บทคัดย่อ

งานวิจัยนี้ได้มีการผลิตวัสดุผสมเพียโซอิเล็กทริกและปูนซีเมนต์ในหลายๆรูปแบบและ ระบบต่างๆจากเซรามิกเพียโซอิเล็กทริก ซึ่งได้แก่ เลดเซอร์โคเนตไทเทเนต (PZT) และเลด แมกนีเซียมในโอเบตไทเทเนต (PMNT) กับปูนซีเมนต์ปอร์แลนด์ (PC) เป็นวัสดุผสมในระบบ เชื่อมโยงแบบ 0-3 ซึ่งได้ศึกษาอย่างกว้างขวางเพื่อหาผลกระทบของปัจจัยต่างๆต่อสมบัติของวัสดุ ผสม สำหรับระบบเชื่องโยงแบบ 0-3 นั้นมีกระบวนการผลิตด้วยวิธีการอัดอนุภาคผงของ PZT ที่ ผสมกับปูนซีเมนต์ปอร์แลนด์ให้เป็นเม็ด จากนั้นจะนำชิ้นงานวัสดุผสมที่อัดแล้วไปผ่านการบ่ม ภายใต้อุณหภูมิ 60 °C และ 98 % R.H. เป็นระยะเวลา 3 วัน ก่อนนำชิ้นงานไปทำการทดสอบ โดย ในการทดสอบจะศึกษาผลกระทบขนาดอนุภาคของเซรามิก, สนามไฟฟ้า, ระยะเวลา และอุณหภูมิ ที่ใช้ในการโพลต่อสมบัติเพียโซอิเล็กทริก เช่น ค่าสัมประสิทธิ์เพียโซอิเล็กทริก (d₃) และค่า สัมประสิทธิ์คู่ควบไฟฟ้าเชิงกล (kผ) สำหรับในระบบ 0-3 จะทำการเติมวัสดุผสม คือ คาร์บอนเพื่อ หาผลกระทบต่อสมบัติของวัสดุผสม วัสดุผสมในระบบ 1-3 และ 2-2 นั้นผลิตจากวิธีการตัดและอุด ส่วนระบบ 3-3 นั้น ได้มีการใช้โพลีเอททีลีนกับ PZT สลิป ในการเตรียมเซรามิกก่อนที่จะนำ ปูนซีเมนต์เพสต์ไปทำการหล่อขึ้นรูป

โดยภาพรวมการขึ้นรูปวัสดุผสมระบบ 0-3 เป็นวิธีที่ง่ายที่สุดแต่อย่างไรก็ตามชิ้นงานที่ขึ้น รูปด้วยวิธีนี้จะทำการโพลยากที่สุด ดังนั้นระบบ 0-3 นี้อาจจะมีการเติมเฟสที่สามในเปอร์เซ็นต์ที่ เหมาะสมเพื่อปรับปรุงกุณสมบัติของวัสดุผสมระบบ 0-3 สำหรับการเตรียมวัสดุผสมในระบบ 1-3 และ 2-2 นั้น จะยากกว่าระบบ 0-3 เพราะต้องมีการตัดและอุดแต่จะโพลได้ง่ายกว่า เนื่องจาก สามารถนำชิ้นงานเซรามิกไปโพลได้ก่อนที่จะตัดละอุดโดยเมทริกซ์ของปูนซีเมนต์ ในกรณีของ วัสดุผสมในระบบ 3-3 นั้น วัสดุเซรามิกเพียโซอิเล็กทริกที่ผลิตมาจะมีความพรุน ซึ่งเป็นข้อจำกัดใน การใช้วัสดุเพียโซอิเล็กทริกเพียง 30% โดยปริมาตร กล่าวโดยสรุปแล้วพบว่าระบบ 3-3 นั้นขึ้นรูป ยากและซับซ้อนที่สด

คำหลัก: เพียโซอิเล็กทริก, ซีเมนต์, วัสดุผสม, สมบัติเพียโซอิเล็กทริก

ABSTRACT

A number of piezoelectric-cement composites of different connectivity were produced from piezoelectric ceramic such as lead zirconate titanate (PZT) and lead magnesium niobate titanate (PMNT), and Portland cement (PC). Composites of 0-3 connectivity were extensively studied to determine the effect of several factors on the composite properties. For 0-3 connectivity, PZT ceramic particles were mixed with PC and pressed to produce PZT-PC composites. Thereafter, the composites were placed for curing at 60°C and 98% relative humidity for 3 days before measurements. The effects of particle size of ceramic, poling field, poling time and poling temperature on piezoelectric properties such as piezoelectric coefficient (d₃₃) and electromechanical coupling coefficient (Kt) were investigated. In addition, the ferroelectric hysteresis behavior of 0-3 PZT-PC composites was also investigated. For 0-3 connectivity of PZT and cement matrix, a third phase (carbon) was added to observe the effect on the properties of the composites. Composites, 1-3 and 2-2 connectivities were produced using dice and fill method while 3-3 composites, the ceramic was initially made by replicating polyethelene foams with PZT slip coating before cement paste was cast.

Overall, composites of 0-3 connectivity were easiest to fabricate but were the most difficult to pole and as a result a third phase material could be added at a small percentage. On the other hand, fabrications of 1-3 and 2-2 composites are more difficult due to the dice and fill method but were much easier to pole since the ceramic itself can be poled first before casting the cement matrix. With regards to 3-3 composite, however, the 3-3 piezoelectric materials produced was porous, as a consequent the volume of the piezoelectric used was limited to 30%. Above all, 3-3 composites were the most difficult to fabricate and indeed the most complicated.

Keywords: Piezoelectric, cement, composites, piezoelectric properties