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Abstract

Project Code : MRU4980027

Project Title : Performance Improvement of Automatic Fingerprint Verification Algorithm

Investigator : Vutipong Areekul,

Department of Electrical Engineering, Faculty of Engineering, Kasetsart University

E-mail Address : fengvpa@ku.ac.th

Project Period : 20 July 2006 — 19 July 2009

The goal of this project is to research and develop automatic fingerprint identification
algorithm for practical implementation for Thai people. This research is focusing on fingerprint
enhancement research, reference point localization research, and including research on the new
fingerprint matching method. The new algorithm gives high accuracy, low computation
complexity, and suitable for practical implementation. The new algorithm is tested with standard
Fingerprint Verification Competition (FVC) databases. Finally, the results of this research will be

used in biometric system for Thai people in the near future.

Keywords : Automatic Fingerprint Identification Algorithm, Fingerprint Enhancement, Fingerprint

Reference Search, Fingerprint Matching Method.
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Executive Summary
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1.2.1) Feature Extraction & Segmentation
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1.2.2) Fingerprint Enhancement
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1.2.3) Focal Point Detection/ Reference Detection
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1.2.4) Minutiae & Ridge Extraction
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1.2.5) Classification
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1.2.6) Feature Generation & Fingerprint Template Encoding
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1.2.7) Fingerprint Template Matching
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N. Boonchaiseree and V. Areekul, “Focal Point Detection Based on Half Concentric Lens Model
for Singular Point Extraction in Fingerprint,” Advances in Biometrics, Lecture Notes in Computer

Science (LNCS5558), Springer-Verlag Berlin Heidelberg, pp.637-646.

S. Jirachaweng and V. Areekul, “Regional Adaptive Gabor Filtering for Fingerprint Enhancement,”
Proceedings of International Workshop on Advanced Image Technology (IWAIT 2007), Bangkok,
Thailand, January 8-9, 2007, pp. 614-619.

T. Leelasawassuk and V. Areekul, “Looped Minutiae Matching in Fingerprint Verification,”
Proceedings of International Workshop on Advanced Image Technology (IWAIT 2007), Bangkok,
Thailand, January 8-9, 2007, pp. 924-928.

V.Areekul and N. Boonchaiseree, “Fast Focal Point Localization Algorithm for Fingerprint
Registration,” Proceedings of the 3 IEEE International Conference on Industrial Electronics and
Applications (ICIEA 2008), Singapore, June 3-5, 2008, 2089-2094. (Invited Paper in Special

Session on Pattern Analysis and Biometrics-1)

o & o a A ¢ A « o A A D) PN ”
W YR TBlEs uazanad a13ne, ‘mimnaalnizuesasialelasldaunafianis,” madsew
AmnImaiainsanineisi 30 (EECON-30) 25-26 qanau 2550, awnineasinaluladns:

aawmﬁ”ﬂﬁuq’%, AU 729-732.

Suksan Jirachaweng and Vutipong Areekul, “Fingerprint Matching Using Minutiae-Ridge Graph
Representation,” Submitted to Pattern Recognition Journal, (Impact Factor =3.279 (2008))
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Handbook of
Fingerprint
Recognition

3.6 Enhancement 139
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Figure 3.37. Two examples of fingerprint regions where the local ridge-valley pattern conforms
to (a), and deviates from (b) a sinusoidal pattern. © Elsevier.

Wang et al. (2008) suggest replacing standard Gabor filter with Log-Gabor filter to overcome
the drawbacks that the maximum bandwidth of a Gabor filter is limited to approximately one
octave and Gabor filters are not optimal if one is seeking broad spectral information with
maximal spatial localization.

For low-cost and computation-limited fingerprint systems (e.g., embedded systems), the
2D convolution of an image with a Gabor filter pre-computed over a discrete mask (e.g., 15 x
15) can be too time consuming. The computational complexity can be reduced by using sepa-
rable Gabor filters (Areekul et al., 2005) or masks with sparse coefficients (Jang et al., 2006).

Chikkerur, Cartwright, and Govindaraju (2007) proposed an efficient implementation of
contextual filtering based on short-time Fourier transform (STFT) that requires partitioning the
image into small overlapping blocks and performing Fourier analysis separately on each block.
The orientation and frequency of each block are probabilistically determined through Equa-
tions (7) and (8), and the orientation coherence is computed similar to Equation (4). Each
block is then filtered (by complex multiplication in the Fourier domain) with a filter equivalent
to Equation (10) except for the angular bandwidth which is adjusted according to the orienta-
tion coherence; in Sherlock, Monro, and Millard (1994) the angular bandwidth is related to the
distance from the closest singular point. Since singular point estimation is less robust than
coherence estimation, Chikkerur, Cartwright, and Govindaraju (2007) bandwidth adjustment
seems to be more effective than the approach by Sherlock, Monro, and Millard (1994).

An approach similar to that of Chikkerur, Cartwright, and Govindaraju (2007) was intro-
duced by Jirachaweng and Areekul (2007), but their block-wise contextual information com-
putation and filtering is performed in the DCT (Discrete Cosine Transform) domain instead of
in the Fourier domain.
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University, Japan f]jﬂulumu Asia Biometric Consortium 2009 il
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Identification Exhibition %65@11@18 Japan
Automatic  Identification System Association

(JAISA)

2.5 N13L21320N15UUITW Fingerprint Verification Competition 2006 (FVC2006)
o A o £ A ' ) @
{GER Algorithm NAAWIVBLIBNI FVA v1.6 LWILLBIUW Fingerprint Verification Contest 2006
(FVC2006) [10] TawgalUsunsunaneias P036 Whutidwile 30 A8IAY 2549 NIUNAMIUTITULile 31

anauN 2550 IG]EJNNT]’]?LL“IN{J'%GTGLLﬁ@]x‘il%@ﬂi’Nﬁ 7

(m?’mﬁ" 7 NANTTIZ DI Fingerprint Verification Competition 2006 (FVC2006)

FVC2006 Fingerprint Database Our Total
Database Sensor Type Image Size Resolution Size P036 Participants
Finger/lmages | Rank

DB1 Electric Field 96X96 250 dpi 140X12 39 44

DB2 Optical 400X560 569 dpi 140X12 36 44

DB3 Thermal Sweeping 400X500 500 dpi 140X12 43 44

DB4 Synthetic Generation 288X384 ~ 500 dpi 140%X12 30 44
Average Results over four Databases 39 44

nLAa Lhasnnaaunamsutstnldiduniiwela 39ldldlaneoaaiuwlu Website laoasliiiu
Anonymous
- e . I y . 4 e
ﬁﬁ]guu AN ST Fingerprint Verification Competition On-Going (FVC On-going) @<t%nny
) Lo @ Ao ' oA = A A A o AR v A

wstnuuy lddrnanauazlaifisinuanisas gadielafauradszifindszdninmnwuessanadiulanui
WALENNTRLEAINAIAInEa U Idae Tasiisnuazidaalu Website [11]

iiasnndslifienanienlunissdanaifin FVA v2.0 idmeseuifiasananaiivinu (fGaadidu
wan Mnuidagnlmmaisalds desselnauaindsznnaansifeugaiay 2552) ianusuiudasls
A o a s v o L. . A A a & . A VR @
AuulunsTiuaanasNuuairinn1s Optimization lwl3a9189UszANTAINLAZANNSINOWNZRY 3969

lai'lasslunasau
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Fingerprint Enhancement Based on Discrete Cosine
Transform

Suksan Jirachaweng and Vutipong Areekul
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Abstract. This paper proposes a novel fingerprint enhancement algorithm
based on contextual filtering in DCT domain. All intrinsic fingerprint features
including ridge orientation and frequency are estimated simultaneously from
DCT analysis, resulting in fast and efficient implementation. In addition, the
proposed approach takes advantage of frequency-domain enhancement resulting
in best performance in high curvature area. Comparing with DFT domain, DCT
has better signal energy compaction and perform faster transform with real
coefficients. Moreover, the experimental results show that the DCT approach is
out-performed the traditional Gabor filtering, including the fastest separable
Gabor filter, in both quality and computational complexity.

Keywords: Fingerprint Enhancement, Discrete Cosine Transform Enhance-
ment, Frequency-Domain Fingerprint Enhancement.

1 Introduction

Inevitably, many fingerprint identification applications are playing an important role
in our everyday life from personal access control, office time attendance, to country
boarder control. To pursue this goal, automatic fingerprint identification system
(AFIS) must be proved to be highly reliable. Since most automatic fingerprint
identification systems are based on the minutiae and ridge matching, these systems
rely on good quality of input fingerprint images for minutiae and ridge extraction.
Unfortunately, bad quality of fingerprint and elastic distortion are now major
problems for most AFISs especially large database systems. In order to reduce the
error accumulated from false accept rate and false reject rate, quality of fingerprint
must be evaluated and enhanced for better recognition results.

Based on filtering domains, most fingerprint enhancement schemes can be roughly
classified into two major approaches; i.e. spatial-domain and frequency-domain.
Filtering in spatial-domain applies convolution directly to fingerprint image. On the
other hand, filtering in frequency-domain need Fourier analysis and synthesis.
Fingerprint image is transformed, then multiplied by filter coefficients, and inverse
transformed Fourier coefficients back to enhanced fingerprint image. In fact if
employed filters are the same, enhancement results from both domains must be exactly
the same by signal processing theorem. However, for practical implementation, these

S.-W. Lee and S.Z. Li (Eds.): ICB 2007, LNCS 4642, pp. 96-105, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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two approaches are different in terms of enhancement quality and computational
complexity of algorithms.

Practical performing fingerprint enhancement based on each domain has different
advantage and disadvantage. For example, most popular Hong’s Gabor filters [1],
with orientation and frequency spatially adaptable, are applied to partitioning
fingerprint image. However, this Gabor filter model is based on unidirectional ridge
enhancement, resulting in ridge discontinuity and blocking artifacts around highly
curvature region. On the other hand, for frequency domain approaches, natural
fingerprint image is localized in some frequency coefficients. Gabor filter can be
easily designed to cooperate with high curvature area. For example, Kamei et al. [2]
introduced fingerprint filter design based on frequency domain using discrete Fourier
transform. Chikkerur et al. [3] applied short time Fourier transform and took
advantage from 2-dimensional filter shaping design, adapted with highly curvature
area, resulting in better enhanced results. However, comparing with spatial-domain
approaches, this scheme suffers from high computational complexity in Fourier
analysis and synthesis even though Fast Fourier Transform (FFT) is employed.

In order to take advantage from frequency-domain fingerprint enhancement with
low computational complexity, we propose fingerprint enhancement based on
Discrete Cosine Transform (DCT). The DCT is a unitary orthogonal transform with
real coefficients. It is closely related to the Discrete Fourier transform (DFT) which
has complex coefficients. Moreover, it has been known that DCT provides a distinct
advantage over the DFT in term of energy compaction and truncation error [4]. Thus
is why DCT has been widely employed in general image and video compression
standards. Hence, in this paper, we investigated DCT-base fingerprint enhancement
for practical implementation. We expected best enhanced quality results with low
computational complexity. This paper is organized as follows. Section 2 describes
several processes in order to implement enhancement filtering in DCT domain
including intrinsic estimation and practical filtering. Section 3 shows experimental
evaluation. Finally, section 4 concludes our works and future research.

2 Proposed Approach

The fingerprint enhancement approach consists of 4 concatenated processes; i.e.
discrete cosine transform of sub-blocks of partitioning fingerprint, ridge orientation
and frequency parameters estimation, filtering in DCT domain, and inverse discrete
cosine transform of sub-blocks. The advantages of the proposed approach are as
follows.

Q Fingerprint ridges form a natural sinusoid image, which its spectrums are
packed or localized in frequency domain. Hence these spectrums can be easily
shaped or filtered in this domain. Moreover, filter can be specially designed in
order to handle high curvature ridge area such as singular points. This is the
great advantage over the spatial-domain filtering approach.

O Comparing with discrete Fourier transform, discrete cosine transform performs
better in term of energy compaction. Moreover, DCT coefficients are real
number comparing with complex number of DFT coefficients. Therefore, we
can handle DCT coefficients easier than DFT coefficients. Besides, fast DCT
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requires less computational complexity and less memory usage comparing
with fast Fourier transform (FFT).

Q By partitioning fingerprint into sub-blocks, the proposed approach utilizes
spatially contextual information including instantaneous frequency and
orientation. Intrinsic features such as ridge frequency, ridge orientation, and
angular bandwidth can be simply analyzed directly from DCT coefficients.

Each process of the proposed fingerprint enhancement is explained as follows.

2.1 Overlapping DCT Decomposition and Reconstruction

Conventional fingerprint enhancement schemes, applying with non-overlapping
blocks of partitioning fingerprint, often encounter with blocking artifacts such as
ridge discontinuity and spurious minutiae. To preserve ridge continuity and eliminate
blocking artifacts, overlapping block is applied to both DCT decomposition and
reconstruction, similar to the DFT approach in [3]. However, there is no need to apply
any smooth spectral window for DCT because overlapping area is large enough to
prevent any blocking effects, corresponding with its energy compaction property.

2.2 Intrinsic Parameter Estimation on DCT Domain

Ridge frequency, ridge orientation, and angular bandwidth can be analyzed from DCT
coefficients directly. Therefore DCT analysis yields appropriate domain to perform
fingerprint enhancement and provides filtering parameters as the same time.

Ridge Frequency Estimation: The ridge frequency (p;) is simply obtained by
measuring a distance between the origin (0,0) and the highest DCT peak of high-
frequency spectrum as following equation,

po =z +v; m

where ( 1,V ) is the coordinate of the highest peak of high-frequency spectrum.

AL

(a) () (@

Fig. 1. Figure (a) and (c) represent blocks of a fingerprint model with different frequency.
Figure (b) and (d) are DCT coefficients of figure (a) and (c), respectively. Note that DC
coefficient is set to zero in order to clearly display high-frequency spectrum.

Ridge orientation estimation: The dominant orientation of parallel ridges, 6, are
closely related to a peak-angle, ¢ in DCT coefficients, where ¢ is measured
counterclockwise (if ¢ > 0) from the horizontal axis to the terminal side of the highest
spectrum peak of high frequency (DC spectrum is not included). However, € and ¢
relationship is not one-to-one mapping. The ridge orientation, which @ varies in the
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range of O to 7, is projected into the peak-angle, which ¢ varies in the range of 0 to
/2. Relationship between 6, ridge orientation in spatial domain and ¢, peak angle in
frequency domain are described in equation (2) with some examples in Fig. 2.

_1| v T
¢, = tan 1(_0]’ ¢0=‘__00
Uy 2

=N\
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4 ():TC:O 4 0:7TE/8 % 0:3TE/4 4 0:5T5/8 9() =n/2 0 0:3TC/8 0 ():TE/4 4 ():TE/8

where 0<6, <7 2
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Fig. 2. Examples of relationship between ridge orientation in spatial domain and peak-angle in
DCT domain, all ridge angles refer to horizontal axis and DC coefficient is set to zero in order
to show high-frequency spectrum. (Note that only the top-left quarters of DC coefficients are
zoomed in for clear view of high-frequency peak behavior.)

From Fig. 2, ridge orientation at 7=6 has the highest spectrum peak with the same
location as ridge orientation at €. However, their phase patterns are distinguishable by
observation. Therefore additional phase analysis is needed to classify the quadratics
of ridge orientation in order to correctly perform fingerprint enhancement. Since Lee
et al. [5] proposed edge detection algorithm based on DCT coefficients, our
fingerprint enhancement modified Lee’s approach by modulation theorem in order to
detect quadrant of fingerprint ridge orientation.

According to Lee’s technique, the orientation quadrant of a single line can be
determined by the polarities of two first AC coefficients, Gy; and Gy, where G, is the

"u

(@) (b) © (d)

Fig. 3. Four polarity patterns indicate (a) a single line orientation ranging from 0 to 72, (b) a
single line orientation ranging from /2 to 7, (c) parallel ridge orientation ranging from O to
/2, and (d) parallel ridge orientation ranging from 72 to
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DCT coefficient at coordinate (u,v), as shown in Fig. 3. In case of a single line,
polarity of product of Gy, and Gy, coefficients indicates the line orientation. If
Go1xGyp 2 0, this line orientation is in the first quadrant (0 to /72) as shown in
Fig. 3(a). On the other hand, if Gy;xGjy < 0, this line orientation is in the second
quadrant (/72 to m) as shown in Fig. 3(b). This technique can be applied to detect
orientation of parallel lines or ridges by modulation theorem with the pattern of
polarities around the high peak DCT coefficients. To be precise, ridge orientation in
the first quadrant (O to /72) and ridge orientation in the second quadrant (772 to 7x) can
be indicated by the same polarities of 45° and 135° diagonal coefficients referred to
the highest absolute peak as shown in Fig. 3(c) and (d), respectively.

5 pixels V
— 1

5 pixels V
—

2
XN~

Fig. 4. Demonstrate 2-D perpendicular diagonal vectors, V; at 45° and V, at 135°, referred to
the highest absolute spectrum peak (the center black pixel (negative value))

In order to identify the quadrant and avoid influence of interference, two 2-D
perpendicular diagonal vectors, V; and V,, are formed with size of 5x3 pixels, center
at the peak position as shown in Fig. 4. The average directional strengths of each
vector (S}, S,) are then computed by equation (3). Then the quadrant can be classified
and the actual fingerprint ridge orientation can be identified as shown in equation (4).

2
Z:Vi(u0 +m,v, +n)

— 3)
S, = Max ~= 2 where =172
n=-1,0,1 5
_|mi2-¢ where S, =S, 4
" |z—(x/2-¢) Otherwise ®

Finally, the estimated ridge frequency and orientation of each local region is
formed a frequency field and an orientation field. Then Gaussian filter is applied to
smooth both global fields in order to reduce noise effect as [1].

Angular bandwidth estimation: At the singularity region, ridge spectrum is not an
impulse but it spreads bandwidth out. Therefore, the desired filter of each block must
be adapted based on its angular bandwidth. We slightly modified the coherence
parameter from Chikkerur’s concept in [3], called non-coherence factor. This non-
coherence factor represents how wide ridge orientation can be in the block that has
more than one dominant orientation. This factor is in the range of 0 to 1, where 1
represents highly non-coherence or highly curved region and O represents uni-
orientation region. The non-coherence factor can be given by
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o sin(@(u, ,v,) = B(u; v ;)
NC(MC N VL.) — Z(w)ew | (5)
WxW

where (u.,v.) is the center position of block, (u;v;) is the i" and jlh positions of
neighborhood blocks within WxW, and the angular bandwidth, ¢y, can be estimated
by the equation (6) as follows,

B (,,v,) =sin" (NC(u,,v,)) . (6)

2.2 Enhancement Filtering in DCT Domain

In DCT domain, filtering process is not simply as in DFT domain [2,3], which
required only coefficient multiplication. The Gabor filter in [1] is modified in order to
cooperate with DCT domain based on Cartesian-form representation. The
enhancement filtering in DCT domain can be separated into two arithmetic
manipulation; i.e. multiplication and convolution.

1) Filtering by Multiplication: The enhancement filter can be expressed in term of
product of separable Gaussian functions, similar to the frequency-domain filtering
technique in [2] as follows.

Fu(p.9)=F(p.$)H ;(p)H ,(9) @)

where F(p,¢) is DCT coefficients in polar-form representation, directly related to
DCT coefficients, F(u,v), in rectangular-form representation. Fy (p,¢) is DCT
coefficients of the filtering output. The H{p) filter, which performs the ridge
frequency filtering-in Gaussian shape, is given by

_ 2
Hf(pp()’o-p’z)zéexp(_(lazol_a;))J > Po = Vug +v§;pmin Sp() Spma\x (8)

where py and o, are the center of the high-peak frequency group and the filtering
bandwidth parameter, respectively. The p,;, and p,,.. parameters are minimum and
maximum cut-off frequency constraints, which suppress the effects of lower and
higher frequencies such as ink, sweat gland holes, and scratches in the fingerprint.
The Z is a filtering normalization factor, depending on filtering energy result.
The H,(¢) filter, which performs the ridge orientation filtering, is given by
2
H,(0] 800 By = exp[— o J where [ 61| gy
1 Otherwise

©)

where the ¢ is the peak orientation for bandpass filter, o, is the directional bandwidth
parameter, and @gy, the angular bandwidth, is given by equation (6).
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2) Filtering by Convolution: Since the @ and 76 ridge orientation coefficients are
projected into the same DCT-domain region. Therefore, both directional coefficients
still remain from the previous filtering. In order to truncate inappropriate directional
coefficients, two diagonal Gabor filters are exploited by convolution operation. The
finally enhanced DCT coefficients are given by

Fpyu,v)=F, u,v)*H (u,v) (10)

where Fp,,(1,v) is enhanced DCT coefficients in rectangular-form. Fy,(u,v) is the
previous result of enhanced DCT coefficients in rectangular-form, by converted from
Fy; (p, @) in polar-form. The quadrant correction filter, H,(u,v), is given by

2
cos (wt vz exp _wrv)y where 027/2
2 20!

q

H, (u,v)=
_ _ 2
cos -z exp| — (u=v) Otherwise
2 20!

q

(11)

where o, is the quadratic parameter and cos(n72) only has three values -1, 0 and -1.
Indeed, this convolution operation requires low computation because most of
bandpass filtered coefficients are truncated to zero from the previous operation. In
case of highly curved ridges, the transformed coefficients are projected into widely
curved subband of DCT domain as shown in Fig. 5.

-Rl :lR2

0 v_/ 6,

e
Spatial Domain

Fig. 5 Highly curved ridges in spatial and frequency (DCT) domain. Signal is localized in
widely curved subband, which can be classified into the principal region (R;) and the reflection
region (R,).

From Fig. 5, we approximate the orientation range from 6, to & by non-coherence
factor from the equation (6). The curved subband can be classified into two regions;
i.e. principal region (R,) and reflection region (R;). The principal region (R;) contains
only one diagonal component (45° or 135°) as mentioned before. The 45° or 135°
diagonal components are the phase pattern of the oriented ridges in the range of 0° to
90° or 90° to 180°, respectively. The reflection region (R,) composes of both of 45°
and 135° diagonal components from the reflection property of DCT coefficients. Then
the convolution is applied only in the principal region.
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3 Experimental Evaluation

The experimental results have been evaluated on public fingerprint database
FVC2002 Db3a [6] (100 users, 8 images each) in term of enhancement quality,
matching performance, and computational complexity. The fingerprint image is
partitioned into blocks of 16x16 pixels, and a simple segmentation scheme using
mean and variance is employed. Five fingerprint enhancement filtering types are
evaluated as follows; Traditional Gabor filtering with non-quantized orientation
(TG)[1], Separable Gabor filtering with non-quantized orientation (SG)[7], Separable
Gabor filtering with 8-quantized orientation (SG8)[8], Short-Time Fourier Transform
approach (STFT)[3], and proposed approach (DCT). In the spatial domain
approaches, the discrete Gabor filters are the same 25x25 fixed-window size. Note
that the separable Gabor filter [7,8] was implemented on the fly using a set of priori
created and stored filters. Moreover, symmetric of 2-D Gabor filter [1] was also
exploited in this process. These filtering schemes accelerated execution speed of the
traditional Gabor enhancement process as fast as possible. For the STFT [3] and the
DCT approaches in frequency domain, fingerprint image is also partitioned into
16x16 blocks but each block is transformed with 32x32 overlapped window to reduce
blocking artifacts. Note that the probability estimation in [3] is not included.

In order to compare the performance of various enhancement algorithms, three
evaluation methodologies are used; i.e. the goodness index [1] of minutiae extraction,
the matching performance, and the average execution time. First, the goodness index
(G from [1] is employed to measure the extracted minutiae quantity from each
fingerprint enhancement algorithm. In this case, we needed to manually mark
minutiae of all fingerprints in FVC2002 Db3a. The goodness index is given by

iqi[Mi_Li_Si]

Gl == ; (12)

iql'Ti
i=1

where 7 is the number of 16x16 windows in the input fingerprint image, g; represents
the quality factor of i window (good = 4, medium = 2, poor = 1) which estimated by
partitioning and thresholding of the dryness factor (mean x variance of block) and the
smudginess factor (mean / variance of block). M; represents the number of minutiae
pair, which match with human expert in a tolerance box in the i"™ window. L; and §;
represent the number of lost and spurious minutiae in the i window, respectively. T;
represents the number of minutiae extracted by experts.

Second, enhancement results are tested with our minutiae matching verification
algorithm based on Jiang’s concept of [9], and the equal error rate (EER) is reported.
Finally, the average execution time of fingerprint enhancement process is measured
for FVC2002 Db3a (image size 300x300 pixels) on Pentium M 1.5GHz with 376Mb
RAM. Note that execution time includes filter parameter estimation (frequency and
orientation), transform (if required), and filtering process. However, segmentation
process is not included and we used the same segmentation process for all comparison
schemes. The objective test results are summarized in Table 1. Contradict to our
belief; overall execution time of DCT approach is faster than the separable Gabor
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Table 1. Summary of the performance comparison among various fingerprint enhancement
algorithms over FVC 2002 Db3a Fingerprint Database, Pentium M 1.5GHz, 376 Mb RAM

Fingerprint Enhancement Average Our Execution
Algorithm Goodness Matching Time
Index (GD) [1] (% EER) (Second)
TG [1] 0.160 9.716 0.973
SG[7] 0.167 9.326 0.278
SGS [8] 0.181 12.196 0.160
STFT (modified from [3]) 0.250 7.713 0.172
DCT (Proposed Approach) 0.336 6.846 0.151

(a;) #20_5 (by) SG[7] (G

)

(a,) #40_4 (b2) SG[7] (GI=0.19) (c;) STFT[3] (GI=0.30) (d,) DCT (GI=0.32)

o ——

—
=

A

(a3) #107_7 (b3) SG[7] (GI=0.18)  (c3) STFT[3] (GI=0.47) (d3) DCT (GI=0.68)

Fig. 6. (a) Original fingerprint #20_5, #40_4 and #107_7 from FVC2002 Db3a, (b) Enhanced
results from SG[7], (¢) Enhanced results from STFT modified from [3], (d) Enhanced results of
our proposed DCT based method

filtering with 8-quantized orientation. We investigated in depth and we found that
even though separable 2-D convolution alone is faster than both FFT and Fast DCT
analysis and synthesis, the fingerprint intrinsic parameter estimation was slow this
approach down since these parameters are evaluated in frequency domain.

Fig. 6 shows enhancement results for subjective tests with GI values for object-
tive tests. Note that the quality of enhanced fingerprints is improved based on



Fingerprint Enhancement Based on Discrete Cosine Transform 105

frequency-domain filtering, especially in highly curved ridges. Overall of FVC2002,
DB3a database, both STFT and DCT based performed very well around highly curved
area with slightly different results around singular point area.

4 Conclusion and Future Research

In conclusion, this paper proposes a novel fingerprint enhancement approach based on
discrete cosine transform (DCT). The enhancement takes advantage of filtering real
DCT coefficients with high-energy compaction in frequency-domain. Hence filtering
can be specially designed to cooperate highly curvature area resulting in less
discontinuity and blocking artifacts comparing with spatial-domain filtering.

For future research, we will conduct exhaustive experiments based on all FVC
databases in order to prove the efficient of DCT-based fingerprint enhancement. To
achieve this goal, all minutiae in all FVC databases need to be manually marked. We
will also exploit orientation adaptive filter in DCT Domain in the near future.
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Engineering, Kasetsart University, Thailand Research Fund (TRF) through the Royal
Golden Jubilee Ph.D. Program (Grant No.PHD/0017/2549), and the Commission on
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ABSTRACT

This paper proposes a new improvement approach of
Gabor filtering for fingerprint enhancement. The proposed
algorithm is based on regional adaptive filtering. Generally,
the rapidly changing direction region, such as core and
delta, contains significant global and local information for
fingerprint identification. However, conventional Gabor
filtering cannot enhance these regions properly resulting in
artifacts and false minutiae. In this paper, we employed
three confusing region detection schemes in order to apply
spatially adaptive filtering in these regions. The
experimental results show good improvement of Gabor
enhancement in these highly curved ridge regions.
However, our proposed method suffers from noisy areas of
low quality fingerprints, resulting in partially improved
equal error rate of overall fingerprint recognition system.

1. INTRODUCTION

Nowadays, Fingerprint is widely used for most personal
identification. Many fingerprint identification applications
are employed in our everyday life. Because fingerprint
identification has been seriously applied with mega
database size, this biometric soon becomes the first
practical implementation success in pattern recognition
fields [1]. Since most automatic fingerprint identification
systems are based on the minutiae and ridge matching,
these systems rely on good quality of input fingerprint
images for minutiae and ridge extraction. Unfortunately,
bad quality of fingerprint and elastic distortion are now
major problems of large database fingerprint identification
systems. In order to reduce the error contributed from false
accept rate and false reject rate, quality of fingerprint must
be evaluated and enhanced for better recognition results.

The most widely used scheme for fingerprint enhancement
is based on Gabor filtering, proposed by Hong [2]. There
are several works extended from [2], and most of these
works focused on enhancement improvement such as by
modified Gabor filter [3,4] or improved orientation
detection [5]. For example, Yang, Liu, Jiang, and Fan [3]
improved Gabor filter by introduced modified Gabor filter
(MGF) resulting in better verification performance.
Unfortunately, fingerprint enhancement using Gabor filter
is one of highly computational complexity in fingerprint
verification process. In [6], a set of 8-fixed orientation
separable Gabor filter was introduced. In [7], separable
Gabor filter is generalized for any orientation.
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However, Gabor filtering scheme always has a problem in
singular point area such as core and delta areas. The
singular point area is defined as a region where highly
ridge curve locates and ridge orientation changes rapidly.
Unfortunately, partitioning block based Gabor filtering
perform very poor in these areas resulting in blocking
artifacts, false or missing minutiae and ridges. To solve this
problem, the singular point area must be specified based on
highly ridge curve region. Then Gabor filtering with
spatially adaptive should be used to cooperate with these
highly curvature area, but remain the conventional Gabor
filtering in other area.

This paper is organized as follows. In section 2, the
fingerprint enhancement is revisited, and enhancement
problem in the singular region is discussed. In section 3,
we propose regional adaptive Gabor filtering with three
singular region detection schemes. Section 4 shows
experimental results and section 5 concludes our works.

2. FINGERPRINT ENHANCEMENT
The fingerprint image enhancement using Gabor filter,
introduced by Hong [2], is one of the most widely used
schemes in automatic fingerprint identification system. The
input fingerprint image is partitioning into uniform square
blocks. Then, ridge orientation and frequency are estimated.
These parameters are necessary to perform Gabor filtering.
The orientation and frequency estimation schemes are as
follows;

2.1 Orientation Estimation

The ridge orientation of each block can be computed by

equation (1).
] x
+ J—
y 2

where 6(i, j) is an estimated ridge flow orientation
block (i,j) . G, and G, are ridge flow gradients
direction x and y of block(i, j). Once, all orientation
each block is estimated, an orientation field (OTTF)
fingerprint is formed. Then the orientation field
smoothed by Gaussian filter in order to improve
corresponding orientation in fingerprint.

2G,G),
Gy -G

9@]):;mn4{ (1)

in

2.2 Ridge Frequency Estimation

The ridge frequency can be estimated in both spatial and
frequency domain. In spatial domain, the ridge frequency



of good quality fingerprints can be directly approximated
in form of sinusoidal waveform. On the other hand, it can
be easily estimated in frequency domain even though the
quality of fingerprint is not good. In Fourier transform
domain, the unidirectional ridge in a partitioning block can
be represented by twin impulses of spectrum. Then, ridge
frequency parameter can be obtained from a distance
between these two peaks.

2.3 Gabor filtering

After ridge orientation and frequency parameter are
obtained, Gabor filtering can be applied to enhance
fingerprint. The goal of filtering is to smooth ridge along
its orientation and to sharpen ridge edge in the
perpendicular direction. Gabor filter equation is provided
as follows;

2 2
Gt.0.4) 0] 2 22 [ aotrn) @
2\ o, o,
Xg sinf cosé || x
Vo —cosf sinf | y|

where @ and f are the estimated ridge orientation and
ridge frequency in each block, respectively.
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Figure 1. (a) Original fingerprints in database FVC2000 (b)
OTTF (c) Enhanced results

To reduce computation time, the separable Gabor filtering
[6,7] can be employed. The 2-D Gabor can be separated
into two 1D filters that consist of one Gaussian lowpass
filter and one bandpass filter of ridge frequency. Figure 1
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shows original (a), orientation field (b), and enhanced
fingerprints (c) by separable Gabor filtering of two
fingerprints, #2 6 and #39 2, in FVC2000 DB2a database.

Note that the Gabor filtering scheme often creates artifacts
around highly curved ridge or singular point area; such as
core point, as shown in figure 1 (c). Clearly, false
orientation field around high curved region, as shown in
figure 1 (b), drive Gabor filtering to create these artifacts.
The question is how the orientation field can be obtained
correctly from any given fingerprint. The answer is simply
because the size of block is too large to represent only one
direction of highly curved ridges. Therefore, if highly
curved ridge area can be located, this area should be
partitioned into smaller block size in order to perform
Gabor filtering correctly. Obviously, using uniform block
size is not suitable for rapidly changing orientation area.

3. PROPOSED METHOD

In order to reduce artifacts in highly curved ridge area, we
propose regional adaptive Gabor filtering method. Figure 2
illustrates a flow chart of our enhancement process. In
order to solve the problem, which describes above, two
additional processes need to be performed as shown in the
gray shade blocks. Two additional processes are region of
interest detection and regional adaptive orientation
estimation.

Fingerprint
Image

v

Region separation

A A

OTTF
Calculation

Region of Interest
Detection

No Strictness Orientation
Estimation

v

Frequency
Estimation

Gabor Filtering

Figure 2. Block diagram of the proposed enhancement
3.1 Region of Interest Detection

Any fingerprint image can be classified into three region
types as follows;

Q Background Region, where no fingerprint exists in this
region.

Well-defined Region, where a ridge orientation and a
ridge frequency can be certainly determined in this
region.

Confusing Region, where highly curved ridge areas,
singular point areas, or noisy areas are found in these
regions.

a

Applying Gabor filtering in these confusing regions results
in artifacts and enhanced error. In this confusing region,



ridge orientation and frequency cannot be correctly
estimated. These confusing regions must be treated as
regions of interest (ROI), and must apply a special
technique to reduce artifacts. In this paper, three ROI
detection processes are experimented and their results are
compared to achieve the best performance. Three ROI
detection schemes are explained as follows.

3.1.1 Singular Point Detection by Poincare Index

The first ROI detection scheme, called Poincare Index [8],
is a very simple scheme by locating the center of singular
point such as core and delta point. For each block (16x16),
the Poincare index can be found as follows:

Poincare (i, j)= f A(k) 4)
5(k), iflo(k)| <z /2
Ak)y=sm+05(k), if|o(k)|<-=/2 (%)
7 —-0(k), otherwise

O(k)y=0(i,, j,.)—0(i,j)s k'=(k+1)mod N (6)

where (i, j) is the local orientation of ridge flow in each
block (i) of fingerprint image. (i,,j,) is the block
coordinate that locates in the closed loop with N block
around the center block (7, j) . The center block is assigned
to be a core or a delta when the Poincare index (i, j) is
equal to 7/2 or —x/2, respectively. All closed loop
blocks around the core and delta block represent the ROI.

3.1.2 Singular Point Detection by Complex Filter
Responses

The second ROI detection scheme was introduced by Liu
[9]. This algorithm exploits two set of order-k complex
filter which directly applied to orientation field as shown in
equation (7).
x+jy

Jxi+y?
where x and y denote the coordinate of orientation field
image. These filters will be formed very similar to the core

and delta orientation pattern when the order is second k£ = 2
as shown in figure 3.

e = p= %tam"l (y/x) (7N
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The singular point area can be extracted by correlation in
term of the summation of difference between filter
orientation and actual ridge orientation in window of size
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(wXxw), as the following equation;

__z:ﬁykwe

mmn

£)2(O 1 v msy =Pr.y)

h 3

WwWXw
The correlation magnitude results from both filters
(e[0,1]) represent how close the filter model in figure 3 to
ridge orientation pattern in actual fingerprint. In this case,
the region of interest is confined in the block region that
has correlation magnitude more than a given threshold.

3.1.3 Ridge and Valley Clarity Analysis

The last ROI detection scheme use ridge and valley clarity
analysis method in [10] in order to identify confusing
region. Ridge and valley clarity analysis indicates ability to
distinguish ridges and valleys along ridge direction. This
method was proposed to describe the distribution of
segmented ridge and valley of any given fingerprint
patterns. To perform local clarity analysis, a directional
rectangular, which is perpendicular to the ridge direction, is
extracted at a center of each block with its size 32x13 as
shown in figure 4.

TRTREY

32 pirels

1
H
¢

1 i :

€L

Figure 4. Local region extraction and vertical aligned
ridge pattern transformation

To examine ridge clarity, the extracted block is averaged
along ridgelines in vertical direction as shown in figure5.
The linear regression method is applied to determine a
threshold. If an average value lowers than the threshold, it
is a valley. Otherwise, it is a ridge.

Figure 5. Ridge and valley classification method

The local clarity score (LCS) is calculated by the following
equation.

a=V,IV, ©)
PL=R,/R, (10)
LCS =1—-(a+p)/2 (11)

where V,/9R, is a ratio of number of bad pixels in the
valley per number of bad pixels in the ridge region, that its
intensity 1is lower/higher than threshold respectively.



V./R, is a ratio of total number of pixels in valley per
ridge region, respectively. The low LCS value indicates
inaccuracy orientation estimation region, and this region is
marked as region of interest.

3.2 Regional Adaptive Orientation
Estimation

Once all regions in fingerprint are identified as background
region, well-defined regions, and confusing region or ROL
Now we can treat each type of regions separately. For
background region, there is no need for any operation. For
well-defined region, conventional Gabor filtering
enhancement can be used. For ROI or confusing region, we
introduce regional adaptive orientation estimation scheme.
By splitting block into quarter sub-blocks, an average of
ridge orientation is re-calculated by using equation (1). To
reduce orientation disorder influenced by noise, Gaussian
smoothing is employed.

4. EXPERIMENTAL RESULTS

In order to compare fingerprint enhancement performance,
four methods are evaluated as follows; traditional Gabor
filtering (TG) [2], regional adaptive Gabor filtering with
ROI obtained by Poincare index (GP), regional adaptive
Gabor filtering with ROI obtained by complex filter
response detection (GF), Finally, regional adaptive Gabor
filtering with ROI obtained by local ridge clarity (GC).
Figure 6 shows two examples of fingerprint image in
FVC2000 database DB2A [11]. In figure 7, these two
fingerprint examples are enhanced by various method as
mentioned above. Note that orientation field or OTTF of
each method is also shown in figure 7 and their
corresponding enhanced fingerprints are shown below.

However, noise sensitivity and low quality fingerprint
suffer our approach when the smaller estimated region is
applied. The enhanced fingerprint #83 1 by ridge clarity
analysis illustrates a failure case by selecting wrong ROI.
The false minutiae are generated in normal region instead
of smoothing with the neighbor ridge flow.

The experimental results have been conducted on public
fingerprint database FVC2000 for all databases [11] in
order to compare enhancement performance such as effect
on computational complexity and effect on matching
results. Discrete Gabor filters are sampled with the same
25%x25 (pixels) fixed-window size. Fingerprint is
partitioned into 16x16 block size within the well-defined
region and partitioned into 8x8 (pixels) block size for the
confusing region or within ROI region. Finally, fingerprint
verification algorithm using Jiang and Yau’s concept [12]
was adopted and implemented for evaluation purpose only.
This algorithm, based on minutiae matching, was used in
conjunction with four Gabor (filtering enhancement
schemes. These four schemes shares all the same
fingerprint verification routines except two processes with
gray shade in figure 2.

The approximate equal error rate (EER) results are shown
in Table I, and the average execution time results on
Pentium 4 2.4GHz with 512Mb RAM are in Table II
(Execution time for only orientation estimation and Gabor
filtering process, segmentation, and frequency estimation
processes are not included). Note that programs were not
optimized to a commercial application level and these
times are shown just to give an indication of the basic
method’s speed.

TABLE 1. AVEAGE EER COMPARISON AMONG VARIOUS
ENHANCEMENT TYPES

Testing on FVC2000 Database

Enhanced DBla DB2a DB3a DB4a
Type Optic Capacitive Optic Synthetic
Sensor Sensor Sensor Generator

TG 15.14 7.13 13.97 10.95

GP 15.47 7.01 14.19 11.93

GF 15.76 6.83 14.26 10.97

GC 16.76 8.23 15.60 14.07

83 1

Figure 6. Sa_mple fingerprints #2 1 and #8.?_1 from the
FVC2000 database DB2a

From our experiments, the enhanced fingerprints,
especially region with highly curved ridges, are improved.
Unfortunately, enhancement performance depends on
accuracy of the ROI marking process. For example in
fingerprint #2 1, the Poincare index can detect only an
upper curvature of core region because of error in the
smoothing operation. On the other hand, the complex filter
or local ridge clarity can detect all curvatures in this
fingerprint.

TABLE II . AVERAGE GABOR FILTERING EXECUTION TIME
ON PENTIUM4 AT 2.4GHZ, RAM 512M

Testing on FVC2000 Database
Enhanced DBla DB2a DB3a DB4a
Type (Image size (Image size (Image size (Image size
300x300 pixels) | 256x364 pixels) | 448x478 pixels) | 240x320 pixels)
TG 0.425 0.384 0.647 0.233
GP 0.439 0.400 0.665 0.249
GF 0.453 0.416 0.705 0.259
GC 0.466 0.428 0.749 0.275
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Our experiments show that only the regional adaptive
Gabor filter with complex filter performs better than the
conventional Gabor filter in database DB2a in FVC2000.
The reason that the other databases are not out-performed
conventional Gabor filtering is because regional adaptive
Gabor filtering suffers from smaller partitioning blocks.
Small partitioning blocks lead to more disorder orientation
and less efficient Gabor filtering.

5. CONCLUSION

We have developed the regional adaptive Gabor filter for
improving conventional Gabor filtering. Three ROI
detection methods are employed and tested. First, the
Poincare index method is a hard decision to identify the
singularity area. The second detection method is based on
two complex filter responses, which to perform soft
decision to classify the singularity area. The last method
uses the local ridge clarity index to indicate area of bad
quality of the ridge pattern in a given direction.

From our experimental results, performance of the regional
adaptive Gabor filtering is out-performed the conventional
Gabor filter only one database, DB2a, from all four
databases of FVC2000. The main reason is the mixture
between highly curved ridge region and low quality region.
Our research is now investigating the classification
between these two classes and expecting the new regional
adaptive  Gabor filtering will out-performed the
conventional Gabor filter for all databases.

6. ACKNOWLEDMENT
This work was partially supported by Kasetsart University,
the National Electronics and Computer Technology Center
(NECTEC) under National Science and Technology
Development Agency (NSTDA), grant #
NT-B-22-13-12-47-07, and the Thailand Research Fund
(TRF), together with the Commission on Higher Education
under grant # RMU4980027.

7. REFERENCES
[1] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar,
“Handbook of Fingerprint Recognition,” Springer,
2003.
L. Hong, Y. Wan, and A.K. Jain, “Fingerprint Image
Enhancement: Algorithm and Performance
Evaluation,” [EEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 777-789,
August 1998.
J. Yang, L. Liu, T. Jiang, and Y. Fan, “A Modified
Gabor Filter Design Method for Fingerprint Image
Enhancement,” Pattern Recognition Letters 24,
pp.1805-1817, 2003.
S. Greenberg, M. Aladjem, and D. Kogan, “Fingerprint
Image Enhancement Using Filtering Techniques,”
Real-Time Imaging 8, pp.227-236, 2002.
J. Zhou and J. Gu, “A Model-Based Method for the
Computation of Fingerprints’ Orientation Field,” IEEE
Trans. Image Processing, vol. 13, no. 6, pp. 821-835,

(2]

619

June 2004.
[6] V. Areekul, U. Watchareeruetai, and S. Tantaratana,
“Fast Separable Gabor Filter for Fingerprint

Enhancement,” ICBA2004, LNCS3072, Springer, pp.

403-409, 2004.

V. Areekul, U. Watchareeruetai, K. Suppasriwasuseth,

and S. Tantaratana, “Separable Gabor Filter

Realization for Fast Fingerprint Enhancement,”

Proceeding of IEEE International Conference on

Image Processing 2005 (ICIP 2005), Vol. 1II, pp.

253-256.

M. Kawagoe and A. Tojo, “Fingerprint Pattern

Classification,” Pattern Recognition, vol. 17, 1984, pp.

295-303.

M. Liu, X. Jiang, and A. C. Kot, “Fingerprint Retrieval

Filter Responses,” The 18" International Conference

on Pattern Recognition (ICPR2006), Vol.1,

pp-1042-1045, 2006

[10]T. P. Chen, X. Jiang and W.Y. Yau, “Fingerprint Image
Quality Analysis,” International Conference on Image
Processing (ICIP2004), pp. 1253-1256, 2004.

[11]D. Maio, D. Maltoni, R. Capelli, J.L. Wayman, and
AK. Jain, “FVC2000: Fingerprint Verification
Competition”, IEEE Transactions on Pattern Analysis
and Machine Intelligence Intelligence, Vol. 24, No. 3,
pp. 402-412, 2002.

[12]X. Jiang and W.Y. Yau, “Fingerprint Minutiae
Matching Based on the Local and Global Structures,”
Proceeding International Conference on Pattern
Recognition (15™), vol.2, pp. 1042-1045, 2000.



LOOPED MINUTIAE MATCHING IN FINGERPRINT VERIFICATION

Teesid Leelasawassuk and Vutipong Areekul

Kasetsart Signal & Image Processing Laboratory (KSIP Lab)
Department of Electrical Engineering, Kasetsart University, Bangkok, 10900, Thailand.
Emails: g4765176(@ku.ac.th, fengvpa@ku.ac.th

ABSTRACT

This paper presents the new fingerprint verification method
using a focal point and looped minutiae feature sequence.
By using the focal point as a reliable reference point,
looped minutiae feature sequence can be generated in order
to deal with translation and rotation of live-scan
fingerprints. Testing with all fingerprint verification
competition (FVC) databases, the proposed algorithm
shows good performance with low computational
complexity, and it can be practically implemented in
real-time fingerprint verification system.

1. INTRODUCTION

Recently an automatic fingerprint identification system
(AFIS) has been widely employed in many applications
such as access control security, criminal identification,
human resource management, etc. In general, the AFIS
consists of several processes; i.e. fingerprint classification,
fingerprint enhancement, fingerprint feature extraction, and
fingerprint matching [1]. Most employed features in
general AFIS are based on minutiae matching. There are
two major types of minutiae; bifurcation type and end type.
Figure 1 shows example of minutiae in fingerprint image.

Figure 1: Example of Minutiae in Fingerprint (Bifurcation
Type in Circle and End Type in Square)

To identify fingerprint by comparing all minutiae from
input fingerprint to minutiae of all fingerprints in database,
this process can be exhaustive and time consuming. In
order to reduce this high computational complexity, all
fingerprints need to be registration and alignment. These
processes can reduce a searching domain of matching
candidates. Note that fingerprint orientation, translation,
and elastic distortion cause fingerprint patterns variation
and expand the searching domain.
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The mostly used registration in fingerprint identification is
singular point; i.e. core and delta points. The number of
singular point may vary depending on fingerprint types.
For example, left loop, right loop and tented arch types
have one core point and one delta point. The whorl type
has two core points and two delta points. On the other hand,
the arch type does not have any core point and delta point.
The singularity can be detected by fingerprint’s orientation
field such as the poincare method [2]. Recently, emerging
of wvarious fingerprint sensor type causes difficulty
searching for singular points because captured area is too
small. Moreover, low quality fingerprint image scatters
orientation field resulting in false or missing singular point
detection. Hence, fingerprint registration process may not
be reliable if the singular point detection process is not
precise.

In order to cooperate with low quality and small fingerprint
area, a focal point [3] has been employed in our fingerprint
verification algorithm. The focal point is a unique and
reliable reference point. The advantage of the focal point
over singular points is unique for any types of fingerprint,
low quality fingerprint toleration, and out of image
localization. Moreover, new algorithm [3] is very fast,
efficient, and capable real-time implementation.

Minutiae matching is the most well-known and widely
used method for fingerprint matching [1]. Aligning the two
fingerprints is a mandatory step in order to maximize the
number of matching minutiae. Some algorithms embedded
fingerprint alignment into the minutiae matching stage
resulting in robustness to orientation and translation.
However, these embedded schemes consume high
computational complexity. In this paper, the focal point is
used as the reference point for fingerprint registration. The
fingerprint translation problem is eliminated. Extracted
minutiae are reordered around the focal point resulting in a
circular string of minutiae. Comparing two fingerprints is
related to correlate two circular strings of minutiae around
the focal point. Clearly, this purposed scheme reduces
computational complexity comparing to the embedded
scheme. Moreover, dynamic programming technique can
be employed to solve the similarity of two fingerprints.

This paper is arranged in this order. The second section is
related to a feature extraction process. Minutiae and their
parameters are extracted and generated from the fingerprint
image. The third section is described matching process in
details. Next, the fourth section shows experimental results.
Finally, conclusion is in the last section.



2. FEATURES EXTRACTION

Before fingerprint features are extracted, input fingerprint
must pass fingerprint enhancement process in order to
improve and adjust the quality of fingerprint images. In
this work, the separable Gabor filter [4], which can
perform any orientation of fingerprint ridges, is employed.

The feature extraction process is the key to success of
fingerprint identification. In this work, two major
fingerprint features are extracted; the focal point and
minutiae. The focal point represents a global feature for
solving fingerprint translation problem. The focal point
localization process is clearly presented in [3], so there is
no need to be reviewed in this work. The example of focal
point localization result is shown in Figure 2.

Figure 2: The focal point of the same fingerprint

The minutiae are local features, which can be arranged to
solve rotation and elastic distortion problem. In order to
extract minutiae, enhanced fingerprint is binarizing and
thinning. Then simple method by counting the crossing
number, introduced by Arcelli and Baja [5], is exploited.
The extracted details of minutiae features are in the
following subsection.

2.1 Minutiae Features

The minutiae feature can be categorized according to
single minutia and minutiae pair. The single minutia
features include a minutia position, a minutia tail direction,
and a type of minutia (end and bifurcation). The single
minutia feature vector, M;, is shown in equation (1). In
order to increase minutiae features, the minutiae pair
features are generated by distance and angles between pair.
The minutiae pair feature vector, MPy, is declared in
equation (2).
T

T

Mi [xi’ Yis ‘91" t
MP. [d aj]

ij
In equation (1), x; , y; represent row (vertical) and column
(horizontal) position coordinate of the /™ minutia in
fingerprint image, 6, is a minutia tail direction referred to
a vertical axis as zero degree, and ¢, is the minutia type
such as end point or bifurcation point. In equation (2), d,
"and /", a,and a, are

(M
2

ij? aq;,

is a distance between minutiae i
relative angles of minutiae tail direction referred to a
straight line from the /™ minutia to the ;™ minutia. The
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single minutia features and the minutiae pair feature
demonstrate in figure 3 (a) and figure 3 (b) respectively.

(b) Minutiae pair features

Figure 3: The minutiae features

2.2 Looped Minutiae Arrangement

After principle single minutia feature vectors are created,
the next process is to order these single minutia feature
vectors into single looped vector string. There are two
cases for looped minutiae arrangement; i.e. reliable and
unreliable focal point. In case of reliable focal point, single
minutia feature vectors are arranged in order by their angle
positions around the reliable focal point. By using the
vertical axis as a zero degree reference, the single minutia
feature vectors can be kept in order by counterclockwise
scan, resulting in a looped minutiae vector sequence.
Figure 4 demonstrates the generation of a looped minutiae
vector sequence. For two fingerprints, which came from
the same finger, their looped minutiae vector sequences
should have single minutia feature vectors in the same
order.

In case of unreliable focal point or non-existing focal point,
the single minutia feature vector can be ordered by its tail
direction. By using the vertical axis as a zero degree
reference, each minutia tail direction can be arranged in
order from zero to 360 degree. This single minutia feature
vector sequence is assumed to be unique for each
fingerprint if tail direction is perfectly detected. Figure 5



shows actual links of a looped minutiae vector sequence
without the focal point.

2" minutia

O Focal-point

O Minutia

1 ¥
r
.I Minutia

Figure 4: Actual link example of a looped minutiae vector
sequence with the focal point

Focal point

gy

T o
. . s m

Figure 5: Actual link example of a looped minutiae vector
sequence without the focal point

After finishing looped minutiae arrangement in both cases,
the next step is to generate the minutiae pair features from
the looped sequence of single minutia feature vectors. By
coupling two nearest neighbor minutiae in the looped
sequence, a pair of minutiae can be formed and the
minutiae pair features can be generated. For example, the
first minutia is paired with the second minutia in the
looped sequence. The second minutia is coupled with the
third, and so on.

3. MATCHING PROCESS

A matching process of the proposed method can be
separated into two cases; existing focal point and
non-existing focal point. In case of existing focal point,
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after minutiae ordering around the focal point as mentioned
in previous section, overlapped area between two
comparing fingerprint is estimated. Assume that the focal
point from two fingerprints, which captured from the same
finger, is unique. Then the overlapped area can be defined
using the focal point as a reference point, as shown in
figure 6. Now, the minutiae, which are in the overlapped
area (Cropped rectangular in figure 6), are selected to be in
the looped minutiae vector sequence. Otherwise, the
minutiae outside overlapped area are discarded. In case of
non-existing focal point, all minutiae vectors are kept in
the looped minutiae vector sequence.
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Figure 6: Two rectangular blocks represent the overlapped
area between two fingerprints from the same finger using
focal point reference.

The matching process between two looped minutiae vector
sequence can be described step by step as follows.

3.1 First Step: Searching for a starting vector

To find a starting vector of these two looped minutiae
vector sequences. The starting vectors can be found by
searching for two minutiae pair feature vectors, which
yields the maximum similarity score, from two sequences.
The similarity score (S score) of two minutiae pair feature
vectors is defined by equation (3).

(Th, — W ¢ AMP)/ Th,

, Otherwise.

W e AMP < Th,

S score = 3)
where Th, is the threshold of acceptance or reject. The
AMP and W vectors are absolute difference vector of
minutiae pair features and weighting vector, respectively.
The AMP and W vectors can be defined as following
equations.

AMP = |MP, , —~MP, | (4)

Lij —

W= [Wd’ Wamnys  Wa(nen) ]T (%)
where MP,,; is i" and /" minutiae pair feature vector of
input fingerprint sequence, and MP,,, is k" and /*
minutiae pair feature vector of template fingerprint
sequence. The parameters in the W vector are w, ;
weighting of distance between two minutiae » and »n+1 in
the looped sequence, w weighting of relative angle of
minutiae 7 to n+l, w,,,, ; weighting of relative angle of
minutiae n+1 to n, respectively.

a(n) >



In case of existing focal point, the S score need to be
concerned with additional condition in order to ensure the
similarity of two fingerprints. The distance between the
focal point and the starting minutia of input and template
fingerprints should be similar. In precise, the distance
between i minutia to its focal point of the input fingerprint
and the distance between &A™ minutia to the focal point of
the template fingerprint must be very close in order to be
the starting minutia. If the difference between two
distances is small enough or less than T7h, (Different
Distance Threshold), then the similarity score, S score, can
be reliable. Otherwise, the S score is set to be zero, as
shown in equation (6).

S .(3)), AFd<Th
Sscore={ score (eq.(3)) <Th, ©)

, Otherwise
AFd =|Fd,, - Fd, | (7)

where AFd is the distance difference between input and
template, Fd, ; is the distance between the focal point
and /" minutia of the input fingerprint and Fd, , is the
distance between the focal point and " minutia of the
template fingerprint.

After calculating similarity scores for entire minutiae pairs,
the pair with the maximum similarity score is assigned to
the starting vector of the input and template vector
sequences.

3.2 Second Step: Counting matched minutiae
From the starting vector, then next matched minutia vector
can be found from both input and template sequences. In

this step, the bounding box concept in [6] is employed.

Input Minutia

S
u

Template Minutia

Figure 7: The minutiae bounding box concept

Hence, algorithm’s conditions are as follows.

O If the next minutia vector from the starting vector is in
this bounding box, as shown in figure 7, then matched
minutia vector is counted. Then the matched minutia
vector is defined to be the next starting vector.

O If the next minutia vector is not in the bounding box,
skip this minutia vector, and consider the next minutia
vector.

Repeat this process until the end of sequence. The result of

this process is the number of matched minutia vectors from

input and template sequences.

3.3 Third Step: Calculating matching
percentage

The matching percentage of input and template fingerprint
can be calculated by

— Nowar__ 109 (®)

Matching % =
&7 max[N,,NT]

where N, 18 the number of matched minutia vector,
counted from the previous process, N; and Ny are the
number of minutiae of input and template fingerprint
within the overlapped area.

Figure 8: Example of the matched minutiae pairs and the
matching percent of these two fingerprint is 79.41%

Figure 8 demonstrates the matching process result. The left
side and the right side are the input and template
fingerprint, respectively. The starting minutia vector is
represented by the green circular mark, and the matched
minutiae are represented by the blue circular marks.

4. EXPERIMENTAL RESULTS

The algorithm evaluation experiments tested with
databases from Fingerprint Verification Competition (FVC);
i.e. FVC2000 [7], FVC2002 [8] and FVC2004 [9]. Each
FVC database composes of 4 fingerprint database sets from
different sensors. Each set contains 800 fingerprint images
were acquired from 100 fingers from different persons. The
acquired fingerprints were 256 gray scale images with
resolution greater than 500 dpi. The testing system was
implemented on a 2.4 GHz Intel Pentium IV PC, with 512
MB memory using Microsoft Visual C++ 6.0.

The performance of the proposed algorithm is measured in
term of Equal-Error-Rate (EER) [1] as shown in Table 1.
EER is the error rate of verification process where the false
accept rate (FAR) equal to the false reject rate (FRR)
within the same threshold.

Figure 9 and 10 is the EER and ROC plot results of
FVC2000 DB2a database, respectively. In figure 9 the left
curve is the FAR curve and the right curve is the FRR
curve. The lowest EER is 4.017% by testing with
FVC2000 DB2a database. The highest EER is 16.480% by
testing with FVC2004 DBla database. The average
execution time (one on one matching) is 40 millisecond.



Table 1. Proposed algorithm s performance in term of EER

testing with FVC databases

Database EER (%)
DBla 12.139
DB2a 4.033
FVC2000 | DB3a 10.124
DB4a 6.120
Overall 8.10
DBla 9.774
DB2a 13.754
FVC2002 | DB3a 11.976
DB4a 7.496
Overall 10.75
DBla 16.480
DB2a 13.650
FvVC2004 | DB3a 8.639
DB4a 8.437
Overall 11.80
Average All Databases 10.22

EER = 4033212 % at Threshold = 32.4 %

FAR and FRR (%)

40 a0
Threshold (%)

Figure 9: The equal error rate plot of FVC2000 DB2a

Receiver Operating Curve (ROC)
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Figure 10: The ROC curve of FVC2000 DB2a
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From experimental observation with these FVC databases,
the main problems are the quality of fingerprint image and
elastic distortion. Moreover, the focal point may not exist
in some fingerprint image, resulting in higher error rate.
The low quality fingerprint image causes major false
minutiaec detection. Fingerprint elastic distortion shifts
minutia position to out of bounding box. In addition, if the
number of false minutiae is very high, the matching
percentage is low due to equation (8).
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5. CONCLUSION

The new fingerprint verification method using the focal
point and looped minutiae feature sequence is proposed in
this paper. Even though the proposed algorithm was
designed to handle the translation and rotation fingerprints.
There are still many problems to be solved; i.e. elastic
distortion, low quality fingerprint, and non-existing focal
point. The future research needs to focus on these problems
in order to improve algorithm performance and control

computational complexity for practical real-time
fingerprint identification system.
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Abstract-Fingerprint registration is still a challenging
problem for large-scale fingerprint identification system. In this
paper, a new, fast, and efficient algorithm for the focal point
localization is proposed. The focal point is a reliable reference
point, which can replace a singular point such as core in
fingerprint registration process. The advantages of the focal
point over the singular point are its uniqueness and reliability
under low quality fingerprint and partial fingerprint
conditions. In this paper, the proposed algorithm employed
only orientation fields of fingerprint instead of a fully enhanced
fingerprint, resulting in reduction of 7 times computational
complexity compared to a previous algorithm. Moreover, the
new algorithm achieves good localization accuracy and
outstanding stability comparing with existing results in
literature.

1. INTRODUCTION

In order to perform real-time large-scale automatic
fingerprint identification, fingerprint registration and
classification are required. This paper is focused on reliable
reference point detection in fingerprint registration.
Moreover, practical implementation is also another
important consideration. Hence algorithm should consume
low computational complexity as possible for real-time
fingerprint search. Thus is why detection of reference point
is still a challenging problem.

The singular points of fingerprint such as core and delta
has played a very important role in fingerprint recognition,
especially fingerprint registration and classification.
However, current live-scan fingerprint sensors create a lot of
problems in finding a stable singular points; i.e. low quality
fingerprint, arch and tented arch types, non-linear distortion,
and partial fingerprint with missing singular point. These
problems drastically reduce the accuracy of most singular
point detection schemes reported in literature.

Existing works on locating singular points can be
classified into two broad approaches; pattern-based and
projection-based. The pattern-based approach employs fixed
patterns such as core and delta. Then these patterns are
correlated with fingerprint or orientation fields of fingerprint
in order to find the locations of similar patterns. For
example, Kawagoe and Tojo proposed the classic and
popular method, called Poincare” index in 1984 [1]. This
method searches for fixed patterns of core, delta, and whorl
in fingerprint. A successful improvement of this classic
method can be found in [2]. Another sub-classes of pattern-

based approach is called complex symmetrical Afilters,
introduced by Nilsson and Bigun [3]. These filter shapes are
similar to core and delta. Singular point detection is obtained
by convolving fingerprint orientation fields with these filter
models. Hence computational complexity depends on sizes
of filters and fingerprint image.

Another major approach is referred to as projection-based
method. The idea is to project fingerprint information, such
as orientation fields, into some mathematic models or
patterns, and analyze these models and patterns according to
a priori knowledge, resulting in singular point position. For
example, Jiang et al. introduced algorithm based on
hierarchical analysis of the orientation coherence [4]. Liu et
al. proposed a new way to project orientation fields into
another field called local axial symmetry fields, then used
these fields to find a reference point location [5]. Another
example, by Ramo et al[6], used transition lines of
orientation field and detected reference points by inspection
of line intersections.

By projection-based approach, the focal point was first
introduced by Rerkrai and Areekul [7]. The focal point is a
centroid of crossings, the intersection of two normal lines of
curved ridges. The original focal point algorithm was
demonstrated experimentally to be quite stable, but it was of
a very high computational complexity. Later Areekul et
al.[8] introduced another algorithm. Instead of calculating all
enormous crossings to find a reliable centroid, this algorithm
employs mean-shift approach [9] by allowing iterative
search along highly curved ridges. This approach reduces
amount of computational time into practical implementation.
However, this algorithm still needs fingerprint enhancement
in order to effectively track local ridges. In this work, we
introduce a new focal point localization by using orientation
fields instead of true ridges. Obviously, the computational
complexity should be very low because most of fingerprint
enhancement consumes high computation time. Moreover,
the new algorithm is suitably designed for orientation fields
and this results in having a good performance.

The paper is organized as follows. Section 2 presents the
new focal point localization algorithm based on directional
fields of fingerprint. Section 3 introduces how distance error
measurement can be achieved. Section 4 evaluates the
performance and the efficiency of the proposed method,
comparing with a previous method [8] and other methods
[4,5]. Section 5 concludes this research.
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II. ~ NEW FOCAL POINT LOCALIZATION ALGORITHM
The proposed algorithm composes of 4 processes;
preprocessing, crossing-points localization, initial block
localization, and focal point localization. The details of each
process are described as follows.

A. Preprocessing

The preprocessing of proposed algorithm composes of
fingerprint partitioning and directional field estimation. The
original fingerprint is partitioned into 16x16 blocks. Then
orientation field of each block can be estimated by using
Hong’s approach [10]. For higher precision of directional
field estimation at pixel resolution, Bazen and Gerez’s
approach is more suitable as in [2]. Then all orientation
fields in each block are averaged resulting in only one
directional field represented orientation ridge of this block.

B. Crossing Points Localization

From a directional field of each block and a center pixel of
the block, a straight line equation, which is perpendicular to
the directional field of block B(i), at i™ row and /™ column,
can be formed by

Y=y, = tangy; ;) )(x-x.) (1

where ¢, is an orientation field of the B(i,) block, and
(xcye) 1s a center of the B(i,j) block, and (x,y) is a pixel
position of a straight line defined by (1).

The crossing point is defined as an intersection of two
straight lines which is perpendicular to two orientation
fields. Assume that 2 straight-line equations, ¢, and ¢, , are

Ciiy=yg=m(x—x,), (2)
Uiy =Yo =my(x=Xx,), (3)
where m; and m, are the slopes of /, and /,, respectively.
Then, the corresponding crossing point, (x,,y,), from these

two lines can be found by

My X, —mX, Y — Y,

X, = 4

» s —m (4)

yp - 2 1 1 nl/l _’nl 2 2 2 (5)
2 1

Clearly from (4) and (5), m,—m, cannot be zero. In other
words, these two lines cannot be parallel. In fact, if some
line is parallel or almost parallel to the other, the crossing
point will be located very far away or outside a fingerprint
image. In order to locate a focal point near a fingerprint
boundary, the effective area is extended from original
fingerprint image by a quarter of height and width. Hence
only the crossing points in this effective area will be
employed in calculating the focal point. In practice, a
condition is set to protect this serious problem by

|¢BZ - ¢Bl| >& (6)

where ¢, and ¢y, are the orientation field of block #1 and
block #2 respectively. In other words, the corresponding
crossing point can be calculated if an orientation difference
between two blocks must be greater than &

If a number of blocks in a fingerprint image is equal to M,
hence there are M straight line equations. The maximum
number of crossing points is,

#X _(M 7
max_2 ()

C.  Initial Block Localization

The potential location of a focal point is in the block,
which contained the highest density of crossing points. If all
crossing points in the effective area are calculated (Fig 1
(b)), and histogram (or population) of crossing points in each
block can be determined (Fig 1 (c)), then the block which
contains a maximum number of crossing points is the initial
block. The center of this block is a starting point for the next
process.

= >
};"Z/;_'/;. ts
72N\
rfr;’ f Wy \"\“
LUHLLIANN \
.:\.:'_ .
(a) Original

Fingerprint (b) Crossing Points (c) Initial Block

Fig. 1. The example of crossing point localization and initial block
localization.

Note that histogram of crossing points may contain several
local maximum blocks. Hence there are several candidates of
the initial block. In practice, we could trial all candidates as
initial block and select the most stable results.

D.  Focal Point Localization

The previous algorithm [8] of the focal point localization
used a mean-shift concept [9]. The proposed algorithm still
used the mean-shift concept with controlling conditional area
of curved ridges. The proposed focal point localization
algorithm, as shown in Fig 2, is described as follows.

The Focal Point Localization Algorithm

Step 1: Set iteration time to zero (i = 1), and set the center of
the initial block to be a centroid (X.o),Ver0y). This is for the
first time only.

Step 2: Select a top-half circle area. By choosing a block
which contains a centroid (X.,_1),Ve(-1)) as a center block, the
top-half circle area can be defined with radius R (blocks) as
shown in Fig 3 (R = 7 in our experiment).
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1)

Set center of initial block to a centroid

&

Find Effective Area by the Centroid

&

Find the New Centroid

&

Measure Centroid Shift

Focal Point =Centroid

Fig. 2. The focal point localization algorithm.

Fig. 3. The top-half circle area with initial block as the center.

Step 3: Generate the crossing points by using only
orientation fields in this top-half circle area, and find the new
centroid. Assume that a number of orientation fields in the
top-half circle area is equal to N, then the new centroid
(Xei:Versy) can be calculated by using the following equation,

N N
Keaiys Yeriy) = (ijl X! N ZH A0 /N) (®)

where (X)) is the /" crossing point generated by two
lines which are perpendicular to two orientation fields in the
top-half circle area.

Step 4: Find the (/)" shifted distance, or &), between the old
centroid point (X.q-1,VaG-)) and the new centroid point
(XeriVeri), given by

o) = \/(xct(f) - xct(i—l))z + (yct(i) ~ YVerinn )2 ©

Not only the shifted distance is calculated, but also we
introduced a cumulative shifted distance, which could help
us make decision about divergence of a focal point. The
cumulative shifted distance is defined by

Y 5() = 25— 1)+ AS(i) (10)

where
0; if 6(i)=06(i-1)
AS(i) =30 -1)=08@); if o(i-1)=26() (1)
o(i-D)+d3);, if o@i-1)<d@)

Step 5: Check convergence or divergence condition of this
centroid. At this point, two conditions can be used to stop
iteration. The first condition is related to focal point
convergence, if distance &i) is less than or equal to the
threshold T, iteration stops and this centroid is defined as
the focal point. The second condition is related to divergence
of a focal point, if the cumulative shifted distance, X i), is
greater than the threshold 7y then iteration stops and the
focal point is diverged (or cannot be found). Otherwise, we
replace the new centroid (x.)Ve) by the previous one,
(Xci-1)2Veri-1)), and repeat the step 2 through step 5 again until
the iteration ends. Note that for saving computational time,
we choose the block, which contains the new centroid, as the
new center block in step 2.

E.  Focal point Quality and Assessment

To complete our reference point detection, it should be
excellent if we could accurately evaluate the obtained focal
point assessment. At this point, the number of crossing
points, which contributed to the stability of the detected
focal point, can be used as focal point quality parameter. The
number of crossing points in the circle, radius R with the
focal point as its center, can be counted and compared
among the candidate centroid. The one, which obtained the
highest number of the crossing points, should be selected as
the final focal point.

III.  ERROR MEASUREMENT

Because the focal point cannot be observed directly by
human eyes, therefore the focal point cannot be manually
marked as core and delta points. Clearly the distance error
measurement technique must be carefully designed in order
to fairly compare with the other research results. Even
though we could not manually locate the focal point directly,
but we could manually located three minutiae points or
distinct points around the expected region of singular point
instead. Then we could linearly project the focal point from
one image to another. However, a precise positioning of the
projection is impossible due to non-linear elastic distortion
of fingerprint. Moreover, marked minutiae location may not
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be precise due to human error. Therefore we could notice
that our error measurement technique probably results in
higher accumulation error than the other techniques that
manually located the singular points directly.

Our distance error measurement technique can be
described as follows. For each finger, we manually selected
three minutiae points or distinct points as reference points in
8 original fingerprint images from the same finger. The
objective is that these selected 3 minutiae points should
cover the expected area of the core point or detected focal
point. Then our goal is to linearly project the detected focal
point of a fingerprint into another fingerprint with less error
as possible. Finally we could measure a distance error (DE)
between 2 detected focal points from two different
impressions of the same finger.

In order to measure the distance error in details, the
procedures are explained as following. First, the same three
minutiae points; B(blue), G(green), and R(red) are located at
Fig 4(a) and Fig 4(b). Assume that we are projecting the
detected focal point location in Fig 4(a) into Fig 4(b).
Second, at the Fig 4(a), a BG line (the line between B point
and G point) is created and a RF line (the line between R
point and F point) is built and extended to cross the BG line
at point X. If fingerprints are linearly distorted, the ratio of
BX/GX and RF/FX should be the same in both fingerprints.
Note that this assumption is not true because of the fact of
nonlinear distortion from practical fingerprint impressions.
However, this is the best projection position we could guess
and our results will suffer from this assumption. Third, at Fig
4(b), a BGline is formed and the point X “can be located by
using the same ratio of the Fig 4(a) as following constraint,

BX/GX = BX’/GX’ (12)

Fourth, the projected focal point P can be located by
applying the RF/FX ratio to the line between X “and R “using
the following constraint,

RF/FX = RP/PX” (13)
Finally, the distance error (DE or &) between the actual focal

point, F’ and the projected focal point P can be defined as
follows,

e=\(xp —x,)" +(p — ;) (14)

If the detected focal point is inside the RBG triangle, then
there are 3 ways to project this detected focal point to
another fingerprint. According to Fig 4, instead of starting
from BG line, we could start form BR line of GR line. To
compensate distance error from non-linear distortion of
fingerprint, we projected the detected focal point through 3
times and measured the distance error by 3 times. Then an
average error was calculated. Unfortunately, in case of the
detected focal point lies outside the RBG triangle, there is
only one way to project the focal point as shown in Fig 5.

Beside, the linear projection may cause large amount of error
in this case. Therefore distance error is calculated only one
time in the case of the focal point located outside the RBG
triangle. In practice this case could be avoided by marking 3
reference points cover expected focal point location.
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Fig. 4. The example of linear projection of a detected focal point from
fingerprint (a) into (b). Note that three reference points (R,B,G) are
manually marked and the detected focal points (F, F ) are inside the RGB
triangle. The projected focal point (P) is linearly project from (a).
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Fig. 5. The example of linear projection of a detected focal point from
fingerprint (a) into (b). Note that three reference points (R,B,G) are
manually marked and the detected focal points (F, F”) are outside the RGB
triangle. The projected focal point (P) is linearly project from (a).

IV. EXPERIMENTAL RESULTS

The experimental results were conducted based on DB2a,
FVC2000 database for comparison. This DB2a, FVC2000
fingerprint database was acquired using a low-cost
capacitive fingerprint sensor, size 256x364 pixels, 500 dpi,
for 100 fingers with 8 impressions per finger (800
fingerprints). These 100 fingers were classified into 6
fingerprint types; i.e. left loop (L), right loop (R), whorl (W),
twin loop (TW), arch (A), and tented arch (TA). All 800
fingerprint-images are manually marked with 3 similar
minutiae or distinct points for each of the 8 images of each
finger. The previous focal point localization algorithm [8]
and the proposed algorithm are tested with the new error
measurement scheme as shown in section III. From 8
fingerprint images of one finger, we measure distance error
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from each couple one by one, total 7 times, then we average
these distance error for each finger. The experimental results
from previous algorithm [8] and proposed algorithm are in
the Table I and Table II, respectively. Unlike results in [8],
we did not remove any focal point with high distance error
out of average. Therefore the results are worse than [8].
Besides, the measurement scheme is also changed so the
results reported in this paper and results from [8] are
different even though both results are from the same scheme.

our assumption that the focal point is a good reliable
reference point comparing to other methods.

Next, we compare a computational time between the
previous method [8] and the proposed method in Table IV.
The proposed scheme does not need fingerprint enhancement
process, but it requires only block-based orientation field
estimation. Hence we could reduce amount of computational
complexity by approximately seven times, with better
localization accuracy performance.

TABLE I TABLE 111
Performance of the Previous Algorithm [8] Compare Performance of Various Singular Point Detection Algorithms
Precisions Fingerprint Classes in FVC2000 DB2a Performance Results (Number of Fingerprints)
Chxely R L W W A L All Algorithm >10 g: TR bee % Acc
# of Focus Exist | 216 | 255 | 167 16 40 104 | 798 <10 <20 >20 Fail il‘l’ <20
# Unfound 0 1 1 0 0 2 Pixels | oo ¢ | Pixels Pixels
DE <5 98 119 73 5 4 302 Liu T. etal. [5] 654 91 46 9 93.125
S5<DE<10 76 107 78 8 12 25 306 Proposed Algorithm 640 123 36 1 95.375
10<DE<I5 17 12 9 2 9 28 71 Jiang X. et.al. [4] 638 108 41 13 93.25
15 <DE <20 6 6 7 0 12 23 54 Areekul V. et.al. [8] 608 131 59 2 92.375
DE >20 19 11 0 1 4 24 59
Max DE 181 83.7 | 289 | 519 | 749 122 181
Min DE 038 | 047 | 048 | 195 [ 1.06 | 075 | 0.38 _ - TABLEIV _ o
vemgeDE | 120 799 | 130 | 139 | 180 240 [1ax | Copms Comuion T bomeer o oo e oo
Variance of DE 19.5 14.2 5.90 | 16.1 15.0 174 | 14.7
Average Execution Time of Our
Algorithms on FVC2000 Db2,
. (millisecond)
Performance og tﬁ?llgiised Algorithm Algorithm (No Optimization)
Areekul et.al. Proposed
Precisions Fingerprint Classes in FVC2000 DB2a [8] Algorithm
(Pixels) R L W | TW A TA | All Segmentation 26.978 .
# of Focus Exist 216 256 167 16 40 104 799 Orientation Field Estimation 59.111 59.111
# Unfound 0 0 1 0 0 1 Enhancement 535.72 -
DE<5 73 118 72 6 11 285 Focal Point Localization 30.104 28.453
5<DE<10 121 113 81 3 16 21 355 Overall 651.913 88.564
10<DE<15 13 16 8 6 11 27 81
15 <DE <20 3 7 5 1 5 21 42 Fig 6 shows the only fingerprint, which our proposed
DE =20 6 2 1 0 3 24 36 algorithm fails. From Fig 6(b) and 6(c), majority of crossing
Max DE 618 | 659 | 349 | 63.1 | 77.0 | 133 | 133 points and the candidate initial block are clearly located far
Min DE 0.17 | 0.06 | 0.07 | 0.26 | 0.68 | 0.65 | 0.06 away from its singular point. The proposed algorithm
AverageDE | 9.64 | 9.75 | 100 | 129 | 119 | 219 | 12.7 diverge from this initial area to top-left corner. However, if
Variance of DE | 8.14 | 7.99 | 998 | 16.6 | 186 | 184 | 133 an initial point is somewhere around top-right corner, our

Finally, we compare the results with existing reference
point localization methods [4,5]. These methods are selected
because of available and comparable results with the same
FVC2000 Db2a database. The results showed in Table III.
Note that our new measurement scheme does not give us any
advantage over the others because human can pick the
corrected reference point regardless of nonlinear distortion in
fingerprint. The linear projection point is just our best guess
for non-linear distortion in fingerprint. Table III shows that
both focal point algorithms obtain very low rejection rate.
The algorithm in [5] achieved the highest number of
fingerprint which reference point is found within less than 10
pixels. However, our proposed method outperforms any
algorithms in this table if we consider the highest number of
reference point within less than 20-pixel. This results support

algorithm will converge to an expected focal point with less
error. This problem can be solved in the near future.

l"_”;;’: ;}’Z??’;—‘"': 3
’aé%ffﬁ \
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;;/»43/?//”%//}’&
/5';/?// \

."‘

(a) #79_1 (b) Crossing Points

(c) Initial Block

Fig. 6. The proposed algorithm fails only fingerprint #79 1. The reason is
because high density of crossing points on the left area.

Pg 2093

Authorized licensed use limited to: Kasetsart University. Downloaded on June 29, 2009 at 23:43 from IEEE Xplore. Restrictions apply.




(a) #16_4 (Average DE = 4 pixels) (b) #16_3 (Average DE = 6 pixels)

Fig. 7. Good results from our proposed algorithm of finger # 16 of
FVC2000 Db2a database.

(a) #22_1 (Average DE = 26 pixels)
A1

(c) #57_1 (Average DE = 21 pixels)

(d) #57_2 (Average DE = 4 pixels)

Fig. 8. Both fingerprint #22 1 and #57 1 are failed in the previous
algorithm [8]. But our proposed algorithm can recover its focal points.

Fig 7 shows advantage of the proposed focal point
localization scheme even though the core point is out of
bound. This is the out-standing property of the focal point
that the algorithm can project the location of core even
though it is not in the image boundary. Fig 8 shows two
fingerprints that the previous algorithm [8] rejected, but the
proposed algorithm could recover these focal points with

reasonable distance error. These results were very surprising
because we expected the new algorithm should also fail for
these two fingerprints. Hence the proposed focal point
localization algorithm is shown itself for the promising
future usage.

V. CONCLUSION

The paper proposed a new algorithm for focal point
localization in fingerprint registration process. The focal
point is shown to be a very stable point for fingerprint
registration. Moreover, the algorithm also consumed only
1/7 execution time compared to the previous scheme (88.6
millisecond). This shows that focal point is ready for
practical usage. At this point, there are various potentials to
explore our proposed method in both accuracy and
computational complexity such as hierarchical multi-
resolution search which we expect that our results should be
the best in Table III. For example, we could use 8x8 block
instead of 16x16 block. From weak law of large number or
our experiment in [7], our accuracy should be better. Our
future research is also exploited the focal point applications
in fingerprint classification and fingerprint recognition.
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Abstract

Since the focal point is an unique reference point using in
fingerprint verification, this paper presents a new focal point
localization scheme using directional fields. This proposed scheme does
not require fingerprint enhancement, hence computational complexity
can be reduced significantly, approximately 24 times reduction, or 21 —
millisecond on Intel Centrino Duo Core 1.66 GHz, RAM 2Gbyte. This
approach is very promising and can be further researched and improved
in the near future.
Keywords: Focal Point of Fingerprint, Singular Point, Fingerprint
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Abstract

In this paper, a novel fingerprint matching based on minutiae-ridge graph representation and their relationships.
The new minutiac substructures, simple representations of minutiae’s features, double minutiac relationship
features, and their adjacent ridge features, are designed to cooperate relative features among minutiae and
connected ridges, resulting in fingerprint elastic distortion robustness. In the matching process, the local
neighborhoods are roughly matched by considering secondary features derived from relative of two connected
minutiae information. The one-to-one correspondence of secondary features is then consolidated and grouped
globally into cluster by graph propagation technique. Finally, the Minimum Cost Flow technique [Max flow1] is
applied to find the best cluster combination between two fingerprints. Experiments on databases FVC2000,
FVC2002, and FVC2004 show that the proposed algorithm has good performance in terms of matching
accuracy (equal error rate EER) with low computational complexity, especially highly deformed fingerprints in

FVC2004DBl.

Keywords: Fingerprint matching; Minutia-Ridge Graph representation; Minimum cost flow;

1. Introduction

Inevitably, fingerprint identification applications are playing an important role in our everyday life from
personal access control, office time attendance, to country boarder control. To pursue this goal, automatic
fingerprint identification system (AFIS) must be proved to be highly reliable. Fingerprints are patterns of ridges
and valleys on the surface of human fingertips. It is well believed that the pattern of each finger is unique and
can be represented by one or more kinds of the following representative features from global features to local

features such as singular points, orientation fields, frequency fields, texture, ridges, minutiae (ridge endings and



ridge bifurcations), and pores et al. From these rich features, fingerprint matching can be classified into several
techniques such as, minutia-based matching [ ???], correlation based matching [Correlation1- Correlation3], and
texture-based matching [texturel- texture5]. However, minutia-based technique is the most popular of all
matching techniques, and this technique is widely accepted as a proof of identity in the courts of law in most
countries. Practical fingerprint matching faces many challenging problems such as low quality images, only a
portion of a finger, small area sensors, different types of sensor, and non-linear distortions. To solve these
problems, good fingerprint matching techniques need to obtain accurate alignment and precise minutiae
correspondence between an input fingerprint and a template. Based on minutiaec matching in literature, a large
number of fingerprint matching schemes can be roughly classified into several approaches as follows.

A) Absolute pre-alignment approach: These schemes employed pre-alignment of two fingerprints by using
some reference points such as core point, delta point, or singular points. W. Zhang and Y. Wang [Pre-
alignmentl] used core points as their reference points to speed up initial local-structure matching. S.
Jirachaweng et al. [Pre-alignment2] reordered minutiae around a unique focal point into 1-dimensional feature
sequence, and two best minutiae sequences are matched by using dynamic programming. To avoid fingerprint
alignment, A.M. Bazen and S.H. Gerez [Pre-alignment base3] introduced an intrinsic coordinate system based
on portioned regular regions defined by orientation fields. All pre-alignment schemes have some limitation if
reference point does not exist. These schemes always suffer from poor quality fingerprint images and images
with portion of fingerprint.

B) Minutiae structure-based approach: Several minutiae matching approaches are based on relationship
between minutiae and its neighbored minutiae. X. Jiang and W.Y. Yau [Minutiael], N. K. Ratha et al.
[Minutiae2], and X. Chen et al. [Minutiae3] proposed their methods, which relied on similarity measures of
global and local minutiae relationships, in order to enforce their local matching results. X. Jiang and W.Y. Yau
[Minutiael] used 2-nearest neighbor minutiae to form fixed-length feature vectors with respect to distances and
angles in the polar coordinate system. N. K. Ratha et al. [Minutiae2] and X. Chen et al. [Minutiae3] employed
unfixed-length feature vectors, which included all minutiae whose distances from the central minutia were less
than a threshold. The difference between their feature vectors was that ridge count information was used by N.
K. Ratha et al. [Minutiae2]| while adaptive bounding box was used by X. Chen et al. [Minutiae3]. Y. He et al
[Minutiae4] proposed a minutiae simplex that describes a second order Euclidean space-based relative structure
between two minutiae. S.Chikkerur. et al.[Minutiae5] used ‘K’ nearest neighbors of a minutia within a fixed

radius, named K-plet, to construct as a node of the graphs for matching. They also introduced the “coupled



breadth first search” (CBFS) algorithm to traverse through nodes of graphs for calculating a matching score.
Among minutiae structure-based approaches, one of most popular methods is based on the generalized Hough
transform (GHT) for point pattern matching; i.e. N.K. Ratha et al. [Minutiac6] and S.H. Chang et al.
[Minutiae7]. In order to deal with strong deformation of fingerprint, Z.M. Kovacs-Vajna [Minutiae8] used a
triangular matching method based on a fact that local distortion was less than global distortion. Moreover, the
couple triangle similarity measure in two fingerprints was improved by constructing them as a fuzzy feature set,
described by X. Chen et al. [Minutiac9]. However, this scheme needs highly computational complexity because
couple triangle similarity should be measured for all possible cases of minutiae triangle in both fingerprints. In
addition, W. Xu et al [Minutiae10] introduced growing and fusing techniques, using neighboring triangles of the
candidate minutiae triangles, to grow into larger local structures. X. Liang and T. Asano [Minutiael1] presented
minutiae polygon descriptor by including more information near bifurcation. This descriptor consists of minutia
type, orientation, and minutia shape, which has higher ability to tolerate distortion.

C) Descriptor-based approach: Some fingerprint matching methods add some useful side-information or
some additional descriptors, related to minutiac. Most descriptors are based on textures which represented
global characteristics of fingerprint with less sensitive to local distortion. Some matching techniques employed
orientation fields to robustly deal with low quality fingerprint. Several types of rotation-invariant descriptors,
estimated from orientation of sampling points around the minutia, have been employed in minutia matching
schemes by M. Tico and P. Kuosmanen [Descriptorl], X. Tong. et al. [Descriptor2], X. Wanga et al. [Descriptor
base3]. Furthermore, the spuriously matched pairs can be removed by examining additional orientation-based
ridge patterns, introduced by L. Sha and X. Tang [Descriptor4]. Several different attempts propose to add ridge
information to minutia-based matching such as, the means of sampling points in associated ridge of a minutia by
A K. Jain et al. [Minutiae Extraction2] and X. Luo et al. [Descriptor5], ridges counts among matched minutiae
pairs by [L. Sha et al. [Descriptor6]], and ridge curvature by [X. Wanga et al. [Descriptor base3]]. A.M. Bazen
and S. Gerez Bazen [Descriptor7] used thin-plate splines to estimate nonlinear distortion between two minutiae
sets, and remove the distortion prior to the matching stage. In case of fingerprint with very few minutiae,
minutiac based matching algorithms will not perform well. To solve this problem, ridge structure is the most of
reliable features covering the whole region of a fingerprint image. For example, the interested approach,
proposed by J. Feng. et al. [Descriptor8], uses the dynamic programming to compare thinned ridges directly.
However, the totally ridge-based method requires more extracting and matching time. On the other hand, to take

advantage of fingerprint texture containing with a limited range of spatial frequency, some methods were



proposed to reduce distinctive capabilities by decomposing texture at different frequency scales and orientation.
A. Jain et al. [texturel] introduced fingercode, fixed-size texture descriptor, which obtains by filtering each
sector with 8 oriented Gabor filters and then computing an average absolute deviation (AAD) of the pixel values
in each cell. Hence, authors used the fingercode as feature maps for a possible matching up to £45° orientation.
Obviously, disadvantage of this approach was the need of accurate core location to centralize the fingercode.
This is not possible in case of bad prints. Subsequently, A.K. Jain et. al [Descriptor9] proposed combination of
texture information with minutiae features to improve recognition performance. Ross et al. [Descriptor10]
employed the hybrid matcher that combines minutiae and texture features. Recently, the fingercode was applied
as minutia’s texture descriptor in order to increase minutiae distinctiveness by F. Benhammadi et al.
[Descriptor11].

Different from the above mentioned methods, our propose combines minutiac-based technique and ridge-
based technique together in order to take advantages of noise robustness, potential ability to endure with non-
linear deformation, local feature pair matching with low computational complexity, and small additional
descriptors requirement. To achieve this goal, two local network relationships are utilized i.e.; the relationship
between minutiae to their adjacent ridge, and the reverse relationship from ridges to their adjacent minutiae as
shown in Fig. 1(a) and Fig. 1(b), respectively. These relationships are arranged in the form of a non-directional
graph G(V,E), named MR-graph, under translation and rotation invariance. Similar to the way a human expert
matches fingerprints, matching process is designed to grow from smaller local matching region into larger
matching region by utilizing sub-graph clustering in both input and template fingerprints simultaneously. Then,
the global matching is finally performed by finding the best combination of the local matched clusters with
weighted bipartite matching technique. A similarity score is evaluated by fusing percentage of matched minutiae
over a total number of minutiae, a number of matched minutia, and cluster denseness. Experiments have been
conducted on several databases of FVC2000[FVC2000], FVC2002[FVC2002], and FVC2004[FVC2004]. The
preliminary results show that our method not only improves matching performance, especially with severe non-

linear distortion on fingerprint database FVC2004 DB1, but also greatly requires less computational complexity.



(a) Minutia to adjacent ridges relationship (b) Ridge to adjacent minutiae relationship

Fig. 1. Example of local relationships on large deformation fingerprints (from FVC2004 DB1b 102 3 and
102_95).

This paper is organized as follows. Preprocessing and feature representations are explained in Section 2. The
MR-graph is described in Section 3. The matching process is introduced in Section 4. The experimental results

and evaluation are presented in Section 5. Finally, this work is concluded in Section 6.

2. Preprocessing

2.1. Feature-representation

For a given grayscale fingerprint image, the image with thinned ridges is obtained, and minutiae are extracted
and arranged into the minutiae set using the technique described in [Minutiae Extractionl, Minutiae
Extraction2]. By following J. Feng. et al. [Descriptor8], ridges associated with bifurcations are firstly split into
three ridges. It should be noted that short ridges are removed in order to clear up noise. Then each clear ridge is
given a label and sampled with a uniform step size, 5. The sp,, is defined as a sampling point at the s™ order of

the 7" ridge. An example of ridge sampling is shown in
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Fig. 2. Substructure of ridge representation.



In general, local ridge structure is widely used for increasing distinction of minutiae for fingerprint matching
[Descriptor3, Descriptor based5-6]. The concept of adjacent ridges tracking is used to dealing with elastic
distortion [Descriptor7-8]. Following this adjacent ridge concept, two types of Minutia-Substructure are
defined by using its 5 associated points (respectively, 3 associated points) for termination (respectively,
bifurcation) as shown in Fig. 3. The termination minutia’s substructure composes of five forward connected

ridges and four reverse connected ridges, denoted by {2R,1R,—1R,—2R,2F 1F,0F ,—1F,-2F} € Q),, where

Q; is a set of minutia-substructure ridges of the /™ minutia. The first subscription represents the relative ridge
order from minutia location and the second subscription denotes the sub-ridge’s direction referred to its minutia
direction; i.e. R: reverse, F: forward, as shown in Fig. 3(a). Similarly, the bifurcation minutia substructure
composes of four forward connected ridges and three reverse connected ridges, denoted by

{1R,0R,—1R,2F ,1F —1F,-2F} € (), as shown in Fig. 3(b). Each minutia substructure, ;, contains minutia’s
descriptors as {x,,y,,6,, p, ={r.,s,,0,, fork € Q,} } where x;, y; and 6 represent x-y coordinates and direction

of the /" minutia, respectively. The ridge features, p;, compose of the label of ridge, r;; the order sampling point,
si; and the ridge flow, J;; of the k™ order associated point of the i" minutia. The ridge flow & is assigned with 1

(respectively, 0) when ridge direction corresponds (respectively, reverses) to minutia direction as follows,

5 - 1 |6, -6,1<90
“o Otherwise (1)

’

where 6, is ridge direction at the " associated point of the i minutia.

2F 2R
\F O 2F 1R
1R O
O
0F 1F O0R
ct——0 PY
-1F 1R IF
o 2F 1R
R 2R .
2E m] ]

(a) Termination Minutia Substructure (b) Bifurcation Minutia Substructure
Fig. 3. The minutia substructures and their ridge labels. (Solid dots represent minutia location; squares represent

associated points)

2.2. Minutiae filtering

Generally, fingerprint images are usually contained with noise and low quality areas. Segmentation process
may incorrectly classify into high quality fingerprint region, low quality fingerprint region, and background.

Some spurious minutiae from low quality region are possibly remained and passed into the matching process.



Therefore, minutia filtering process is required to reduce these artifacts and to improve matching results. In this
section, a simple filtering process based on proposed minutia-substructure is introduced.

From general inspection, the ridge ending points at finger boundary usually arrange in lines with the same
orientation. On the other hand, most spurious minutiac locate closely to others in low quality region of
fingerprint. Both cases can be simply detected by considering reliable status of associated ridge, &; k€€, in
minutia substructure. Initially, an associated ridge that locates far from the end of ridge in the related dirction is

defined as ‘a reliable point’ (&= 1), otherwise it is defined as ‘an unreliable point’ (&= 0) with conditions as

follows,
1 s, 2T, and 0, =1
g =11 s; <L, -T and 6,=0
0 Otherwise . )

where s;, &, and L; are the simpling point, the ridge flow, and the ridge length of the k" associated point,
respectively. 7, denotes an acceptable threshold. Finally, any minutia is defined as unreliable minutia if it
satisfies a condition of &z + &,z < 1 (respectively, a condition of & + gz + &z < 2) for termination minutia

(respectively, bifurcation minutia). An example of minutiae filtering is shown in Fig. 4.

=

:

(a) Detected minutiae before filtering (b) Minutiae after filtering

(1392 4)
X

Fig. 4. Minutiae filtering results in thinned fingerprint; (“x”") are unreliable minutiae.

3. Graphical view

Regarding to the encoding of local minutiaec and ridges relationship, the structure of proposed MR-graph is
described in this section. The local information from minitia-substructure m; = {x;, y;, 6, p={r, Sy, O, for
keQ;}} (described in section 2.1) are reorganized into a non-directional graph, named MR-graph. This graph

consists of two types of vertex sets; Vy and Vp, representing the minutia set and the ridge set in fingerprint



respectively. This graph also consists of an edge set, E, representing the connectivity between Vj; and V; as

shown in Fig. 5.

Fig. 5. Example of the MR-graph structure. (Circle represents the minutia vertexes, Square represents the ridge
vertexes, and arrow represents edge).

Vy, minutiae vertex set, is described by a vectorV,, = {{m, = {x,,y,,6,,¢, {ek}kNj" }‘,ﬁ‘} , Where:

1. |M| denotes the total number of minutiae in fingerprint,

2. x;,y; denote the coordinate of the i" minutia,

3. 6 denotes its orientation against the horizontal axis in anticlockwise direction,

4. t;denotes the minutia’s type (termination or bifurcation),

5. e denotes the connected edge at the k™ associated ridge,

6. Ngq; denotes the total number of edges from m; to ridge vertex in Vg (5 for termination and 3 for

bifurcation),
Vg, ridge vertex set is described by a vector V, = {{r, = {e ) }LR:‘]} where:

1. | R|denotes the total number of ridges in fingerprint,
2. e, denotes the n™ edge of the ;" ridge,
3. Ny denotes the total number of edges of the /* ridge.

E, edge set is described by E = {{e, = {m,r,k,R(k),s,,0, } }LE:‘I , where:

1. | E |denotes the total number of edges between minutiae vertexes and ridge vertexes,

2. m denotes the m” minutia in Vjy,

3. r denotes the " ridge in Vg,

4.k denotes the order of associated ridge from the 7" minutia to the /" ridge, keQ (details in Section
2.1),

5. M(k) denotes the ridge distance of the & connected ridge, defined by a lookup Table 1,



6. sy denotes the order sampling point of the ™ connected ridge,
7. & denotes ridge flow of the X" connected ridge. (Details in Section 2.1).

Table 1 Ridge distance between minutia and the &” associated ridge

TERMINATION MINUTIA

k 2R IR -IR 2R 2F IF OF -IF -F

®E 2 1 -1 2 2 1 0 -1 -2
BIFURCATION MINUTIA

k IR OR -IR 2F IF -IF -2F

®kH L0 -1 1 0 0 -l

3.1 Definition of double-minutiae relationship substructure
The relationship between double-minutiae is utilized as a feature vector for recognition. The proposed feature
vector is simply obtained from a loop nest between minutiae vertex and ridge vertex in MR-Graph. The

proposed feature vector composes of two feature sets; the geometric-relationship feature set and the ridge-

relationship feature set {2MR oy = (ﬂpq,n;‘;);a €R W)}, where p and ¢ denote the serial numbers of minutiae, and

a denotes a connected ridge in the connected ridge list, R, , from m, minutia to m, minutia, respectively. The

rq°

geometric-relationship feature set,(/,,,9,,,u,,,V,,) €4

g » composed of basic features such as Euclidean

distance and relative angle between two minutiae. Each feature is defined as follows.

- 1, = "(xp,yp) -(x,5, )”2 denotes a displacement between two minutiae, where (x,,y,) and (x,,y,)
are coordinates of m , minutia and m, minutia, respectively,

u, =@, —0, denotes an angle between minutia direction, ¢,, and the direction from m, to m,,

where P, = arctan(( y, - yp) I X, - xp)), an angle between two minutiae in x-y plane,

* v, =9, —0, denotes an angle between minutiae direction ¢, and direction from m, to m, .

(a)
rq

The ridge-relationship feature set, (pc rcfpj)) en'”;a eR,,, represents a distortion-invariant feature set by

rq rq°
analyzing ridge relationship between two minutiae as follows.

. pc;’;) denotes a sampling point count along the « ridge from m, to m, , which is defined by

p q — — —1-

SPai —SPa s r,=r,=a and 6&,=1

() _ 49 _ op? — 9 — — 0

DCht =P —SPui> r,=r,=a and 0,=0;
None r,#7,.



* The sp/;andsp; ; denote the i™ and /™ sampling point order of m,, and m, minutiae along the o ridge,

respectively. The r,and 7, denote ridges from m,and m, minutiae, respectively. And the pc;‘;) is set
to None if a" ridge cannot link between minutiae m, and minutiae m,. rc';;’ denotes a ridge count

from m, minutia to m, minutia along the a™ ridge , which is defined by

(@) _
I”Cpq =

{‘R(kp)—*ﬁ(kq) if r,=r,=a

None Otherwise
where k, is an associated ridge order between the m, minutia and the a" ridge, and k, is an
associated ridge order between the m, minutia and the a" ridge, obtained by the look-up Table 1.

And the rciy) is set to None if a" ridge cannot link between minutiae 7, and minutiae ,.

For better explanation, an example of ridge count calculation between two minutiae is given as shown in Fig.

6. Two minutiae structures, m, and m,, connect each other within three ridges; R;, R, , and R, . First R,
ridge from the top connects m, minutia structure with ‘1R associated ridge, and connects m, minutia structure
with ~ 2F’ associated ridge. Therefore, ridge count between these two minutiae s

reyy) = R(IR) —R(2F) = (1-2) = -1 from the look-up Table 1. The second Rp ridge count can be obtained by

rel? =R(~1R) - R(IF) = (-1-1) = -2 . The last Rg ridge count is rc(;’ = R(-2R) —R(0OF) =(-2-0)=-2.

RA 2F o 2R
\ P g 1c pc
IF IR oF 2R R S G
R, O— ) — ) —) —) S—) R, R
‘ OF
Re o’ Rpg IR 2F -1 5
,,,,,,,,,, R ‘ LS IF IR ®
D c
-2F 2R
Ry = @ Rp -IR IF -2 4
I —
e -
o Ry "t Re 2R OF -2 4
Ry R, R -2F o -2R ‘ Ry IF
¢ [ —
Ry N Rg R¢ 2F
(a) " (b) be

Fig. 6. The demonstration of relative features set between two minutiac substructures. (a) the geometric-
relationship features (b) the ridge-relationship features
The proposed structures and feature sets have two major advantages in practical fingerprint matching as
following;
(1) Dealing with minutiae sub-patterns alignment: The proposed structures and feature sets allow
minutiae sub-pattern alignment or sub-pattern pre-matching if their associated ridges of minutiae-
substructure in Fig. 3 possess one of the possible correspondences in Table 2, where T and B

represent terminate minutia and bifurcation minutia, respectively,
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Table 2. All possible correspondences between ridges when a termination and a bifurcation are matched.

Matched Case Forward Reverse

2F-2F -IF-IF  OF,0F IF,IF 2F2F | -2R2R  -IR-IR IR, IR  2R,2R

T-T 2F-IF -1F,0F OF,IF  IF,2F 2R-IR  -IR,IR  IR,2R
-IF,2F  OF-IF IF,0F 2F,IF -IR-2R  IR-IR 2R, IR
2F-2F -IF-IF  OF,IF  IF,2F 2R-IR  -IR,0R IR, IR

e -IF2F  OF-IF 1F,IF  2F2F -IR-IR IR, 0R 2R, IR

B-B 2F-2F -IF-IF 1F,IF  2F2F -IR-IR  OR,0R IR, IR

(i1) Improving more robust graph connectivity: In Fig 7, we select an instance to show this issue. The

example shows a local relationship between two minutiae and their adjacent ridges. We assume a
crease is applied to it, causing the connectivity between minutia m, and minutia m, to damage in the
dashed area. However, the proposed graph is still able to recover this uncompleted minutiae links
until all adjacent ridges in minutia-substructure are completely destroyed, as the red and blue

trajectories in Fig 7b.

— — —_ I
mp & — oy, mp mq

— T

— —

— B — =

Fig. 7. Example of ridge connectivity recovering.

3.2 Computation of double-minutiae relationship similarity

In this section, the local similarity of the proposed feature sets (details in Section 3.1) is presented by a fuzzy
scoring strategy. First, suppose the mg is a reference minutia, and the qu is one of its adjacent minutia in the

G(a). G

‘G’ input fingerprint. The double-minutiae relationship feature set is 2MR,, = (4;,.17,.“ ;& € R} ), where A7,

G(a)

e represents the ridge-relationship feature set, from

represents the geometric-relationship feature set, and 7
m; to m; along « ridge. Ry, is the connected ridge list between m, and m_ . Second, suppose the m," is a
reference minutia, and m!" is one of its adjacent minutiae in the ‘A’ template fingerprint. The double-minutiae
relationship feature set between m” and m! is expressed as 2MR" = (A7 ,n"?; B e R"), where A and
n2# denote the geometric-relationship feature set and the ridge-relationship feature set from m” to m” along

ridge B, respectively. R, is the connected ridge list between m,” and m,’ . The similarity between 2MR;,

and 2MR" is considered under the conditions as follows,
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#}”match = MBox(ﬂ'gq’]'Z) € [051] (5)
#lln =2 1, (151" €[0,5] (6)
1 if [re, —rc,|<T and|pc, — pc,|<T,
Wherefﬂ(,]“nz): re; . o| < T, and|pc, | <7, , (7)
0 otherwise

where #4,,4.c;, represents the similarity of the geometric-relationship feature obtains from the adaptive matching
bounding box, Mz, (1;, A,), introduced by X. Luo et al. [Descriptor5]. #7,,u, denotes the total number of
similar links based on ridge coordinate-based feature set. f;, (77;, 77,) in Eqn 7 represents the ridge coordinate-
based similarity condition, which simply handle with several minutiae pattern problem as shown in Table 2. T,
and T, are the error thresholds of ridge count and point count, respectively, which assigned depending on
fingerprint sensor type. In order to combine matching result from two feature sets, the similarity level is

computed by using fuzzy function in Eqn 8. Then the similarity of each minutiae pair is consolidated by

similarity score of its links, ®, in Eqn 9-10.

1 #ﬂmatch = 1’ #ﬂ’match =1
13 #nmatch = 2 ’ #ﬂ’match = 1 .
SI(SR;{’SR/’[;[) =415 #ﬂmatch 2 3’#/1malch =1 ‘ (6)
07 #nmatch 2 1’ #)“match = O
0 otherwise
SL(mJ,m")= "3 sI(SR;,,SR) ©)
(q,5)ew
SL(mS,m"y= " sI(SR ,SR!)- (10)
(p.r)ew

In fact, the similarity measure of all minutia pairs based on double-minutiae relationship feature requires
O(M’xN?) computational time, where M and N are number minutiae in input fingerprint and queued fingerprint,
respectively. In this approach, this exhaustive computation is avoided by local clustering and global alignment

techniques using graph-based matching method that described in the next section.

4. Matching process

The main process of matching method consists of two majority parts: (i) Graph clustering for local similarity
measurement, minutia grouping, and adaptive fingerprint alignment, simultaneously, (ii) Cluster combination

for local cluster merging.
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4.1 Graph clustering

Similar to a conventional graph traversal, the Coupled Breadth First Search technique (CBFS), introduced in
S.Chikkerur. et al.[Minutiae5], is modified to consolidate simultanecously onto minutiaec vertexes and ridge
vertexes between two fingerprints without explicit alignment. A starting minutia pair is firstly set as a reference
vertex. The edges of the reference minutia vertex to its adjacent ridge vertex unmasked are associated. These
associated ridge vertexes are then expanded to the next connected minutia vertexes unmasked in order to
measure the second order similarity (details in Section 3.2). All new enough similar minutia vertexes are
selected using greedy algorithm and then colored into cluster. Finally, the selected pairs are considered as the
new reference pair for performing their new local matching.

The overview of algorithm is given in Fig. 8. The graph traversal occurs in two graphs G(V,E) and H(V,E)
corresponding to input fingerprint and queued fingerprint, simultaneously, as mentioned in Section 3. Suppose
Vi, Vr, and E are minutia vertex set, ridge vertex set, and edge set in each fingerprint, respectively. And C,[i, j)

denotes the cluster labeling table of each minutiae pair.

Let G(V,E) and H(V,E) represent the graphs corresponding to the two
fingerprint

Let GQ and HQ represent a FIFO queue.

Let Cy/ (i, j) represent cluster’s color table.

Let Score[k] represent matching score of cluster .

Let LCrepresent largest cluster’s color.

i = source minutia node of G

j = source minutia node of H

A. Initialize
1. Setall Cy(i, j) = WHITE
2. LC = WHITE
3. Tic = Trtincc

B. Couple Breadth First Search Algorithm
Foralli e Vy“andj € Vy!
if (Cy (i, j)= WHITE and IsCandidatePair (i, j, LC))
1. COLOR =NEW COLOR
2. Enqueue( GQ,i) and Enqueue( HQ,;)
3. Cu(i, j) =COLOR
4. While (GQ and HQ are not empty)
a. p =Dequeue( GQ) and r = Dequeue( HQ)
b. While(( o = neighbor ridge of p and
= neighbor ridge of )  are not empty)
While(( ¢ = connected minutia of & and
s = connected minutia of /) ) are not empty)
SL(p,s) :SI(SRGM > SRHpq)
c. Find matched pair by Greedy Algorithm
d. For each match pair ( p, s)
If (Cu(qg, s)=WHITE and SL(p, s ) > Ts)
I. Enqueue( GQ, ¢ ) and Enqueue( HQ , s)
II. Cu{q, s) = COLOR,;
II1. Score [COLOR] = Score [COLOR] + SL(p,s)
5.if SiZC(CM< qg, S >) >Trc
a.LC =Cy(q, s)
b. Tc = Size(Cu(q, s))
c. Update Affine transform’s parameter (46, Ax, and Ay)

Fig. 8. Graph cluster algorithm.

| Function bool IsCandidatePair (i, j, LC)
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A.If LC #*WHITE
1.Mapping into the same axis by Affine transformation

M/ = Affine_transform(M", A6 ¢, Ax 1c, AV 1)

xfn B cosAf,. —sinAf,.\ x"; + Ax; e
. ka/_n - sinA@,. cosAf,. y”j Aye

b 91 =" 1 AG .
2'If(\/(xGi =x";"M? (% = y";"? <rjand ‘961 0" "
return TRUE

3. Else return FLASE
B. Else return TRUE

Fig. 9. Potential search space reducing algorithm

<0,)

Here an example of graph traversal algorithm on two fingerprints is given in Fig. 10. The input fingerprint
and queued fingerprint are represented by graphs G and H on the left and right, respectively. And each stage of
the algorithm is described as the follows.

Step I, we assume a starting minutia pair (circle vertex) with g[1] and /4[1] to consider as the reference node
in both graph and label them into a new cluster (colored black). Next, all adjacent ridge vertexes unmasked
(square vertex) of them are extracted and then enqueued into the interesting ridge list JRL (colored gray).

Step 11, the interesting ridges in IRL, consisting of (¢, e,e )’ and (e',e],el)" , are firstly dequeued in
order to traverse next minutiae unmarked. The new candidate minutia pairs list (g[2] , #[2]), (g[3], #[3]), and

(g[4] , h[4]) are then extracted to compute the secondary feature as follow,

SR, = [SR(ﬂ'lz:(771;7771(;))67SR(112=(771[;7771(; ))H]
SR, = [SR(Z,B,(US,US))G,SR(ﬂ,l3,(771§,771§))H] >

SR, =[SR(4,, (7751))6: SR(A,,, (Uﬁ))H] .

After that, these candidate minutia pairs are considered with greedy algorithm based on the local similarity in
section 2.3.2. Finally, the selected pairs are enqueued into the interesting minutia list IML (colored gray).

Step 111, similar to Step I, the new unmarked minutia pairs (g[2], #[2]), (g[3], #[3]), and (g[4], #[4]) in IML

H

are added into cluster (colored black) and their adjacent ridge vertexes (e) and (e;,e))” are enqueued

(colored gray) into IRL again in order to traverse in the next step.

Step IV, repeat Step II, the interesting ridges in IRL, (e)? and (e} ,e’)"”, are dequeued to search their

neighbors. In this case, only (g[5], #[5]) (colored gray) can be a matched pair from the connectivity
SRys = [SR(Ass, (1), SR(Ass, (7)) 1-

However, there is no more valid neighbor to traverse and therefore the algorithm finally terminates.
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Step 111

Fig. 10. Example of MR-graph propagation. (Circle represents the minutia vertexes, Square represents the ridge
vertexes)

In order to reduce the exhaustive search space, the global alignment for two fingers mapping is attempted to
achieve simultaneously during the graph clustering process. Because the minutia pair is considered to be a
match only if the error between it and its transformed pair is satisfied the condition in Fig. 9, where ) and 6,
denote distance and angle error acceptable thresholds, respectively. Note that these two values are related to the
deformation acceptable of each sensor. According to fingerprint alignment, three parameters consisting of
relative translation (4 x and 4 y) and relative rotation A6 are required to recover. However, the scaling is not
considered here because all fingerprints in each database are acquired from the same device. In this approach,

these three parameters, A4 x, A y, and A6, are simply derived by considering the relative information of minutia

MH

pair list <MG W

i > in the largest cluster LC as the follows,

s ’; , (1)
2 3 1

o) NZ ;yi(HM

k=1

1 N
[)_CG )—}GJ NZ i(k)> Zyzm

=G —H
Ax X~ —X

Ay |= yo -yt ’

A0 N 1[2( i) M)HZ(% }
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G
i(k)?

H

where x )

yi((;k) and x yj’.’(k) in Equ. 11 represent the minutia position of input fingerprint and queued

fingerprint of the " pair in cluster LC, respectively. )_CG,j/G ,and X", fH are the cluster centroid of input

fingerprint and queued fingerprint in cluster LC, respectively. In Equ. 12, Hi(Gk) and 6?5,() denote the minutia

direction of input fingerprint and queued fingerprint of the k" pair in cluster LC, respectively. (ka and ¢f

denote the direction from the k-/” minutia to the " minutia of input fingerprint and queued fingerprint in
cluster LC, respectively, computed by
G_ .G H . H
ol = arctan(%j .o :arctau(%j. (13)
Xe =X Xe =X
And N is number of matched pair minutiae in cluster. Note that the largest cluster will be activated when the

cluster size is higher more than threshold 7',.c.

4.2 Cluster combination (Minutiae correspondence)

After successively graph clustering, some minutia pair may not be able to travel by adjacent ridge
connectivity thoroughly. Anyway, each remained minutia pairs have already colored into clusters that can be
also applied another graph-based technique to deal with cluster merging problem. The goal of this section is to
finely match the remained minutia pairs by maximizing the combination score, corresponding to the similarity
of each minutia pair and its cluster size as illustrated in Fig. 11(a). In this approach, this problem is treated as a
weighted bipartite matching problem, which can be solved by the minimum cost max flow technique L. R. Ford

and D. R. Fulkerson [Max flowl], J. Liu. [Max flow2].

(a)

Fig. 11. Example of cluster combination problem (a) Before cluster combination (b) Cluster combination result.
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Fig. 12. Graphical view of bipartite matching by minimum cost max flow technique.

The list of candidate minutia pairs, which is satisfied with the alignment condition in Fig. 9, is reorganized
into a new bipartite graph P as the following. First, this graph is constructed with edge weights w(m?, m)H ) for
all edge (mxc,m)H Ye E , wherem? e M¢ and myH e M represent minutiae in input fingerprint and queued

fingerprint in candidate pair list, respectively. Second, the additional s and # nodes are included as source and

sink node of graph P, respectively, as shown in Fig. 12. Finally, the constraint of each edge is set, i.e., an edge
(s,m;) of cost zero every m_ € M, an edge (m,’ 1) of cost zero every m)H e M" , and an edge (m;,m,’)
of cost —w(m,m,') forevery (m{,m}') e E.

A list of resulted monogenic pairs (m? e M%,m," € M") will be achieved by solving a flow from s to 7

that must satisfy the capacity constraints, i.e., the flow over an edge must not exceed its capacity, and the flow
conservation constraints, i.e., the flow out of s must be the same as the flow into . And the cost of a flow is the

sum over cost :—Zw(mac,mf )  for all edges e of P. For one-to-one matching guarantee, the capacity of

every edge is set to 1 for no two nodes on M that match with the same node of M” and vice versa.

Solving the minimum cost flow problem of the generated flow network is equivalent to finding the maximum
flow (maximize number node) with the minimum cost (minimize —Zw(mf,mf )) . In our work, the edge
weights w(mxc,m;’ ) are assigned based on the combination of the similarity score of each minutia pair and its
cluster priority, which is described as follow,

w(mXG,myH) zSL(mf,myH)+0.SSiZdCM <mf,mf >), (14)
where §7,(m, m’ )is the minutia pair similarity between me and m}H in Eqn. 9. siz¢C,, < m¢,m" >) denotes the
cluster priority, corresponding to size of cluster (mf,mfi ). Fig. 11(b) shows an example of the resulted of
matched pairs combination, which successfully achieves the optimal largest number of matches and minimum

cost.
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4.3 Similarity Scoring

Generally, in order to evaluate the similarity between two fingerprints as a genuine or imposter, most
topology of fingerprint similarity scoring on minutiae-based system is referred to two measurements. 1) A ratio
of the number of matched minutiae to the number to total minutiae (mm?*/MN). 2) The number of matched
minutiae (mm), where mm is the number of matched minutiae between two fingers; M and N are the numbers of
minutiae on input and query fingerprints, which usually considered on the overlapped region of two fingerprints.
However, from general inspection, the ratio of similar minutiae fails in the quality fingerprint, and the number
of matched minutiae fails in the small overlapping fingerprints, respectively.

In this paper, to improve the reliability of similarity scoring, we propose an additional matching strategy

from the characteristic of minutia clusters, called Cluster Denseness, that formulated as

Cluster Denseness = L z fop(size(C,, <mS,m >) (15)

mm (mC.,mf"y are matched pair

1 n<4

2 4>n>6 (16)
fep(m)= 15 6>n2>8

8 8>n>10

10 otherwise

where mm is the number of matched minutiae between two fingers in the overlapped region and f-p(n) denote
the fuzzy cluster score function. The final matched score is obtained by fusion different strategies in score level,
i.e., Sy = mm*/(MN), Sy = mm , and Sc = Cluster Denseness according to heuristic rule-based. We just select a
fusion of the PRODUCT and a decision tree:

Product rule:

Score = log(S} 857 S5 +1). (17)

where Agy, Asp, and Agc are the weight fractions among the ratio of similar minutiae S, the number of matched

minutia Sp, and the cluster score S¢, they are differently selected based on the quality and deformation of

fingerprints in each database. Note that +1 is used to avoid log(0).

5 Implementations Evaluation

All experiments discussed in this paper are conducted on public fingerprint databases used in the Fingerprint
Verification Competition FVC2000 [FVC2000], FVC2002 [FVC2002], and FVC2004 [FVC2004], which

include 800 fingerprint impressions from 100 fingers (a finger provides 8 impressions). In each database, dry,
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wet, scratched, distorted, less overlapped, and markedly rotated fingerprints were also adequately captured. The
performance of approach fingerprint matching has been reported in terms of matching accuracy including the
corresponding false accept rates (FAR: the total number of genuine tests with no rejection is (8x7)/2x100 =
2800), false reject rates (FRR: the total number of false acceptance tests with no rejection is (100x99)/2 = 4950)
and their corresponding equal error rates (EER), and computational complexity.

Firstly, we give the experiment of performance comparison among various similarity scoring: the percentage
of matched minutiae over the total number of minutiae mm?*/MN (S,), the number of matched minutia mm (Sg),
the cluster denseness (S¢), and the final fusion by Product rule (See section 4.3). The results on four data sets of
FVC2002 and FVC2004 are reported in terms of equal error rates EER and average matching time on Pentium
M 1.5GHz with 376Mb RAM in Table 3. During the matching process of each database, the weight fractions

(As4> Ass, and, Asc) are tuned for fine performance in the training samples as best as we could.

Table 3 The EERs and the match times of proposed matching algorithm with four similarity measurements on
four data sets of FVC2002 and FVC2004

mm’/(MN)  mm  Cluster

Sy S Sc Fusion Time(ms)
FVC2002 DB1 3.66 11.58  5.61 1.89 48.6
FVC2002 DB2 1.31 10.08  5.89 0.85 90.1
FVC2004 DB1 8.16 12.31 9.87 5.12 68.7
FVC2004 DB3 8.38 8.25 10.26 5.21 60.2

To clearly analysis the characteristic of various similarity scoring, we perform two scatter plots against S,
Sp, and S¢ matcher for all examples in genuine match (colored red) and imposter match (colored blue) on
FVC2002 DB2 and FVC2004 DBI1 in Fig 13(a;)-(b;), and their probability distribution are shown in Fig 13(a,)-
(b,), respectively. The ROC (receiver operating characteristic) curves of our matching algorithm with different
similarity scoring on FVC2002 DB2 and FVC2004 DBI1 that plotted in Fig.14(a) and Fig. 14(b), respectively,
where FNMR and FMR denote the value of false non-matched rate and false matched rate, are shown an
interesting explanation of the accuracy improvement. From the ROC curves, we can see that S, matcher can be
well performed for imposter rejection but poor for genuine acceptation, especially the low quality image
including many spurious minutiae. However, Sc matcher is vice versa, resulting in better genuine indicating and
poor with imposter rejection, especially the fingerprint that includes small number minutiac. And the Fusion
matcher in Eqn. 17 can perform greatly better with higher accuracy both EER and FMR rate by taking the

advantage of each combined matcher.
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From the experiment, on data sets containing most good quality images such as FVC2002 DB2, acquired
through optical sensor "FX2000", we select the fusion coefficients with parameters Agy = 2, A= 0, Asc= 1. The
EERs of these results are improved from 1.31% (S,) to 0.85% (Fusion). While for FVC2004 DB1 containing the
severe distortions and bad quality image, acquired through optical sensor “Cross Match V300.”, that turned with
parameter Agy = 2, Asg = 1, Agc = 2, the Fusion method significantly achieves lower EERs from 8.16% (S,) to

5.12% (Fusion). This evidence indicates that the fusion matcher plays an important role to discriminative the

correct finger pair, especially in the case of the deformation image and bad quality image.

P ™"

4 T g
02 Tep—
"y ™ [

(ar) (a2) (b1) (b2)
Fig. 13. Distributions of the three similarity measument for genuine matching (red) and imposter matching
(bule) of our matching method on (a) FVC2002 DB2, (¢) FVC2004 DBI1; (Right) Scatter plot against
S.«(mm*/MN), Sg(mm), and S(Cluster Denseness); (Left) The probability distribution of S, Sz, Sc and Fusion

] & s
€ 10 < 'k
- 2 - 2
[SA) mmein (52 MmN
5[] ——(EBymm 5[] —(8B) mm
10E ——(S5C) Cluster Denseness 1o —(SC) Cluster Denseness |-
Fusion Fusion
| The EER line | | The EER line
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10t i w0’ 1’ 10t 10’ 10 w0’ 1o
FMR
(a) (b)

Fig. 14. ROC curves of different similarity measurements on (a) FVC2002 DB2 and (b) FVC2004 DB1.

Fig. 15. shows two matched results of same fingerprints with poor quality and large distortion. From the
figure, we can see that, although most ridges in the overlapped region are poor quality but the minutia clustering
result is still good. Moreover, the minutia cluster is also play an important role in improving more
discriminative for a very credibility of the final fusion score of matching, while using only matched minutiae

scoring is false.
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()
Fig. 15. Matching result of two poor quality fingerprints from the same. (a) FVC2002 DB1 29 4.tif and 29 7.tif

(b) FVC2004 DB1 52 3.tifand 52 8.tif

Other two examples are given in Fig. 16 to illustrate the ability of our algorithm to handle elastic distortion
problem. The two fingerprints are from the same finger and there exists strong nonlinear deformation between
them. From the figure, if using only global transformation, there are many minutia pairs falling the bounding
box region X. Luo et al. [Descriptor5] with the deformation cause. If using neighbored ridges to update the

minutiae relationship, however, most minutiae in the overlapped region are matched.

(b)
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Fig. 16. Successful matching results by the proposed method of two elastic distorted fingerprints from the same
finger, where minutia clustering plays an important role for correct alignment: (a) FVC2004 DB1 52 3.tif and
52 4.tif, (b) FVC2004 DB1 64 2.tif and 64 3.tif.

Next, to approve the efficacy of approach algorithm, the experiments are conducted on all databases of
FVC2000, FVC2002, and FVC2004. We compare four majority matching types, based on A4) Pre-alignment
based S. Jirachaweng et al [Pre-alignment2], B) Minutiae structure-based (Y. He et al [Minutiac4], X.J. Chen et
al [Minutiae3], X.J. Chen et al [Minutiac9]), and C) Descriptor based (X. Wang et al [Descriptor3], F.
Benhammadi et al [Descriptorl1], J. Feng et al [Descriptor8]). The equal error rates (EER) and matching time
among various methods on all databases are summarized in Table 4 and Table 5, respectively.

The results show that 11.75%, 9.25%, 21.62% and 14.27% of the reference points were not correctly located
(Fail to enroll) on DB1-a, DB2-a, DB3-a and BD4-a, respectively. The remaining error cases are due to the
noise or to the fact that the reference point is close to the border in poor quality images or to scars near the
reference points in particular DB3-a. Moreover, the ERR for all databases FVC2002 are 12.5%, 11.7%, 29%
and 18% as reported in Ref. [23], respectively. Then, our matching algorithm allows us obtaining improvements
in comparison to the original approach. Moreover, this method is more effective compared to the one introduced
in Ref. [21] because it deals with the localization variation.

The ROC curves of the two methods on four databases are plotted in Fig. 11. From the ROC curves, we can
see that our method is slightly better than the minutia-based one on DB1 and DB2, however, the latter is slightly
better than the former on DB3 and DB4. Through the analysis of some examples of the ridge based method on
DB3 and DB4, we found genuine matches with low scores are mainly due to the following problems: (i) fail to
find correct initial minutia pairs; (ii) transformation estimated based on low-quality minutia pair is inaccurate.
Although the preliminary results are not very satisfactory, the ridge-based algorithm is promising and lots of
works need to be done.

While many aspects in the current algorithm should be improved, the following problems may be the most
important ones:

(1) The alignment algorithm should be improved to handle fingerprints with fewer minutiae.

(2) The matching algorithm should be improved to handle low quality fingerprints and fingerprints with
strong deformation.

(3) After matching, analyze the causes of the unmatched minutiae and give different punishment to

different cases.
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(4) A feature extraction algorithm should be specially designed for the ridge matching algorithm.

(5) Computational complexity should be decreased.

Table 4 Summary of the performance comparison among various fingerprint matching algorithms

Average Equal Error Rate in Percent (%)

FVC2000 FvC2002 FvC2004
Algorithms DBla DB2a DB3a DB4a DBla DB2a DB3a DB4a DBla DB2a DB3a DB4a
S. Jirachaweng et al [Pre-alignment2] - 1.11 5.06 4.38 4.38 3.10 6.84 3.83 6.30 7.50 5.39 6.48
Y. He et al [Minutiae4] 1.79 0.99 3.54 1.64 1.96 1.11 431 2.77 9.36 7.34 8.53 2.72
X.J. Chen et al [Minutiae3] 0.19 0.14 0.63 0.15 4.37 2.59 1.64 0.61
X.J. Chen et al [Minutiae9] - - - - 0.26 - - - 4.06 - 1.35 -
X. Wang et al [Descriptor3] - - - - 0.46 0.61 3.58 2.04 7.49 - 2.83 -
F. Benhammadi et al [Descriptor11] - - - - 4.27 2.61 10.6 5.12 - - - -
J. Feng et al [Descriptor8] - - - - 1.7 1.4 6.9 5.1 - - - -
Proposed (Full evaluation) 4.63 0.76 5.47 1.89 0.85 5.30 3.44 5.12 6.41 5.21 5.25
Tenzor enh (Partial evaluation) 1.94 2.59 4.85
Tenzor enh (our) 4.78 4.74
Table 5 Summary of the matching time comparison among various fingerprint matching algorithms
Average Matching Time (ms)
FvC2000 FVC2002 FVC2004
Algorithms/ conducted on DBla DB2a DB3a DB4a DBla DB2a DB3a DB4a DBla DB2a DB3a DB4a
S. Jirachaweng et al [Pre-alignment2] - - - - - - - - - - - -
Y. He et al [Minutiae4] - - - - - - - - - - - -
X.J. Chen et al [Minutiae3]
AMD Athlon 1660+ (1.41 GHz) B - : - i - - - 770 810
X.J. Chen et al [Minutiae9]
AMD Athlon 1660+ (1.41 GHz) B - : - i - - - 1,120 1,080 ”
X. Wang et al [Descriptor3]
Celeron (1.7 GHz) 256 MRAM ” - : ) 21 42 14 3.1 8.2 9.1 i
F. Benhammadi et al [Descriptor11]
Pentium IV (3.6 GHz) - - - - 3,150 2,020 3,010 2,870 - - - -
J. Feng et al [Descriptor8]
Pentium IV (2.2 GHz) B - - - 10 18 74 83 ° - - ”
Proposed 30.9 34.3 48.6 90.1 76.6 60.2

6 Summary and future work

In conclusion, this paper proposes a novel fingerprint matching approach based on minutiae and ridges graph

(MR-Graph). The matching method takes advantage of local structure between minutiae and associated ridge

with strong relationship. The minutia pairs are labeled into clusters that can be used to recover the relative

rotation and translation between two fingers. In addition, the denseness of minutia clusters is also played an

important role in improving more discriminative for a very credibility of the final fusion score of matching. The

proposed method was observed to result in a better performance compared to other approach based on minutiae

pattern correspondence for deformed finger.

For future research, we will conduct exhaustive experiments based on all FVC databases in order to prove the

efficient of DCT-based fingerprint enhancement. To achieve this goal, all minutiae in all FVC databases need to

be manually marked. We will also exploit DCT features for fingerprint identification in the near future.
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