

การศึกษาอันตรกิริยาของโลหะกับตัวรองรับในวัสดุภาคของเหลวและแก๊สสำหรับตัวเร่งปฏิกิริยาแบบวิชพันธุ์

Study of metal-support interaction in liquid and gas phases for heterogeneous catalysis

บทคัดย่อ

โดยทั่วไปตัวเร่งปฏิกิริยาในระบบวิชพันธุ์ (Heterogeneous catalyst) จะประกอบได้ด้วยสองส่วนหลัก ๆ คือ ส่วนที่ว่องไว (Active site) และตัวรองรับ (Support) โดยส่วนใหญ่ส่วนที่ว่องไวจะเป็นโลหะแทรนซิชันซึ่งมีเลขออกซิเดชันได้หลายค่าทำให้สามารถเร่งปฏิกิริยาได้หลากหลาย ปกติส่วนที่ว่องไวจะถูกทำให้เกิดการกระจายตัวที่ดีโดยการเคลือบฝัง (Deposition) ลงบนตัวรองรับซึ่งเป็นสารที่มีรูปรูนและพื้นที่ผิวสูงก่อให้เกิดการกระจายตัวที่ดีของโลหะทำให้เกิดปฏิกิริยาได้ เมื่อจากปฏิกิริยาเคมีส่วนใหญ่จะเกิดขึ้นที่ผิวของตัวเร่งปฏิกิริยา อย่างไรก็ตามพนวณจากขนาดของโลหะและตัวรองรับที่ใช้แล้ว สิ่งหนึ่งที่เป็นปัจจัยสำคัญในการกำหนดความว่องไว (Activity) ของตัวเร่งปฏิกิริยา คือ อันตรกิริยา (Interaction) ระหว่างโลหะกับตัวรองรับ ซึ่งมีงานวิจัยน้อยมากที่ศึกษาปัจจัยดังกล่าว นี้ ดังนั้น โครงการวิจัยนี้จึงได้เสนอแนวทางในการศึกษาอันตรกิริยาระหว่างโลหะกับตัวรองรับ

งานวิจัยนี้ทำโดยการเตรียมตัวเร่งปฏิกิริยานั้นตัวรองรับที่สนใจ โดยแยกเป็นการศึกษาอันตรกิริยาในวัสดุภาคของเหลวและแก๊ส โดยในส่วนของวัสดุภาคของเหลวจะศึกษาตัวเร่งปฏิกิริยาเมทัลโลซีนบนตัวรองรับต่าง ๆ ได้แก่ ซิลิค้า ไทเทเนียม MCM-41 และออกไซด์ผง และนำตัวเร่งปฏิกิริยาเมทัลโลซีนบนตัวรองรับไปใช้ในการพอลิเมอร์化เชิงของอิทธิพลเพื่อสังเคราะห์พอลิเอทิลีนต่อไป นอกจากนี้ยังมีการศึกษาตัวเร่งปฏิกิริยากรดสำหรับปฏิกิริยาเօสเทอโรฟิเคนชันของกรดและออกโซล์ในวัสดุภาคของเหลวอีกด้วย ในส่วนของวัสดุภาคแก๊สจะศึกษาตัวเร่งปฏิกิริยาโคนอลต์บันตัวรองรับต่าง ๆ ได้แก่ เออร์โภเนน และอะลูมิโน และนำตัวเร่งปฏิกิริยาโคนอลต์บันตัวรองรับไปใช้ในปฏิกิริยาไฮโดรเจนชันของการบันนมอนอกไซด์เพื่อผลิตเชื้อเพลิงสังเคราะห์ต่อไป จากการศึกษาอันตรกิริยาทั้งในวัสดุภาคของเหลวและแก๊สพบว่าถ้าอันตรกิริยาระหว่างโลหะกับตัวรองรับมากเกินไปจะส่งผลให้ความว่องไวของตัวเร่งปฏิกิริยาลดลงอย่างชัดเจน จึงมีความจำเป็นที่จะต้องปรับสภาพของตัวรองรับ (Support modification) ก่อนนำโลหะไปเคลือบฝังเพื่อลดอันตรกิริยาดังกล่าว นอกจากนี้ยังพบว่ามีหลายปัจจัยที่ส่งผลต่ออันตรกิริยา เช่น ขนาดผลึกของโลหะและตัวรองรับ เทคนิคในการเคลือบฝังและวิธีการเตรียมตัวเร่งปฏิกิริยา ชนิดของโลหะและตัวรองรับที่ใช้ และผลของการใช้สารปรับปรุงตัวรองรับ ผลงานวิจัยดังกล่าวทำให้สามารถผลิตผลงานวิจัยในระดับนานาชาติจำนวน 12 เรื่อง ผลิตมหาบัณฑิตจำนวน 9 คน และคุณภูบัณฑิตจำนวน 1 คน

คำสำคัญ อันตรกิริยา ตัวเร่งปฏิกิริยาแบบวิชพันธุ์ ความว่องไว วัสดุภาคแก๊ส วัสดุภาคของเหลว

Abstract

In general, a heterogeneous catalyst consists of two main components: the active site and the support. The active site is usually a transition metal having various oxidation states. Thus, it can catalyze different chemical reactions. Mostly, the active sites are deposited on the support having large surface area to facilitate the dispersion of the active sites. It is well known that the high dispersion of active sites can result in high activity of catalysts due to most of reactions occurs at surface. However, besides the types of metal and support, it is found that one of the most crucial parameters that would affect the catalytic activity is interactions between metal and support. It has been only a few reports on the effect of interaction. Therefore, this study focuses on such an interaction between the metal and support.

In this study, the selected heterogeneous catalysts were prepared and employed in different liquid and gas phases. In fact, in the liquid phase, the supported metallocene catalysts having silica, titania, MCM-41, and mixed oxides as support for ethylene polymerization were investigated. In addition, the heterogeneous acid catalysts were also studied for esterification in liquid phase as well. For the gas phase reaction, the zirconia- and alumina-supported cobalt catalysts for CO hydrogenation to produce the synthetic fuels were investigated. Based on this study, it reveals that the too strong interaction for both liquid and gas phases can definitely result in low catalytic activity. Therefore, in some case, the modification of support is required prior to deposition of the active sites in order to decrease the interaction. It was also found that different interaction can be attributed to factors, such as the crystallite size of metal and support, deposition method, preparation of catalyst, types of metal and support, and the support modification. Based on this research, we can produce twelve international research articles, nine master degree students and one doctoral degree student.

Keywords: Interaction; Heterogeneous catalyst; Activity; Gas phase; Liquid phase