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บทคัดยอ 
 
 
ในโครงการนี้ เราเสนอโปรแกรมใหมที่ใชในการแปลความหมายขอมูล Magnetotelluric โปรแกรมนี้

เรียกวา WSMIX3DMT เปนโปรแกรมที่มีพ้ืนฐานความคิดมาจากสองโปรแกรมเกา คือ data space 

conjugate gradient (WSDCG3DMT) และ data space Occam’s inversion (WSINV3DMT) โปรแกรม 

WSMIX3DMT นี้เปนโปรแกรมที่ดัดแปลงทางคณิตศาสตรมาจากโปรแกรม WSDCG3DMT ดังนั้น

หนวยความจําที่ตองใชจึงเล็กนอยเม่ือเทียบกับ WSINV3DMT เหมือนกับของ WSDCG3DMT แต

แทนที่เราจะใช trade-off parameter ตัวเดิมตลอด inversion เราเปลี่ยนแปลงไปเรื่อยๆ เหมือนกับที่ทํา

ใน WSINV3DMT แตการเปลี่ยนแปลงนี้เปนไปตาม run-time ไมไดเปนไปตาม data misfit 

กระบวนการที่เราใชนี้ทําใหโปรแกรม WSMIX3DMT รนัไดเร็วกวาทั้ง WSDCG3DMT และ 

WSINV3DMT และในขณะเดียวกันก็ใชหนวยความจํานอยกวา สิ่งนี้ทําให WSMIX3DMT เปนโปรแกรม 

inversion ที่มีประสิทธิภาพสูงที่สุด โปรแกรมนี้ไดถูกทดสอบและเปรียบเทียบกับโปรแกรมเกาทั้งจาก

ขอมูลเทียมและขอมูลจริง 
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Abstract 
 
 
  
In this project, we create a new inversion scheme (WSMIX3DMT) based a mixed of the data 

space conjugate gradient (WSDCG3DMT) and the data space Occam’s inversion 

(WSINV3DMT) methods. WSMIX3DMT is mathematically a slight modification of 

WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in 

WSDCG3DMT. Instead of fixing the trade-off parameter, it is varied similar to WSINV3DMT. 

However, the variation is according to the run-time, not based on the data misfit. This strategy 

makes WSMIX3DMT faster than both WSDCG3DMT and WSINV3DMT, and at the same time 

requires least memory. This makes WSMIX3DMT as the most efficient inversions. 

Computational performances and comparisons of all three methods are demonstrated with both 

synthetic and field datasets.  
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กิตติกรรมประกาศ 
 
 
 ขาพเจาขอขอบคุณ สกว. ที่ใหโอกาสขาพเจาไดทําวิจัยในเรื่องที่ขาพเจาถนัดตอเน่ืองมาตลอด

ตั้งแตจบปริญญาเอก ทุนวิจัยสกว. นี้ทําใหขาพเจาสามารถใชเวลาทํางานวิจัยไดอยางเต็มที่และทํางาน

วิจัยที่มีคุณภาพเปนที่ยอมรับในกลุมคนทําวิจัยเรื่องเดียวกัน ซึ่งวัดไดจากการอางอิงใน SCOPUS หรือ 

ISI database รวมทั้งการที่ขาพเจาไดรับเชิญไปบรรยายในการประชุมตางประเทศหลายๆ แหง ทุนวิจัย

นี้ยังสามารถทําใหขาพเจาไดใชเวลาเต็มที่ในการเตรียมบุคลากรและนักศึกษาในการทําวิจัยในสาขาธรณี

ฟสิกสในอนาคตเพื่อเปนประโยชนตอประเทศ ซึ่งผลงานที่เกิดกับนักศึกษาก็จะมีปรากฎออกมาเรื่อยๆ   

นอกจากนี้ ขาพเจาตองขอขอบคุณ Prof. Dr. Gary Egbert จาก Oregon State Universiy, 

Associate Professor Dr. Makoto Uyeshima และ Professor Dr. Hisashi Utada จาก Earthquake 

Research Institute (ERI), University of Tokyo และ Professor Dr. Yasuo Ogawa จาก Tokyo 

Institute of Technology ที่สนับสนุนงานวิจัยขาพเจามาโดยตลอด และทั้งนี้ก็ตองไมลืมที่จะขอบคุณ  

ผศ. ดร. ศรีสุดา วรามิตร หัวหนาภาควิชาฟสิกสและผูรวมงานคนอื่นๆ ในภาควิชาฟสิกสที่ชวย

สนับสนุนขาพเจามาโดยตลอด รวมทั้งนักศึกษาในกลุมวิจัยธรณีฟสิกส มหาวิทยาลัยมหิดล ที่รวมกันฝา

ฟนอุปสรรคตางๆ เพ่ือความเปนเลิศในงานวิจัยดานนี้ นอกจากนี้แลวยังมีเพ่ือนๆ จากภาควิชาอ่ืนๆ อีก

ดวย รวมทั้งทานคณบดีและทีมงานคณะวิทยาศาสตร มหาวิทยาลัยมหิดล ที่คอยกระตุนและสนับสนุน

งานวิจัยมาตลอด 

อีกกลุมหน่ึงที่ขาพเจาจะไมขอบคุณไมได คือ บุคลากรของสกว. ฝายวชิาการที่เปนมิตรอันดี 

และคอยชวยเหลือในเรื่องตางๆ เปนอยางดี   

สุดทายนี้ ขาพเจาตองขอขอบคุณบุคคลที่คอยเปนกําลังใจ เขาใจในทุกสิ่งทุกอยาง บุคคลเหลานี้

คือคุณแมที่เพ่ิงลวงลับไปและครอบครัวพ่ีนองของขาพเจา ขอบคุณมากครับ 

 

      รศ. ดร. วีระชัย สิริพันธวราภรณ 
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เนื้อหางานวิจัย 
 
บทนํา 
 

Magnetotelluric เปนเทคนิคหนึ่งทางธรณีฟสิกส เทคนิคนี้เริ่มตนจากการวัดสนามแมเหล็กและ

สนามไฟฟาที่บริเวณพื้นผิวของโลก อัตราสวนของสนามแมเหล็กและสนามไฟฟาสามารถนํามาใชเปน

ตัวบงบอกถึงสภาพความตานทานไฟฟา (electrical resistivity) หรือ ความสามารถในการนําไฟฟา 

(electrical conductivity) ภายใตพ้ืนโลกที่ความลึกตางๆ ได เราสามารถนําขอมูล electrical resistivity 

นี้ไปใชในการอธิบายโครงสรางของโลกเพื่ออธิบายการเกิดแผนดินไหว (Siripunvaraporn et al., 1998; 

Unsworth et al., 2000; Boonchaisuk et al., 2010) การศึกษาเทคโทนิคของพื้นที่ (Jones, 1992) หรือ

ใชในการสํารวจหาทรัพยากรธรรมชาติ (Tuncer et al., 2006; Orange, 1989; Vozoff, 1972) และอ่ืนๆ   

 

ขอมูลคลื่นแมเหล็กไฟฟาที่วัดไดมาจากการสาํรวจแตละพ้ืนที่จะเปนขอมูลดิบที่ตองนํามาผาน 

data processing เพ่ือใหไดขอมูลที่เรียกวา apparent resistivity และ phase หรือ impedance tensor 

ซึ่งเปนฟงกชันของความถี่หรือวาคาบ เพ่ือนําไปใชในการตีความหมายตอไป การตีความหมายจาก

ขอมูลโดยตรงนั้นเปนไปไดยาก เน่ืองจากขอมูลที่ไดมาไมไดเปนฟงกชันของความลึก ดังนั้น inversion 

หรือการแกปญหายอนกลับ คือกระบวนการที่นําเอาคา apparent resistivity และ phase ที่เปนฟงกชัน

ของความถี่หรือคาบ ไปแปลงใหเปนคา electrical resistivity กับความลึก โดยผานกระบวนการทาง

คณิตศาสตรที่สลับซับซอน ทั้งน้ีผลลัพธสุดทายที่ไดคือแบบจําลอง (model) สภาพความตานทานไฟฟา

แบบสามมิติ (3-D) 

 

 การพัฒนาโปรแกรม inversion สําหรับขอมูล MT มีมาตอเน่ืองโดยผูวิจัย เริ่มตนจากการพัฒนา 

2-D inversion (Siripunvaraporn and Egbert, 2000) โดยโปรแกรม 2-D นี้ที่มีชื่อวา REBOCC มี

นักวิจัยจากทั่วโลกนําไปใชในการแปลความหมายขอมูลจริง (SCOPUS: อางอิง 97 คร้ัง as of 24 

June 2010) เม่ือไดรับการสนับสนุนจากสกว. ผูวิจัยก็ไดพัฒนาเปนโปรแกรม 3-D (Siripunvaraporn et 

al., 2005) โดยมีชื่อโปรแกรมวา WSINV3DMT ซึ่งสามารถทํางานไดแมบนเครื่อง PC ธรรมดา ซึ่งถือวา

เปนโปรแกรมแรกของโลกที่มีการ release สูสาธารณะและไดมีการนําไปใชจริง (SCOPUS: อางอิง 33 

คร้ัง as of 24 June 2010) เทคนิคของ WSINV3DMT ไดถูกนําไปประยุกตใชกับขอมูลประเภทอื่นๆ 

ดวย เชนขอมูล Network-MT data (Siripunvaraporn et al., 2004) ขอมูล 2-D DC Resistivity 

(Boonchaisuk et al., 2008) และขอมูล Phase Tensor (Patro et al., 2010) เปนตน 
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อยางไรก็ตาม แมวา WSINV3DMT จะทํางานไดบนเครื่อง PC ทั่วไป แตก็ยังมีปญหาอยู โดย

ปญหาหลัก คือ ยังคงตองใชหนวยความจําของเครื่องคอมพิวเตอรในปริมาณมากเมื่อใชกับขอมูลที่มี

ขนาดใหญ สิ่งนี้คือขอจํากัดของตัวโปรแกรม วิธีแกไขก็คือการเพิ่มหนวยความจําของคอมพิวเตอรให

มากที่สุดเทาที่เครื่องจะรับได ซึ่งก็จะทําใหตนทุนการทํางานสูงหรือแพงมากขึ้น 

 

 ตอมาผูวิจัยก็ไดรับการสนับสนุนจากสกว. เพ่ือแกไขขอบกพรองนี้โดยพัฒนาเปน algorithm 

ใหมขึ้นมาเพื่อลดปริมาณหนวยความจํานี้ วิธีหนึ่งที่เราใชก็คือ การแกระบบสมการดวยวิธี conjugate 

gradient (CG) แทนที่จะแกแบบโดยตรง คือใช Cholesky decomposition เหมือนที่ทําใน 

WSINV3DMT การใชวิธี CG ทําใหเราไมตองเก็บ sensitivity matrix (J) ซึ่งมีขนาดใหญใน

หนวยความจําของคอมพิวเตอรซึ่งทําใหเราลดปริมาณการใชหนวยความจําไดเปนอยางมาก  โปรแกรม

ใหมนี้เราเรียกวา data space conjugate gradient method (DCG) หรือ WSDCG3DMT จากการ

ทดลองของ Siripunvaraporn and Egbert (2007)  และ Siripunvaraporn and Sarakorn (2010) 

สําหรับขอมูล 2-D และ 3-D พบวา ขอดีของเทคนิคนี้ก็คือ ไมตองใชหนวยความจําในปริมาณมาก

เหมือน WSINV3DMT แตทวาขอเสียของเทคนิคใหมนี้อยูที่เวลาที่ใชรันโปรแกรมนั้นมากกวา ดังนั้นมัน

จึงเปน trade-off ซึ่งกันและกันระหวางเวลากับหนวยความจํา 

 

ในขอเสนอโครงการนี้ เราเสนอที่จะผสมโปรแกรมทั้งสองอันไวดวยกัน เพ่ือคงไวในขอดี นั่นคือ

ใชหนวยความจํานอย ในขณะเดียวกันก็ใชเวลาในการรันนอยดวย ในรายงานฉบับนี้เราจะเริ่มตนจาก

การบรรยายโปรแกรม WSINV3DMT แลวตามดวย WSDCG3DMT จากนั้นก็เสนอแนะเทคนิคใหมที่

เรียกวา WSMIX3DMT รวมทั้งผลที่ไดจากการรันโปรแกรม  

 

  

Inversion : Overview 
 

การทํา inversion คือการหาแบบจําลอง (m) ที่สามารถใหคา model responses F[m] ที่ fit ขอมูล d ที่

มีทั้งหมด N คาไดสมเหตุสมผล ซึ่งสามารถเขียนเปนสมการคณิตศาสตรไดดังนี้  

 
U(m, λ) =  (m – m0)T Cm

-1 (m – m0)  +   λ -1{(d - F[m])T Cd
-1 (d - F[m]) - X2

*} (1)  
 
 



 

 7 

เม่ือ Cd คือ data covariance และ T คือ transpose of matrix, m คือ model ที่มีทั้งหมด M คา สวน mo 

คือ base model และ Cm คือ model covariance และ λ-1 คือ Lagrange multiplier 

 

 สมการที่ (1) นี้มีความหมายวาเรากําลังทําการ search หาแบบจําลอง (model) ที่มีลักษณะ

แบบ minimum structure โดยมีขอแมวาแบบจําลองที่ไดจะตอง fit ขอมูลไดเปนอยางดีซึ่งถูกกําหนด

โดยคา X2
*  การกําหนดในลักษณะนี้ทําให inversion นั้น stable มากขึ้น   

 

 การ minimize สมการนี้ คือ การคํานวณหา stationary point ของสมการที่ (1) นี้เม่ือเทียบกับ λ 

และ m ซึ่งคํานวณไดยาก วิธีหนึ่งคือการแกสมการ penalty functional แทน ซึ่งมีลักษณะดังนี้ 

 

Φm
λ  = (d - F[m])T Cd

-1 (d - F[m]) + λ (m - m0)T Cm
-1 (m - m0),  (2) 

 

เน่ืองจากเมื่อ λ นั้นคงที่ หรือ fixed ไว เราจะไดวา ∂U/∂m = ∂Φλ/∂m  ดังนั้นเราสามารถแกสมการ (2) 

แทนที่สมการที่ (1) ไดแตตอง vary คา  λ ไปเรื่อยๆเพ่ือใหไดคา misfit ที่นอยที่สุดหรือตามที่ตั้งเอาไว 

 

 สมการที่ (2) เปนสมการใน model space ซึ่ง Siripunvaraporn et al. (2005) and 

Siripunvaraporn and Egbert (2000) แสดงใหเห็นวาการแกปญหาใน model space นั้นมีขอเสียคือใช

เวลานานมากๆ และใชหนวยความจําสูงมากๆ Siripunvaraporn and Egbert (2000) and 

Siripunvaraporn et al. (2005) จึงเสนอใหแกปญหาใน data space แทน 

 

 ดังนั้นขั้นตอนแรกคือการแปลงสมการที่ (2) จาก model space ใหอยูใน data space ซึ่ง

สามารถทําไดดังนี้ โดยการเขียน แบบจําลอง m ใหเปนฟงกชันของ sensitivity matrix ดังนี้ m - m0  =  

CmJTβ เม่ือ β คือ unknown expansion coefficient vector ดังนั้นสมการที่ (2) จะกลายเปน 

  

Φd
λ =  λ-1 (đ - JCm

TJTβ)T Cd
-1 (đ - JCm

TJTβ)  + (βTJCm
TJTβ),  (3) 

 

เม่ือ J = [∂F/∂m] คือ N x M sensitivity matrix ซึ่งเปนตัวอธิบายการเปลี่ยนแปลงของขอมูลเนื่องจาก

การเปลี่ยนแปลงของ model และ đ = d – F[m] + J(m - m0)   
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เน่ืองจาก F[m] นั้นเปน non-linear problem ดังนั้น iterative solutions จึงจําเปน (Constable 

et al., 1987) model response F[m] จึงจําเปนตองถูก linearized กอนโดยใช first order Taylor’s 

series expansion, 

 
F[m k+1]  = F[m k] + Jk(m k+1 – m k),     (4)  

 

เม่ือ k คือ iteration number ในการหา stationary points ของ (3) เราทําไดโดยการ differentiate (3) 

with respect to β เราไดวาในแตละ iteration จะมี solution ดังนี้ 

 
mk+1 -  m0  =  CmJk

T Cd
-½ [λ I + Cd

-½JkCmJk
T Cd

-½]-1 Cd
-½đk , (5) 

 

ขอดีของการแกสมการ (1) ใน data space ก็คือ matrix ที่ตองทําการ invert มีขนาดเพียง N x N 

เทานั้น ไมใช M x M เหมือนในกรณีของ model space เม่ือ N คือจํานวนขอมูลและ M คือขนาดของ

แบบจําลอง สําหรับขอมูลเพ่ิมเติมศึกษาใน Siripunvaraporn and Egbert (2000) and Siripunvaraporn 

et al. (2005).  

 

การแกสมการที่ (5) สามารถทําไดสองวิธี วิธีแรกใชใน WSINV3DMT สวนวิธีที่สองถูกนําไปใช

ใน WSDCG3DMT  

 
 

WSINV3DMT : Data Space Occam’s Inversion 

 

วิธีแรกคือสราง matrix J และ R = [λ I + Cd
-½ JkCmJk

T Cd
-½] และเก็บเมตริซเหลานี้ไวใน

หนวยความจํา จากนั้นก็ใชวิธี Cholesky decomposition ในการแกสมการที่ (5) วิธีนี้เปนวิธีที่ใชใน 

WSINV3DMT (Siripunvaraporn et al., 2005; Siripunvaraporn and Egbert, 2009) และ DASOCC 

(Siripunvaraporn and Egbert, 2000)    วิธีนี้จะเปลืองหนวยความจําเนื่องจากตองเก็บเมตริกซ J และ

R ซึ่งมีขนาด N x M  และ N x N ซึ่งอาจมีคาสูงมากก็ไดถาจํานวนขอมูลมาก 
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WSDCG3DMT : Data Space Conjugate Gradient Algorithm 

 

อีกวิธีหนึ่งที่ใชแกสมการที่ (5) คือการใชวิธี conjugate gradient วิธีนี้ทําใหไมตองสรางเมตริกซ J และ 

R ที่ตองเก็บไวในหนวยความจําอีกตอไป เทคนิคนี้จึงประหยัดหนวยความจําไปไดมาก ดวยเทคนิคนี้เรา

ไมไดสรางเมตริกซ J โดยตรงแตเราคํานวณผลคูณของเมตริกซ J กับเวกเตอรใดๆ เชน Jx หรือ JTy 

เทคนิคนี้เปนเทคนิคที่ใชใน WSDCG3DMT ขอเสียของโปรแกรมนี้คือใชเวลารันนานกวา WSINV3DMT 

ซึ่งจะแสดงใหเห็นในตอนถัดไป 

 

 
รูปที่ 1 รูปแสดงแบบจําลองเทียมที่ใชสรางขอมูลเทียมเพ่ือใชในการทดสอบโปรแกรม 
 
 
การประเมินผลโปรแกรม WSINV3DMT และ WSDCG3DMT และผลการทดสอบ 
 
การทดลองของเราเริ่มตนจากทดสอบทั้งสองโปรแกรม WSINV3DMT และ WSDCG3DMT กับขอมูล

เทียม (synthetic data) โดยใชแบบจําลองตามรูปที่ 1 ขอมูลเทียมประกอบไปดวย impedance tensor 

ทั้งสี่ components มีทั้งหมด 40 สถานีวัดและมีความถี่ทั้งหมด 16 ความถี่ ขนาดของแบบจําลองเทากับ 

28 x 28 x 21 ดังนั้นขอมูลน้ีมี N = 40 x 16 x 8 = 5,120 และ M = 28 x 28 x 21 = 16,464 การทดลอง
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ตอไปน้ีรันบนเครื่องเดียวกัน คือบนเครื่อง Intel Core Two Duo 6400, 2.13 GHz  จากจํานวนขอมูลน้ี

เราสามารถประมาณหนวยความจําของทั้งสองโปรแกรมไดวา WSINV3DMT ตองใชหนวยความจําถึง 1 

GByte ในขณะที่ WSDCG3DMT จะใชเพียง 0.4 Gbyte ซึ่งนอยกวาเกือบครึ่งหนึ่ง 

 

 การทดลองแรก เรารันโปรแกรม WSINV3DMT กับ WSDCG3DMT ที่หลายคา λ  = 100, 10, 

1, 0.1, 0.01 ผลการทดลองแสดงในรูปที่ 2 ซึ่งแสดงใหเห็นสําหรับคา λ ของ WSDCG3DMT ที่ 

converge สู 1 RMS นั้นจะใชเวลาในการทํางานชากวา WSINV3DMT ซึ่งใชเวลาเพียง 300 นาที 

ในขณะที่ WSDCG3DMT สําหรับคา λ =  1 และ 0.1 จะใชเวลาถึง 400 นาทีและ 1600 นาที  

 

รูปที่ 2  แสดงการลูเขาหาคําตอบของ WSINV3DMT (สีดํา) และ WSDCG3DMT ที่หลากหลายคา λ ผล

การทดลองแสดงใหเห็นวา WSDCG3DMT ใชเวลานานกวา WSINV3DMT 

 
 การทดลองนี้มีขอสังเกตที่นาสนใจมากๆ อันดับแรกก็คือ WSDCG3DMT ที่มีคา λ สูงจะใชเวลา

ไวมากในแตละ iteration ในขณะที่มีคา λ ต่ําจะใชเวลานานกวามาก เชนที่  λ = 100 iteration แรกใช

เวลาไมถึง 20 นาที ในขณะที่ λ = 0.1 iteration แรกใชเวลามากถึง 700 นาที  อยางที่สอง สําหรับคา λ 
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สูงแมวาจะใชเวลาไวแตก็ไมสามารถลูเขาหาคําตอบไดเลย เชนที่ λ = 100 และ 10 แตสําหรับคา λ ต่ํา

จะสามารถลูเขาหาคําตอบได เชนที่ λ = 1 และ 0.1 อยางที่สามคือ iteration แรกจะใชเวลาในการรัน

นานที่สุด iteration ถัดๆ ไปจะใชเวลาในการรันนอยลงไปเรื่อยๆ เชนสําหรับ λ = 0.1, iteration ที่หน่ึง 

สอง สามและสี่ จะใชเวลารันประมาณ 700 นาที 500 นาที 400 นาที และ 200 นาที ตามลําดับ 

 

 จากผลการทดลองครั้งนี้ทําใหเราสามารถนําไปขยายผลเพื่อสราง Algorithm ใหมขึ้นมา 

 

 

WSMIX3DMT : a Mixed Scheme of DCG and Occam’s inversion 

 

จากการทดลองเบื้องตน เราพบวาเราสามารถสรางโปรแกรมขึ้นมาใหม โดยใชหนวยความจําเหมือน 

WSDCG3DMT แตทวามีความเร็วเร็วกวาทั้ง WSDCG3DMT และ WSINV3DMT  

 

หลักการของโปรแกรมใหมนี้มาจากการผสมกันของ WSDCG3DMT และ WSINV3DMT ตัว

คณิตศาสตรแทบจะเหมือนกับ WSDCG3DMT แตหลักการของโปรแกรมใหมนี้จะงายๆ คือการเปลี่ยน

คา λ ในแตละ iteration ที่คลายคลึงกับ WSINV3DMT แตทวาในครั้งนี้เราจะเริ่ม iteration แรกดวยคา 

λ ที่มีคามาก เน่ืองจากเมื่อ λ มาก เวลาทํางานก็จะสั้นลง โดยเฉพาะใชกับ iteration แรกๆ ที่ตองใชเวลา

ในการทํางานสูง จากนั้นเราจะลดคา λ ใน iteration ถัดไปเรื่อยๆ ตามแตที่กําหนด เชนลดลง 10 เทา 

เปนตน ตัวอยางของการรันโปรแกรม เริ่มตนจาก λ = 1000 ใน iteration แรก จากนั้นก็จะลดลงเปน λ 

= 100 ใน iteration ที่สอง และเปน λ = 10 ใน iteration ที่สาม ไปเรื่อยๆ จนถึงคานอยที่สุดซึ่งในที่นี้เรา

กําหนดไวที่ λ = 0.1   

 

การประเมินผลโปรแกรม WSMIX3DMT และ WSINV3DMT และ WSDCG3DMT   

 

เราทดสอบโปรแกรมใหม WSMIX3DMT กับขอมูลเทียมเดิม และเทียบผลที่ไดกับสองโปรแกรมเกา 

เน่ืองจากคณิตศาสตรของโปรแกรมใหมนั้นเหมือนกับ WSDCG3DMT ดังนั้นหนวยความจําจึงเทากัน 

แตเม่ือดูที่เวลาแลวจะเห็นวาโปรแกรมใหม WSMIX3DMT นั้นไวที่สุด คือใชเวลานอยกวา 100 นาทีไม

วาจะเริ่มตนดวยคา λ ที่เทาไรก็ตาม สวน WSDCG3DMT ใชเวลา 400 นาที สวน WSINV3DMT ใช

เวลา 300 นาที ดังแสดงในรูปที่ 3  
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รูปที่ 3  แสดงการลูเขาหาคําตอบของ WSINV3DMT (สีดํา) และ WSDCG3DMT ที่ λ = 1 (สีแดง) และ 
WSMIX3DMT ที่เร่ิมตนจาก λ = 10000 (สีชมพู), 1000 (สีเขียวออน), 100 (สีน้ําเงิน) และ 10 (สีฟา
ออน) กับขอมูลเทียมรูปที่ 1 ผลการทดลองแสดงใหเห็นวา WSMIX3DMT ใชเวลาไวกวาทั้ง 
WSDCG3DMT และ WSINV3DMT 

 

 

 

 

 

 
 
 
 
 
 
 

 
รูปที่ 4  แสดงการลูเขาหาคําตอบของ WSINV3DMT (สีดํา) และ WSDCG3DMT ที่ λ = 1 (สีแดง) และ 
WSMIX3DMT ที่เร่ิมตนจาก λ = 1000 (สีเขียวออน) และ 100 (สีน้ําเงิน) กับขอมูล EXTECH จริง 
(Tuncer et al, 2006) ผลการทดลองแสดงใหเห็นวา WSMIX3DMT ใชเวลาไวกวาทั้ง WSDCG3DMT 
และ WSINV3DMT 
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นอกจากนี้ทั้งโปรแกรมใหมและเกาถูกนําไปทดสอบกับขอมูลจริง EXTECH data (see Tuncer 

et al., 2006) พบวาใหผลที่เหมือนกัน คือ WSMIX3DMT (สีน้ําเงินและเขียว) ไวกวาทั้ง WSINV3DMT 

(สีดํา) และ WSDCG3DMT (สีแดง) และยังใชหนวยความจําเทากับ WSDCG3DMT ซึ่งนอยกวา 

WSINV3DMT มากๆ ดังแสดงในรูปที่ 4 

 

สรุปผล 

เราไดพัฒนาโปรแกรมใหมขึ้นมา WSMIX3DMT โปรแกรมมีหลักการจากสองโปรแกรมเกาคือ 

WSINV3DMT และ WSDCG3DMT คณิตศาสตรของโปรแกรมใหมจะเหมือนกับ WSDCG3DMT แต

หลักการจะคลายกับ WSINV3DMT คือ vary λ ไปในแตละ iteration แตกรณีนี้จะเลือกเร่ิมตนที่ λ มาก

กอนที่จะคอยๆ ลดลง ผลการทดลองทั้งกับขอมูลเทียมและขอมูลจริงพบวา โปรแกรม WSMIX3DMT ใช

หนวยความจําเทากับ WSDCG3DMT ซึ่งนอยกวา WSINV3DMT มากๆ แตในขณะเดียวกันก็ใชเวลาใน

การรันนอยลงกวาโปรแกรมเกาสองถึงสามเทา  
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Abstract 

In this paper, we start with the implementation and extension of the data space conjugate 

gradient (DCG) method previously developed for the two-dimension (2-D) to the three-

dimension (3-D) Magnetotelluric (MT) data, and will be referred to as WSDCG3DMT. Synthetic 

experiments show that WSDCG3DMT usually spends computational time longer than the data 

space Occam’s inversion (WSINV3DMT). However, memory requirement of WSDCG3DMT is 

only a fraction of WSINV3DMT. Knowledge and information gained from the synthetic studies 

of WSDCG3DMT has led to a creation of a mixed scheme (WSMIX3DMT) of the data space 

conjugate gradient and the data space Occam’s methods. WSMIX3DMT is a slight modification 

of WSDCG3DMT but enhancing so that its computational time is several factors lower than both 

WSINV3DMT and WSDCG3DMT. Because WSMIX3DMT is a modification of 

WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in 

WSDCG3DMT. This makes WSMIX3DMT as the most efficient inversions. Computational 

performances and comparisons of all three methods are demonstrated with both synthetic and 

EXTECH field datasets.  
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1. Introduction 

Recently, number of three-dimensional (3-D) magnetotelluric (MT) surveys is substantially 

increased worldwide (e.g., Tuncer et al., 2006; Patro and Egbert, 2008, among many others). 

This might be due to the fact that MT has increasingly accepted by many geophysicists and 

seismologists. Another factor is the improvements of the data acquisition units, the measurement 

sensors and their accessories. Examples of MT uses are for geothermal explorations (e.g., Heise 

et al., 2008; Árnason et al., 2010), volcanoes and tectonic studies (Uyeshima, 2007; Patro and 

Egbert, 2008; Hill et al., 2009; Ingham et al., 2009) and ore explorations (Tuncer et al., 2006; 

Queralt et al., 2007; Farquharson and Craven, 2008; Türkoǧlu et al., 2009; Goldax and 

Kosteniuk, 2010). All of these have led to a higher demand for 3-D MT inversion codes for 

interpretation. 

Currently, a number of 3-D MT inversion algorithms have been developed (e.g. Mackie 

& Madden 1993; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki 2001; Mackie, 

personal communication 2002; Siripunvaraporn et al. 2004, 2005; Sasaki and Meju, 2006; Han et 

al., 2008; Lin et al., 2008,2009; Farquharson and Craven, 2008; Adveed and Adveed, 2009; 

Siripunvaraporn et al., 2009). All algorithms are designed to find “best” model that fits the data 

but also “geologically” interpretable.  One of the 3-D algorithms (and the only one currently 

available to the MT communities) is the WSINV3DMT program by Siripunvaraporn et al. (2005; 

2009). The algorithm’s idea was based on the Occam’s style inversion introduced for 1-D MT 

data by Constable et al. (1987).  Occam’s inversion is known for its robust calculation and its 

efficiency. However, its disadvantage is the large memory requirements, and the extensive 

computational time, particularly when applying to 2-D and 3-D modeling (Siripunvaraporn and 

Egbert, 2000; Siripunvaraporn et al., 2005).  

To reduce both storage and calculation time, Siripunvaraporn and Egbert (2000) and 

Siripunvaraporn et al. (2004; 2005) transformed the original Occam’s inversion which is a model 

space method into the data space Occam’s algorithm. The transformation makes it practical for 

3-D MT inversion on most computers. However, WSINV3DMT still requires substantial 

memory to store the N × M sensitivity matrix, where N and M are the data and model parameters, 

respectively. Siripunvaraporn and Egbert (2007) used 2-D MT data to show that the large storage 

can be avoid by using a data space conjugate gradient (DCG) approach.  
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From the 2-D studies, Siripunvaraporn and Egbert (2007) concluded that the DCG 

method can significantly reduce the memory usage. However, its computational time can be 

longer than that of the data space Occam’s algorithm. Computational time of the DCG method is 

controlled by the stopping criteria used inside the conjugate gradient (CG) algorithm when 

solving the normal equation (Rx = b). The CG solver is terminated when the relative error (r = 

||Rx – b||/||b||) reaches a given tolerance rtol. Smaller rtol (e.g., rtol < 10-2) requires many number 

of CG iterations, while larger rtol (e.g., rtol = 10-1) requires significantly less but can cause the 

inversion to fail to converge to the target misfit. Large number of CG iterations translates into 

longer CPU time. Our 2-D studies also showed that rtol = 10-2 is the optimal tolerance value. The 

model generated with   rtol = 10-2 differs less than a percent from that generated with rtol = 10-8 

but requires significantly less CPU time. 

In addition, convergence rate of the DCG inversion also depends on the regularization 

parameter λ, which acts as a trade-off between the data norm and the model norm. Larger λ (λ > 

10) demands small number of CG iterations per inversion iteration. However, the inversion could 

not bring the misfit down to the desired misfit because large λ produces very smooth model. 

Smaller λ (0.1 ≤ λ ≤ 10) can reach the desired level of misfit but normally requires large number 

of CG iterations per inversion iteration. However, if λ is too small (λ < 0.1), DCG can break 

down. If it converges, it requires significantly large number of CG iterations and also produces 

“very rough and spurious” structures which is not geologically interpretable.  

Here, we directly implement and extend the data space conjugate gradient (DCG) 

algorithm for the 3-D MT data. Hereafter, we will refer to the 3-D DCG method as 

WSDCG3DMT. Numerical experiments are performed on a synthetic data in a similar way as 

conducted in the 2-D experiments (Siripunvaraporn and Egbert, 2007).  The objective is to verify 

whether the conclusions learned from the 2-D cases remain the same or different for the 3-D data. 

Knowledge gained from the synthetic studies has led us to a creation of a mixed scheme of the 

Occam’s inversion and the DCG method. We will refer to a mixed scheme as WSMIX3DMT. 

We start the paper with a brief review of the data space conjugate gradient method 

(WSDCG3DMT) and its necessary mathematics. More details on the data space Occam’s 

inversion and the data space conjugate gradient method can be found in many previous 

publications (Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005; Siripunvaraporn 
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and Egbert,  2007;  and Boonchaisuk et al., 2008).  Later, a mixed scheme (WSMIX3DMT) 

between the DCG method and the Occam method is introduced. Numerical experiments on both 

synthetic data and EXTECH data are performed with these three algorithms (WSINV3DMT, 

WSDCG3DMT and WSMIX3DMT). Comparisons in terms of computational time and memory 

are analyzed and discussed. A conclusion is given at the end. 

  

2. Review of Data Space Conjugate Gradient Inversion 

Consider a general objective functional Φ m,  

   Φm = Φd + λΦm  = (d - F[m])T Cd
-1 (d - F[m]) + λ (m - m0)T Cm

-1 (m - m0), (1) 

where Φd a data norm, Φm a model norm, m the resistivity model of dimension M, m0 the prior 

model, Cm the model covariance matrix, d the observed data with dimension N, F[m] the 

forward model response, Cd the data covariance matrix, and λ a regularization parameter.  

To minimize (1) in a data space method, we start with the transformation of the model 

space objective functional (1) to a data space objective functional (2) by expressing a model as  a 

linear combination of rows of the smoothed sensitivity matrix (Parker, 1994), or m - m0  =  

CmJTβ. Then, (1) becomes 

Φd =  (đ - JCm
TJTβ)T Cd

-1 (đ - JCm
TJTβ)  + λ (βTJCm

TJTβ),   (2) 

where J = ∂F/∂m is an N × M sensitivity matrix, and đ = d – F[m] + J(m - m0). To minimize (2),  

F[mk+1] is linearized with the first order Taylor series expansion, as F[mk+1]  =  F[mk]  +  Jk 

(mk+1 - mk), when k is an inversion iteration number. Differentiating (2) with respect to β and 

rearranging, an iterative sequence of approximate solutions can be obtained as, 

mk+1 -  m0  =  CmJk
T Cd

-½ [λ I + Cd
-½JkCmJk

T Cd
-½]-1 Cd

-½đk ,  (3) 

where I is an identity matrix.    

There are two methods to solve (3). First method is to explicitly form J and R = [λ I + 

Cd
-½ JkCmJk

T Cd
-½] and store them in the computer memory. R will be factorized into lower and 

upper matrices (LU-factorization), and then solved with backward and forward substitutions.  
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This method is used in WSINV3DMT program for 3-D MT data (Siripunvaraporn et al., 2005; 

Siripunvaraporn and Egbert, 2009) and DASOCC for 2-D MT data (Siripunvaraporn and Egbert, 

2000). This scheme requires substantial amount of RAM to store N × M J and also N × N R 

matrices. This could prohibit a run on very large data sets, particularly for 3-D cases.  

Instead of forming and decomposing R as in WSINV3DMT, an alternative method is to 

solve (3) with an iterative solver.  Because R is theoretically symmetric, (3) is commonly solved 

with a conjugate gradient (CG) method as in many MT inversion algorithms (see Mackie and 

Madden, 1993; Siripunvaraporn and Egbert, 2007; Lin et al., 2008). One clear advantage of 

using CG to solve (3) is that the large N × M sensitivity matrix J is not explicitly formed and 

stored in the computer memory. Only a product of J or JT with an arbitrary vector is required by 

solving one forward problem per period (see Mackie and Madden, 1993; Newman and 

Alumbaugh, 2000; Rodi and Mackie, 2001; Siripunvaraporn and Egbert, 2007; Lin et al., 2008).  

Two routines to compute Jp and JTq are therefore implemented here for the 3-D problem, where 

p and q are general M × 1 and N × 1 vectors, respectively. This method is used in 

WSDCG3DMT. 

The data space conjugate gradient algorithm and the routines to explicitly form J and to 

compute Jp and JTq are briefly described in the following sub-sections.  

 

2.1 Data Space Conjugate Gradient Algorithm (WSDCG3DMT) 

The data space conjugate gradient algorithm denoted as WSDCG3DMT has two iterative loops. 

The outer loop which is a main inversion loop is to minimize (2), while the inner loop is to 

minimize Rx = b in (3) with a conjugate gradient (CG) method where R =   [λ I + Cd
-½JCmJT 

Cd
-½],  b = Cd

-½đ and x = Cd
½β (see Barrett et al., 1994 for Preconditioned Conjugate Gradient 

algorithm).  The algorithm was summarized in Figure 2 of Siripunvaraporn and Egbert (2007), 

and is repeatedly presented below with more explanations. 
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Reading inputs and initializing variables. 

Start DCG “outer” loop to minimize (2) : iteration k 

1. Compute đk = d – F[mk] + Jk(mk – m0)  

2. Start DCG “inner” loop by using CG to solve Rkx = b     

2.1 Initialization:  x(0) = 0;  r(0)
 = b, where r = ||Rx – b||/||b||.  

for icg = 1,2,…,ncgmax or ||rTr|| < rtol, where icg a CG iteration number, ncgmax a 

maximum number of CG iterations, and rtol a stopping tolerance level. 

2.2 z(icg-1) = r(icg-1)   

2.3 δ(icg-1) = rT
(icg-1) z(icg-1) 

2.4 if  (icg = 1)  p(1) = z(0) 

else    

β(icg-1) = δ(icg-1)/ δ(icg-2) 

 p(icg) = z(icg-1) + β(icg-1) p(icg-1) 

endif 

2.5 q(icg-1) = Rkp(icg)  

2.6 α(icg-1) = δ(icg-1)/ pT
(icg) q(icg) 

2.7 x(icg) = x(icg-1) + α(icg) p(icg) 

2.8 r(icg) = r(icg-1) - α(icg-1) q(icg) 

2.9 if (||rTr|| < rtol ) or (icg > ncgmax), then  stop CG iteration and go to 3, else go to 2.2.  

end icg 

3. Compute mk+1 -  m0  =  CmJk Cd
-½x 



7 

 

4. Compute F[mk+1] and RMS misfit ||Cd
-½(d – F[mk+1)|| 

5. Check condition;  

5.1 exit if misfit below the desired level, go to 6; 

5.2 continue if misfit is greater than the desired level, go to 1;  

6. End DCG outer loop. 

 

Step 1 requires calling one forward routine for F[mk], and another call to compute Jk(mk – m0). 

On step 2.1, system (3) is already normalized, therefore there is no preconditioner here. Step 2.5 

is a “key” for the CG solver. It requires two forward modeling calls to compute s = Jk
T Cd

-½p(icg) 

and JkCms. Step 3 demands one forward modeling call to compute Jk Cd
-½x. Step 4 requires 

another forward modeling call to compute the model responses F[mk+1]. Overall, numbers of 

forward modeling calls to compute the model response is two per outer loop iteration per period, 

and to compute a multiplication of J or JT with a vector is 2 + 2Ncg per outer loop iteration per 

period, where Ncg is a number of CG iterations. A total number of forward modeling calls would 

therefore be 4 + 2Ncg per period per outer loop iteration. 

  

2.2 Forward Modeling and Sensitivity Calculation 

Given an electrical conductivity (σ) or resistivity (ρ) model, to yield MT responses at the surface, 

the electric fields (E) are computed from the second order Maxwell's equation,  

∇ × ∇ × E = iωµσE,     (4) 

where ω  is an angular frequency and μ  the magnetic permeability. Discretizing the model and 

applying the staggered grid finite difference approach to (4), we obtain a system of equations for 

a given period or frequency, 

   Se = b,      (5) 
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where e represents the unknown internal electric fields, b a vector containing the terms 

associated with the boundary electric fields, and S a large sparse symmetric and complex 

coefficient matrix. System of equations (5) is solved with a quasi-minimum residual (QMR) 

method per period and per polarization as in Siripunvaraporn et al. (2002). Surface responses can 

then be obtained from a linear combination of a vector a associated at a measurement site and the 

computed electric fields, 

   F[m] = aTe = aTS-1b.    (6) 

To compute for the sensitivity J = ∂F/∂m at a given period, equation (6) is differentiated 

with respect to the model m, 

  J = ∂F/∂m = ∂(aTe)/ ∂m = aTS-1Ɵ + Ψ,  (7) 

where Ɵ = ∂b/∂m - (∂S/∂m)e and Ψ = (∂aT/∂m)e. The process to form J is straightforward by 

first constructing Ɵ, solving S-1Ɵ, multiplying the result with aT and finally adding with Ψ. With 

this technique, calculating S-1Ɵ would require solving the system of equations (5) M times per 

period and per polarization (Rodi, 1976). This calculation can be very significant, particularly in 

3-D cases.  

To reduce number of forward callings, reciprocity property of the electromagnetic fields 

(see Rodi, 1976; Mackie and Madden, 1993; Siripunvaraporn and Egbert, 2000) is applied to (7). 

With the reciprocity, the process of computing J is modified by first solving (aTS-1)T, then 

multiplying the result with ƟT before finally adding with ΨT. Using the reciprocity technique,  

computing  (aTS-1)T would require solving the system of equations (5) only Ns times per period 

and per polarization (Rodi, 1976; Siripunvaraporn and Egbert, 2000), where Ns is the number of 

observed stations which is typically a lot smaller than M, particularly in 3-D cases. The 

reciprocity theorem helps significantly decreasing the computational time of the program 

(Siripunvaraporn and Egbert, 2000). 

 

2.3 Multiplication of J or JT to any vectors 

To compute the product of J with a given vector p, equation (7) becomes  
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  Jp =   aTS-1Ɵp + Ψp.      (8) 

The process is started with a multiplication of Ɵp, then solving S-1Ɵp, multiplying the result 

with aT, and finally adding them with the product of Ψp. Similarly, to compute the product of JT 

with a given vector q, equation (7) also becomes 

  JTq =  ƟT[ST]-1aq + ΨTq.     (9) 

The process here is also straightforward. It starts with a multiplication of aq, because S = ST, 

then solving  S-1aq and multiplying them with  ƟT, finally adding the result with ΨTq. Equation 

(8) and (9) show that each process requires solving the system of equations (5) only one times 

per period and per polarization.  Storage for J matrix is not necessary for (8) and (9) but required 

for (7). 

 

2.4 Theoretical Comparisons for Forming J and Its Multiplications 

Both forming J and its multiplications (Jp or JTq) require solving the same system of equations 

(5), but with different right hand sides. As in section 2.2 and 2.3, forming J requires solving (5) 

with a as the right hand side, while computing Jp and JTq have Ɵp and  aq, as their right hand 

sides, respectively. All vectors (a, Ɵp and aq) are sparse, but Ɵp and aq involve more non-zero 

terms than a. Consequently, solving (5) with Ɵp and aq as the right hand sides will require 

larger number of QMR iterations than with just a as the right hand side to converge to the same 

accuracy level. Similar behavior was also occurred in 2-D cases. Because system of equations for 

2-D cases is small, the difference is therefore not significant. However, for 3-D case, the 

difference in CPU time is noticeable and will be shown in the numerical experiments. 

 

2.5 Parallel Implementation 

Similar to WSINV3DMT (Siripunvaraporn and Egbert, 2009), we also implement our 3-D DCG 

code on a parallel system. Although memory is not an issue for the DCG method, its extensive 

runtime is still a big concern due to its numerous calls to the forward modeling routine.  As in 

WSINV3DMT, we parallelize WSDCG3DMT over frequencies via MPI (Message Passing 

Interface) libraries. For DCG, the parallelization is relatively simple, just distributing the forward 
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modeling call of each period to each processor node when computing the forward response F[m], 

and calculating Jp and JTq. The simplicity occurs because there is no need to form and store the 

cross-product R as in WSINV3DMT (Siripunvaraporn and Egbert, 2009). 

 

3. Numerical Experiments on a Synthetic Data  : WSDCG3DMT & WSINV3DMT 

Here, before we introduce a mixed scheme of the data space conjugate gradient method and the 

Occam’s inversion; we start with the repetitions of the same experiments we conducted with the 

2-D MT data but now with the 3-D MT data. The goal of the experiments is to check whether the 

same conclusions derived from the 2-D studies can be gained. In addition, we also compare the 

results with WSINV3DMT in terms of computational time and memory.  

Similar to Siripunvaraporn et al. (2005) and Siripunvaraporn and Egbert (2009), we use 

the same synthetic model to generate a synthetic dataset for testing our codes. The synthetic 

model consists of two anomalies, 1 Ω-m and 100 Ω-m buried next to each other inside a 10 Ω-m 

layer lying on top of a 100 Ω-m half-space as illustrated in Figure 1 (Figure 4 in Siripunvaraporn 

et al., 2005; Figure 3b in Siripunvaraporn and Egbert, 2009). The model mesh for the inversion 

was discretized at 28 × 28 × 21 (+7 air layers) in x, y and z, respectively. The full complex 

impedance data (Zxx, Zxy, Zyx and Zyy; i.e. Nm = 4) is generated for 40 MT sites (Ns = 40) located 

regularly covering the two anomalies (solid dots in Figure 1) and 16 periods from 0.031 to 1000 

second (Np = 16). Five percent Gaussian noise calculated from the data magnitude (|ZxyZyx|½) was 

added to the impedance data. With this configuration, model parameter M would be equal to 28 × 

28 × 21 = 16,464, while data parameter N would be equal to 40 × 16 × 8 = 5,120. In this 

experiment, all runs can be performed on a serial machine; an Intel Core Two Duo 6400, 2.13 

GHz machine with 2 GBytes of RAM. Bigger model mesh or dataset would prohibit a run on this 

serial machine for WSINV3DMT.  

Our first test is to perform the WSDCG3DMT program with various λ (λ = 100, 10, 1, 

0.1, 0.01) and two rtol (10-1 and 10-2) for the DCG inner loop or the CG loop. Convergence 

behaviors of WSDCG3DMT for various λ and different rtol as a function of time are shown in 

Figure 2 in comparison to WSINV3DMT. An inverted model after four iterations from 

WSDCG3DMT (λ = 1 and rtol = 10-2) is shown in Figure 3. The inversion can recover both 
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anomalies and the underlying layer similar to the inverted result from WSINV3DMT (Figure 6 

of Siripunvaraporn et al., 2005).  

For larger λ (10 and 100) with rtol = 10-2, DCG cannot converge to the desired level of 1 

RMS. It can only lower the misfit down in the first two iterations before idling. Similar to the 2-

D tests, larger λ requires smaller number of CG iterations to solve the normal equation (3) per 

outer loop iteration.  This is reflected in a small amount of computing time as shown in Figure 2 

(cyan and blue colors). For smaller λ (1 and 0.1) with rtol = 10-2, DCG is able to converge to the 

desired 1 RMS in four iterations. However, in contrast to larger λ, it demands significantly large 

number of CG iterations to solve (3) per one outer loop iteration. This is shown by a large 

amount of computational time in Figure 2 (red and green), particularly for the first iteration.  

Reducing number of CG iterations per main iteration would help decreasing a computer 

runtime. One way is to set rtol to a larger value. Here, at 10-1. In all λ cases with rtol = 10-1, DCG 

has difficulty to converge to the target misfit of 1 RMS as seen in dash-lines of Figure 2. Larger 

rtol would only help reducing computing time but not the convergence. In contrast, setting rtol to 

smaller values (e.g., at 10-3 or less), number of inversion iterations to converge to the desired 

misfit is the same as in the case of rtol = 10-2. Inverted model is also less than a percent difference. 

Major difference is at the number of CG iterations per main inversion iteration which is 

significantly larger for smaller rtol. These experiments show that rtol = 10-2 is appeared to be an 

optimal tolerance level for terminating the CG iterations in the DCG inner loop.  

For λ = 0.01 or smaller, DCG fails to converge from the start. The sign of the divergence 

can be observed or detected inside the CG solver after some number of CG iterations. This 

becomes a very important and useful information. We can use it as a criterion to decide the 

termination of the WSDCG3DMT code. Whenever a divergence inside the CG loop takes place, 

program is stopped. The cause for the divergence behavior inside the CG loop is probably due to 

the loss of the orthogonality of matrix R.  

From all of these experiments, we can infer that both 2-D studies from Siripunvaraporn 

and Egbert (2007) and 3-D studies here yield almost the same conclusions. Optimal convergence 

occurs in the λ ranges between 0.1 and less than 10, and also with rtol = 10-2.    

Computational performance in term of memory and CPU time of WSDCG3DMT is then 

compared with those from WSINV3DMT. Majority of the memory requirements for 
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WSINV3DMT is to store J and R matrices which can be approximated from 8NM+8NN with 

double precisions. This is about 1 GBytes in our test case. The code also requires less than 0.3 

GBytes for storing S, ∂S/∂m, and other parts for miscellaneous computations. For 

WSDCG3DMT, we do not store J and R in the memory. One GBytes of RAM is therefore not 

needed as in the case of WSINV3DMT. WSDCG3DMT requires only about 0.4 GBytes to store 

many different matrices and vectors. This is about the same as the memory used for the 

miscellaneous computations in WSINV3DMT.  

In term of computational time, WSINV3DMT converges to the desired misfit within 

three iterations in about 300 minutes as shown in a black line of Figure 2, while WSDCG3DMT 

with λ = 1 and λ = 0.1 uses about 400 and 1600 minutes, respectively. This again shows that 

computational time of WSINV3DMT is less than that of converged WSDCG3DMT. Thus, in 

term of computational performance, one can clearly see that WSDCG3DMT has advantage in 

terms of memory. However, its computational time can be significantly greater than that of 

WSINV3DMT. A trade-off between computational time and memory used would be a factor for 

users to decide. This is also similar to the 2-D studies (Siripunvaraporn and Egbert, 2007).  

In 2-D studies, we did not compare CPU time, but number of forward modeling calls of 

each algorithm. Here, similar analysis are performed for the 3-D cases. WSINV3DMT requires a 

fix number of callings at NpNsNm + Np(Nλ+1) per inversion iteration to form the sensitivity and 

compute the misfit, where Nλ is a number of λ varied to search for the minimum misfit in each 

iteration of the Occam’s inversion. In our experiments, for the first iteration, Nλ = 5, number of 

forward modeling calls for WSINV3DMT is therefore at 2,656. For WSDCG3DMT, in each 

iteration, number of forward modeling calls depends on a number of CG iterations (Ncg) in the 

DCG inner loop, and equal to 4Np + 2NpNcg per inversion iteration as we previously discussed. In 

our experiments, for the case λ = 1 and rtol = 10-1, Ncg = 47 for the first iteration, number of 

forward modeling calls is then at 1,568.  

Although number of forward modeling calls of WSDCG3DMT is about 1,000 less than 

WSINV3DMT, computational time is actually slightly longer for the first iteration of both 

methods as shown in Figure 2. This indicates that for each forward modeling call, 

WSDCG3DMT requires averagely longer runtime than that of WSINV3DMT. Because of more 

complicated right hand sides in the system of equation (5) when computing Jp or JTq than 
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forming J, as already stated in Section 2.4, it requires larger number of QMR iterations to 

converge to the solution. This study shows that to test the efficiency of the inversion, just 

counting number of forward modeling calls can be misleading (see Newman and Alumbaugh, 

1997; Siripunvaraporn and Egbert, 2007).  

Another interesting point for WSDCG3DMT is the reduction of the number of CG 

iterations per outer loop iteration when misfit becomes lower. For example, in the case λ = 1 and 

rtol = 10-2, Ncg = 108, 48, 25 and 21, respectively, from the first to forth iteration of the main 

inversion loop. This is reflected and shown with lesser CPU time for successive iterations in 

Figure 2.  The reduction of number of CG iterations occurs on every case in our examples. When 

inverted solution gets closer to the “true” solution, normal equation (3) is probably lesser stiff 

and therefore become easily to solve. 

  

4. The mixed scheme of the DCG and Occam’s inversions (WSMIX3DMT) 

Because DCG does not explicitly form and store the sensitivity matrix, DCG therefore requires 

significantly less memory than the Occam’s inversion. However, the major drawback of the 

DCG method is its computational time which could be longer than the Occam’s inversion. Here, 

we propose a new scheme which is a mixed concept of both DCG and Occam and a modification 

of the DCG method. Mathematics of the new scheme is in fact identical to the DCG method. 

Thus, it maintains the memory advantage of the DCG method over the Occam’s style. However, 

we intentionally design so that the new scheme spends computational time less than both DCG 

and Occam. This would make the mixed scheme as the efficient inversion.  

Assuming that the goal of the inversion is the same for both DCG and Occam that is to 

bring the misfit down to the desired level. One distinct feature between both methods is at the λ 

value. In Occam’s inversion (Constable et al., 1987; Siripunvaraporn and Egbert, 2000; 

Siripunvaraporn et al., 2005), in every iteration, λ in equation (3) is varied in order to search for 

the model producing the “least” RMS misfit (see Siripunvaraporn and Egbert, 2000; 

Siripunvaraporn et al., 2005). With the Occam concept, λ is posed as both the step length and the 

regularization parameters. For the DCG method, λ is pre-selected and fixed in every iteration as 

shown in previous section in WSDCG3DMT. In DCG, λ therefore acts like a regularization or 

damping parameter.   
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In our mixed scheme, the algorithm is based mainly on the DCG method. However, λ is 

not fixed but varied as both step length and regularization parameter similar to the idea of the 

Occam’s inversion. The difference from the Occam’s method is we do not choose λ that 

minimize the RMS misfit, but we select λ that can both lower the misfit down and at the same 

time require small number of CG iterations per an outer loop iteration.  The “optimal” λ is 

selected and varied based on our knowledge and experience gained from the studies in previous 

section 3. It is therefore not exactly the same philosophy as in the Occam’s inversion, nor the 

DCG, but a mixed of both. This is why we refer to this method as a mixed DCG and Occam or in 

short WSMIX3DMT. 

Based on earlier 3-D studies in section 3 and 2-D studies in Siripunvaraporn and Egbert 

(2007), rtol for the inner CG loop is fixed at 10-2 as the optimal tolerance level for number of CG 

iterations. For early iterations, larger λ requires significantly smaller number of CG iterations 

than smaller λ and at the same time can lower the misfit down. We therefore choose to start our 

mixed scheme with large λini (e.g.,  λini = 100 or larger). To further decrease the misfit down, λ is 

automatically reduced by a factor of ε (e.g., ε = 10) in the next iteration. This automatic 

reduction is to avoid redundant computations as occurred when large λ is fixed (Figure 2). A 

reduction in λ was used before in Kelbert et al. (2008) but only when the misfit is not decreased 

in their non-linear conjugate gradient (NLCG) method. The automatic reduction in λ is continued 

successively for the next iterations until reaching λmin (e.g., λmin = 0.1). When  λ below λmin, it 

will set back to λmin.  

For example, λini = 100, λmin = 0.1 and  ε = 10 is input in the first iteration. Values of λ 

for the 2nd, 3rd and 4th iterations would be 10, 1 and 0.1, respectively. If the inversion continues, 

5th iteration and so on will have λ = 0.1. In addition, we also add a scheme to detect the 

divergence. Within Ndiv CG iterations (e.g., Ndiv = 15), if the divergence occurs, there is a high 

possibility that the inversion will fail to converge. If that happens, λ is automatically increased 

by a factor of ε and re-start the process again. This “extra” step may cause redundant 

computations but can help preventing the divergence inside the main inversion loop.    
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4.1 Numerical Experiments of WSMIX3DMT and Comparisons with WSINV3DMT and 

WSDCG3DMT 

To check the efficiency of the WSMIX3DMT code, we apply it to the same synthetic data set 

generated from model in Figure 1. Four values of λini are used (λini = 10000, 1000, 100 and 10) 

with ε = 10. Figure 4 shows convergence rates from the WSMIX3DMT program with various 

initial λini, in comparisons to those of WSINV3DMT (black) and WSDCG3DMT with λ = 1 

(red). Figure 4 shows that all runs can converge to the desired level within 3-4 iterations. Most 

importantly, all WSMIX3DMT runs spend computational time less than both WSINV3DMT and 

fixed λ WSDCG3DMT. Inverted models from all runs with 1 RMS are similar to the inverted 

model plotted in Figure 3.       

When λini is too large (i.e. at 10000), redundant computation is occurred in the first 

iteration. Although the first iteration with λini = 10000 runs very quick, it does not greatly reduce 

the misfit.  When λ is decreased to 1000 in the next iteration. The misfit in this case is almost the 

same as starting the run with λini = 1000. The first iteration of λini = 10000 is therefore redundant 

and unnecessary. Starting the mixed inversion with λini ≤ 10 requires large computational time 

due to large number of CG iterations used in the first iteration. In addition, λ is decreased 

quickly to 1 and 0.1 in the next few iterations and would demand large number of CG iterations. 

In this case, we do not gain advantage of small number of CG iterations used from larger λ. It 

therefore become less effective as in WSDCG3DMT. Thus, we should avoid to start 

WSMIX3DMT with smaller λ or very large λ.  

From the experiments, the “optimal” λ to start with would be around 100 to 1000 (Figure 

4). Both cases spends computational time at about 100 minutes compared to 300 minutes of 

WSINV3DMT and 400 minutes of WSDCG3DMT. In addition, WSMIX3DMT requires 

memory the same as WSDCG3DMT, i.e. less than 0.4 Gbytes for this dataset, which is several 

factors less than WSINV3DMT.  WSMIX3DMT which is a combination of DCG and Occam is 

the most efficient method compared to both WSINV3DMT and WSDCG3DMT.  

Further studies show that ε around 10 is the optimal value. If ε too small, redundant 

computations can be occurred. If too large, WSMIX3DMT would not gain much advantage from 

smaller number of CG iterations when large λ used. This makes WSMIX3DMT less efficient.  
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5. Applications of WSMIX3DMT, WSDCG3DMT and WSINV3DMT to EXTECH data  

To show the efficiency of our mixed scheme WSMIX3DMT in comparisons to the 

WSDCG3DMT and WSINV3DMT codes, we applied all three codes to the EXTECH dataset 

(Tuncer et al., 2006) conducting around the McArthur River mine, Saskatchewan, Canada 

(Figure 2 of Tuncer et al., 2006). The data consists of both impedance tensor (Zxx, Zxy, Zyx and 

Zyy) and the vertical magnetic field transfer function (VTF; Tzx and Tzy) for 131 stations and 16 

periods (from 8000 Hz to 5 Hz). The data parameter N is therefore equal to 25,152. In all runs, 

minimum error bars for VTF is set at 15% of (|Tzx|2+|Tzy|2)½ and 5% of |ZxyZyx|½ for off-diagonal 

and 50% for diagonal terms. A 1000 Ω m half-space is used as an initial model and a prior model 

(m0) and is discretized at 56 × 56 × 33 (+7 air layers). The model parameter M is therefore at 

103,488.    

To show the efficiency of the parallel codes, all runs are performed on a cluster computer 

which consists of 8 processor nodes with 8 GBytes in memory each. With 16 period data, two 

periods are distributed to compute on each processor node. In terms of memory, WSINV3DMT 

requires about 5 GBytes to store its two period sensitivities and the cross-product matrices. It 

also requires about 1 GBytes additional to store other necessary components. In contrast to 

WSINV3DMT, both WSDCG3DMT and WSMIX3DMT require less than 1 GBytes of RAM to 

perform the inversion of this EXTECH dataset. The EXTECH dataset and the model mesh used 

above are already at a maximum limitation of the cluster for WSINV3DMT. Because 

WSDCG3DMT and WSMIX3DMT use significantly less memory, they can therefore be applied 

on a bigger dataset and a bigger mesh on this cluster. However, here, same parameters are used 

for comparisons. 

Convergence behaviors of the three methods are plotted in Figure 5 as a function of time 

in minutes. From Figure 5, WSINV3DMT requires about 870 minutes in 3 iterations to converge 

to its minimum at 1.52 RMS.  After the 3rd iteration, the misfit is fluctuated above the minimum 

RMS. WSDCG3DMT with λ = 1 also requires 3 iterations to converge to 1.50 RMS but uses 

longer CPU time at about 1040 minutes. After the 3rd iteration, WSDCG3DMT increases its 

RMS to 1.57 in the 4th iteration and is terminated because of the divergence. With λ < 0.5, the 

WSDCG3DMT code diverges and fails after its first iteration.  
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For our mixed scheme,  WSMIX3DMT with λini = 100 can converge to 1.47 RMS 

slightly below the level of both WSINV3DMT and WSDCG3DMT in 3 iterations. Most 

importantly, the computational time is only about 450 minutes, about half of WSINV3DMT and  

WSDCG3DMT. At the 4th iteration when λ is reduced to 0.1, the scheme detected the divergence 

occurring inside the CG loop. The code is then re-started with a bigger λ = 1 on the 4th iteration. 

The process of increasing λ will cost some extra computational time. With the divergence 

detection scheme, the code can continue to run for several iterations. 

After continuing the run, WSMIX3DMT can further reduce the misfit below the level 

that both WSINV3DMT and WSDCG3DMT can attain. At 5th iteration with λ = 1, the misfit is 

at the lowest RMS of 1.34. However, these 0.13 RMS difference from 3rd to 5th iteration require 

computational time almost 14 hours; about twice longer than the CPU time at the 3rd iteration. 

One can therefore stop at the 3rd iteration because the inverted models at the 3rd and 5th iteration 

are slightly different.   

Convergence behavior from starting WSMIX3DMT with λini = 1000 is redundant in early 

iterations similar to starting with λini = 100, as shown in Figure 5. It therefore spends “extra” 

CPU time longer. Overall, it can still converge below 1.5 RMS within 500 minutes faster than 

both WSINV3DMT and WSDCGMT methods. 

Inverted model from the 5th iteration of WSMIX3DMT starting with λini = 100 is shown 

in Figure 6. It is similar to the inverted model from WSINV3DMT (Figure 11 of Siripunvaraporn 

and Egbert, 2009). Major differences are at the two conductors. Here, conductor on the eastern 

part of the profiles oriented in the NE-SW direction can be seen as shallow as 500 m depth. 

Northern conductor seems to be continuous from 800 m to 1.3 km depth.  The difference of the 

two inverted models (Figure 6 here and Figure 11 of Siripunvaraporn and Egbert, 2009) and 

detail interpretation is beyond our scopes in this paper. For detail discussion of the EXTECH 

data set can be found in Tuncer et al. (2006) and Farquharson and Craven (2008). 

  

6. Conclusions 

In this paper, we implement and extend the data space conjugate gradient inversion for three-

dimensional Magnetotelluric data (WSDCG3DMT). Numerical experiments on 3-D synthetic 

data show that WSDCG3DMT with some λ can converge to the desired level of misfit but often 
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spends longer computational time than the data space Occam’s inversion (WSINV3DMT).  

However, because the whole sensitivity matrix is not explicitly formed and stored, its memory 

requirements are therefore minimal at a fraction of WSINV3DMT. This makes WSDCG3DMT 

practical for large to very large data set.  

Based on the numerical experiments of WSDCG3DMT on synthetic data, number of CG 

iterations depends greatly on the λ values used. Larger λ usually requires smaller number of CG 

iterations per main inversion iteration but hardly converge to the “true” solution. Smaller λ 

requires larger number of CG iterations per main iteration but can converge to the desired level 

of misfit. However, if λ is too small, it can diverge. Computational time varies proportionally to 

the number of CG iterations. Thus, to use less CPU time, number of CG iterations per outer loop 

iteration must be minimized.  

The information learned from the synthetic studies has inspired and led us to the creation 

of the mixed scheme of the Occam’s and DCG methods or WSMIX3DMT. In DCG scheme, λ is 

fixed as a regularization parameter. In Occam’s inversion,  λ is varied as both step length and 

regularization parameters. In our mixed scheme, λ is varied but not in the same way as in the 

Occam’s inversion. Instead of choosing λ that generates a model with smallest misfit as in 

Occam, we prefer λ that minimizes number of CG iterations but at the same time can reduce the 

misfit. With this strategy, λ should initially start from large value before reducing to smaller 

value for the next subsequent iterations. Our studies shows that λ between 100 to 1000 are the 

optimal λ to start with for the WSMIX3DMT code. 

By applying all three algorithms (WSMIX3DMT, WSDCG3DMT and WSINV3DMT) 

on both synthetic and EXTECH field data, our mixed scheme (WSMIX3DMT) is significantly 

faster than both WSDCG3DMT and WSINV3DMT. Similar to WSDCG3DMT, it requires 

insignificant amount of memory. Because both computational time and memory performances 

are at minimum, we can conclude here that WSMIX3DMT is the most efficient inversion.  
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Figure 1. Two-block synthetic model used to test our inversions. The solid dots indicate the 

observational sites. A cross-section view in the lower panel is a profile cutting across the middle 

of the two anomalies in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005; 

and Siripunvaraporn and Egbert, 2009). 
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Figure 2. Convergence rates  of WSINV3DMT (black) and WSDCG3DMT from various λs and 

rtol to the synthetic dataset generated from a model in Figure 1. Dash line for rtol = 10-1. Solid line 

for rtol = 10-2.  Each plus symbol indicates one iteration. 
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Figure 3. An inverted model from WSDCG3DMT with λ = 1. The synthetic data is generated 

from the model in Figure 1. The top panels (a)–(c) is a plan view at the surface, at 3 km and at 

7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the two anomalies 

at X = 0 km. The solution is shown only in the central area around the anomalies, not for the full 

model domain.   
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Figure 4. Convergence rates from WSINV3DMT (black), WSDCG3DMT with λ = 1 (red) and 

WSMIX3DMT with different initial λini to the synthetic data generated from a model in Figure 1. 

Each square or plus symbol indicates one iteration. λ used in each iteration for WSMIX3DMT is 

printed next to its square symbols.  
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Figure 5. Convergence rates from WSINV3DMT (black), WSDCG3DMT with λ = 1 (red) and 

WSMIX3DMT with initial λini = 1000 (green) and λ ini = 100 (blue) to the EXTECH field dataset.    

Each square or plus symbol indicates one iteration. λ used in each iteration for WSMIX3DMT is 

printed next to its square symbols. 
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Figure 6. The inverse solution at various depths from the 5th iteration of the WSMIX3DMT 

method with initial λini = 100. The EXTECH data used here consists of both vertical magnetic 

transfer function and full impedance tensor at 131 sites and 16 periods. The cross-symbols 

indicate the locations of the stations. 
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Abstract 

We use 2-D Magnetotelluric (MT) problems as a feasibility study to demonstrate that the 3-D 

MT modeling can be solved with a direct solver, even on a standard single processor PC. The 

scheme used is the hierarchical domain decomposition (HDD) method in which a global 

computational domain is uniformly split into many smaller non-overlapping subdomains. 

However, to make it more efficient, two modifications are made to the standard HDD method. 

Instead of three levels as in the standard HDD method, we classify the unknowns into four 

classes: the interiors, the horizontal and vertical interfaces and the intersections taking 

advantages of the finite-difference approximation. Four sets of smaller systems of equations 

are successively solved with a direct method (an LU factorization). The separation helps 

overcoming the memory overburden of a direct solver while remain computationally 

effective. To further enhance the speed of the code, a red-black ordering is applied to solve 

the horizontal and vertical interface reduced systems.   

Numerical experiments on 2-D MT problem running on a single processor machine 

shows that CPU time and memory used are almost constant for any resistivity models, 

frequencies and modes as long as the model size remain the same. This is a clear advantage 

of our algorithm. Number of subdomains is a major factor controlling computational 

efficiency. Here, we also introduce a “memory map”, a tool we can use to pre-select 

“optimized” subdomains. Our 2-D experiments also shows that by splitting a domain with the 

optimized subdomains, this modified scheme can outperform the standard FD method in both 

CPU time and memory even running on a serial machine.   
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1. Introduction 

To obtain magnetotelluric (MT) responses, the second order Maxwell’s equation in either 

electric field or magnetic field is solved via three commonly used approaches: finite 

difference (FD) method (e.g. Mackie et al., 1994; Smith, 1996; Siripunvaraporn et al., 2002; 

Siripunvaraporn et al., 2005), finite element (FE) method (e.g. Wannamaker et al., 1987; 

Zyserman et al., 1999; Zyserman and Santos, 2000; Mitsuhata and Uchida, 2004; ), and 

integral equation (IE) technique (e.g. Wannamaker, 1991; Xiong, 1992; Avdeed and 

Avdeeva, 2009 ). For complicated and geologically realistic two-dimensional (2D) and three-

dimensional (3D) model, FD or FE methods are generally more efficient and robust than IE 

technique. In the past decades, FD method has gained more popularity due to its simplicity in 

technique and also its accuracy in solution.  

 

In many problems, when model domain becomes very large, particularly in 3-D problems, 

solving the system of equations with the direct method is impractical in term of memory 

requirement (see Ben-Hadj-Ali et al., 2008 for 3-D frequency-domain full-waveform 

tomography; Streich, 2009 for 3-D MT;). The system is then alternatively solved with the 

iterative solvers (e.g. Bi-Conjugate Gradient (BiCG) method in Smith, 1996 and Xiong, 

1999; Quasi Minimum Residual (QMR) in Siripunvaraporn et al., 2002; Preconditioned 

Conjugate Gradient (PCG) in Siripunvaraporn and Egbert, 2000; Minimum Residual Method 

(MRM) in Mackie et al., 1994). In many practical MT cases, the electrical resistivity model 

can be geologically complicated resulting in large conditioned number and therefore long 

computational time (see Patro and Egbert, 2009). Occasionally, the iterative solvers may 

become stagnant after many thousand of iterations and sometimes fail to converge. The 

calculated solution will therefore not be accurate and could mislead an interpretation if 

applied inside an inversion.   

 

In high conditioned number case, being able to solve a problem with a direct solver is very 

crucial, if applicable. With direct method,    accuracy is guarantee. Computational time is also 

controllable, because theoretically it is almost constant for any frequencies, modes or 

polarizations and resistivity models as long as the model domain remains the same size. In 

addition, the factorization used when solving the system can be re-used many times when 
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computing the sensitivity or Jacobian matrix (see Siripunvaraporn and Egbert, 2000) inside 

the inversion algorithm. In 3-D MT cases, the direct solver is still not practical with recent 

computer technology (see Streich, 2009). However, here we use the 2-D study to demonstrate 

that the 3-D problem can be efficiently solved with a direct solver even on a serial machine if 

the modified hierarchical domain decomposition developed in this paper is applied to. 

 

Instead of computing on a large domain, a global domain can be splitting into several smaller 

local domains or subdomains. The solution on the global domain is then solved through the 

smaller systems of each subdomain. This technique is generally known as the domain 

decomposition (DD) technique. It is considered as a powerful tool in many large scale 

engineering problems (e.g. Lu and Shen, 1997; Bitzarakis et al., 1997; Larsson, 1999;  Yin et 

al., 2002; Basermann et al., 2005;  Lu et al., 2008; Wang et al., 2008; ) and also in various 

multidimensional geophysical problems (e.g. Xiong, 1999; Zyserman et al., 1999; Zyserman 

and Santos, 2000; Xie et al., 2000; Pain et al., 2002; Ben-Hadj-Ali et al., 2008; Sourbier et 

al., 2008;  Takei et al., 2010).  

 

The domain decomposition method can be mainly classified into two categories: the 

overlapping technique where some region of the subdomain overlapping with the others (e.g. 

Xiong, 1999; Peng et al., 2009) and the non-overlapping method where neighboring 

subdomains share the same sub-boundaries (e.g. Lu and Shen, 1997; Zyserman et al., 1999; 

Zyserman and Santos, 2000; Lu et al., 2008; Wang et al., 2008 ). Comparison of the 

overlapping and the non-overlapping methods is mentioned in Chan and Goovaerts (1992) 

and Rice et al. (2000).  Various schemes are used to solve the domain decomposition 

problems, such as the Schwartz algorithms (see Cai et al., 1998), Schur complement approach 

(see Smith et al., 1996; Saad, 2003; Zhang, 2005 ), the hierarchical domain decomposition 

approach (Smith et al., 1996; Takei et al., 2010), balancing domain decomposition method 

(Mandel, 1993), the interface relaxation methods (see Rice et al., 2000) among many other 

techniques.  

 



  4

In electromagnetic induction of the Earth, there are only a few papers demonstrating the use 

of domain decomposition method to solve MT forward problems. Zyserman et al. (1999) and 

Zyserman and Santos (2000) applied non-overlapping domain decomposition technique to 2-

D and 3-D cases, respectively. In their techniques, sub-problems are iteratively solved via the 

interfaces enforced by the equivalent Robin-type transmission conditions. The memory 

requirement is significantly diminished due to no appearance of a large global matrix. 

Computational time is also greatly reduced when solving in the parallel computation 

(Zyserman and Santos, 2000). Although, the technique has proven to be numerically superior 

in the parallel system, the technique may not be suitable for serial computation. Xiong (1999) 

applied adaptive Schwartz overlapping domain decomposition technique for 3-D controlled 

source electromagnetic forward problems. In his method, all subdomains share overlapping 

regions.  Each subdomain is independently solved and then updated from neighboring 

subdomains until the solution converges. The memory is significantly reduced. However, its 

total computational run time becomes larger than solving the whole system on single node 

processor (Xiong, 1999). Both schemes (Xiong, 1999; Zyserman et al., 1999; and Zyserman 

and Santos, 2000) show that efficiency in terms of computational time of the domain 

decomposition method can only be gained if running on parallel system. They are inferior if 

running on a serial machine.  

 

In this paper, we investigated another method based on the hierarchical domain 

decomposition (HDD). Similar to other domain decomposition methods, the global domain is 

subdivided into many smaller subdomains. System of equations for each subdomain is 

separately formed and linked to the other via the interfaces. The hierarchical domain 

decomposition method can be directly applied to the MT problems both parallel and serial 

computations. Application of HDD on a parallel system is straightforward. Similar to others, 

calculation of each subdomain is performed separately on each processor node. A single 

interface system is then distributed to all processors for calculation. Theoretically, efficiency 

can be expected from applying the code to the parallel system. However, in practice, this 

parallel scheme requires substantial amount of communication time to exchange data among 

processors, particularly when solving the interface system. Efficiency is therefore platform-

dependent. In this paper, we only illustrate the parallel algorithm but prefer not to 

demonstrate it numerically because our 2-D domain problem is “too” small for current 
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computer technology. The parallel algorithm will be later demonstrated on a bigger 3-D 

problem as a future research. In addition, this parallelization is not our main challenge. Our 

major challenge is the efficiency enhancement of HDD on a serial machine, not through a 

multi-processor machine. 

 

Similar to other domain decomposition methods for MT problems (Xiong, 1999; Zyserman et 

al., 1999; and Zyserman and Santos, 2000), efficiency of HDD on a serial computation is 

low. However, in this paper, two modifications are developed and applied to the hierarchical 

domain decomposition method to increase its efficiency. First modification is the separation 

of interfaces into vertical and horizontal interfaces. This is natural for the finite-difference 

approximation scheme. Second modification is the application of red-black ordering to the re-

ordered interface systems. With the two modifications, we will show that the modified HDD 

code for 2-D MT problems performs better than the conventional method even on a serial 

machine. Because we use a direct solver to solve system of equations, this 2-D experiment is 

also a feasibility study for future 3-D problems to demonstrate that the direct solver can be 

used to solve 3-D system of equations even with a serial calculation. These are therefore our 

main objectives for this paper. 

 

Efficient modified HDD on a serial computation can also be applied to the parallel system. 

However, instead of parallelizing over subdomains, we parallelize over frequency. 

Calculation of MT responses of each frequency is performed serially on one processor. Thus, 

all frequencies are solved simultaneously but separately on multi-processor machines. This is 

used frequently in 3-D inversion algorithms (see Siripunvaraporn et al., 2004; 2005; 

Siripunvaraporn and Egbert, 2009; Siripunvaraporn and Sarakorn, 2010). In addition, this 

scheme does not require substantial amount of communication time between processors. It is 

therefore perfectly fit with the PC cluster platform which can be easily and cheaply built. 

 

In addition, a major decisive factor that controls the efficiency of the modified HDD method 

is the number of subdomains. Selecting subdomains can be a trial and error processes. To 
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avoid wasting time to this process, here we introduce a “memory map” to help choosing 

“optimized” subdomains that yields the “best” computational performance. Memory map is 

pre-generated from several combinations of subdomains. Number of subdomains can be 

selected from the region of low memory in the memory map. This strategy often guarantees a 

faster CPU time than the standard method. The concept of memory map is new and first 

introduced here.  

 

In the following, we first review the standard FD approach to solve a global domain problem. 

We then describes the basic idea of the hierarchical domain decomposition (HDD) and its 

parallel implementation. Then we describe the two  modifications which help speeding up the 

HDD method on a serial calculation.  Validations and numerical examples are given next 

along with the discussion. Conclusion are given at the end. Hereafter, we will refer to the 

standard finite difference for a global domain as FD2D, and to our modified hierarchical 

domain decomposition as MHDD2D.  

 

 

2. Magnetotelluric forward modeling : Finite difference approach 

Given an electrical conductivity (σ) or resistivity (ρ) model, to yield MT responses at the 

surface,   the electric fields (E) are computed from the second order Maxwell's equation,  

 

iωμσ∇×∇× =E E ,      (1a) 

 

for the transverse electric field (TE) mode, while  the magnetic fields (H) are solved from, 

 

iρ ωμ∇× ∇× =H H ,      (1b) 
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for the transverse magnetic field (TM) mode, where ω  is an angular frequency and μ  the 

magnetic permeability. With finite difference approach, the conductivity or resistivity model 

is first discretized into many rectangular grids. An example of non-uniform grid 

discretization is shown in Figure 1. The unknown electric fields or magnetic fields are 

defined on the nodes (black dots) inside the domain, while the fields on the boundaries (left, 

right, top and bottom) are obtained from 1-D calculations. After applying finite difference to 

(1a) or (1b) and rearranging equation, both modes yield similar system of equations, 

 

Ax = b ,       (2) 

 

where x represents the unknown internal electric or magnetic fields; b a vector containing the 

term associated with the boundary fields; and A a coefficient matrix which is large sparse 

five-banded symmetric and complex only on the diagonal (Siripunvaraporn and Egbert, 

2000). Equation (2) for 2-D problem can be solved either directly or iteratively such as 

preconditioned conjugate gradient (PCG) method (Siripunvaraporn and Egbert, 2000). One of 

our aims is to demonstrate the use a direct solver for 3-D problem. An LU-factorization is 

therefore applied here to solve all systems of equations from FD2D and MHDD2D.  

   

After calculating the electric fields, the magnetic fields can be calculated from solving the 

first order Maxwell's equation, the Faraday's law. MT responses are then computed from the 

ratio of electric to magnetic fields at the surface.    

  

3. Hierarchical Domain Decomposition method 

An alternative method to solve (2) is via the domain decomposition method. There are many 

different domain decomposition techniques. Here, we applied the hierarchical domain 

decomposition (HDD) method which is a non-overlapping technique to our 2-D MT 

problems. We start this section   by describing the basic idea of the  HDD method.      
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In every domain decomposition techniques, the model domain is split into several smaller 

subdomains. For simplicity, example mesh in Figure 1 is redrawn as in Figure 2 with uniform 

space, and is uniformly partitioned into 3 × 4 subdomains only as an illustration. The 

unknown electric or magnetic fields located at the nodes can be classified into three 

“hierarchical” types: (1) the interiors (●), (2) the interfaces ( and ) and (3) the 

intersections ( ) from lowest to highest level, as shown in Figure 2. The intersections are 

defined as the highest level because they separate the interfaces. Similarly, the interfaces 

separate the interiors, so they are defined the next lower level.The interiors are therefore the 

lowest. With this configuration, the intersections must be solved first. Once the intersections 

are obtained, the interfaces can be successively calculated from the intersections. Similarly, 

the interiors can be successively computed from the interfaces. This hierarchical 

classification is slightly different from the “classic” Schur complement method (see Smith et 

al., 1996; Saad, 2003; Zhang, 2005; ). In Schur complement method, the unknown fields are 

classified only the interiors and the interfaces.  

 

For 2-D MT problem, assuming that the model domain is equally divided into p × q (= r) 

subdomains where p and q are number of subdomains in z- and y- directions, respectively, 

and r is the total number of subdomains. These partitions will yield a total of l interiors (or l/r 

for each subdomain), total of m interfaces and n intersections. Specifically, an inner 

subdomain i which has lzi × lyi ( = l/r) interiors would have 2lzi + 2lyi interfaces, and 4 

intersections, while outer or boundary subdomains would have less depending on their 

locations. By using Figure 1 and Figure 2 as an example, the model in Figure 1 is discretized 

into 12  × 20 grids, which is later decomposed into 3  × 4 (=12)  subdomains. In this example, 

there would be a total of 209 unknowns inside a global domain. When partitioning into 3 × 4 

subdomains, an inner subdomain would then have 12 interiors, 14 interfaces and 4 

intersections.  The total numbers of interiors, interfaces and intersections are 144, 59 and 6, 

respectively. 

 

By organizing the unknowns into three levels, the system of equations (2) can be reordered 

according to this configuration as follows,  

 

 

,    (3) 
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

T

T

F D 0 u f
G v g

0 E H
D E

w h
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where F, G and H are l × l global interior coefficient matrix, m × m global interface 

coefficient matrix, and n × n intersection coefficient matrices, respectively. Global interior 

matrix F composes of many smaller l/r × l/r local interior sub-matrix Fi where i = 1 to r. Each 

Fi corresponds to a coupling within the interior elements inside the i subdomain. Global 

interface matrix G gathers all coefficients corresponding to an interaction between the 

interface elements, while H is diagonal matrix associating with the intersection elements. The 

inter-coupling coefficients between the interiors and interfaces are given in D with a 

dimension of l × m, and between the interfaces and intersections are given in E with a 

dimension of m × n. There is no coupling between the interiors and the intersections in our 2-

D MT case as shown in Figure 2. Vectors f, g and h are domain boundary fields associated 

with the interiors (u), interfaces (v) and intersections (w), respectively. Figure 2 shows that 

there are no boundary fields that belong to the intersections. Therefore, h = 0 in our 2-D 

problems.  

 

According to the hierarchical domain decomposition technique, equation (3) can be 

decomposed into two reduced systems: the interior-interface reduced system and the 

interface-intersection reduced system. The interior-interface reduced system is derived from 

the coupling between the interiors and interfaces, 

 

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

T

u f
=

g EwD -
F D

G v
,    (4) 

 

while the interface-intersection reduced system is from the coupling between the interfaces 

and intersections,  

 

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
T

S E v g
H w h

'
E

 ,    (5) 

 

where the interface Schur complement matrix T -1S = G - D F D  and T -1g = g - D F' f . The 

unknowns are then successively solved from the highest to the lowest level. The intersections 

w are solved first from  



  10

H'w = h' ,      (6) 

 

where the intersection Schur complement matrix T -1H = H - E S' E , and its right-hand side 

T -1h' = h - E S g' . Once solving the intersections, the interfaces v and the interiors u can then 

be consecutively solved from  

 

Sv = g' - Ew ,      (7) 

and 

i i i iF u = f - D v .      (8) 

 

Algorithm of the standard HDD method can be summarized below after decomposing the 

global domain into several subdomains. 

1. Form Fi, fi, Di and factorize Fi of each subdomain. 

2. Compute T -1
i i iD F D and T -1

i i iD F f  of each subdomain. 

3. Form G, g, H, h and E. 

4. Construct ∑ T
i

-1
i iS = G - D F D  and ∑ T -1

i i ig' = g - D F f . 

5. Factorize S. 

6. Build T -1H = H - E S' E and T -1h' = h - E S g' . 

7. Solve H'w = h' . 

8. Solve Sv = g' - Ew . 

9. Solve i i i iF u = f - D v . 

10. Merge ui, v and w as a solution for the system of equations (2). 
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The intersection Schur complement matrix H'  (step 7) is dense, but its dimension, n × n, is 

relatively small and therefore would not require a lot of computations. Similarly, the classical 

Schur method has a similar dense matrix but with a dimension equal to numbers of interfaces 

and intersections, i.e. m+n × m+n. Thus, the hierarchical domain decomposition method 

yields a significant smaller dense matrix. The interface Schur complement matrix S, in the 

hierarchical case, is not dense but sparse matrix. Example of its sparse pattern is shown in 

Figure 3a) from subdomains of Figure 2.  

 

All equations including equation (6), (7) and (8) are solved with a direct method (here, an 

LU-factorization).  To construct T -1S = G - D F D  and T -1H = H - E S' E  in step 4 and 6, after 

factorizations, F and S systems are solved with a series of different right hand sides: DT and 

ET for m times and n times, respectively. Solving each system just one time requires 

relatively small amount of computational resources, both memory and CPU time. However, 

as showing in the algorithm above, both systems are solved several times. Computational 

time for numerous solving (step 2, 4 and 6) plus factorizations (step 1, 5 and 7) can be more 

than just solving one large global system (equation 2) on a serial machine. This statement is 

correctly confirmed in Xiong (1999) and also in our MT numerical experiments in the next 

section. Once all main matrices are obtained; equation (6) and (7) is solved just one to obtain 

w and v in step 7 and 8, respectively. Equation (8) is then consecutively solved to obtain the 

interiors u within each subdomain in step 9. If each subdomain is equally discretized, this is 

equivalent as solving equation (8) r times. 

 

Because domain decomposition is not highly efficient on a serial machine, another way of 

using domain decomposition on a serial computation is to modify the hierarchical matrix (3) 

and used it as a preconditioner when  solving the system with the iterative solvers (e.g., 

Bitzarakis et al., 1997; Larsson, 1999; Benedetti et al., 2009; Grasedyck et al., 2009). 

 

3.1  Parallel Implementation of HDD  

Most parallel domain decomposition algorithms distribute computations of each subdomain 

to each processor (see examples in Xiong, 1999; Zyserman et al., 1999; and Zyserman and 

Santos, 2000). In this parallel scheme, step 1, 2 and 9 of each subdomain are performed 
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separately on each processor. After calculations, all results are sent to the master node. The 

bottleneck of this parallelization occurs from step 3 to 8. The most difficult parts for 

parallelization are to factorize S in step 5, to construct T -1H = H - E S' E and T -1h' = h - E S g'  in 

step 6 and to solve Sv = g' - Ew  in step 8. Once distributing S to all processors, this process 

requires a lot of communication time among processors when factorizing and solving system 

of equations. Efficiency of this parallel scheme would depend significantly on the parallel 

algorithms which also depend on computer architectures (see Lu and Shen, 1997; Kocak and 

Akay, 2001). Many massive parallel manufacturers have provided their own efficient parallel 

algorithms to solve system of equations. These algorithms show best performance only on 

their own platforms.  

 

However, this conventional parallel scheme could be a problem for PC cluster platform or 

distributed memory systems. Efficiency would be relatively low if switch or hub used to 

communicate among processors is slow regardless of how efficient the algorithm is. Parallel 

implementation is not the purposes of our paper as previously described. We therefore opt not 

to show the numerical experiments of HDD on parallel systems. Experiments with 3-D MT 

problems would be an interesting research to pursue which is beyond our scope here. 

 

4.  Modified hierarchical domain decomposition method  

Earlier numerical experiments on single processor machine show that a straightforward 

application of the HDD method to the 2-D MT problems requires less memory storage than 

standard method. However, its computational time becomes longer. In order to make the 

hierarchical domain decomposition method more efficient on a serial machine for our 2-D 

MT problem, two modifications are necessary. First, the separation of the interfaces into 

vertical and horizontal interfaces will break the larger interface system into two smaller 

vertical and horizontal interface systems which would lead to a memory reduction. Second, 

the red-black ordering technique is applied inside the horizontal and vertical interface 

systems to further help decreasing the computational time. 

 

Taking advantage of the rectangular discretization of the FD approximation, the interfaces 

can be further classified into two types: the horizontal interfaces (  in Figure 2) and the 
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vertical interfaces (  in Figure 2). Number of interfaces (m) is then divided into number of 

horizontal interfaces (mh) and number of vertical interfaces (mv) where m = mh + mv. The 

system of equations (3) can then be reassembled as follows, 

 

,  (9)

 

 

 

where H and V  represent horizontal and vertical interfaces, respectively.  The main difference 

from the original hierarchical domain decomposition would be at the separation of G matrix 

into GH and GV, where GH gathers all coefficients corresponding to a coupling between the 

horizontal interfaces, and similarly for GV corresponding to a coupling between the vertical 

interfaces. With new classification, both vertical interfaces (vV) and horizontal interfaces (vH) 

are situated in the middle level between the intersection (w) and the interior (u) which are the 

highest and lowest, respectively. The interior-interface and interface-intersection reduced 

systems in equation (4) and (5) become 

 

 

,  (10) 

 

and 

 

,           (11) 

 

respectively.  Here, the interface Schur complement matrix S is decomposed into SHH, SHV, 

SVH and SVV as follow, 
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and 

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

H -1
T

H H
T

V VV

g
= -

g' D
f

g
F

g' D
.     (13) 

 

Example of the sparsity pattern of the modified Schur interface (12) is shown in Figure 3b) to 

be compared with the original Schur interface matrix S (Figure 3a). Similar to the original 

hierarchical domain decomposition, the unknown fields are successively solved from the 

highest level to the lowest level.  The intersections w will be solved first from  

 

H'w = h' ,      (14) 

 

where, ( )⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

-1
HH HV HT T

H V
VH VV V

S S E
H = H - E E

S S E
' , and its right-hand side 

( )⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

-1
HH HV HT T

H V
VH VV V

S S g'
= h - E E

S S g'
h' . After solving the intersections w, the vertical 

interfaces vV and the horizontal interfaces vH can be split and solved separately as,  

 

-1 -1
VV VH HH HV V V V VH HH H H(S - S S S )v = g' - E w - S S (g' - E w) ,  (15) 

and, 

 HH H H H HV VS v = g' - E w - S v .      (16) 

 

Dimension of  SHH and SVV from (15) and (16) are mh × mh and mv × mv , respectively, which 

are smaller than m × m S matrix of (7). They are therefore faster to solve and less memory 

storage. This is one clear advantage of classifying the interfaces into the horizontal and 
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vertical interfaces. After obtaining w and v, the interiors u can then be consecutively solved 

from  

 

i i i Hi H Vi VF u = f - D v - D v .      (17) 

 

To further increase the efficiency of our modified scheme, red-black coloring technique (See 

Press et al., 1992 and Saad, 2003) is applied to (15) and (16) to help reducing the 

computational time. Under the red-black ordering, the unknowns inside of SVV and SHH are 

classified into red and black unknowns. The idea of Schur complement is again applied to 

this coloring system of the interfaces. The reduced systems are then derived and recursively 

solved to the red and to the black systems. This modification demonstrates the application of 

Schur domain decomposition inside the hierarchical domain decomposition (see Rung-

Arunwan, 2010 for further detail).   

 

With both modifications, the modified hierarchical domain decomposition (MHDD2D) can 

outperform the FD2D code even running on a serial computational machine as showing in the 

next section.   

 

5. Numerical Experiments     

In this section, we first validate that the responses from our modified hierarchical domain 

decomposition method (MHDD2D) are as accurate as those from FD2D. Next, computational 

costs on a single processor are measured with different combinations of subdomains. A 

memory map is then introduced as a strategy to select an “optimized” number of subdomain 

where computational costs are minimized (i.e., relatively faster or at least equivalently to 

FD2D, but with a fraction of memory). 
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5.1 Validation Tests 

To validate the MHDD2D approach, we show the apparent resistivities and phases of both 

TM and TE modes at three frequencies calculated from the model shown in Figure 1. The 

calculated responses from our MHDD2D approach are directly compared to those obtained 

from FD2D as in section 2. In this test, the model and air of Figure 1 is non-uniformly 

discretized into 80 × 240 grids in z- and y-direction, respectively. For FD2D method, the 

unknown to be solved is 18,881. For MHDD2D, the model domain is uniformly split into 4 × 

8 (z- and y- direction, respectively) subdomains. With this 4 × 8 subdomains, the 18,881 

unknowns will be divided into 551 interiors for each subdomain (or a total of 17,632 

interiors), 696 horizontal interfaces and 532 vertical interfaces, and 21 intersections. Total 

memory requirement of MHDD2D is about 21.7 Mbytes, which is approximately one-third of 

FD2D (about 71.09 Mbytes). Memory estimation will be discussed in subsection 5.2.1. 

 

Figure 4 shows that the calculated responses from both FD2D and MHDD2D are perfectly 

identical on both modes. Their difference is in the round-off level which is insignificant. This 

is expected since both methods solve the same system of equation, except that the MHDD2D 

method splits the computational domain into many smaller subdomains, and then solves 

smaller systems. In addition, we have performed validation tests on various synthetic models 

and real model (see inverted model from real data in Siripunvaraporn and Egbert, 2000) with 

several combinations of subdomains. All validation tests show that there is no difference 

from both methods (Rung-Arunwan, 2010). These have validated our MHDD2D method for 

both TM and TE modes. 

 

5.2 Comparisons of Computational Efficiency  

Next, to prove the efficiency of our modified domain decomposition scheme, we ran the code 

on several synthetic 2-D models and also real “inverted” model (from Siripunvaraporn and 

Egbert, 2000) for both TM and TE modes. Because a direct method (LU-factorization) is 

used to solve all systems of equations, computational time and memory requirements are no 

difference among different models, modes (TM or TE) and frequency if domain size is the 

same. Model of Figure 1 is therefore used as a representative to demonstrate the effectiveness 

of our code.  
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Model and air of Figure 1 is discretized into three size meshes: 40 × 120 (small), 80 × 240 

(medium) and 120 × 360 (large). These three meshes are then uniformly subdivided into  p × 

q subdomains, where p and q are numbers of subdomains in z-dir and y-dir, respectively, 

starting from 2. Estimated memory usage and actual calculation time for each combination of 

subdomains for each mesh are compared with those from FD2D. Comparison results are 

plotted and shown in Figure 5 for 40 × 120 mesh, Figure 6 for 80 × 240 mesh and Figure 7 

for 120 × 360 mesh. Relative CPU time and memory (both in percents) are calculated from 

(timeMHDD2D-timeFD2D)*100/timeFD2D and (memMHDD2D-memFD2D)*100/memFD2D, 

respectively. Positive relative time and relative memory indicate that MHDD2D is less 

efficiency than FD2D and therefore spend more calculation time and require more memory, 

while negative reflects the opposite, i.e. MHDD2D is more efficient. Actual memory usage of 

FD2D are 8.77 Mbytes, 71.09  Mbytes and 240.97 Mbytes for small, medium and large, 

respectively, while actual CPU time on an Intel Core Two Duo 6400, 2.13 GHz machine are 

0.08 second, 1.12 second and 4.16 second, respectively. Actual CPU time and memory used 

of MHDD2D can thus be inferred from these actual values of FD2D and the maps shown in 

Figure 5, 6 and 7, respectively. 

  

5.2.1 “Memory Map” and Memory Comparison 

Total memory usage of MHDD2D can be calculated from numbers of subdomains in z-dir (p) 

and y-dir (q), number of interiors (l/r) for each subdomain, numbers of horizontal interfaces 

(mh) and vertical interfaces (mv) and number of intersections (n). However, it is quite 

complicated to express in a simple formula. It is therefore pre-estimated from the allocated 

variables inside the code to produce the “memory map” before running the actual code. 

Memory map displays  minimum memory used for different combinations of subdomains as 

shown in Figure 5a, 6a and 7a. The concept of memory map is very useful and will be 

demonstrated in later subsection.  

    

In contrast to MHDD2D, total memory usage for FD2D can be easily estimated from (Ny-

1)(Nz-1)(3Nz+1)*16 where Ny and Nz is grid discretization in y-dir and z-dir, respectively. 
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Multiplication with 16 is required because complex double precision is used. Because a large 

global matrix (equation 2) of FD2D is broken into many smaller sub-matrices (equation 9) for 

MHDD2D, memory requirement for different combinations of subdomains should therefore 

be less than that of FD2D. This is evidently shown in Figure 5a, 6a and 7a, where negative 

percentage is all over the map indicating less memory requirement of MHDD2D. However, 

total memory usage varies according to numbers of subdomains used in both directions.  

 

From all three figures, there are two cases where memory usage is relatively large (but still 

less than FD2D). First case is when the domain is divided into “large” numbers of 

subdomains. When number of subdomains become large (e.g., 20 × 30 subdomains in Figure 

7a), number of interiors per subdomain is small (see Table 1), but total number of interfaces 

are high (Table 1). More memory is therefore required to store and solve those interface 

coefficient matrices (GH, GV, SHH, SHV, SVH and SVV in 10 and 11). Although intersections 

(H) also increase, it would not significantly affect. In contrast, when small number of 

subdomains used (e.g., 3 × 3 subdomains in Figure 7a), total numbers of interfaces in both 

directions are small (see Table 1), but number of interiors per subdomain becomes very high 

(Table 1). Large number of interiors causes matrix Fi (equation 10) of each subdomain to 

require more memory to store and solve the system of equations (equation 13 and 17). Note 

that we use LU decomposition to solve all systems of equations. Some “extra” memory is 

therefore required to fill the empty band of the sparse matrix. This extra memory has already 

been accounted for in Figure 5a, 6a and 7a. 

 

5.2.2 Comparisons of CPU time  

Calculation time cannot be pre-estimated as the memory usage, it can only be obtained from 

running the actual code on the computer. Relative CPU time from small, middle and large 

meshes are shown in Figure 5b, 6b and 7b, respectively, from different combinations of 

subdomains. They are obtained from running on a single processor machine; here, an Intel 

Core Two Duo 6400, 2.13 GHz machine. Different machines or architectures may result 

differently. However, patterns of relative CPU time should remain approximately the same. 
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For small 40 × 120 mesh,   relative CPU time of MHDD2D is at least 30% more than that of 

FD2D in every combination of subdomains (Figure 5b). Although a larger system of 

equations (equation 2) is broken into many smaller systems (equation 9), successively solving 

a series of these smaller systems (see equation 4-6, and 10-17) can outperform solving a 

global system of FD2D. This reflects in larger CPU time as shown with all positive in Figure 

5b. Although there is no benefit of MHDD2D for smaller 40 × 120 meshes in term of CPU 

time, better efficiency can be gained up to 20% from larger meshes as shown with negative 

zones in Figure 6b for 80 × 240 mesh and in Figure 7b for 120 × 360 mesh. This shows that 

when grid discretization becomes large, MHDD2D will become more effective, even with a 

serial computation. This conclusion is significant, especially for future implementing the idea 

of MHDD2D to 3-D cases. In 3-D, the discretization mesh would be clearly a lot larger than 

what we used in 2-D case.   

  

5.3  Optimized Number of Subdomains : Pre-Selection 

Figure 5a, 6a and 7a show that there are regions where memory requirement is “minimum”. 

The minimized memory zones have the centers at 5 × 6 subdomains for 40 × 120 mesh 

(Figure 5a), at 8 × 8 subdomains for 80 × 240 mesh (Figure 6a) and at 10 × 9 subdomains for 

120 × 360 mesh (Figure 7a). The interiors, horizontal interfaces, vertical interfaces and 

intersections for these three subdomains are given in Table 2.  

 

By matching Figure 5a, 6a and 7a to Figure 5b, 6b and 7b, respectively, we found that the 

minimized memory zones are coincidently occurred almost the same regions as the 

minimized CPU time zone. Both areas will be referred to as the “optimized” regions, because 

both memory and CPU time are least used. In this “optimized” regions, numbers of interiors, 

horizontal interfaces, vertical interfaces and intersections are properly justified or balancing 

(as shown in Table 2), so that solving and storing Fi, GH, GV, SHH and SVV and H matrices 

are relatively fast and less memory requirement. Larger or smaller number of subdomains 

would cause an unbalance to these numbers. Larger number of subdomains would increase 

the interface sizes, while smaller number of subdomains would increase the interior size. 

Both cases would produce a large matrix, which would dominate both calculation time and 

memory usage.  
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The agreement between the optimized CPU time and memory usage has lead to the idea of 

subdomain selection. Usually, choosing number of subdomains that yields least CPU time 

and smallest memory requirement would be a trial and error strategy. Here, we propose to 

select the “optimized” subdomains from the memory map, shown in Figure 5a, 6a and 7a. 

Because memory usage can be pre-estimated from the variable allocations inside the code, 

this number can be printed out and plotted in a map from different combinations of 

subdomains. The optimized subdomains can therefore be chosen from the region of “least” 

memory requirement. There would be a higher chance that CPU time performance of 

MHDD2D would be better than FD2D if choosing subdomains from this region. When 

implementing MHDD2D to 3-D case, similar technique can be used to avoid trial and error 

selections. 

 

5.4 Comparison of modified and non-modified hierarchical domain decomposition 

methods 

For the original hierarchical domain decomposition technique, memory requirements for F 

and H matrices in (4) and (5) are identical to those in (10) and (11) for our modified 

hierarchical domain decomposition. However, interface matrices, G and S in (4) and (5) 

(Figure 3a), depends on the sum of horizontal interfaces and vertical interfaces (m = mh + mv). 

These matrices are therefore larger than GH , GV, SHH and SVV in (10) and (11) (Figure 3b) 

for the modified scheme around 20-50% depending on the number of subdomains (r). 

Memory requirement for non-modified hierarchical domain decomposition would therefore 

up to 50% more than the modified case from our 2-D study, but it is still less than FD2D. 

 

In term of computational time, the standard hierarchical domain decomposition would require 

about the same CPU time to solve Fi and H systems of equations. However, our 2-D study 

reveal that for the interface parts, larger G and S in (4) and (5) of the non-modified code 

requires solving time slightly more or less than solving smaller GH, GV, SHH and SVV in (10) 

and (11) of the modified code. Not much can be gained in terms of CPU time in this part, but 

a lot more in terms of memory. However, by reducing the larger G into GH and GV (from 

Figure 3a to 3b), red-black ordering can be easily applied for solving GH and GV, but not 
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directly to G in (4). With the red-black ordering, about 10-50% depending on a combination 

of subdomains can be gained comparing to the original HDD method for the 2-D case.  Red-

black ordering can be easily implementing in 3-D case as well, this would help further 

decreasing the computational time. 

 

6. Conclusions 

We have demonstrated the efficiency of the MHDD2D code for 2-D MT forward modeling. 

MHDD2D is a modified version of the hierarchical domain decomposition method. The 

original scheme begins by dividing a global computational domain into several subdomains. 

Then, the unknown nodes are classified into three different kinds: interiors, interfaces and 

intersections. A global system of equations is re-organized according to these configurations 

producing three sets of smaller systems of equations.  The intersection reduced system of 

equations is solved first to obtain the intersections. The calculated intersections are then used 

in the right hand-side of the interface systems of equations to compute the interfaces. 

Similarly, the calculated interfaces are input in the interior systems of equations to compute 

the interiors inside each subdomain.  

 

Normally, HDD is applied on a parallel system. Efficiency of the HDD method on a serial 

machine is very low comparing to the conventional method. To enhance the efficiency of the 

hierarchical method on single processor computer, the interfaces of the standard hierarchical 

domain decomposition method is further separated into horizontal interfaces and vertical 

interfaces by taking an advantage of the rectangular discretization of the finite difference. Our 

modified version will then have four sets of smaller systems of equations, instead of three as 

in the original version. The division of the interfaces into horizontal and vertical interfaces 

helps substantially decreasing the size of memory usage. However, it does little help in 

computing time. Red-black coloring is then applied to substantially reduce the computational 

time of the code. 

 

By running MHDD2D with several combinations of subdomains on single processor 

machine, the optimized subdomains can be selected from the memory map generated prior 
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the run. Dividing the global domain with the optimized subdomains, MHDD2D can run up to 

20-30% faster and require up to 70% less memory than FD2D on sing processor machine. 

This conclusion is very crucial. It indicates that the same hierarchical domain decomposition 

algorithm can be extended and applied to 3-D problem. By applying modified HDD method 

to 3-D case, 3-D forward problem can now be solved with a direct method, even on standard 

single processor PC. With the direct solver, its factorized matrices can be re-used several 

times with different right-hand sides. This will help speeding up the sensitivity calculation in 

the 3-D inversion process. Most importantly for a direct solver, computational time is 

controllable and independent of frequencies, modes and resistivities, as long as the domain 

size remains the same. 
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Figure 1.  Model used to test the efficiency and accuracy of the modified hierarchical domain 

decomposition method. The model consists of two resistivity contrast blocks buried in a 100 

mΩ−  half-space. The left and right blocks are 10 mΩ−  and 1,000 mΩ− , respectively. 

This model is discretized into three finite difference meshes: 40 × 120, 80 × 240 and 120 × 

360 and are used in the numerical experiment section. Discretization shown in this figure is 

merely an example to illustrate that the unknown fields are defined on the nodes (black dots).  
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Figure 2. Example mesh of Figure 1 is uniformly redrawn, and subdivided into 3 × 4 

subdomains as an illustration here. The interiors inside each subdomain are drawn with solid 

circle ( ). The horizontal and vertical interfaces between subdomains are shown with solid 

rectangle ( ) and solid triangle ( ), respectively. The intersections from four subdomains 

are plotted with solid cross ( ). 
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Figure 3. (a) Sparsity pattern of the Schur complement matrix S (equation 5) of the non-

modified hierarchical domain decomposition.  (b) Sparsity pattern of the Schur 

complement interface systems (SHH, SHV, SVH and SVV in equation 12) of the modified 

hierarchical domain decomposition.  

 

 

 

a) 

b) 
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Figure 4. Apparent resistivities (Ohm-m) and phases (degree) of TM and TE modes from 

three different frequencies (1 Hz, 0.1 Hz and 0.01 Hz) across the model in Figure 1. Dots are 

from MHDD2D. Solid and dash lines are from TM and TE of FD2D, respectively. The 

differences of both responses from both methods are in the round-off level. This validates our 

MHDD2D code.  
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Figure 5. (a) Relative memory usage (in percent) and (b) relative CPU time (in percent) of 

MHDD2D to FD2D from several combinations of subdomains running on a 40 × 120 mesh. 

MHDD2D is more efficient than FD2D where larger negative percentage is presented, and 

less efficient where larger positive percentage. 
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Figure 6. Same captions as in Figure 5 but for  80 × 240 mesh. 
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Figure 7. Same captions as in Figure 5 but for  120 × 360 mesh. 
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 p × q subdomains l/r (l) n mh  mv m 

3 × 3 4641 (41769) 4 714 234 948 

10 × 9 429 (38610) 72 3159 880 4039 

20 × 30 55 (33000) 551 6270 2900 9170 

Table 1. Numbers of interiors per subdomain (l/r where l is total of interiors and r = p × q), 

intersections (n), horizontal interfaces (mh), vertical interfaces (mv) and all interfaces (m) for 

three different numbers of subdomains running on a 120 × 360 mesh (Figure 7). 

 

Center of optimized 

region 
 l/r (l) n  mh  mv m 

5 × 6 subdomains on   

40 × 120 mesh 
133 (3990) 20 456 175 631 

8 × 8 subdomains on   

80 × 240 mesh 
261 (16704) 49 1624 504 2128 

10 × 9 subdomains on 

120 × 360 mesh 
 429 (38610) 72  3159   880 4039  

 

Table 2. Numbers of interiors per subdomain (l/r where l is total of interiors and r = p × q), 

intersections (n), horizontal interfaces (mh), vertical interfaces (mv) and all interfaces (m) for 5 

× 6  subdomains on 40 × 120 mesh (Figure 5), 8 × 8  subdomains on 80 × 240 mesh (Figure 

6),  and 10 × 9 subdomains on 120 × 360 mesh (Figure 7), respectively. These subdomains 

represent the center of optimized regions. 
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a b s t r a c t

We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT
(Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric
inversion: data-space method. Phys. Earth Planet. Interiors 150, 3–14), including modifications to allow
inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel
implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for
different frequencies, as well as some linear algebraic computations, over multiple processors. In addition
to reducing run times, the parallelization reduces memory requirements by distributing storage of the
sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear
speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the
ccam’s inversion horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs
alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate
host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion
had little impact on the inverse solution computed with impedances alone. However, in experiments with
real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances
alone, differed in important ways, suggesting that for structures with more realistic levels of complexity

rovid
the VTFs will in general p

. Introduction

WSINV3DMT (Siripunvaraporn et al., 2005) has been developed
o invert Magnetotelluric (MT) impedance tensor components for
hree-dimensional (3-D) Earth conductivity. It was made freely
vailable to the MT research community in 2006 and has since
ecome one of the standard tools for 3-D inversion and interpre-
ation (e.g., Tuncer et al., 2006; Heise et al., 2008; among others).
he inversion algorithm used closely follows the two-dimensional
2-D) data space Occam’s inversion of Siripunvaraporn and Egbert
2000) which has also been widely used for 2-D interpretation (e.g.,
ous et al., 2002; Oskooi and and Perdersen, 2005; Toh et al., 2006;
mong others). Here we describe extensions to this code, which we
llustrate with tests on synthetic and real data.

We first briefly summarize WSINV3DMT; see Siripunvaraporn

t al. (2005) for more technical details. The algorithm used is based
n the classic Occam’s inversion introduced by Constable et al.
1987) for the one-dimensional (1-D) MT and DC resistivity sound-
ng problems. The Occam inversion seeks a minimum structure

∗ Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159.
E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).

031-9201/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.pepi.2009.01.013
e useful additional constraints.
© 2009 Elsevier B.V. All rights reserved.

model (as defined by some model norm which penalizes rough-
ness) subject to an appropriate fit to the data. The minimization is
accomplished with a modified Gauss–Newton algorithm, in which
the regularization parameter (which controls the tradeoff between
model roughness and data fit) is also used for step length control
(Parker, 1994). The main advantages of the Occam approach are
its stability and robustness, and the fact that the scheme often con-
verges to the desired misfit in a relatively small number of iterations
(e.g., Siripunvaraporn and Egbert, 2000). Occam was extended to
treat two-dimensional MT data by deGroot-Hedlin and Constable
(1990), but for multi-dimensional inversion the originally pro-
posed scheme can be computationally impractical, as the system
of normal equations is explicitly formed and solved in the model
space.

Siripunvaraporn and Egbert (2000) transformed the inverse
problem into the data space (e.g., Parker, 1994). If the number of
data (N) is small compared to the number of model parameters (M),
as will typically be the case in 3-D, the data space variant requires

a fraction of the CPU time and memory compared to a model space
scheme. This data space Occam scheme forms the basis for the
WSINV3DMT algorithm, which is summarized in Fig. 1.

The initial version of WSINV3DMT was only capable of inverting
the impedance tensor Z, the 2 × 2 complex frequency dependent

http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
mailto:scwsp@mahidol.ac.th
dx.doi.org/10.1016/j.pepi.2009.01.013
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Nomenclature

d observed data
Cd data error
m0 initial and prior model
Cm model covariance
mk model at k iteration
Jk N × M sensitivity matrix forming from mk
F[mk] forward responses of mk
�k data space cross product matrix
Rk representer for k iteration
� Lagrange multiplier
Ns number of stations
Nm number of modes
Np number of periods
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N number of data = Ns × Nm × Np

M number of model parameters

ransfer function relating electric to magnetic fields

Ex

Ey

]
=

[
Zxx Zxy

Zyx Zyy

][
Hx

Hy

]
. (1)

he impedance tensor is frequently used by itself for 3-D conduc-
ivity imaging (e.g., Tuncer et al., 2006; Heise et al., 2008; Patro
nd Egbert, 2008). However, modern MT field practice typically
ncludes measurement of vertical magnetic fields (particularly at
ong periods, where a tri-axial magnetometer is used), and thence
omputation of vertical field transfer functions (VTFs)

z =
[

Tzx Tzy

][
Hx

Hy

]
. (2)

he vertical magnetic field is only produced when there are lat-
ral or horizontal variations of conductivity. Researchers have often
sed VTFs in the form of induction vectors (Parkinson, 1959) to

ndicate or point to the source of conductivity anomalies and to
stablish or verify geoelectic strike directions (e.g., Bedrosian et
l., 2004; Uyeshima et al., 2005; Tuncer et al., 2006). A num-
er of 2-D inversion codes (e.g., REBOCC of Siripunvaraporn and
gbert, 2000; and NLCG of Rodi and Mackie, 2001) allow inversion
f VTFs (or “Tipper”), and these are often included along with TE
nd TM impedances in 2-D interpretations of MT profile data (e.g.,
annamaker et al., 1989; Wannamaer et al., 2008). Berdichevsky

t al. (2003) studied VTFs using analytical and modeling studies,
nd concluded that inclusion of these additional induction transfer
unctions can substantially improve the reliability of geoelectrical

odels, because they are not affected as strongly by local distortion
s the impedance tensor is.

Here, we describe the implementation of VTF inversion for the
SINV3DMT inversion code, and apply this to inversion of real and

ynthetic datasets. In addition, we describe implementation of a
arallel version of WSINV3DMT, using MPI and parallelizing over
requencies to help reduce program execution times, which can
e quite long for realistic modern datasets (e.g., Patro and Egbert,
008).

The paper is organized as follows. First, we summarize the mod-
fications to WSINV3D, for the most part omitting technical details.
ext, we illustrate and test the new features on the same syn-

hetic datasets previously used in Siripunvaraporn et al. (2005).

ere we illustrate the speedup obtained with the parallelization,
nd explore the effectiveness of VTF data for recovering conduc-
ivity structures, alone, and in conjunction with impedance data.

e then test the VTF inversion on the EXTECH dataset (Tuncer et
l., 2006), comparing inverted models from only VTF data, from
and Planetary Interiors 173 (2009) 317–329

only impedance data, and from a joint inversion of both data
types.

2. Implementation of WSINV3DMT to include the vertical
magnetic transfer function

There are only two major modifications to the WSINV3DMT
codes required to allow inversion of VTFs: adding the VTF com-
putation to the forward modeling routine, and the corresponding
modifications for the sensitivities of the real and imaginary parts
of the VTFs.

In WSINV3DMT, the electric fields are calculated by solving the
second order Maxwell’s equation using a staggered grid finite dif-
ference numerical scheme (Siripunvaraporn et al., 2002). Magnetic
field components can then be computed (on grid cell faces) from
Faraday’s law �× E = iω�H, and interpolated to the observation
locations, which in the modified version of WSINV3D can be at any
location on the surface. In order to compute the impedance tensor Z
the forward equations are solved for two polarizations, and Z is cal-
culated from the combination of horizontal electric and magnetic
fields from both polarizations, as described in Siripunvaraporn et
al. (2005).

The only modification required for the VTF is that the vertical
magnetic field must also be computed at the observation location.
As for the horizontal magnetic components, this is accomplished
using Faraday’s law, taking the curl of the horizontal E compo-
nents on the model air–Earth interface, and interpolating the result
(defined at cell centers) to the observation locations. Then, similarly
to the impedance tensor, the vertical and horizontal magnetic fields
computed from the solutions for both polarizations are combined
to form the vertical magnetic field transfer function T,

[
H1

z H2
z

]
=

[
T zx T zy

][
H1

x H2
x

H1
y H2

y

]
(3)

Here H1
z and H2

z are the z-component of magnetic fields for the
Ex–Hy and Ey–Hx polarizations, respectively, and similarly for other
field components. For a joint inversion with impedance tensor,
computing the vertical magnetic transfer function does not require
any extra forward modeling calls, as all transfer functions are com-
puted from the same solutions.

The sensitivity calculation for VTFs is essentially identical to that
used for impedances, which is based on the reciprocity approach
described in Rodi (1976), Newman and Alumbaugh (2000), and
Siripunvaraporn et al. (2005). Briefly, the linearized data functional,
which is represented by linear combinations of electric field solu-
tion components on cell edges surrounding the observation point, is
used to force the adjoint equation, and the result is mapped to per-
turbations in the model parameter, as described in Siripunvaraporn
et al. (2005). Only the first step requires modification, with the coef-
ficients for the linearized functionals for Tzx and Tzy replacing those
for Zxx and Zxy. Details of this modification are straightforward, and
are omitted here.

3. Parallel implementation with MPI

A major challenge in using WSINV3DMT, or for that matter,
any 3-D MT inversion code, is that the program is very time
consuming, especially when run with the sort of large dataset
(and model domain) that justifies a 3-D interpretation. Run times
exceeding a full month (on a single processor desktop computer,

for the full inversion process, including multiple iterations of the
outer loop of Fig. 1) have been reported when WSINV3D has
been applied to even modest 3-D MT datasets (e.g., Patro and
Egbert, 2008). These long run times primarily reflect the need
for many forward modeling calls, each of which requires iterative
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Fig. 1. Pseudo-code for serial WSINV3D

olution of the large sparse linear system arising from discretization
f Maxwell’s equations. WSINV3D was developed as a serial code,
o run on a single processor. An obvious way to speed up execution
s to parallelize the code, and make use of the multiple processors

hich are increasingly common even in desktop computers.
There are several ways to redesign the codes to run on parallel

ystem, and the most appropriate approach will depend on system
rchitecture. For supercomputers or large clusters to make effective
se of hundreds of processors it would be necessary to rewrite parts
f the forward solver—e.g., parallelizing the iterative solver and
reconditioner (e.g., Newman and Alumbaugh, 2000), or domain
ecomposition. Here, we consider a parallelization approach appro-
riate to small systems with a few to several tens of processors. Such
mall clusters and multi-processor workstations are now read-
ly affordable and more widely available than supercomputers. To
dapt WSINV3DMT for this class of systems, we parallelize over
requencies, adding calls to MPI (Message Passing Interface) library
outines to the existing codes. In this way, we do not have to alter
he core forward modeling and sensitivity calculation routines in
ny way. The parallel algorithm is summarized in Fig. 2.

Forward modeling and sensitivity calculations for each period
re sent to one processor (Steps 2.1 and 2.2 in Fig. 2).
f there are fewer processors than periods, each processor
erforms calculations for more than one period. With this
imple parallelization, which requires minimal inter-processor
ommunication, the computational time should be theoretically
educed by a factor P, the number of processors available. This paral-
el implementation also distributes storage of the sensitivity matrix
ver the available nodes. The N × M sensitivity matrix J requires

NM bytes (in double precision), and the need to store this in RAM
imits the size of datasets and model grids that can be practically
reated. With the parallelization, memory required on each node
s reduced to about two times 8NM/P (including temporary storage
fter Siripunvaraporn and Egbert, 2007).

for cross product computations), allowing WSINV3D to be run for
larger models grids and datasets.

With the sensitivities distributed over processors, formation of
the cross product matrix � = JC−1

m JT also requires MPI calls. We
have implemented this in a fairly simple way, breaking � into P2

blocks to be computed on the P processors (Step 2.3 in Fig. 2).
Diagonal blocks �ii are computed on the local processor where
the corresponding block Ji of the sensitivity matrix (correspond-
ing to one or more frequencies) is computed and stored. The
off-diagonal blocks (�ij) can only be formed by sharing blocks of
J between nodes. Since � is symmetric, only upper off-diagonal
blocks (j > i) need be formed. On step k block Jj, where j = mod(i + k, P)
is sent to node i to compute �ij where this block is stored. With
this simple scheme the load is balanced and the number of steps
required is approximately (Np + 1)/2. Although computing the cross
products requires significant communication time to share sen-
sitivities between nodes, it can still significantly reduce the total
computing time required to form � compared to single node pro-
cessing.

In the data space Occam scheme used by WSINV3D the system
of normal equations (Eq. (6) in Siripunvaraporn et al., 2005) must
be solved for a series of trial values of the regularization parameter
(about 3–7 from our experience) to find the optimal (in terms of
data misfit and model norm) model parameter update. In the serial
version of WSINV3D these dense systems are solved by Cholesky
decomposition (Step 2.4.2 in Fig. 1). Parallel Cholesky decomposi-
tion subroutines are available (e.g., Choi and Moon, 1997), but these
are generally tailored to a specific parallel architecture and are not
easily adapted. To develop code that will be portable, and reason-

ably efficient on a generic multi-processor system, we have thus
pursued a different strategy, using the easily parallelized precon-
ditioned conjugate gradient (PCG) algorithm to solve the normal
equations (Step 2.4.1.2 in Fig. 2). The major computation in the



320 W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329

WSIN

P
a
c
e
w

m
c
N
t
t
d
T
c
e

s
r
i
a

Fig. 2. Pseudo-code for parallel

CG algorithm is matrix–vector multiplication. This is readily par-
llelized by dividing the vectors and matrix into blocks, spreading
omputations for individual blocks over processors, and then gath-
ring the results back to the master node. To simplify the algorithm
e have distributed the full matrix to all computational nodes.

The preconditioner, based on the diagonals of the coefficient
atrix, is also trivially parallelized. Because the coefficient matri-

es are dense, the parallel PCG scheme may not be efficient when
is small, since communication and other overhead may exceed

he serial computational time. For smaller N, we therefore retain
he option of solving the normal equations with a serial Cholesky
ecomposition, after all blocks �ij are sent back to the parent node.
he optimal choice of solution scheme (parallel or serial) for a spe-
ific value of N will depend on the cluster architecture. We give
xamples below where each approach is more efficient.
Once the new model mk+1 is obtained, the parallelized forward
olver is called to compute the responses of each period, with the
esults gathered to the parent node to compute misfits (Step 2.4.2
n Fig. 2). All steps are repeated until an acceptable misfit and norm
re achieved
V3DMT for cluster PCs system.

4. Synthetic data examples

To illustrate the efficiency of the parallelized WSINV3D, and
the effectiveness of the VTF inversion, we first consider inver-
sion of synthetic datasets, revisiting the two synthetic examples
previously used by Siripunvaraporn et al. (2005), reproduced in
Fig. 3. The results of these tests are consistent with those obtained
for other synthetic examples. Our basic test configuration is the
two-block model (Fig. 3a) consisting of two anomalies, 1 � m and
100 � m located next to each other within a 10 � m host. The spa-
tially homogeneous layer, which extends from the surface to 10 km
depth, is underlain by a 100 � m half space. To test the efficiency of
our parallel codes, and the VTF inversion, we generated VTF and
impedance data at 16 periods (from 0.1 to 1000 s) for a total of
40 sites in a regular grid, as illustrated in Fig. 3a. Gaussian noise

(5% of the data magnitude) was added to the generated data. The
inversions for this case are performed on a 21 × 28 × 21 (+7 air lay-
ers) mesh. The second model consists of a single conductive block
(1 � m) buried in a 100 � m half-space (Fig. 3b), and responses
were computed at 16 periods for 36 sites (Fig. 3b). The inversions
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ig. 3. Two synthetic models used to test our inversion. (a) Two-block synthetic mo
he cross-section view in the lower panel is a profile cutting across the middle of th

or the second case are performed on a 28 × 28 × 21 (+7 air layers)
esh.
We first demonstrate the efficiency of the parallel version of

SINV3D, using both VTF and joint VTF/impedance datasets for
ests. We then consider the effectiveness of VTF data for recov-
ring conductivity variations, both alone, and in conjunction with
mpedances.

.1. Parallel efficiency

We tested WSINV3DMT by running on 1, 4, 8 and 16 nodes for
he first synthetic test case (Fig. 3a), with the 16 periods divided
venly among nodes (e.g., with 4 nodes, each solves for 4 periods).

ests were conducted on a small PC-clusters and a supercomputer
SGI Altix 4700) at the Earthquake Research Institute, University of
okyo. To quantify efficiency of the parallel code, we display the
peedup, defined as S = T1/TP, where T1 is the execution time of
he sequential WSINV3DMT algorithm and TP is the execution time
d (b) a single conductive block model. The solid dots indicate the observation sites.
el in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005).

of the parallel version, run on P processors. The idealized maxi-
mum speedup is P. However, due to computational overhead, the
need for some computations to be performed only on the mas-
ter node, and the time required to exchange information between
nodes, S will always be less than P. Fig. 4 displays speedup versus
the number of nodes. Inversions of all data (i.e., VTF + impedance,
N = 40 × 12 × 16 = 7680) are plotted with solid lines. Inversions of
the VTF only dataset (N = 40 × 4 × 16 = 2560, or one third the size
of the joint inversion dataset) are plotted as dashed lines. We also
compare speedups achieved with the two approaches for solving
the normal equations: speedups obtained with the single proces-
sor Cholesky decomposition are plotted as solid symbols, while
those obtained with the parallel PCG algorithm are plotted as open

symbols.

For the inversion of the VTF dataset for this very small test prob-
lem, actual (wall clock) run times were about 186 min on a single
node machine, 82 min on 4 nodes, 46 min on 8 nodes and 34 min
on 16 nodes, resulting in speedups of about 2.2 for 4 nodes, 4 for 8
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Fig. 4. Speedup versus the number of processors or nodes. Solid lines are the
speedups from inversion using both VTF and impedance data (N = 7680). Dashed
lines are the speedups from inversion using only VTF data (N = 2560). Results for the
scheme which solves the normal equations by Cholesky decomposition on a single
node (step 2.4.1.2 of Fig. 2) are plotted with solid symbols. The corresponding results
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tor, extending from near the surface to approximately 20 km depth.
ith the parallel PCG solver (step 2.4.1.4 of Fig. 2) are plotted with open symbols.
he thin-dashed line of slope one gives the ideal perfect speedup.

odes and 5.4 for 16 nodes. Thus, as the number of nodes increases,
he relative efficiency of additional nodes decreases. One reason for
his is that the run time of the iterative forward modeling routine
epends on the period of the data. Shorter periods typically require
larger number of iterations for convergence, and hence longer run

imes. Thus, some nodes are usually idle waiting for modeling com-
utations to complete on other nodes, before moving on to the next
tep in the inversion. With fewer nodes some of the frequency-to-
requency variations average out, resulting in better balance.

Efficiencies are somewhat lower for the larger joint
TF/impedance dataset, when the serial Cholesky decomposi-

ion solver is used (solid line with solid square symbols of Fig. 4).
ow the speedups are about 1.8, 2.6 and 3.2 for 4, 8 and 16
odes, respectively, almost 50% below those achieved for the VTF
nly inversion. However, solving the normal equations with the
arallel PCG solver (solid line with open square symbols in Fig. 4)
ignificantly improves performance, increasing S to approximately
, 4.5 and 7.3 for the three cases considered. In the VTF only
ase, where N is significantly smaller, both methods for solving
he normal equations have similar performance (dashed lines in
ig. 4), and indeed the speedup is slightly greater when the single
ode Cholesky decomposition is used.

The difference between the two cases is readily understood.
peration counts for Cholesky decomposition scale as N3 so com-
utation times for the serial Cholesky decomposition in the all
ata case (N = 7680) are expected to be about 27 times greater
han for the VTF only case (N = 2560). Other computational steps
cale better with increasing N. For fixed model parameter size,
otal operation counts for the sensitivity calculations increase lin-
arly in N, and formation of the cross product matrices increases as
2. Thus, as the size of the dataset increases, run times required

or the serial Cholesky decomposition step become increasingly
ignificant, and at large enough N this step will control the
verall runtime. Operation counts for a single iteration in the
arallel PCG scheme scale as N2, but overall runtimes will also
epend on the number of iterations required. Although this should
ncrease with N also, the dependence is weak, and so PCG becomes
ncreasingly advantageous as N increases, particularly since com-
utations for the PCG scheme can be distributed over the P
rocessors.
and Planetary Interiors 173 (2009) 317–329

The number of iterations for PCG also depends on the relative
tolerance for the residual (=||Ax − b||/||b||) used to define conver-
gence. We find that a tolerance of 10−4 results in models that are
essentially identical to those obtained with the Cholesky decompo-
sition technique. The number of iterations, and hence the run time
of the parallel PCG scheme also depends on the condition number
of the normal equations. For large values of the Lagrange multi-
plier (corresponding to a smoother model) the condition number
is smaller, and the parallel solver thus converges in a small num-
ber of iterations. In contrast, when the Lagrange multiplier is very
small (rough model) the parallel solver can require considerably
more iterations, and solution times can exceed those for the serial
Cholesky decomposition scheme. This occurred occasionally in our
tests with the larger VTF/impedance dataset, but overall perfor-
mance using the parallel PCG solver was much better when N is
large enough.

We will not attempt to quantify more precisely how large N
must be before the parallel approach to normal equation solution
would be preferred. This will depend on the cluster architec-
ture, especially on the sort of inter-processor communication
used, since the parallel PCG solver requires substantial sharing of
data.

In addition to reducing computational times, the parallel ver-
sion also reduces the need for a large amount of memory on a
single computer. Even for the small joint VTF/impedance inversion
test example, about 1.5 GBytes are required for the representer and
sensitivity matrices. In the parallel implementation, the required
memory may be distributed over all of the nodes used. For exam-
ple, with 16 nodes, each would require only 0.090 GBytes for storing
the sensitivity matrix and forming cross products, almost 13 times
less than required by the serial code. If the whole representer matrix
is stored on a single processor (for the Cholesky decomposition, or
to reduce the communication time between nodes for PCG) about
0.4 Gb are required on each node, still only a quarter required for a
serial version.

The exact time speedup and per-node memory reduction fac-
tors will depend to some extent on the problem size, both in terms
of model grid dimensions, and number of data. For larger prob-
lems, such as the real data EXTECH example considered below,
similar performance gains were attained. For these larger prob-
lems, however, a speedup by a factor of roughly 7 means a run
time that was perhaps 2–3 weeks on a single node is now reduced
to 2–3 days, making inversion of realistic datasets considerably
more practical. The practical impact of distributing memory is even
greater. Total storage required by WSINV3D for the EXTECH exam-
ple described below (joint inversion of the full impedance and VTFs)
is at least 30 Gb, making this impractical on almost any shared
memory machine.

4.2. Vertical magnetic transfer function inversion

We next consider the effectiveness of WSINV3DMT at correctly
recovering resistivity when only VTF data are available. Because
in practice one would not know a priori the correct background
resistivity, we run the inversion using several prior (and starting)
models. Inversion results for the synthetic VTF data from the test
case of Fig. 3a are summarized in Figs. 5 and 6. Using a 50 � m
half-space as a prior (this is intermediate between the true 10 � m
upper layer background, and the 100 � m basement), inversion of
VTF data reveals both the conductive body and the adjacent resis-
The calculated responses generated from the inverse solution of
Fig. 5 fit the observed responses within 15% of the typical VTF
amplitude (recall that 5% random noise was added to the synthetic
data).
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ig. 5. An inverse solution from the VTF data alone after the 9th iterations with an
a)–(c) is a plan view at the surface, at 3 km and at 7.5 km depth, and the bottom pan
s shown only in the central area around the anomalies, not for the full model doma

Although both anomalies are detected in approximately the

orrect location, the true resistivities of Fig. 3a are not correctly
stimated. However, calculating the average resistivity over the
nomalous volumes we find for the inverse model of Fig. 5 an aver-
ge resistivity of about 6.3 � m for the conductive anomaly, and of

ig. 6. Cross-sectional plots at X = 0 km (as in Fig. 5d) of the inverse solutions from VTF da
c) 100 � m half-space.
alue of 1, fitting synthetic data generated from the model in Fig. 3a. The top panels
is a cross-section view cutting across the conductive block at X = 0 km. The solution

about 453 � m for the resistive body, while the background resistiv-

ity of the inverse model was changed only slightly from the 50 � m
prior. Computing the volume average resistivity ratios from left to
right in Fig. 5d, we obtain values of 7.9 (=50/6.3), 72 (=453/6.3) and 9
(=453/50), compared to the actual ratios (Fig. 3a) of 10 (=10/1), 100

ta alone, when the prior models are (a) 10 � m half-space, (b) 1 � m half-space and
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=100/1) and 10 (=100/10), respectively. The inversion thus results
n roughly the correct structure, with approximately correct resis-
ivity contrasts, but it does not recover the correct amplitude of
ither the background or the anomalies, or the actual depth extent
f the anomalies.

To explore this issue further we ran the inversion on the same
TF dataset, using a range of values for the assumed half-space
rior. Fig. 6 summarizes the results with cross-sectional plots of
he inverse solutions at X = 0 km. When the prior model is the same
s the correct background resistivity (i.e., a 10 �-m half-space in
ur example), the inversion quickly converges to the desired misfit
ithin 4 iterations, even with error floors set to 5%. In this case,

he inversion estimates the resistivity, and the depth extents, of the
wo anomalies quite well (Figs. 6a and 3a). However, the 100 � m
asement resistivity (below 10 km depth in the synthetic test model
f Fig. 3a) is not recovered—the prior resistivity of 10 � m remains
nchanged at depth in the inverse solution. This again demonstrates
hat inversion of VTF data alone can only recover lateral resistiv-
ty contrasts, and is not effective at correcting resistivities, or their
ariations with depth.

Larger deviations of the prior model from the correct back-
round result in even larger discrepancies in anomaly amplitudes
nd depths, but still generally allow the horizontal structure to be
ecovered. With a 1 � m half-space (Fig. 6b) data is fit to within
0%. Anomalies appear at very shallow depths (upper few km), with
ll features more conductive than their actual values. At greater
epth, features with appropriate resistivity ratios are imaged, but
he absolute levels are incorrectly estimated, and spurious struc-
ures appear. Using a 100 � m half-space as a prior, the VTF data

an only be fit to within 20%. The basic structure is again recovered,
ut both anomalies are at greater depth (Fig. 6c) and have increased
esistivity. The host resistivity is estimated to be slightly lower than
he 100 � m starting value, but is still well above the correct value

Fig. 7. Results from joint inversion of both VTF and impedance tensor data ge
and Planetary Interiors 173 (2009) 317–329

of 10 � m. As in the other cases, the basement resistivity remains
the same as the prior model.

All of these experiments suggest that when only VTF data are
available, to achieve the target misfit and recover correct ampli-
tudes and depths, the inversion must be started with a prior model
that is close to the correct host resistivity. However, even starting far
from the correct background model, anomalies are recovered with
the correct horizontal location and dimensions. This result is not
unexpected since the vertical magnetic fields are generated where
there are lateral discontinuities, but are not inherently sensitive to
the profile of vertical conductivity structure.

In addition, resistivities of anomalous bodies scale with the
assumed prior background (Fig. 6), and resistivity contrasts (i.e.,
ratios) can be close to actual values, especially if the assumed back-
ground resistivity is not too far off. However, the VTFs provide little
intrinsic constraint on contrasts in the vertical direction, including
the location of the top or the bottom of the anomalies. The inver-
sion only gets these properties of the anomalies correct if something
close to the correct background is used (Fig. 6a).

Performing similar experiments to those summarized in Fig. 6,
but using impedance tensor data shows that these inversions are
much less sensitive to the assumed prior model. This is consistent
with the basic physics, as the ratio of electric to magnetic fields is
intrinsically related to the resistivity profile. In spite of the well-
known uncertainties in depth and absolute resistivity level that
may result from local static distortions, there is by now ample evi-
dence (e.g., Tuncer et al., 2006; Unsworth et al., 2000) that, with
proper care, MT impedances can yield reliable information about
conductivity-depth profiles. The same does not appear to be true

in practice with VTF data, although theoretical analysis of idealized
models suggests otherwise (Berdichevsky et al., 2003).

The above results suggest that VTF data will be most useful as an
adjunct to impedance data, which can provide the necessary con-

nerated from the model in Fig. 3a. See caption of Fig. 4 for other details.
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ig. 8. Cross-sectional plots at X = 0 km of the inverse solution from (a) fitting the ve
oth data types. The data is generated from the synthetic model in Fig. 3b.

traint on background resistivities. As a first example, we consider
oint inversion of VTF and the impedance tensor data derived for the
ynthetic model of Fig. 3a. As above we again tried a range of pri-
ri/initial models. Although in general the impedance tensor data
an adjust the resistivity background, we still had difficulties get-
ing the joint inversion to converge to the desired 5% misfit level,
specially with priori models that differ greatly from the correct
ackground resistivities. In this and other examples, we found that
o achieve the target misfit for both data types, it was necessary
o first fit the impedances to a half-space model, to determine a
rior model for the joint inversion. Even with this additional step,
e typically found it necessary to use increased error floors for the
TF data (but not the impedances) to achieve a normalized RMS of
ne.

Not surprisingly, a 50 � m half-space (as in Figs. 5 and 6 of
iripunvaraporn et al., 2005) yields a good fit to the synthetic
mpedance data for case 1. With error floors set to 15% for VTF data
nd 5% for impedance tensor data, the joint inversion converged
o the target misfit in 5 iterations. In the final iteration (Fig. 7) the
wo anomalies are recovered with essentially correct background
esistivities. In fact, in comparison with the inverse model obtained
rom inversion of just the impedance data (Fig. 6 of Siripunvaraporn
t al., 2005), there is little difference. Clearly, the relatively simple
tructures in this synthetic example are well enough constrained
lready by the array of 40 MT sites that addition of the VTF data can
dd little. In any event, this example demonstrates the consistency
f the two datasets, as both can be fit simultaneously with the same
nverse solution.

Other synthetic examples demonstrate the potential benefit of
oint inversion a bit more clearly. We performed three inversion
ests on the second test case, with data generated for the synthetic

odel of Fig. 3b, as described above. Error floors were set at 10% and
% for the VTF and the impedance data, respectively. Initial models
or all runs are 50 � m half space. The first inversion was performed

sing just the VTF data, the second with just the impedance tensor,
nd the last with both data types. All inversion reaches the target
isfit of 1 RMS. Fig. 8 displays cross-sectional plots at X = 0 km.
In all cases the conductor is recovered, although for the VTF case

he burial depth is greater than what it should be (Fig. 8a). This again
magnetic transfer function alone, (b) fitting the impedance tensor alone, (c) fitting

shows that the VTF data can primarily constrain the location of the
conductor in the horizontal, but not the vertical. Inversion of the
impedance tensor alone recovers the anomalous volume quite well
(Fig. 8b), but the conductivity is noticeably above the correct value
of 1 � m (Fig. 8b). The best results are obtained by the joint inver-
sion, where the resistivity, shape, size and depth of the conductor
are close to correct. It is not clear why this example demonstrates
a benefit of including VTF data, and the other does not; possibly
different results would be obtained if the experiment was repeated
with different realizations of random noise added to the data, or if
the locations of the MT sites were perturbed, or different initial or
prior models were used. Clearly the need to satisfy additional data
constraints reduces the effects of noise in the data, and is likely
to improve the fidelity of the inverse solution. For more complex
structure the value of additional constraints provided by the VTF
inversion are even clearer, as we show next by consideration of an
example with real data.

5. Numerical experiments on real data

We applied the VTF inversion to the EXTECH dataset (Tuncer
et al., 2006), consisting of tensor audio-magnetotelluric (AMT)
soundings for 131 stations around the McArthur River mine,
Saskatchewan, Canada. The goal in this survey was to use electro-
magnetic data to detect and map low resistivity graphite which is
indicative of unconformity-type uranium deposits. A full descrip-
tion of the survey, and an interpretation of this dataset based on 2-D
and 3-D analysis (including inversion with WSINV3D), is given in
Tuncer et al. (2006). Further efforts at 3-D interpretation are given
in and recently Farquharson and Craven (2008).

Here, we invert VTF and impedance data from 16 periods (from
8000 Hz to 5 Hz) at 131 sites (Fig. 2 of Tuncer et al., 2006), comparing
results obtained with the two sorts of responses, separately and in
combination. We use a 1000 � m half-space as an initial and prior

model for all runs, as previous inversion of the impedance tensor
suggests that this is a reasonable average background, and should
thus produce sensible results when inverting the VTF alone. For
inversion of the VTF (Tzx and Tzy) only, minimum error bars were set
at 15% of (|Tzx|2 + |Tzy|2)1/2. The inversion required about 8 iterations
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ig. 9. The inverse solution at various depths from fitting the vertical magnetic tran

o converge to a minimum RMS of 1.2. Results for this inversion are
iven in Fig. 9.
For the second run we inverted the impedance tensor alone. In
revious results using WSINV3D, reported in Tuncer et al. (2006)
nly the off-diagonal components (Zxy and Zyx) of the impedance
ere inverted. Here, we used all components including Zxx and Zyy

Fig. 10. The inverse solution at various depths from fitting all com
nctions of the EXTECH dataset. The cross-symbols indicate the location of stations.

also. The minimum error bar for this run was set at 5% of |Z1/2
xy Z1/2

yx |
for off-diagonal and 50% for diagonal terms. When the same error

floors were tried for off-diagonal and diagonal terms, the misfit
could not be reduced below 3 RMS. With the modified error floors,
the inversion required 4 iterations to converge to the target level of 1
RMS. The resulting model is shown in Fig. 10. The last run was a joint

ponents of the impedance tensors of the EXTECH dataset.
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Fig. 11. The inverse solution at various depths from fittin
nversion of the full impedance tensor and the vertical magnetic
ransfer function, with error floors set as in the first two runs. The
nversion reduced the RMS misfit to 1.3 in 5 iterations. The model
rom the joint inversion is shown in Fig. 11.

ig. 12. The induction vectors at 100 Hz generated from (a) the observed VTF data, (b) the
TF data of Fig. 11, and (d) the impedance tensor inversion alone of Fig. 10. Notice that the
VTF and the impedance tensors of the EXTECH dataset.
Inverting just the impedance tensor (Fig. 10) reveals two main
zones of high conductivity at 1000 m depth—an elongated fea-
ture of about 100 � m running perpendicular to the profiles on
the east side of the model domain, and an area of variable (but

VTF inversion alone of Fig. 9, (c) the joint inversion of both impedance tensor and
calculated induction vectors in (d) fit the observed induction vectors more poorly.



3 Earth

g
f
i
H
t
n
d
t
d
a

i
e
m
a
i
1
b
a
s
t
l
I
a
a

F
s
i
f
t
i
c
c
r
n
p
r
d
b
s
l
t
t
(
i
t
i
T
i
(

6

i
p
e
a
t
e
T
t
r
e

28 W. Siripunvaraporn, G. Egbert / Physics of the

enerally higher) conductivity located in the northwest. The same
eatures are evident, but somewhat weaker, in the 800 m layer. Sim-
lar features were obtained by inverting only the VTF data (Fig. 9).
owever, depth resolution appears poorer, as the inversion spreads

he conductive features to shallower depths, particularly in the
orth, beyond the area covered by the MT profiles. The indepen-
ent inversions of each data type confirm the lateral locations of
he conductors. However, based on our experiments with synthetic
ata, the vertical position and extents of the conductive zones are
lmost certainly better constrained by the impedance tensor.

Results from joint inversion (Fig. 11) show increased conductiv-
ty in the same two general areas at 1000 m depth. However, the
longated conductor to the east now appears to be broken into seg-
ents, with patches of resistivity as low as 10 � m, separated by

reas with resistivities of several hundred � m. In contrast, invert-
ng impedances alone results in a more uniform (approximately
00 � m) continuous feature. Apparently, the VTFs cannot be fit
y such a simple uniform conductor, but rather require significant
long-strike variability (see Fig. 12). The feature to the north is also
ubstantially modified by inclusion of both data types. Compared
o the VTF only inversion, the depth of this feature is now clearly
ocalized at around 1000 m, constrained by the impedance tensor.
nclusion of the VTF data also reduces peak conductivities in this
rea, and results in more linear conductive features which strike
pproximately east–west.

It is instructive to consider fits of the inverse solutions of
igs. 9–11 to the VTF data. Real induction vectors (with the Parkin-
on convention, so that arrows point toward conductors) are plotted
n Fig. 12 for a frequency of 100 Hz, along with computed responses
or the VTF only, impedance only, and joint inversions. The induc-
ion vectors are consistent with the presence of conductive features
n the southeastern and northern parts of the array—e.g., note the
lear reversal of vectors on most lines as they cross the elongated
onductive feature at 1000 m depth (clearest in Fig. 10), and the
eversal from South to North pointing vectors in the Northern cor-
er of the study area. However, as noted by Tuncer et al. (2006)
atterns in the observations are much more complex than can be
eproduced by simple 3-D models. The VTF only inversion repro-
uces almost all of the complexity seen in the data (Figs. 12a and
). The joint inversion results in a smoother VTF response, and a
lightly poorer fit to the data (Fig. 12; this is consistent with the
arger error floor assumed in this case), but again, significant fea-
ures in the data are reproduced in the fitted response. In contrast,
he solution obtained from fitting the impedance tensor data alone
Fig. 12c) fits the VTF observations considerably less well, suggest-
ng that the result from the joint inversion (Fig. 11) is more reliable
han that from the impedance tensor alone (Fig. 10). A more detailed
nterpretation of this dataset is beyond the scope of this paper. See
uncer et al. (2006) and Farquharson and Craven (2008) for further
nterpretation and discussion of the EXTECH data, and Craven et al.
2006) for comparison of inversion techniques using this data.

. Conclusions

Experiments on both synthetic and real data show that invert-
ng VTFs alone can recover anomalous structures, particularly if the
rior model is close to the correct background or host value. In gen-
ral, the qualities of the inverse solution obtained from VTF data
lone are inferior to those obtained from inverting the impedance
ensor alone. Vertical magnetic fields are generated whenever lat-

ral conductivity gradients align with the normal inducing field.
hus, VTFs are sensitive to horizontal structures, and to some extent
o resistivity contrasts, but not to depths or absolute values of
esistivity. If some constraint on host resistivity can be provided,
ither a priori, or through inversion of impedances, the VTF data
and Planetary Interiors 173 (2009) 317–329

can result in accurate 3-D imaging of the anomalous structures.
Joint inversion of VTFs and the impedance tensor can help con-
strain subsurface structures, as shown in both synthetic and real
data examples. In cases with very simple structures which are
already well resolved by the impedance data VTFs add little to
the inverse solution. However, with more realistic levels of com-
plexity, as exemplified by the EXTECH data, inclusion of VTF data
results in significant modifications to the inverse solution. Because
the joint inversion model fits both datasets, it is likely to be more
reliable.

One issue that deserves further investigation is the inability
of the inversion to fit synthetic VTF data to within the tolerance
implied by the noise level, which of course is well known in syn-
thetic tests. We speculate that the VTF data can only be fit perfectly
when the background resistivity is correct—implying at least a weak
sensitivity of this sort of data to the background, as the analysis of
Berdichevsky et al. (2003) in fact showed. In the case of using the
wrong background resistivity (for which the data have little sensi-
tivity) no nearby model parameters can provide a better fit, perhaps
after adjusting conductivities of the anomalous bodies to roughly
fit the VTFs, the Occam inversion is stuck in a local minimum of the
penalty functional, and cannot escape from. It would be useful to
compare other search algorithms (e.g., NLCG) to see if they suffered
from similar problems.

A significant drawback with WSINV3DMT has been the large
amount of memory required to store the sensitivity matrix, and
the extensive computational time required for forward and sensi-
tivity solutions. These drawbacks can be ameliorated by adapting
the code to run with MPI to on parallel systems. We have paral-
lelized the computations over frequencies, requiring no significant
changes to our forward modeling routine. This approach is prob-
ably most appropriate for small cluster type machines. To make
efficient use of a cluster or supercomputer with more than a few
tens of processors would require different approaches, such as
decomposing the modeling domain for the forward solver. We have
also parallelized computation of cross products, sharing rows of
the sensitivity computed on separate nodes to compute blocks
of the coefficient matrix needed for the Gauss–Newton normal
equations. The resulting dense system of normal equations can
be solved on the master node, or using a parallel solver based
on iterative methods. The optimal choice here depends on the
size of the data space, with the iterative parallel solver only effi-
cient for large datasets. The speedup of the code on a test dataset
with 16 periods is nearly linear (with a coefficient of roughly
0.5) for up to 8 processors, but rolls over for a further increase
to 16 processors. Even so, the parallelization should make use
of the code on realistic 3-D datasets significantly more practi-
cal.
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a b s t r a c t

A data space Occam’s inversion algorithm for 2D DC resistivity data has been developed to seek the
smoothest structure subject to an appropriate fit to the data. For traditional model space Gauss–Newton
(GN) type inversion, the system of equations has the dimensions of M × M, where M is the number of model
parameter, resulting in extensive computing time and memory storage. However, the system of equations
can be mathematically transformed to the data space, resulting in a dramatic drop in its dimensions to
N × N, where N is the number of data parameter, which is usually less than M. The transformation has
C resistivity
ata-space method

helped to significantly reduce both computing time and memory storage. Numerical experiments with
synthetic data and field data show that applying the data space technique to 2D DC resistivity data for
various configurations is robust and accurate when compared with the results from the model space
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. Introduction

The direct current (DC) resistivity method has been used for
arious applications in hydrogeological, mining, and geotechni-
al investigations and environmental surveys (e.g., Ward, 1990;
aily et al., 1992, 1995; Ramirez et al., 1993, 1996; LaBrecque and
ard, 1990; among many others). The measured voltages caused

y injected current bring out information on the earth’s structure.
he inversion program is then applied to interpret the measured
oltages to obtain the Earth’s resistivity structure.

The development of DC resistivity inversions has progressed
uccessfully. Various techniques have been proposed for the
wo-dimensional (2D) and three-dimensional (3D) DC resistivity
nversion (e.g., Pelton et al., 1978; Tripp et al., 1984; Nariida and
ozoff, 1984; Tong and Yang, 1990; Park and Van, 1991; Ellis and
ldenburg, 1994; Li and Oldenburg, 1994; Sasaki, 1994; Loke and
arker, 1995; Zhang et al., 1995; Loke and Dahlin, 1997, 2002;
sourlos et al., 1998; Jackson et al., 2001; Pain et al., 2002; Loke
t al., 2003; Günther et al., 2006; Pidlisecky et al., 2007; among
any others). The most direct approach is the Gauss–Newton
GN) and its variant methods (e.g., Sasaki, 1994; Li and Oldenburg,
994; Loke and Dahlin, 1997). Other limited memory optimiza-
ion algorithms are the Quasi-Newton (QN) method (Loke and
arker, 1996; Loke and Dahlin, 1997, 2002; Tsourlos et al., 1998),
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he conjugate gradient (CG) type inversion (Zhang et al., 1995)
nd the non-linear conjugate gradient (NLCG) (Ellis and Oldenburg,
994). These are the schemes that require the gradient of the func-
ion. The derivative-free methods are neural networks (El-Qady
nd Ushijima, 2001) and genetic algorithms (Schwarzbach et al.,
005).

One of the main disadvantages of the GN-type inversion is that
t requires solving a large and dense M × M system of equations,

here M is the number of model parameters. Another disadvan-
age is the formation of the full N × M Jacobian or sensitivity matrix.
alculation of the full Jacobian requires a numerical solution of
any forward problems. Both disadvantages, consequently, result

n extensive computing time and memory storage. For example,
n the 3D inversion, the synthetic model of a burial mound and
ata used by Günther et al. (2006) has 23,109 parameter cells
M = 23,109) which is a lot more than the number of data param-
ters (N = 3439). Inverting the 23,109 × 23,109 matrix and forming
he Jacobian would require about 4–5 GBytes of RAM and many
ours of CPU time.

The problem for the 3D DC resistivity inversion is quite sim-
lar to (though not as severe as) that for the 3D magnetotelluric
MT) survey, where the model parameter (M) is significantly greater
han the data parameter (N). Siripunvaraporn and Egbert (2000)

nd Siripunvaraporn et al. (2005) could overcome this difficulty by
ransforming the model space inverse problem into the data space
roblem for their 2D and 3D Magnetotelluric data, respectively.
ith the transformation, the computational time and memory stor-

ge are greatly reduced by a factor of several (Siripunvaraporn and

http://www.sciencedirect.com/science/journal/00319201
mailto:scwsp@mahidol.ac.th
dx.doi.org/10.1016/j.pepi.2008.06.022
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gbert, 2000; Siripunvaraporn et al., 2005). However, formation of
he Jacobian matrix is still a requirement.

For the limited memory optimization schemes such as QN,
he full Jacobian or sensitivity matrix and the large and dense
oefficient matrix of the system of equations are not necessar-
ly constructed. Instead, a multiplication of the Jacobian with any
ector can be calculated by solving the forward problem. These
ethods therefore never require a large memory storage as in GN-

ype inversions. Another advantage of QN-type inversions over the
odel space GN-type is their speed. However, their stability may be

uestionable (Loke and Dahlin, 2002). Though GN-type inversions
ay use extensive computing time, their main advantages are sta-

ility and robustness. They require fewer iterations to converge to
he solution than limited memory methods (Loke and Dahlin, 2002;
iripunvaraporn and Egbert, 2007).

Because of their stability, we still have confidence in GN-type
nversion techniques, especially Occam’s method as first intro-
uced by Constable et al. (1987). Siripunvaraporn and Egbert (2007)
howed that for 2D MT data, the computing time of a GN-type
nversion in the data space is actually comparable to that of the
G or NLCG inversion. For all of these reasons, here we propose to
olve the multi-dimensional DC resistivity inverse problem using
ne variant GN-technique, Occam’s inversion. However, instead of
olving the problem in model space as others have (e.g., Constable
t al., 1987; Sasaki, 1994), we propose to solve the DC resistivity
nverse problem in data space as in Siripunvaraporn and Egbert
2000) and Siripunvaraporn et al. (2004, 2005). In order to test the
easibility and practicality of the data space approach for 3D DC
esistivity data, we developed the 2D DC resistivity inversion based
n the data space approach of Siripunvaraporn et al. (2005), which
ill be extended to 3D in the future.

We first start the paper by briefly reviewing the basic idea of
ccam’s inversion in the usual model space formulation, and then

rom a data space perspective. We then describe the implemen-
ation of the data space technique to a 2D DC resistivity data set.
umerical experiments of both synthetic and real field data in com-
arison with the commercial software RES2DINV version 3.55 (Loke
nd Barker, 1996) are shown at the end.

. Occam’s inversion: model space approach versus data
pace approach

Constable et al. (1987) introduced the Occam method for 1D
T and Schlumberger sounding data. Since then it has become one

f the “classic” inversion techniques for various geophysical data
e.g., deGroot-Hedlin and Constable, 1990, 2004; deGroot-Hedlin,
995; LaBrecque et al., 1996; Siripunvaraporn and Egbert, 2000;
uang et al., 2003; Siripunvaraporn et al., 2005; Greenhalgh et al.,
006; among others). For more general and detailed discussions of
he Occam approach, see Constable et al. (1987), deGroot-Hedlin
nd Constable (1990), Siripunvaraporn and Egbert (2000) and
iripunvaraporn et al. (2004, 2005).

The philosophy of the Occam approach is to seek for the
smoothest” or “minimum” structure model subject to a constraint
n the misfit (Constable et al., 1987), which can be mathemati-
ally translated into a problem of minimization of an unconstrained
unctional U(m, �),

(m, �) = (m − m0)TC−1
m (m − m0)

+ �−1{(d − F[m])TC−1(d − F[m]) − X∗2}. (1)
d

ere m is a resistivity or conductivity model of dimension M, m0 a
ase or prior model, Cm a model covariance matrix which defines
he model norm, d the observed data with dimension N, F[m] the
orward model response, Cd a data covariance matrix, X* the desired

P
m
T
d
e
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evel of misfit, and �−1 a Lagrange multiplier. In the 2D DC resis-
ivity case, the data d are the apparent resistivities from different
onfigurations. The model response F[m] is computed by solving
he DC resistivity forward problem, which we will describe later.

Instead of directly minimizing (1), Constable et al. (1987) con-
ider the penalty functional W�(m),

�(m) = (m − m0)TC−1
m (m − m0)

+ �−1{(d − F[m])TC−1
d (d − F[m])}. (2)

hen � is fixed, ∂U/∂m and ∂W�/∂m yield the same result. There-
ore, minimizing W� with a series of � values, and choosing � for
hich the smallest minimum is achieved, is equivalent to minimiz-

ng the original functional U of (1).
Because of the non-linearity of the inverse problem,

he Occam’s inversion starts with the linearization of the
esponse function F[m] based on the Taylor series expansion,
[mk+1] = F[mk] + Jk(mk+1 − mk). Inserting the series expansion in
2), and then solving for the stationary points, a series of iterative
pproximate solutions is then obtained,

k+1(�) − m0 = [�C−1
m + JT

kC−1
d Jk]

−1
JT
kC−1

d
–dk, (3)

here –d = d − F[mk] + Jk(mk − m0), the subscript k denotes the iter-
tion number, and Jk = (∂F/∂m)k is the N × M sensitivity or Jacobian
atrix calculated at mk. Note that the system of Eq. (3) has dimen-

ions of M × M. We therefore called this technique the “model
pace” Occam’s inversion.

Parker (1994) showed that the solution to (3) for iteration k can
e transformed to

k+1 − m0 = CmJT
k�k+1, (4)

here �k+1 is an unknown expansion coefficient vector. The deriva-
ion of (4) from (3) is also given in Siripunvaraporn et al. (2005).
earching for the stationary points with the transformation (4), a
eries of iterative solutions is again obtained,

k+1 = [�Cd + JkCmJT
k]

−1 –dk. (5)

Note that the system of Eq. (5) has dimensions N × N, rather
han M × M as in (3). Here is the main difference between (3) and
5). Because we transform the computation from model space to
ata space, we therefore called this technique after the transforma-
ion the “data space” Occam’s inversion. If all the same parameters
re used the solutions from both approaches will be identical
Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005).
or MT data, the number of model parameters M is usually much
arger than the number of data values N. Both the calculation time
nd memory are significantly decreased with the transformation
o data space (Siripunvaraporn and Egbert, 2000; Siripunvaraporn
t al., 2005). Here, we apply this method to DC resistivity data and
e expect to gain the same benefits.

The beauty of Occam’s inversion is here, which makes it different
rom other regularized inverse problems. In either the model space
r data space approach, the goal is to search for the minimization
f (1). This can be performed by two stages. The first stage (Phase
) is to bring the misfit down to the target level by varying � values
n (3) and (5) for each iteration. Once the target misfit is achieved,

hase II keeps the misfit at the desired level and searches for the
inimum norm model by again varying � values in each iteration.

he addition of Phase II is to guarantee that the model structure
oes not contain unwanted or spurious structures (Siripunvaraporn
t al., 2004, 2005).
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The synthetic data are generated from the two blocks with the
contrast resistivity model shown in Fig. 1. The two 12.5 × 20 m2

blocks located next to each other are buried in the 10 � m half-
space at 2.5 m from the ground surface. The left block has 100 � m
and the right block has 1 � m (Fig. 1). The apparent resistivity data
06 S. Boonchaisuk et al. / Physics of the Eart

. Implementations for 2D DC resistivity data

As stated earlier, the goal of this paper is to test the feasibil-
ty and practicality of the data space approach to fit general DC
esistivity data by using 2D DC resistivity data as an example. To
evelop the codes, major implementations are the 2D DC resis-
ivity forward modeling and the sensitivity calculation routines.
ther parts closely followed Siripunvaraporn and Egbert (2000)
nd Siripunvaraporn et al. (2005).

.1. Two-dimensional DC resistivity forward modeling

A first and important step is to develop a 2D DC resistivity for-
ard modeling routine. A good and efficient forward modeling

outine helps make the inversion effective because it is the basis
f most processes of the inversion. There are many techniques for
olving the 2D resistivity forward problem, such as the transmis-
ion surface method (Swift, 1971; Madden, 1971; Pelton et al., 1978),
he finite difference method (Dey and Morrison, 1979; Mufti, 1976;

undry, 1984; Lowry et al., 1989) and the finite element method
Coggon, 1971; Rijo, 1977; Pelton et al., 1978; Pridmore et al., 1980,
981; Uchida and Murakami, 1990; Queralt et al., 1991).

One of the advantages of the finite difference and finite element
ethods over the other methods is their well-known ability to

uickly approximate the solutions for any arbitrary and complex
tructure models. Finite difference method is relatively fast com-
ared with finite element method. However, to include a general
opography, the finite element method becomes a better selection.
he DC resistivity survey is usually applied for shallow studies
n which the topography must be accounted for. Here, we there-
ore choose the finite element method for our 2D DC resistivity
roblem. A brief review of our implementation is stated next. For
pecific details, readers are encouraged to consult Coggon (1971),
ijo (1977), Queralt et al. (1991), Xu et al. (2000) and Boonchaisuk
2007).

In the 2D DC resistivity forward problem, the governing equa-
ion for the electrical potential must be transformed into Fourier
pace (Pelton et al., 1978; Dey and Morrison, 1979; Uchida and
urakami, 1990; Queralt et al., 1991) to remove the strike direction

ariable, i.e., from �c (x, y, z) into ϕf (x, ky, z), where y is the strike
irection, ky is the wave number, and �c and ϕf are the electrical
otential in Cartesian coordinates and in Fourier space, respec-
ively. The finite element method, closely following Rijo (1977) and
ueralt et al. (1991), is then applied by using triangular elements for

he model discretization. However, the mixed boundary conditions
f Queralt et al. (1991) and Dey and Morrison (1979) are imposed
t all grid boundaries. These conditions help produce better solu-
ions than the classical ones (Dirichlet or Neumann) (Queralt et
l., 1991). For each ky wave number, the global system of equa-
ions K�f = F is then obtained, where K is the discretized differential
perator, �f is the unknown potential vector in Fourier space and
is the imposed boundary condition. The Cholesky decomposi-

ion method is later applied to solve the system of equations to
btain �f.

The final step for the forward modeling routine is to convert the
otential vector �f in Fourier space back to the potential vector �c

n Cartesian coordinates. This process can be done by directly apply-
ng the inverse Fourier transform to the Fourier potential. However,
n order to obtain an accurate result, a direct computation would
equire many Fourier potential solutions from various wave num-

ers ky (more than 10; Boonchaisuk, 2007). Thus, the number of
imes required to solve the system of equations K�f = F would be
qual to the number of wave numbers nk used. Xu et al. (2000) pro-
osed an optimization technique that requires at least four wave
umbers to generate an accurate solution. Hence we closely fol-

F
i
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owed the method of Xu et al. (2000) but slightly adapted it so that
he number of wave numbers used is around 8–10.

Once the inverse Fourier transform is performed using the solu-
ions �f from various ky, the electrical potentials at the surface can
e obtained and are then used to compute the apparent resistivities
or any array configuration. Extensive tests on simple to complex

odels were conducted to guarantee the accuracy of the forward
odeling routine. By comparing the results to the analytic solu-

ions (where applicable) and to other existing codes such as the
ES2DMOD program version 2.2 (Loke and Barker, 1996), the RMS
isfit is about 1% or less. We therefore conclude that our finite

lement code is accurate and comparable to other existing codes
Boonchaisuk, 2007). Note that our codes are developed only with

ATLAB scripts.

.2. Sensitivity calculation

The sensitivity term Jk = (∂F/∂m)k arises inevitably in every non-
inear inversion process. A single sensitivity value denotes the
hange of the forward response with respect to a change of the
odel parameter. In general, there are three ways to compute

he sensitivity for the DC resistivity (Spitzer, 1998): the perturba-
ion method, the sensitivity forward calculation and the potential
pproximation. Here, to form the sensitivity matrix J, we used the
djoint Green’s function technique described in McGillivray and
ldenburg (1990). This technique requires a number of forward
roblem calls of only nk × N, in contrast with nk × M when not using
he adjoint method. For a given ky, since the matrix K has already
een decomposed and stored, the system of equations can then be
uickly solved.

.3. Model covariance

For the data space approach, the model covariance Cm is the
ame as that used in Siripunvaraporn et al. (2005). For the model
pace approach, a roughening matrix similar to those of deGroot-
edlin and Constable (1990) was used as the inverse of the model
ovariance.

. Numerical experiments

In this section, we will investigate the efficiency of our inver-
ion codes for the 2D resistivity data. The first test is performed on
ynthetic data generated from the two blocks with a contrast resis-
ivity model. Next, we test our codes from the field data collected in
ur geophysical test area. Our codes are written with MATLAB and
un on a personal computer (PC: Pentium IV-3.0 GHz with 1 GB of
AM).

.1. Examples with synthetic data: two blocks with contrast
esistivity model
ig. 1. Two blocks with contrast resistivity model. The solid marks above the surface
ndicate the measuring electrodes.
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Fig. 2. The solution models from (b) the model space and (c) the data space Occam’s
program inverted from the synthetic Wenner array data shown in pseudosection (a).
White lines indicate the two blocks of Fig. 1.

Fig. 3. The solution models from (b) the model space and (c) the data space Occam’s
program inverted from the synthetic Dipole–Dipole array data shown in pseudosec-
tion (a). White lines indicate the two blocks of Fig. 1.
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Fig. 5. The RMS misfit (dashed line; left y-axis) and model norm (solid line; right y-axis
Occam’s inversions for the synthetic Dipole–Dipole data (Fig. 3a) generated from two blo
ig. 4. The solution models from (b) the model space and (c) the data space Occam’s
rogram inverted from the synthetic Schlumberger array data shown in pseudosec-
ion (a). White lines indicate the two blocks of Fig. 1.

ets for the Wenner, Dipole–Dipole and Schlumberger arrays are
btained from using 31 electrodes with an electrode distance of 5 m
nd a separation factor of n = 1–10 for Wenner (Fig. 2a), n = 1–15
or Dipole–Dipole (Fig. 3a) and n = 1–14 for Schlumberger arrays
Fig. 4a). These results have N = 145 for the Wenner array, 315 for the
ipole–Dipole array and 210 for the Schlumberger array. The finite
lement mesh used to generate the data is 150 × 32 in the horizontal
nd vertical directions, respectively. However, the 80 × 25 model
esh (M = 2000) is used for the inversion. Five percent Gaussian

oises were added to the synthetic data. The data variance is set at
%, calculating from the apparent resistivity to accommodate the
iscretization errors from using different meshs for the inversion
nd the forward modeling and the 5% Gaussian noises.

The starting model for the inversion is set to be the same as

he base model (m0) which is a homogeneous half-space, with its
esistivity value (�avg) determined from the geometric mean of the

pparent resistivity data (�a), �avg = N
√

�1
a · �2

a · · · · · �N
a ,. Thus, the

eometric mean of apparent resistivity is about 9.22 � m for the

) versus the iteration number of the model space (right) and the data space (left)
cks with a contrast resistivity model (Fig. 1).
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Fig. 7. The solution models from (b) RES2DINV, (c) our model space, and (d) our
data space programs inverted from the observed Wenner array data shown in pseu-
dosection (a). The white circle indicates the circular drainpipe in Fig. 6.
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4.2. Example with field data

In the previous section, we have shown that our inversion codes
work reasonably well with synthetic data. In this section we show
08 S. Boonchaisuk et al. / Physics of the Eart

enner data (Fig. 2a), 7.03 � m for Dipole–Dipole data (Fig. 3a) and
.18 � m for Schlumberger data (Fig. 4a). The initial RMS is about
.13 for Wenner, 15.97 for Dipole–Dipole and 12.64 for Schlum-
erger. The target misfit set for the inversion is equal to 1, implying
hat the data are being fitted within their error levels of 5%. For

enner and Schlumberger arrays, both approaches require 3 iter-
tions to complete the minimization of U. For Dipole–Dipole data,
he model space method requires 4 iterations, while the data-space

ethod requires 5 iterations (Fig. 5).
Fig. 2b and c displays the final inverted models obtained at

he target misfit with the minimum norm after 3 iterations for
he Wenner configuration array with the model space and data
pace Occam’s inversion, respectively. Similarly, Fig. 3b and c are
or the Dipole–Dipole configuration, and Fig. 4b and c are for the
chlumberger configuration. In all figures, both model and data
pace approaches can recover both resistivity blocks quite well;
owever, the qualities may be different. The white line indicates
he block boundaries. The top surfaces of the two blocks are clearly
een at a depth around 2.5 m for both methods. However, the bot-
om boundaries are resolved better with the data space approach.
his is probably due to the different model covariance used for both
ethods.
Fig. 5a and b displays the convergence plot versus iteration num-

er for the model space and data space algorithms, respectively,
or Dipole–Dipole configurations. Both inversions requires about 3
terations to reach the target misfit (Phase I), but require another
ne or two iterations to complete Phase II for the model or data-
pace method, respectively. Both programs are terminated in Phase
I if the model norm of the next iteration increases or changes only
lightly. The right y-axis of both figures shows that the model norm
s being minimized. Note that the model covariance of the model
pace and data-space methods is different, resulting in different
evels of model norms. Other convergence plots for the Wenner
nd Schlumberger arrays are similar, and are therefore not shown
ere.

Computational times for the model space and the data space
pproaches are not significantly different since the problem is 2D
here the model domain is still small. However, in the process

f solving the system of equations of the inversion, the model
pace method must spend more computing time than the data-
pace method. That is because the inverted matrix has a size of
000 × 2000 compared with 315 × 315 for the data-space method.
he time difference would be higher if the model domain were
arger as in the case of the 3D problem. In addition, the memory
equired to store the system of equations is about a factor of 40
imes greater in the model space than is required by the data-space

ethod, as expected from the theory (Siripunvaraporn and Egbert,

000; Siripunvaraporn et al., 2004, 2005).

We have also performed various tests on other synthetic data
enerated from different models, both simple and complex. We
ound that our inversion codes in both model space and data-space

ig. 6. Location of the drainpipe known a priori from the map of the Faculty of Sci-
nce, Mahidol University. The solid marks above the surface indicate the electrodes
ith a spacing of 0.6 m.
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ig. 8. The solution models from (b) RES2DINV, (c) our model space, and (d) our
ata space programs inverted from the observed Dipole–Dipole array data shown

n pseudosection (a). The white circle indicates the circular drainpipe in Fig. 6.

ethods are capable of recovering the anomalies buried inside and
ackground structures of the model (Boonchaisuk, 2007).
ig. 9. The solution models from (b) RES2DINV, (c) our model space, and (d) our
ata space programs inverted from the observed Schlumberger array data shown in
seudosection (a). The white circle indicates the circular drainpipe in Fig. 6.
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ig. 10. (a, c, e) The RMS misfits versus the iteration numbers of the model (dashed li
umbers from the RES2DINV program. Top row is for Wenner data, middle row is fo
rogram uses a different formula from our RMS misfit to calculate its own misfit.

he flexibility, robustness and accuracy of our codes to the real
bserved data, which usually contains noise from many sources.

The DC resistivity data were collected at the geophysical test
rea inside the Faculty of Science, Mahidol University to detect the
uried drainpipe; for which the position and depth was known a
riori. The circular drainpipe is 0.3 m in radius and is buried at a
epth of 0.9 m (from the surface to the center) as shown in Fig. 6.
SYSCAL R1 PLUS Switch-48 instrument was used to collect the

bserved data. A profile array of 48 electrodes with an electrode
pacing of 0.6 m was applied perpendicular to the course of the
rainpipe to obtain the 2D data.

Figs. 7a, 8a and 9a display the 335, 555 and 452 observed data
alues constituted from the Wenner, Dipole–Dipole and Schlum-
erger configurations, respectively, by using separation factors of
–12, 1–15 and 1–15, respectively. The 114 × 21 model mesh is used
or the inversions. The data variance is set to 5% of the appar-
nt resistivity to account for the noise from measurement and
ther sources. The total number of model parameters is there-
ore 2394 (114 × 21), and the data parameters are 335, 555 and
52 for Wenner, Dipole–Dipole and Schlumberger configurations,
espectively.

Both model space and data space Occam’s inversion methods
ere applied to our field data set, along with the commercial

oftware, RES2DINV version 3.55 (Loke and Barker, 1996), using
efault parameters of the program in order to provide a ref-
rence to our inverted models and to show the accuracy and
obustness of our developed codes. The final inverse solutions for

enner, Dipole–Dipole and Schlumberger data sets are shown in
igs. 7b, 8b and 9b for the RES2DINV program, Figs. 7c, 8c and 9c

or our model space code, and Figs. 7d, 8d and 9d for our data space
nversion, respectively. All inverted models from our codes and the
ommercial code show that there are two layers beneath the surface
nd a high-resistivity portion indicating the drainpipe. The high-
esistivity (100 � m) top layer is about 1 m in depth lying on top

e
e
i
s
t

d data space (solid line) methods. (b, d, f) The calculated misfits versus the iteration
le–Dipole data and bottom row is for Schlumberger data. Note that the RES2DINV

f the conductive (10 � m) layer. The high-resistivity layer is inter-
reted as the top soil filled on top of the clay conductive layer. The
rainpipe is located directly in the high-resistivity zone matching
he location plotted in the map.

Fig. 10 shows the misfit plots versus iteration numbers. The
ES2DINV misfit is calculated differently from our RMS misfit,
o we plot them on separate figures. The left column shows the
MS misfits calculated from our model and data space Occam’s

nversions (Fig. 10a, c and e). The right column shows the misfits
enerated from the RES2DINV code (Fig. 10b, d and f). For only the
ipole–Dipole configuration data, the RMS misfit did not converge

o the desired misfit of 1 for the model and data-space methods.
his also happened for the RES2DINV code, where a high RES2DINV
isfit is still shown. In all cases, the RES2DINV code requires more

terations than both types of Occam’s inversion.

. Discussion and conclusions

The data-space method has been widely used in many fields
ncluding geophysics (Parker, 1994; Egbert et al., 1994; Chua and
ennett, 2001). It was recently used for MT data by Siripunvaraporn
nd Egbert (2000) for their 2D code and later applied to a 3D code
Siripunvaraporn et al., 2004, 2005). Here, we have shown that
he same technique can be also used for 2D DC resistivity data.
n the two examples presented here, we show that our developed
D data space code is robust and accurate, and comparable to the
ommercial software RES2DINV program.

For any configuration, N is always less than M by a large factor.
his fact helps enhance the benefit of using the data-space method,

specially for the GN-type inversions. Since the size of the system of
quations is significantly dropped to N × N from the original M × M
n traditional model space, both the computing time and memory
torage of the data-space method become a fraction of those in
he model space method. Applying the data-space method to 3D
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ata would definitely yield an advantage, because in 3D, N/M is
uch smaller than in the 2D case. However, in the case where M

s greater N (if occurred), the data space approach would not yield
ny advantages. In this case, we can select to run our code in the
odel space. Alternatively, a subset data space inversion, similar to

EBOCC code (Siripunvaraporn and Egbert, 2000), can be applied
n order to further reduce the computational costs.

Both the model and data space Occam’s inversion methods
equire the full sensitivity matrix. This process consumes exten-
ive computing time and large memory storage. Directly extending
ur 2D code to a 3D code would still yield an impractical 3D code.
owever, Siripunvaraporn and Egbert (2007) showed that we can
void constructing the full sensitivity matrix by applying the conju-
ate gradient technique. This would help significantly in reducing
he size of memory storage; however, the computing time may not
ecessarily decrease (Siripunvaraporn and Egbert, 2007).

In order to speed up the codes, an approximate sensitivity matrix
s another option to consider. The Quasi-Newton method has been
sed to estimate the sensitivity (Loke and Barker, 1996). It was then
sed in combination with the GN method in order to maintain the
ccuracy of the GN method along with the speed of QN method
Loke and Dahlin, 2002). A hybrid method combining the advan-
ages of the data-space method, GN, QN and other techniques is
ossible and should be explored for the 3D cases.
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S U M M A R Y
Electromagnetic surface measurements with the radiomagnetotelluric (RMT) method in the
frequency range between 10 and 300 kHz are typically interpreted in the quasi-static approx-
imation, that is, assuming displacement currents are negligible. In this paper, the dielectric
effect of displacement currents on RMT responses over resistive subsurface models is studied
with a 2-D forward and inverse scheme that can operate both in the quasi-static approximation
and including displacement currents.

Forward computations of simple models exemplify how responses that allow for dis-
placement currents deviate from responses computed in the quasi-static approximation. The
differences become most obvious for highly resistive subsurface models of about 3000 � m
and more and at high frequencies. For such cases, the apparent resistivities and phases of the
transverse magnetic (TM) and transverse electric (TE) modes are significantly smaller than in
the quasi-static approximation. Along profiles traversing 2-D subsurface models, sign reversals
in the real part of the vertical magnetic transfer function (VMT) are often more pronounced
than in the quasi-static approximation. On both sides of such sign reversals, the responses
computed including displacement currents are larger than typical measurement errors.

The 2-D inversion of synthetic data computed including displacement currents demon-
strates that serious misinterpretations in the form of artefacts in inverse models can be made if
displacement currents are neglected during the inversion. Hence, the inclusion of the dielectric
effect is a crucial improvement over existing quasi-static 2-D inverse schemes. Synthetic data
from a 2-D model with constant dielectric permittivity and a conductive block buried in a
highly resistive layer, which in turn is underlain by a conductive layer, are inverted. In the
quasi-static inverse model, the depth to the conductive structures is overestimated, artefactual
resistors appear on both sides of the conductive block and a spurious conductive layer is imaged
at the surface.

High-frequency RMT field data from Ävrö, Sweden, are re-interpreted using the newly
developed 2-D inversion scheme that includes displacement currents. In contrast to previous
quasi-static modelling, the new inverse models have electrical resistivity values comparable to
a normal-resistivity borehole log and boundaries between resistive and conductive structures,
which correlate with the positions of seismic reflectors.

Key words: Numerical solutions; Inverse theory; Electrical properties; Electromagnetic the-
ory; Magnetotelluric.

1 I N T RO D U C T I O N

Since many electromagnetic (EM) methods utilize frequencies below 10 kHz, the quasi-static assumption that displacement currents are much
smaller than conduction currents (i.e. ωε � σ with angular frequency ω = 2π f , dielectric permittivity ε = ε rε0, free air permittivity ε0 and
electrical conductivity σ ) is stipulated and displacement currents are neglected during the data interpretation. For the radiomagnetotelluric
(RMT) method, which uses EM fields in the VLF (3–30 kHz) and LF (30–300 kHz) frequency ranges, the validity of the quasi-static assumption
is questionable. For a typical relative dielectric permittivity ε r = 5 (e.g. mildly fractured crystalline bedrock), displacement currents are equally
strong as conduction currents for, for example, an electrical resistivity ρ = 1/σ = 10 000 �m and a frequency f = 360 kHz. This means
that the dielectric effect is non-negligible even at a combination of lower frequencies and/or resistivities. In fact, it can be argued that the
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dielectric effect should be accounted for as soon as the perturbation it causes is roughly equal to the measurement errors of the data. For a
typical error level of, say, 2 per cent on the impedance tensor elements, vertically incident plane waves and a relative dielectric permittivity
ε r = 5, it is shown in Section 3.1 that the effect of displacement currents on the impedance phase is above the error level at, for example,
f = 15 kHz and ρ = 10 000 � m or f = 170 kHz and ρ = 1000 � m.

In the following subsections, the existing knowledge of the dielectric effect on plane-wave and controlled-source frequency-domain
electromagnetic (FDEM) responses is reviewed. With respect to the RMT method, the plane-wave FDEM responses are of special importance.
After that, the resolvability of anomalous dielectric permittivities and previous attempts of quasi-static interpretation of high-frequency RMT
data are discussed. In the last part of the introduction, we give an outlook at our 2-D inverse scheme for RMT data that allows for displacement
currents and summarize the assumptions we make. Note that for the treatment of the FDEM theory, we choose an exp +iωt time dependence
throughout this paper.

1.1 Dielectric effect on frequency-domain EM responses

Several publications describe the effect of displacement currents on plane-wave and controlled-source FDEM responses in the VLF and LF
frequency ranges, based on analytic solutions by Wait (1953, 1970) and Wait & Nabulsi (1996) for a 1-D layered Earth.

In plane-wave FDEM methods like the RMT method, EM fields generated by powerful radio transmitters operating in the VLF and
LF frequency ranges are used as primary signals. The aerials employed with the remote radio transmitters are vertical electric dipoles. At
distances beyond several free-air wavelengths from the transmitter, that is, in the so-called far-field zone, the EM field essentially resembles
that of a plane wave, which is obliquely incident on the Earth’s surface (McNeill & Labson 1991). An excellent summary of the theory of
plane-wave FDEM impedance, VMT and wave tilt measurements that covers both the quasi-static approximation and the general case with
displacement currents, as well as the nature of the radio transmitter source field, is given by Crossley (1981).

For plane-wave EM fields, Sinha (1977) investigates the influence of displacement currents on the wave tilt, that is, the ratio of the
horizontal to vertical electric field. On the surface of a homogeneous half-space, both amplitude and phase approach the values of the
quasi-static approximation at low frequencies, although they become significantly smaller than the quasi-static responses with increasing
frequency.

The dielectric effect on apparent resistivities and phases of radiomagnetotelluric surface impedances is deduced in Crossley (1981),
Zacher (1992) and Persson & Pedersen (2002) from 1-D forward computations. On the surface of a homogeneous half-space, both apparent
resistivity and phase are smaller than their constant counterparts in the quasi-static approximation. The differences become stronger with
increasing frequency.

Wait (1953), Sinha (1977), Crossley (1981) and Song et al. (2002) emphasize the importance of the angle of incidence for wave tilt,
surface impedance and VMT measurements conducted with plane-wave FDEM methods. The EM field is transmitted vertically into the Earth,
independent of the angle of incidence, when the quasi-static approximation is valid. In the general case with displacement currents, however,
the angles of incidence and transmission are related through Snell’s law. As a consequence, the TM- and TE-mode impedances vary with the
angle of incidence and differ at oblique incidence, even if measured on the surface of a layered half-space (Song et al. 2002).

For controlled source air-borne FDEM measurements, Fraser et al. (1990), Huang & Fraser (2002) and Yin & Hodges (2005) simulate
responses due to a pair of horizontal coplanar transmitting–receiving coils, operating in the frequency range of 0.4 to 100 kHz. The ratio
of secondary magnetic field intensity to primary magnetic field intensity is split into an in-phase component (real part) and a quadrature
component (imaginary part). According to Fraser et al. (1990) and Huang & Fraser (2002), displacement currents in the Earth lead to
a decrease of the in-phase component and an increase of the quadrature component, compared with the quasi-static case for which both
components are positive. The influence of displacement currents in the air (an increase of both components) is rather small compared with
that in the Earth (Yin & Hodges 2005).

1.2 Resolvability of permittivity anomalies

The resolvability of the relative dielectric permittivity from both plane-wave and controlled-source FDEM measurements is assessed by
Nabulsi & Wait (1996), Stewart et al. (1994), Huang & Fraser (2002) and Persson & Pedersen (2002) with 1-D simulations.

Using obliquely incident plane waves in the VHF range (30–300 MHz), Nabulsi & Wait (1996) illustrate that a dielectric layer embedded
in a highly resistive host is detectable if its thickness and relative permittivity are sufficiently high.

For a controlled source coil–coil FDEM method which operates in the MF (0.3–3 MHz) and HF (3–30 MHz) frequency ranges, Stewart
et al. (1994) show that the anomalous response of both a resistive and conductive thin layer is significantly enlarged by the dielectric effect
even if there is no contrast of dielectric permittivity between the layers of the model. Stewart et al. (1994) present two field examples, where
tilt angle and ellipticity data of the magnetic field polarization ellipse have been successfully inverted for both electric resistivity and dielectric
permittivity, with a 1-D inverse scheme.

At frequencies lower than those employed by Nabulsi & Wait (1996) and Stewart et al. (1994), displacement currents become weaker and
the resolvability of permittivity anomalies within a limited range of possible relative permittivity values deteriorates. Huang & Fraser (2002)
(see Section 1.1) estimate a single value of relative permittivity at their highest frequency of 100 kHz, as it is a badly resolved parameter at
lower frequencies.
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Persson & Pedersen (2002) invert RMT data with frequencies up to 250 kHz for dielectric permittivity, using 1-D models. The differences
of inverse models are found to be negligible if the relative dielectric permittivities are limited to the range between 4 and 10, typical of
bedrock, and if the resistivities are not larger than 20 000 � m (Persson & Pedersen 2002). Relative dielectric permittivities larger than 10 are
typical of water bearing sedimentary rocks and soils (Reynolds 1997). Due to the high water content, such formations have relatively low
resistivities (typically up to about 500 � m), which reduce the importance of displacement currents at VLF and LF frequencies. It is therefore
sufficient, in many practical cases of RMT data interpretation, to account for displacement currents by selecting a dielectric permittivity
representative of high-resistivity structures in the subsurface.

1.3 Quasi-static interpretation of high-frequency RMT data

The difficulties of the interpretation of high-frequency RMT field data in the quasi-static approximation are discussed by Persson & Pedersen
(2002) and Linde & Pedersen (2004). For synthetic 1-D RMT impedance responses computed with displacement currents, Persson & Pedersen
(2002) compare 1-D inversion results from inverse schemes that utilize both the quasi-static approximation and displacement currents. For a
homogeneous half-space model, neglecting displacement currents during the inversion leads to an inverse model with a conductor close to
the surface, followed by alternating layers of high and low resistivity at depth (Persson & Pedersen 2002). Similarly, Linde & Pedersen (2004)
observe for quasi-static 1-D inversions of RMT field data from the island Ävrö, Sweden, that a conductive surface layer is modelled more
conductive and the underlying unfractured bedrock is modelled more resistive than in the 1-D inversions with displacement currents. The
models, due to inversion with displacement currents, are supported by logging data of Gentzschein et al. (1987).

In fact, the work presented by Linde & Pedersen (2004) is a typical example of the interpretation strategies chosen until now, in cases
where the dielectric effect in RMT data is to be accounted for. In the absence of a 2-D inversion program that allows for displacement
currents, the data interpretation has, so far, been restricted to 1-D inversions with modified analytic forward and Frechet derivative routines,
the exclusion of the higher frequency data in 2-D inversions and 3-D forward modelling with the integral equation code X3D by Avdeev et al.
(2002).

1.4 2-D inversion of RMT data allowing for displacement currents

For the first time, we take displacement currents in a 2-D forward and inverse modelling scheme for RMT data into account by selecting a
value of dielectric permittivity that is typical of the subsurface and assuming vertically incident plane waves. As the EM field from remote
VLF transmitters can be expected to be incident at an angle closer to 90◦ (grazing incidence), it is shown in Section 2.2 that the presence of
a moderately resistive surface layer reduces the influence of the angle of incidence considerably. We investigate the effect of displacement
currents on 2-D forward responses in the TM-mode, the TE-mode and the VMT and compare our results with the responses computed by
the integral equation code X3D by Avdeev et al. (2002), which, at the time of writing, was the only forward code known to us that operates
in two or three dimensions and includes displacement currents. Especially, the effect on VMT responses was not considered in the past (cf.
Avdeev et al. 2002; Persson & Pedersen 2002). Possible misinterpretations, in the form of artefacts with excessively extreme resistivities in
models from quasi-static inverse schemes, are highlighted. The RMT data from Ävrö (Linde & Pedersen 2004) are re-interpreted with the
inverse scheme that allows for displacement currents. The resulting inverse models are compared with the borehole data of Gentzschein et al.
(1987) and the seismic reflection model of Juhlin & Palm (1999).

We have added our forward and sensitivity routines, which allow for displacement currents, to the popular 2-D magnetotelluric inverse
code REBOCC by Siripunvaraporn & Egbert (2000).

2 T H E O RY

2.1 Electromagnetic equations

Assuming a volume of conductivity σ , dielectric permittivity ε and vacuum permeability μ0, Maxwell’s equations are written in the frequency
domain as

∇ × E = −(iωμ0)H = −ẑH Faraday′s law (1)

∇ × H = (σ + iωε) E = ŷE Ampere′s law (2)

∇ · (εE) = q Gauss′ law (3)

∇ · H = 0 (4)

where Eeiωt and Heiωt are the electric and magnetic field vectors, varying in time t, with angular frequency ω (e.g. Ward & Hohmann 1987)
and q is the charge density. On the right-hand sides of eqs (1) and (2), the definitions of the impedivity ẑ = iωμo and admittivity ŷ = σ + iωε

are used. The quantities jcond = σE, jdisp = iωεE, and j = ŷE are the conduction, displacement and total current densities, respectively. The
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displacement current density iωεE describes the dielectric effect due to electronic, atomic, molecular and space charge derived polarization
of matter with dielectric permittivity ε in the presence of a time-varying electric field (Keller 1987). In the case that conduction currents
dominate over displacement currents (i.e. σ � ωε), displacement currents may be neglected in eq. (2). This simplification is known as the
quasi-static approximation.

In the following, it is assumed that plane waves are obliquely incident on the Earth’s surface in the y–z plane and that the x-direction is
the geoelectrical strike direction. Therefore, the admittivity ŷ and the EM field components vary only in y and z direction. This choice leads
to the definition of the transverse electric (TE) and transverse magnetic (TM) modes for which the vertical electrical and vertical magnetic
field components, respectively, vanish. The sets of equations for the TE- and TM-modes are

(1) TE-mode:

∂ Hz

∂ y
− ∂ Hy

∂z
= ŷEx , (5)

∂ Ex

∂z
= −ẑHy, (6)

∂ Ex

∂ y
= ẑHz . (7)

(2) TM-mode:

∂ Ez

∂ y
− ∂ Ey

∂z
= −ẑHx , (8)

∂ Hx

∂z
= ŷEy, (9)

∂ Hx

∂ y
= −ŷEz . (10)

An illustration of the EM field components of the TM-mode and a 2-D subsurface with a cylindrical structure of anomalous electrical
properties and infinite extension along the x-axis, that is, the strike direction, is given in Fig. 1. The EM field is obliquely incident at an
angle θ 0, thereby having a wavenumber vector k0 = (0, k 0y , k 0z). According to the definition of the TM-mode, the incident, reflected and
transmitted magnetic fields Hi = (H i x , 0, 0), Hr = (H r x , 0, 0), and Ht = (H tx , 0, 0), respectively, are all directed along the strike direction
whereas the incident, reflected and transmitted electric fields Ei = (0, E iy , E iz), Er = (0, E r y , E rz), and Et = (0, E ty , E tz), respectively, are
all directed perpendicularly to the strike direction.

In the quasi-static approximation of the TM-mode, j = (0, σ E y , σ E z) vanishes in the air half-space (Brewitt-Taylor & Weaver 1976)
where σ air = 0 is assumed. As a consequence of eqs (9) and (10), H x is then constant in the air half-space, and an inclusion of the air
half-space in the modelling domain can be omitted. If displacement currents are accounted for, the magnetic field in the air is no longer
independent of the resistivity distribution in the Earth, as the vertical component of the current density is continuous at the air–Earth interface

transmitted
wave direction

reflected
wave direction

Hi

air

Earth

Ei θ0

θt

.

H=(Hx,0,0)

E=(0,Ey,Ez)

k=(0,ky,kz)

Er kr
Hr

strike parallel
to x-direction

structure with anomalous 
electrical properties

incident
wave direction

k0

.

ktEt
Ht

.

n

z

x
y

Figure 1. EM field components of the TM-mode on a 2-D earth model. The model consists of a structure with anomalous electrical properties that has its
strike direction parallel to the x-axis. The EM field is obliquely incident at an angle θ 0, thereby having a wavenumber vector k0 = (0, k 0y , k 0z) = (0, k 0 sin θ 0,
k 0 cos θ 0). The incident, reflected and transmitted magnetic fields Hi = (H ix, 0, 0), Hr = (H rx, 0, 0) and Ht = (H tx, 0, 0), respectively, are all directed along
the strike direction. The incident, reflected and transmitted electric fields Ei = (0, E iy, E iz), Er = (0, E ry, E rz), and Et = (0, E ty, E tz), respectively, are all
directed perpendicular to the strike direction. On top of a conductive subsurface, the electromagnetic field is refracted towards the normal, that is, θ t < θ 0.
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and in the air,

jy = ŷEy = iωε0 Ey = ∂ Hx

∂z
, (11)

jz = ŷEz = iωε0 Ez = −∂ Hx

∂ y
(12)

differ from zero (cmp. eqs 9 and 10). Hence, the air half-space must be included in the simulation of the TM-mode.
The electric and magnetic field components E x and H x of the TE- and TM-modes, respectively, fulfil the Helmholtz equations (cf. eqs

1 and 2)

−(∇ × ∇ × E)x = −[∇(∇ · E)]x + (∇2E)x

= ∂2 Ex

∂ y2
+ ∂2 Ex

∂z2

= ẑ ŷEx (13)

and

−
(

∇ × 1

ŷ
∇ × H

)
x

= − 1

ŷ
[∇(∇ · H)]x + 1

ŷ
∇2 Hx −

[(
∇ 1

ŷ

)
× ∇ × H

]
x

= 1

ŷ

(
∂2 Hx

∂ y2
+ ∂2 Hx

∂z2

)
+ ∂

∂ y

(
1

ŷ

)
· ∂ Hx

∂ y
+ ∂

∂z

(
1

ŷ

)
· ∂ Hx

∂z

= ẑHx , (14)

where the 2-D assumption ∂/∂x = 0 and eq. (4) were used.
In a homogeneous volume, for instance, the general solution of the scalar Helmholtz equations (eqs 13 and 14) is given by

{E, H}x = ({E, H}++
x e−ikz z + {E, H}−+

x eikz z
)

e−iky y

+ ({E, H}+−
x e−ikz z + {E, H}−−

x eikz z
)

e+iky y . (15)

Here, k y and k z are the horizontal and vertical components of the wavenumber vector k (see above). The substitution of eq. (15) into eq. (13)
yields

k2 = k2
y + k2

z = −ẑ ŷ (16)

where k y = k sin θ and k z = k cos θ . The complex wavenumber can be split as k = α − iβ where the real numbers α and β represent
propagation and attenuation, respectively, and

α = ω

√√√√√μ0ε

2

⎡
⎣
√

1 + σ 2

ε2ω2
+ 1

⎤
⎦, (17)

β = ω

√√√√√μ0ε

2

⎡
⎣
√

1 + σ 2

ε2ω2
− 1

⎤
⎦. (18)

The inverse of the imaginary part gives the skin depth δ = 1
β

over which the amplitude of the EM field is reduced by a factor 1/e. In the

quasi-static approximation, the real and imaginary parts are equal, that is, α = β =
√

ωμ0σ

2 .

The reflection and refraction of plane EM waves at the Earth’s surface are governed by Snell’s law and the Fresnel equations (Ward &
Hohmann 1987). Hence, the EM field measured on the Earth’s surface depends on the angle of incidence (see Fig. 1). Three cases of the
angle of incidence θ 0 are distinguished. The cases θ 0 = 0◦ and θ 0 = ±90◦ are known as normal (or vertical) incidence and grazing (or
parallel) incidence, respectively. The cases 90◦ > θ 0 > 0◦ and 0◦ > θ 0 > −90◦ are called oblique incidence. The refraction of obliquely
incident EM waves into the subsurface is conveniently demonstrated for a layered half-space. As a consequence of the boundary conditions
for the EM field components at layer interfaces, the horizontal component of the wavenumber vector is constant (Ward & Hohmann 1987),
that is,

ky, j = k0 sin θ0 = k j sin θ j . (19)

Here, k0 =
√

ω2μ0ε0 is the wavenumber of the air and θ 0 is the angle of incidence. Similarly, k j and θ j are the wavenumber and angle of
transmission of the jth layer, respectively. According to eqs (16) and (19) the vertical wavenumber of the jth layer has the form

kz, j = k j cos θ j = k j

√
1 − sin2 θ j

= k j

√
1 − k2

0

k2
j

sin2 θ0.
(20)
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At sufficiently low frequencies, that is, when the quasi-static approximation is valid, k2
0/k2

j = ω2μ0ε0/(ω2μ0ε j − iωμ0σ j ) → 0 as ω → 0
and k z, j

∼= k j . Hence, it is only in the quasi-static approximation or at vertical incidence that the EM field is transmitted vertically into the
Earth. At high frequencies and oblique incidence, the angle of transmission generally deviates from 0◦.

After solving the Helmholtz equations (eqs 13 and 14) for E x or H x of a 2-D conductivity distribution, the auxiliary fields H y and H z

or E y and E z can be computed with eqs (6) and (7) or eqs (9) and (10), respectively.
The off-diagonal elements of the complex 2-D impedance tensor relate the horizontal magnetic fields to the horizontal electric fields of

the TE- and TM-mode as[
Ex

Ey

]
=
[

0 Zxy

Z yx 0

][
Hx

Hy

]
(21)

and yield the responses commonly used in radiomagnetotellurics, that is, the apparent resistivities

ρxy
a = 1

ωμ0
|Zxy |2 and ρ yx

a = 1

ωμ0
|Z yx |2 (22)

and phases

φxy = arg(Zxy) and φ yx = arg
(
Z yx

)
. (23)

Ward et al. (1968) establish a more direct link to the electrical properties of the subsurface, in the general case with displacement currents,
by defining an apparent conductivity and an apparent dielectric permittivity.

Due to the dependence of the EM field on the angle of incidence, the amplitude and phase of the impedances of the TM- and TE-mode
differ even if measured on the surface of a layered Earth. Only if the quasi-static approximation is valid or if the EM field is vertically incident,
the TE- and TM-mode impedances of a layered half-space satisfy the relationship Z xy = −Z yx.

For plane waves vertically incident on the surface of a homogeneous half-space with impedivity ẑ and admittivity ŷ, the TM-mode
impedance has the form Z yx = √

ẑ/ŷ (Wait 1970; Ward & Hohmann 1987). In the quasi-static approximation, the latter expression simplifies
to Z yx = √

iωμ0/σ , and only in this case, the apparent resistivities and phases measured on a homogeneous half-space equal the resistivity
of the half-space and 45◦, respectively.

In the TE-mode, the vertical magnetic field H z is related to the horizontal magnetic field H y through the complex 2-D VMT B:

Hz = B Hy . (24)

For plane waves obliquely incident on a layered Earth, the VMT generally differs from zero. However, for vertically incident plane waves or
in the quasi-static approximation, a VMT that differs from zero is only observed if the admittivity ŷ varies laterally (see eqs 5–7).

2.2 Normal and oblique incidence

In the case of grazing or oblique incidence, both the incident electric and the incident magnetic fields can have vertical components (see
Fig. 1). Already for a 1-D earth model, the TE- and TM-mode are then defined, by demanding that either the electric or the magnetic field be
perpendicular to the plane of incidence (Wait 1970; Ward & Hohmann 1987), and the impedance tensor and VMT measured on the Earth’s
surface depend on the angle of incidence (see Section 2.1). It is therefore important to appraise the error made by assuming vertical incidence
during the modelling process. For a layered earth model, the deviations of the TE- and TM-mode impedance amplitudes and phases at an
arbitrary angle of incidence from those at normal incidence can be estimated with well-known recurrence formulae (see e.g. Wait 1953, 1970;
Crossley 1981; Ward & Hohmann 1987; Song et al. 2002).

For the half-space model shown in Fig. 2(a), consisting of two layers with resistivities of 600 and 30 000 � m and layer thicknesses of 25
and 75 m, a confining half-space with a resistivity of 600 � m and a constant relative permittivity ε r = 6, the deviations of the amplitude and
phase of the TM- and TE-mode impedances from their respective values at normal incidence are shown in Fig. 2. The maximal deviations
of 1.5 per cent and 1◦ for the amplitude and phase, respectively, occurring at parallel incidence, are of the order of typically expected error
levels. A similar model that consists of the uppermost layer underlain by a confining half-space of 30 000 � m shows maximal deviations of
1.0 per cent and 0.25◦, respectively, indicating that a considerable part of the distortion in the first case is due to the reflection of the EM
energy on the top of the confining half-space.

The angle of incidence can be estimated with the scheme by Song et al. (2002), which requires that the horizontal EM field components
are measured simultaneously at adjacent receiver sites. In a typical RMT field campaign, however, a single receiver is moved along the profile.
The interpretation is further complicated, as the EM fields of different transmitters, with frequencies close to a nominal frequency, are used
to estimate the TM- and TE-mode impedances (Bastani & Pedersen 2001). Generally, the transmitters are off the profile or strike direction
and have different angles of incidence; but the angle of incidence, normally, is close to 90◦ (grazing incidence) at the site of investigation
(Crossley 1981).

As the aerials employed by the remote radio transmitters, typically, are vertical electric dipoles, the incident EM field is that of a
TM-mode. Hence, the definitions of TE- and TM-mode based on the geoelectrical structure of the subsurface and on the nature of the incident
field are conciliable only for the TM-mode, given that the direction to the remote radio transmitter coincides with the profile direction (as in
Fig. 1 for instance). If the transmitter was located off the profile direction, the wavenumber vector k would have an x-component, which, in
the general case, would persist within the Earth and invalidate the 2-D assumption ∂/∂x = 0. However, even this problem is amended if a

C© 2008 The Authors, GJI, 175, 486–514

Journal compilation C© 2008 RAS



492 T. Kalscheuer, L. B. Pedersen and W. Siripunvaraporn

ρ1=600Ωm, εr=6

ρ3=600Ωm, εr=6

ρ2=30000Ωm, εr=6

h1=25m

h2=75m

x

z

y

(a) 1D model with three layers

0.984

0.988

0
.9

8
8

0.
99

2

0.992

0.
99

6

0.996

0.996

1
.0

0
0

1 0001.0001.000

1
.0

0
4

0

10

20

30

40

50

60

70

80

90

a
n

g
le

 o
f 

in
ci

d
e

n
ce

 (
°)

104 105

frequency (Hz)

(b) relative amplitude of TM-mode impedance

0.00

0
.0

0
0
.0

0

0.10

0.10 0.
20

0.20

0.
30

0.30

0.
40

0.40
0.5

00.50 0.
60

0.60

0.700.70

0.80

0

10

20

30

40

50

60

70

80

90

a
n

g
le

 o
f 

in
ci

d
e

n
ce

 (
°)

104 105

frequency (Hz)

(c) phase difference of TM-mode impedance

1
.0

0
0

1
.0

0
0

1.0001.000

1.004

1
.0

0
4

1.008

0

10

20

30

40

50

60

70

80

90

a
n

g
le

 o
f 

in
ci

d
e

n
ce

 (
°)

104 105

frequency (Hz)

(d) relative amplitude of TE-mode impedance

0.10

0.10

0.20

0.20

0.30

0

10

20

30

40

50

60

70

80

90

a
n

g
le

 o
f 

in
ci

d
e

n
ce

 (
°)

104 105

frequency (Hz)

(e) phase difference of TE-mode impedance

Figure 2. Relative amplitude and phase difference for the TM- and TE-mode impedances with respect to the case of normal incidence for angles of incidence
between 0◦ (normal incidence) and 90◦ (grazing incidence) and at frequencies between 10 and 300 kHz (panels b–e). The earth is assumed to consist of two
layers with resistivities of 600 and 30 000 � m and layer thicknesses of 25 and 75 m, respectively, a confining half-space with a resistivity of 600 �m and a
constant relative permittivity ε r = 6 (panel a). The deviations from the impedance values at normal incidence are largest at grazing incidence.

moderately resistive or conductive surface layer is present, as the EM field is then transmitted almost vertically into the subsurface, and the
definition of different modes can be based on the geoelectrical structure.

We consider only vertically incident plane-wave fields. As the above example shows, the presence of a moderately resistive or conductive
near-surface layer reduces the importance of the angle of incidence, and deviations of the responses for different angles of incidence are then
rather small.

2.3 Computation of forward responses and sensitivities

The forward problem, that is, the computation of responses for a given model, is solved by discretizing the modelling domain with the
finite-difference approximation (FDA), following Hohmann (1987) and Aprea et al. (1997). The derivations of the FDAs for the TE- and
TM-modes can be found in Appendix A. Both direct and iterative solvers for the system of linear equations, arising from the FDA of the
forward problem, are discussed in Appendix B. As we have not yet managed to implement an appropriate iterative solver, we rely on the
LU-decomposition (also known as Gaussian elimination) by Anderson et al. (1999).

The sensitivity matrix J ∈ R
N∗M describes the perturbations ensuing for N forward responses F[m] ∈ R

N due to perturbations of M
model parameters m ∈ R

M . The entry of the sensitivity matrix for the kth datum with respect to the lth model parameter is then calculated as
a partial derivative:

J kl (m) = ∂Fk[m]

∂ml
. (25)
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Figure 3. Analytic 1-D solutions by Persson & Pedersen (2002) and 2-D FDA solutions of apparent resistivity ρ a and phase φ for the TM-mode on the
surface of a homogeneous half-space with ρ = 10 000 � m and ε r = 5. The responses were computed for frequencies between 10 and 250 kHz and under the
assumption of normal incidence. At high frequencies, ρ a and φ are both significantly smaller than their quasi-static values of 10 000 � m and 45 ◦, respectively.
With decreasing frequency, ρ a and φ approach their quasi-static values asymptotically.
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Figure 4. Simple 2-D model with a conductive block of ρ = 1000 � m in a half-space with a resistivity of ρ = 10 000 � m and constant relative dielectric
permittivity ε r = 5. Receiver positions are indicated by black triangles. The TM-mode, TE-mode and VMT responses of this model are shown in Fig. 5.

The entries of the sensitivity matrix are typically given for the logarithms of the apparent resistivities and the phases of the impedance tensor
elements and the real and imaginary parts of the VMT with respect to the logarithms of the cell resistivities. The logarithms are typically
chosen relative to the base 10. The sensitivity matrix is computed with the scheme by Rodi (1976) and depends on the FDA of the forward
problem. Further information on this algorithm is given in Appendix C. An example of sensitivity matrix entries is given at the end of
Section 3.2.

2.4 Mesh design

To obtain accurate modelling results, the total extent of the modelling domain (i.e. the finite-difference mesh) and the sizes of individual
cells of the finite-difference mesh need to be well adapted to the settings of the experiment, that is, the length of the profile on which
measurements were conducted, the lowest and highest frequencies of the measurements and the distributions of electrical conductivity and
dielectric permittivity present in the model.

The horizontal and, below the air–Earth interface, the vertical extents of the finite difference mesh must be larger than those used in
the quasi-static approximation, as the skin depth δ = 1

β
computed with displacement currents (see eq. 18) is larger than its quasi-static

counterpart.
Furthermore, the node spacing must be small compared with the scale lengths across which the EM fields vary, that is, the inverse real

and imaginary parts of the complex wavenumber k. In the quasi-static approximation, this leads to the well-known requirement that the node
spacing must be small compared with the local skin depth (Aprea et al. 1997). In the general case, 1/α < 1/β and the local node spacing
must be considerably smaller than 1/α.

A small vertical node spacing is essentially important for the air half-space since the vertically incident plane wavefield propagates
undamped (assuming σ air = 0 S m−1). In the air, the largest vertical mesh cell dimension must be smaller than 1/α of the highest frequency.
This results in the following comparison. In the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000), the conductivity of the air
half-space is assumed to be σ air = 10−10 S m−1, and the quasi-static skin depth at a frequency of 300 kHz is 92 km. In the general case with
displacement currents, σ air = 0 S m−1 and the inverse real part of the wavenumber is 1/α = 159 m for f = 300 kHz. In the former case, the
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Figure 5. Comparison of 2-D FDA forward responses of the block model shown in Fig. 4 computed with displacement currents (shown as lines in both the
left- and right-hand columns) with 2-D FDA solutions computed in the quasi-static approximation (shown as symbols in the left-hand column) and 3-D integral
equation solutions computed with displacement currents (shown as symbols in the right-hand column). Panels (a)–(d) show the responses for the TM-mode
apparent resistivity and phase, respectively. Panels (e)–(h) show the responses for the TE-mode apparent resistivity and phase, respectively. Panels (i)–(l) show
the responses for the real and imaginary part of the VMT, respectively. The TM-mode and TE-mode responses computed with displacement are generally
smaller than those computed in the quasi-static approximation, especially to the sides of the conductive block. The real part of the VMT response computed
with displacement currents shows distinct sign reversals [marked by labels (2) and (6) in panel i] to the sides of the conductive block. The corresponding
maximum and minimum are marked by labels (1) and (7), respectively, in panel (i). The 2-D FDA and integral equation solutions are in good agreement
(right-hand column).
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Figure 5. (Continued.)

skin depth exceeds the size of the modelling domain by far, and it is therefore appropriate to address the primary field of the quasi-static case
as a uniform inducing field rather than a plane wave incident on the Earth’s surface.

3 S Y N T H E T I C E X A M P L E S

3.1 Forward modelling examples

We consider a forward modelling example for a homogeneous half-space, with a resistivity of 10 000 � m and a relative permittivity
ε r = 5. Assuming vertically incident plane waves, analytic 1-D solutions with the algorithm by Persson & Pedersen (2002) and 2-D FDA
solutions were computed for the apparent resistivities and phases of the TM- (Fig. 3) and TE-mode (not shown) at frequencies between
10 and 250 kHz. The comparison of the analytic 1-D solution (marked by a solid line) and the 2-D FDA solution (marked by crosses)
shows excellent agreement. At high frequencies, the effect of displacement currents is to decrease the apparent resistivity and phase below
the apparent resistivity of 10 000 � m and phase of 45◦, respectively, typical of the quasi-static approximation. For a typical error level of
2 per cent on the impedance, the deviations from the quasi-static values are as large as the given errors at 105 kHz for the apparent resistivity
and 15 kHz for the phase.

For the simple 2-D model with a block of ρ = 1000 � m in a half-space, with a resistivity of ρ = 10 000 � m and ε r = 5 throughout,
shown in Fig. 4, 2-D FDA forward responses with displacement currents are compared with both 2-D FDA forward responses for the
quasi-static approximation and the 3-D integral equation solution by Avdeev et al. (2002). Responses were computed for the TM-mode
impedance, the TE-mode impedance and the VMT. Fig. 5 shows the 2-D FDA forward responses, computed with and without displacement
currents in the left-hand column, and the comparison of 2-D FDA forward responses, computed with displacement currents, and 3-D integral
equation solutions, with displacement currents, in the right-hand column. The latter comparison indicates that the finite-difference forward
scheme is rather accurate. For the given mesh discretization, the relative deviations between the impedance responses of the FDA and integral
equation solutions are below 3.0 per cent. The absolute deviations between the VMT responses of the FDA and integral equation solutions are
below 0.003. As errors in the computation of two field components might cancel when taking their ratio, a further comparison was done for
the 2-D FDA and 3-D integral equation solutions of individual field components (not shown). After an appropriate normalization, the scaled
complex field components of the TE-mode deviate by less than 0.7 per cent, whereas the field components of the TM-mode differ by as much
as 3.0 per cent. As we do not have insight into the code by Avdeev et al. (2002), it is difficult to give an explanation for the discordance in the
latter case.

For the lowest frequency of about 10 kHz, the responses computed with (dotted lines in left-hand column of Fig. 5) and without
displacement currents (diamond symbols in left-hand column of Fig. 5) are very similar. At 100 kHz (dashed lines and filled circle symbols)
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Figure 6. The TE-mode impedance Z TE and the VMT B for the model shown in Fig. 4 at f = 250 kHz, in the general case with displacement currents

(panels a and b) and the quasi-static case (panels c and d). The VMT and the TE-mode impedance roughly follow the relations 
e( Hz
Hy

) ∝ �m(
∂ Zxy
∂ y ) and

�m( Hz
Hy

) ∝ −
e(
∂ Zxy
∂ y ). Hence, for instance, zero transitions of the real part of the VMT are observed at approximately the same positions where the imaginary

part of the impedance has minima or maxima. The labels (2) and (6) mark two such pairs of zero transitions in the real part of the VMT and maxima of the
imaginary part of the impedance.

and 250 kHz (solid lines and star symbols), the influence of displacement currents is considerable, given the chosen resistivity distribution
and relative dielectric permittivity.

For stations located on the sides of the conductive block, the effect of displacement currents on TE- and TM-mode impedances is
most obvious. Towards the left- and right-hand edges of the mesh, the apparent resistivities and phases approach those of the corresponding
homogeneous half-space (see Fig. 3). Also at sites above the conductive block, apparent resistivity and phase are generally smaller than in
the quasi-static approximation.

An important effect of displacement currents on the real and imaginary parts of the VMT at high frequencies is the occurrence of lateral
sign reversals, located symmetrically around the conductive block. For f = 250 kHz, lateral sign reversals are shown at 260 and 540 m along
the profile in the real part of the VMT [marked by labels (2) and (6), respectively, on the solid line in Fig. 5i] and at 75 and 725 m along
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Figure 7. Real (upper row) and imaginary (lower row) parts of the normalized current density j x/E x0 at f = 250 kHz of the TE-mode for the general case
with displacement currents (left-hand column) and the quasi-static case (right-hand column) for the model shown in Fig. 4. Normalized current densities,
which are close to 0 A V−1 m−1, are plotted in white. Different colourscales were used for the real and imaginary parts. In the general case with displacement
currents, the current system penetrates deeper into the subsurface than in the quasi-static case.

the profile in the imaginary part of the VMT (solid line in Fig. 5k). In addition to the lateral sign reversals, the real part of the VMT has a
maximum at y = 180 m [marked by label (1) in Fig. 5i] and a minimum at y = 620 m [marked by label (7) in Fig. 5i]. The responses at the
maximum and minimum are |
e(B)| = 0.05. Sign reversals to the sides of the conductive block can also be observed in the real part of the
quasi-static response at y = 150 m and y = 650 m (star symbols in Fig. 5i). However, the quasi-static response is comparatively small at sites
further away from the block (no larger than |
e(B)| = 0.006) and would most likely be masked by noise effects (a typical absolute error
is e.g. �
e(B) ≈ 0.01) if measured in the field. In the general case with displacement currents, the deduction of the horizontal centre of
conductive structures from the positions of zero transitions of the VMT B becomes intricate in more complex geological settings. Artefacts
might be introduced to inverse models in a quasi-static interpretation.

It is instructive to relate the lateral sign reversals of the VMT to the gradient of the TE-mode impedance Z xy by considering eqs (7) and
(21):

ẑHz = ∂ Ex

∂ y
= ∂

∂ y
(Zxy Hy).

For small deviations of H y from its normal field component H n
y , that is, the H y-component of the corresponding 1-D model without the

conductive block, this yields

Hz

Hy
≈ Hz

H n
y

= 1

ẑ

∂ Zxy

∂ y
= − i

ωμ0

∂ Zxy

∂ y
, (26)

which corresponds to the following relationships for the real and imaginary parts of the VMT


e

(
Hz

Hy

)
∝ −i · i · �m

(
∂ Zxy

∂ y

)
= �m

(
∂ Zxy

∂ y

)
.

�m

(
Hz

Hy

)
∝ −
e

(
∂ Zxy

∂ y

)
.

In the synthetic example for f = 250 kHz, the variation of H y away from its approximate 1-D values at the beginning and end of the profile
is less than 22 per cent in the quasi-static case (not shown) and less than 12 per cent in the general case (not shown). The real and imaginary
parts of the VMT are in good agreement with the expected variation with the lateral derivative of the TE-mode impedance Z xy for the
quasi-static (Figs 6c and d) and general cases (Figs 6a and b). For the general case, the positions of the lateral sign reversals in the real
part of the VMT and the corresponding maxima in the imaginary part of the impedance are marked with the labels (2) and (6) in Figs 6(b)
and (a), respectively. The zero transitions of the VMT are somewhat shifted from their predicted positions, where impedance maxima are
less distinct. This disagreement is related to the fact that the assumption of small deviations of H y from its normal component is slightly
violated.
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Figure 8. A sketch of the real part of the current density j x in the subsurface with the emerging real part of the magnetic field H (panel a) and the real part
of the VMT response for the model shown in Fig. 4, at f = 250 kHz in the general case with displacement currents (panel b). At positions (1) and (7), the
magnetic field Hh due to currents in the resistive host is larger than the magnetic field Hb due to currents in the conductive block, leading to a maximum and a
minimum of the real part of the VMT at (1) and (7), respectively. In the vicinity of the conductive block, the magnetic field is dominated by Hb resulting in a
minimum and a maximum of the real part of the VMT at (3) and (5), respectively. At positions (2) and (6), the vertical components of Hh and Hb are equal in
magnitude but opposite in direction and, hence, the VMT B is zero. The lateral position of the sign reversal at (4) coincides with the centre of the conductive
block.

A more quantitative explanation for the lateral zero transitions can be arrived at by investigating eq. (5). As the curl operator treats the
real and imaginary parts of H separately,

∂
e(Hz)

∂ y
− ∂
e(Hy)

∂z
= 
e (ŷEx ) and

∂�m(Hz)

∂ y
− ∂�m(Hy)

∂z
= �m (ŷEx )

are directly related to the real and imaginary parts of the current density jx = ŷEx of the TE-mode. However, the current densities of the
quasi-static and general cases in the subsurface are not directly comparable. As the propagation of the electric field in the air is modelled
differently (i.e. through conduction currents in the quasi-static approximation with a conductivity σ air = 10−10 Sm−1 and through displacement
currents in the general case), there is a large difference in the scale lengths over which the electric field varies in the air (see Section 2.4). This
leads to different phases and amplitudes of the electric fields of the two cases at the air–Earth interface, even if equal amplitudes and phases
of the electric field are chosen as boundary conditions on the upper edge of the finite-difference mesh. In addition, different vertical node
spacings were chosen in the air half-space for the quasi-static and general cases, according to the considerations in Section 2.4. To circumvent
this problem, the electric field is scaled by its surface value at the left-hand edge of the mesh.

For the general case, the real and imaginary parts of the normalized current density at f = 250 kHz are shown in Figs 7(a) and (c),
respectively. Similarly, for the quasi-static case, the real and imaginary parts of the normalized current density at f = 250 kHz are shown
in Figs 7(b) and (d), respectively. The area of the highest normalized current density amplitude (up to 5.7 × 10−4 A V−1 m−1) coincides
with the conductive block. To the sides of the block at y < 340 m and y > 460 m, the normalized current density amplitude reaches 1.8 ×
10−4 A V−1 m−1, with only small lateral changes of the real and imaginary parts at the beginning and end of the profile.

An important simplification ensues for the real part of the VMT of the general case, as 
e(Hy) exceeds �m(Hy) by at least a factor
4.4 at all positions along the profile (not shown). Hence, the real part of the VMT can be approximated as 
e(B) ≈ 
e(Hz)/
e(Hy) and
is mostly determined by 
e( jx ) in Fig. 7(a). We illustrate the sign reversals in the real part of the VMT for the general case with a sketch
(Fig. 8a) that describes the real part of the current system in the subsurface and the emerging magnetic field. The real part of the magnetic
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Figure 9. Simple 2-D model with a buried elongated block of a resistivity of 1000 � m in a resistive layer of 10 000 � m and underlain by a half-space of
500 � m. The relative dielectric permittivity is assumed to be ε r = 5. Receiver positions are indicated by black triangles.

field due to currents in the resistive host is designated as Hh and the part due to currents in the conductive block is designated as Hb (Fig. 8a).
To facilitate a simpler comparison, the real part of the VMT for the general case (solid line in Fig. 5i) is plotted in Fig. 8(b). At the beginning
and end of the profile [i.e. to the left-hand side of position (1) and to the right-hand side of position (7) in Fig. 8], the lateral homogeneity
of the current system generates a magnetic field with a very small H z-component. At positions (1) and (7), that is, at y = 180 and 620 m,
the magnetic field Hh due to the resistive host is larger than the magnetic field Hb due to the conductive block, leading to a maximum
and a minimum of the real part of the VMT at (1) and (7), respectively. At positions (2) and (6) to the sides of the block, that is, at y =
260 and 540 m, the H z-components of Hh and Hb are equal in amplitude but point in opposite directions, leading to zero-transitions of the
real part of the VMT. The minimum, zero transition and maximum of the real VMT response at positions (3), (4) and (5), respectively, are
similar in both the quasi-static and general cases (see Fig. 5i). Though in magnitude smaller than the current system in the block, the lateral
current system is strong enough to generate a commensurable maximum and minimum of the real part of the VMT at y = 180 and 620 m,
respectively (Fig. 8b). Hence, the main effect of displacement currents on the real part of the VMT is to increase the response at the edges
of the conductor. As noted before, there are no such distinct maxima or minima associated with the lateral sign reversals in the quasi-static
VMT response at f = 250 kHz (star symbols in Fig. 5i). The reason is most likely that the vertical extent of the current systems and the
total current strengths to the sides of the block (Figs 7b and d) are smaller than in the general case with displacement currents (Figs 7a and
c), whereas the current within the conductive block has a comparable amplitude in both cases. It should also be noted that the imaginary
part of the VMT increases quite strongly in amplitude if displacement currents are included (Fig. 5k). An explanation with regard to the
imaginary part of the current density (shown in Fig. 7c) does not appear to be possible as the imaginary part of H z and the real part of H y are
involved.

3.2 Inverse modelling examples

Synthetic responses of a simple 2-D model (Fig. 9), with constant relative dielectric permittivity ε r = 5 and an elongated block with a
resistivity of 1000 � m that is buried in a resistive layer of 10 000 � m and underlain by a half-space of 500 � m, were computed for the TM-
and the TE-mode. The responses were computed at 20 receiver sites for 15 frequencies, ranging from 10 to 250 kHz giving a total of 600 data
points. Gaussian white noise, corresponding to 2.5 per cent of the modulus of the computed impedances, was added to the forward responses
of both polarizations.

After that, two inversions of the synthetic data set were performed with the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000).
During the first inversion, displacement currents were allowed for, whereas they were neglected during the second inversion. In both inversions,
the error floor was assumed to correspond to 2.5 per cent of the modulus of the impedances, and the starting model was a homogeneous
half-space of 10 000 � m.

After six iterations with the inversion that allows for displacement currents, a model was obtained (Fig. 10), which fits the data to a rms
misfit of 1.04. Additional iterations with REBOCC did not decrease the rms misfit further. The inverse model reproduces the edges of the
block and the resistivities of the block and layered half-space rather accurately. The transition from the lower edge of the conductor into the
resistive layer is, however, smeared out.
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Figure 10. 2-D REBOCC inversion result of synthetic data from the 2-D block model in Fig. 9. Displacement currents were allowed for during the inversion.
After six iterations, a rms misfit of 1.04 was reached. The inverse process has reconstructed the edges of the conductive block and the resistivities of the block
and layered half-space rather accurately. The lower edge of the conductor is smeared out due to the damping of the electromagnetic field in the block.
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Figure 11. 2-D REBOCC inversion result of synthetic data from the 2-D block model in Fig. 9. Displacement currents were not allowed for during the
inversion. After four iterations, the lowest rms misfit of 1.95 was reached. Artefactual structures in the form of a conductive near-surface layer, two resistors at
the sides of the conductive block, a distorted shape of the block and a too large depth to the top of the confining half-space are consequences of the omission
of displacement currents during the inversion.

Neglecting displacement currents results in convergence problems and an inverse model with many artefactual structures (Fig. 11). The
lowest rms misfit of 1.95 was obtained after four iterations. Clearly, an artefactual thin conductive layer is visible at the surface (a similar
conductive layer is also observed by Persson & Pedersen (2002) in 1-D inverse models, computed in the quasi-static approximation, for
synthetic data of a homogeneous half-space). The lateral extent of the conductive block and the top of the central parts of the block are grossly
in error. Two artefactual resistors with resistivities close to 100 000 � m appear to the left- and right-hand side of the block. The depth to the
top of the underlying conductive layer is shifted from 105 to 130 m. If the synthetic data were generated from a model without the underlying
conductive layer, the artefactual resistors would be observed, both to the sides of and below the conductive block (not shown).

A comparison of the relative errors, that is, the differences between the synthetic data and the forward responses scaled by the data
errors, generated by the two inverse schemes, is shown in Fig. 12. The relative errors from the inversion that accounts for displacement currents
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Figure 12. Relative errors obtained from the inversions of the synthetic data of the model shown in Fig. 9. The relative errors from inversions that account for
displacement currents and that neglect displacement currents are shown in the left- and right-hand columns, respectively. The relative errors of log10 ρa and φ

for the TM-mode are shown in panels (a)–(d), whereas the relative errors of log10 ρa and φ for the TE-mode are shown in panels (e)–(h). Systematic deviations
from the synthetic data are mostly observed at high frequencies and stations to the sides of the conductive block for the model from the inverse scheme that
does not allow for displacement currents (Fig. 11).
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Figure 13. Sensitivity matrix entries for the block model in Fig. 9 and the TE-mode apparent resistivity at f = 250 kHz and a receiver site at y = 90 m (to the
left-hand side of the conductive block). The receiver site is marked by a triangle. The edges of the conductive block and the interface between the upper layer
and the confining half-space are depicted as solid black lines. Sensitivity values, which are close to 0, are plotted in white. As expected, sensitivities are largest
at the left-hand upper edge of the conductive block and the sensitivity entries of the general case (panel a) encompass a larger volume with non-zero values
(observe the negative sensitivity values marked in green) than those calculated in the quasi-static approximation (panel b).

(left-hand column of Fig. 12) show relatively random deviations of the forward data from the synthetic data. In contrast to this, the relative
errors from the quasi-static inversion (right-hand column of Fig. 12) exhibit systematic deviations in the form of frequency ranges common to
groups of neighbouring stations, with relative errors that have absolute values significantly larger than one and the same sign. The systematic
deviations originate from the false assumption that displacement currents can be neglected during the inversion. As expected, the misfit is
most severe at high frequencies and receiver sites to the sides of the conductive block.

As an example, the row of the sensitivity matrix for the block model in Fig. 9 and the TE-mode apparent resistivity at f = 250 kHz and a
receiver site at y = 90 m (to the left-hand side of the conductive block) is shown in Fig. 13. Model parameters with sensitivities close to zero
(shown in white colours in Fig. 13) have little influence on the considered data item. As expected, sensitivities, which were computed for the
general case (Fig. 13a), encompass a larger volume with non-zero values than those computed in the quasi-static approximation (Fig. 13b).
Especially, the depth extend for the non-zero sensitivity values of the general case is larger. This larger depth range is equivalent to a larger
depth of investigation for the general case as already indicated in Section 2.4.

4 A F I E L D DATA E X A M P L E

Linde & Pedersen (2004) investigate highly resistive granitic bedrock on the small island Ävrö, Sweden, with tensor RMT, in the frequency
range of 14–226 kHz. RMT data were acquired on an east–west profile, with a total length of 960 m and a station spacing of 10 m. On Ävrö,
the typical soil thickness is between 0 and 1 m. The bedrock consists mostly of granite. In some locations, aplitic and pegmatitic dykes
are encountered (Gentzschein et al. 1987). Previous geophysical studies include borehole measurements by Gentzschein et al. (1987) and
a seismic reflection study on the same profile by Juhlin & Palm (1999). A normal-resistivity log and a fracture frequency log of borehole
KAV01, located in the central part of the profile, reveal an upper weathered layer, with a thickness of up to 30 m and a resistivity of about
600 � m, followed by almost intact and highly resistive bedrock down to a depth of 200 m and with a resistivity between 32 000 and 40 000 � m
(Gentzschein et al. 1987). Between 200 and 400 m depth, the resistivity slowly decreases to 10 000 � m. At greater depth, the bedrock is more
fractured and saline pore fluids decrease the electrical resistivity to a few thousand � m. Juhlin & Palm (1999) describe two major seismic
reflectors (see Fig. 14d) for the depth range down to 400 m. Reflector C is located beneath the western part of the profile, at a depth between
100 and 320 m and dips approximately 60◦ to the east. Reflector D is located beneath the central part of the profile at a depth between 150
and 200 m and dips approximately 20◦ to the west.

To mitigate the effects of displacement currents, Linde & Pedersen (2004) restrict the data set used in quasi-static 2-D inversions with
the REBOCC scheme (Siripunvaraporn & Egbert 2000) to frequencies up to 56 kHz. Linde & Pedersen (2004) perform inversions for the
TE-mode, TM-mode, TE- and TM-modes together and the determinant of the impedance tensor. By computing synthetic TE-mode, TM-mode
and determinant data for a 3-D model and comparing the corresponding 2-D inversions, Pedersen & Engels (2005) show that the inversion
of determinant data is less prone to introducing artefacts from 3-D structures off the profile to 2-D inverse models. Furthermore, the inverse
model of the determinant data, presented by Pedersen & Engels (2005) has a better data fit than their other models. For the inversion of the
RMT data from Ävrö, this leads us to concentrate on the inversion of determinant data, as the data at both ends of the profile show a high
degree of three-dimensionality (Linde & Pedersen 2004). At a few stations, the determinant data of the highest frequencies (160 and 226 kHz)
have very small negative phases, which can be indicative of displacement currents (Song et al. 2002). As the rather irregular behaviour of the
apparent resistivities at the same stations and frequencies hints at problems with measurement accuracy, we excluded such data points from
the inversion.

In the following, we examine the effect of displacement currents, by first considering the inversion of the restricted set of frequencies and
then for the full set of frequencies. For each data set, inversions were carried out in both the quasi-static approximation and with displacement
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(a) model QL for the low-frequency data set and the quasi-static case

(b) model DL for the low-frequency data set and the general case with displacement currents
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Figure 14. Models of the inversion of determinant data from Ävrö for (a) the low-frequency data set in the quasi-static approximation (model QL), (b) the
low-frequency data set allowing for displacement currents (model DL), (c) the full set of frequencies in the quasi-static approximation (model QF) and (d) the
full set of frequencies allowing for displacement currents (model DF). The lines marked by C and D indicate seismic reflectors from Juhlin & Palm (1999)
(their fig. 8). The resistivity values of borehole KAV01 are taken from the normal-resistivity log presented in Gentzschein et al. (1987). In contrast to models
QL and QF, models DL and DF have a more realistic range of resistivities if compared in terms of the range observed in the normal-resistivity log. Furthermore,
the resistivity–depth section of model DF at borehole KAV01 is in good agreement with the normal-resistivity log down to a depth of 230 m, and the positions
of the seismic reflectors are in good agreement with resistivity contrasts in model DF.

currents. We assumed the relative dielectric permittivity to be ε r = 6, which, for granite, is in the range between 5 and 8, given by Reynolds
(1997). Variation of the permittivity in this range leads to only small differences of the resistivity models for the Ävrö data (not shown).

Our quasi-static determinant model for the lowest frequencies up to 56 kHz (model QL) in Fig. 14(a) resembles the corresponding model
by Linde & Pedersen (2004) (their fig. 9d) strongly. We did not include the shallow sea (less than 10 m deep) to the east of Ävrö as a priori
information, as this turned out to be of negligible importance. The central unfractured granite reaches resistivities up to 500 000 � m. The
conductor at the western end of the profile is interpreted by Linde & Pedersen (2004) as a 150 m wide wet fracture zone, assumed to be related
to seismic reflector C of Juhlin & Palm (1999), although the positions of the conductor and reflector are not in very good agreement. The
subhorizontal seismic reflector D does not appear to be related to any structure in the resistivity model. The rms misfit of model QL is 1.56.

The inversion with displacement currents for the low-frequency data set gives a model (model DL in Fig. 14b) with a significantly
reduced range of resistivities from 300 to 100 000 � m. The conductors at 50 and 850 m along the profile appear at greater depth and the
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(c) model QF for the full set of frequencies and the quasi-static case

(d) model DF for the full set of frequencies and the general case with displacement currents
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Figure 14. (Continued.)

boundary between the central resistor and the western conductors is less steep than in the model QL (Fig. 14a). The rms misfit of model DL
is 2.03.

The quasi-static inversion for the full set of frequencies (model QF in Fig. 14c) leads to a transition into the top of the central resistor
that is sharper than in model QL (Fig. 14a). The resistivity of the central resistor is as high as 5 × 106 � m. The positions of the conductors
at profile metres 50 and 850 is very similar to the positions in model QL. The rms misfit of model QF is 3.16.

In comparison to the quasi-static inversions, the inversion with displacement currents for all frequencies gives a model [model DF in
Fig. 14(d) with an rms error of 2.60] that shows a less extreme range of resistivities, both at depth and close to the surface. The depth to the
conductors at both ends of the profile is about 50 m larger than in the quasi-static models QL and QF in Figs 14(a) and (c), respectively. The
model is also in better agreement with the positions of the seismic reflectors. The position of seismic reflector C conforms to an expected
boundary between an unfractured resistive granite body and water saturated fractured bedrock. Therefore, we would expect reflector C to
represent a boundary of rock units, with different grades of fracturing, rather than a 150 m wide fracture zone, as proposed by Linde &
Pedersen (2004). Similarly, reflector D appears to coincide with a subhorizontal boundary of rock units. Furthermore, the model in Fig. 14(d)
is in very good agreement with the resistivities of the normal-resistivity log of borehole KAV01 (Gentzschein et al. 1987), down to a depth
of 230 m. At greater depth, the model might be more influenced by the smoothness constraint imposed during the inversion than the data.
Compared with model DF, model DL (Fig. 14b) deviates from the normal-resistivity log at shallow depth down to 100 m and the positions of
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Figure 15. Models of the inversion of (a) TE-mode data (model TEDF) and (b) TM-mode data (model TMDF) from Ävrö for the full set of frequencies
allowing for displacement currents. The lines marked by C and D indicate seismic reflectors from Juhlin & Palm (1999). The resistivity values of borehole
KAV01 are taken from the normal-resistivity log presented in Gentzschein et al. (1987). The resistivities of the central resistor in model TEDF are as high as
300 000 � m. Compared with model DF (Fig. 14d), neither model TEDF nor model TMDF shows similarly good agreement with the positions of the seismic
reflectors C and D or the normal-resistivity log.

the seismic reflectors are not as representative as bounds of different rock units. Hence, it appears that the inclusion of high-frequency data is
of great importance during the modelling process.

As a verification that the 2-D inverse models of determinant data are less biased by 3-D structures off the profile, the inverse models of
TE-mode data (model TEDF) and TM-mode data (model TMDF) are shown in Figs 15(a) and (b), respectively. In both inversions, the full
set of frequencies was used and displacement currents were accounted for. The rms fits of 4.56 for the TE-mode model (reached after nine
iterations) and 3.67 for the TM-mode model (reached after five iterations) are both significantly higher than that of model DF. The worst
data fits of models TEDF and TMDF (not shown) are obtained at the western end of the profile, where strong 3-D effects in the VMT are
observed by Linde & Pedersen (2004). In model TEDF, resistivities of the central resistor are as high as 300 000 � m. Compared with model
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DF (Fig. 14d), neither model TEDF nor model TMDF shows similarly good agreement with the positions of the seismic reflectors C and D
of Juhlin & Palm (1999) or the normal-resistivity log by Gentzschein et al. (1987).

5 D I S C U S S I O N A N D C O N C LU S I O N S

We demonstrated the effect of displacement currents on 2-D TM-mode, TE-mode and VMT data, measured with the RMT method at
frequencies between 10 and 300 kHz. Forward modelling of subsurfaces with resistivities larger than 1000 � m confirms that responses
computed in the quasi-static approximation, that is, when displacement currents are neglected, become increasingly inaccurate, with rising
frequency. For a homogeneous half-space, both apparent resistivity and phase, computed with displacement currents, decrease from their
constant values in the quasi-static approximation, with increasing frequency. At high frequencies, the dielectric effect leads to the occurrence
of distinct sign reversals in the real part of the VMT, which are not observed in the quasi-static approximation and might lead to artefactual
2-D or 3-D structures in an interpretation, based on the quasi-static approximation.

The interpretation of high-frequency RMT data with an inverse scheme that operates in the quasi-static approximation will inevitably
lead to an inverse model with artefactual structures. As can be seen from the quasi-static interpretation of our synthetic data example in
Fig. 11, the resistivities found in this inverse model vary over a larger range than those of the true model (Fig. 9). Typical artefactual structures
include conductive near-surface layers, regions of excessively high resistivities next to conductors, as well as conductors that deviate strongly
from their true shapes and positions. As only the resistivity distribution is inverted in the scheme presented here, a value for the dielectric
permittivity must be chosen before the inversion. The relative dielectric permittivity of bedrock is typically in the range of 5 to 9 (e.g. Reynolds
1997, table 12.3), and a variation in this range does not lead to any important differences in the obtained resistivity models.

Typically, the primary EM field from remote radio transmitters has an angle of incidence that is close to grazing incidence at the
measurement site. The assumption of vertically incident plane waves in the modelling code is a limitation, which is of minor importance in
many practical situations. Often, a conductive surface layer consisting of, for instance, weathered bedrock or glacial till is present in the area
of interest and refracts the incident field towards the vertical due to its relatively low resistivity.

For the Ävrö field data, the inversion that allows for displacement currents and includes high-frequency data produces a model that is in
very good agreement with the results of other geophysical methods. The seismic reflectors C and D by Juhlin & Palm (1999) coincide with the
boundaries between structures of different conductivity (Fig. 14d). The resistivity depth section of the model at borehole KAV01 matches the
normal-resistivity log by Gentzschein et al. (1987) very well, down to a depth of 230 m below which the model might be strongly influenced
by the smoothness constraint applied during the inversion. The inverse models computed in the quasi-static approximation (Figs 14a and c)
contain artefactual structures, with unrealistically large resistivities, even if only the low-frequency data set is inverted (Fig. 14a).
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A P P E N D I X A : F I N I T E - D I F F E R E N C E A P P ROX I M AT I O N

The derivation of the finite-difference approximation (FDA) with the integration method following Hohmann (1987) and Aprea et al.
(1997) is particularly instructive. In a finite-difference mesh, a node (i , j) is a corner point of four finite-difference cells, with admittivities
ŷi−1/2, j−1/2, ŷi+1/2, j−1/2, ŷi−1/2, j+1/2, and ŷi+1/2, j+1/2 (Fig. A1). The cells have widths �yi−1/2 and �yi+1/2 and heights �z j−1/2 and �z j+1/2.
The rectangle A has the centres of the cells as its corner points (Fig. A1). It is assumed that the horizontal electric field component of the
TE-mode and the horizontal magnetic field component of the TM-mode at node (i , j) are Ei, j

x and Hi, j
x , respectively, and that the magnetic

permeability is equal to its vacuum value μ0. Nodes along the boundary of the finite-difference mesh are called boundary nodes. All other
nodes are called inner nodes. Finite-difference equations for the TM- and TE-mode are obtained by integrating eqs 14 and 13, respectively,
over the surface of A. This surface integral is then transformed to a contour integral around the perimeter ∂ A of the surface A with Gauss’
Theorem.

Hence, for the TE-mode,∫
A
(ẑ ŷEx ) dA =

∫
A
(∇ · ∇Ex ) dA =

∫
∂ A

(n · ∇Ex ) dl, (A1)

where n is an outward unit normal vector on the edges of A.
The part of A, for instance, which is entirely situated to the upper left-hand side of node (i , j), contributes to the surface integral in

eq. (A1) with∫ ul

A

(ẑ ŷEx ) dA ≈ ẑ ŷi−1/2, j−1/2 Ei, j
x

�yi−1/2

2

�z j−1/2

2
. (A2)

For the upper edge of the rectangle A, for instance, the integral around the perimeter ∂ A can be approximated as∫ u

∂ A

(n · ∇Ex ) dl ≈
[
− Ei, j

x − Ei, j−1
x

�z j−1/2

]
�yi+1/2 + �yi−1/2

2
, (A3)

where (�yi+1/2 + �yi−1/2)/2 is the length of the perimeter ∂ A on the upper edge of A and n, which equals (0, 0, −1) on the upper edge of
A, collects the vertical component of ∇E x , that is, (∇E x )z ≈ (Ei, j

x − Ei, j−1
x )/�z j−1/2, multiplied by −1.

In total, this leads to the following approximations (cf . Aprea et al. 1997):∫
A

(ẑ ŷEx ) dA ≈ 1

4
ẑ ŷint

i, j Ei, j
x + O

(
�3
)
, (A4)
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Figure A1. Finite-difference mesh around node (i, j). The four surrounding cells have admittivities ŷi−1/2, j−1/2, ŷi+1/2, j−1/2, ŷi−1/2, j+1/2 and ŷi+1/2, j+1/2.
The heights and widths of the surrounding cells are �z j−1/2 and �z j+1/2 and �yi−1/2 and �yi+1/2, respectively. The rectangle A has its corner points at the
centres of the cells.

∫
∂ A

(n · ∇Ex ) dl ≈ �yi+1/2 + �yi−1/2

2

[
Ei, j+1

x − Ei, j
x

�z j+1/2
− Ei, j

x − Ei, j−1
x

�z j−1/2

]

+ �z j+1/2 + �z j−1/2

2

[
Ei+1, j

x − Ei, j
x

�yi+1/2
− Ei, j

x − Ei−1, j
x

�yi−1/2

]
+ O

(
�2
)
, (A5)

where

ŷint
i, j = ŷi−1/2, j−1/2�yi−1/2�z j−1/2 + ŷi+1/2, j−1/2�yi+1/2�z j−1/2

+ ŷi−1/2, j+1/2�yi−1/2�z j+1/2 + ŷi+1/2, j+1/2�yi+1/2�z j+1/2, (A6)

ŷavg
i, j = 1

�yi−1/2�z j−1/2 + �yi+1/2�z j−1/2 + �yi−1/2�z j+1/2 + �yi+1/2�z j+1/2
ŷint

i, j (A7)

and O(�2) are terms of second or higher order in �yi±1/2 or �z j±1/2.
After rearranging, one obtains

0 = 2
�yi+1/2 + �yi−1/2

�z j+1/2
Ei, j+1

x + 2
�yi+1/2 + �yi−1/2

�z j−1/2
Ei, j−1

x

+ 2
�z j+1/2 + �z j−1/2

�yi+1/2
Ei+1, j

x + 2
�z j+1/2 + �z j−1/2

�yi−1/2
Ei−1, j

x

−
{

2
�yi+1/2 + �yi−1/2

�z j+1/2
+ 2

�yi+1/2 + �yi−1/2

�z j−1/2

+ 2
�z j+1/2 + �z j−1/2

�yi+1/2
+ 2

�z j+1/2 + �z j−1/2

�yi−1/2
+ ẑ ŷint

i, j

}
Ei, j

x . (A8)

Similarly, the FDA of the TM mode can be derived. Gauss’ Theorem gives∫
A

(ẑHx ) d A =
∫

A

(
∇ · 1

ŷ
∇ Hx

)
dA =

∫
∂ A

(
n · 1

ŷ
∇ Hx

)
dl (A9)

and the single terms can be approximated as∫
A

(ẑHx ) dA ≈ ẑH i, j
x

(�yi+1/2 + �yi−1/2)(�z j+1/2 + �z j−1/2)

4
+ O

(
�3
)
, (A10)
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∫
∂ A

(
n · 1

ŷ
∇ Hx

)
dl ≈ �yi+1/2 + �yi−1/2

2

⎡
⎣ 1

ŷd

i, j

H i, j+1
x − Hi, j

x

�z j+1/2
− 1

ŷu

i, j

H i, j
x − Hi, j−1

x

�z j−1/2

⎤
⎦

+ �z j+1/2 + �z j−1/2

2

⎡
⎣ 1

ŷr

i, j

H i+1, j
x − Hi, j

x

�yi+1/2
− 1

ŷl

i, j

H i, j
x − Hi−1, j

x

�yi−1/2

⎤
⎦

+ O(�2), (A11)

where the vertically and horizontally averaged inverse admittivities are given by

1

ŷd

i, j

=
1

ŷi+1/2, j+1/2
�yi+1/2 + 1

ŷi−1/2, j+1/2
�yi−1/2

�yi+1/2 + �yi−1/2
, (A12)

1

ŷu

i, j

=
1

ŷi+1/2, j−1/2
�yi+1/2 + 1

ŷi−1/2, j−1/2
�yi−1/2

�yi+1/2 + �yi−1/2
, (A13)

1

ŷr

i, j

=
1

ŷi+1/2, j+1/2
�z j+1/2 + 1

ŷi+1/2, j−1/2
�z j−1/2

�z j+1/2 + �z j−1/2
, (A14)

1

ŷl

i, j

=
1

ŷi−1/2, j+1/2
�z j+1/2 + 1

ŷi−1/2, j−1/2
�z j−1/2

�z j+1/2 + �z j−1/2
. (A15)

Again, rearranging gives

0 = 2
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�z j+1/2

1
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ŷl
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1
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1

ŷr
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1

ŷl

i, j

+ ẑ
(
�yi+1/2 + �yi−1/2

) (
�z j+1/2 + �z j−1/2

) }
Hi, j

x . (A16)

If considered at all inner mesh nodes (i , j), eqs (A8) and (A16) form systems of linear equations in the unknown horizontal electric and
magnetic field components of the TE-mode and the TM-mode, respectively. Assuming that there are Nza air cells, Nzb earth cells and a total
of Nz = Nza + Nzb cells in the vertical direction and N y cells in the horizontal direction, the horizontal field components Ex or Hx are to be
computed at (Nz − 1) · (N y − 1) inner mesh nodes. Boundary values have to be supplied at the edges of the mesh. Along the upper edge
of the air half-space, the incident plane wave is assumed to have unit amplitude and zero phase. At the lower edge of the earth half-space,
the electromagnetic (EM) field is assumed to have totally decayed, and along the lateral edges, the horizontal field components Ex or Hx

are assumed to be that of the corresponding 1-D admittivity section along the particular side. This results in a system of (Nz − 1) · (N y

− 1) linear equations Kx = s (one equation for each interior node), with the coefficient matrix K, the vector x of unknown horizontal field
components of the TE- or TM-mode and a vector s of boundary values. If a central node is located next to one or two boundary nodes, the
terms in eqs (A8) or (A16), which contain the electric or magnetic boundary field components, are placed in the corresponding row of the
right-hand side vector s. If the nodes are arranged such that the vertical index j varies fastest, the finite-difference eq. (A8) or (A16) of central
node (i,j) is contained in row number (i − 2)(Nz − 1) + ( j − 1) of Kx = s.

The auxiliary field components (H y , Hz) of the TE-mode are derived as partial derivatives of Ex at the air-Earth interface (nodes at j =
Nza + 1), by expanding Ex in a Taylor series of second order, around the considered node (i,j) and substituting eq. (13) for the second-order
term as proposed by Weaver et al. (1986). Vertical expansion, both upwards and downwards from the considered node yields a central
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difference formula for the horizontal magnetic field component H y as

−ẑH i, j
y =

(
∂ Ex

∂z

)
i, j

= �z j+1/2�z j−1/2

�z j+1/2 + �z j−1/2

{
Ei, j+1

x

�z2
j+1/2

− Ei, j−1
x

�z2
j−1/2

−
[

1

�z2
j+1/2

− 1

�z2
j−1/2

+ 1

2
ẑ
(
ŷd

i, j − ŷu
i, j

)]
Ei, j

x

}
, (A17)

where

ŷd
i, j = ŷi+1/2, j+1/2�yi+1/2 + ŷi−1/2, j+1/2�yi−1/2

�yi+1/2 + �yi−1/2
, (A18)

ŷu
i, j = ŷi+1/2, j−1/2�yi+1/2 + ŷi−1/2, j−1/2�yi−1/2

�yi+1/2 + �yi−1/2
. (A19)

Similarly, horizontal expansion both to the left- and right-hand side of the considered node yields a central difference formula for the vertical
magnetic field component H z of the form

ẑH i, j
z =

(
∂ Ex

∂y

)
i, j

= �yi+1/2�yi−1/2

�yi+1/2 + �yi−1/2

{
Ei+1, j

x

�y2
i+1/2

− Ei−1, j
x

�y2
i−1/2

−
[

1

�y2
i+1/2

− 1

�y2
i−1/2

+ 1

2
ẑ
(
ŷr

i, j − ŷl
i, j

)]
Ei, j

x

}
(A20)

where

ŷr
i, j = ŷi+1/2, j+1/2�z j+1/2 + ŷi+1/2, j−1/2�z j−1/2

�z j+1/2 + �z j−1/2
(A21)

ŷl
i, j = ŷi−1/2, j+1/2�z j+1/2 + ŷi−1/2, j−1/2�z j−1/2

�z j+1/2 + �z j−1/2
. (A22)

A corresponding derivation of the auxiliary electric field components (Ey , Ez) of the TM-mode follows Weaver et al. (1985). The horizontal
electric field component Ey is computed by expanding Hx in a Taylor series, both upwards and downwards from the considered node (i, j).
Hence,

j i, j
y =

(
∂ Hx

∂z

)
i, j

= Ni, j

�z j+1/2 + �z j−1/2
, (A23)

where

Ni, j = �z j−1/2

�z j+1/2
Hi, j+1

x − �z j+1/2

�z j−1/2
Hi, j−1

x − Oi, j

2

(
H i+1, j

x

�yi+1/2
− H i−1, j

x

�yi−1/2

)

+
[

�z j+1/2

�z j−1/2
− �z j−1/2

�z j+1/2
+ 1

2

�yi−1/2 − �yi+1/2

�yi−1/2�yi+1/2
Oi, j

+ẑ
�z j−1/2�z j+1/2

2

(
ŷu

i, j
− ŷd

i, j

)]
Hi, j

x ,

Oi, j = − �z j−1/2�z j+1/2

�yi−1/2 + �yi+1/2

[
ŷd

i, j

(
1

ŷi+1/2, j+1/2
− 1

ŷi−1/2, j+1/2

)

−ŷu

i, j

(
1

ŷi+1/2, j−1/2
− 1

ŷi−1/2, j−1/2

)]
.

After obtaining j i, j
y from the above equations, the two one-sided values Ei−, j

y and Ei+, j
y of the electric field component Ey can be computed.

In contrast to eq. (24) in Weaver et al. (1985), the current density j i, j
y must be divided by the left- and right-hand sided vertically averaged

admittivities (eqs A22 and A21, respectively) to obtain Ei−, j
y and Ei+, j

y , respectively, that is,

ŷl
i, j Ei−, j

y = ŷr
i, j Ei+, j

y = j i, j
y . (A24)

The use of averaged admittivities is motivated by considering the integrated current Iy = ∫∫
x−z−plane jy dxdz through any surface y = const.

To assign a unique value to Ei, j
y , the current density j i, j

y is typically divided by the average admittivity ŷavg
i, j given in eq. (A7), that is,

ŷavg
i, j Ei, j

y = j i, j
y . (A25)
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A P P E N D I X B : S O LU T I O N M E T H O D S F O R L I N E A R S Y S T E M S

As shown in Appendix A, the FDAs of Helmholtz eqs (13) and (14) result in system matrices that are sparse, complex and symmetric
with two subdiagonals and two super-diagonals. For the solution of the FDAs, both direct and iterative solvers are desirable. The solution
with a direct method is rewarding, as soon as the same system matrix is used for the solution with multiple right-hand side vectors (Rodi
1976; Siripunvaraporn & Egbert 2000), for example, for multiple pseudo-forward problems arising in the computation of the sensitivity
matrix (see Appendix C). As the system matrix is non-Hermitian and, hence, not positive-definite, the LU-decomposition rather than the
Cholesky-decomposition has to be used as a direct method (Golub & van Loan 1996). If the system of linear equations is to be solved for a
single right-hand side vector, an iterative solver can provide significant computational savings over a direct method. The iterative bi-conjugate
gradient method (BiCG), which is used by Siripunvaraporn & Egbert (2000) for quasi-static problems, breaks down if applied to the general
forward problem with displacement currents. Freund (1992) gives two possible reasons for the breakdown. As the proper inner product for the
base vectors of a Krylov subspace constructed during the Lanczos process of complex-symmetric matrices is (x, y) = xT y, quasi-null vectors
(ṽ j , ṽ j ) = ṽT

j ṽ j = 0 may occur and cause a division by zero, during the normalization of the new base vector v j = ṽ j/(ṽ j , ṽ j ). In computer
arithmetic, the tridiagonal matrix, constructed during the Lanczos-process, might be nearly singular and the solution update, constructed from
the Petrov-Galerkin conditions, might give a bad approximation to the true solution, leading to erratic convergence behaviour with wildly
varying residual norms. It should be possible to circumvent these problems by using the quasi-minimal residual method (QMR) as proposed
by Freund (1992), where the problem of quasi-null vectors is amended with look-ahead techniques and the Petrov–Galerkin conditions are
replaced by a quasi-minimal residual property. We have not yet succeed, however, in implementing the QMR solver for the general forward
problem with displacement currents. Therefore, we use the direct LU-method as the sole solver at present.

A P P E N D I X C : C O M P U TAT I O N O F T H E S E N S I T I V I T Y M AT R I X

An efficient scheme for the computation of sensitivity matrices was proposed by Rodi (1976) and Rodi & Mackie (2001). The kth impedance
or VMT datum for a given model m is expressed in terms of the horizontal electric or magnetic field component of the TE- or TM-mode,
respectively, as

Zk (m) = ak (m)T x (m)

bk (m)T x (m)
, (C1)

where

x (m) =
⎧⎨
⎩

Hx at inner mesh nodes for TM-mode impedance

Ex at inner mesh nodes for TE-mode impedance or VMT
(C2)

and ak(m) and bk(m) are coefficient vectors from the central difference computation of the auxiliary fields in the TM-mode impedance,
TE-mode impedance and VMT.

The entry of the sensitivity matrix for the kth impedance or VMT datum with respect to (w.r.t.) the lth model parameter is then computed
as

J kl (m) = ∂ Z k (m)

∂ml

= 1

bT
k x

∂
(
aT

k x
)

∂ml
− aT

k x(
bT

k x
)2

∂
(
bT

k x
)

∂ml

=
(

1

bT
k x

∂ak

∂ml
− aT

k x(
bT

k x
)2

∂bk

∂ml

)T

x +
(

1

bT
k x

ak − aT
k x(

bT
k x
)2

bk

)T
∂x

∂ml
. (C3)

The definitions

ck = 1

bT
k x

ak − aT
k x(

bT
k x
)2

bk, (C4)

dkl =
(

1

bT
k x

∂ak

∂ml
− aT

k x(
bT

k x
)2

∂bk

∂ml

)
(C5)

and the relation from the forward problem,

K
∂x

∂ml
= − ∂K

∂ml
x + ∂s

∂ml
, (C6)

give

J kl (m) = dT
klx + cT

k K−1

(
− ∂K

∂ml
x + ∂s

∂ml

)

= dT
klx + uT

k

(
− ∂K

∂ml
x + ∂s

∂ml

)
, (C7)
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where the computation of uk as a solution of the pseudo-forward problem KT uk =ck exploits the reciprocity of the forward problem (i.e. the
symmetry of the forward system matrix K and its inverse). The computation of uk for k = 1, . . . , N is significantly faster than the computation
of K−1(− ∂K

∂ml x + ∂s
∂ml ) for l = 1, . . ., M in the case of typical 2-D problems, where the number of model parameters exceeds the number of

data, that is, where M > N .
A model parameter ml = ρ i+1/2, j+1/2 is connected to the cell to the lower right-hand side of a node (i, j) through l = j − Nza + (i − 1)

∗Nzb. Similarly, each data index k is connected to a single surface node (is , js = Nza + 1) for a given frequency, where is and js indicate the
node at which a certain receiver station is located.

C1 TM-mode

The computation of the sensitivities for the TM-mode turns out to be intriguingly complicated, as the derivatives of inverse admittivities w.r.t.
resistivities are involved.

In the TM-mode, Ey is expressed through ak and Hx according to eqs (A23) and (A25) and bk is zero except for the kth entry, which is
1. Hence,

aT
k x = Ek

y ,

bT
k x = H k

x

and

ck = 1

H k
x

ak − Zk
yx

H k
x

⎛
⎝0, . . . , 0, 1︸︷︷︸

kth entry

, 0, . . . , 0

⎞
⎠ , (C8)

dkl = 1

H k
x

∂ak

∂ml
. (C9)

The computation of dkl is simplified as bk does not depend on any model parameter. Furthermore, as ak is computed with a five-point-stencil
FDA, each ak depends only on the admittivities of the four cells surrounding a node (is , js), with a receiver, and sensitivities are only computed
for the resistivities of two such cells, that is, those immediately below the surface. Consequently, the indices of the involved model parameters
are is − 1/2, js + 1/2 and is + 1/2, js + 1/2, respectively. For brevity, the notation i = is and j = js is used. Eqs (A23) and (A25) yield

∂aT
k

∂ρi±1/2, j+1/2
x = jk

y∂ ŷavg±
i, j

+ 1

ŷavg
i, j

1

2

�z j−1/2�z j+1/2

�z j+1/2 + �z j−1/2⎧⎨
⎩−ẑ

∂ ŷd

i, j

∂ρi±1/2, j+1/2
Hi, j

x + 1

�yi−1/2 + �yi+1/2
·

∂

∂ρi±1/2, j+1/2

[
ŷd

i, j

(
1

ŷi+1/2, j+1/2
− 1

ŷi−1/2, j+1/2

)]
(

H i+1, j
x

�yi+1/2
+ �yi+1/2 − �yi−1/2

�yi−1/2�yi+1/2
Hi, j

x − H i−1, j
x

�yi−1/2

)}

= jk
y∂ ŷavg±

i, j
+ 1

ŷavg
i, j

1

2

�z j−1/2�z j+1/2

�z j+1/2 + �z j−1/2[(
−ẑ∂ ŷd±

i, j
+ �yi+1/2 − �yi−1/2

�yi+1/2�yi−1/2
P±

i, j

)
H i, j

x

+ 1

�yi+1/2
P±

i, j H i+1, j
x − 1

�yi−1/2
P±

i, j H i−1, j
x

]
, (C10)

where the definitions

∂ ŷavg±
i, j

= ∂

∂ρi±1/2, j+1/2

(
1

ŷavg
i, j

)

= �yi+1/2 + �yi−1/2(
ŷr

i, j�yi+1/2 + ŷl
i, j�yi−1/2

)2
�yi±1/2

�z j+1/2

�z j+1/2 + �z j−1/2
σ 2

i±1/2, j+1/2

= 1

ŷavg
i, j

1

ŷr
i, j�yi+1/2 + ŷl

i, j�yi−1/2
�yi±1/2

�z j+1/2

�z j+1/2 + �z j−1/2
σ 2

i±1/2, j+1/2,
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∂ ŷd±
i, j

=
∂ ŷd

i, j

∂ρi±1/2, j+1/2

= − �yi+1/2 + �yi−1/2(
1

ŷi+1/2, j+1/2
�yi+1/2 + 1

ŷi−1/2, j+1/2
�yi−1/2

)2
�yi±1/2

σ 2
i±1/2, j+1/2

ŷ2
i±1/2, j+1/2

= −
ŷd

i, j

1

ŷi+1/2, j+1/2
�yi+1/2 + 1

ŷi−1/2, j+1/2
�yi−1/2

�yi±1/2

σ 2
i±1/2, j+1/2

ŷ2
i±1/2, j+1/2

,

P±
i, j = 1

�yi+1/2 + �yi−1/2

∂

∂ρi±1/2, j+1/2

[
ŷd

i, j

(
1

ŷi+1/2, j+1/2
− 1

ŷi−1/2, j+1/2

)]

= 1

�yi+1/2 + �yi−1/2

[
∂ ŷd±

i, j

(
1

ŷi+1/2, j+1/2
− 1

ŷi−1/2, j+1/2

)
± ŷd

i, j

σ 2
i±1/2, j+1/2

ŷ2
i±1/2, j+1/2

]

were used. The quantity ŷavg
i, j is given according to eq. (A7).

The derivative of the system matrix of the forward problem K w.r.t. a single model parameter ml in eq. (C7) results in a matrix ∂K/∂ml

that has only four rows with non-zero entries. The parameter ml = ρ i+1/2, j+1/2 enters into the rows of K that correspond to the central nodes
(i, j), (i , j + 1), (i + 1, j) and (i + 1, j + 1) (cf. Fig. A1), that is, into rows number

iul = (i − 2)(Nz − 1) + ( j − 1) (C11)

idl = (i − 2)(Nz − 1) + j (C12)

iur = (i − 1)(Nz − 1) + ( j − 1) (C13)

idr = (i − 1)(Nz − 1) + j. (C14)

The computation of ∂K/∂ml is further simplified by the symmetry of K. For a central node (i, j) the coefficient of the EM field component
at its right-hand side node is the same as the coefficient of the EM field component at the left-hand side node of its neighbouring central
node (i + 1, j). Similarly, for a central node (i, j) the coefficient of the EM field component at its lower node is the same as the coefficient of
the EM field component at the upper node of its neighbouring central node (i , j + 1). Furthermore, as the left- and right-hand coefficients
contain vertically averaged inverse admittivities and the lower and upper coefficients contain horizontally averaged inverse admittivities, the
derivative of the coefficient of the right-hand node of the central node (i, j) w.r.t. ρ i+1/2, j+1/2 equals the derivative of the coefficient of the
right-hand node of its neighbouring central node (i , j + 1) w.r.t. ρ i+1/2, j+1/2. Similar rules are valid for the coefficients of left-hand, upper
and lower nodes at correspondingly neighbouring nodes. Hence,

∂K(iul, iul + (Nz − 1))

∂ρi+1/2, j+1/2
= ∂K(idl, idl + (Nz − 1))

∂ρi+1/2, j+1/2
= ∂K(iur, iur − (Nz − 1))

∂ρi+1/2, j+1/2

= ∂K(idr, idr − (Nz − 1))

∂ρi+1/2, j+1/2
= 2

�z j+1/2

�yi+1/2

σ 2
i+1/2, j+1/2

ŷ2
i+1/2, j+1/2

, (C15)

∂K(iul, iul + 1)

∂ρi+1/2, j+1/2
= ∂K(iur, iur + 1)

∂ρi+1/2, j+1/2
= ∂K(idl, idl − 1)

∂ρi+1/2, j+1/2

= ∂K(idr, idr − 1)

∂ρi+1/2, j+1/2
= 2

�yi+1/2

�z j+1/2

σ 2
i+1/2, j+1/2

ŷ2
i+1/2, j+1/2

, (C16)

∂K(iul, iul)

∂ρi+1/2, j+1/2
= ∂K(iur, iur )

∂ρi+1/2, j+1/2
= ∂K(idl, idl)

∂ρi+1/2, j+1/2

= ∂K(idr, idr )

∂ρi+1/2, j+1/2

= −2
�z j+1/2

�yi+1/2

σ 2
i+1/2, j+1/2

ŷ2
i+1/2, j+1/2

− 2
�yi+1/2

�z j+1/2

σ 2
i+1/2, j+1/2

ŷ2
i+1/2, j+1/2

. (C17)

C2 TE-mode

In the TE-mode, H y is expressed through bk and E x according to eq. (A17) and ak is zero except for the kth entry, which is 1. Hence,

aT
k x = Ek

x ,

bT
k x = H k

y
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and

ck = 1

H k
y

⎛
⎝0, . . . , 0, 1︸︷︷︸

kth entry

, 0, . . . , 0

⎞
⎠− Zk

xy

H k
y

bk, (C18)

dkl = − Zk
xy

H k
x

∂bk

∂ml
, (C19)

as ak does not depend on any model parameter.
The derivative in dT

kl x is computed from eq. (A17) as

∂bT
k

∂ρi±1/2, j+1/2
x = 1

2

�z j+1/2�z j−1/2

�z j+1/2 + �z j−1/2(
−σ 2

i±1/2, j+1/2�yi±1/2
1

�yi+1/2 + �yi−1/2

)
Ei, j

x . (C20)

As ml only enters into the coefficient of the central node in eq. (A8), the matrix ∂K/∂ml contains only four non-zero entries, which are all
on the diagonal. Hence,

∂K(iul, iul)

∂ρi+1/2, j+1/2
= ∂K(idl, idl)

∂ρi+1/2, j+1/2
= ∂K(iur, iur )

∂ρi+1/2, j+1/2
= ∂K(idr, idr )

∂ρi+1/2, j+1/2

= −ẑ
(−σ 2

i+1/2, j+1/2�z j+1/2�yi+1/2

)
. (C21)

C3 VMT mode

In the VMT mode, Hz is expressed through ak and Ex according to eq. (A20) and H y is expressed through bk and Ex according to eq. (A17).
Hence,

aT
k x = H k

z ,

bT
k x = H k

y

and

ck = 1

H k
y

ak − Bk

H k
y

bk, (C22)

dkl = 1

H k
y

∂ak

∂ml
− Bk

H k
y

∂bk

∂ml
. (C23)

The derivative in the first term of dT
kl x is computed from eq. (A20) as

∂aT
k

∂ρi±1/2, j+1/2
x = 1

2

�yi+1/2�yi−1/2

�yi+1/2 + �yi−1/2

(
±σ 2

i±1/2, j+1/2

�z j+1/2

�z j+1/2 + �z j−1/2

)
Ei, j

x . (C24)

The derivative in the second term of dT
kl x, that is, (∂bk/∂ml )T x, is already given by eq. (C20).

As the linear system of equations that is solved in the forward problem of the VMT is the one solved in the TE-mode, the entries of the
matrix ∂K/∂ml are given as in eq. (C21).
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