บทคัดย่อ

ส่วนที่หนึ่งของงานวิจัยนี้เกี่ยวข้องกับการเก็บเกี่ยวไฮโดรเจนจากกระบวนการรวมตะกอนด้วย
เทคนิคเซลล์ไฟฟ้าเคมี
ระบบการรวมตะกอนด้วยเซลล์ไฟฟ้าเคมีประกอบด้วยเครื่องตกตะกอนด้วย
เซลล์ไฟฟ้าเคมีแบบต่อเนื่องเชื่อมต่อกับถังแยกวัฏภาคก๊าซและถังตกตะกอนสองถัง งานวิจัยนี้แสดงให้เห็น
ว่าสามารถเก็บเกี่ยวไฮโดรเจนได้ในปริมาณที่มีนัยสำคัญ โดยการใช้ถังแยกวัฏภาคก๊าซที่มีรูปแบบเหมือน
ถังบำบัดน้ำเสียแบบชั้นตะกอนของเหลวไหลขึ้น ค่าผลผลิตไฮโดรเจนจากการทดลองมีค่าใกล้เคียงกับค่า
ทางทฤษฎี พลังงานไฟฟ้าที่ใช้ในกระบวนการในการบำบัดสีรีแอคทีฟบลู 140 และไดเรคเรด 23 มีค่า 1.42
และ 0.69 กิโลวัตต์ชั่วโมง ทางไฟฟ้า ต่อน้ำหนึ่งลูกบาศก์เมตร ตามลำดับ ขณะที่พลังงานจากไฮโดรเจนที่
เก็บเกี่ยวได้มีค่า 0.2 กิโลวัตต์ชั่วโมงต่อน้ำหนึ่งลูกบาศก์เมตร คุณภาพของน้ำที่ผ่านการบำบัดด้วย
กระบวนการรวมตะกอนด้วยเทคนิคเซลล์ไฟฟ้าเคมีอยู่ในระดับที่น่าพอใจกล่าวคือ ค่าการกำจัดสี ค่าการ
กำจัดความต้องการออกซิเจนทางเคมี ค่าการกำจัดของแข็งอยู่ที่ร้อยละ 99, 93 และ 89 ตามลำดับ

ส่วนที่หนึ่งของงานวิจัยนี้เกี่ยวข้องกับการพัฒนาคาร์บอนจากกะลาปาล์มเพื่อใช้ในการกักเก็บก๊าซ ตัวอย่างที่พัฒนาขึ้นถูกนำไปวิเคราะห์เพื่อหาสมบัติความชอบน้ำ/ไม่ชอบน้ำของพื้นผิววัสดุ พื้นที่ผิวของ วัสดุและการกระจายตัวของรูพรุน นอกจากนี้ได้มีการศึกษาการเครียมคอมพอสิตของคาร์บอนกับเหล็ก ออกไซด์ด้วยเทคนิคการตกตะกอนของเหล็กออกไซด์ เครื่องมือเอ็กซเรย์ดฟแฟรคทอเมทรีของตัวอย่างผง แสดงให้เห็นถึงเฟสแมคนีไทด์และแมคฮีไมท์บนตัวอย่างคอมพอสิทของคาร์บอนกับเหล็กออกไซด์

คำสำคัญ ไฮโดรเจน เครื่องรวมตะกอนไฟฟ้า เซลล์ไฟฟ้าเคมี การแยกก๊าซ ถ่านกัมมันต์ การดูดซับ แม่เหล็ก เหล็กออกไซด์

Abstract

In the first part of this work, a technique of hydrogen recovery from an electrocoagulation process treating dye-containing wastewater is presented. The electrocoagulation system used consists of a continuous-mode electrocoagulator connected with a gas separation tank and two sedimenters. It is shown that a significant amount of hydrogen can be harvested using the gas separation tank whose configuration follows that of a conventional upflow anaerobic sludge bed. The experimental hydrogen yields obtained were comparable with those calculated from theory. The electrical energy demand of the electrocoagulation process for treating Reactive Blue 140 and Direct Red 23 was 1.42 and 0.69 kWh_e·m⁻³, respectively, while the energy yield of harvested hydrogen was 0.2 kWh·m⁻³. The quality of water treated by the electrocoagulation system was satisfactory, i.e., the color, COD and TS removal were 99%, 93% and 89%, respectively.

In the second part, various types of carbons were prepared from palm shell, and the samples were characterized for their hydrophobicity, surface areas and pore size distribution. In addition, the preparation of magnetization property on palm shell-based carbons was performed by the technique of iron oxide deposition. Powder X-ray diffractometry showed the presence of magnetite and maghemite in the activated carbon/iron oxide composite.

Keywords: hydrogen, electrocoagulation, water treatment, color removal, gas separation, activated carbon, adsorption, magnetic, iron oxide