

บทคัดย่อ

เอนไซม์โคติเนส เอ จากรสีอ่อนแบบที่เรียกว่าในตะเกล *Vibrio harveyi* เป็นเอนไซม์ที่สลายไคตินให้เป็นน้ำตาลไคโตโอลิโกแซคคาเร่โรด์และไคโตไบโอดีฟลีดิฟลีดลักษณะเป็นผลิตผลหลัก งานวิจัยก่อนหน้าได้ทำการคิดค้นยืนไคติเนส เอ และได้ศึกษาคุณสมบัติทางเอนไซม์โคติเนส เอ งานวิจัยนี้อธิบายบทบาทของกรดอะมิโนวงแหวนที่ปริมาณจับกับสับสเตรทและการดัดแปลงกรดอะมิโนที่ผิวของเอนไซม์ในการสลายสับสเตรทไคตินและไคโตโอลิโกแซคคาเร่โรด์โดยทำการเปลี่ยนกรดอะมิโน Trp70 Trp168 Tyr171 Trp231 Tyr245 Trp275 Trp397 และ Trp570 การทดสอบหาค่า specific hydrolyzing activity ของไคตินสกัดพันธุ์พบว่ามีเอนไซม์กลยย พันธุ์ตัวเดียวคือ W397F ที่ให้ค่าแอคติวิตี้สูงกว่าเอนไซม์ดังเดิมส่วนเอนไซม์กลยยพันธุ์อื่นมีค่าแอคติวิตี้ลดลงอย่างมาก การวิเคราะห์น้ำตาลผลิตผลที่สร้างขึ้นโดยวิธี TLC พบว่าเมื่อกรดอะมิโนที่ตำแหน่งวีดิวซ์ Trp275 ถูกเปลี่ยนเป็น Gly และ Trp397 เปลี่ยนเป็น Phe ทำให้รูปแบบการสลายน้ำตาลสายสัมภับเปลี่ยนไปอย่างสิ้นเชิงแสดงว่ากรดอะมิโนทั้งสองน่าจะมีความสำคัญต่อการเลือกจับของน้ำตาลไคโตโอลิโกแซคคาเร่โรด์ การศึกษาการจับกับไคตินและการทดลองทางจลนพัลศัตรูแสดงให้เห็นว่า Trp70 ซึ่งพบอยู่ที่ผิวที่ปลายด้านเอ็นของโดเมนจับไคตินมีความสำคัญมากต่อการจับกับไคตินสายยาว การตรวจหารูปแบบการจับของสับสเตรทโดยเทคนิค HPLC MS พบว่า NAG₆ ซึ่งบวิเณจับ -2 ถึง +2 มากกว่าบวิเณจับ -3 ถึง +2 ส่วน NAG₅ จะจับกับบวิเณจับ -2 ถึง +2 อย่างเดียวในขณะที่ crystalline α chitin จะเริ่มจับที่บวิเณจับได้หลายตำแหน่งทำให้สลายตัวกลางไคโตโอลิโกแซคคาเร่โรด์ได้หลายชนิดซึ่งตัวกลางเหล่านี้จะจับกับตำแหน่ง -2 ถึง +2 เป็นหลัก นอกจากนี้ยังพบว่าไคตินสกัดพันธุ์ W275G และ W397F มีความซับต่อสับสเตรทชนิด β มากกว่าสับสเตรทชนิด α การศึกษาโครงสร้างผลึกของเอนไซม์โคติเนสแสดงเดิมและเอนไซม์กลยยพันธุ์ที่ไม่เร่งปฏิกิริยา E315M ในสภาวะที่ไม่มีและมีสับสเตรทให้ความละอียดของโครงสร้างสูงในช่วง 2.0 – 1.7 อัตราส่วน โครงสร้างโดยรวมของเอนไซม์โคติเนสประกอบด้วย 3 โดเมนแยกกันคือ i) โดเมนจับไคตินที่ปลายด้านเอ็น ii) โดเมนเร่งปฏิกิริยา (α/β)₈ TIM-barrel และ iii) โดเมนแทรกขนาดเล็ก ($\alpha+\beta$) บวิเณนเร่งของเอนไซม์มีลักษณะเป็นร่องยาวลึกประกอบด้วยบวิเณจับหกบวิเณคือ (-4)(-3)(-2)(-1)(+1)(+2) โครงสร้างเชิงชั้นของ E315M กับไคโตโอลิโกแซคคาเร่โรด์แสดงโครงรูปตรงของน้ำตาล NAG₅ แต่โครงรูปของน้ำตาล NAG₆ ข้อมูลโครงสร้างที่ได้ให้หลักฐานว่าน้ำตาลที่จับอยู่มีการเปลี่ยนโครงรูปก่อนถูกสลายซึ่งน่าจะเกิดผ่าน 'slide-and-bend' mechanism

ABSTRACT

Chitinase A from a marine bacterium *Vibrio harveyi* is an enzyme that degrades chitin to chitooligosaccharides, yielding chitobioase as the major product. The gene encodes chitinase A was previously cloned and its enzymatic properties characterized. This study describes the functional roles of the aromatic residues located at the substrate binding cleft and the surface-exposed residues in chitin and chitooligosaccharide hydrolyses. Point mutations of Trp70, Trp168, Tyr171, Trp231, Tyr245, Trp275, Trp397, and Trp570, were generated. Investigation of specific hydrolyzing activity indicated that only mutant W397F had enhanced activity, while other mutants showed a significant loss of the activity. TLC analysis of product formation showed a complete change in the hydrolytic patterns of short-chain substrates when the reducing end residues Trp275 was mutated Gly and Trp397 to Phe, suggesting that both residues were crucial for the binding selectivity of chitooligosaccharides. Chitin binding assay and kinetic experiments suggested that Trp70, which is located on the surface at the *N*-terminal end of the chitin binding domain, was the essential binding residue for a long-chain chitin. Assessment of substrate binding modes by HPLC MS revealed that NAG₆ preferred subsites -2 to + 2 over subsites -3 to +2 and NAG₅ only bound to subsites -2 to +2. Crystalline α chitin initially occupied various subsites, generating variuos chitooligosaccharide intermediates which later interacted mainly to subsites -2 to +2. In addition, mutants W275G and W397F preferred β substrates over α substrates. Four crystal structures of chitinase A and its catalytically inactive mutant (E315M) were solved in the absence e and presenc of substrates to high resolutions of 2.0 – 1.7 Å. The overall structure of chitinase A comprises three distinct domains: i) the N-terminal chitin-binding domain; ii) the main catalytic $(\alpha/\beta)_8$ TIM-barrel domain; and iii) the small $(\alpha+\beta)$ insertion domain. The catalytic cleft of chitinase A has a long, deep groove, which contains six binding subsites (-4)(-3)(-2)(-1)(+1)(+2). Structures of E315M-chitooligosaccharide complexes display a linear conformation of NAG₅, but a bent conformation of NAG₆. The crystallographic data provides evidence that the interacting sugars undergo conformational changes prior to hydrolysis most likely via the 'slide-and-bend' mechanism.