Abstract

Simple sequence repeat (SSR) provide powerful tool for genetic linkage map construction that can be applied for identification of quantitative trait loci (QTL). In this study, a total of 640 new SSR markers were developed from an enriched-genomic DNA library of the cassava variety 'Huay Bong 60' and 1500 novel expressed sequence tag-simple sequence repeat (EST-SSR) loci were developed from the Genbank database. To construct a genetic linkage map of cassava, a 100 F₁ line mapping population was developed from the cross Huay Bong 60 by 'Hanatee'. Polymorphism screening between the parental lines revealed that 199 SSRs and 168 EST-SSRs were identified as novel polymorphic markers. Combining with previously developed SSRs, we report a linkage map consisted of 510 markers encompassing 1,420.3 cM, distributed on 23 linkage groups with a mean distance between markers of 4.54 cM. Comparison analysis of the SSR order on the cassava linkage map and the cassava genome sequences allowed us to locate 284 scaffolds on the genetic map. Although the number of linkage groups reported here revealed that this F₁ genetic linkage map is not yet a saturated map, but it encompassed around 88% of the cassava genome indicating that the map was almost complete. Therefore, sufficient markers now exist to encompass most of the genomes and efficiently map traits in cassava. In addition, 34 QTL underlying fresh root yield and starch content were identified. Most of the QTL identified here are considered as a major QTL due to their %PVE of grater than 10%. Some of the QTL were found at the same locus or within the same region, indicating that they are reliable and potential QTL. The information found in this study will be useful for future study in order to pin point the position of tightly linked markers and identify gene controlling the traits as well as applicable to marker assisted selection of cassava.

Keywords: Cassava; Expressed sequence tag-simple sequence repeat (EST-SSR); Genetic linkage map; Quantitative trait loci (QTL); Simple sequence repeat (SSR

การสร้างแผนที่พันธุกรรมนั้นสามารถนำมาใช้เพื่อศึกษาหาตำแหน่งยืน (Quantitative trait loci: QTL) ที่ โดยเครื่องหมายพันธุกรรมที่นิยมนำมาสร้างแผนที่พันธุกรรมมากที่สุด ควบคุมลักษณะที่สนใจ เครื่องหมายพันธุกรรมชนิดไมโครแซทเทลไลท์ (simple sequence repeat: SSR) ในการศึกษาครั้งนี้จึงได้ พัฒนาเครื่องหมายพันธุกรรมชนิดไมโครแซทเทลไลท์จากห้องสมุดจีโนม (enriched-genomic DNA library) ของมันสำปะหลังสายพันธุ์ห้วยบง 60 จำนวน 640 คู่ และพัฒนาเครื่องหมายพันธุกรรมชนิดไมโครแซทเทล ไลท์จากฐานข้อมูล EST (expressed sequence tag SSR: EST-SSR) ของมันสำปะหลัง จำนวน 1,500 คู่ จากนั้นนำเครื่องหมายพันธุกรรมทั้งหมดมาวิเคราะห์ความแตกต่างทางพันธุกรรม (polymorphism) ระหว่าง มันสำปะหลังสายพันธุ์ห้วยบง 60 และห้านาที พบเครื่องหมายพันธุกรรม SSR จำนวน 199 คู่และ เครื่องหมายพันธุกรรม EST-SSR จำนวน 168 คู่ แสดงความแตกต่างทางพันธุกรรมระหว่างมันสำปะหลัง สองสายพันธุ์ โดยเครื่องหมายพันธุกรรมดังกล่าวถูกมาศึกษาหารูปแบบพันธุกรรมในตัวอย่างมันสำปะหลัง ลูกผสมรุ่นที่ 1 จำนวน 100 ต้น เพื่อนำมาใช้ในการสร้างแผนที่พันธุกรรม โดยข้อมูลพันธุกรรมที่วิเคราะห์ได้นี้ ถูกนำมารวมกับข้อมูลทางพันธุกรรมที่ได้จากการศึกษาก่อนหน้านี้ พบว่าแผนที่พันธุกรรมประกอบด้วย 23 กลุ่ม มีเครื่องหมายพันธุกรรม 510 ตำแหน่ง (loci) ความยาวรวม 1,420.3 cM และมีค่าเฉลี่ยระหว่าง เครื่องหมายเท่ากับ 4.54 cM โดยแผนที่พันธุกรรมจากการศึกษาครั้งนี้ครอบคลุมจีโนมของมันสำปะหลังถึง เมื่อเปรียบเทียบลำดับเครื่องหมายพันธุกรรมบนแผนที่พันธุกรรมกับลำดับเบลของดีเอ็นเอเส้นยาว (scaffold) จากฐานข้อมูลมันสำปะหลัง พบว่าสามารถระบุตำแหน่งลำดับเบสของดีเอ็นเอเส้นยาวจำนวน 248 และผลการวิเคราะห์หาตำแหน่งยืนที่ควบคุมลักษณะปริมาณผลผลิตและ บนแผนที่พันธุกรรม scaffold ปริมาณแป้ง พบ 34 ตำแหน่งที่สัมพันธ์กับลักษณะดังกล่าว โดยตำแหน่งของยืนส่วนใหญ่อธิบายความแปร ผันทางลักษณะ (phenotypic variance explained: PVE) มากกว่า 10 % นอกจากนี้พบตำแหน่งของยีนอยู่ ซึ่งถือได้ว่าเป็นบริเวณที่มีความน่าเชื่อถือว่าเป็นตำแหน่งยืนที่ควบคุมปริมาณผลผลิตและ บริเวณเดียวกัน ผลการศึกษาในครั้งนี้เป็นประโยชน์อย่างยิ่งต่อการศึกษาหาเครื่องหมาย ปริมาณแป้งในมันสำปะหลัง พันธุกรรมที่สัมพันธ์และอยู่ใกล้กับตำแหน่งของยืนซึ่งควบคุมลักษณะที่แสดงออกมากที่สุด เครื่องหมายพันธุกรรมดังกล่าวมาประยุกต์ใช้ในการคัดเลือกสายพันธุ์ (marker assisted selection: MAS) ใน มันสำปะหลังให้มีลักษณะที่สนใจต่อไป

คำสำคัญ: มันสำปะหลัง; เครื่องหมายพันธุกรรมชนิดไมโครแซทเทลไลน์จากฐานข้อมูล EST; แผนที่ พันธุกรรม; ตำแหน่งยืนที่ควบคุมลักษณะเชิงปริมาณ; เครื่องหมายพันธุกรรมชนิดไมโครแซทเทลไลน์; ปริมาณแป้ง; ปริมาณผลผลิต