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Abstract

In this project, we create a new inversion scheme (WSMIX3DMT) based a mixed of the data
space conjugate gradient (WSDCG3DMT) and the data space Occam’s inversion
(WSINV3DMT) methods. WSMIX3DMT is mathematically a slight modification of
WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in
WSDCG3DMT. Instead of fixing the trade-off parameter, it is varied similar to WSINV3DMT.
However, the variation is according to the run-time, not based on the data misfit. This strategy
makes WSMIX3DMT faster than both WSDCG3DMT and WSINV3DMT, and at the same time
requires least memory. This makes WSMIX3DMT as the most efficient inversions.
Computational performances and comparisons of all three methods are demonstrated with both

synthetic and field datasets.
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2-D inversion (Siripunvaraporn and Egbert, 2000) laoldsunsy 2-D ﬁjﬁﬁ%a’j’l REBOCC §
ﬁﬂ%%’ﬂmﬂﬁ"’ﬂaﬂﬁﬁvlﬂlﬂummﬂamm%mmﬁagm‘%a (SCOPUS: 81989 97 @33 as of 24
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(Boonchaisuk et al., 2008) uazdaa Phase Tensor (Patro et al., 2010) tilueit
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Inversion : Overview
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JFUNIIN  (2) Dugunsls  model space ¥ Siripunvaraporn et al. (2005) and
Siripunvaraporn and Egbert (2000) waavl@lAninmsuidywile model space wuildaidufald
LIRWIUNIN LLa:SL"ﬁmemwﬁwgamns] Siripunvaraporn and Egbert (2000) and
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AInUTUAaULINABNTULAIFNNIA (2) 91N model space lWatjlu data space 4
° v A a ° v = & . ) o A
sansainlaasit laonsdon wuudiaed m WiduWsituaas sensitivity matrix @95 m - mg =

CmJT[S i B fia unknown expansion coefficient vector ﬁdlfuaumiﬁ (2) aznanedu
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1893710 F[m] #tdu non-linear problem @914k iterative solutions 3931T1% (Constable
et al., 1987) model response F[m] %dﬁi’uﬂuﬁadgﬂ linearized naulasls first order Taylor's

series expansion,
Fm 1] = F[m ] + Ji(m 1 —my), “4)

\ia k fa iteration number 141391 stationary points 2843 (3) i ldlasnns differentiate (3)

%

with respect to B 131 b8 lulLeaz iteration 93l solution G5
mir - My = Cudi" Ca* L1+ Ci " ICudi’ €' Cad,  (5)

YaduaIn1suiaNns (1) 1% data space nAa matrix NABIINANT invert RamawNes N x N
7 LY A A A A o @ A
i Ll M x M mlaulunsdives model space Wia N Aadwiutoyausz M Aaawiaves
LUUIRDY éﬁ%%‘uﬁagmﬂmauﬁﬂmlu Siripunvaraporn and Egbert (2000) and Siripunvaraporn
et al. (2005).
miudaunsn (5) sansntilaaesds Sousnldlu WSINVIDMT duitiaasgnilyled

11 WSDCG3DMT

WSINV3DMT : Data Space Occam’s Inversion

FPuInfeaid matrix J waz R = [A I + Cq” JCmdi' Cq”] wasthuiuassinanis bilu

wigeMus MNURAIFIS Cholesky decomposition lunisudaamsi (5) 33iduisalelu
WSINV3DMT (Siripunvaraporn et al., 2005; Siripunvaraporn and Egbert, 2009) i.az DASOCC

(Siripunvaraporn and Egbert, 2000)  35%3itfa9niioanuiniasanaanuiuesng J uas

& A 1 3 Y Y o v
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WSDCG3DMT : Data Space Conjugate Gradient Algorithm
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Abstract

In this paper, we start with the implementation and extension of the data space conjugate
gradient (DCG) method previously developed for the two-dimension (2-D) to the three-
dimension (3-D) Magnetotelluric (MT) data, and will be referred to as WSDCG3DMT. Synthetic
experiments show that WSDCG3DMT usually spends computational time longer than the data
space Occam’s inversion (WSINV3DMT). However, memory requirement of WSDCG3DMT is
only a fraction of WSINV3DMT. Knowledge and information gained from the synthetic studies
of WSDCG3DMT has led to a creation of a mixed scheme (WSMIX3DMT) of the data space
conjugate gradient and the data space Occam’s methods. WSMIX3DMT is a slight modification
of WSDCG3DMT but enhancing so that its computational time is several factors lower than both
WSINV3DMT and WSDCG3DMT. Because WSMIX3DMT is a modification of
WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in
WSDCG3DMT. This makes WSMIX3DMT as the most efficient inversions. Computational
performances and comparisons of all three methods are demonstrated with both synthetic and

EXTECH field datasets.



1. Introduction

Recently, number of three-dimensional (3-D) magnetotelluric (MT) surveys is substantially
increased worldwide (e.g., Tuncer et al., 2006; Patro and Egbert, 2008, among many others).
This might be due to the fact that MT has increasingly accepted by many geophysicists and
seismologists. Another factor is the improvements of the data acquisition units, the measurement
sensors and their accessories. Examples of MT uses are for geothermal explorations (e.g., Heise
et al., 2008; Arnason et al., 2010), volcanoes and tectonic studies (Uyeshima, 2007; Patro and
Egbert, 2008; Hill et al., 2009; Ingham et al., 2009) and ore explorations (Tuncer et al., 2006;
Queralt et al.,, 2007; Farquharson and Craven, 2008; Tiirkoglu et al., 2009; Goldax and
Kosteniuk, 2010). All of these have led to a higher demand for 3-D MT inversion codes for
interpretation.

Currently, a number of 3-D MT inversion algorithms have been developed (e.g. Mackie
& Madden 1993; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki 2001; Mackie,
personal communication 2002; Siripunvaraporn et al. 2004, 2005; Sasaki and Meju, 2006; Han et
al., 2008; Lin et al., 2008,2009; Farquharson and Craven, 2008; Adveed and Adveed, 2009;
Siripunvaraporn et al., 2009). All algorithms are designed to find “best” model that fits the data
but also “geologically” interpretable. One of the 3-D algorithms (and the only one currently
available to the MT communities) is the WSINV3DMT program by Siripunvaraporn et al. (2005;
2009). The algorithm’s idea was based on the Occam’s style inversion introduced for 1-D MT
data by Constable et al. (1987). Occam’s inversion is known for its robust calculation and its
efficiency. However, its disadvantage is the large memory requirements, and the extensive
computational time, particularly when applying to 2-D and 3-D modeling (Siripunvaraporn and
Egbert, 2000; Siripunvaraporn et al., 2005).

To reduce both storage and calculation time, Siripunvaraporn and Egbert (2000) and
Siripunvaraporn et al. (2004; 2005) transformed the original Occam’s inversion which is a model
space method into the data space Occam’s algorithm. The transformation makes it practical for
3-D MT inversion on most computers. However, WSINV3DMT still requires substantial
memory to store the N x M sensitivity matrix, where N and M are the data and model parameters,
respectively. Siripunvaraporn and Egbert (2007) used 2-D MT data to show that the large storage
can be avoid by using a data space conjugate gradient (DCG) approach.
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From the 2-D studies, Siripunvaraporn and Egbert (2007) concluded that the DCG
method can significantly reduce the memory usage. However, its computational time can be
longer than that of the data space Occam’s algorithm. Computational time of the DCG method is
controlled by the stopping criteria used inside the conjugate gradient (CG) algorithm when
solving the normal equation (Rx = b). The CG solver is terminated when the relative error (r =
IRx — b||/||b||) reaches a given tolerance 7. Smaller 7, (e.g., o < 10™%) requires many number
of CG iterations, while larger 7, (e.g., 7o = 10'1) requires significantly less but can cause the
inversion to fail to converge to the target misfit. Large number of CG iterations translates into
longer CPU time. Our 2-D studies also showed that 7,,; = 102 is the optimal tolerance value. The
model generated with 7, = 107 differs less than a percent from that generated with r,,; = 10
but requires significantly less CPU time.

In addition, convergence rate of the DCG inversion also depends on the regularization
parameter A, which acts as a trade-off between the data norm and the model norm. Larger A (A >
10) demands small number of CG iterations per inversion iteration. However, the inversion could
not bring the misfit down to the desired misfit because large A produces very smooth model.
Smaller A (0.1 <A < 10) can reach the desired level of misfit but normally requires large number
of CG iterations per inversion iteration. However, if A is too small (A < 0.1), DCG can break
down. If it converges, it requires significantly large number of CG iterations and also produces
“very rough and spurious” structures which is not geologically interpretable.

Here, we directly implement and extend the data space conjugate gradient (DCG)
algorithm for the 3-D MT data. Hereafter, we will refer to the 3-D DCG method as
WSDCG3DMT. Numerical experiments are performed on a synthetic data in a similar way as
conducted in the 2-D experiments (Siripunvaraporn and Egbert, 2007). The objective is to verify
whether the conclusions learned from the 2-D cases remain the same or different for the 3-D data.
Knowledge gained from the synthetic studies has led us to a creation of a mixed scheme of the
Occam’s inversion and the DCG method. We will refer to a mixed scheme as WSMIX3DMT.

We start the paper with a brief review of the data space conjugate gradient method
(WSDCG3DMT) and its necessary mathematics. More details on the data space Occam’s
inversion and the data space conjugate gradient method can be found in many previous

publications (Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005; Siripunvaraporn
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and Egbert, 2007; and Boonchaisuk et al., 2008). Later, a mixed scheme (WSMIX3DMT)
between the DCG method and the Occam method is introduced. Numerical experiments on both
synthetic data and EXTECH data are performed with these three algorithms (WSINV3DMT,
WSDCG3DMT and WSMIX3DMT). Comparisons in terms of computational time and memory

are analyzed and discussed. A conclusion is given at the end.

2. Review of Data Space Conjugate Gradient Inversion

Consider a general objective functional ® ™,
O" =0y + A0y, =(d-F[m])' Cq"' (d-F[m])+ A (m-mg)" Cp' (m-my), (1)

where @4 a data norm, @, a model norm, m the resistivity model of dimension M, my the prior
model, C,, the model covariance matrix, d the observed data with dimension N, F[m] the

forward model response, Cq4 the data covariance matrix, and A a regularization parameter.

To minimize (1) in a data space method, we start with the transformation of the model
space objective functional (1) to a data space objective functional (2) by expressing a model as a
linear combination of rows of the smoothed sensitivity matrix (Parker, 1994), or m - my =

Cmd"B. Then, (1) becomes
O'= (d-JCn'IB) Cg! (d-ICu'I'B) + A (BTICK"ITP), )

where J = 0F/Om is an N x M sensitivity matrix, and d = d — F[m] + J(m - my). To minimize (2),
F[my,,] is linearized with the first order Taylor series expansion, as F[my:;] = F[my] + Ji
(my+; - my), when i is an inversion iteration number. Differentiating (2) with respect to  and

rearranging, an iterative sequence of approximate solutions can be obtained as,
m - my = Cpdi" Co”* AT+ Cq "I Crdi" Ca 1" Co™dy, (3)
where I is an identity matrix.

There are two methods to solve (3). First method is to explicitly form J and R=[A I +
Ca” JCd .t Cd'l/z] and store them in the computer memory. R will be factorized into lower and

upper matrices (LU-factorization), and then solved with backward and forward substitutions.
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This method is used in WSINV3DMT program for 3-D MT data (Siripunvaraporn et al., 2005;
Siripunvaraporn and Egbert, 2009) and DASOCC for 2-D MT data (Siripunvaraporn and Egbert,
2000). This scheme requires substantial amount of RAM to store N x M J and also N x N R

matrices. This could prohibit a run on very large data sets, particularly for 3-D cases.

Instead of forming and decomposing R as in WSINV3DMT, an alternative method is to
solve (3) with an iterative solver. Because R is theoretically symmetric, (3) is commonly solved
with a conjugate gradient (CG) method as in many MT inversion algorithms (see Mackie and
Madden, 1993; Siripunvaraporn and Egbert, 2007; Lin et al., 2008). One clear advantage of
using CG to solve (3) is that the large N x M sensitivity matrix J is not explicitly formed and
stored in the computer memory. Only a product of J or J* with an arbitrary vector is required by
solving one forward problem per period (see Mackie and Madden, 1993; Newman and
Alumbaugh, 2000; Rodi and Mackie, 2001; Siripunvaraporn and Egbert, 2007; Lin et al., 2008).
Two routines to compute Jp and J'q are therefore implemented here for the 3-D problem, where
p and q are general M x [ and N x [ vectors, respectively. This method is used in

WSDCG3DMT.

The data space conjugate gradient algorithm and the routines to explicitly form J and to

compute Jp and J"q are briefly described in the following sub-sections.

2.1 Data Space Conjugate Gradient Algorithm (WSDCG3DMT)

The data space conjugate gradient algorithm denoted as WSDCG3DMT has two iterative loops.
The outer loop which is a main inversion loop is to minimize (2), while the inner loop is to
minimize Rx = b in (3) with a conjugate gradient (CG) method where R = [A T+ Cq*JCpd”
Cq”], b=Cq"d and x = Cq”B (see Barrett et al., 1994 for Preconditioned Conjugate Gradient
algorithm). The algorithm was summarized in Figure 2 of Siripunvaraporn and Egbert (2007),

and is repeatedly presented below with more explanations.



Reading inputs and initializing variables.
Start DCG “outer” loop to minimize (2) : iteration k&
1. Compute dy =d — F[my] + Ji(my — my)
2. Start DCG “inner” loop by using CG to solve Rgx=b
2.1 Initialization: Xy = 0; r@y= b, where r = ||[Rx — b||/||b]|.

; T : . .
for icg = 1,2,...,ncgmax or ||rr|| < ryn, where icg a CG iteration number, ncgmax a

maximum number of CG iterations, and 7, a stopping tolerance level.
2.2 Zjcg1)= Yicg-1)
23 icg-1= I'T(icg-l) Z(icg-1)
24 if (icg=1) P() = Zo)
else
Bicg-1)= Blicg-1)/ Qlicg-2)
Plicg) = Z(icg-1) T Blicg-1) Plicg-1)
endif
2.5 qice-1) = RiP(ice)
2.6 icg-1)= Nicg-1y/ PT(ng) Uice)
2.7 X(icg) = X(icg-1) T Xicg) Plicg)
2.8 Y(icg) = Y(icg-1) = Xicg-1) U(icg)
2.9 if (HrTr|| <1y ) or (icg > ncgmax), then stop CG iteration and go to 3, else go to 2.2.
end icg

3. Compute my:; - mg = Cpdy Cq*x



4. Compute F[my;] and RMS misfit ||Cd'l/’(d — F[my))||
5. Check condition;
5.1 exit if misfit below the desired level, go to 6;
5.2 continue if misfit is greater than the desired level, go to 1;

6. End DCG outer loop.

Step 1 requires calling one forward routine for F[my], and another call to compute Jx(my — my).
On step 2.1, system (3) is already normalized, therefore there is no preconditioner here. Step 2.5
is a “key” for the CG solver. It requires two forward modeling calls to compute s = Ji. Cd'%p(icg)
and JyCps. Step 3 demands one forward modeling call to compute J, Cq”’x. Step 4 requires
another forward modeling call to compute the model responses F[my;]. Overall, numbers of
forward modeling calls to compute the model response is two per outer loop iteration per period,
and to compute a multiplication of J or J* with a vector is 2 + 2N, per outer loop iteration per
period, where N, is a number of CG iterations. A total number of forward modeling calls would

therefore be 4 + 2N, per period per outer loop iteration.

2.2 Forward Modeling and Sensitivity Calculation

Given an electrical conductivity (c) or resistivity (p) model, to yield MT responses at the surface,

the electric fields (E) are computed from the second order Maxwell's equation,
VxVxE=iouck, 4)

where o is an angular frequency and x the magnetic permeability. Discretizing the model and

applying the staggered grid finite difference approach to (4), we obtain a system of equations for

a given period or frequency,

Se=bh, ()



where e represents the unknown internal electric fields, b a vector containing the terms
associated with the boundary electric fields, and S a large sparse symmetric and complex
coefficient matrix. System of equations (5) is solved with a quasi-minimum residual (QMR)
method per period and per polarization as in Siripunvaraporn et al. (2002). Surface responses can
then be obtained from a linear combination of a vector a associated at a measurement site and the

computed electric fields,
Flm]=a"e=a'S"b. (6)

To compute for the sensitivity J = 0F/0m at a given period, equation (6) is differentiated

with respect to the model m,
J=0F/0om=0(a'e) om=a'S'O + ¥, (7)

where © = 6b/dm - (8S/dm)e and ¥ = (da'/6m)e. The process to form J is straightforward by
first constructing ©, solving SO, multiplying the result with a" and finally adding with ¥. With
this technique, calculating S”'© would require solving the system of equations (5) M times per
period and per polarization (Rodi, 1976). This calculation can be very significant, particularly in

3-D cases.

To reduce number of forward callings, reciprocity property of the electromagnetic fields
(see Rodi, 1976; Mackie and Madden, 1993; Siripunvaraporn and Egbert, 2000) is applied to (7).
With the reciprocity, the process of computing J is modified by first solving (a'S™)", then
multiplying the result with ©" before finally adding with ¥'. Using the reciprocity technique,
computing (a'S™)" would require solving the system of equations (5) only Ny times per period
and per polarization (Rodi, 1976; Siripunvaraporn and Egbert, 2000), where N; is the number of
observed stations which is typically a lot smaller than M, particularly in 3-D cases. The
reciprocity theorem helps significantly decreasing the computational time of the program

(Siripunvaraporn and Egbert, 2000).

2.3 Multiplication of J or J" to any vectors

To compute the product of J with a given vector p, equation (7) becomes
8



Jp= a'S'ep+ ¥p. (8)

The process is started with a multiplication of ©p, then solving S”'©p, multiplying the result
with a', and finally adding them with the product of ¥p. Similarly, to compute the product of J*

with a given vector q, equation (7) also becomes
J'q= 0"[S"T'aq + ¥'q. 9)

The process here is also straightforward. It starts with a multiplication of aq, because S = S',
then solving S™'aq and multiplying them with ©", finally adding the result with ¥'q. Equation
(8) and (9) show that each process requires solving the system of equations (5) only one times
per period and per polarization. Storage for J matrix is not necessary for (8) and (9) but required

for (7).

2.4 Theoretical Comparisons for Forming J and Its Multiplications

Both forming J and its multiplications (Jp or J'q) require solving the same system of equations
(5), but with different right hand sides. As in section 2.2 and 2.3, forming J requires solving (5)
with a as the right hand side, while computing Jp and J'q have Op and aq, as their right hand
sides, respectively. All vectors (a, Op and aq) are sparse, but Op and aq involve more non-zero
terms than a. Consequently, solving (5) with Op and aq as the right hand sides will require
larger number of QMR iterations than with just a as the right hand side to converge to the same
accuracy level. Similar behavior was also occurred in 2-D cases. Because system of equations for
2-D cases is small, the difference is therefore not significant. However, for 3-D case, the

difference in CPU time is noticeable and will be shown in the numerical experiments.

2.5 Parallel Implementation

Similar to WSINV3DMT (Siripunvaraporn and Egbert, 2009), we also implement our 3-D DCG
code on a parallel system. Although memory is not an issue for the DCG method, its extensive
runtime is still a big concern due to its numerous calls to the forward modeling routine. As in
WSINV3DMT, we parallelize WSDCG3DMT over frequencies via MPI (Message Passing

Interface) libraries. For DCG, the parallelization is relatively simple, just distributing the forward



modeling call of each period to each processor node when computing the forward response F[m],
and calculating Jp and J'q. The simplicity occurs because there is no need to form and store the

cross-product R as in WSINV3DMT (Siripunvaraporn and Egbert, 2009).

3. Numerical Experiments on a Synthetic Data : WSDCG3DMT & WSINV3DMT

Here, before we introduce a mixed scheme of the data space conjugate gradient method and the
Occam’s inversion; we start with the repetitions of the same experiments we conducted with the
2-D MT data but now with the 3-D MT data. The goal of the experiments is to check whether the
same conclusions derived from the 2-D studies can be gained. In addition, we also compare the
results with WSINV3DMT in terms of computational time and memory.

Similar to Siripunvaraporn et al. (2005) and Siripunvaraporn and Egbert (2009), we use
the same synthetic model to generate a synthetic dataset for testing our codes. The synthetic
model consists of two anomalies, 1 Q-m and 100 Q-m buried next to each other inside a 10 Q-m
layer lying on top of a 100 Q-m half-space as illustrated in Figure 1 (Figure 4 in Siripunvaraporn
et al., 2005; Figure 3b in Siripunvaraporn and Egbert, 2009). The model mesh for the inversion
was discretized at 28 x 28 x 21 (+7 air layers) in x, y and z, respectively. The full complex
impedance data (Z, Z,, Z,x and Z,,; i.e. N,, = 4) is generated for 40 MT sites (N, = 40) located
regularly covering the two anomalies (solid dots in Figure 1) and 16 periods from 0.031 to 1000
second (N, = 16). Five percent Gaussian noise calculated from the data magnitude (|nyZyx|l/2) was
added to the impedance data. With this configuration, model parameter M would be equal to 28 X
28 x 21 = 16,464, while data parameter N would be equal to 40 x 16 x 8 = 5,120. In this
experiment, all runs can be performed on a serial machine; an Intel Core Two Duo 6400, 2.13
GHz machine with 2 GBytes of RAM. Bigger model mesh or dataset would prohibit a run on this
serial machine for WSINV3DMT.

Our first test is to perform the WSDCG3DMT program with various A (A = 100, 10, 1,
0.1, 0.01) and two r,, (10" and 10?) for the DCG inner loop or the CG loop. Convergence
behaviors of WSDCG3DMT for various A and different r,,; as a function of time are shown in
Figure 2 in comparison to WSINV3DMT. An inverted model after four iterations from

WSDCG3DMT (A = 1 and r,, = 107) is shown in Figure 3. The inversion can recover both
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anomalies and the underlying layer similar to the inverted result from WSINV3DMT (Figure 6
of Siripunvaraporn et al., 2005).

For larger A (10 and 100) with 7., = 102, DCG cannot converge to the desired level of 1
RMS. It can only lower the misfit down in the first two iterations before idling. Similar to the 2-
D tests, larger A requires smaller number of CG iterations to solve the normal equation (3) per
outer loop iteration. This is reflected in a small amount of computing time as shown in Figure 2
(cyan and blue colors). For smaller A (1 and 0.1) with 7, = 102, DCG is able to converge to the
desired 1 RMS in four iterations. However, in contrast to larger A, it demands significantly large
number of CG iterations to solve (3) per one outer loop iteration. This is shown by a large
amount of computational time in Figure 2 (red and green), particularly for the first iteration.

Reducing number of CG iterations per main iteration would help decreasing a computer
runtime. One way is to set 74, to a larger value. Here, at 10", In all A cases with Fiol = 10'1, DCG
has difficulty to converge to the target misfit of 1| RMS as seen in dash-lines of Figure 2. Larger
01 would only help reducing computing time but not the convergence. In contrast, setting r,,; to
smaller values (e.g., at 10 or less), number of inversion iterations to converge to the desired
misfit is the same as in the case of r;,; = 102, Inverted model is also less than a percent difference.
Major difference is at the number of CG iterations per main inversion iteration which is
significantly larger for smaller r,,;. These experiments show that r,,; = 107 is appeared to be an
optimal tolerance level for terminating the CG iterations in the DCG inner loop.

For A =0.01 or smaller, DCG fails to converge from the start. The sign of the divergence
can be observed or detected inside the CG solver after some number of CG iterations. This
becomes a very important and useful information. We can use it as a criterion to decide the
termination of the WSDCG3DMT code. Whenever a divergence inside the CG loop takes place,
program is stopped. The cause for the divergence behavior inside the CG loop is probably due to
the loss of the orthogonality of matrix R.

From all of these experiments, we can infer that both 2-D studies from Siripunvaraporn
and Egbert (2007) and 3-D studies here yield almost the same conclusions. Optimal convergence
occurs in the A ranges between 0.1 and less than 10, and also with 7,,; = 107,

Computational performance in term of memory and CPU time of WSDCG3DMT is then
compared with those from WSINV3DMT. Majority of the memory requirements for
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WSINV3DMT is to store J and R matrices which can be approximated from 8NM+8NN with
double precisions. This is about 1 GBytes in our test case. The code also requires less than 0.3
GBytes for storing S, 0S/Om, and other parts for miscellaneous computations. For
WSDCG3DMT, we do not store J and R in the memory. One GBytes of RAM is therefore not
needed as in the case of WSINV3DMT. WSDCG3DMT requires only about 0.4 GBytes to store
many different matrices and vectors. This is about the same as the memory used for the
miscellaneous computations in WSINV3DMT.

In term of computational time, WSINV3DMT converges to the desired misfit within
three iterations in about 300 minutes as shown in a black line of Figure 2, while WSDCG3DMT
with A = 1 and A = 0.1 uses about 400 and 1600 minutes, respectively. This again shows that
computational time of WSINV3DMT is less than that of converged WSDCG3DMT. Thus, in
term of computational performance, one can clearly see that WSDCG3DMT has advantage in
terms of memory. However, its computational time can be significantly greater than that of
WSINV3DMT. A trade-off between computational time and memory used would be a factor for
users to decide. This is also similar to the 2-D studies (Siripunvaraporn and Egbert, 2007).

In 2-D studies, we did not compare CPU time, but number of forward modeling calls of
each algorithm. Here, similar analysis are performed for the 3-D cases. WSINV3DMT requires a
fix number of callings at N,N;N,, + N,(N,+1) per inversion iteration to form the sensitivity and
compute the misfit, where N, is a number of A varied to search for the minimum misfit in each
iteration of the Occam’s inversion. In our experiments, for the first iteration, N; = 5, number of
forward modeling calls for WSINV3DMT is therefore at 2,656. For WSDCG3DMT, in each
iteration, number of forward modeling calls depends on a number of CG iterations (N,g) in the
DCG inner loop, and equal to 4N, + 2N,N,, per inversion iteration as we previously discussed. In
our experiments, for the case A = 1 and 7,y = 10'1, N, = 47 for the first iteration, number of
forward modeling calls is then at 1,568.

Although number of forward modeling calls of WSDCG3DMT is about 1,000 less than
WSINV3DMT, computational time is actually slightly longer for the first iteration of both
methods as shown in Figure 2. This indicates that for each forward modeling call,
WSDCG3DMT requires averagely longer runtime than that of WSINV3DMT. Because of more
complicated right hand sides in the system of equation (5) when computing Jp or J'q than
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forming J, as already stated in Section 2.4, it requires larger number of QMR iterations to
converge to the solution. This study shows that to test the efficiency of the inversion, just
counting number of forward modeling calls can be misleading (see Newman and Alumbaugh,
1997; Siripunvaraporn and Egbert, 2007).

Another interesting point for WSDCG3DMT is the reduction of the number of CG
iterations per outer loop iteration when misfit becomes lower. For example, in the case A = 1 and
Vol = 10'2, N, = 108, 48, 25 and 21, respectively, from the first to forth iteration of the main
inversion loop. This is reflected and shown with lesser CPU time for successive iterations in
Figure 2. The reduction of number of CG iterations occurs on every case in our examples. When
inverted solution gets closer to the “true” solution, normal equation (3) is probably lesser stiff

and therefore become easily to solve.

4. The mixed scheme of the DCG and Occam’s inversions (WSMIX3DMT)
Because DCG does not explicitly form and store the sensitivity matrix, DCG therefore requires
significantly less memory than the Occam’s inversion. However, the major drawback of the
DCG method is its computational time which could be longer than the Occam’s inversion. Here,
we propose a new scheme which is a mixed concept of both DCG and Occam and a modification
of the DCG method. Mathematics of the new scheme is in fact identical to the DCG method.
Thus, it maintains the memory advantage of the DCG method over the Occam’s style. However,
we intentionally design so that the new scheme spends computational time less than both DCG
and Occam. This would make the mixed scheme as the efficient inversion.

Assuming that the goal of the inversion is the same for both DCG and Occam that is to
bring the misfit down to the desired level. One distinct feature between both methods is at the A
value. In Occam’s inversion (Constable et al., 1987; Siripunvaraporn and Egbert, 2000;
Siripunvaraporn et al., 2005), in every iteration, A in equation (3) is varied in order to search for
the model producing the “least” RMS misfit (see Siripunvaraporn and Egbert, 2000;
Siripunvaraporn et al., 2005). With the Occam concept, A is posed as both the step length and the
regularization parameters. For the DCG method, A is pre-selected and fixed in every iteration as
shown in previous section in WSDCG3DMT. In DCG, A therefore acts like a regularization or

damping parameter.
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In our mixed scheme, the algorithm is based mainly on the DCG method. However, A is
not fixed but varied as both step length and regularization parameter similar to the idea of the
Occam’s inversion. The difference from the Occam’s method is we do not choose A that
minimize the RMS misfit, but we select A that can both lower the misfit down and at the same
time require small number of CG iterations per an outer loop iteration. The “optimal” A is
selected and varied based on our knowledge and experience gained from the studies in previous
section 3. It is therefore not exactly the same philosophy as in the Occam’s inversion, nor the
DCQG, but a mixed of both. This is why we refer to this method as a mixed DCG and Occam or in
short WSMIX3DMT.

Based on earlier 3-D studies in section 3 and 2-D studies in Siripunvaraporn and Egbert
(2007), /o for the inner CG loop is fixed at 107 as the optimal tolerance level for number of CG
iterations. For early iterations, larger A requires significantly smaller number of CG iterations
than smaller A and at the same time can lower the misfit down. We therefore choose to start our
mixed scheme with large Aini (e.g., Aini = 100 or larger). To further decrease the misfit down, A is
automatically reduced by a factor of € (e.g., € = 10) in the next iteration. This automatic
reduction is to avoid redundant computations as occurred when large A is fixed (Figure 2). A
reduction in A was used before in Kelbert et al. (2008) but only when the misfit is not decreased
in their non-linear conjugate gradient (NLCG) method. The automatic reduction in A is continued
successively for the next iterations until reaching Apin (€.2., Amin = 0.1). When A below Apip, it
will set back to Amin.

For example, Aini = 100, Amin = 0.1 and € = 10 is input in the first iteration. Values of A
for the 2nd, 3" and 4™ iterations would be 10, 1 and 0.1, respectively. If the inversion continues,
5" jteration and so on will have A = 0.1. In addition, we also add a scheme to detect the
divergence. Within Ny, CG iterations (e.g., Nz, = 15), if the divergence occurs, there is a high
possibility that the inversion will fail to converge. If that happens, A is automatically increased
by a factor of ¢ and re-start the process again. This “extra” step may cause redundant

computations but can help preventing the divergence inside the main inversion loop.
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4.1 Numerical Experiments of WSMIX3DMT and Comparisons with WSINV3DMT and
WSDCG3DMT

To check the efficiency of the WSMIX3DMT code, we apply it to the same synthetic data set
generated from model in Figure 1. Four values of Aiy; are used (Aini = 10000, 1000, 100 and 10)
with € = 10. Figure 4 shows convergence rates from the WSMIX3DMT program with various
initial Ainj, in comparisons to those of WSINV3DMT (black) and WSDCG3DMT with A = 1
(red). Figure 4 shows that all runs can converge to the desired level within 3-4 iterations. Most
importantly, all WSMIX3DMT runs spend computational time less than both WSINV3DMT and
fixed A WSDCG3DMT. Inverted models from all runs with 1 RMS are similar to the inverted
model plotted in Figure 3.

When Aiy; is too large (i.e. at 10000), redundant computation is occurred in the first
iteration. Although the first iteration with Aj,; = 10000 runs very quick, it does not greatly reduce
the misfit. When A is decreased to 1000 in the next iteration. The misfit in this case is almost the
same as starting the run with Aj,i = 1000. The first iteration of Ai,; = 10000 is therefore redundant
and unnecessary. Starting the mixed inversion with A, < 10 requires large computational time
due to large number of CG iterations used in the first iteration. In addition, A is decreased
quickly to 1 and 0.1 in the next few iterations and would demand large number of CG iterations.
In this case, we do not gain advantage of small number of CG iterations used from larger A. It
therefore become less effective as in WSDCG3DMT. Thus, we should avoid to start
WSMIX3DMT with smaller A or very large A.

From the experiments, the “optimal” A to start with would be around 100 to 1000 (Figure
4). Both cases spends computational time at about 100 minutes compared to 300 minutes of
WSINV3DMT and 400 minutes of WSDCG3DMT. In addition, WSMIX3DMT requires
memory the same as WSDCG3DMT, i.e. less than 0.4 Gbytes for this dataset, which is several
factors less than WSINV3DMT. WSMIX3DMT which is a combination of DCG and Occam is
the most efficient method compared to both WSINV3DMT and WSDCG3DMT.

Further studies show that &€ around 10 is the optimal value. If ¢ too small, redundant
computations can be occurred. If too large, WSMIX3DMT would not gain much advantage from

smaller number of CG iterations when large A used. This makes WSMIX3DMT less efficient.
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5. Applications of WSMIX3DMT, WSDCG3DMT and WSINV3DMT to EXTECH data
To show the efficiency of our mixed scheme WSMIX3DMT in comparisons to the
WSDCG3DMT and WSINV3DMT codes, we applied all three codes to the EXTECH dataset
(Tuncer et al., 2006) conducting around the McArthur River mine, Saskatchewan, Canada
(Figure 2 of Tuncer et al., 2006). The data consists of both impedance tensor (Z,., Z,,, Z,, and
Z,,) and the vertical magnetic field transfer function (VTF; 7., and T7,) for 131 stations and 16
periods (from 8000 Hz to 5 Hz). The data parameter N is therefore equal to 25,152. In all runs,
minimum error bars for VTF is set at 15% of (|T.{*+|T zy|2)l/2 and 5% of |nyZyx|l/2 for off-diagonal
and 50% for diagonal terms. A 1000 Q m half-space is used as an initial model and a prior model
(my) and is discretized at 56 x 56 x 33 (+7 air layers). The model parameter M is therefore at
103,488.

To show the efficiency of the parallel codes, all runs are performed on a cluster computer
which consists of 8 processor nodes with 8 GBytes in memory each. With 16 period data, two
periods are distributed to compute on each processor node. In terms of memory, WSINV3DMT
requires about 5 GBytes to store its two period sensitivities and the cross-product matrices. It
also requires about 1 GBytes additional to store other necessary components. In contrast to
WSINV3DMT, both WSDCG3DMT and WSMIX3DMT require less than 1 GBytes of RAM to
perform the inversion of this EXTECH dataset. The EXTECH dataset and the model mesh used
above are already at a maximum limitation of the cluster for WSINV3DMT. Because
WSDCG3DMT and WSMIX3DMT use significantly less memory, they can therefore be applied
on a bigger dataset and a bigger mesh on this cluster. However, here, same parameters are used
for comparisons.

Convergence behaviors of the three methods are plotted in Figure 5 as a function of time
in minutes. From Figure 5, WSINV3DMT requires about 870 minutes in 3 iterations to converge
to its minimum at 1.52 RMS. After the 3" iteration, the misfit is fluctuated above the minimum
RMS. WSDCG3DMT with A = 1 also requires 3 iterations to converge to 1.50 RMS but uses
longer CPU time at about 1040 minutes. After the 3" iteration, WSDCG3DMT increases its
RMS to 1.57 in the 4™ iteration and is terminated because of the divergence. With A < 0.5, the
WSDCG3DMT code diverges and fails after its first iteration.
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For our mixed scheme, WSMIX3DMT with A, = 100 can converge to 1.47 RMS
slightly below the level of both WSINV3DMT and WSDCG3DMT in 3 iterations. Most
importantly, the computational time is only about 450 minutes, about half of WSINV3DMT and
WSDCG3DMT. At the 4™ iteration when A is reduced to 0.1, the scheme detected the divergence
occurring inside the CG loop. The code is then re-started with a bigger A = 1 on the 4™ iteration.
The process of increasing A will cost some extra computational time. With the divergence
detection scheme, the code can continue to run for several iterations.

After continuing the run, WSMIX3DMT can further reduce the misfit below the level
that both WSINV3DMT and WSDCG3DMT can attain. At 5" iteration with A = 1, the misfit is
at the lowest RMS of 1.34. However, these 0.13 RMS difference from 3™ to 5™ iteration require
computational time almost 14 hours; about twice longer than the CPU time at the 3" iteration.
One can therefore stop at the 3™ iteration because the inverted models at the 3™ and 5™ iteration
are slightly different.

Convergence behavior from starting WSMIX3DMT with Aiy; = 1000 is redundant in early
iterations similar to starting with A, = 100, as shown in Figure 5. It therefore spends “extra”
CPU time longer. Overall, it can still converge below 1.5 RMS within 500 minutes faster than
both WSINV3DMT and WSDCGMT methods.

Inverted model from the 5™ iteration of WSMIX3DMT starting with Aj,j = 100 is shown
in Figure 6. It is similar to the inverted model from WSINV3DMT (Figure 11 of Siripunvaraporn
and Egbert, 2009). Major differences are at the two conductors. Here, conductor on the eastern
part of the profiles oriented in the NE-SW direction can be seen as shallow as 500 m depth.
Northern conductor seems to be continuous from 800 m to 1.3 km depth. The difference of the
two inverted models (Figure 6 here and Figure 11 of Siripunvaraporn and Egbert, 2009) and
detail interpretation is beyond our scopes in this paper. For detail discussion of the EXTECH
data set can be found in Tuncer et al. (2006) and Farquharson and Craven (2008).

6. Conclusions

In this paper, we implement and extend the data space conjugate gradient inversion for three-

dimensional Magnetotelluric data (WSDCG3DMT). Numerical experiments on 3-D synthetic

data show that WSDCG3DMT with some A can converge to the desired level of misfit but often
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spends longer computational time than the data space Occam’s inversion (WSINV3DMT).
However, because the whole sensitivity matrix is not explicitly formed and stored, its memory
requirements are therefore minimal at a fraction of WSINV3DMT. This makes WSDCG3DMT
practical for large to very large data set.

Based on the numerical experiments of WSDCG3DMT on synthetic data, number of CG
iterations depends greatly on the A values used. Larger A usually requires smaller number of CG
iterations per main inversion iteration but hardly converge to the “true” solution. Smaller A
requires larger number of CG iterations per main iteration but can converge to the desired level
of misfit. However, if A is too small, it can diverge. Computational time varies proportionally to
the number of CG iterations. Thus, to use less CPU time, number of CG iterations per outer loop
iteration must be minimized.

The information learned from the synthetic studies has inspired and led us to the creation
of the mixed scheme of the Occam’s and DCG methods or WSMIX3DMT. In DCG scheme, A is
fixed as a regularization parameter. In Occam’s inversion, A is varied as both step length and
regularization parameters. In our mixed scheme, A is varied but not in the same way as in the
Occam’s inversion. Instead of choosing A that generates a model with smallest misfit as in
Occam, we prefer A that minimizes number of CG iterations but at the same time can reduce the
misfit. With this strategy, A should initially start from large value before reducing to smaller
value for the next subsequent iterations. Our studies shows that A between 100 to 1000 are the
optimal A to start with for the WSMIX3DMT code.

By applying all three algorithms (WSMIX3DMT, WSDCG3DMT and WSINV3DMT)
on both synthetic and EXTECH field data, our mixed scheme (WSMIX3DMT) is significantly
faster than both WSDCG3DMT and WSINV3DMT. Similar to WSDCG3DMT, it requires
insignificant amount of memory. Because both computational time and memory performances

are at minimum, we can conclude here that WSMIX3DMT is the most efficient inversion.
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Figure 1. Two-block synthetic model used to test our inversions. The solid dots indicate the
observational sites. A cross-section view in the lower panel is a profile cutting across the middle
of the two anomalies in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005;

and Siripunvaraporn and Egbert, 2009).
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Figure 2. Convergence rates of WSINV3DMT (black) and WSDCG3DMT from various As and
11 to the synthetic dataset generated from a model in Figure 1. Dash line for r,,; = 107!, Solid line

for = 102, Each plus symbol indicates one iteration.
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Figure 3. An inverted model from WSDCG3DMT with A = 1. The synthetic data is generated
from the model in Figure 1. The top panels (a)—(c) is a plan view at the surface, at 3 km and at
7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the two anomalies

at X = 0 km. The solution is shown only in the central area around the anomalies, not for the full

model domain.
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Figure 4. Convergence rates from WSINV3DMT (black), WSDCG3DMT with A =1 (red) and
WSMIX3DMT with different initial Ay to the synthetic data generated from a model in Figure 1.

Each square or plus symbol indicates one iteration. A used in each iteration for WSMIX3DMT is

printed next to its square symbols.
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Figure 5. Convergence rates from WSINV3DMT (black), WSDCG3DMT with A = 1 (red) and

WSMIX3DMT with initial Ai, = 1000 (green) and A i, = 100 (blue) to the EXTECH field dataset.

Each square or plus symbol indicates one iteration. A used in each iteration for WSMIX3DMT is

printed next to its square symbols.
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Figure 6. The inverse solution at various depths from the 5" iteration of the WSMIX3DMT
method with initial Aj,; = 100. The EXTECH data used here consists of both vertical magnetic
transfer function and full impedance tensor at 131 sites and 16 periods. The cross-symbols

indicate the locations of the stations.
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Abstract

We use 2-D Magnetotelluric (MT) problems as a feasibility study to demonstrate that the 3-D
MT modeling can be solved with a direct solver, even on a standard single processor PC. The
scheme used is the hierarchical domain decomposition (HDD) method in which a global
computational domain is uniformly split into many smaller non-overlapping subdomains.
However, to make it more efficient, two modifications are made to the standard HDD method.
Instead of three levels as in the standard HDD method, we classify the unknowns into four
classes: the interiors, the horizontal and vertical interfaces and the intersections taking
advantages of the finite-difference approximation. Four sets of smaller systems of equations
are successively solved with a direct method (an LU factorization). The separation helps
overcoming the memory overburden of a direct solver while remain computationally
effective. To further enhance the speed of the code, a red-black ordering is applied to solve

the horizontal and vertical interface reduced systems.

Numerical experiments on 2-D MT problem running on a single processor machine
shows that CPU time and memory used are almost constant for any resistivity models,
frequencies and modes as long as the model size remain the same. This is a clear advantage
of our algorithm. Number of subdomains is a major factor controlling computational
efficiency. Here, we also introduce a “memory map”, a tool we can use to pre-select
“optimized” subdomains. Our 2-D experiments also shows that by splitting a domain with the
optimized subdomains, this modified scheme can outperform the standard FD method in both

CPU time and memory even running on a serial machine.



1. Introduction

To obtain magnetotelluric (MT) responses, the second order Maxwell’s equation in either
electric field or magnetic field is solved via three commonly used approaches: finite
difference (FD) method (e.g. Mackie et al., 1994; Smith, 1996; Siripunvaraporn et al., 2002;
Siripunvaraporn et al., 2005), finite element (FE) method (e.g. Wannamaker et al., 1987;
Zyserman et al., 1999; Zyserman and Santos, 2000; Mitsuhata and Uchida, 2004; ), and
integral equation (IE) technique (e.g. Wannamaker, 1991; Xiong, 1992; Avdeed and
Avdeeva, 2009 ). For complicated and geologically realistic two-dimensional (2D) and three-
dimensional (3D) model, FD or FE methods are generally more efficient and robust than IE
technique. In the past decades, FD method has gained more popularity due to its simplicity in

technique and also its accuracy in solution.

In many problems, when model domain becomes very large, particularly in 3-D problems,
solving the system of equations with the direct method is impractical in term of memory
requirement (see Ben-Hadj-Ali et al., 2008 for 3-D frequency-domain full-waveform
tomography; Streich, 2009 for 3-D MT;). The system is then alternatively solved with the
iterative solvers (e.g. Bi-Conjugate Gradient (BiCG) method in Smith, 1996 and Xiong,
1999; Quasi Minimum Residual (QMR) in Siripunvaraporn et al., 2002; Preconditioned
Conjugate Gradient (PCG) in Siripunvaraporn and Egbert, 2000; Minimum Residual Method
(MRM) in Mackie et al., 1994). In many practical MT cases, the electrical resistivity model
can be geologically complicated resulting in large conditioned number and therefore long
computational time (see Patro and Egbert, 2009). Occasionally, the iterative solvers may
become stagnant after many thousand of iterations and sometimes fail to converge. The
calculated solution will therefore not be accurate and could mislead an interpretation if

applied inside an inversion.

In high conditioned number case, being able to solve a problem with a direct solver is very
crucial, if applicable. With direct method, accuracy is guarantee. Computational time is also
controllable, because theoretically it is almost constant for any frequencies, modes or
polarizations and resistivity models as long as the model domain remains the same size. In

addition, the factorization used when solving the system can be re-used many times when
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computing the sensitivity or Jacobian matrix (see Siripunvaraporn and Egbert, 2000) inside
the inversion algorithm. In 3-D MT cases, the direct solver is still not practical with recent
computer technology (see Streich, 2009). However, here we use the 2-D study to demonstrate
that the 3-D problem can be efficiently solved with a direct solver even on a serial machine if

the modified hierarchical domain decomposition developed in this paper is applied to.

Instead of computing on a large domain, a global domain can be splitting into several smaller
local domains or subdomains. The solution on the global domain is then solved through the
smaller systems of each subdomain. This technique is generally known as the domain
decomposition (DD) technique. It is considered as a powerful tool in many large scale
engineering problems (e.g. Lu and Shen, 1997; Bitzarakis et al., 1997; Larsson, 1999; Yin et
al., 2002; Basermann et al., 2005; Lu et al., 2008; Wang et al., 2008; ) and also in various
multidimensional geophysical problems (e.g. Xiong, 1999; Zyserman et al., 1999; Zyserman
and Santos, 2000; Xie et al., 2000; Pain et al., 2002; Ben-Hadj-Ali et al., 2008; Sourbier et
al., 2008; Takei et al., 2010).

The domain decomposition method can be mainly classified into two categories: the
overlapping technique where some region of the subdomain overlapping with the others (e.g.
Xiong, 1999; Peng et al., 2009) and the non-overlapping method where neighboring
subdomains share the same sub-boundaries (e.g. Lu and Shen, 1997; Zyserman et al., 1999;
Zyserman and Santos, 2000; Lu et al.,, 2008; Wang et al., 2008 ). Comparison of the
overlapping and the non-overlapping methods is mentioned in Chan and Goovaerts (1992)
and Rice et al. (2000). Various schemes are used to solve the domain decomposition
problems, such as the Schwartz algorithms (see Cai et al., 1998), Schur complement approach
(see Smith et al., 1996; Saad, 2003; Zhang, 2005 ), the hierarchical domain decomposition
approach (Smith et al., 1996; Takei et al., 2010), balancing domain decomposition method
(Mandel, 1993), the interface relaxation methods (see Rice et al., 2000) among many other

techniques.



In electromagnetic induction of the Earth, there are only a few papers demonstrating the use
of domain decomposition method to solve MT forward problems. Zyserman et al. (1999) and
Zyserman and Santos (2000) applied non-overlapping domain decomposition technique to 2-
D and 3-D cases, respectively. In their techniques, sub-problems are iteratively solved via the
interfaces enforced by the equivalent Robin-type transmission conditions. The memory
requirement is significantly diminished due to no appearance of a large global matrix.
Computational time is also greatly reduced when solving in the parallel computation
(Zyserman and Santos, 2000). Although, the technique has proven to be numerically superior
in the parallel system, the technique may not be suitable for serial computation. Xiong (1999)
applied adaptive Schwartz overlapping domain decomposition technique for 3-D controlled
source electromagnetic forward problems. In his method, all subdomains share overlapping
regions. Each subdomain is independently solved and then updated from neighboring
subdomains until the solution converges. The memory is significantly reduced. However, its
total computational run time becomes larger than solving the whole system on single node
processor (Xiong, 1999). Both schemes (Xiong, 1999; Zyserman et al., 1999; and Zyserman
and Santos, 2000) show that efficiency in terms of computational time of the domain
decomposition method can only be gained if running on parallel system. They are inferior if

running on a serial machine.

In this paper, we investigated another method based on the hierarchical domain
decomposition (HDD). Similar to other domain decomposition methods, the global domain is
subdivided into many smaller subdomains. System of equations for each subdomain is
separately formed and linked to the other via the interfaces. The hierarchical domain
decomposition method can be directly applied to the MT problems both parallel and serial
computations. Application of HDD on a parallel system is straightforward. Similar to others,
calculation of each subdomain is performed separately on each processor node. A single
interface system is then distributed to all processors for calculation. Theoretically, efficiency
can be expected from applying the code to the parallel system. However, in practice, this
parallel scheme requires substantial amount of communication time to exchange data among
processors, particularly when solving the interface system. Efficiency is therefore platform-
dependent. In this paper, we only illustrate the parallel algorithm but prefer not to

demonstrate it numerically because our 2-D domain problem is “too” small for current



computer technology. The parallel algorithm will be later demonstrated on a bigger 3-D
problem as a future research. In addition, this parallelization is not our main challenge. Our
major challenge is the efficiency enhancement of HDD on a serial machine, not through a

multi-processor machine.

Similar to other domain decomposition methods for MT problems (Xiong, 1999; Zyserman et
al., 1999; and Zyserman and Santos, 2000), efficiency of HDD on a serial computation is
low. However, in this paper, two modifications are developed and applied to the hierarchical
domain decomposition method to increase its efficiency. First modification is the separation
of interfaces into vertical and horizontal interfaces. This is natural for the finite-difference
approximation scheme. Second modification is the application of red-black ordering to the re-
ordered interface systems. With the two modifications, we will show that the modified HDD
code for 2-D MT problems performs better than the conventional method even on a serial
machine. Because we use a direct solver to solve system of equations, this 2-D experiment is
also a feasibility study for future 3-D problems to demonstrate that the direct solver can be
used to solve 3-D system of equations even with a serial calculation. These are therefore our

main objectives for this paper.

Efficient modified HDD on a serial computation can also be applied to the parallel system.
However, instead of parallelizing over subdomains, we parallelize over frequency.
Calculation of MT responses of each frequency is performed serially on one processor. Thus,
all frequencies are solved simultaneously but separately on multi-processor machines. This is
used frequently in 3-D inversion algorithms (see Siripunvaraporn et al., 2004; 2005;
Siripunvaraporn and Egbert, 2009; Siripunvaraporn and Sarakorn, 2010). In addition, this
scheme does not require substantial amount of communication time between processors. It is

therefore perfectly fit with the PC cluster platform which can be easily and cheaply built.

In addition, a major decisive factor that controls the efficiency of the modified HDD method

is the number of subdomains. Selecting subdomains can be a trial and error processes. To



avoid wasting time to this process, here we introduce a “memory map” to help choosing
“optimized” subdomains that yields the “best” computational performance. Memory map is
pre-generated from several combinations of subdomains. Number of subdomains can be
selected from the region of low memory in the memory map. This strategy often guarantees a
faster CPU time than the standard method. The concept of memory map is new and first

introduced here.

In the following, we first review the standard FD approach to solve a global domain problem.
We then describes the basic idea of the hierarchical domain decomposition (HDD) and its
parallel implementation. Then we describe the two modifications which help speeding up the
HDD method on a serial calculation. Validations and numerical examples are given next
along with the discussion. Conclusion are given at the end. Hereafter, we will refer to the
standard finite difference for a global domain as FD2D, and to our modified hierarchical

domain decomposition as MHDD2D.

2. Magnetotelluric forward modeling : Finite difference approach

Given an electrical conductivity (o) or resistivity (p) model, to yield MT responses at the

surface, the electric fields (E) are computed from the second order Maxwell's equation,

VxVxE =ioucE, (1a)

for the transverse electric field (TE) mode, while the magnetic fields (H) are solved from,

VxpVxH=iouH, (1b)



for the transverse magnetic field (TM) mode, where @ is an angular frequency and u the
magnetic permeability. With finite difference approach, the conductivity or resistivity model
is first discretized into many rectangular grids. An example of non-uniform grid
discretization is shown in Figure 1. The unknown electric fields or magnetic fields are
defined on the nodes (black dots) inside the domain, while the fields on the boundaries (left,
right, top and bottom) are obtained from 1-D calculations. After applying finite difference to

(1a) or (1b) and rearranging equation, both modes yield similar system of equations,

AX

I
=2

2

where x represents the unknown internal electric or magnetic fields; b a vector containing the
term associated with the boundary fields; and A a coefficient matrix which is large sparse
five-banded symmetric and complex only on the diagonal (Siripunvaraporn and Egbert,
2000). Equation (2) for 2-D problem can be solved either directly or iteratively such as
preconditioned conjugate gradient (PCG) method (Siripunvaraporn and Egbert, 2000). One of
our aims is to demonstrate the use a direct solver for 3-D problem. An LU-factorization is

therefore applied here to solve all systems of equations from FD2D and MHDD2D.

After calculating the electric fields, the magnetic fields can be calculated from solving the
first order Maxwell's equation, the Faraday's law. MT responses are then computed from the

ratio of electric to magnetic fields at the surface.

3. Hierarchical Domain Decomposition method

An alternative method to solve (2) is via the domain decomposition method. There are many
different domain decomposition techniques. Here, we applied the hierarchical domain
decomposition (HDD) method which is a non-overlapping technique to our 2-D MT
problems. We start this section by describing the basic idea of the HDD method.



In every domain decomposition techniques, the model domain is split into several smaller
subdomains. For simplicity, example mesh in Figure 1 is redrawn as in Figure 2 with uniform
space, and is uniformly partitioned into 3 x 4 subdomains only as an illustration. The
unknown electric or magnetic fields located at the nodes can be classified into three
“hierarchical” types: (1) the interiors (e), (2) the interfaces (Mand A) and (3) the
intersections (X) from lowest to highest level, as shown in Figure 2. The intersections are
defined as the highest level because they separate the interfaces. Similarly, the interfaces
separate the interiors, so they are defined the next lower level.The interiors are therefore the
lowest. With this configuration, the intersections must be solved first. Once the intersections
are obtained, the interfaces can be successively calculated from the intersections. Similarly,
the interiors can be successively computed from the interfaces. This hierarchical
classification is slightly different from the “classic” Schur complement method (see Smith et
al., 1996; Saad, 2003; Zhang, 2005; ). In Schur complement method, the unknown fields are

classified only the interiors and the interfaces.

For 2-D MT problem, assuming that the model domain is equally divided into p x g (= r)
subdomains where p and g are number of subdomains in z- and y- directions, respectively,
and r is the total number of subdomains. These partitions will yield a total of / interiors (or //r
for each subdomain), total of m interfaces and » intersections. Specifically, an inner
subdomain i which has /; x [,; ( = I/r) interiors would have 2/,; + 2/,; interfaces, and 4
intersections, while outer or boundary subdomains would have less depending on their
locations. By using Figure 1 and Figure 2 as an example, the model in Figure 1 is discretized
into 12 x 20 grids, which is later decomposed into 3 % 4 (=12) subdomains. In this example,
there would be a total of 209 unknowns inside a global domain. When partitioning into 3 x 4
subdomains, an inner subdomain would then have 12 interiors, 14 interfaces and 4
intersections. The total numbers of interiors, interfaces and intersections are 144, 59 and 6,

respectively.

By organizing the unknowns into three levels, the system of equations (2) can be reordered

according to this configuration as follows,

F D 0)u f
D' G E|v|=|g], 3)
0 E' H)lw h



where F, G and H are / x / global interior coefficient matrix, m x m global interface
coefficient matrix, and » x n intersection coefficient matrices, respectively. Global interior
matrix F composes of many smaller //r x //r local interior sub-matrix F; where i = 1 to ». Each
F; corresponds to a coupling within the interior elements inside the i subdomain. Global
interface matrix G gathers all coefficients corresponding to an interaction between the
interface elements, while H is diagonal matrix associating with the intersection elements. The
inter-coupling coefficients between the interiors and interfaces are given in D with a
dimension of / X m, and between the interfaces and intersections are given in E with a
dimension of m X n. There is no coupling between the interiors and the intersections in our 2-
D MT case as shown in Figure 2. Vectors f, g and h are domain boundary fields associated
with the interiors (u), interfaces (v) and intersections (w), respectively. Figure 2 shows that
there are no boundary fields that belong to the intersections. Therefore, h = 0 in our 2-D

problems.

According to the hierarchical domain decomposition technique, equation (3) can be
decomposed into two reduced systems: the interior-interface reduced system and the
interface-intersection reduced system. The interior-interface reduced system is derived from

the coupling between the interiors and interfaces,

O !

while the interface-intersection reduced system is from the coupling between the interfaces

and intersections,
S Ej)lv g'
= s 5
e wlo)C) ®

where the interface Schur complement matrix S=G-D'F'D and g'=g-D'F'f . The

unknowns are then successively solved from the highest to the lowest level. The intersections

w are solved first from



H'w=h', (6)

where the intersection Schur complement matrix H'=H-E'S’'E , and its right-hand side

h'=h-E"S"g'. Once solving the intersections, the interfaces v and the interiors u can then

be consecutively solved from

Sv=g'-Ew, (7)
and

Fu,=f,-D,v. ®)

Algorithm of the standard HDD method can be summarized below after decomposing the

global domain into several subdomains.
1. Form F;, f;, D; and factorize F; of each subdomain.
2. Compute DF'D,and D;F'f, of each subdomain.
3. Form G, g, H, hand E.
4. Construct S=G-XD/F'D, and g'=g->D/Ff,.
5. Factorize S.
6. Build H'=H-E"S'Eand h'=h-E"'S"g".
7. Solve H'w=h'.
8. Solve Sv=g'-Ew.

9. Solve Fu, =f,-D,v.

10. Merge u;, v and w as a solution for the system of equations (2).
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The intersection Schur complement matrix H' (step 7) is dense, but its dimension, n X n, is
relatively small and therefore would not require a lot of computations. Similarly, the classical
Schur method has a similar dense matrix but with a dimension equal to numbers of interfaces
and intersections, i.e. m+n X m-+n. Thus, the hierarchical domain decomposition method
yields a significant smaller dense matrix. The interface Schur complement matrix S, in the
hierarchical case, is not dense but sparse matrix. Example of its sparse pattern is shown in

Figure 3a) from subdomains of Figure 2.

All equations including equation (6), (7) and (8) are solved with a direct method (here, an

LU-factorization). To construct S=G-D'F'D and H'=H-E"S'E in step 4 and 6, after
factorizations, F and S systems are solved with a series of different right hand sides: D' and
E' for m times and n times, respectively. Solving each system just one time requires
relatively small amount of computational resources, both memory and CPU time. However,
as showing in the algorithm above, both systems are solved several times. Computational
time for numerous solving (step 2, 4 and 6) plus factorizations (step 1, 5 and 7) can be more
than just solving one large global system (equation 2) on a serial machine. This statement is
correctly confirmed in Xiong (1999) and also in our MT numerical experiments in the next
section. Once all main matrices are obtained; equation (6) and (7) is solved just one to obtain
w and v in step 7 and 8, respectively. Equation (8) is then consecutively solved to obtain the
interiors u within each subdomain in step 9. If each subdomain is equally discretized, this is

equivalent as solving equation (8) r times.

Because domain decomposition is not highly efficient on a serial machine, another way of
using domain decomposition on a serial computation is to modify the hierarchical matrix (3)
and used it as a preconditioner when solving the system with the iterative solvers (e.g.,

Bitzarakis et al., 1997; Larsson, 1999; Benedetti et al., 2009; Grasedyck et al., 2009).

3.1 Parallel Implementation of HDD
Most parallel domain decomposition algorithms distribute computations of each subdomain
to each processor (see examples in Xiong, 1999; Zyserman et al., 1999; and Zyserman and

Santos, 2000). In this parallel scheme, step 1, 2 and 9 of each subdomain are performed
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separately on each processor. After calculations, all results are sent to the master node. The

bottleneck of this parallelization occurs from step 3 to 8. The most difficult parts for
parallelization are to factorize S in step 5, to construct H'=H-E"S'Eand h'=h-E"S"g" in
step 6 and to solve Sv=g'-Ew in step 8. Once distributing S to all processors, this process

requires a lot of communication time among processors when factorizing and solving system
of equations. Efficiency of this parallel scheme would depend significantly on the parallel
algorithms which also depend on computer architectures (see Lu and Shen, 1997; Kocak and
Akay, 2001). Many massive parallel manufacturers have provided their own efficient parallel
algorithms to solve system of equations. These algorithms show best performance only on

their own platforms.

However, this conventional parallel scheme could be a problem for PC cluster platform or
distributed memory systems. Efficiency would be relatively low if switch or hub used to
communicate among processors is slow regardless of how efficient the algorithm is. Parallel
implementation is not the purposes of our paper as previously described. We therefore opt not
to show the numerical experiments of HDD on parallel systems. Experiments with 3-D MT

problems would be an interesting research to pursue which is beyond our scope here.

4. Modified hierarchical domain decomposition method

Earlier numerical experiments on single processor machine show that a straightforward
application of the HDD method to the 2-D MT problems requires less memory storage than
standard method. However, its computational time becomes longer. In order to make the
hierarchical domain decomposition method more efficient on a serial machine for our 2-D
MT problem, two modifications are necessary. First, the separation of the interfaces into
vertical and horizontal interfaces will break the larger interface system into two smaller
vertical and horizontal interface systems which would lead to a memory reduction. Second,
the red-black ordering technique is applied inside the horizontal and vertical interface

systems to further help decreasing the computational time.

Taking advantage of the rectangular discretization of the FD approximation, the interfaces

can be further classified into two types: the horizontal interfaces (® in Figure 2) and the

12



vertical interfaces (A in Figure 2). Number of interfaces (m) is then divided into number of
horizontal interfaces (m;) and number of vertical interfaces (m,) where m = mj, + m,. The

system of equations (3) can then be reassembled as follows,

F D, D, 0\ u) (f
LGy 0 E vl lea| ©)
If 0 Gy Ey|v, gy

where yand y represent horizontal and vertical interfaces, respectively. The main difference
from the original hierarchical domain decomposition would be at the separation of G matrix
into Gy and Gy, where Gy gathers all coefficients corresponding to a coupling between the
horizontal interfaces, and similarly for Gy corresponding to a coupling between the vertical
interfaces. With new classification, both vertical interfaces (vy) and horizontal interfaces (vy)
are situated in the middle level between the intersection (w) and the interior (u) which are the
highest and lowest, respectively. The interior-interface and interface-intersection reduced

systems in equation (4) and (5) become

F D, Dv u f
D, G, 0 |v,|=|gy-EyW , (10)
Dy 0 G, /v, g, -E,w
and
Sun Suv Eu [ Vu g'y
Svu Sy Ey | vy [=|8Yv | , (11)

E' E' H){w) [ h

respectively. Here, the interface Schur complement matrix S is decomposed into Syu, Suv,

Svu and Syy as follow,
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Example of the sparsity pattern of the modified Schur interface (12) is shown in Figure 3b) to
be compared with the original Schur interface matrix S (Figure 3a). Similar to the original
hierarchical domain decomposition, the unknown fields are successively solved from the

highest level to the lowest level. The intersections w will be solved first from

H'w=h', (14)

==

Sun Suv ) (E
where, H'=H-(EX ET) "™ % " and  its  right-hand  side
v SVH SVV EV ’

A

S S !

h'=h-(Ej Eﬁ)[ f “Vj (g'HJ. After solving the intersections w, the vertical
Svi  Swy gv

interfaces vy and the horizontal interfaces vy can be split and solved separately as,

(SVV -SVHS;HSHV )VV = g'V 'EVW - SVHS}}H (g'H 'EHW) ’ (15)
and,

SuuVu = 8w -Euqw-Syyvy . (16)

Dimension of Syg and Syv from (15) and (16) are my, X my, and m, x m, , respectively, which
are smaller than m x m S matrix of (7). They are therefore faster to solve and less memory

storage. This is one clear advantage of classifying the interfaces into the horizontal and
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vertical interfaces. After obtaining w and v, the interiors u can then be consecutively solved

from

Fu, =f-Dyv, -Dy,vy. (17)

To further increase the efficiency of our modified scheme, red-black coloring technique (See
Press et al., 1992 and Saad, 2003) is applied to (15) and (16) to help reducing the
computational time. Under the red-black ordering, the unknowns inside of Syy and Syy are
classified into red and black unknowns. The idea of Schur complement is again applied to
this coloring system of the interfaces. The reduced systems are then derived and recursively
solved to the red and to the black systems. This modification demonstrates the application of
Schur domain decomposition inside the hierarchical domain decomposition (see Rung-

Arunwan, 2010 for further detail).

With both modifications, the modified hierarchical domain decomposition (MHDD2D) can
outperform the FD2D code even running on a serial computational machine as showing in the

next section.

5. Numerical Experiments

In this section, we first validate that the responses from our modified hierarchical domain
decomposition method (MHDD2D) are as accurate as those from FD2D. Next, computational
costs on a single processor are measured with different combinations of subdomains. A
memory map is then introduced as a strategy to select an “optimized” number of subdomain
where computational costs are minimized (i.e., relatively faster or at least equivalently to

FD2D, but with a fraction of memory).
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5.1 Validation Tests

To validate the MHDD2D approach, we show the apparent resistivities and phases of both
TM and TE modes at three frequencies calculated from the model shown in Figure 1. The
calculated responses from our MHDD2D approach are directly compared to those obtained
from FD2D as in section 2. In this test, the model and air of Figure 1 is non-uniformly
discretized into 80 x 240 grids in z- and y-direction, respectively. For FD2D method, the
unknown to be solved is 18,881. For MHDD2D, the model domain is uniformly split into 4 x
8 (z- and y- direction, respectively) subdomains. With this 4 X 8 subdomains, the 18,881
unknowns will be divided into 551 interiors for each subdomain (or a total of 17,632
interiors), 696 horizontal interfaces and 532 vertical interfaces, and 21 intersections. Total
memory requirement of MHDD2D is about 21.7 Mbytes, which is approximately one-third of
FD2D (about 71.09 Mbytes). Memory estimation will be discussed in subsection 5.2.1.

Figure 4 shows that the calculated responses from both FD2D and MHDD2D are perfectly
identical on both modes. Their difference is in the round-off level which is insignificant. This
is expected since both methods solve the same system of equation, except that the MHDD2D
method splits the computational domain into many smaller subdomains, and then solves
smaller systems. In addition, we have performed validation tests on various synthetic models
and real model (see inverted model from real data in Siripunvaraporn and Egbert, 2000) with
several combinations of subdomains. All validation tests show that there is no difference
from both methods (Rung-Arunwan, 2010). These have validated our MHDD2D method for
both TM and TE modes.

5.2 Comparisons of Computational Efficiency

Next, to prove the efficiency of our modified domain decomposition scheme, we ran the code
on several synthetic 2-D models and also real “inverted” model (from Siripunvaraporn and
Egbert, 2000) for both TM and TE modes. Because a direct method (LU-factorization) is
used to solve all systems of equations, computational time and memory requirements are no
difference among different models, modes (TM or TE) and frequency if domain size is the
same. Model of Figure 1 is therefore used as a representative to demonstrate the effectiveness

of our code.
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Model and air of Figure 1 is discretized into three size meshes: 40 x 120 (small), 80 x 240
(medium) and 120 x 360 (large). These three meshes are then uniformly subdivided into p X
q subdomains, where p and ¢ are numbers of subdomains in z-dir and y-dir, respectively,
starting from 2. Estimated memory usage and actual calculation time for each combination of
subdomains for each mesh are compared with those from FD2D. Comparison results are
plotted and shown in Figure 5 for 40 x 120 mesh, Figure 6 for 80 x 240 mesh and Figure 7
for 120 x 360 mesh. Relative CPU time and memory (both in percents) are calculated from
(timemuppap-timerpap) * 100/timerpap and (memyyppap-memepyp)* 100/memep;p,
respectively. Positive relative time and relative memory indicate that MHDD2D is less
efficiency than FD2D and therefore spend more calculation time and require more memory,
while negative reflects the opposite, i.e. MHDD2D is more efficient. Actual memory usage of
FD2D are 8.77 Mbytes, 71.09 Mbytes and 240.97 Mbytes for small, medium and large,
respectively, while actual CPU time on an Intel Core Two Duo 6400, 2.13 GHz machine are
0.08 second, 1.12 second and 4.16 second, respectively. Actual CPU time and memory used
of MHDD2D can thus be inferred from these actual values of FD2D and the maps shown in
Figure 5, 6 and 7, respectively.

5.2.1 “Memory Map” and Memory Comparison

Total memory usage of MHDD2D can be calculated from numbers of subdomains in z-dir (p)
and y-dir (g), number of interiors (//r) for each subdomain, numbers of horizontal interfaces
(mp) and vertical interfaces (m,) and number of intersections (n). However, it is quite
complicated to express in a simple formula. It is therefore pre-estimated from the allocated
variables inside the code to produce the “memory map” before running the actual code.
Memory map displays minimum memory used for different combinations of subdomains as
shown in Figure 5a, 6a and 7a. The concept of memory map is very useful and will be

demonstrated in later subsection.

In contrast to MHDD2D, total memory usage for FD2D can be easily estimated from (V-
D)(N--1)(BN-A+1)*16 where N, and N; is grid discretization in y-dir and z-dir, respectively.
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Multiplication with 16 is required because complex double precision is used. Because a large
global matrix (equation 2) of FD2D is broken into many smaller sub-matrices (equation 9) for
MHDD2D, memory requirement for different combinations of subdomains should therefore
be less than that of FD2D. This is evidently shown in Figure 5a, 6a and 7a, where negative
percentage is all over the map indicating less memory requirement of MHDD2D. However,

total memory usage varies according to numbers of subdomains used in both directions.

From all three figures, there are two cases where memory usage is relatively large (but still
less than FD2D). First case is when the domain is divided into “large” numbers of
subdomains. When number of subdomains become large (e.g., 20 x 30 subdomains in Figure
7a), number of interiors per subdomain is small (see Table 1), but total number of interfaces
are high (Table 1). More memory is therefore required to store and solve those interface
coefficient matrices (Gu, Gv, Sun, Suv, Sva and Syy in 10 and 11). Although intersections
(H) also increase, it would not significantly affect. In contrast, when small number of
subdomains used (e.g., 3 x 3 subdomains in Figure 7a), total numbers of interfaces in both
directions are small (see Table 1), but number of interiors per subdomain becomes very high
(Table 1). Large number of interiors causes matrix F; (equation 10) of each subdomain to
require more memory to store and solve the system of equations (equation 13 and 17). Note
that we use LU decomposition to solve all systems of equations. Some “extra” memory is
therefore required to fill the empty band of the sparse matrix. This extra memory has already

been accounted for in Figure 5a, 6a and 7a.

5.2.2 Comparisons of CPU time

Calculation time cannot be pre-estimated as the memory usage, it can only be obtained from
running the actual code on the computer. Relative CPU time from small, middle and large
meshes are shown in Figure 5b, 6b and 7b, respectively, from different combinations of
subdomains. They are obtained from running on a single processor machine; here, an Intel
Core Two Duo 6400, 2.13 GHz machine. Different machines or architectures may result

differently. However, patterns of relative CPU time should remain approximately the same.
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For small 40 x 120 mesh, relative CPU time of MHDD2D is at least 30% more than that of
FD2D in every combination of subdomains (Figure S5b). Although a larger system of
equations (equation 2) is broken into many smaller systems (equation 9), successively solving
a series of these smaller systems (see equation 4-6, and 10-17) can outperform solving a
global system of FD2D. This reflects in larger CPU time as shown with all positive in Figure
5b. Although there is no benefit of MHDD2D for smaller 40 x 120 meshes in term of CPU
time, better efficiency can be gained up to 20% from larger meshes as shown with negative
zones in Figure 6b for 80 x 240 mesh and in Figure 7b for 120 x 360 mesh. This shows that
when grid discretization becomes large, MHDD2D will become more effective, even with a
serial computation. This conclusion is significant, especially for future implementing the idea
of MHDD2D to 3-D cases. In 3-D, the discretization mesh would be clearly a lot larger than

what we used in 2-D case.

5.3 Optimized Number of Subdomains : Pre-Selection

Figure 5a, 6a and 7a show that there are regions where memory requirement is “minimum”.
The minimized memory zones have the centers at 5 x 6 subdomains for 40 x 120 mesh
(Figure 5a), at 8 x 8 subdomains for 80 x 240 mesh (Figure 6a) and at 10 x 9 subdomains for
120 x 360 mesh (Figure 7a). The interiors, horizontal interfaces, vertical interfaces and

intersections for these three subdomains are given in Table 2.

By matching Figure 5a, 6a and 7a to Figure 5b, 6b and 7b, respectively, we found that the
minimized memory zones are coincidently occurred almost the same regions as the
minimized CPU time zone. Both areas will be referred to as the “optimized” regions, because
both memory and CPU time are least used. In this “optimized” regions, numbers of interiors,
horizontal interfaces, vertical interfaces and intersections are properly justified or balancing
(as shown in Table 2), so that solving and storing F;, Gu, Gv, Syn and Syy and H matrices
are relatively fast and less memory requirement. Larger or smaller number of subdomains
would cause an unbalance to these numbers. Larger number of subdomains would increase
the interface sizes, while smaller number of subdomains would increase the interior size.
Both cases would produce a large matrix, which would dominate both calculation time and

memory usage.
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The agreement between the optimized CPU time and memory usage has lead to the idea of
subdomain selection. Usually, choosing number of subdomains that yields least CPU time
and smallest memory requirement would be a trial and error strategy. Here, we propose to
select the “optimized” subdomains from the memory map, shown in Figure 5a, 6a and 7a.
Because memory usage can be pre-estimated from the variable allocations inside the code,
this number can be printed out and plotted in a map from different combinations of
subdomains. The optimized subdomains can therefore be chosen from the region of “least”
memory requirement. There would be a higher chance that CPU time performance of
MHDD2D would be better than FD2D if choosing subdomains from this region. When
implementing MHDD2D to 3-D case, similar technique can be used to avoid trial and error

selections.

5.4 Comparison of modified and non-modified hierarchical domain decomposition

methods

For the original hierarchical domain decomposition technique, memory requirements for F
and H matrices in (4) and (5) are identical to those in (10) and (11) for our modified
hierarchical domain decomposition. However, interface matrices, G and S in (4) and (5)
(Figure 3a), depends on the sum of horizontal interfaces and vertical interfaces (m = my, + m,,).
These matrices are therefore larger than Gg , Gy, Sgn and Syvy in (10) and (11) (Figure 3b)
for the modified scheme around 20-50% depending on the number of subdomains (7).
Memory requirement for non-modified hierarchical domain decomposition would therefore

up to 50% more than the modified case from our 2-D study, but it is still less than FD2D.

In term of computational time, the standard hierarchical domain decomposition would require
about the same CPU time to solve F; and H systems of equations. However, our 2-D study
reveal that for the interface parts, larger G and S in (4) and (5) of the non-modified code
requires solving time slightly more or less than solving smaller Gg, Gy, Sgn and Syy in (10)
and (11) of the modified code. Not much can be gained in terms of CPU time in this part, but
a lot more in terms of memory. However, by reducing the larger G into Gy and Gy (from

Figure 3a to 3b), red-black ordering can be easily applied for solving Gy and Gy, but not
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directly to G in (4). With the red-black ordering, about 10-50% depending on a combination
of subdomains can be gained comparing to the original HDD method for the 2-D case. Red-
black ordering can be easily implementing in 3-D case as well, this would help further

decreasing the computational time.

6. Conclusions

We have demonstrated the efficiency of the MHDD2D code for 2-D MT forward modeling.
MHDD2D is a modified version of the hierarchical domain decomposition method. The
original scheme begins by dividing a global computational domain into several subdomains.
Then, the unknown nodes are classified into three different kinds: interiors, interfaces and
intersections. A global system of equations is re-organized according to these configurations
producing three sets of smaller systems of equations. The intersection reduced system of
equations is solved first to obtain the intersections. The calculated intersections are then used
in the right hand-side of the interface systems of equations to compute the interfaces.
Similarly, the calculated interfaces are input in the interior systems of equations to compute

the interiors inside each subdomain.

Normally, HDD is applied on a parallel system. Efficiency of the HDD method on a serial
machine is very low comparing to the conventional method. To enhance the efficiency of the
hierarchical method on single processor computer, the interfaces of the standard hierarchical
domain decomposition method is further separated into horizontal interfaces and vertical
interfaces by taking an advantage of the rectangular discretization of the finite difference. Our
modified version will then have four sets of smaller systems of equations, instead of three as
in the original version. The division of the interfaces into horizontal and vertical interfaces
helps substantially decreasing the size of memory usage. However, it does little help in
computing time. Red-black coloring is then applied to substantially reduce the computational

time of the code.

By running MHDD2D with several combinations of subdomains on single processor

machine, the optimized subdomains can be selected from the memory map generated prior
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the run. Dividing the global domain with the optimized subdomains, MHDD2D can run up to
20-30% faster and require up to 70% less memory than FD2D on sing processor machine.
This conclusion is very crucial. It indicates that the same hierarchical domain decomposition
algorithm can be extended and applied to 3-D problem. By applying modified HDD method
to 3-D case, 3-D forward problem can now be solved with a direct method, even on standard
single processor PC. With the direct solver, its factorized matrices can be re-used several
times with different right-hand sides. This will help speeding up the sensitivity calculation in
the 3-D inversion process. Most importantly for a direct solver, computational time is
controllable and independent of frequencies, modes and resistivities, as long as the domain

size remains the same.
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Figure 1. Model used to test the efficiency and accuracy of the modified hierarchical domain

decomposition method. The model consists of two resistivity contrast blocks buried in a 100

(2—m half-space. The left and right blocks are 10 Q—m and 1,000 Q—m, respectively.

This model is discretized into three finite difference meshes: 40 x 120, 80 x 240 and 120 x

360 and are used in the numerical experiment section. Discretization shown in this figure is

merely an example to illustrate that the unknown fields are defined on the nodes (black dots).
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Figure 2. Example mesh of Figure 1 is uniformly redrawn, and subdivided into 3 x 4
subdomains as an illustration here. The interiors inside each subdomain are drawn with solid
circle (®). The horizontal and vertical interfaces between subdomains are shown with solid
rectangle (M) and solid triangle (A), respectively. The intersections from four subdomains

are plotted with solid cross (X).
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Figure 3. (a) Sparsity pattern of the Schur complement matrix S (equation 5) of the non-
modified hierarchical domain decomposition. (b) Sparsity pattern of the Schur
complement interface systems (Sum, Suv, Sva and Syv in equation 12) of the modified

hierarchical domain decomposition.
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differences of both responses from both methods are in the round-off level. This validates our

MHDD2D code.
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p % q subdomains I/r () n my, m, m

3x3 4641 (41769) 4 714 234 948
10x9 429 (38610) 72 3159 880 4039
20 x 30 55 (33000) 551 6270 2900 9170

Table 1. Numbers of interiors per subdomain (//r where / is total of interiors and r = p x g),
intersections (n), horizontal interfaces (m;), vertical interfaces (m,) and all interfaces (m) for

three different numbers of subdomains running on a 120 x 360 mesh (Figure 7).

Center of optimized
. Ir (l) n my, m, m
region
5 x 6 subdomains on
133 (3990) 20 456 175 631
40 x 120 mesh
8 x & subdomains on
261 (16704) 49 1624 504 2128
80 x 240 mesh
10 x 9 subdomains on
429 (38610) 72 3159 880 4039
120 x 360 mesh

Table 2. Numbers of interiors per subdomain (/7 where / is total of interiors and » = p x q),
intersections (»), horizontal interfaces (m;), vertical interfaces (m,) and all interfaces (m) for 5
x 6 subdomains on 40 x 120 mesh (Figure 5), 8 x 8 subdomains on 80 x 240 mesh (Figure
6), and 10 x 9 subdomains on 120 x 360 mesh (Figure 7), respectively. These subdomains

represent the center of optimized regions.
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We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT
(Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric
inversion: data-space method. Phys. Earth Planet. Interiors 150, 3-14), including modifications to allow
inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel
implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for
different frequencies, as well as some linear algebraic computations, over multiple processors. In addition
to reducing run times, the parallelization reduces memory requirements by distributing storage of the
sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear
speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the
horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs
alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate
host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion
had little impact on the inverse solution computed with impedances alone. However, in experiments with
real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances
alone, differed in important ways, suggesting that for structures with more realistic levels of complexity
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the VTFs will in general provide useful additional constraints.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

WSINV3DMT (Siripunvaraporn et al., 2005) has been developed
to invert Magnetotelluric (MT) impedance tensor components for
three-dimensional (3-D) Earth conductivity. It was made freely
available to the MT research community in 2006 and has since
become one of the standard tools for 3-D inversion and interpre-
tation (e.g., Tuncer et al., 2006; Heise et al., 2008; among others).
The inversion algorithm used closely follows the two-dimensional
(2-D) data space Occam’s inversion of Siripunvaraporn and Egbert
(2000) which has also been widely used for 2-D interpretation (e.g.,
Pous et al., 2002; Oskooi and and Perdersen, 2005; Toh et al., 2006;
among others). Here we describe extensions to this code, which we
illustrate with tests on synthetic and real data.

We first briefly summarize WSINV3DMT; see Siripunvaraporn
et al. (2005) for more technical details. The algorithm used is based
on the classic Occam’s inversion introduced by Constable et al.
(1987) for the one-dimensional (1-D) MT and DC resistivity sound-
ing problems. The Occam inversion seeks a minimum structure

* Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159.
E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).

0031-9201/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
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model (as defined by some model norm which penalizes rough-
ness) subject to an appropriate fit to the data. The minimization is
accomplished with a modified Gauss—Newton algorithm, in which
the regularization parameter (which controls the tradeoff between
model roughness and data fit) is also used for step length control
(Parker, 1994). The main advantages of the Occam approach are
its stability and robustness, and the fact that the scheme often con-
verges to the desired misfitin arelatively small number of iterations
(e.g., Siripunvaraporn and Egbert, 2000). Occam was extended to
treat two-dimensional MT data by deGroot-Hedlin and Constable
(1990), but for multi-dimensional inversion the originally pro-
posed scheme can be computationally impractical, as the system
of normal equations is explicitly formed and solved in the model
space.

Siripunvaraporn and Egbert (2000) transformed the inverse
problem into the data space (e.g., Parker, 1994). If the number of
data (N) is small compared to the number of model parameters (M),
as will typically be the case in 3-D, the data space variant requires
a fraction of the CPU time and memory compared to a model space
scheme. This data space Occam scheme forms the basis for the
WSINV3DMT algorithm, which is summarized in Fig. 1.

The initial version of WSINV3DMT was only capable of inverting
the impedance tensor Z, the 2 x 2 complex frequency dependent
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Nomenclature

d observed data

Cy data error

mg initial and prior model

Cn model covariance

my model at k iteration

Jk N x M sensitivity matrix forming from my,
Flm;] forward responses of my

| | data space cross product matrix
Ry representer for k iteration

A Lagrange multiplier

N number of stations

Nm number of modes

Np number of periods

N number of data=Ns x Ny x Np
M number of model parameters

transfer function relating electric to magnetic fields

5= 5]
Ey Zyx Zyy | |Hy |~

The impedance tensor is frequently used by itself for 3-D conduc-
tivity imaging (e.g., Tuncer et al., 2006; Heise et al., 2008; Patro
and Egbert, 2008). However, modern MT field practice typically
includes measurement of vertical magnetic fields (particularly at

long periods, where a tri-axial magnetometer is used), and thence
computation of vertical field transfer functions (VTFs)

Hr= [T Ty [ZJ (2)

The vertical magnetic field is only produced when there are lat-
eral or horizontal variations of conductivity. Researchers have often
used VTFs in the form of induction vectors (Parkinson, 1959) to
indicate or point to the source of conductivity anomalies and to
establish or verify geoelectic strike directions (e.g., Bedrosian et
al.,, 2004; Uyeshima et al., 2005; Tuncer et al., 2006). A num-
ber of 2-D inversion codes (e.g., REBOCC of Siripunvaraporn and
Egbert, 2000; and NLCG of Rodi and Mackie, 2001) allow inversion
of VTFs (or “Tipper”), and these are often included along with TE
and TM impedances in 2-D interpretations of MT profile data (e.g.,
Wannamaker et al., 1989; Wannamaer et al., 2008). Berdichevsky
et al. (2003) studied VTFs using analytical and modeling studies,
and concluded that inclusion of these additional induction transfer
functions can substantially improve the reliability of geoelectrical
models, because they are not affected as strongly by local distortion
as the impedance tensor is.

Here, we describe the implementation of VTF inversion for the
WSINV3DMT inversion code, and apply this to inversion of real and
synthetic datasets. In addition, we describe implementation of a
parallel version of WSINV3DMT, using MPI and parallelizing over
frequencies to help reduce program execution times, which can
be quite long for realistic modern datasets (e.g., Patro and Egbert,
2008).

The paper is organized as follows. First, we summarize the mod-
ifications to WSINV3D, for the most part omitting technical details.
Next, we illustrate and test the new features on the same syn-
thetic datasets previously used in Siripunvaraporn et al. (2005).
Here we illustrate the speedup obtained with the parallelization,
and explore the effectiveness of VTF data for recovering conduc-
tivity structures, alone, and in conjunction with impedance data.
We then test the VTF inversion on the EXTECH dataset (Tuncer et
al., 2006), comparing inverted models from only VTF data, from

only impedance data, and from a joint inversion of both data
types.

2. Implementation of WSINV3DMT to include the vertical
magnetic transfer function

There are only two major modifications to the WSINV3DMT
codes required to allow inversion of VTFs: adding the VTF com-
putation to the forward modeling routine, and the corresponding
modifications for the sensitivities of the real and imaginary parts
of the VTFs.

In WSINV3DMT, the electric fields are calculated by solving the
second order Maxwell’s equation using a staggered grid finite dif-
ference numerical scheme (Siripunvaraporn et al., 2002). Magnetic
field components can then be computed (on grid cell faces) from
Faraday’s law v x E=iwuH, and interpolated to the observation
locations, which in the modified version of WSINV3D can be at any
location on the surface. In order to compute the impedance tensor Z
the forward equations are solved for two polarizations, and Z is cal-
culated from the combination of horizontal electric and magnetic
fields from both polarizations, as described in Siripunvaraporn et
al. (2005).

The only modification required for the VTF is that the vertical
magnetic field must also be computed at the observation location.
As for the horizontal magnetic components, this is accomplished
using Faraday’s law, taking the curl of the horizontal E compo-
nents on the model air-Earth interface, and interpolating the result
(defined at cell centers) to the observation locations. Then, similarly
to the impedance tensor, the vertical and horizontal magnetic fields
computed from the solutions for both polarizations are combined
to form the vertical magnetic field transfer function T,

H! Hf] 3)

) 2= [T Ty

Here H} and H? are the z-component of magnetic fields for the
Ex-H, and E,-H, polarizations, respectively, and similarly for other
field components. For a joint inversion with impedance tensor,
computing the vertical magnetic transfer function does not require
any extra forward modeling calls, as all transfer functions are com-
puted from the same solutions.

The sensitivity calculation for VTFs is essentially identical to that
used for impedances, which is based on the reciprocity approach
described in Rodi (1976), Newman and Alumbaugh (2000), and
Siripunvaraporn et al. (2005). Briefly, the linearized data functional,
which is represented by linear combinations of electric field solu-
tion components on cell edges surrounding the observation point, is
used to force the adjoint equation, and the result is mapped to per-
turbations in the model parameter, as described in Siripunvaraporn
etal.(2005). Only the first step requires modification, with the coef-
ficients for the linearized functionals for T,x and T,y replacing those
for Zyx and Zy. Details of this modification are straightforward, and
are omitted here.

3. Parallel implementation with MPI

A major challenge in using WSINV3DMT, or for that matter,
any 3-D MT inversion code, is that the program is very time
consuming, especially when run with the sort of large dataset
(and model domain) that justifies a 3-D interpretation. Run times
exceeding a full month (on a single processor desktop computer,
for the full inversion process, including multiple iterations of the
outer loop of Fig. 1) have been reported when WSINV3D has
been applied to even modest 3-D MT datasets (e.g., Patro and
Egbert, 2008). These long run times primarily reflect the need
for many forward modeling calls, each of which requires iterative
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Serial WSINV3DMT algorithm:

1) Solve forward problem and compute misfit from model mg

2) Start WSINV3DMT outer loop iteration £:

2.1) Fori=1to N*N,*N,

Call forward solver to form Jy; sensitivity for data 7

End

2.2) Compute d = d — F[m,] + Ji(my — mg)
2.3) Compute I, = Cq*J,Cody.” Cy™

2.4) For various values of As

2.4.1) Compute representer matrix Ry = [A T+ I'y]

2.4.2) Use Cholesky decomposition to solve
My - my = CodiCo "Ry Cy "l

2.4.3) Solve forward problem and Compute misfit from model my4,

2.4.4) Phase I ;

Compare misfit from different As to seek for minimum misfit

Phase II:

Compare norm from different As to seek minimum norm

End

2.5) Exit when misfit less than desired level with minimum norm

End WSINV3DMT outer loop iteration

Fig. 1. Pseudo-code for serial WSINV3DMT (after Siripunvaraporn and Egbert, 2007).

solution of the large sparse linear system arising from discretization
of Maxwell’s equations. WSINV3D was developed as a serial code,
to run on a single processor. An obvious way to speed up execution
is to parallelize the code, and make use of the multiple processors
which are increasingly common even in desktop computers.

There are several ways to redesign the codes to run on parallel
system, and the most appropriate approach will depend on system
architecture. For supercomputers or large clusters to make effective
use of hundreds of processors it would be necessary to rewrite parts
of the forward solver—e.g., parallelizing the iterative solver and
preconditioner (e.g., Newman and Alumbaugh, 2000), or domain
decomposition. Here, we consider a parallelization approach appro-
priate to small systems with a few to several tens of processors. Such
small clusters and multi-processor workstations are now read-
ily affordable and more widely available than supercomputers. To
adapt WSINV3DMT for this class of systems, we parallelize over
frequencies, adding calls to MPI (Message Passing Interface) library
routines to the existing codes. In this way, we do not have to alter
the core forward modeling and sensitivity calculation routines in
any way. The parallel algorithm is summarized in Fig. 2.

Forward modeling and sensitivity calculations for each period
are sent to one processor (Steps 2.1 and 2.2 in Fig. 2).
If there are fewer processors than periods, each processor
performs calculations for more than one period. With this
simple parallelization, which requires minimal inter-processor
communication, the computational time should be theoretically
reduced by a factor P, the number of processors available. This paral-
lel implementation also distributes storage of the sensitivity matrix
over the available nodes. The N x M sensitivity matrix J requires
8NM bytes (in double precision), and the need to store this in RAM
limits the size of datasets and model grids that can be practically
treated. With the parallelization, memory required on each node
is reduced to about two times 8NM/P (including temporary storage

for cross product computations), allowing WSINV3D to be run for
larger models grids and datasets.

With the sensitivities distributed over processors, formation of
the cross product matrix T = JC;;'J" also requires MPI calls. We
have implemented this in a fairly simple way, breaking I’ into P2
blocks to be computed on the P processors (Step 2.3 in Fig. 2).
Diagonal blocks I';; are computed on the local processor where
the corresponding block J; of the sensitivity matrix (correspond-
ing to one or more frequencies) is computed and stored. The
off-diagonal blocks (T';;) can only be formed by sharing blocks of
J between nodes. Since I' is symmetric, only upper off-diagonal
blocks (j >i) need be formed. On step k blockJ;, where j=mod(i +k, P)
is sent to node i to compute I'; where this block is stored. With
this simple scheme the load is balanced and the number of steps
required is approximately (N, + 1)/2. Although computing the cross
products requires significant communication time to share sen-
sitivities between nodes, it can still significantly reduce the total
computing time required to form I' compared to single node pro-
cessing.

In the data space Occam scheme used by WSINV3D the system
of normal equations (Eq. (6) in Siripunvaraporn et al., 2005) must
be solved for a series of trial values of the regularization parameter
(about 3-7 from our experience) to find the optimal (in terms of
data misfit and model norm) model parameter update. In the serial
version of WSINV3D these dense systems are solved by Cholesky
decomposition (Step 2.4.2 in Fig. 1). Parallel Cholesky decomposi-
tion subroutines are available (e.g., Choi and Moon, 1997), but these
are generally tailored to a specific parallel architecture and are not
easily adapted. To develop code that will be portable, and reason-
ably efficient on a generic multi-processor system, we have thus
pursued a different strategy, using the easily parallelized precon-
ditioned conjugate gradient (PCG) algorithm to solve the normal
equations (Step 2.4.1.2 in Fig. 2). The major computation in the
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Parallel WSINV3DMT algorithm for P-cluster PCs nodes:
0) Parent node distributes data to other nodes. Each node would then takes care a
computational load of N,/P data.
1) Each node separately solve forward problem and compute misfit from model my
2) Start parallel WSINV3DMT outer loop iteration k:
2.1) In each node,
Fori=1to N;*N,, ; Call forward solver to form local Jy; sensitivity for data i
2.2) Each node compute d; = d — F[my] + J(my — my) separately.
2.3) To compute [y = Cq " S Cod. Ca™,
2.3.1) each node first computing local or diagonal T';; from their local Jy;

2.3.2) each node cyclically sending their local Jy to others nodes to compute

the off-diagonal T

2.4) For various values of As

24.1)If Nissmall (single node process)

2.4.1.1) Sending T'i from local nodes to parent nodes to compute

global representer matrix Ry = [A I+ T'y]

2.4.1.2) On parent node, applying Cholesky decomposition to solve
My - my = CadiCa "Ry Ca™d
else if N is large (parallel process)

2.4.1.3) Local R = [A I+ T'y] is formed in each node

2.4.1.4) Parallel iterative solver (PCG) is applied to solve

my - my= Codi Co "Ry Cy "l

2.4.2) Each node separately solve forward problem and compute misfit from

model my4

2.4.3) On parent node

Phase I : Compare misfit from different As to seek for minimum misfit

Phase II: Compare norm from different As to seek minimum norm

2.5) Exit when misfit less than desired level with minimum norm

End parallel WSINV3DMT outer loop iteration

Fig. 2. Pseudo-code for parallel WSINV3DMT for cluster PCs system.

PCG algorithm is matrix-vector multiplication. This is readily par-
allelized by dividing the vectors and matrix into blocks, spreading
computations for individual blocks over processors, and then gath-
ering the results back to the master node. To simplify the algorithm
we have distributed the full matrix to all computational nodes.

The preconditioner, based on the diagonals of the coefficient
matrix, is also trivially parallelized. Because the coefficient matri-
ces are dense, the parallel PCG scheme may not be efficient when
N is small, since communication and other overhead may exceed
the serial computational time. For smaller N, we therefore retain
the option of solving the normal equations with a serial Cholesky
decomposition, after all blocks I';; are sent back to the parent node.
The optimal choice of solution scheme (parallel or serial) for a spe-
cific value of N will depend on the cluster architecture. We give
examples below where each approach is more efficient.

Once the new model my., is obtained, the parallelized forward
solver is called to compute the responses of each period, with the
results gathered to the parent node to compute misfits (Step 2.4.2
in Fig. 2). All steps are repeated until an acceptable misfit and norm
are achieved

4. Synthetic data examples

To illustrate the efficiency of the parallelized WSINV3D, and
the effectiveness of the VTF inversion, we first consider inver-
sion of synthetic datasets, revisiting the two synthetic examples
previously used by Siripunvaraporn et al. (2005), reproduced in
Fig. 3. The results of these tests are consistent with those obtained
for other synthetic examples. Our basic test configuration is the
two-block model (Fig. 3a) consisting of two anomalies, 1 2 m and
100 2 m located next to each other within a 10 2 m host. The spa-
tially homogeneous layer, which extends from the surface to 10 km
depth, is underlain by a 100 2 m half space. To test the efficiency of
our parallel codes, and the VTF inversion, we generated VTF and
impedance data at 16 periods (from 0.1 to 1000s) for a total of
40 sites in a regular grid, as illustrated in Fig. 3a. Gaussian noise
(5% of the data magnitude) was added to the generated data. The
inversions for this case are performed on a 21 x 28 x 21 (+7 air lay-
ers) mesh. The second model consists of a single conductive block
(12m) buried in a 100 2 m half-space (Fig. 3b), and responses
were computed at 16 periods for 36 sites (Fig. 3b). The inversions
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Fig. 3. Two synthetic models used to test our inversion. (a) Two-block synthetic model and (b) a single conductive block model. The solid dots indicate the observation sites.
The cross-section view in the lower panel is a profile cutting across the middle of the model in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005).

for the second case are performed on a 28 x 28 x 21 (+7 air layers)
mesh.

We first demonstrate the efficiency of the parallel version of
WSINV3D, using both VTF and joint VTF/impedance datasets for
tests. We then consider the effectiveness of VTF data for recov-
ering conductivity variations, both alone, and in conjunction with
impedances.

4.1. Parallel efficiency

We tested WSINV3DMT by running on 1, 4, 8 and 16 nodes for
the first synthetic test case (Fig. 3a), with the 16 periods divided
evenly among nodes (e.g., with 4 nodes, each solves for 4 periods).
Tests were conducted on a small PC-clusters and a supercomputer
(SGI Altix 4700) at the Earthquake Research Institute, University of
Tokyo. To quantify efficiency of the parallel code, we display the
speedup, defined as S=T;/Tp, where T; is the execution time of
the sequential WSINV3DMT algorithm and Tp is the execution time

of the parallel version, run on P processors. The idealized maxi-
mum speedup is P. However, due to computational overhead, the
need for some computations to be performed only on the mas-
ter node, and the time required to exchange information between
nodes, S will always be less than P. Fig. 4 displays speedup versus
the number of nodes. Inversions of all data (i.e., VTF +impedance,
N=40x 12 x 16 =7680) are plotted with solid lines. Inversions of
the VTF only dataset (N=40 x 4 x 16=2560, or one third the size
of the joint inversion dataset) are plotted as dashed lines. We also
compare speedups achieved with the two approaches for solving
the normal equations: speedups obtained with the single proces-
sor Cholesky decomposition are plotted as solid symbols, while
those obtained with the parallel PCG algorithm are plotted as open
symbols.

For the inversion of the VTF dataset for this very small test prob-
lem, actual (wall clock) run times were about 186 min on a single
node machine, 82 min on 4 nodes, 46 min on 8 nodes and 34 min
on 16 nodes, resulting in speedups of about 2.2 for 4 nodes, 4 for 8
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Number of Processors

Fig. 4. Speedup versus the number of processors or nodes. Solid lines are the
speedups from inversion using both VTF and impedance data (N=7680). Dashed
lines are the speedups from inversion using only VTF data (N =2560). Results for the
scheme which solves the normal equations by Cholesky decomposition on a single
node (step 2.4.1.2 of Fig. 2) are plotted with solid symbols. The corresponding results
with the parallel PCG solver (step 2.4.1.4 of Fig. 2) are plotted with open symbols.
The thin-dashed line of slope one gives the ideal perfect speedup.

nodes and 5.4 for 16 nodes. Thus, as the number of nodes increases,
the relative efficiency of additional nodes decreases. One reason for
this is that the run time of the iterative forward modeling routine
depends on the period of the data. Shorter periods typically require
alarger number of iterations for convergence, and hence longer run
times. Thus, some nodes are usually idle waiting for modeling com-
putations to complete on other nodes, before moving on to the next
step in the inversion. With fewer nodes some of the frequency-to-
frequency variations average out, resulting in better balance.

Efficiencies are somewhat lower for the larger joint
VTF/impedance dataset, when the serial Cholesky decomposi-
tion solver is used (solid line with solid square symbols of Fig. 4).
Now the speedups are about 1.8, 2.6 and 3.2 for 4, 8 and 16
nodes, respectively, almost 50% below those achieved for the VTF
only inversion. However, solving the normal equations with the
parallel PCG solver (solid line with open square symbols in Fig. 4)
significantly improves performance, increasing S to approximately
2, 4.5 and 7.3 for the three cases considered. In the VTF only
case, where N is significantly smaller, both methods for solving
the normal equations have similar performance (dashed lines in
Fig. 4), and indeed the speedup is slightly greater when the single
node Cholesky decomposition is used.

The difference between the two cases is readily understood.
Operation counts for Cholesky decomposition scale as N3 so com-
putation times for the serial Cholesky decomposition in the all
data case (N=7680) are expected to be about 27 times greater
than for the VTF only case (N=2560). Other computational steps
scale better with increasing N. For fixed model parameter size,
total operation counts for the sensitivity calculations increase lin-
early in N, and formation of the cross product matrices increases as
N2, Thus, as the size of the dataset increases, run times required
for the serial Cholesky decomposition step become increasingly
significant, and at large enough N this step will control the
overall runtime. Operation counts for a single iteration in the
parallel PCG scheme scale as N2, but overall runtimes will also
depend on the number of iterations required. Although this should
increase with N also, the dependence is weak, and so PCG becomes
increasingly advantageous as N increases, particularly since com-
putations for the PCG scheme can be distributed over the P
processors.

The number of iterations for PCG also depends on the relative
tolerance for the residual (=||Ax — b||/||b||) used to define conver-
gence. We find that a tolerance of 10~ results in models that are
essentially identical to those obtained with the Cholesky decompo-
sition technique. The number of iterations, and hence the run time
of the parallel PCG scheme also depends on the condition number
of the normal equations. For large values of the Lagrange multi-
plier (corresponding to a smoother model) the condition number
is smaller, and the parallel solver thus converges in a small num-
ber of iterations. In contrast, when the Lagrange multiplier is very
small (rough model) the parallel solver can require considerably
more iterations, and solution times can exceed those for the serial
Cholesky decomposition scheme. This occurred occasionally in our
tests with the larger VTF/impedance dataset, but overall perfor-
mance using the parallel PCG solver was much better when N is
large enough.

We will not attempt to quantify more precisely how large N
must be before the parallel approach to normal equation solution
would be preferred. This will depend on the cluster architec-
ture, especially on the sort of inter-processor communication
used, since the parallel PCG solver requires substantial sharing of
data.

In addition to reducing computational times, the parallel ver-
sion also reduces the need for a large amount of memory on a
single computer. Even for the small joint VTF/impedance inversion
test example, about 1.5 GBytes are required for the representer and
sensitivity matrices. In the parallel implementation, the required
memory may be distributed over all of the nodes used. For exam-
ple, with 16 nodes, each would require only 0.090 GBytes for storing
the sensitivity matrix and forming cross products, almost 13 times
less than required by the serial code. If the whole representer matrix
is stored on a single processor (for the Cholesky decomposition, or
to reduce the communication time between nodes for PCG) about
0.4 Gb are required on each node, still only a quarter required for a
serial version.

The exact time speedup and per-node memory reduction fac-
tors will depend to some extent on the problem size, both in terms
of model grid dimensions, and number of data. For larger prob-
lems, such as the real data EXTECH example considered below,
similar performance gains were attained. For these larger prob-
lems, however, a speedup by a factor of roughly 7 means a run
time that was perhaps 2-3 weeks on a single node is now reduced
to 2-3 days, making inversion of realistic datasets considerably
more practical. The practical impact of distributing memory is even
greater. Total storage required by WSINV3D for the EXTECH exam-
ple described below (joint inversion of the fullimpedance and VTFs)
is at least 30 Gb, making this impractical on almost any shared
memory machine.

4.2. Vertical magnetic transfer function inversion

We next consider the effectiveness of WSINV3DMT at correctly
recovering resistivity when only VTF data are available. Because
in practice one would not know a priori the correct background
resistivity, we run the inversion using several prior (and starting)
models. Inversion results for the synthetic VTF data from the test
case of Fig. 3a are summarized in Figs. 5 and 6. Using a 50 2 m
half-space as a prior (this is intermediate between the true 10 2 m
upper layer background, and the 100 2 m basement), inversion of
VTF data reveals both the conductive body and the adjacent resis-
tor, extending from near the surface to approximately 20 km depth.
The calculated responses generated from the inverse solution of
Fig. 5 fit the observed responses within 15% of the typical VTF
amplitude (recall that 5% random noise was added to the synthetic
data).
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Fig. 5. An inverse solution from the VTF data alone after the 9th iterations with an RMS value of 1, fitting synthetic data generated from the model in Fig. 3a. The top panels

(a)-(c)is a plan view at the surface, at 3 km and at 7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the conductive block at X =0 km. The solution
is shown only in the central area around the anomalies, not for the full model domain.

Although both anomalies are detected in approximately the about 453 2 m for the resistive body, while the background resistiv-
correct location, the true resistivities of Fig. 3a are not correctly ity of the inverse model was changed only slightly from the 50 2 m
estimated. However, calculating the average resistivity over the prior. Computing the volume average resistivity ratios from left to
anomalous volumes we find for the inverse model of Fig. 5 an aver- right in Fig. 5d, we obtain values of 7.9 (=50/6.3), 72 (=453/6.3)and 9
age resistivity of about 6.3 2 m for the conductive anomaly, and of (=453/50), compared to the actual ratios (Fig. 3a) of 10 (=10/1), 100
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Fig. 6. Cross-sectional plots at X=0km (as in Fig. 5d) of the inverse solutions from VTF data alone, when the prior models are (a) 10 2 m half-space, (b) 1 2 m half-space and
(c) 100 2 m half-space.
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(=100/1) and 10 (=100/10), respectively. The inversion thus results
in roughly the correct structure, with approximately correct resis-
tivity contrasts, but it does not recover the correct amplitude of
either the background or the anomalies, or the actual depth extent
of the anomalies.

To explore this issue further we ran the inversion on the same
VTF dataset, using a range of values for the assumed half-space
prior. Fig. 6 summarizes the results with cross-sectional plots of
the inverse solutions at X =0 km. When the prior model is the same
as the correct background resistivity (i.e., a 10 2-m half-space in
our example), the inversion quickly converges to the desired misfit
within 4 iterations, even with error floors set to 5%. In this case,
the inversion estimates the resistivity, and the depth extents, of the
two anomalies quite well (Figs. 6a and 3a). However, the 100 2 m
basementresistivity (below 10 km depth in the synthetic test model
of Fig. 3a) is not recovered—the prior resistivity of 10 2 m remains
unchanged atdepthin the inverse solution. This again demonstrates
that inversion of VTF data alone can only recover lateral resistiv-
ity contrasts, and is not effective at correcting resistivities, or their
variations with depth.

Larger deviations of the prior model from the correct back-
ground result in even larger discrepancies in anomaly amplitudes
and depths, but still generally allow the horizontal structure to be
recovered. With a 1 Q2 m half-space (Fig. 6b) data is fit to within
10%. Anomalies appear at very shallow depths (upper few km), with
all features more conductive than their actual values. At greater
depth, features with appropriate resistivity ratios are imaged, but
the absolute levels are incorrectly estimated, and spurious struc-
tures appear. Using a 100 2 m half-space as a prior, the VTF data
can only be fit to within 20%. The basic structure is again recovered,
but both anomalies are at greater depth (Fig. 6¢) and have increased
resistivity. The host resistivity is estimated to be slightly lower than
the 100 2 m starting value, but is still well above the correct value
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of 10 2 m. As in the other cases, the basement resistivity remains
the same as the prior model.

All of these experiments suggest that when only VTF data are
available, to achieve the target misfit and recover correct ampli-
tudes and depths, the inversion must be started with a prior model
thatis close to the correct host resistivity. However, even starting far
from the correct background model, anomalies are recovered with
the correct horizontal location and dimensions. This result is not
unexpected since the vertical magnetic fields are generated where
there are lateral discontinuities, but are not inherently sensitive to
the profile of vertical conductivity structure.

In addition, resistivities of anomalous bodies scale with the
assumed prior background (Fig. 6), and resistivity contrasts (i.e.,
ratios) can be close to actual values, especially if the assumed back-
ground resistivity is not too far off. However, the VTFs provide little
intrinsic constraint on contrasts in the vertical direction, including
the location of the top or the bottom of the anomalies. The inver-
sion only gets these properties of the anomalies correct if something
close to the correct background is used (Fig. 6a).

Performing similar experiments to those summarized in Fig. 6,
but using impedance tensor data shows that these inversions are
much less sensitive to the assumed prior model. This is consistent
with the basic physics, as the ratio of electric to magnetic fields is
intrinsically related to the resistivity profile. In spite of the well-
known uncertainties in depth and absolute resistivity level that
may result from local static distortions, there is by now ample evi-
dence (e.g., Tuncer et al., 2006; Unsworth et al., 2000) that, with
proper care, MT impedances can yield reliable information about
conductivity-depth profiles. The same does not appear to be true
in practice with VTF data, although theoretical analysis of idealized
models suggests otherwise (Berdichevsky et al., 2003).

The above results suggest that VTF data will be most useful as an
adjunct to impedance data, which can provide the necessary con-
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Fig. 7. Results from joint inversion of both VTF and impedance tensor data generated from the model in Fig. 3a. See caption of Fig. 4 for other details.



