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WSMIX3DMT  dluldsunsufisauasmsadiarmansananlysunsy  WSDCG3DMT  atin
wihganuifidesldsadniasdafiouty WSINV3DMT wilewiuuas WSDCG3DMT  ud
wnuiiTazld trade-off parameter GaLANAREA inversion Ls'nﬂé"sluu,ﬂaavlﬂﬁaﬂe] willautufivh
Tuw WSINVIDMT  udmsiassudasidwluany  runtime Widdwldenn  data  misfit
nszaumsfin g lwlusunsy WSMIX3DMT  $uléiSanins WSDCG3DMT  uas
WSINV3DMT uazlumei@ignnufldvinoanusitasnin #ivinld wsmixapmT ulusunsa
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Abstract

In this project, we create a new inversion scheme (WSMIX3DMT) based a mixed of the data
space conjugate gradient (WSDCG3DMT) and the data space Occam’s inversion
(WSINV3DMT) methods. WSMIX3DMT is mathematically a slight modification of
WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in
WSDCG3DMT. Instead of fixing the trade-off parameter, it is varied similar to WSINV3DMT.
However, the variation is according to the run-time, not based on the data misfit. This strategy
makes WSMIX3DMT faster than both WSDCG3DMT and WSINV3DMT, and at the same time
requires least memory. This makes WSMIX3DMT as the most efficient inversions.
Computational performances and comparisons of all three methods are demonstrated with both

synthetic and field datasets.
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Magnetotelluric  tHwnaianianessaildng  inadadiSuauannmaiaawINualnaniaz
FU I AUSRMARRvadlan  sanFIntaIENLNIRAnLazaY e ansasan e
AILILBNDIRNWANNA UM MWK (electrical resistivity) #38 anusR1Ta eI Wi
(electrical conductivity) malddulanfianuanedsg 16 tnawnmihdoys electrical resistivity
At Aa [ A a Aa oA .

#lultlumsetunelassasveslaniveatunomaiiaududnlng (Siripunvarapomn et al., 1998;
Unsworth et al., 2000; Boonchaisuk et al., 2010) nM3anmnalniiauadfNui (Jones, 1992) 3o

1l Id1999MINWNENNITITNTIA (Tuncer et al., 2006; Orange, 1989; Vozoff, 1972) uazaue

'
¥ A o a

[l =3 oy A v o ' J P < 3 a
i’]%lﬂﬂﬂul,l,&]L%ﬂﬂvLWW’W]’J@’IVL@]&J’]’Q]’mﬂ’ﬁﬁ']‘i’]’ﬂLL@]&tW%Y]’*ﬂZLﬂJ%‘IJﬂ%Ja@]UY]

1
3

RNV S FUalXals
data processing Lﬁﬂlﬁ%ﬁ‘ﬂ’a;ﬂaﬁﬁﬂﬂ’h apparent resistivity L8z phase %30 impedance tensor
A = & o A A A o a ' a
‘li\‘]l,ﬂ%ﬁdﬂ WUIAINVUNKRIBINAL Lwam"lﬂlﬂummmwwmma"l,ﬁ NIIAAINURVUNLITN
doyalavasiumduldldon Rasndoyanlaunlulaiuisituvesanun damu inversion
A £ v [ A A:l' o 1 . - d' | 6
%iﬁ]ﬂ’]iLLﬂﬂnyRlE]%ﬂﬂU ABNITUIUNIINUILETIANT apparent resistivity LR phase Y]Ll]%ﬁdﬂ“]ju
d' A U & 1 . . .. = =S [l
VYIAINNVUNKRIDAL vLﬂLLl]ﬂx‘]lﬂLﬂ%ﬂ’] electrical resistivity NUAIMUAN I@]UN’]%ﬂiZU’J%ﬂ’]‘W}’N

o & v P

a &al = v ° (2
ATUAFIRAINTILDTUDIW muwaawmﬂmsm"l@ﬂau,umnaaa (model) amwmmmumﬂ%lﬂw

q

LUURINNG (3-D)

'
v a

mMInawlUsunIY inversion fwnIudays MT ﬁm@imﬁaﬂmm’mﬂ IINABINNITNAI W
2-D inversion (Siripunvaraporn and Egbert, 2000) lasldsunsy 2-D f:éﬁ%a’h REBOCC
ﬁfﬂ%'mnnﬁ"ﬂaﬂﬁﬂﬂl"ﬁ’lummﬂammv\mﬂ"ﬁagmﬁa (SCOPUS: 81989 97 @33 as of 24
June 2010) Lfiavl,ﬁ%'umiaﬁfuagumﬂam. Aapf ldwawidulisunsy 3-D (Siripunvaraporn et
al., 2005) Tap@dalusunsudn WSINV3DMT Gesnansarihauldusdiumeios PC 5330 G9fiadn
Duldsunsuusnvaslanfiimg release ganmsnuazldfimailuldais (scopus: a19ds 33
a33 as of 24 June 2010) nafiauas WSINV3DMT qﬁgﬂﬁﬂﬂﬂﬂs:qﬂmﬂ%ﬁuﬁagaﬂszmﬂ?ﬁu6]
a8l Lﬂiwﬁaga Network-MT data (Siripunvaraporn et al., 2004) ﬁaga 2-D DC Resistivity

v

(Boonchaisuk et al., 2008) LLaz“iquJ]a Phase Tensor (Patro et al., 2010) W ud



L%

atnalafiany uddn WSINVEDMT azvhaulduuiaias PC mald wdfdslidymiey las

'
L v ¥ A

Tywman  fa  geaddasldwiaanuirvadniadaaniaiaesliulSanmunnlaliiutayani

u

v
v o

. oa aAaA o o ad <A a , o a o
ﬂluﬂ@bl'ﬁfy a\‘iuﬂaﬂlaﬁ]’m@mad@ﬂﬂﬂmiw ’JﬁLLﬁMl"Uﬂﬂaﬂ’]iLWﬂJ%uaﬂﬂ’J’]ﬂJ'ﬂ’]maﬂﬂaNWQL@aﬂ%

dl 1 ﬂi dl et v A =3 o v v o A J
MWﬂﬂq@L‘ﬂTﬂLﬂiﬂﬂﬁ]invkﬂ mﬂﬂﬁ]z‘ﬂ’]l‘ﬁG]u“q%ﬂ’]i“/]']\‘i’]uiﬂ\‘]ﬂiaLLWG&Hﬂ"Uu

' wn o &V wer @ A o ' A~ o & .
daaniTufldsumIatiuayuainani.  iaurdlataunwiasitlasWauniu  algorithm
|J dll a 1 o dy ad A dl v A v v ad .
TnddnuieaatSinaniioanud i Adniininleiae MsuATzLURNMIA283T conjugate
. A @ A o ™ A A o
gradient (CG) uwnunazuniuwuulasass @Aalf Cholesky decomposition  tdauivinlu
wa A ° Y L v = . i 2 a '
WSINV3DMT m3l535 CG  vhlwislidaafiu  sensitivity matix (J) Seflvwialnglu
1 o a = o v a U ] o v & 1
whanuivesnanflaasTiildinaadSunansltuiisanui laiduegrsnn  Tusuns
Iwaifiisi3enin data space conjugate gradient method (DCG) %38 WSDCG3DMT 313
NONaIVaY Siripunvaraporn and Egbert (2007) a8z Siripunvaraporn and Sarakorn (2010)
fwniudaya 2D uaz 3-D wuil dadveaneiiaiiiae laidaaltniuanuinludSunmann

Wwilan WSINV3IDMT Lwimﬂ"ﬁaLﬁwaamaﬁﬂmﬁagj;ﬁLamﬁ‘lﬁ'ﬂﬂmnwﬁfumnﬂdﬂ AITHAN T

= & d o W J o ] o
911 trade-off TINULATNWITAININIANURUILANNEN

a oA

Tutdalgwalasaniss 1 awaNazNay [UTLATUNIFaIau euNK [Naad I IuT a6 1hisd
lgwinoanuintes  lIuvasi@uanunldiianlunisTwiasals  Iusasuaiuiisnazsudunain

ﬂ"liUi?ﬂ']ElIﬂiLLﬂﬂJ WSINV3DMT uaeaiae WSDCG3DMT ﬁ]?ﬂﬁ%ﬁLﬁuaLLuzLﬂﬂﬁﬂiﬂNﬁ

(38N37 WSMIX3DMT TIUNINAN LaannIITwlisunsy

Inversion : Overview

M3 inversion AamInuuLdIaad (m) Naasalien model responses F[m] # fit Toya d #

a & ) @ = a & a vao &
UYNInua N ﬂﬂvL@ﬁNL%G;ﬁNNa Glix‘la’]ﬂJ’]‘a‘ﬂLmﬂuLﬂuﬁﬂJﬂ’]‘iﬂm@lﬂﬂﬁ@l‘ﬂ@mu

Um, 1) = (m-mo)’' Cn* (M-mg) + A7{(d-F[m])' C4* (d - F[m]) - X>} (1)
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A A . T a . A Aa ! !
tla C, Ad data covariance s @@ transpose of matrix, m #a model NANIKUA M A1 §IU m,
. -1 .
fa base model Ua C. fa model covariance Waz A fa Lagrange multiplier
A A ! o @ o o Aa o
FUNIIN (1) BUANMVURANILILIINIRININIT search KBILLUUINRDI (model) NUINBTUE
L. A o @y o AN o £y i @ v &  oas o
kUYL minimum structure I@]ElwllE]LLN’J’]LLU‘]J’%]’]E\]E]G“/]VL@ER@]E]\‘] fit ?JE]%JE\]VL@L‘L]%E]U’N@‘INQF]TYM%@

. . . Foqe. e &
Tagdn X mIrmnwaluansmiyinld inversion 1his stable 3107

v 2
a A

N3 minimize UM% Ao MIFATWITAT stationary point VaIgNNTN (1) HRanauny A

>

sz m Sednwimldenn SEnitsAenisuiauns penalty functional unw ToRanwaasi
@™, =(d-F[m])" Cq* (d-F[m]) + A (M -mg)" Cn™* (M - my), 2)

Wasannilla A wuasn wie fixed 13 13192 ld31 oUGmM = 60,/0m AIRWIIFINTAUAFNANT (2)

1Y
a o

wnufigunaf (1) ldudeas vary d A ldTas guvaliledn misfit Mdasfiganiaaunasenly

P & o
JFUNNIN  (2) Husgumsls model space €N Siripunvaraporn et al. (2005) and
Siripunvaraporn and Egbert (2000) LL&@GIﬁLﬁuiﬂﬂ’liLLﬁﬂ@%’llu model space wuldaiiofald
LIRTUINNIN 9 LLazlﬁ'ﬂﬂ’wﬂ’J’lm‘i’lgdm’lﬂﬂ Siripunvaraporn and Egbert (2000) and

Siripunvaraporn et al. (2005) 'fiamualﬁuﬁﬂry%ﬂu data space LN

v & & A A v o

ANUHTHADWLINADNITUURIFNNNTN (2) 371 model space 1‘1&8%]1% data space o3

o v n‘l» a o v & 6 . . [ ,:3’
ﬁ']&l']iﬂﬂ’?vl@]@]du I@]Elﬂ’ﬁﬂlf;lu LUUINNBY m I%Lﬂ%ﬂdﬂﬂi%‘ﬂiﬂd sensitivity matrix @31 m - Mg =

Cnd'p e B A unknown expansion coefficient vector ST UENNIT (2) aznangtili
@% = A (@-ICn'IB)" Cyq™ (@-ICr'ITB) + (BTICK'ITR), (3)

\Wa J = [OF/om] @a N x M sensitivity matrix Saidudetunsmadasuudasvesdayaiiiednn

matdAsuuladas model uas d = d — F[m] + J(m - mg)



\8991n F[m] %I non-linear problem 9% iterative solutions 3931114 (Constable
et al., 1987) model response F[m] ﬁdﬁ’nﬂuﬁadgﬂ linearized fiawlagld first order Taylor’s

series expansion,
FIM k1] = F[mM ] + (M w1 — M), 4)

\ia k fa iteration number l4n15WN stationary points U84 (3) ;v lalasnns differentiate (3)

>

with respect to B 131 b6 luilLeiaz iteration 23l solution A%
Mz - Mo = Cmdk' Ca™* [M 1 + Cq " ICindk" Cq ™" Cq " dy, (5)

Jadvainsunannis (1) lu data space ffa matrix NAaINANT invert AwIaLNEs N x N
7 Y A A A A o o A
it Wil M x M wleulunsdiues model space i N Aadwaudayausz M Aaruwaves
SIMERELE é’m%’uﬁagmﬁmauﬁﬂmﬂu Siripunvaraporn and Egbert (2000) and Siripunvaraporn
et al. (2005).
miudaumsn (5) sansnvinlanesds Asusnldlu WSINVEDMT dwithaesgninluly

11 WSDCG3DMT

WSINV3DMT : Data Space Occam’s Inversion

ARusndeas matix J wsr R = [ | + C¢” JCmdk’ Co¥] uazifiuwwesdimanitlslu

WHIEANE1 INURAIEIT Cholesky decomposition lunsuiaumsfi (5) 3siiluisdldly
WSINV3DMT (Siripunvaraporn et al., 2005; Siripunvaraporn and Egbert, 2009) itaz DASOCC

(Siripunvaraporn and Egbert, 2000)  3%#azitfadniisanuiiesanndaaiuiasng J uas

R T8990 Nx M uaz Nx N 6‘1’5\1maﬁﬁwgamnﬂﬁﬁﬁwmuﬁagamﬂ



WSDCG3DMT : Data Space Conjugate Gradient Algorithm

a ad A A9 o o A A A . . adnql/o 1Y v a 6

anatuien luigunIN (5) Aam3lERD conjugate gradient A5R¥n 1A lidasaauasng J uas

R Naaanu i luniigainuindndaly imatanisdsznganiigainuinldlauin aramaiaiiiam
WV v v a 6 ' o a 6 o [} A T

Taildaaiuasndg J I@mmmemmmwaﬂmmaammnsﬁ J nunneaslag 1w Ix wia J'y

wanaidunaianldle WSDCG3DMT datdsuadslisiunsuiaa kriia1Tuwwiwnin WSINVIDMT

FeazuaaslmAiuluaousald

Plan View
F 3
10 @-m 1 Q-m 100 Q-m 10 @-m P
3
X
y v
> >
20 km 20 km
Cross-section surface
10 Q-m 1Q-m 100 Q-m 10 Q-m
10 km

100 Q-m

3111 g'ﬂLLamme‘haaaLﬁwﬁlﬁa%ﬁagaLﬁﬂmﬁaiﬁ’lumimaaﬂﬂmmw

msﬂsuﬁuwa‘lﬁ]mnm WSINV3DMT ag WSDCG3DMT LLaznuan1inagay

ﬂ’WTY]@]ﬂE]\‘i“lla\‘iLT‘IL%&lﬁ%ﬁ]’]ﬂ?]@ﬁaﬂﬁdﬁadIﬂiLLﬂﬁJ WSINV3DMT ag WSDCG3DMT ﬁU“IT?J%Jﬂ

=y

\iaw (synthetic data) lasldunudiassauzUn 1 dayaifisuisznauludqy impedance tensor

N9& components 191 UA 40 FOHIAUAZTANUDNIRUA 16 ANND VWIAVBILLLIIABILTINAL

v

28 x 28 x 21 é’oﬁfuﬁagaﬁﬁ N=40x16 x 8 = 5,120 uaz M =28 x 28 x 21 = 16,464 NMINOKDI



6o bl HIWLWLATDILALINY AaUWLATaY Intel Core Two Duo 6400, 2.13 GHz nndwudayai
138NN I0UTE NN AU ANV DINIREILUTuNIN 61 WSINVIDMT dasldninganusing 1

GByte lunizfi WSDCG3DMT azlfifies 0.4 Gbyte F9vasninfauadmniia

MINAaaIusn 1315ulUsunsy WSINV3DMT fu WSDCG3DMT finanasin & = 100, 10,
1, 01, 001 wamanasesusadlug 2 TouaasliAnugwiuen % vas WSDCG3DMT 7
converge § 1 RMS uuazlfiamlunisrinudindy WSINV3DMT Feldiaies 300 wif

Tuumuefi WSDCG3DMT 1nsudt & = 1 uaz 0.1 azldinanie 400 wfiuas 1600 wfi

—t— WSINVIDMT
WSDCG3DMT: A =100 : 1, = 1072

WSDCG3DMT: 4 = 100 : r, = 10°!
—+— WSDCG3DMT: 1 = 10 : 1, = 1072
==+=- WSDCG3DMT: A = 10 : r,_, = 10°"
—+— WSDCG3DMT: 4= 1: 1, =107
==+=-WSDCG3DMT: A =1:r, =107

WSDCG3DMT: 4 =0.1: 1, =107 I

RMS

WSDCG3DMT: A =0.1:1, , = 10!

0 200 400 600 800 1000 1200 1400 1600
Time [min]

gﬂﬁ 2 LLa@ams@jLﬂT’]mﬁmawaa WSINV3DMT (&61) waz WSDCG3DMT AMannansen A Ka

NINAFILFAI LA WSDCG3DMT 151281411037 WSINV3IDMT

minasasilidagunafivhaulainng duduusnide WSDCG3DMT #fidn A gaazldian
Tannluudas iteration lusmendian A drazlfiamuwinniiuin un A = 100 iteration wsnld

AN LNT 20 w17 T A = 0.1 iteration WINLTLIANINDT 700 W aLiINREI EIMIUAT A



gdLLﬁiw:‘l‘*ﬁnmvhLL@iﬁ"l,aJ'mmmgjL?T’mnﬁ’]@lauvl,@ﬁasl EUA A = 100 LAz 10 UWE&IRIUA A 6N
ﬁlza’]mm@jmﬁmﬁmauvﬁ WA A = 1 way 0.1 atneNaNAa iteration wINaZITLIA AT

{ . \ o % o o { Lo @ . , {
wuNga iteration tia ) UazldiianlumsiutiosasliFas g wudniu A = 0.1, iteration indts

809 ANz 18Tl Iz e 700 W 500 WIN 400 WA AT 200 T NAEAL

v v
[ °

~ @ o A o . V=3
IMANINTIINARDIAINI u‘ﬂ’ﬂ:‘ﬁ LIMRINNIN WIVL‘IJ?J HIUHNILWBRINI Algorlthm SLV\ ENNIR2Y |

WSMIX3DMT : a Mixed Scheme of DCG and Occam’s inversion

g v 1 v &/ 1 v 1 o
nnmMInaaadiiiosdn m‘wmwmmmmmﬂﬂﬂmmwuuﬂ%w I@] Ulﬁ%%lﬂﬂ’]’]&lﬁ]’nﬁﬁﬂu

WSDCG3DMT wininianuzisininms WSDCG3DMT uaz WSINV3DMT

wanmvaslysunsulnddunannmsnaunuuad WSDCG3DMT uaz WSINV3DMT 6h
a 6 A o ] [ .dy 1 A A
AtAFRATUNUAZIRAaUNY WSDCG3DMT uananmivadlusuniulndfaziteg famaifon
a1 A luudag iteration NAEARIND WSINV3DMT wininluaianisnasisu iteration wInaaedn
A Afldnann Whasannidla A 1nn aiwnzauas laaanwnzlny iteration wsng Naaslgiim
1umiﬁ’1<nu§a PMNUBINIAAAT A M iteration 00 lUi308 9 ULANHAKA LTWaAR 10 1Y
Hudu dradrewasnmssulisunsy (uduann A = 1000 lu iteration usn nunnazaaaadn A
. . { . . { { . e ] P 2
= 100 lut iteration fizas uaztiu A = 10 lu iteration s 1i3an g aufisdiasfigadslunin

funalif A = 0.1
nsiszinualdsunss WSMIX3DMT waz WSINV3DMT taz WSDCG3DMT

inasaulysunsulnal WSMIX3DMT  Audaysifiouida wasifinunadilanusasllsunsum
iiasanadiamaniaaslusunsulnitimnionty WSDCG3DMT  easiunuitanasiaariniu
LL@iijag]‘ﬁnmuﬁ’;%nﬁudﬂﬂnmsw‘lm WSMIX3DMT ifu"la‘ﬁ'q@ dalgiiatasnin 100 Wi lal
Frezsududioen A Awinlsfieny §u WSDCG3DMT ldiaan 400 wift & WSINV3DMT 14

1781 300 U1 @TdLLa@alugﬂﬁ 3



gﬂﬁ 3 LLammsgL*’ﬁqmﬁmawaa WSINV3DMT (861) taz WSDCG3DMT fia=1 (FUA9) LY
WSMIX3DMT #i3aduann 4 = 10000 (Rwaw), 1000 (Fduadew), 100 (Findu) uas 10 (Fh
da) ﬁuﬁagmﬂaugﬂﬁ' 1 wamsnasasuaasliifiuin - WSMIX3DMT  l#taanTandng
WSDCG3DMT ez WSINV3DMT

gﬂﬁ 4 usaInIgiiimdinauas WSINV3DMT (§61) uaz WSDCG3DMT fi =1 (Fund) uas
WSMIX3DMT AB3uduan A = 1000 (Fdurdow) uas 100 (Fi1dw) nudaya EXTECH 139
(Tuncer et al, 2006) NaN1INARBIUFAILALAWIT WSMIX3DMT 1#17a1laninvis WSDCG3DMT
e WSINV3DMT



o

wanininslisunsulwinaziignihldnasauiudayaa’s EXTECH data (see Tuncer
et al., 2006) Wy liuafniouin Ae WSMIX3DMT (&hGuuaziien) landns WSINV3DMT
(1) usz WSDCG3DMT (Fuad) uazdsldwiipanusuvindu WSDCG3DMT &swasni

WSINV3DMT a1ng @TGLLaﬂalugﬂﬁ 4

dyuua
v o 3 A o VA
i lawannlusunsulndanan WSMIX3DMT  ldsunsufinanmsannaeslusunsuiinde
WSINV3DMT uaz WSDCG3DMT adiaeansvadlusunsulniazinionny WSDCG3DMT ué
WANMNIIZAALNL WSINV3DMT fa vary A tluudas iteration wansdiitazidensudun L a1n
daufiazdan 9 aaad kamnasasninudayaisuuszdayaadanud lusunsn WSMIX3DMT 1
1 o 1 Qs & v 1 1 a Q (=1 v

W8ANNINYINAL WSDCG3DMT T9ttasnin WSINV3DMT a1n ¢ ud luametdeanun isiaan b

mMIutasaInIlUsuntuiingaIfegINLin
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Abstract

In this paper, we start with the implementation and extension of the data space conjugate
gradient (DCG) method previously developed for the two-dimension (2-D) to the three-
dimension (3-D) Magnetotelluric (MT) data, and will be referred to as WSDCG3DMT. Synthetic
experiments show that WSDCG3DMT usually spends computational time longer than the data
space Occam’s inversion (WSINV3DMT). However, memory requirement of WSDCG3DMT is
only a fraction of WSINV3DMT. Knowledge and information gained from the synthetic studies
of WSDCG3DMT has led to a creation of a mixed scheme (WSMIX3DMT) of the data space
conjugate gradient and the data space Occam’s methods. WSMIX3DMT is a slight modification
of WSDCG3DMT but enhancing so that its computational time is several factors lower than both
WSINV3DMT and WSDCG3DMT. Because WSMIX3DMT is a modification of
WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in
WSDCG3DMT. This makes WSMIX3DMT as the most efficient inversions. Computational
performances and comparisons of all three methods are demonstrated with both synthetic and
EXTECH field datasets.



1. Introduction

Recently, number of three-dimensional (3-D) magnetotelluric (MT) surveys is substantially
increased worldwide (e.g., Tuncer et al., 2006; Patro and Egbert, 2008, among many others).
This might be due to the fact that MT has increasingly accepted by many geophysicists and
seismologists. Another factor is the improvements of the data acquisition units, the measurement
sensors and their accessories. Examples of MT uses are for geothermal explorations (e.g., Heise
et al., 2008; Arnason et al., 2010), volcanoes and tectonic studies (Uyeshima, 2007; Patro and
Egbert, 2008; Hill et al., 2009; Ingham et al., 2009) and ore explorations (Tuncer et al., 2006;
Queralt et al., 2007; Farquharson and Craven, 2008; Turkoglu et al.,, 2009; Goldax and
Kosteniuk, 2010). All of these have led to a higher demand for 3-D MT inversion codes for
interpretation.

Currently, a number of 3-D MT inversion algorithms have been developed (e.g. Mackie
& Madden 1993; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki 2001; Mackie,
personal communication 2002; Siripunvaraporn et al. 2004, 2005; Sasaki and Meju, 2006; Han et
al., 2008; Lin et al., 2008,2009; Farquharson and Craven, 2008; Adveed and Adveed, 2009;
Siripunvaraporn et al., 2009). All algorithms are designed to find “best” model that fits the data
but also “geologically” interpretable. One of the 3-D algorithms (and the only one currently
available to the MT communities) is the WSINV3DMT program by Siripunvaraporn et al. (2005;
2009). The algorithm’s idea was based on the Occam’s style inversion introduced for 1-D MT
data by Constable et al. (1987). Occam’s inversion is known for its robust calculation and its
efficiency. However, its disadvantage is the large memory requirements, and the extensive
computational time, particularly when applying to 2-D and 3-D modeling (Siripunvaraporn and
Egbert, 2000; Siripunvaraporn et al., 2005).

To reduce both storage and calculation time, Siripunvaraporn and Egbert (2000) and
Siripunvaraporn et al. (2004; 2005) transformed the original Occam’s inversion which is a model
space method into the data space Occam’s algorithm. The transformation makes it practical for
3-D MT inversion on most computers. However, WSINV3DMT still requires substantial
memory to store the N x M sensitivity matrix, where N and M are the data and model parameters,
respectively. Siripunvaraporn and Egbert (2007) used 2-D MT data to show that the large storage
can be avoid by using a data space conjugate gradient (DCG) approach.
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From the 2-D studies, Siripunvaraporn and Egbert (2007) concluded that the DCG
method can significantly reduce the memory usage. However, its computational time can be
longer than that of the data space Occam’s algorithm. Computational time of the DCG method is
controlled by the stopping criteria used inside the conjugate gradient (CG) algorithm when
solving the normal equation (Rx = b). The CG solver is terminated when the relative error (r =
IRx — b||/||b||) reaches a given tolerance ri,. Smaller ri (€.9., ro < 10%) requires many number
of CG iterations, while larger ri (e.9., roi = 10™) requires significantly less but can cause the
inversion to fail to converge to the target misfit. Large number of CG iterations translates into
longer CPU time. Our 2-D studies also showed that r = 107 is the optimal tolerance value. The
model generated with i = 10 differs less than a percent from that generated with r = 108
but requires significantly less CPU time.

In addition, convergence rate of the DCG inversion also depends on the regularization
parameter A, which acts as a trade-off between the data norm and the model norm. Larger A (A >
10) demands small number of CG iterations per inversion iteration. However, the inversion could
not bring the misfit down to the desired misfit because large A produces very smooth model.
Smaller A (0.1 <A <10) can reach the desired level of misfit but normally requires large number
of CG iterations per inversion iteration. However, if A is too small (A < 0.1), DCG can break
down. If it converges, it requires significantly large number of CG iterations and also produces
“very rough and spurious” structures which is not geologically interpretable.

Here, we directly implement and extend the data space conjugate gradient (DCG)
algorithm for the 3-D MT data. Hereafter, we will refer to the 3-D DCG method as
WSDCG3DMT. Numerical experiments are performed on a synthetic data in a similar way as
conducted in the 2-D experiments (Siripunvaraporn and Egbert, 2007). The objective is to verify
whether the conclusions learned from the 2-D cases remain the same or different for the 3-D data.
Knowledge gained from the synthetic studies has led us to a creation of a mixed scheme of the
Occam’s inversion and the DCG method. We will refer to a mixed scheme as WSMIX3DMT.

We start the paper with a brief review of the data space conjugate gradient method
(WSDCG3DMT) and its necessary mathematics. More details on the data space Occam’s
inversion and the data space conjugate gradient method can be found in many previous

publications (Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005; Siripunvaraporn
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and Egbert, 2007; and Boonchaisuk et al., 2008). Later, a mixed scheme (WSMIX3DMT)
between the DCG method and the Occam method is introduced. Numerical experiments on both
synthetic data and EXTECH data are performed with these three algorithms (WSINV3DMT,
WSDCG3DMT and WSMIX3DMT). Comparisons in terms of computational time and memory

are analyzed and discussed. A conclusion is given at the end.

2. Review of Data Space Conjugate Gradient Inversion

Consider a general objective functional @™,
O™ = g+ ADy = (d - F[m])" Cq (d - F[m]) + A (M - mp)" Ciy™® (M - my), (1)

where @4 a data norm, @, a model norm, m the resistivity model of dimension M, mg the prior
model, C,, the model covariance matrix, d the observed data with dimension N, F[m] the

forward model response, Cq the data covariance matrix, and A a regularization parameter.

To minimize (1) in a data space method, we start with the transformation of the model
space objective functional (1) to a data space objective functional (2) by expressing a model as a
linear combination of rows of the smoothed sensitivity matrix (Parker, 1994), or m - my =
CmJ'B. Then, (1) becomes

@’ = (d-ICn'IB)" Cqt (d-ICHIB) +A (BTICKITB), (2)

where J = oF/om is an N x M sensitivity matrix, and d = d — F[m] + J(m - mg). To minimize (2),
F[my+1] is linearized with the first order Taylor series expansion, as F[mg«1] = F[my] + Jk
(my+1 - My), when  is an inversion iteration number. Differentiating (2) with respect to  and

rearranging, an iterative sequence of approximate solutions can be obtained as,
Mz - Mg = Cmdi’ Cq ™ [A 1 + Ca ™I Crmdi” Ca ™™ Cq™d, (3)
where 1 is an identity matrix.

There are two methods to solve (3). First method is to explicitly form Jand R =[A | +
Cq” ICmd" Cq™] and store them in the computer memory. R will be factorized into lower and

upper matrices (LU-factorization), and then solved with backward and forward substitutions.
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This method is used in WSINV3DMT program for 3-D MT data (Siripunvaraporn et al., 2005;
Siripunvaraporn and Egbert, 2009) and DASOCC for 2-D MT data (Siripunvaraporn and Egbert,
2000). This scheme requires substantial amount of RAM to store N x M J and also N x N R

matrices. This could prohibit a run on very large data sets, particularly for 3-D cases.

Instead of forming and decomposing R as in WSINV3DMT, an alternative method is to
solve (3) with an iterative solver. Because R is theoretically symmetric, (3) is commonly solved
with a conjugate gradient (CG) method as in many MT inversion algorithms (see Mackie and
Madden, 1993; Siripunvaraporn and Egbert, 2007; Lin et al., 2008). One clear advantage of
using CG to solve (3) is that the large N x M sensitivity matrix J is not explicitly formed and
stored in the computer memory. Only a product of J or J" with an arbitrary vector is required by
solving one forward problem per period (see Mackie and Madden, 1993; Newman and
Alumbaugh, 2000; Rodi and Mackie, 2001; Siripunvaraporn and Egbert, 2007; Lin et al., 2008).
Two routines to compute Jp and J'q are therefore implemented here for the 3-D problem, where
p and q are general M x 1 and N x 1 vectors, respectively. This method is used in
WSDCG3DMT.

The data space conjugate gradient algorithm and the routines to explicitly form J and to

compute Jp and J"q are briefly described in the following sub-sections.

2.1 Data Space Conjugate Gradient Algorithm (WSDCG3DMT)

The data space conjugate gradient algorithm denoted as WSDCG3DMT has two iterative loops.
The outer loop which is a main inversion loop is to minimize (2), while the inner loop is to
minimize Rx = b in (3) with a conjugate gradient (CG) method where R = [A | + C4™JCpJ"
Cdq”], b=Cq”d and x = Cq”p (see Barrett et al., 1994 for Preconditioned Conjugate Gradient
algorithm). The algorithm was summarized in Figure 2 of Siripunvaraporn and Egbert (2007),

and is repeatedly presented below with more explanations.



Reading inputs and initializing variables.
Start DCG “outer” loop to minimize (2) : iteration k
1. Compute dx =d — F[my] + Jx(mk — mo)
2. Start DCG “inner” loop by using CG to solve Rygx = b
2.1 Initialization: Xy = 0; rg)=b, where r = ||Rx - bj|/||b]|.

for icg = 1,2,...,ncgmax or ||rTr|| < ryl, Where icg a CG iteration number, ncgmax a

maximum number of CG iterations, and ry, a stopping tolerance level.
2.2 Z(icg-1) = Nicg-D)
2.3 Siog1) = T eg-D) Zlicg-)
2.4 if (icg=1) Pw = Zo)
else
Blicg1) = Hicg-1)/ icg2)
Paicg) = Z(icg-1) + Blicg-1) Poicg-1)
endif
2.5 Q(icg-1) = RiPicg)
2.6 licg1)= Sicgy P icg) Uicq)
2.7 X(icg) = X(icg-1) T icg) Picg)
2.8 I(icg) = Iicg-1) = X(icg-1) U(icg)
2.9 if (||r'r|| < ro ) or (icg > ncgmax), then stop CG iteration and go to 3, else go to 2.2.
end icg

3. Compute Mys1 - Mg = Cmdi Ca X



4. Compute F[my:1] and RMS misfit ||Cq™(d — F[My1)||
5. Check condition;
5.1 exit if misfit below the desired level, go to 6;
5.2 continue if misfit is greater than the desired level, go to 1;

6. End DCG outer loop.

Step 1 requires calling one forward routine for F[my], and another call to compute Ji(my — mo).
On step 2.1, system (3) is already normalized, therefore there is no preconditioner here. Step 2.5
is a “key” for the CG solver. It requires two forward modeling calls to compute s = Jk" Cq *Pyicg)
and JCms. Step 3 demands one forward modeling call to compute Ji Cq™x. Step 4 requires
another forward modeling call to compute the model responses F[my.1]. Overall, numbers of
forward modeling calls to compute the model response is two per outer loop iteration per period,
and to compute a multiplication of J or J" with a vector is 2 + 2Ny per outer loop iteration per
period, where N¢g is a number of CG iterations. A total number of forward modeling calls would

therefore be 4 + 2Nq per period per outer loop iteration.

2.2 Forward Modeling and Sensitivity Calculation

Given an electrical conductivity (o) or resistivity (p) model, to yield MT responses at the surface,

the electric fields (E) are computed from the second order Maxwell's equation,
V xV x E =iouoE, 4)

where @ is an angular frequency and u the magnetic permeability. Discretizing the model and

applying the staggered grid finite difference approach to (4), we obtain a system of equations for

a given period or frequency,

Se=bh, (5)



where e represents the unknown internal electric fields, b a vector containing the terms
associated with the boundary electric fields, and S a large sparse symmetric and complex
coefficient matrix. System of equations (5) is solved with a quasi-minimum residual (QMR)
method per period and per polarization as in Siripunvaraporn et al. (2002). Surface responses can
then be obtained from a linear combination of a vector a associated at a measurement site and the

computed electric fields,
F[m]=a'e=a'S"b. (6)

To compute for the sensitivity J = 0F/0m at a given period, equation (6) is differentiated

with respect to the model m,
J=0Flom =9(a'e) om=a'S'O + ¥, 7)

where © = db/dm - (8S/dm)e and ¥ = (da'/om)e. The process to form J is straightforward by
first constructing ©, solving SO, multiplying the result with a’ and finally adding with ¥. With
this technique, calculating S*© would require solving the system of equations (5) M times per
period and per polarization (Rodi, 1976). This calculation can be very significant, particularly in

3-D cases.

To reduce number of forward callings, reciprocity property of the electromagnetic fields
(see Rodi, 1976; Mackie and Madden, 1993; Siripunvaraporn and Egbert, 2000) is applied to (7).
With the reciprocity, the process of computing J is modified by first solving (a'S™)", then
multiplying the result with © before finally adding with ¥'. Using the reciprocity technique,
computing (@'S™)" would require solving the system of equations (5) only N times per period
and per polarization (Rodi, 1976; Siripunvaraporn and Egbert, 2000), where Ns is the number of
observed stations which is typically a lot smaller than M, particularly in 3-D cases. The
reciprocity theorem helps significantly decreasing the computational time of the program

(Siripunvaraporn and Egbert, 2000).

2.3 Multiplication of J or J" to any vectors

To compute the product of J with a given vector p, equation (7) becomes
8



Jp= a'S'ep+¥p. (8)

The process is started with a multiplication of ©p, then solving S*©p, multiplying the result
with a', and finally adding them with the product of ¥p. Similarly, to compute the product of J"

with a given vector ¢, equation (7) also becomes
Jq= O'[sT'aq + ¥'q. 9

The process here is also straightforward. It starts with a multiplication of ag, because S = S',
then solving S™aq and multiplying them with ©", finally adding the result with ¥'q. Equation
(8) and (9) show that each process requires solving the system of equations (5) only one times
per period and per polarization. Storage for J matrix is not necessary for (8) and (9) but required
for (7).

2.4 Theoretical Comparisons for Forming J and Its Multiplications

Both forming J and its multiplications (Jp or J'q) require solving the same system of equations
(5), but with different right hand sides. As in section 2.2 and 2.3, forming J requires solving (5)
with a as the right hand side, while computing Jp and J'q have ©p and ag, as their right hand
sides, respectively. All vectors (a, ©p and aq) are sparse, but Op and aq involve more non-zero
terms than a. Consequently, solving (5) with ©p and aqg as the right hand sides will require
larger number of QMR iterations than with just a as the right hand side to converge to the same
accuracy level. Similar behavior was also occurred in 2-D cases. Because system of equations for
2-D cases is small, the difference is therefore not significant. However, for 3-D case, the

difference in CPU time is noticeable and will be shown in the numerical experiments.

2.5 Parallel Implementation

Similar to WSINV3DMT (Siripunvaraporn and Egbert, 2009), we also implement our 3-D DCG
code on a parallel system. Although memory is not an issue for the DCG method, its extensive
runtime is still a big concern due to its numerous calls to the forward modeling routine. As in
WSINV3DMT, we parallelize WSDCG3DMT over frequencies via MPI (Message Passing

Interface) libraries. For DCG, the parallelization is relatively simple, just distributing the forward



modeling call of each period to each processor node when computing the forward response F[m],
and calculating Jp and J"q. The simplicity occurs because there is no need to form and store the
cross-product R as in WSINV3DMT (Siripunvaraporn and Egbert, 2009).

3. Numerical Experiments on a Synthetic Data : WSDCG3DMT & WSINV3DMT

Here, before we introduce a mixed scheme of the data space conjugate gradient method and the
Occam’s inversion; we start with the repetitions of the same experiments we conducted with the
2-D MT data but now with the 3-D MT data. The goal of the experiments is to check whether the
same conclusions derived from the 2-D studies can be gained. In addition, we also compare the
results with WSINV3DMT in terms of computational time and memory.

Similar to Siripunvaraporn et al. (2005) and Siripunvaraporn and Egbert (2009), we use
the same synthetic model to generate a synthetic dataset for testing our codes. The synthetic
model consists of two anomalies, 1 QQ-m and 100 Q2-m buried next to each other inside a 10 Q2-m
layer lying on top of a 100 Q-m half-space as illustrated in Figure 1 (Figure 4 in Siripunvaraporn
et al., 2005; Figure 3b in Siripunvaraporn and Egbert, 2009). The model mesh for the inversion
was discretized at 28 x 28 x 21 (+7 air layers) in x, y and z, respectively. The full complex
impedance data (Zy, Zxy, Zyx and Zyy; i.e. N, = 4) is generated for 40 MT sites (Ns = 40) located
regularly covering the two anomalies (solid dots in Figure 1) and 16 periods from 0.031 to 1000
second (N, = 16). Five percent Gaussian noise calculated from the data magnitude (|ZXyZyX|1/2) was
added to the impedance data. With this configuration, model parameter M would be equal to 28 x
28 x 21 = 16,464, while data parameter N would be equal to 40 x 16 x 8 = 5,120. In this
experiment, all runs can be performed on a serial machine; an Intel Core Two Duo 6400, 2.13
GHz machine with 2 GBytes of RAM. Bigger model mesh or dataset would prohibit a run on this
serial machine for WSINV3DMT.

Our first test is to perform the WSDCG3DMT program with various A (A = 100, 10, 1,
0.1, 0.01) and two ry (10" and 102) for the DCG inner loop or the CG loop. Convergence
behaviors of WSDCG3DMT for various A and different ry as a function of time are shown in
Figure 2 in comparison to WSINV3DMT. An inverted model after four iterations from
WSDCG3DMT (A = 1 and r = 10) is shown in Figure 3. The inversion can recover both
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anomalies and the underlying layer similar to the inverted result from WSINV3DMT (Figure 6
of Siripunvaraporn et al., 2005).

For larger A (10 and 100) with ry; = 102 DCG cannot converge to the desired level of 1
RMS. It can only lower the misfit down in the first two iterations before idling. Similar to the 2-
D tests, larger A requires smaller number of CG iterations to solve the normal equation (3) per
outer loop iteration. This is reflected in a small amount of computing time as shown in Figure 2
(cyan and blue colors). For smaller A (1 and 0.1) with r = 10, DCG is able to converge to the
desired 1 RMS in four iterations. However, in contrast to larger A, it demands significantly large
number of CG iterations to solve (3) per one outer loop iteration. This is shown by a large
amount of computational time in Figure 2 (red and green), particularly for the first iteration.

Reducing number of CG iterations per main iteration would help decreasing a computer
runtime. One way is to set ryo to a larger value. Here, at 10™. In all A cases with ry = 107, DCG
has difficulty to converge to the target misfit of 1 RMS as seen in dash-lines of Figure 2. Larger
r'oi Would only help reducing computing time but not the convergence. In contrast, setting i to
smaller values (e.g., at 10° or less), number of inversion iterations to converge to the desired
misfit is the same as in the case of ri, = 102 Inverted model is also less than a percent difference.
Major difference is at the number of CG iterations per main inversion iteration which is
significantly larger for smaller ry,. These experiments show that ri = 10 is appeared to be an
optimal tolerance level for terminating the CG iterations in the DCG inner loop.

For A = 0.01 or smaller, DCG fails to converge from the start. The sign of the divergence
can be observed or detected inside the CG solver after some number of CG iterations. This
becomes a very important and useful information. We can use it as a criterion to decide the
termination of the WSDCG3DMT code. Whenever a divergence inside the CG loop takes place,
program is stopped. The cause for the divergence behavior inside the CG loop is probably due to
the loss of the orthogonality of matrix R.

From all of these experiments, we can infer that both 2-D studies from Siripunvaraporn
and Egbert (2007) and 3-D studies here yield almost the same conclusions. Optimal convergence
occurs in the A ranges between 0.1 and less than 10, and also with ri = 107,

Computational performance in term of memory and CPU time of WSDCG3DMT is then
compared with those from WSINV3DMT. Majority of the memory requirements for
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WSINV3DMT is to store J and R matrices which can be approximated from 8NM+8NN with
double precisions. This is about 1 GBytes in our test case. The code also requires less than 0.3
GBytes for storing S, 0S/om, and other parts for miscellaneous computations. For
WSDCG3DMT, we do not store J and R in the memory. One GBytes of RAM is therefore not
needed as in the case of WSINV3DMT. WSDCG3DMT requires only about 0.4 GBytes to store
many different matrices and vectors. This is about the same as the memory used for the
miscellaneous computations in WSINV3DMT.

In term of computational time, WSINV3DMT converges to the desired misfit within
three iterations in about 300 minutes as shown in a black line of Figure 2, while WSDCG3DMT
with A =1 and A = 0.1 uses about 400 and 1600 minutes, respectively. This again shows that
computational time of WSINV3DMT is less than that of converged WSDCG3DMT. Thus, in
term of computational performance, one can clearly see that WSDCG3DMT has advantage in
terms of memory. However, its computational time can be significantly greater than that of
WSINV3DMT. A trade-off between computational time and memory used would be a factor for
users to decide. This is also similar to the 2-D studies (Siripunvaraporn and Egbert, 2007).

In 2-D studies, we did not compare CPU time, but number of forward modeling calls of
each algorithm. Here, similar analysis are performed for the 3-D cases. WSINV3DMT requires a
fix number of callings at N,NsNm + Np(N;+1) per inversion iteration to form the sensitivity and
compute the misfit, where N, is a number of A varied to search for the minimum misfit in each
iteration of the Occam’s inversion. In our experiments, for the first iteration, N, = 5, number of
forward modeling calls for WSINV3DMT is therefore at 2,656. For WSDCG3DMT, in each
iteration, number of forward modeling calls depends on a number of CG iterations (N¢g) in the
DCG inner loop, and equal to 4N, + 2N,N¢g per inversion iteration as we previously discussed. In
our experiments, for the case A = 1 and ry = 10", Neg = 47 for the first iteration, number of
forward modeling calls is then at 1,568.

Although number of forward modeling calls of WSDCG3DMT is about 1,000 less than
WSINV3DMT, computational time is actually slightly longer for the first iteration of both
methods as shown in Figure 2. This indicates that for each forward modeling call,
WSDCG3DMT requires averagely longer runtime than that of WSINV3DMT. Because of more

complicated right hand sides in the system of equation (5) when computing Jp or J'q than
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forming J, as already stated in Section 2.4, it requires larger number of QMR iterations to
converge to the solution. This study shows that to test the efficiency of the inversion, just
counting number of forward modeling calls can be misleading (see Newman and Alumbaugh,
1997; Siripunvaraporn and Egbert, 2007).

Another interesting point for WSDCG3DMT is the reduction of the number of CG
iterations per outer loop iteration when misfit becomes lower. For example, in the case A = 1 and
Mot = 107, Neg = 108, 48, 25 and 21, respectively, from the first to forth iteration of the main
inversion loop. This is reflected and shown with lesser CPU time for successive iterations in
Figure 2. The reduction of number of CG iterations occurs on every case in our examples. When
inverted solution gets closer to the “true” solution, normal equation (3) is probably lesser stiff

and therefore become easily to solve.

4. The mixed scheme of the DCG and Occam’s inversions (WSMIX3DMT)
Because DCG does not explicitly form and store the sensitivity matrix, DCG therefore requires
significantly less memory than the Occam’s inversion. However, the major drawback of the
DCG method is its computational time which could be longer than the Occam’s inversion. Here,
we propose a new scheme which is a mixed concept of both DCG and Occam and a modification
of the DCG method. Mathematics of the new scheme is in fact identical to the DCG method.
Thus, it maintains the memory advantage of the DCG method over the Occam’s style. However,
we intentionally design so that the new scheme spends computational time less than both DCG
and Occam. This would make the mixed scheme as the efficient inversion.

Assuming that the goal of the inversion is the same for both DCG and Occam that is to
bring the misfit down to the desired level. One distinct feature between both methods is at the A
value. In Occam’s inversion (Constable et al., 1987; Siripunvaraporn and Egbert, 2000;
Siripunvaraporn et al., 2005), in every iteration, A in equation (3) is varied in order to search for
the model producing the “least” RMS misfit (see Siripunvaraporn and Egbert, 2000;
Siripunvaraporn et al., 2005). With the Occam concept, A is posed as both the step length and the
regularization parameters. For the DCG method, A is pre-selected and fixed in every iteration as
shown in previous section in WSDCG3DMT. In DCG, A therefore acts like a regularization or

damping parameter.
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In our mixed scheme, the algorithm is based mainly on the DCG method. However, A is
not fixed but varied as both step length and regularization parameter similar to the idea of the
Occam’s inversion. The difference from the Occam’s method is we do not choose A that
minimize the RMS misfit, but we select A that can both lower the misfit down and at the same
time require small number of CG iterations per an outer loop iteration. The “optimal” A is
selected and varied based on our knowledge and experience gained from the studies in previous
section 3. It is therefore not exactly the same philosophy as in the Occam’s inversion, nor the
DCG, but a mixed of both. This is why we refer to this method as a mixed DCG and Occam or in
short WSMIX3DMT.

Based on earlier 3-D studies in section 3 and 2-D studies in Siripunvaraporn and Egbert
(2007), ry for the inner CG loop is fixed at 107 as the optimal tolerance level for number of CG
iterations. For early iterations, larger A requires significantly smaller number of CG iterations
than smaller A and at the same time can lower the misfit down. We therefore choose to start our
mixed scheme with large Aini (€.9., Aini =100 or larger). To further decrease the misfit down, A is
automatically reduced by a factor of ¢ (e.g., € = 10) in the next iteration. This automatic
reduction is to avoid redundant computations as occurred when large A is fixed (Figure 2). A
reduction in A was used before in Kelbert et al. (2008) but only when the misfit is not decreased
in their non-linear conjugate gradient (NLCG) method. The automatic reduction in X is continued
successively for the next iterations until reaching Amin (€.9., Amin = 0.1). When A below Amin, it
will set back to Amin.

For example, Aini = 100, Amin = 0.1 and € = 10 is input in the first iteration. Values of A
for the 2™, 3 and 4™ iterations would be 10, 1 and 0.1, respectively. If the inversion continues,
5" jteration and so on will have A = 0.1. In addition, we also add a scheme to detect the
divergence. Within Ny, CG iterations (e.g., Ngiv = 15), if the divergence occurs, there is a high
possibility that the inversion will fail to converge. If that happens, A is automatically increased
by a factor of ¢ and re-start the process again. This “extra” step may cause redundant

computations but can help preventing the divergence inside the main inversion loop.
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4.1 Numerical Experiments of WSMIX3DMT and Comparisons with WSINV3DMT and
WSDCG3DMT

To check the efficiency of the WSMIX3DMT code, we apply it to the same synthetic data set
generated from model in Figure 1. Four values of Ai,; are used (Aini = 10000, 1000, 100 and 10)
with ¢ = 10. Figure 4 shows convergence rates from the WSMIX3DMT program with various
initial Ay, in comparisons to those of WSINV3DMT (black) and WSDCG3DMT with A = 1
(red). Figure 4 shows that all runs can converge to the desired level within 3-4 iterations. Most
importantly, all WSMIX3DMT runs spend computational time less than both WSINV3DMT and
fixed A WSDCG3DMT. Inverted models from all runs with 1 RMS are similar to the inverted
model plotted in Figure 3.

When Aini is too large (i.e. at 10000), redundant computation is occurred in the first
iteration. Although the first iteration with A;, = 10000 runs very quick, it does not greatly reduce
the misfit. When A is decreased to 1000 in the next iteration. The misfit in this case is almost the
same as starting the run with Aii = 1000. The first iteration of A;ni = 10000 is therefore redundant
and unnecessary. Starting the mixed inversion with A, < 10 requires large computational time
due to large number of CG iterations used in the first iteration. In addition, A is decreased
quickly to 1 and 0.1 in the next few iterations and would demand large number of CG iterations.
In this case, we do not gain advantage of small number of CG iterations used from larger A. It
therefore become less effective as in WSDCG3DMT. Thus, we should avoid to start
WSMIX3DMT with smaller A or very large A.

From the experiments, the “optimal” A to start with would be around 100 to 1000 (Figure
4). Both cases spends computational time at about 100 minutes compared to 300 minutes of
WSINV3DMT and 400 minutes of WSDCG3DMT. In addition, WSMIX3DMT requires
memory the same as WSDCG3DMT, i.e. less than 0.4 Gbytes for this dataset, which is several
factors less than WSINV3DMT. WSMIX3DMT which is a combination of DCG and Occam is
the most efficient method compared to both WSINV3DMT and WSDCG3DMT.

Further studies show that ¢ around 10 is the optimal value. If ¢ too small, redundant
computations can be occurred. If too large, WSMIX3DMT would not gain much advantage from

smaller number of CG iterations when large A used. This makes WSMIX3DMT less efficient.
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5. Applications of WSMIX3DMT, WSDCG3DMT and WSINV3DMT to EXTECH data
To show the efficiency of our mixed scheme WSMIX3DMT in comparisons to the
WSDCG3DMT and WSINV3DMT codes, we applied all three codes to the EXTECH dataset
(Tuncer et al., 2006) conducting around the McArthur River mine, Saskatchewan, Canada
(Figure 2 of Tuncer et al., 2006). The data consists of both impedance tensor (Zyx, Zyy, Zyx and
Zyy) and the vertical magnetic field transfer function (VTF; T, and T) for 131 stations and 16
periods (from 8000 Hz to 5 Hz). The data parameter N is therefore equal to 25,152. In all runs,
minimum error bars for VTF is set at 15% of (|Tx*+T)"” and 5% of |Z,Z,x|” for off-diagonal
and 50% for diagonal terms. A 1000 Q m half-space is used as an initial model and a prior model
(mo) and is discretized at 56 x 56 x 33 (+7 air layers). The model parameter M is therefore at
103,488.

To show the efficiency of the parallel codes, all runs are performed on a cluster computer
which consists of 8 processor nodes with 8 GBytes in memory each. With 16 period data, two
periods are distributed to compute on each processor node. In terms of memory, WSINV3DMT
requires about 5 GBytes to store its two period sensitivities and the cross-product matrices. It
also requires about 1 GBytes additional to store other necessary components. In contrast to
WSINV3DMT, both WSDCG3DMT and WSMIX3DMT require less than 1 GBytes of RAM to
perform the inversion of this EXTECH dataset. The EXTECH dataset and the model mesh used
above are already at a maximum limitation of the cluster for WSINV3DMT. Because
WSDCG3DMT and WSMIX3DMT use significantly less memory, they can therefore be applied
on a bigger dataset and a bigger mesh on this cluster. However, here, same parameters are used
for comparisons.

Convergence behaviors of the three methods are plotted in Figure 5 as a function of time
in minutes. From Figure 5, WSINV3DMT requires about 870 minutes in 3 iterations to converge
to its minimum at 1.52 RMS. After the 3" iteration, the misfit is fluctuated above the minimum
RMS. WSDCG3DMT with A = 1 also requires 3 iterations to converge to 1.50 RMS but uses
longer CPU time at about 1040 minutes. After the 3" iteration, WSDCG3DMT increases its
RMS to 1.57 in the 4™ iteration and is terminated because of the divergence. With A < 0.5, the
WSDCG3DMT code diverges and fails after its first iteration.
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For our mixed scheme, WSMIX3DMT with A, = 100 can converge to 1.47 RMS
slightly below the level of both WSINV3DMT and WSDCG3DMT in 3 iterations. Most
importantly, the computational time is only about 450 minutes, about half of WSINV3DMT and
WSDCG3DMT. At the 4™ iteration when 2 is reduced to 0.1, the scheme detected the divergence
occurring inside the CG loop. The code is then re-started with a bigger A = 1 on the 4™ iteration.
The process of increasing A will cost some extra computational time. With the divergence
detection scheme, the code can continue to run for several iterations.

After continuing the run, WSMIX3DMT can further reduce the misfit below the level
that both WSINV3DMT and WSDCG3DMT can attain. At 5" iteration with A = 1, the misfit is
at the lowest RMS of 1.34. However, these 0.13 RMS difference from 3 to 5" iteration require
computational time almost 14 hours; about twice longer than the CPU time at the 3" iteration.
One can therefore stop at the 3™ iteration because the inverted models at the 3 and 5™ iteration
are slightly different.

Convergence behavior from starting WSMIX3DMT with i, = 1000 is redundant in early
iterations similar to starting with Ai,i = 100, as shown in Figure 5. It therefore spends “extra”
CPU time longer. Overall, it can still converge below 1.5 RMS within 500 minutes faster than
both WSINV3DMT and WSDCGMT methods.

Inverted model from the 5™ iteration of WSMIX3DMT starting with Aini= 100 is shown
in Figure 6. It is similar to the inverted model from WSINV3DMT (Figure 11 of Siripunvaraporn
and Egbert, 2009). Major differences are at the two conductors. Here, conductor on the eastern
part of the profiles oriented in the NE-SW direction can be seen as shallow as 500 m depth.
Northern conductor seems to be continuous from 800 m to 1.3 km depth. The difference of the
two inverted models (Figure 6 here and Figure 11 of Siripunvaraporn and Egbert, 2009) and
detail interpretation is beyond our scopes in this paper. For detail discussion of the EXTECH

data set can be found in Tuncer et al. (2006) and Farquharson and Craven (2008).

6. Conclusions

In this paper, we implement and extend the data space conjugate gradient inversion for three-

dimensional Magnetotelluric data (WSDCG3DMT). Numerical experiments on 3-D synthetic

data show that WSDCG3DMT with some A can converge to the desired level of misfit but often
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spends longer computational time than the data space Occam’s inversion (WSINV3DMT).
However, because the whole sensitivity matrix is not explicitly formed and stored, its memory
requirements are therefore minimal at a fraction of WSINV3DMT. This makes WSDCG3DMT
practical for large to very large data set.

Based on the numerical experiments of WSDCG3DMT on synthetic data, number of CG
iterations depends greatly on the A values used. Larger A usually requires smaller number of CG
iterations per main inversion iteration but hardly converge to the “true” solution. Smaller A
requires larger number of CG iterations per main iteration but can converge to the desired level
of misfit. However, if A is too small, it can diverge. Computational time varies proportionally to
the number of CG iterations. Thus, to use less CPU time, number of CG iterations per outer loop
iteration must be minimized.

The information learned from the synthetic studies has inspired and led us to the creation
of the mixed scheme of the Occam’s and DCG methods or WSMIX3DMT. In DCG scheme, A is
fixed as a regularization parameter. In Occam’s inversion, A is varied as both step length and
regularization parameters. In our mixed scheme, A is varied but not in the same way as in the
Occam’s inversion. Instead of choosing A that generates a model with smallest misfit as in
Occam, we prefer A that minimizes number of CG iterations but at the same time can reduce the
misfit. With this strategy, A should initially start from large value before reducing to smaller
value for the next subsequent iterations. Our studies shows that A between 100 to 1000 are the
optimal A to start with for the WSMIX3DMT code.

By applying all three algorithms (WSMIX3DMT, WSDCG3DMT and WSINV3DMT)
on both synthetic and EXTECH field data, our mixed scheme (WSMIX3DMT) is significantly
faster than both WSDCG3DMT and WSINV3DMT. Similar to WSDCG3DMT, it requires
insignificant amount of memory. Because both computational time and memory performances

are at minimum, we can conclude here that WSMIX3DMT is the most efficient inversion.
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Figure 1. Two-block synthetic model used to test our inversions. The solid dots indicate the
observational sites. A cross-section view in the lower panel is a profile cutting across the middle
of the two anomalies in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005;

and Siripunvaraporn and Egbert, 2009).
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Figure 2. Convergence rates of WSINV3DMT (black) and WSDCG3DMT from various As and
ol to the synthetic dataset generated from a model in Figure 1. Dash line for i = 10™%. Solid line

for re = 102, Each plus symbol indicates one iteration.
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a) Plan View at Surface b) Plan View at Z =3 km c) Plan View at Z= 7.5 km

X [km]
X [km]
X [km]

30 30 30
30 20 10 0 10 20 30 30 20 10 0 10 20 30 30 20 10 0 10 20 30
Y [km] Y [km] Y [km]

d) Cross Section View at X =0 Km : WSDCG3DMT 3.=1

il
]
(e TN O O A N

W |

16

Z [km]
log10p) [-m]

21

30 256 -20 15 10 -5 0 5 10 15 20 25 30

Figure 3. An inverted model from WSDCG3DMT with A = 1. The synthetic data is generated
from the model in Figure 1. The top panels (a)-(c) is a plan view at the surface, at 3 km and at
7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the two anomalies

at X = 0 km. The solution is shown only in the central area around the anomalies, not for the full

model domain.
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Figure 4. Convergence rates from WSINV3DMT (black), WSDCG3DMT with A = 1 (red) and
WSMIX3DMT with different initial Ai,; to the synthetic data generated from a model in Figure 1.

Each square or plus symbol indicates one iteration. A used in each iteration for WSMIX3DMT is
printed next to its square symbols.
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Figure 5. Convergence rates from WSINV3DMT (black), WSDCG3DMT with A = 1 (red) and
WSMIX3DMT with initial Ai,i = 1000 (green) and A ini = 100 (blue) to the EXTECH field dataset.
Each square or plus symbol indicates one iteration. A used in each iteration for WSMIX3DMT is

printed next to its square symbols.
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Figure 6. The inverse solution at various depths from the 5" iteration of the WSMIX3DMT
method with initial A, = 100. The EXTECH data used here consists of both vertical magnetic
transfer function and full impedance tensor at 131 sites and 16 periods. The cross-symbols

indicate the locations of the stations.
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Abstract

We use 2-D Magnetotelluric (MT) problems as a feasibility study to demonstrate that the 3-D
MT modeling can be solved with a direct solver, even on a standard single processor PC. The
scheme used is the hierarchical domain decomposition (HDD) method in which a global
computational domain is uniformly split into many smaller non-overlapping subdomains.
However, to make it more efficient, two modifications are made to the standard HDD method.
Instead of three levels as in the standard HDD method, we classify the unknowns into four
classes: the interiors, the horizontal and vertical interfaces and the intersections taking
advantages of the finite-difference approximation. Four sets of smaller systems of equations
are successively solved with a direct method (an LU factorization). The separation helps
overcoming the memory overburden of a direct solver while remain computationally
effective. To further enhance the speed of the code, a red-black ordering is applied to solve

the horizontal and vertical interface reduced systems.

Numerical experiments on 2-D MT problem running on a single processor machine
shows that CPU time and memory used are almost constant for any resistivity models,
frequencies and modes as long as the model size remain the same. This is a clear advantage
of our algorithm. Number of subdomains is a major factor controlling computational
efficiency. Here, we also introduce a “memory map”, a tool we can use to pre-select
“optimized” subdomains. Our 2-D experiments also shows that by splitting a domain with the
optimized subdomains, this modified scheme can outperform the standard FD method in both

CPU time and memory even running on a serial machine.



1. Introduction

To obtain magnetotelluric (MT) responses, the second order Maxwell’s equation in either
electric field or magnetic field is solved via three commonly used approaches: finite
difference (FD) method (e.g. Mackie et al., 1994; Smith, 1996; Siripunvaraporn et al., 2002;
Siripunvaraporn et al., 2005), finite element (FE) method (e.g. Wannamaker et al., 1987;
Zyserman et al., 1999; Zyserman and Santos, 2000; Mitsuhata and Uchida, 2004; ), and
integral equation (IE) technique (e.g. Wannamaker, 1991; Xiong, 1992; Avdeed and
Avdeeva, 2009 ). For complicated and geologically realistic two-dimensional (2D) and three-
dimensional (3D) model, FD or FE methods are generally more efficient and robust than IE
technique. In the past decades, FD method has gained more popularity due to its simplicity in

technique and also its accuracy in solution.

In many problems, when model domain becomes very large, particularly in 3-D problems,
solving the system of equations with the direct method is impractical in term of memory
requirement (see Ben-Hadj-Ali et al., 2008 for 3-D frequency-domain full-waveform
tomography; Streich, 2009 for 3-D MT;). The system is then alternatively solved with the
iterative solvers (e.g. Bi-Conjugate Gradient (BiCG) method in Smith, 1996 and Xiong,
1999; Quasi Minimum Residual (QMR) in Siripunvaraporn et al., 2002; Preconditioned
Conjugate Gradient (PCG) in Siripunvaraporn and Egbert, 2000; Minimum Residual Method
(MRM) in Mackie et al., 1994). In many practical MT cases, the electrical resistivity model
can be geologically complicated resulting in large conditioned number and therefore long
computational time (see Patro and Egbert, 2009). Occasionally, the iterative solvers may
become stagnant after many thousand of iterations and sometimes fail to converge. The
calculated solution will therefore not be accurate and could mislead an interpretation if

applied inside an inversion.

In high conditioned number case, being able to solve a problem with a direct solver is very
crucial, if applicable. With direct method, accuracy is guarantee. Computational time is also
controllable, because theoretically it is almost constant for any frequencies, modes or
polarizations and resistivity models as long as the model domain remains the same size. In

addition, the factorization used when solving the system can be re-used many times when
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computing the sensitivity or Jacobian matrix (see Siripunvaraporn and Egbert, 2000) inside
the inversion algorithm. In 3-D MT cases, the direct solver is still not practical with recent
computer technology (see Streich, 2009). However, here we use the 2-D study to demonstrate
that the 3-D problem can be efficiently solved with a direct solver even on a serial machine if

the modified hierarchical domain decomposition developed in this paper is applied to.

Instead of computing on a large domain, a global domain can be splitting into several smaller
local domains or subdomains. The solution on the global domain is then solved through the
smaller systems of each subdomain. This technique is generally known as the domain
decomposition (DD) technique. It is considered as a powerful tool in many large scale
engineering problems (e.g. Lu and Shen, 1997; Bitzarakis et al., 1997; Larsson, 1999; Yin et
al., 2002; Basermann et al., 2005; Lu et al., 2008; Wang et al., 2008; ) and also in various
multidimensional geophysical problems (e.g. Xiong, 1999; Zyserman et al., 1999; Zyserman
and Santos, 2000; Xie et al., 2000; Pain et al., 2002; Ben-Hadj-Ali et al., 2008; Sourbier et
al., 2008; Takei et al., 2010).

The domain decomposition method can be mainly classified into two categories: the
overlapping technique where some region of the subdomain overlapping with the others (e.g.
Xiong, 1999; Peng et al., 2009) and the non-overlapping method where neighboring
subdomains share the same sub-boundaries (e.g. Lu and Shen, 1997; Zyserman et al., 1999;
Zyserman and Santos, 2000; Lu et al.,, 2008; Wang et al., 2008 ). Comparison of the
overlapping and the non-overlapping methods is mentioned in Chan and Goovaerts (1992)
and Rice et al. (2000). Various schemes are used to solve the domain decomposition
problems, such as the Schwartz algorithms (see Cai et al., 1998), Schur complement approach
(see Smith et al., 1996; Saad, 2003; Zhang, 2005 ), the hierarchical domain decomposition
approach (Smith et al., 1996; Takei et al., 2010), balancing domain decomposition method
(Mandel, 1993), the interface relaxation methods (see Rice et al., 2000) among many other

techniques.



In electromagnetic induction of the Earth, there are only a few papers demonstrating the use
of domain decomposition method to solve MT forward problems. Zyserman et al. (1999) and
Zyserman and Santos (2000) applied non-overlapping domain decomposition technique to 2-
D and 3-D cases, respectively. In their techniques, sub-problems are iteratively solved via the
interfaces enforced by the equivalent Robin-type transmission conditions. The memory
requirement is significantly diminished due to no appearance of a large global matrix.
Computational time is also greatly reduced when solving in the parallel computation
(Zyserman and Santos, 2000). Although, the technique has proven to be numerically superior
in the parallel system, the technique may not be suitable for serial computation. Xiong (1999)
applied adaptive Schwartz overlapping domain decomposition technique for 3-D controlled
source electromagnetic forward problems. In his method, all subdomains share overlapping
regions. Each subdomain is independently solved and then updated from neighboring
subdomains until the solution converges. The memory is significantly reduced. However, its
total computational run time becomes larger than solving the whole system on single node
processor (Xiong, 1999). Both schemes (Xiong, 1999; Zyserman et al., 1999; and Zyserman
and Santos, 2000) show that efficiency in terms of computational time of the domain
decomposition method can only be gained if running on parallel system. They are inferior if

running on a serial machine.

In this paper, we investigated another method based on the hierarchical domain
decomposition (HDD). Similar to other domain decomposition methods, the global domain is
subdivided into many smaller subdomains. System of equations for each subdomain is
separately formed and linked to the other via the interfaces. The hierarchical domain
decomposition method can be directly applied to the MT problems both parallel and serial
computations. Application of HDD on a parallel system is straightforward. Similar to others,
calculation of each subdomain is performed separately on each processor node. A single
interface system is then distributed to all processors for calculation. Theoretically, efficiency
can be expected from applying the code to the parallel system. However, in practice, this
parallel scheme requires substantial amount of communication time to exchange data among
processors, particularly when solving the interface system. Efficiency is therefore platform-
dependent. In this paper, we only illustrate the parallel algorithm but prefer not to

demonstrate it numerically because our 2-D domain problem is “too” small for current



computer technology. The parallel algorithm will be later demonstrated on a bigger 3-D
problem as a future research. In addition, this parallelization is not our main challenge. Our
major challenge is the efficiency enhancement of HDD on a serial machine, not through a

multi-processor machine.

Similar to other domain decomposition methods for MT problems (Xiong, 1999; Zyserman et
al., 1999; and Zyserman and Santos, 2000), efficiency of HDD on a serial computation is
low. However, in this paper, two modifications are developed and applied to the hierarchical
domain decomposition method to increase its efficiency. First modification is the separation
of interfaces into vertical and horizontal interfaces. This is natural for the finite-difference
approximation scheme. Second modification is the application of red-black ordering to the re-
ordered interface systems. With the two modifications, we will show that the modified HDD
code for 2-D MT problems performs better than the conventional method even on a serial
machine. Because we use a direct solver to solve system of equations, this 2-D experiment is
also a feasibility study for future 3-D problems to demonstrate that the direct solver can be
used to solve 3-D system of equations even with a serial calculation. These are therefore our

main objectives for this paper.

Efficient modified HDD on a serial computation can also be applied to the parallel system.
However, instead of parallelizing over subdomains, we parallelize over frequency.
Calculation of MT responses of each frequency is performed serially on one processor. Thus,
all frequencies are solved simultaneously but separately on multi-processor machines. This is
used frequently in 3-D inversion algorithms (see Siripunvaraporn et al., 2004; 2005;
Siripunvaraporn and Egbert, 2009; Siripunvaraporn and Sarakorn, 2010). In addition, this
scheme does not require substantial amount of communication time between processors. It is

therefore perfectly fit with the PC cluster platform which can be easily and cheaply built.

In addition, a major decisive factor that controls the efficiency of the modified HDD method

is the number of subdomains. Selecting subdomains can be a trial and error processes. To



avoid wasting time to this process, here we introduce a “memory map” to help choosing
“optimized” subdomains that yields the “best” computational performance. Memory map is
pre-generated from several combinations of subdomains. Number of subdomains can be
selected from the region of low memory in the memory map. This strategy often guarantees a
faster CPU time than the standard method. The concept of memory map is new and first

introduced here.

In the following, we first review the standard FD approach to solve a global domain problem.
We then describes the basic idea of the hierarchical domain decomposition (HDD) and its
parallel implementation. Then we describe the two modifications which help speeding up the
HDD method on a serial calculation. Validations and numerical examples are given next
along with the discussion. Conclusion are given at the end. Hereafter, we will refer to the
standard finite difference for a global domain as FD2D, and to our modified hierarchical

domain decomposition as MHDD2D.

2. Magnetotelluric forward modeling : Finite difference approach

Given an electrical conductivity (o) or resistivity (p) model, to yield MT responses at the

surface, the electric fields (E) are computed from the second order Maxwell's equation,

VxVxE =iouckE, (1a)

for the transverse electric field (TE) mode, while the magnetic fields (H) are solved from,

VxpVxH=liouH, (1b)



for the transverse magnetic field (TM) mode, where @ is an angular frequency and u the

magnetic permeability. With finite difference approach, the conductivity or resistivity model
is first discretized into many rectangular grids. An example of non-uniform grid
discretization is shown in Figure 1. The unknown electric fields or magnetic fields are
defined on the nodes (black dots) inside the domain, while the fields on the boundaries (left,
right, top and bottom) are obtained from 1-D calculations. After applying finite difference to

(1a) or (1b) and rearranging equation, both modes yield similar system of equations,

Ax=D, )

where x represents the unknown internal electric or magnetic fields; b a vector containing the
term associated with the boundary fields; and A a coefficient matrix which is large sparse
five-banded symmetric and complex only on the diagonal (Siripunvaraporn and Egbert,
2000). Equation (2) for 2-D problem can be solved either directly or iteratively such as
preconditioned conjugate gradient (PCG) method (Siripunvaraporn and Egbert, 2000). One of
our aims is to demonstrate the use a direct solver for 3-D problem. An LU-factorization is
therefore applied here to solve all systems of equations from FD2D and MHDD2D.

After calculating the electric fields, the magnetic fields can be calculated from solving the
first order Maxwell's equation, the Faraday's law. MT responses are then computed from the

ratio of electric to magnetic fields at the surface.

3. Hierarchical Domain Decomposition method

An alternative method to solve (2) is via the domain decomposition method. There are many
different domain decomposition techniques. Here, we applied the hierarchical domain
decomposition (HDD) method which is a non-overlapping technique to our 2-D MT
problems. We start this section by describing the basic idea of the HDD method.



In every domain decomposition techniques, the model domain is split into several smaller
subdomains. For simplicity, example mesh in Figure 1 is redrawn as in Figure 2 with uniform
space, and is uniformly partitioned into 3 x 4 subdomains only as an illustration. The
unknown electric or magnetic fields located at the nodes can be classified into three
“hierarchical” types: (1) the interiors (e), (2) the interfaces (®and A) and (3) the
intersections (X) from lowest to highest level, as shown in Figure 2. The intersections are
defined as the highest level because they separate the interfaces. Similarly, the interfaces
separate the interiors, so they are defined the next lower level.The interiors are therefore the
lowest. With this configuration, the intersections must be solved first. Once the intersections
are obtained, the interfaces can be successively calculated from the intersections. Similarly,
the interiors can be successively computed from the interfaces. This hierarchical
classification is slightly different from the “classic” Schur complement method (see Smith et
al., 1996; Saad, 2003; Zhang, 2005; ). In Schur complement method, the unknown fields are
classified only the interiors and the interfaces.

For 2-D MT problem, assuming that the model domain is equally divided intop x q (=)
subdomains where p and q are number of subdomains in z- and y- directions, respectively,
and r is the total number of subdomains. These partitions will yield a total of | interiors (or I/r
for each subdomain), total of m interfaces and n intersections. Specifically, an inner
subdomain i which has I x l;; ( = I/r) interiors would have 2l + 2ly; interfaces, and 4
intersections, while outer or boundary subdomains would have less depending on their
locations. By using Figure 1 and Figure 2 as an example, the model in Figure 1 is discretized
into 12 x 20 grids, which is later decomposed into 3 x 4 (=12) subdomains. In this example,
there would be a total of 209 unknowns inside a global domain. When partitioning into 3 x 4
subdomains, an inner subdomain would then have 12 interiors, 14 interfaces and 4
intersections. The total numbers of interiors, interfaces and intersections are 144, 59 and 6,

respectively.

By organizing the unknowns into three levels, the system of equations (2) can be reordered

according to this configuration as follows,

F D O0)\u f
D' G E|vi|=lg]| , 3)
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where F, G and H are | x | global interior coefficient matrix, m x m global interface
coefficient matrix, and n x n intersection coefficient matrices, respectively. Global interior
matrix F composes of many smaller I/r x I/r local interior sub-matrix F; where i =1 to r. Each
Fi corresponds to a coupling within the interior elements inside the i subdomain. Global
interface matrix G gathers all coefficients corresponding to an interaction between the
interface elements, while H is diagonal matrix associating with the intersection elements. The
inter-coupling coefficients between the interiors and interfaces are given in D with a
dimension of | x m, and between the interfaces and intersections are given in E with a
dimension of m x n. There is no coupling between the interiors and the intersections in our 2-
D MT case as shown in Figure 2. Vectors f, g and h are domain boundary fields associated
with the interiors (u), interfaces (v) and intersections (w), respectively. Figure 2 shows that
there are no boundary fields that belong to the intersections. Therefore, h = 0 in our 2-D
problems.

According to the hierarchical domain decomposition technique, equation (3) can be
decomposed into two reduced systems: the interior-interface reduced system and the
interface-intersection reduced system. The interior-interface reduced system is derived from
the coupling between the interiors and interfaces,

(DF 2}@ ) [g -fEWj’ )

while the interface-intersection reduced system is from the coupling between the interfaces

and intersections,
S E\v g'
= , 5
EMEY ®

where the interface Schur complement matrix S=G-D'F'D and g'=g-D'F'f . The

unknowns are then successively solved from the highest to the lowest level. The intersections

w are solved first from



Hw=h, ®)

where the intersection Schur complement matrix H' = H-ETS'lE, and its right-hand side

h'=h-E'S"g". Once solving the intersections, the interfaces v and the interiors u can then

be consecutively solved from

Sv=g'-Ew, (7
and

Fu, =f -Dv. (8)

Algorithm of the standard HDD method can be summarized below after decomposing the

global domain into several subdomains.

1. Form F;, f;, Dj and factorize F; of each subdomain.

2. Compute DF*D,and D;F'f, of each subdomain.
3. Form G, g,H, hand E.

4. Construct S=G-XD/F'D, and g'=g-XD]F'f,.
5. Factorize S.

6. Build H'=H-E'S'Eand h'=h-E'S"g".

7. Solve H'w =h".

8. Solve Sv=g'-Ew.

9. Solve Fu, =f,-D,v.

10. Merge u;, v and w as a solution for the system of equations (2).
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The intersection Schur complement matrix H' (step 7) is dense, but its dimension, n x n, is
relatively small and therefore would not require a lot of computations. Similarly, the classical
Schur method has a similar dense matrix but with a dimension equal to numbers of interfaces
and intersections, i.e. m+n x m+n. Thus, the hierarchical domain decomposition method
yields a significant smaller dense matrix. The interface Schur complement matrix S, in the
hierarchical case, is not dense but sparse matrix. Example of its sparse pattern is shown in

Figure 3a) from subdomains of Figure 2.

All equations including equation (6), (7) and (8) are solved with a direct method (here, an

LU-factorization). To construct S=G-D'F'D and H'=H-E'S'E in step 4 and 6, after
factorizations, F and S systems are solved with a series of different right hand sides: D and
ET for m times and n times, respectively. Solving each system just one time requires
relatively small amount of computational resources, both memory and CPU time. However,
as showing in the algorithm above, both systems are solved several times. Computational
time for numerous solving (step 2, 4 and 6) plus factorizations (step 1, 5 and 7) can be more
than just solving one large global system (equation 2) on a serial machine. This statement is
correctly confirmed in Xiong (1999) and also in our MT numerical experiments in the next
section. Once all main matrices are obtained; equation (6) and (7) is solved just one to obtain
w and v in step 7 and 8, respectively. Equation (8) is then consecutively solved to obtain the
interiors u within each subdomain in step 9. If each subdomain is equally discretized, this is

equivalent as solving equation (8) r times.

Because domain decomposition is not highly efficient on a serial machine, another way of
using domain decomposition on a serial computation is to modify the hierarchical matrix (3)
and used it as a preconditioner when solving the system with the iterative solvers (e.g.,
Bitzarakis et al., 1997; Larsson, 1999; Benedetti et al., 2009; Grasedyck et al., 2009).

3.1 Parallel Implementation of HDD
Most parallel domain decomposition algorithms distribute computations of each subdomain
to each processor (see examples in Xiong, 1999; Zyserman et al., 1999; and Zyserman and

Santos, 2000). In this parallel scheme, step 1, 2 and 9 of each subdomain are performed
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separately on each processor. After calculations, all results are sent to the master node. The
bottleneck of this parallelization occurs from step 3 to 8. The most difficult parts for

parallelization are to factorize S in step 5, to construct H'=H-E'S'Eand h'=h-E'S"g" in
step 6 and to solve Sv =g'-Ew in step 8. Once distributing S to all processors, this process

requires a lot of communication time among processors when factorizing and solving system
of equations. Efficiency of this parallel scheme would depend significantly on the parallel
algorithms which also depend on computer architectures (see Lu and Shen, 1997; Kocak and
Akay, 2001). Many massive parallel manufacturers have provided their own efficient parallel
algorithms to solve system of equations. These algorithms show best performance only on

their own platforms.

However, this conventional parallel scheme could be a problem for PC cluster platform or
distributed memory systems. Efficiency would be relatively low if switch or hub used to
communicate among processors is slow regardless of how efficient the algorithm is. Parallel
implementation is not the purposes of our paper as previously described. We therefore opt not
to show the numerical experiments of HDD on parallel systems. Experiments with 3-D MT

problems would be an interesting research to pursue which is beyond our scope here.

4. Modified hierarchical domain decomposition method

Earlier numerical experiments on single processor machine show that a straightforward
application of the HDD method to the 2-D MT problems requires less memory storage than
standard method. However, its computational time becomes longer. In order to make the
hierarchical domain decomposition method more efficient on a serial machine for our 2-D
MT problem, two modifications are necessary. First, the separation of the interfaces into
vertical and horizontal interfaces will break the larger interface system into two smaller
vertical and horizontal interface systems which would lead to a memory reduction. Second,
the red-black ordering technique is applied inside the horizontal and vertical interface
systems to further help decreasing the computational time.

Taking advantage of the rectangular discretization of the FD approximation, the interfaces
can be further classified into two types: the horizontal interfaces (® in Figure 2) and the

12



vertical interfaces (A in Figure 2). Number of interfaces (m) is then divided into number of
horizontal interfaces (my) and number of vertical interfaces (my) where m = my + m,. The

system of equations (3) can then be reassembled as follows,

0
Di Gu 0 Ey|lVviy|_|0u] . ©)
Dy 0 Gy Ey vy 9y
0 E, EI HJlw) Ln

I

<

where yand y represent horizontal and vertical interfaces, respectively. The main difference
from the original hierarchical domain decomposition would be at the separation of G matrix
into Gy and Gy, where Gy gathers all coefficients corresponding to a coupling between the
horizontal interfaces, and similarly for Gy corresponding to a coupling between the vertical
interfaces. With new classification, both vertical interfaces (vyv) and horizontal interfaces (Vi)
are situated in the middle level between the intersection (w) and the interior (u) which are the
highest and lowest, respectively. The interior-interface and interface-intersection reduced

systems in equation (4) and (5) become

F D, D) u f
Dl Gy 0 [lvy|=|0gy-Esw : (10)
D, 0 G,)\v,) \g,-E,w

and

SHH SHV EH VH g'H
SVH SW EV VV = g \Y%
El. El H)lw h

, (11)

respectively. Here, the interface Schur complement matrix S is decomposed into Syu, Shv,

Svn and Syy as follow,
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Example of the sparsity pattern of the modified Schur interface (12) is shown in Figure 3b) to
be compared with the original Schur interface matrix S (Figure 3a). Similar to the original
hierarchical domain decomposition, the unknown fields are successively solved from the

highest level to the lowest level. The intersections w will be solved first from

H'w=h', (14)

Su Swv ) (E . . :
where, H'=H -(ET EJ) AR H and its  right-hand  side
: v SVH SVV EV ’

S Sy ) (0 . : , :
HH HVJ (gH]. After solving the intersections w, the vertical
SVH SVV

gv

h'=h-(E/, E\T,)(

interfaces vy and the horizontal interfaces vy can be split and solved separately as,

Sw -SVHS-I-1|HSHV)VV =gy -Ey\w -SVHS-I-1|H @'y -Eqw), (15)
and,

StnVh =0 -EqW =S vy (16)

Dimension of Syy and Syy from (15) and (16) are my x my and m, x my , respectively, which
are smaller than m x m S matrix of (7). They are therefore faster to solve and less memory

storage. This is one clear advantage of classifying the interfaces into the horizontal and
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vertical interfaces. After obtaining w and v, the interiors u can then be consecutively solved

from

Fu, =f -D,V, -Dy,V, . (7)

To further increase the efficiency of our modified scheme, red-black coloring technique (See
Press et al., 1992 and Saad, 2003) is applied to (15) and (16) to help reducing the
computational time. Under the red-black ordering, the unknowns inside of Syy and Sy are
classified into red and black unknowns. The idea of Schur complement is again applied to
this coloring system of the interfaces. The reduced systems are then derived and recursively
solved to the red and to the black systems. This modification demonstrates the application of
Schur domain decomposition inside the hierarchical domain decomposition (see Rung-
Arunwan, 2010 for further detail).

With both modifications, the modified hierarchical domain decomposition (MHDD2D) can
outperform the FD2D code even running on a serial computational machine as showing in the

next section.

5. Numerical Experiments

In this section, we first validate that the responses from our modified hierarchical domain
decomposition method (MHDD2D) are as accurate as those from FD2D. Next, computational
costs on a single processor are measured with different combinations of subdomains. A
memory map is then introduced as a strategy to select an “optimized” number of subdomain
where computational costs are minimized (i.e., relatively faster or at least equivalently to

FD2D, but with a fraction of memory).
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5.1 Validation Tests

To validate the MHDD2D approach, we show the apparent resistivities and phases of both
TM and TE modes at three frequencies calculated from the model shown in Figure 1. The
calculated responses from our MHDD2D approach are directly compared to those obtained
from FD2D as in section 2. In this test, the model and air of Figure 1 is non-uniformly
discretized into 80 x 240 grids in z- and y-direction, respectively. For FD2D method, the
unknown to be solved is 18,881. For MHDD2D, the model domain is uniformly split into 4 x
8 (z- and y- direction, respectively) subdomains. With this 4 x 8 subdomains, the 18,881
unknowns will be divided into 551 interiors for each subdomain (or a total of 17,632
interiors), 696 horizontal interfaces and 532 vertical interfaces, and 21 intersections. Total
memory requirement of MHDD2D is about 21.7 Mbytes, which is approximately one-third of
FD2D (about 71.09 Mbytes). Memory estimation will be discussed in subsection 5.2.1.

Figure 4 shows that the calculated responses from both FD2D and MHDD2D are perfectly
identical on both modes. Their difference is in the round-off level which is insignificant. This
is expected since both methods solve the same system of equation, except that the MHDD2D
method splits the computational domain into many smaller subdomains, and then solves
smaller systems. In addition, we have performed validation tests on various synthetic models
and real model (see inverted model from real data in Siripunvaraporn and Egbert, 2000) with
several combinations of subdomains. All validation tests show that there is no difference
from both methods (Rung-Arunwan, 2010). These have validated our MHDD2D method for
both TM and TE modes.

5.2 Comparisons of Computational Efficiency

Next, to prove the efficiency of our modified domain decomposition scheme, we ran the code
on several synthetic 2-D models and also real “inverted” model (from Siripunvaraporn and
Egbert, 2000) for both TM and TE modes. Because a direct method (LU-factorization) is
used to solve all systems of equations, computational time and memory requirements are no
difference among different models, modes (TM or TE) and frequency if domain size is the
same. Model of Figure 1 is therefore used as a representative to demonstrate the effectiveness
of our code.
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Model and air of Figure 1 is discretized into three size meshes: 40 x 120 (small), 80 x 240
(medium) and 120 x 360 (large). These three meshes are then uniformly subdivided into p x
g subdomains, where p and g are numbers of subdomains in z-dir and y-dir, respectively,
starting from 2. Estimated memory usage and actual calculation time for each combination of
subdomains for each mesh are compared with those from FD2D. Comparison results are
plotted and shown in Figure 5 for 40 x 120 mesh, Figure 6 for 80 x 240 mesh and Figure 7
for 120 x 360 mesh. Relative CPU time and memory (both in percents) are calculated from
(timemuppzp-timerpzp)*100/timerpap and (Mmemmupp2n-MeMep2p)*100/memep2p,
respectively. Positive relative time and relative memory indicate that MHDD2D is less
efficiency than FD2D and therefore spend more calculation time and require more memory,
while negative reflects the opposite, i.e. MHDD2D is more efficient. Actual memory usage of
FD2D are 8.77 Mbytes, 71.09 Mbytes and 240.97 Mbytes for small, medium and large,
respectively, while actual CPU time on an Intel Core Two Duo 6400, 2.13 GHz machine are
0.08 second, 1.12 second and 4.16 second, respectively. Actual CPU time and memory used
of MHDD2D can thus be inferred from these actual values of FD2D and the maps shown in

Figure 5, 6 and 7, respectively.

5.2.1 “Memory Map” and Memory Comparison

Total memory usage of MHDD2D can be calculated from numbers of subdomains in z-dir (p)
and y-dir (q), number of interiors (I/r) for each subdomain, numbers of horizontal interfaces
(mp) and vertical interfaces (m,) and number of intersections (n). However, it is quite
complicated to express in a simple formula. It is therefore pre-estimated from the allocated
variables inside the code to produce the “memory map” before running the actual code.
Memory map displays minimum memory used for different combinations of subdomains as
shown in Figure 5a, 6a and 7a. The concept of memory map is very useful and will be

demonstrated in later subsection.

In contrast to MHDD?2D, total memory usage for FD2D can be easily estimated from (N,-

1)(N;-1)(8N,+1)*16 where Ny and N, is grid discretization in y-dir and z-dir, respectively.
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Multiplication with 16 is required because complex double precision is used. Because a large
global matrix (equation 2) of FD2D is broken into many smaller sub-matrices (equation 9) for
MHDD2D, memory requirement for different combinations of subdomains should therefore
be less than that of FD2D. This is evidently shown in Figure 5a, 6a and 7a, where negative
percentage is all over the map indicating less memory requirement of MHDD2D. However,

total memory usage varies according to numbers of subdomains used in both directions.

From all three figures, there are two cases where memory usage is relatively large (but still
less than FD2D). First case is when the domain is divided into “large” numbers of
subdomains. When number of subdomains become large (e.g., 20 x 30 subdomains in Figure
7a), number of interiors per subdomain is small (see Table 1), but total number of interfaces
are high (Table 1). More memory is therefore required to store and solve those interface
coefficient matrices (Gu, Gv, Sun, Shv, Svn and Syy in 10 and 11). Although intersections
(H) also increase, it would not significantly affect. In contrast, when small number of
subdomains used (e.g., 3 x 3 subdomains in Figure 7a), total numbers of interfaces in both
directions are small (see Table 1), but number of interiors per subdomain becomes very high
(Table 1). Large number of interiors causes matrix F; (equation 10) of each subdomain to
require more memory to store and solve the system of equations (equation 13 and 17). Note
that we use LU decomposition to solve all systems of equations. Some “extra” memory is
therefore required to fill the empty band of the sparse matrix. This extra memory has already

been accounted for in Figure 5a, 6a and 7a.

5.2.2 Comparisons of CPU time

Calculation time cannot be pre-estimated as the memory usage, it can only be obtained from
running the actual code on the computer. Relative CPU time from small, middle and large
meshes are shown in Figure 5b, 6b and 7b, respectively, from different combinations of
subdomains. They are obtained from running on a single processor machine; here, an Intel
Core Two Duo 6400, 2.13 GHz machine. Different machines or architectures may result

differently. However, patterns of relative CPU time should remain approximately the same.
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For small 40 x 120 mesh, relative CPU time of MHDD?2D is at least 30% more than that of
FD2D in every combination of subdomains (Figure 5b). Although a larger system of
equations (equation 2) is broken into many smaller systems (equation 9), successively solving
a series of these smaller systems (see equation 4-6, and 10-17) can outperform solving a
global system of FD2D. This reflects in larger CPU time as shown with all positive in Figure
5b. Although there is no benefit of MHDD2D for smaller 40 x 120 meshes in term of CPU
time, better efficiency can be gained up to 20% from larger meshes as shown with negative
zones in Figure 6b for 80 x 240 mesh and in Figure 7b for 120 x 360 mesh. This shows that
when grid discretization becomes large, MHDD2D will become more effective, even with a
serial computation. This conclusion is significant, especially for future implementing the idea
of MHDD2D to 3-D cases. In 3-D, the discretization mesh would be clearly a lot larger than

what we used in 2-D case.

5.3 Optimized Number of Subdomains : Pre-Selection

Figure 5a, 6a and 7a show that there are regions where memory requirement is “minimum”.
The minimized memory zones have the centers at 5 x 6 subdomains for 40 x 120 mesh
(Figure 5a), at 8 x 8 subdomains for 80 x 240 mesh (Figure 6a) and at 10 x 9 subdomains for
120 x 360 mesh (Figure 7a). The interiors, horizontal interfaces, vertical interfaces and

intersections for these three subdomains are given in Table 2.

By matching Figure 5a, 6a and 7a to Figure 5b, 6b and 7b, respectively, we found that the
minimized memory zones are coincidently occurred almost the same regions as the
minimized CPU time zone. Both areas will be referred to as the “optimized” regions, because
both memory and CPU time are least used. In this “optimized” regions, numbers of interiors,
horizontal interfaces, vertical interfaces and intersections are properly justified or balancing
(as shown in Table 2), so that solving and storing Fi, Gn, Gy, Shn and Syyv and H matrices
are relatively fast and less memory requirement. Larger or smaller number of subdomains
would cause an unbalance to these numbers. Larger number of subdomains would increase
the interface sizes, while smaller number of subdomains would increase the interior size.
Both cases would produce a large matrix, which would dominate both calculation time and

memory usage.
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The agreement between the optimized CPU time and memory usage has lead to the idea of
subdomain selection. Usually, choosing number of subdomains that yields least CPU time
and smallest memory requirement would be a trial and error strategy. Here, we propose to
select the “optimized” subdomains from the memory map, shown in Figure 5a, 6a and 7a.
Because memory usage can be pre-estimated from the variable allocations inside the code,
this number can be printed out and plotted in a map from different combinations of
subdomains. The optimized subdomains can therefore be chosen from the region of “least”
memory requirement. There would be a higher chance that CPU time performance of
MHDD2D would be better than FD2D if choosing subdomains from this region. When
implementing MHDD2D to 3-D case, similar technique can be used to avoid trial and error

selections.

5.4 Comparison of modified and non-modified hierarchical domain decomposition

methods

For the original hierarchical domain decomposition technique, memory requirements for F
and H matrices in (4) and (5) are identical to those in (10) and (11) for our modified
hierarchical domain decomposition. However, interface matrices, G and S in (4) and (5)
(Figure 3a), depends on the sum of horizontal interfaces and vertical interfaces (m = my + m,).
These matrices are therefore larger than Gy , Gy, Sun and Syy in (10) and (11) (Figure 3b)
for the modified scheme around 20-50% depending on the number of subdomains (r).
Memory requirement for non-modified hierarchical domain decomposition would therefore

up to 50% more than the modified case from our 2-D study, but it is still less than FD2D.

In term of computational time, the standard hierarchical domain decomposition would require
about the same CPU time to solve F; and H systems of equations. However, our 2-D study
reveal that for the interface parts, larger G and S in (4) and (5) of the non-modified code
requires solving time slightly more or less than solving smaller Gy, Gy, Sun and Syy in (10)
and (11) of the modified code. Not much can be gained in terms of CPU time in this part, but
a lot more in terms of memory. However, by reducing the larger G into Gy and Gy (from
Figure 3a to 3b), red-black ordering can be easily applied for solving Gy and Gy, but not
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directly to G in (4). With the red-black ordering, about 10-50% depending on a combination
of subdomains can be gained comparing to the original HDD method for the 2-D case. Red-
black ordering can be easily implementing in 3-D case as well, this would help further

decreasing the computational time.

6. Conclusions

We have demonstrated the efficiency of the MHDD2D code for 2-D MT forward modeling.
MHDD2D is a modified version of the hierarchical domain decomposition method. The
original scheme begins by dividing a global computational domain into several subdomains.
Then, the unknown nodes are classified into three different kinds: interiors, interfaces and
intersections. A global system of equations is re-organized according to these configurations
producing three sets of smaller systems of equations. The intersection reduced system of
equations is solved first to obtain the intersections. The calculated intersections are then used
in the right hand-side of the interface systems of equations to compute the interfaces.
Similarly, the calculated interfaces are input in the interior systems of equations to compute

the interiors inside each subdomain.

Normally, HDD is applied on a parallel system. Efficiency of the HDD method on a serial
machine is very low comparing to the conventional method. To enhance the efficiency of the
hierarchical method on single processor computer, the interfaces of the standard hierarchical
domain decomposition method is further separated into horizontal interfaces and vertical
interfaces by taking an advantage of the rectangular discretization of the finite difference. Our
modified version will then have four sets of smaller systems of equations, instead of three as
in the original version. The division of the interfaces into horizontal and vertical interfaces
helps substantially decreasing the size of memory usage. However, it does little help in
computing time. Red-black coloring is then applied to substantially reduce the computational

time of the code.

By running MHDD2D with several combinations of subdomains on single processor

machine, the optimized subdomains can be selected from the memory map generated prior
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the run. Dividing the global domain with the optimized subdomains, MHDD2D can run up to
20-30% faster and require up to 70% less memory than FD2D on sing processor machine.
This conclusion is very crucial. It indicates that the same hierarchical domain decomposition
algorithm can be extended and applied to 3-D problem. By applying modified HDD method
to 3-D case, 3-D forward problem can now be solved with a direct method, even on standard
single processor PC. With the direct solver, its factorized matrices can be re-used several
times with different right-hand sides. This will help speeding up the sensitivity calculation in
the 3-D inversion process. Most importantly for a direct solver, computational time is
controllable and independent of frequencies, modes and resistivities, as long as the domain

size remains the same.
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Figure 1. Model used to test the efficiency and accuracy of the modified hierarchical domain
decomposition method. The model consists of two resistivity contrast blocks buried in a 100
Q-—m half-space. The left and right blocks are 10 Q—m and 1,000 Q—m, respectively.
This model is discretized into three finite difference meshes: 40 x 120, 80 x 240 and 120 x
360 and are used in the numerical experiment section. Discretization shown in this figure is

merely an example to illustrate that the unknown fields are defined on the nodes (black dots).
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Figure 2. Example mesh of Figure 1 is uniformly redrawn, and subdivided into 3 x 4
subdomains as an illustration here. The interiors inside each subdomain are drawn with solid
circle (®). The horizontal and vertical interfaces between subdomains are shown with solid
rectangle (®) and solid triangle (A), respectively. The intersections from four subdomains

are plotted with solid cross (%).
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b)

Figure 3. (a) Sparsity pattern of the Schur complement matrix S (equation 5) of the non-
modified hierarchical domain decomposition. (b) Sparsity pattern of the Schur
complement interface systems (Sun, Shv, Svu and Syy in equation 12) of the modified

hierarchical domain decomposition.
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differences of both responses from both methods are in the round-off level. This validates our
MHDD2D code.
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Figure 5. (a) Relative memory usage (in percent) and (b) relative CPU time (in percent) of

MHDD2D to FD2D from several combinations of subdomains running on a 40 x 120 mesh.

MHDD2D is more efficient than FD2D where larger negative percentage is presented, and
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p x q subdomains I/r (1) n mp, my m

3x3 4641 (41769) 4 714 234 948
10 x9 429 (38610) 72 3159 880 4039
20 x 30 55 (33000) 551 6270 2900 9170

Table 1. Numbers of interiors per subdomain (I/r where | is total of interiors and r = p x @),
intersections (n), horizontal interfaces (my), vertical interfaces (m,) and all interfaces (m) for

three different numbers of subdomains running on a 120 x 360 mesh (Figure 7).

Center of optimized
) I/r (1) n Mh my m
region
5 x 6 subdomains on
133 (3990) 20 456 175 631
40 x 120 mesh
8 x 8 subdomains on
261 (16704) 49 1624 504 2128
80 x 240 mesh
10 x 9 subdomains on
429 (38610) 72 3159 880 4039
120 x 360 mesh

Table 2. Numbers of interiors per subdomain (I/r where 1 is total of interiors and r = p x q),
intersections (n), horizontal interfaces (my), vertical interfaces (m,) and all interfaces (m) for 5
x 6 subdomains on 40 x 120 mesh (Figure 5), 8 x 8 subdomains on 80 x 240 mesh (Figure

6), and 10 x 9 subdomains on 120 x 360 mesh (Figure 7), respectively. These subdomains
represent the center of optimized regions.
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ABSTRACT

We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT
(Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric
inversion: data-space method. Phys. Earth Planet. Interiors 150, 3-14), including modifications to allow
inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel
implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for
different frequencies, as well as some linear algebraic computations, over multiple processors. In addition
to reducing run times, the parallelization reduces memory requirements by distributing storage of the
sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear
speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the
horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs
alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate
host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion
had little impact on the inverse solution computed with impedances alone. However, in experiments with
real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances
alone, differed in important ways, suggesting that for structures with more realistic levels of complexity

the VTFs will in general provide useful additional constraints.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

WSINV3DMT (Siripunvaraporn et al., 2005) has been developed
to invert Magnetotelluric (MT) impedance tensor components for
three-dimensional (3-D) Earth conductivity. It was made freely
available to the MT research community in 2006 and has since
become one of the standard tools for 3-D inversion and interpre-
tation (e.g., Tuncer et al., 2006; Heise et al., 2008; among others).
The inversion algorithm used closely follows the two-dimensional
(2-D) data space Occam’s inversion of Siripunvaraporn and Egbert
(2000) which has also been widely used for 2-D interpretation (e.g.,
Pous et al., 2002; Oskooi and and Perdersen, 2005; Toh et al., 2006;
among others). Here we describe extensions to this code, which we
illustrate with tests on synthetic and real data.

We first briefly summarize WSINV3DMT; see Siripunvaraporn
et al. (2005) for more technical details. The algorithm used is based
on the classic Occam’s inversion introduced by Constable et al.
(1987) for the one-dimensional (1-D) MT and DC resistivity sound-
ing problems. The Occam inversion seeks a minimum structure

* Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159.
E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).

0031-9201/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.pepi.2009.01.013

model (as defined by some model norm which penalizes rough-
ness) subject to an appropriate fit to the data. The minimization is
accomplished with a modified Gauss—Newton algorithm, in which
the regularization parameter (which controls the tradeoff between
model roughness and data fit) is also used for step length control
(Parker, 1994). The main advantages of the Occam approach are
its stability and robustness, and the fact that the scheme often con-
verges to the desired misfit in arelatively small number of iterations
(e.g., Siripunvaraporn and Egbert, 2000). Occam was extended to
treat two-dimensional MT data by deGroot-Hedlin and Constable
(1990), but for multi-dimensional inversion the originally pro-
posed scheme can be computationally impractical, as the system
of normal equations is explicitly formed and solved in the model
space.

Siripunvaraporn and Egbert (2000) transformed the inverse
problem into the data space (e.g., Parker, 1994). If the number of
data (N) is small compared to the number of model parameters (M),
as will typically be the case in 3-D, the data space variant requires
a fraction of the CPU time and memory compared to a model space
scheme. This data space Occam scheme forms the basis for the
WSINV3DMT algorithm, which is summarized in Fig. 1.

The initial version of WSINV3DMT was only capable of inverting
the impedance tensor Z, the 2 x 2 complex frequency dependent
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Nomenclature

d observed data

Cy data error

mg initial and prior model

Cn model covariance

my model at k iteration

J N x M sensitivity matrix forming from my,
F[m;] forward responses of my

| % data space cross product matrix
Ry representer for k iteration

A Lagrange multiplier

Ns number of stations

Nm number of modes

Np number of periods

N number of data=Ns x Ny x Np
M number of model parameters

transfer function relating electric to magnetic fields

E| |Za Zy
Ey| | Zx Zy
The impedance tensor is frequently used by itself for 3-D conduc-
tivity imaging (e.g., Tuncer et al., 2006; Heise et al., 2008; Patro
and Egbert, 2008). However, modern MT field practice typically
includes measurement of vertical magnetic fields (particularly at

long periods, where a tri-axial magnetometer is used), and thence
computation of vertical field transfer functions (VTFs)

Hy

Hy | (1)

Hy = [T Ty {Z;] . (2)

The vertical magnetic field is only produced when there are lat-
eral or horizontal variations of conductivity. Researchers have often
used VTFs in the form of induction vectors (Parkinson, 1959) to
indicate or point to the source of conductivity anomalies and to
establish or verify geoelectic strike directions (e.g., Bedrosian et
al.,, 2004; Uyeshima et al., 2005; Tuncer et al., 2006). A num-
ber of 2-D inversion codes (e.g., REBOCC of Siripunvaraporn and
Egbert, 2000; and NLCG of Rodi and Mackie, 2001) allow inversion
of VTFs (or “Tipper”), and these are often included along with TE
and TM impedances in 2-D interpretations of MT profile data (e.g.,
Wannamaker et al., 1989; Wannamaer et al., 2008). Berdichevsky
et al. (2003) studied VTFs using analytical and modeling studies,
and concluded that inclusion of these additional induction transfer
functions can substantially improve the reliability of geoelectrical
models, because they are not affected as strongly by local distortion
as the impedance tensor is.

Here, we describe the implementation of VTF inversion for the
WSINV3DMT inversion code, and apply this to inversion of real and
synthetic datasets. In addition, we describe implementation of a
parallel version of WSINV3DMT, using MPI and parallelizing over
frequencies to help reduce program execution times, which can
be quite long for realistic modern datasets (e.g., Patro and Egbert,
2008).

The paper is organized as follows. First, we summarize the mod-
ifications to WSINV3D, for the most part omitting technical details.
Next, we illustrate and test the new features on the same syn-
thetic datasets previously used in Siripunvaraporn et al. (2005).
Here we illustrate the speedup obtained with the parallelization,
and explore the effectiveness of VTF data for recovering conduc-
tivity structures, alone, and in conjunction with impedance data.
We then test the VTF inversion on the EXTECH dataset (Tuncer et
al., 2006), comparing inverted models from only VTF data, from

only impedance data, and from a joint inversion of both data
types.

2. Implementation of WSINV3DMT to include the vertical
magnetic transfer function

There are only two major modifications to the WSINV3DMT
codes required to allow inversion of VTFs: adding the VTF com-
putation to the forward modeling routine, and the corresponding
modifications for the sensitivities of the real and imaginary parts
of the VTFs.

In WSINV3DMT, the electric fields are calculated by solving the
second order Maxwell’s equation using a staggered grid finite dif-
ference numerical scheme (Siripunvaraporn et al., 2002). Magnetic
field components can then be computed (on grid cell faces) from
Faraday’s law v x E=iwuH, and interpolated to the observation
locations, which in the modified version of WSINV3D can be at any
location on the surface. In order to compute the impedance tensor Z
the forward equations are solved for two polarizations, and Z is cal-
culated from the combination of horizontal electric and magnetic
fields from both polarizations, as described in Siripunvaraporn et
al. (2005).

The only modification required for the VTF is that the vertical
magnetic field must also be computed at the observation location.
As for the horizontal magnetic components, this is accomplished
using Faraday’s law, taking the curl of the horizontal E compo-
nents on the model air-Earth interface, and interpolating the result
(defined at cell centers) to the observation locations. Then, similarly
to the impedance tensor, the vertical and horizontal magnetic fields
computed from the solutions for both polarizations are combined
to form the vertical magnetic field transfer function T,

(3)

1 2
[H; H?] _ [TZX sz] |:Hx HX]

1 2
HJ’ Hy

Here H} and H? are the z-component of magnetic fields for the
Ex-H, and E,-Hy polarizations, respectively, and similarly for other
field components. For a joint inversion with impedance tensor,
computing the vertical magnetic transfer function does not require
any extra forward modeling calls, as all transfer functions are com-
puted from the same solutions.

The sensitivity calculation for VTFs is essentially identical to that
used for impedances, which is based on the reciprocity approach
described in Rodi (1976), Newman and Alumbaugh (2000), and
Siripunvaraporn et al. (2005). Briefly, the linearized data functional,
which is represented by linear combinations of electric field solu-
tion components on cell edges surrounding the observation point, is
used to force the adjoint equation, and the result is mapped to per-
turbations in the model parameter, as described in Siripunvaraporn
etal.(2005). Only the first step requires modification, with the coef-
ficients for the linearized functionals for T,x and T, replacing those
for Zyx and Zy. Details of this modification are straightforward, and
are omitted here.

3. Parallel implementation with MPI

A major challenge in using WSINV3DMT, or for that matter,
any 3-D MT inversion code, is that the program is very time
consuming, especially when run with the sort of large dataset
(and model domain) that justifies a 3-D interpretation. Run times
exceeding a full month (on a single processor desktop computer,
for the full inversion process, including multiple iterations of the
outer loop of Fig. 1) have been reported when WSINV3D has
been applied to even modest 3-D MT datasets (e.g., Patro and
Egbert, 2008). These long run times primarily reflect the need
for many forward modeling calls, each of which requires iterative
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Fig. 1. Pseudo-code for serial WSINV3DMT (after Siripunvaraporn and Egbert, 2007).

solution of the large sparse linear system arising from discretization
of Maxwell’s equations. WSINV3D was developed as a serial code,
to run on a single processor. An obvious way to speed up execution
is to parallelize the code, and make use of the multiple processors
which are increasingly common even in desktop computers.

There are several ways to redesign the codes to run on parallel
system, and the most appropriate approach will depend on system
architecture. For supercomputers or large clusters to make effective
use of hundreds of processors it would be necessary to rewrite parts
of the forward solver—e.g., parallelizing the iterative solver and
preconditioner (e.g., Newman and Alumbaugh, 2000), or domain
decomposition. Here, we consider a parallelization approach appro-
priate to small systems with a few to several tens of processors. Such
small clusters and multi-processor workstations are now read-
ily affordable and more widely available than supercomputers. To
adapt WSINV3DMT for this class of systems, we parallelize over
frequencies, adding calls to MPI (Message Passing Interface) library
routines to the existing codes. In this way, we do not have to alter
the core forward modeling and sensitivity calculation routines in
any way. The parallel algorithm is summarized in Fig. 2.

Forward modeling and sensitivity calculations for each period
are sent to one processor (Steps 2.1 and 2.2 in Fig. 2).
If there are fewer processors than periods, each processor
performs calculations for more than one period. With this
simple parallelization, which requires minimal inter-processor
communication, the computational time should be theoretically
reduced by a factor P, the number of processors available. This paral-
lel implementation also distributes storage of the sensitivity matrix
over the available nodes. The N x M sensitivity matrix J requires
8NM bytes (in double precision), and the need to store this in RAM
limits the size of datasets and model grids that can be practically
treated. With the parallelization, memory required on each node
is reduced to about two times 8NM/P (including temporary storage

for cross product computations), allowing WSINV3D to be run for
larger models grids and datasets.

With the sensitivities distributed over processors, formation of
the cross product matrix T’ =JC;'JT also requires MPI calls. We
have implemented this in a fairly simple way, breaking I into P2
blocks to be computed on the P processors (Step 2.3 in Fig. 2).
Diagonal blocks I';; are computed on the local processor where
the corresponding block J; of the sensitivity matrix (correspond-
ing to one or more frequencies) is computed and stored. The
off-diagonal blocks (I';) can only be formed by sharing blocks of
J between nodes. Since I' is symmetric, only upper off-diagonal
blocks (j > i) need be formed. On step k blockJ;, where j = mod(i + k, P)
is sent to node i to compute I'; where this block is stored. With
this simple scheme the load is balanced and the number of steps
required is approximately (N, + 1)/2. Although computing the cross
products requires significant communication time to share sen-
sitivities between nodes, it can still significantly reduce the total
computing time required to form I' compared to single node pro-
cessing.

In the data space Occam scheme used by WSINV3D the system
of normal equations (Eq. (6) in Siripunvaraporn et al., 2005) must
be solved for a series of trial values of the regularization parameter
(about 3-7 from our experience) to find the optimal (in terms of
data misfit and model norm) model parameter update. In the serial
version of WSINV3D these dense systems are solved by Cholesky
decomposition (Step 2.4.2 in Fig. 1). Parallel Cholesky decomposi-
tion subroutines are available (e.g., Choi and Moon, 1997), but these
are generally tailored to a specific parallel architecture and are not
easily adapted. To develop code that will be portable, and reason-
ably efficient on a generic multi-processor system, we have thus
pursued a different strategy, using the easily parallelized precon-
ditioned conjugate gradient (PCG) algorithm to solve the normal
equations (Step 2.4.1.2 in Fig. 2). The major computation in the
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Fig. 2. Pseudo-code for parallel WSINV3DMT for cluster PCs system.

PCG algorithm is matrix-vector multiplication. This is readily par-
allelized by dividing the vectors and matrix into blocks, spreading
computations for individual blocks over processors, and then gath-
ering the results back to the master node. To simplify the algorithm
we have distributed the full matrix to all computational nodes.

The preconditioner, based on the diagonals of the coefficient
matrix, is also trivially parallelized. Because the coefficient matri-
ces are dense, the parallel PCG scheme may not be efficient when
N is small, since communication and other overhead may exceed
the serial computational time. For smaller N, we therefore retain
the option of solving the normal equations with a serial Cholesky
decomposition, after all blocks I';j are sent back to the parent node.
The optimal choice of solution scheme (parallel or serial) for a spe-
cific value of N will depend on the cluster architecture. We give
examples below where each approach is more efficient.

Once the new model my. is obtained, the parallelized forward
solver is called to compute the responses of each period, with the
results gathered to the parent node to compute misfits (Step 2.4.2
in Fig. 2). All steps are repeated until an acceptable misfit and norm
are achieved

4. Synthetic data examples

To illustrate the efficiency of the parallelized WSINV3D, and
the effectiveness of the VTF inversion, we first consider inver-
sion of synthetic datasets, revisiting the two synthetic examples
previously used by Siripunvaraporn et al. (2005), reproduced in
Fig. 3. The results of these tests are consistent with those obtained
for other synthetic examples. Our basic test configuration is the
two-block model (Fig. 3a) consisting of two anomalies, 1 2 m and
100 2 m located next to each other within a 10 2 m host. The spa-
tially homogeneous layer, which extends from the surface to 10 km
depth, is underlain by a 100 €2 m half space. To test the efficiency of
our parallel codes, and the VTF inversion, we generated VTF and
impedance data at 16 periods (from 0.1 to 1000s) for a total of
40 sites in a regular grid, as illustrated in Fig. 3a. Gaussian noise
(5% of the data magnitude) was added to the generated data. The
inversions for this case are performed on a 21 x 28 x 21 (+7 air lay-
ers) mesh. The second model consists of a single conductive block
(12m) buried in a 100 2 m half-space (Fig. 3b), and responses
were computed at 16 periods for 36 sites (Fig. 3b). The inversions
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Fig. 3. Two synthetic models used to test our inversion. (a) Two-block synthetic model and (b) a single conductive block model. The solid dots indicate the observation sites.
The cross-section view in the lower panel is a profile cutting across the middle of the model in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005).

for the second case are performed on a 28 x 28 x 21 (+7 air layers)
mesh.

We first demonstrate the efficiency of the parallel version of
WSINV3D, using both VTF and joint VTF/impedance datasets for
tests. We then consider the effectiveness of VTF data for recov-
ering conductivity variations, both alone, and in conjunction with
impedances.

4.1. Parallel efficiency

We tested WSINV3DMT by running on 1, 4, 8 and 16 nodes for
the first synthetic test case (Fig. 3a), with the 16 periods divided
evenly among nodes (e.g., with 4 nodes, each solves for 4 periods).
Tests were conducted on a small PC-clusters and a supercomputer
(SGI Altix 4700) at the Earthquake Research Institute, University of
Tokyo. To quantify efficiency of the parallel code, we display the
speedup, defined as S=T;/Tp, where Ty is the execution time of
the sequential WSINV3DMT algorithm and Tp is the execution time

of the parallel version, run on P processors. The idealized maxi-
mum speedup is P. However, due to computational overhead, the
need for some computations to be performed only on the mas-
ter node, and the time required to exchange information between
nodes, S will always be less than P. Fig. 4 displays speedup versus
the number of nodes. Inversions of all data (i.e., VTF +impedance,
N=40x 12 x 16=7680) are plotted with solid lines. Inversions of
the VTF only dataset (N=40 x 4 x 16=2560, or one third the size
of the joint inversion dataset) are plotted as dashed lines. We also
compare speedups achieved with the two approaches for solving
the normal equations: speedups obtained with the single proces-
sor Cholesky decomposition are plotted as solid symbols, while
those obtained with the parallel PCG algorithm are plotted as open
symbols.

For the inversion of the VTF dataset for this very small test prob-
lem, actual (wall clock) run times were about 186 min on a single
node machine, 82 min on 4 nodes, 46 min on 8 nodes and 34 min
on 16 nodes, resulting in speedups of about 2.2 for 4 nodes, 4 for 8
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Fig. 4. Speedup versus the number of processors or nodes. Solid lines are the
speedups from inversion using both VTF and impedance data (N=7680). Dashed
lines are the speedups from inversion using only VTF data (N =2560). Results for the
scheme which solves the normal equations by Cholesky decomposition on a single
node (step 2.4.1.2 of Fig. 2) are plotted with solid symbols. The corresponding results
with the parallel PCG solver (step 2.4.1.4 of Fig. 2) are plotted with open symbols.
The thin-dashed line of slope one gives the ideal perfect speedup.

nodes and 5.4 for 16 nodes. Thus, as the number of nodes increases,
the relative efficiency of additional nodes decreases. One reason for
this is that the run time of the iterative forward modeling routine
depends on the period of the data. Shorter periods typically require
alarger number of iterations for convergence, and hence longer run
times. Thus, some nodes are usually idle waiting for modeling com-
putations to complete on other nodes, before moving on to the next
step in the inversion. With fewer nodes some of the frequency-to-
frequency variations average out, resulting in better balance.

Efficiencies are somewhat lower for the larger joint
VTF/impedance dataset, when the serial Cholesky decomposi-
tion solver is used (solid line with solid square symbols of Fig. 4).
Now the speedups are about 1.8, 2.6 and 3.2 for 4, 8 and 16
nodes, respectively, almost 50% below those achieved for the VTF
only inversion. However, solving the normal equations with the
parallel PCG solver (solid line with open square symbols in Fig. 4)
significantly improves performance, increasing S to approximately
2, 4.5 and 7.3 for the three cases considered. In the VTF only
case, where N is significantly smaller, both methods for solving
the normal equations have similar performance (dashed lines in
Fig. 4), and indeed the speedup is slightly greater when the single
node Cholesky decomposition is used.

The difference between the two cases is readily understood.
Operation counts for Cholesky decomposition scale as N3 so com-
putation times for the serial Cholesky decomposition in the all
data case (N=7680) are expected to be about 27 times greater
than for the VTF only case (N=2560). Other computational steps
scale better with increasing N. For fixed model parameter size,
total operation counts for the sensitivity calculations increase lin-
early in N, and formation of the cross product matrices increases as
NZ2. Thus, as the size of the dataset increases, run times required
for the serial Cholesky decomposition step become increasingly
significant, and at large enough N this step will control the
overall runtime. Operation counts for a single iteration in the
parallel PCG scheme scale as N2, but overall runtimes will also
depend on the number of iterations required. Although this should
increase with N also, the dependence is weak, and so PCG becomes
increasingly advantageous as N increases, particularly since com-
putations for the PCG scheme can be distributed over the P
processors.

The number of iterations for PCG also depends on the relative
tolerance for the residual (=||Ax — b||/||b||) used to define conver-
gence. We find that a tolerance of 10~ results in models that are
essentially identical to those obtained with the Cholesky decompo-
sition technique. The number of iterations, and hence the run time
of the parallel PCG scheme also depends on the condition number
of the normal equations. For large values of the Lagrange multi-
plier (corresponding to a smoother model) the condition number
is smaller, and the parallel solver thus converges in a small num-
ber of iterations. In contrast, when the Lagrange multiplier is very
small (rough model) the parallel solver can require considerably
more iterations, and solution times can exceed those for the serial
Cholesky decomposition scheme. This occurred occasionally in our
tests with the larger VTF/impedance dataset, but overall perfor-
mance using the parallel PCG solver was much better when N is
large enough.

We will not attempt to quantify more precisely how large N
must be before the parallel approach to normal equation solution
would be preferred. This will depend on the cluster architec-
ture, especially on the sort of inter-processor communication
used, since the parallel PCG solver requires substantial sharing of
data.

In addition to reducing computational times, the parallel ver-
sion also reduces the need for a large amount of memory on a
single computer. Even for the small joint VTF/impedance inversion
test example, about 1.5 GBytes are required for the representer and
sensitivity matrices. In the parallel implementation, the required
memory may be distributed over all of the nodes used. For exam-
ple, with 16 nodes, each would require only 0.090 GBytes for storing
the sensitivity matrix and forming cross products, almost 13 times
less than required by the serial code. If the whole representer matrix
is stored on a single processor (for the Cholesky decomposition, or
to reduce the communication time between nodes for PCG) about
0.4 Gb are required on each node, still only a quarter required for a
serial version.

The exact time speedup and per-node memory reduction fac-
tors will depend to some extent on the problem size, both in terms
of model grid dimensions, and number of data. For larger prob-
lems, such as the real data EXTECH example considered below,
similar performance gains were attained. For these larger prob-
lems, however, a speedup by a factor of roughly 7 means a run
time that was perhaps 2-3 weeks on a single node is now reduced
to 2-3 days, making inversion of realistic datasets considerably
more practical. The practical impact of distributing memory is even
greater. Total storage required by WSINV3D for the EXTECH exam-
ple described below (joint inversion of the fullimpedance and VTFs)
is at least 30 Gb, making this impractical on almost any shared
memory machine.

4.2. Vertical magnetic transfer function inversion

We next consider the effectiveness of WSINV3DMT at correctly
recovering resistivity when only VTF data are available. Because
in practice one would not know a priori the correct background
resistivity, we run the inversion using several prior (and starting)
models. Inversion results for the synthetic VTF data from the test
case of Fig. 3a are summarized in Figs. 5 and 6. Using a 50 2 m
half-space as a prior (this is intermediate between the true 10 2 m
upper layer background, and the 100 2 m basement), inversion of
VTF data reveals both the conductive body and the adjacent resis-
tor, extending from near the surface to approximately 20 km depth.
The calculated responses generated from the inverse solution of
Fig. 5 fit the observed responses within 15% of the typical VTF
amplitude (recall that 5% random noise was added to the synthetic
data).
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Fig. 5. An inverse solution from the VTF data alone after the 9th iterations with an RMS value of 1, fitting synthetic data generated from the model in Fig. 3a. The top panels
(a)-(c)is a plan view at the surface, at 3 km and at 7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the conductive block at X=0km. The solution
is shown only in the central area around the anomalies, not for the full model domain.

Although both anomalies are detected in approximately the about 453 2 m for the resistive body, while the background resistiv-

correct location, the true resistivities of Fig. 3a are not correctly ity of the inverse model was changed only slightly from the 50 2 m
estimated. However, calculating the average resistivity over the prior. Computing the volume average resistivity ratios from left to
anomalous volumes we find for the inverse model of Fig. 5 an aver- rightin Fig. 5d, we obtain values of 7.9 (=50/6.3), 72 (=453/6.3) and 9

age resistivity of about 6.3 2 m for the conductive anomaly, and of (=453/50), compared to the actual ratios (Fig. 3a) of 10 (=10/1), 100

Fig. 6. Cross-sectional plots at X=0km (as in Fig. 5d) of the inverse solutions from VTF data alone, when the prior models are (a) 10 2 m half-space, (b) 1 2 m half-space and
(c) 100 2 m half-space.
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(=100/1) and 10 (=100/10), respectively. The inversion thus results
in roughly the correct structure, with approximately correct resis-
tivity contrasts, but it does not recover the correct amplitude of
either the background or the anomalies, or the actual depth extent
of the anomalies.

To explore this issue further we ran the inversion on the same
VTF dataset, using a range of values for the assumed half-space
prior. Fig. 6 summarizes the results with cross-sectional plots of
the inverse solutions at X=0 km. When the prior model is the same
as the correct background resistivity (i.e., a 10 2-m half-space in
our example), the inversion quickly converges to the desired misfit
within 4 iterations, even with error floors set to 5%. In this case,
the inversion estimates the resistivity, and the depth extents, of the
two anomalies quite well (Figs. 6a and 3a). However, the 100 2 m
basement resistivity (below 10 km depth in the synthetic test model
of Fig. 3a) is not recovered—the prior resistivity of 10 2 m remains
unchanged atdepthin the inverse solution. This again demonstrates
that inversion of VTF data alone can only recover lateral resistiv-
ity contrasts, and is not effective at correcting resistivities, or their
variations with depth.

Larger deviations of the prior model from the correct back-
ground result in even larger discrepancies in anomaly amplitudes
and depths, but still generally allow the horizontal structure to be
recovered. With a 1 Q2 m half-space (Fig. 6b) data is fit to within
10%. Anomalies appear at very shallow depths (upper few km), with
all features more conductive than their actual values. At greater
depth, features with appropriate resistivity ratios are imaged, but
the absolute levels are incorrectly estimated, and spurious struc-
tures appear. Using a 100 2 m half-space as a prior, the VTF data
can only be fit to within 20%. The basic structure is again recovered,
but both anomalies are at greater depth (Fig. 6¢) and have increased
resistivity. The host resistivity is estimated to be slightly lower than
the 100 2 m starting value, but is still well above the correct value

of 10 2 m. As in the other cases, the basement resistivity remains
the same as the prior model.

All of these experiments suggest that when only VTF data are
available, to achieve the target misfit and recover correct ampli-
tudes and depths, the inversion must be started with a prior model
that s close to the correct host resistivity. However, even starting far
from the correct background model, anomalies are recovered with
the correct horizontal location and dimensions. This result is not
unexpected since the vertical magnetic fields are generated where
there are lateral discontinuities, but are not inherently sensitive to
the profile of vertical conductivity structure.

In addition, resistivities of anomalous bodies scale with the
assumed prior background (Fig. 6), and resistivity contrasts (i.e.,
ratios) can be close to actual values, especially if the assumed back-
ground resistivity is not too far off. However, the VTFs provide little
intrinsic constraint on contrasts in the vertical direction, including
the location of the top or the bottom of the anomalies. The inver-
sion only gets these properties of the anomalies correct if something
close to the correct background is used (Fig. 6a).

Performing similar experiments to those summarized in Fig. 6,
but using impedance tensor data shows that these inversions are
much less sensitive to the assumed prior model. This is consistent
with the basic physics, as the ratio of electric to magnetic fields is
intrinsically related to the resistivity profile. In spite of the well-
known uncertainties in depth and absolute resistivity level that
may result from local static distortions, there is by now ample evi-
dence (e.g., Tuncer et al., 2006; Unsworth et al., 2000) that, with
proper care, MT impedances can yield reliable information about
conductivity-depth profiles. The same does not appear to be true
in practice with VTF data, although theoretical analysis of idealized
models suggests otherwise (Berdichevsky et al., 2003).

The above results suggest that VTF data will be most useful as an
adjunct to impedance data, which can provide the necessary con-

Fig. 7. Results from joint inversion of both VTF and impedance tensor data generated from the model in Fig. 3a. See caption of Fig. 4 for other details.
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Fig. 8. Cross-sectional plots at X=0km of the inverse solution from (a) fitting the vertical magnetic transfer function alone, (b) fitting the impedance tensor alone, (c) fitting

both data types. The data is generated from the synthetic model in Fig. 3b.

straint on background resistivities. As a first example, we consider
joint inversion of VTF and the impedance tensor data derived for the
synthetic model of Fig. 3a. As above we again tried a range of pri-
ori/initial models. Although in general the impedance tensor data
can adjust the resistivity background, we still had difficulties get-
ting the joint inversion to converge to the desired 5% misfit level,
especially with priori models that differ greatly from the correct
background resistivities. In this and other examples, we found that
to achieve the target misfit for both data types, it was necessary
to first fit the impedances to a half-space model, to determine a
prior model for the joint inversion. Even with this additional step,
we typically found it necessary to use increased error floors for the
VTF data (but not the impedances) to achieve a normalized RMS of
one.

Not surprisingly, a 50 2m half-space (as in Figs. 5 and 6 of
Siripunvaraporn et al.,, 2005) yields a good fit to the synthetic
impedance data for case 1. With error floors set to 15% for VTF data
and 5% for impedance tensor data, the joint inversion converged
to the target misfit in 5 iterations. In the final iteration (Fig. 7) the
two anomalies are recovered with essentially correct background
resistivities. In fact, in comparison with the inverse model obtained
from inversion of just the impedance data (Fig. 6 of Siripunvaraporn
et al., 2005), there is little difference. Clearly, the relatively simple
structures in this synthetic example are well enough constrained
already by the array of 40 MT sites that addition of the VTF data can
add little. In any event, this example demonstrates the consistency
of the two datasets, as both can be fit simultaneously with the same
inverse solution.

Other synthetic examples demonstrate the potential benefit of
joint inversion a bit more clearly. We performed three inversion
tests on the second test case, with data generated for the synthetic
model of Fig. 3b, as described above. Error floors were set at 10% and
5% for the VTF and the impedance data, respectively. Initial models
for all runs are 50 €2 m half space. The first inversion was performed
using just the VTF data, the second with just the impedance tensor,
and the last with both data types. All inversion reaches the target
misfit of 1 RMS. Fig. 8 displays cross-sectional plots at X=0km.

In all cases the conductor is recovered, although for the VTF case
the burial depth is greater than what it should be (Fig. 8a). This again

shows that the VTF data can primarily constrain the location of the
conductor in the horizontal, but not the vertical. Inversion of the
impedance tensor alone recovers the anomalous volume quite well
(Fig. 8b), but the conductivity is noticeably above the correct value
of 1 2 m (Fig. 8b). The best results are obtained by the joint inver-
sion, where the resistivity, shape, size and depth of the conductor
are close to correct. It is not clear why this example demonstrates
a benefit of including VTF data, and the other does not; possibly
different results would be obtained if the experiment was repeated
with different realizations of random noise added to the data, or if
the locations of the MT sites were perturbed, or different initial or
prior models were used. Clearly the need to satisfy additional data
constraints reduces the effects of noise in the data, and is likely
to improve the fidelity of the inverse solution. For more complex
structure the value of additional constraints provided by the VTF
inversion are even clearer, as we show next by consideration of an
example with real data.

5. Numerical experiments on real data

We applied the VTF inversion to the EXTECH dataset (Tuncer
et al,, 2006), consisting of tensor audio-magnetotelluric (AMT)
soundings for 131 stations around the McArthur River mine,
Saskatchewan, Canada. The goal in this survey was to use electro-
magnetic data to detect and map low resistivity graphite which is
indicative of unconformity-type uranium deposits. A full descrip-
tion of the survey, and an interpretation of this dataset based on 2-D
and 3-D analysis (including inversion with WSINV3D), is given in
Tuncer et al. (2006). Further efforts at 3-D interpretation are given
in and recently Farquharson and Craven (2008).

Here, we invert VTF and impedance data from 16 periods (from
8000 Hz to 5 Hz) at 131 sites (Fig. 2 of Tuncer et al.,2006), comparing
results obtained with the two sorts of responses, separately and in
combination. We use a 1000 2 m half-space as an initial and prior
model for all runs, as previous inversion of the impedance tensor
suggests that this is a reasonable average background, and should
thus produce sensible results when inverting the VTF alone. For
inversion of the VTF (T, and T,y) only, minimum error bars were set
at 15% of (|Tzx|2 + | Tzy|?)!/2. The inversion required about 8 iterations
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Fig. 9. The inverse solution at various depths from fitting the vertical magnetic transfer functions of the EXTECH dataset. The cross-symbols indicate the location of stations.

to converge to a minimum RMS of 1.2. Results for this inversion are
given in Fig. 9.

For the second run we inverted the impedance tensor alone. In
previous results using WSINV3D, reported in Tuncer et al. (2006)
only the off-diagonal components (Zx, and Zyx) of the impedance
were inverted. Here, we used all components including Zyx and Zy,

also. The minimum error bar for this run was set at 5% of |Z,2y/22;x/2|
for off-diagonal and 50% for diagonal terms. When the same error
floors were tried for off-diagonal and diagonal terms, the misfit
could not be reduced below 3 RMS. With the modified error floors,
the inversion required 4 iterations to converge to the target level of 1

RMS. The resulting model is shown in Fig. 10. The last run was a joint

Fig. 10. The inverse solution at various depths from fitting all components of the impedance tensors of the EXTECH dataset.
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Fig. 11. The inverse solution at various depths from fitting both VTF and the impedance tensors of the EXTECH dataset.

inversion of the full impedance tensor and the vertical magnetic Inverting just the impedance tensor (Fig. 10) reveals two main
transfer function, with error floors set as in the first two runs. The zones of high conductivity at 1000m depth—an elongated fea-
inversion reduced the RMS misfit to 1.3 in 5 iterations. The model ture of about 100 2 m running perpendicular to the profiles on
from the joint inversion is shown in Fig. 11. the east side of the model domain, and an area of variable (but

Fig. 12. The induction vectors at 100 Hz generated from (a) the observed VTF data, (b) the VTF inversion alone of Fig. 9, (c) the joint inversion of both impedance tensor and
VTF data of Fig. 11, and (d) the impedance tensor inversion alone of Fig. 10. Notice that the calculated induction vectors in (d) fit the observed induction vectors more poorly.
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generally higher) conductivity located in the northwest. The same
features are evident, but somewhat weaker, in the 800 m layer. Sim-
ilar features were obtained by inverting only the VTF data (Fig. 9).
However, depth resolution appears poorer, as the inversion spreads
the conductive features to shallower depths, particularly in the
north, beyond the area covered by the MT profiles. The indepen-
dent inversions of each data type confirm the lateral locations of
the conductors. However, based on our experiments with synthetic
data, the vertical position and extents of the conductive zones are
almost certainly better constrained by the impedance tensor.

Results from joint inversion (Fig. 11) show increased conductiv-
ity in the same two general areas at 1000 m depth. However, the
elongated conductor to the east now appears to be broken into seg-
ments, with patches of resistivity as low as 10 2 m, separated by
areas with resistivities of several hundred 2 m. In contrast, invert-
ing impedances alone results in a more uniform (approximately
100 2 m) continuous feature. Apparently, the VTFs cannot be fit
by such a simple uniform conductor, but rather require significant
along-strike variability (see Fig. 12). The feature to the north is also
substantially modified by inclusion of both data types. Compared
to the VTF only inversion, the depth of this feature is now clearly
localized at around 1000 m, constrained by the impedance tensor.
Inclusion of the VTF data also reduces peak conductivities in this
area, and results in more linear conductive features which strike
approximately east-west.

It is instructive to consider fits of the inverse solutions of
Figs. 9-11 to the VTF data. Real induction vectors (with the Parkin-
son convention, so that arrows point toward conductors) are plotted
in Fig. 12 for a frequency of 100 Hz, along with computed responses
for the VTF only, impedance only, and joint inversions. The induc-
tion vectors are consistent with the presence of conductive features
in the southeastern and northern parts of the array—e.g., note the
clear reversal of vectors on most lines as they cross the elongated
conductive feature at 1000 m depth (clearest in Fig. 10), and the
reversal from South to North pointing vectors in the Northern cor-
ner of the study area. However, as noted by Tuncer et al. (2006)
patterns in the observations are much more complex than can be
reproduced by simple 3-D models. The VTF only inversion repro-
duces almost all of the complexity seen in the data (Figs. 12a and
b). The joint inversion results in a smoother VTF response, and a
slightly poorer fit to the data (Fig. 12; this is consistent with the
larger error floor assumed in this case), but again, significant fea-
tures in the data are reproduced in the fitted response. In contrast,
the solution obtained from fitting the impedance tensor data alone
(Fig. 12c) fits the VTF observations considerably less well, suggest-
ing that the result from the joint inversion (Fig. 11) is more reliable
than that from the impedance tensor alone (Fig. 10). Amore detailed
interpretation of this dataset is beyond the scope of this paper. See
Tuncer et al. (2006) and Farquharson and Craven (2008) for further
interpretation and discussion of the EXTECH data, and Craven et al.
(2006) for comparison of inversion techniques using this data.

6. Conclusions

Experiments on both synthetic and real data show that invert-
ing VTFs alone can recover anomalous structures, particularly if the
prior model is close to the correct background or host value. In gen-
eral, the qualities of the inverse solution obtained from VTF data
alone are inferior to those obtained from inverting the impedance
tensor alone. Vertical magnetic fields are generated whenever lat-
eral conductivity gradients align with the normal inducing field.
Thus, VTFs are sensitive to horizontal structures, and to some extent
to resistivity contrasts, but not to depths or absolute values of
resistivity. If some constraint on host resistivity can be provided,
either a priori, or through inversion of impedances, the VTF data

can result in accurate 3-D imaging of the anomalous structures.
Joint inversion of VTFs and the impedance tensor can help con-
strain subsurface structures, as shown in both synthetic and real
data examples. In cases with very simple structures which are
already well resolved by the impedance data VTFs add little to
the inverse solution. However, with more realistic levels of com-
plexity, as exemplified by the EXTECH data, inclusion of VTF data
results in significant modifications to the inverse solution. Because
the joint inversion model fits both datasets, it is likely to be more
reliable.

One issue that deserves further investigation is the inability
of the inversion to fit synthetic VTF data to within the tolerance
implied by the noise level, which of course is well known in syn-
thetic tests. We speculate that the VTF data can only be fit perfectly
when the background resistivity is correct—implying at least a weak
sensitivity of this sort of data to the background, as the analysis of
Berdichevsky et al. (2003) in fact showed. In the case of using the
wrong background resistivity (for which the data have little sensi-
tivity) no nearby model parameters can provide a better fit, perhaps
after adjusting conductivities of the anomalous bodies to roughly
fit the VTFs, the Occam inversion is stuck in a local minimum of the
penalty functional, and cannot escape from. It would be useful to
compare other search algorithms (e.g., NLCG) to see if they suffered
from similar problems.

A significant drawback with WSINV3DMT has been the large
amount of memory required to store the sensitivity matrix, and
the extensive computational time required for forward and sensi-
tivity solutions. These drawbacks can be ameliorated by adapting
the code to run with MPI to on parallel systems. We have paral-
lelized the computations over frequencies, requiring no significant
changes to our forward modeling routine. This approach is prob-
ably most appropriate for small cluster type machines. To make
efficient use of a cluster or supercomputer with more than a few
tens of processors would require different approaches, such as
decomposing the modeling domain for the forward solver. We have
also parallelized computation of cross products, sharing rows of
the sensitivity computed on separate nodes to compute blocks
of the coefficient matrix needed for the Gauss—-Newton normal
equations. The resulting dense system of normal equations can
be solved on the master node, or using a parallel solver based
on iterative methods. The optimal choice here depends on the
size of the data space, with the iterative parallel solver only effi-
cient for large datasets. The speedup of the code on a test dataset
with 16 periods is nearly linear (with a coefficient of roughly
0.5) for up to 8 processors, but rolls over for a further increase
to 16 processors. Even so, the parallelization should make use
of the code on realistic 3-D datasets significantly more practi-
cal.
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1. Introduction

The direct current (DC) resistivity method has been used for
various applications in hydrogeological, mining, and geotechni-
cal investigations and environmental surveys (e.g., Ward, 1990;
Daily et al., 1992, 1995; Ramirez et al., 1993, 1996; LaBrecque and
Ward, 1990; among many others). The measured voltages caused
by injected current bring out information on the earth’s structure.
The inversion program is then applied to interpret the measured
voltages to obtain the Earth’s resistivity structure.

The development of DC resistivity inversions has progressed
successfully. Various techniques have been proposed for the
two-dimensional (2D) and three-dimensional (3D) DC resistivity
inversion (e.g., Pelton et al., 1978; Tripp et al., 1984; Nariida and
Vozoff, 1984; Tong and Yang, 1990; Park and Van, 1991; Ellis and
Oldenburg, 1994, Li and Oldenburg, 1994; Sasaki, 1994; Loke and
Barker, 1995; Zhang et al., 1995; Loke and Dahlin, 1997, 2002;
Tsourlos et al., 1998; Jackson et al., 2001; Pain et al., 2002; Loke
et al., 2003; Giinther et al., 2006; Pidlisecky et al., 2007; among
many others). The most direct approach is the Gauss-Newton
(GN) and its variant methods (e.g., Sasaki, 1994; Li and Oldenburg,
1994; Loke and Dahlin, 1997). Other limited memory optimiza-
tion algorithms are the Quasi-Newton (QN) method (Loke and
Barker, 1996; Loke and Dahlin, 1997, 2002; Tsourlos et al., 1998),

* Corresponding author. Tel.: +66 2 201 5764; fax: +66 2 354 7159.
E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).
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the conjugate gradient (CG) type inversion (Zhang et al., 1995)
and the non-linear conjugate gradient (NLCG) (Ellis and Oldenburg,
1994). These are the schemes that require the gradient of the func-
tion. The derivative-free methods are neural networks (El-Qady
and Ushijima, 2001) and genetic algorithms (Schwarzbach et al,,
2005).

One of the main disadvantages of the GN-type inversion is that
it requires solving a large and dense M x M system of equations,
where M is the number of model parameters. Another disadvan-
tage is the formation of the full N x M Jacobian or sensitivity matrix.
Calculation of the full Jacobian requires a numerical solution of
many forward problems. Both disadvantages, consequently, result
in extensive computing time and memory storage. For example,
in the 3D inversion, the synthetic model of a burial mound and
data used by Giinther et al. (2006) has 23,109 parameter cells
(M=23,109) which is a lot more than the number of data param-
eters (N =3439). Inverting the 23,109 x 23,109 matrix and forming
the Jacobian would require about 4-5 GBytes of RAM and many
hours of CPU time.

The problem for the 3D DC resistivity inversion is quite sim-
ilar to (though not as severe as) that for the 3D magnetotelluric
(MT) survey, where the model parameter (M) is significantly greater
than the data parameter (N). Siripunvaraporn and Egbert (2000)
and Siripunvaraporn et al. (2005) could overcome this difficulty by
transforming the model space inverse problem into the data space
problem for their 2D and 3D Magnetotelluric data, respectively.
With the transformation, the computational time and memory stor-
age are greatly reduced by a factor of several (Siripunvaraporn and
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Egbert, 2000; Siripunvaraporn et al., 2005). However, formation of
the Jacobian matrix is still a requirement.

For the limited memory optimization schemes such as QN,
the full Jacobian or sensitivity matrix and the large and dense
coefficient matrix of the system of equations are not necessar-
ily constructed. Instead, a multiplication of the Jacobian with any
vector can be calculated by solving the forward problem. These
methods therefore never require a large memory storage as in GN-
type inversions. Another advantage of QN-type inversions over the
model space GN-type is their speed. However, their stability may be
questionable (Loke and Dahlin, 2002). Though GN-type inversions
may use extensive computing time, their main advantages are sta-
bility and robustness. They require fewer iterations to converge to
the solution than limited memory methods (Loke and Dahlin, 2002;
Siripunvaraporn and Egbert, 2007).

Because of their stability, we still have confidence in GN-type
inversion techniques, especially Occam’s method as first intro-
duced by Constable et al. (1987). Siripunvaraporn and Egbert (2007)
showed that for 2D MT data, the computing time of a GN-type
inversion in the data space is actually comparable to that of the
CG or NLCG inversion. For all of these reasons, here we propose to
solve the multi-dimensional DC resistivity inverse problem using
one variant GN-technique, Occam'’s inversion. However, instead of
solving the problem in model space as others have (e.g., Constable
et al., 1987; Sasaki, 1994), we propose to solve the DC resistivity
inverse problem in data space as in Siripunvaraporn and Egbert
(2000) and Siripunvaraporn et al. (2004, 2005). In order to test the
feasibility and practicality of the data space approach for 3D DC
resistivity data, we developed the 2D DC resistivity inversion based
on the data space approach of Siripunvaraporn et al. (2005), which
will be extended to 3D in the future.

We first start the paper by briefly reviewing the basic idea of
Occam’s inversion in the usual model space formulation, and then
from a data space perspective. We then describe the implemen-
tation of the data space technique to a 2D DC resistivity data set.
Numerical experiments of both synthetic and real field data in com-
parison with the commercial software RES2DINV version 3.55 (Loke
and Barker, 1996) are shown at the end.

2. Occam’s inversion: model space approach versus data
space approach

Constable et al. (1987) introduced the Occam method for 1D
MT and Schlumberger sounding data. Since then it has become one
of the “classic” inversion techniques for various geophysical data
(e.g., deGroot-Hedlin and Constable, 1990, 2004; deGroot-Hedlin,
1995; LaBrecque et al., 1996; Siripunvaraporn and Egbert, 2000;
Huang et al., 2003; Siripunvaraporn et al., 2005; Greenhalgh et al.,
2006; among others). For more general and detailed discussions of
the Occam approach, see Constable et al. (1987), deGroot-Hedlin
and Constable (1990), Siripunvaraporn and Egbert (2000) and
Siripunvaraporn et al. (2004, 2005).

The philosophy of the Occam approach is to seek for the
“smoothest” or “minimum” structure model subject to a constraint
on the misfit (Constable et al., 1987), which can be mathemati-
cally translated into a problem of minimization of an unconstrained
functional U(m, A),

U(m, A) = (m —myg)"C;} (m — myg)
+A71((d - Flm])'C;' (d - F[m]) - X*2). (1)

Here m is a resistivity or conductivity model of dimension M, mg a
base or prior model, C; a model covariance matrix which defines
the model norm, d the observed data with dimension N, F[m] the
forward model response, C4 a data covariance matrix, X the desired

level of misfit, and A1 a Lagrange multiplier. In the 2D DC resis-
tivity case, the data d are the apparent resistivities from different
configurations. The model response F{m] is computed by solving
the DC resistivity forward problem, which we will describe later.

Instead of directly minimizing (1), Constable et al. (1987) con-
sider the penalty functional W; (m),

W;.(m) = (m — mp)"C! (m — my)

+A71{(d - Flm])'C;'(d — F[m])}. )

When A is fixed, dU/dom and oW, [dm yield the same result. There-
fore, minimizing W, with a series of A values, and choosing A for
which the smallest minimum is achieved, is equivalent to minimiz-
ing the original functional U of (1).

Because of the non-linearity of the inverse problem,
the Occam’s inversion starts with the linearization of the
response function F[m] based on the Taylor series expansion,
F[my.{ | =F[my]+]J;(my.; —my). Inserting the series expansion in
(2), and then solving for the stationary points, a series of iterative
approximate solutions is then obtained,

_ _ -1 _
my, (1) —mg = [AC' +JiCq' il JiCq' di, 3)

where d=d — Fim,| +J,(m; — mg), the subscript k denotes the iter-
ation number, and J; = (0F/om),, is the N x M sensitivity or Jacobian
matrix calculated at my. Note that the system of Eq. (3) has dimen-
sions of M x M. We therefore called this technique the “model
space” Occam’s inversion.

Parker (1994) showed that the solution to (3) for iteration k can
be transformed to

my; — mg = CJ; By ;. (4)

where 3.1 is an unknown expansion coefficient vector. The deriva-
tion of (4) from (3) is also given in Siripunvaraporn et al. (2005).
Searching for the stationary points with the transformation (4), a
series of iterative solutions is again obtained,

Bis1 = [ACa +JiCmlf] i 5)

Note that the system of Eq. (5) has dimensions N x N, rather
than M x M as in (3). Here is the main difference between (3) and
(5). Because we transform the computation from model space to
data space, we therefore called this technique after the transforma-
tion the “data space” Occam’s inversion. If all the same parameters
are used the solutions from both approaches will be identical
(Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005).
For MT data, the number of model parameters M is usually much
larger than the number of data values N. Both the calculation time
and memory are significantly decreased with the transformation
to data space (Siripunvaraporn and Egbert, 2000; Siripunvaraporn
et al., 2005). Here, we apply this method to DC resistivity data and
we expect to gain the same benefits.

The beauty of Occam’s inversion is here, which makes it different
from other regularized inverse problems. In either the model space
or data space approach, the goal is to search for the minimization
of (1). This can be performed by two stages. The first stage (Phase
[) is to bring the misfit down to the target level by varying A values
in (3) and (5) for each iteration. Once the target misfit is achieved,
Phase II keeps the misfit at the desired level and searches for the
minimum norm model by again varying A values in each iteration.
The addition of Phase II is to guarantee that the model structure
does not contain unwanted or spurious structures (Siripunvaraporn
et al., 2004, 2005).
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3. Implementations for 2D DC resistivity data

As stated earlier, the goal of this paper is to test the feasibil-
ity and practicality of the data space approach to fit general DC
resistivity data by using 2D DC resistivity data as an example. To
develop the codes, major implementations are the 2D DC resis-
tivity forward modeling and the sensitivity calculation routines.
Other parts closely followed Siripunvaraporn and Egbert (2000)
and Siripunvaraporn et al. (2005).

3.1. Two-dimensional DC resistivity forward modeling

A first and important step is to develop a 2D DC resistivity for-
ward modeling routine. A good and efficient forward modeling
routine helps make the inversion effective because it is the basis
of most processes of the inversion. There are many techniques for
solving the 2D resistivity forward problem, such as the transmis-
sion surface method (Swift, 1971; Madden, 1971; Peltonetal., 1978),
the finite difference method (Dey and Morrison, 1979; Mufti, 1976;
Mundry, 1984; Lowry et al., 1989) and the finite element method
(Coggon, 1971; Rijo, 1977; Pelton et al., 1978; Pridmore et al., 1980,
1981; Uchida and Murakami, 1990; Queralt et al., 1991).

One of the advantages of the finite difference and finite element
methods over the other methods is their well-known ability to
quickly approximate the solutions for any arbitrary and complex
structure models. Finite difference method is relatively fast com-
pared with finite element method. However, to include a general
topography, the finite element method becomes a better selection.
The DC resistivity survey is usually applied for shallow studies
in which the topography must be accounted for. Here, we there-
fore choose the finite element method for our 2D DC resistivity
problem. A brief review of our implementation is stated next. For
specific details, readers are encouraged to consult Coggon (1971),
Rijo (1977), Queralt et al. (1991), Xu et al. (2000) and Boonchaisuk
(2007).

In the 2D DC resistivity forward problem, the governing equa-
tion for the electrical potential must be transformed into Fourier
space (Pelton et al., 1978; Dey and Morrison, 1979; Uchida and
Murakami, 1990; Queralt et al., 1991) to remove the strike direction
variable, i.e., from ¢ (x, y, z) into ¢s (x, ky, z), where y is the strike
direction, ky is the wave number, and ¢ and ¢ are the electrical
potential in Cartesian coordinates and in Fourier space, respec-
tively. The finite element method, closely following Rijo (1977) and
Queraltetal.(1991),is then applied by using triangular elements for
the model discretization. However, the mixed boundary conditions
of Queralt et al. (1991) and Dey and Morrison (1979) are imposed
at all grid boundaries. These conditions help produce better solu-
tions than the classical ones (Dirichlet or Neumann) (Queralt et
al., 1991). For each k, wave number, the global system of equa-
tions K¢¢ =Fis then obtained, where Kis the discretized differential
operator, ¢¢ is the unknown potential vector in Fourier space and
F is the imposed boundary condition. The Cholesky decomposi-
tion method is later applied to solve the system of equations to
obtain ¢.

The final step for the forward modeling routine is to convert the
potential vector ¢y in Fourier space back to the potential vector ¢
in Cartesian coordinates. This process can be done by directly apply-
ing the inverse Fourier transform to the Fourier potential. However,
in order to obtain an accurate result, a direct computation would
require many Fourier potential solutions from various wave num-
bers ky (more than 10; Boonchaisuk, 2007). Thus, the number of
times required to solve the system of equations K¢g=F would be
equal to the number of wave numbers n; used. Xu et al. (2000) pro-
posed an optimization technique that requires at least four wave
numbers to generate an accurate solution. Hence we closely fol-

lowed the method of Xu et al. (2000) but slightly adapted it so that
the number of wave numbers used is around 8-10.

Once the inverse Fourier transform is performed using the solu-
tions ¢¢ from various ky, the electrical potentials at the surface can
be obtained and are then used to compute the apparent resistivities
for any array configuration. Extensive tests on simple to complex
models were conducted to guarantee the accuracy of the forward
modeling routine. By comparing the results to the analytic solu-
tions (where applicable) and to other existing codes such as the
RES2DMOD program version 2.2 (Loke and Barker, 1996), the RMS
misfit is about 1% or less. We therefore conclude that our finite
element code is accurate and comparable to other existing codes
(Boonchaisuk, 2007). Note that our codes are developed only with
MATLAB scripts.

3.2. Sensitivity calculation

The sensitivity term J;, = (OF/0m),, arises inevitably in every non-
linear inversion process. A single sensitivity value denotes the
change of the forward response with respect to a change of the
model parameter. In general, there are three ways to compute
the sensitivity for the DC resistivity (Spitzer, 1998): the perturba-
tion method, the sensitivity forward calculation and the potential
approximation. Here, to form the sensitivity matrix J, we used the
adjoint Green’s function technique described in McGillivray and
Oldenburg (1990). This technique requires a number of forward
problem calls of only nj, x N, in contrast with n;, x M when not using
the adjoint method. For a given ky, since the matrix K has already
been decomposed and stored, the system of equations can then be
quickly solved.

3.3. Model covariance

For the data space approach, the model covariance Cy, is the
same as that used in Siripunvaraporn et al. (2005). For the model
space approach, a roughening matrix similar to those of deGroot-
Hedlin and Constable (1990) was used as the inverse of the model
covariance.

4. Numerical experiments

In this section, we will investigate the efficiency of our inver-
sion codes for the 2D resistivity data. The first test is performed on
synthetic data generated from the two blocks with a contrast resis-
tivity model. Next, we test our codes from the field data collected in
our geophysical test area. Our codes are written with MATLAB and
run on a personal computer (PC: Pentium IV-3.0 GHz with 1 GB of
RAM).

4.1. Examples with synthetic data: two blocks with contrast
resistivity model

The synthetic data are generated from the two blocks with the
contrast resistivity model shown in Fig. 1. The two 12.5 x 20 m?2
blocks located next to each other are buried in the 10 Q2 m half-
space at 2.5 m from the ground surface. The left block has 100 2 m
and the right block has 1 €2 m (Fig. 1). The apparent resistivity data

Fig. 1. Two blocks with contrast resistivity model. The solid marks above the surface
indicate the measuring electrodes.
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Fig. 2. The solution models from (b) the model space and (c) the data space Occam'’s
program inverted from the synthetic Wenner array data shown in pseudosection (a).
White lines indicate the two blocks of Fig. 1.

Fig. 3. The solution models from (b) the model space and (c) the data space Occam’s
program inverted from the synthetic Dipole-Dipole array data shown in pseudosec-
tion (a). White lines indicate the two blocks of Fig. 1.

Fig.4. The solution models from (b) the model space and (c) the data space Occam’s
program inverted from the synthetic Schlumberger array data shown in pseudosec-
tion (a). White lines indicate the two blocks of Fig. 1.

sets for the Wenner, Dipole-Dipole and Schlumberger arrays are
obtained from using 31 electrodes with an electrode distance of 5 m
and a separation factor of n=1-10 for Wenner (Fig. 2a), n=1-15
for Dipole-Dipole (Fig. 3a) and n=1-14 for Schlumberger arrays
(Fig.4a). These results have N = 145 for the Wenner array, 315 for the
Dipole-Dipole array and 210 for the Schlumberger array. The finite
element mesh used to generate the datais 150 x 32 in the horizontal
and vertical directions, respectively. However, the 80 x 25 model
mesh (M=2000) is used for the inversion. Five percent Gaussian
noises were added to the synthetic data. The data variance is set at
5%, calculating from the apparent resistivity to accommodate the
discretization errors from using different meshs for the inversion
and the forward modeling and the 5% Gaussian noises.

The starting model for the inversion is set to be the same as
the base model (mg) which is a homogeneous half-space, with its
resistivity value (pavg) determined from the geometric mean of the

geometric mean of apparent resistivity is about 9.22 2 m for the

Fig. 5. The RMS misfit (dashed line; left y-axis) and model norm (solid line; right y-axis) versus the iteration number of the model space (right) and the data space (left)
Occam'’s inversions for the synthetic Dipole-Dipole data (Fig. 3a) generated from two blocks with a contrast resistivity model (Fig. 1).
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Wenner data (Fig. 2a), 7.03 2 m for Dipole-Dipole data (Fig. 3a) and
8.18 2 m for Schlumberger data (Fig. 4a). The initial RMS is about
6.13 for Wenner, 15.97 for Dipole-Dipole and 12.64 for Schlum-
berger. The target misfit set for the inversion is equal to 1, implying
that the data are being fitted within their error levels of 5%. For
Wenner and Schlumberger arrays, both approaches require 3 iter-
ations to complete the minimization of U. For Dipole-Dipole data,
the model space method requires 4 iterations, while the data-space
method requires 5 iterations (Fig. 5).

Fig. 2b and c displays the final inverted models obtained at
the target misfit with the minimum norm after 3 iterations for
the Wenner configuration array with the model space and data
space Occam’s inversion, respectively. Similarly, Fig. 3b and c are
for the Dipole-Dipole configuration, and Fig. 4b and c are for the
Schlumberger configuration. In all figures, both model and data
space approaches can recover both resistivity blocks quite well;
however, the qualities may be different. The white line indicates
the block boundaries. The top surfaces of the two blocks are clearly
seen at a depth around 2.5 m for both methods. However, the bot-
tom boundaries are resolved better with the data space approach.
This is probably due to the different model covariance used for both
methods.

Fig. 5a and b displays the convergence plot versus iteration num-
ber for the model space and data space algorithms, respectively,
for Dipole-Dipole configurations. Both inversions requires about 3
iterations to reach the target misfit (Phase I), but require another
one or two iterations to complete Phase II for the model or data-
space method, respectively. Both programs are terminated in Phase
Il if the model norm of the next iteration increases or changes only
slightly. The right y-axis of both figures shows that the model norm
is being minimized. Note that the model covariance of the model
space and data-space methods is different, resulting in different
levels of model norms. Other convergence plots for the Wenner
and Schlumberger arrays are similar, and are therefore not shown
here.

Computational times for the model space and the data space
approaches are not significantly different since the problem is 2D
where the model domain is still small. However, in the process
of solving the system of equations of the inversion, the model
space method must spend more computing time than the data-
space method. That is because the inverted matrix has a size of
2000 x 2000 compared with 315 x 315 for the data-space method.
The time difference would be higher if the model domain were
larger as in the case of the 3D problem. In addition, the memory
required to store the system of equations is about a factor of 40
times greater in the model space than is required by the data-space
method, as expected from the theory (Siripunvaraporn and Egbert,
2000; Siripunvaraporn et al., 2004, 2005).

We have also performed various tests on other synthetic data
generated from different models, both simple and complex. We
found that our inversion codes in both model space and data-space

Fig. 6. Location of the drainpipe known a priori from the map of the Faculty of Sci-
ence, Mahidol University. The solid marks above the surface indicate the electrodes
with a spacing of 0.6 m.

Fig. 7. The solution models from (b) RES2DINV, (c) our model space, and (d) our
data space programs inverted from the observed Wenner array data shown in pseu-
dosection (a). The white circle indicates the circular drainpipe in Fig. 6.

Fig. 8. The solution models from (b) RES2DINV, (c) our model space, and (d) our
data space programs inverted from the observed Dipole-Dipole array data shown
in pseudosection (a). The white circle indicates the circular drainpipe in Fig. 6.

methods are capable of recovering the anomalies buried inside and
background structures of the model (Boonchaisuk, 2007).

4.2. Example with field data

In the previous section, we have shown that our inversion codes
work reasonably well with synthetic data. In this section we show

Fig. 9. The solution models from (b) RES2DINV, (c) our model space, and (d) our
data space programs inverted from the observed Schlumberger array data shown in
pseudosection (a). The white circle indicates the circular drainpipe in Fig. 6.
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Fig. 10. (a, ¢, e) The RMS misfits versus the iteration numbers of the model (dashed line) and data space (solid line) methods. (b, d, f) The calculated misfits versus the iteration
numbers from the RES2DINV program. Top row is for Wenner data, middle row is for Dipole-Dipole data and bottom row is for Schlumberger data. Note that the RES2DINV

program uses a different formula from our RMS misfit to calculate its own misfit.

the flexibility, robustness and accuracy of our codes to the real
observed data, which usually contains noise from many sources.

The DC resistivity data were collected at the geophysical test
area inside the Faculty of Science, Mahidol University to detect the
buried drainpipe; for which the position and depth was known a
priori. The circular drainpipe is 0.3 m in radius and is buried at a
depth of 0.9 m (from the surface to the center) as shown in Fig. 6.
A SYSCAL R1 PLUS Switch-48 instrument was used to collect the
observed data. A profile array of 48 electrodes with an electrode
spacing of 0.6 m was applied perpendicular to the course of the
drainpipe to obtain the 2D data.

Figs. 7a, 8a and 9a display the 335, 555 and 452 observed data
values constituted from the Wenner, Dipole-Dipole and Schlum-
berger configurations, respectively, by using separation factors of
1-12,1-15 and 1-15, respectively. The 114 x 21 model mesh is used
for the inversions. The data variance is set to 5% of the appar-
ent resistivity to account for the noise from measurement and
other sources. The total number of model parameters is there-
fore 2394 (114 x 21), and the data parameters are 335, 555 and
452 for Wenner, Dipole-Dipole and Schlumberger configurations,
respectively.

Both model space and data space Occam'’s inversion methods
were applied to our field data set, along with the commercial
software, RES2DINV version 3.55 (Loke and Barker, 1996), using
default parameters of the program in order to provide a ref-
erence to our inverted models and to show the accuracy and
robustness of our developed codes. The final inverse solutions for
Wenner, Dipole-Dipole and Schlumberger data sets are shown in
Figs. 7b, 8b and 9b for the RES2DINV program, Figs. 7c, 8c and 9c
for our model space code, and Figs. 7d, 8d and 9d for our data space
inversion, respectively. All inverted models from our codes and the
commercial code show that there are two layers beneath the surface
and a high-resistivity portion indicating the drainpipe. The high-
resistivity (100 2 m) top layer is about 1 m in depth lying on top

of the conductive (10 €2 m) layer. The high-resistivity layer is inter-
preted as the top soil filled on top of the clay conductive layer. The
drainpipe is located directly in the high-resistivity zone matching
the location plotted in the map.

Fig. 10 shows the misfit plots versus iteration numbers. The
RES2DINV misfit is calculated differently from our RMS misfit,
so we plot them on separate figures. The left column shows the
RMS misfits calculated from our model and data space Occam’s
inversions (Fig. 10a, c and e). The right column shows the misfits
generated from the RES2DINV code (Fig. 10b, d and f). For only the
Dipole-Dipole configuration data, the RMS misfit did not converge
to the desired misfit of 1 for the model and data-space methods.
This also happened for the RES2DINV code, where a high RES2DINV
misfit is still shown. In all cases, the RES2DINV code requires more
iterations than both types of Occam'’s inversion.

5. Discussion and conclusions

The data-space method has been widely used in many fields
including geophysics (Parker, 1994; Egbert et al., 1994; Chua and
Bennett, 2001). It was recently used for MT data by Siripunvaraporn
and Egbert (2000) for their 2D code and later applied to a 3D code
(Siripunvaraporn et al., 2004, 2005). Here, we have shown that
the same technique can be also used for 2D DC resistivity data.
In the two examples presented here, we show that our developed
2D data space code is robust and accurate, and comparable to the
commercial software RES2DINV program.

For any configuration, N is always less than M by a large factor.
This fact helps enhance the benefit of using the data-space method,
especially for the GN-type inversions. Since the size of the system of
equations is significantly dropped to N x N from the original M x M
in traditional model space, both the computing time and memory
storage of the data-space method become a fraction of those in
the model space method. Applying the data-space method to 3D
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data would definitely yield an advantage, because in 3D, N/M is
much smaller than in the 2D case. However, in the case where M
is greater N (if occurred), the data space approach would not yield
any advantages. In this case, we can select to run our code in the
model space. Alternatively, a subset data space inversion, similar to
REBOCC code (Siripunvaraporn and Egbert, 2000), can be applied
in order to further reduce the computational costs.

Both the model and data space Occam’s inversion methods
require the full sensitivity matrix. This process consumes exten-
sive computing time and large memory storage. Directly extending
our 2D code to a 3D code would still yield an impractical 3D code.
However, Siripunvaraporn and Egbert (2007) showed that we can
avoid constructing the full sensitivity matrix by applying the conju-
gate gradient technique. This would help significantly in reducing
the size of memory storage; however, the computing time may not
necessarily decrease (Siripunvaraporn and Egbert, 2007).

Inorder to speed up the codes, an approximate sensitivity matrix
is another option to consider. The Quasi-Newton method has been
used to estimate the sensitivity (Loke and Barker, 1996). It was then
used in combination with the GN method in order to maintain the
accuracy of the GN method along with the speed of QN method
(Loke and Dahlin, 2002). A hybrid method combining the advan-
tages of the data-space method, GN, QN and other techniques is
possible and should be explored for the 3D cases.
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Electromagnetic surface measurements with the radiomagnetotelluric (RMT) method in the
frequency range between 10 and 300 kHz are typically interpreted in the quasi-static approx-
imation, that is, assuming displacement currents are negligible. In this paper, the dielectric
effect of displacement currents on RMT responses over resistive subsurface models is studied
with a 2-D forward and inverse scheme that can operate both in the quasi-static approximation

Forward computations of simple models exemplify how responses that allow for dis-
placement currents deviate from responses computed in the quasi-static approximation. The
differences become most obvious for highly resistive subsurface models of about 3000 2 m

and more and at high frequencies. For such cases, the apparent resistivities and phases of the
transverse magnetic (TM) and transverse electric (TE) modes are significantly smaller than in
the quasi-static approximation. Along profiles traversing 2-D subsurface models, sign reversals
in the real part of the vertical magnetic transfer function (VMT) are often more pronounced
than in the quasi-static approximation. On both sides of such sign reversals, the responses
computed including displacement currents are larger than typical measurement errors.

The 2-D inversion of synthetic data computed including displacement currents demon-
strates that serious misinterpretations in the form of artefacts in inverse models can be made if
displacement currents are neglected during the inversion. Hence, the inclusion of the dielectric
effect is a crucial improvement over existing quasi-static 2-D inverse schemes. Synthetic data
from a 2-D model with constant dielectric permittivity and a conductive block buried in a
highly resistive layer, which in turn is underlain by a conductive layer, are inverted. In the
quasi-static inverse model, the depth to the conductive structures is overestimated, artefactual
resistors appear on both sides of the conductive block and a spurious conductive layer is imaged

at the surface.

High-frequency RMT field data from Avro, Sweden, are re-interpreted using the newly
developed 2-D inversion scheme that includes displacement currents. In contrast to previous
quasi-static modelling, the new inverse models have electrical resistivity values comparable to
a normal-resistivity borehole log and boundaries between resistive and conductive structures,

which correlate with the positions of seismic reflectors.

Key words: Numerical solutions; Inverse theory; Electrical properties; Electromagnetic the-

ory; Magnetotelluric.

1 INTRODUCTION

Since many electromagnetic (EM) methods utilize frequencies below 10 kHz, the quasi-static assumption that displacement currents are much
smaller than conduction currents (i.e. we < o with angular frequency w = 27 f, dielectric permittivity € = €€, free air permittivity €, and
electrical conductivity o) is stipulated and displacement currents are neglected during the data interpretation. For the radiomagnetotelluric
(RMT) method, which uses EM fields in the VLF (3-30 kHz) and LF (30-300 kHz) frequency ranges, the validity of the quasi-static assumption
is questionable. For a typical relative dielectric permittivity e, = 5 (e.g. mildly fractured crystalline bedrock), displacement currents are equally
strong as conduction currents for, for example, an electrical resistivity p = 1/o = 10000 2m and a frequency f = 360 kHz. This means
that the dielectric effect is non-negligible even at a combination of lower frequencies and/or resistivities. In fact, it can be argued that the
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dielectric effect should be accounted for as soon as the perturbation it causes is roughly equal to the measurement errors of the data. For a
typical error level of, say, 2 per cent on the impedance tensor elements, vertically incident plane waves and a relative dielectric permittivity
€, = 5, it is shown in Section 3.1 that the effect of displacement currents on the impedance phase is above the error level at, for example,
f =15kHzand p =10000Q2mor f = 170kHz and p = 1000 2 m.

In the following subsections, the existing knowledge of the dielectric effect on plane-wave and controlled-source frequency-domain
electromagnetic (FDEM) responses is reviewed. With respect to the RMT method, the plane-wave FDEM responses are of special importance.
After that, the resolvability of anomalous dielectric permittivities and previous attempts of quasi-static interpretation of high-frequency RMT
data are discussed. In the last part of the introduction, we give an outlook at our 2-D inverse scheme for RMT data that allows for displacement
currents and summarize the assumptions we make. Note that for the treatment of the FDEM theory, we choose an exp +iwt time dependence
throughout this paper.

1.1 Dielectric effect on frequency-domain EM responses

Several publications describe the effect of displacement currents on plane-wave and controlled-source FDEM responses in the VLF and LF
frequency ranges, based on analytic solutions by Wait (1953, 1970) and Wait & Nabulsi (1996) for a 1-D layered Earth.

In plane-wave FDEM methods like the RMT method, EM fields generated by powerful radio transmitters operating in the VLF and
LF frequency ranges are used as primary signals. The aerials employed with the remote radio transmitters are vertical electric dipoles. At
distances beyond several free-air wavelengths from the transmitter, that is, in the so-called far-field zone, the EM field essentially resembles
that of a plane wave, which is obliquely incident on the Earth’s surface (McNeill & Labson 1991). An excellent summary of the theory of
plane-wave FDEM impedance, VMT and wave tilt measurements that covers both the quasi-static approximation and the general case with
displacement currents, as well as the nature of the radio transmitter source field, is given by Crossley (1981).

For plane-wave EM fields, Sinha (1977) investigates the influence of displacement currents on the wave tilt, that is, the ratio of the
horizontal to vertical electric field. On the surface of a homogeneous half-space, both amplitude and phase approach the values of the
quasi-static approximation at low frequencies, although they become significantly smaller than the quasi-static responses with increasing
frequency.

The dielectric effect on apparent resistivities and phases of radiomagnetotelluric surface impedances is deduced in Crossley (1981),
Zacher (1992) and Persson & Pedersen (2002) from 1-D forward computations. On the surface of a homogeneous half-space, both apparent
resistivity and phase are smaller than their constant counterparts in the quasi-static approximation. The differences become stronger with
increasing frequency.

Wait (1953), Sinha (1977), Crossley (1981) and Song et al. (2002) emphasize the importance of the angle of incidence for wave tilt,
surface impedance and VMT measurements conducted with plane-wave FDEM methods. The EM field is transmitted vertically into the Earth,
independent of the angle of incidence, when the quasi-static approximation is valid. In the general case with displacement currents, however,
the angles of incidence and transmission are related through Snell’s law. As a consequence, the TM- and TE-mode impedances vary with the
angle of incidence and differ at oblique incidence, even if measured on the surface of a layered half-space (Song et al. 2002).

For controlled source air-borne FDEM measurements, Fraser et al. (1990), Huang & Fraser (2002) and Yin & Hodges (2005) simulate
responses due to a pair of horizontal coplanar transmitting—receiving coils, operating in the frequency range of 0.4 to 100 kHz. The ratio
of secondary magnetic field intensity to primary magnetic field intensity is split into an in-phase component (real part) and a quadrature
component (imaginary part). According to Fraser et al. (1990) and Huang & Fraser (2002), displacement currents in the Earth lead to
a decrease of the in-phase component and an increase of the quadrature component, compared with the quasi-static case for which both
components are positive. The influence of displacement currents in the air (an increase of both components) is rather small compared with
that in the Earth (Yin & Hodges 2005).

1.2 Resolvability of permittivity anomalies

The resolvability of the relative dielectric permittivity from both plane-wave and controlled-source FDEM measurements is assessed by
Nabulsi & Wait (1996), Stewart et al. (1994), Huang & Fraser (2002) and Persson & Pedersen (2002) with 1-D simulations.

Using obliquely incident plane waves in the VHF range (30-300 MHz), Nabulsi & Wait (1996) illustrate that a dielectric layer embedded
in a highly resistive host is detectable if its thickness and relative permittivity are sufficiently high.

For a controlled source coil-coil FDEM method which operates in the MF (0.3-3 MHz) and HF (3-30 MHz) frequency ranges, Stewart
et al. (1994) show that the anomalous response of both a resistive and conductive thin layer is significantly enlarged by the dielectric effect
even if there is no contrast of dielectric permittivity between the layers of the model. Stewart et al. (1994) present two field examples, where
tilt angle and ellipticity data of the magnetic field polarization ellipse have been successfully inverted for both electric resistivity and dielectric
permittivity, with a 1-D inverse scheme.

At frequencies lower than those employed by Nabulsi & Wait (1996) and Stewart et al. (1994), displacement currents become weaker and
the resolvability of permittivity anomalies within a limited range of possible relative permittivity values deteriorates. Huang & Fraser (2002)
(see Section 1.1) estimate a single value of relative permittivity at their highest frequency of 100 kHz, as it is a badly resolved parameter at
lower frequencies.
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Persson & Pedersen (2002) invert RMT data with frequencies up to 250 kHz for dielectric permittivity, using 1-D models. The differences
of inverse models are found to be negligible if the relative dielectric permittivities are limited to the range between 4 and 10, typical of
bedrock, and if the resistivities are not larger than 20 000 2 m (Persson & Pedersen 2002). Relative dielectric permittivities larger than 10 are
typical of water bearing sedimentary rocks and soils (Reynolds 1997). Due to the high water content, such formations have relatively low
resistivities (typically up to about 500 2 m), which reduce the importance of displacement currents at VLF and LF frequencies. It is therefore
sufficient, in many practical cases of RMT data interpretation, to account for displacement currents by selecting a dielectric permittivity
representative of high-resistivity structures in the subsurface.

1.3 Quasi-static interpretation of high-frequency RMT data

The difficulties of the interpretation of high-frequency RMT field data in the quasi-static approximation are discussed by Persson & Pedersen
(2002) and Linde & Pedersen (2004). For synthetic 1-D RMT impedance responses computed with displacement currents, Persson & Pedersen
(2002) compare 1-D inversion results from inverse schemes that utilize both the quasi-static approximation and displacement currents. For a
homogeneous half-space model, neglecting displacement currents during the inversion leads to an inverse model with a conductor close to
the surface, followed by alternating layers of high and low resistivity at depth (Persson & Pedersen 2002). Similarly, Linde & Pedersen (2004)
observe for quasi-static 1-D inversions of RMT field data from the island Avro, Sweden, that a conductive surface layer is modelled more
conductive and the underlying unfractured bedrock is modelled more resistive than in the 1-D inversions with displacement currents. The
models, due to inversion with displacement currents, are supported by logging data of Gentzschein et al. (1987).

In fact, the work presented by Linde & Pedersen (2004) is a typical example of the interpretation strategies chosen until now, in cases
where the dielectric effect in RMT data is to be accounted for. In the absence of a 2-D inversion program that allows for displacement
currents, the data interpretation has, so far, been restricted to 1-D inversions with modified analytic forward and Frechet derivative routines,
the exclusion of the higher frequency data in 2-D inversions and 3-D forward modelling with the integral equation code X3D by Avdeev et al.
(2002).

1.4 2-D inversion of RMT data allowing for displacement currents

For the first time, we take displacement currents in a 2-D forward and inverse modelling scheme for RMT data into account by selecting a
value of dielectric permittivity that is typical of the subsurface and assuming vertically incident plane waves. As the EM field from remote
VLF transmitters can be expected to be incident at an angle closer to 90° (grazing incidence), it is shown in Section 2.2 that the presence of
a moderately resistive surface layer reduces the influence of the angle of incidence considerably. We investigate the effect of displacement
currents on 2-D forward responses in the TM-mode, the TE-mode and the VMT and compare our results with the responses computed by
the integral equation code X3D by Avdeev et al. (2002), which, at the time of writing, was the only forward code known to us that operates
in two or three dimensions and includes displacement currents. Especially, the effect on VMT responses was not considered in the past (cf.
Avdeev et al. 2002; Persson & Pedersen 2002). Possible misinterpretations, in the form of artefacts with excessively extreme resistivities in
models from quasi-static inverse schemes, are highlighted. The RMT data from Avro (Linde & Pedersen 2004) are re-interpreted with the
inverse scheme that allows for displacement currents. The resulting inverse models are compared with the borehole data of Gentzschein et al.
(1987) and the seismic reflection model of Juhlin & Palm (1999).

We have added our forward and sensitivity routines, which allow for displacement currents, to the popular 2-D magnetotelluric inverse
code REBOCC by Siripunvaraporn & Egbert (2000).

2 THEORY

2.1 Electromagnetic equations

Assuming a volume of conductivity o, dielectric permittivity € and vacuum permeability 1o, Maxwell’s equations are written in the frequency
domain as

V x E = —(lopue)H = —2ZH Faraday’s law (1)
VxH=(o+iwe)E=JE Ampere’s law 2
V-(eE)=q Gauss’ law (3)
V-H=0 @)

where Ee“! and Hel! are the electric and magnetic field vectors, varying in time t, with angular frequency  (e.g. Ward & Hohmann 1987)
and q is the charge density. On the right-hand sides of egs (1) and (2), the definitions of the impedivity Z = iwu, and admittivity § = o + iwe
are used. The quantities jeong = o E, jaisp = iweE, and j = YE are the conduction, displacement and total current densities, respectively. The

© 2008 The Authors, GJI, 175, 486-514
Journal compilation © 2008 RAS



RMT 2-D forward and inverse modelling 489

displacement current density iweE describes the dielectric effect due to electronic, atomic, molecular and space charge derived polarization
of matter with dielectric permittivity ¢ in the presence of a time-varying electric field (Keller 1987). In the case that conduction currents
dominate over displacement currents (i.e. o > we), displacement currents may be neglected in eq. (2). This simplification is known as the
quasi-static approximation.

In the following, it is assumed that plane waves are obliquely incident on the Earth’s surface in the y—z plane and that the x-direction is
the geoelectrical strike direction. Therefore, the admittivity § and the EM field components vary only in y and z direction. This choice leads
to the definition of the transverse electric (TE) and transverse magnetic (TM) modes for which the vertical electrical and vertical magnetic
field components, respectively, vanish. The sets of equations for the TE- and TM-modes are

(1) TE-mode:
- = 9E ©)
o, ©
88ny =2H,. )
(2) TM-mode:
aaf/z - 387'? = —2H,. (®)
e, ©
% - —JE,. (10)

An illustration of the EM field components of the TM-mode and a 2-D subsurface with a cylindrical structure of anomalous electrical
properties and infinite extension along the x-axis, that is, the strike direction, is given in Fig. 1. The EM field is obliquely incident at an
angle 6, thereby having a wavenumber vector ko = (0, koy, Ko,). According to the definition of the TM-mode, the incident, reflected and
transmitted magnetic fields H; = (Hix, 0, 0), H, = (H 4, 0, 0), and H; = (H, 0, 0), respectively, are all directed along the strike direction
whereas the incident, reflected and transmitted electric fields E; = (0, E;y, Ei,), E; = (0, Ey, E;), and E; = (0, Eyy, Ey;), respectively, are
all directed perpendicularly to the strike direction.

In the quasi-static approximation of the TM-mode, j = (0, 0 E, o E;) vanishes in the air half-space (Brewitt-Taylor & Weaver 1976)
where o, = 0 is assumed. As a consequence of egs (9) and (10), Hy is then constant in the air half-space, and an inclusion of the air
half-space in the modelling domain can be omitted. If displacement currents are accounted for, the magnetic field in the air is no longer
independent of the resistivity distribution in the Earth, as the vertical component of the current density is continuous at the air—Earth interface

incident reflected
wave direction Er wave direction
H=(Hx,0,0) Kr,
E=(0.Ey.E i
=(0,Ey,Ez) H 7™k
k:(o,ky,kz) Ej 90
% y air
strike parallel 0 Earth
_ - to x-direction _ - L
z structure with anomalous H Er Nkt

electrical properties _ transmitted

wave direction

Figure 1. EM field components of the TM-mode on a 2-D earth model. The model consists of a structure with anomalous electrical properties that has its
strike direction parallel to the x-axis. The EM field is obliquely incident at an angle 6, thereby having a wavenumber vector ko = (0, Koy, koz) = (0, ko Sin 6o,
ko cos8p). The incident, reflected and transmitted magnetic fields H; = (Hx, 0, 0), Hr = (Hx, 0, 0) and H{ = (H x, 0, 0), respectively, are all directed along
the strike direction. The incident, reflected and transmitted electric fields Ej = (0, Ejy, Eiz), Er = (0, Ery, Erz), and E¢ = (0, Ety, Eyz), respectively, are all
directed perpendicular to the strike direction. On top of a conductive subsurface, the electromagnetic field is refracted towards the normal, that is, 6; < 0.
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and in the air,

. A . oH

iy = VEy = iwegEy = 8;, (11)
. " . oHy

J.=YE; wepe; ay (12)

differ from zero (cmp. egs 9 and 10). Hence, the air half-space must be included in the simulation of the TM-mode.
The electric and magnetic field components E, and H, of the TE- and TM-modes, respectively, fulfil the Helmholtz equations (cf. eqs
1and 2)

—(V x V xE)y = =[V(V - E)]x + (V?E)x

_ 0%Ey N 9°Ex
T oay? 922
— 3§E, (13)

and

- (v x iv % H) = —i[V(v H)Ix + ivsz - [(v1> x V x H]
¥ X ¥ ¥ y x

1 BZHX_’_E)ZHX n da (1 BHX+ Jd (1 d Hy
g\ ay? 922 ay \ § ay 9z \ az
= 2H,., (14)

where the 2-D assumption 9/dx = 0 and eq. (4) were used.
In a homogeneous volume, for instance, the general solution of the scalar Helmholtz equations (eqs 13 and 14) is given by

{E.H}x = ({E. H}j e ™ 4 (E, H} telar) emiky
+({E, HYf e ™2 4 (E, H) mele?) ety (15)

Here, k, and k; are the horizontal and vertical components of the wavenumber vector k (see above). The substitution of eq. (15) into eq. (13)
yields

K=K+ K2 = 2§ (16)

where ky, = k sin@ and k, = k cosé. The complex wavenumber can be split as k = « — i where the real numbers « and 8 represent
propagation and attenuation, respectively, and

— - -
o€ (o

a=w | |1+ 55 +1], (17
Ho€ 1 o? 1 1

p=w 2 +62w2_ ' (18)

The inverse of the imaginary part gives the skin depth § = % over which the amplitude of the EM field is reduced by a factor 1/e. In the

quasi-static approximation, the real and imaginary parts are equal, that is, « = g =, /“52*.

The reflection and refraction of plane EM waves at the Earth’s surface are governed by Snell’s law and the Fresnel equations (Ward &
Hohmann 1987). Hence, the EM field measured on the Earth’s surface depends on the angle of incidence (see Fig. 1). Three cases of the
angle of incidence 6, are distinguished. The cases 6, = 0° and 6, = +90° are known as normal (or vertical) incidence and grazing (or
parallel) incidence, respectively. The cases 90° > 6 > 0° and 0° > 6, > —90° are called oblique incidence. The refraction of obliquely
incident EM waves into the subsurface is conveniently demonstrated for a layered half-space. As a consequence of the boundary conditions
for the EM field components at layer interfaces, the horizontal component of the wavenumber vector is constant (Ward & Hohmann 1987),
that is,

Ky, j = kosinfy = Kj sin#g;. (19)

Here, ko = /@?ugeo is the wavenumber of the air and 6 is the angle of incidence. Similarly, kj and 6 are the wavenumber and angle of
transmission of the jth layer, respectively. According to eqs (16) and (19) the vertical wavenumber of the jth layer has the form

kz‘j = kj COSQ] = kj,/l —sin20j
[ K (20)
=k [1— k—gsmzeo.
J

© 2008 The Authors, GJI, 175, 486-514
Journal compilation © 2008 RAS



RMT 2-D forward and inverse modelling 491

At sufficiently low frequencies, that is, when the quasi-static approximation is valid, k§/k = w?wuo€o/(@? o€ — iwpoo j) = 0as @ — 0
and k, j = k;. Hence, it is only in the quasi-static approximation or at vertical incidence that the EM field is transmitted vertically into the
Earth. At high frequencies and oblique incidence, the angle of transmission generally deviates from 0°.

After solving the Helmholtz equations (eqs 13 and 14) for E, or H, of a 2-D conductivity distribution, the auxiliary fields H, and H,
or Ey and E, can be computed with egs (6) and (7) or egs (9) and (10), respectively.

The off-diagonal elements of the complex 2-D impedance tensor relate the horizontal magnetic fields to the horizontal electric fields of
the TE- and TM-mode as

E] [0 Zy][H -
E,| | Zyx O H,

and yield the responses commonly used in radiomagnetotellurics, that is, the apparent resistivities

1 1
W= —|Zy* and pf = ——|Zy? 22
Pa CUHOI ><y| Pa a),uo| yx| (22)
and phases
¢ =arg(Z,y) and @Y =arg(Zy). (23)

Ward et al. (1968) establish a more direct link to the electrical properties of the subsurface, in the general case with displacement currents,
by defining an apparent conductivity and an apparent dielectric permittivity.

Due to the dependence of the EM field on the angle of incidence, the amplitude and phase of the impedances of the TM- and TE-mode
differ even if measured on the surface of a layered Earth. Only if the quasi-static approximation is valid or if the EM field is vertically incident,
the TE- and TM-mode impedances of a layered half-space satisfy the relationship Zyy = —Z .

For plane waves vertically incident on the surface of a homogeneous half-space with impedivity Z and admittivity §, the TM-mode
impedance has the form Z,, = \/W (Wait 1970; Ward & Hohmann 1987). In the quasi-static approximation, the latter expression simplifies
to Zyx = /iwuo/o, and only in this case, the apparent resistivities and phases measured on a homogeneous half-space equal the resistivity
of the half-space and 45°, respectively.

In the TE-mode, the vertical magnetic field H , is related to the horizontal magnetic field H through the complex 2-D VMT B:

H, = B H,. (24)

For plane waves obliquely incident on a layered Earth, the VMT generally differs from zero. However, for vertically incident plane waves or
in the quasi-static approximation, a VMT that differs from zero is only observed if the admittivity § varies laterally (see eqgs 5-7).

2.2 Normal and oblique incidence

In the case of grazing or oblique incidence, both the incident electric and the incident magnetic fields can have vertical components (see
Fig. 1). Already for a 1-D earth model, the TE- and TM-mode are then defined, by demanding that either the electric or the magnetic field be
perpendicular to the plane of incidence (Wait 1970; Ward & Hohmann 1987), and the impedance tensor and VMT measured on the Earth’s
surface depend on the angle of incidence (see Section 2.1). It is therefore important to appraise the error made by assuming vertical incidence
during the modelling process. For a layered earth model, the deviations of the TE- and TM-mode impedance amplitudes and phases at an
arbitrary angle of incidence from those at normal incidence can be estimated with well-known recurrence formulae (see e.g. Wait 1953, 1970;
Crossley 1981; Ward & Hohmann 1987; Song et al. 2002).

For the half-space model shown in Fig. 2(a), consisting of two layers with resistivities of 600 and 30 000 2 m and layer thicknesses of 25
and 75 m, a confining half-space with a resistivity of 600 &2 m and a constant relative permittivity ¢, = 6, the deviations of the amplitude and
phase of the TM- and TE-mode impedances from their respective values at normal incidence are shown in Fig. 2. The maximal deviations
of 1.5 per cent and 1° for the amplitude and phase, respectively, occurring at parallel incidence, are of the order of typically expected error
levels. A similar model that consists of the uppermost layer underlain by a confining half-space of 30 000 & m shows maximal deviations of
1.0 per cent and 0.25°, respectively, indicating that a considerable part of the distortion in the first case is due to the reflection of the EM
energy on the top of the confining half-space.

The angle of incidence can be estimated with the scheme by Song et al. (2002), which requires that the horizontal EM field components
are measured simultaneously at adjacent receiver sites. In a typical RMT field campaign, however, a single receiver is moved along the profile.
The interpretation is further complicated, as the EM fields of different transmitters, with frequencies close to a nominal frequency, are used
to estimate the TM- and TE-mode impedances (Bastani & Pedersen 2001). Generally, the transmitters are off the profile or strike direction
and have different angles of incidence; but the angle of incidence, normally, is close to 90° (grazing incidence) at the site of investigation
(Crossley 1981).

As the aerials employed by the remote radio transmitters, typically, are vertical electric dipoles, the incident EM field is that of a
TM-mode. Hence, the definitions of TE- and TM-mode based on the geoelectrical structure of the subsurface and on the nature of the incident
field are conciliable only for the TM-mode, given that the direction to the remote radio transmitter coincides with the profile direction (as in
Fig. 1 for instance). If the transmitter was located off the profile direction, the wavenumber vector k would have an x-component, which, in
the general case, would persist within the Earth and invalidate the 2-D assumption 3/dx = 0. However, even this problem is amended if a

© 2008 The Authors, GJI, 175, 486-514
Journal compilation © 2008 RAS




492  T. Kalscheuer, L. B. Pedersen and W. Siripunvaraporn

X
"y

hi=25m  p;=600Qm, £r=6

ho=75m  p,=30000Qm, er=6

p3=600Q2m, £r=6

(a) 1D model with three layers

L L R | L | L
90 ST - [ 907 \ 3 \l 0.80} [
80 @ 9 S\ 80 0% v E
~ ® % UF ~" 2200’ H
%704 ¥ = %704 BD‘Q 000 Q@Q -
] L S O L
2 60 1) \ F 2 60 - T O 0% - o I
9] g ) Q 0.988 F @ R ~0 NS ' r
z o 9 IV © o 2 ~30 7= 0% — O
B 507 c % & 88 r g8 507 — 9 00 — oWl
= 40 T o 5 - = 40 -020 | oo — o' JF
] b r © b r
© 30 0005 - 030 ~—_ 010 / 3 \\_/\’0
=) b r b IS Q. r
& 207 & 207 r
10 r 10 L r
0-—1.000 1,000 000 T 10.00 [
? e T 0 T 7 T
10* 10° 10* 10°
frequency (Hz) frequency (Hz)
(b) relative amplitude of TM-mode impedance (c) phase difference of TM-mode impedance
90 1 ! ! o] ! \ - 90 1 Lo ! -
A \ N \jf
£ 70 L 404 =
s 70 3 2 [ s 70 N
c 60 <] > - 2 60 L
s 502 - \( . 502 -
N | ot 3% \ '
o 40 i 2 407 N
S] b P r © b r
© 30 o r o 30 r
2 50 2 L 20 i
& 207 W & 207] r
10 o r 10 r
0 1,000 ‘09,,,,‘ T 0 T T T
10% 10° 104 10°
frequency (Hz) frequency (Hz)
(d) relative amplitude of TE-mode impedance (e) phase difference of TE-mode impedance

Figure 2. Relative amplitude and phase difference for the TM- and TE-mode impedances with respect to the case of normal incidence for angles of incidence
between 0° (normal incidence) and 90° (grazing incidence) and at frequencies between 10 and 300 kHz (panels b—e). The earth is assumed to consist of two
layers with resistivities of 600 and 30 000 2 m and layer thicknesses of 25 and 75 m, respectively, a confining half-space with a resistivity of 600 2m and a
constant relative permittivity e, = 6 (panel a). The deviations from the impedance values at normal incidence are largest at grazing incidence.

moderately resistive or conductive surface layer is present, as the EM field is then transmitted almost vertically into the subsurface, and the
definition of different modes can be based on the geoelectrical structure.
We consider only vertically incident plane-wave fields. As the above example shows, the presence of a moderately resistive or conductive

near-surface layer reduces the importance of the angle of incidence, and deviations of the responses for different angles of incidence are then
rather small.

2.3 Computation of forward responses and sensitivities

The forward problem, that is, the computation of responses for a given model, is solved by discretizing the modelling domain with the
finite-difference approximation (FDA), following Hohmann (1987) and Aprea et al. (1997). The derivations of the FDAs for the TE- and
TM-modes can be found in Appendix A. Both direct and iterative solvers for the system of linear equations, arising from the FDA of the
forward problem, are discussed in Appendix B. As we have not yet managed to implement an appropriate iterative solver, we rely on the
LU-decomposition (also known as Gaussian elimination) by Anderson et al. (1999).

The sensitivity matrix J € RN*M describes the perturbations ensuing for N forward responses F[m] € RN due to perturbations of M
model parameters m € RM. The entry of the sensitivity matrix for the kth datum with respect to the Ith model parameter is then calculated as
a partial derivative:
AF<[m]

kI
2(m) = =

(25)
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Figure 3. Analytic 1-D solutions by Persson & Pedersen (2002) and 2-D FDA solutions of apparent resistivity p, and phase ¢ for the TM-mode on the
surface of a homogeneous half-space with p = 10000 2 m and e, = 5. The responses were computed for frequencies between 10 and 250 kHz and under the
assumption of normal incidence. At high frequencies, p, and ¢ are both significantly smaller than their quasi-static values of 10 000 &2 m and 45 °, respectively.
With decreasing frequency, p, and ¢ approach their quasi-static values asymptotically.
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Figure 4. Simple 2-D model with a conductive block of p = 1000 2 m in a half-space with a resistivity of o = 10000 €2 m and constant relative dielectric
permittivity e, = 5. Receiver positions are indicated by black triangles. The TM-mode, TE-mode and VMT responses of this model are shown in Fig. 5.

The entries of the sensitivity matrix are typically given for the logarithms of the apparent resistivities and the phases of the impedance tensor
elements and the real and imaginary parts of the VMT with respect to the logarithms of the cell resistivities. The logarithms are typically
chosen relative to the base 10. The sensitivity matrix is computed with the scheme by Rodi (1976) and depends on the FDA of the forward
problem. Further information on this algorithm is given in Appendix C. An example of sensitivity matrix entries is given at the end of
Section 3.2.

2.4 Mesh design

To obtain accurate modelling results, the total extent of the modelling domain (i.e. the finite-difference mesh) and the sizes of individual
cells of the finite-difference mesh need to be well adapted to the settings of the experiment, that is, the length of the profile on which
measurements were conducted, the lowest and highest frequencies of the measurements and the distributions of electrical conductivity and
dielectric permittivity present in the model.

The horizontal and, below the air—Earth interface, the vertical extents of the finite difference mesh must be larger than those used in
the quasi-static approximation, as the skin depth § = % computed with displacement currents (see eq. 18) is larger than its quasi-static
counterpart.

Furthermore, the node spacing must be small compared with the scale lengths across which the EM fields vary, that is, the inverse real
and imaginary parts of the complex wavenumber k. In the quasi-static approximation, this leads to the well-known requirement that the node
spacing must be small compared with the local skin depth (Aprea et al. 1997). In the general case, 1/a < 1/8 and the local node spacing
must be considerably smaller than 1/«.

A small vertical node spacing is essentially important for the air half-space since the vertically incident plane wavefield propagates
undamped (assuming o ,;; = 0S m~1). In the air, the largest vertical mesh cell dimension must be smaller than 1/« of the highest frequency.
This results in the following comparison. In the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000), the conductivity of the air
half-space is assumed to be o, = 1071 Sm~1, and the quasi-static skin depth at a frequency of 300 kHz is 92 km. In the general case with
displacement currents, o iy = 0Sm~! and the inverse real part of the wavenumber is 1/o = 159 m for f = 300 kHz. In the former case, the
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Figure 5. Comparison of 2-D FDA forward responses of the block model shown in Fig. 4 computed with displacement currents (shown as lines in both the
left- and right-hand columns) with 2-D FDA solutions computed in the quasi-static approximation (shown as symbols in the left-hand column) and 3-D integral
equation solutions computed with displacement currents (shown as symbols in the right-hand column). Panels (a)—(d) show the responses for the TM-mode
apparent resistivity and phase, respectively. Panels (e)—(h) show the responses for the TE-mode apparent resistivity and phase, respectively. Panels (i)—(I) show
the responses for the real and imaginary part of the VMT, respectively. The TM-mode and TE-mode responses computed with displacement are generally
smaller than those computed in the quasi-static approximation, especially to the sides of the conductive block. The real part of the VMT response computed
with displacement currents shows distinct sign reversals [marked by labels (2) and (6) in panel i] to the sides of the conductive block. The corresponding

maximum and minimum are marked by labels (1) and (7), respectively, in panel (i). The 2-D FDA and integral equation solutions are in good agreement
(right-hand column).
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Figure 5. (Continued.)

skin depth exceeds the size of the modelling domain by far, and it is therefore appropriate to address the primary field of the quasi-static case
as a uniform inducing field rather than a plane wave incident on the Earth’s surface.

3 SYNTHETIC EXAMPLES

3.1 Forward modelling examples

We consider a forward modelling example for a homogeneous half-space, with a resistivity of 100002 m and a relative permittivity
€, = 5. Assuming vertically incident plane waves, analytic 1-D solutions with the algorithm by Persson & Pedersen (2002) and 2-D FDA
solutions were computed for the apparent resistivities and phases of the TM- (Fig. 3) and TE-mode (not shown) at frequencies between
10 and 250 kHz. The comparison of the analytic 1-D solution (marked by a solid line) and the 2-D FDA solution (marked by crosses)
shows excellent agreement. At high frequencies, the effect of displacement currents is to decrease the apparent resistivity and phase below
the apparent resistivity of 10000 2 m and phase of 45°, respectively, typical of the quasi-static approximation. For a typical error level of
2 per cent on the impedance, the deviations from the quasi-static values are as large as the given errors at 105 kHz for the apparent resistivity
and 15 kHz for the phase.

For the simple 2-D model with a block of p = 1000 Q2 m in a half-space, with a resistivity of p = 10000 2 m and ¢, = 5 throughout,
shown in Fig. 4, 2-D FDA forward responses with displacement currents are compared with both 2-D FDA forward responses for the
quasi-static approximation and the 3-D integral equation solution by Avdeev et al. (2002). Responses were computed for the TM-mode
impedance, the TE-mode impedance and the VMT. Fig. 5 shows the 2-D FDA forward responses, computed with and without displacement
currents in the left-hand column, and the comparison of 2-D FDA forward responses, computed with displacement currents, and 3-D integral
equation solutions, with displacement currents, in the right-hand column. The latter comparison indicates that the finite-difference forward
scheme is rather accurate. For the given mesh discretization, the relative deviations between the impedance responses of the FDA and integral
equation solutions are below 3.0 per cent. The absolute deviations between the VMT responses of the FDA and integral equation solutions are
below 0.003. As errors in the computation of two field components might cancel when taking their ratio, a further comparison was done for
the 2-D FDA and 3-D integral equation solutions of individual field components (not shown). After an appropriate normalization, the scaled
complex field components of the TE-mode deviate by less than 0.7 per cent, whereas the field components of the TM-mode differ by as much
as 3.0 per cent. As we do not have insight into the code by Avdeev et al. (2002), it is difficult to give an explanation for the discordance in the
latter case.

For the lowest frequency of about 10 kHz, the responses computed with (dotted lines in left-hand column of Fig. 5) and without
displacement currents (diamond symbols in left-hand column of Fig. 5) are very similar. At 100 kHz (dashed lines and filled circle symbols)
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Figure 6. The TE-mode impedance Ztg and the VMT B for the model shown in Fig. 4 at f = 250kHz, in the general case with displacement currents
(panels a and b) and the quasi-static case (panels ¢ and d). The VMT and the TE-mode impedance roughly follow the relations ﬂte(,ﬂ—;) 4 Sm(ag%) and

Sm(ﬁ) o —ﬂte(aaz%). Hence, for instance, zero transitions of the real part of the VMT are observed at approximately the same positions where the imaginary
part of the impedance has minima or maxima. The labels (2) and (6) mark two such pairs of zero transitions in the real part of the VMT and maxima of the

imaginary part of the impedance.

and 250 kHz (solid lines and star symbols), the influence of displacement currents is considerable, given the chosen resistivity distribution
and relative dielectric permittivity.

For stations located on the sides of the conductive block, the effect of displacement currents on TE- and TM-mode impedances is
most obvious. Towards the left- and right-hand edges of the mesh, the apparent resistivities and phases approach those of the corresponding
homogeneous half-space (see Fig. 3). Also at sites above the conductive block, apparent resistivity and phase are generally smaller than in
the quasi-static approximation.

An important effect of displacement currents on the real and imaginary parts of the VMT at high frequencies is the occurrence of lateral
sign reversals, located symmetrically around the conductive block. For f = 250 kHz, lateral sign reversals are shown at 260 and 540 m along
the profile in the real part of the VMT [marked by labels (2) and (6), respectively, on the solid line in Fig. 5i] and at 75 and 725m along
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Figure 7. Real (upper row) and imaginary (lower row) parts of the normalized current density jx/Exo at f = 250kHz of the TE-mode for the general case
with displacement currents (left-hand column) and the quasi-static case (right-hand column) for the model shown in Fig. 4. Normalized current densities,
which are close to 0 AV~! m~1, are plotted in white. Different colourscales were used for the real and imaginary parts. In the general case with displacement
currents, the current system penetrates deeper into the subsurface than in the quasi-static case.

the profile in the imaginary part of the VMT (solid line in Fig. 5k). In addition to the lateral sign reversals, the real part of the VMT has a
maximum at y = 180 m [marked by label (1) in Fig. 5i] and a minimum at y = 620 m [marked by label (7) in Fig. 5i]. The responses at the
maximum and minimum are |9Re(B)| = 0.05. Sign reversals to the sides of the conductive block can also be observed in the real part of the
quasi-static response at y = 150 m and y = 650 m (star symbols in Fig. 5i). However, the quasi-static response is comparatively small at sites
further away from the block (no larger than |9ie(B)| = 0.006) and would most likely be masked by noise effects (a typical absolute error
is e.g. ANMe(B) ~ 0.01) if measured in the field. In the general case with displacement currents, the deduction of the horizontal centre of
conductive structures from the positions of zero transitions of the VMT B becomes intricate in more complex geological settings. Artefacts
might be introduced to inverse models in a quasi-static interpretation.

It is instructive to relate the lateral sign reversals of the VMT to the gradient of the TE-mode impedance Z , by considering eqgs (7) and
(21):
ZH, = 9B« = i(ZXyHy).

ay  ay

For small deviations of H from its normal field component HY, that is, the H -component of the corresponding 1-D model without the
conductive block, this yields
H, Hy 1987y i 9Zyy

— N — = =, (26)
Hy Hyn Z ay wpg 3y

which corresponds to the following relationships for the real and imaginary parts of the VMT

Ne (i> o —i-i-3m (azxy> =3m (@) .
Hy ay ay
Im (i> x —MNe (@) .
Hy ay

In the synthetic example for f = 250 kHz, the variation of H away from its approximate 1-D values at the beginning and end of the profile
is less than 22 per cent in the quasi-static case (not shown) and less than 12 per cent in the general case (not shown). The real and imaginary
parts of the VMT are in good agreement with the expected variation with the lateral derivative of the TE-mode impedance Z,, for the
quasi-static (Figs 6¢ and d) and general cases (Figs 6a and b). For the general case, the positions of the lateral sign reversals in the real
part of the VMT and the corresponding maxima in the imaginary part of the impedance are marked with the labels (2) and (6) in Figs 6(b)
and (a), respectively. The zero transitions of the VMT are somewhat shifted from their predicted positions, where impedance maxima are
less distinct. This disagreement is related to the fact that the assumption of small deviations of H, from its normal component is slightly
violated.
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Figure 8. A sketch of the real part of the current density j in the subsurface with the emerging real part of the magnetic field H (panel a) and the real part
of the VMT response for the model shown in Fig. 4, at f = 250kHz in the general case with displacement currents (panel b). At positions (1) and (7), the
magnetic field Hy, due to currents in the resistive host is larger than the magnetic field Hy, due to currents in the conductive block, leading to a maximum and a
minimum of the real part of the VMT at (1) and (7), respectively. In the vicinity of the conductive block, the magnetic field is dominated by Hy, resulting in a
minimum and a maximum of the real part of the VMT at (3) and (5), respectively. At positions (2) and (6), the vertical components of H,, and Hy, are equal in
magnitude but opposite in direction and, hence, the VMT B is zero. The lateral position of the sign reversal at (4) coincides with the centre of the conductive
block.

A more quantitative explanation for the lateral zero transitions can be arrived at by investigating eg. (5). As the curl operator treats the
real and imaginary parts of H separately,

ate(Hy) _ ame(Hy) _ GE)  and
= X

ay 0z
a3m(H;)  a3m(Hy) .
- =3 E
dy 37 sm (y x)

are directly related to the real and imaginary parts of the current density j, = JE, of the TE-mode. However, the current densities of the
quasi-static and general cases in the subsurface are not directly comparable. As the propagation of the electric field in the air is modelled
differently (i.e. through conduction currents in the quasi-static approximation with a conductivity o 5y = 1072 Sm~* and through displacement
currents in the general case), there is a large difference in the scale lengths over which the electric field varies in the air (see Section 2.4). This
leads to different phases and amplitudes of the electric fields of the two cases at the air—Earth interface, even if equal amplitudes and phases
of the electric field are chosen as boundary conditions on the upper edge of the finite-difference mesh. In addition, different vertical node
spacings were chosen in the air half-space for the quasi-static and general cases, according to the considerations in Section 2.4. To circumvent
this problem, the electric field is scaled by its surface value at the left-hand edge of the mesh.

For the general case, the real and imaginary parts of the normalized current density at f = 250kHz are shown in Figs 7(a) and (c),
respectively. Similarly, for the quasi-static case, the real and imaginary parts of the normalized current density at f = 250 kHz are shown
in Figs 7(b) and (d), respectively. The area of the highest normalized current density amplitude (up to 5.7 x 10~* AV~! m™1) coincides
with the conductive block. To the sides of the block at y < 340m and y > 460 m, the normalized current density amplitude reaches 1.8 x
10~* AV~ m~1, with only small lateral changes of the real and imaginary parts at the beginning and end of the profile.

An important simplification ensues for the real part of the VMT of the general case, as die(H,) exceeds Sm(H,) by at least a factor
4.4 at all positions along the profile (not shown). Hence, the real part of the VMT can be approximated as %te(B) ~ Jie(H,)/%e(Hy) and
is mostly determined by fRe(jx) in Fig. 7(a). We illustrate the sign reversals in the real part of the VMT for the general case with a sketch
(Fig. 8a) that describes the real part of the current system in the subsurface and the emerging magnetic field. The real part of the magnetic
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Figure 9. Simple 2-D model with a buried elongated block of a resistivity of 1000 2 m in a resistive layer of 10000 & m and underlain by a half-space of
500 ©2 m. The relative dielectric permittivity is assumed to be ¢, = 5. Receiver positions are indicated by black triangles.

field due to currents in the resistive host is designated as Hy, and the part due to currents in the conductive block is designated as Hy, (Fig. 8a).
To facilitate a simpler comparison, the real part of the VMT for the general case (solid line in Fig. 5i) is plotted in Fig. 8(b). At the beginning
and end of the profile [i.e. to the left-hand side of position (1) and to the right-hand side of position (7) in Fig. 8], the lateral homogeneity
of the current system generates a magnetic field with a very small H,-component. At positions (1) and (7), that is, at y = 180 and 620 m,
the magnetic field H,, due to the resistive host is larger than the magnetic field H, due to the conductive block, leading to a maximum
and a minimum of the real part of the VMT at (1) and (7), respectively. At positions (2) and (6) to the sides of the block, that is, at y =
260 and 540 m, the H,-components of Hy and Hy, are equal in amplitude but point in opposite directions, leading to zero-transitions of the
real part of the VMT. The minimum, zero transition and maximum of the real VMT response at positions (3), (4) and (5), respectively, are
similar in both the quasi-static and general cases (see Fig. 5i). Though in magnitude smaller than the current system in the block, the lateral
current system is strong enough to generate a commensurable maximum and minimum of the real part of the VMT at y = 180 and 620 m,
respectively (Fig. 8b). Hence, the main effect of displacement currents on the real part of the VMT is to increase the response at the edges
of the conductor. As noted before, there are no such distinct maxima or minima associated with the lateral sign reversals in the quasi-static
VMT response at f = 250kHz (star symbols in Fig. 5i). The reason is most likely that the vertical extent of the current systems and the
total current strengths to the sides of the block (Figs 7b and d) are smaller than in the general case with displacement currents (Figs 7a and
c), whereas the current within the conductive block has a comparable amplitude in both cases. It should also be noted that the imaginary
part of the VMT increases quite strongly in amplitude if displacement currents are included (Fig. 5k). An explanation with regard to the
imaginary part of the current density (shown in Fig. 7c) does not appear to be possible as the imaginary part of H, and the real part of H, are
involved.

3.2 Inverse modelling examples

Synthetic responses of a simple 2-D model (Fig. 9), with constant relative dielectric permittivity e, = 5 and an elongated block with a
resistivity of 1000 €2 m that is buried in a resistive layer of 10000 €2 m and underlain by a half-space of 500 &2 m, were computed for the TM-
and the TE-mode. The responses were computed at 20 receiver sites for 15 frequencies, ranging from 10 to 250 kHz giving a total of 600 data
points. Gaussian white noise, corresponding to 2.5 per cent of the modulus of the computed impedances, was added to the forward responses
of both polarizations.

After that, two inversions of the synthetic data set were performed with the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000).
During the first inversion, displacement currents were allowed for, whereas they were neglected during the second inversion. In both inversions,
the error floor was assumed to correspond to 2.5 per cent of the modulus of the impedances, and the starting model was a homogeneous
half-space of 10000 2 m.

After six iterations with the inversion that allows for displacement currents, a model was obtained (Fig. 10), which fits the data to a rms
misfit of 1.04. Additional iterations with REBOCC did not decrease the rms misfit further. The inverse model reproduces the edges of the
block and the resistivities of the block and layered half-space rather accurately. The transition from the lower edge of the conductor into the
resistive layer is, however, smeared out.
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Figure 10. 2-D REBOCC inversion result of synthetic data from the 2-D block model in Fig. 9. Displacement currents were allowed for during the inversion.
After six iterations, a rms misfit of 1.04 was reached. The inverse process has reconstructed the edges of the conductive block and the resistivities of the block
and layered half-space rather accurately. The lower edge of the conductor is smeared out due to the damping of the electromagnetic field in the block.
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Figure 11. 2-D REBOCC inversion result of synthetic data from the 2-D block model in Fig. 9. Displacement currents were not allowed for during the
inversion. After four iterations, the lowest rms misfit of 1.95 was reached. Artefactual structures in the form of a conductive near-surface layer, two resistors at
the sides of the conductive block, a distorted shape of the block and a too large depth to the top of the confining half-space are consequences of the omission
of displacement currents during the inversion.

Neglecting displacement currents results in convergence problems and an inverse model with many artefactual structures (Fig. 11). The
lowest rms misfit of 1.95 was obtained after four iterations. Clearly, an artefactual thin conductive layer is visible at the surface (a similar
conductive layer is also observed by Persson & Pedersen (2002) in 1-D inverse models, computed in the quasi-static approximation, for
synthetic data of a homogeneous half-space). The lateral extent of the conductive block and the top of the central parts of the block are grossly
in error. Two artefactual resistors with resistivities close to 100 000 &2 m appear to the left- and right-hand side of the block. The depth to the
top of the underlying conductive layer is shifted from 105 to 130 m. If the synthetic data were generated from a model without the underlying
conductive layer, the artefactual resistors would be observed, both to the sides of and below the conductive block (not shown).

A comparison of the relative errors, that is, the differences between the synthetic data and the forward responses scaled by the data
errors, generated by the two inverse schemes, is shown in Fig. 12. The relative errors from the inversion that accounts for displacement currents
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Figure 12. Relative errors obtained from the inversions of the synthetic data of the model shown in Fig. 9. The relative errors from inversions that account for
displacement currents and that neglect displacement currents are shown in the left- and right-hand columns, respectively. The relative errors of logip pa and ¢
for the TM-mode are shown in panels (a)—(d), whereas the relative errors of log1o pa and ¢ for the TE-mode are shown in panels (e)—(h). Systematic deviations
from the synthetic data are mostly observed at high frequencies and stations to the sides of the conductive block for the model from the inverse scheme that
does not allow for displacement currents (Fig. 11).
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Figure 13. Sensitivity matrix entries for the block model in Fig. 9 and the TE-mode apparent resistivity at f = 250 kHz and a receiver site at y = 90 m (to the
left-hand side of the conductive block). The receiver site is marked by a triangle. The edges of the conductive block and the interface between the upper layer
and the confining half-space are depicted as solid black lines. Sensitivity values, which are close to 0, are plotted in white. As expected, sensitivities are largest
at the left-hand upper edge of the conductive block and the sensitivity entries of the general case (panel a) encompass a larger volume with non-zero values
(observe the negative sensitivity values marked in green) than those calculated in the quasi-static approximation (panel b).

(left-hand column of Fig. 12) show relatively random deviations of the forward data from the synthetic data. In contrast to this, the relative
errors from the quasi-static inversion (right-hand column of Fig. 12) exhibit systematic deviations in the form of frequency ranges common to
groups of neighbouring stations, with relative errors that have absolute values significantly larger than one and the same sign. The systematic
deviations originate from the false assumption that displacement currents can be neglected during the inversion. As expected, the misfit is
most severe at high frequencies and receiver sites to the sides of the conductive block.

As an example, the row of the sensitivity matrix for the block model in Fig. 9 and the TE-mode apparent resistivity at f =250kHz and a
receiver site at y = 90 m (to the left-hand side of the conductive block) is shown in Fig. 13. Model parameters with sensitivities close to zero
(shown in white colours in Fig. 13) have little influence on the considered data item. As expected, sensitivities, which were computed for the
general case (Fig. 13a), encompass a larger volume with non-zero values than those computed in the quasi-static approximation (Fig. 13b).
Especially, the depth extend for the non-zero sensitivity values of the general case is larger. This larger depth range is equivalent to a larger
depth of investigation for the general case as already indicated in Section 2.4.

4 A FIELD DATA EXAMPLE

Linde & Pedersen (2004) investigate highly resistive granitic bedrock on the small island Avre, Sweden, with tensor RMT, in the frequency
range of 14-226 kHz. RMT data were acquired on an east-west profile, with a total length of 960 m and a station spacing of 10 m. On Avro,
the typical soil thickness is between 0 and 1 m. The bedrock consists mostly of granite. In some locations, aplitic and pegmatitic dykes
are encountered (Gentzschein et al. 1987). Previous geophysical studies include borehole measurements by Gentzschein et al. (1987) and
a seismic reflection study on the same profile by Juhlin & Palm (1999). A normal-resistivity log and a fracture frequency log of borehole
KAVO01, located in the central part of the profile, reveal an upper weathered layer, with a thickness of up to 30 m and a resistivity of about
600 22 m, followed by almost intact and highly resistive bedrock down to a depth of 200 m and with a resistivity between 32 000 and 40 000 2 m
(Gentzschein et al. 1987). Between 200 and 400 m depth, the resistivity slowly decreases to 10 000 2 m. At greater depth, the bedrock is more
fractured and saline pore fluids decrease the electrical resistivity to a few thousand 2 m. Juhlin & Palm (1999) describe two major seismic
reflectors (see Fig. 14d) for the depth range down to 400 m. Reflector C is located beneath the western part of the profile, at a depth between
100 and 320 m and dips approximately 60° to the east. Reflector D is located beneath the central part of the profile at a depth between 150
and 200 m and dips approximately 20° to the west.

To mitigate the effects of displacement currents, Linde & Pedersen (2004) restrict the data set used in quasi-static 2-D inversions with
the REBOCC scheme (Siripunvaraporn & Egbert 2000) to frequencies up to 56 kHz. Linde & Pedersen (2004) perform inversions for the
TE-mode, TM-mode, TE- and TM-modes together and the determinant of the impedance tensor. By computing synthetic TE-mode, TM-mode
and determinant data for a 3-D model and comparing the corresponding 2-D inversions, Pedersen & Engels (2005) show that the inversion
of determinant data is less prone to introducing artefacts from 3-D structures off the profile to 2-D inverse models. Furthermore, the inverse
model of the determinant data, presented by Pedersen & Engels (2005) has a better data fit than their other models. For the inversion of the
RMT data from Avrd, this leads us to concentrate on the inversion of determinant data, as the data at both ends of the profile show a high
degree of three-dimensionality (Linde & Pedersen 2004). At a few stations, the determinant data of the highest frequencies (160 and 226 kHz)
have very small negative phases, which can be indicative of displacement currents (Song et al. 2002). As the rather irregular behaviour of the
apparent resistivities at the same stations and frequencies hints at problems with measurement accuracy, we excluded such data points from
the inversion.

In the following, we examine the effect of displacement currents, by first considering the inversion of the restricted set of frequencies and
then for the full set of frequencies. For each data set, inversions were carried out in both the quasi-static approximation and with displacement
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(b) model DL for the low-frequency data set and the general case with displacement currents

Figure 14. Models of the inversion of determinant data from Avro for (a) the low-frequency data set in the quasi-static approximation (model QL), (b) the
low-frequency data set allowing for displacement currents (model DL), (c) the full set of frequencies in the quasi-static approximation (model QF) and (d) the
full set of frequencies allowing for displacement currents (model DF). The lines marked by C and D indicate seismic reflectors from Juhlin & Palm (1999)
(their fig. 8). The resistivity values of borehole KAVO0L1 are taken from the normal-resistivity log presented in Gentzschein et al. (1987). In contrast to models
QL and QF, models DL and DF have a more realistic range of resistivities if compared in terms of the range observed in the normal-resistivity log. Furthermore,
the resistivity—depth section of model DF at borehole KAVO0L1 is in good agreement with the normal-resistivity log down to a depth of 230 m, and the positions
of the seismic reflectors are in good agreement with resistivity contrasts in model DF.

currents. We assumed the relative dielectric permittivity to be e, = 6, which, for granite, is in the range between 5 and 8, given by Reynolds
(1997). Variation of the permittivity in this range leads to only small differences of the resistivity models for the Avro data (not shown).

Our quasi-static determinant model for the lowest frequencies up to 56 kHz (model QL) in Fig. 14(a) resembles the corresponding model
by Linde & Pedersen (2004) (their fig. 9d) strongly. We did not include the shallow sea (less than 10 m deep) to the east of Avrd as a priori
information, as this turned out to be of negligible importance. The central unfractured granite reaches resistivities up to 500 000 2 m. The
conductor at the western end of the profile is interpreted by Linde & Pedersen (2004) as a 150 m wide wet fracture zone, assumed to be related
to seismic reflector C of Juhlin & Palm (1999), although the positions of the conductor and reflector are not in very good agreement. The
subhorizontal seismic reflector D does not appear to be related to any structure in the resistivity model. The rms misfit of model QL is 1.56.

The inversion with displacement currents for the low-frequency data set gives a model (model DL in Fig. 14b) with a significantly
reduced range of resistivities from 300to 100000 2 m. The conductors at 50 and 850 m along the profile appear at greater depth and the
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Figure 14. (Continued.)

boundary between the central resistor and the western conductors is less steep than in the model QL (Fig. 14a). The rms misfit of model DL
is 2.03.

The quasi-static inversion for the full set of frequencies (model QF in Fig. 14c) leads to a transition into the top of the central resistor
that is sharper than in model QL (Fig. 14a). The resistivity of the central resistor is as high as 5 x 10° & m. The positions of the conductors
at profile metres 50 and 850 is very similar to the positions in model QL. The rms misfit of model QF is 3.16.

In comparison to the quasi-static inversions, the inversion with displacement currents for all frequencies gives a model [model DF in
Fig. 14(d) with an rms error of 2.60] that shows a less extreme range of resistivities, both at depth and close to the surface. The depth to the
conductors at both ends of the profile is about 50 m larger than in the quasi-static models QL and QF in Figs 14(a) and (c), respectively. The
model is also in better agreement with the positions of the seismic reflectors. The position of seismic reflector C conforms to an expected
boundary between an unfractured resistive granite body and water saturated fractured bedrock. Therefore, we would expect reflector C to
represent a boundary of rock units, with different grades of fracturing, rather than a 150 m wide fracture zone, as proposed by Linde &
Pedersen (2004). Similarly, reflector D appears to coincide with a subhorizontal boundary of rock units. Furthermore, the model in Fig. 14(d)
is in very good agreement with the resistivities of the normal-resistivity log of borehole KAV01 (Gentzschein et al. 1987), down to a depth
of 230 m. At greater depth, the model might be more influenced by the smoothness constraint imposed during the inversion than the data.
Compared with model DF, model DL (Fig. 14b) deviates from the normal-resistivity log at shallow depth down to 100 m and the positions of
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Figure 15. Models of the inversion of (a) TE-mode data (model TEDF) and (b) TM-mode data (model TMDF) from Avro for the full set of frequencies
allowing for displacement currents. The lines marked by C and D indicate seismic reflectors from Juhlin & Palm (1999). The resistivity values of borehole
KAVO01 are taken from the normal-resistivity log presented in Gentzschein et al. (1987). The resistivities of the central resistor in model TEDF are as high as
300000 2 m. Compared with model DF (Fig. 14d), neither model TEDF nor model TMDF shows similarly good agreement with the positions of the seismic
reflectors C and D or the normal-resistivity log.

the seismic reflectors are not as representative as bounds of different rock units. Hence, it appears that the inclusion of high-frequency data is
of great importance during the modelling process.

As a verification that the 2-D inverse models of determinant data are less biased by 3-D structures off the profile, the inverse models of
TE-mode data (model TEDF) and TM-mode data (model TMDF) are shown in Figs 15(a) and (b), respectively. In both inversions, the full
set of frequencies was used and displacement currents were accounted for. The rms fits of 4.56 for the TE-mode model (reached after nine
iterations) and 3.67 for the TM-mode model (reached after five iterations) are both significantly higher than that of model DF. The worst
data fits of models TEDF and TMDF (not shown) are obtained at the western end of the profile, where strong 3-D effects in the VMT are
observed by Linde & Pedersen (2004). In model TEDF, resistivities of the central resistor are as high as 300 000 &2 m. Compared with model

© 2008 The Authors, GJI, 175, 486-514
Journal compilation © 2008 RAS




506 T. Kalscheuer, L. B. Pedersen and W. Siripunvaraporn

DF (Fig. 14d), neither model TEDF nor model TMDF shows similarly good agreement with the positions of the seismic reflectors C and D
of Juhlin & Palm (1999) or the normal-resistivity log by Gentzschein et al. (1987).

5 DISCUSSION AND CONCLUSIONS

We demonstrated the effect of displacement currents on 2-D TM-mode, TE-mode and VMT data, measured with the RMT method at
frequencies between 10 and 300 kHz. Forward modelling of subsurfaces with resistivities larger than 1000 2 m confirms that responses
computed in the quasi-static approximation, that is, when displacement currents are neglected, become increasingly inaccurate, with rising
frequency. For a homogeneous half-space, both apparent resistivity and phase, computed with displacement currents, decrease from their
constant values in the quasi-static approximation, with increasing frequency. At high frequencies, the dielectric effect leads to the occurrence
of distinct sign reversals in the real part of the VMT, which are not observed in the quasi-static approximation and might lead to artefactual
2-D or 3-D structures in an interpretation, based on the quasi-static approximation.

The interpretation of high-frequency RMT data with an inverse scheme that operates in the quasi-static approximation will inevitably
lead to an inverse model with artefactual structures. As can be seen from the quasi-static interpretation of our synthetic data example in
Fig. 11, the resistivities found in this inverse model vary over a larger range than those of the true model (Fig. 9). Typical artefactual structures
include conductive near-surface layers, regions of excessively high resistivities next to conductors, as well as conductors that deviate strongly
from their true shapes and positions. As only the resistivity distribution is inverted in the scheme presented here, a value for the dielectric
permittivity must be chosen before the inversion. The relative dielectric permittivity of bedrock is typically in the range of 5t0 9 (e.g. Reynolds
1997, table 12.3), and a variation in this range does not lead to any important differences in the obtained resistivity models.

Typically, the primary EM field from remote radio transmitters has an angle of incidence that is close to grazing incidence at the
measurement site. The assumption of vertically incident plane waves in the modelling code is a limitation, which is of minor importance in
many practical situations. Often, a conductive surface layer consisting of, for instance, weathered bedrock or glacial till is present in the area
of interest and refracts the incident field towards the vertical due to its relatively low resistivity.

For the Avrd field data, the inversion that allows for displacement currents and includes high-frequency data produces a model that is in
very good agreement with the results of other geophysical methods. The seismic reflectors C and D by Juhlin & Palm (1999) coincide with the
boundaries between structures of different conductivity (Fig. 14d). The resistivity depth section of the model at borehole KAV01 matches the
normal-resistivity log by Gentzschein et al. (1987) very well, down to a depth of 230 m below which the model might be strongly influenced
by the smoothness constraint applied during the inversion. The inverse models computed in the quasi-static approximation (Figs 14a and c)
contain artefactual structures, with unrealistically large resistivities, even if only the low-frequency data set is inverted (Fig. 14a).
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APPENDIX A: FINITE-DIFFERENCE APPROXIMATION

The derivation of the finite-difference approximation (FDA) with the integration method following Hohmann (1987) and Aprea et al.
(1997) is particularly instructive. In a finite-difference mesh, a node (i, j) is a corner point of four finite-difference cells, with admittivities
9ifl/2,jfl/2’ 9i+1/2,j71/2v 9i71/2,j+1/21 and 9i+1/2,j+1/2 (Flg Al) The cells have widths Ayi—l/Z and Ayi+1/2 and helghts AZJ',]_/Z and AZj+1/2.
The rectangle A has the centres of the cells as its corner points (Fig. Al). It is assumed that the horizontal electric field component of the
TE-mode and the horizontal magnetic field component of the TM-mode at node (i, j) are E:J and HJ, respectively, and that the magnetic
permeability is equal to its vacuum value wo. Nodes along the boundary of the finite-difference mesh are called boundary nodes. All other
nodes are called inner nodes. Finite-difference equations for the TM- and TE-mode are obtained by integrating eqgs 14 and 13, respectively,
over the surface of A. This surface integral is then transformed to a contour integral around the perimeter d A of the surface A with Gauss’
Theorem.
Hence, for the TE-mode,

29 X = . X = . X |7
/A(zyE )dA /A(v VE,)dA /BA(n VE,)d (A1)

where n is an outward unit normal vector on the edges of A.
The part of A, for instance, which is entirely situated to the upper left-hand side of node (i, j), contributes to the surface integral in
eq. (A1) with

u e LAYl AZj
/ (Z9Ex) dA~ 2§ 12.-12E}’ Sz B2i-ye (A2)
A 2 2
For the upper edge of the rectangle A, for instance, the integral around the perimeter d A can be approximated as
v ELl — ELIZ1T Ay, Ayi-
/ (n-VE,) dl ~ [— X x ] Yirie + Bz (A3)
9A AzZj 1y 2

where (Ayiy12 + AYi_12)/2 is the length of the perimeter d A on the upper edge of A and n, which equals (0, 0, —1) on the upper edge of
A, collects the vertical component of VE,, that is, (VE), ~ (EL] — ELI71)/Az;_4 -, multiplied by —1.
In total, this leads to the following approximations (cf. Aprea et al. 1997):

1
/A (295 dA~ J2911EL + 0 (8%, (A%)
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. Ayiyp AYiin R
PO *
A . . A
Az yi-1/2,j-1/2 (1’3'1) yi+1/2,j-1/2
§-172
i S
(i-1,j) (i+1,))
AZj+l/2
A A
yi-1/2,j+1/2 yi+1/2,j+1/2
v ‘ . .

(1,j+1)

Figure Al. Finite-difference mesh around node (i, j). The four surrounding cells have admittivities §i _1/2 j_1/2, Vi+1/2,j-1/2, Yi—1/2,j+1/2 and Yi1/2,j11/2.
The heights and widths of the surrounding cells are Azj_1,, and Azj,1,2 and Ay;j_1,2 and Ayj 1,2, respectively. The rectangle A has its corner points at the
centres of the cells.

/ (n- VE ) dl ~ A2 £ A [EL"“ -E_EJ- EL‘H]
dA

2 Azj+l/2 AZJ',]_/Z
A2j+1/2 + Azl‘,l/z |:E)I(Jr:LJ — E)I(’J E)I(’J — E;il’j]
+ _
2 AYit12 AYi_12
+0(4?), (A5)

where

37.'”} = Yi_1/2,j-12AYi-12AZj_1/2 + Viv1/2,j-12AYir12AZj_1/2

+ Vic1y2,j4128Yi-12AZj 1102 + Tivay2,j412AYi112AZj41)2, (A6)

g = - gin (A7)
. AYi—12A0Zj 12 + AVis120Z 12 + AVic120Zj112 + AVig120Zj112 "

and O(A?) are terms of second or higher order in AYis1/ OF AZj11)0.
After rearranging, one obtains

0= ZMEL]H +2ME;H
AZjip Az
4ot T AL iy o ALz A2t gio
AYita2 AYi_12
_ {ZAyi+1/2 + AYi_12 n ZAyM/2 + AYi_1)
AZji2 AZj 1)
AZ; AZi_ AZ: Azi _ B
S Yot kL + AZj_ap 4 pRity2 + AZj_yp n 2yimjt} = o
AYiy1y2 AYi_1j .

Similarly, the FDA of the TM mode can be derived. Gauss’ Theorem gives

A(iHX)dAzﬁ(V-%VHX> dsz/;A (n-%VHX> dl (A9)

and the single terms can be approximated as

(AYit12 + AYi_12)(AZjr1p2 + AZj_1)2) +
2

/(2HX) dA ~ 2H} 0 (4%, (A10)
A
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od o
2 Vi, Atine Vi, A

[ (o bor Yo Ao [ L B 3
A

n AZJ'+1/2 + AZj,1/2 1 H)i+1‘j — H;J 1 H;’j — H;il'j

2 er AYiy1)2 2:] AYi_12

+ 0(A?), (A11)

where the vertically and horizontally averaged inverse admittivities are given by

1
—AVippt ——AVip
1 Vinpjae Yi-1/2,j+1/2 (A12)

y.. B AYit12 + AYicaye ’

1
—AViy1p + ——AYi_1p
1 Yit1/2.j-1/2 Yi—1/2.j-1/2 (A13)

Yi; AYit12 + AYi—ay ’

1 1
——AZjp1pp + ———AZj_1p2
1 Vivpjpe Yit1/2.j-1/2 (A14)
AZjy10 + AZj_1p2 ’

1 1
——AZjp1p + ——AZj_1p2
1 _ Yy Yi-1/2,j-1/2 (A15)
AZjy10 + AZj_1p2

y

RAN

Again, rearranging gives

AYj AYi_ 1 .. AYj AYi_ 1 -
0=2 Yit1/2 + AYi 1/ZTH>:_J+1+2 Yit12 + AYi l/ZTH;"J_l
AZji1p ¥, AZj 1y Y
AZ; AZj_ 1 . AZ; AZi_ R
12 j+1/2 + AZj 1/2TH):+1,J+2 j+1/2 + AZj 1/2TH):,1,J
AYitay2 Yi; AYi_12 %,
_ 2Ayi+1/2 + AYi_12 % N 2Ayi+1/2 + AYi_12 i

Azjnp 9] Azjap
AZjyip+AZj g 1 P AZjiyp + AZjap 1
AYit1)2 ZJ AYi_12 X:J

+2

+ 2 (AYit12 + AYic1y2) (AZjrao + AZj_1pp) pHY (A16)

If considered at all inner mesh nodes (i, j), eqs (A8) and (A16) form systems of linear equations in the unknown horizontal electric and
magnetic field components of the TE-mode and the TM-mode, respectively. Assuming that there are N, air cells, N, earth cells and a total
of N; = N + Ny, cells in the vertical direction and Ny cells in the horizontal direction, the horizontal field components E, or Hy are to be
computed at (N, — 1) - (N, — 1) inner mesh nodes. Boundary values have to be supplied at the edges of the mesh. Along the upper edge
of the air half-space, the incident plane wave is assumed to have unit amplitude and zero phase. At the lower edge of the earth half-space,
the electromagnetic (EM) field is assumed to have totally decayed, and along the lateral edges, the horizontal field components E, or Hy
are assumed to be that of the corresponding 1-D admittivity section along the particular side. This results in a system of (N, — 1) - (N,
— 1) linear equations Kx = s (one equation for each interior node), with the coefficient matrix K, the vector x of unknown horizontal field
components of the TE- or TM-mode and a vector s of boundary values. If a central node is located next to one or two boundary nodes, the
terms in eqs (A8) or (A16), which contain the electric or magnetic boundary field components, are placed in the corresponding row of the
right-hand side vector s. If the nodes are arranged such that the vertical index j varies fastest, the finite-difference eq. (A8) or (A16) of central
node (i,j) is contained in row number (i — 2)(N; — 1) + (j — 1) of Kx =s.

The auxiliary field components (Hy, H,) of the TE-mode are derived as partial derivatives of E, at the air-Earth interface (nodes at j =
N.. + 1), by expanding E, in a Taylor series of second order, around the considered node (i,j) and substituting eq. (13) for the second-order
term as proposed by Weaver et al. (1986). Vertical expansion, both upwards and downwards from the considered node yields a central
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difference formula for the horizontal magnetic field component H, as

_anii = (25
y 9z )

__AzjapAzia, | BT BT
AZji1+ Azj_yp | AZ2

- 2
12 A1

1 1 1, .4 - .
— — +29(99 —9u ) | ELI Y
|:AZ%+1/2 AZ%,UZ 2 (yI’J y"J)i| X } (A7)
where
)A/id,j _ 9i+1/2,j+1/2Ayi+1/2 + yi—ll/z.jJrl/ZAyi—l/Z’ (A18)
AYiti2 + AVio12

Vi i—12AYi Vi_1/2.i_12AYi_
wj _ Yixrzj-128Yi41 + Vic12,j-128Yi-1,2 . (A19)
AYiy1y2 + AYio1y2
Similarly, horizontal expansion both to the left- and right-hand side of the considered node yields a central difference formula for the vertical

magnetic field component H, of the form

Y /i
AYit12AYi—1)2 { E)i(+1'j Ei_l’j

AYiviz + AYiciz | AV Ayiz—l/z

- 7§ - % 2 (9, —9;) | EX (A20)
AV AV, 2 ' '

where

N Vit1/2, 412821172 + Vig1/2,j—1/2AZj—

y{j _ Yir1/2,j+1/28Zj1172 + Yiv1/2,j-1/2BZj-1/2 (A21)
AZjip + AZjap

. Vi—1/2.j+128Zj 4172 + Yi—1/2.j-12 A2

yil.j _ Yi12i4128254172 1 Yi-1/2,-1/2 82 12 (A22)

AZjiip + AZjay

A corresponding derivation of the auxiliary electric field components (E,, E,) of the TM-mode follows Weaver et al. (1985). The horizontal
electric field component E, is computed by expanding Hy in a Taylor series, both upwards and downwards from the considered node (i, j).
Hence,

ji,j_<3Hx) _ Nij (A23)
y 0z i A2j+1/2 + AZJ',]_/Z ’

where
N = Dz pign - Az i O ( HA o H )
T Az Azjip * 2 \AViype  AYip
[AZHI/Z _ A% | LAYz — AYive
AZjip  AZjp o 2 AYispAYiap
AAZ'_l/zAZ‘ 172 (A ~d L
R (RS )] LS
0 - __AZi-1pAZivp |:yd ( 11 >
o AVi_1p + AYire [T \Vizyzjrre  Yicyzjrie

~u ( 1 1 )]
=Y. .| = — = .
I\ Vivyzj-12 - Yiezj-12

After obtaining j\’ from the above equations, the two one-sided values E}~ and E|* of the electric field component E, can be computed.
In contrast to eq. (24) in Weaver et al. (1985), the current density jiy*j must be divided by the left- and right-hand sided vertically averaged
admittivities (eqs A22 and A21, respectively) to obtain E|~J and E\*J, respectively, that is,

9 E T =9 =)0 (A24)
The use of averaged admittivities is motivated by considering the integrated current I, = ffx_z_p,ane jy dxdz through any surface y = const.
~avg

To assign a unique value to E}J, the current density j/ is typically divided by the average admittivity §;';° given in eq. (A7), that is,
JPES = j)). (A25)
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APPENDIX B: SOLUTION METHODS FOR LINEAR SYSTEMS

As shown in Appendix A, the FDAs of Helmholtz egs (13) and (14) result in system matrices that are sparse, complex and symmetric
with two subdiagonals and two super-diagonals. For the solution of the FDAs, both direct and iterative solvers are desirable. The solution
with a direct method is rewarding, as soon as the same system matrix is used for the solution with multiple right-hand side vectors (Rodi
1976; Siripunvaraporn & Egbert 2000), for example, for multiple pseudo-forward problems arising in the computation of the sensitivity
matrix (see Appendix C). As the system matrix is non-Hermitian and, hence, not positive-definite, the LU-decomposition rather than the
Cholesky-decomposition has to be used as a direct method (Golub & van Loan 1996). If the system of linear equations is to be solved for a
single right-hand side vector, an iterative solver can provide significant computational savings over a direct method. The iterative bi-conjugate
gradient method (BiCG), which is used by Siripunvaraporn & Egbert (2000) for quasi-static problems, breaks down if applied to the general
forward problem with displacement currents. Freund (1992) gives two possible reasons for the breakdown. As the proper inner product for the
base vectors of a Krylov subspace constructed during the Lanczos process of complex-symmetric matrices is (x, y) = X"y, quasi-null vectors
@, V) = \7}\7] = 0 may occur and cause a division by zero, during the normalization of the new base vector vj = V;/(V;, ¥;). In computer
arithmetic, the tridiagonal matrix, constructed during the Lanczos-process, might be nearly singular and the solution update, constructed from
the Petrov-Galerkin conditions, might give a bad approximation to the true solution, leading to erratic convergence behaviour with wildly
varying residual norms. It should be possible to circumvent these problems by using the quasi-minimal residual method (QMR) as proposed
by Freund (1992), where the problem of quasi-null vectors is amended with look-ahead techniques and the Petrov—Galerkin conditions are
replaced by a quasi-minimal residual property. We have not yet succeed, however, in implementing the QMR solver for the general forward
problem with displacement currents. Therefore, we use the direct LU-method as the sole solver at present.

APPENDIX C: COMPUTATION OF THE SENSITIVITY MATRIX

An efficient scheme for the computation of sensitivity matrices was proposed by Rodi (1976) and Rodi & Mackie (2001). The kth impedance
or VMT datum for a given model m is expressed in terms of the horizontal electric or magnetic field component of the TE- or TM-mode,
respectively, as

~adm) x(m)

Zkm)y= ——" "~ (C1)
by (M) x (M)

where
Hy at inner mesh nodes for TM-mode impedance

x(m) = (C2)

E, at inner mesh nodes for TE-mode impedance or VMT

and ax(m) and by(m) are coefficient vectors from the central difference computation of the auxiliary fields in the TM-mode impedance,
TE-mode impedance and VMT.
The entry of the sensitivity matrix for the kth impedance or VMT datum with respect to (w.r.t.) the Ith model parameter is then computed

as
aZ* (m)
Jkl m) =
(m) o
1 a(ax)  aix 3(bfx)
bix om! (be)z om!
1 da alx b\ 1 al x T ax
= Tik— k 27‘( X+ Tak—kizbk —_—. (C3)
by x am! (b x) am! by x (b7 x) am!
The definitions
1 ag x
Ck = & — ——— b, (C4)
bex ™ (bTx)®
1 da alx ab
i = | oot ~ T T (©)
b,x am (b7 x) am
and the relation from the forward problem,
0X K as
=y — Cc6
om! 3m'X+ om!’ (©6)
give
oK as
kl _ -
J (m) = dLX-’-CEK 1 <—mx+ W)
K as
= dax+ug <_Wx+ W) €7
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where the computation of uy as a solution of the pseudo-forward problem KT uy =c, exploits the reciprocity of the forward problem (i.e. the
symmetry of the forward system matrix K and its inverse). The computation of uy, fork =1, ..., N is significantly faster than the computation
of K™3(— ﬁx + ﬁ) forl =1, ..., M in the case of typical 2-D problems, where the number of model parameters exceeds the number of
data, that is, where M > N.

A model parameter m' = pi 1/ j41,2 is connected to the cell to the lower right-hand side of a node (i, j) through | = j — N, + (i — 1)
*N . Similarly, each data index k is connected to a single surface node (is, js = N, + 1) for a given frequency, where i and j; indicate the
node at which a certain receiver station is located.

C1 TM-mode

The computation of the sensitivities for the TM-mode turns out to be intriguingly complicated, as the derivatives of inverse admittivities w.r.t.
resistivities are involved.

In the TM-mode, E, is expressed through a, and Hy according to egs (A23) and (A25) and by is zero except for the kth entry, which is
1. Hence,

ax = E‘y‘,
bfx = H)
and
1 Zy,
G=—a——|0....0, 1 .0,....0], (C8)
Hx HX kth entry
1 0day

The computation of dy, is simplified as by does not depend on any model parameter. Furthermore, as ay is computed with a five-point-stencil
FDA, each ay depends only on the admittivities of the four cells surrounding a node (is, js), with a receiver, and sensitivities are only computed
for the resistivities of two such cells, that is, those immediately below the surface. Consequently, the indices of the involved model parameters
areis —1/2, js+1/2andis + 1/2, js + 1/2, respectively. For brevity, the notation i = is and j = j, is used. Egs (A23) and (A25) yield

aa{ X=j yavgi 11 Azj_ 1/2A21+1/2
0Pi+1/2,j+1/2 y yavg 2 AZji10 + AZj_1p
397
-2 Li H, !

pixry2 412 AYi_1/2 + AVYiy12

ol G )
0piz1y2. 412 L7 \Vivyzjare Vicyzjerpe

< Hh Ayisae — Ay L _ H )}
AYiy1y2 AYi_1pAYij1p " AYi_12
N 1 1 Azj_;Az
:JbaX?\/—gi‘f‘ = j—1/284j+1/2
g Yij 2 AZj10 + AZj1p

[(_289(& Ayu+1/z—Ay| 12 p )
i AYit12AYi- 1/2

1 +
= pERI+LI _ pi.H 11]7 C10
AYisap ¥ Ay M (C10)
where the definitions
0 1
ayavgi = -ag
dpixrsz.j+12 \ Vi
B AYit12 + AYicyyp Ay AZji1p o2
= — ~ s AYix1 2Ot jy12
(yir,j AYiti2 + yil,j AYi_1)2) AZjpp + AZjyp
1 1 Ay, AZjiap o2
= — 12— —0j j+1/2>
I T A+ LAY Az Az, TR
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ad

39% = My
=L 0pix1y2, 412
2
AYiv12 + AYi—12 Oi1)2,j 4172
- 1 1 2 AYiil/Zyzi
i+1/2,j+1/2
(%Ayiﬂ/z + AiAyFlﬂ) /2,i+1/
Yit12j+172 Yi-1/2,j+1/2
od
2
= %) A Oit1/2,j+1/2
- 1 1 Yit1/2 TR
—AYippt+———AVYiap i41/2,j+1/2
Yit1/2,j+1/2 Yi—1/2, 4172

SRR R Y-
MU A + AYicae Opizae e [T \Sivyz iz Yicyejee

1 adt ( 1 _ 1 ) ~d Oix1/2,j+1/2
AYipap+ AVica | T \Gizine  Siziae/) T T 00
were used. The quantity § is given according to eq. (A7).
The derivative of the system matrix of the forward problem K w.r.t. a single model parameter m' in eq. (C7) results in a matrix aK/dm'
that has only four rows with non-zero entries. The parameter m' = Pi+1/2,j+1/2 enters into the rows of K that correspond to the central nodes
@i,5, G, j+1,(0+1 jand (i +1, j + 1) (cf. Fig. Al), that is, into rows number

iul=(30-2(N,—1)+ (-1 (C11)
idl=(—2)(N, - 1)+ j (C12)
iur = (i —)(N, 1) +(j — 1) (C13)
idr = (i — 1)(N, — 1) + j. (C14)

The computation of 9K /am' is further simplified by the symmetry of K. For a central node (i, j) the coefficient of the EM field component
at its right-hand side node is the same as the coefficient of the EM field component at the left-hand side node of its neighbouring central
node (i + 1, j). Similarly, for a central node (i, j) the coefficient of the EM field component at its lower node is the same as the coefficient of
the EM field component at the upper node of its neighbouring central node (i, j + 1). Furthermore, as the left- and right-hand coefficients
contain vertically averaged inverse admittivities and the lower and upper coefficients contain horizontally averaged inverse admittivities, the
derivative of the coefficient of the right-hand node of the central node (i, j) w.r.t. pi; a2 j+1/2 equals the derivative of the coefficient of the
right-hand node of its neighbouring central node (i, j + 1) W.r.t. piy1/2 j+1,2. Similar rules are valid for the coefficients of left-hand, upper
and lower nodes at correspondingly neighbouring nodes. Hence,

oK(iul,iul + (N, —1))  aK(idl,idl + (N, —1))  aK(iur,iur — (N, — 1))

0pi11/2.j+1/2 00i+1/2,j+1/2 0Pi+1/2.j+1/2
_oK(idr,idr — (N, — 1)) 2A2j+1/z Ui2+1/2‘j+1/z C15
a/OiJrl/z,j+1/2 AYi+1/2 9i2+1/2,j+1/2 ’ ( )
aK(iul,iul +1) _ aK(iur,iur + 1) _ aK(idl,idl — 1)
00i4+1/2,j+1/2 00i41/2,j+1/2 0Pi+1/2,j+1/2
aK(idr, idr —1 AYii12 Oiij i
_ ( ) —2 Yiv1/2 A|2+1/2,1+1/2’ (C16)
9pi+1/2,j+1/2 AZji1po Vg 4172
aK(iul, iul) _ aK(iur,iur) _ aK(idl, idl)
00i41/2,j+1/2 00i41/2,j+1/2 0pi41/2,j+1/2
. aK(idr, idr)
0Pi11/2,j+1/2
— 2 AZjia Ui2+1/2,j+1/2 _2 AYiy1y2 0i2+1/2,j+1/2 (C17)

02 Y
AYivz Yivape jap AZjt12 Y 412

C2 TE-mode

In the TE-mode, H , is expressed through by and E according to eq. (A17) and ay is zero except for the kth entry, which is 1. Hence,
afx = EX,

bix = Hf
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and
1 Zx
&=-—0,...,0, 1 ,0,...,0] — by, (C18)
Hk —~— Hk
y kth entry y
dy = Zsy by (C19)
k= HE om!”

as ay does not depend on any model parameter.
The derivative in dJ; x is computed from eq. (A17) as

ab[ X — 1 AZJ'+1/2AZJ'_1/2

i1 jrre 2 AZjyp + AZj_ap

1 -
—02 . AV —> EiJ,
( i+1/2,j+1/2 ylil/sziJrl/Z"' Ayiap) (C20)

As m' only enters into the coefficient of the central node in eq. (A8), the matrix 3K /dm' contains only four non-zero entries, which are all
on the diagonal. Hence,

OK(iul,iul)  aK(dl,idl)  9K(iur,iur)  aK(idr, idr)
0pi41/2,j+1/2 0pi4+1/2,j+1/2 B 0pi4+1/2,j+1/2 h 00i4+1/2,j+1/2

= -1 (_O-i2+l/24j+l/2AZj+1/2Ayi+1/2) . (C21)

C3 VMT mode

In the VMT mode, H, is expressed through a, and E, according to eq. (A20) and H, is expressed through by and E, according to eq. (A17).
Hence,

agx = HX,
by x = Hy
and
1 By
Ok = @~ mbka (C22)
y y
A — 1 dag By abk (023)
N Hf om'  HEf om!”
The derivative in the first term of dJ, x is computed from eq. (A20) as
oay 1 AVijpAyio Az; o
Ky = DVinpdViape ( Ot jeis2 P ) B (C24)
0Pi+1/2,j+1/2 2 AYiy12 + AYi_1p ' AZji10+ AZj_yy

The derivative in the second term of dJ; x, that is, (3b,/am")T x, is already given by eq. (C20).
As the linear system of equations that is solved in the forward problem of the VMT is the one solved in the TE-mode, the entries of the
matrix dK/am' are given as in eq. (C21).
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