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��/��������� ����
�$/!�0������+��1��'�����0!���������#'$�&� Magnetotelluric /!�0������

������+� WSMIX3DMT �!"�/!�0�����1��24��5�����������)��
$�/!�0�����+� �4$ data space 

conjugate gradient (WSDCG3DMT) 0�� data space Occam’s inversion (WSINV3DMT) /!�0��� 

WSMIX3DMT ����!"�/!�0�����1���0!������
����
�����)��/!�0��� WSDCG3DMT �������

��+������),���1�'$���')6������'$���41$����7��7 WSINV3DMT ���4$���7#$� WSDCG3DMT 0�+

0����1���)���' trade-off parameter ���������$� inversion ����!��1��0!��*!��41$�9 ���4$���7��1�,�

�� WSINV3DMT 0�+����!��1��0!������!"�*!��� run-time *�+*�'�!"�*!��� data misfit 

���7�������1�����'����,���'/!�0��� WSMIX3DMT ���*�'������+����� WSDCG3DMT 0�� 

WSINV3DMT 0����#
�������������'��+������),��'$���+� 
�1�����,���' WSMIX3DMT �!"�/!�0��� 

inversion ��1��!��
��:���2
&���1
;� /!�0������*�'<&���
$70���!���7����7��7/!�0�����+�����)��

#'$�&������0��#'$�&�)��� 
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Abstract 
 

 

  

In this project, we create a new inversion scheme (WSMIX3DMT) based a mixed of the data 

space conjugate gradient (WSDCG3DMT) and the data space Occam’s inversion 

(WSINV3DMT) methods. WSMIX3DMT is mathematically a slight modification of 

WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in 

WSDCG3DMT. Instead of fixing the trade-off parameter, it is varied similar to WSINV3DMT. 

However, the variation is according to the run-time, not based on the data misfit. This strategy 

makes WSMIX3DMT faster than both WSDCG3DMT and WSINV3DMT, and at the same time 

requires least memory. This makes WSMIX3DMT as the most efficient inversions. 

Computational performances and comparisons of all three methods are demonstrated with both 

synthetic and field datasets.  
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 ������������	
�� 
��. ����������
��������������������������������������!���"#�������$�"%��

"�&�'"#�	(��))���� ��������
��. ��&��������������
�$��!�*���%�����������������#���"+$���'%,������

��������$�
��-���(/������$��	���%�#$
����������������������� 01����������������������� SCOPUS ���� 

ISI database ��$��&��������������������	�*�)�(	����������(�,*�$"#��(�,��2�%��3 '�#� ��������

��&���
�$��!������������������*���%��"+$���������"���$	�
%���'%,���21�4����������������
���5���

67
��
8�����
"������(/�(�,��*�8"#�(�,��2 01��9%������������	���21�4��+�,$�(���:���$�������3   

��������& ��������"�������	
�� Prof. Dr. Gary Egbert ��� Oregon State Universiy, 

Associate Professor Dr. Makoto Uyeshima '%, Professor Dr. Hisashi Utada ��� Earthquake 

Research Institute (ERI), University of Tokyo '%, Professor Dr. Yasuo Ogawa ��� Tokyo 

Institute of Technology ���
��	
�������������������$����"%�� '%,��&���&�+"����$#%�$����,��	
��  

92. ��. 2��
��� ���$�"� �������-�
��*�67
��
8'%,9>��#�$���
�����3 ��-�
��*�67
��
8���*#��


��	
�����������$����"%�� ��$��&����21�4����%�#$�����5���67
��
8 $�������%��$���% ����#�$���?@�

6B���(
��
"#��3 �����
��$�(/��%�2����������������& ��������&'%�����$�������3 ���-�
��*�����3 ���

���� ��$��&��#��
�	��'%,��$���
�,�����2�
"�8 $�������%��$���% ���
����,"���'%,
��	
���

��������$�"%�� 

����%�#$��1��������������,�$#��	
���$#��� 
�� 	�
%������
��. ?@����*��������(/�$�"������ 

'%,
��*#����%����������"#��3 �(/���#����   


��������& ��������"�������	
��	�

%���
���(/����%���� �����������
��������#�� 	�

%��%#���&


��
��'$#��������%#��%�	�('%,
��	
��������������������� ��	
��$��
��	 

 

      �2. ��. ���,*�� 
������58���-��8 
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Magnetotelluric �(/���
��
��1�����5���67
��
8 ��
��
��&����$"�����������
��$'$#��%+�'%,


��$�66F����	�������&�9������%� ��"��
#�����
��$'$#��%+�'%,
��$�66F�
�$��!���$��*��(/�

"��	#�	��!1�
-��
��$"�������66F� (electrical resistivity) ���� 
��$
�$��!���������66F� 

(electrical conductivity) -���"���&��%����
��$%1�"#��3 ��� ���
�$��!������$>% electrical resistivity 

��&�(�*�������5�	���
��
��������%�������5�	���������'9#������� (Siripunvaraporn et al., 1998; 

Unsworth et al., 2000; Boonchaisuk et al., 2010) ���21�4���
����
�����&���� (Jones, 1992) ����

�*������
���������������5��$*�"� (Tuncer et al., 2006; Orange, 1989; Vozoff, 1972) '%,����3   

 

���$>%
%���'$#��%+��66F����������$�������
�����'"#%,��&�����,�(/����$>%��	���"������$�9#�� 

data processing ��������������$>%���������#� apparent resistivity '%, phase ���� impedance tensor 

01���(/�6B��8*�����
��$!�������#�
�	 ���������(�*������"�
��$�$��"#��( ���"�
��$�$�����

���$>%���"����&��(/��(������ ������������$>%������$��$#����(/�6B��8*�����
��$%1� �����&� inversion 

�������'��(B)�������%�	 
����,	��������������
#� apparent resistivity '%, phase ����(/�6B��8*��

���
��$!������
�	 �('(%�����(/�
#� electrical resistivity ��	
��$%1� ���9#����,	��������


��"2�
"�8���
%�	0�	0��� ��&���&9%%��58
������������
��'		���%�� (model) 
-��
��$"�������66F�

'		
�$$�"� (3-D) 

 

 �����_���(�'��$ inversion 
�����	���$>% MT $�$�"#����������9>������ ����$"����������_�� 

2-D inversion (Siripunvaraporn and Egbert, 2000) ����(�'��$ 2-D ��&���$�*����#� REBOCC $�

����������������%�����(�*������'(%
��$�$�����$>%���� (SCOPUS: ��	���� 97 ����� as of 24 

June 2010) �$��������	���
��	
������
��. 9>�������+�����_���(/��(�'��$ 3-D (Siripunvaraporn et 

al., 2005) ���$�*����(�'��$�#� WSINV3DMT 01��
�$��!���������'$�	��
����� PC 5��$�� 01��!���#�

�(/��(�'��$'������%����$���� release 
>#
�5���,'%,���$��������(�*����� (SCOPUS: ��	���� 33 

����� as of 24 June 2010) ��
��
��� WSINV3DMT ���!>�����((�,���"8�*���	���$>%(�,�-�����3 

���� �*#����$>% Network-MT data (Siripunvaraporn et al., 2004) ���$>% 2-D DC Resistivity 

(Boonchaisuk et al., 2008) '%,���$>% Phase Tensor (Patro et al., 2010) �(/�"�� 
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��#�����+"�$ '$��#� WSINV3DMT �,���������	��
����� PC �����( '"#�+���$�(B)����># ���

(B)���%�� 
�� ���
�"����*���#��
��$�������
�����
�$����"��8��(��$��$���$����*���	���$>%���$�

������)# 
�����&
��������������"���(�'��$ ��5�'�����+
���������$��#��
��$������
�$����"��8���

$�����
����#�����
������,��	��� 01���+�,������"��������������
>�����'��$���1&� 

 

 "#�$�9>�������+�����	���
��	
������
��. �����'�������	���#����&�����_���(/� algorithm 

��$#�1&�$������%�(��$����#��
��$�����& ��5���1���������*��+
�� ���'���,		
$���������5� conjugate 

gradient (CG) '������,'��'		���"�� 
���*� Cholesky decomposition ��$����������� 

WSINV3DMT ����*���5� CG ����������$#"�����+	 sensitivity matrix (J) 01��$�������)#��

��#��
��$������
�$����"��801�����������%�(��$������*���#��
��$�������(/���#��$��  �(�'��$

��$#��&���������#� data space conjugate gradient method (DCG) ���� WSDCG3DMT ������

��%����� Siripunvaraporn and Egbert (2007)  '%, Siripunvaraporn and Sarakorn (2010) 


�����	���$>% 2-D '%, 3-D �	�#� ����������
��
��&�+
�� �$#"����*���#��
��$�����(��$��$��

��$��� WSINV3DMT '"#��#�����
�������
��
��$#��&��>#�����%�����*�����(�'��$��&�$����#� �����&�$��

�1��(/� trade-off 01�����'%,����,��#����%���	��#��
��$��� 

 

������
���
�������& ����
������,9
$�(�'��$��&�
��������������� �����
����������� ����
��

�*���#��
��$������� ����,���������+�*���%����������������� ��������~	�	��&����,����$"�����

���	������(�'��$ WSINV3DMT '%��"�$���� WSDCG3DMT �����&��+�
��'�,��
��
��$#���

������#� WSMIX3DMT ��$��&�9%����������������(�'��$  

 

  

Inversion : Overview 

 

������ inversion 
�������'		���%�� (m) ���
�$��!���
#� model responses F[m] ��� fit ���$>% d ���

$���&��$� N 
#����
$��"�
$9% 01��
�$��!������(/�
$���
��"2�
"�8��������&  

 

U(m, �) =  (m – m0)T Cm
-1 (m – m0)  +   � -1{(d - F[m])T Cd

-1 (d - F[m]) - X2
*} (1)  
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�$��� Cd 
�� data covariance '%, 
T
 
�� transpose of matrix, m 
�� model ���$���&��$� M 
#� 
#�� mo 


�� base model '%, Cm 
�� model covariance '%, �
-1
 
�� Lagrange multiplier 

 

 
$������ (1) ��&$�
��$�$���#�������%�������� search ��'		���%�� (model) ���$�%��4�,

'		 minimum structure ���$����'$��#�'		���%���������,"��� fit ���$>%����(/���#����01��!>�������

���
#� X2
*  �����������%��4�,��&������ inversion ��&� stable $���1&�   

 

 ��� minimize 
$�����& 
�� ���
������� stationary point ���
$������ (1) ��&�$�������	��	 � 

'%, m 01��
����������� ��5���1��
�����'��
$��� penalty functional '�� 01��$�%��4�,�����& 

 

�m
�  = (d - F[m])T Cd

-1 (d - F[m]) + � (m - m0)T Cm
-1 (m - m0),  (2) 

 

����������$��� � ��&�
���� ���� fixed ��� ����,����#� �U/�m = ���/�m  �����&����
�$��!'��
$��� (2) 

'�����
$������ (1) ���'"#"��� vary 
#�  � �(������3�����������
#� misfit ����������
������"�$���"�&������� 

 

 
$������ (2) �(/�
$����� model space 01�� Siripunvaraporn et al. (2005) and 

Siripunvaraporn and Egbert (2000) '
�������+��#����'��(B)���� model space ��&�$�����
��
���*�

��%����$��3 '%,�*���#��
��$���
>�$��3 Siripunvaraporn and Egbert (2000) and 

Siripunvaraporn et al. (2005) �1��
�����'��(B)���� data space '�� 

 

 �����&���&�"��'��
�����'(%�
$������ (2) ��� model space �����>#�� data space 01��


�$��!�����������& ����������� '		���%�� m ����(/�6B��8*����� sensitivity matrix �����& m - m0  =  

CmJT� �$��� � 
�� unknown expansion coefficient vector �����&�
$������ (2) �,�%���(/� 

  

�d
� =  �-1 (� - JCm

TJT�)T Cd
-1 (� - JCm

TJT�)  + (�TJCm
TJT�),  (3) 

 

�$��� J = [�F/�m] 
�� N x M sensitivity matrix 01���(/�"���5�	������(%����'(%�������$>%���������

����(%����'(%���� model '%, � = d – F[m] + J(m - m0)   
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��������� F[m] ��&��(/� non-linear problem �����&� iterative solutions �1�����(/� (Constable 

et al., 1987) model response F[m] �1�����(/�"���!>� linearized �#������*� first order Taylor’s 

series expansion, 

 

F[m k+1]  = F[m k] + Jk(m k+1 – m k),     (4)  
 

�$��� k 
�� iteration number ������� stationary points ��� (3) ��������������� differentiate (3) 

with respect to � �������#���'"#%, iteration �,$� solution �����& 

 

mk+1 -  m0  =  CmJk
T Cd

-½ [� I + Cd
-½JkCmJk

T Cd
-½]-1 Cd

-½�k , (5) 
 

�����������'��
$��� (1) �� data space �+
�� matrix ���"��������� invert $���������� N x N 

��#���&� �$#�*� M x M ��$������������ model space �$��� N 
�����������$>%'%, M 
���������

'		���%�� 
�����	���$>%����$�"�$21�4��� Siripunvaraporn and Egbert (2000) and Siripunvaraporn 

et al. (2005).  

 

���'��
$������ (5) 
�$��!������
����5� ��5�'���*��� WSINV3DMT 
#����5����
��!>�����(�*�

�� WSDCG3DMT  

 

 

WSINV3DMT : Data Space Occam’s Inversion 

 

��5�'��
��
���� matrix J 0�� R = [� I + Cd
-½ JkCmJk

T Cd
-½] '%,��+	�$"��08��%#���&�����

��#��
��$��� �����&��+�*���5� Cholesky decomposition �����'��
$������ (5) ��5���&�(/���5�����*��� 

WSINV3DMT (Siripunvaraporn et al., 2005; Siripunvaraporn and Egbert, 2009) '%, DASOCC 

(Siripunvaraporn and Egbert, 2000)    ��5���&�,�(%�����#��
��$������������"�����+	�$"���08 J '%,

R 01��$����� N x M  '%, N x N 01�����$�
#�
>�$���+���!�����������$>%$�� 
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WSDCG3DMT : Data Space Conjugate Gradient Algorithm 

 

�����5���1������*�'��
$������ (5) 
������*���5� conjugate gradient ��5���&�������$#"���
�����$"���08 J '%, 

R ���"�����+	�������#��
��$������"#��( ��
��
��&�1�(�,������#��
��$����(���$�� ������
��
��&���

�$#���
�����$"���08 J ���"��'"#���
�����9%
>�����$"���08 J ��	����"��8��3 �*#� Jx ���� JTy 

��
��
��&�(/���
��
����*��� WSDCG3DMT ����
������(�'��$��&
���*���%���������#� WSINV3DMT 

01���,'
�������+���"��!���( 

 

 
���1%4 1 �&!0
��077),��$��������1��'
�'��#'$�&�������241$��'�������
$7/!�0��� 

 

 

������0������������ WSINV3DMT ��� WSDCG3DMT ��������1$
�� 

 

������$�#$�������1��'�)����
$7����
$�/!�0��� WSINV3DMT 0�� WSDCG3DMT ��7#'$�&�

����� (synthetic data) /����'077),��$�����&!��1 1 #'$�&������!���$7*!�'�� impedance tensor 

����
�1 components ��������� 40 
<������0��������<�1������� 16 ����<�1 #���#$�077),��$���+���7 

28 x 28 x 21 �������#'$�&������ N = 40 x 16 x 8 = 5,120 0�� M = 28 x 28 x 21 = 16,464 ������$�
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�+$*!������7����41$��������� �4$7����41$� Intel Core Two Duo 6400, 2.13 GHz  )��),����#'$�&����

���
����<!����
��+������),�#$�����
$�/!�0���*�'�+� WSINV3DMT �'$���'��+������),�<6� 1 

GByte ��#
���1 WSDCG3DMT )���'�2��� 0.4 Gbyte L61��'$���+���4$7��61���61� 

 

 ������$�0�� ������/!�0��� WSINV3DMT ��7 WSDCG3DMT ��1�����+� �  = 100, 10, 

1, 0.1, 0.01 %�������$�0
�����&!��1 2 L61�0
����'����
,����7�+� � #$� WSDCG3DMT ��1 

converge 
&+ 1 RMS ����)���'����������,�����'���+� WSINV3DMT L61���'�����2��� 300 ���� 

��#
���1 WSDCG3DMT 
,����7�+� � =  1 0�� 0.1 )���'����<6� 400 ����0�� 1600 ����  

 

���1%4 2  0
������&+�#'����,��$7#$� WSINV3DMT (
��,�) 0�� WSDCG3DMT ��1���������+� � %�

������$�0
����'�����+� WSDCG3DMT ��'���������+� WSINV3DMT 

 

 ������$������#'$
�������1�+�
��)���9 $����70�����4$ WSDCG3DMT ��1���+� � 
&�)���'����

*������0�+�� iteration ��#
���1���+� � �1,�)���'���������+���� ��+���1  � = 100 iteration 0����'

����*�+<6� 20 ���� ��#
���1 � = 0.1 iteration 0����'�������<6� 700 ����  $�+����1
$� 
,����7�+� � 
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&�0�'�+�)���'����*�0�+��*�+
����<�&+�#'����,��$7*�'��� ��+���1 � = 100 0�� 10 0�+
,����7�+� � �1,�

)�
����<�&+�#'����,��$7*�' ��+���1 � = 1 0�� 0.1 $�+����1
���4$ iteration 0��)���'������������

�����1
;� iteration <��9 *!)���'�������������'$���*!��41$�9 ��+�
,����7 � = 0.1, iteration ��1��61� 


$� 
��0��
�1 )���'�������!����
 700 ���� 500 ���� 400 ���� 0�� 200 ���� ����,���7 

 

 )��%�������$����������,���'���
����<�,�*!#���%��241$
�'�� Algorithm ���+#6���� 
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Abstract 

In this paper, we start with the implementation and extension of the data space conjugate 

gradient (DCG) method previously developed for the two-dimension (2-D) to the three-

dimension (3-D) Magnetotelluric (MT) data, and will be referred to as WSDCG3DMT. Synthetic 

experiments show that WSDCG3DMT usually spends computational time longer than the data 

space Occam’s inversion (WSINV3DMT). However, memory requirement of WSDCG3DMT is 

only a fraction of WSINV3DMT. Knowledge and information gained from the synthetic studies 

of WSDCG3DMT has led to a creation of a mixed scheme (WSMIX3DMT) of the data space 

conjugate gradient and the data space Occam’s methods. WSMIX3DMT is a slight modification 

of WSDCG3DMT but enhancing so that its computational time is several factors lower than both 

WSINV3DMT and WSDCG3DMT. Because WSMIX3DMT is a modification of 

WSDCG3DMT, its memory requirement is therefore a fraction of WSINV3DMT as in 

WSDCG3DMT. This makes WSMIX3DMT as the most efficient inversions. Computational 

performances and comparisons of all three methods are demonstrated with both synthetic and 

EXTECH field datasets.  
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1. Introduction 

Recently, number of three-dimensional (3-D) magnetotelluric (MT) surveys is substantially 

increased worldwide (e.g., Tuncer et al., 2006; Patro and Egbert, 2008, among many others). 

This might be due to the fact that MT has increasingly accepted by many geophysicists and 

seismologists. Another factor is the improvements of the data acquisition units, the measurement 

sensors and their accessories. Examples of MT uses are for geothermal explorations (e.g., Heise 

et al., 2008; Árnason et al., 2010), volcanoes and tectonic studies (Uyeshima, 2007; Patro and 

Egbert, 2008; Hill et al., 2009; Ingham et al., 2009) and ore explorations (Tuncer et al., 2006; 

Queralt et al., 2007; Farquharson and Craven, 2008; Türko�lu et al., 2009; Goldax and 

Kosteniuk, 2010). All of these have led to a higher demand for 3-D MT inversion codes for 

interpretation. 

Currently, a number of 3-D MT inversion algorithms have been developed (e.g. Mackie 

& Madden 1993; Newman & Alumbaugh 2000; Zhdanov et al. 2000; Sasaki 2001; Mackie, 

personal communication 2002; Siripunvaraporn et al. 2004, 2005; Sasaki and Meju, 2006; Han et 

al., 2008; Lin et al., 2008,2009; Farquharson and Craven, 2008; Adveed and Adveed, 2009; 

Siripunvaraporn et al., 2009). All algorithms are designed to find “best” model that fits the data 

but also “geologically” interpretable.  One of the 3-D algorithms (and the only one currently 

available to the MT communities) is the WSINV3DMT program by Siripunvaraporn et al. (2005; 

2009). The algorithm’s idea was based on the Occam’s style inversion introduced for 1-D MT 

data by Constable et al. (1987).  Occam’s inversion is known for its robust calculation and its 

efficiency. However, its disadvantage is the large memory requirements, and the extensive 

computational time, particularly when applying to 2-D and 3-D modeling (Siripunvaraporn and 

Egbert, 2000; Siripunvaraporn et al., 2005).  

To reduce both storage and calculation time, Siripunvaraporn and Egbert (2000) and 

Siripunvaraporn et al. (2004; 2005) transformed the original Occam’s inversion which is a model 

space method into the data space Occam’s algorithm. The transformation makes it practical for 

3-D MT inversion on most computers. However, WSINV3DMT still requires substantial 

memory to store the N × M sensitivity matrix, where N and M are the data and model parameters, 

respectively. Siripunvaraporn and Egbert (2007) used 2-D MT data to show that the large storage 

can be avoid by using a data space conjugate gradient (DCG) approach.  
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From the 2-D studies, Siripunvaraporn and Egbert (2007) concluded that the DCG 

method can significantly reduce the memory usage. However, its computational time can be 

longer than that of the data space Occam’s algorithm. Computational time of the DCG method is 

controlled by the stopping criteria used inside the conjugate gradient (CG) algorithm when 

solving the normal equation (Rx = b). The CG solver is terminated when the relative error (r = 

||Rx – b||/||b||) reaches a given tolerance rtol. Smaller rtol (e.g., rtol < 10-2) requires many number 

of CG iterations, while larger rtol (e.g., rtol = 10-1) requires significantly less but can cause the 

inversion to fail to converge to the target misfit. Large number of CG iterations translates into 

longer CPU time. Our 2-D studies also showed that rtol = 10-2 is the optimal tolerance value. The 

model generated with   rtol = 10-2 differs less than a percent from that generated with rtol = 10-8 

but requires significantly less CPU time. 

In addition, convergence rate of the DCG inversion also depends on the regularization 

parameter �, which acts as a trade-off between the data norm and the model norm. Larger � (� > 

10) demands small number of CG iterations per inversion iteration. However, the inversion could 

not bring the misfit down to the desired misfit because large � produces very smooth model. 

Smaller � (0.1 � � � 10) can reach the desired level of misfit but normally requires large number 

of CG iterations per inversion iteration. However, if � is too small (� < 0.1), DCG can break 

down. If it converges, it requires significantly large number of CG iterations and also produces 

“very rough and spurious” structures which is not geologically interpretable.  

Here, we directly implement and extend the data space conjugate gradient (DCG) 

algorithm for the 3-D MT data. Hereafter, we will refer to the 3-D DCG method as 

WSDCG3DMT. Numerical experiments are performed on a synthetic data in a similar way as 

conducted in the 2-D experiments (Siripunvaraporn and Egbert, 2007).  The objective is to verify 

whether the conclusions learned from the 2-D cases remain the same or different for the 3-D data. 

Knowledge gained from the synthetic studies has led us to a creation of a mixed scheme of the 

Occam’s inversion and the DCG method. We will refer to a mixed scheme as WSMIX3DMT. 

We start the paper with a brief review of the data space conjugate gradient method 

(WSDCG3DMT) and its necessary mathematics. More details on the data space Occam’s 

inversion and the data space conjugate gradient method can be found in many previous 

publications (Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005; Siripunvaraporn 
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and Egbert,  2007;  and Boonchaisuk et al., 2008).  Later, a mixed scheme (WSMIX3DMT) 

between the DCG method and the Occam method is introduced. Numerical experiments on both 

synthetic data and EXTECH data are performed with these three algorithms (WSINV3DMT, 

WSDCG3DMT and WSMIX3DMT). Comparisons in terms of computational time and memory 

are analyzed and discussed. A conclusion is given at the end. 

  

2. Review of Data Space Conjugate Gradient Inversion 

Consider a general objective functional � m,  

   �m = �d + ��m  = (d - F[m])T Cd
-1 (d - F[m]) + � (m - m0)T Cm

-1 (m - m0), (1) 

where �d a data norm, �m a model norm, m the resistivity model of dimension M, m0 the prior 

model, Cm the model covariance matrix, d the observed data with dimension N, F[m] the 

forward model response, Cd the data covariance matrix, and � a regularization parameter.  

To minimize (1) in a data space method, we start with the transformation of the model 

space objective functional (1) to a data space objective functional (2) by expressing a model as  a 

linear combination of rows of the smoothed sensitivity matrix (Parker, 1994), or m - m0  =  

CmJT�. Then, (1) becomes 

�d =  (� - JCm
TJT�)T Cd

-1 (� - JCm
TJT�)  + � (�TJCm

TJT�),   (2) 

where J = �F/�m is an N × M sensitivity matrix, and � = d – F[m] + J(m - m0). To minimize (2),  

F[mk+1] is linearized with the first order Taylor series expansion, as F[mk+1]  =  F[mk]  +  Jk 

(mk+1 - mk), when k is an inversion iteration number. Differentiating (2) with respect to � and 

rearranging, an iterative sequence of approximate solutions can be obtained as, 

mk+1 -  m0  =  CmJk
T Cd

-½ [� I + Cd
-½JkCmJk

T Cd
-½]-1 Cd

-½�k ,  (3) 

where I is an identity matrix.    

There are two methods to solve (3). First method is to explicitly form J and R = [� I + 

Cd
-½ JkCmJk

T Cd
-½] and store them in the computer memory. R will be factorized into lower and 

upper matrices (LU-factorization), and then solved with backward and forward substitutions.  
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This method is used in WSINV3DMT program for 3-D MT data (Siripunvaraporn et al., 2005; 

Siripunvaraporn and Egbert, 2009) and DASOCC for 2-D MT data (Siripunvaraporn and Egbert, 

2000). This scheme requires substantial amount of RAM to store N × M J and also N × N R 

matrices. This could prohibit a run on very large data sets, particularly for 3-D cases.  

Instead of forming and decomposing R as in WSINV3DMT, an alternative method is to 

solve (3) with an iterative solver.  Because R is theoretically symmetric, (3) is commonly solved 

with a conjugate gradient (CG) method as in many MT inversion algorithms (see Mackie and 

Madden, 1993; Siripunvaraporn and Egbert, 2007; Lin et al., 2008). One clear advantage of 

using CG to solve (3) is that the large N × M sensitivity matrix J is not explicitly formed and 

stored in the computer memory. Only a product of J or JT with an arbitrary vector is required by 

solving one forward problem per period (see Mackie and Madden, 1993; Newman and 

Alumbaugh, 2000; Rodi and Mackie, 2001; Siripunvaraporn and Egbert, 2007; Lin et al., 2008).  

Two routines to compute Jp and JTq are therefore implemented here for the 3-D problem, where 

p and q are general M × 1 and N × 1 vectors, respectively. This method is used in 

WSDCG3DMT. 

The data space conjugate gradient algorithm and the routines to explicitly form J and to 

compute Jp and JTq are briefly described in the following sub-sections.  

 

2.1 Data Space Conjugate Gradient Algorithm (WSDCG3DMT) 

The data space conjugate gradient algorithm denoted as WSDCG3DMT has two iterative loops. 

The outer loop which is a main inversion loop is to minimize (2), while the inner loop is to 

minimize Rx = b in (3) with a conjugate gradient (CG) method where R =   [� I + Cd
-½JCmJT 

Cd
-½],  b = Cd

-½� and x = Cd
½� (see Barrett et al., 1994 for Preconditioned Conjugate Gradient 

algorithm).  The algorithm was summarized in Figure 2 of Siripunvaraporn and Egbert (2007), 

and is repeatedly presented below with more explanations. 
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Reading inputs and initializing variables. 

Start DCG “outer” loop to minimize (2) : iteration k 

1. Compute �k = d – F[mk] + Jk(mk – m0)  

2. Start DCG “inner” loop by using CG to solve Rkx = b     

2.1 Initialization:  x(0) = 0;  r(0)
 = b, where r = ||Rx – b||/||b||.  

for icg = 1,2,…,ncgmax or ||rTr|| < rtol, where icg a CG iteration number, ncgmax a 

maximum number of CG iterations, and rtol a stopping tolerance level. 

2.2 z(icg-1) = r(icg-1)   

2.3 �(icg-1) = rT
(icg-1) z(icg-1) 

2.4 if  (icg = 1)  p(1) = z(0) 

else    

�(icg-1) = �(icg-1)/ �(icg-2) 

 p(icg) = z(icg-1) + �(icg-1) p(icg-1) 

endif 

2.5 q(icg-1) = Rkp(icg)  

2.6 �(icg-1) = �(icg-1)/ pT
(icg) q(icg) 

2.7 x(icg) = x(icg-1) + �(icg) p(icg) 

2.8 r(icg) = r(icg-1) - �(icg-1) q(icg) 

2.9 if (||rTr|| < rtol ) or (icg > ncgmax), then  stop CG iteration and go to 3, else go to 2.2.  

end icg 

3. Compute mk+1 -  m0  =  CmJk Cd
-½x 
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4. Compute F[mk+1] and RMS misfit ||Cd
-½(d – F[mk+1)|| 

5. Check condition;  

5.1 exit if misfit below the desired level, go to 6; 

5.2 continue if misfit is greater than the desired level, go to 1;  

6. End DCG outer loop. 

 

Step 1 requires calling one forward routine for F[mk], and another call to compute Jk(mk – m0). 

On step 2.1, system (3) is already normalized, therefore there is no preconditioner here. Step 2.5 

is a “key” for the CG solver. It requires two forward modeling calls to compute s = Jk
T Cd

-½p(icg) 

and JkCms. Step 3 demands one forward modeling call to compute Jk Cd
-½x. Step 4 requires 

another forward modeling call to compute the model responses F[mk+1]. Overall, numbers of 

forward modeling calls to compute the model response is two per outer loop iteration per period, 

and to compute a multiplication of J or JT with a vector is 2 + 2Ncg per outer loop iteration per 

period, where Ncg is a number of CG iterations. A total number of forward modeling calls would 

therefore be 4 + 2Ncg per period per outer loop iteration. 

  

2.2 Forward Modeling and Sensitivity Calculation 

Given an electrical conductivity (	) or resistivity (�) model, to yield MT responses at the surface, 

the electric fields (E) are computed from the second order Maxwell's equation,  


 � 
 � E = i�µ	E,     (4) 

where �  is an angular frequency and 
  the magnetic permeability. Discretizing the model and 

applying the staggered grid finite difference approach to (4), we obtain a system of equations for 

a given period or frequency, 

   Se = b,      (5) 
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where e represents the unknown internal electric fields, b a vector containing the terms 

associated with the boundary electric fields, and S a large sparse symmetric and complex 

coefficient matrix. System of equations (5) is solved with a quasi-minimum residual (QMR) 

method per period and per polarization as in Siripunvaraporn et al. (2002). Surface responses can 

then be obtained from a linear combination of a vector a associated at a measurement site and the 

computed electric fields, 

   F[m] = aTe = aTS-1b.    (6) 

To compute for the sensitivity J = �F/�m at a given period, equation (6) is differentiated 

with respect to the model m, 

  J = �F/�m = �(aTe)/ �m = aTS-1� + �,  (7) 

where � = �b/�m - (�S/�m)e and � = (�aT/�m)e. The process to form J is straightforward by 

first constructing �, solving S-1�, multiplying the result with aT and finally adding with �. With 

this technique, calculating S-1� would require solving the system of equations (5) M times per 

period and per polarization (Rodi, 1976). This calculation can be very significant, particularly in 

3-D cases.  

To reduce number of forward callings, reciprocity property of the electromagnetic fields 

(see Rodi, 1976; Mackie and Madden, 1993; Siripunvaraporn and Egbert, 2000) is applied to (7). 

With the reciprocity, the process of computing J is modified by first solving (aTS-1)T, then 

multiplying the result with �T before finally adding with �T. Using the reciprocity technique,  

computing  (aTS-1)T would require solving the system of equations (5) only Ns times per period 

and per polarization (Rodi, 1976; Siripunvaraporn and Egbert, 2000), where Ns is the number of 

observed stations which is typically a lot smaller than M, particularly in 3-D cases. The 

reciprocity theorem helps significantly decreasing the computational time of the program 

(Siripunvaraporn and Egbert, 2000). 

 

2.3 Multiplication of J or JT to any vectors 

To compute the product of J with a given vector p, equation (7) becomes  
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  Jp =   aTS-1�p + �p.      (8) 

The process is started with a multiplication of �p, then solving S-1�p, multiplying the result 

with aT, and finally adding them with the product of �p. Similarly, to compute the product of JT 

with a given vector q, equation (7) also becomes 

  JTq =  �T[ST]-1aq + �Tq.     (9) 

The process here is also straightforward. It starts with a multiplication of aq, because S = ST, 

then solving  S-1aq and multiplying them with  �T, finally adding the result with �Tq. Equation 

(8) and (9) show that each process requires solving the system of equations (5) only one times 

per period and per polarization.  Storage for J matrix is not necessary for (8) and (9) but required 

for (7). 

 

2.4 Theoretical Comparisons for Forming J and Its Multiplications 

Both forming J and its multiplications (Jp or JTq) require solving the same system of equations 

(5), but with different right hand sides. As in section 2.2 and 2.3, forming J requires solving (5) 

with a as the right hand side, while computing Jp and JTq have �p and  aq, as their right hand 

sides, respectively. All vectors (a, �p and aq) are sparse, but �p and aq involve more non-zero 

terms than a. Consequently, solving (5) with �p and aq as the right hand sides will require 

larger number of QMR iterations than with just a as the right hand side to converge to the same 

accuracy level. Similar behavior was also occurred in 2-D cases. Because system of equations for 

2-D cases is small, the difference is therefore not significant. However, for 3-D case, the 

difference in CPU time is noticeable and will be shown in the numerical experiments. 

 

2.5 Parallel Implementation 

Similar to WSINV3DMT (Siripunvaraporn and Egbert, 2009), we also implement our 3-D DCG 

code on a parallel system. Although memory is not an issue for the DCG method, its extensive 

runtime is still a big concern due to its numerous calls to the forward modeling routine.  As in 

WSINV3DMT, we parallelize WSDCG3DMT over frequencies via MPI (Message Passing 

Interface) libraries. For DCG, the parallelization is relatively simple, just distributing the forward 
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modeling call of each period to each processor node when computing the forward response F[m], 

and calculating Jp and JTq. The simplicity occurs because there is no need to form and store the 

cross-product R as in WSINV3DMT (Siripunvaraporn and Egbert, 2009). 

 

3. Numerical Experiments on a Synthetic Data  : WSDCG3DMT & WSINV3DMT 

Here, before we introduce a mixed scheme of the data space conjugate gradient method and the 

Occam’s inversion; we start with the repetitions of the same experiments we conducted with the 

2-D MT data but now with the 3-D MT data. The goal of the experiments is to check whether the 

same conclusions derived from the 2-D studies can be gained. In addition, we also compare the 

results with WSINV3DMT in terms of computational time and memory.  

Similar to Siripunvaraporn et al. (2005) and Siripunvaraporn and Egbert (2009), we use 

the same synthetic model to generate a synthetic dataset for testing our codes. The synthetic 

model consists of two anomalies, 1 �-m and 100 �-m buried next to each other inside a 10 �-m 

layer lying on top of a 100 �-m half-space as illustrated in Figure 1 (Figure 4 in Siripunvaraporn 

et al., 2005; Figure 3b in Siripunvaraporn and Egbert, 2009). The model mesh for the inversion 

was discretized at 28 × 28 × 21 (+7 air layers) in x, y and z, respectively. The full complex 

impedance data (Zxx, Zxy, Zyx and Zyy; i.e. Nm = 4) is generated for 40 MT sites (Ns = 40) located 

regularly covering the two anomalies (solid dots in Figure 1) and 16 periods from 0.031 to 1000 

second (Np = 16). Five percent Gaussian noise calculated from the data magnitude (|ZxyZyx|½) was 

added to the impedance data. With this configuration, model parameter M would be equal to 28 × 

28 × 21 = 16,464, while data parameter N would be equal to 40 × 16 × 8 = 5,120. In this 

experiment, all runs can be performed on a serial machine; an Intel Core Two Duo 6400, 2.13 

GHz machine with 2 GBytes of RAM. Bigger model mesh or dataset would prohibit a run on this 

serial machine for WSINV3DMT.  

Our first test is to perform the WSDCG3DMT program with various � (� = 100, 10, 1, 

0.1, 0.01) and two rtol (10-1 and 10-2) for the DCG inner loop or the CG loop. Convergence 

behaviors of WSDCG3DMT for various � and different rtol as a function of time are shown in 

Figure 2 in comparison to WSINV3DMT. An inverted model after four iterations from 

WSDCG3DMT (� = 1 and rtol = 10-2) is shown in Figure 3. The inversion can recover both 
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anomalies and the underlying layer similar to the inverted result from WSINV3DMT (Figure 6 

of Siripunvaraporn et al., 2005).  

For larger � (10 and 100) with rtol = 10-2, DCG cannot converge to the desired level of 1 

RMS. It can only lower the misfit down in the first two iterations before idling. Similar to the 2-

D tests, larger � requires smaller number of CG iterations to solve the normal equation (3) per 

outer loop iteration.  This is reflected in a small amount of computing time as shown in Figure 2 

(cyan and blue colors). For smaller � (1 and 0.1) with rtol = 10-2, DCG is able to converge to the 

desired 1 RMS in four iterations. However, in contrast to larger �, it demands significantly large 

number of CG iterations to solve (3) per one outer loop iteration. This is shown by a large 

amount of computational time in Figure 2 (red and green), particularly for the first iteration.  

Reducing number of CG iterations per main iteration would help decreasing a computer 

runtime. One way is to set rtol to a larger value. Here, at 10-1. In all � cases with rtol = 10-1, DCG 

has difficulty to converge to the target misfit of 1 RMS as seen in dash-lines of Figure 2. Larger 

rtol would only help reducing computing time but not the convergence. In contrast, setting rtol to 

smaller values (e.g., at 10-3 or less), number of inversion iterations to converge to the desired 

misfit is the same as in the case of rtol = 10-2. Inverted model is also less than a percent difference. 

Major difference is at the number of CG iterations per main inversion iteration which is 

significantly larger for smaller rtol. These experiments show that rtol = 10-2 is appeared to be an 

optimal tolerance level for terminating the CG iterations in the DCG inner loop.  

For � = 0.01 or smaller, DCG fails to converge from the start. The sign of the divergence 

can be observed or detected inside the CG solver after some number of CG iterations. This 

becomes a very important and useful information. We can use it as a criterion to decide the 

termination of the WSDCG3DMT code. Whenever a divergence inside the CG loop takes place, 

program is stopped. The cause for the divergence behavior inside the CG loop is probably due to 

the loss of the orthogonality of matrix R.  

From all of these experiments, we can infer that both 2-D studies from Siripunvaraporn 

and Egbert (2007) and 3-D studies here yield almost the same conclusions. Optimal convergence 

occurs in the � ranges between 0.1 and less than 10, and also with rtol = 10-2.    

Computational performance in term of memory and CPU time of WSDCG3DMT is then 

compared with those from WSINV3DMT. Majority of the memory requirements for 
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WSINV3DMT is to store J and R matrices which can be approximated from 8NM+8NN with 

double precisions. This is about 1 GBytes in our test case. The code also requires less than 0.3 

GBytes for storing S, �S/�m, and other parts for miscellaneous computations. For 

WSDCG3DMT, we do not store J and R in the memory. One GBytes of RAM is therefore not 

needed as in the case of WSINV3DMT. WSDCG3DMT requires only about 0.4 GBytes to store 

many different matrices and vectors. This is about the same as the memory used for the 

miscellaneous computations in WSINV3DMT.  

In term of computational time, WSINV3DMT converges to the desired misfit within 

three iterations in about 300 minutes as shown in a black line of Figure 2, while WSDCG3DMT 

with � = 1 and � = 0.1 uses about 400 and 1600 minutes, respectively. This again shows that 

computational time of WSINV3DMT is less than that of converged WSDCG3DMT. Thus, in 

term of computational performance, one can clearly see that WSDCG3DMT has advantage in 

terms of memory. However, its computational time can be significantly greater than that of 

WSINV3DMT. A trade-off between computational time and memory used would be a factor for 

users to decide. This is also similar to the 2-D studies (Siripunvaraporn and Egbert, 2007).  

In 2-D studies, we did not compare CPU time, but number of forward modeling calls of 

each algorithm. Here, similar analysis are performed for the 3-D cases. WSINV3DMT requires a 

fix number of callings at NpNsNm + Np(N�+1) per inversion iteration to form the sensitivity and 

compute the misfit, where N� is a number of � varied to search for the minimum misfit in each 

iteration of the Occam’s inversion. In our experiments, for the first iteration, N� = 5, number of 

forward modeling calls for WSINV3DMT is therefore at 2,656. For WSDCG3DMT, in each 

iteration, number of forward modeling calls depends on a number of CG iterations (Ncg) in the 

DCG inner loop, and equal to 4Np + 2NpNcg per inversion iteration as we previously discussed. In 

our experiments, for the case � = 1 and rtol = 10-1, Ncg = 47 for the first iteration, number of 

forward modeling calls is then at 1,568.  

Although number of forward modeling calls of WSDCG3DMT is about 1,000 less than 

WSINV3DMT, computational time is actually slightly longer for the first iteration of both 

methods as shown in Figure 2. This indicates that for each forward modeling call, 

WSDCG3DMT requires averagely longer runtime than that of WSINV3DMT. Because of more 

complicated right hand sides in the system of equation (5) when computing Jp or JTq than 
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forming J, as already stated in Section 2.4, it requires larger number of QMR iterations to 

converge to the solution. This study shows that to test the efficiency of the inversion, just 

counting number of forward modeling calls can be misleading (see Newman and Alumbaugh, 

1997; Siripunvaraporn and Egbert, 2007).  

Another interesting point for WSDCG3DMT is the reduction of the number of CG 

iterations per outer loop iteration when misfit becomes lower. For example, in the case � = 1 and 

rtol = 10-2, Ncg = 108, 48, 25 and 21, respectively, from the first to forth iteration of the main 

inversion loop. This is reflected and shown with lesser CPU time for successive iterations in 

Figure 2.  The reduction of number of CG iterations occurs on every case in our examples. When 

inverted solution gets closer to the “true” solution, normal equation (3) is probably lesser stiff 

and therefore become easily to solve. 

  

4. The mixed scheme of the DCG and Occam’s inversions (WSMIX3DMT) 

Because DCG does not explicitly form and store the sensitivity matrix, DCG therefore requires 

significantly less memory than the Occam’s inversion. However, the major drawback of the 

DCG method is its computational time which could be longer than the Occam’s inversion. Here, 

we propose a new scheme which is a mixed concept of both DCG and Occam and a modification 

of the DCG method. Mathematics of the new scheme is in fact identical to the DCG method. 

Thus, it maintains the memory advantage of the DCG method over the Occam’s style. However, 

we intentionally design so that the new scheme spends computational time less than both DCG 

and Occam. This would make the mixed scheme as the efficient inversion.  

Assuming that the goal of the inversion is the same for both DCG and Occam that is to 

bring the misfit down to the desired level. One distinct feature between both methods is at the � 

value. In Occam’s inversion (Constable et al., 1987; Siripunvaraporn and Egbert, 2000; 

Siripunvaraporn et al., 2005), in every iteration, � in equation (3) is varied in order to search for 

the model producing the “least” RMS misfit (see Siripunvaraporn and Egbert, 2000; 

Siripunvaraporn et al., 2005). With the Occam concept, � is posed as both the step length and the 

regularization parameters. For the DCG method, � is pre-selected and fixed in every iteration as 

shown in previous section in WSDCG3DMT. In DCG, � therefore acts like a regularization or 

damping parameter.   
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In our mixed scheme, the algorithm is based mainly on the DCG method. However, � is 

not fixed but varied as both step length and regularization parameter similar to the idea of the 

Occam’s inversion. The difference from the Occam’s method is we do not choose � that 

minimize the RMS misfit, but we select � that can both lower the misfit down and at the same 

time require small number of CG iterations per an outer loop iteration.  The “optimal” � is 

selected and varied based on our knowledge and experience gained from the studies in previous 

section 3. It is therefore not exactly the same philosophy as in the Occam’s inversion, nor the 

DCG, but a mixed of both. This is why we refer to this method as a mixed DCG and Occam or in 

short WSMIX3DMT. 

Based on earlier 3-D studies in section 3 and 2-D studies in Siripunvaraporn and Egbert 

(2007), rtol for the inner CG loop is fixed at 10-2 as the optimal tolerance level for number of CG 

iterations. For early iterations, larger � requires significantly smaller number of CG iterations 

than smaller � and at the same time can lower the misfit down. We therefore choose to start our 

mixed scheme with large �ini (e.g.,  �ini = 100 or larger). To further decrease the misfit down, � is 

automatically reduced by a factor of � (e.g., � = 10) in the next iteration. This automatic 

reduction is to avoid redundant computations as occurred when large � is fixed (Figure 2). A 

reduction in � was used before in Kelbert et al. (2008) but only when the misfit is not decreased 

in their non-linear conjugate gradient (NLCG) method. The automatic reduction in � is continued 

successively for the next iterations until reaching �min (e.g., �min = 0.1). When  � below �min, it 

will set back to �min.  

For example, �ini = 100, �min = 0.1 and  � = 10 is input in the first iteration. Values of � 

for the 2nd, 3rd and 4th iterations would be 10, 1 and 0.1, respectively. If the inversion continues, 

5th iteration and so on will have � = 0.1. In addition, we also add a scheme to detect the 

divergence. Within Ndiv CG iterations (e.g., Ndiv = 15), if the divergence occurs, there is a high 

possibility that the inversion will fail to converge. If that happens, � is automatically increased 

by a factor of � and re-start the process again. This “extra” step may cause redundant 

computations but can help preventing the divergence inside the main inversion loop.    
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4.1 Numerical Experiments of WSMIX3DMT and Comparisons with WSINV3DMT and 

WSDCG3DMT 

To check the efficiency of the WSMIX3DMT code, we apply it to the same synthetic data set 

generated from model in Figure 1. Four values of �ini are used (�ini = 10000, 1000, 100 and 10) 

with � = 10. Figure 4 shows convergence rates from the WSMIX3DMT program with various 

initial �ini, in comparisons to those of WSINV3DMT (black) and WSDCG3DMT with � = 1 

(red). Figure 4 shows that all runs can converge to the desired level within 3-4 iterations. Most 

importantly, all WSMIX3DMT runs spend computational time less than both WSINV3DMT and 

fixed � WSDCG3DMT. Inverted models from all runs with 1 RMS are similar to the inverted 

model plotted in Figure 3.       

When �ini is too large (i.e. at 10000), redundant computation is occurred in the first 

iteration. Although the first iteration with �ini = 10000 runs very quick, it does not greatly reduce 

the misfit.  When � is decreased to 1000 in the next iteration. The misfit in this case is almost the 

same as starting the run with �ini = 1000. The first iteration of �ini = 10000 is therefore redundant 

and unnecessary. Starting the mixed inversion with �ini � 10 requires large computational time 

due to large number of CG iterations used in the first iteration. In addition, � is decreased 

quickly to 1 and 0.1 in the next few iterations and would demand large number of CG iterations. 

In this case, we do not gain advantage of small number of CG iterations used from larger �. It 

therefore become less effective as in WSDCG3DMT. Thus, we should avoid to start 

WSMIX3DMT with smaller � or very large �.  

From the experiments, the “optimal” � to start with would be around 100 to 1000 (Figure 

4). Both cases spends computational time at about 100 minutes compared to 300 minutes of 

WSINV3DMT and 400 minutes of WSDCG3DMT. In addition, WSMIX3DMT requires 

memory the same as WSDCG3DMT, i.e. less than 0.4 Gbytes for this dataset, which is several 

factors less than WSINV3DMT.  WSMIX3DMT which is a combination of DCG and Occam is 

the most efficient method compared to both WSINV3DMT and WSDCG3DMT.  

Further studies show that � around 10 is the optimal value. If � too small, redundant 

computations can be occurred. If too large, WSMIX3DMT would not gain much advantage from 

smaller number of CG iterations when large � used. This makes WSMIX3DMT less efficient.  
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5. Applications of WSMIX3DMT, WSDCG3DMT and WSINV3DMT to EXTECH data  

To show the efficiency of our mixed scheme WSMIX3DMT in comparisons to the 

WSDCG3DMT and WSINV3DMT codes, we applied all three codes to the EXTECH dataset 

(Tuncer et al., 2006) conducting around the McArthur River mine, Saskatchewan, Canada 

(Figure 2 of Tuncer et al., 2006). The data consists of both impedance tensor (Zxx, Zxy, Zyx and 

Zyy) and the vertical magnetic field transfer function (VTF; Tzx and Tzy) for 131 stations and 16 

periods (from 8000 Hz to 5 Hz). The data parameter N is therefore equal to 25,152. In all runs, 

minimum error bars for VTF is set at 15% of (|Tzx|2+|Tzy|2)½ and 5% of |ZxyZyx|½ for off-diagonal 

and 50% for diagonal terms. A 1000 � m half-space is used as an initial model and a prior model 

(m0) and is discretized at 56 × 56 × 33 (+7 air layers). The model parameter M is therefore at 

103,488.    

To show the efficiency of the parallel codes, all runs are performed on a cluster computer 

which consists of 8 processor nodes with 8 GBytes in memory each. With 16 period data, two 

periods are distributed to compute on each processor node. In terms of memory, WSINV3DMT 

requires about 5 GBytes to store its two period sensitivities and the cross-product matrices. It 

also requires about 1 GBytes additional to store other necessary components. In contrast to 

WSINV3DMT, both WSDCG3DMT and WSMIX3DMT require less than 1 GBytes of RAM to 

perform the inversion of this EXTECH dataset. The EXTECH dataset and the model mesh used 

above are already at a maximum limitation of the cluster for WSINV3DMT. Because 

WSDCG3DMT and WSMIX3DMT use significantly less memory, they can therefore be applied 

on a bigger dataset and a bigger mesh on this cluster. However, here, same parameters are used 

for comparisons. 

Convergence behaviors of the three methods are plotted in Figure 5 as a function of time 

in minutes. From Figure 5, WSINV3DMT requires about 870 minutes in 3 iterations to converge 

to its minimum at 1.52 RMS.  After the 3rd iteration, the misfit is fluctuated above the minimum 

RMS. WSDCG3DMT with � = 1 also requires 3 iterations to converge to 1.50 RMS but uses 

longer CPU time at about 1040 minutes. After the 3rd iteration, WSDCG3DMT increases its 

RMS to 1.57 in the 4th iteration and is terminated because of the divergence. With � < 0.5, the 

WSDCG3DMT code diverges and fails after its first iteration.  
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For our mixed scheme,  WSMIX3DMT with �ini = 100 can converge to 1.47 RMS 

slightly below the level of both WSINV3DMT and WSDCG3DMT in 3 iterations. Most 

importantly, the computational time is only about 450 minutes, about half of WSINV3DMT and  

WSDCG3DMT. At the 4th iteration when � is reduced to 0.1, the scheme detected the divergence 

occurring inside the CG loop. The code is then re-started with a bigger � = 1 on the 4th iteration. 

The process of increasing � will cost some extra computational time. With the divergence 

detection scheme, the code can continue to run for several iterations. 

After continuing the run, WSMIX3DMT can further reduce the misfit below the level 

that both WSINV3DMT and WSDCG3DMT can attain. At 5th iteration with � = 1, the misfit is 

at the lowest RMS of 1.34. However, these 0.13 RMS difference from 3rd to 5th iteration require 

computational time almost 14 hours; about twice longer than the CPU time at the 3rd iteration. 

One can therefore stop at the 3rd iteration because the inverted models at the 3rd and 5th iteration 

are slightly different.   

Convergence behavior from starting WSMIX3DMT with �ini = 1000 is redundant in early 

iterations similar to starting with �ini = 100, as shown in Figure 5. It therefore spends “extra” 

CPU time longer. Overall, it can still converge below 1.5 RMS within 500 minutes faster than 

both WSINV3DMT and WSDCGMT methods. 

Inverted model from the 5th iteration of WSMIX3DMT starting with �ini = 100 is shown 

in Figure 6. It is similar to the inverted model from WSINV3DMT (Figure 11 of Siripunvaraporn 

and Egbert, 2009). Major differences are at the two conductors. Here, conductor on the eastern 

part of the profiles oriented in the NE-SW direction can be seen as shallow as 500 m depth. 

Northern conductor seems to be continuous from 800 m to 1.3 km depth.  The difference of the 

two inverted models (Figure 6 here and Figure 11 of Siripunvaraporn and Egbert, 2009) and 

detail interpretation is beyond our scopes in this paper. For detail discussion of the EXTECH 

data set can be found in Tuncer et al. (2006) and Farquharson and Craven (2008). 

  

6. Conclusions 

In this paper, we implement and extend the data space conjugate gradient inversion for three-

dimensional Magnetotelluric data (WSDCG3DMT). Numerical experiments on 3-D synthetic 

data show that WSDCG3DMT with some � can converge to the desired level of misfit but often 
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spends longer computational time than the data space Occam’s inversion (WSINV3DMT).  

However, because the whole sensitivity matrix is not explicitly formed and stored, its memory 

requirements are therefore minimal at a fraction of WSINV3DMT. This makes WSDCG3DMT 

practical for large to very large data set.  

Based on the numerical experiments of WSDCG3DMT on synthetic data, number of CG 

iterations depends greatly on the � values used. Larger � usually requires smaller number of CG 

iterations per main inversion iteration but hardly converge to the “true” solution. Smaller � 

requires larger number of CG iterations per main iteration but can converge to the desired level 

of misfit. However, if � is too small, it can diverge. Computational time varies proportionally to 

the number of CG iterations. Thus, to use less CPU time, number of CG iterations per outer loop 

iteration must be minimized.  

The information learned from the synthetic studies has inspired and led us to the creation 

of the mixed scheme of the Occam’s and DCG methods or WSMIX3DMT. In DCG scheme, � is 

fixed as a regularization parameter. In Occam’s inversion,  � is varied as both step length and 

regularization parameters. In our mixed scheme, � is varied but not in the same way as in the 

Occam’s inversion. Instead of choosing � that generates a model with smallest misfit as in 

Occam, we prefer � that minimizes number of CG iterations but at the same time can reduce the 

misfit. With this strategy, � should initially start from large value before reducing to smaller 

value for the next subsequent iterations. Our studies shows that � between 100 to 1000 are the 

optimal � to start with for the WSMIX3DMT code. 

By applying all three algorithms (WSMIX3DMT, WSDCG3DMT and WSINV3DMT) 

on both synthetic and EXTECH field data, our mixed scheme (WSMIX3DMT) is significantly 

faster than both WSDCG3DMT and WSINV3DMT. Similar to WSDCG3DMT, it requires 

insignificant amount of memory. Because both computational time and memory performances 

are at minimum, we can conclude here that WSMIX3DMT is the most efficient inversion.  
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Figure 1. Two-block synthetic model used to test our inversions. The solid dots indicate the 

observational sites. A cross-section view in the lower panel is a profile cutting across the middle 

of the two anomalies in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005; 

and Siripunvaraporn and Egbert, 2009). 
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Figure 2. Convergence rates  of WSINV3DMT (black) and WSDCG3DMT from various �s and 

rtol to the synthetic dataset generated from a model in Figure 1. Dash line for rtol = 10-1. Solid line 

for rtol = 10-2.  Each plus symbol indicates one iteration. 
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Figure 3. An inverted model from WSDCG3DMT with � = 1. The synthetic data is generated 

from the model in Figure 1. The top panels (a)–(c) is a plan view at the surface, at 3 km and at 

7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the two anomalies 

at X = 0 km. The solution is shown only in the central area around the anomalies, not for the full 

model domain.   
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Figure 4. Convergence rates from WSINV3DMT (black), WSDCG3DMT with � = 1 (red) and 

WSMIX3DMT with different initial �ini to the synthetic data generated from a model in Figure 1. 

Each square or plus symbol indicates one iteration. � used in each iteration for WSMIX3DMT is 

printed next to its square symbols.  
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Figure 5. Convergence rates from WSINV3DMT (black), WSDCG3DMT with � = 1 (red) and 

WSMIX3DMT with initial �ini = 1000 (green) and � ini = 100 (blue) to the EXTECH field dataset.    

Each square or plus symbol indicates one iteration. � used in each iteration for WSMIX3DMT is 

printed next to its square symbols. 
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Figure 6. The inverse solution at various depths from the 5th iteration of the WSMIX3DMT 

method with initial �ini = 100. The EXTECH data used here consists of both vertical magnetic 

transfer function and full impedance tensor at 131 sites and 16 periods. The cross-symbols 

indicate the locations of the stations. 
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Abstract 

We use 2-D Magnetotelluric (MT) problems as a feasibility study to demonstrate that the 3-D 

MT modeling can be solved with a direct solver, even on a standard single processor PC. The 

scheme used is the hierarchical domain decomposition (HDD) method in which a global 

computational domain is uniformly split into many smaller non-overlapping subdomains. 

However, to make it more efficient, two modifications are made to the standard HDD method. 

Instead of three levels as in the standard HDD method, we classify the unknowns into four 

classes: the interiors, the horizontal and vertical interfaces and the intersections taking 

advantages of the finite-difference approximation. Four sets of smaller systems of equations 

are successively solved with a direct method (an LU factorization). The separation helps 

overcoming the memory overburden of a direct solver while remain computationally 

effective. To further enhance the speed of the code, a red-black ordering is applied to solve 

the horizontal and vertical interface reduced systems.   

Numerical experiments on 2-D MT problem running on a single processor machine 

shows that CPU time and memory used are almost constant for any resistivity models, 

frequencies and modes as long as the model size remain the same. This is a clear advantage 

of our algorithm. Number of subdomains is a major factor controlling computational 

efficiency. Here, we also introduce a “memory map”, a tool we can use to pre-select 

“optimized” subdomains. Our 2-D experiments also shows that by splitting a domain with the 

optimized subdomains, this modified scheme can outperform the standard FD method in both 

CPU time and memory even running on a serial machine.   
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1. Introduction 

To obtain magnetotelluric (MT) responses, the second order Maxwell’s equation in either 

electric field or magnetic field is solved via three commonly used approaches: finite 

difference (FD) method (e.g. Mackie et al., 1994; Smith, 1996; Siripunvaraporn et al., 2002; 

Siripunvaraporn et al., 2005), finite element (FE) method (e.g. Wannamaker et al., 1987; 

Zyserman et al., 1999; Zyserman and Santos, 2000; Mitsuhata and Uchida, 2004; ), and 

integral equation (IE) technique (e.g. Wannamaker, 1991; Xiong, 1992; Avdeed and 

Avdeeva, 2009 ). For complicated and geologically realistic two-dimensional (2D) and three-

dimensional (3D) model, FD or FE methods are generally more efficient and robust than IE 

technique. In the past decades, FD method has gained more popularity due to its simplicity in 

technique and also its accuracy in solution.  

 

In many problems, when model domain becomes very large, particularly in 3-D problems, 

solving the system of equations with the direct method is impractical in term of memory 

requirement (see Ben-Hadj-Ali et al., 2008 for 3-D frequency-domain full-waveform 

tomography; Streich, 2009 for 3-D MT;). The system is then alternatively solved with the 

iterative solvers (e.g. Bi-Conjugate Gradient (BiCG) method in Smith, 1996 and Xiong, 

1999; Quasi Minimum Residual (QMR) in Siripunvaraporn et al., 2002; Preconditioned 

Conjugate Gradient (PCG) in Siripunvaraporn and Egbert, 2000; Minimum Residual Method 

(MRM) in Mackie et al., 1994). In many practical MT cases, the electrical resistivity model 

can be geologically complicated resulting in large conditioned number and therefore long 

computational time (see Patro and Egbert, 2009). Occasionally, the iterative solvers may 

become stagnant after many thousand of iterations and sometimes fail to converge. The 

calculated solution will therefore not be accurate and could mislead an interpretation if 

applied inside an inversion.   

 

In high conditioned number case, being able to solve a problem with a direct solver is very 

crucial, if applicable. With direct method,    accuracy is guarantee. Computational time is also 

controllable, because theoretically it is almost constant for any frequencies, modes or 

polarizations and resistivity models as long as the model domain remains the same size. In 

addition, the factorization used when solving the system can be re-used many times when 
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computing the sensitivity or Jacobian matrix (see Siripunvaraporn and Egbert, 2000) inside 

the inversion algorithm. In 3-D MT cases, the direct solver is still not practical with recent 

computer technology (see Streich, 2009). However, here we use the 2-D study to demonstrate 

that the 3-D problem can be efficiently solved with a direct solver even on a serial machine if 

the modified hierarchical domain decomposition developed in this paper is applied to. 

 

Instead of computing on a large domain, a global domain can be splitting into several smaller 

local domains or subdomains. The solution on the global domain is then solved through the 

smaller systems of each subdomain. This technique is generally known as the domain 

decomposition (DD) technique. It is considered as a powerful tool in many large scale 

engineering problems (e.g. Lu and Shen, 1997; Bitzarakis et al., 1997; Larsson, 1999;  Yin et 

al., 2002; Basermann et al., 2005;  Lu et al., 2008; Wang et al., 2008; ) and also in various 

multidimensional geophysical problems (e.g. Xiong, 1999; Zyserman et al., 1999; Zyserman 

and Santos, 2000; Xie et al., 2000; Pain et al., 2002; Ben-Hadj-Ali et al., 2008; Sourbier et 

al., 2008;  Takei et al., 2010).  

 

The domain decomposition method can be mainly classified into two categories: the 

overlapping technique where some region of the subdomain overlapping with the others (e.g. 

Xiong, 1999; Peng et al., 2009) and the non-overlapping method where neighboring 

subdomains share the same sub-boundaries (e.g. Lu and Shen, 1997; Zyserman et al., 1999; 

Zyserman and Santos, 2000; Lu et al., 2008; Wang et al., 2008 ). Comparison of the 

overlapping and the non-overlapping methods is mentioned in Chan and Goovaerts (1992) 

and Rice et al. (2000).  Various schemes are used to solve the domain decomposition 

problems, such as the Schwartz algorithms (see Cai et al., 1998), Schur complement approach 

(see Smith et al., 1996; Saad, 2003; Zhang, 2005 ), the hierarchical domain decomposition 

approach (Smith et al., 1996; Takei et al., 2010), balancing domain decomposition method 

(Mandel, 1993), the interface relaxation methods (see Rice et al., 2000) among many other 

techniques.  
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In electromagnetic induction of the Earth, there are only a few papers demonstrating the use 

of domain decomposition method to solve MT forward problems. Zyserman et al. (1999) and 

Zyserman and Santos (2000) applied non-overlapping domain decomposition technique to 2-

D and 3-D cases, respectively. In their techniques, sub-problems are iteratively solved via the 

interfaces enforced by the equivalent Robin-type transmission conditions. The memory 

requirement is significantly diminished due to no appearance of a large global matrix. 

Computational time is also greatly reduced when solving in the parallel computation 

(Zyserman and Santos, 2000). Although, the technique has proven to be numerically superior 

in the parallel system, the technique may not be suitable for serial computation. Xiong (1999) 

applied adaptive Schwartz overlapping domain decomposition technique for 3-D controlled 

source electromagnetic forward problems. In his method, all subdomains share overlapping 

regions.  Each subdomain is independently solved and then updated from neighboring 

subdomains until the solution converges. The memory is significantly reduced. However, its 

total computational run time becomes larger than solving the whole system on single node 

processor (Xiong, 1999). Both schemes (Xiong, 1999; Zyserman et al., 1999; and Zyserman 

and Santos, 2000) show that efficiency in terms of computational time of the domain 

decomposition method can only be gained if running on parallel system. They are inferior if 

running on a serial machine.  

 

In this paper, we investigated another method based on the hierarchical domain 

decomposition (HDD). Similar to other domain decomposition methods, the global domain is 

subdivided into many smaller subdomains. System of equations for each subdomain is 

separately formed and linked to the other via the interfaces. The hierarchical domain 

decomposition method can be directly applied to the MT problems both parallel and serial 

computations. Application of HDD on a parallel system is straightforward. Similar to others, 

calculation of each subdomain is performed separately on each processor node. A single 

interface system is then distributed to all processors for calculation. Theoretically, efficiency 

can be expected from applying the code to the parallel system. However, in practice, this 

parallel scheme requires substantial amount of communication time to exchange data among 

processors, particularly when solving the interface system. Efficiency is therefore platform-

dependent. In this paper, we only illustrate the parallel algorithm but prefer not to 

demonstrate it numerically because our 2-D domain problem is “too” small for current 
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computer technology. The parallel algorithm will be later demonstrated on a bigger 3-D 

problem as a future research. In addition, this parallelization is not our main challenge. Our 

major challenge is the efficiency enhancement of HDD on a serial machine, not through a 

multi-processor machine. 

 

Similar to other domain decomposition methods for MT problems (Xiong, 1999; Zyserman et 

al., 1999; and Zyserman and Santos, 2000), efficiency of HDD on a serial computation is 

low. However, in this paper, two modifications are developed and applied to the hierarchical 

domain decomposition method to increase its efficiency. First modification is the separation 

of interfaces into vertical and horizontal interfaces. This is natural for the finite-difference 

approximation scheme. Second modification is the application of red-black ordering to the re-

ordered interface systems. With the two modifications, we will show that the modified HDD 

code for 2-D MT problems performs better than the conventional method even on a serial 

machine. Because we use a direct solver to solve system of equations, this 2-D experiment is 

also a feasibility study for future 3-D problems to demonstrate that the direct solver can be 

used to solve 3-D system of equations even with a serial calculation. These are therefore our 

main objectives for this paper. 

 

Efficient modified HDD on a serial computation can also be applied to the parallel system. 

However, instead of parallelizing over subdomains, we parallelize over frequency. 

Calculation of MT responses of each frequency is performed serially on one processor. Thus, 

all frequencies are solved simultaneously but separately on multi-processor machines. This is 

used frequently in 3-D inversion algorithms (see Siripunvaraporn et al., 2004; 2005; 

Siripunvaraporn and Egbert, 2009; Siripunvaraporn and Sarakorn, 2010). In addition, this 

scheme does not require substantial amount of communication time between processors. It is 

therefore perfectly fit with the PC cluster platform which can be easily and cheaply built. 

 

In addition, a major decisive factor that controls the efficiency of the modified HDD method 

is the number of subdomains. Selecting subdomains can be a trial and error processes. To 
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avoid wasting time to this process, here we introduce a “memory map” to help choosing 

“optimized” subdomains that yields the “best” computational performance. Memory map is 

pre-generated from several combinations of subdomains. Number of subdomains can be 

selected from the region of low memory in the memory map. This strategy often guarantees a 

faster CPU time than the standard method. The concept of memory map is new and first 

introduced here.  

 

In the following, we first review the standard FD approach to solve a global domain problem. 

We then describes the basic idea of the hierarchical domain decomposition (HDD) and its 

parallel implementation. Then we describe the two  modifications which help speeding up the 

HDD method on a serial calculation.  Validations and numerical examples are given next 

along with the discussion. Conclusion are given at the end. Hereafter, we will refer to the 

standard finite difference for a global domain as FD2D, and to our modified hierarchical 

domain decomposition as MHDD2D.  

 

 

2. Magnetotelluric forward modeling : Finite difference approach 

Given an electrical conductivity (	) or resistivity (�) model, to yield MT responses at the 

surface,   the electric fields (E) are computed from the second order Maxwell's equation,  

 

i�
	
�
� �E E ,      (1a) 

 

for the transverse electric field (TE) mode, while  the magnetic fields (H) are solved from, 

 

i� �

� 
� �H H ,      (1b) 
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for the transverse magnetic field (TM) mode, where �  is an angular frequency and 
  the 

magnetic permeability. With finite difference approach, the conductivity or resistivity model 

is first discretized into many rectangular grids. An example of non-uniform grid 

discretization is shown in Figure 1. The unknown electric fields or magnetic fields are 

defined on the nodes (black dots) inside the domain, while the fields on the boundaries (left, 

right, top and bottom) are obtained from 1-D calculations. After applying finite difference to 

(1a) or (1b) and rearranging equation, both modes yield similar system of equations, 

 

Ax = b ,       (2) 

 

where x represents the unknown internal electric or magnetic fields; b a vector containing the 

term associated with the boundary fields; and A a coefficient matrix which is large sparse 

five-banded symmetric and complex only on the diagonal (Siripunvaraporn and Egbert, 

2000). Equation (2) for 2-D problem can be solved either directly or iteratively such as 

preconditioned conjugate gradient (PCG) method (Siripunvaraporn and Egbert, 2000). One of 

our aims is to demonstrate the use a direct solver for 3-D problem. An LU-factorization is 

therefore applied here to solve all systems of equations from FD2D and MHDD2D.  

   

After calculating the electric fields, the magnetic fields can be calculated from solving the 

first order Maxwell's equation, the Faraday's law. MT responses are then computed from the 

ratio of electric to magnetic fields at the surface.    

 �

3. Hierarchical Domain Decomposition method 

An alternative method to solve (2) is via the domain decomposition method. There are many 

different domain decomposition techniques. Here, we applied the hierarchical domain 

decomposition (HDD) method which is a non-overlapping technique to our 2-D MT 

problems. We start this section   by describing the basic idea of the  HDD method.      
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In every domain decomposition techniques, the model domain is split into several smaller 

subdomains. For simplicity, example mesh in Figure 1 is redrawn as in Figure 2 with uniform 

space, and is uniformly partitioned into 3 × 4 subdomains only as an illustration. The 

unknown electric or magnetic fields located at the nodes can be classified into three 

“hierarchical” types: (1) the interiors (�), (2) the interfaces (�and �) and (3) the 

intersections (�) from lowest to highest level, as shown in Figure 2. The intersections are 

defined as the highest level because they separate the interfaces. Similarly, the interfaces 

separate the interiors, so they are defined the next lower level.The interiors are therefore the 

lowest. With this configuration, the intersections must be solved first. Once the intersections 

are obtained, the interfaces can be successively calculated from the intersections. Similarly, 

the interiors can be successively computed from the interfaces. This hierarchical 

classification is slightly different from the “classic” Schur complement method (see Smith et 

al., 1996; Saad, 2003; Zhang, 2005; ). In Schur complement method, the unknown fields are 

classified only the interiors and the interfaces.  

 

For 2-D MT problem, assuming that the model domain is equally divided into p × q (= r) 

subdomains where p and q are number of subdomains in z- and y- directions, respectively, 

and r is the total number of subdomains. These partitions will yield a total of l interiors (or l/r 

for each subdomain), total of m interfaces and n intersections. Specifically, an inner 

subdomain i which has lzi × lyi ( = l/r) interiors would have 2lzi + 2lyi interfaces, and 4 

intersections, while outer or boundary subdomains would have less depending on their 

locations. By using Figure 1 and Figure 2 as an example, the model in Figure 1 is discretized 

into 12  × 20 grids, which is later decomposed into 3  × 4 (=12)  subdomains. In this example, 

there would be a total of 209 unknowns inside a global domain. When partitioning into 3 × 4 

subdomains, an inner subdomain would then have 12 interiors, 14 interfaces and 4 

intersections.  The total numbers of interiors, interfaces and intersections are 144, 59 and 6, 

respectively. 

 

By organizing the unknowns into three levels, the system of equations (2) can be reordered 

according to this configuration as follows,  

 

 

,    (3) 
� �� � � �
� �� � � ��� �� � � �
� �� � � �
� �� � � �

T

T

F D 0 u f
G v g

0 E H
D E

w h
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where F, G and H are l × l global interior coefficient matrix, m × m global interface 

coefficient matrix, and n × n intersection coefficient matrices, respectively. Global interior 

matrix F composes of many smaller l/r × l/r local interior sub-matrix Fi where i = 1 to r. Each 

Fi corresponds to a coupling within the interior elements inside the i subdomain. Global 

interface matrix G gathers all coefficients corresponding to an interaction between the 

interface elements, while H is diagonal matrix associating with the intersection elements. The 

inter-coupling coefficients between the interiors and interfaces are given in D with a 

dimension of l × m, and between the interfaces and intersections are given in E with a 

dimension of m × n. There is no coupling between the interiors and the intersections in our 2-

D MT case as shown in Figure 2. Vectors f, g and h are domain boundary fields associated 

with the interiors (u), interfaces (v) and intersections (w), respectively. Figure 2 shows that 

there are no boundary fields that belong to the intersections. Therefore, h = 0 in our 2-D 

problems.  

 

According to the hierarchical domain decomposition technique, equation (3) can be 

decomposed into two reduced systems: the interior-interface reduced system and the 

interface-intersection reduced system. The interior-interface reduced system is derived from 

the coupling between the interiors and interfaces, 

 

� �� � � �
� �� � � �
� �� � � �

T

u f
=

g EwD -
F D

G v
,    (4) 

 

while the interface-intersection reduced system is from the coupling between the interfaces 

and intersections,  

 

� �� � � �
�� �� � � �

� �� � � �
T

S E v g
H w h

'
E

 ,    (5) 

 

where the interface Schur complement matrix T -1S = G - D F D  and T -1g = g - D F' f . The 

unknowns are then successively solved from the highest to the lowest level. The intersections 

w are solved first from  
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H'w = h' ,      (6) 

 

where the intersection Schur complement matrix T -1H = H - E S' E , and its right-hand side 

T -1h' = h - E S g' . Once solving the intersections, the interfaces v and the interiors u can then 

be consecutively solved from  

 

Sv = g' - Ew ,      (7) 

and 

i i i iF u = f - D v .      (8) 

 

Algorithm of the standard HDD method can be summarized below after decomposing the 

global domain into several subdomains. 

1. Form Fi, fi, Di and factorize Fi of each subdomain. 

2. Compute T -1
i i iD F D and T -1

i i iD F f  of each subdomain. 

3. Form G, g, H, h and E. 

4. Construct � T
i

-1
i iS = G - D F D  and � T -1

i i ig' = g - D F f . 

5. Factorize S. 

6. Build T -1H = H - E S' E and T -1h' = h - E S g' . 

7. Solve H'w = h' . 

8. Solve Sv = g' - Ew . 

9. Solve i i i iF u = f - D v . 

10. Merge ui, v and w as a solution for the system of equations (2). 
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The intersection Schur complement matrix H'  (step 7) is dense, but its dimension, n × n, is 

relatively small and therefore would not require a lot of computations. Similarly, the classical 

Schur method has a similar dense matrix but with a dimension equal to numbers of interfaces 

and intersections, i.e. m+n × m+n. Thus, the hierarchical domain decomposition method 

yields a significant smaller dense matrix. The interface Schur complement matrix S, in the 

hierarchical case, is not dense but sparse matrix. Example of its sparse pattern is shown in 

Figure 3a) from subdomains of Figure 2.  

 

All equations including equation (6), (7) and (8) are solved with a direct method (here, an 

LU-factorization).  To construct T -1S = G - D F D  and T -1H = H - E S' E  in step 4 and 6, after 

factorizations, F and S systems are solved with a series of different right hand sides: DT and 

ET for m times and n times, respectively. Solving each system just one time requires 

relatively small amount of computational resources, both memory and CPU time. However, 

as showing in the algorithm above, both systems are solved several times. Computational 

time for numerous solving (step 2, 4 and 6) plus factorizations (step 1, 5 and 7) can be more 

than just solving one large global system (equation 2) on a serial machine. This statement is 

correctly confirmed in Xiong (1999) and also in our MT numerical experiments in the next 

section. Once all main matrices are obtained; equation (6) and (7) is solved just one to obtain 

w and v in step 7 and 8, respectively. Equation (8) is then consecutively solved to obtain the 

interiors u within each subdomain in step 9. If each subdomain is equally discretized, this is 

equivalent as solving equation (8) r times. 

 

Because domain decomposition is not highly efficient on a serial machine, another way of 

using domain decomposition on a serial computation is to modify the hierarchical matrix (3) 

and used it as a preconditioner when  solving the system with the iterative solvers (e.g., 

Bitzarakis et al., 1997; Larsson, 1999; Benedetti et al., 2009; Grasedyck et al., 2009). 

 

3.1  Parallel Implementation of HDD  

Most parallel domain decomposition algorithms distribute computations of each subdomain 

to each processor (see examples in Xiong, 1999; Zyserman et al., 1999; and Zyserman and 

Santos, 2000). In this parallel scheme, step 1, 2 and 9 of each subdomain are performed 
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separately on each processor. After calculations, all results are sent to the master node. The 

bottleneck of this parallelization occurs from step 3 to 8. The most difficult parts for 

parallelization are to factorize S in step 5, to construct T -1H = H - E S' E and T -1h' = h - E S g'  in 

step 6 and to solve Sv = g' - Ew  in step 8. Once distributing S to all processors, this process 

requires a lot of communication time among processors when factorizing and solving system 

of equations. Efficiency of this parallel scheme would depend significantly on the parallel 

algorithms which also depend on computer architectures (see Lu and Shen, 1997; Kocak and 

Akay, 2001). Many massive parallel manufacturers have provided their own efficient parallel 

algorithms to solve system of equations. These algorithms show best performance only on 

their own platforms.  

 

However, this conventional parallel scheme could be a problem for PC cluster platform or 

distributed memory systems. Efficiency would be relatively low if switch or hub used to 

communicate among processors is slow regardless of how efficient the algorithm is. Parallel 

implementation is not the purposes of our paper as previously described. We therefore opt not 

to show the numerical experiments of HDD on parallel systems. Experiments with 3-D MT 

problems would be an interesting research to pursue which is beyond our scope here. 

 

4.  Modified hierarchical domain decomposition method  

Earlier numerical experiments on single processor machine show that a straightforward 

application of the HDD method to the 2-D MT problems requires less memory storage than 

standard method. However, its computational time becomes longer. In order to make the 

hierarchical domain decomposition method more efficient on a serial machine for our 2-D 

MT problem, two modifications are necessary. First, the separation of the interfaces into 

vertical and horizontal interfaces will break the larger interface system into two smaller 

vertical and horizontal interface systems which would lead to a memory reduction. Second, 

the red-black ordering technique is applied inside the horizontal and vertical interface 

systems to further help decreasing the computational time. 

 

Taking advantage of the rectangular discretization of the FD approximation, the interfaces 

can be further classified into two types: the horizontal interfaces (� in Figure 2) and the 
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vertical interfaces (� in Figure 2). Number of interfaces (m) is then divided into number of 

horizontal interfaces (mh) and number of vertical interfaces (mv) where m = mh + mv. The 

system of equations (3) can then be reassembled as follows, 

 

,  (9)

 

 

 

where H and V  represent horizontal and vertical interfaces, respectively.  The main difference 

from the original hierarchical domain decomposition would be at the separation of G matrix 

into GH and GV, where GH gathers all coefficients corresponding to a coupling between the 

horizontal interfaces, and similarly for GV corresponding to a coupling between the vertical 

interfaces. With new classification, both vertical interfaces (vV) and horizontal interfaces (vH) 

are situated in the middle level between the intersection (w) and the interior (u) which are the 

highest and lowest, respectively. The interior-interface and interface-intersection reduced 

systems in equation (4) and (5) become 

 

 

,  (10) 

 

and 

 

,           (11) 

 

respectively.  Here, the interface Schur complement matrix S is decomposed into SHH, SHV, 

SVH and SVV as follow, 

 

� �� � � �
� �� � � �
� �� � � �
� �� � � �
� �� � � �

� � � �� �

H V

H H H H

V V V

T
H
T
V

T T
H V

V

0 u f
0 g

F D D
D G E v

=
0 g

0
D G

h
E v
HE wE

� �� � � �
� �� � � �
� �� � � �

� � � �� �� � � �� �

VH

T
H H H H H
T
V v V V V

F D D u f
D G 0 v g - E w
D 0 G v g - E w

=

� �� � � �
� �� � � �
� �� � � �
� �� � � �
� �� � � �

HH HV H H H

VH VV V V V
T T
H V

S S E v g'
S S E v g
E E H w

= '
h
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� �
� �� � � �
� �� � � �

� � � � � �

HH HV
T
H
T
V

H -1
H V

VH VV V

S S 0
= - F

G D
D D

G DS S 0
,  (12) 

and 

� �� � � �
� �� � � �

� � � � � �

H -1
T

H H
T

V VV

g
= -

g' D
f

g
F

g' D
.     (13) 

 

Example of the sparsity pattern of the modified Schur interface (12) is shown in Figure 3b) to 

be compared with the original Schur interface matrix S (Figure 3a). Similar to the original 

hierarchical domain decomposition, the unknown fields are successively solved from the 

highest level to the lowest level.  The intersections w will be solved first from  

 

H'w = h' ,      (14) 

 

where, � �� � � �
� � � �
� � � �

-1
HH HV HT T

H V
VH VV V

S S E
H = H - E E

S S E
' , and its right-hand side 

� �� � � �
� � � �
� � � �

-1
HH HV HT T

H V
VH VV V

S S g'
= h - E E

S S g'
h' . After solving the intersections w, the vertical 

interfaces vV and the horizontal interfaces vH can be split and solved separately as,  

 

-1 -1
VV VH HH HV V V V VH HH H H(S - S S S )v = g' - E w - S S (g' - E w) ,  (15) 

and, 

 HH H H H HV VS v = g' - E w - S v .      (16) 

 

Dimension of  SHH and SVV from (15) and (16) are mh × mh and mv × mv , respectively, which 

are smaller than m × m S matrix of (7). They are therefore faster to solve and less memory 

storage. This is one clear advantage of classifying the interfaces into the horizontal and 



� 15

vertical interfaces. After obtaining w and v, the interiors u can then be consecutively solved 

from  

 

i i i Hi H Vi VF u = f - D v - D v .      (17) 

 

To further increase the efficiency of our modified scheme, red-black coloring technique (See 

Press et al., 1992 and Saad, 2003) is applied to (15) and (16) to help reducing the 

computational time. Under the red-black ordering, the unknowns inside of SVV and SHH are 

classified into red and black unknowns. The idea of Schur complement is again applied to 

this coloring system of the interfaces. The reduced systems are then derived and recursively 

solved to the red and to the black systems. This modification demonstrates the application of 

Schur domain decomposition inside the hierarchical domain decomposition (see Rung-

Arunwan, 2010 for further detail).   

 

With both modifications, the modified hierarchical domain decomposition (MHDD2D) can 

outperform the FD2D code even running on a serial computational machine as showing in the 

next section.   

 

5. Numerical Experiments     

In this section, we first validate that the responses from our modified hierarchical domain 

decomposition method (MHDD2D) are as accurate as those from FD2D. Next, computational 

costs on a single processor are measured with different combinations of subdomains. A 

memory map is then introduced as a strategy to select an “optimized” number of subdomain 

where computational costs are minimized (i.e., relatively faster or at least equivalently to 

FD2D, but with a fraction of memory). 
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5.1 Validation Tests 

To validate the MHDD2D approach, we show the apparent resistivities and phases of both 

TM and TE modes at three frequencies calculated from the model shown in Figure 1. The 

calculated responses from our MHDD2D approach are directly compared to those obtained 

from FD2D as in section 2. In this test, the model and air of Figure 1 is non-uniformly 

discretized into 80 × 240 grids in z- and y-direction, respectively. For FD2D method, the 

unknown to be solved is 18,881. For MHDD2D, the model domain is uniformly split into 4 × 

8 (z- and y- direction, respectively) subdomains. With this 4 × 8 subdomains, the 18,881 

unknowns will be divided into 551 interiors for each subdomain (or a total of 17,632 

interiors), 696 horizontal interfaces and 532 vertical interfaces, and 21 intersections. Total 

memory requirement of MHDD2D is about 21.7 Mbytes, which is approximately one-third of 

FD2D (about 71.09 Mbytes). Memory estimation will be discussed in subsection 5.2.1. 

 

Figure 4 shows that the calculated responses from both FD2D and MHDD2D are perfectly 

identical on both modes. Their difference is in the round-off level which is insignificant. This 

is expected since both methods solve the same system of equation, except that the MHDD2D 

method splits the computational domain into many smaller subdomains, and then solves 

smaller systems. In addition, we have performed validation tests on various synthetic models 

and real model (see inverted model from real data in Siripunvaraporn and Egbert, 2000) with 

several combinations of subdomains. All validation tests show that there is no difference 

from both methods (Rung-Arunwan, 2010). These have validated our MHDD2D method for 

both TM and TE modes. 

 

5.2 Comparisons of Computational Efficiency  

Next, to prove the efficiency of our modified domain decomposition scheme, we ran the code 

on several synthetic 2-D models and also real “inverted” model (from Siripunvaraporn and 

Egbert, 2000) for both TM and TE modes. Because a direct method (LU-factorization) is 

used to solve all systems of equations, computational time and memory requirements are no 

difference among different models, modes (TM or TE) and frequency if domain size is the 

same. Model of Figure 1 is therefore used as a representative to demonstrate the effectiveness 

of our code.  
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Model and air of Figure 1 is discretized into three size meshes: 40 � 120 (small), 80 � 240 

(medium) and 120 � 360 (large). These three meshes are then uniformly subdivided into  p ×

q subdomains, where p and q are numbers of subdomains in z-dir and y-dir, respectively, 

starting from 2. Estimated memory usage and actual calculation time for each combination of 

subdomains for each mesh are compared with those from FD2D. Comparison results are 

plotted and shown in Figure 5 for 40 � 120 mesh, Figure 6 for 80 � 240 mesh and Figure 7 

for 120 � 360 mesh. Relative CPU time and memory (both in percents) are calculated from 

(timeMHDD2D-timeFD2D)*100/timeFD2D and (memMHDD2D-memFD2D)*100/memFD2D, 

respectively. Positive relative time and relative memory indicate that MHDD2D is less 

efficiency than FD2D and therefore spend more calculation time and require more memory, 

while negative reflects the opposite, i.e. MHDD2D is more efficient. Actual memory usage of 

FD2D are 8.77 Mbytes, 71.09  Mbytes and 240.97 Mbytes for small, medium and large, 

respectively, while actual CPU time on an Intel Core Two Duo 6400, 2.13 GHz machine are 

0.08 second, 1.12 second and 4.16 second, respectively. Actual CPU time and memory used 

of MHDD2D can thus be inferred from these actual values of FD2D and the maps shown in 

Figure 5, 6 and 7, respectively. 

  

5.2.1 “Memory Map” and Memory Comparison 

Total memory usage of MHDD2D can be calculated from numbers of subdomains in z-dir (p) 

and y-dir (q), number of interiors (l/r) for each subdomain, numbers of horizontal interfaces 

(mh) and vertical interfaces (mv) and number of intersections (n). However, it is quite 

complicated to express in a simple formula. It is therefore pre-estimated from the allocated 

variables inside the code to produce the “memory map” before running the actual code. 

Memory map displays  minimum memory used for different combinations of subdomains as 

shown in Figure 5a, 6a and 7a. The concept of memory map is very useful and will be 

demonstrated in later subsection.  

    

In contrast to MHDD2D, total memory usage for FD2D can be easily estimated from (Ny-

1)(Nz-1)(3Nz+1)*16 where Ny and Nz is grid discretization in y-dir and z-dir, respectively. 
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Multiplication with 16 is required because complex double precision is used. Because a large 

global matrix (equation 2) of FD2D is broken into many smaller sub-matrices (equation 9) for 

MHDD2D, memory requirement for different combinations of subdomains should therefore 

be less than that of FD2D. This is evidently shown in Figure 5a, 6a and 7a, where negative 

percentage is all over the map indicating less memory requirement of MHDD2D. However, 

total memory usage varies according to numbers of subdomains used in both directions.  

 

From all three figures, there are two cases where memory usage is relatively large (but still 

less than FD2D). First case is when the domain is divided into “large” numbers of 

subdomains. When number of subdomains become large (e.g., 20 � 30 subdomains in Figure 

7a), number of interiors per subdomain is small (see Table 1), but total number of interfaces 

are high (Table 1). More memory is therefore required to store and solve those interface 

coefficient matrices (GH, GV, SHH, SHV, SVH and SVV in 10 and 11). Although intersections 

(H) also increase, it would not significantly affect. In contrast, when small number of 

subdomains used (e.g., 3 � 3 subdomains in Figure 7a), total numbers of interfaces in both 

directions are small (see Table 1), but number of interiors per subdomain becomes very high 

(Table 1). Large number of interiors causes matrix Fi (equation 10) of each subdomain to 

require more memory to store and solve the system of equations (equation 13 and 17). Note 

that we use LU decomposition to solve all systems of equations. Some “extra” memory is 

therefore required to fill the empty band of the sparse matrix. This extra memory has already 

been accounted for in Figure 5a, 6a and 7a. 

 

5.2.2 Comparisons of CPU time  

Calculation time cannot be pre-estimated as the memory usage, it can only be obtained from 

running the actual code on the computer. Relative CPU time from small, middle and large 

meshes are shown in Figure 5b, 6b and 7b, respectively, from different combinations of 

subdomains. They are obtained from running on a single processor machine; here, an Intel 

Core Two Duo 6400, 2.13 GHz machine. Different machines or architectures may result 

differently. However, patterns of relative CPU time should remain approximately the same. 
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For small 40 � 120 mesh,   relative CPU time of MHDD2D is at least 30% more than that of 

FD2D in every combination of subdomains (Figure 5b). Although a larger system of 

equations (equation 2) is broken into many smaller systems (equation 9), successively solving 

a series of these smaller systems (see equation 4-6, and 10-17) can outperform solving a 

global system of FD2D. This reflects in larger CPU time as shown with all positive in Figure 

5b. Although there is no benefit of MHDD2D for smaller 40 � 120 meshes in term of CPU 

time, better efficiency can be gained up to 20% from larger meshes as shown with negative 

zones in Figure 6b for 80 � 240 mesh and in Figure 7b for 120 � 360 mesh. This shows that 

when grid discretization becomes large, MHDD2D will become more effective, even with a 

serial computation. This conclusion is significant, especially for future implementing the idea 

of MHDD2D to 3-D cases. In 3-D, the discretization mesh would be clearly a lot larger than 

what we used in 2-D case.   

  

5.3  Optimized Number of Subdomains : Pre-Selection 

Figure 5a, 6a and 7a show that there are regions where memory requirement is “minimum”. 

The minimized memory zones have the centers at 5 � 6 subdomains for 40 � 120 mesh 

(Figure 5a), at 8 � 8 subdomains for 80 � 240 mesh (Figure 6a) and at 10 � 9 subdomains for 

120 � 360 mesh (Figure 7a). The interiors, horizontal interfaces, vertical interfaces and 

intersections for these three subdomains are given in Table 2.  

 

By matching Figure 5a, 6a and 7a to Figure 5b, 6b and 7b, respectively, we found that the 

minimized memory zones are coincidently occurred almost the same regions as the 

minimized CPU time zone. Both areas will be referred to as the “optimized” regions, because 

both memory and CPU time are least used. In this “optimized” regions, numbers of interiors, 

horizontal interfaces, vertical interfaces and intersections are properly justified or balancing 

(as shown in Table 2), so that solving and storing Fi, GH, GV, SHH and SVV and H matrices 

are relatively fast and less memory requirement. Larger or smaller number of subdomains 

would cause an unbalance to these numbers. Larger number of subdomains would increase 

the interface sizes, while smaller number of subdomains would increase the interior size. 

Both cases would produce a large matrix, which would dominate both calculation time and 

memory usage.  
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The agreement between the optimized CPU time and memory usage has lead to the idea of 

subdomain selection. Usually, choosing number of subdomains that yields least CPU time 

and smallest memory requirement would be a trial and error strategy. Here, we propose to 

select the “optimized” subdomains from the memory map, shown in Figure 5a, 6a and 7a. 

Because memory usage can be pre-estimated from the variable allocations inside the code, 

this number can be printed out and plotted in a map from different combinations of 

subdomains. The optimized subdomains can therefore be chosen from the region of “least” 

memory requirement. There would be a higher chance that CPU time performance of 

MHDD2D would be better than FD2D if choosing subdomains from this region. When 

implementing MHDD2D to 3-D case, similar technique can be used to avoid trial and error 

selections. 

 

5.4 Comparison of modified and non-modified hierarchical domain decomposition 

methods 

For the original hierarchical domain decomposition technique, memory requirements for F 

and H matrices in (4) and (5) are identical to those in (10) and (11) for our modified 

hierarchical domain decomposition. However, interface matrices, G and S in (4) and (5) 

(Figure 3a), depends on the sum of horizontal interfaces and vertical interfaces (m = mh + mv). 

These matrices are therefore larger than GH , GV, SHH and SVV in (10) and (11) (Figure 3b) 

for the modified scheme around 20-50% depending on the number of subdomains (r). 

Memory requirement for non-modified hierarchical domain decomposition would therefore 

up to 50% more than the modified case from our 2-D study, but it is still less than FD2D. 

 

In term of computational time, the standard hierarchical domain decomposition would require 

about the same CPU time to solve Fi and H systems of equations. However, our 2-D study 

reveal that for the interface parts, larger G and S in (4) and (5) of the non-modified code 

requires solving time slightly more or less than solving smaller GH, GV, SHH and SVV in (10) 

and (11) of the modified code. Not much can be gained in terms of CPU time in this part, but 

a lot more in terms of memory. However, by reducing the larger G into GH and GV (from 

Figure 3a to 3b), red-black ordering can be easily applied for solving GH and GV, but not 
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directly to G in (4). With the red-black ordering, about 10-50% depending on a combination 

of subdomains can be gained comparing to the original HDD method for the 2-D case.  Red-

black ordering can be easily implementing in 3-D case as well, this would help further 

decreasing the computational time. 

 

6. Conclusions 

We have demonstrated the efficiency of the MHDD2D code for 2-D MT forward modeling. 

MHDD2D is a modified version of the hierarchical domain decomposition method. The 

original scheme begins by dividing a global computational domain into several subdomains. 

Then, the unknown nodes are classified into three different kinds: interiors, interfaces and 

intersections. A global system of equations is re-organized according to these configurations 

producing three sets of smaller systems of equations.  The intersection reduced system of 

equations is solved first to obtain the intersections. The calculated intersections are then used 

in the right hand-side of the interface systems of equations to compute the interfaces. 

Similarly, the calculated interfaces are input in the interior systems of equations to compute 

the interiors inside each subdomain.  

 

Normally, HDD is applied on a parallel system. Efficiency of the HDD method on a serial 

machine is very low comparing to the conventional method. To enhance the efficiency of the 

hierarchical method on single processor computer, the interfaces of the standard hierarchical 

domain decomposition method is further separated into horizontal interfaces and vertical 

interfaces by taking an advantage of the rectangular discretization of the finite difference. Our 

modified version will then have four sets of smaller systems of equations, instead of three as 

in the original version. The division of the interfaces into horizontal and vertical interfaces 

helps substantially decreasing the size of memory usage. However, it does little help in 

computing time. Red-black coloring is then applied to substantially reduce the computational 

time of the code. 

 

By running MHDD2D with several combinations of subdomains on single processor 

machine, the optimized subdomains can be selected from the memory map generated prior 
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the run. Dividing the global domain with the optimized subdomains, MHDD2D can run up to 

20-30% faster and require up to 70% less memory than FD2D on sing processor machine. 

This conclusion is very crucial. It indicates that the same hierarchical domain decomposition 

algorithm can be extended and applied to 3-D problem. By applying modified HDD method 

to 3-D case, 3-D forward problem can now be solved with a direct method, even on standard 

single processor PC. With the direct solver, its factorized matrices can be re-used several 

times with different right-hand sides. This will help speeding up the sensitivity calculation in 

the 3-D inversion process. Most importantly for a direct solver, computational time is 

controllable and independent of frequencies, modes and resistivities, as long as the domain 

size remains the same. 

 

7. References 

� Avdeev, D. & Avdeeva, A., 2009,  3D Magnetotelluric inversion using a limited-memory 

quasi-Newton optimization, Geophysics, 74 (3), F45-F57.  

� Basermann, A., Jaekel, U., Nordhausen, M., & Hachiya, K., 2005. Parallel iterative 

solvers for sparse linear systems in circuit simulation, Future Generation Computer 

Systems, 21(8), 1275-1284. 

� Ben-Hadj-Ali, H., Operto, S., Virieux, J., & Sourbier, F., 2008. 3D frequency-domain 

full-waveform tomography based on a domain decomposition forward problem, SEG

Technical Program Expanded Abstracts, 27(1), 1945-1949. 

� Benedetti, I., Milazzo, A., & Aliabadi, M.H., 2009, A fast dual boundary element method 

for 3D anisotropic crack problems, Inter. Jour. Numer. Methods. Eng., 80,1356-1378.

� Bitzarakis, S., Papadrakakis, M., & Kotsopulos, A., 1997. Parallel solution techniques in 

computational structural mechanics, Computer Methods in Applied Mechanics and 

Engineering, 148(1-2), 75-104.

� Cai, X.C., Casarin, M.A., Elliot Jr., F.W., & Widlund, O.B., 1998, Overlapping Schwartz 

Algorithms for solving Helmholtz equation, Contemporary Math, 218, 437-445.

� Chan, T.F. & Goovaerts, D., 1992, On the relationship between overlapping and 

nonoverlapping domain decomposition methods, SIAM J. Matrix Anal. Appl., 13, 663-

670. 

� Grasedyck, L., Kriemann, R., & Le Borne, S, 2009, Domain decomposition based H-LU 

preconditioning, Numerische Mathematik, 112 (4), 565-600.



� 23

� Kocak, S., & Akay, H.U., 2001, Parallel Schur complement method for large-scale 

systems on distributed memory computers,  Applied Mathematical Modelling, 25, 873-

886.

� Larsson, E., 1999. A Domain Decomposition Method for the Helmholtz Equation in a 

Multilayer Domain, SIAM Journal on Scientific Computing, 20(5), 1713-1731.

� Lu, Y. & Shen, C., 1997. A domain decomposition finite-difference method for parallel 

numerical implementation of time-dependent Maxwell's equations, IEEE Transactions on 

Antennas and Propagation, 45(3), 556-562. 

� Lu, Z., An, X., & Hong, W., 2008. A fast domain decomposition method for solving 

three-dimensional large-scale electromagnetic problems, IEEE Transactions on Antennas 

and Propagation, 56(8 I), 2200-2210. 

� Mackie, R., Smith, J., & Madden, T., 1994. Three-dimensional electromagnetic modeling 

using finite difference equations: The magne-totelluric example, Radio Science, 29(4), 

923-935. 

� Mandel, J., 1993, Balancing domain decomposition, Comm. Numer. Methods Engrg, 9, 

233-241. 

� Mitsuhata, Y. & Uchida, T., 2004, 3D Magnetotelluric modeling using the T-� finite-

element method, Geophysics, 69 (1), 108-119. 

� Pain, C., Herwanger, J., Worthington, M., & De Oliveira, C., 2002. Effective 

multidimensional resistivity inversion using finite-element techniques, Geophys. J Int., 

151(3), 710-728. 

� Patro, P.K., & Egbert, G.D., 2008, Regional conductivity structure of Cascadia: 

Preliminary results from 3D inversion of USArray transportable array Magnetotelluric 

data, Geophys. Res. Lett., 35 (20), art. no. L20311.  

� Peng, T., Sertel, K., & Volakis, J.L., 2009, Fully overlapping domain-decomposition for 

fast optimization of small antennas in large-scale composite media, 2009 Computational 

Electromagnetics International Workshop, CEM 2009, art. no. 5228103, 77-81.   

� Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 1992. Numerical

Recipes in FORTRAN: The art of scientific computing, Cambridge University Press, 2nd 

edn.

� Rice, J.R., Tsompanopoulou, P., & Vavalis, E., 2000, Interface relaxation methods for 

elliptic differential equations, Applied. Numer. Math., 32, 219-245.



� 24

� Rung-Arunwan, T., 2010, An efficient modified hierarchical domain decomposition for 

2D Magnetotelluric forward modeling, M.Sc. Thesis. Mahidol University. 

� Saad, Y., Iterative Methods for Sparse Linear Systems,  2nd ed, SIAM, Philadelphia, 

2003.

� Siripunvaraporn, W. & Egbert, G., 2000. An effcient data-subspace inversion method for 

2D magnetotelluric data, Geophysics, 65(3), 791-803. 

� Siripunvaraporn, W., Egbert, G., & Lenbury, Y., 2002. Numerical accuracy of 

magnetotelluric modeling: A comparison of finite difference approximations, Earth

Planets Space, 54(6), 721-725. 

� Siripunvaraporn, W., Uyeshima, M., & Egbert, G., 2004, Three-dimensional inversion for 

Network-Magnetotelluric data, Earth Planets Space, 56, 893-902.  

� Siripunvaraporn, W., Egbert, G., Lenbury, Y., & Uyeshima, M., 2005, Three-dimensional 

Magnetotelluric inversion: data-space method, Phys. Earth and Planetary Interiors, 150, 

3-14. 

� Siripunvaraporn, W & Egbert, G., 2009, WSINV3DMT: Vertical magnetic field transfer 

function inversion and parallel implementation, Phys. Earth and Planetary Interiors, 173, 

317-329. 

� Siripunvaraporn, W & Sarakorn, W., 2010, An efficient three-dimensional 

Magnetotelluric inversion: a mixed of the data space conjugate gradient method and the 

data space Occam’s method, submitted to GJI. 

� Smith, B., BjØrstad, P., & Gropp, W., 1996. Domain Decomposition: Parallel Multilevel 

Methods for Elliptic Partial Differential Equations, Cambridge University Press.

� Smith, J. T., 1996. Conservative modeling of 3D electromagnetic felds, Part I: Properties 

and error analysis, Geophysics, 61(5), 1308-1318. 

� Sourbier, F., Haidar, A., Giraud, L., Operto, S., & Virieux, J., 2008. Frequency-domain 

full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain 

decomposition method: A tool for 3D full-waveform inversion?, SEG Technical Program 

Expanded Abstracts, 27(1), 2147-2151. 

� Streich, R., 2009. 3D finite-difference frequency-domain modeling of controlled-source 

electromagnetic data: Direct solution and opti-mization for high accuracy, Geophysics, 

74(5), F95-F105. 

� Takei, A., Sugimot, S.-I., Ogino, M., Yoshimura, S., & Kanayama, H., 2010. Large-scale 

analysis of high frequency electromagnetic field by hierarchical domain decomposition 



� 25

method with direct method in subdomains, IEEE Transactions on Fundamentals and 

Materials, 130(3), 239-246.  

� Wang, B., Mittra, R., & Shao, W., 2008. A domain decomposition finite-difference 

method utilizing characteristic basis functions for solving electrostatic problems, IEEE

Transactions on Electromagnetic Compatibility, 50(4), 946-952. 

� Wannamaker, P., 1991. Advances in three-dimensional magnetotelluric modeling using 

integral equations, Geophysics, 56(11), 1716-1728. 

� Wannamaker, P., Stodt, J., & Rijo, L., 1987. A stable finite element solution for two-

dimensional magnetotelluric modelling, Geophys. J. R. astr. Soc., 88(1), 277-296.

� Xie, G., Li, J., Majer, E., Zuo, D., & Oristaglio, M., 2000. 3D electromagnetic modeling 

and nonlinear inversion, Geophysics, 65(3), 804-822. 

� Xiong, Z., 1992. Electromagnetic modeling of 3D structures by the method of system 

iteration using integral equations, Geophysics, 57(12), 1556-1561. 

� Xiong, Z., 1999. Domain decomposition for 3D electromagnetic modeling, Earth Planets 

Space, 51(10), 1013-1018. 

� Yin, L., Wang, J., & Hong, W., 2002. A novel algorithm based on the domain-

decomposition method for the full-wave analysis of 3D electromagnetic problems, IEEE

Transactions on Microwave Theory and Techniques, 50(8), 2011-2017. 

� Zhang, F., 2005, The Schur complement and its applications, Springer, ISBN 

0387242716. 

� Zyserman, F. & Santos, J., 2000. Parallel finite element algorithm with domain 

decomposition for three-dimensional magnetotelluric modelling, Journal of Applied 

Geophysics, 44(4), 337-351. 

� Zyserman, F., Guarracino, L., & Santos, J., 1999. A hybridized mixed finite element 

domain decomposed method for two dimensional magnetotelluric modelling, Earth

Planets Space, 51(4), 297-306. 

 

7.  Acknowledgements 

This research has been supported by Thai Center of Excellence in Physics (ThEP) and by 

Thailand Research Fund (TRF: RMU5080025). The authors would like to thank Colin G. 

Farquharson, anonymous reviewer and the editor, Oliver Ritter, for their comments to help 

improve the manuscript 



� 26

 
 
 

 

 

Figure 1.  Model used to test the efficiency and accuracy of the modified hierarchical domain 

decomposition method. The model consists of two resistivity contrast blocks buried in a 100 

m��  half-space. The left and right blocks are 10 m��  and 1,000 m�� , respectively. 

This model is discretized into three finite difference meshes: 40 � 120, 80 � 240 and 120 � 

360 and are used in the numerical experiment section. Discretization shown in this figure is 

merely an example to illustrate that the unknown fields are defined on the nodes (black dots).  
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Figure 2. Example mesh of Figure 1 is uniformly redrawn, and subdivided into 3 � 4 

subdomains as an illustration here. The interiors inside each subdomain are drawn with solid 

circle (�). The horizontal and vertical interfaces between subdomains are shown with solid 

rectangle (�) and solid triangle (�), respectively. The intersections from four subdomains 

are plotted with solid cross (�). 
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Figure 3. (a) Sparsity pattern of the Schur complement matrix S (equation 5) of the non-

modified hierarchical domain decomposition.  (b) Sparsity pattern of the Schur 

complement interface systems (SHH, SHV, SVH and SVV in equation 12) of the modified 

hierarchical domain decomposition.  

 

 

 

a)

b)
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Figure 4. Apparent resistivities (Ohm-m) and phases (degree) of TM and TE modes from 

three different frequencies (1 Hz, 0.1 Hz and 0.01 Hz) across the model in Figure 1. Dots are 

from MHDD2D. Solid and dash lines are from TM and TE of FD2D, respectively. The 

differences of both responses from both methods are in the round-off level. This validates our 

MHDD2D code.  
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Figure 5. (a) Relative memory usage (in percent) and (b) relative CPU time (in percent) of 

MHDD2D to FD2D from several combinations of subdomains running on a 40 × 120 mesh. 

MHDD2D is more efficient than FD2D where larger negative percentage is presented, and 

less efficient where larger positive percentage. 
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Figure 6. Same captions as in Figure 5 but for  80 × 240 mesh. 
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Figure 7. Same captions as in Figure 5 but for  120 × 360 mesh. 
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 p � q subdomains l/r (l) n mh  mv m 

3 � 3 4641 (41769) 4 714 234 948 

10 � 9 429 (38610) 72 3159 880 4039 

20 � 30 55 (33000) 551 6270 2900 9170 

Table 1. Numbers of interiors per subdomain (l/r where l is total of interiors and r = p � q), 

intersections (n), horizontal interfaces (mh), vertical interfaces (mv) and all interfaces (m) for 

three different numbers of subdomains running on a 120 � 360 mesh (Figure 7). 

 

Center of optimized 

region 
 l/r (l) n  mh  mv m 

5 � 6 subdomains on   

40 � 120 mesh 
133 (3990) 20 456 175 631 

8 � 8 subdomains on   

80 � 240 mesh 
261 (16704) 49 1624 504 2128 

10 � 9 subdomains on 

120 � 360 mesh 
 429 (38610) 72  3159   880 4039  

Table 2. Numbers of interiors per subdomain (l/r where l is total of interiors and r = p � q), 

intersections (n), horizontal interfaces (mh), vertical interfaces (mv) and all interfaces (m) for 5 

� 6  subdomains on 40 � 120 mesh (Figure 5), 8 � 8  subdomains on 80 � 240 mesh (Figure 

6),  and 10 � 9 subdomains on 120 � 360 mesh (Figure 7), respectively. These subdomains 

represent the center of optimized regions. 
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a b s t r a c t

We describe two extensions to the three-dimensional magnetotelluric inversion program WSINV3DMT

(Siripunvaraporn, W., Egbert, G., Lenbury, Y., Uyeshima, M., 2005, Three-dimensional magnetotelluric

inversion: data-space method. Phys. Earth Planet. Interiors 150, 3–14), including modifications to allow

inversion of the vertical magnetic transfer functions (VTFs), and parallelization of the code. The parallel

implementation, which is most appropriate for small clusters, uses MPI to distribute forward solutions for

different frequencies, as well as some linear algebraic computations, over multiple processors. In addition

to reducing run times, the parallelization reduces memory requirements by distributing storage of the

sensitivity matrix. Both new features are tested on synthetic and real datasets, revealing nearly linear

speedup for a small number of processors (up to 8). Experiments on synthetic examples show that the

horizontal position and lateral conductivity contrasts of anomalies can be recovered by inverting VTFs

alone. However, vertical positions and absolute amplitudes are not well constrained unless an accurate

host resistivity is imposed a priori. On very simple synthetic models including VTFs in a joint inversion

had little impact on the inverse solution computed with impedances alone. However, in experiments with

real data, inverse solutions obtained from joint inversion of VTF and impedances, and from impedances

alone, differed in important ways, suggesting that for structures with more realistic levels of complexity

the VTFs will in general provide useful additional constraints.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

WSINV3DMT (Siripunvaraporn et al., 2005) has been developed

to invert Magnetotelluric (MT) impedance tensor components for

three-dimensional (3-D) Earth conductivity. It was made freely

available to the MT research community in 2006 and has since

become one of the standard tools for 3-D inversion and interpre-

tation (e.g., Tuncer et al., 2006; Heise et al., 2008; among others).

The inversion algorithm used closely follows the two-dimensional

(2-D) data space Occam’s inversion of Siripunvaraporn and Egbert

(2000) which has also been widely used for 2-D interpretation (e.g.,

Pous et al., 2002; Oskooi and and Perdersen, 2005; Toh et al., 2006;

among others). Here we describe extensions to this code, which we

illustrate with tests on synthetic and real data.

We first briefly summarize WSINV3DMT; see Siripunvaraporn

et al. (2005) for more technical details. The algorithm used is based

on the classic Occam’s inversion introduced by Constable et al.

(1987) for the one-dimensional (1-D) MT and DC resistivity sound-

ing problems. The Occam inversion seeks a minimum structure

∗ Corresponding author. Tel.: +662 201 5770; fax: +662 354 7159.

E-mail address: scwsp@mahidol.ac.th (W. Siripunvaraporn).

model (as defined by some model norm which penalizes rough-

ness) subject to an appropriate fit to the data. The minimization is

accomplished with a modified Gauss–Newton algorithm, in which

the regularization parameter (which controls the tradeoff between

model roughness and data fit) is also used for step length control

(Parker, 1994). The main advantages of the Occam approach are

its stability and robustness, and the fact that the scheme often con-

verges to the desired misfit in a relatively small number of iterations

(e.g., Siripunvaraporn and Egbert, 2000). Occam was extended to

treat two-dimensional MT data by deGroot-Hedlin and Constable

(1990), but for multi-dimensional inversion the originally pro-

posed scheme can be computationally impractical, as the system

of normal equations is explicitly formed and solved in the model

space.

Siripunvaraporn and Egbert (2000) transformed the inverse

problem into the data space (e.g., Parker, 1994). If the number of

data (N) is small compared to the number of model parameters (M),

as will typically be the case in 3-D, the data space variant requires

a fraction of the CPU time and memory compared to a model space

scheme. This data space Occam scheme forms the basis for the

WSINV3DMT algorithm, which is summarized in Fig. 1.

The initial version of WSINV3DMT was only capable of inverting

the impedance tensor Z, the 2×2 complex frequency dependent

0031-9201/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.pepi.2009.01.013
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Nomenclature

d observed data

Cd data error

m0 initial and prior model

Cm model covariance

mk model at k iteration

Jk N×M sensitivity matrix forming from mk

F[mk] forward responses of mk

�k data space cross product matrix

Rk representer for k iteration

� Lagrange multiplier

Ns number of stations

Nm number of modes

Np number of periods

N number of data = Ns×Nm×Np

M number of model parameters

transfer function relating electric to magnetic fields[
Ex

Ey

]
=

[
Zxx Zxy

Zyx Zyy

][
Hx

Hy

]
. (1)

The impedance tensor is frequently used by itself for 3-D conduc-

tivity imaging (e.g., Tuncer et al., 2006; Heise et al., 2008; Patro

and Egbert, 2008). However, modern MT field practice typically

includes measurement of vertical magnetic fields (particularly at

long periods, where a tri-axial magnetometer is used), and thence

computation of vertical field transfer functions (VTFs)

Hz =
[

Tzx Tzy

][
Hx

Hy

]
. (2)

The vertical magnetic field is only produced when there are lat-

eral or horizontal variations of conductivity. Researchers have often

used VTFs in the form of induction vectors (Parkinson, 1959) to

indicate or point to the source of conductivity anomalies and to

establish or verify geoelectic strike directions (e.g., Bedrosian et

al., 2004; Uyeshima et al., 2005; Tuncer et al., 2006). A num-

ber of 2-D inversion codes (e.g., REBOCC of Siripunvaraporn and

Egbert, 2000; and NLCG of Rodi and Mackie, 2001) allow inversion

of VTFs (or “Tipper”), and these are often included along with TE

and TM impedances in 2-D interpretations of MT profile data (e.g.,

Wannamaker et al., 1989; Wannamaer et al., 2008). Berdichevsky

et al. (2003) studied VTFs using analytical and modeling studies,

and concluded that inclusion of these additional induction transfer

functions can substantially improve the reliability of geoelectrical

models, because they are not affected as strongly by local distortion

as the impedance tensor is.

Here, we describe the implementation of VTF inversion for the

WSINV3DMT inversion code, and apply this to inversion of real and

synthetic datasets. In addition, we describe implementation of a

parallel version of WSINV3DMT, using MPI and parallelizing over

frequencies to help reduce program execution times, which can

be quite long for realistic modern datasets (e.g., Patro and Egbert,

2008).

The paper is organized as follows. First, we summarize the mod-

ifications to WSINV3D, for the most part omitting technical details.

Next, we illustrate and test the new features on the same syn-

thetic datasets previously used in Siripunvaraporn et al. (2005).

Here we illustrate the speedup obtained with the parallelization,

and explore the effectiveness of VTF data for recovering conduc-

tivity structures, alone, and in conjunction with impedance data.

We then test the VTF inversion on the EXTECH dataset (Tuncer et

al., 2006), comparing inverted models from only VTF data, from

only impedance data, and from a joint inversion of both data

types.

2. Implementation of WSINV3DMT to include the vertical
magnetic transfer function

There are only two major modifications to the WSINV3DMT

codes required to allow inversion of VTFs: adding the VTF com-

putation to the forward modeling routine, and the corresponding

modifications for the sensitivities of the real and imaginary parts

of the VTFs.

In WSINV3DMT, the electric fields are calculated by solving the

second order Maxwell’s equation using a staggered grid finite dif-

ference numerical scheme (Siripunvaraporn et al., 2002). Magnetic

field components can then be computed (on grid cell faces) from

Faraday’s law �×E = iω�H, and interpolated to the observation

locations, which in the modified version of WSINV3D can be at any

location on the surface. In order to compute the impedance tensor Z
the forward equations are solved for two polarizations, and Z is cal-

culated from the combination of horizontal electric and magnetic

fields from both polarizations, as described in Siripunvaraporn et

al. (2005).

The only modification required for the VTF is that the vertical

magnetic field must also be computed at the observation location.

As for the horizontal magnetic components, this is accomplished

using Faraday’s law, taking the curl of the horizontal E compo-

nents on the model air–Earth interface, and interpolating the result

(defined at cell centers) to the observation locations. Then, similarly

to the impedance tensor, the vertical and horizontal magnetic fields

computed from the solutions for both polarizations are combined

to form the vertical magnetic field transfer function T,

[
H1

z H2
z

]
=

[
T zx T zy

][
H1

x H2
x

H1
y H2

y

]
(3)

Here H1
z and H2

z are the z-component of magnetic fields for the

Ex–Hy and Ey–Hx polarizations, respectively, and similarly for other

field components. For a joint inversion with impedance tensor,

computing the vertical magnetic transfer function does not require

any extra forward modeling calls, as all transfer functions are com-

puted from the same solutions.

The sensitivity calculation for VTFs is essentially identical to that

used for impedances, which is based on the reciprocity approach

described in Rodi (1976), Newman and Alumbaugh (2000), and

Siripunvaraporn et al. (2005). Briefly, the linearized data functional,

which is represented by linear combinations of electric field solu-

tion components on cell edges surrounding the observation point, is

used to force the adjoint equation, and the result is mapped to per-

turbations in the model parameter, as described in Siripunvaraporn

et al. (2005). Only the first step requires modification, with the coef-

ficients for the linearized functionals for Tzx and Tzy replacing those

for Zxx and Zxy. Details of this modification are straightforward, and

are omitted here.

3. Parallel implementation with MPI

A major challenge in using WSINV3DMT, or for that matter,

any 3-D MT inversion code, is that the program is very time

consuming, especially when run with the sort of large dataset

(and model domain) that justifies a 3-D interpretation. Run times

exceeding a full month (on a single processor desktop computer,

for the full inversion process, including multiple iterations of the

outer loop of Fig. 1) have been reported when WSINV3D has

been applied to even modest 3-D MT datasets (e.g., Patro and

Egbert, 2008). These long run times primarily reflect the need

for many forward modeling calls, each of which requires iterative
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Fig. 1. Pseudo-code for serial WSINV3DMT (after Siripunvaraporn and Egbert, 2007).

solution of the large sparse linear system arising from discretization

of Maxwell’s equations. WSINV3D was developed as a serial code,

to run on a single processor. An obvious way to speed up execution

is to parallelize the code, and make use of the multiple processors

which are increasingly common even in desktop computers.

There are several ways to redesign the codes to run on parallel

system, and the most appropriate approach will depend on system

architecture. For supercomputers or large clusters to make effective

use of hundreds of processors it would be necessary to rewrite parts

of the forward solver—e.g., parallelizing the iterative solver and

preconditioner (e.g., Newman and Alumbaugh, 2000), or domain

decomposition. Here, we consider a parallelization approach appro-

priate to small systems with a few to several tens of processors. Such

small clusters and multi-processor workstations are now read-

ily affordable and more widely available than supercomputers. To

adapt WSINV3DMT for this class of systems, we parallelize over

frequencies, adding calls to MPI (Message Passing Interface) library

routines to the existing codes. In this way, we do not have to alter

the core forward modeling and sensitivity calculation routines in

any way. The parallel algorithm is summarized in Fig. 2.

Forward modeling and sensitivity calculations for each period

are sent to one processor (Steps 2.1 and 2.2 in Fig. 2).

If there are fewer processors than periods, each processor

performs calculations for more than one period. With this

simple parallelization, which requires minimal inter-processor

communication, the computational time should be theoretically

reduced by a factor P, the number of processors available. This paral-

lel implementation also distributes storage of the sensitivity matrix

over the available nodes. The N×M sensitivity matrix J requires

8NM bytes (in double precision), and the need to store this in RAM

limits the size of datasets and model grids that can be practically

treated. With the parallelization, memory required on each node

is reduced to about two times 8NM/P (including temporary storage

for cross product computations), allowing WSINV3D to be run for

larger models grids and datasets.

With the sensitivities distributed over processors, formation of

the cross product matrix � = JC−1
m JT also requires MPI calls. We

have implemented this in a fairly simple way, breaking � into P2

blocks to be computed on the P processors (Step 2.3 in Fig. 2).

Diagonal blocks �ii are computed on the local processor where

the corresponding block Ji of the sensitivity matrix (correspond-

ing to one or more frequencies) is computed and stored. The

off-diagonal blocks (�ij) can only be formed by sharing blocks of

J between nodes. Since � is symmetric, only upper off-diagonal

blocks (j > i) need be formed. On step k block Jj, where j = mod(i + k, P)

is sent to node i to compute �ij where this block is stored. With

this simple scheme the load is balanced and the number of steps

required is approximately (Np + 1)/2. Although computing the cross

products requires significant communication time to share sen-

sitivities between nodes, it can still significantly reduce the total

computing time required to form � compared to single node pro-

cessing.

In the data space Occam scheme used by WSINV3D the system

of normal equations (Eq. (6) in Siripunvaraporn et al., 2005) must

be solved for a series of trial values of the regularization parameter

(about 3–7 from our experience) to find the optimal (in terms of

data misfit and model norm) model parameter update. In the serial

version of WSINV3D these dense systems are solved by Cholesky

decomposition (Step 2.4.2 in Fig. 1). Parallel Cholesky decomposi-

tion subroutines are available (e.g., Choi and Moon, 1997), but these

are generally tailored to a specific parallel architecture and are not

easily adapted. To develop code that will be portable, and reason-

ably efficient on a generic multi-processor system, we have thus

pursued a different strategy, using the easily parallelized precon-

ditioned conjugate gradient (PCG) algorithm to solve the normal

equations (Step 2.4.1.2 in Fig. 2). The major computation in the
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Fig. 2. Pseudo-code for parallel WSINV3DMT for cluster PCs system.

PCG algorithm is matrix–vector multiplication. This is readily par-

allelized by dividing the vectors and matrix into blocks, spreading

computations for individual blocks over processors, and then gath-

ering the results back to the master node. To simplify the algorithm

we have distributed the full matrix to all computational nodes.

The preconditioner, based on the diagonals of the coefficient

matrix, is also trivially parallelized. Because the coefficient matri-

ces are dense, the parallel PCG scheme may not be efficient when

N is small, since communication and other overhead may exceed

the serial computational time. For smaller N, we therefore retain

the option of solving the normal equations with a serial Cholesky

decomposition, after all blocks �ij are sent back to the parent node.

The optimal choice of solution scheme (parallel or serial) for a spe-

cific value of N will depend on the cluster architecture. We give

examples below where each approach is more efficient.

Once the new model mk+1 is obtained, the parallelized forward

solver is called to compute the responses of each period, with the

results gathered to the parent node to compute misfits (Step 2.4.2

in Fig. 2). All steps are repeated until an acceptable misfit and norm

are achieved

4. Synthetic data examples

To illustrate the efficiency of the parallelized WSINV3D, and

the effectiveness of the VTF inversion, we first consider inver-

sion of synthetic datasets, revisiting the two synthetic examples

previously used by Siripunvaraporn et al. (2005), reproduced in

Fig. 3. The results of these tests are consistent with those obtained

for other synthetic examples. Our basic test configuration is the

two-block model (Fig. 3a) consisting of two anomalies, 1 � m and

100 � m located next to each other within a 10 � m host. The spa-

tially homogeneous layer, which extends from the surface to 10 km

depth, is underlain by a 100 � m half space. To test the efficiency of

our parallel codes, and the VTF inversion, we generated VTF and

impedance data at 16 periods (from 0.1 to 1000 s) for a total of

40 sites in a regular grid, as illustrated in Fig. 3a. Gaussian noise

(5% of the data magnitude) was added to the generated data. The

inversions for this case are performed on a 21×28×21 (+7 air lay-

ers) mesh. The second model consists of a single conductive block

(1 � m) buried in a 100 � m half-space (Fig. 3b), and responses

were computed at 16 periods for 36 sites (Fig. 3b). The inversions
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Fig. 3. Two synthetic models used to test our inversion. (a) Two-block synthetic model and (b) a single conductive block model. The solid dots indicate the observation sites.

The cross-section view in the lower panel is a profile cutting across the middle of the model in the upper panel, and is not to scale (after Siripunvaraporn et al., 2005).

for the second case are performed on a 28×28×21 (+7 air layers)

mesh.

We first demonstrate the efficiency of the parallel version of

WSINV3D, using both VTF and joint VTF/impedance datasets for

tests. We then consider the effectiveness of VTF data for recov-

ering conductivity variations, both alone, and in conjunction with

impedances.

4.1. Parallel efficiency

We tested WSINV3DMT by running on 1, 4, 8 and 16 nodes for

the first synthetic test case (Fig. 3a), with the 16 periods divided

evenly among nodes (e.g., with 4 nodes, each solves for 4 periods).

Tests were conducted on a small PC-clusters and a supercomputer

(SGI Altix 4700) at the Earthquake Research Institute, University of

Tokyo. To quantify efficiency of the parallel code, we display the

speedup, defined as S = T1/TP, where T1 is the execution time of

the sequential WSINV3DMT algorithm and TP is the execution time

of the parallel version, run on P processors. The idealized maxi-

mum speedup is P. However, due to computational overhead, the

need for some computations to be performed only on the mas-

ter node, and the time required to exchange information between

nodes, S will always be less than P. Fig. 4 displays speedup versus

the number of nodes. Inversions of all data (i.e., VTF + impedance,

N = 40×12×16 = 7680) are plotted with solid lines. Inversions of

the VTF only dataset (N = 40×4×16 = 2560, or one third the size

of the joint inversion dataset) are plotted as dashed lines. We also

compare speedups achieved with the two approaches for solving

the normal equations: speedups obtained with the single proces-

sor Cholesky decomposition are plotted as solid symbols, while

those obtained with the parallel PCG algorithm are plotted as open

symbols.

For the inversion of the VTF dataset for this very small test prob-

lem, actual (wall clock) run times were about 186 min on a single

node machine, 82 min on 4 nodes, 46 min on 8 nodes and 34 min

on 16 nodes, resulting in speedups of about 2.2 for 4 nodes, 4 for 8
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Fig. 4. Speedup versus the number of processors or nodes. Solid lines are the

speedups from inversion using both VTF and impedance data (N = 7680). Dashed

lines are the speedups from inversion using only VTF data (N = 2560). Results for the

scheme which solves the normal equations by Cholesky decomposition on a single

node (step 2.4.1.2 of Fig. 2) are plotted with solid symbols. The corresponding results

with the parallel PCG solver (step 2.4.1.4 of Fig. 2) are plotted with open symbols.

The thin-dashed line of slope one gives the ideal perfect speedup.

nodes and 5.4 for 16 nodes. Thus, as the number of nodes increases,

the relative efficiency of additional nodes decreases. One reason for

this is that the run time of the iterative forward modeling routine

depends on the period of the data. Shorter periods typically require

a larger number of iterations for convergence, and hence longer run

times. Thus, some nodes are usually idle waiting for modeling com-

putations to complete on other nodes, before moving on to the next

step in the inversion. With fewer nodes some of the frequency-to-

frequency variations average out, resulting in better balance.

Efficiencies are somewhat lower for the larger joint

VTF/impedance dataset, when the serial Cholesky decomposi-

tion solver is used (solid line with solid square symbols of Fig. 4).

Now the speedups are about 1.8, 2.6 and 3.2 for 4, 8 and 16

nodes, respectively, almost 50% below those achieved for the VTF

only inversion. However, solving the normal equations with the

parallel PCG solver (solid line with open square symbols in Fig. 4)

significantly improves performance, increasing S to approximately

2, 4.5 and 7.3 for the three cases considered. In the VTF only

case, where N is significantly smaller, both methods for solving

the normal equations have similar performance (dashed lines in

Fig. 4), and indeed the speedup is slightly greater when the single

node Cholesky decomposition is used.

The difference between the two cases is readily understood.

Operation counts for Cholesky decomposition scale as N3 so com-

putation times for the serial Cholesky decomposition in the all

data case (N = 7680) are expected to be about 27 times greater

than for the VTF only case (N = 2560). Other computational steps

scale better with increasing N. For fixed model parameter size,

total operation counts for the sensitivity calculations increase lin-

early in N, and formation of the cross product matrices increases as

N2. Thus, as the size of the dataset increases, run times required

for the serial Cholesky decomposition step become increasingly

significant, and at large enough N this step will control the

overall runtime. Operation counts for a single iteration in the

parallel PCG scheme scale as N2, but overall runtimes will also

depend on the number of iterations required. Although this should

increase with N also, the dependence is weak, and so PCG becomes

increasingly advantageous as N increases, particularly since com-

putations for the PCG scheme can be distributed over the P

processors.

The number of iterations for PCG also depends on the relative

tolerance for the residual (=||Ax−b||/||b||) used to define conver-

gence. We find that a tolerance of 10−4 results in models that are

essentially identical to those obtained with the Cholesky decompo-

sition technique. The number of iterations, and hence the run time

of the parallel PCG scheme also depends on the condition number

of the normal equations. For large values of the Lagrange multi-

plier (corresponding to a smoother model) the condition number

is smaller, and the parallel solver thus converges in a small num-

ber of iterations. In contrast, when the Lagrange multiplier is very

small (rough model) the parallel solver can require considerably

more iterations, and solution times can exceed those for the serial

Cholesky decomposition scheme. This occurred occasionally in our

tests with the larger VTF/impedance dataset, but overall perfor-

mance using the parallel PCG solver was much better when N is

large enough.

We will not attempt to quantify more precisely how large N

must be before the parallel approach to normal equation solution

would be preferred. This will depend on the cluster architec-

ture, especially on the sort of inter-processor communication

used, since the parallel PCG solver requires substantial sharing of

data.

In addition to reducing computational times, the parallel ver-

sion also reduces the need for a large amount of memory on a

single computer. Even for the small joint VTF/impedance inversion

test example, about 1.5 GBytes are required for the representer and

sensitivity matrices. In the parallel implementation, the required

memory may be distributed over all of the nodes used. For exam-

ple, with 16 nodes, each would require only 0.090 GBytes for storing

the sensitivity matrix and forming cross products, almost 13 times

less than required by the serial code. If the whole representer matrix

is stored on a single processor (for the Cholesky decomposition, or

to reduce the communication time between nodes for PCG) about

0.4 Gb are required on each node, still only a quarter required for a

serial version.

The exact time speedup and per-node memory reduction fac-

tors will depend to some extent on the problem size, both in terms

of model grid dimensions, and number of data. For larger prob-

lems, such as the real data EXTECH example considered below,

similar performance gains were attained. For these larger prob-

lems, however, a speedup by a factor of roughly 7 means a run

time that was perhaps 2–3 weeks on a single node is now reduced

to 2–3 days, making inversion of realistic datasets considerably

more practical. The practical impact of distributing memory is even

greater. Total storage required by WSINV3D for the EXTECH exam-

ple described below (joint inversion of the full impedance and VTFs)

is at least 30 Gb, making this impractical on almost any shared

memory machine.

4.2. Vertical magnetic transfer function inversion

We next consider the effectiveness of WSINV3DMT at correctly

recovering resistivity when only VTF data are available. Because

in practice one would not know a priori the correct background

resistivity, we run the inversion using several prior (and starting)

models. Inversion results for the synthetic VTF data from the test

case of Fig. 3a are summarized in Figs. 5 and 6. Using a 50 � m

half-space as a prior (this is intermediate between the true 10 � m

upper layer background, and the 100 � m basement), inversion of

VTF data reveals both the conductive body and the adjacent resis-

tor, extending from near the surface to approximately 20 km depth.

The calculated responses generated from the inverse solution of

Fig. 5 fit the observed responses within 15% of the typical VTF

amplitude (recall that 5% random noise was added to the synthetic

data).
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Fig. 5. An inverse solution from the VTF data alone after the 9th iterations with an RMS value of 1, fitting synthetic data generated from the model in Fig. 3a. The top panels

(a)–(c) is a plan view at the surface, at 3 km and at 7.5 km depth, and the bottom panel (d) is a cross-section view cutting across the conductive block at X = 0 km. The solution

is shown only in the central area around the anomalies, not for the full model domain.

Although both anomalies are detected in approximately the

correct location, the true resistivities of Fig. 3a are not correctly

estimated. However, calculating the average resistivity over the

anomalous volumes we find for the inverse model of Fig. 5 an aver-

age resistivity of about 6.3 � m for the conductive anomaly, and of

about 453 � m for the resistive body, while the background resistiv-

ity of the inverse model was changed only slightly from the 50 � m

prior. Computing the volume average resistivity ratios from left to

right in Fig. 5d, we obtain values of 7.9 (=50/6.3), 72 (=453/6.3) and 9

(=453/50), compared to the actual ratios (Fig. 3a) of 10 (=10/1), 100

Fig. 6. Cross-sectional plots at X = 0 km (as in Fig. 5d) of the inverse solutions from VTF data alone, when the prior models are (a) 10 � m half-space, (b) 1 � m half-space and

(c) 100 � m half-space.
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(=100/1) and 10 (=100/10), respectively. The inversion thus results

in roughly the correct structure, with approximately correct resis-

tivity contrasts, but it does not recover the correct amplitude of

either the background or the anomalies, or the actual depth extent

of the anomalies.

To explore this issue further we ran the inversion on the same

VTF dataset, using a range of values for the assumed half-space

prior. Fig. 6 summarizes the results with cross-sectional plots of

the inverse solutions at X = 0 km. When the prior model is the same

as the correct background resistivity (i.e., a 10 �-m half-space in

our example), the inversion quickly converges to the desired misfit

within 4 iterations, even with error floors set to 5%. In this case,

the inversion estimates the resistivity, and the depth extents, of the

two anomalies quite well (Figs. 6a and 3a). However, the 100 � m

basement resistivity (below 10 km depth in the synthetic test model

of Fig. 3a) is not recovered—the prior resistivity of 10 � m remains

unchanged at depth in the inverse solution. This again demonstrates

that inversion of VTF data alone can only recover lateral resistiv-

ity contrasts, and is not effective at correcting resistivities, or their

variations with depth.

Larger deviations of the prior model from the correct back-

ground result in even larger discrepancies in anomaly amplitudes

and depths, but still generally allow the horizontal structure to be

recovered. With a 1 � m half-space (Fig. 6b) data is fit to within

10%. Anomalies appear at very shallow depths (upper few km), with

all features more conductive than their actual values. At greater

depth, features with appropriate resistivity ratios are imaged, but

the absolute levels are incorrectly estimated, and spurious struc-

tures appear. Using a 100 � m half-space as a prior, the VTF data

can only be fit to within 20%. The basic structure is again recovered,

but both anomalies are at greater depth (Fig. 6c) and have increased

resistivity. The host resistivity is estimated to be slightly lower than

the 100 � m starting value, but is still well above the correct value

of 10 � m. As in the other cases, the basement resistivity remains

the same as the prior model.

All of these experiments suggest that when only VTF data are

available, to achieve the target misfit and recover correct ampli-

tudes and depths, the inversion must be started with a prior model

that is close to the correct host resistivity. However, even starting far

from the correct background model, anomalies are recovered with

the correct horizontal location and dimensions. This result is not

unexpected since the vertical magnetic fields are generated where

there are lateral discontinuities, but are not inherently sensitive to

the profile of vertical conductivity structure.

In addition, resistivities of anomalous bodies scale with the

assumed prior background (Fig. 6), and resistivity contrasts (i.e.,

ratios) can be close to actual values, especially if the assumed back-

ground resistivity is not too far off. However, the VTFs provide little

intrinsic constraint on contrasts in the vertical direction, including

the location of the top or the bottom of the anomalies. The inver-

sion only gets these properties of the anomalies correct if something

close to the correct background is used (Fig. 6a).

Performing similar experiments to those summarized in Fig. 6,

but using impedance tensor data shows that these inversions are

much less sensitive to the assumed prior model. This is consistent

with the basic physics, as the ratio of electric to magnetic fields is

intrinsically related to the resistivity profile. In spite of the well-

known uncertainties in depth and absolute resistivity level that

may result from local static distortions, there is by now ample evi-

dence (e.g., Tuncer et al., 2006; Unsworth et al., 2000) that, with

proper care, MT impedances can yield reliable information about

conductivity-depth profiles. The same does not appear to be true

in practice with VTF data, although theoretical analysis of idealized

models suggests otherwise (Berdichevsky et al., 2003).

The above results suggest that VTF data will be most useful as an

adjunct to impedance data, which can provide the necessary con-

Fig. 7. Results from joint inversion of both VTF and impedance tensor data generated from the model in Fig. 3a. See caption of Fig. 4 for other details.


