

��������	
���
�
������

�������: �����������������
�����
�������� CG

��� Occam
!���
�"����� Magnetotelluric

(A Hybrid CG/Occam Inversion for

Magnetotelluric Data)

�#. $�. �%��&
�
���'
�*����+���

��������	
��
� �
��������
��� ����������������

��,-���� 2553

 1

���0�"1%4 RMU5080025

��������	
���
�
������

�������: �����������������
�����
�������� CG ���

Occam
!���
�"����� Magnetotelluric

(A Hybrid CG/Occam Inversion for

Magnetotelluric Data)

�#. $�. �%��&
�
���'
�*����+���

��������	
��
� �
��������
��� ����������������

�
�
�-��$�
!��
�������1-�
�
�
�-������	
�

(��������������������!"�#$�%&'��)��
��. *�+),��!"��'$������'���
�$*!)

 2

�1�
$���

��/��������� ����
�$/!�0������+��1��'�����0!���������#'$�&� Magnetotelluric /!�0������

������+� WSMIX3DMT �!"�/!�0�����1��24��5�����������)��
$�/!�0�����+� �4$ data space

conjugate gradient (WSDCG3DMT) 0�� data space Occam’s inversion (WSINV3DMT) /!�0���

WSMIX3DMT ����!"�/!�0�����1���0!������
����
�����)��/!�0��� WSDCG3DMT �������

��+������),���1�'$���')6������'$���41$����7��7 WSINV3DMT ���4$���7#$� WSDCG3DMT 0�+

0����1���)���' trade-off parameter ���������$� inversion ����!��1��0!��*!��41$�9 ���4$���7��1�,�

�� WSINV3DMT 0�+����!��1��0!������!"�*!��� run-time *�+*�'�!"�*!��� data misfit

���7�������1�����'����,���'/!�0��� WSMIX3DMT ���*�'������+����� WSDCG3DMT 0��

WSINV3DMT 0����#
�������������'��+������),��'$���+�
�1�����,���' WSMIX3DMT �!"�/!�0���

inversion ��1��!��
��:���2
&���1
;� /!�0������*�'<&���
$70���!���7����7��7/!�0�����+�����)��

#'$�&������0��#'$�&�)���

 3

Abstract

In this project, we create a new inversion scheme (WSMIX3DMT) based a mixed of the data

space conjugate gradient (WSDCG3DMT) and the data space Occam’s inversion

(WSINV3DMT) methods. WSMIX3DMT is mathematically a slight modification of

WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in

WSDCG3DMT. Instead of fixing the trade-off parameter, it is varied similar to WSINV3DMT.

However, the variation is according to the run-time, not based on the data misfit. This strategy

makes WSMIX3DMT faster than both WSDCG3DMT and WSINV3DMT, and at the same time

requires least memory. This makes WSMIX3DMT as the most efficient inversions.

Computational performances and comparisons of all three methods are demonstrated with both

synthetic and field datasets.

 4

�������������	

 ������������	
��
��. ����������
��������������������������������������!���"#�������$�"%��

"�&�'"#�	(��))���� ��������
��. ��&��������������
�$��!�*���%�����������������#���"+$���'%,������

��������$�
��-���(/������$��	���%�#$
����������������������� 01����������������������� SCOPUS ����

ISI database ��$��&��������������������	�*�)�(����������(�,*�$"#��(�,��2�%��3 '�#� ��������

��&���
�$��!������������������*���%��"+$���������"���$	�
%���'%,���21�4����������������
���5���

67
��
8�����
"������(/�(�,��*�8"#�(�,��2 01��9%������������	���21�4��+�,$�(���:���$�������3

��������& ��������"�������	
�� Prof. Dr. Gary Egbert ��� Oregon State Universiy,

Associate Professor Dr. Makoto Uyeshima '%, Professor Dr. Hisashi Utada ��� Earthquake

Research Institute (ERI), University of Tokyo '%, Professor Dr. Yasuo Ogawa ��� Tokyo

Institute of Technology ���
��	
�������������������$����"%�� '%,��&���&�+"����$#%�$����,��	
��

92. ��. 2��
��� ���$�"� �������-�
��*�67
��
8'%,9>��#�$���
�����3 ��-�
��*�67
��
8���*#��

��	
�����������$����"%�� ��$��&����21�4����%�#$�����5���67
��
8 $�������%��$���% ����#�$���?@�

6B���(
��
"#��3 �����
��$�(/��%�2����������������& ��������&'%�����$�������3 ���-�
��*�����3 ���

���� ��$��&��#��
�	��'%,��$���
�,�����2�
"�8 $�������%��$���% ���
����,"���'%,
��	
���

��������$�"%��

����%�#$��1��������������,�$#��	
���$#���
�� 	�
%������
��. ?@����*��������(/�$�"������

'%,
��*#����%����������"#��3 �(/���#����

��������& ��������"�������	
��	�

%���
���(/����%���� �����������
��������#�� 	�

%��%#���&

��
��'$#��������%#��%�	�('%,
��	
��������������������� ��	
��$��
��	

 �2. ��. ���,*��
������58���-��8

 5

0�79��������	
�

��
�	

Magnetotelluric �(/���
��
��1�����5���67
��
8 ��
��
��&����$"�����������
��$'$#��%+�'%,

��$�66F����	�������&�9������%� ��"��
#�����
��$'$#��%+�'%,
��$�66F�
�$��!���$��*��(/�

"��	#�	��!1�
-��
��$"�������66F� (electrical resistivity) ����
��$
�$��!���������66F�

(electrical conductivity) -���"���&��%����
��$%1�"#��3 ��� ���
�$��!������$>% electrical resistivity

��&�(�*�������5�	���
��
��������%�������5�	���������'9#������� (Siripunvaraporn et al., 1998;

Unsworth et al., 2000; Boonchaisuk et al., 2010) ���21�4���
����
�����&���� (Jones, 1992) ����

�*������
���������������5��$*�"� (Tuncer et al., 2006; Orange, 1989; Vozoff, 1972) '%,����3

���$>%
%���'$#��%+��66F����������$�������
�����'"#%,��&�����,�(/����$>%��	���"������$�9#��

data processing ��������������$>%���������#� apparent resistivity '%, phase ���� impedance tensor

01���(/�6B��8*�����
��$!�������#�
�	 ���������(�*������"�
��$�$��"#��(���"�
��$�$�����

���$>%���"����&��(/��(������ ������������$>%������$��$#����(/�6B��8*�����
��$%1� �����&� inversion

�������'��(B)�������%�	
����,	��������������
#� apparent resistivity '%, phase ����(/�6B��8*��

���
��$!������
�	 �('(%�����(/�
#� electrical resistivity ��	
��$%1� ���9#����,	��������

��"2�
"�8���
%�	0�	0��� ��&���&9%%��58
������������
��'		���%�� (model)
-��
��$"�������66F�

'		
�$$�"� (3-D)

 �����_���(�'��$ inversion
�����	���$>% MT $�$�"#����������9>������ ����$"����������_��

2-D inversion (Siripunvaraporn and Egbert, 2000) ����(�'��$ 2-D ��&���$�*����#� REBOCC $�

����������������%�����(�*������'(%
��$�$�����$>%���� (SCOPUS: ��	���� 97 ����� as of 24

June 2010) �$��������	���
��	
������
��. 9>�������+�����_���(/��(�'��$ 3-D (Siripunvaraporn et

al., 2005) ���$�*����(�'��$�#� WSINV3DMT 01��
�$��!���������'$�	��
����� PC 5��$�� 01��!���#�

�(/��(�'��$'������%����$���� release
>#
�5���,'%,���$��������(�*����� (SCOPUS: ��	���� 33

����� as of 24 June 2010) ��
��
��� WSINV3DMT ���!>�����((�,���"8�*���	���$>%(�,�-�����3

���� �*#����$>% Network-MT data (Siripunvaraporn et al., 2004) ���$>% 2-D DC Resistivity

(Boonchaisuk et al., 2008) '%,���$>% Phase Tensor (Patro et al., 2010) �(/�"��

 6

��#�����+"�$ '$��#� WSINV3DMT �,���������	��
����� PC �����('"#�+���$�(B)����># ���

(B)���%��
�� ���
�"����*���#��
��$�������
�����
�$����"��8��(��$��$���$����*���	���$>%���$�

������)#
�����&
��������������"���(�'��$ ��5�'�����+
���������$��#��
��$������
�$����"��8���

$�����
����#�����
������,��	��� 01���+�,������"��������������
>�����'��$���1&�

 "#�$�9>�������+�����	���
��	
������
��. �����'�������	���#����&�����_���(/� algorithm

��$#�1&�$������%�(��$����#��
��$�����& ��5���1���������*��+
�� ���'���,		
$���������5� conjugate

gradient (CG) '������,'��'		���"��
���*� Cholesky decomposition ��$�����������

WSINV3DMT ����*���5� CG ����������$#"�����+	 sensitivity matrix (J) 01��$�������)#��

��#��
��$������
�$����"��801�����������%�(��$������*���#��
��$�������(/���#��$�� �(�'��$

��$#��&���������#� data space conjugate gradient method (DCG) ���� WSDCG3DMT ������

��%����� Siripunvaraporn and Egbert (2007) '%, Siripunvaraporn and Sarakorn (2010)

�����	���$>% 2-D '%, 3-D �	�#� ����������
��
��&�+
�� �$#"����*���#��
��$�����(��$��$��

��$��� WSINV3DMT '"#��#�����
�������
��
��$#��&��>#�����%�����*�����(�'��$��&�$����#� �����&�$��

�1��(/� trade-off 01�����'%,����,��#����%���	��#��
��$���

������
���
�������& ����
������,9
$�(�'��$��&�
��������������� �����
����������� ����
��

�*���#��
��$������� ����,���������+�*���%����������������� ��������~	�	��&����,����$"�����

���	������(�'��$ WSINV3DMT '%��"�$���� WSDCG3DMT �����&��+�
��'�,��
��
��$#���

������#� WSMIX3DMT ��$��&�9%����������������(�'��$

Inversion : Overview

������ inversion
�������'		���%�� (m) ���
�$��!���
#� model responses F[m] ��� fit ���$>% d ���

$���&��$� N
#����
$��"�
$9% 01��
�$��!������(/�
$���
��"2�
"�8��������&

U(m, �) = (m – m0)T Cm
-1 (m – m0) + � -1{(d - F[m])T Cd

-1 (d - F[m]) - X2
*} (1)

 7

�$��� Cd
�� data covariance '%,
T

�� transpose of matrix, m
�� model ���$���&��$� M
#�
#�� mo

�� base model '%, Cm
�� model covariance '%, �
-1

�� Lagrange multiplier

$������ (1) ��&$�
��$�$���#�������%�������� search ��'		���%�� (model) ���$�%��4�,

'		 minimum structure ���$����'$��#�'		���%���������,"��� fit ���$>%����(/���#����01��!>�������

���
#� X2
* �����������%��4�,��&������ inversion ��&� stable $���1&�

 ��� minimize
$�����&
�� ���
������� stationary point ���
$������ (1) ��&�$�������	��	 �

'%, m 01��
����������� ��5���1��
�����'��
$��� penalty functional '�� 01��$�%��4�,�����&

�m
� = (d - F[m])T Cd

-1 (d - F[m]) + � (m - m0)T Cm
-1 (m - m0), (2)

����������$��� � ��&�
���� ���� fixed ��� ����,����#� �U/�m = ���/�m �����&����
�$��!'��
$��� (2)

'�����
$������ (1) ���'"#"��� vary
#� � �(������3�����������
#� misfit ����������
������"�$���"�&�������

$������ (2) �(/�
$����� model space 01�� Siripunvaraporn et al. (2005) and

Siripunvaraporn and Egbert (2000) '
�������+��#����'��(B)���� model space ��&�$�����
��
���*�

��%����$��3 '%,�*���#��
��$���
>�$��3 Siripunvaraporn and Egbert (2000) and

Siripunvaraporn et al. (2005) �1��
�����'��(B)���� data space '��

 �����&���&�"��'��
�����'(%�
$������ (2) ��� model space �����>#�� data space 01��

�$��!�����������& ����������� '		���%�� m ����(/�6B��8*����� sensitivity matrix �����& m - m0 =

CmJT� �$��� �
�� unknown expansion coefficient vector �����&�
$������ (2) �,�%���(/�

�d
� = �-1 (� - JCm

TJT�)T Cd
-1 (� - JCm

TJT�) + (�TJCm
TJT�), (3)

�$��� J = [�F/�m]
�� N x M sensitivity matrix 01���(/�"���5�	������(%����'(%�������$>%���������

����(%����'(%���� model '%, � = d – F[m] + J(m - m0)

 8

��������� F[m] ��&��(/� non-linear problem �����&� iterative solutions �1�����(/� (Constable

et al., 1987) model response F[m] �1�����(/�"���!>� linearized �#������*� first order Taylor’s

series expansion,

F[m k+1] = F[m k] + Jk(m k+1 – m k), (4)

�$��� k
�� iteration number ������� stationary points ��� (3) ��������������� differentiate (3)

with respect to � �������#���'"#%, iteration �,$� solution �����&

mk+1 - m0 = CmJk
T Cd

-½ [� I + Cd
-½JkCmJk

T Cd
-½]-1 Cd

-½�k , (5)

�����������'��
$��� (1) �� data space �+
�� matrix ���"��������� invert $���������� N x N

��#���&� �$#�*� M x M ��$������������ model space �$��� N
�����������$>%'%, M
���������

'		���%��
�����	���$>%����$�"�$21�4��� Siripunvaraporn and Egbert (2000) and Siripunvaraporn

et al. (2005).

���'��
$������ (5)
�$��!������
����5� ��5�'���*��� WSINV3DMT
#����5����
��!>�����(�*�

�� WSDCG3DMT

WSINV3DMT : Data Space Occam’s Inversion

��5�'��
��
���� matrix J 0�� R = [� I + Cd
-½ JkCmJk

T Cd
-½] '%,��+	�$"��08��%#���&�����

��#��
��$��� �����&��+�*���5� Cholesky decomposition �����'��
$������ (5) ��5���&�(/���5�����*���

WSINV3DMT (Siripunvaraporn et al., 2005; Siripunvaraporn and Egbert, 2009) '%, DASOCC

(Siripunvaraporn and Egbert, 2000) ��5���&�,�(%�����#��
��$������������"�����+	�$"���08 J '%,

R 01��$����� N x M '%, N x N 01�����$�
#�
>�$���+���!�����������$>%$��

 9

WSDCG3DMT : Data Space Conjugate Gradient Algorithm

�����5���1������*�'��
$������ (5)
������*���5� conjugate gradient ��5���&�������$#"���
�����$"���08 J '%,

R ���"�����+	�������#��
��$������"#��(��
��
��&�1�(�,������#��
��$����(���$�� ������
��
��&���

�$#���
�����$"���08 J ���"��'"#���
�����9%
>�����$"���08 J ��	����"��8��3 �*#� Jx ���� JTy

��
��
��&�(/���
��
����*��� WSDCG3DMT ����
������(�'��$��&
���*���%���������#� WSINV3DMT

01���,'
�������+���"��!���(

���1%4 1 �&!0
��077),��$��������1��'
�'��#'$�&�������241$��'�������
$7/!�0���

������0������������ WSINV3DMT ��� WSDCG3DMT ��������1$
��

������$�#$�������1��'�)����
$7����
$�/!�0��� WSINV3DMT 0�� WSDCG3DMT ��7#'$�&�

����� (synthetic data) /����'077),��$�����&!��1 1 #'$�&������!���$7*!�'�� impedance tensor

����
�1 components ��������� 40
<������0��������<�1������� 16 ����<�1 #���#$�077),��$���+���7

28 x 28 x 21 �������#'$�&������ N = 40 x 16 x 8 = 5,120 0�� M = 28 x 28 x 21 = 16,464 ������$�

 10

�+$*!������7����41$��������� �4$7����41$� Intel Core Two Duo 6400, 2.13 GHz)��),����#'$�&����

���
����<!����
��+������),�#$�����
$�/!�0���*�'�+� WSINV3DMT �'$���'��+������),�<6� 1

GByte ��#
���1 WSDCG3DMT)���'�2��� 0.4 Gbyte L61��'$���+���4$7��61���61�

 ������$�0�� ������/!�0��� WSINV3DMT ��7 WSDCG3DMT ��1�����+� � = 100, 10,

1, 0.1, 0.01 %�������$�0
�����&!��1 2 L61�0
����'����
,����7�+� � #$� WSDCG3DMT ��1

converge
&+ 1 RMS ����)���'����������,�����'���+� WSINV3DMT L61���'�����2��� 300 ����

��#
���1 WSDCG3DMT
,����7�+� � = 1 0�� 0.1)���'����<6� 400 ����0�� 1600 ����

���1%4 2 0
������&+�#'����,��$7#$� WSINV3DMT (
��,�) 0�� WSDCG3DMT ��1���������+� � %�

������$�0
����'�����+� WSDCG3DMT ��'���������+� WSINV3DMT

 ������$������#'$
�������1�+�
��)���9 $����70�����4$ WSDCG3DMT ��1���+� �
&�)���'����

*������0�+�� iteration ��#
���1���+� � �1,�)���'���������+���� ��+���1 � = 100 iteration 0����'

����*�+<6� 20 ���� ��#
���1 � = 0.1 iteration 0����'�������<6� 700 ���� $�+����1
$�
,����7�+� �

 11

&�0�'�+�)���'����*�0�+��*�+
����<�&+�#'����,��$7*�'��� ��+���1 � = 100 0�� 10 0�+
,����7�+� � �1,�

)�
����<�&+�#'����,��$7*�' ��+���1 � = 1 0�� 0.1 $�+����1
���4$ iteration 0��)���'������������

�����1
;� iteration <��9 *!)���'�������������'$���*!��41$�9 ��+�
,����7 � = 0.1, iteration ��1��61�

$�
��0��
�1)���'�������!����
 700 ���� 500 ���� 400 ���� 0�� 200 ���� ����,���7

)��%�������$����������,���'���
����<�,�*!#���%��241$
�'�� Algorithm ���+#6����

WSMIX3DMT : a Mixed Scheme of DCG and Occam’s inversion

)��������$��74�$��'� ���27�+����
����<
�'��/!�0���#6�������+ /����'��+������),����4$�

WSDCG3DMT 0�+��+�����������������+����� WSDCG3DMT 0�� WSINV3DMT

�������#$�/!�0������+�����)�����%
����#$� WSDCG3DMT 0�� WSINV3DMT ���

�
����
���0�7)����4$���7 WSDCG3DMT 0�+�������#$�/!�0������+���)��+��9 �4$����!��1��

�+� � ��0�+�� iteration ��1��'����6���7 WSINV3DMT 0�+��+��������������)����1� iteration 0���'���+�

� ��1���+���� ��41$�)����41$ � ��� �����,������)�
����� /���U2����'��7 iteration 0��9 ��1�'$���'����

������,����
&�)���������)����+� � �� iteration <��*!��41$�9 ���0�+��1�,���� ��+����� 10 ��+�

�!"��'� ���$�+��#$�������/!�0��� ���1��'�)�� � = 1000 �� iteration 0��)��������)������!"� �

= 100 �� iteration ��1
$� 0���!"� � = 10 �� iteration ��1
�� *!��41$�9)�<6��+��'$���1
;�L61�����1������

�,����*�'��1 � = 0.1

������0������������ WSMIX3DMT ��� WSINV3DMT ��� WSDCG3DMT

�����
$7/!�0������+ WSMIX3DMT ��7#'$�&���������� 0������7%���1*�'��7
$�/!�0�����+�

��41$�)���
����
���#$�/!�0������+�������4$���7 WSDCG3DMT ���������+������),�)6���+����

0�+��41$�&��1����0�'�)������+�/!�0������+ WSMIX3DMT ����*���1
;� �4$��'�����'$���+� 100 ����*�+

�+�)����1��'��'���+� � ��1��+�*������
+�� WSDCG3DMT ��'���� 400 ����
+�� WSINV3DMT ��'

���� 300 ���� ���0
�����&!��1 3

 12

���1%4 3 0
������&+�#'����,��$7#$� WSINV3DMT (
��,�) 0�� WSDCG3DMT ��1 � = 1 (
�0��) 0��

WSMIX3DMT ��1���1��'�)�� � = 10000 (
���2&), 1000 (
��#���$+$�), 100 (
���,�����) 0�� 10 (
��Y�

$+$�) ��7#'$�&�������&!��1 1 %�������$�0
����'�����+� WSMIX3DMT ��'����*���+�����

WSDCG3DMT 0�� WSINV3DMT

���1%4 4 0
������&+�#'����,��$7#$� WSINV3DMT (
��,�) 0�� WSDCG3DMT ��1 � = 1 (
�0��) 0��

WSMIX3DMT ��1���1��'�)�� � = 1000 (
��#���$+$�) 0�� 100 (
���,�����) ��7#'$�&� EXTECH)���

(Tuncer et al, 2006) %�������$�0
����'�����+� WSMIX3DMT ��'����*���+����� WSDCG3DMT

0�� WSINV3DMT

 13

�$�)���������/!�0������+0����+�<&��,�*!��
$7��7#'$�&�)��� EXTECH data (see Tuncer

et al., 2006) 27�+���'%���1���4$���� �4$ WSMIX3DMT (
���,�����0���#���) *���+����� WSINV3DMT

(
��,�) 0�� WSDCG3DMT (
�0��) 0�������'��+������),���+���7 WSDCG3DMT L61��'$���+�

WSINV3DMT ���9 ���0
�����&!��1 4

�-���

���*�'2�[��/!�0������+#6���� WSMIX3DMT /!�0������������)��
$�/!�0�����+��4$

WSINV3DMT 0�� WSDCG3DMT �
����
���#$�/!�0������+)����4$���7 WSDCG3DMT 0�+

�������)���'����7 WSINV3DMT �4$ vary � *!��0�+�� iteration 0�+��
����)���4$����1��'���1 � ���

�+$���1)��+$�9 ���� %�������$�������7#'$�&������0��#'$�&�)���27�+� /!�0��� WSMIX3DMT ��'

��+������),���+���7 WSDCG3DMT L61��'$���+� WSINV3DMT ���9 0�+��#
�������������'������

�������'$�����+�/!�0�����+�
$�<6�
����+�

 14

��
�
7��������
� Boonchaisuk, S., Vachiratienchai, C., Siripunvaraporn, W., 2008, Two-dimensional direct current (DC) resistivity inversion:

Data space Occam's approach, Physics of the Earth and Planetary Interiors 168 (3-4), pp. 204-211

� Boonchaisuk, S., Satitpitakul, A., Vachiratienchai, C., Nualkhow, P., Amatyakul, P., Unhapipat, S., Rung-Arunwan, T.,

Sarakorn, W., Siripunvaraporn, W, and Ogawa, Y., 2010, Three-dimensional crustal resistivity structure beneath

Kanchanaburi province, Wester part of Thailand., SPC 2010, Kanchanaburi, Thailand, 25-27 March.

� Constable, C. S., Parker, R. L., and Constable, C.G., 1987, Occam's inversion: A practical algorithm for generating

smooth models from electromagnetic sounding data: Geophysics, 52, 289-300.

� Jones, A. G., 1992, Electrical conductivity of the continental lower crust, in Fountain, D. M., Arculus, R. J., and Kay, R. W.,

Eds., Continental Lower Crust: Elsevier Science Publ. Co., Inc., 81-143.

� Orange, A. S., 1989, Magnetotelluric Exploration for Hydrocarbons: Proc. IEEE, 77, 287-317.

� Patro P., Uyeshima M., and W. Siripunvaraporn, 2010, Three-dimensional inversion of magnetic phase tensor, submitted

Geophysical Journal International,
� Siripunvaraporn, W., Egbert, G. D., Eisel, M., and Unsworth, M., 1998, A High Resolution EM Survey of the San Andreas

Fault (SAF): Local Conductivity Structure in a Regional Context: Eos, Trans. Am. Geophys. Union, 79, 45, Fall Meet.

Suppl., F227.

� Siripunvaraporn W. and Egbert, G. D., 2000, An Efficient Data-Subspace Inversion for Two-Dimensional Magnetotelluric

Data, Geophysics, 65, 791-803.

� Siripunvaraporn, W., M. Uyeshima and G. Egbert, 2004, Three-dimensional inversion for Network-Magnetotelluric data,

Earth Planets Space, 56, 893-902.

� Siripunvaraporn, W., G. Egbert, Y. Lenbury and M. Uyeshima, 2005, Three-Dimensional Magnetotelluric Inversion: Data

Space Method, Phys. Earth and Planet. Interior., 150, 3-14.

� Siripunvaraporn W. and G. Egbert, 2007, Data Space Conjugate Gradient Inversion for 2-D Magnetotelluric Data,

Geophysical Journal International, 170, 986-994.

� Siripunvaraporn W. and G. Egbert, 2009, WSINV3DMT: Vertical Magnetic Field Transfer Function Inversion and Parallel

Implementation, Physics of the Earth and Planetary Interiors 173 (3-4), pp. 317-329

� Siripunvaraporn W., and W. Sarakorn, 2010, An efficient three-dimensional Magnetotelluric inversion: a mixed of the data

space conjugate gradient method and the data space Occam’s method, submitted to Geophysical Journal International.
� Tuncer V., M. Unsworth, W. Siripunvaraporn, J. Craven, 2006, Audio-magnetotelluric exploration for unconformity type

uranium deposits at the McArthur River Mine, northern Saskatchewan (Canada), Geophysics, 71, B201-209.

� Unsworth M., P. Bedrosian, M. Eisel, G. Egbert and W. Siripunvaraporn, 2000, Along strike variations in the electrical

structure of the San Andreas Fault at Parkfield, California, Geop. Res. Lett., 27, 3021-3024.

� Vozoff, K., 1972, The Magnetotelluric Method in the Exploration of Sedimentary Basins: Geophysics, 37, 98-141.

 15

Output 1%4@$�	���������

�����B%'��'�E����
����&��������&�B� (submitted and revised)

� Siripunvaraporn W., and W. Sarakorn, 2010, An efficient three-dimensional Magnetotelluric

inversion: a mixed of the data space conjugate gradient method and the data space

Occam’s method, submitted to Geophysical Journal International.

� Rung-Arunwan T. and W. Siripunvaraporn, 2010, An efficient modified hierarchical domain

decomposition for 2-D Magnetotelluric forward modeling, submitted Geophysical Journal
International, moderate revision.

�����B%'��'�E����
����&��������&�B� (published)

� Siripunvaraporn W. and G. Egbert, 2009, WSINV3DMT: Vertical Magnetic Field Transfer

Function Inversion and Parallel Implementation, Physics of the Earth and Planetary Interiors

173 (3-4), pp. 317-329

� Kalscheuer, T., Pedersen, L.B., Siripunvaraporn, W., 2008, Radiomagnetotelluric two-

dimensional forward and inverse modelling accounting for displacement currents,

Geophysical Journal International 175 (2), pp. 486-514

� Boonchaisuk, S., Vachiratienchai, C., Siripunvaraporn, W., 2008, Two-dimensional direct

current (DC) resistivity inversion: Data space Occam's approach, Physics of the Earth and
Planetary Interiors 168 (3-4), pp. 204-211

Software

� Siripunvaraporn W., 2010, WSMIX3DMT; Three-Dimensional inversion program based on

a mixed of the data space conjugate gradient technique and the Occam’s method. The

code is written with Fortran 77/95.

 16

���0
�������E�1%4���&-���&��������&�B����
���

� Weerachai Siripunvaraporn, 2010, A combined DCG and OCCAM algorithm for three-

dimensional Magnetotelluric Data, Japan Geosciences Union Meeting, 2010, Chiba, Japan,

May 23 – 28.

� Noriko Tada, Kiyoshi Baba, Weerachai Siripunvaraporn, Makoto Uyeshima and Hisashi

Utada, 2010, 3-D inversion of marine Magnetotelluric data, Japan Geosciences Union

Meeting, 2010, Chiba, Japan, May 23 – 28.

� Noriko Tada, Kiyoshi Baba, Weerachai Siripunvaraporn, Makoto Uyeshima and Hisashi

Utada, 2009, Toward 3-D inversion of seafloor MT data, Japan Geosciences Union Meeting

2009, Chiba, Japan, May 16 – 21.

� Thomas Kalscheuer, Laust B. Pedersen and Weerachai Siripunvaraporn, 2008,

Radiomagnetotelluric two-dimensional forward and inverse modeling accounting for

displacement currents, Induction Workshop #19, Beijing, China, Octorber 23-29.

� Noriko Tada, Kiyoshi Baba, Weerachai Siripunvaraporn, Makoto Uyeshima and Hisashi

Utada, 2008, Modification of a 3-D Magnetotelluric forward code considering topography

effect in order to estimate 3-D conductivity structures of oceanic upper mantle using

inversion method, Induction Workshop #19, Beijing, China, Octorber 23-29.

� Uyeshima M, Ogawa T, Yamaguchi S, Murakami H, Toh H, Yoshimura R, Oshiman N, Tanbo

T, Koyama S, Mochizuki H, Marutani Y, Usui Y, and Siripunvaraporn W, 2008, 3-D resistivity

structure in the vicinity of the Atotsugawa fault revealed by a Network-MT survey, Induction

Workshop #19, Beijing, China, Octorber 23-29.

� Weerachai Siripunvaraporn, Gary Egbert and Hishi Utada, 2008, Current version of

WSINV3DMT, Induction Workshop #19, Beijing, China, Octorber 23-29.

� Weerachai Sarakorn, Weerachai Siripunvaraporn and Gary Egbert, 2008, Three-

dimensional Magnetotelluric modeling using finite element method: Tetrahedral and

 17

hexahedral elements, comparison to finite difference method, Induction Workshop #19,

Beijing, China, Octorber 23-29.

� Gary D Egbert and Weerachai Siripunvaraporn, 2008, Hybrid Occam/Conjugate Gradient

Methods for Practical Electromagnetic Inversion, Induction Workshop #19, Beijing, China,

Octorber 23-29.

� Puwis Amatyakul and Weerachai Siripunvaraporn, 2008, A joint inversion of direct-current

resistivity and Magnetotelluric data, Induction Workshop #19, Beijing, China, Octorber 23-

29.

� Tawat Rung-Arunwan and Weerachai Siripunvaraporn, 2008, Domain decomposition for 2D

Magnetotelluric forward modeling, Induction Workshop #19, Beijing, China, Octorber 23-29.

� Noriko Tada, Weerachai Siripunvaraporn, Makoto Uyeshima, Kiyoshi Baba, Hisashi Utada,

2008, Development of marine 3D MT inversion scheme, J a p a n G e o s c ie n c e U n i o n

M e e t i n g 2 0 0 8 , May 25-30, Chiba, Japan.

� Uyeshima, M., R. Yoshimura, T. Ogawa, S. Yamaguchi, H. Murakami, H. Toh, N. Oshiman,

S. Koyama, T. Tanbo, Y. Usui, H. Mochizuki, W. Siripunvaraporn, and Research Group for

Crustal Resistivity Structure in the NKTZ Concentrated Deformation Zone, 2008, 3-D

resistivity structure beneath the Atotsugawa Fault zone revealed by the Network-MT

observations, The Japan Geoscience Union Meeting 2008, May 25-30, Chiba, Japan

 18

+������

+������ �. Manuscript

� Siripunvaraporn W., and W. Sarakorn, 2010, An efficient three-dimensional Magnetotelluric

inversion: a mixed of the data space conjugate gradient method and the data space

Occam’s method, submitted to Geophysical Journal International.

+������ ". Manuscript

� Rung-Arunwan T. and W. Siripunvaraporn, 2010, An efficient modified hierarchical domain

decomposition for 2-D Magnetotelluric forward modeling, submitted Geophysical Journal
International, moderate revision.

+������ �. Reprint

� Siripunvaraporn W. and G. Egbert, 2009, WSINV3DMT: Vertical Magnetic Field Transfer

Function Inversion and Parallel Implementation, Physics of the Earth and Planetary Interiors

173 (3-4), pp. 317-329

+������ �. Reprint

� Kalscheuer, T., Pedersen, L.B., Siripunvaraporn, W., 2008, Radiomagnetotelluric two-

dimensional forward and inverse modelling accounting for displacement currents,

Geophysical Journal International 175 (2), pp. 486-514

+������ 	. Reprint

� Boonchaisuk, S., Vachiratienchai, C., Siripunvaraporn, W., 2008, Two-dimensional direct

current (DC) resistivity inversion: Data space Occam's approach, Physics of the Earth and
Planetary Interiors 168 (3-4), pp. 204-211

 19

+������ �. Manuscript

� Siripunvaraporn W., and W. Sarakorn, 2010, An efficient three-dimensional Magnetotelluric

inversion: a mixed of the data space conjugate gradient method and the data space

Occam’s method, submitted to Geophysical Journal International.

1�

�

An efficient three-dimensional Magnetotelluric inversion: a mixed of the data space

conjugate gradient method and the data space Occam’s method

Weerachai Siripunvaraporn 1,2 and Weerachai Sarakorn3

1Department of Physics, Faculty of Science, Mahidol University, Rama 6 Rd., Rachatawee,

Bangkok 10400, THAILAND.

2 ThEP, Commission of Higher Education, 328 Si Ayuthaya Road, Bangkok 10400, THAILAND

3Department of Mathematics, Faculty of Science, Mahidol University, Rama 6 Rd., Rachatawee,

Bangkok, 10400, THAILAND.

Abstract

In this paper, we start with the implementation and extension of the data space conjugate

gradient (DCG) method previously developed for the two-dimension (2-D) to the three-

dimension (3-D) Magnetotelluric (MT) data, and will be referred to as WSDCG3DMT. Synthetic

experiments show that WSDCG3DMT usually spends computational time longer than the data

space Occam’s inversion (WSINV3DMT). However, memory requirement of WSDCG3DMT is

only a fraction of WSINV3DMT. Knowledge and information gained from the synthetic studies

of WSDCG3DMT has led to a creation of a mixed scheme (WSMIX3DMT) of the data space

conjugate gradient and the data space Occam’s methods. WSMIX3DMT is a slight modification

of WSDCG3DMT but enhancing so that its computational time is several factors lower than both

WSINV3DMT and WSDCG3DMT. Because WSMIX3DMT is a modification of

WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in

WSDCG3DMT. This makes WSMIX3DMT as the most efficient inversions. Computational

performances and comparisons of all three methods are demonstrated with both synthetic and

EXTECH field datasets.

2�

�

1. Introduction

Recently, number of three-dimensional (3-D) magnetotelluric (MT) surveys is substantially

increased worldwide (e.g., Tuncer et al., 2006; Patro and Egbert, 2008, among many others).

This might be due to the fact that MT has increasingly accepted by many geophysicists and

seismologists. Another factor is the improvements of the data acquisition units, the measurement

sensors and their accessories. Examples of MT uses are for geothermal explorations (e.g., Heise

et al., 2008; Árnason et al., 2010), volcanoes and tectonic studies (Uyeshima, 2007; Patro and

Egbert, 2008; Hill et al., 2009; Ingham et al., 2009) and ore explorations (Tuncer et al., 2006;

Queralt et al., 2007; Farquharson and Craven, 2008; Türko�lu et al., 2009; Goldax and

Kosteniuk, 2010). All of these have led to a higher demand for 3-D MT inversion codes for

interpretation.

Currently, a number of 3-D MT inversion algorithms have been developed (e.g. Mackie

& Madden 1993; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki 2001; Mackie,

personal communication 2002; Siripunvaraporn et al. 2004, 2005; Sasaki and Meju, 2006; Han et

al., 2008; Lin et al., 2008,2009; Farquharson and Craven, 2008; Adveed and Adveed, 2009;

Siripunvaraporn et al., 2009). All algorithms are designed to find “best” model that fits the data

but also “geologically” interpretable. One of the 3-D algorithms (and the only one currently

available to the MT communities) is the WSINV3DMT program by Siripunvaraporn et al. (2005;

2009). The algorithm’s idea was based on the Occam’s style inversion introduced for 1-D MT

data by Constable et al. (1987). Occam’s inversion is known for its robust calculation and its

efficiency. However, its disadvantage is the large memory requirements, and the extensive

computational time, particularly when applying to 2-D and 3-D modeling (Siripunvaraporn and

Egbert, 2000; Siripunvaraporn et al., 2005).

To reduce both storage and calculation time, Siripunvaraporn and Egbert (2000) and

Siripunvaraporn et al. (2004; 2005) transformed the original Occam’s inversion which is a model

space method into the data space Occam’s algorithm. The transformation makes it practical for

3-D MT inversion on most computers. However, WSINV3DMT still requires substantial

memory to store the N × M sensitivity matrix, where N and M are the data and model parameters,

respectively. Siripunvaraporn and Egbert (2007) used 2-D MT data to show that the large storage

can be avoid by using a data space conjugate gradient (DCG) approach.

3�

�

From the 2-D studies, Siripunvaraporn and Egbert (2007) concluded that the DCG

method can significantly reduce the memory usage. However, its computational time can be

longer than that of the data space Occam’s algorithm. Computational time of the DCG method is

controlled by the stopping criteria used inside the conjugate gradient (CG) algorithm when

solving the normal equation (Rx = b). The CG solver is terminated when the relative error (r =

||Rx – b||/||b||) reaches a given tolerance rtol. Smaller rtol (e.g., rtol < 10-2) requires many number

of CG iterations, while larger rtol (e.g., rtol = 10-1) requires significantly less but can cause the

inversion to fail to converge to the target misfit. Large number of CG iterations translates into

longer CPU time. Our 2-D studies also showed that rtol = 10-2 is the optimal tolerance value. The

model generated with rtol = 10-2 differs less than a percent from that generated with rtol = 10-8

but requires significantly less CPU time.

In addition, convergence rate of the DCG inversion also depends on the regularization

parameter �, which acts as a trade-off between the data norm and the model norm. Larger � (� >

10) demands small number of CG iterations per inversion iteration. However, the inversion could

not bring the misfit down to the desired misfit because large � produces very smooth model.

Smaller � (0.1 � � � 10) can reach the desired level of misfit but normally requires large number

of CG iterations per inversion iteration. However, if � is too small (� < 0.1), DCG can break

down. If it converges, it requires significantly large number of CG iterations and also produces

“very rough and spurious” structures which is not geologically interpretable.

Here, we directly implement and extend the data space conjugate gradient (DCG)

algorithm for the 3-D MT data. Hereafter, we will refer to the 3-D DCG method as

WSDCG3DMT. Numerical experiments are performed on a synthetic data in a similar way as

conducted in the 2-D experiments (Siripunvaraporn and Egbert, 2007). The objective is to verify

whether the conclusions learned from the 2-D cases remain the same or different for the 3-D data.

Knowledge gained from the synthetic studies has led us to a creation of a mixed scheme of the

Occam’s inversion and the DCG method. We will refer to a mixed scheme as WSMIX3DMT.

We start the paper with a brief review of the data space conjugate gradient method

(WSDCG3DMT) and its necessary mathematics. More details on the data space Occam’s

inversion and the data space conjugate gradient method can be found in many previous

publications (Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005; Siripunvaraporn

4�

�

and Egbert, 2007; and Boonchaisuk et al., 2008). Later, a mixed scheme (WSMIX3DMT)

between the DCG method and the Occam method is introduced. Numerical experiments on both

synthetic data and EXTECH data are performed with these three algorithms (WSINV3DMT,

WSDCG3DMT and WSMIX3DMT). Comparisons in terms of computational time and memory

are analyzed and discussed. A conclusion is given at the end.

2. Review of Data Space Conjugate Gradient Inversion

Consider a general objective functional � m,

 �m = �d + ��m = (d - F[m])T Cd
-1 (d - F[m]) + � (m - m0)T Cm

-1 (m - m0), (1)

where �d a data norm, �m a model norm, m the resistivity model of dimension M, m0 the prior

model, Cm the model covariance matrix, d the observed data with dimension N, F[m] the

forward model response, Cd the data covariance matrix, and � a regularization parameter.

To minimize (1) in a data space method, we start with the transformation of the model

space objective functional (1) to a data space objective functional (2) by expressing a model as a

linear combination of rows of the smoothed sensitivity matrix (Parker, 1994), or m - m0 =

CmJT�. Then, (1) becomes

�d = (� - JCm
TJT�)T Cd

-1 (� - JCm
TJT�) + � (�TJCm

TJT�), (2)

where J = �F/�m is an N × M sensitivity matrix, and � = d – F[m] + J(m - m0). To minimize (2),

F[mk+1] is linearized with the first order Taylor series expansion, as F[mk+1] = F[mk] + Jk

(mk+1 - mk), when k is an inversion iteration number. Differentiating (2) with respect to � and

rearranging, an iterative sequence of approximate solutions can be obtained as,

mk+1 - m0 = CmJk
T Cd

-½ [� I + Cd
-½JkCmJk

T Cd
-½]-1 Cd

-½�k , (3)

where I is an identity matrix.

There are two methods to solve (3). First method is to explicitly form J and R = [� I +

Cd
-½ JkCmJk

T Cd
-½] and store them in the computer memory. R will be factorized into lower and

upper matrices (LU-factorization), and then solved with backward and forward substitutions.

5�

�

This method is used in WSINV3DMT program for 3-D MT data (Siripunvaraporn et al., 2005;

Siripunvaraporn and Egbert, 2009) and DASOCC for 2-D MT data (Siripunvaraporn and Egbert,

2000). This scheme requires substantial amount of RAM to store N × M J and also N × N R

matrices. This could prohibit a run on very large data sets, particularly for 3-D cases.

Instead of forming and decomposing R as in WSINV3DMT, an alternative method is to

solve (3) with an iterative solver. Because R is theoretically symmetric, (3) is commonly solved

with a conjugate gradient (CG) method as in many MT inversion algorithms (see Mackie and

Madden, 1993; Siripunvaraporn and Egbert, 2007; Lin et al., 2008). One clear advantage of

using CG to solve (3) is that the large N × M sensitivity matrix J is not explicitly formed and

stored in the computer memory. Only a product of J or JT with an arbitrary vector is required by

solving one forward problem per period (see Mackie and Madden, 1993; Newman and

Alumbaugh, 2000; Rodi and Mackie, 2001; Siripunvaraporn and Egbert, 2007; Lin et al., 2008).

Two routines to compute Jp and JTq are therefore implemented here for the 3-D problem, where

p and q are general M × 1 and N × 1 vectors, respectively. This method is used in

WSDCG3DMT.

The data space conjugate gradient algorithm and the routines to explicitly form J and to

compute Jp and JTq are briefly described in the following sub-sections.

2.1 Data Space Conjugate Gradient Algorithm (WSDCG3DMT)

The data space conjugate gradient algorithm denoted as WSDCG3DMT has two iterative loops.

The outer loop which is a main inversion loop is to minimize (2), while the inner loop is to

minimize Rx = b in (3) with a conjugate gradient (CG) method where R = [� I + Cd
-½JCmJT

Cd
-½], b = Cd

-½� and x = Cd
½� (see Barrett et al., 1994 for Preconditioned Conjugate Gradient

algorithm). The algorithm was summarized in Figure 2 of Siripunvaraporn and Egbert (2007),

and is repeatedly presented below with more explanations.

6�

�

Reading inputs and initializing variables.

Start DCG “outer” loop to minimize (2) : iteration k

1. Compute �k = d – F[mk] + Jk(mk – m0)

2. Start DCG “inner” loop by using CG to solve Rkx = b

2.1 Initialization: x(0) = 0; r(0)
 = b, where r = ||Rx – b||/||b||.

for icg = 1,2,…,ncgmax or ||rTr|| < rtol, where icg a CG iteration number, ncgmax a

maximum number of CG iterations, and rtol a stopping tolerance level.

2.2 z(icg-1) = r(icg-1)

2.3 �(icg-1) = rT
(icg-1) z(icg-1)

2.4 if (icg = 1) p(1) = z(0)

else

�(icg-1) = �(icg-1)/ �(icg-2)

 p(icg) = z(icg-1) + �(icg-1) p(icg-1)

endif

2.5 q(icg-1) = Rkp(icg)

2.6 �(icg-1) = �(icg-1)/ pT
(icg) q(icg)

2.7 x(icg) = x(icg-1) + �(icg) p(icg)

2.8 r(icg) = r(icg-1) - �(icg-1) q(icg)

2.9 if (||rTr|| < rtol) or (icg > ncgmax), then stop CG iteration and go to 3, else go to 2.2.

end icg

3. Compute mk+1 - m0 = CmJk Cd
-½x

7�

�

4. Compute F[mk+1] and RMS misfit ||Cd
-½(d – F[mk+1)||

5. Check condition;

5.1 exit if misfit below the desired level, go to 6;

5.2 continue if misfit is greater than the desired level, go to 1;

6. End DCG outer loop.

Step 1 requires calling one forward routine for F[mk], and another call to compute Jk(mk – m0).

On step 2.1, system (3) is already normalized, therefore there is no preconditioner here. Step 2.5

is a “key” for the CG solver. It requires two forward modeling calls to compute s = Jk
T Cd

-½p(icg)

and JkCms. Step 3 demands one forward modeling call to compute Jk Cd
-½x. Step 4 requires

another forward modeling call to compute the model responses F[mk+1]. Overall, numbers of

forward modeling calls to compute the model response is two per outer loop iteration per period,

and to compute a multiplication of J or JT with a vector is 2 + 2Ncg per outer loop iteration per

period, where Ncg is a number of CG iterations. A total number of forward modeling calls would

therefore be 4 + 2Ncg per period per outer loop iteration.

2.2 Forward Modeling and Sensitivity Calculation

Given an electrical conductivity () or resistivity (�) model, to yield MT responses at the surface,

the electric fields (E) are computed from the second order Maxwell's equation,

 �
 � E = i�µ	E, (4)

where � is an angular frequency and
 the magnetic permeability. Discretizing the model and

applying the staggered grid finite difference approach to (4), we obtain a system of equations for

a given period or frequency,

 Se = b, (5)

8�

�

where e represents the unknown internal electric fields, b a vector containing the terms

associated with the boundary electric fields, and S a large sparse symmetric and complex

coefficient matrix. System of equations (5) is solved with a quasi-minimum residual (QMR)

method per period and per polarization as in Siripunvaraporn et al. (2002). Surface responses can

then be obtained from a linear combination of a vector a associated at a measurement site and the

computed electric fields,

 F[m] = aTe = aTS-1b. (6)

To compute for the sensitivity J = �F/�m at a given period, equation (6) is differentiated

with respect to the model m,

 J = �F/�m = �(aTe)/ �m = aTS-1� + �, (7)

where � = �b/�m - (�S/�m)e and � = (�aT/�m)e. The process to form J is straightforward by

first constructing �, solving S-1�, multiplying the result with aT and finally adding with �. With

this technique, calculating S-1� would require solving the system of equations (5) M times per

period and per polarization (Rodi, 1976). This calculation can be very significant, particularly in

3-D cases.

To reduce number of forward callings, reciprocity property of the electromagnetic fields

(see Rodi, 1976; Mackie and Madden, 1993; Siripunvaraporn and Egbert, 2000) is applied to (7).

With the reciprocity, the process of computing J is modified by first solving (aTS-1)T, then

multiplying the result with �T before finally adding with �T. Using the reciprocity technique,

computing (aTS-1)T would require solving the system of equations (5) only Ns times per period

and per polarization (Rodi, 1976; Siripunvaraporn and Egbert, 2000), where Ns is the number of

observed stations which is typically a lot smaller than M, particularly in 3-D cases. The

reciprocity theorem helps significantly decreasing the computational time of the program

(Siripunvaraporn and Egbert, 2000).

2.3 Multiplication of J or JT to any vectors

To compute the product of J with a given vector p, equation (7) becomes

9�

�

 Jp = aTS-1�p + �p. (8)

The process is started with a multiplication of �p, then solving S-1�p, multiplying the result

with aT, and finally adding them with the product of �p. Similarly, to compute the product of JT

with a given vector q, equation (7) also becomes

 JTq = �T[ST]-1aq + �Tq. (9)

The process here is also straightforward. It starts with a multiplication of aq, because S = ST,

then solving S-1aq and multiplying them with �T, finally adding the result with �Tq. Equation

(8) and (9) show that each process requires solving the system of equations (5) only one times

per period and per polarization. Storage for J matrix is not necessary for (8) and (9) but required

for (7).

2.4 Theoretical Comparisons for Forming J and Its Multiplications

Both forming J and its multiplications (Jp or JTq) require solving the same system of equations

(5), but with different right hand sides. As in section 2.2 and 2.3, forming J requires solving (5)

with a as the right hand side, while computing Jp and JTq have �p and aq, as their right hand

sides, respectively. All vectors (a, �p and aq) are sparse, but �p and aq involve more non-zero

terms than a. Consequently, solving (5) with �p and aq as the right hand sides will require

larger number of QMR iterations than with just a as the right hand side to converge to the same

accuracy level. Similar behavior was also occurred in 2-D cases. Because system of equations for

2-D cases is small, the difference is therefore not significant. However, for 3-D case, the

difference in CPU time is noticeable and will be shown in the numerical experiments.

2.5 Parallel Implementation

Similar to WSINV3DMT (Siripunvaraporn and Egbert, 2009), we also implement our 3-D DCG

code on a parallel system. Although memory is not an issue for the DCG method, its extensive

runtime is still a big concern due to its numerous calls to the forward modeling routine. As in

WSINV3DMT, we parallelize WSDCG3DMT over frequencies via MPI (Message Passing

Interface) libraries. For DCG, the parallelization is relatively simple, just distributing the forward

10�

�

modeling call of each period to each processor node when computing the forward response F[m],

and calculating Jp and JTq. The simplicity occurs because there is no need to form and store the

cross-product R as in WSINV3DMT (Siripunvaraporn and Egbert, 2009).

3. Numerical Experiments on a Synthetic Data : WSDCG3DMT & WSINV3DMT

Here, before we introduce a mixed scheme of the data space conjugate gradient method and the

Occam’s inversion; we start with the repetitions of the same experiments we conducted with the

2-D MT data but now with the 3-D MT data. The goal of the experiments is to check whether the

same conclusions derived from the 2-D studies can be gained. In addition, we also compare the

results with WSINV3DMT in terms of computational time and memory.

Similar to Siripunvaraporn et al. (2005) and Siripunvaraporn and Egbert (2009), we use

the same synthetic model to generate a synthetic dataset for testing our codes. The synthetic

model consists of two anomalies, 1 �-m and 100 �-m buried next to each other inside a 10 �-m

layer lying on top of a 100 �-m half-space as illustrated in Figure 1 (Figure 4 in Siripunvaraporn

et al., 2005; Figure 3b in Siripunvaraporn and Egbert, 2009). The model mesh for the inversion

was discretized at 28 × 28 × 21 (+7 air layers) in x, y and z, respectively. The full complex

impedance data (Zxx, Zxy, Zyx and Zyy; i.e. Nm = 4) is generated for 40 MT sites (Ns = 40) located

regularly covering the two anomalies (solid dots in Figure 1) and 16 periods from 0.031 to 1000

second (Np = 16). Five percent Gaussian noise calculated from the data magnitude (|ZxyZyx|½) was

added to the impedance data. With this configuration, model parameter M would be equal to 28 ×

28 × 21 = 16,464, while data parameter N would be equal to 40 × 16 × 8 = 5,120. In this

experiment, all runs can be performed on a serial machine; an Intel Core Two Duo 6400, 2.13

GHz machine with 2 GBytes of RAM. Bigger model mesh or dataset would prohibit a run on this

serial machine for WSINV3DMT.

Our first test is to perform the WSDCG3DMT program with various � (� = 100, 10, 1,

0.1, 0.01) and two rtol (10-1 and 10-2) for the DCG inner loop or the CG loop. Convergence

behaviors of WSDCG3DMT for various � and different rtol as a function of time are shown in

Figure 2 in comparison to WSINV3DMT. An inverted model after four iterations from

WSDCG3DMT (� = 1 and rtol = 10-2) is shown in Figure 3. The inversion can recover both

11�

�

anomalies and the underlying layer similar to the inverted result from WSINV3DMT (Figure 6

of Siripunvaraporn et al., 2005).

For larger � (10 and 100) with rtol = 10-2, DCG cannot converge to the desired level of 1

RMS. It can only lower the misfit down in the first two iterations before idling. Similar to the 2-

D tests, larger � requires smaller number of CG iterations to solve the normal equation (3) per

outer loop iteration. This is reflected in a small amount of computing time as shown in Figure 2

(cyan and blue colors). For smaller � (1 and 0.1) with rtol = 10-2, DCG is able to converge to the

desired 1 RMS in four iterations. However, in contrast to larger �, it demands significantly large

number of CG iterations to solve (3) per one outer loop iteration. This is shown by a large

amount of computational time in Figure 2 (red and green), particularly for the first iteration.

Reducing number of CG iterations per main iteration would help decreasing a computer

runtime. One way is to set rtol to a larger value. Here, at 10-1. In all � cases with rtol = 10-1, DCG

has difficulty to converge to the target misfit of 1 RMS as seen in dash-lines of Figure 2. Larger

rtol would only help reducing computing time but not the convergence. In contrast, setting rtol to

smaller values (e.g., at 10-3 or less), number of inversion iterations to converge to the desired

misfit is the same as in the case of rtol = 10-2. Inverted model is also less than a percent difference.

Major difference is at the number of CG iterations per main inversion iteration which is

significantly larger for smaller rtol. These experiments show that rtol = 10-2 is appeared to be an

optimal tolerance level for terminating the CG iterations in the DCG inner loop.

For � = 0.01 or smaller, DCG fails to converge from the start. The sign of the divergence

can be observed or detected inside the CG solver after some number of CG iterations. This

becomes a very important and useful information. We can use it as a criterion to decide the

termination of the WSDCG3DMT code. Whenever a divergence inside the CG loop takes place,

program is stopped. The cause for the divergence behavior inside the CG loop is probably due to

the loss of the orthogonality of matrix R.

From all of these experiments, we can infer that both 2-D studies from Siripunvaraporn

and Egbert (2007) and 3-D studies here yield almost the same conclusions. Optimal convergence

occurs in the � ranges between 0.1 and less than 10, and also with rtol = 10-2.

Computational performance in term of memory and CPU time of WSDCG3DMT is then

compared with those from WSINV3DMT. Majority of the memory requirements for

12�

�

WSINV3DMT is to store J and R matrices which can be approximated from 8NM+8NN with

double precisions. This is about 1 GBytes in our test case. The code also requires less than 0.3

GBytes for storing S, �S/�m, and other parts for miscellaneous computations. For

WSDCG3DMT, we do not store J and R in the memory. One GBytes of RAM is therefore not

needed as in the case of WSINV3DMT. WSDCG3DMT requires only about 0.4 GBytes to store

many different matrices and vectors. This is about the same as the memory used for the

miscellaneous computations in WSINV3DMT.

In term of computational time, WSINV3DMT converges to the desired misfit within

three iterations in about 300 minutes as shown in a black line of Figure 2, while WSDCG3DMT

with � = 1 and � = 0.1 uses about 400 and 1600 minutes, respectively. This again shows that

computational time of WSINV3DMT is less than that of converged WSDCG3DMT. Thus, in

term of computational performance, one can clearly see that WSDCG3DMT has advantage in

terms of memory. However, its computational time can be significantly greater than that of

WSINV3DMT. A trade-off between computational time and memory used would be a factor for

users to decide. This is also similar to the 2-D studies (Siripunvaraporn and Egbert, 2007).

In 2-D studies, we did not compare CPU time, but number of forward modeling calls of

each algorithm. Here, similar analysis are performed for the 3-D cases. WSINV3DMT requires a

fix number of callings at NpNsNm + Np(N�+1) per inversion iteration to form the sensitivity and

compute the misfit, where N� is a number of � varied to search for the minimum misfit in each

iteration of the Occam’s inversion. In our experiments, for the first iteration, N� = 5, number of

forward modeling calls for WSINV3DMT is therefore at 2,656. For WSDCG3DMT, in each

iteration, number of forward modeling calls depends on a number of CG iterations (Ncg) in the

DCG inner loop, and equal to 4Np + 2NpNcg per inversion iteration as we previously discussed. In

our experiments, for the case � = 1 and rtol = 10-1, Ncg = 47 for the first iteration, number of

forward modeling calls is then at 1,568.

Although number of forward modeling calls of WSDCG3DMT is about 1,000 less than

WSINV3DMT, computational time is actually slightly longer for the first iteration of both

methods as shown in Figure 2. This indicates that for each forward modeling call,

WSDCG3DMT requires averagely longer runtime than that of WSINV3DMT. Because of more

complicated right hand sides in the system of equation (5) when computing Jp or JTq than

13�

�

forming J, as already stated in Section 2.4, it requires larger number of QMR iterations to

converge to the solution. This study shows that to test the efficiency of the inversion, just

counting number of forward modeling calls can be misleading (see Newman and Alumbaugh,

1997; Siripunvaraporn and Egbert, 2007).

Another interesting point for WSDCG3DMT is the reduction of the number of CG

iterations per outer loop iteration when misfit becomes lower. For example, in the case � = 1 and

rtol = 10-2, Ncg = 108, 48, 25 and 21, respectively, from the first to forth iteration of the main

inversion loop. This is reflected and shown with lesser CPU time for successive iterations in

Figure 2. The reduction of number of CG iterations occurs on every case in our examples. When

inverted solution gets closer to the “true” solution, normal equation (3) is probably lesser stiff

and therefore become easily to solve.

4. The mixed scheme of the DCG and Occam’s inversions (WSMIX3DMT)

Because DCG does not explicitly form and store the sensitivity matrix, DCG therefore requires

significantly less memory than the Occam’s inversion. However, the major drawback of the

DCG method is its computational time which could be longer than the Occam’s inversion. Here,

we propose a new scheme which is a mixed concept of both DCG and Occam and a modification

of the DCG method. Mathematics of the new scheme is in fact identical to the DCG method.

Thus, it maintains the memory advantage of the DCG method over the Occam’s style. However,

we intentionally design so that the new scheme spends computational time less than both DCG

and Occam. This would make the mixed scheme as the efficient inversion.

Assuming that the goal of the inversion is the same for both DCG and Occam that is to

bring the misfit down to the desired level. One distinct feature between both methods is at the �

value. In Occam’s inversion (Constable et al., 1987; Siripunvaraporn and Egbert, 2000;

Siripunvaraporn et al., 2005), in every iteration, � in equation (3) is varied in order to search for

the model producing the “least” RMS misfit (see Siripunvaraporn and Egbert, 2000;

Siripunvaraporn et al., 2005). With the Occam concept, � is posed as both the step length and the

regularization parameters. For the DCG method, � is pre-selected and fixed in every iteration as

shown in previous section in WSDCG3DMT. In DCG, � therefore acts like a regularization or

damping parameter.

14�

�

In our mixed scheme, the algorithm is based mainly on the DCG method. However, � is

not fixed but varied as both step length and regularization parameter similar to the idea of the

Occam’s inversion. The difference from the Occam’s method is we do not choose � that

minimize the RMS misfit, but we select � that can both lower the misfit down and at the same

time require small number of CG iterations per an outer loop iteration. The “optimal” � is

selected and varied based on our knowledge and experience gained from the studies in previous

section 3. It is therefore not exactly the same philosophy as in the Occam’s inversion, nor the

DCG, but a mixed of both. This is why we refer to this method as a mixed DCG and Occam or in

short WSMIX3DMT.

Based on earlier 3-D studies in section 3 and 2-D studies in Siripunvaraporn and Egbert

(2007), rtol for the inner CG loop is fixed at 10-2 as the optimal tolerance level for number of CG

iterations. For early iterations, larger � requires significantly smaller number of CG iterations

than smaller � and at the same time can lower the misfit down. We therefore choose to start our

mixed scheme with large �ini (e.g., �ini = 100 or larger). To further decrease the misfit down, � is

automatically reduced by a factor of � (e.g., � = 10) in the next iteration. This automatic

reduction is to avoid redundant computations as occurred when large � is fixed (Figure 2). A

reduction in � was used before in Kelbert et al. (2008) but only when the misfit is not decreased

in their non-linear conjugate gradient (NLCG) method. The automatic reduction in � is continued

successively for the next iterations until reaching �min (e.g., �min = 0.1). When � below �min, it

will set back to �min.

For example, �ini = 100, �min = 0.1 and � = 10 is input in the first iteration. Values of �

for the 2nd, 3rd and 4th iterations would be 10, 1 and 0.1, respectively. If the inversion continues,

5th iteration and so on will have � = 0.1. In addition, we also add a scheme to detect the

divergence. Within Ndiv CG iterations (e.g., Ndiv = 15), if the divergence occurs, there is a high

possibility that the inversion will fail to converge. If that happens, � is automatically increased

by a factor of � and re-start the process again. This “extra” step may cause redundant

computations but can help preventing the divergence inside the main inversion loop.

15�

�

4.1 Numerical Experiments of WSMIX3DMT and Comparisons with WSINV3DMT and

WSDCG3DMT

To check the efficiency of the WSMIX3DMT code, we apply it to the same synthetic data set

generated from model in Figure 1. Four values of �ini are used (�ini = 10000, 1000, 100 and 10)

with � = 10. Figure 4 shows convergence rates from the WSMIX3DMT program with various

initial �ini, in comparisons to those of WSINV3DMT (black) and WSDCG3DMT with � = 1

(red). Figure 4 shows that all runs can converge to the desired level within 3-4 iterations. Most

importantly, all WSMIX3DMT runs spend computational time less than both WSINV3DMT and

fixed � WSDCG3DMT. Inverted models from all runs with 1 RMS are similar to the inverted

model plotted in Figure 3.

When �ini is too large (i.e. at 10000), redundant computation is occurred in the first

iteration. Although the first iteration with �ini = 10000 runs very quick, it does not greatly reduce

the misfit. When � is decreased to 1000 in the next iteration. The misfit in this case is almost the

same as starting the run with �ini = 1000. The first iteration of �ini = 10000 is therefore redundant

and unnecessary. Starting the mixed inversion with �ini � 10 requires large computational time

due to large number of CG iterations used in the first iteration. In addition, � is decreased

quickly to 1 and 0.1 in the next few iterations and would demand large number of CG iterations.

In this case, we do not gain advantage of small number of CG iterations used from larger �. It

therefore become less effective as in WSDCG3DMT. Thus, we should avoid to start

WSMIX3DMT with smaller � or very large �.

From the experiments, the “optimal” � to start with would be around 100 to 1000 (Figure

4). Both cases spends computational time at about 100 minutes compared to 300 minutes of

WSINV3DMT and 400 minutes of WSDCG3DMT. In addition, WSMIX3DMT requires

memory the same as WSDCG3DMT, i.e. less than 0.4 Gbytes for this dataset, which is several

factors less than WSINV3DMT. WSMIX3DMT which is a combination of DCG and Occam is

the most efficient method compared to both WSINV3DMT and WSDCG3DMT.

Further studies show that � around 10 is the optimal value. If � too small, redundant

computations can be occurred. If too large, WSMIX3DMT would not gain much advantage from

smaller number of CG iterations when large � used. This makes WSMIX3DMT less efficient.

16�

�

5. Applications of WSMIX3DMT, WSDCG3DMT and WSINV3DMT to EXTECH data

To show the efficiency of our mixed scheme WSMIX3DMT in comparisons to the

WSDCG3DMT and WSINV3DMT codes, we applied all three codes to the EXTECH dataset

(Tuncer et al., 2006) conducting around the McArthur River mine, Saskatchewan, Canada

(Figure 2 of Tuncer et al., 2006). The data consists of both impedance tensor (Zxx, Zxy, Zyx and

Zyy) and the vertical magnetic field transfer function (VTF; Tzx and Tzy) for 131 stations and 16

periods (from 8000 Hz to 5 Hz). The data parameter N is therefore equal to 25,152. In all runs,

minimum error bars for VTF is set at 15% of (|Tzx|2+|Tzy|2)½ and 5% of |ZxyZyx|½ for off-diagonal

and 50% for diagonal terms. A 1000 � m half-space is used as an initial model and a prior model

(m0) and is discretized at 56 × 56 × 33 (+7 air layers). The model parameter M is therefore at

103,488.

To show the efficiency of the parallel codes, all runs are performed on a cluster computer

which consists of 8 processor nodes with 8 GBytes in memory each. With 16 period data, two

periods are distributed to compute on each processor node. In terms of memory, WSINV3DMT

requires about 5 GBytes to store its two period sensitivities and the cross-product matrices. It

also requires about 1 GBytes additional to store other necessary components. In contrast to

WSINV3DMT, both WSDCG3DMT and WSMIX3DMT require less than 1 GBytes of RAM to

perform the inversion of this EXTECH dataset. The EXTECH dataset and the model mesh used

above are already at a maximum limitation of the cluster for WSINV3DMT. Because

WSDCG3DMT and WSMIX3DMT use significantly less memory, they can therefore be applied

on a bigger dataset and a bigger mesh on this cluster. However, here, same parameters are used

for comparisons.

Convergence behaviors of the three methods are plotted in Figure 5 as a function of time

in minutes. From Figure 5, WSINV3DMT requires about 870 minutes in 3 iterations to converge

to its minimum at 1.52 RMS. After the 3rd iteration, the misfit is fluctuated above the minimum

RMS. WSDCG3DMT with � = 1 also requires 3 iterations to converge to 1.50 RMS but uses

longer CPU time at about 1040 minutes. After the 3rd iteration, WSDCG3DMT increases its

RMS to 1.57 in the 4th iteration and is terminated because of the divergence. With � < 0.5, the

WSDCG3DMT code diverges and fails after its first iteration.

17�

�

For our mixed scheme, WSMIX3DMT with �ini = 100 can converge to 1.47 RMS

slightly below the level of both WSINV3DMT and WSDCG3DMT in 3 iterations. Most

importantly, the computational time is only about 450 minutes, about half of WSINV3DMT and

WSDCG3DMT. At the 4th iteration when � is reduced to 0.1, the scheme detected the divergence

occurring inside the CG loop. The code is then re-started with a bigger � = 1 on the 4th iteration.

The process of increasing � will cost some extra computational time. With the divergence

detection scheme, the code can continue to run for several iterations.

After continuing the run, WSMIX3DMT can further reduce the misfit below the level

that both WSINV3DMT and WSDCG3DMT can attain. At 5th iteration with � = 1, the misfit is

at the lowest RMS of 1.34. However, these 0.13 RMS difference from 3rd to 5th iteration require

computational time almost 14 hours; about twice longer than the CPU time at the 3rd iteration.

One can therefore stop at the 3rd iteration because the inverted models at the 3rd and 5th iteration

are slightly different.

Convergence behavior from starting WSMIX3DMT with �ini = 1000 is redundant in early

iterations similar to starting with �ini = 100, as shown in Figure 5. It therefore spends “extra”

CPU time longer. Overall, it can still converge below 1.5 RMS within 500 minutes faster than

both WSINV3DMT and WSDCGMT methods.

Inverted model from the 5th iteration of WSMIX3DMT starting with �ini = 100 is shown

in Figure 6. It is similar to the inverted model from WSINV3DMT (Figure 11 of Siripunvaraporn

and Egbert, 2009). Major differences are at the two conductors. Here, conductor on the eastern

part of the profiles oriented in the NE-SW direction can be seen as shallow as 500 m depth.

Northern conductor seems to be continuous from 800 m to 1.3 km depth. The difference of the

two inverted models (Figure 6 here and Figure 11 of Siripunvaraporn and Egbert, 2009) and

detail interpretation is beyond our scopes in this paper. For detail discussion of the EXTECH

data set can be found in Tuncer et al. (2006) and Farquharson and Craven (2008).

6. Conclusions

In this paper, we implement and extend the data space conjugate gradient inversion for three-

dimensional Magnetotelluric data (WSDCG3DMT). Numerical experiments on 3-D synthetic

data show that WSDCG3DMT with some � can converge to the desired level of misfit but often

18�

�

spends longer computational time than the data space Occam’s inversion (WSINV3DMT).

However, because the whole sensitivity matrix is not explicitly formed and stored, its memory

requirements are therefore minimal at a fraction of WSINV3DMT. This makes WSDCG3DMT

practical for large to very large data set.

Based on the numerical experiments of WSDCG3DMT on synthetic data, number of CG

iterations depends greatly on the � values used. Larger � usually requires smaller number of CG

iterations per main inversion iteration but hardly converge to the “true” solution. Smaller �

requires larger number of CG iterations per main iteration but can converge to the desired level

of misfit. However, if � is too small, it can diverge. Computational time varies proportionally to

the number of CG iterations. Thus, to use less CPU time, number of CG iterations per outer loop

iteration must be minimized.

The information learned from the synthetic studies has inspired and led us to the creation

of the mixed scheme of the Occam’s and DCG methods or WSMIX3DMT. In DCG scheme, � is

fixed as a regularization parameter. In Occam’s inversion, � is varied as both step length and

regularization parameters. In our mixed scheme, � is varied but not in the same way as in the

Occam’s inversion. Instead of choosing � that generates a model with smallest misfit as in

Occam, we prefer � that minimizes number of CG iterations but at the same time can reduce the

misfit. With this strategy, � should initially start from large value before reducing to smaller

value for the next subsequent iterations. Our studies shows that � between 100 to 1000 are the

optimal � to start with for the WSMIX3DMT code.

By applying all three algorithms (WSMIX3DMT, WSDCG3DMT and WSINV3DMT)

on both synthetic and EXTECH field data, our mixed scheme (WSMIX3DMT) is significantly

faster than both WSDCG3DMT and WSINV3DMT. Similar to WSDCG3DMT, it requires

insignificant amount of memory. Because both computational time and memory performances

are at minimum, we can conclude here that WSMIX3DMT is the most efficient inversion.

19�

�

7. Acknowledgements

This research has been supported by the Thai Center of Excellence in Physics (ThEP) and by

Thailand Research Fund (TRF: RMU5080025). The authors would like to thank XXX and XXX

and the editor for their comments to help improve the manuscript. The authors would like to

thank Jim Carven for allowing us to use EXTECH data sets

8. References

� Avdeev, D., and Avdeeva, A., 2009, 3D Magnetotelluric inversion using a limited-memory

quasi-Newton optimization, Geophysics, 74, F45-F57.

� Árnason, K., Eysteinsson, H., Hersir, G.P., 2010, Joint 1D inversion of TEM and MT data

and 3D inversion of MT data in the Hengill area, SW Iceland, Geothermics, 39, 13-34

� Barret, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,

R., Romine, C., and Van der Vorst, H., 1994, Templates for the solution of linear systems:

Building blocks for iterative methods: Soc. Ind. Appl. Math.

� Boonchaisuk, S., C. Vachiratienchai and W. Siripunvaraporn, 2008, Two-dimensional direct

current (DC) resistivity inversion: data space Occam’s approach, Phys. Earth. Planetary

Interiors, 168, 204-211.

� Constable, C. S., Parker, R. L., and Constable, C.G., 1987, Occam's inversion: A practical

algorithm for generating smooth models from electromagnetic sounding data, Geophysics,

52: 289-300.

� Goldak, D. and Kosteniuk, P., 2010, 3D Inversion of Transient Magnetotelluric Data: an

Example from Pasfield Lake, Saskatchewan, EGM 2010 International Workshop, 11-14

April, 2010. Capri, Italy.

� Farquharson C.G., and Craven, J.A., 2008, Three-dimensional inversion of Magnetotelluric

data for mineral exploration: An example from the McArthur River uranium deposit,

Saskatchewan, Canada., Jour. Applied. Geophysics., 68, 450-458.

� Han, N., Nam, M.J., Kim, H.J., Lee, T.J., Song, Y., Suh, J.H., 2008, Efficient three-

dimensional inversion of Magnetotelluric data using approximate sensitivities, Geophys. J.

Inter, 175, 477-485.

20�

�

� Heise, W., Caldwell, T.G., Bibby, H.M., Bannister, S.C., 2008, Three-dimensional modelling

of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New

Zealand, Geophys. J. Inter, 173, 740-750.

� Hill, G.J., Caldwell, T.G., Heise, W., Chertkoff, D.G., Bibby, H.M., Burgess, M.K., Cull, J.P.,

Cas, R.A.F., 2009, distribution of melt beneath Mount St Helens and Mount Adams inferred

from Magnetotelluric data, Nature Geoscience, 2, 785-789.

� Ingham, M.R., Bibby, H.M., Heise, W., Jones, K.A., Cairns, P., Dravitzki, S., Bennie, S.L.,

Caldwell, T.G., Ogawa, Y., 2009, A Magnetotelluric study of Mount Ruapehu volcano, New

Zealand, 2009, Geophys. J. Inter., 179, 887-904.

� Kelbert, A., Egbert, G.D., and Schultz, A., 2008, Non-linear conjugate gradient inversion for

global EM induction: resolution studies, Geophys. J. Int, 173, 365-381.

� Lin, C., Tan, H., and Tong, T., 2009, Parallel rapid relaxation inversion of 3D

Magnetotelluric data, Applied Geophysics, 6, 77-83.

� Lin, C., Tan, H., and Tong, T., 2008, Three-dimensional conjugate gradient inversion of

Magnetotelluric sounding data, Applied Geophys., 5, 314-321.

� Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using

conjugate gradients, Geophys. J. Int, 115: 215-229.

� Newman, G. A., and D. L. Alumbaugh, 1997, Three-dimensional massively parallel

electromagnetic inversion – I. Theory, Geophys. J. Int, 128, 345-354.

� Newman, G. A., and D. L. Alumbaugh, 2000, Three-dimensional magnetotelluric inversion

using non-linear conjugate gradients, Geophys. J. Int, 140, 410-424.

� Parker, R. L., 1994, Geophysical Inverse Theory, Princeton University Press.

� Patro, P.K. and Egbert, G.D., 2008, Regional conductivity structure of Cascadia: Preliminary

results from 3D inversion of USArray transportable array Magnetotelluric data, Geophys.

Res. Lett., 35, art. no. L20311.

� Rodi, W. L., 1976, A technique for improving the accuracy of finite element solutions for

Magnetotelluric data, Geophys. J. Roy. Astr. Soc., 44, 483-506.

� Sasaki, Y., 2001, Full 3D inversion of electromagnetic data on PC., J. Appl. Geophys., 46,

45-54.

21�

�

� Sasaki, Y. and Meju, M.A., 2006, Three-dimensional joint inversion for Magnetotelluric

resistivity and static shift distributions in complex media, Jour. Geophys. Res. B: Solid Earth,

111, art. no. B05101.

� Siripunvaraporn, W. and Egbert, G., 2000. An effcient data-subspace inversion method for

2D magnetotelluric data, Geophysics, 65(3), 791-803.

� Siripunvaraporn, W., Egbert, G., & Lenbury, Y., 2002. Numerical accuracy of

magnetotelluric modeling: A comparison of finite difference approximations, Earth Planets

Space, 54(6), 721-725.

� Siripunvaraporn, W., M. Uyeshima and G. Egbert, 2004, Three-dimensional inversion for

Network-Magnetotelluric data, Earth Planets Space, 56, 893-902.

� Siripunvaraporn, W., Egbert, G., Lenbury, Y., & Uyeshima, M., 2005, Three-dimensional

Magnetotelluric inversion: data-space method, Phys. Earth and Planetary Interiors, 150, 3-

14.

� Siripunvaraporn, W., and Egbert, G., 2007, Data space conjugate gradient inversion for 2-D

Magnetotelluric data, Geophys. Jour. Inter., 170, 986-994.

� Siripunvaraporn, W. and Egbert, G., 2009, WSINV3DMT: Vertical magnetic field transfer

function inversion and parallel implementation, Phys. Earth. Planet. Interiors., 173, 317-329.

� Streich, R., 2009. 3D finite-difference frequency-domain modeling of controlled-source

electromagnetic data: Direct solution and opti-mization for high accuracy, Geophysics, 74(5),

F95-F105.

� Tuncer, V., M. J. Unsworth, W. Siripunvaraporn, and J.A. Craven, 2006, Exploration for

unconformity-type uranium deposits with audiomagnetotelluric data: A case study from the

McArthur River mine, Saskatchewan, Canada, Geophysics, 71, B201-B209.

� Türko�lu, E., Unsworth, M., Pana, D., 2009, Deep electrical structure of northern Alberta

(Canada): Implications for diamond exploration, Canadian Jour. Of Earth Sciences, 46, 139-

154.

� Uyeshima, M., 2007, EM monitoring of crustal processes including the use of the Network-

MT observations, Surveys in Geophys., 28, 199-237.

� Zhdanov, M.S., S. Fang, G. Hursan, 2000, Electromagnetic inversion using quasi-linear

approximation, Geophysics, 65, 1501-1513.

22�

�

Figure 1. Two-block synthetic model used to test our inversions. The solid dots indicate the

observational sites. A cross-section view in the lower panel is a profile cutting across the middle

of the two anomalies in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005;

and Siripunvaraporn and Egbert, 2009).

23�

�

Figure 2. Convergence rates of WSINV3DMT (black) and WSDCG3DMT from various �s and

rtol to the synthetic dataset generated from a model in Figure 1. Dash line for rtol = 10-1. Solid line

for rtol = 10-2. Each plus symbol indicates one iteration.

24�

�

Figure 3. An inverted model from WSDCG3DMT with � = 1. The synthetic data is generated

from the model in Figure 1. The top panels (a)–(c) is a plan view at the surface, at 3 km and at

7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the two anomalies

at X = 0 km. The solution is shown only in the central area around the anomalies, not for the full

model domain.

25�

�

Figure 4. Convergence rates from WSINV3DMT (black), WSDCG3DMT with � = 1 (red) and

WSMIX3DMT with different initial �ini to the synthetic data generated from a model in Figure 1.

Each square or plus symbol indicates one iteration. � used in each iteration for WSMIX3DMT is

printed next to its square symbols.

26�

�

Figure 5. Convergence rates from WSINV3DMT (black), WSDCG3DMT with � = 1 (red) and

WSMIX3DMT with initial �ini = 1000 (green) and � ini = 100 (blue) to the EXTECH field dataset.

Each square or plus symbol indicates one iteration. � used in each iteration for WSMIX3DMT is

printed next to its square symbols.

27�

�

Figure 6. The inverse solution at various depths from the 5th iteration of the WSMIX3DMT

method with initial �ini = 100. The EXTECH data used here consists of both vertical magnetic

transfer function and full impedance tensor at 131 sites and 16 periods. The cross-symbols

indicate the locations of the stations.

+������ ". Manuscript

Rung-Arunwan T. and W. Siripunvaraporn, 2010, An efficient modified hierarchical

domain decomposition for 2-D Magnetotelluric forward modeling, submitted

Geophysical Journal International, moderate revision.

� 1

An Efficient Modified Hierarchical Domain Decomposition for 2-D Magnetotelluric

Forward Modeling

Tawat Rung-Arunwan1,2 and Weerachai Siripunvaraporn1,2

1Department of Physics, Faculty of Science, Mahidol University, Rama 6 Rd.,

Rachatawee, Bangkok, 10400, THAILAND
2 ThEP, Commission of Higher Education, 328 Si Ayuthaya Road, Bangkok 10400,

THAILAND

Abstract

We use 2-D Magnetotelluric (MT) problems as a feasibility study to demonstrate that the 3-D

MT modeling can be solved with a direct solver, even on a standard single processor PC. The

scheme used is the hierarchical domain decomposition (HDD) method in which a global

computational domain is uniformly split into many smaller non-overlapping subdomains.

However, to make it more efficient, two modifications are made to the standard HDD method.

Instead of three levels as in the standard HDD method, we classify the unknowns into four

classes: the interiors, the horizontal and vertical interfaces and the intersections taking

advantages of the finite-difference approximation. Four sets of smaller systems of equations

are successively solved with a direct method (an LU factorization). The separation helps

overcoming the memory overburden of a direct solver while remain computationally

effective. To further enhance the speed of the code, a red-black ordering is applied to solve

the horizontal and vertical interface reduced systems.

Numerical experiments on 2-D MT problem running on a single processor machine

shows that CPU time and memory used are almost constant for any resistivity models,

frequencies and modes as long as the model size remain the same. This is a clear advantage

of our algorithm. Number of subdomains is a major factor controlling computational

efficiency. Here, we also introduce a “memory map”, a tool we can use to pre-select

“optimized” subdomains. Our 2-D experiments also shows that by splitting a domain with the

optimized subdomains, this modified scheme can outperform the standard FD method in both

CPU time and memory even running on a serial machine.

� 2

1. Introduction

To obtain magnetotelluric (MT) responses, the second order Maxwell’s equation in either

electric field or magnetic field is solved via three commonly used approaches: finite

difference (FD) method (e.g. Mackie et al., 1994; Smith, 1996; Siripunvaraporn et al., 2002;

Siripunvaraporn et al., 2005), finite element (FE) method (e.g. Wannamaker et al., 1987;

Zyserman et al., 1999; Zyserman and Santos, 2000; Mitsuhata and Uchida, 2004;), and

integral equation (IE) technique (e.g. Wannamaker, 1991; Xiong, 1992; Avdeed and

Avdeeva, 2009). For complicated and geologically realistic two-dimensional (2D) and three-

dimensional (3D) model, FD or FE methods are generally more efficient and robust than IE

technique. In the past decades, FD method has gained more popularity due to its simplicity in

technique and also its accuracy in solution.

In many problems, when model domain becomes very large, particularly in 3-D problems,

solving the system of equations with the direct method is impractical in term of memory

requirement (see Ben-Hadj-Ali et al., 2008 for 3-D frequency-domain full-waveform

tomography; Streich, 2009 for 3-D MT;). The system is then alternatively solved with the

iterative solvers (e.g. Bi-Conjugate Gradient (BiCG) method in Smith, 1996 and Xiong,

1999; Quasi Minimum Residual (QMR) in Siripunvaraporn et al., 2002; Preconditioned

Conjugate Gradient (PCG) in Siripunvaraporn and Egbert, 2000; Minimum Residual Method

(MRM) in Mackie et al., 1994). In many practical MT cases, the electrical resistivity model

can be geologically complicated resulting in large conditioned number and therefore long

computational time (see Patro and Egbert, 2009). Occasionally, the iterative solvers may

become stagnant after many thousand of iterations and sometimes fail to converge. The

calculated solution will therefore not be accurate and could mislead an interpretation if

applied inside an inversion.

In high conditioned number case, being able to solve a problem with a direct solver is very

crucial, if applicable. With direct method, accuracy is guarantee. Computational time is also

controllable, because theoretically it is almost constant for any frequencies, modes or

polarizations and resistivity models as long as the model domain remains the same size. In

addition, the factorization used when solving the system can be re-used many times when

� 3

computing the sensitivity or Jacobian matrix (see Siripunvaraporn and Egbert, 2000) inside

the inversion algorithm. In 3-D MT cases, the direct solver is still not practical with recent

computer technology (see Streich, 2009). However, here we use the 2-D study to demonstrate

that the 3-D problem can be efficiently solved with a direct solver even on a serial machine if

the modified hierarchical domain decomposition developed in this paper is applied to.

Instead of computing on a large domain, a global domain can be splitting into several smaller

local domains or subdomains. The solution on the global domain is then solved through the

smaller systems of each subdomain. This technique is generally known as the domain

decomposition (DD) technique. It is considered as a powerful tool in many large scale

engineering problems (e.g. Lu and Shen, 1997; Bitzarakis et al., 1997; Larsson, 1999; Yin et

al., 2002; Basermann et al., 2005; Lu et al., 2008; Wang et al., 2008;) and also in various

multidimensional geophysical problems (e.g. Xiong, 1999; Zyserman et al., 1999; Zyserman

and Santos, 2000; Xie et al., 2000; Pain et al., 2002; Ben-Hadj-Ali et al., 2008; Sourbier et

al., 2008; Takei et al., 2010).

The domain decomposition method can be mainly classified into two categories: the

overlapping technique where some region of the subdomain overlapping with the others (e.g.

Xiong, 1999; Peng et al., 2009) and the non-overlapping method where neighboring

subdomains share the same sub-boundaries (e.g. Lu and Shen, 1997; Zyserman et al., 1999;

Zyserman and Santos, 2000; Lu et al., 2008; Wang et al., 2008). Comparison of the

overlapping and the non-overlapping methods is mentioned in Chan and Goovaerts (1992)

and Rice et al. (2000). Various schemes are used to solve the domain decomposition

problems, such as the Schwartz algorithms (see Cai et al., 1998), Schur complement approach

(see Smith et al., 1996; Saad, 2003; Zhang, 2005), the hierarchical domain decomposition

approach (Smith et al., 1996; Takei et al., 2010), balancing domain decomposition method

(Mandel, 1993), the interface relaxation methods (see Rice et al., 2000) among many other

techniques.

� 4

In electromagnetic induction of the Earth, there are only a few papers demonstrating the use

of domain decomposition method to solve MT forward problems. Zyserman et al. (1999) and

Zyserman and Santos (2000) applied non-overlapping domain decomposition technique to 2-

D and 3-D cases, respectively. In their techniques, sub-problems are iteratively solved via the

interfaces enforced by the equivalent Robin-type transmission conditions. The memory

requirement is significantly diminished due to no appearance of a large global matrix.

Computational time is also greatly reduced when solving in the parallel computation

(Zyserman and Santos, 2000). Although, the technique has proven to be numerically superior

in the parallel system, the technique may not be suitable for serial computation. Xiong (1999)

applied adaptive Schwartz overlapping domain decomposition technique for 3-D controlled

source electromagnetic forward problems. In his method, all subdomains share overlapping

regions. Each subdomain is independently solved and then updated from neighboring

subdomains until the solution converges. The memory is significantly reduced. However, its

total computational run time becomes larger than solving the whole system on single node

processor (Xiong, 1999). Both schemes (Xiong, 1999; Zyserman et al., 1999; and Zyserman

and Santos, 2000) show that efficiency in terms of computational time of the domain

decomposition method can only be gained if running on parallel system. They are inferior if

running on a serial machine.

In this paper, we investigated another method based on the hierarchical domain

decomposition (HDD). Similar to other domain decomposition methods, the global domain is

subdivided into many smaller subdomains. System of equations for each subdomain is

separately formed and linked to the other via the interfaces. The hierarchical domain

decomposition method can be directly applied to the MT problems both parallel and serial

computations. Application of HDD on a parallel system is straightforward. Similar to others,

calculation of each subdomain is performed separately on each processor node. A single

interface system is then distributed to all processors for calculation. Theoretically, efficiency

can be expected from applying the code to the parallel system. However, in practice, this

parallel scheme requires substantial amount of communication time to exchange data among

processors, particularly when solving the interface system. Efficiency is therefore platform-

dependent. In this paper, we only illustrate the parallel algorithm but prefer not to

demonstrate it numerically because our 2-D domain problem is “too” small for current

� 5

computer technology. The parallel algorithm will be later demonstrated on a bigger 3-D

problem as a future research. In addition, this parallelization is not our main challenge. Our

major challenge is the efficiency enhancement of HDD on a serial machine, not through a

multi-processor machine.

Similar to other domain decomposition methods for MT problems (Xiong, 1999; Zyserman et

al., 1999; and Zyserman and Santos, 2000), efficiency of HDD on a serial computation is

low. However, in this paper, two modifications are developed and applied to the hierarchical

domain decomposition method to increase its efficiency. First modification is the separation

of interfaces into vertical and horizontal interfaces. This is natural for the finite-difference

approximation scheme. Second modification is the application of red-black ordering to the re-

ordered interface systems. With the two modifications, we will show that the modified HDD

code for 2-D MT problems performs better than the conventional method even on a serial

machine. Because we use a direct solver to solve system of equations, this 2-D experiment is

also a feasibility study for future 3-D problems to demonstrate that the direct solver can be

used to solve 3-D system of equations even with a serial calculation. These are therefore our

main objectives for this paper.

Efficient modified HDD on a serial computation can also be applied to the parallel system.

However, instead of parallelizing over subdomains, we parallelize over frequency.

Calculation of MT responses of each frequency is performed serially on one processor. Thus,

all frequencies are solved simultaneously but separately on multi-processor machines. This is

used frequently in 3-D inversion algorithms (see Siripunvaraporn et al., 2004; 2005;

Siripunvaraporn and Egbert, 2009; Siripunvaraporn and Sarakorn, 2010). In addition, this

scheme does not require substantial amount of communication time between processors. It is

therefore perfectly fit with the PC cluster platform which can be easily and cheaply built.

In addition, a major decisive factor that controls the efficiency of the modified HDD method

is the number of subdomains. Selecting subdomains can be a trial and error processes. To

� 6

avoid wasting time to this process, here we introduce a “memory map” to help choosing

“optimized” subdomains that yields the “best” computational performance. Memory map is

pre-generated from several combinations of subdomains. Number of subdomains can be

selected from the region of low memory in the memory map. This strategy often guarantees a

faster CPU time than the standard method. The concept of memory map is new and first

introduced here.

In the following, we first review the standard FD approach to solve a global domain problem.

We then describes the basic idea of the hierarchical domain decomposition (HDD) and its

parallel implementation. Then we describe the two modifications which help speeding up the

HDD method on a serial calculation. Validations and numerical examples are given next

along with the discussion. Conclusion are given at the end. Hereafter, we will refer to the

standard finite difference for a global domain as FD2D, and to our modified hierarchical

domain decomposition as MHDD2D.

2. Magnetotelluric forward modeling : Finite difference approach

Given an electrical conductivity () or resistivity (�) model, to yield MT responses at the

surface, the electric fields (E) are computed from the second order Maxwell's equation,

i�
	
�
� �E E , (1a)

for the transverse electric field (TE) mode, while the magnetic fields (H) are solved from,

i� �

�
� �H H , (1b)

� 7

for the transverse magnetic field (TM) mode, where � is an angular frequency and
 the

magnetic permeability. With finite difference approach, the conductivity or resistivity model

is first discretized into many rectangular grids. An example of non-uniform grid

discretization is shown in Figure 1. The unknown electric fields or magnetic fields are

defined on the nodes (black dots) inside the domain, while the fields on the boundaries (left,

right, top and bottom) are obtained from 1-D calculations. After applying finite difference to

(1a) or (1b) and rearranging equation, both modes yield similar system of equations,

Ax = b , (2)

where x represents the unknown internal electric or magnetic fields; b a vector containing the

term associated with the boundary fields; and A a coefficient matrix which is large sparse

five-banded symmetric and complex only on the diagonal (Siripunvaraporn and Egbert,

2000). Equation (2) for 2-D problem can be solved either directly or iteratively such as

preconditioned conjugate gradient (PCG) method (Siripunvaraporn and Egbert, 2000). One of

our aims is to demonstrate the use a direct solver for 3-D problem. An LU-factorization is

therefore applied here to solve all systems of equations from FD2D and MHDD2D.

After calculating the electric fields, the magnetic fields can be calculated from solving the

first order Maxwell's equation, the Faraday's law. MT responses are then computed from the

ratio of electric to magnetic fields at the surface.

 �

3. Hierarchical Domain Decomposition method

An alternative method to solve (2) is via the domain decomposition method. There are many

different domain decomposition techniques. Here, we applied the hierarchical domain

decomposition (HDD) method which is a non-overlapping technique to our 2-D MT

problems. We start this section by describing the basic idea of the HDD method.

� 8

In every domain decomposition techniques, the model domain is split into several smaller

subdomains. For simplicity, example mesh in Figure 1 is redrawn as in Figure 2 with uniform

space, and is uniformly partitioned into 3 × 4 subdomains only as an illustration. The

unknown electric or magnetic fields located at the nodes can be classified into three

“hierarchical” types: (1) the interiors (�), (2) the interfaces (�and �) and (3) the

intersections (�) from lowest to highest level, as shown in Figure 2. The intersections are

defined as the highest level because they separate the interfaces. Similarly, the interfaces

separate the interiors, so they are defined the next lower level.The interiors are therefore the

lowest. With this configuration, the intersections must be solved first. Once the intersections

are obtained, the interfaces can be successively calculated from the intersections. Similarly,

the interiors can be successively computed from the interfaces. This hierarchical

classification is slightly different from the “classic” Schur complement method (see Smith et

al., 1996; Saad, 2003; Zhang, 2005;). In Schur complement method, the unknown fields are

classified only the interiors and the interfaces.

For 2-D MT problem, assuming that the model domain is equally divided into p × q (= r)

subdomains where p and q are number of subdomains in z- and y- directions, respectively,

and r is the total number of subdomains. These partitions will yield a total of l interiors (or l/r

for each subdomain), total of m interfaces and n intersections. Specifically, an inner

subdomain i which has lzi × lyi (= l/r) interiors would have 2lzi + 2lyi interfaces, and 4

intersections, while outer or boundary subdomains would have less depending on their

locations. By using Figure 1 and Figure 2 as an example, the model in Figure 1 is discretized

into 12 × 20 grids, which is later decomposed into 3 × 4 (=12) subdomains. In this example,

there would be a total of 209 unknowns inside a global domain. When partitioning into 3 × 4

subdomains, an inner subdomain would then have 12 interiors, 14 interfaces and 4

intersections. The total numbers of interiors, interfaces and intersections are 144, 59 and 6,

respectively.

By organizing the unknowns into three levels, the system of equations (2) can be reordered

according to this configuration as follows,

, (3)
� �� � � �
� �� � � ��� �� � � �
� �� � � �
� �� � � �

T

T

F D 0 u f
G v g

0 E H
D E

w h

� 9

where F, G and H are l × l global interior coefficient matrix, m × m global interface

coefficient matrix, and n × n intersection coefficient matrices, respectively. Global interior

matrix F composes of many smaller l/r × l/r local interior sub-matrix Fi where i = 1 to r. Each

Fi corresponds to a coupling within the interior elements inside the i subdomain. Global

interface matrix G gathers all coefficients corresponding to an interaction between the

interface elements, while H is diagonal matrix associating with the intersection elements. The

inter-coupling coefficients between the interiors and interfaces are given in D with a

dimension of l × m, and between the interfaces and intersections are given in E with a

dimension of m × n. There is no coupling between the interiors and the intersections in our 2-

D MT case as shown in Figure 2. Vectors f, g and h are domain boundary fields associated

with the interiors (u), interfaces (v) and intersections (w), respectively. Figure 2 shows that

there are no boundary fields that belong to the intersections. Therefore, h = 0 in our 2-D

problems.

According to the hierarchical domain decomposition technique, equation (3) can be

decomposed into two reduced systems: the interior-interface reduced system and the

interface-intersection reduced system. The interior-interface reduced system is derived from

the coupling between the interiors and interfaces,

� �� � � �
� �� � � �
� �� � � �

T

u f
=

g EwD -
F D

G v
, (4)

while the interface-intersection reduced system is from the coupling between the interfaces

and intersections,

� �� � � �
�� �� � � �

� �� � � �
T

S E v g
H w h

'
E

 , (5)

where the interface Schur complement matrix T -1S = G - D F D and T -1g = g - D F' f . The

unknowns are then successively solved from the highest to the lowest level. The intersections

w are solved first from

� 10

H'w = h' , (6)

where the intersection Schur complement matrix T -1H = H - E S' E , and its right-hand side

T -1h' = h - E S g' . Once solving the intersections, the interfaces v and the interiors u can then

be consecutively solved from

Sv = g' - Ew , (7)

and

i i i iF u = f - D v . (8)

Algorithm of the standard HDD method can be summarized below after decomposing the

global domain into several subdomains.

1. Form Fi, fi, Di and factorize Fi of each subdomain.

2. Compute T -1
i i iD F D and T -1

i i iD F f of each subdomain.

3. Form G, g, H, h and E.

4. Construct � T
i

-1
i iS = G - D F D and � T -1

i i ig' = g - D F f .

5. Factorize S.

6. Build T -1H = H - E S' E and T -1h' = h - E S g' .

7. Solve H'w = h' .

8. Solve Sv = g' - Ew .

9. Solve i i i iF u = f - D v .

10. Merge ui, v and w as a solution for the system of equations (2).

� 11

The intersection Schur complement matrix H' (step 7) is dense, but its dimension, n × n, is

relatively small and therefore would not require a lot of computations. Similarly, the classical

Schur method has a similar dense matrix but with a dimension equal to numbers of interfaces

and intersections, i.e. m+n × m+n. Thus, the hierarchical domain decomposition method

yields a significant smaller dense matrix. The interface Schur complement matrix S, in the

hierarchical case, is not dense but sparse matrix. Example of its sparse pattern is shown in

Figure 3a) from subdomains of Figure 2.

All equations including equation (6), (7) and (8) are solved with a direct method (here, an

LU-factorization). To construct T -1S = G - D F D and T -1H = H - E S' E in step 4 and 6, after

factorizations, F and S systems are solved with a series of different right hand sides: DT and

ET for m times and n times, respectively. Solving each system just one time requires

relatively small amount of computational resources, both memory and CPU time. However,

as showing in the algorithm above, both systems are solved several times. Computational

time for numerous solving (step 2, 4 and 6) plus factorizations (step 1, 5 and 7) can be more

than just solving one large global system (equation 2) on a serial machine. This statement is

correctly confirmed in Xiong (1999) and also in our MT numerical experiments in the next

section. Once all main matrices are obtained; equation (6) and (7) is solved just one to obtain

w and v in step 7 and 8, respectively. Equation (8) is then consecutively solved to obtain the

interiors u within each subdomain in step 9. If each subdomain is equally discretized, this is

equivalent as solving equation (8) r times.

Because domain decomposition is not highly efficient on a serial machine, another way of

using domain decomposition on a serial computation is to modify the hierarchical matrix (3)

and used it as a preconditioner when solving the system with the iterative solvers (e.g.,

Bitzarakis et al., 1997; Larsson, 1999; Benedetti et al., 2009; Grasedyck et al., 2009).

3.1 Parallel Implementation of HDD

Most parallel domain decomposition algorithms distribute computations of each subdomain

to each processor (see examples in Xiong, 1999; Zyserman et al., 1999; and Zyserman and

Santos, 2000). In this parallel scheme, step 1, 2 and 9 of each subdomain are performed

� 12

separately on each processor. After calculations, all results are sent to the master node. The

bottleneck of this parallelization occurs from step 3 to 8. The most difficult parts for

parallelization are to factorize S in step 5, to construct T -1H = H - E S' E and T -1h' = h - E S g' in

step 6 and to solve Sv = g' - Ew in step 8. Once distributing S to all processors, this process

requires a lot of communication time among processors when factorizing and solving system

of equations. Efficiency of this parallel scheme would depend significantly on the parallel

algorithms which also depend on computer architectures (see Lu and Shen, 1997; Kocak and

Akay, 2001). Many massive parallel manufacturers have provided their own efficient parallel

algorithms to solve system of equations. These algorithms show best performance only on

their own platforms.

However, this conventional parallel scheme could be a problem for PC cluster platform or

distributed memory systems. Efficiency would be relatively low if switch or hub used to

communicate among processors is slow regardless of how efficient the algorithm is. Parallel

implementation is not the purposes of our paper as previously described. We therefore opt not

to show the numerical experiments of HDD on parallel systems. Experiments with 3-D MT

problems would be an interesting research to pursue which is beyond our scope here.

4. Modified hierarchical domain decomposition method

Earlier numerical experiments on single processor machine show that a straightforward

application of the HDD method to the 2-D MT problems requires less memory storage than

standard method. However, its computational time becomes longer. In order to make the

hierarchical domain decomposition method more efficient on a serial machine for our 2-D

MT problem, two modifications are necessary. First, the separation of the interfaces into

vertical and horizontal interfaces will break the larger interface system into two smaller

vertical and horizontal interface systems which would lead to a memory reduction. Second,

the red-black ordering technique is applied inside the horizontal and vertical interface

systems to further help decreasing the computational time.

Taking advantage of the rectangular discretization of the FD approximation, the interfaces

can be further classified into two types: the horizontal interfaces (� in Figure 2) and the

� 13

vertical interfaces (� in Figure 2). Number of interfaces (m) is then divided into number of

horizontal interfaces (mh) and number of vertical interfaces (mv) where m = mh + mv. The

system of equations (3) can then be reassembled as follows,

, (9)

where H and V represent horizontal and vertical interfaces, respectively. The main difference

from the original hierarchical domain decomposition would be at the separation of G matrix

into GH and GV, where GH gathers all coefficients corresponding to a coupling between the

horizontal interfaces, and similarly for GV corresponding to a coupling between the vertical

interfaces. With new classification, both vertical interfaces (vV) and horizontal interfaces (vH)

are situated in the middle level between the intersection (w) and the interior (u) which are the

highest and lowest, respectively. The interior-interface and interface-intersection reduced

systems in equation (4) and (5) become

, (10)

and

, (11)

respectively. Here, the interface Schur complement matrix S is decomposed into SHH, SHV,

SVH and SVV as follow,

� �� � � �
� �� � � �
� �� � � �
� �� � � �
� �� � � �

� � � �� �

H V

H H H H

V V V

T
H
T
V

T T
H V

V

0 u f
0 g

F D D
D G E v

=
0 g

0
D G

h
E v
HE wE

� �� � � �
� �� � � �
� �� � � �

� � � �� �� � � �� �

VH

T
H H H H H
T
V v V V V

F D D u f
D G 0 v g - E w
D 0 G v g - E w

=

� �� � � �
� �� � � �
� �� � � �
� �� � � �
� �� � � �

HH HV H H H

VH VV V V V
T T
H V

S S E v g'
S S E v g
E E H w

= '
h

� 14

� �
� �� � � �
� �� � � �

� � � � � �

HH HV
T
H
T
V

H -1
H V

VH VV V

S S 0
= - F

G D
D D

G DS S 0
, (12)

and

� �� � � �
� �� � � �

� � � � � �

H -1
T

H H
T

V VV

g
= -

g' D
f

g
F

g' D
. (13)

Example of the sparsity pattern of the modified Schur interface (12) is shown in Figure 3b) to

be compared with the original Schur interface matrix S (Figure 3a). Similar to the original

hierarchical domain decomposition, the unknown fields are successively solved from the

highest level to the lowest level. The intersections w will be solved first from

H'w = h' , (14)

where, � �� � � �
� � � �
� � � �

-1
HH HV HT T

H V
VH VV V

S S E
H = H - E E

S S E
' , and its right-hand side

� �� � � �
� � � �
� � � �

-1
HH HV HT T

H V
VH VV V

S S g'
= h - E E

S S g'
h' . After solving the intersections w, the vertical

interfaces vV and the horizontal interfaces vH can be split and solved separately as,

-1 -1
VV VH HH HV V V V VH HH H H(S - S S S)v = g' - E w - S S (g' - E w) , (15)

and,

 HH H H H HV VS v = g' - E w - S v . (16)

Dimension of SHH and SVV from (15) and (16) are mh × mh and mv × mv , respectively, which

are smaller than m × m S matrix of (7). They are therefore faster to solve and less memory

storage. This is one clear advantage of classifying the interfaces into the horizontal and

� 15

vertical interfaces. After obtaining w and v, the interiors u can then be consecutively solved

from

i i i Hi H Vi VF u = f - D v - D v . (17)

To further increase the efficiency of our modified scheme, red-black coloring technique (See

Press et al., 1992 and Saad, 2003) is applied to (15) and (16) to help reducing the

computational time. Under the red-black ordering, the unknowns inside of SVV and SHH are

classified into red and black unknowns. The idea of Schur complement is again applied to

this coloring system of the interfaces. The reduced systems are then derived and recursively

solved to the red and to the black systems. This modification demonstrates the application of

Schur domain decomposition inside the hierarchical domain decomposition (see Rung-

Arunwan, 2010 for further detail).

With both modifications, the modified hierarchical domain decomposition (MHDD2D) can

outperform the FD2D code even running on a serial computational machine as showing in the

next section.

5. Numerical Experiments

In this section, we first validate that the responses from our modified hierarchical domain

decomposition method (MHDD2D) are as accurate as those from FD2D. Next, computational

costs on a single processor are measured with different combinations of subdomains. A

memory map is then introduced as a strategy to select an “optimized” number of subdomain

where computational costs are minimized (i.e., relatively faster or at least equivalently to

FD2D, but with a fraction of memory).

� 16

5.1 Validation Tests

To validate the MHDD2D approach, we show the apparent resistivities and phases of both

TM and TE modes at three frequencies calculated from the model shown in Figure 1. The

calculated responses from our MHDD2D approach are directly compared to those obtained

from FD2D as in section 2. In this test, the model and air of Figure 1 is non-uniformly

discretized into 80 × 240 grids in z- and y-direction, respectively. For FD2D method, the

unknown to be solved is 18,881. For MHDD2D, the model domain is uniformly split into 4 ×

8 (z- and y- direction, respectively) subdomains. With this 4 × 8 subdomains, the 18,881

unknowns will be divided into 551 interiors for each subdomain (or a total of 17,632

interiors), 696 horizontal interfaces and 532 vertical interfaces, and 21 intersections. Total

memory requirement of MHDD2D is about 21.7 Mbytes, which is approximately one-third of

FD2D (about 71.09 Mbytes). Memory estimation will be discussed in subsection 5.2.1.

Figure 4 shows that the calculated responses from both FD2D and MHDD2D are perfectly

identical on both modes. Their difference is in the round-off level which is insignificant. This

is expected since both methods solve the same system of equation, except that the MHDD2D

method splits the computational domain into many smaller subdomains, and then solves

smaller systems. In addition, we have performed validation tests on various synthetic models

and real model (see inverted model from real data in Siripunvaraporn and Egbert, 2000) with

several combinations of subdomains. All validation tests show that there is no difference

from both methods (Rung-Arunwan, 2010). These have validated our MHDD2D method for

both TM and TE modes.

5.2 Comparisons of Computational Efficiency

Next, to prove the efficiency of our modified domain decomposition scheme, we ran the code

on several synthetic 2-D models and also real “inverted” model (from Siripunvaraporn and

Egbert, 2000) for both TM and TE modes. Because a direct method (LU-factorization) is

used to solve all systems of equations, computational time and memory requirements are no

difference among different models, modes (TM or TE) and frequency if domain size is the

same. Model of Figure 1 is therefore used as a representative to demonstrate the effectiveness

of our code.

� 17

Model and air of Figure 1 is discretized into three size meshes: 40 � 120 (small), 80 � 240

(medium) and 120 � 360 (large). These three meshes are then uniformly subdivided into p ×

q subdomains, where p and q are numbers of subdomains in z-dir and y-dir, respectively,

starting from 2. Estimated memory usage and actual calculation time for each combination of

subdomains for each mesh are compared with those from FD2D. Comparison results are

plotted and shown in Figure 5 for 40 � 120 mesh, Figure 6 for 80 � 240 mesh and Figure 7

for 120 � 360 mesh. Relative CPU time and memory (both in percents) are calculated from

(timeMHDD2D-timeFD2D)*100/timeFD2D and (memMHDD2D-memFD2D)*100/memFD2D,

respectively. Positive relative time and relative memory indicate that MHDD2D is less

efficiency than FD2D and therefore spend more calculation time and require more memory,

while negative reflects the opposite, i.e. MHDD2D is more efficient. Actual memory usage of

FD2D are 8.77 Mbytes, 71.09 Mbytes and 240.97 Mbytes for small, medium and large,

respectively, while actual CPU time on an Intel Core Two Duo 6400, 2.13 GHz machine are

0.08 second, 1.12 second and 4.16 second, respectively. Actual CPU time and memory used

of MHDD2D can thus be inferred from these actual values of FD2D and the maps shown in

Figure 5, 6 and 7, respectively.

5.2.1 “Memory Map” and Memory Comparison

Total memory usage of MHDD2D can be calculated from numbers of subdomains in z-dir (p)

and y-dir (q), number of interiors (l/r) for each subdomain, numbers of horizontal interfaces

(mh) and vertical interfaces (mv) and number of intersections (n). However, it is quite

complicated to express in a simple formula. It is therefore pre-estimated from the allocated

variables inside the code to produce the “memory map” before running the actual code.

Memory map displays minimum memory used for different combinations of subdomains as

shown in Figure 5a, 6a and 7a. The concept of memory map is very useful and will be

demonstrated in later subsection.

In contrast to MHDD2D, total memory usage for FD2D can be easily estimated from (Ny-

1)(Nz-1)(3Nz+1)*16 where Ny and Nz is grid discretization in y-dir and z-dir, respectively.

� 18

Multiplication with 16 is required because complex double precision is used. Because a large

global matrix (equation 2) of FD2D is broken into many smaller sub-matrices (equation 9) for

MHDD2D, memory requirement for different combinations of subdomains should therefore

be less than that of FD2D. This is evidently shown in Figure 5a, 6a and 7a, where negative

percentage is all over the map indicating less memory requirement of MHDD2D. However,

total memory usage varies according to numbers of subdomains used in both directions.

From all three figures, there are two cases where memory usage is relatively large (but still

less than FD2D). First case is when the domain is divided into “large” numbers of

subdomains. When number of subdomains become large (e.g., 20 � 30 subdomains in Figure

7a), number of interiors per subdomain is small (see Table 1), but total number of interfaces

are high (Table 1). More memory is therefore required to store and solve those interface

coefficient matrices (GH, GV, SHH, SHV, SVH and SVV in 10 and 11). Although intersections

(H) also increase, it would not significantly affect. In contrast, when small number of

subdomains used (e.g., 3 � 3 subdomains in Figure 7a), total numbers of interfaces in both

directions are small (see Table 1), but number of interiors per subdomain becomes very high

(Table 1). Large number of interiors causes matrix Fi (equation 10) of each subdomain to

require more memory to store and solve the system of equations (equation 13 and 17). Note

that we use LU decomposition to solve all systems of equations. Some “extra” memory is

therefore required to fill the empty band of the sparse matrix. This extra memory has already

been accounted for in Figure 5a, 6a and 7a.

5.2.2 Comparisons of CPU time

Calculation time cannot be pre-estimated as the memory usage, it can only be obtained from

running the actual code on the computer. Relative CPU time from small, middle and large

meshes are shown in Figure 5b, 6b and 7b, respectively, from different combinations of

subdomains. They are obtained from running on a single processor machine; here, an Intel

Core Two Duo 6400, 2.13 GHz machine. Different machines or architectures may result

differently. However, patterns of relative CPU time should remain approximately the same.

� 19

For small 40 � 120 mesh, relative CPU time of MHDD2D is at least 30% more than that of

FD2D in every combination of subdomains (Figure 5b). Although a larger system of

equations (equation 2) is broken into many smaller systems (equation 9), successively solving

a series of these smaller systems (see equation 4-6, and 10-17) can outperform solving a

global system of FD2D. This reflects in larger CPU time as shown with all positive in Figure

5b. Although there is no benefit of MHDD2D for smaller 40 � 120 meshes in term of CPU

time, better efficiency can be gained up to 20% from larger meshes as shown with negative

zones in Figure 6b for 80 � 240 mesh and in Figure 7b for 120 � 360 mesh. This shows that

when grid discretization becomes large, MHDD2D will become more effective, even with a

serial computation. This conclusion is significant, especially for future implementing the idea

of MHDD2D to 3-D cases. In 3-D, the discretization mesh would be clearly a lot larger than

what we used in 2-D case.

5.3 Optimized Number of Subdomains : Pre-Selection

Figure 5a, 6a and 7a show that there are regions where memory requirement is “minimum”.

The minimized memory zones have the centers at 5 � 6 subdomains for 40 � 120 mesh

(Figure 5a), at 8 � 8 subdomains for 80 � 240 mesh (Figure 6a) and at 10 � 9 subdomains for

120 � 360 mesh (Figure 7a). The interiors, horizontal interfaces, vertical interfaces and

intersections for these three subdomains are given in Table 2.

By matching Figure 5a, 6a and 7a to Figure 5b, 6b and 7b, respectively, we found that the

minimized memory zones are coincidently occurred almost the same regions as the

minimized CPU time zone. Both areas will be referred to as the “optimized” regions, because

both memory and CPU time are least used. In this “optimized” regions, numbers of interiors,

horizontal interfaces, vertical interfaces and intersections are properly justified or balancing

(as shown in Table 2), so that solving and storing Fi, GH, GV, SHH and SVV and H matrices

are relatively fast and less memory requirement. Larger or smaller number of subdomains

would cause an unbalance to these numbers. Larger number of subdomains would increase

the interface sizes, while smaller number of subdomains would increase the interior size.

Both cases would produce a large matrix, which would dominate both calculation time and

memory usage.

� 20

The agreement between the optimized CPU time and memory usage has lead to the idea of

subdomain selection. Usually, choosing number of subdomains that yields least CPU time

and smallest memory requirement would be a trial and error strategy. Here, we propose to

select the “optimized” subdomains from the memory map, shown in Figure 5a, 6a and 7a.

Because memory usage can be pre-estimated from the variable allocations inside the code,

this number can be printed out and plotted in a map from different combinations of

subdomains. The optimized subdomains can therefore be chosen from the region of “least”

memory requirement. There would be a higher chance that CPU time performance of

MHDD2D would be better than FD2D if choosing subdomains from this region. When

implementing MHDD2D to 3-D case, similar technique can be used to avoid trial and error

selections.

5.4 Comparison of modified and non-modified hierarchical domain decomposition

methods

For the original hierarchical domain decomposition technique, memory requirements for F

and H matrices in (4) and (5) are identical to those in (10) and (11) for our modified

hierarchical domain decomposition. However, interface matrices, G and S in (4) and (5)

(Figure 3a), depends on the sum of horizontal interfaces and vertical interfaces (m = mh + mv).

These matrices are therefore larger than GH , GV, SHH and SVV in (10) and (11) (Figure 3b)

for the modified scheme around 20-50% depending on the number of subdomains (r).

Memory requirement for non-modified hierarchical domain decomposition would therefore

up to 50% more than the modified case from our 2-D study, but it is still less than FD2D.

In term of computational time, the standard hierarchical domain decomposition would require

about the same CPU time to solve Fi and H systems of equations. However, our 2-D study

reveal that for the interface parts, larger G and S in (4) and (5) of the non-modified code

requires solving time slightly more or less than solving smaller GH, GV, SHH and SVV in (10)

and (11) of the modified code. Not much can be gained in terms of CPU time in this part, but

a lot more in terms of memory. However, by reducing the larger G into GH and GV (from

Figure 3a to 3b), red-black ordering can be easily applied for solving GH and GV, but not

� 21

directly to G in (4). With the red-black ordering, about 10-50% depending on a combination

of subdomains can be gained comparing to the original HDD method for the 2-D case. Red-

black ordering can be easily implementing in 3-D case as well, this would help further

decreasing the computational time.

6. Conclusions

We have demonstrated the efficiency of the MHDD2D code for 2-D MT forward modeling.

MHDD2D is a modified version of the hierarchical domain decomposition method. The

original scheme begins by dividing a global computational domain into several subdomains.

Then, the unknown nodes are classified into three different kinds: interiors, interfaces and

intersections. A global system of equations is re-organized according to these configurations

producing three sets of smaller systems of equations. The intersection reduced system of

equations is solved first to obtain the intersections. The calculated intersections are then used

in the right hand-side of the interface systems of equations to compute the interfaces.

Similarly, the calculated interfaces are input in the interior systems of equations to compute

the interiors inside each subdomain.

Normally, HDD is applied on a parallel system. Efficiency of the HDD method on a serial

machine is very low comparing to the conventional method. To enhance the efficiency of the

hierarchical method on single processor computer, the interfaces of the standard hierarchical

domain decomposition method is further separated into horizontal interfaces and vertical

interfaces by taking an advantage of the rectangular discretization of the finite difference. Our

modified version will then have four sets of smaller systems of equations, instead of three as

in the original version. The division of the interfaces into horizontal and vertical interfaces

helps substantially decreasing the size of memory usage. However, it does little help in

computing time. Red-black coloring is then applied to substantially reduce the computational

time of the code.

By running MHDD2D with several combinations of subdomains on single processor

machine, the optimized subdomains can be selected from the memory map generated prior

� 22

the run. Dividing the global domain with the optimized subdomains, MHDD2D can run up to

20-30% faster and require up to 70% less memory than FD2D on sing processor machine.

This conclusion is very crucial. It indicates that the same hierarchical domain decomposition

algorithm can be extended and applied to 3-D problem. By applying modified HDD method

to 3-D case, 3-D forward problem can now be solved with a direct method, even on standard

single processor PC. With the direct solver, its factorized matrices can be re-used several

times with different right-hand sides. This will help speeding up the sensitivity calculation in

the 3-D inversion process. Most importantly for a direct solver, computational time is

controllable and independent of frequencies, modes and resistivities, as long as the domain

size remains the same.

7. References

� Avdeev, D. & Avdeeva, A., 2009, 3D Magnetotelluric inversion using a limited-memory

quasi-Newton optimization, Geophysics, 74 (3), F45-F57.

� Basermann, A., Jaekel, U., Nordhausen, M., & Hachiya, K., 2005. Parallel iterative

solvers for sparse linear systems in circuit simulation, Future Generation Computer

Systems, 21(8), 1275-1284.

� Ben-Hadj-Ali, H., Operto, S., Virieux, J., & Sourbier, F., 2008. 3D frequency-domain

full-waveform tomography based on a domain decomposition forward problem, SEG

Technical Program Expanded Abstracts, 27(1), 1945-1949.

� Benedetti, I., Milazzo, A., & Aliabadi, M.H., 2009, A fast dual boundary element method

for 3D anisotropic crack problems, Inter. Jour. Numer. Methods. Eng., 80,1356-1378.

� Bitzarakis, S., Papadrakakis, M., & Kotsopulos, A., 1997. Parallel solution techniques in

computational structural mechanics, Computer Methods in Applied Mechanics and

Engineering, 148(1-2), 75-104.

� Cai, X.C., Casarin, M.A., Elliot Jr., F.W., & Widlund, O.B., 1998, Overlapping Schwartz

Algorithms for solving Helmholtz equation, Contemporary Math, 218, 437-445.

� Chan, T.F. & Goovaerts, D., 1992, On the relationship between overlapping and

nonoverlapping domain decomposition methods, SIAM J. Matrix Anal. Appl., 13, 663-

670.

� Grasedyck, L., Kriemann, R., & Le Borne, S, 2009, Domain decomposition based H-LU

preconditioning, Numerische Mathematik, 112 (4), 565-600.

� 23

� Kocak, S., & Akay, H.U., 2001, Parallel Schur complement method for large-scale

systems on distributed memory computers, Applied Mathematical Modelling, 25, 873-

886.

� Larsson, E., 1999. A Domain Decomposition Method for the Helmholtz Equation in a

Multilayer Domain, SIAM Journal on Scientific Computing, 20(5), 1713-1731.

� Lu, Y. & Shen, C., 1997. A domain decomposition finite-difference method for parallel

numerical implementation of time-dependent Maxwell's equations, IEEE Transactions on

Antennas and Propagation, 45(3), 556-562.

� Lu, Z., An, X., & Hong, W., 2008. A fast domain decomposition method for solving

three-dimensional large-scale electromagnetic problems, IEEE Transactions on Antennas

and Propagation, 56(8 I), 2200-2210.

� Mackie, R., Smith, J., & Madden, T., 1994. Three-dimensional electromagnetic modeling

using finite difference equations: The magne-totelluric example, Radio Science, 29(4),

923-935.

� Mandel, J., 1993, Balancing domain decomposition, Comm. Numer. Methods Engrg, 9,

233-241.

� Mitsuhata, Y. & Uchida, T., 2004, 3D Magnetotelluric modeling using the T-� finite-

element method, Geophysics, 69 (1), 108-119.

� Pain, C., Herwanger, J., Worthington, M., & De Oliveira, C., 2002. Effective

multidimensional resistivity inversion using finite-element techniques, Geophys. J Int.,

151(3), 710-728.

� Patro, P.K., & Egbert, G.D., 2008, Regional conductivity structure of Cascadia:

Preliminary results from 3D inversion of USArray transportable array Magnetotelluric

data, Geophys. Res. Lett., 35 (20), art. no. L20311.

� Peng, T., Sertel, K., & Volakis, J.L., 2009, Fully overlapping domain-decomposition for

fast optimization of small antennas in large-scale composite media, 2009 Computational

Electromagnetics International Workshop, CEM 2009, art. no. 5228103, 77-81.

� Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 1992. Numerical

Recipes in FORTRAN: The art of scientific computing, Cambridge University Press, 2nd

edn.

� Rice, J.R., Tsompanopoulou, P., & Vavalis, E., 2000, Interface relaxation methods for

elliptic differential equations, Applied. Numer. Math., 32, 219-245.

� 24

� Rung-Arunwan, T., 2010, An efficient modified hierarchical domain decomposition for

2D Magnetotelluric forward modeling, M.Sc. Thesis. Mahidol University.

� Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd ed, SIAM, Philadelphia,

2003.

� Siripunvaraporn, W. & Egbert, G., 2000. An effcient data-subspace inversion method for

2D magnetotelluric data, Geophysics, 65(3), 791-803.

� Siripunvaraporn, W., Egbert, G., & Lenbury, Y., 2002. Numerical accuracy of

magnetotelluric modeling: A comparison of finite difference approximations, Earth

Planets Space, 54(6), 721-725.

� Siripunvaraporn, W., Uyeshima, M., & Egbert, G., 2004, Three-dimensional inversion for

Network-Magnetotelluric data, Earth Planets Space, 56, 893-902.

� Siripunvaraporn, W., Egbert, G., Lenbury, Y., & Uyeshima, M., 2005, Three-dimensional

Magnetotelluric inversion: data-space method, Phys. Earth and Planetary Interiors, 150,

3-14.

� Siripunvaraporn, W & Egbert, G., 2009, WSINV3DMT: Vertical magnetic field transfer

function inversion and parallel implementation, Phys. Earth and Planetary Interiors, 173,

317-329.

� Siripunvaraporn, W & Sarakorn, W., 2010, An efficient three-dimensional

Magnetotelluric inversion: a mixed of the data space conjugate gradient method and the

data space Occam’s method, submitted to GJI.

� Smith, B., BjØrstad, P., & Gropp, W., 1996. Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations, Cambridge University Press.

� Smith, J. T., 1996. Conservative modeling of 3D electromagnetic felds, Part I: Properties

and error analysis, Geophysics, 61(5), 1308-1318.

� Sourbier, F., Haidar, A., Giraud, L., Operto, S., & Virieux, J., 2008. Frequency-domain

full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain

decomposition method: A tool for 3D full-waveform inversion?, SEG Technical Program

Expanded Abstracts, 27(1), 2147-2151.

� Streich, R., 2009. 3D finite-difference frequency-domain modeling of controlled-source

electromagnetic data: Direct solution and opti-mization for high accuracy, Geophysics,

74(5), F95-F105.

� Takei, A., Sugimot, S.-I., Ogino, M., Yoshimura, S., & Kanayama, H., 2010. Large-scale

analysis of high frequency electromagnetic field by hierarchical domain decomposition

� 25

method with direct method in subdomains, IEEE Transactions on Fundamentals and

Materials, 130(3), 239-246.

� Wang, B., Mittra, R., & Shao, W., 2008. A domain decomposition finite-difference

method utilizing characteristic basis functions for solving electrostatic problems, IEEE

Transactions on Electromagnetic Compatibility, 50(4), 946-952.

� Wannamaker, P., 1991. Advances in three-dimensional magnetotelluric modeling using

integral equations, Geophysics, 56(11), 1716-1728.

� Wannamaker, P., Stodt, J., & Rijo, L., 1987. A stable finite element solution for two-

dimensional magnetotelluric modelling, Geophys. J. R. astr. Soc., 88(1), 277-296.

� Xie, G., Li, J., Majer, E., Zuo, D., & Oristaglio, M., 2000. 3D electromagnetic modeling

and nonlinear inversion, Geophysics, 65(3), 804-822.

� Xiong, Z., 1992. Electromagnetic modeling of 3D structures by the method of system

iteration using integral equations, Geophysics, 57(12), 1556-1561.

� Xiong, Z., 1999. Domain decomposition for 3D electromagnetic modeling, Earth Planets

Space, 51(10), 1013-1018.

� Yin, L., Wang, J., & Hong, W., 2002. A novel algorithm based on the domain-

decomposition method for the full-wave analysis of 3D electromagnetic problems, IEEE

Transactions on Microwave Theory and Techniques, 50(8), 2011-2017.

� Zhang, F., 2005, The Schur complement and its applications, Springer, ISBN

0387242716.

� Zyserman, F. & Santos, J., 2000. Parallel finite element algorithm with domain

decomposition for three-dimensional magnetotelluric modelling, Journal of Applied

Geophysics, 44(4), 337-351.

� Zyserman, F., Guarracino, L., & Santos, J., 1999. A hybridized mixed finite element

domain decomposed method for two dimensional magnetotelluric modelling, Earth

Planets Space, 51(4), 297-306.

7. Acknowledgements

This research has been supported by Thai Center of Excellence in Physics (ThEP) and by

Thailand Research Fund (TRF: RMU5080025). The authors would like to thank Colin G.

Farquharson, anonymous reviewer and the editor, Oliver Ritter, for their comments to help

improve the manuscript

� 26

Figure 1. Model used to test the efficiency and accuracy of the modified hierarchical domain

decomposition method. The model consists of two resistivity contrast blocks buried in a 100

m�� half-space. The left and right blocks are 10 m�� and 1,000 m�� , respectively.

This model is discretized into three finite difference meshes: 40 � 120, 80 � 240 and 120 �

360 and are used in the numerical experiment section. Discretization shown in this figure is

merely an example to illustrate that the unknown fields are defined on the nodes (black dots).

� 27

Figure 2. Example mesh of Figure 1 is uniformly redrawn, and subdivided into 3 � 4

subdomains as an illustration here. The interiors inside each subdomain are drawn with solid

circle (�). The horizontal and vertical interfaces between subdomains are shown with solid

rectangle (�) and solid triangle (�), respectively. The intersections from four subdomains

are plotted with solid cross (�).

� 28

Figure 3. (a) Sparsity pattern of the Schur complement matrix S (equation 5) of the non-

modified hierarchical domain decomposition. (b) Sparsity pattern of the Schur

complement interface systems (SHH, SHV, SVH and SVV in equation 12) of the modified

hierarchical domain decomposition.

a)

b)

� 29

Figure 4. Apparent resistivities (Ohm-m) and phases (degree) of TM and TE modes from

three different frequencies (1 Hz, 0.1 Hz and 0.01 Hz) across the model in Figure 1. Dots are

from MHDD2D. Solid and dash lines are from TM and TE of FD2D, respectively. The

differences of both responses from both methods are in the round-off level. This validates our

MHDD2D code.

� 30

Figure 5. (a) Relative memory usage (in percent) and (b) relative CPU time (in percent) of

MHDD2D to FD2D from several combinations of subdomains running on a 40 × 120 mesh.

MHDD2D is more efficient than FD2D where larger negative percentage is presented, and

less efficient where larger positive percentage.

� 31

Figure 6. Same captions as in Figure 5 but for 80 × 240 mesh.

� 32

Figure 7. Same captions as in Figure 5 but for 120 × 360 mesh.

� 33

 p � q subdomains l/r (l) n mh mv m

3 � 3 4641 (41769) 4 714 234 948

10 � 9 429 (38610) 72 3159 880 4039

20 � 30 55 (33000) 551 6270 2900 9170

Table 1. Numbers of interiors per subdomain (l/r where l is total of interiors and r = p � q),

intersections (n), horizontal interfaces (mh), vertical interfaces (mv) and all interfaces (m) for

three different numbers of subdomains running on a 120 � 360 mesh (Figure 7).

Center of optimized

region
 l/r (l) n mh mv m

5 � 6 subdomains on

40 � 120 mesh
133 (3990) 20 456 175 631

8 � 8 subdomains on

80 � 240 mesh
261 (16704) 49 1624 504 2128

10 � 9 subdomains on

120 � 360 mesh
 429 (38610) 72 3159 880 4039

Table 2. Numbers of interiors per subdomain (l/r where l is total of interiors and r = p � q),

intersections (n), horizontal interfaces (mh), vertical interfaces (mv) and all interfaces (m) for 5

� 6 subdomains on 40 � 120 mesh (Figure 5), 8 � 8 subdomains on 80 � 240 mesh (Figure

6), and 10 � 9 subdomains on 120 � 360 mesh (Figure 7), respectively. These subdomains

represent the center of optimized regions.

+������ �. Reprint

Siripunvaraporn W. and G. Egbert, 2009, WSINV3DMT: Vertical Magnetic Field Transfer

Function Inversion and Parallel Implementation, Physics of the Earth and Planetary
Interiors 173 (3-4), pp. 317-329

Physics of the Earth and Planetary Interiors 173 (2009) 317–329

Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journa l homepage: www.e lsev ier .com/ locate /pepi

WSINV3DMT: Vertical magnetic field transfer function inversion and parallel

implementation

Weerachai Siripunvaraporna,∗, Gary Egbertb

a Department of Physics, Faculty of Science, Mahidol University, Rama VI Rd., Rachatawee, Bangkok 10400, Thailand
b College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA

a r t i c l e i n f o

Article history:

Received 15 September 2008

Received in revised form 21 January 2009

Accepted 25 January 2009

Keywords:

Magnetotellurics

Vertical magnetic transfer function

Data space method

3-D inversion

Occam’s inversion

a b s t r a c t

We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT

(Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric

inversion: data-space method. Phys. Earth Planet. Interiors 150, 3–14), including modifications to allow

inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel

implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for

different frequencies, as well as some linear algebraic computations, over multiple processors. In addition

to reducing run times, the parallelization reduces memory requirements by distributing storage of the

sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear

speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the

horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs

alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate

host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion

had little impact on the inverse solution computed with impedances alone. However, in experiments with

real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances

alone, differed in important ways, suggesting that for structures with more realistic levels of complexity

the VTFs will in general provide useful additional constraints.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

WSINV3DMT (Siripunvaraporn et al., 2005) has been developed

to invert Magnetotelluric (MT) impedance tensor components for

three-dimensional (3-D) Earth conductivity. It was made freely

available to the MT research community in 2006 and has since

become one of the standard tools for 3-D inversion and interpre-

tation (e.g., Tuncer et al., 2006; Heise et al., 2008; among others).

The inversion algorithm used closely follows the two-dimensional

(2-D) data space Occam’s inversion of Siripunvaraporn and Egbert

(2000) which has also been widely used for 2-D interpretation (e.g.,

Pous et al., 2002; Oskooi and and Perdersen, 2005; Toh et al., 2006;

among others). Here we describe extensions to this code, which we

illustrate with tests on synthetic and real data.

We first briefly summarize WSINV3DMT; see Siripunvaraporn

et al. (2005) for more technical details. The algorithm used is based

on the classic Occam’s inversion introduced by Constable et al.

(1987) for the one-dimensional (1-D) MT and DC resistivity sound-

ing problems. The Occam inversion seeks a minimum structure

∗ Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159.

E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).

model (as defined by some model norm which penalizes rough-

ness) subject to an appropriate fit to the data. The minimization is

accomplished with a modified Gauss–Newton algorithm, in which

the regularization parameter (which controls the tradeoff between

model roughness and data fit) is also used for step length control

(Parker, 1994). The main advantages of the Occam approach are

its stability and robustness, and the fact that the scheme often con-

verges to the desired misfit in a relatively small number of iterations

(e.g., Siripunvaraporn and Egbert, 2000). Occam was extended to

treat two-dimensional MT data by deGroot-Hedlin and Constable

(1990), but for multi-dimensional inversion the originally pro-

posed scheme can be computationally impractical, as the system

of normal equations is explicitly formed and solved in the model

space.

Siripunvaraporn and Egbert (2000) transformed the inverse

problem into the data space (e.g., Parker, 1994). If the number of

data (N) is small compared to the number of model parameters (M),

as will typically be the case in 3-D, the data space variant requires

a fraction of the CPU time and memory compared to a model space

scheme. This data space Occam scheme forms the basis for the

WSINV3DMT algorithm, which is summarized in Fig. 1.

The initial version of WSINV3DMT was only capable of inverting

the impedance tensor Z, the 2×2 complex frequency dependent

0031-9201/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.pepi.2009.01.013

318 W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329

Nomenclature

d observed data

Cd data error

m0 initial and prior model

Cm model covariance

mk model at k iteration

Jk N×M sensitivity matrix forming from mk

F[mk] forward responses of mk

�k data space cross product matrix

Rk representer for k iteration

� Lagrange multiplier

Ns number of stations

Nm number of modes

Np number of periods

N number of data = Ns×Nm×Np

M number of model parameters

transfer function relating electric to magnetic fields[
Ex

Ey

]
=

[
Zxx Zxy

Zyx Zyy

][
Hx

Hy

]
. (1)

The impedance tensor is frequently used by itself for 3-D conduc-

tivity imaging (e.g., Tuncer et al., 2006; Heise et al., 2008; Patro

and Egbert, 2008). However, modern MT field practice typically

includes measurement of vertical magnetic fields (particularly at

long periods, where a tri-axial magnetometer is used), and thence

computation of vertical field transfer functions (VTFs)

Hz =
[

Tzx Tzy

][
Hx

Hy

]
. (2)

The vertical magnetic field is only produced when there are lat-

eral or horizontal variations of conductivity. Researchers have often

used VTFs in the form of induction vectors (Parkinson, 1959) to

indicate or point to the source of conductivity anomalies and to

establish or verify geoelectic strike directions (e.g., Bedrosian et

al., 2004; Uyeshima et al., 2005; Tuncer et al., 2006). A num-

ber of 2-D inversion codes (e.g., REBOCC of Siripunvaraporn and

Egbert, 2000; and NLCG of Rodi and Mackie, 2001) allow inversion

of VTFs (or “Tipper”), and these are often included along with TE

and TM impedances in 2-D interpretations of MT profile data (e.g.,

Wannamaker et al., 1989; Wannamaer et al., 2008). Berdichevsky

et al. (2003) studied VTFs using analytical and modeling studies,

and concluded that inclusion of these additional induction transfer

functions can substantially improve the reliability of geoelectrical

models, because they are not affected as strongly by local distortion

as the impedance tensor is.

Here, we describe the implementation of VTF inversion for the

WSINV3DMT inversion code, and apply this to inversion of real and

synthetic datasets. In addition, we describe implementation of a

parallel version of WSINV3DMT, using MPI and parallelizing over

frequencies to help reduce program execution times, which can

be quite long for realistic modern datasets (e.g., Patro and Egbert,

2008).

The paper is organized as follows. First, we summarize the mod-

ifications to WSINV3D, for the most part omitting technical details.

Next, we illustrate and test the new features on the same syn-

thetic datasets previously used in Siripunvaraporn et al. (2005).

Here we illustrate the speedup obtained with the parallelization,

and explore the effectiveness of VTF data for recovering conduc-

tivity structures, alone, and in conjunction with impedance data.

We then test the VTF inversion on the EXTECH dataset (Tuncer et

al., 2006), comparing inverted models from only VTF data, from

only impedance data, and from a joint inversion of both data

types.

2. Implementation of WSINV3DMT to include the vertical
magnetic transfer function

There are only two major modifications to the WSINV3DMT

codes required to allow inversion of VTFs: adding the VTF com-

putation to the forward modeling routine, and the corresponding

modifications for the sensitivities of the real and imaginary parts

of the VTFs.

In WSINV3DMT, the electric fields are calculated by solving the

second order Maxwell’s equation using a staggered grid finite dif-

ference numerical scheme (Siripunvaraporn et al., 2002). Magnetic

field components can then be computed (on grid cell faces) from

Faraday’s law �×E = iω�H, and interpolated to the observation

locations, which in the modified version of WSINV3D can be at any

location on the surface. In order to compute the impedance tensor Z
the forward equations are solved for two polarizations, and Z is cal-

culated from the combination of horizontal electric and magnetic

fields from both polarizations, as described in Siripunvaraporn et

al. (2005).

The only modification required for the VTF is that the vertical

magnetic field must also be computed at the observation location.

As for the horizontal magnetic components, this is accomplished

using Faraday’s law, taking the curl of the horizontal E compo-

nents on the model air–Earth interface, and interpolating the result

(defined at cell centers) to the observation locations. Then, similarly

to the impedance tensor, the vertical and horizontal magnetic fields

computed from the solutions for both polarizations are combined

to form the vertical magnetic field transfer function T,

[
H1

z H2
z

]
=

[
T zx T zy

][
H1

x H2
x

H1
y H2

y

]
(3)

Here H1
z and H2

z are the z-component of magnetic fields for the

Ex–Hy and Ey–Hx polarizations, respectively, and similarly for other

field components. For a joint inversion with impedance tensor,

computing the vertical magnetic transfer function does not require

any extra forward modeling calls, as all transfer functions are com-

puted from the same solutions.

The sensitivity calculation for VTFs is essentially identical to that

used for impedances, which is based on the reciprocity approach

described in Rodi (1976), Newman and Alumbaugh (2000), and

Siripunvaraporn et al. (2005). Briefly, the linearized data functional,

which is represented by linear combinations of electric field solu-

tion components on cell edges surrounding the observation point, is

used to force the adjoint equation, and the result is mapped to per-

turbations in the model parameter, as described in Siripunvaraporn

et al. (2005). Only the first step requires modification, with the coef-

ficients for the linearized functionals for Tzx and Tzy replacing those

for Zxx and Zxy. Details of this modification are straightforward, and

are omitted here.

3. Parallel implementation with MPI

A major challenge in using WSINV3DMT, or for that matter,

any 3-D MT inversion code, is that the program is very time

consuming, especially when run with the sort of large dataset

(and model domain) that justifies a 3-D interpretation. Run times

exceeding a full month (on a single processor desktop computer,

for the full inversion process, including multiple iterations of the

outer loop of Fig. 1) have been reported when WSINV3D has

been applied to even modest 3-D MT datasets (e.g., Patro and

Egbert, 2008). These long run times primarily reflect the need

for many forward modeling calls, each of which requires iterative

W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329 319

Fig. 1. Pseudo-code for serial WSINV3DMT (after Siripunvaraporn and Egbert, 2007).

solution of the large sparse linear system arising from discretization

of Maxwell’s equations. WSINV3D was developed as a serial code,

to run on a single processor. An obvious way to speed up execution

is to parallelize the code, and make use of the multiple processors

which are increasingly common even in desktop computers.

There are several ways to redesign the codes to run on parallel

system, and the most appropriate approach will depend on system

architecture. For supercomputers or large clusters to make effective

use of hundreds of processors it would be necessary to rewrite parts

of the forward solver—e.g., parallelizing the iterative solver and

preconditioner (e.g., Newman and Alumbaugh, 2000), or domain

decomposition. Here, we consider a parallelization approach appro-

priate to small systems with a few to several tens of processors. Such

small clusters and multi-processor workstations are now read-

ily affordable and more widely available than supercomputers. To

adapt WSINV3DMT for this class of systems, we parallelize over

frequencies, adding calls to MPI (Message Passing Interface) library

routines to the existing codes. In this way, we do not have to alter

the core forward modeling and sensitivity calculation routines in

any way. The parallel algorithm is summarized in Fig. 2.

Forward modeling and sensitivity calculations for each period

are sent to one processor (Steps 2.1 and 2.2 in Fig. 2).

If there are fewer processors than periods, each processor

performs calculations for more than one period. With this

simple parallelization, which requires minimal inter-processor

communication, the computational time should be theoretically

reduced by a factor P, the number of processors available. This paral-

lel implementation also distributes storage of the sensitivity matrix

over the available nodes. The N×M sensitivity matrix J requires

8NM bytes (in double precision), and the need to store this in RAM

limits the size of datasets and model grids that can be practically

treated. With the parallelization, memory required on each node

is reduced to about two times 8NM/P (including temporary storage

for cross product computations), allowing WSINV3D to be run for

larger models grids and datasets.

With the sensitivities distributed over processors, formation of

the cross product matrix � = JC−1
m JT also requires MPI calls. We

have implemented this in a fairly simple way, breaking � into P2

blocks to be computed on the P processors (Step 2.3 in Fig. 2).

Diagonal blocks �ii are computed on the local processor where

the corresponding block Ji of the sensitivity matrix (correspond-

ing to one or more frequencies) is computed and stored. The

off-diagonal blocks (�ij) can only be formed by sharing blocks of

J between nodes. Since � is symmetric, only upper off-diagonal

blocks (j > i) need be formed. On step k block Jj, where j = mod(i + k, P)

is sent to node i to compute �ij where this block is stored. With

this simple scheme the load is balanced and the number of steps

required is approximately (Np + 1)/2. Although computing the cross

products requires significant communication time to share sen-

sitivities between nodes, it can still significantly reduce the total

computing time required to form � compared to single node pro-

cessing.

In the data space Occam scheme used by WSINV3D the system

of normal equations (Eq. (6) in Siripunvaraporn et al., 2005) must

be solved for a series of trial values of the regularization parameter

(about 3–7 from our experience) to find the optimal (in terms of

data misfit and model norm) model parameter update. In the serial

version of WSINV3D these dense systems are solved by Cholesky

decomposition (Step 2.4.2 in Fig. 1). Parallel Cholesky decomposi-

tion subroutines are available (e.g., Choi and Moon, 1997), but these

are generally tailored to a specific parallel architecture and are not

easily adapted. To develop code that will be portable, and reason-

ably efficient on a generic multi-processor system, we have thus

pursued a different strategy, using the easily parallelized precon-

ditioned conjugate gradient (PCG) algorithm to solve the normal

equations (Step 2.4.1.2 in Fig. 2). The major computation in the

320 W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329

Fig. 2. Pseudo-code for parallel WSINV3DMT for cluster PCs system.

PCG algorithm is matrix–vector multiplication. This is readily par-

allelized by dividing the vectors and matrix into blocks, spreading

computations for individual blocks over processors, and then gath-

ering the results back to the master node. To simplify the algorithm

we have distributed the full matrix to all computational nodes.

The preconditioner, based on the diagonals of the coefficient

matrix, is also trivially parallelized. Because the coefficient matri-

ces are dense, the parallel PCG scheme may not be efficient when

N is small, since communication and other overhead may exceed

the serial computational time. For smaller N, we therefore retain

the option of solving the normal equations with a serial Cholesky

decomposition, after all blocks �ij are sent back to the parent node.

The optimal choice of solution scheme (parallel or serial) for a spe-

cific value of N will depend on the cluster architecture. We give

examples below where each approach is more efficient.

Once the new model mk+1 is obtained, the parallelized forward

solver is called to compute the responses of each period, with the

results gathered to the parent node to compute misfits (Step 2.4.2

in Fig. 2). All steps are repeated until an acceptable misfit and norm

are achieved

4. Synthetic data examples

To illustrate the efficiency of the parallelized WSINV3D, and

the effectiveness of the VTF inversion, we first consider inver-

sion of synthetic datasets, revisiting the two synthetic examples

previously used by Siripunvaraporn et al. (2005), reproduced in

Fig. 3. The results of these tests are consistent with those obtained

for other synthetic examples. Our basic test configuration is the

two-block model (Fig. 3a) consisting of two anomalies, 1 � m and

100 � m located next to each other within a 10 � m host. The spa-

tially homogeneous layer, which extends from the surface to 10 km

depth, is underlain by a 100 � m half space. To test the efficiency of

our parallel codes, and the VTF inversion, we generated VTF and

impedance data at 16 periods (from 0.1 to 1000 s) for a total of

40 sites in a regular grid, as illustrated in Fig. 3a. Gaussian noise

(5% of the data magnitude) was added to the generated data. The

inversions for this case are performed on a 21×28×21 (+7 air lay-

ers) mesh. The second model consists of a single conductive block

(1 � m) buried in a 100 � m half-space (Fig. 3b), and responses

were computed at 16 periods for 36 sites (Fig. 3b). The inversions

W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329 321

Fig. 3. Two synthetic models used to test our inversion. (a) Two-block synthetic model and (b) a single conductive block model. The solid dots indicate the observation sites.

The cross-section view in the lower panel is a profile cutting across the middle of the model in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005).

for the second case are performed on a 28×28×21 (+7 air layers)

mesh.

We first demonstrate the efficiency of the parallel version of

WSINV3D, using both VTF and joint VTF/impedance datasets for

tests. We then consider the effectiveness of VTF data for recov-

ering conductivity variations, both alone, and in conjunction with

impedances.

4.1. Parallel efficiency

We tested WSINV3DMT by running on 1, 4, 8 and 16 nodes for

the first synthetic test case (Fig. 3a), with the 16 periods divided

evenly among nodes (e.g., with 4 nodes, each solves for 4 periods).

Tests were conducted on a small PC-clusters and a supercomputer

(SGI Altix 4700) at the Earthquake Research Institute, University of

Tokyo. To quantify efficiency of the parallel code, we display the

speedup, defined as S = T1/TP, where T1 is the execution time of

the sequential WSINV3DMT algorithm and TP is the execution time

of the parallel version, run on P processors. The idealized maxi-

mum speedup is P. However, due to computational overhead, the

need for some computations to be performed only on the mas-

ter node, and the time required to exchange information between

nodes, S will always be less than P. Fig. 4 displays speedup versus

the number of nodes. Inversions of all data (i.e., VTF + impedance,

N = 40×12×16 = 7680) are plotted with solid lines. Inversions of

the VTF only dataset (N = 40×4×16 = 2560, or one third the size

of the joint inversion dataset) are plotted as dashed lines. We also

compare speedups achieved with the two approaches for solving

the normal equations: speedups obtained with the single proces-

sor Cholesky decomposition are plotted as solid symbols, while

those obtained with the parallel PCG algorithm are plotted as open

symbols.

For the inversion of the VTF dataset for this very small test prob-

lem, actual (wall clock) run times were about 186 min on a single

node machine, 82 min on 4 nodes, 46 min on 8 nodes and 34 min

on 16 nodes, resulting in speedups of about 2.2 for 4 nodes, 4 for 8

322 W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329

Fig. 4. Speedup versus the number of processors or nodes. Solid lines are the

speedups from inversion using both VTF and impedance data (N = 7680). Dashed

lines are the speedups from inversion using only VTF data (N = 2560). Results for the

scheme which solves the normal equations by Cholesky decomposition on a single

node (step 2.4.1.2 of Fig. 2) are plotted with solid symbols. The corresponding results

with the parallel PCG solver (step 2.4.1.4 of Fig. 2) are plotted with open symbols.

The thin-dashed line of slope one gives the ideal perfect speedup.

nodes and 5.4 for 16 nodes. Thus, as the number of nodes increases,

the relative efficiency of additional nodes decreases. One reason for

this is that the run time of the iterative forward modeling routine

depends on the period of the data. Shorter periods typically require

a larger number of iterations for convergence, and hence longer run

times. Thus, some nodes are usually idle waiting for modeling com-

putations to complete on other nodes, before moving on to the next

step in the inversion. With fewer nodes some of the frequency-to-

frequency variations average out, resulting in better balance.

Efficiencies are somewhat lower for the larger joint

VTF/impedance dataset, when the serial Cholesky decomposi-

tion solver is used (solid line with solid square symbols of Fig. 4).

Now the speedups are about 1.8, 2.6 and 3.2 for 4, 8 and 16

nodes, respectively, almost 50% below those achieved for the VTF

only inversion. However, solving the normal equations with the

parallel PCG solver (solid line with open square symbols in Fig. 4)

significantly improves performance, increasing S to approximately

2, 4.5 and 7.3 for the three cases considered. In the VTF only

case, where N is significantly smaller, both methods for solving

the normal equations have similar performance (dashed lines in

Fig. 4), and indeed the speedup is slightly greater when the single

node Cholesky decomposition is used.

The difference between the two cases is readily understood.

Operation counts for Cholesky decomposition scale as N3 so com-

putation times for the serial Cholesky decomposition in the all

data case (N = 7680) are expected to be about 27 times greater

than for the VTF only case (N = 2560). Other computational steps

scale better with increasing N. For fixed model parameter size,

total operation counts for the sensitivity calculations increase lin-

early in N, and formation of the cross product matrices increases as

N2. Thus, as the size of the dataset increases, run times required

for the serial Cholesky decomposition step become increasingly

significant, and at large enough N this step will control the

overall runtime. Operation counts for a single iteration in the

parallel PCG scheme scale as N2, but overall runtimes will also

depend on the number of iterations required. Although this should

increase with N also, the dependence is weak, and so PCG becomes

increasingly advantageous as N increases, particularly since com-

putations for the PCG scheme can be distributed over the P

processors.

The number of iterations for PCG also depends on the relative

tolerance for the residual (=||Ax−b||/||b||) used to define conver-

gence. We find that a tolerance of 10−4 results in models that are

essentially identical to those obtained with the Cholesky decompo-

sition technique. The number of iterations, and hence the run time

of the parallel PCG scheme also depends on the condition number

of the normal equations. For large values of the Lagrange multi-

plier (corresponding to a smoother model) the condition number

is smaller, and the parallel solver thus converges in a small num-

ber of iterations. In contrast, when the Lagrange multiplier is very

small (rough model) the parallel solver can require considerably

more iterations, and solution times can exceed those for the serial

Cholesky decomposition scheme. This occurred occasionally in our

tests with the larger VTF/impedance dataset, but overall perfor-

mance using the parallel PCG solver was much better when N is

large enough.

We will not attempt to quantify more precisely how large N

must be before the parallel approach to normal equation solution

would be preferred. This will depend on the cluster architec-

ture, especially on the sort of inter-processor communication

used, since the parallel PCG solver requires substantial sharing of

data.

In addition to reducing computational times, the parallel ver-

sion also reduces the need for a large amount of memory on a

single computer. Even for the small joint VTF/impedance inversion

test example, about 1.5 GBytes are required for the representer and

sensitivity matrices. In the parallel implementation, the required

memory may be distributed over all of the nodes used. For exam-

ple, with 16 nodes, each would require only 0.090 GBytes for storing

the sensitivity matrix and forming cross products, almost 13 times

less than required by the serial code. If the whole representer matrix

is stored on a single processor (for the Cholesky decomposition, or

to reduce the communication time between nodes for PCG) about

0.4 Gb are required on each node, still only a quarter required for a

serial version.

The exact time speedup and per-node memory reduction fac-

tors will depend to some extent on the problem size, both in terms

of model grid dimensions, and number of data. For larger prob-

lems, such as the real data EXTECH example considered below,

similar performance gains were attained. For these larger prob-

lems, however, a speedup by a factor of roughly 7 means a run

time that was perhaps 2–3 weeks on a single node is now reduced

to 2–3 days, making inversion of realistic datasets considerably

more practical. The practical impact of distributing memory is even

greater. Total storage required by WSINV3D for the EXTECH exam-

ple described below (joint inversion of the full impedance and VTFs)

is at least 30 Gb, making this impractical on almost any shared

memory machine.

4.2. Vertical magnetic transfer function inversion

We next consider the effectiveness of WSINV3DMT at correctly

recovering resistivity when only VTF data are available. Because

in practice one would not know a priori the correct background

resistivity, we run the inversion using several prior (and starting)

models. Inversion results for the synthetic VTF data from the test

case of Fig. 3a are summarized in Figs. 5 and 6. Using a 50 � m

half-space as a prior (this is intermediate between the true 10 � m

upper layer background, and the 100 � m basement), inversion of

VTF data reveals both the conductive body and the adjacent resis-

tor, extending from near the surface to approximately 20 km depth.

The calculated responses generated from the inverse solution of

Fig. 5 fit the observed responses within 15% of the typical VTF

amplitude (recall that 5% random noise was added to the synthetic

data).

W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329 323

Fig. 5. An inverse solution from the VTF data alone after the 9th iterations with an RMS value of 1, fitting synthetic data generated from the model in Fig. 3a. The top panels

(a)–(c) is a plan view at the surface, at 3 km and at 7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the conductive block at X = 0 km. The solution

is shown only in the central area around the anomalies, not for the full model domain.

Although both anomalies are detected in approximately the

correct location, the true resistivities of Fig. 3a are not correctly

estimated. However, calculating the average resistivity over the

anomalous volumes we find for the inverse model of Fig. 5 an aver-

age resistivity of about 6.3 � m for the conductive anomaly, and of

about 453 � m for the resistive body, while the background resistiv-

ity of the inverse model was changed only slightly from the 50 � m

prior. Computing the volume average resistivity ratios from left to

right in Fig. 5d, we obtain values of 7.9 (=50/6.3), 72 (=453/6.3) and 9

(=453/50), compared to the actual ratios (Fig. 3a) of 10 (=10/1), 100

Fig. 6. Cross-sectional plots at X = 0 km (as in Fig. 5d) of the inverse solutions from VTF data alone, when the prior models are (a) 10 � m half-space, (b) 1 � m half-space and

(c) 100 � m half-space.

324 W. Siripunvaraporn, G. Egbert / Physics of the Earth and Planetary Interiors 173 (2009) 317–329

(=100/1) and 10 (=100/10), respectively. The inversion thus results

in roughly the correct structure, with approximately correct resis-

tivity contrasts, but it does not recover the correct amplitude of

either the background or the anomalies, or the actual depth extent

of the anomalies.

To explore this issue further we ran the inversion on the same

VTF dataset, using a range of values for the assumed half-space

prior. Fig. 6 summarizes the results with cross-sectional plots of

the inverse solutions at X = 0 km. When the prior model is the same

as the correct background resistivity (i.e., a 10 �-m half-space in

our example), the inversion quickly converges to the desired misfit

within 4 iterations, even with error floors set to 5%. In this case,

the inversion estimates the resistivity, and the depth extents, of the

two anomalies quite well (Figs. 6a and 3a). However, the 100 � m

basement resistivity (below 10 km depth in the synthetic test model

of Fig. 3a) is not recovered—the prior resistivity of 10 � m remains

unchanged at depth in the inverse solution. This again demonstrates

that inversion of VTF data alone can only recover lateral resistiv-

ity contrasts, and is not effective at correcting resistivities, or their

variations with depth.

Larger deviations of the prior model from the correct back-

ground result in even larger discrepancies in anomaly amplitudes

and depths, but still generally allow the horizontal structure to be

recovered. With a 1 � m half-space (Fig. 6b) data is fit to within

10%. Anomalies appear at very shallow depths (upper few km), with

all features more conductive than their actual values. At greater

depth, features with appropriate resistivity ratios are imaged, but

the absolute levels are incorrectly estimated, and spurious struc-

tures appear. Using a 100 � m half-space as a prior, the VTF data

can only be fit to within 20%. The basic structure is again recovered,

but both anomalies are at greater depth (Fig. 6c) and have increased

resistivity. The host resistivity is estimated to be slightly lower than

the 100 � m starting value, but is still well above the correct value

of 10 � m. As in the other cases, the basement resistivity remains

the same as the prior model.

All of these experiments suggest that when only VTF data are

available, to achieve the target misfit and recover correct ampli-

tudes and depths, the inversion must be started with a prior model

that is close to the correct host resistivity. However, even starting far

from the correct background model, anomalies are recovered with

the correct horizontal location and dimensions. This result is not

unexpected since the vertical magnetic fields are generated where

there are lateral discontinuities, but are not inherently sensitive to

the profile of vertical conductivity structure.

In addition, resistivities of anomalous bodies scale with the

assumed prior background (Fig. 6), and resistivity contrasts (i.e.,

ratios) can be close to actual values, especially if the assumed back-

ground resistivity is not too far off. However, the VTFs provide little

intrinsic constraint on contrasts in the vertical direction, including

the location of the top or the bottom of the anomalies. The inver-

sion only gets these properties of the anomalies correct if something

close to the correct background is used (Fig. 6a).

Performing similar experiments to those summarized in Fig. 6,

but using impedance tensor data shows that these inversions are

much less sensitive to the assumed prior model. This is consistent

with the basic physics, as the ratio of electric to magnetic fields is

intrinsically related to the resistivity profile. In spite of the well-

known uncertainties in depth and absolute resistivity level that

may result from local static distortions, there is by now ample evi-

dence (e.g., Tuncer et al., 2006; Unsworth et al., 2000) that, with

proper care, MT impedances can yield reliable information about

conductivity-depth profiles. The same does not appear to be true

in practice with VTF data, although theoretical analysis of idealized

models suggests otherwise (Berdichevsky et al., 2003).

The above results suggest that VTF data will be most useful as an

adjunct to impedance data, which can provide the necessary con-

Fig. 7. Results from joint inversion of both VTF and impedance tensor data generated from the model in Fig. 3a. See caption of Fig. 4 for other details.

