the 
error accumulated from false accept rate and false reject rate, quality of fingerprint 
must be evaluated and enhanced for better recognition results. 

Based on filtering domains, most fingerprint enhancement schemes can be roughly 
classified into two major approaches; i.e. spatial-domain and frequency-domain. 
Filtering in spatial-domain applies convolution directly to fingerprint image. On the 
other hand, filtering in frequency-domain need Fourier analysis and synthesis. 
Fingerprint image is transformed, then multiplied by filter coefficients, and inverse 
transformed Fourier coefficients back to enhanced fingerprint image. In fact if 
employed filters are the same, enhancement results from both domains must be exactly 
the same by signal processing theorem. However, for practical implementation, these 
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two approaches are different in terms of enhancement quality and computational 
complexity of algorithms. 

Practical performing fingerprint enhancement based on each domain has different 
advantage and disadvantage. For example, most popular Hong’s Gabor filters [1], 
with orientation and frequency spatially adaptable, are applied to partitioning 
fingerprint image. However, this Gabor filter model is based on unidirectional ridge 
enhancement, resulting in ridge discontinuity and blocking artifacts around highly 
curvature region. On the other hand, for frequency domain approaches, natural 
fingerprint image is localized in some frequency coefficients. Gabor filter can be 
easily designed to cooperate with high curvature area. For example, Kamei et al. [2] 
introduced fingerprint filter design based on frequency domain using discrete Fourier 
transform. Chikkerur et al. [3] applied short time Fourier transform and took 
advantage from 2-dimensional filter shaping design, adapted with highly curvature 
area, resulting in better enhanced results. However, comparing with spatial-domain 
approaches, this scheme suffers from high computational complexity in Fourier 
analysis and synthesis even though Fast Fourier Transform (FFT) is employed. 

In order to take advantage from frequency-domain fingerprint enhancement with 
low computational complexity, we propose fingerprint enhancement based on 
Discrete Cosine Transform (DCT). The DCT is a unitary orthogonal transform with 
real coefficients. It is closely related to the Discrete Fourier transform (DFT) which 
has complex coefficients. Moreover, it has been known that DCT provides a distinct 
advantage over the DFT in term of energy compaction and truncation error [4]. Thus 
is why DCT has been widely employed in general image and video compression 
standards. Hence, in this paper, we investigated DCT-base fingerprint enhancement 
for practical implementation. We expected best enhanced quality results with low 
computational complexity. This paper is organized as follows. Section 2 describes 
several processes in order to implement enhancement filtering in DCT domain 
including intrinsic estimation and practical filtering. Section 3 shows experimental 
evaluation. Finally, section 4 concludes our works and future research. 

2   Proposed Approach 

The fingerprint enhancement approach consists of 4 concatenated processes; i.e. 
discrete cosine transform of sub-blocks of partitioning fingerprint, ridge orientation 
and frequency parameters estimation, filtering in DCT domain, and inverse discrete 
cosine transform of sub-blocks. The advantages of the proposed approach are as 
follows. 

� Fingerprint ridges form a natural sinusoid image, which its spectrums are 
packed or localized in frequency domain. Hence these spectrums can be easily 
shaped or filtered in this domain. Moreover, filter can be specially designed in 
order to handle high curvature ridge area such as singular points. This is the 
great advantage over the spatial-domain filtering approach. 

� Comparing with discrete Fourier transform, discrete cosine transform performs 
better in term of energy compaction. Moreover, DCT coefficients are real 
number comparing with complex number of DFT coefficients. Therefore, we 
can handle DCT coefficients easier than DFT coefficients. Besides, fast DCT 
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requires less computational complexity and less memory usage comparing 
with fast Fourier transform (FFT). 

� By partitioning fingerprint into sub-blocks, the proposed approach utilizes 
spatially contextual information including instantaneous frequency and 
orientation. Intrinsic features such as ridge frequency, ridge orientation, and 
angular bandwidth can be simply analyzed directly from DCT coefficients. 

Each process of the proposed fingerprint enhancement is explained as follows. 

2.1   Overlapping DCT Decomposition and Reconstruction 

Conventional fingerprint enhancement schemes, applying with non-overlapping 
blocks of partitioning fingerprint, often encounter with blocking artifacts such as 
ridge discontinuity and spurious minutiae. To preserve ridge continuity and eliminate 
blocking artifacts, overlapping block is applied to both DCT decomposition and 
reconstruction, similar to the DFT approach in [3]. However, there is no need to apply 
any smooth spectral window for DCT because overlapping area is large enough to 
prevent any blocking effects, corresponding with its energy compaction property. 

2.2   Intrinsic Parameter Estimation on DCT Domain 

Ridge frequency, ridge orientation, and angular bandwidth can be analyzed from DCT 
coefficients directly. Therefore DCT analysis yields appropriate domain to perform 
fingerprint enhancement and provides filtering parameters as the same time. 
 

Ridge Frequency Estimation: The ridge frequency (ρ0) is simply obtained by 
measuring a distance between the origin (0,0) and the highest DCT peak of high-
frequency spectrum as following equation, 

2
0

2
00 vu +=ρ  (1) 

where ( u0 ,v0 ) is the coordinate of the highest peak of high-frequency spectrum. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Figure (a) and (c) represent blocks of a fingerprint model with different frequency. 
Figure (b) and (d) are DCT coefficients of figure (a) and (c), respectively. Note that DC 
coefficient is set to zero in order to clearly display high-frequency spectrum. 

Ridge orientation estimation: The dominant orientation of parallel ridges, θ, are 
closely related to a peak-angle, φ, in DCT coefficients, where φ is measured 
counterclockwise (if φ > 0) from the horizontal axis to the terminal side of the highest 
spectrum peak of high frequency (DC spectrum is not included). However, θ and φ 
relationship is not one-to-one mapping. The ridge orientation, which θ varies in the 
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range of 0 to π, is projected into the peak-angle, which φ varies in the range of 0 to 
π/2. Relationship between θ0 ridge orientation in spatial domain and φ0 peak angle in 
frequency domain are described in equation (2) with some examples in Fig. 2. 

��
�

�
��
�

�
= −

0

01
0 tan

u

vφ ,   πθθπφ ≤≤−= 000 0where
2

                        (2) 

0= =0 0=7 /8 0=3 /4 0=5 /8 0 = /2 0=3 /8 0= /4 0= /8  

Fig. 2. Examples of relationship between ridge orientation in spatial domain and peak-angle in 
DCT domain, all ridge angles refer to horizontal axis and DC coefficient is set to zero in order 
to show high-frequency spectrum. (Note that only the top-left quarters of DC coefficients are 
zoomed in for clear view of high-frequency peak behavior.) 

From Fig. 2, ridge orientation at π-θ has the highest spectrum peak with the same 
location as ridge orientation at θ. However, their phase patterns are distinguishable by 
observation. Therefore additional phase analysis is needed to classify the quadratics 
of ridge orientation in order to correctly perform fingerprint enhancement. Since Lee 
et al. [5] proposed edge detection algorithm based on DCT coefficients, our 
fingerprint enhancement modified Lee’s approach by modulation theorem in order to 
detect quadrant of fingerprint ridge orientation.  

According to Lee’s technique, the orientation quadrant of a single line can be 
determined by the polarities of two first AC coefficients, G01 and G10, where Guv is the 

 

(a) (b) (c) (d)  

Fig. 3. Four polarity patterns indicate (a) a single line orientation ranging from 0 to π/2, (b) a 
single line orientation ranging from π/2 to π, (c) parallel ridge orientation ranging from 0 to 
π/2, and (d) parallel ridge orientation ranging from π/2 to π 
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DCT coefficient at coordinate (u,v), as shown in Fig. 3. In case of a single line, 
polarity of product of G01 and G10 coefficients indicates the line orientation. If 
G01×G10 ≥ 0, this line orientation is in the first quadrant (0 to π/2) as shown in  
Fig. 3(a). On the other hand, if G01×G10 < 0, this line orientation is in the second 
quadrant (π/2 to π) as shown in Fig. 3(b). This technique can be applied to detect 
orientation of parallel lines or ridges by modulation theorem with the pattern of 
polarities around the high peak DCT coefficients. To be precise, ridge orientation in 
the first quadrant (0 to π/2) and ridge orientation in the second quadrant (π/2 to π) can 
be indicated by the same polarities of 45o and 135o diagonal coefficients referred to 
the highest absolute peak as shown in Fig. 3(c) and (d), respectively. 

5 pixels

3 pixels

1V

5 pixels

3 pixels

2V

 

Fig. 4. Demonstrate 2-D perpendicular diagonal vectors, V1 at 45o and V2 at 135o, referred to 
the highest absolute spectrum peak (the center black pixel (negative value)) 

In order to identify the quadrant and avoid influence of interference, two 2-D 
perpendicular diagonal vectors, V1 and V2, are formed with size of 5×3 pixels, center 
at the peak position as shown in Fig. 4. The average directional strengths of each 
vector (S1, S2) are then computed by equation (3). Then the quadrant can be classified 
and the actual fingerprint ridge orientation can be identified as shown in equation (4). 
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Finally, the estimated ridge frequency and orientation of each local region is 
formed a frequency field and an orientation field. Then Gaussian filter is applied to 
smooth both global fields in order to reduce noise effect as [1]. 
 
Angular bandwidth estimation: At the singularity region, ridge spectrum is not an 
impulse but it spreads bandwidth out. Therefore, the desired filter of each block must 
be adapted based on its angular bandwidth. We slightly modified the coherence 
parameter from Chikkerur’s concept in [3], called non-coherence factor. This non-
coherence factor represents how wide ridge orientation can be in the block that has 
more than one dominant orientation. This factor is in the range of 0 to 1, where 1 
represents highly non-coherence or highly curved region and 0 represents uni-
orientation region. The non-coherence factor can be given by 
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where (uc,vc) is the center position of block, (ui,vj) is the ith and jth positions of 
neighborhood blocks within W×W, and the angular bandwidth, φBW, can be estimated 
by the equation (6) as follows, 

)),((sin),( 1
ccccBW vuNCvu −=φ . (6) 

2.2   Enhancement Filtering in DCT Domain 

In DCT domain, filtering process is not simply as in DFT domain [2,3], which 
required only coefficient multiplication. The Gabor filter in [1] is modified in order to 
cooperate with DCT domain based on Cartesian-form representation. The 
enhancement filtering in DCT domain can be separated into two arithmetic 
manipulation; i.e. multiplication and convolution. 
 

1) Filtering by Multiplication: The enhancement filter can be expressed in term of 
product of separable Gaussian functions, similar to the frequency-domain filtering 
technique in [2] as follows. 

)()(),(),( φρφρφρ dffd HHFF =  (7) 

where F(ρ,φ) is DCT coefficients in polar-form representation, directly related to 
DCT coefficients, F(u,v), in rectangular-form representation. Ffd (ρ,φ) is DCT 
coefficients of the filtering output. The Hf(ρ) filter, which performs the ridge 
frequency filtering⋅in Gaussian shape, is given by 
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where ρ0 and σρ are the center of the high-peak frequency group and the filtering 
bandwidth parameter, respectively. The ρmin and ρmax parameters are minimum and 
maximum cut-off frequency constraints, which suppress the effects of lower and 
higher frequencies such as ink, sweat gland holes, and scratches in the fingerprint. 
The Z is a filtering normalization factor, depending on filtering energy result. 

The Hd(φ) filter, which performs the ridge orientation filtering, is given by 
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where the φ0 is the peak orientation for bandpass filter, σφ is the directional bandwidth 
parameter, and φBW, the angular bandwidth, is given by equation (6). 
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2) Filtering by Convolution: Since the θ and π-θ ridge orientation coefficients are 
projected into the same DCT-domain region. Therefore, both directional coefficients 
still remain from the previous filtering. In order to truncate inappropriate directional 
coefficients, two diagonal Gabor filters are exploited by convolution operation. The 
finally enhanced DCT coefficients are given by 

),(),(),( vuHvuFvuF qfdEnh ∗=  (10) 

where FEnh(u,v) is enhanced DCT coefficients in rectangular-form. Ffd(u,v) is the 
previous result of enhanced DCT coefficients in rectangular-form, by converted from 
Ffd (ρ,φ) in polar-form. The quadrant correction filter, Hq(u,v), is given by 
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where σq is the quadratic parameter and cos(nπ/2) only has three values -1, 0 and -1. 
Indeed, this convolution operation requires low computation because most of 
bandpass filtered coefficients are truncated to zero from the previous operation. In 
case of highly curved ridges, the transformed coefficients are projected into widely 
curved subband of DCT domain as shown in Fig. 5. 

DCT Domain

1θ
2θ

Spatial Domain

1θ 2θ

R1 R2

 

Fig. 5 Highly curved ridges in spatial and frequency (DCT) domain. Signal is localized in 
widely curved subband, which can be classified into the principal region (R1) and the reflection 
region (R2). 

From Fig. 5, we approximate the orientation range from θ1 to θ2 by non-coherence 
factor from the equation (6). The curved subband can be classified into two regions; 
i.e. principal region (R1) and reflection region (R2). The principal region (R1) contains 
only one diagonal component (45o or 135o) as mentioned before. The 45o or 135o 
diagonal components are the phase pattern of the oriented ridges in the range of 0o to 
90o or 90o to 180o, respectively. The reflection region (R2) composes of both of 45o 
and 135o diagonal components from the reflection property of DCT coefficients. Then 
the convolution is applied only in the principal region. 



 Fingerprint Enhancement Based on Discrete Cosine Transform 103 

3   Experimental Evaluation 

The experimental results have been evaluated on public fingerprint database 
FVC2002 Db3a [6] (100 users, 8 images each) in term of enhancement quality, 
matching performance, and computational complexity. The fingerprint image is 
partitioned into blocks of 16×16 pixels, and a simple segmentation scheme using 
mean and variance is employed. Five fingerprint enhancement filtering types are 
evaluated as follows; Traditional Gabor filtering with non-quantized orientation 
(TG)[1], Separable Gabor filtering with non-quantized orientation (SG)[7], Separable 
Gabor filtering with 8-quantized orientation (SG8)[8], Short-Time Fourier Transform 
approach (STFT)[3], and proposed approach (DCT). In the spatial domain 
approaches, the discrete Gabor filters are the same 25×25 fixed-window size. Note 
that the separable Gabor filter [7,8] was implemented on the fly using a set of priori 
created and stored filters. Moreover, symmetric of 2-D Gabor filter [1] was also 
exploited in this process. These filtering schemes accelerated execution speed of the 
traditional Gabor enhancement process as fast as possible. For the STFT [3] and the 
DCT approaches in frequency domain, fingerprint image is also partitioned into 
16×16 blocks but each block is transformed with 32×32 overlapped window to reduce 
blocking artifacts. Note that the probability estimation in [3] is not included. 

In order to compare the performance of various enhancement algorithms, three 
evaluation methodologies are used; i.e. the goodness index [1] of minutiae extraction, 
the matching performance, and the average execution time. First, the goodness index 
(GI) from [1] is employed to measure the extracted minutiae quantity from each 
fingerprint enhancement algorithm. In this case, we needed to manually mark 
minutiae of all fingerprints in FVC2002 Db3a. The goodness index is given by 
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where r is the number of 16×16 windows in the input fingerprint image, qi represents 
the quality factor of ith window (good = 4, medium = 2, poor = 1) which estimated by  
partitioning and thresholding of the dryness factor (mean × variance of block) and the 
smudginess factor (mean / variance of block). Mi represents the number of minutiae 
pair, which match with human expert in a tolerance box in the ith window. Li and Si 
represent the number of lost and spurious minutiae in the ith window, respectively. Ti 
represents the number of minutiae extracted by experts. 

Second, enhancement results are tested with our minutiae matching verification 
algorithm based on Jiang’s concept of [9], and the equal error rate (EER) is reported. 
Finally, the average execution time of fingerprint enhancement process is measured 
for FVC2002 Db3a (image size 300×300 pixels) on Pentium M 1.5GHz with 376Mb 
RAM. Note that execution time includes filter parameter estimation (frequency and 
orientation), transform (if required), and filtering process. However, segmentation 
process is not included and we used the same segmentation process for all comparison 
schemes. The objective test results are summarized in Table 1. Contradict to our 
belief; overall execution time of DCT approach is faster than the separable Gabor 
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Table 1. Summary of the performance comparison among various fingerprint enhancement 
algorithms over FVC 2002 Db3a Fingerprint Database, Pentium M 1.5GHz, 376Mb RAM 

Fingerprint Enhancement 
Algorithm 

Average 
Goodness 

Index (GI) [1] 

Our 
Matching 
(% EER) 

Execution 
Time  

(Second) 
TG [1] 0.160 9.716 0.973 
SG [7] 0.167 9.326 0.278 
SG8 [8] 0.181 12.196 0.160 
STFT (modified from [3]) 0.250 7.713 0.172 
DCT (Proposed Approach) 0.336 6.846 0.151 

 

 
(a1) #20_5 (b1) SG[7] (GI=0.59) (c1) STFT[3] (GI=0.63) 

 
(d1) DCT (GI=0.70) 

 
(a 2) #40_4 (b 2) SG[7] (GI=0.19) (c2) STFT[3] (GI=0.30) 

 
(d 2) DCT (GI=0.32) 

 
(a 3) #107_7 (b 3) SG[7] (GI=0.18) (c3) STFT[3] (GI=0.47) 

 
(d 3) DCT (GI=0.68) 

Fig. 6. (a) Original fingerprint #20_5, #40_4 and #107_7 from FVC2002 Db3a, (b) Enhanced 
results from SG[7], (c) Enhanced results from STFT modified from [3], (d) Enhanced results of 
our proposed DCT based method 

filtering with 8-quantized orientation. We investigated in depth and we found that 
even though separable 2-D convolution alone is faster than both FFT and Fast DCT 
analysis and synthesis, the fingerprint intrinsic parameter estimation was slow this 
approach down since these parameters are evaluated in frequency domain. 

Fig. 6 shows enhancement results for subjective tests with GI values for object- 
tive tests. Note that the quality of enhanced fingerprints is improved based on  
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frequency-domain filtering, especially in highly curved ridges. Overall of FVC2002, 
DB3a database, both STFT and DCT based performed very well around highly curved 
area with slightly different results around singular point area. 

4   Conclusion and Future Research 

In conclusion, this paper proposes a novel fingerprint enhancement approach based on 
discrete cosine transform (DCT). The enhancement takes advantage of filtering real 
DCT coefficients with high-energy compaction in frequency-domain. Hence filtering 
can be specially designed to cooperate highly curvature area resulting in less 
discontinuity and blocking artifacts comparing with spatial-domain filtering. 

For future research, we will conduct exhaustive experiments based on all FVC 
databases in order to prove the efficient of DCT-based fingerprint enhancement. To 
achieve this goal, all minutiae in all FVC databases need to be manually marked. We 
will also exploit orientation adaptive filter in DCT Domain in the near future. 
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ABSTRACT 
 

This paper proposes a new improvement approach of 

Gabor filtering for fingerprint enhancement. The proposed 

algorithm is based on regional adaptive filtering. Generally, 

the rapidly changing direction region, such as core and 

delta, contains significant global and local information for 

fingerprint identification. However, conventional Gabor 

filtering cannot enhance these regions properly resulting in 

artifacts and false minutiae. In this paper, we employed 

three confusing region detection schemes in order to apply 

spatially adaptive filtering in these regions. The 

experimental results show good improvement of Gabor 

enhancement in these highly curved ridge regions. 

However, our proposed method suffers from noisy areas of 

low quality fingerprints, resulting in partially improved 

equal error rate of overall fingerprint recognition system. 

 

 

1. INTRODUCTION 
 

Nowadays, Fingerprint is widely used for most personal 

identification. Many fingerprint identification applications 

are employed in our everyday life. Because fingerprint 

identification has been seriously applied with mega 

database size, this biometric soon becomes the first 

practical implementation success in pattern recognition 

fields [1]. Since most automatic fingerprint identification 

systems are based on the minutiae and ridge matching, 

these systems rely on good quality of input fingerprint 

images for minutiae and ridge extraction. Unfortunately, 

bad quality of fingerprint and elastic distortion are now 

major problems of large database fingerprint identification 

systems. In order to reduce the error contributed from false 

accept rate and false reject rate, quality of fingerprint must 

be evaluated and enhanced for better recognition results. 

 

The most widely used scheme for fingerprint enhancement 

is based on Gabor filtering, proposed by Hong [2]. There 

are several works extended from [2], and most of these 

works focused on enhancement improvement such as by 

modified Gabor filter [3,4] or improved orientation 

detection [5]. For example, Yang, Liu, Jiang, and Fan [3] 

improved Gabor filter by introduced modified Gabor filter 

(MGF) resulting in better verification performance. 

Unfortunately, fingerprint enhancement using Gabor filter 

is one of highly computational complexity in fingerprint 

verification process. In [6], a set of 8-fixed orientation 

separable Gabor filter was introduced. In [7], separable 

Gabor filter is generalized for any orientation. 

However, Gabor filtering scheme always has a problem in 

singular point area such as core and delta areas. The 

singular point area is defined as a region where highly 

ridge curve locates and ridge orientation changes rapidly. 

Unfortunately, partitioning block based Gabor filtering 

perform very poor in these areas resulting in blocking 

artifacts, false or missing minutiae and ridges. To solve this 

problem, the singular point area must be specified based on 

highly ridge curve region. Then Gabor filtering with 

spatially adaptive should be used to cooperate with these 

highly curvature area, but remain the conventional Gabor 

filtering in other area. 

 

This paper is organized as follows. In section 2, the 

fingerprint enhancement is revisited, and enhancement 

problem in the singular region is discussed. In section 3, 

we propose regional adaptive Gabor filtering with three 

singular region detection schemes. Section 4 shows 

experimental results and section 5 concludes our works. 

 

2. FINGERPRINT ENHANCEMENT 
 

The fingerprint image enhancement using Gabor filter, 

introduced by Hong [2], is one of the most widely used 

schemes in automatic fingerprint identification system. The 

input fingerprint image is partitioning into uniform square 

blocks. Then, ridge orientation and frequency are estimated. 

These parameters are necessary to perform Gabor filtering. 

The orientation and frequency estimation schemes are as 

follows; 

 

2.1 Orientation Estimation 
 

The ridge orientation of each block can be computed by 

equation (1). 
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where ),( ji�  is an estimated ridge flow orientation of 

block . and are ridge flow gradients in 

direction x and y of block ( . Once, all orientation of 

each block is estimated, an orientation field (OTTF) of 

fingerprint is formed. Then the orientation field is 

smoothed by Gaussian filter in order to improve 

corresponding orientation in fingerprint. 
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2.2 Ridge Frequency Estimation 
 

The ridge frequency can be estimated in both spatial and 

frequency domain. In spatial domain, the ridge frequency 

614



of good quality fingerprints can be directly approximated 

in form of sinusoidal waveform. On the other hand, it can 

be easily estimated in frequency domain even though the 

quality of fingerprint is not good. In Fourier transform 

domain, the unidirectional ridge in a partitioning block can 

be represented by twin impulses of spectrum. Then, ridge 

frequency parameter can be obtained from a distance 

between these two peaks. 

 

2.3 Gabor filtering 
 

After ridge orientation and frequency parameter are 

obtained, Gabor filtering can be applied to enhance 

fingerprint. The goal of filtering is to smooth ridge along 

its orientation and to sharpen ridge edge in the 

perpendicular direction. Gabor filter equation is provided 

as follows; 
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where �  and  are the estimated ridge orientation and 

ridge frequency in each block, respectively. 
f

 

  
#2_6 (a) #39_2 (a) 

  
#2_6 (b) #39_2 (b) 

  
#2_6 (c) #39_2 (c) 

Figure 1. (a) Original fingerprints in database FVC2000 (b) 
OTTF (c) Enhanced results 

 

To reduce computation time, the separable Gabor filtering 

[6,7] can be employed. The 2-D Gabor can be separated 

into two 1D filters that consist of one Gaussian lowpass 

filter and one bandpass filter of ridge frequency. Figure 1 

shows original (a), orientation field (b), and enhanced 

fingerprints (c) by separable Gabor filtering of two 

fingerprints, #2_6 and #39_2, in FVC2000 DB2a database. 

 

Note that the Gabor filtering scheme often creates artifacts 

around highly curved ridge or singular point area; such as 

core point, as shown in figure 1 (c). Clearly, false 

orientation field around high curved region, as shown in 

figure 1 (b), drive Gabor filtering to create these artifacts. 

The question is how the orientation field can be obtained 

correctly from any given fingerprint. The answer is simply 

because the size of block is too large to represent only one 

direction of highly curved ridges. Therefore, if highly 

curved ridge area can be located, this area should be 

partitioned into smaller block size in order to perform 

Gabor filtering correctly. Obviously, using uniform block 

size is not suitable for rapidly changing orientation area. 

 

3. PROPOSED METHOD 
 

In order to reduce artifacts in highly curved ridge area, we 

propose regional adaptive Gabor filtering method. Figure 2 

illustrates a flow chart of our enhancement process. In 

order to solve the problem, which describes above, two 

additional processes need to be performed as shown in the 

gray shade blocks. Two additional processes are region of 

interest detection and regional adaptive orientation 

estimation. 

 

Fingerprint

Image

Region separation

OTTF

Calculation

Frequency

Estimation

Strictness Orientation

Estimation

Region of Interest

Detection

Gabor Filtering

Yes

No

 

Figure 2. Block diagram of the proposed enhancement 
 

3.1 Region of Interest Detection 
 

Any fingerprint image can be classified into three region 

types as follows; 

��Background Region, where no fingerprint exists in this 

region. 

��Well-defined Region, where a ridge orientation and a 

ridge frequency can be certainly determined in this 

region. 

��Confusing Region, where highly curved ridge areas, 

singular point areas, or noisy areas are found in these 

regions. 

 

Applying Gabor filtering in these confusing regions results 

in artifacts and enhanced error. In this confusing region, 
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ridge orientation and frequency cannot be correctly 

estimated. These confusing regions must be treated as 

regions of interest (ROI), and must apply a special 

technique to reduce artifacts. In this paper, three ROI 

detection processes are experimented and their results are 

compared to achieve the best performance. Three ROI 

detection schemes are explained as follows. 

 

3.1.1 Singular Point Detection by Poincare Index 
 

The first ROI detection scheme, called Poincare Index [8], 

is a very simple scheme by locating the center of singular 

point such as core and delta point. For each block (16�16), 

the Poincare index can be found as follows: 
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where ),( ji�  is the local orientation of ridge flow in each 

block (i,j) of fingerprint image. ( kk  is the block 

coordinate that locates in the closed loop with N block 

around the center block . The center block is assigned 

to be a core or a delta when the Poincare index  is 

equal to 

), ji

),( ji
),( ji

2/�  or 2/�
 , respectively. All closed loop 

blocks around the core and delta block represent the ROI. 

 

3.1.2 Singular Point Detection by Complex Filter 
Responses 
 

The second ROI detection scheme was introduced by Liu 

[9]. This algorithm exploits two set of order-k complex 

filter which directly applied to orientation field as shown in 

equation (7). 
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where x and y denote the coordinate of orientation field 

image. These filters will be formed very similar to the core 

and delta orientation pattern when the order is second k = 2 

as shown in figure 3. 

 

 

Figure 3. The orientation pattern of and  %2je %2je


 

The singular point area can be extracted by correlation in 

term of the summation of difference between filter 

orientation and actual ridge orientation in window of size 

( ww� ), as the following equation; 
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The correlation magnitude results from both filters 

])1,0[(&  represent how close the filter model in figure 3 to 

ridge orientation pattern in actual fingerprint. In this case, 

the region of interest is confined in the block region that 

has correlation magnitude more than a given threshold. 

 

3.1.3 Ridge and Valley Clarity Analysis 
 

The last ROI detection scheme use ridge and valley clarity 

analysis method in [10] in order to identify confusing 

region. Ridge and valley clarity analysis indicates ability to 

distinguish ridges and valleys along ridge direction. This 

method was proposed to describe the distribution of 

segmented ridge and valley of any given fingerprint 

patterns. To perform local clarity analysis, a directional 

rectangular, which is perpendicular to the ridge direction, is 

extracted at a center of each block with its size 32�13 as 

shown in figure 4. 

 

32 pixels 1
3

 

p
ix

e
ls

 

Figure 4. Local region extraction and vertical aligned 
ridge pattern transformation 

 

To examine ridge clarity, the extracted block is averaged 

along ridgelines in vertical direction as shown in figure5. 

The linear regression method is applied to determine a 

threshold. If an average value lowers than the threshold, it 

is a valley. Otherwise, it is a ridge. 
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Figure 5. Ridge and valley classification method 
 

The local clarity score (LCS) is calculated by the following 

equation. 

TB VV /�'     (9) 

TB ((� /)     (10) 

2/)(1 )' �
�LCS    (11) 

where /BV B(  is a ratio of number of bad pixels in the 

valley per number of bad pixels in the ridge region, that its 

intensity is lower/higher than threshold respectively. 
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TV /  is a ratio of total number of pixels in valley per 

ridge region, respectively. The low LCS value indicates 

inaccuracy orientation estimation region, and this region is 

marked as region of interest. 

T(

 

3.2 Regional Adaptive Orientation 
Estimation 
 

Once all regions in fingerprint are identified as background 

region, well-defined regions, and confusing region or ROI. 

Now we can treat each type of regions separately. For 

background region, there is no need for any operation. For 

well-defined region, conventional Gabor filtering 

enhancement can be used. For ROI or confusing region, we 

introduce regional adaptive orientation estimation scheme. 

By splitting block into quarter sub-blocks, an average of 

ridge orientation is re-calculated by using equation (1). To 

reduce orientation disorder influenced by noise, Gaussian 

smoothing is employed. 

 

4. EXPERIMENTAL RESULTS 
 

In order to compare fingerprint enhancement performance, 

four methods are evaluated as follows; traditional Gabor 

filtering (TG) [2], regional adaptive Gabor filtering with 

ROI obtained by Poincare index (GP), regional adaptive 

Gabor filtering with ROI obtained by complex filter 

response detection (GF), Finally, regional adaptive Gabor 

filtering with ROI obtained by local ridge clarity (GC). 

Figure 6 shows two examples of fingerprint image in 

FVC2000 database DB2A [11]. In figure 7, these two 

fingerprint examples are enhanced by various method as 

mentioned above. Note that orientation field or OTTF of 

each method is also shown in figure 7 and their 

corresponding enhanced fingerprints are shown below. 

 

  
2_1 83_1 

Figure 6. Sample fingerprints # 2_1 and #83_1 from the 
FVC2000 database DB2a 

 

From our experiments, the enhanced fingerprints, 

especially region with highly curved ridges, are improved. 

Unfortunately, enhancement performance depends on 

accuracy of the ROI marking process. For example in 

fingerprint #2_1, the Poincare index can detect only an 

upper curvature of core region because of error in the 

smoothing operation. On the other hand, the complex filter 

or local ridge clarity can detect all curvatures in this 

fingerprint. 

 

 

However, noise sensitivity and low quality fingerprint 

suffer our approach when the smaller estimated region is 

applied. The enhanced fingerprint #83_1 by ridge clarity 

analysis illustrates a failure case by selecting wrong ROI. 

The false minutiae are generated in normal region instead 

of smoothing with the neighbor ridge flow. 

 

The experimental results have been conducted on public 

fingerprint database FVC2000 for all databases [11] in 

order to compare enhancement performance such as effect 

on computational complexity and effect on matching 

results. Discrete Gabor filters are sampled with the same 

25×25 (pixels) fixed-window size. Fingerprint is 

partitioned into 16×16 block size within the well-defined 

region and partitioned into 8×8 (pixels) block size for the 

confusing region or within ROI region. Finally, fingerprint 

verification algorithm using Jiang and Yau’s concept [12] 

was adopted and implemented for evaluation purpose only. 

This algorithm, based on minutiae matching, was used in 

conjunction with four Gabor filtering enhancement 

schemes. These four schemes shares all the same 

fingerprint verification routines except two processes with 

gray shade in figure 2. 

 

The approximate equal error rate (EER) results are shown 

in Table I, and the average execution time results on 

Pentium 4 2.4GHz with 512Mb RAM are in Table II 

(Execution time for only orientation estimation and Gabor 

filtering process, segmentation, and frequency estimation 

processes are not included). Note that programs were not 

optimized to a commercial application level and these 

times are shown just to give an indication of the basic 

method’s speed. 

 

 

TABLE I. AVEAGE EER COMPARISON AMONG VARIOUS 

ENHANCEMENT TYPES 

Testing on FVC2000 Database 

Enhanced 

Type 

DB1a 

Optic 

Sensor 

DB2a 

Capacitive 

Sensor 

DB3a 

Optic 

Sensor 

DB4a 

Synthetic 

Generator 

TG 15.14 7.13 13.97 10.95 

GP 15.47 7.01 14.19 11.93 

GF 15.76 6.83 14.26 10.97 

GC 16.76 8.23 15.60 14.07 

 

 

TABLE II .AVERAGE GABOR FILTERING EXECUTION TIME 

ON PENTIUM4 AT 2.4GHZ, RAM 512M 

Testing on FVC2000 Database 

Enhanced 

Type 

DB1a  

(Image size 

300x300 pixels) 

DB2a 

 (Image size 

256x364 pixels) 

DB3a 

(Image size 

448x478 pixels) 

DB4a 

 (Image size 

240x320 pixels) 

TG 0.425 0.384 0.647 0.233 

GP 0.439 0.400 0.665 0.249 

GF 0.453 0.416 0.705 0.259 

GC 0.466 0.428 0.749 0.275 

 

 

 

617



 

 

 

  
(a) OTTF of TG (b) Traditional Gabor (TG) 

  
(c) OTTF of GP (d) Gabor + Poincare (GP) 

  
(e) OTTF of GF (f) Gabor + Complex Filter 

(GF) 

  
(g) OTTF of GC (h) Gabor + Ridge Clearity 

(GC) 

Figure 7. Orientation fields and enhanced fingerprints 
from various enhancement schemes of fingerprint #2_1 

(FVC2000 DB2a database) 
 

 

 

 

 

 

  
(a) OTTF of TG (b) Traditional Gabor (TG) 

  
(c) OTTF of GP (d) Gabor + Poincare (GP) 

  
(e) OTTF of GF (f) Gabor + Complex Filter 

(GF) 

  
(g) OTTF of GC (h) Gabor + Ridge Clearity 

(GC) 

Figure 8. Orientation fields and enhanced fingerprints 
from various enhancement schemes of fingerprint #83_1 

(FVC2000 DB2a database) 
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Our experiments show that only the regional adaptive 

Gabor filter with complex filter performs better than the 

conventional Gabor filter in database DB2a in FVC2000. 

The reason that the other databases are not out-performed 

conventional Gabor filtering is because regional adaptive 

Gabor filtering suffers from smaller partitioning blocks. 

Small partitioning blocks lead to more disorder orientation 

and less efficient Gabor filtering. 

 

5. CONCLUSION 
 

We have developed the regional adaptive Gabor filter for 

improving conventional Gabor filtering. Three ROI 

detection methods are employed and tested. First, the 

Poincare index method is a hard decision to identify the 

singularity area. The second detection method is based on 

two complex filter responses, which to perform soft 

decision to classify the singularity area. The last method 

uses the local ridge clarity index to indicate area of bad 

quality of the ridge pattern in a given direction. 

 

From our experimental results, performance of the regional 

adaptive Gabor filtering is out-performed the conventional 

Gabor filter only one database, DB2a, from all four 

databases of FVC2000. The main reason is the mixture 

between highly curved ridge region and low quality region. 

Our research is now investigating the classification 

between these two classes and expecting the new regional 

adaptive Gabor filtering will out-performed the 

conventional Gabor filter for all databases. 
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ABSTRACT 
 

This paper presents the new fingerprint verification method 

using a focal point and looped minutiae feature sequence. 

By using the focal point as a reliable reference point, 

looped minutiae feature sequence can be generated in order 

to deal with translation and rotation of live-scan 

fingerprints. Testing with all fingerprint verification 

competition (FVC) databases, the proposed algorithm 

shows good performance with low computational 

complexity, and it can be practically implemented in 

real-time fingerprint verification system. 

 

 

1. INTRODUCTION 
 

Recently an automatic fingerprint identification system 

(AFIS) has been widely employed in many applications 

such as access control security, criminal identification, 

human resource management, etc. In general, the AFIS 

consists of several processes; i.e. fingerprint classification, 

fingerprint enhancement, fingerprint feature extraction, and 

fingerprint matching [1]. Most employed features in 

general AFIS are based on minutiae matching. There are 

two major types of minutiae; bifurcation type and end type. 

Figure 1 shows example of minutiae in fingerprint image. 

 

 

Figure 1: Example of Minutiae in Fingerprint (Bifurcation 
Type in Circle and End Type in Square) 

 

To identify fingerprint by comparing all minutiae from 

input fingerprint to minutiae of all fingerprints in database, 

this process can be exhaustive and time consuming. In 

order to reduce this high computational complexity, all 

fingerprints need to be registration and alignment. These 

processes can reduce a searching domain of matching 

candidates. Note that fingerprint orientation, translation, 

and elastic distortion cause fingerprint patterns variation 

and expand the searching domain. 

 

The mostly used registration in fingerprint identification is 

singular point; i.e. core and delta points. The number of 

singular point may vary depending on fingerprint types. 

For example, left loop, right loop and tented arch types 

have one core point and one delta point. The whorl type 

has two core points and two delta points. On the other hand, 

the arch type does not have any core point and delta point. 

The singularity can be detected by fingerprint’s orientation 

field such as the poincare method [2]. Recently, emerging 

of various fingerprint sensor type causes difficulty 

searching for singular points because captured area is too 

small. Moreover, low quality fingerprint image scatters 

orientation field resulting in false or missing singular point 

detection. Hence, fingerprint registration process may not 

be reliable if the singular point detection process is not 

precise. 

 

In order to cooperate with low quality and small fingerprint 

area, a focal point [3] has been employed in our fingerprint 

verification algorithm. The focal point is a unique and 

reliable reference point. The advantage of the focal point 

over singular points is unique for any types of fingerprint, 

low quality fingerprint toleration, and out of image 

localization. Moreover, new algorithm [3] is very fast, 

efficient, and capable real-time implementation. 

 

Minutiae matching is the most well-known and widely 

used method for fingerprint matching [1]. Aligning the two 

fingerprints is a mandatory step in order to maximize the 

number of matching minutiae. Some algorithms embedded 

fingerprint alignment into the minutiae matching stage 

resulting in robustness to orientation and translation. 

However, these embedded schemes consume high 

computational complexity. In this paper, the focal point is 

used as the reference point for fingerprint registration. The 

fingerprint translation problem is eliminated. Extracted 

minutiae are reordered around the focal point resulting in a 

circular string of minutiae. Comparing two fingerprints is 

related to correlate two circular strings of minutiae around 

the focal point. Clearly, this purposed scheme reduces 

computational complexity comparing to the embedded 

scheme. Moreover, dynamic programming technique can 

be employed to solve the similarity of two fingerprints. 

 

This paper is arranged in this order. The second section is 

related to a feature extraction process. Minutiae and their 

parameters are extracted and generated from the fingerprint 

image. The third section is described matching process in 

details. Next, the fourth section shows experimental results. 

Finally, conclusion is in the last section. 
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2. FEATURES EXTRACTION 
 

Before fingerprint features are extracted, input fingerprint 

must pass fingerprint enhancement process in order to 

improve and adjust the quality of fingerprint images. In 

this work, the separable Gabor filter [4], which can 

perform any orientation of fingerprint ridges, is employed. 

 

The feature extraction process is the key to success of 

fingerprint identification. In this work, two major 

fingerprint features are extracted; the focal point and 

minutiae. The focal point represents a global feature for 

solving fingerprint translation problem. The focal point 

localization process is clearly presented in [3], so there is 

no need to be reviewed in this work. The example of focal 

point localization result is shown in Figure 2. 

 

 

Figure 2: The focal point of the same fingerprint 
 

The minutiae are local features, which can be arranged to 

solve rotation and elastic distortion problem. In order to 

extract minutiae, enhanced fingerprint is binarizing and 

thinning. Then simple method by counting the crossing 

number, introduced by Arcelli and Baja [5], is exploited. 

The extracted details of minutiae features are in the 

following subsection. 

 

2.1 Minutiae Features 
 

The minutiae feature can be categorized according to 

single minutia and minutiae pair. The single minutia 

features include a minutia position, a minutia tail direction, 

and a type of minutia (end and bifurcation). The single 

minutia feature vector, Mi, is shown in equation (1). In 

order to increase minutiae features, the minutiae pair 

features are generated by distance and angles between pair. 

The minutiae pair feature vector, MPij, is declared in 

equation (2). 

  (1) * T
iiii tyx ,,, ��iM +
+  (2) * T

jiijd '' ,,�ijMP

 

In equation (1), xi , yi represent row (vertical) and column 

(horizontal) position coordinate of the ith minutia in 

fingerprint image, i�  is a minutia tail direction referred to 

a vertical axis as zero degree, and  is the minutia type 

such as end point or bifurcation point. In equation (2),  
is a distance between minutiae ith and jth, 

it
ijd

i' and j'  are 

relative angles of minutiae tail direction referred to a 

straight line from the ith minutia to the jth minutia. The 

single minutia features and the minutiae pair feature 

demonstrate in figure 3 (a) and figure 3 (b) respectively. 
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(a) Single minutia features 
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i

dij 

M

jM

(b) Minutiae pair features 

Figure 3: The minutiae features 
 

2.2 Looped Minutiae Arrangement 
 

After principle single minutia feature vectors are created, 

the next process is to order these single minutia feature 

vectors into single looped vector string. There are two 

cases for looped minutiae arrangement; i.e. reliable and 

unreliable focal point. In case of reliable focal point, single 

minutia feature vectors are arranged in order by their angle 

positions around the reliable focal point. By using the 

vertical axis as a zero degree reference, the single minutia 

feature vectors can be kept in order by counterclockwise 

scan, resulting in a looped minutiae vector sequence. 

Figure 4 demonstrates the generation of a looped minutiae 

vector sequence. For two fingerprints, which came from 

the same finger, their looped minutiae vector sequences 

should have single minutia feature vectors in the same 

order. 

 

In case of unreliable focal point or non-existing focal point, 

the single minutia feature vector can be ordered by its tail 

direction. By using the vertical axis as a zero degree 

reference, each minutia tail direction can be arranged in 

order from zero to 360 degree. This single minutia feature 

vector sequence is assumed to be unique for each 

fingerprint if tail direction is perfectly detected. Figure 5 
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shows actual links of a looped minutiae vector sequence 

without the focal point. 

 

 

1)

2)

 Focal point 

  Minutia 

 

Figure 4: Actual link example of a looped minutiae vector 
sequence with the focal point 

 

 
 

 

Minutia 

 

Figure 5: Actual link example of a looped minutiae vector 
sequence without the focal point 

 

After finishing looped minutiae arrangement in both cases, 

the next step is to generate the minutiae pair features from 

the looped sequence of single minutia feature vectors. By 

coupling two nearest neighbor minutiae in the looped 

sequence, a pair of minutiae can be formed and the 

minutiae pair features can be generated. For example, the 

first minutia is paired with the second minutia in the 

looped sequence. The second minutia is coupled with the 

third, and so on. 

 

3. MATCHING PROCESS 
 

A matching process of the proposed method can be 

separated into two cases; existing focal point and 

non-existing focal point. In case of existing focal point, 

after minutiae ordering around the focal point as mentioned 

in previous section, overlapped area between two 

comparing fingerprint is estimated. Assume that the focal 

point from two fingerprints, which captured from the same 

finger, is unique. Then the overlapped area can be defined 

using the focal point as a reference point, as shown in 

figure 6. Now, the minutiae, which are in the overlapped 

area (Cropped rectangular in figure 6), are selected to be in 

the looped minutiae vector sequence. Otherwise, the 

minutiae outside overlapped area are discarded. In case of 

non-existing focal point, all minutiae vectors are kept in 

the looped minutiae vector sequence. 

Focal-point
2nd minutia 

Minutia 
1st minutia 

 

 
Figure 6: Two rectangular blocks represent the overlapped 
area between two fingerprints from the same finger using 

focal point reference. 
 

The matching process between two looped minutiae vector 

sequence can be described step by step as follows. 

 

3.1 First Step: Searching for a starting vector 
 

To find a starting vector of these two looped minutiae 

vector sequences. The starting vectors can be found by 

searching for two minutiae pair feature vectors, which 

yields the maximum similarity score, from two sequences. 

The similarity score (S score) of two minutiae pair feature 

vectors is defined by equation (3). 

�
�
� ! , ,


�
.,0

,/)( 111

Otherwise
ThThTh

scoreS
MPWMPW

 (3) 

where  is the threshold of acceptance or reject. The 1Th
MP  and  vectors are absolute difference vector of 

minutiae pair features and weighting vector, respectively. 

The 

W

MP  and  vectors can be defined as following 

equations. 

W

lkTjiI ,, MPMPMP 
�     (4) 

* +Tnnd www )1()( ,, �� ''W    (5) 

where  is ith and jth minutiae pair feature vector of 

input fingerprint sequence, and  is kth and lth 

minutiae pair feature vector of template fingerprint 

sequence. The parameters in the  vector are ; 

weighting of distance between two minutiae n and n+1 in 

the looped sequence, ; weighting of relative angle of 

minutiae n to n+1, ; weighting of relative angle of 

minutiae n+1 to n, respectively. 

jiI ,MP

lkT ,MP

W dw

)(nw'

)1( �n'w
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In case of existing focal point, the S score need to be 

concerned with additional condition in order to ensure the 

similarity of two fingerprints. The distance between the 

focal point and the starting minutia of input and template 

fingerprints should be similar. In precise, the distance 

between ith minutia to its focal point of the input fingerprint 

and the distance between kth minutia to the focal point of 

the template fingerprint must be very close in order to be 

the starting minutia. If the difference between two 

distances is small enough or less than Th (Different 

Distance Threshold), then the similarity score, S score, can 

be reliable. Otherwise, the S score is set to be zero, as 

shown in equation (6). 

2

�
�
� ! 

�
Otherwise

ThFdeqscoreS
scoreS

,0

)),3.(( 2
  (6) 

 kTiI FdFdFd ,, 
�   (7) 

where  is the distance difference between input and 

template,  is the distance between the focal point 

and ith minutia of the input fingerprint and  is the 

distance between the focal point and kth minutia of the 

template fingerprint. 

Fd 
Fd iI ,

kTFd ,

 

After calculating similarity scores for entire minutiae pairs, 

the pair with the maximum similarity score is assigned to 

the starting vector of the input and template vector 

sequences. 

 

3.2 Second Step: Counting matched minutiae 
 

From the starting vector, then next matched minutia vector 

can be found from both input and template sequences. In 

this step, the bounding box concept in [6] is employed. 

 

 

Input Minutia 

 

 

Template Minutia 

Figure 7: The minutiae bounding box concept 
 

Hence, algorithm’s conditions are as follows. 

�� If the next minutia vector from the starting vector is in 

this bounding box, as shown in figure 7, then matched 

minutia vector is counted. Then the matched minutia 

vector is defined to be the next starting vector. 

�� If the next minutia vector is not in the bounding box, 

skip this minutia vector, and consider the next minutia 

vector. 

Repeat this process until the end of sequence. The result of 

this process is the number of matched minutia vectors from 

input and template sequences. 

 

3.3 Third Step: Calculating matching 
percentage 
 

The matching percentage of input and template fingerprint 

can be calculated by 

* + 100
,max

% ��
TI

match

NN
N

Matching   (8) 

where Nmatch is the number of matched minutia vector, 

counted from the previous process, NI and NT are the 

number of minutiae of input and template fingerprint 

within the overlapped area. 

 

  
 

Figure 8: Example of the matched minutiae pairs and the 
matching percent of these two fingerprint is 79.41% 

 

Figure 8 demonstrates the matching process result. The left 

side and the right side are the input and template 

fingerprint, respectively. The starting minutia vector is 

represented by the green circular mark, and the matched 

minutiae are represented by the blue circular marks. 

 

4. EXPERIMENTAL RESULTS 
 

The algorithm evaluation experiments tested with 

databases from Fingerprint Verification Competition (FVC); 

i.e. FVC2000 [7], FVC2002 [8] and FVC2004 [9]. Each 

FVC database composes of 4 fingerprint database sets from 

different sensors. Each set contains 800 fingerprint images 

were acquired from 100 fingers from different persons. The 

acquired fingerprints were 256 gray scale images with 

resolution greater than 500 dpi. The testing system was 

implemented on a 2.4 GHz Intel Pentium IV PC, with 512 

MB memory using Microsoft Visual C++ 6.0. 

 

The performance of the proposed algorithm is measured in 

term of Equal-Error-Rate (EER) [1] as shown in Table 1. 

EER is the error rate of verification process where the false 

accept rate (FAR) equal to the false reject rate (FRR) 

within the same threshold. 

 

Figure 9 and 10 is the EER and ROC plot results of 

FVC2000 DB2a database, respectively. In figure 9 the left 

curve is the FAR curve and the right curve is the FRR 

curve. The lowest EER is 4.017% by testing with 

FVC2000 DB2a database. The highest EER is 16.480% by 

testing with FVC2004 DB1a database.  The average 

execution time (one on one matching) is 40 millisecond. 
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Table 1. Proposed algorithm’s performance in term of EER 
testing with FVC databases 

Database EER (%) 

DB1a 12.139 

DB2a 4.033 

DB3a 10.124 

DB4a 6.120 

FVC2000 

Overall 8.10 

DB1a 9.774 

DB2a 13.754 

DB3a 11.976 

DB4a 7.496 

FVC2002 

Overall 10.75 

DB1a 16.480 

DB2a 13.650 

DB3a 8.639 

DB4a 8.437 

FVC2004 

Overall 11.80 

Average All Databases 10.22 

 

 

Figure 9: The equal error rate plot of FVC2000 DB2a 

 

 
Figure 10: The ROC curve of FVC2000 DB2a 

 

From experimental observation with these FVC databases, 

the main problems are the quality of fingerprint image and 

elastic distortion. Moreover, the focal point may not exist 

in some fingerprint image, resulting in higher error rate. 

The low quality fingerprint image causes major false 

minutiae detection. Fingerprint elastic distortion shifts 

minutia position to out of bounding box. In addition, if the 

number of false minutiae is very high, the matching 

percentage is low due to equation (8). 

5. CONCLUSION 
 

The new fingerprint verification method using the focal 

point and looped minutiae feature sequence is proposed in 

this paper. Even though the proposed algorithm was 

designed to handle the translation and rotation fingerprints. 

There are still many problems to be solved; i.e. elastic 

distortion, low quality fingerprint, and non-existing focal 

point. The future research needs to focus on these problems 

in order to improve algorithm performance and control 

computational complexity for practical real-time 

fingerprint identification system. 
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Abstract-Fingerprint registration is still a challenging 

problem for large-scale fingerprint identification system. In this 

paper, a new, fast, and efficient algorithm for the focal point 

localization is proposed. The focal point is a reliable reference 

point, which can replace a singular point such as core in 

fingerprint registration process. The advantages of the focal 

point over the singular point are its uniqueness and reliability 

under low quality fingerprint and partial fingerprint 

conditions. In this paper, the proposed algorithm employed 

only orientation fields of fingerprint instead of a fully enhanced 

fingerprint, resulting in reduction of 7 times computational 

complexity compared to a previous algorithm. Moreover, the 

new algorithm achieves good localization accuracy and 

outstanding stability comparing with existing results in 

literature. 

I.  INTRODUCTION 

In order to perform real-time large-scale automatic 

fingerprint identification, fingerprint registration and 

classification are required. This paper is focused on reliable 

reference point detection in fingerprint registration. 

Moreover, practical implementation is also another 

important consideration. Hence algorithm should consume 

low computational complexity as possible for real-time 
fingerprint search. Thus is why detection of reference point 

is still a challenging problem. 

The singular points of fingerprint such as core and delta 

has played a very important role in fingerprint recognition, 

especially fingerprint registration and classification. 

However, current live-scan fingerprint sensors create a lot of 

problems in finding a stable singular points; i.e. low quality 

fingerprint, arch and tented arch types, non-linear distortion, 

and partial fingerprint with missing singular point. These 

problems drastically reduce the accuracy of most singular 

point detection schemes reported in literature. 

Existing works on locating singular points can be 
classified into two broad approaches; pattern-based and 

projection-based. The pattern-based approach employs fixed 

patterns such as core and delta. Then these patterns are 

correlated with fingerprint or orientation fields of fingerprint 

in order to find the locations of similar patterns. For 

example, Kawagoe and Tojo proposed the classic and 

popular method, called Poincare′ index in 1984 [1]. This 
method searches for fixed patterns of core, delta, and whorl 

in fingerprint. A successful improvement of this classic 

method can be found in [2]. Another sub-classes of pattern-

based approach is called complex symmetrical filters, 

introduced by Nilsson and Bigun [3]. These filter shapes are 

similar to core and delta. Singular point detection is obtained 
by convolving fingerprint orientation fields with these filter 

models. Hence computational complexity depends on sizes 

of filters and fingerprint image. 

Another major approach is referred to as projection-based 

method. The idea is to project fingerprint information, such 

as orientation fields, into some mathematic models or 

patterns, and analyze these models and patterns according to 

a priori knowledge, resulting in singular point position. For 

example, Jiang et al. introduced algorithm based on 

hierarchical analysis of the orientation coherence [4]. Liu et 

al. proposed a new way to project orientation fields into 
another field called local axial symmetry fields, then used 

these fields to find a reference point location [5]. Another 

example, by Ramo et al.[6], used transition lines of 

orientation field and detected reference points by inspection 

of line intersections. 

By projection-based approach, the focal point was first 

introduced by Rerkrai and Areekul [7]. The focal point is a 

centroid of crossings, the intersection of two normal lines of 

curved ridges. The original focal point algorithm was 

demonstrated experimentally to be quite stable, but it was of 

a very high computational complexity. Later Areekul et 

al.[8] introduced another algorithm. Instead of calculating all 
enormous crossings to find a reliable centroid, this algorithm 

employs mean-shift approach [9] by allowing iterative 

search along highly curved ridges. This approach reduces 

amount of computational time into practical implementation. 

However, this algorithm still needs fingerprint enhancement 

in order to effectively track local ridges. In this work, we 

introduce a new focal point localization by using orientation 

fields instead of true ridges. Obviously, the computational 

complexity should be very low because most of fingerprint 

enhancement consumes high computation time. Moreover, 

the new algorithm is suitably designed for orientation fields 
and this results in having a good performance. 

The paper is organized as follows. Section 2 presents the 

new focal point localization algorithm based on directional 

fields of fingerprint. Section 3 introduces how distance error 

measurement can be achieved. Section 4 evaluates the 

performance and the efficiency of the proposed method, 

comparing with a previous method [8] and other methods 

[4,5]. Section 5 concludes this research. 
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II. NEW FOCAL POINT LOCALIZATION ALGORITHM 

The proposed algorithm composes of 4 processes; 

preprocessing, crossing-points localization, initial block 

localization, and focal point localization. The details of each 

process are described as follows. 

A.  Preprocessing  
The preprocessing of proposed algorithm composes of 

fingerprint partitioning and directional field estimation. The 

original fingerprint is partitioned into 16×16 blocks. Then 
orientation field of each block can be estimated by using 

Hong’s approach [10]. For higher precision of directional 

field estimation at pixel resolution, Bazen and Gerez’s 

approach is more suitable as in [2]. Then all orientation 

fields in each block are averaged resulting in only one 

directional field represented orientation ridge of this block. 

 

B.  Crossing Points Localization 

From a directional field of each block and a center pixel of 

the block, a straight line equation, which is perpendicular to 

the directional field of block B(i,j), at ith row and jth column, 
can be formed by 

 

       ))(tan/1( ),( cjiBc xxyy −−=− φ             (1) 

 

where φB(i,j) is an orientation field of the B(i,j) block, and 
(xc,yc) is a center of the B(i,j) block, and (x,y) is a pixel 

position of a straight line defined by (1). 

The crossing point is defined as an intersection of two 

straight lines which is perpendicular to two orientation 

fields. Assume that 2 straight-line equations, 1�  and 2� , are 

 

)(: 1111 cc xxmyy −=−� ,             (2) 

)(: 2222 cc xxmyy −=−� ,            (3) 

 

where m1 and m2 are the slopes of 1�  and 2� , respectively. 

Then, the corresponding crossing point, (xp,yp), from these 

two lines can be found by 
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Clearly from (4) and (5), m2−m1 cannot be zero. In other 
words, these two lines cannot be parallel. In fact, if some 

line is parallel or almost parallel to the other, the crossing 

point will be located very far away or outside a fingerprint 

image. In order to locate a focal point near a fingerprint 

boundary, the effective area is extended from original 

fingerprint image by a quarter of height and width. Hence 

only the crossing points in this effective area will be 
employed in calculating the focal point. In practice, a 

condition is set to protect this serious problem by 

 

εφφ >− 12 BB               (6) 

 

where φB1 and φB2 are the orientation field of block #1 and 
block #2 respectively. In other words, the corresponding 

crossing point can be calculated if an orientation difference 

between two blocks must be greater than ε. 
If a number of blocks in a fingerprint image is equal to M, 

hence there are M straight line equations. The maximum 

number of crossing points is, 
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C.  Initial Block Localization 

The potential location of a focal point is in the block, 

which contained the highest density of crossing points. If all 
crossing points in the effective area are calculated (Fig 1 

(b)), and histogram (or population) of crossing points in each 

block can be determined (Fig 1 (c)), then the block which 

contains a maximum number of crossing points is the initial 

block. The center of this block is a starting point for the next 

process. 

 

 
(a) Original 

Fingerprint 
 

(b) Crossing Points 
 

(c) Initial Block 
Fig. 1. The example of crossing point localization and initial block 

localization. 

 

Note that histogram of crossing points may contain several 

local maximum blocks. Hence there are several candidates of 

the initial block. In practice, we could trial all candidates as 
initial block and select the most stable results. 

 

D.  Focal Point Localization 

The previous algorithm [8] of the focal point localization 

used a mean-shift concept [9]. The proposed algorithm still 

used the mean-shift concept with controlling conditional area 

of curved ridges. The proposed focal point localization 

algorithm, as shown in Fig 2, is described as follows. 

 

The Focal Point Localization Algorithm 
Step 1: Set iteration time to zero (i = 1), and set the center of 
the initial block to be a centroid (xct(0),yct(0)). This is for the 

first time only. 

Step 2: Select a top-half circle area. By choosing a block 

which contains a centroid (xct(i−1),yct(i−1)) as a center block, the 
top-half circle area can be defined with radius R (blocks) as 

shown in Fig 3 (R = 7 in our experiment). 
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Fig. 2. The focal point localization algorithm. 

 

 
Fig. 3. The top-half circle area with initial block as the center. 

 

Step 3: Generate the crossing points by using only 

orientation fields in this top-half circle area, and find the new 

centroid. Assume that a number of orientation fields in the 

top-half circle area is equal to N, then the new centroid 

(xct(i),yct(i)) can be calculated by using the following equation, 

 

       ( )� �= =
=

N

j

N

j jpjpictict NyNxyx
1 1 )()()()( /,/),(             (8) 

 

where (xp(j),yp(j)) is the jth crossing point generated by two 

lines which are perpendicular to two orientation fields in the 

top-half circle area. 

 

Step 4: Find the (i)th shifted distance, or δ(i), between the old 

centroid point (xct(i−1),yct(i−1)) and the new centroid point 
(xct(i),yct(i)), given by 

 

2

)1()(

2
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Not only the shifted distance is calculated, but also we 

introduced a cumulative shifted distance, which could help 

us make decision about divergence of a focal point. The 

cumulative shifted distance is defined by 
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Step 5: Check convergence or divergence condition of this 

centroid. At this point, two conditions can be used to stop 

iteration. The first condition is related to focal point 

convergence, if distance δ(i) is less than or equal to the 

threshold Tδ., iteration stops and this centroid is defined as 
the focal point. The second condition is related to divergence 

of a focal point, if the cumulative shifted distance, Σδ(i), is 
greater than the threshold TΣ then iteration stops and the 
focal point is diverged (or cannot be found). Otherwise, we 

replace the new centroid (xct(i),yct(i)) by the previous one, 

(xct(i−1),yct(i−1)), and repeat the step 2 through step 5 again until 
the iteration ends. Note that for saving computational time, 

we choose the block, which contains the new centroid, as the 

new center block in step 2. 

 

E.  Focal point Quality and Assessment 
To complete our reference point detection, it should be 

excellent if we could accurately evaluate the obtained focal 

point assessment. At this point, the number of crossing 

points, which contributed to the stability of the detected 

focal point, can be used as focal point quality parameter. The 

number of crossing points in the circle, radius R with the 
focal point as its center, can be counted and compared 

among the candidate centroid. The one, which obtained the 

highest number of the crossing points, should be selected as 

the final focal point. 

 

III. ERROR MEASUREMENT 

Because the focal point cannot be observed directly by 

human eyes, therefore the focal point cannot be manually 

marked as core and delta points. Clearly the distance error 

measurement technique must be carefully designed in order 

to fairly compare with the other research results. Even 

though we could not manually locate the focal point directly, 
but we could manually located three minutiae points or 

distinct points around the expected region of singular point 

instead. Then we could linearly project the focal point from 

one image to another. However, a precise positioning of the 

projection is impossible due to non-linear elastic distortion 

of fingerprint. Moreover, marked minutiae location may not 

Start 

Find Effective Area by the Centroid 

Find the New Centroid 

Measure Centroid Shift 

Set center of initial block to a centroid 

Convergence? 

Focal Point =Centroid 

No 

Yes 

End 
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be precise due to human error. Therefore we could notice 

that our error measurement technique probably results in 

higher accumulation error than the other techniques that 

manually located the singular points directly. 

Our distance error measurement technique can be 

described as follows. For each finger, we manually selected 

three minutiae points or distinct points as reference points in 

8 original fingerprint images from the same finger. The 

objective is that these selected 3 minutiae points should 

cover the expected area of the core point or detected focal 

point. Then our goal is to linearly project the detected focal 
point of a fingerprint into another fingerprint with less error 

as possible. Finally we could measure a distance error (DE) 

between 2 detected focal points from two different 

impressions of the same finger. 

In order to measure the distance error in details, the 

procedures are explained as following. First, the same three 

minutiae points; B(blue), G(green), and R(red) are located at 

Fig 4(a) and Fig 4(b). Assume that we are projecting the 

detected focal point location in Fig 4(a) into Fig 4(b). 

Second, at the Fig 4(a), a BG line (the line between B point 

and G point) is created and a RF line (the line between R 
point and F point) is built and extended to cross the BG line 

at point X. If fingerprints are linearly distorted, the ratio of 

BX/GX and RF/FX should be the same in both fingerprints. 

Note that this assumption is not true because of the fact of 

nonlinear distortion from practical fingerprint impressions. 

However, this is the best projection position we could guess 

and our results will suffer from this assumption. Third, at Fig 

4(b), a B′G′ line is formed and the point X′ can be located by 
using the same ratio of the Fig 4(a) as following constraint, 

 

BX/GX  =  B′X′ /G′X′           (12) 
 

Fourth, the projected focal point P can be located by 

applying the RF/FX ratio to the line between X′ and R′ using 
the following constraint, 

 

RF/FX  =  R′P /PX′           (13) 
 

Finally, the distance error (DE or ε) between the actual focal 

point, F′, and the projected focal point P can be defined as 
follows, 

 

       22
)()( PFPF yyxx −+−= ′′ε           (14) 

 

If the detected focal point is inside the RBG triangle, then 
there are 3 ways to project this detected focal point to 

another fingerprint. According to Fig 4, instead of starting 

from BG line, we could start form BR line of GR line. To 

compensate distance error from non-linear distortion of 

fingerprint, we projected the detected focal point through 3 

times and measured the distance error by 3 times. Then an 

average error was calculated. Unfortunately, in case of the 

detected focal point lies outside the RBG triangle, there is 

only one way to project the focal point as shown in Fig 5. 

Beside, the linear projection may cause large amount of error 

in this case. Therefore distance error is calculated only one 

time in the case of the focal point located outside the RBG 

triangle. In practice this case could be avoided by marking 3 

reference points cover expected focal point location. 

 

 
(a) 

 
 

(b) 

Fig. 4. The example of linear projection of a detected focal point from 

fingerprint (a) into (b). Note that three reference points (R,B,G) are 

manually marked and the detected focal points (F, F′ ) are inside the RGB 

triangle. The projected focal point (P) is linearly project from (a). 

 

 
(a) (b) 

Fig. 5. The example of linear projection of a detected focal point from 

fingerprint (a) into (b). Note that three reference points (R,B,G) are 

manually marked and the detected focal points (F, F′ ) are outside the RGB 

triangle. The projected focal point (P) is linearly project from (a).  

 

IV.  EXPERIMENTAL RESULTS 

The experimental results were conducted based on DB2a, 

FVC2000 database for comparison. This DB2a, FVC2000 

fingerprint database was acquired using a low-cost 

capacitive fingerprint sensor, size 256×364 pixels, 500 dpi, 
for 100 fingers with 8 impressions per finger (800 

fingerprints). These 100 fingers were classified into 6 

fingerprint types; i.e. left loop (L), right loop (R), whorl (W), 
twin loop (TW), arch (A), and tented arch (TA). All 800 

fingerprint-images are manually marked with 3 similar 

minutiae or distinct points for each of the 8 images of each 

finger. The previous focal point localization algorithm [8] 

and the proposed algorithm are tested with the new error 

measurement scheme as shown in section III. From 8 

fingerprint images of one finger, we measure distance error 
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from each couple one by one, total 7 times, then we average 

these distance error for each finger. The experimental results 

from previous algorithm [8] and proposed algorithm are in 

the Table I and Table II, respectively. Unlike results in [8], 

we did not remove any focal point with high distance error 

out of average. Therefore the results are worse than [8]. 

Besides, the measurement scheme is also changed so the 

results reported in this paper and results from [8] are 

different even though both results are from the same scheme. 

 

TABLE I 

Performance of the Previous Algorithm [8] 

Fingerprint Classes in FVC2000 DB2a Precisions 

(Pixels) R L W TW A TA All 

# of Focus Exist 216 255 167 16 40 104 798 

# Unfound 0 1 1 0 0 0 2 

DE < 5 98 119 73 5 3 4 302 

5 ≤ DE < 10 76 107 78 8 12 25 306 

10 ≤ DE < 15 17 12 9 2 9 28 77 

15 ≤ DE < 20 6 6 7 0 12 23 54 

DE ≥ 20 19 11 0 1 4 24 59 

Max DE 181 83.7 28.9 51.9 74.9 122 181 

Min DE 0.38 0.47 0.48 1.95 1.06 0.75 0.38 

Average DE 12.0 7.99 13.0 13.9 14.0 24.0 14.1 

Variance of DE 19.5 14.2 5.90 16.1 15.0 17.4 14.7 

 

TABLE II 

Performance of the Proposed Algorithm 

Fingerprint Classes in FVC2000 DB2a Precisions 

(Pixels) R L W TW A TA All 

# of Focus Exist 216 256 167 16 40 104 799 

# Unfound 0 0 1 0 0 0 1 

DE < 5 73 118 72 6 5 11 285 

5 ≤ DE < 10 121 113 81 3 16 21 355 

10 ≤ DE < 15 13 16 8 6 11 27 81 

15 ≤ DE < 20 3 7 5 1 5 21 42 

DE ≥ 20 6 2 1 0 3 24 36 

Max DE 61.8 65.9 34.9 63.1 77.0 133 133 

Min DE 0.17 0.06 0.07 0.26 0.68 0.65 0.06 

Average DE 9.64 9.75 10.0 12.9 11.9 21.9 12.7 

Variance of DE 8.14 7.99 9.98 16.6 18.6 18.4 13.3 

 

Finally, we compare the results with existing reference 

point localization methods [4,5]. These methods are selected 

because of available and comparable results with the same 

FVC2000 Db2a database. The results showed in Table III. 

Note that our new measurement scheme does not give us any 

advantage over the others because human can pick the 

corrected reference point regardless of nonlinear distortion in 

fingerprint. The linear projection point is just our best guess 

for non-linear distortion in fingerprint. Table III shows that 
both focal point algorithms obtain very low rejection rate. 

The algorithm in [5] achieved the highest number of 

fingerprint which reference point is found within less than 10 

pixels. However, our proposed method outperforms any 

algorithms in this table if we consider the highest number of 

reference point within less than 20-pixel. This results support 

our assumption that the focal point is a good reliable 

reference point comparing to other methods. 

Next, we compare a computational time between the 

previous method [8] and the proposed method in Table IV. 

The proposed scheme does not need fingerprint enhancement 

process, but it requires only block-based orientation field 

estimation. Hence we could reduce amount of computational 

complexity by approximately seven times, with better 

localization accuracy performance. 

 

TABLE III 

Compare Performance of Various Singular Point Detection Algorithms 

Performance Results (Number of Fingerprints) 

in FVC2000 Db2a 

Algorithm 
≤ 10 

Pixels 

>10 & 

≤ 20 

Pixels 

> 20 

Pixels 
Fail 

% Acc 

in <20 

Pixels 

Liu T. et.al. [5] 654 91 46  9 93.125 

Proposed Algorithm 640 123 36 1 95.375 

Jiang X. et.al. [4] 638 108 41 13 93.25 

Areekul V. et.al. [8] 608 131 59 2 92.375 

 

TABLE IV 

Compare Computational Time between two Focal Point Localization 
Algorithms on Intel Centrino Duo 1.66 GHz, RAM 512 MBytes 

Average Execution Time of Our 

Algorithms on FVC2000 Db2, 

(millisecond) 

(No Optimization) 
Algorithm 

Areekul et.al. 

[8] 

Proposed 

Algorithm 

Segmentation 26.978 - 

Orientation Field Estimation 59.111 59.111 

Enhancement 535.72 - 

Focal Point Localization 30.104 28.453 

Overall 651.913 88.564 

 

Fig 6 shows the only fingerprint, which our proposed 

algorithm fails. From Fig 6(b) and 6(c), majority of crossing 

points and the candidate initial block are clearly located far 

away from its singular point. The proposed algorithm 

diverge from this initial area to top-left corner. However, if 

an initial point is somewhere around top-right corner, our 

algorithm will converge to an expected focal point with less 

error. This problem can be solved in the near future. 
 

(a) #79_1 (b) Crossing Points (c) Initial Block 

Fig. 6. The proposed algorithm fails only fingerprint #79_1. The reason is 

because high density of crossing points on the left area. 
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(a) #16_4 (Average DE = 4 pixels) 

 
(b) #16_3 (Average DE = 6 pixels) 

Fig. 7. Good results from our proposed algorithm of finger # 16 of 

FVC2000 Db2a database. 

 

 
(a) #22_1 (Average DE = 26 pixels) 

 
(b) #22_2 (Average DE = 5 pixels) 

 
(c) #57_1 (Average DE = 21 pixels) 

 
(d) #57_2 (Average DE = 4 pixels) 

Fig. 8. Both fingerprint #22_1 and #57_1 are failed in the previous 

algorithm [8]. But our proposed algorithm can recover its focal points. 

 

Fig 7 shows advantage of the proposed focal point 

localization scheme even though the core point is out of 
bound. This is the out-standing property of the focal point 

that the algorithm can project the location of core even 

though it is not in the image boundary. Fig 8 shows two 

fingerprints that the previous algorithm [8] rejected, but the 

proposed algorithm could recover these focal points with 

reasonable distance error. These results were very surprising 

because we expected the new algorithm should also fail for 

these two fingerprints. Hence the proposed focal point 

localization algorithm is shown itself for the promising 

future usage. 

V.  CONCLUSION 

The paper proposed a new algorithm for focal point 
localization in fingerprint registration process. The focal 

point is shown to be a very stable point for fingerprint 

registration. Moreover, the algorithm also consumed only 

1/7 execution time compared to the previous scheme (88.6 

millisecond). This shows that focal point is ready for 

practical usage. At this point, there are various potentials to 

explore our proposed method in both accuracy and 

computational complexity such as hierarchical multi-

resolution search which we expect that our results should be 

the best in Table III. For example, we could use 8×8 block 

instead of 16×16 block. From weak law of large number or 
our experiment in [7], our accuracy should be better. Our 

future research is also exploited the focal point applications 

in fingerprint classification and fingerprint recognition. 
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IQC8N�KU�P���<UGTKQU�9?��P8�8RQFT�Q8KYE�< \�Q�[�KNbGRQF\G�8�QDE8P8G�

�B�DKIQD�IG�C8�PCUQR�8RQF[Qe@d`WR9E���<DF�KRKoQKNbGRQFDdNU�FJUQY 24 

D\oQ[F�PD;GC< 21 UNIINKN8Q\G `dC�B�[8oKC�FJUKI�I Intel Centrino Duo 
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KNe9C HIJ;9L8Q�FJEN\bNSQ;�[�dGc��8�8P8QTZP98�RI� 

T�QE�QT9A: e@d`WR9EcP<IQC8N�KU�P, e@dDPR:Q8, e@dP�Q<PN<IQC8N�KU�P 

Abstract 
 Since the focal point is an unique reference point using in 

fingerprint verification, this paper presents a new focal point 

localization scheme using directional fields. This proposed scheme does 

not require fingerprint enhancement, hence computational complexity 

can be reduced significantly, approximately 24 times reduction, or 21 –

millisecond on Intel Centrino Duo Core 1.66 GHz, RAM 2Gbyte. This 

approach is very promising and can be further researched and improved 

in the near future.  

Keywords: Focal Point of Fingerprint, Singular Point, Fingerprint 

Reference Point 

 

1. �!��!� 
 �¨ee@?98FJ??V?`PDUZFNR (Biometric System) Vd�Dc�QUQUG

?\?Q\�8BGKNZ�FJe�QK98cP<T8DFQUQRc��8 D8��P<eQRD��8FJ??\G�UG

�FJEN\bNSQ;D[UQJEUR9?<Q8FJ?@Z9K?@TTIVd�PCoQ<HUo8C�Q HIJEQUQF_

8�QUQ�FJC@RZ>�B�<Q8Vd�[IQCF��H?? ���<;?D[�8Vd�\9�KV� HIJUG�FNUQY

RQF�B�<Q8D;N�UUQRc��8PCoQ<FKdDF�K�8BoK<FJCJDKIQVUoRG��¬UQ8G� FJ??RQF

F��e�QIQC8N�KU�P 89?D��8F��H??[8��<cP<FJ??V?`PDUZFNR ���<�¨ee@?98Vd�

8�QUQ�FJC@RZ>�B� HIJUG?\?Q\ZoPBGKNZ�FJe�QK98UQRCN�<c��8 PQ\NDBo8 RQF

8�QUQ�B��8RQFZFKeEP?[F�PFJ?@Z9K?@TTI HIJRQFZFKeEP?DKIQ

\�Q<Q8cP<?@TTI89�8­ D��8Z�8 

 c9�8ZP8`dC\9�KV�cP<FJ??RQFF��e�QIQC8N�KU�P `dC\9�KV�eJ

H?o<D��8 2 c9�8ZP8 `dCc9�8HFReJ\�QRQFI<\JD?GC8 (Enrollment) SQ;

IQC8N�KU�PcP<����B�<Q8\9�<[Ud�8FJ??DR�?VK��8:Q8c�PU�I ���<�8

c9�8ZP88G�eJUGRQF�F9?�F@<T@YSQ;cP<SQ; (Enhancement) HIJRQF[Q

ToQT@YI9R=YJD�;QJ (Feature Extraction) [F�PToQ;QFQUNDZPF>ZoQ<­\G�

E�QT9A D;��P�B��8RQFD�FGC?D\GC?SQ;IQC8N�KU�P (Matching) [I9<eQR\G�\�Q

RQFI<\JD?GC8SQ;IQC8N�KU�P�8:Q8c�PU�IDFGC?F�PCHI�K c9�8ZP8ZoPUQ

DU��P����B�<Q8Z�P<RQFFJ?@Z8DP< (Identification) FJ??eJ\�QRQFF9?SQ;

IQC8N�KU�PeQR����B�<Q8V�\�QRQF�F9?�F@<T@YSQ; [QToQT@YI9R=YJ

D�;QJ [F�PToQ;QFQUNDZPF>ZoQ<­cP<SQ;89�8D[U�P8R9?c9�8ZP8RQF

I<\JD?GC8 eQR89�8e�<eJ\�QRQFD�FGC?D\GC?c�PU�IcP<IQC8N�KU�PR9?

:Q8c�PU�I\9�<[UdD;��PFJ?@Z9K?@TTI d9<HEd<�8F��\G� 1 
 

 

 

 

 

 

 

 

 

F��\G� 1 c9�8ZP8RQF\�Q<Q8cP<FJ??RQFF��e�QIQC8N�KU�P 

 

 eQRF��\G� 1 eJ;?KoQRQFI<\JD?GC8 [F�PRQFFJ?@Z9K?@TTI 

Z�P<�oQ8RQF�F9?�F@<T@YSQ; \�QRQF[QToQT@YI9R=YJD�;QJ\@RTF9�< 

D8��P<eQRSQ;IQC8N�KU�P\G�\�QRQFF9?eQRD�8D�PF>HZoIJTF9�< VUoEQUQF_F9?

SQ;PPRUQUGI9R=YJD[U�P8R98Vd�`dCEU?�FY> D8��P<eQR�IRFJ\?ZoQ<­ 

PQ\NDBo8 Z�QH[8o<RQFKQ<8N�K  TKQUH[�<HIJTKQUB��8cP<�NK[89< 

(Dryness – Wetness) RQFDI��P8 (Translation) RQF[U@8 (Rotation) 

8�� Q[89R\G� �B��8RQFRdcP<8N�K U�P\G�Eo<�IZoPRQF?NdD?G�CK (Elastic 

Distortion) cP<SQ;IQC8N�KU�P [F�PTKQUER�FRcP<P@�RFY>ZFKeK9d

SQ;IQC8N�KU�P D��8Z�8  

Z9KP CoQ< �¨A[Q\G�Vd�RIo QKUQ89�8  e�< VUoEQUQF_8� QSQ;

IQC8N�KU�PUQD�FGC?D\GC?R98`dCZF<Vd� d9<89�8e�<Z�P<\�QRQF�F9?�F@<

T@YSQ;cP<SQ; HIJRQF[QToQT@YI9R=YJD�;QJ D;��P�B��8RQF

RQFI<\JD?GC8 (Enrollment) 

Offline - process 

 

 

 

 

 

RQFFJ?@Z9K?@TTI (Identification) 

Online - process 

RQF�F9?�F@<T@YSQ; 

Enhancement 

RQF[QToQT@YI9R=YJD�;QJ 

(Feature Extraction) 

RQFD�FGC?D\GC? 

(Matching) 

:Q8c�PU�I 

(Database)



D�FGC?D\GC?�8SQC[I9< c9�8ZP8RQFD�FGC?D\GC?IQC8N�KU�P�8�¨ee@?98UG

PC�od�KCR98[IQR[IQC<Q8KNe9C DBo8 RQFD�FGC?D\GC?`dCRQF�B�e@dUN8�

D\GCF> (Minutiae) RQFD�FGC?D\GC?`dC�B�DE�8IQC8N�KU�P (Ridge line) [F�P

RQFD�FGC?D\GC?`dC�B�F�c@Uc8 (Skin pore) \G� DRNdc��8ZQU�NKcP<SQ;

IQC8N�KU�P D��8Z�8 KNbGZoQ<­\G�RIoQKUQI�K8HI�KHZoZ�P<RQFe@d [F�P?FNDKY 

\G��B��8RQFP�Q<PN< (Reference Point or Location) d�KCR98\9�<EN�8 D8��P<eQR

�¨A[Q\G�Vd�RIoQKUQHI�Kc�Q<Z�8 \�Q�[�RQF[Qe@dP�Q<PN<D��8EN�<\G�UGTKQU

e�QD��8PCoQ<CN�<�8FJ??F��e�QIQC8N�KU�P 

<Q8KNe9C8G�Z�P<RQF�F9?�F@<P9IRPFN\�U\G��B��8RQF[Qe@dP�Q<PN<  

\G�DFGCRKoQe@d`WR9E (Focal Point) ���<TNdT�8`dC Rerkrai HIJ Areekul [1] 

HIJVd�\�QRQF�F9?�F@<c9�8ZP8KNbG�[�UG�FJEN\bNSQ;E�<c��8�8 [2] 

c9�8ZP8`dC\9�KV�cP<P9IRPFN\�UDdNU eJZ�P<\�QRQF�F9?�F@<T@YSQ;cP<

SQ;�[�DFGC?F�PCRoP8 eQR89�8e�<eJEQUQF_[Qe@d`WR9E`dC�B�KNbGDdN8ZQU

EoK8`T�<cP<DE�8IQC8N�KU�PHIJ [Qe@dZ9d\G�DRNdeQRDE�8Z9�<�QRcP<EoK8

`T�< KNbGRQFd9<RIoQK;?KoQUGF��H??RQF\�Q<Q8\G��B�DKIQ8Q8 HIJUGRQF

\�Q<Q8\G��9?��P8UQR d�KCD[Z@8G�D�XQ[UQCcP<<Q8KNe9C8G�T�PRQF8�QDE8P

KNbGRQF[Qe@d`WR9E`dCVUoe�QD��8Z�P<�oQ8c9�8ZP8RQF�F9?�F@<T@YSQ;

cP<SQ; ���<\�Q�[�DKIQ�8RQF�FJUKI�IIdI<UQR HIJ8PReQR8G�C9<UG

D�XQ[UQC�8RQFF9R=QTKQUUGDE_GCFSQ;cP<e@d`WR9EDPQVK� ���<eJPbN?QC

�8?\\G� 2 

 

2.
���"����������	
��� 
 c9�8ZP8RQF[Qe@d`WR9E`dCP9IRPFN\�U�[Uo ���<VUoZ�P<\�QRQF

�F9?�F@<T@YSQ;cP<SQ;IQC8N�KU�P HZoeJ�B�E8QU\NO\Q< (Directional 

Field, DF) D��8[I9R�8RQF[Qe@d`WR9E EQUQF_H?o<PPRD��8c9�8ZP8

[I9R 3 c9�8ZP8 ���<UGFQCIJDPGCdd9<ZoPV�8G� 

2.1) ��������	
�
�	
��	�����	
  

 E8QU\NO\Q<\G��B��8<Q8KNe9C8G�P�Q<PN<UQeQR Bazen [3] ���<�B�

KNbGRQF[QToQ\Q<DRFDdGC8\> (Gradient-based methods) _�QR�Q[8d�[� � 

D��8DRFDdGC8\>[I9RcP<?I�PR (Block) c8Qd N×N e@dSQ; (Pixel) ���<

EQUQF_[QTKQUE9U;98b>FJ[KoQ<ToQU@UcP<ToQCRR�QI9<EP<cP<DRFDdGC8\> 

(Squared gradient) ����, ��	
� R9?ToQDRF-DdGC8\>�RZN [�
, ��] `dCeJ

Vd�EURQFd9<8G� 

                          �������� = ������2�
�!"#$2%& = '()* + -./20134 5            (1) 

eQRTKQUE9U;98b>�8EURQF (1) \�Q�[�EQUQF_[QToQU@U 67 

���<UGToQPC�o�8BoK< [0,8] \G�EQUQF_H\8E8QU\NO\Q<cP<?I�PR B c8Qd 

N×N �d­Vd�d9<EURQF      

       9: = ;
< arctan >? ? @ABCDEF (H,I)KL(M,N)OPQR

? ? STU(V,W)XYZ\_̂`bdefg (h,i)j + l
�     (2) 

 HIJ8PReQR8G� Kass HIJ Witkin [4] C9<Vd�8�QDE8PRQFK9d

TKQU8oQDB��P_�PcP<RQF�FJUQYToQE8QU\NO\Q<, �� `dC�B�ToQBG�K9d\G�

DFGCRKoQ “TKQUHF<cP<\NO\Q< (Coherence)” ���<EQUQF_T�Q8KYD��8

FJd9??I�PRVd�d9<EURQF 

                      ���� = 	? ? (
��(
,�),���(�,�))�������� �
? ? ��� (!,"),#$%(&,')()*+,-./0    (3) 

EURQF\G� (3) eJUGToQUQR\G�E@dT�P 1 HIJToQZ��QE@dT�P 0 ���<_�QToQ

�RI� 1 UQRD;GC<�deJ?o<BG�Vd�KoQE8QU\NO\Q<89�8UGTKQU_�RZ�P<ToP8c�Q<

E�< �8\Q<ZF<R98c�QU _�QToQDc�Q�RI� 0 eJ?o<BG�KoQE8QU\NO\Q<89�8UGTKQU

_�RZ�P<Z��QDBo8DdGCKR98 

;NeQFYQEURQF\G� (2)  HIJ (3) �8<Q8KNe9C8G� eJ8�QUQ�B��8

RQF[QToQE8QU\NO\Q<[I9R HIJTKQUHF<cP<\NO\Q<�8HZoIJ?I�PRcP<

SQ;IQC8N�KU�P `dCR�Q[8d�[�c8QdcP<?I�PRDFN�UZ�8UGc8Qd 16×16 

e@dSQ; ���<DU��P\�QRQF[QToQ\9�<[Ud�8SQ;DFGC?F�PCHI�K eJ8�QToQTKQU

HF<cP<\NO\Q< HIJ ToQTJH88TKQUB9dDe8cP<DE�8IQC8N�KU�P (CS, 

Clarity Score) 8�QDE8P`dC Cheng [5] UQ\�QRQFH?o<EoK8cP<SQ; 

(Segmentation) \G�D��8IQC8N�KU�P (Foreground) HIJEoK8\G�VUoUGIQC8N�KU�P 

(Background) PPReQRR98 (RQF\dIP<eJ;NeQFYQToQ�8HZoIJ?I�PR`dC

�B�ToQ 12� < 0.35 HIJ CS �d­ > 0.2 D��8?FNDKY\G�VUoUGIQC8N�KU�P�FQR·

PC�o) d9<F��\G� 2 

2.2) ��������	
�	�������
��������������������
����
�
���
����  

 c9�8ZP88G�eJD��8RQF[QToQcP?DcZDFN�UZ�8\G�8oQeJUGe@d`WR9E

ZR P C�o`dCRQF8�QTo QE8QU\NO \ Q< UQ\� QR QF\� QR QFTP 8`K I�B98

(Convolution) R9? �IZP?E8P<Z9KRFP<DBN<��P8 (Complex Filter 

Response) ̀ dCDI�PR�B�F��H??cP<H??e�QIP<RQF[Qe@dHRo8RIQ< (Core 

Point) cP<IQC8N�KU�P 8�QDE8P`dC Liu [6] ���<`dC\9�KV�U9RUGZ�QH[8o<\G�

�RI�DTGC<R9?e@d`WR9E R�Q[8d�[� x HIJ y D��8Z�QH[8o<�d­�8SQ;\G�

E8�e`dCEQUQF_EF�Q<H??e�QIP<e@dHRo8RIQ< `dCUGFQCIJDPGCdd9<

EURQF 

  345 = 6789
:;<=>:                                     (4) 

`dC 

         ? = @
A tanBC DEFG                                     (5)

 ;NeQFYQEURQF\G� (4) HIJ (5) D8��P<eQRZ�P<RQF[QcP?DcZ\G�

TI�QCTI�<R9?e@dHRo8RIQ< e�<\�QRQFEF�Q<[8�QZoQ<c8Qd (2w+1) × 

(2w+1) ?I�PR (�8RQF\dIP<�B�[8�QZoQ<c8Qd 7×7 D;FQJVd�cP?DcZ

DFN�UZ�8\G��RI�DTGC<R9?e@d`WR9E\G�E@d (w = 3)) ���<DRNdeQRRQF8�Q?I�PR\G�

DR�?ToQE8QU\NO\Q<c8Qd 16×16 8�QUQ\�QRQFTP8`KI�B98R9?EURQF\G� 

(4) eJ;?KoQ�IZP?E8P<cP<?I�PR (m, n) �d­EQUQF_[QToQVd�d9<

EURQF 
 

      �H,I = ? ? JKLM,NOPQRS(TUVW,XYZ[\],^)_̀a�������
? ? 	
��,
������������       (6)  

`dCToQ ����,�� ! {0,1} eJUGToQD��8 1 DU��P?FNDKY?I�PR (m+x, n+y) 

�d­D��8?FNDKY\G�H?o<EoK8cP<SQ;HI�K;?KoQUGIQC8N�KU�P  



F��\G� 2 (a) SQ;IQC8N�KU�P\G�\�QRQF[QE8QU\NO\Q<, (b) E8QU\NO\Q< HIJ

TKQUHF<cP<E8QU\NO\Q< HIJ (c) RQFH?o<HCRSQ;IQC8N�KU�P 

 

;NeQFYQ�II9;b>eQREURQF\G� (6) eJ;?KoQUGToQPC�o�8BoK< [0, 1] ���<_�Q

?FNDKY�dUGToQ�RI�DTGC< 1 ?FNDKY89�8T�P?FNDKY\G�UGTKQU8oQeJD��8\G�eJUG

e@d`WR9EZRPC�o ���<eJ\�QRQFT9dDI�PR?FNDKY\GUG�IZP?E8P< �",#  �d­

D;��PUQ[QcP?DcZDFN�UZ�8 R�Q[8d�[� ($%,& ,'(,)) D��8e@dR��<RIQ<cP< 

?I�PR (m,n) �d­\G�UGToQ�IZP?E8P< �*,+ UQRRKoQFJd9?P�Q<PN< 

(Threshold) ���<�8RFYG\G�UGUQRRKoQ 1 e@deJ\�QRQFDI�PRe@d\G�PC�od�Q8?8

\G�E@dcP<SQ;D��8[I9R D8��P<eQRUGTKQUD��8V�Vd�\G�eJ;?e@d`WR9EE�<

(�8RQF\dIP<�B�ToQDRY¹>P�Q<PN< 90% cP<ToQ�IZP?E8P<E�<E@deQR

?I�PR (m,n) �d­(0.9×Max (�,,-)) cP<HZoIJSQ;IQC8N�KU�P) 8�QUQ[Q

e@dO�8C>RIQ<D�IG�C (./ ,01)  (Centroid) Vd�d9<EURQF 

(23 ,45) = 6? 789,:;<=>?@,ABCDEFG
HIJ(KL,M)N , ? OPQ,RST=UVW,XYe

Z[\]
^_�(��,�)� � (7) 

 L T�Pe�Q8K8?I�PR\9�<[Ud\G��oQ8FJd9?P�Q<PN< DU��PT�Q8KY[Q

e@dO�8C>RIQ<D�IG�CDFGC?F�PCHI�K HI�KeJ8�QUQEF�Q<cP?DcZDFN�UZ�8D��8

K<RIU\G�UGF9OUG R HIJUGe@dO�8C>RIQ<K<RIUD��8e@dO�8C>RIQ<D�IG�C

 (�	 ,
�) d9<EURQF 

                      (� + 
�)� + (� + ��)� � ��                         (8) 

2.3) ��������	
�	�!��"���  

 DFN�UZ�8;NeQFYQU@U\G�Z9�<�QRR9?E8QU\NO\Q<�8HZoIJ?I�PR\G�

�oQ8RQFe�QH8RKoQD��8?FNDKY\G�UGIQC8N�KU�PUQHI�K 8�QUQ\�QRQFEF�Q<

EURQFDE�8ZF<\G�IQR�oQ8e@dR��<RIQ<?I�PR HIJUG\NO\Q<Z9�<�QRR9?E8QU

\NO\Q<cP<?I�PR\9�<[Ud eQR89�8T�Q8KY[Qe@dZ9dcP<E8QU\NO\Q<P��8­

\G�DRNdc��8\9�<[Ud�8F��H??cP<FJ??EURQFDBN<DE�8 (Linear Equation) 

���<�8c9�8ZP88G�eJUGF��H??RQF\�QH??K8���Q (Iteration) `dCeJ\�QRQF

[Qe@dO�8C>RIQ<FKU�[Uo d9<EURQF 

 ������ ,��� !" = #? $)%&'()*+,
- , ? ./01234567

8 9    (9) 

EURQF\G� (9) :;<=>? ,@ABCDE D��8e@dO�8C>RIQ<FKU�[Uo\G�DRNd 

eQRe@dZ9d\9�<[Ud P e@d\G�ZRPC�oSQC�Z�D<��P8VccP<EURQF\G� (8) eQR89�8eJ 

\�QRQF[QToQTKQU�Nd;IQdDBN<FJCJ\Q< (Distance Error,F) ���<;NeQFYQ

eQREURQF 

                                    G = H(IJK + LMNOP)Q + (RST + UVWXY)Z          (10) 

F��\G� 3 (a) F��H??cP<H??e�QIP<HRo8RIQ<, (b) �IZP?E8P<cP<

IQC8N�KU�PZ9KPCoQ< HIJ (c) cP?DcZ\G�8oQeJUGe@d`WR9EZRPC�o 
 

;NeQFYQEURQF\G� (10) eJ;?KoQEURQFUGRQFD�FGC?D\GC?ToQ

�Nd;IQdFJ[KoQ<e@dO�8C>RIQ<�[Uo n R9?e@dO�8C>RIQ<DRoQ n-1 ���<eJUGRQF

K8���QV�e8RKoQToQ [ UGToQZ��QRKoQFJd9?P�Q<PN<\G�Vd�R�Q[8dVK�e�<[C@dRQ

FK8���Q HIJDI�PRe@dO�8C>RIQ<89�8D��8e@d`WR9E �8RFYG\G� \ UGToQVUoI�oDc�Q

ZQUFJd9?P�Q<PN< eJ\�QRQFZFKeEP?KoQSQC�8FP?cP<RQFK8���Q\G�

R�Q[8dVK� L TF9�< UGToQ � Z��QE@d\G�CPUF9?Vd�[F�PVUo ���<_�QVUoEQUQF_

CPUF9?Vd�eJ\�QRQFT9dPPR (Reject) [F�P?o<BG�KoQVUoEQUQF_[Qe@d`WR9E

Vd� (�8RQF\dIP<�B� � � 1 �8RFYG\G�DI�PRD��8e@d`WR9E, � � 15 D��8

ToQ\G�eJ\�QRQFT9dPPRHIJ L = 10 D��8e�Q8K8FP?\G�R�Q[8dVK�E�Q[F9?RQ

FK8���Q) c9�8ZP8RQF[Qe@d`WR9EEQUQF_PbN?QCD��8F[9ED\GCU (Pseudo 

code) Vd�d9<F��\G� 4       

   REPEAT: 

 PROCESS: Find new-centroid of cross point in zone 

 PROCESS: Calculate the distance error            

   UNTIL: (IF (distance error < threshold) AND IF (Iteration round < n)) 

 

F��\G� 4 F[9ED\GCUHEd<c9�8ZP8RQF[Qe@d`WR9E 
 

3. #��������� 

 �IRQF\dIP<�8<Q8KNe9C8G�eJ\�QRQFK9d�I`dC�B�:Q8c�PU�I

RQFH co< c98RQFD�FG C? D\G C?I QC8N�K U�P  (Fingerprint Verification 

Competition, FVC) [7] `dC�B�:Q8c�PU�I DB2 cP<�¬ 2000 B��P 

“FVC2000db2” ���<UGRQFe9dDR�?IQC8N�KU�P\9�<[Ud 100 T8 H?o<PPRD��8

T8IJ 8 SQ; FKU\9�<EN�8 800 SQ; RQFK9d�IeJ\�Q`dCRQFD�FGC?D\GC?e@d

`WR9E\G�Vd�eQRIQC8N�KU�PcP<T8T8DdGCKR98KoQUGTKQUTIQdDTI��P8eQRe@d

`WR9E\G�D[I�PPGR 7 SQ;UQR8�PCD;GC<�d ���<KNbGRQFK9d�I8G�eJHZRZoQ<eQR 

[2] D8��P<eQRZ�P<RQFHR�VcRQFK9d�IDU��PDRNd�¨A[Q Elastic Distortion 

[F�PTKQU?NdD?G�CKcP<SQ;`dC�B�e@d\G�Vd�eQRRQF?98\�RZ�QH[8o<d�KCU�P

e�Q8K8 3 e@d ���<D��8e@dDdGCKR98\@RSQ;IQC8N�KU�PcP<T8T8DdGCKR98 D��8

e@dP�Q<PN<D;��P\�QRQF�F9?O�8C> (Alignment) TIQdDTI��P8 D;��P�[�EQUQF_

D�FGC?D\GC?�II9;b>R9?e@d`WR9E�8SQ;P��8­cP<T8T8DdGCKR98Vd� ���<eJ

;?KoQ�8F��IQC8N�KU�PcP<T8T8DdGCKR98 eJUGRQFD�FGC?D\GC?\9�<[Ud 

�82� = 28 TF9�< ���<�8\G�8G�eJD�FGC?D\GC?R9? [2] �8H<ocP<DKIQ HIJ

DE_GCFSQ;cP<e@d`WR9E ���<eJ\�QRQFe�QH8R (Classification) SQ;

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 
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Abstract 

In this paper, a novel fingerprint matching based on minutiae-ridge graph representation and their relationships. 

The new minutiae substructures, simple representations of minutiae’s features, double minutiae relationship 

features, and their adjacent ridge features, are designed to cooperate relative features among minutiae and 

connected ridges, resulting in fingerprint elastic distortion robustness. In the matching process, the local 

neighborhoods are roughly matched by considering secondary features derived from relative of two connected 

minutiae information. The one-to-one correspondence of secondary features is then consolidated and grouped 

globally into cluster by graph propagation technique. Finally, the Minimum Cost Flow technique [Max flow1] is 

applied to find the best cluster combination between two fingerprints. Experiments on databases FVC2000, 

FVC2002, and FVC2004 show that the proposed algorithm has good performance in terms of matching 

accuracy (equal error rate EER) with low computational complexity, especially highly deformed fingerprints in 

FVC2004DB1. 
Keywords: Fingerprint matching; Minutia-Ridge Graph representation; Minimum cost flow;  

 

1. Introduction 

Inevitably, fingerprint identification applications are playing an important role in our everyday life from 

personal access control, office time attendance, to country boarder control. To pursue this goal, automatic 

fingerprint identification system (AFIS) must be proved to be highly reliable. Fingerprints are patterns of ridges 

and valleys on the surface of human fingertips. It is well believed that the pattern of each finger is unique and 

can be represented by one or more kinds of the following representative features from global features to local 

features such as singular points, orientation fields, frequency fields, texture, ridges, minutiae (ridge endings and 
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ridge bifurcations), and pores et al. From these rich features, fingerprint matching can be classified into several 

techniques such as, minutia-based matching [ ???], correlation based matching [Correlation1- Correlation3], and 

texture-based matching [texture1- texture5]. However, minutia-based technique is the most popular of all 

matching techniques, and this technique is widely accepted as a proof of identity in the courts of law in most 

countries. Practical fingerprint matching faces many challenging problems such as low quality images, only a 

portion of a finger, small area sensors, different types of sensor, and non-linear distortions. To solve these 

problems, good fingerprint matching techniques need to obtain accurate alignment and precise minutiae 

correspondence between an input fingerprint and a template. Based on minutiae matching in literature, a large 

number of fingerprint matching schemes can be roughly classified into several approaches as follows. 

A) Absolute pre-alignment approach: These schemes employed pre-alignment of two fingerprints by using 

some reference points such as core point, delta point, or singular points. W. Zhang and Y. Wang [Pre-

alignment1] used core points as their reference points to speed up initial local-structure matching. S. 

Jirachaweng et al. [Pre-alignment2] reordered minutiae around a unique focal point into 1-dimensional feature 

sequence, and two best minutiae sequences are matched by using dynamic programming. To avoid fingerprint 

alignment, A.M. Bazen and S.H. Gerez [Pre-alignment base3] introduced an intrinsic coordinate system based 

on portioned regular regions defined by orientation fields. All pre-alignment schemes have some limitation if 

reference point does not exist. These schemes always suffer from poor quality fingerprint images and images 

with portion of fingerprint. 

B) Minutiae structure-based approach: Several minutiae matching approaches are based on relationship 

between minutiae and its neighbored minutiae. X. Jiang and W.Y. Yau [Minutiae1], N. K. Ratha et al. 

[Minutiae2], and X. Chen et al. [Minutiae3] proposed their methods, which relied on similarity measures of 

global and local minutiae relationships, in order to enforce their local matching results. X. Jiang and W.Y. Yau 

[Minutiae1] used 2-nearest neighbor minutiae to form fixed-length feature vectors with respect to distances and 

angles in the polar coordinate system. N. K. Ratha et al. [Minutiae2] and X. Chen et al. [Minutiae3] employed 

unfixed-length feature vectors, which included all minutiae whose distances from the central minutia were less 

than a threshold. The difference between their feature vectors was that ridge count information was used by N. 

K. Ratha et al. [Minutiae2] while adaptive bounding box was used by X. Chen et al. [Minutiae3]. Y. He et al 

[Minutiae4] proposed a minutiae simplex that describes a second order Euclidean space-based relative structure 

between two minutiae. S.Chikkerur. et al.[Minutiae5] used ‘K’ nearest neighbors of a minutia within a fixed 

radius, named K-plet, to construct as a node of the graphs for matching. They also introduced the “coupled 
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breadth first search” (CBFS) algorithm to traverse through nodes of graphs for calculating a matching score. 

Among minutiae structure-based approaches, one of most popular methods is based on the generalized Hough 

transform (GHT) for point pattern matching; i.e. N.K. Ratha et al. [Minutiae6] and S.H. Chang et al. 

[Minutiae7]. In order to deal with strong deformation of fingerprint, Z.M. Kovacs-Vajna [Minutiae8] used a 

triangular matching method based on a fact that local distortion was less than global distortion. Moreover, the 

couple triangle similarity measure in two fingerprints was improved by constructing them as a fuzzy feature set, 

described by X. Chen et al. [Minutiae9]. However, this scheme needs highly computational complexity because 

couple triangle similarity should be measured for all possible cases of minutiae triangle in both fingerprints. In 

addition, W. Xu et al [Minutiae10] introduced growing and fusing techniques, using neighboring triangles of the 

candidate minutiae triangles, to grow into larger local structures. X. Liang and T. Asano [Minutiae11] presented 

minutiae polygon descriptor by including more information near bifurcation. This descriptor consists of minutia 

type, orientation, and minutia shape, which has higher ability to tolerate distortion. 

C) Descriptor-based approach: Some fingerprint matching methods add some useful side-information or 

some additional descriptors, related to minutiae. Most descriptors are based on textures which represented 

global characteristics of fingerprint with less sensitive to local distortion. Some matching techniques employed 

orientation fields to robustly deal with low quality fingerprint. Several types of rotation-invariant descriptors, 

estimated from orientation of sampling points around the minutia, have been employed in minutia matching 

schemes by M. Tico and P. Kuosmanen [Descriptor1], X. Tong. et al. [Descriptor2], X. Wanga et al. [Descriptor 

base3]. Furthermore, the spuriously matched pairs can be removed by examining additional orientation-based 

ridge patterns, introduced by L. Sha and X. Tang [Descriptor4]. Several different attempts propose to add ridge 

information to minutia-based matching such as, the means of sampling points in associated ridge of a minutia by 

A.K. Jain et al. [Minutiae Extraction2] and  X. Luo et al. [Descriptor5], ridges counts among matched minutiae 

pairs by [L. Sha et al. [Descriptor6]], and ridge curvature by [X. Wanga et al. [Descriptor base3]]. A.M. Bazen 

and S. Gerez Bazen [Descriptor7] used thin-plate splines to estimate nonlinear distortion between two minutiae 

sets, and remove the distortion prior to the matching stage. In case of fingerprint with very few minutiae, 

minutiae based matching algorithms will not perform well. To solve this problem, ridge structure is the most of 

reliable features covering the whole region of a fingerprint image. For example, the interested approach, 

proposed by J. Feng. et al. [Descriptor8], uses the dynamic programming to compare thinned ridges directly. 

However, the totally ridge-based method requires more extracting and matching time. On the other hand, to take 

advantage of fingerprint texture containing with a limited range of spatial frequency, some methods were 
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proposed to reduce distinctive capabilities by decomposing texture at different frequency scales and orientation. 

A. Jain et al. [texture1] introduced fingercode, fixed-size texture descriptor, which obtains by filtering each 

sector with 8 oriented Gabor filters and then computing an average absolute deviation (AAD) of the pixel values 

in each cell. Hence, authors used the fingercode as feature maps for a possible matching up to ±45� orientation. 

Obviously, disadvantage of this approach was the need of accurate core location to centralize the fingercode. 

This is not possible in case of bad prints. Subsequently, A.K. Jain et. al [Descriptor9] proposed combination of 

texture information with minutiae features to improve recognition performance. Ross et al. [Descriptor10] 

employed the hybrid matcher that combines minutiae and texture features. Recently, the fingercode was applied 

as minutia’s texture descriptor in order to increase minutiae distinctiveness by F. Benhammadi et al. 

[Descriptor11]. 

Different from the above mentioned methods, our propose combines minutiae-based technique and ridge-

based technique together in order to take advantages of noise robustness, potential ability to endure with non-

linear deformation, local feature pair matching with low computational complexity, and small additional 

descriptors requirement. To achieve this goal, two local network relationships are utilized i.e.; the relationship 

between minutiae to their adjacent ridge, and the reverse relationship from ridges to their adjacent minutiae as 

shown in Fig. 1(a) and Fig. 1(b), respectively. These relationships are arranged in the form of a non-directional 

graph G(V,E), named MR-graph, under translation and rotation invariance. Similar to the way a human expert 

matches fingerprints, matching process is designed to grow from smaller local matching region into larger 

matching region by utilizing sub-graph clustering in both input and template fingerprints simultaneously. Then, 

the global matching is finally performed by finding the best combination of the local matched clusters with 

weighted bipartite matching technique. A similarity score is evaluated by fusing percentage of matched minutiae 

over a total number of minutiae, a number of matched minutia, and cluster denseness. Experiments have been 

conducted on several databases of FVC2000[FVC2000], FVC2002[FVC2002], and FVC2004[FVC2004]. The 

preliminary results show that our method not only improves matching performance, especially with severe non-

linear distortion on fingerprint database FVC2004 DB1, but also greatly requires less computational complexity. 
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(a) Minutia to adjacent ridges relationship          (b) Ridge to adjacent minutiae relationship 

Fig. 1. Example of local relationships on large deformation fingerprints (from FVC2004 DB1b 102_3 and 

102_5). 

This paper is organized as follows. Preprocessing and feature representations are explained in Section 2. The 

MR-graph is described in Section 3. The matching process is introduced in Section 4. The experimental results 

and evaluation are presented in Section 5. Finally, this work is concluded in Section 6. 

2. Preprocessing 

2.1. Feature-representation 

For a given grayscale fingerprint image, the image with thinned ridges is obtained, and minutiae are extracted 

and arranged into the minutiae set using the technique described in [Minutiae Extraction1, Minutiae 

Extraction2]. By following J. Feng. et al. [Descriptor8], ridges associated with bifurcations are firstly split into 

three ridges. It should be noted that short ridges are removed in order to clear up noise. Then each clear ridge is 

given a label and sampled with a uniform step size, �. The spr,s is defined as a sampling point at the sth order of 

the rth ridge. An example of ridge sampling is shown in Fig. 2. 
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Fig. 2. Substructure of ridge representation. 
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In general, local ridge structure is widely used for increasing distinction of minutiae for fingerprint matching 

[Descriptor3, Descriptor based5-6]. The concept of adjacent ridges tracking is used to dealing with elastic 

distortion [Descriptor7-8]. Following this adjacent ridge concept, two types of Minutia-Substructure are 

defined by using its 5 associated points (respectively, 3 associated points) for termination (respectively, 

bifurcation) as shown in Fig. 3. The termination minutia’s substructure composes of five forward connected 

ridges and four reverse connected ridges, denoted by iFFFFFRRRR .&



 }2,1,0,1,2,2,1,1,2{ , where 

.i is a set of minutia-substructure ridges of the ith minutia. The first subscription represents the relative ridge 

order from minutia location and the second subscription denotes the sub-ridge’s direction referred to its minutia 

direction; i.e. R: reverse, F: forward, as shown in Fig. 3(a). Similarly, the bifurcation minutia substructure 

composes of four forward connected ridges and three reverse connected ridges, denoted by 

iFFFFRRR .&


 }2,1,1,2,1,0,1{  as shown in Fig. 3(b). Each minutia substructure, mi, contains minutia’s 

descriptors as }},,,{,,,{ ikkkiiii kforsryx .&� "/� where xi, yi and �i represent x-y coordinates and direction 

of the ith minutia, respectively. The ridge features, /i, compose of the label of ridge, rk; the order sampling point, 

sk; and the ridge flow, "k; of the kth order associated point of the ith minutia. The ridge flow "k is assigned with 1 

(respectively, 0) when ridge direction corresponds (respectively, reverses) to minutia direction as follows, 

�
�
� 0


�
Otherwise

ik
k

90||
0
1 ��

"
,     (1) 

where �k is ridge direction at the kth associated point of the ith minutia. 
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(a) Termination Minutia Substructure  (b) Bifurcation Minutia Substructure 

Fig. 3. The minutia substructures and their ridge labels. (Solid dots represent minutia location; squares represent 

associated points) 

2.2. Minutiae filtering 

Generally, fingerprint images are usually contained with noise and low quality areas. Segmentation process 

may incorrectly classify into high quality fingerprint region, low quality fingerprint region, and background. 

Some spurious minutiae from low quality region are possibly remained and passed into the matching process. 



7 
 

Therefore, minutia filtering process is required to reduce these artifacts and to improve matching results. In this 

section, a simple filtering process based on proposed minutia-substructure is introduced.  

From general inspection, the ridge ending points at finger boundary usually arrange in lines with the same 

orientation. On the other hand, most spurious minutiae locate closely to others in low quality region of 

fingerprint. Both cases can be simply detected by considering reliable status of associated ridge, 1k; k&., in 

minutia substructure. Initially, an associated ridge that locates far from the end of ridge in the related dirction is 

defined as ‘a reliable point’ (1k = 1), otherwise it is defined as ‘an unreliable point’ (1k = 0) with conditions as 

follows, 

�
�

�
�

�
�
0
�2

�
.

0
1

0
1
1

Otherwise
andTLs
andTs

kekk

kek

k "
"

1
     (2) 

where sk, "k, and Lk are the simpling point, the ridge flow, and the ridge length of the kth associated point, 

respectively. Te denotes an acceptable threshold. Finally, any minutia is defined as unreliable minutia if it 

satisfies a condition of 11R + 1-1R  0 1 (respectively, a condition of 11R + 10R + 1-1R  0 2) for termination minutia 

(respectively, bifurcation minutia). An example of minutiae filtering is shown in Fig. 4. 

    
(a) Detected minutiae before filtering  (b) Minutiae after filtering 

Fig. 4. Minutiae filtering results in thinned fingerprint; (“×”) are unreliable minutiae. 

3. Graphical view 

Regarding to the encoding of local minutiae and ridges relationship, the structure of proposed MR-graph is 

described in this section. The local information from minitia-substructure mi = {xi, yi, �i, /i={rk, sk, "k, for 

k&.i}} (described in section 2.1) are reorganized into a non-directional graph, named MR-graph. This graph 

consists of two types of vertex sets; VM and VR, representing the minutia set and the ridge set in fingerprint 
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respectively. This graph also consists of an edge set, E, representing the connectivity between VM and VR as 

shown in Fig. 5.  

 

Fig. 5. Example of the MR-graph structure. (Circle represents the minutia vertexes, Square represents the ridge 

vertexes, and arrow represents edge). 

VM, minutiae vertex set, is described by a vector iiiiiM tyxmV ,,,{{{ ��� }}}}{ 11
M

i
N
kk

ie ��
. , where:

 

1. |M | denotes the total number of minutiae in fingerprint, 

2. xi ,yi  denote the coordinate of the ith minutia, 

3. �i denotes its orientation against the horizontal axis in anticlockwise direction, 

4. ti denotes the minutia’s type (termination or bifurcation), 

5. ek denotes the connected edge at the kth associated ridge, 

6. N.i denotes the total number of edges from mi to ridge vertex in VR (5 for termination and 3 for 

bifurcation), 

VR, ridge vertex set is described by a vector }}}{{{ 11
R
j

N
nnjR erV ��
3��  where:  

1. | R | denotes the total number of ridges in fingerprint, 

2. en denotes the nth edge of the jth ridge, 

3. N3  denotes the total number of edges of the jth ridge. 

E, edge set is described by }}},),(,,,{{{ 1
E
nkkn skkrmeE �(�� " , where:  

1. | E |denotes the total number of edges between minutiae vertexes and ridge vertexes, 

2. m denotes the mth minutia in VM, 

3. r  denotes the rth ridge in VR, 

4. k denotes the order of associated ridge from the mth minutia to the rth ridge, k&.  (details in Section 

2.1), 

5. )(k(  denotes the ridge distance of the kth connected ridge, defined by a lookup Table 1, 

VM

A

B

3
D

2

C

4

5

1

VR
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6. sk denotes the order sampling point of the kth connected ridge,  

7. "k denotes ridge flow of the kth connected ridge. (Details in Section 2.1). 

Table 1 Ridge distance between minutia and the kth associated ridge  
 

TERMINATION MINUTIA 
k 2R 1R -1R -2R 2F 1F 0F -1F -2F 

((k) 2 1 -1 -2 2 1 0 -1 -2 
BIFURCATION MINUTIA 

k 1R 0R -1R 2F 1F -1F -2F 
((k) 1 0 -1 1 0 0 -1 

3.1 Definition of double-minutiae relationship substructure  

The relationship between double-minutiae is utilized as a feature vector for recognition. The proposed feature 

vector is simply obtained from a loop nest between minutiae vertex and ridge vertex in MR-Graph. The 

proposed feature vector composes of two feature sets; the geometric-relationship feature set and the ridge-

relationship feature set 4 5);,(2 )(
pqpqpqpq RMR &� '67 ' , where p and q denote the serial numbers of minutiae, and 

'  denotes a connected ridge in the connected ridge list, pqR , from pm minutia  to qm minutia, respectively. The 

geometric-relationship feature set, pqpqpqpqpq vul 7% &),,,( , composed of basic features such as Euclidean 

distance and relative angle between two minutiae. Each feature is defined as follows. 

�
2

),(),( qqpppq yxyxl 
� denotes a displacement between two minutiae, where ),( pp yx  and ),( qq yx  

are coordinates of pm minutia and qm minutia, respectively, 

� ppqpqu �% 
�  denotes an angle between minutia direction, p� , and the direction from pm  to qm , 

where � �)/()(arctan pqpqpq xxyy 

�% , an angle between two minutiae in x-y plane,  

� qpqpqv �% 
�
 
denotes an angle between minutiae direction q�  and direction from pm  to qm . 

The ridge-relationship feature set, pqpqpqpq Rrcpc && '6 ''' ;),( )()()( , represents a distortion-invariant feature set by 

analyzing ridge relationship between two minutiae as follows. 

� )('
pqpc

  

denotes a sampling point count along the '  ridge from pm  to qm ., which is defined by
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� The p
isp ,' and q

jsp ,' denote the ith and jth sampling point order of mp and mq minutiae along the '  ridge, 

respectively. The pr and qr  denote ridges from pm and qm minutiae, respectively. And the )('
pqpc  is set 

to None if th'  ridge cannot link between minutiae mp and minutiae mq. )('
pqrc

 
denotes a ridge count 

from pm  minutia to qm  minutia along the th'  ridge
 
, which is defined by 

Otherwise
rrif

None
kk

rc qpqp
pq

'' ��

�
�
� (
(

�
)()()(  

where pk  is an associated ridge order between the pm  minutia and the th' ridge, and qk  is an 

associated ridge order between the qm  minutia and the th' ridge, obtained by the look-up Table 1. 

And the )('
pqrc  is set to None if th'  ridge cannot link between minutiae mp and minutiae mq. 

For better explanation, an example of ridge count calculation between two minutiae is given as shown in Fig.

6. Two minutiae structures, qm  and qm , connect each other within three ridges; BR , DR , and ER . First BR  

ridge from the top connects qm  minutia structure with ‘1R’ associated ridge, and connects qm  minutia structure 

with ‘2F’ associated ridge. Therefore, ridge count between these two minutiae is 

1)21()2()1()( 
�
�(
(� FRrc B
pq  from the look-up Table 1. The second RD ridge count can be obtained by 

2)11()1()1()( 
�

�(

(� FRrc D
pq . The last RE ridge count is 2)02()0()2()( 
�

�(

(� FRrc E

pq . 

(a) 

AR

BR
CR

DR

ER FR
GR

p

qupq

vpq

lpq

 (b) 

RA
RB
RC
RD
RE
RF
RG

-1

-2

-2

p q rc pc

pc

rc

5

4

4

AR
2R

CR
BR

DR

ER

FR

GR

2F

1R1F

0F

-1R-1F

-2R-2F

2R2F

1R1F

0F

-1R-1F

-2R-2F

p

q

2R

1R

-1R

-2R

2F

1F

0F

-1F

-2F

Fig. 6. The demonstration of relative features set between two minutiae substructures. (a) the geometric-

relationship features (b) the ridge-relationship features

The proposed structures and feature sets have two major advantages in practical fingerprint matching as 

following; 

(i) Dealing with minutiae sub-patterns alignment: The proposed structures and feature sets allow 

minutiae sub-pattern alignment or sub-pattern pre-matching if their associated ridges of minutiae-

substructure in Fig. 3 possess one of the possible correspondences in Table 2, where T and B 

represent terminate minutia and bifurcation minutia, respectively, 
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Table 2. All possible correspondences between ridges when a termination and a bifurcation are matched.  
Matched Case Forward Reverse 

T-T 

-2F,-2F -1F,-1F 0F, 0F 1F, 1F 2F,2F -2R,-2R -1R,-1R 1R, 1R 2R, 2R 

-2F,-1F -1F, 0F 0F, 1F 1F, 2F  -2R,-1R -1R, 1R 1R, 2R  

-1F,-2F 0F,-1F 1F, 0F 2F, 1F  -1R,-2R 1R,-1R 2R, 1R  

T-B 
-2F,-2F -1F,-1F 0F, 1F 1F, 2F  -2R,-1R -1R, 0R 1R, 1R  

-1F,-2F 0F,-1F 1F, 1F 2F, 2F  -1R,-1R 1R, 0R 2R, 1R  

B-B -2F,-2F -1F,-1F 1F, 1F 2F, 2F  -1R,-1R 0R, 0R 1R, 1R  

 

(ii) Improving more robust graph connectivity: In Fig 7, we select an instance to show this issue. The 

example shows a local relationship between two minutiae and their adjacent ridges.  We assume a 

crease is applied to it, causing the connectivity between minutia mp and minutia mq to damage in the 

dashed area. However, the proposed graph is still able to recover this uncompleted minutiae links 

until all adjacent ridges in minutia-substructure are completely destroyed, as the red and blue 

trajectories in Fig 7b. 

mp mq

 

mp mq

Fig. 7. Example of ridge connectivity recovering. 

3.2 Computation of double-minutiae relationship similarity 

In this section, the local similarity of the proposed feature sets (details in Section 3.1) is presented by a fuzzy 

scoring strategy. First, suppose the G
pm is a reference minutia, and the G

qm  is one of its adjacent minutia in the 

‘G’ input fingerprint. The double-minutiae relationship feature set is );,(2 )( G
pq

G
pq

G
pq

G
pq RMR &� '67 ' , where G

pq7  

represents the geometric-relationship feature set, and )('6G
pq  represents the ridge-relationship feature set, from 

G
pm  to G

qm  along '  ridge. G
pqR  is the connected ridge list between G

pm  and G
qm . Second, suppose the H

rm is a 

reference minutia, and H
sm  is one of its adjacent minutiae in the ‘H’ template fingerprint. The double-minutiae 

relationship feature set between H
rm and H

sm  is expressed as );,(2 )( H
rs

H
rs

H
rs

H
rs RMR &� )67 ) , where H

rs7  and 

)()6 H
rs  denote the geometric-relationship feature set and the ridge-relationship feature set from H

rm  to H
sm  along 

ridge ) , respectively. H
rsR  is the connected ridge list between H

rm  and H
sm . The similarity between G

pqMR2  

and H
rsMR2  is considered under the conditions as follows, 
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]1,0[),(# match &� H
rs

G
pqBoxM 777         (5)

 
]5,0[),(# )()(

match &��
r

rH
rs

rG
pqf 666 6       (6) 

where
�
�
� 0
0


�
otherwise

TpcpcandTrcrcif
f pcrc 2121

21 0
1

),( 666
,   (7) 

where #7match represents the similarity of the geometric-relationship  feature obtains from the adaptive matching 

bounding box, MBox (71, 72), introduced by X. Luo et al. [Descriptor5]. #6match denotes the total number of 

similar links based on ridge coordinate-based feature set. f6 (61, 62) in Eqn 7 represents the ridge coordinate-

based similarity condition, which simply handle with several minutiae pattern problem as shown in Table 2. rcT  

and pcT are the error thresholds of ridge count and point count, respectively, which assigned depending on 

fingerprint sensor type. In order to combine matching result from two feature sets, the similarity level is 

computed by using fuzzy function in Eqn 8. Then the similarity of each minutiae pair is consolidated by 

similarity score of its links, 9, in Eqn 9-10. 

�
�
�

�

��
�

�

�

�2
�2
��
��

�

otherwise

SRSRsl H
rs

G
pq

0
0#,1#7.0
1#,3#5.1
1#,2#3.1
1#,1#1

),(

matchmatch

matchmatch

matchmatch

matchmatch

76
76
76
76

 .   (8) 

�
&

�
9),(

),(),(
sq

H
rs

G
pq

H
r

G
p SRSRslmmSL .     (9) 

�
&

�
9),(

),(),(
rp

H
rs

G
pq

H
s

G
q SRSRslmmSL .                  (10) 

In fact, the similarity measure of all minutia pairs based on double-minutiae relationship feature requires 

O(M2×N2) computational time, where M and N are number minutiae in input fingerprint and queued fingerprint, 

respectively. In this approach, this exhaustive computation is avoided by local clustering and global alignment 

techniques using graph-based matching method that described in the next section. 

4. Matching process 

The main process of matching method consists of two majority parts: (i) Graph clustering for local similarity 

measurement, minutia grouping, and adaptive fingerprint alignment, simultaneously, (ii) Cluster combination 

for local cluster merging. 
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4.1 Graph clustering  

Similar to a conventional graph traversal, the Coupled Breadth First Search technique (CBFS), introduced in 

S.Chikkerur. et al.[Minutiae5], is modified to consolidate simultaneously onto minutiae vertexes and ridge 

vertexes between two fingerprints without explicit alignment. A starting minutia pair is firstly set as a reference 

vertex.  The edges of the reference minutia vertex to its adjacent ridge vertex unmasked are associated. These 

associated ridge vertexes are then expanded to the next connected minutia vertexes unmasked in order to 

measure the second order similarity (details in Section 3.2). All new enough similar minutia vertexes are 

selected using greedy algorithm and then colored into cluster. Finally, the selected pairs are considered as the 

new reference pair for performing their new local matching. 

The overview of algorithm is given in Fig. 8.  The graph traversal occurs in two graphs G(V,E) and H(V,E) 

corresponding to input fingerprint and queued fingerprint, simultaneously, as mentioned in Section 3. Suppose 

VM, VR, and E are minutia vertex set, ridge vertex set, and edge set in each fingerprint, respectively. And CM:i, j; 

denotes the cluster labeling table of each minutiae pair. 

 
Let G(V,E) and H(V,E) represent the graphs corresponding to the two 
fingerprint 
Let GQ and HQ represent a FIFO queue. 
Let CM : i ,  j ; represent cluster’s color table. 
Let Score[k] represent matching score of cluster k. 
Let LC represent largest cluster’s color. 
i = source minutia node of G 
j = source minutia node of H 
 
A. Initialize 
          1.  Set all CM : i ,  j ;  =  WHITE 
          2.  LC         =  WHITE 
          3.  TLC                       =  TMinLC   
 
B. Couple Breadth First Search Algorithm 
For all i & VM

G and j & VM
H 

    if (CM : i ,  j ; = WHITE and IsCandidatePair (i ,  j , LC)) 
           1.  COLOR = NEW COLOR  
           2.  Enqueue( GQ , i )    and   Enqueue( HQ , j )   
           3.  CM : i ,  j ;  = COLOR   
           4.  While (GQ and HQ are not empty) 
                 a. p = Dequeue( GQ )  and  r  =  Dequeue( HQ ) 
                 b. While(( ' = neighbor ridge of p    and   
                                  ) = neighbor ridge of r)    are not empty)  
                    While(( q = connected minutia of '  and   

                s = connected minutia of  ))  ) are not empty) 
                                  SL( p, s ) =sl(SRG

pq , SRH
pq) 

                 c. Find matched pair by Greedy Algorithm 
                 d. For each match pair ( p, s ) 
        If (CM : q ,  s ; = WHITE and SL( p, s )  > TS) 
                   I. Enqueue( GQ , q )  and Enqueue( HQ , s )  
                   II. CM : q ,  s ;           = COLOR; 
                 III. Score [COLOR]   = Score [COLOR]   + SL( p, s ) 
           5. if  Size(CM : q ,  s ;)  > TLC  
 a. LC   = CM : q ,  s ; 

b. TLC  = Size(CM : q ,  s ;) 
c. Update Affine transform’s parameter ( �,  x, and  y) 

Fig. 8. Graph cluster algorithm. 
 

Function bool IsCandidatePair (i ,  j , LC) 
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A. If LC 8WHITE 
         1.Mapping into the same axis by Affine transformation 
                 MH

j< = Affine_transform(MH
j,  � LC,  x LC,  y LC) 
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             return TRUE 
         3. Else    return FLASE  
B. Else            return TRUE 

Fig. 9. Potential search space reducing algorithm 

 
Here an example of graph traversal algorithm on two fingerprints is given in Fig. 10. The input fingerprint 

and queued fingerprint are represented by graphs G and H on the left and right, respectively. And each stage of 

the algorithm is described as the follows. 

Step I, we assume a starting minutia pair (circle vertex) with g[1] and h[1] to consider as the reference node 

in both graph and label them into a new cluster (colored black). Next, all adjacent ridge vertexes unmasked 

(square vertex) of them are extracted and then enqueued into the interesting ridge list IRL (colored gray). 

Step II, the interesting ridges in IRL, consisting of GCBA eee ),,( 111  and HCBA eee ),,( 111 , are firstly dequeued in 

order to traverse next minutiae unmarked. The new candidate minutia pairs list (g[2] , h[2]), (g[3], h[3]), and 

(g[4] , h[4]) are then extracted to compute the secondary feature as follow, 

])),(,(,)),(,([ 12121212121212
HCAGCA SRSRSR 667667�  

])),(,(,)),(,([ 13131313131313
HBAGBA SRSRSR 667667� , 

]))(,(,))(,([ 1414141414
HCGC SRSRSR 6767� . 

After that, these candidate minutia pairs are considered with greedy algorithm based on the local similarity in 

section 2.3.2. Finally, the selected pairs are enqueued into the interesting minutia list IML (colored gray).  

  Step III, similar to Step I, the new unmarked minutia pairs (g[2], h[2]), (g[3], h[3]), and (g[4], h[4]) in IML 

are added into cluster (colored black) and their adjacent ridge vertexes GDe )( 3  and HDE ee ),( 33  are enqueued 

(colored gray) into IRL again in order to traverse in the next step. 

Step IV, repeat Step II, the interesting ridges in IRL, GDe )( 3  and HDE ee ),( 33 , are dequeued to search their 

neighbors. In this case, only (g[5], h[5]) (colored gray) can be a matched pair from the connectivity 

]))(,(,))(,([ 3535353535
HDGD SRSRSR 6767� . 

However, there is no more valid neighbor to traverse and therefore the algorithm finally terminates. 
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Step I Step II   

 
Step III Step IV    

Fig. 10. Example of MR-graph propagation. (Circle represents the minutia vertexes, Square represents the ridge 

vertexes) 

In order to reduce the exhaustive search space, the global alignment for two fingers mapping is attempted to 

achieve simultaneously during the graph clustering process. Because the minutia pair is considered to be a 

match only if the error between it and its transformed pair is satisfied the condition in Fig. 9, where r0 and �0 

denote distance and angle error acceptable thresholds, respectively. Note that these two values are related to the 

deformation acceptable of each sensor. According to fingerprint alignment, three parameters consisting of 

relative translation (  x and   y) and relative rotation  � are required to recover. However, the scaling is not 

considered here because all fingerprints in each database are acquired from the same device. In this approach, 

these three parameters,   x,   y, and  �, are simply derived by considering the relative information of minutia 

pair list H
kj

G
ki MM )()( ,  in the largest cluster LC as the follows,  
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where G
kix )( , 

G
kiy )(  and H

kjx )( , 
H

kjy )(  in Equ. 11 represent the minutia position of input fingerprint and queued 

fingerprint of the kth pair in cluster LC, respectively. 
Gx , Gy , and Hx , Hy  are the cluster centroid of input 

fingerprint and queued fingerprint in cluster LC, respectively. In Equ. 12, G
ki )(�  and H

ki )(�  denote the minutia 

direction of input fingerprint and queued fingerprint of the kth pair in cluster LC, respectively. G
k%  and H

k%  

denote the direction from the k-1th minutia to the kth minutia of input fingerprint and queued fingerprint in 

cluster LC, respectively, computed by 

 ��
�
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�
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G
k

G
k

G
k

G
kG

k xx
yy

1

1arctan%  , ��
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H
k

H
k

H
k

H
kH

k xx
yy

1

1arctan% .   (13) 

And N is number of matched pair minutiae in cluster. Note that the largest cluster will be activated when the 

cluster size is higher more than threshold TMinLC.  

4.2 Cluster combination (Minutiae correspondence) 

After successively graph clustering, some minutia pair may not be able to travel by adjacent ridge 

connectivity thoroughly. Anyway, each remained minutia pairs have already colored into clusters that can be 

also applied another graph-based technique to deal with cluster merging problem. The goal of this section is to 

finely match the remained minutia pairs by maximizing the combination score, corresponding to the similarity 

of each minutia pair and its cluster size as illustrated in Fig. 11(a). In this approach, this problem is treated as a 

weighted bipartite matching problem, which can be solved by the minimum cost max flow technique L. R. Ford  

and D. R. Fulkerson [Max flow1], J. Liu. [Max flow2]. 

     
(a)          (b) 

Fig. 11. Example of cluster combination problem (a) Before cluster combination (b) Cluster combination result. 
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Fig. 12. Graphical view of bipartite matching by minimum cost max flow technique. 

 

The list of candidate minutia pairs, which is satisfied with the alignment condition in Fig. 9, is reorganized 

into a new bipartite graph P as the following. First, this graph is constructed with edge weights ),( H
y

G
x mmw  for 

all edge Emm H
y

G
x &),(  , where GG

x Mm &  and HH
y Mm &  represent minutiae in input fingerprint and queued 

fingerprint in candidate pair list, respectively. Second, the additional s and t nodes are included as source and 

sink node of graph P, respectively, as shown in Fig. 12. Finally, the constraint of each edge is set, i.e., an edge 

),( G
xms   of cost zero every GG

x Mm & , an edge ),( tmH
y  of cost zero every HH

y Mm & , and an edge ),( H
y

G
x mm   

of cost ),( H
y

G
x mmw
  for every Emm H

y
G
x &),( .  

A list of resulted monogenic pairs ),( HH
b

GG
a MmMm &&   will be achieved by solving a flow from s to t 

that must satisfy the capacity constraints, i.e., the flow over an edge must not exceed its capacity, and the flow 

conservation constraints, i.e., the flow out of s must be the same as the flow into t. And the cost of a flow is the 

sum over cost = �
 ),( H
b

G
a mmw    for all edges e of P. For one-to-one matching guarantee, the capacity of 

every edge is set to 1 for no two nodes on GM  that match with the same node of HM  and vice versa.  

Solving the minimum cost flow problem of the generated flow network is equivalent to finding the maximum 

flow (maximize number node) with the minimum cost (minimize �
 ),( H
b

G
a mmw ) . In our work, the edge 

weights ),( H
y

G
x mmw  are assigned based on the combination of the similarity score of each minutia pair and its 

cluster priority, which is described as follow,  

),(5.0),(),( =!�� H
y

G
xM

H
y

G
x

H
y

G
x mmCsizemmSLmmw ,   (14) 

where ),( H
y

G
x mmSL is the minutia pair similarity between G

xm  and H
ym  in Eqn. 9. ),( =! H

y
G
xM mmCsize  denotes the 

cluster priority, corresponding to size of cluster ),( H
y

G
x mm . Fig. 11(b) shows an example of the resulted of 

matched pairs combination, which successfully achieves the optimal largest number of matches and minimum 

cost.  

S t
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4.3 Similarity Scoring 

Generally, in order to evaluate the similarity between two fingerprints as a genuine or imposter, most 

topology of fingerprint similarity scoring on minutiae-based system is referred to two measurements. 1) A ratio 

of the number of matched minutiae to the number to total minutiae (mm2/MN). 2) The number of matched 

minutiae (mm), where mm is the number of matched minutiae between two fingers; M and N are the numbers of 

minutiae on input and query fingerprints, which usually considered on the overlapped region of two fingerprints. 

However, from general inspection, the ratio of similar minutiae fails in the quality fingerprint, and the number 

of matched minutiae fails in the small overlapping fingerprints, respectively.  

In this paper, to improve the reliability of similarity scoring, we propose an additional matching strategy 

from the characteristic of minutia clusters, called Cluster Denseness, that formulated as 

� =!�
pairmatchedaremm

H
b

G
aMCD

H
b

G
a

mmCsizef
mm

DensenessCluster
),(

),((1    (15) 

 

�
�
�

�

��
�

�

�

2=
2=
2=

0

�

otherwise
n
n
n

n

nfCD

10
1088
865
642

41

)(
,      (16) 

 
where mm is the number of matched minutiae between two fingers in the overlapped region and fCD(n) denote 

the fuzzy cluster score function. The final matched score is obtained by fusion different strategies in score level, 

i.e., SA = mm2/(MN), SB = mm , and SC = Cluster Denseness according to heuristic rule-based. We just select a 

fusion of the PRODUCT and a decision tree:  

Product rule:  

 )1log( �� SCSBSA
CBA SSSScore 777 .    (17) 

where 7SA, 7SB, and  7SC are the weight fractions among the ratio of similar minutiae SA, the number of matched 

minutia SB, and the cluster score SC, they are differently selected based on the quality and deformation of 

fingerprints in each database. Note that +1 is used to avoid log(0). 

5 Implementations Evaluation 

All experiments discussed in this paper are conducted on public fingerprint databases used in the Fingerprint 

Verification Competition FVC2000 [FVC2000], FVC2002 [FVC2002], and FVC2004 [FVC2004], which 

include 800 fingerprint impressions from 100 fingers (a finger provides 8 impressions). In each database, dry, 
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wet, scratched, distorted, less overlapped, and markedly rotated fingerprints were also adequately captured. The 

performance of approach fingerprint matching has been reported in terms of matching accuracy including the 

corresponding false accept rates (FAR: the total number of genuine tests with no rejection is (8×7)/2×100 = 

2800), false reject rates (FRR: the total number of false acceptance tests with no rejection is (100×99)/2 = 4950) 

and their corresponding equal error rates (EER), and computational complexity. 

Firstly, we give the experiment of performance comparison among various similarity scoring: the percentage 

of matched minutiae over the total number of minutiae mm2/MN (SA), the number of matched minutia mm (SB), 

the cluster denseness (SC), and the final fusion by Product rule (See section 4.3). The results on four data sets of 

FVC2002 and FVC2004 are reported in terms of equal error rates EER and average matching time on Pentium 

M 1.5GHz with 376Mb RAM in Table 3. During the matching process of each database, the weight fractions 

(7SA, 7SB, and, 7SC) are tuned for fine performance in the training samples as best as we could.  

 
Table 3 The EERs and the match times of proposed matching algorithm with four similarity measurements on 
four data sets of FVC2002 and FVC2004 
 

 mm2/(MN) 
SA 

mm  
SB 

Cluster 
SC 

 
Fusion 

 
Time(ms) 

FVC2002 DB1 3.66 11.58 5.61 1.89 48.6 
FVC2002 DB2 1.31 10.08 5.89 0.85 90.1 
FVC2004 DB1 8.16 12.31 9.87 5.12 68.7 
FVC2004 DB3 8.38 8.25 10.26 5.21 60.2 

 
 

To clearly analysis the characteristic of various similarity scoring, we perform two scatter plots against SA, 

SB, and SC matcher for all examples in genuine match (colored red) and imposter match (colored blue) on 

FVC2002 DB2 and FVC2004 DB1 in Fig 13(a1)-(b1), and their probability distribution are shown in Fig 13(a2)-

(b2), respectively. The ROC (receiver operating characteristic) curves of our matching algorithm with different 

similarity scoring on FVC2002 DB2 and FVC2004 DB1 that plotted in Fig.14(a) and Fig. 14(b), respectively, 

where FNMR and FMR denote the value of false non-matched rate and false matched rate, are shown an 

interesting explanation of the accuracy improvement. From the ROC curves, we can see that SA matcher can be 

well performed for imposter rejection but poor for genuine acceptation, especially the low quality image 

including many spurious minutiae. However, SC matcher is vice versa, resulting in better genuine indicating and 

poor with imposter rejection, especially the fingerprint that includes small number minutiae. And the Fusion 

matcher in Eqn. 17 can perform greatly better with higher accuracy both EER and FMR rate by taking the 

advantage of each combined matcher.  
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From the experiment, on data sets containing most good quality images such as FVC2002 DB2, acquired 

through optical sensor "FX2000", we select the fusion coefficients with parameters 7SA = 2, 7SB = 0, 7SC = 1. The 

EERs of these results are improved from 1.31% (SA) to 0.85% (Fusion). While for FVC2004 DB1 containing the 

severe distortions and bad quality image, acquired through optical sensor “Cross Match V300.”, that turned with 

parameter 7SA = 2, 7SB = 1, 7SC = 2, the Fusion method significantly achieves lower EERs from 8.16% (SA) to 

5.12% (Fusion). This evidence indicates that the fusion matcher plays an important role to discriminative the 

correct finger pair, especially in the case of the deformation image and bad quality image.  

 

         
(a1)                   (a2)                                                 (b1)           (b2) 

Fig. 13. Distributions of the three similarity measument for genuine matching (red) and imposter matching 

(bule) of our matching method on (a) FVC2002 DB2, (c) FVC2004 DB1; (Right) Scatter plot against 

SA(mm2/MN), SB(mm), and SC(Cluster Denseness); (Left) The probability distribution of SA, SB, SC and Fusion 

 

 
(a)                                                                           (b)  

Fig. 14. ROC curves of different similarity measurements on (a) FVC2002 DB2 and (b) FVC2004 DB1. 

Fig. 15. shows two matched results of same fingerprints with poor quality and large distortion. From the 

figure, we can see that, although most ridges in the overlapped region are poor quality but the minutia clustering 

result is still good. Moreover, the minutia cluster is also play an important role in improving more 

discriminative for a very credibility of the final fusion score of matching, while using only matched minutiae 

scoring is false. 



21 
 

         
(a) 

 
(b) 

Fig. 15. Matching result of two poor quality fingerprints from the same. (a) FVC2002 DB1 29_4.tif and 29_7.tif 

(b) FVC2004 DB1 52_3.tif and 52_8.tif 

 

Other two examples are given in Fig. 16 to illustrate the ability of our algorithm to handle elastic distortion 

problem. The two fingerprints are from the same finger and there exists strong nonlinear deformation between 

them. From the figure, if using only global transformation, there are many minutia pairs falling the bounding 

box region X. Luo et al. [Descriptor5] with the deformation cause. If using neighbored ridges to update the 

minutiae relationship, however, most minutiae in the overlapped region are matched. 

   
(a) 

 
 (b) 
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Fig. 16. Successful matching results by the proposed method of two elastic distorted fingerprints from the same 

finger, where minutia clustering plays an important role for correct alignment: (a) FVC2004 DB1 52_3.tif and 

52_4.tif, (b) FVC2004 DB1 64_2.tif and 64_3.tif. 

 

Next, to approve the efficacy of approach algorithm, the experiments are conducted on all databases of 

FVC2000, FVC2002, and FVC2004. We compare four majority matching types, based on A) Pre-alignment 

based S. Jirachaweng et al [Pre-alignment2], B) Minutiae structure-based (Y. He et al [Minutiae4], X.J. Chen et 

al [Minutiae3], X.J. Chen et al [Minutiae9]), and C) Descriptor based (X. Wang et al [Descriptor3], F. 

Benhammadi et al [Descriptor11], J. Feng et al [Descriptor8]). The equal error rates (EER) and matching time 

among various methods on all databases are summarized in Table 4 and Table 5, respectively.  

The results show that 11.75%, 9.25%, 21.62% and 14.27% of the reference points were not correctly located 

(Fail to enroll) on DB1-a, DB2-a, DB3-a and BD4-a, respectively. The remaining error cases are due to the 

noise or to the fact that the reference point is close to the border in poor quality images or to scars near the 

reference points in particular DB3-a. Moreover, the ERR for all databases FVC2002 are 12.5%, 11.7%, 29% 

and 18% as reported in Ref. [23], respectively. Then, our matching algorithm allows us obtaining improvements 

in comparison to the original approach. Moreover, this method is more effective compared to the one introduced 

in Ref. [21] because it deals with the localization variation. 

The ROC curves of the two methods on four databases are plotted in Fig. 11. From the ROC curves, we can 

see that our method is slightly better than the minutia-based one on DB1 and DB2, however, the latter is slightly 

better than the former on DB3 and DB4. Through the analysis of some examples of the ridge based method on 

DB3 and DB4, we found genuine matches with low scores are mainly due to the following problems: (i) fail to 

find correct initial minutia pairs; (ii) transformation estimated based on low-quality minutia pair is inaccurate. 

Although the preliminary results are not very satisfactory, the ridge-based algorithm is promising and lots of 

works need to be done. 

While many aspects in the current algorithm should be improved, the following problems may be the most 

important ones: 

(1) The alignment algorithm should be improved to handle fingerprints with fewer minutiae. 

(2) The matching algorithm should be improved to handle low quality fingerprints and fingerprints with 

strong deformation. 

(3) After matching, analyze the causes of the unmatched minutiae and give different punishment to 

different cases. 
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(4) A feature extraction algorithm should be specially designed for the ridge matching algorithm. 

(5) Computational complexity should be decreased. 

 

Table 4 Summary of the performance comparison among various fingerprint matching algorithms 

 Average Equal Error Rate in Percent (%) 

 FVC2000 FVC2002 FVC2004 

Algorithms DB1a DB2a DB3a DB4a DB1a DB2a DB3a DB4a DB1a DB2a DB3a DB4a 

S. Jirachaweng et al [Pre-alignment2]  - 1.11 5.06 4.38 4.38 3.10 6.84 3.83 6.30 7.50 5.39 6.48 
Y. He et al [Minutiae4] 1.79 0.99 3.54 1.64 1.96 1.11 4.31 2.77 9.36 7.34 8.53 2.72 
X.J. Chen et al [Minutiae3]     0.19 0.14 0.63 0.15 4.37 2.59 1.64 0.61 
X.J. Chen et al [Minutiae9] - - - - 0.26 - - - 4.06 - 1.35 - 
X. Wang et al [Descriptor3] - - - - 0.46 0.61 3.58 2.04 7.49 - 2.83 - 
F. Benhammadi et al [Descriptor11] - - - - 4.27 2.61 10.6 5.12 - - - - 
J. Feng et al [Descriptor8] - - - - 1.7 1.4 6.9 5.1 - - - - 
Proposed (Full evaluation) 4.63 0.76 5.47 1.89 0.85 5.30 3.44 5.12 6.41 5.21 5.25
Tenzor enh (Partial evaluation) 1.94 2.59 4.85 
Tenzor enh (our) 4.78 4.74 

 

Table 5 Summary of the matching time comparison among various fingerprint matching algorithms 

 Average Matching Time (ms) 

 FVC2000 FVC2002 FVC2004 

Algorithms/ conducted on DB1a DB2a DB3a DB4a DB1a DB2a DB3a DB4a DB1a DB2a DB3a DB4a 

S. Jirachaweng et al [Pre-alignment2] - - - - - - - - - - - - 
Y. He et al [Minutiae4] - - - - - - - - - - - - 
X.J. Chen et al [Minutiae3] 
AMD Athlon 1660+ (1.41 GHz) - - - - - - - - 770  810  
X.J. Chen et al [Minutiae9] 
AMD Athlon 1660+ (1.41 GHz) - - - - - - - - 1,120  1,080 - 
X. Wang et al [Descriptor3] 
Celeron (1.7 GHz) 256 MRAM - - - - 2.1 4.2 1.4 3.1 8.2  9.7 - 
F. Benhammadi et al [Descriptor11] 
 Pentium IV (3.6 GHz) - - - - 3,150 2,020 3,010 2,870 - - - - 
J. Feng et al [Descriptor8]  
Pentium IV (2.2 GHz) - - - - 110 118 74 83 - - - - 
Proposed 30.9 34.3 48.6 90.1 76.6 60.2 

6 Summary and future work 

In conclusion, this paper proposes a novel fingerprint matching approach based on minutiae and ridges graph 

(MR-Graph). The matching method takes advantage of local structure between minutiae and associated ridge 

with strong relationship. The minutia pairs are labeled into clusters that can be used to recover the relative 

rotation and translation between two fingers. In addition, the denseness of minutia clusters is also played an 

important role in improving more discriminative for a very credibility of the final fusion score of matching. The 

proposed method was observed to result in a better performance compared to other approach based on minutiae 

pattern correspondence for deformed finger. 

For future research, we will conduct exhaustive experiments based on all FVC databases in order to prove the 

efficient of DCT-based fingerprint enhancement. To achieve this goal, all minutiae in all FVC databases need to 

be manually marked. We will also exploit DCT features for fingerprint identification in the near future. 
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