บทคัดย่อ

ชื่อโครงการ: การพัฒนาและการประยุกต์ใช้ Electron Spin Resonance (ESR) spectroscopy ในการศึกษา ผลของปฏิกิริยาอนุมูลอิสระ สารต้านอนุมูลอิสระ และยาขับเหล็ก ต่อพยาธิสรีระวิทยาของโรคธาลัสซีเมีย ชื่อหัวหน้าโครงการ: นพวรรณ ภู่มาลา มอราเลส, Ph.D.

Key words: ESR, iron chelator, iron overload, spin trapping, spin labeling, thalassemia บทคัดย่อ

งานวิจัยนี้ได้พัฒนาวิธี electron spin resonance (ESR) spectroscopy โดยใช้เทคนิค spin labeling และ spin trapping เพื่อศึกษาปฏิกิริยาอนุมูลอิสระที่เกี่ยวข้องกับการเกิดภาวะแทรกซ้อนซึ่งเป็นผลจาก ภาวะเหล็กเกินในผู้ป่วยชาลัสซีเมีย สำหรับการศึกษาตำแหน่งและจลนศาสตร์ของปฏิกิริยาอนุมูลอิสระที่ เหนี่ยวนำโดยเหล็กในไลโพโปรตีนชนิดความหนาแน่นต่ำนั้นใช้สาร spin labeling สองชนิดได้แก่ 5- และ 16-doxyl stearic acid (5- และ 16 DS) ซึ่งเข้าไปแทรกอยู่ที่ส่วนผิวและส่วนชั้นในที่ไม่ชอบน้ำในชั้นของ ฟอสโฟไลปิด จากการศึกษาอัตราการลดลงของสัญญาณ ESR พบว่าปฏิกิริยาอนุมูลอิสระเกิดอย่างรวดเร็ว ในส่วนชั้นในที่ไม่ชอบน้ำ และสารประกอบเหล็ก hemin ซึ่งเป็นผลผลิตจากการเกิดออกซิเดชั่นของ ฮีโมโกลบินมีประสิทธิภาพสูงในการกระตุ้นปฏิกิริยาอนุมูลอิสระ

สำหรับเทคนิก ESR spin trapping ได้พัฒนาขึ้นเพื่อศึกษาความสามารถในการเกิดปฏิกิริยาอนุมูล อิสระในซีรั่มของผู้ป่วยธาลัสซีเมีย โดย ascorbic acid ช่วยส่งเสริมปฏิกิริยา redox cycling และ DMPO ใช้ เป็นสาร spin trapping เมื่อเติม t-BuOOH ลงในซีรั่มของอาสาสมัครปกติ พบสัญญาณ ESR ของ ascorbyl radical เพียงชนิดเดียว แต่ในกรณีซีรั่มของผู้ป่วยพบสัญญาณของ carbon centered radical adduct of DMPO (DMPO-C adduct) อีกด้วย ความสูงของสัญญาณทั้งสองนี้สัมพันธ์กับระดับเหล็กในรูปของ non-transferrin bound iron (NTBI) และความสูงของสัญญาณเปลี่ยนแปลงตามระดับเหล็กที่สามารถกระตุ้น ปฏิกิริยาอนุมูลอิสระได้ รวมทั้งระดับยาขับเหล็ก deferiprone ในซีรั่มด้วย เทคนิคนี้ใช้ติดตามการ เกิดปฏิกิริยาอนุมูลอิสระที่อาจเหนี่ยวนำโดยสารประกอบเชิงซ้อนที่ไม่สมบูรณ์ระหว่างเหล็กและยาขับ เหล็ก deferiprone ในผู้ป่วยธาลัสซีเมียที่รับประทานยาขับเหล็กนี้

ด้วยเครื่องมือระดับสูงขึ้นคือ in vivo ESR spectroscopy (L-band) และ Overhauser Enhanced Magnetic Resonance Imaging (OMRI) โดยใช้ nitroxyl spin probe สามารถศึกษาจลนศาสตร์และสร้าง ภาพของอนุมูลอิสระได้ในสัตว์ทดลองที่มีชีวิต การศึกษาแสดงให้เห็นว่าอัตราการลดลงของสัญญาณจาก nitroxyl spin probe นั้นสูงขึ้นในหนูขาวที่มีภาวะเหล็กเกิน เทคนิคนี้จะได้พัฒนาต่อไปเพื่อศึกษาปฏิกิริยา อนุมูลอิสระในสัตว์ทดลอง

สรุปได้ว่างานวิจัยนี้ประสบความสำเร็จในการพัฒนาเทคนิคใหม่ในการศึกษาปฏิกิริยาอนุมูล อิสระที่เกี่ยวข้องกับภาวะเหล็กเกินในการทคลองระดับต่างๆ และจะนำมาประยุกต์เพื่อศึกษาผลของยาขับ เหล็กและสารต้านอนุมูลอิสระในระดับคลินิคต่อไป Abstract

Title: Development and application of Electron Spin Resonance (ESR) spectroscopy to study effects of

free radical reaction, antioxidant and iron chelator on pathophysiology of thalassemia

Principle investigator: Noppawan Phumala Morales, Ph.D.

Key words: ESR, iron chelator, iron overload, spin trapping, spin labeling, thalassemia

Abstract:

Electron spin resonance (ESR) spectroscopy with spin labeling and spin trapping techniques

have been developed to study iron induced free radical reactions that are associated with complications

in thalassemia. In order to localize the specific site and kinetics of iron induced free radical reactions in

low density lipoprotein (LDL), paramagnetic fatty acid 5- and 16-doxyl stearic acid (5- and 16 DS) were

used to label phospholipids layer near hydrophilic surface and the deeper hydrophobic region of LDL,

respectively. By mean of the rate of ESR signal decay indicated that the deeper hydrophobic region of

LDL was a primary site of LDL oxidation. Moreover hemin, a denaturative product of hemoglobin, was

a potent iron complex that induced free radical reaction in lipoprotein.

An ESR spin trapping technique has been developed to demonstrate free radical activity in

serum of thalassemia. Ascorbate was used to enhance redox cycling reaction and DMPO was used as a

spin trapping agent. Addition of t-BuOOH, only ascorbyl radical, a doublet signal with $a_{II}=1.81$ G, was

generated in normal serum. While serum of thalassemic patients showed an additional ESR signal, a

sextet signal with $a_N=16.5$ and $a_H=23.7$ G. It was a typical ESR signal for carbon centered radical adduct

of DMPO (DMPO-C adduct). The signal height of ascorbyl radical and DMPO-C adduct in serum were

correlated with non-transferrin bound iron (NTBI) and were changed accordingly to the catalytic

activity of iron as well as levels of an iron chelator, deferiprone. This technique is recently employed to

monitor free radical activity that could produce by incomplete iron and deferiprone complexes in

thalassemic patients. With the advanced L-band ESR spectroscopy and OMRI technique, kinetics and

imaging of free radical generation were studied in living animals. Enhanced ESR signal decay of

nitroxyl spin probe was observed in iron overloaded mice. The techniques need future development to

demonstrated free radical reaction in vivo models.

In conclusion, we success to develop ESR technique to study iron induced free radical reaction

both in vitro to in vivo models. The techniques will be applied to study the effect of iron chelatos and

antioxidants in further clinical studies.

ii