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บทคัดย่อ
โครงการวิจัยนี้นำเสนอแบบจำลองคณิตศาสตร์ เพื่อศึกษาการไหลของเลือดและอนุภาค

แม่เหล็ก ในหลอดเลือดขนาดเล็ก และในหลอดเลือดที่อุดตัน โดยพิจารณาการเปลี่ยนรูปของผนัง
หลอดเลือดแดงภายใต้เงื่อนไขแบบคลื่น (pulsatile conditions) ในการตรวจสอบพฤติกรรมการ
ไหลของเลือดแบบคลื่นในระบบหลอดเลือดโคโรนารีนั้น เลือดถูกกำหนดให้เป็นของไหลแบบนอน
นิวโทเนียน การไหลของเลือดและอนุภาคยาที่เวลาต่างๆในหลอดเลือดแดงโคโรนารีได้รับการประ-
มวลผล โดยการแก้ระบบสมการสามมิติ ของสมการเนเวียร์สโตก ที่ขึ้นกับเวลา (unsteady state
Navier-Stokes equations) สมการความต่อเนื่อง (continuity equation) สมการเซตระดับ (level
set equation) และสมการแมกซ์แวล (MAXWELL equations) การกระจายของเวกเตอร์ความเร็ว
ค่าแรงดัน และแรงเค้นเฉือนที่ผนังจึงสามารถระบุได้ในระบบที่มีเงือนไขที่ขอบแบบคลื่น พฤติกรรม
การเคลื่อนที่ของอนุภาคเหลวได้ถูกนำเสนอ นอกจากนี้ โครงการนี้ได้นำเสนอ พฤติกรรมการไหล
ด้วยอัตราการเปลี่ยนแปลงของแรงดันของ ของเหลวในท่อขนาดไมโครเมตร (เรียกว่า ไมโครโฟลว์)
ภายใต้เงื่อนไขแบบเนเวียร์สลิป (Navier slip boundary condition) ความรู้ที่ได้จากโครงการวิจัย
นี้ช่วยให้เกิดความเข้าใจที่ดียิ่งขึ้นเกี่ยวกับกลไกของไมโครโฟลว์ เพื่อปรับปรุงเทคนิคการส่งยาไป
ยังเซลเป้าหมาย



ABSTRACT
This project presents mathematical models of blood flow problem to study blood

- magnetic particle flow in small vessels and through coronary arteries taking into ac-
count of arterial wall deformation under pulsatile condition. To investigate the behav-
ior of the pulsatile blood flow in the system of coronary arteries, blood is modeled as
an incompressible non-Newtonian fluid. Transient phenomena of blood and magnetic
particle flow through the coronary arteries are simulated by solving the three dimen-
sional unsteady state Navier-Stokes equations, continuity equation, level set equation
andMAXWELL equations. Distributions of velocity, pressure and wall shear stresses are
determined in the system under the pulsatile conditions on the boundaries. Flow behav-
ior of liquid drug is presented. Effect of branching vessel and stenotic arteries on flow
problem and the effect of magnetic field on the drug flow are investigated. In addition,
this project also presents behaviour of the pressure gradient driven transient flow of a
liquid in micro-annulas (microflow) under a Navier slip boundary condition. Knowledge
gained from this project gives a better understanding of the mechanism of microflows in
the system of coronary arteries in order to improve drug-delivery technique to the target
cell.
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EXECUTIVE SUMMARY
โครงการวิจัยนี้ มุ่งเน้นการพัฒนาแบบจำลองคณิตศาสตร์ เทคนิคเชิงคำนวณ และทฤษฎีต่างๆ ที่
เกี่ยวข้องกับการไหลของของไหลแบบคลื่น ในท่อขนาด ไมโครมิเตอร์ เพื่อศึกษาพฤติกรรมการไหล
ของของเหลว และการกระจายค่าแรงดันและแรงเค้น ในหลอดเลือดหัวใจอุดตัน และวีธีการควบคุม
การส่งอนุภาคยาไปยังเซลเป้าหมายด้วยแรงภายนอกจากพลังสนามแม่เหล็ก เนื่องจากปรากฏการณ์
ที่เกิดขึ้นในหลอดเลือดหัวใจมีความเกี่ยวเนื่องกับปัจจัยหลายอย่าง ได้แก่ การเปลี่ยนรูปของหลอด
เลือดขณะที่หัวใจบีบและคลายตัว และเมื่อเกิดการอุดตันภายในหลอดเลือดนี้ หลอดเลือดอาจเกิด
การขดตัวที่ผิดปกติ ทำให้เลือดไหลไม่สะดวก ก่อให้เกิดแรงเค้นไม่ปกติที่ผนังหลอดเลือด ทำให้ผนัง
หลอดเลือดถูกทำลายอย่างต่อเนื่อง แลในที่สุดก็ใช้การไม่ได้ ดังนั้นเพื่อให้การดำเนินการในการผ่าตัด
บายพาส และการรักษาด้วยการใช้ยาภายหลังผ่าตัดได้อย่างมีประสิทธิภาพ แพทย์ผู้รักษาจึงมีความ
จำเป็นต้องเข้าใจปรากฏการณ์ต่างๆ ที่เกิดขึ้นในหลอดเลือด และสามารถอธิบายผลของการรักษา
ได้อย่างมั่นใจ โดยใช้แบบจำลองคณิตศาสตร์สามมิติและเงื่อนไขค่าขอบที่พิจารณาอัตราการไหล
และความดันแบบคลื่น และการวิเคราะห์การหดการขยายตัวของหลอดเลือด ด้วยเทคนิคการคำนวณ
ขั้นสูง Finite Element Arbitrary Langragian Eulerian (ALE) สามารถแสดงการเคลื่อนตัวของ
ผนังหลอดเลือดไปตามจังหวะการเต้นของหัวใจ ซึ่งสามารถช่วยให้เข้าใจการไหลของเลือด ความ
ดัน และแรงเค้น ภายในหลอดเลือดได้อย่างถูกต้อง การพัฒนาเทคนิคเชิงคำนวณขั้นสูง ALE ให้
สามารถใช้ได้กับปัญหาที่เกี่ยวข้องกับการเปลี่ยนรูปของโครงสร้าง ถือเป็นงานวิจัยใหม่ที่น่าสนใจ
และเป็นไปได้สูง เนื่องจากสามารถอิบายปรากฏการณ์ที่เกิดขึ้นในหลอดเลือดได้อย่างสมเหตุสม
ผล ผลงานที่ได้ทำให้เกิดองค์ความรู้เกี่ยวกับภาวะการไหลของเลือดในหลอดเลือดโคโรนารีอุดตัน
และการนำส่งยาไปยังบริเวณที่ตีบตันด้วยพลังสนามแม่เหล็ก และได้ทฤษฎีที่จำเป็นในการศึกษา
ปัญหาการไหลของของไหลในท่อขนาดเล็กระดับไมโครมิเตอร์ การไหลของของไหลแบบคลื่นต่างๆ
โดยสรุปงานวิจัยนี้ได้พัฒนาทฤษฎี แบบจำลองคณิตศาสตร์ และเทคนิคเชิงคำนวณ ที่จำเป็นใน
การศึกษาปัญหาการไหลของของไหล ในท่อขนาดเล็กระดับไมโครเมตร ได้พัฒนาองค์ความรู้ทาง
ด้านการควบคุมการเคลื่อนที่ของอนุภาคยาไปยังบริเวณที่ต้องการรักษาโดยเฉพาะในบริเวณหลอด
เลือดโคโรนารี และทฤษฎีการไหลของของเหลวในท่อขนาดไมโครมิเตอร์ภายใต้เงื่อนไขค่าขอบแบบ
สลิป (slip boundary) ตลอดจนวิธีการหาผลเฉลยเชิงวิเคราะห์ (analytic solution) ของสมการ
เชิงอนุพันธ์ย่อยที่เกี่ยวเนื่องกับงานวิจัย เพื่อนำความรู้ที่ได้มาประยุกต์ใช้ในการศึกษาการไหลของ
เลือดและอนุภาคยาในหลอดเลือดขนาดเล็กภายใต้แรงจากสนามแม่เหล็ก และได้เผยแพร่ผลงาน
วิจัยในการวารสารวิชาการนานาชาติ

ผลจากงานวิจัยสามารถสรุปได้ 4 ประเด็นหลัก คือ
1. แบบจำลองคณิตศาสตร์และเทคนิคเชิงคำนวณของการไหลของเลือด และอนุภาคขนาดเล็ก
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ในหลอดเลือดจำลองด้วยแรงจากสนามแม่เหล็ก
2. พฤติกรรมการไหลของของไหลด้วยแรงดันแบบต่างๆ ภายใต้เงื่อนไขที่ขอบแบบสลิป
3. อิทธิพลของแขนงหลอดเลือดต่อการไหลของเลือดในระบบหลอดเลือดหัวใจของมนุษย์
4. แบบจำลองคณิตศาสตร์และเทคนิคเชิงคำนวณของการเคลื่อนที่ของอนุภาคยาเหลวไปกับ

กระแสเลือด ในหลอดเลือดโคโรนารี
ผลงานวิจัยได้รับตีพิมพ์ในรูปบทความวิจัยในวารสารวิชาการนานาชาติจำนวน 6 ฉบับ

1. Shaoyong Lai, Benchawan Wiwatanapataphee, The well-posedness of the global
solution for a damped Euler-Bernoulli equation, International Journal of Pure and
Applied mathematics. 2010; 59(2), 203-212.

2. Shaoyang Lai, Benchawan Wiwatanapataphee, The asymtotics of global solutions
for semilinear wave equations in two space dimension, To appear in Dynamics of
Continuous, Discrete and Impulsive System (DCDIS-B).

3. Wiwatanapataphee B, Wu Y-H., Hu M, Chayantrakom K, A study of Transient flows
of Newtonian fluids throughmicro-annuals with a slip boundary. Journal of Physics
A: Mathematical and Theoritical. 2009; 42(6), art. No. 065206.

4 Wiwatanapataphee B, Modelling of Non-Newtonian blood flow through stenosed
coronary arteries. Dynamics of Continuous, Discrete and Impulsive Systems, Se-
ries B: Applications and Algorithms 15 (2008) 619-634.

5 Wu Y.H., Wiwatanapataphee B, Pressure-driven transient flows of Newtonian fluids
through microtubes with slip boundary. Physica A 387 (2008) 5979-5990.

6. Wiwatanapataphee B, Chayantrakom K, Wu Y.H., Mathematical Modelling and
Numerical Simulation of fluid-Magnetic particle flow in a small vessel, International
journal of mathematical models and theories in applied sciences, 3(1) (2007) 209-
215.

นอกจากนี้ยังได้นำเสนอผลงานในการประชุมวิชาการนานาชาติ 2 ครั้งดังนี้
1. The 6th WSEAS Int. Conference on System Science and Simulation in Engineer-

ing. Vinice, Italy, November 21-23, 2007 (The paper has been published in Inter-
national journal of mathematical models and theories in applied sciences)

2. Advances in Applied Computing andComputational Sciences, Hong Kong, China,
August 1-3, 2008.

D. Poltem, B. Wiwatanapataphee, Y.H. Wu, Mathematical modelling and
numerical simulation of blood flow through stenosed coronary artery
bypass, Proceedings of International Symposium on Applied Comput-
ing and Computational Sciences (ACCS2008), Hong Kong, August 1-3,
2008.
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เนื้อหาวิจัย
โรคหลอดเลือดหัวใจ เป็นหนึ่งในสาเหตุหลัก ของการเสียชีวิตของประชากรโลก คนไข้ที่มีอาการ
ของโรคหลอดเลือดหัวใจที่รุนแรง เทคนิคการตัดต่อหลอดเลือดอาทิรี่บายพาส (coronary artery
bypass grafting,CABG) ได้รับความนิยมอย่างกว้างขวาง และกว่าสองทศวรรษมาแล้ว ที่จำนวน
คนไข้ได้รับการผ่าตัดบายพาสเป็นจำนวนมาก แต่การผ่าตัดบายพาสมีโอกาศล้มเหลวอยู่มาก ใน
ปัจจุบัน เป็นที่ตระหนักกันดีแล้วว่า ปัจจัยอันหนึ่งที่สำคัญมากต่อความสำเร็จของการผ่าตัดบาย-
พาส คือการทราบข้อมูล เกี่ยวกับพฤติกรรมของเลือด อัตราการไหล การกระจายแรงดัน แรงเค้น
เฉือนที่ผนัง และการขยายและหดตัวของผนังในช่วงจังหวะการเต้นของหัวใจ ดังนั้นมากกว่าสอง
ทศวรรษที่ผ่านมา มีงานวิิจัยจำนวนมากศึกษาเกี่ยวกับปัญหาการไหลของเลือดในหลอดเลือดหัว
ใจ ด้วยการทดลอง การวิเคราะห์ และวิธีเชิงคำนวณต่่างๆ เมื่อไม่นานมานี้ เริ่มมีความสนใจศึกษา
ความสัมพันธ์ระหว่างผลกระทบของการไหลของเลือดและการเกิดโรคในหลอดเลือดขนาดเล็ก แต่
งานวิจัยข้างต้นใช้เงื่อนไขค่าขอบที่ไม่สอดคล้องกับความเป็นจริง อย่างเช่น กำหนดให้อัตราการ
ไหลและค่าแรงดันเป็นค่าคงที่ และใช้โดเมนจำลอง เป็นท่อตรง และท่อโค้ง ที่ไม่มีแขนงหลอดเลือด
เป็นต้น ในช่วงสิบปีที่ผ่านมานี้ งานวิจัยทางวิทยาศาสตร์ส่วนใหญ่มุ่งเน้นไปในทางการศึกษาพฤติ-
กรรมของสสาร (materials) ขนาดไมโครมิเตอร์ และนาโนมิเตอร์ ความก้าวหน้าของงานวิจัยใน
ศาสตร์นี้นำไปสู่การพัฒนาเครื่องมืือวิศวกรรมชีวภาพ (biological and engineering devices)
และระบบไมโครสเกลร์และนาโนสเกลร์ ซึ่งเครื่องมือและระบบส่วนใหญ่นี้เกี่ยวข้องกับ การไหลของ
ของเหลวในท่อขนาดไมโครมิเตอร์ ตัวอย่างเช่น เครื่องมือเซลเชื้อเพลิง (fuel cell devices) ระบบ
การนำส่งยา (drug delivery systems) ชุดตรวจสอบสารชีวภาพ (biological sensing) และ เครื่อง
มือเปลี่ยนพลังงาน (energy conversion devices) ด้วยพฤติกรรมการไหลของของไหลในระบบ
เหล่านี้เป็นตัวกำหนดเอกลักษณ์ในเชิงฟังก์ชันของระบบนักวิจัยจึงให้ความสนใจในการศึกษาไม-
โครโฟลว์เพื่อให้เกิดความเข้าใจที่ดีขึ้นเกี่ยวกับกลไกของไมโครโฟลว์ และพัฒนาแบบจำลองที่ดีขึ้น
สมการควบคุมของไหลโดยทั่วไปใช้สมการความต่อเนื่อง (continuity equation) และสมการเนเวียร์-
สโตกส์ (Navier-Stokes equations) และเงื่อนไขค่าขอบที่จำเป็น ที่มักนิยมใช้ค่าขอบแบบ โน-
สลิป (no-slip) แต่ก็มีหลักฐานจำนวนมากต่างยืนยันการสลิปของของไหลบนผิวสัมผัสกับของ แข็ง
ที่มีขนาดเล็กมากระดับไมโครเมตร และพบการตอบสนองของของเหลวต่อของแข็งในระบบนี้แตก
ต่างกันมากจากระบบที่ใหญ่กว่า ดังนั้นเมื่อไม่นานมานี้ ได้เริ่มมีนักวิจัยบางส่วนพยายามที่จะใช้
เงื่อนไขสลิปนี้ในนาโนเทคโนโลยีสำหรับการจัดการกับพื้นผิวของท่อไมโครมิเตอร์ ด้วยหวังว่าจะสามารถ
ควบคุมให้ของเหลวไหลผ่านท่อไมโครมิเตอร์นี้ได้ดีอย่างมีประสิทธิภาพ

ในโครงการวิจัยนี้ ผู้วิจัยได้แสดงการหาผลเฉลยแม่นตรงใหม่สำหรับปัญหาการไหลที่ขึ้นกับเวลา
(transient flow) ของของเหลวในท่อกลมขนาดไมโครมิเตอร์ ด้วยเงื่อนไขค่าขอบแบบสลิป และ
ได้แสดงให้เห็นอิทธิพลของความยาวเชิงสลิปต่อสนามความเร็ว และสนามแรงเค้นของของเหลว
ผู้จัยได้ศึกษากระทบของแขนงหลอดเลือดต่อปัญหาการไหลของเลือดในระบบหลอดเลือดโคโรนา
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รี ด้วยแบบจำลองคณิตศาสตร์และเทคนิคเชิงคำนวณสมาชิกจำกัด ซึ่งโดเมนเพื่อการคำนวณถูก
สร้างมาจากภาพCT scan คือหลอดเลือดโคโรนารีของมนุษย์จริงๆ ประกอบด้วยหลอดเลือดแดง
ใหญ่ส่วนต้นติดกับขั้วหัวใจ หลอดเลือดโคโรนารีทั้งข้างซ้ายและขวา และใช้เงื่อนไขค่าขอบแบบคลื่น
ศึกษาพฤติกรรมการไหลของเลือดแบบคลื่่น (pulsatile) ในระบบหลอดเลือดหัวใจของมนุษย์ ด้วย
สมการควบคุมคือสมการเนเวียร์-สโตกส์และสมการความต่อเนื่องสามมิติ ผู้วิจัยสามารถสามารถ
คำนวณความเร็วเลือด แรงดันเลือด และแรงเค้นที่ผนังในระบบหลอดเลือดหัวใจที่มีเงื่อนไขค่าขอบ
แบบคลื่น ผู้วิจัยได้พัฒนาแบบจำลองคณิตศาสตร์ เพื่ออธิบายอิทธิพลของแรงจากสนามแม่เหล็ก
ที่มีต่อการไหลของอนุภาคแข็งขนาดเล็กในหลอดเลือดตรงขนาดไมโครเมตรในสองมิติ และ การ
ไหลของอนุภาคเหลวในหลอดเลือดโคโรนารีข้างขวาในสามมิติ ผลปรากฏว่าแบบจำลองที่พัฒนา
ขึ้นสามารถอธิบายการไหลของน้ำเลือดและอนุภาคขนาดเล็กในหลอดเลือดโคโรนารีได้อย่างสมเหตุ
สมผล รายละเอียดผลงานวิจัยประกอบด้วย 4 ประเด็นหลักซึ่งได้นำเสนอไว้ในหัวข้อต่างๆ ต่อไป
นี้

1. การพัฒนาแบบจำลองคณิตศาสตร์และเทคนิคเชิงคำนวณของการไหล
ของเลือด และอนุภาค ขนาดเล็กในหลอดเลือดจำลองด้วยแรงจากสนาม
แม่เหล็ก
ในการศึกษาการเคลื่อนที่ของอนุภาคแข็งขนาดเล็ก ที่ปะปนไปกับของเหลวนั้น เรากำหนดให้ ระบบ
ของของไหลและอนุภาคแข็ง อยู่ในโดเมนที่มีขอบเขตแน่นอนนั่นคือ Ω̄ ในR3 ณเวลาใดๆ อนุภาค
จำนวนหนึ่ง สมมติว่ามี Q ตัว จะปรากฏอยู่ในสับเซต∑Q

q=1Ωq ของ R3 ซึ่งล้อมรอบด้วยของเหลว
ในบริเวณ Ω̄−

∑Q
q=1Ωq และเรียกว่า บริเวณช่องทางการไหล (flow-channel area)

ในการศึกษานี้ เราจะใช้ระบบพิกัดสองระบบคือระบบพิกัดอ้างอิงΩ (reference system) และ
ระบบพิกัดเมชเคลื่อนที่ Ωdef (moving mesh system) ด้วยวิธี Arbitrary Lagrange-Eulerian
(ALE) โดยฟังก์ชันการส่ง x : Ω×R+ → Ωdef เราสามารถส่งพิกัด (X, t) ต่างๆ ไปยัง x(X, t) ได้

การแปลง (Transformation)

ในบริเวณช่องทางการไหล (flow-channel area) ระบบพิกัดทั้งสอง (X, Y, Z) ∈ Ω และ (x, y, z) ∈
Ωdef เชื่อมต่อกันด้วยการแปลง T ที่เวลาเริ่มต้น t = 0 ระบบทั้งสองทับกันสนิด และ การแปลง T
จะส่งจุดที่แต่เดิมอยู่ที่พิกัด (X, Y, Z) ไปยังจุด (x, y, z) ที่เวลา t นั่นคือ

T :
x = x(X, Y, Z, t)
y = y(X,Y, Z, t)
z = z(X, Y, Z, t).
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กำหนดให้ฟังก์ชัน x, y และ z เป็นฟังก์ชันเชิงอนุพันธ์ต่อเนื่อง (continuous differentialble) เทียบ
กับ X, Y, Z ดังนั้นเราจะได้ความสัมพันธ์ระหว่าง dX, dY, dZ และ dx, dy, dz ดังนี้

dx = x,XdX + x,Y dY + x,ZdZ,
dy = y,XdX + y,Y dY + y,ZdZ,
dz = z,XdX + z,Y dY + z,ZdZ,

(1)

โดยที่ (·),X คือสัญลักษณ์ที่ใช้แทนการอนุพันธ์เทียบกับ X. ระบบสมการที่ (1) สามารถเขียนใน
รูปเมทริกซ์ได้เป็น  dx

dy
dz

 =

 x,X x,Y x,Z
y,X y,Y y,Z
z,X z,Y z,Z

  dX
dY
dZ

 . (2)

โดยเมตริกซ์สัมประสิทธิ์คือจาโคเบียนเมทริกซ์ของการแปลง เขียนแทนด้วย J ดังนั้น
|J| = x,X(y,Y z,Z − y,Zz,Y )− x,Y (y,Xz,Z − y,Zz,X)

+ x,Z(y,Xz,Y − y,Y z,X).

สำหรับ |J| ̸= 0 ฟังก์ชันการแปลงมีฟังก์ชันผกผันที่เวลา t เป็น

T−1 :
X = X(x, y, z)
Y = Y (x, y, z)
Z = Z(x, y, z).

เช่นเดียวกันกับสมการที่ (2), เราจะได้ว่า dX
dY
dZ

 =

 X,x X,y X,z

Y,x Y,y Y,z
Z,x Z,y Z,z

  dx
dy
dz

 . (3)

จากสมการ (2) เราก็จะได้ว่า  dX
dY
dZ

 = J−1

 dx
dy
dz

 , (4)

โดยที่
J−1 =

 IXx IXy IXz

IY x IY y IY z

IZx IZy IZz

 =
1

|J|M, (5)

M =

 y,Y z,Z − y,Zz,Y x,Zz,Y − x,Y z,Z x,Y y,Z − x,Zy,Y
y,Zz,X − y,Xz,Z x,Xz,Z − x,Zz,X y,Xx,Z − y,Zx,X
y,Xz,Y − y,Y z,X x,Y z,X − x,Xz,Y x,Xy,Y − x,Y y,X

 ,
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ด้วยพจน์ที่เท่ากันใน (3) และ (4) เราได้ว่า
X,x = 1

|J|(y,Y z,Z − y,Zz,Y ),

X,y = 1
|J|(x,Zz,Y − x,Y z,Z),

X,z = 1
|J|(x,Y y,Z − x,Zy,Y ),

Y,x = 1
|J|(y,Zz,X − y,Xz,Z),

Y,y = 1
|J|(x,Xz,Z − x,Zz,X),

Y,z = 1
|J|(y,Xx,Z − y,Zx,X),

Z,x = 1
|J|(y,Xz,Y − y,Y z,X),

Z,y = 1
|J|(x,Y z,X − x,Xz,Y ),

Z,z = 1
|J|(x,Xy,Y − x,Y y,X).

(6)

ความสัมพันธ์นี้มีความสำคัญมากในการแปลงผลการคำนวณจากระบบเมชเคลื่อนที่ Ωdef ไปยัง
ระบบเมชคงที่ Ω.

สมการควบคุมการเคลื่อนที่ของอนุภาคแข็งไปกับของไหลในระบบเมชเคลื่อนที่

ในการศึกษาการเคลื่อนที่ของอนุภาคแข็งใน flow channel เรากำหนดให้อนุภาคเคลื่อนที่ไป
ตามกฏของนิวตัน (Newton’s second law) โดยไม่พิจารณาแรงจากแรงโน้มถ่วงของโลก
ดังนั้นสมการการเคลื่อนที่ของอนุภาคแข็งคือ

mq
∂Vq

∂t
= Fv + Fq + Fmag , q = 1, 2, 3..., Q

Vq|t=0 = 0.

(7)

และเราสามารถคำนวณหาตำแหน่ง Xq ของอนุภาคแข็งได้จากสมการ
dXq

dt
= Vq , q = 1, 2, 3..., Q

Xq|t=0 = X0
q.

(8)

ในสมการ (7)1 กำหนดให้ Vq และ mq คือเวกเตอร์ความเร็ว และมวลของอนุภาคที่ q โดยที่มีแรง
สามแรงจากภายนอกที่กระทำต่ออนุภาคคือ แรงลาก Fv (drag force) แรงจากการชนกันของอนุภาค
Fq (collision force) และแรงจากสนามแม่เหล็ก Fmag (magnetic force) ซึ่งเราสามารถคำนวณ
หาค่าแรงเหล่านี้ได้จากข้อสมมติฐานต่อไปนี้

• ที่ผิวโดยรอบของอนุภาคแข็งถูกแรงลากจูง Fv จากของไหล
Fv = −nf · (−p I+ η(∇v+ (∇v)T )) (9)

ซึ่งประกอบด้วยค่าแรงดันและ viscous drag ของของไหล
10



• เพื่อควบคุมการชนกันระหว่างอนุภาคต่างๆ และการชนกันของอนุภาคกับผนังหลอดเลือด
เรากำหนดให้มีแรงกระทบระหว่างอนุภาคด้วยกันเอง และแรงกระทบระหว่างอนุภาคต่อผนัง
หลอดเลือด เมื่อระยะระหว่างอนุภาคต่างๆ และระยะห่างระหว่างอนุภาคกับผนัง ไม่เกินขนาด
เล็กที่สุดของสมาชิกในโดเมนเมชเคลื่อนที่ นั่นคือ [21]

Fq =

Q∑
p=1,p ̸=q

Fq,p +
2∑

w=1

Fq,w, (10)

ที่ซึ่ง
Fq,p =


0, for dq,p > Rq +Rp + α
1
εq
(Xq − Xp)(Rq +Rp + α− dq,p)

2,

for dq,p ≤ Rq +Rp + α

(11)

และ
Fq,w =


0, for dq,w > 2Rq + α
1
εw
(Xq − Xw)(2Rq + α− dq,w)

2,

for dq,w ≤ 2Rq + α
(12)

โดยที่ dq,p คือระหว่างอนุภาค q และอนุภาค p , dq,w คือระยะห่างระหว่างอนุภาค q กับผนัง
w, Xq และ Rq คือตำแหน่งศูนย์กลางและรัศมีของอนุภาค q ตามลำดับ, α คือความกว้าง
ของขนาดแรง (force range), และพารามิเตอร์ εq และ εw คือค่า small positive stiffness

• ในการที่จะควบคุมให้อนุภาคแม่เหล็ก (drugs) ไปยังบริเวณที่ต้องการรักษา เราจะใช้แรง
ภายนอกจากสนามแม่เหล็กมาควบคุม การเคลื่อนที่ของอนุภาค [23] ซึ่งแรงนี้สามารถอธิบาย
ได้ด้วยสมการ

Fmag =
1

µr

(M · ∇)B, (13)

โดยที่ µr คือค่า relative permeability ของlสสารแม่เหล็กM = (Mx,My,Mz) คือโมเมนต์
เชิงแม่เหล็กของ อนุภาคแข็ง และ B = (Bx, By, Bz) คือสนามแม่เหล็กไฟฟ้า

ในการหาค่าแรงลาก Fv ในสมการที่ (9), เราสมมติว่าของไหลมีคุณสมบัติเป็นเนื้้อเดียวกันตลอด
และคุณสมบัติไม่ขึ้นกับทิศทาง และมีความหนาแน่นคงที่ตลอด (isotopic, homogenous and
incompressible fluid) และอธิบายการเคลื่อนที่ของน้ำเลือดด้วยสมการความต่อเนื่อง และสมการ
เนเวียร์-สโตกส์ ดังนี้

∇ · v = 0, (14)
ρf
∂v
∂t

+ ρf (v · ∇)v−∇ · σ = F, (15)

สำหรับ x in Ωdef (t) โดยที่ ρf คือค่าความหนาแน่นของเลือด, v = [u, v, w]Tคือเวกเตอร์ความเร็ว
ในสามมิติ, และ F คือแรงภายนอกที่กระทำต่อของไหล ในที่นี้คือแรงจากแรงโน้มถ่วงของโลกซึ่ง
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มีผลน้อยมาก ส่วน σ คือเทนเซอร์แรงเค้น (stress tensor) ที่เราสมารถคำนวณได้จากนิยามต่อ
ไปนี้

σ = −pI+ η(∇v+ (∇v)T ), (16)
โดยที่ η คือค่าความหนืดของเลือด (blood viscosity) และ p คือความดันเลือด (blood pressure)

ที่ผนังหลอดเลือด เราใช้เงื่อนไข no-slip ส่วนที่ขอบด้านที่ของเหลวไหลเข้ามา (Γin) กำหนดให้
ความเร็วของเลือดเป็นค่าคงที่ ขณะที่ด้านที่ของเหลวไหลออก (Γout) เรากำหนดให้ของเหลวไหล
ออกอย่างอิสระนั่นคือใช้ stress-free condition

v = v0 on Γin

σ · n = 0 on Γout.
(17)

สำหรับเงื่อนไขสถิต (static condition) ใน stationary bodies ความหนาแน่นของฟลักซ์แม่เหล็ก
B สามารถอธิบายได้ด้วยสมการของแมกซ์เวล (Maxwell’s equations) นั่นคือ

∇ · B = 0
∇× H = 0 (18)

โดยที่ความหนาแน่นของฟลักซ์แม่เหล็กB และความแรงของสนามแม่เหล็กHมีความสัมพันธ์กัน
ดังนี้

B = µ0µrH+ Br, (19)
ที่ซึ่ง Br = µ0µrM คือ residual flux density และ µ0 คือค่า permeability ของอากาศ โดยรอบ
และ µr คือ relative permeability ของสสารแม่เหล็ก

จากสมการ (18)1,เราสามารถคำนวณความหนาแน่นของฟลักซ์แม่เหล็กได้จาก ศักย์แม่เหล็ก A
นั่นคือ B = ∇× A ซึ่งสอดคล้องกับ (18)1 และโดยใช้คุณสมบัติ

∇× (∇× A) = ∇(∇ · A)−△A,
และ Coulomb gauge ∇ · A = 0, สมการ (18)2 กลายเป็น

∇× (µ−1
0 µ−1

r ∇× A−M) = 0,∀x ∈ Ωdef

or △A = −∇× (µ0µrM),
(20)

ซึ่งคือสมการปัวซองของศักย์แม่เหล็ก A

เนื่องด้วยการเคลื่อนที่ของระบบพิกัด เราจึงนิยามตัวแปรความเร็วเมช
Ψ = (Ψx,Ψy,Ψz)
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ในโดเมนเมช Ωdef และเพื่อให้การกระจายของจุดพิกัดต่าง เป็นไปอย่างเหมาะสม เราจะสมมติ
ให้จุดพิกัดบนผิวนอกของ อนุภาค ∂Ωq เคลื่อนที่ไปพร้อมๆกับอนุภาค และใช้สมการลาปลาส (Laplace
equation) อธิบายการเคลื่อนที่ของระบบพิกัด ดังนี้

∇2Ψ = 0, ∀x ∈ Ωdef . (21)

สมการข้างต้นนี้ถูกนำมาใช้ในการปรับความเปลี่ยนแปลงของความเร็วเมชบนโดเมนเพื่อลดการบิด
ของเมช (mesh distortion) และที่เวลา ใดๆ พิกัดต่างๆ จะเคลื่อนไปที่ตำแหน่งใหม่ ด้วยสมการ

x = X +

∫ t

0

Ψx dt, (22)

y = Y +

∫ t

0

Ψy dt, (23)

z = Z +

∫ t

0

Ψz dt. (24)

เงื่อนไขอื่นๆที่จำเป็นต้องระบุ คือ การกำหนดให้ของไหล อนุภาคแข็ง และพิกัด เคลื่อนที่ไปพร้อม
กันที่ขอบนอกของอนุภาค นั่นคือ

Ψ = v = Vq on ∂Ωq. (25)

ดังนั้น ขณะนี้ เราได้สร้างแบบจำลองคณิตศาสตร์ที่ ประกอบด้วยสมการเชิงอนุพันธ์ต่างๆ และเงื่อนไข
ค่าขอบ ดังสมการที่ (1) ถึงสมการที่ (22) ซึ่งใช้อธิบายการเคลื่อนที่ของ ของไหล-อนุภาคแข็ง ใน
ระบบการนำส่งยา โดยมีตัวแปรVq ในโดเมนอ้างอิงΩ และตัวแปร v, p,A,Ψ ในโดเมนเมชเคลื่อนที่
Ωdef

สมการสมาชิกจำกัด
ด้วยเทคนิคเชิงคำนวณสมาชิกจำกัด เราจะได้ว่า เราต้องการหา (v, p,A,Ψ) ∈ ℑ ≡ [H1(Ωdef )]

3×
H1(Ωdef )× [H1(Ωdef )]

3× [H1(Ωdef )]
3 ในระบบเมชเคลื่อนที่ ที่แต่ละเวลา ที่ซึ่งสอดคล้องเงื่อนไข

ค่าขอบจำเป็น (Dirichlet boundary conditions) และสำหรับ ∀(v̂, p̂, Â, Ψ̂) ∈ ℑ0 ≡ {(v̂, p̂, Â, Ψ̂) ∈
ℑ| v̂ = 0 บน ∂Ωdefv , p̂ = 0 on ∂Ωdefp , Â = 0 on ∂ΩdefA และ Ψ̂ = 0 บน ∂ΩdefΨ } ,∫

Ωdef

p̂ (∇ · v) dΩ = 0, (26)
∫
Ωdef

(
ρf v̂ · ∂

∂t
v + η∇v̂ : ∇v + ρf v̂ · (v · ∇)v

− p∇ · v̂
)
dΩ =

∫
∂Ωdef

v̂ · (σ · n) ds (27)
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∫
Ωdef

(
∇Â : ∇A− Â · ∇ × (µ0µrM)

)
dΩ = 0, (28)

and ∫
Ωdef

∇Ψ̂ : ∇Ψ dΩ = 0, (29)

โดยที่ Ωdefv , Ωdefp , ΩdefA และ ΩdefΨ คือส่วนต่างๆที่ขอบ ที่ซึ่งค่าความเร็ว ความดัน ศักย์แม่เหล็ก
และความเร็วเมชถูกกำหนด ในขณะนี้เราจะเห็นได้ว่าพจน์ปริพันธ์ผิว (surface integral terms)
จะหายไปขณะที่ฟังก์ชันทดสอบ (test functions) เป็นศูนย์ที่ขอบ

ในคำนวณพจน์ปริพันธ์ต่างๆ ข้างต้นบนระบบพิกัดอ้างอิง Ω นั้น เราต้องอาศัยการแปลงสมการ
(26) - (29) ซึ่งอยู่ในระบบพิกัดเคลื่อนที่ ไปอยู่ในพิกัดอ้างอิง และใช้ (17)2 เราจะได้ว่า∫

Ω

p̂ (∇ · v) |J| dΩ = 0, (30)∫
Ω

(
ρf v̂ · ∂

∂t
v + η∇v̂ : ∇v + ρf v̂ · (v · ∇)v

− p∇ · v̂
)
|J| dΩ = 0, (31)∫

Ω

(
∇Â : ∇A− Â · ∇ × (µ0µrM)

)
|J| dΩ = 0, (32)

และ ∫
Ω

∇Ψ̂ : ∇Ψ |J| dΩ = 0, (33)

โดยที่อนุพันธ์ของฟังก์ชัน Ψi (i = x, y, z) สามารถคำนวณได้จากนิพจน์จ่อไปนี้
Ψi,x = Ψi,XIX,x +Ψi,Y IY x +Ψi,ZIZ,x,

Ψi,y = Ψi,XIX,y +Ψi,Y IY y +Ψi,ZIZ,y,

Ψi,z = Ψi,XIX,z +Ψi,Y IY z +Ψi,ZIZ,z,

(34)

และสำหรับฟังก์ชันทดสอบ
Ψ̂i,x = Ψ̂i,XIX,x + Ψ̂i,Y IY,x + Ψ̂i,ZIZ,x,

Ψ̂i,y = Ψ̂i,XIX,y + Ψ̂i,Y IY,y + Ψ̂i,ZIZ,y,

Ψ̂i,z = Ψ̂i,XIX,z + Ψ̂i,Y IY,z + Ψ̂i,ZIZ,z.

(35)

และด้วยวิธีการทำนองเดียวกันกับที่ใช้สำหรับ Ψi เราสามารถนิยามอนุพันธ์ของฟังก์ชันไม่ทราบ
ค่า u, v, w,Ax, Ay and Az ต่างๆได้
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การศึกษาปัญหาในสองมิติ

โดยการสมมติให้ศักย์แม่เหล็กมีค่าไม่เป็นศูนย์ในทิศตั้งฉากกับระนาบเท่านั้น นั่นคือA = (0, 0, Az)

และ บน ∂Ωq และ ∂Ω ศักย์แม่เหล็กมีค่าเป็นศูนย์ นั่นคือ Az = 0 และในปัญหาสองมิติค่าแม่
เหล็ก (magnetization) คือ M = (Mx,My) ในที่นี้กำหนดให้ค่าแม่เหล็กสำหรับแหล่งกำเนิดแม่
เหล็กเป็น

Mx = 0,My = 5× 104A ·m−1

และสำหรับอนุภาคแข็ง
Mx = a arctan

(
b

µ0µr
Az,y

)
,

My = a arctan
(
− b

µ0µr
Az,x

)
,

(36)

โดยที่ a และ b คือค่าพารามิเตอร์ จากสมการ (13), ) เราสามารถคำนวณแรงของสนามแม่เหล็ก
Fmag = (Fmagx , Fmagy)

ได้ดังนี้
Fmagx = 1

µr
(MxAz,yx +MyAz,yy),

Fmagy = 1
µr
(−MxAz,xx −MyAz,xy).

(37)

ในการศึกษาการไหลของ ยาไปกับกระแสเลือดในหลอดเลือดขนาดเล็กนั้น เราพิจารณาอนุภาค
ยาจำนวน หนึ่งอนุภาค สามอนุภาค และเก้าอนุภาค ในท่อสองมิติ บริเวณที่ใช้คำนวณคือ hor-
izontal channel ที่มีความสูง 6.2 µm และยาว 45 µm อนุภาคยามีรูปร่างกลม เส้นผ่าศูนย์กลาง
0.5 µm และกำหนดให้เลือดไหลเข้าไปในบริเวณที่ศึกษานี้ด้วยความเร็วคงที่ 1.85 cm/sคุณสมบัติ
ของเลือดเป็นของเลือดมนุษย์ คือมีค่าความหนืดเฉลี่ย η เป็น 0.0035 Pa · s และค่าความหนา
แน่น ρf เป็น 1060 kg ·m−3 อนุภาคยาทั้งหมดเป็นของแข็งที่มีค่าความหนาแน่น 1112 kg ·m−3

ค่า relative permeability µr สำหรับอนุภาคยาเป็น 5× 103 และสำหรับเนื้อเยื่อของหลอดเลือด
เป็น 0.99998 ส่วนค่าพารามิเตอร์ a และ b มีค่าเป็น 1× 10−4 และ 3× 10−5 ตามลำดับ

ด้วยเทคนิค Arbitrary Lagrangian Eulerian approach ทำให้เราสามารถอธิบายกลไกของ
การเปลี่ยนรูปแบบเมชของโครงสร้างและขอบที่เคลื่่อนที่ไป การกำหนดพิกัดของเมชชุดใหม่จะขึ้น
อยู่กับการเคลื่อนที่ไปของอนุภาคต่างๆ สมการเนเวียร์-สโตกส์ ในระบบพิกัดเคลื่อนที่ สามารถอธิบาย
การเคลื่อนที่ของน้ำเลือดได้ ในการศึกษาสมมติว่าไม่มีการชนกันระหว่างอนุภาค ด้วยการประมวล
ผลแบบจำลองนี้ เราสามารถอธิบายรูปแบบการไหล และการกระจายค่าแรงดันในระบบที่มีอนุภาค
แข็งเคลื่อนที่ไปกับของไหลได้

รูปที่ 1 แสดงเมชสมาชิกจำกัด (finite element mesh) และสนามแม่เหล็กภายนอก (the ex-
ternal magnetic field) ที่ใช้ในระบบ โดเมนที่ใช้ในการศึกษานี้ประกอบด้วย 3519 สมาชิก และ
1791 จุดต่อ
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Figure 1: *
รูปที่ 1 โดเมนสองมิติและโดเมนเมชของหลอดเลือดจำลอง และแหล่งกำเหนิดสนามแม่เหล็กติด

ตั้งที่บริเวณกึ่งกลาง

(a) t = 0 sec. (b) t = 1.62 milli sec.

(c) t = 2.43 milli sec.

Figure 2: *
รูปที่ 2 เวกเตอร์ความเร็วที่เวลาต่างๆ สำหรับระบบที่มีอนุภาคเดียวเคลื่อนที่ไปกับของไหล

(a) t = 0 sec. (b) t = 0.81 milli sec.

(c) t = 1.18 milli sec.

Figure 3: *
รูปที่ 3 เวกเตอร์ความเร็วที่เวลาต่างๆ สำหรับระบบที่มีอนุภาคสามอนุภาคเคลื่อนที่ไปกับ

ของไหล

(a) t = 0 sec. (b) t = 0.69 milli sec.

(c) t = 1.02 milli sec.

Figure 4: *
รูปที่ 4 เวกเตอร์ความเร็วที่เวลาต่างๆ สำหรับระบบที่มีอนุภาคห้าอนุภาคเคลื่อนที่ไปกับของไหล
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(a) t = 0 sec. (b) t = 0.39 milli sec.

(c) t = 0.53 milli sec.

Figure 5: *
รูปที่ 5 เวกเตอร์ความเร็วที่เวลาต่างๆ สำหรับระบบที่มีอนุภาคเก้าอนุภาคเคลื่อนที่ไปกับของไหล

Figure 6: *
รูปที่ 6 แรงดันตามแนวแกนหลอดเลือดที่เวลา t = 0s
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(a) t = 0 sec. (b) t = 7.18 micro sec.

(c) t = 9.96 micro sec.

Figure 7: *
รูปที่ 7 เวกเตอร์ความเร็วของของไหลและอนุภาคที่เวลาต่างๆ ในระบบอนุภาคแม่เหล็กจำนวนสี่

อนุภาค

รูปที่ 2-5 แสดงเวกเตอร์ความเร็วของเลือดในหลอดเลือดที่มีอนุภาคจำนวนหนึ่ง สาม ห้า และ
เก้าอนุภาค ตามลำดับเมื่อไม่มีสนามแม่เหล็กจากภายนอก ในกรณีนี้ จะเห็นว่าอนุภาคไหลไปใน
ทิศแกนของหลอดเลือด รูปที่ 6 แสดงการกระจายแรงดันเลือดตามแนวแกนของท่อที่เวลา t = 0

สำหรับกรณีต่างๆ ที่มีจำนวนอนุภาคต่างกันในของไหลเราสังเกตได้ว่าการเพิ่มจำนวนของอนุภาค
จะเพิ่มแรงดันที่ทางเข้าของท่ออย่างมีนัยสำคัญ รูปที่ 7 แสดงเวกเตอร์ความเร็วของของไหลและ
การเคลื่อนที่ของอนุภาค จำนวนสี่อนุภาคภายใต้แรงจากสนามแม่เหล็ก เราเห็นได้ชัดเจนว่าแบบ
จำลองนี้สามารถแสดงการเคลื่อนตัวของอนุภาคยาไปยังบริเวณเป้าหมายได้
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2. พฤติกรรมการไหลของของไหลด้วยแรงดันแบบต่างๆ ภายใต้เงื่อนไข
ที่ขอบแบบสลิป
ในช่วงสิบปีที่ผ่านมานี้ งานวิจัยทางวิทยาศาสตร์ส่วนใหญ่มุ่งเน้นไปในทางการศึกษาพฤติกรรมของ
สสาร (materials) ขนาดไมโครมิเตอร์ และนาโนมิเตอร์ ความก้าวหน้าของงานวิจัยในศาสตร์นี้นำ
ไปสู่การพัฒนาเครื่องมืือวิศวกรรมชีวภาพ (biological and engineering devices) และระบบ
ไมโครสเกลร์และนาโนสเกลร์ [12] ซึ่งเครื่องมือและระบบส่วนใหญ่นี้เกี่ยวข้องกับ การไหลของ
ของเหลวในท่อขนาดไมโครมิเตอร์ หรือไมโครโฟลว์ (microflow) [2, 9, 8, 10] ตัวอย่างเช่น เครื่อง
มือเซลเชื้อเพลิง (fuel cell devices) ระบบการนำส่งยา (drug delivery systems) [23] ชุดตรวจ
สอบสารชีวภาพ (biological sensing) และ เครื่องมือเปลี่ยนพลังงาน (energy conversion de-
vices) [17] ด้วยพฤติกรรมการไหลของของไหลในระบบเหล่านี้เป็นตัวกำหนดเอกลักษณ์ในเชิง
ฟังก์ชันของระบบ นักวิจัยจึงให้ความสนใจในการศึกษาไมโครโฟลว์เพื่อให้เกิดความเข้าใจที่ดีขึ้น
เกี่ยวกับกลไกของ ไมโครโฟลว์และพัฒนาแบบจำลองที่ดีขึ้น [7].
สำหรับของไหลนิวโทเนียนแบบค่าความหนาแน่นคงที่ (incompressible Newtonian fluids) สมการ
ควบคุมได้แก่ สมการความต่อเนื่อง (continuity equation) และสมการเนเวียร์-สโตกส์ (Navier-
Stokes equations) และเงื่อนไขค่าขอบที่จำเป็น โดยทั่วไปเงื่อนไขค่าขอบที่นิยมใช้คือค่าขอบแบบ
โน-สลิป (no-slip) ซึ่งกำหนดให้ความเร็วของของไหลที่ติดกับผนังแข็งเป็นศูนย์ [22] ถึงแม้ว่าผล
การทดลองจำนวนมากได้แสดงสนับสนุนเงื่อนไขค่าขอบแบบ โน-สลิป ได้แก่การทดลองโดยCoulomb
andCouette แต่ก็มีหลักฐานจำนวนมากเช่นกันที่ยืนยันการสลิปของของไหลบนผิวของแข็ง [19]
เมื่อไม่นานมานี้ได้มีการทดลองในระดับไมโครมิเตอร์ และได้มีการประมวลผลกลศาสตร์ของไหล
ระดับโมเลกุล (molecular dynamic simulations) เพื่อตรวจสอบธรรมชาติของการตอบสนองของ
ของเหลวต่อผิวของแข็ง [1, 4, 6] และขณะนี้ได้ข้อสังเกตว่าการตอบสนองของของเหลวต่อของแข็ง
นั้นในระบบไมโครมิเตอร์แตกต่างกันมากจากระบบที่ใหญ่กว่า อันเนื่องมาจากสัดส่วนที่ใหญ่ของ
พื้นที่ผิว กับปริมาตรของระบบไมโครมิเตอร์ นั่นคือการไหลของของเหลวในระบบไมโครนั้นเป็นแบบ
ค่อยๆเคลื่อนไป และการสลิปสามารถเกิดขึ้นได้ [3, 24, 30, 35] ดังนั้นเงื่อนไข โน-สลิป จึงไม่เป็น
ที่ยอมรับสำหรับการไหลของของไหลในท่อขนาดไมโครมิเตอร์

ในการอธิบายเอกลักษณ์การสลิปของของเหลวบนผิวของแข็งนั้น เนเวียร์ได้นำเสนอเงื่อนไขค่าขอบ
แบบทั่วไป ซึ่งคือความเร็วของของเหลวในแนวเส้นสัมผัสกับผิวของแข็งซึ่งเป็นสัดส่วนกันกับแรงเฉือน
(shear stress) บนผิวสัมผัสระหว่างของเหลวและของแข็ง ( the fluid-solid interface) เรียกสัดส่วน
นี้ว่า ความยาวเชิงสลิป (slip length) ซึ่งอธิบายความมากหรือน้อยของการสลิป ที่ผิวสัมผัส [32,
13] ถึงแม้ว่าเงื่อนไขการสลิปแบบเนเวียร์นี้จะได้รับการเสนอมากว่า 200 ปีแล้วก็ตาม แต่เพิ่งได้
รับความสนใจจากกลุ่มนักวิจัยทางวิทยาศาตร์และวิศวกรรมศาสตร์เมื่อไม่นานมานี้เอง ในการศึกษา
การไหลของของเหลวในระดับไมโครสเกลร์ และด้วยความก้าวหน้าทางการผลิตเครื่องมือไมโครเมื่อ



ไม่นานมานี้ ทำให้สามารถทำการทดลองการไหลของของเหลวในระดับไมโครสเกลได้ และผลการ
ทดลองส่วนใหญ่ต่างสนับสนุนเงื่อนไขเนเวียร์สลิป [11, 32, 19] และได้เริ่มมีนักวิจัยบางส่วนพยายาม
ที่จะใช้เงื่อนไขสลิปนี้ในนาโนเทคโนโลยีสำหรับการจัดการกับพื้นผิวของท่อไมโครมิเตอร์ ด้วยหวัง
ว่าจะสามารถควบคุมให้ของเหลวไหลผ่านท่อไมโครมิเตอร์นี้ได้จำนวนมาก และอย่างมีประสิทธิภาพ
ในช่วงมากกว่าสองปีที่ผ่านมา มีการศึกษาการไหลของของเหลวแบบนิวโทเนียนและนอนนิวโทเนียน
ด้วยเงื่อนไขค่าขอบแบบเนเวียร์สลิป [5, 14, 15, 21, 26, 20, 18, 34] และนักวิจัยบางส่วนได้
สร้างสมการสำหรับกำหนดค่าของความยาวเชิงสลิป [25].

ถึงแม้ว่าผลเฉลยแม่นยำและผลเฉลยเชิงตัวเลขของปัญหาการไหลของของเหลวแบบนิวโทเนียน
ภายใต้สมมติฐานโนสลิป จะถูกนำมาใช้อย่างมาก [22, 29, 27, 28] แต่ก็มีการใช้ผลเฉลยแม่นยำ
บ้างเล็กน้อยสำหรับกรณีของเงื่อนไขสลิป เมื่อไม่นานมานี้ ได้มีการศึกษาผลเฉลยสถานะมั่นคง (steady
state solutions) ของการไหลของของเหลวในท่อกลมภายใต้เงื่อนไขสลิป [31, 16] ในหัวข้อนี้ผู้
วิจัยได้แสดงการหาผลเฉลยแม่นตรงใหม่สำหรับปัญหาการไหลที่ขึ้นกับเวลา (transient flow) ของ
ของเหลวนิวโทเนียนในท่อกลมไมโคร ด้วยเงื่อนไขค่าขอบแบบสลิป และได้แสดงให้เห็นอิทธิพลของ
ความยาวเชิงสลิปต่อสนามความเร็ว และสนามแรงเค้นของของเหลว

ข้อปัญหา และสมการเชิงคณิตศาสตร์ (Problem Description and Mathematical Formu-
lation)

ในหัวข้อนี้ เราจะพิจารณาการไหลที่ขึ้นกับเวลาของ ของเหลวนิวโทเนียนที่มีค่าความหนาแน่นคงที่
(an incompressible Newtonian fluid) ผ่านท่อทรงกลมขนาดไมโครมิเตอร์ โดยที่แกน z เป็นทิศ
ในแนวแกนหลักของท่อกลมนี้ สมการควบคุมการไหลประกอบด้วยสมการความต่อเนื่อง (conti-
nuity equation) และสมการเนเวียร์-สโตกส์ (Navier-Stokes equations) ดังต่อไปนี้

∇ · v = 0, (1)
∂v
∂t

+ (v · ∇)v = f− 1

ρ
∇p+ µ

ρ
∇2v, (2)

โดยที่ p และ v คือความดันและเวกเตอร์ความเร็วตามลำดับ, ∇ และ ∇2 คือ ตัวดำเนินการเกร
เดียน (gradient operator) และ ตัวดำเนินการลาปลาส (Laplace operator) ตามลำดับ, f คือ
แรงที่กระทำต่อของเหลว, ρ และ µ คือความหนาแน่น (density) และความหนืด (viscosity)ของ
ของเหลว

สนามแรงเค้นในของเหลวมีสัมพันธ์กับสนามความเร็ว ดังสมการต่อไปนี้
σ = −pI+ 2µd, (3)

ขณะที่อัตราของเทนเซอร์เปลี่ยนรูป (rate of deformation tensor) มีสัมพันธ์กับสนามความเร็ว
ดังสมการต่อไปนี้

d =
1

2
(∇v+ (∇v)T ) (4)
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โดยที่ σ = (σij) และ d = (dij) คือเทนเซอร์อันดับที่สอง และอัตราของเทนเซอร์เปลี่ยนรูป ตาม
ลำดับ และ I คือเมทริกซ์เอกลักษณ์ (identity matrix)

ในแกนพิกัดเชิงขั้วทรงกระบอก (cylindrical polar coordinates, (r, θ, z)), v = ervr+eθvθ+ezu
และตัวดำเนินการเกรเดียนท์ คือ

∇ = er ∂
∂r

+ eθ ∂

r∂r
+ ez ∂

∂z
, (5)

โดยที่ er, eθ และ ez คือ เวกเตอร์หน่วยในแนวรัศมี แนวแกนสัมผัส และแนวแกนหลัก ตามลำดับ
ดังนั้นสมการความต่อเนื่องและสมการเนเวียร์-สโตกส์ตามแนวแกน z สามารถเขียนได้เป็น

1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂u

∂z
= 0, (6)

ρ

(
∂u

∂t
+ u

∂u

∂z
+ vr

∂u

∂r
+
vθ
r

∂u

∂θ

)
= ρgz −

∂p

∂z
+ µ

(
∂2u

∂z2
+

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2

)
. (7)

ด้วยการไหลเป็นแบบสมมาตรเทียบกับแกนหลักของท่อกลม จึงไม่มีการไหลวน และส่วนประกอบ
ของเวกเตอร์ความเร็วในทิศแนวรัศมีและแนวสัมผัส ( the radial and transverse directions) กับ
ท่อจึงเป็นศูนย์ นั่นคือ

vr = 0, vθ = 0. (8)
การแทนค่าเทอมข้างต้นในสมการความต่อเนื่อง (6) ทำให้

∂u

∂z
= 0, (9)

ส่งผลให้ u = u(r, θ) และยิ่งกว่านั้น gz = 0 ขณะที่การไหลเป็นแบบ horizontal และดังนั้นสมการ
(7) กลายเป็น

µ

ρ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
− ∂u

∂t
=

1

ρ

∂p

∂z
. (10)

ในที่นี้ เราพิจารณาการไหลของของไหลภายใต้สนามแรงดันที่มีอัตราการเปลี่ยนแปลง q̄(t) ซึ่งสามารถ
แสดงได้ด้วยอนุกรมฟูเรียร์ (Fourier series) นั่นคือ

∂p

∂z
= q̄(t) = a0 +

∞∑
n=1

[ancos(nωt) + bnsin(nωt)]. (11)

ข้อสังเกต 1. ด้วยการใช้ผลบวกของพจน์ของอนุกรมฟูเรียร์แทนรูปแบบการเปลี่ยนแปลงของค่าแรง
ดัน จะทำให้ค่าแรงดันไม่สูญเสียเอกลักษณ์ (11)

เพื่อความสะดวกในการสร้างผลเฉลยเชิงวิเคราะห์ (analytical solutions) ของสมการควบคุมข้าง
ต้น เราจะใช้จำนวนเชิงซ้อนสำหรับ (11) ด้วยฟังก์ชันเอกโปเนนเชียล นั่นคือ

∂p

∂z
= Re

(
∞∑
n=0

cne
inωt

)
, (12)
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โดยที่
cn = an − bni, einωt = cos(nωt) + isin(nωt).

ในการนิยามปัญหาให้สมบูรณ์ เราจำเป็นต้องกำหนดเงื่อนไขค่าขอบ ในการศึกษานี้ เราจะใช้เงื่อนไข
ค่าขอบแบบเนเวียร์สลิป นั่นคือ ที่ผิวสัมผัสระหว่่างของเหลวและของแข็ง r = R, ความเร็วใน
แนวแกนหลักที่สัมพันธ์กับผิวของแข็งเป็นสัดส่วนตรงต่อแรงเฉือนบนผิวสัมผัส สมมติว่าท่อไมโคร
แข็งนี้เคลื่อนที่ด้วยความเร็วในแนวแกนหลัก v̄t(t), จะได้ว่าเงื่อนไขค่าขอบแบบเนเวียร์สลิปคือ

u(R, t)− v̄t(t) = −lσrz(R, t)
µ

, (13)

โดยที่ µ คือความหนืดของของเหลว และ l คือความยาวเชิงสลิป, เครื่องหมายลบทางด้านขวามือ
ของสมการ (13) แสดงค่าแรงเฉือนบนผิวสัมผัสที่มีทิศตรงกันข้ามกับความเร็วในแนวแกนหลัก ด้วย
การเคลื่อนที่ในแนวสัมผัสใดๆ ของอนุภาคของหลวที่สัมพันธ์กับผิวของของแข็งจะถูกจำกัดด้วยแรง
ต้านที่กระทำในทิศตรงกันข้ามกับการเคลื่อนที่สัมพัทธ์ (relativemovement) σrz(R, t)นั่นคือแรง
เฉือนบนผิวสัมผัสระหว่างของเหลวและผนังของท่อไมโคร ในที่นี้ เราจะเห็นได้ว่าสำหรับเงื่อนไข l =
0, สมการ (13) ก็คือเงือนไขค่าขอบโนสลิป ขณะที่สำหรับ l → ∞, สมการ (13)คือเงื่อนไข sur-
face traction ของผิวที่ราบเรียบอย่างสมบูรณ์ นั่นคือ σrz(R, t) = 0

สำหรับปัญหาที่พิจารณาในที่นี้ เราสมมติว่าท่อไมโครมีขนาดคงที่ นั่นคือ v̄t(t) = 0 ดังนั้น
เนื่องด้วย σrz(R, t) = µ∂u

∂r
, จากสมการ (13) เราจะได้ว่า

u(R, t) = −l ∂u
∂r

(R, t). (14)

ผลเฉลยแม่นตรงสำหรับสนามความเร็วที่ขึ้นต่อเวลา (Exact Solution for the Transient
Velocity Field)

ด้วยสมการ (10) เป็นสมการเชิงเส้น เราสามารถใช้ superposition principle สำหรับผลเฉลย
ของสมการ นั่นคือถ้า un เป็นผลเฉลยของ (10) สำหรับ ∂p/∂z = cne

inωt, จะได้ว่า ผลเฉลยที่
สมบูรณ์ของสมการ (10) สำหรับ ∂p

∂z
= Re (

∑∞
n=0 cne

inωt) คือ u =
∑∞

n=0 Re(un).

ในการกำหนดค่า un, เราแก้สมการ
µ

ρ

(
∂2un
∂r2

+
1

r

∂un
∂r

)
− ∂un

∂t
=

cn
ρ
einωt, (15)

ซึ่งให้ผลเฉลยในรูปของ
un = fn(r)e

inωt. (16)
การแทนค่าสมการข้างต้นนี้ใน (15) จะให้

µ

ρ

(
∂2fn
∂r2

+
1

r

∂fn
∂r

)
einωt − inωfne

inωt =
cn
ρ
einωt. (17)
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สำหรับ n = 0, สมการ (17) กลายเป็น
r2
∂2f0
∂r2

+ r
∂f0
∂r

=
c0
µ
r2, (18)

ซึ่งมีผลเฉลยทั่วไปเป็น
f0(r) = (A1 + A2ln r) +

c0
4µ
r2.

ด้วยผลเฉลย f(r) ต้องมีขอบเขตจำกัด (bounded) r = 0, เราต้องการ A2 = 0 และดังนั้น เราได้
ว่า

u0 = f0(r) = A1 +
c0
4µ
r2. (19)

สำหรับ n ≥ 1, สมการ (17) ให้
1

β2
n

∂2fn
∂r2

+
1

β2
nr

∂fn
∂r

+ fn =
cn
β2
nµ
, (20)

โดยที่ β2
n = nβ2ที่ซึ่ง β2 = −ρω

µ
i โดยกำหนดให้ r̄ = βnr, จะได้ว่า สมการ (20) กลายเป็น

r̄2
∂2fn
∂r̄2

+ r̄
∂fn
∂r̄

+ r̄2fn =
cn
β2
nµ
r̄2. (21)

สมการโฮโมจีเนียสที่สอดคล้องกับสมการข้างต้นคือสมการเบสเซลอันดับศูนย์ (zero-order Bessel
equation) และมีผลเฉลยดังต่อไปนี้

fnc = dnJ0(r̄) + enY0(r̄) = dnJ0(βnr) + enY0(βnr), (22)
โดยที่ dn และ en เป็นค่าคงที่ปริพัทธ์ (integration constants); J0 และ Y0 คือฟังก์ชันเบสเซล
อันดับศูนย์ ของชนิดทีหนึ่งและสองตามลำดับ และด้วย fnc มีขอบเขตจำกัดในพื้นที่คำนวณ แต่
Y0(βnr) มีซิงกูลาริตี (singularity) ที่ r = 0, เราต้องการว่า en = 0.

ในการหาผลเฉลยเฉพาะมี่สมนัยกับแรงขับดัน (driving force), เรากำหนดให้ fnc = C, และจะ
ได้ว่าโดยการแทนค่าพจน์นี้ใน (20), เราจะได้ C = cni

ρnω
. ดังนั้นผลเฉลยทั่วไปของสมการ (20)

คือ
fn = fnc + fnp = dnJ0(βnr) +

cni

ρnω
. (23)

จาก (16), (20), (23) และ superposition principle, เราได้ว่า
u = Re

(
A1 +

c0
4µ
r2
)
+

∞∑
n=1

Re
[(
dnJ0(βnr) +

cni

ρnω

)
einωt

]
.

ขณะที่ c0 = a0 − ib0, จากสมการข้างต้น เราพบว่า
u = A1 +

a0
4µ
r2 +

∞∑
n=1

Re
[(
dnJ0(βnr) +

cni

ρnω

)
einωt

]
. (24)
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และทำให้ได้ว่า
∂u

∂r
=

a0
2µ
r +

∞∑
n=1

Re
(
−dnβnJ1(βnr)einωt

)
, (25)

โดยที่ในสมการข้างต้นนี้ เราใช้เอกลักษณ์ (identity)
dJ0(x)

dx
= −J1(x).

ด้วยการแทนที่ (24) และ (25) ในเงื่อนไขค่าขอบ (14) ทำให้(
A1 +

a0
4µ
R2 + l

a0
2µ
R

)
+

∞∑
n=1

Re
[(
dnJ0(βnR) +

cni

ρnω
− lβndnJ1(βnr)

)
einωt

]
= 0. (26)

เพื่อให้สมการ (26) สามารถใช้ได้ทุกเวลา t, เราต้องการพจน์คงที่ และสัมประสิทธิ์ทั้งหลายของ
einωt หายไปหมด นั่นคือ

A1 +
a0
4µ
R2 + l

a0
2µ
R = 0

และ
dn[J0(βnR)− lβnJ1(βnR)] +

cni

ρnω
= 0

ซึ่งให้
A1 = −a0R

2

4µ

(
1 +

2l

R

)
, (27)

dn =
−cni

ρnω[J0(βnR)− lβnJ1(βnR)]
. (28)

ดังนั้น โดยการแทนที่ (27) และ (28) ใน (24), เราได้ว่า

u = −a0R
2

4µ

[
1−

( r
R

)2
+

2l

R

]
−

∞∑
n=1

Re
[
cni

ρnω

(
J0(βnr)

J0(βnR)− lβnJ1(βnR)
− 1

)
einωt

]
.

(29)
ข้อสังเกต ถ้า l = 0, ผลเฉลย (29)กลายเป็น

u = −a0R
2

4µ

[
1−

( r
R

)2]
−

∞∑
n=1

Re
[
cni

ρnω

(
J0(βnr)

J0(βnR)
− 1

)
einωt

]
, (30)

ซึ่งคือผลเฉลยของกรณีโนสลิป

ข้อสังเกต 2 ถ้า l ≫ R และมีขนาดใหญ่พอ, เราสามารถประมาณผลเฉลย (29) ได้ด้วย

u ≈ −a0lR
2µ

+
∞∑
n=1

Re
(
cni

ρnω

(
J0(βnr)

lβnJ1(βnR)
+ 1

)
einωt

)
, (31)

26



ซึ่งสอดคล้องกับกรณีที่ซึ่งผิวสัมผัสระหว่างของเหลวและของแข็ง (fluid-solid interface) ราบเรียบ
จะเห็นได้ชัดเจนว่า สนามความเร็วข้ามภาคตัดขวางของท่อกลมเป็นแบบเดียวกัน(uniform)

ข้อสังเกต 3 ถ้า a0 = −AϵR, cn = 0 สำหรับทุกๆ n ≥ 1, และ l = αR/
√
1− 2β โดยที่ α และ

β คือพารามิเตอร์สลิป ที่ได้ถูกนิยามไว้ใน [25] ผลเฉลยที่ได้ตรงกับผลลัพธ์ของ Matthew และ
Hill (2007) ดังเอกสารอ้างอิงที่ [16].

จากข้อสังเกตข้างต้น เห็นได้ชัดว่างานวิจัยนี้ครอบคลุมผลเฉลยในทุกกรณีที่อาจเป็นไปได้

ผลเฉลยแม่นยำของอัตราการไหลและสนามแรงเค้น (Exact Solution of the Flow Rate
and Stress Field)

จากผลเฉลยความเร็วในแนวแกนหลัก (axial velocity solution) (29) เราสามารถหาอัตราการ
ไหลได้จากสมการ

Q(t) =
∫ R

0
2πru(r, t) dr

= −a0πR3

2µ

(
l + R

4

)
− 2π

ρω
Re
[∑∞

n=1
cnieinωt

n

∫ R

0

(
J0(βnr)

J0(βnR)−lβnJ1(βnR)
− 1
)
r dr

]
.

(32)
จากเอกลักษณ์

d

dx
[xJ1(x)] = xJ0(x),

เราได้ว่า
d

dr
[rJ1(βnr)] = βnrJ0(βnr) (33)

และดังนั้น ∫ R

0

rJ0(βnr) dr =
1

βn
[rJ1(βnr)]

R
0 =

1

βn
RJ1(βnR). (34)

ดังนั้น โดยการแทนที่สมการข้างบนนี้ใน (32), เราได้ว่า

Q(t) = −a0πR
3

2µ

(
l +

R

4

)
− 2π

ρω
Re

{
∞∑
n=1

cnie
inωt

n

[
RJ1(βnR)

βn[J0(βnR)− lβnJ1(βnR)]
− R2

2

]}
.

(35)
ดังนั้นปริมาณของเหลวทั้งหมดที่ไหลผ่านท่อนี้ในช่วงเวลา [0, T ] สามารถคำนวณได้ดังนี้
QT =

∫ T

0
Q(t) dt

= −a0πR3T
2µ

(
l + R

4

)
− 2π

ρω2 Re
{∑∞

n=1
cn
n2

(
einωT − 1

) [
RJ1(βnR)

βn[J0(βnR)−lβnJ1(βnR)]
− R2

2

]}
.

(36)
ข้อสังเกต 4 สำหรับส่วนประกอบคงที่ (a0) ของอัตราการเปลี่ยนแปลงของแรงดัน, อัตราการไหล
จะเพิ่มขึ้นอย่างเชิงเส้น ขณะที่ความยาวเชิงสลิป l เพิ่มขึ้น อย่างไรก็ตามสำหรับส่วนประกอบฮา
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โมนิก (cne
inωt) ของอัตราการเปลี่ยนแปลงของแรงดัน, ความสัมพันธ์ระหว่างอัตราการไหลและ

ความยาวเชิงสลิปไม่ชัดเจนนัก จากผลเฉลยข้างต้น เนื่องด้วยมันเกี่ยวข้องกับพารามิเตอร์เชิงซ้อน
(complex parameter) และฟังก์ชันเบสเซลที่มีอาร์กิวเมนต์เชิงซ้อน ซึ่งจะได้รับการตรวจสอบใน
หัวข้อถัดไป

ต่อไปนี้ เราจะกำหนดสนามแรงเค้น (stress field) ในของเหลว จาก v = er0+eθ0+ezu(r) และ
สมการ (5), เราจะได้ว่า

∇v =

 0 0 ∂u/∂r
0 0 0

∂u/∂r 0 0

 . (37)

จากสมการข้างต้นนี้ และด้วยสมการ (4) และสมการ (29) เราจะได้
drr = dθθ = dzz = drθ = dθz = 0,

drz =
a0r

2µ
+

∞∑
n=1

Re
[
cni

ρnω

(
βnJ1(βnr)

J0(βnR)− lβnJ1(βnR)

)
einωt

]
. (38)

ดังนั้น จากสมการ (3),เราได้ว่า
σrr = σθθ = σzz = −p = q̄(t)x+ p0(t), σrθ = σθz = 0,

σrz = a0r +
2µ

ρω

∞∑
n=1

Re
[
cni

n

(
βnJ1(βnr)

J0(βnR)− lβnJ1(βnR)

)
einωt

]
, (39)

โดยที่ q̄(t) ถูกนิยามใน (11) ขณะที่ p0(t) เป็นค่าใดๆ และสามารถถูกเลือกในสอดคล้องกับเงื่อนไข
ของแรงดันที่แน่นอนได้
ข้อสังเกต 5สำหรับส่วนประกอบคงที่ (a0) ของอัตราการเปลี่ยนแปลงแรงดัน, แรงเฉือนในของเหลว
เป็นอิสระจากความยาวเชิงสลิป l ขณะที่ ความยาวเขิงสลิปมีอิทธิพลต่อแรงเฉือน สำหรับส่วนประ
กอบฮาร์โมนิก cneinωt ของการเปลี่ยนแปลงแรงดัน

อิทธิพลของค่าขอบแบบสลิปต่อพฤติกรรมการไหล (Influence of Boundary Slip on Flow
Behaviour)

ด้วยผลเฉลยแจ่มชัด (exact solution) ที่หาได้จากหัวข้อที่แล้ว ในหัวข้อนี้เราจะศึกษาอิทธิพลของ
ความยาวสลิป (slip length) ที่มีต่อความเร็ว อัตราการไหล และแรงเค้นของของไหล โดยพิจาณา
ผลเฉลยที่ขึ้นอยู่กับการเปลี่ยนแปลงแรงดันอย่างคงที่และแบบคลื่นโคซายด์
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กรณี 1: dp/dx = a0

สำหรับกรณีนี้, cn = 0 สำหรับทุกๆl n ≥ 1 และดังนั้นจากสมการ (29), (35) และ (39) เราจะได้
ว่า ความเร็วปกติ (normalized velocity), อัตราการไหลปกติ (normalized flow rate) และแรง
เค้นเฉือนปกติ (normalized shear stress) เป็น

u∗ = − 4µ

a0R2
u =

[
1−

( r
R

)2
+

2l

R

]
:= u∗ns + u∗trans, (40)

Q∗(t) = − 2µ

a0πR3
Q =

(
l +

R

4

)
, (41)

σ∗
rz =

1

a0R
σrz =

r

R
. (42)

ข้อสังเกต 6 ความเร็วปกติประกอบด้วยสองส่วนคือ u∗ns และ u∗trans. โดยที่ส่วนแรก u∗ns = 1 −
(r/R)2 เป็นผลเฉลยสำหรับปัญหาภายใต้เงื่อนไข โน-สลิป อาจเรียกได้ว่า ผลเฉลยแบบโน-สลิป
ซึ่งคือเวกเตอร์ความเร็วแบบพาราโบลอยด์ ขณะที่ส่วนที่สอง u∗trans = 2l/R คือการเคลื่อนไปของ
รูปทรงแข็ง (rigid body translation) ในทิศแกนหลัก (axial direction) ดังนั้น เราสามารถสรุป
ได้ว่า ผลเฉลยเชิงสลิปก็คือ superposition ของผลเฉลยแบบโน-สลิป และขนาดของความเร็วใน
การเคลื่อนตัวไปของรูปทรงแข็งเป็นสัดส่วนเชิงเส้นกับพารามิเตอร์สลิป l และแน่นอนว่าการเคลื่อน
ตัวไปของรูปทรงแข็งจะไม่ก่อให้เกิดการเปลี่ยนสถานะของการเปลี่ยนรูปสสารและสถานะของแรง
เค้น อันเนื่องมาจากว่าแรงเค้นเฉือนในของไหล เป็นอิสระจากความยาวเชิงสลิป ซึ่งเหมือนกับใน
เงื่อนไขเชิงโน-สลิป

ข้อสังเกต 7 อัตราการไหลเป็นสัดส่วนเชิงเส้นกับความยาวเชิงสลิป l ความสัมพันธ์ระหว่างอัตรา
การไหลและความยาวเชิงสลิป (41) สามารถนำมาใช้ในการออกแบบการทดลองอย่างง่าย เพื่อ
กำหนดความยาวเชิงสลิป ด้วยการวัดอัตราการไหลสำหรับค่าของ µ, R และ a0 ต่างๆ

0.0.1 *กรณี 2: dp/dx = a1cos(ωt)

สำหรับกรณีนี้, a0 = 0, c1 = a1 ∈ R, cn = 0 สำหรับทุกๆ n ≥ 2 เพื่อความสะดวกในการ
อธิบาย เราจะใช้ตัวแปรแบบไร้ขนาด (dimensionless variables) ต่อไปนี้

β∗ = βR, r∗ =
r

R
∈ [0, 1], l∗ =

l

R
, t∗ =

ωt

2π
, u∗ = −ρω

a1
u. (43)

และจากสมการ (29), เราได้ว่า

u∗ = Re
[(

J0(β
∗r∗)

J0(β∗)− l∗β∗J1(β∗)
− 1

)
ie2πt

∗i

]
. (44)
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กำหนดให้
A = A(r∗) = Re

[
J0(β

∗r∗)

J0(β∗)− l∗β∗J1(β∗)

]
, B = B(r∗) = Im

[
J0(β

∗r∗)

J0(β∗)− l∗β∗J1(β∗)

]
. (45)

จะได้
u∗ = Re [(A+Bi− 1) (cos(2πt∗)i− sin(2πt∗))]

= −Bcos(2πt∗) + (1− A)sin(2πt∗).
(46)

ขณะที่A และB ในผลเฉลยข้างต้นสามารถเขียนได้ในรูปของพารามิเตอร์เชิงซ้อน β∗ และฟังก์ชัน
เบสเซลที่มีอาร์กิวเมนต์เชิงซ้อน เรายังคงไม่สามารถสรุปได้จากรูปแบบผลเฉลยนี้ ค่าความเร็วเป็น
สัดส่วนตรง สัดส่วนตรงผกผัน หรือเป็นสัดส่วนอย่างไม่เชิงเส้นกับ l∗ ดังนั้น เราจึงเริ่มต้นด้วยการ
พยายามหาความสัมพันธ์ระหว่าง u∗ และ l∗ ในโดเมนจำนวนจริง และเนื่องด้วย β2 = −ρω

µ
i =

ρω
µ
e−πi/2, เราได้ว่า

β =

√
ρω

2µ
(1− i) =

β̄

R
(1− i),

1

β
=

R

2β̄
(1 + i), β∗ = β̄(1− i), (47)

โดยที่ β̄ = R
√

ρω
2µ

เป็นพารามิเตอร์ไร้ขนาด และเมื่อเรากำหนดให้
J0(β

∗) = γ0 + λ0i, J1(β
∗) = γ1 + λ1i, J0(β

∗r∗) = γ0r + λ0ri, (48)
จะได้ว่า

J0(β
∗r∗)

J0(β∗)− l∗β∗J1(β∗)
= [γ0r + λ0ri]

[γ0 − l∗β̄(γ1 + λ1)]− [λ0 − l∗β̄(λ1 − γ1)]i

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
(49)

A =
γ0r[γ0 − l∗β̄(γ1 + λ1)] + λ0r[λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
, (50)

B =
λ0r[γ0 − l∗β̄(γ1 + λ1)]− γ0r[λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
. (51)

สังเกตได้ว่า สำหรับ |y| ≪ 1 สูตรเส้นกำกับ (asymptotic formulae) [34] ต่อไปนี้สามารถนำไป
ใช้ในการประมาณค่าฟังก์ชันเบสเซลได้ดังนี้

Jn(x+ yi) ≈ Jn(x) +
iy

2
[Jn−1(x)− Jn+1(x)], Jn(y) ≈

1

n!

(y
2

)n
. (52)

ดังนั้น สำหรับ β̄ ≪ 1, เราสามารถการประมาณค่าต่อไปนี้

J0(β
∗) = J0(β̄ − β̄i) ≈ J0(β̄)− i

β̄

2
[J−1(β̄)− J1(β̄)] = J0(β̄) + iβ̄J1(β̄) ≈ 1 +

β̄2

2
i,

J1(β
∗) = J1(β̄ − β̄i) ≈ J1(β̄)− i

β̄

2
[J0(β̄)− J2(β̄)] =

β̄

2
− β̄

2

[
1− β̄2

8

]
i,
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J0(β
∗r∗) ≈ 1 +

β̄2r∗2

2
i, J1(β

∗r∗) =
β̄r∗

2
− β̄r∗

2

[
1− (β̄r∗)2

8

]
i.

จากสูตรข้างต้น และสมการ (48), เราได้ว่า

γ0 = 1, λ0 =
β̄2

2
, γ1 =

β̄

2
, λ1 = − β̄

2
+
β̄3

16
, γ0r = 1, λ0r =

(β̄r∗)2

2
. (53)

ด้วยการแทนค่าข้างต้นในสมการ (50) และ (51) ทำให้ได้

A =

[
1− l∗ β̄

4

16

]
+ (β̄r∗)2

2

[
β̄2

2
+ l∗β̄2

(
1− β̄2

16

)]
[1− l∗ β̄

4

16
]2 + [ β̄

2

2
+ l∗β̄2

(
1− β̄2

16

)
]2

≈ 1− β̄4l∗(1− 8r∗2)/16

1 + β̄4l∗
(
7
8
+ l∗

) (54)

B =
− β̄2

2
(1− r∗2)− l∗β̄2

[
1− β̄2

16

(
1− (β̄r∗)2

2

)]
[
1− l∗ β̄

4

16

]2
+
[
β̄2

2
+ l∗β̄2

(
1− β̄2

16

)]2 ≈ − β̄2(1− r∗2 + 2l∗)

2
[
1 + β̄4l∗

(
7
8
+ l∗

)] . (55)

ดังนั้น เราจะได้
u∗ ≈ β̄2(1− r∗2 + 2l∗)

2
[
1 + β̄4l∗

(
7
8
+ l∗

)]cos(2πt∗) + β̄4l∗(15− 8r∗2)/16

1 + β̄4l∗
(
7
8
+ l∗

) sin(2πt∗). (56)

นิพจน์เส้นกำกับ (asymptotic expression) ข้างต้นของผลเฉลยนี้ แสดงให้เห็นอย่างชัดเจนว่า ความเร็ว
ของของไหลมีรูปแบบเป็น พาราโบลอยด์ที่เวลาใดๆ ในแต่ละภาคตัดขวางของท่อกลม รูปที่ 1 แสดง
ความเร็ว ที่เวลา t∗ = n สำหรับค่าที่แตกต่างกันของความยาวเชิงสลิป (slip length), ซึ่งคำนวณ
มาจากสมการ (56) จะเห็นได้อย่างชัดเจนว่า จากนิพจน์เส้นกำกับนี้ ความเร็วนี้ไม่ใช่ simple su-
perposition ของผลเฉลยโนสลิป (non-slip solution) และความเร็วของเคลื่อนตัวของวัตถุแข็ง และ
นอกจากนี้เราพบว่าความเร็วปกติ (normalized velocity) ขึ้นอยู่กับพารามิเตอร์ไร้ขนาด β̄และ
สลิปพารามิเตอร์ l∗.

ขั้นต่อไป เราจะแสดงให้เห็นถึงอิทธิพลของ l∗ ต่อสนามความเร็ว เราจะพิจารณาความเร็วเชิงสลิป
บนผนังของท่อ นั่นคือที่ r∗ = 1ณ เวลา t∗ = n (จำนวนเต็ม) จากสมการ (56) เราได้ว่า ความเร็ว
เชิงสลิป (slip velocity) ที่ r∗ = 1 และ t∗ = n คือ

u∗s
β̄2

=
l∗

1 + β̄4l∗
(
7
8
+ l∗

) (57)

ซึ่งอธิบายได้อย่างชัดเจนว่าอิทธิพลของ l∗ ต่อสนามความเร็วเป็นแบบไม่เชิงเส้น จากสมการข้าง
ต้นเราได้ว่า

∂(u∗s/β̄
2)

∂l∗
= 0,

∂2(u∗s/β̄
2)

∂l∗2
=

−β̄6
(
7
3
+ 4l∗

)[
1 + β̄4l∗

(
7
8
+ l∗

)]2 < 0, at l∗ =
1

β̄2
. (58)

31



l*=2.0

l*=1.0

l*=0.5

l*=0

Normalized radial distance  r*
0.0 0.2 0.4 0.6 0.8 1.0

N
or

m
al

iz
ed

 v
el

oc
ity

  u
*/
b

2

0

1

2

3

Figure 1: Velocity profiles for various different values of slip length l∗ at a typical instant
of time t∗ = n, obtained from (56) with β̄ = 0.02.

ดังนั้น เราสามารถสรุปได้ว่าความเร็วเชิงสลิปบนผนังนั้นมีค่าสูงสุดที่ l∗ = 1/β̄2 รูปที่ 2 แสดง
อิทธิพลของความยาวสลิปต่อความเร็วเชิงสลิปที่ผนัง เห็นได้ชัดเจนว่าสูตรเส้นกำกับ (asymptotic
formulae) นี้สามารถใช้ประมาณค่าได้อย่างอย่างเที่ยงตรง ในตัวอย่างนี้ เราเลือกใช้ β̄ = 0.02

ขณะนี้ เราจะพิจารณาอัตราการไหลจากสมการ (35) เราพบว่า
Q∗(t) = − ρωβ̄

πa1R2
Q(t) =

2β̄

R
Re
{
ie2πt

∗i

[
J1(β

∗)

β[J0(β∗)− l∗β∗J1(β∗)]
− R

2

]}
. (59)

ซึ่งผลเฉลยนี้เขียนอยู่ในรูปของพารามิเตอร์เชิงซ้อน β∗ และฟังก์ชันเบสเซลที่มีอาร์กิวเมนต์เชิงซ้อน
ซึ่งเห็นได้ไม่ชัดเจนว่าอัตราการไหลเป็นสัดส่วนตรง สัดส่วนผกผัน หรือ มีความสัมพัน์แบบไม่เชิง
เส้นกับ l∗ ดังนั้นเราจะเริ่มต้นด้วยการหาสมการที่แจ่มชัดแสดงความสัมพันธ์ระหว่าง Q∗ แล l∗

ในโดเมนจำนวนจริง

กำหนดให้ C = C(1), D = D(1) และ

C(r∗) = Re
[

J1(β
∗r∗)

J0(β∗)− l∗β∗J1(β∗)

]
, D(r∗) = Im

[
J1(β

∗r∗)

J0(β∗)− l∗β∗J1(β∗)

]
. (60)

จะได้ว่า
Q∗(t∗) = Re

{[
(1 + i)(C +Di)− β̄

]
[icos(2πt∗)− sin(2πt∗)]

}
= −(C −D − β̄)sin(2πt∗)− (C +D)cos(2πt∗). (61)
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Figure 2: Influence of slip length l∗ on slip velocity on the tube wall. The solid line is
obtained from the exact solution (44), while the dots are obtained from the asymptotic
solution (57).

สังเกตได้ว่า
J1(β

∗)

J0(β∗)− l∗β∗J1(β∗)
= [γ1r + λ1ri]

[
γ0 − l∗β̄(γ1 + λ1)

]
−
[
λ0 − l∗β̄(λ1 − γ1)

]
i[

γ0 − l∗β̄(γ1 + λ1)
]2

+
[
λ0 − l∗β̄(λ1 − γ1)

]2 , (62)

จากนิยามของ C แล D และสมการ (60) เราได้ว่า

C +D =
(γ1 + λ1)[γ0 − l∗β̄(γ1 + λ1)] + (λ1 − γ1)[λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
≈

−β̄3
(

7
16

+ l∗
)

1 + β̄4l∗
(
7
8
+ l∗

) .
(63)

C −D =
(γ1 − λ1)[γ0 − l∗β̄(γ1 + λ1)] + (λ1 + γ1)[λ0 − l∗β̄(λ1 − γ1)]

[γ0 − l∗β̄(γ1 + λ1)]2 + [λ0 − l∗β̄(λ1 − γ1)]2
≈ β̄

1 + β̄4l∗
(
7
8
+ l∗

) .
(64)

ดังนั้นจากข้างต้นและสมการ (46) เราจะได้นิพจน์เส้นกำกับของอัตราการไหลที่ขึ้นกับเวลาเป็น

Q∗(t∗) ≈
β̄3
(

7
16

+ l∗
)

1 + β̄4l∗
(
7
8
+ l∗

)cos(2πt∗) + β̄5l∗
(
7
8
+ l∗

)
1 + β̄4l∗

(
7
8
+ l∗

)sin(2πt∗) (65)

ซึ่งเป็นที่น่าสนใจว่า β̄ และ l∗ เป็นพารามิเตอร์ที่มีอิทธิพลต่ออัตราการไหล

ในการอิบายอิทธิพลของ l∗ ต่ออัตราการไหลนั้น เราจะพิจารณาที่เวลา t∗ = n (จำนวนเต็ม) โดยที่
Q∗

β̄3
≈

7
16

+ l∗

1 + β̄4l∗
(
7
8
+ l∗

) (66)
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Figure 3: Influence of slip length l∗ on flow rate. The solid line is obtained from the exact
solution, while the dots are obtained from the asymptotic solution.

ซึ่งแสดงอย่างชัดเจนว่าอิทธิพลของ l∗ ต่ออัตราการไหลเป็นแบบไม่เชิงเส้น เราสามารถแสดงได้
ว่าที่ l∗ = 1/β̄2 − 7/16 อนุพันธ์อันดับหนึ่งของ Q∗ หายไป และอนุพันธ์อันดับสองมีค่าเป็นลบ
ดังนั้น Q∗(n) มีค่าสูงสุดที่ l∗ = 1/β̄2 − 7/16 รูปที่ 3 แสดงการแปรเปลี่ยนของอัตราการไหลที่
เวลา t∗ = n และ l∗

ต่อไปนี้ เราจะพิจารณาสนามแรงเค้นในของไหล จากสมการ (39) เราได้ว่า สนามแรงเค้นปกติคือ

σ∗
rz = − ρωR

2µa1β̄
σrz = −R

β̄
Re
[

βJ1(β
∗r∗)

J0(β∗)− l∗β∗J1(β∗)
ie2πt

∗i

]
= −Re {(1− i) [C(r∗) +D(r∗)i] [icos(2πt∗)− sin(2πt∗)]}

= [C(r∗) +D(r∗)] sin(2πt∗) + [D(r∗)− C(r∗)] cos(2πt∗). (67)
เพื่อให้เห็นอิทธิพลของ l∗ ต่อแรงเค้น เราจะพิจารณาที่เวลา t∗ = n + 1/4 (n เป็นจำนวนเต็ม)
และดำเนินการตามวิีธีการที่ใช้สำหรับอัตราการไหล เราได้ว่า

σ̄rz(r
∗) = −σ

∗
rz(r

∗)

β̄3
= −C(r

∗) +D(r∗)

β̄3
≈ r∗(8− r∗2 + 16l∗)/16

1 + β̄4l∗
(
7
8
+ l∗

) . (68)

ดังนั้น ค่าสูงสุดของแรงเค้นเฉือนที่ผนัง r∗ = 1 คือ

σ̄rz(1) ≈
(7/16 + l∗)

1 + β̄4l∗
(
7
8
+ l∗

) .
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ซึ่งเห็นได้ชัดเจนว่า σ̄rz(1) มีค่าสูงสุดที่ l∗ = 1/β̄2 − 7/16 และอิทธิพลของ l∗ ต่อแรงเค้นสูงสุดที่
ผนังดังแสดงในรูปที่ 3

ข้อสรุป (Conclusions)

ในหัวข้อนี้, ผู้วิจัยได้แสดงการหาผลเฉลยแม่นยำ (exact solution) ของการไหลของของไหลนิว
โทเนียนที่มีค่าความหนาแน่นคงที่ ที่เวลาต่างๆ ในท่อขนาดไมโครมิเตอร์ ด้วยเงื่อนไขค่าขอบแบบ
เนเวียร์สลิป (a Navier slip condition) และด้วยผลเฉลยแม่นยำนี้ เราได้วิเคราะห์อิทธิพลของ
สลิปพารามิเตอร์ (slip parameter) ความยาวของการสลิป (slip length) ที่มีต่อความเร็วและอัตรา
การไหล ตลอดจนค่าแรงเค้นของของไหล ผลจากงานวิจัยนี้ เราสามารถสรุปสิ่งที่ค้นพบได้ดังนี้
(1) การศึกษาแสดงให้เห็นว่าอิทธิพลของการสลิปที่ขอบ (boundary slip) ต่อพฤติกรรมการไหล

ของของไหล มีความแตกต่างกันอย่างเห็นได้ชัดสำหรับค่าที่แตกต่างกันของสนามแรงดันที่
ขับเคลื่อนของไหล สำหรับสนามแรงดัน ที่มีอัตราการเปลี่ยนแปลงเป็นค่าคงที่ การสลิปที่ขอบ
ไม่ส่งผลทั้งต่อการเปลี่ยนรูปของสสารภายใน (interior material deformation) และสนาม
แรงเค้น ขณะที่มันเพียงแต่เพิ่มความเร็วในแนวแกนสัมผัส ของผลเฉลยแบบ โน-สลิป อย่างไร
ก็ตามสนามความดันที่อัตราการเปลี่ยนแปลงเป็นแบบคลื่น (wave form) อิทธิพลของการ
สลิปที่ขอบต่อการไหลของของไหลค่อนข้างซับซ้อนมากนั่นคือการสลิปที่ขอบทำให้เกิดการ
เปลี่ยนแปลง การเปลี่ยนรูปของสสารภายใน และส่งผลต่อสนามความเร็ว และสนามแรงเค้น
ด้วย

(2) ในกรณีที่การเปลี่ยนแปลงของแรงดันเป็นค่าแบบคงที่ (constant pressure gradient) ผู้
วิจัยได้แสดงการหาสมการแจ่มชัดอย่างง่าย (41)ที่สัมพันธ์กับอัตราการไหลด้วย ความยาว
ของการสลิปขนาดต่างๆ ซึ่งความรู้ที่ได้สามารถจะนำไปประยุกต์ใช้ใน การออกแบบการทดลอง
อย่างง่ายเพื่อกำหนดความยาวของการสลิป

(3) สำหรับของไหลที่ถูกขับเคลื่อนด้วยแรงดันที่มีการเปลี่ยนแปลงแบบคลื่นโคซาย (cosine wave)
ผู้วิจัยได้แสดงการหานิพจน์เส้นกำกับของผลเฉลย และพบว่าพารามิเตอร์ β̄ มีอิทธิพลต่อ
ความเร็ว และอัตราการไหล ตลอดจนค่าแรงเค้น และยังพบอีกว่าความเร็วเชิงสลิปมีค่าสูงสุด
เมื่อ l∗ = 1/β̄2, ขณะที่อัตราการไหลที่เวลา t∗ = n+ 1/4 มีค่าสูงสุดที่ l∗ = 1/β̄2 − 7/16.

(4) ผลเฉลยแม่นยำนี้แสดงด้วยสมการวิเคราะห์แจ่มชัด (explicit analytical formulae) ที่อธิบาย
พฤติกรรมการไหลของของไหล ซึ่งได้ให้ความรู้พื้นฐานในการออกแบบท่อขนาดไมโครมิเตอร์
และการขับเคลื่อนของไหลด้วยสนามแรงดันแบบต่างๆ เพื่อการควบคุมความเร็ว อัตราการ
ไหล และค่าแรงเค้นในของไหล ให้มีความเหมาะสมและมีประสิทธิภาพสูงสุด และยิ่งกว่า

35



นั้นเรายังได้นำเสนอวิธีการเชิงตัวเลข (numerical methods) สำหรับหาผลเฉลยของปัญหา
ต่างๆแบบโนสลิป ที่ไม่มีผลเฉลยแม่นยำ
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3. อิทธิพลของแขนงหลอดเลือดต่อการไหลของเลือดในระบบหลอดเลือด
หัวใจของมนุษย์
การไหลเวียนเลือดในร่างกายมนุษย์เกิดขึ้นได้จากแรงที่หัวใจบีบตัวส่งเลือดตามหลอดเลือดไปยัง
ปอดเพื่อการแลกเปลี่ยนออกซิเจนและคาร์บอนไดออกไซด์ แล้วกลับมาเข้าหัวใจเพื่อส่งไปเลี้ยงส่วน
ต่างๆ ของร่างกาย สุดท้ายจะไหลเวียนมาเข้าหัวใจอีกเช่นนี้เรื่อยไป กล้ามเนื้อหัวใจ ก็เหมือนกับ
อวัยวะอื่น ที่ต้องการเลือดแดงมาเลี้ยง หลอดเลือดที่หล่อเลี้ยงหัวใจเรียกว่า หลอดเลือดแดงโคโรนา
รี ซึ่งมีขนาดเส้นผ่าศูนย์กลาง ประมาณ 3 - 4 มิลลิเมตร แตกแขนงออกจากส่วนต้น ของหลอด
เลือดแดงใหญ่เอออร์ตา (aorta) บริเวณนั้นมักเรียกว่า ขั้วหัวใจ หลอดเลือดโคโรนารีนี้ มีสองเส้น
ใหญ่ๆ คือ เส้นเลือดแดงทางด้านซ้าย (left coronary artery, LCA) และทางด้านขวา (right coro-
nary artery RCA) ซึ่งจะอยู่ที่ผิวด้านนอกของหัวใจ แตกแขนงห่อหุ้มทุกตารางนิ้วของหัวใจ แสดง
ดังรูปที่ 1 ผนังด้านในของหลอดเลือดโคโรนารี ถูกครอบคลุมด้วยเซลล์บุผิวขนาดเล็กๆ เรียกว่า เซลล์
เอนโดทีเลียม (Endothelium cell) ซึ่งมีหน้าที่หลั่งสารที่สำคัญหลายชนิด คอยป้องกันไม่ให้หลอด
เลือดอุดตัน จากเกร็ดเลือดและคราบไขมัน และมีสารที่ช่วยให้เกิดการขยายตัวของเส้นเลือด ทำให้
การไหลเวียนดีขึ้นอีกด้วย เซลล์เอนโดทีเลียมนี้มีการเจริญ และเสื่อมสลายไปตามเวลา เช่นเดียวกัน
กับอวัยวะอื่นๆ

หลอดเลือดหัวใจมีขนาดประมาณ 3 มิลลิเมตร การสะสม พอกพูนของไขมันที่ผนัง จะค่อยๆ
เกิดขึ้นตั้งแต่อายุน้อยๆ ทั้งนี้ ถูกกำหนดโดยหลายปัจจัย อาทิ พันธุกรรม และปริมาณไขมันที่บริโภค
ฯลฯ ถ้าการสะสมของไขมันไม่มากนัก (น้อยกว่า 50% ของเส้นเลือด) ก็อาจยังไม่ก่อให้เกิดอาการ
อะไร แต่ถ้าเป็นมาก ซึ่งมักจะเกินกว่า 70%ของเส้นเลือด จนกระทั่งเลือดไหลเวียนไม่เพียงพอ กับ
ความต้องการของกล้ามเนื้อหัวใจ จะเกิดอาการภาวะกล้ามเนื้อหัวใจขาดเลือดได้ [12] โดยเฉพาะ
เวลาที่ ร่างกายและกล้ามเนื้อหัวใจ ต้องการเลือดไปเลี้ยงมากๆ เช่น ขณะออกกำลัง ถ้าอาการตีบ
ตันเกิดขึ้น อย่างฉับพลันทันใด ซึ่งก็มักเกิดจากก้อนไขมัน (Lipid plaque) ที่ผิวด้านในของหลอด
เลือดหัวใจ มีการแตกออก แล้วมีเกร็ดเลือดมาอุดตันเต็มหลอดเลือด ทำให้เกิดภาวะหัวใจขาดเลือด
เฉียบพลัน ซึ่งอาจทำให้เสียชีวิตทันที (Sudden cardiac death) รูปที่ 2 แสดง angiogram ของ
เส้นเลือดอาทิรี่หัวใจที่อุดตัน

ในปัจจุบันโรคหลอดเลือดหัวใจนี้เป็นหนึ่งในสาเหตุหลักของการเสียชีวิตของมนุษย์ โดยส่วน
ใหญ่แล้วสัมพันธ์โดยตรงกับการไหลของเลือดที่ผิดปกติ ในหลอดเลือดอาทิรี่อันเนื่องมาจากการอุด
ตัน ดังนั้น เพื่อสร้างทางเดินเลือดใหม่ เทคนิคการตัดต่อหลอดเลือดอาทิรี่บายพาส (coronary artery
bypass grafting,CABG) ได้รับความนิยมอย่างกว้างขวางสำหรับคนไข้ที่มีอาการของโรคหลอด
เลือดหัวใจที่รุนแรง ในการดำเนินการผ่าตัดหลอดเลือดบายพาส (CABG) แพทย์จะใช้เส้นเลือด
ของผู้ป่วย เช่นเส้นเลือดดำที่ขา หรือเส้นเลือดแดงที่อก หรือที่แขน มาทำทางเบี่ยงให้เลือดไหลใน
หลอดเลือดที่อุดตันได้สะดวกขึ้น



Figure 1: The major vessels of the coronary circulation

กว่าสองทศวรรษมาแล้ว ที่จำนวนคนไข้ได้รับการผ่าตัดบายพาสเป็นจำนวนมาก แต่อย่างไรก็
ดี พบว่า 25 เปอร์เซนต์ที่การผ่าตัดบายพาสล้มเหลวภายในเวลา 1 ปีหลังการผ่าตัด และมากถึง
50 เปอร์เซนต์ที่ล้มเหลวภายใน 10 ปี [13] ในปัจจุบันเป็นที่ตระหนักกันดีแล้วว่า ปัจจัยอันหนึ่งที่
สำคัญมากต่อความสำเร็จของการผ่าตัดบายพาสคือการทราบข้อมูลเกี่ยวกับพฤติกรรมของเลือด
อัตราการไหล การกระจายแรงดัน แรงเค้นเฉือนที่ผนัง และการขยายและหดตัวของผนังในช่วงจังหวะ
การเต้นของหัวใจ ดังนั้นมากกว่าสองทศวรรษที่ผ่านมา มีงานวิิจัยจำนวนมาก ศึกษาเกี่ยวกับปัญหา
การไหลของเลือดในหลอดเลือดหัวใจ ด้วยการทดลอง การวิเคราะห์ และวิธีเชิงคำนวณต่่างๆ โดย
ศึกษาทั้งในหลอดเลือดปกติ และหลอดเลือดที่อุดตัน โดยอาศัยหลอดเลือดแดงเทียม (idealized
arteries) หลอดเลือดเทียมที่มีทาง(idealized arterial bifurcations) หลอดเลือดเทียมที่มีแขนง
และในกรณีที่เฉพาะเจาะจง เพื่อประโยชน์ในทางคลีนิค เช่น หลอดเลือดแดงใหญ่ (aortic arch)
และหลอดเลือดหัวใจ (coronary arteries) งานวิจัยส่วนใหญ่มักสมมติให้เลือดเป็นของไหลแบบนิว
โทเนียน ซึ่งโดยทั่วไปจะเหมาะกับเลือดในหลอดเลือดที่มีขนาดใหญ่มีเส้นผ่าศูนย์กลางประมาณ
2-3 มิลลิเมตร [4, 6, 15] Fei และคณะ [6] ได้สร้างหลอดเลือดเทียมสามมิติที่มีการตัดต่อบายพาส
ด้วยมุมขนาดต่างๆ 20, 30, 40, 45, 50, 60 และ 70 องศา เพื่อศึกษารูปแบบการไหลของเลือด
และแรงเค้นเฉือนที่ผนังหลอดเลือดด้วยวิธีการคำนวณเชิงตัวเลข (numerical simulation) Staalsen
และคณะ [15] ได้ทำการทดลองผ่าตัดบายพาสให้กับหมูด้วยการใช้ polyurethane graft มาต่อ
กับ abdominal aorta ของหมู มีนักวิจัยจำนวนหนึ่งพยายามศึกษาความสัมพันธ์ระหว่างผลกระ
ทบของการไหลของเลือดและการเกิดโรคในหลอดเลือดขนาดเล็ก โดยพิจารณาในกรณีที่เลือดเป็น
ของไหลแบบนอนนิวโทเนียน [3, 8, 9, 18] Basombrio และคณะ [3] ได้ทำการทดลองเชิงคำนวณ
สำหรับศึกษาปัญหาการไหลแบบซับซ้อน ซึ่งเขาพยามยามจัดการให้เงื่อนไขทุกอย่างใกล้เคียงกับ
สภาวะจริง โดยกำหนดให้เลือดเป็นของไหลแบบนอนนิวโทเนียนที่สามารถคำนวณค่าความหนืด
ของเลือดได้จากแบบจำลองคาสสัน(Casson’smode) Jie และคณะ [8] ก็เช่นกันได้พิจารณาคุณสมบัติ
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Figure 2: The angiogram of the RCA with stenosis.

นอนนิวโทเนียนของเลือด โดยที่ได้ตรวจสอบอิทธิพลของคุณสมบัตินอนนิวโทเนียนของของไหลต่อ
แรงเค้นเฉือนที่ผนังและพฤติกรรมการไหลของของไหล เป็นที่สังเกต ได้ว่างานวิจัยข้างต้นใช้เงื่อนไข
ค่าขอบที่ไม่สอดคล้องกับความเป็นจริง อย่างเช่น ความเร็วเลือดเป็นค่าคงที่ ณ ทางเข้า (inlet)
และแรงดันเป็นค่าคงที่ ณ ทางออก (outlet) ในปี ค.ศ. 2006 Wiwatanapataphee และคณะ
[18] ได้ศึกษาอิทธิพลของการต่อหลอดเลือดบายพาสด้วยมุมต่างๆ ต่อการไหลของเลือด และได้
ประมวลผลคอมพิวเตอร์ศึกษาการไหลของเลือดแบบนอนนิวโทเนียนในหลอดเลือดเทียมที่ต่อบายพาส
ภายใต้เงื่อนไขค่าขอบที่สมจริง (realistic boundary condition) อันเนืื่องมาจากการเต้นของหัวใจ

ในหัวข้อนี้ ผู้วิจัยได้ขยายงานเดิม [18] ออกไปถึงสองส่วน โดยที่ส่วนแรกคือการสร้างโดเมน
เพื่อการคำนวณ ซึ่งสร้างมาจากภาพ CT scan หลอดเลือดหัวใจของมนุษย์จริงๆ ส่วนที่สองคือ
โดเมนประกอบด้วยหลอดเลือดแดงใหญ่ หลอดเลือดหัวใจทั้งข้างซ้ายและขวา และใช้เงื่อนไขค่า
ขอบแบบคลื่น โดยศึกษาพฤติกรรมการไหลของเลือดแบบคลื่่น (pulsatile) ในระบบหลอดเลือด
หัวใจของมนุษย์ ด้วยสมการควบคุมคือสมการเนเวียร์-สโตกส์และสมการความต่อเนื่องสามมิติ ผู้
วิจัยสามารถสามารถคำนวณความเร็วเลือด แรงดันเลือด และแรงเค้นที่ผนังในระบบหลอดเลือด
หัวใจที่มีเงื่อนไขค่าขอบแบบคลื่น ผลกระทบของแขนงหลอดเลือดต่อปัญหาการไหลได้รับการตรวจ
สอบผลจากการคำนวณเชิงตัวเลขสรุปได้ว่า แรงดันเลือดในระบบที่มีแขนงหลอดเลือดจะต่ำกว่า
ค่าแรงดันในระบบที่ไม่มีแขนง ขนาดของค่าแรงเค้นที่ผนังจะสูงขึ้นบริเวณรอยแยก (bifurcation)
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แบบจำลองคณิตศาสตร์ (Mathematical Model)
ความน่าเชื่อถือของแบบจำลองคณิตศาสตร์สำหรับการประมวลภาพการไหลของเลือดในระบบหลอด
เลือดหัวใจนั้นขึ้นอยู่กับสามองค์ประกอบคือ การใช้โดเมนที่ใกล้เคียงของจริงมากที่สุด กลไกการ
ไหลของเลือดตลอดจนเงื่อนไขค่าขอบที่สมจริง และการใช้สมการควบคุมกลศาสตร์ของไหล ในการ
สร้างโดเมนนั้น ผู้วิจัยได้สร้างมาจาก CT images ของคนไข้ จำนวนกว่า 400 ภาพ โดยแต่ละภาพ
จะให้ลักษณะของอวัยวะภายใน ได้แก่หลอดเลือด เนื้อเยื่อ กระดูกซี่โครง ในแนวภาคตัดขวาง โดย
เทคนิคการคัดแยกและการปรับแท่งผิว เราสามารถได้ภาพหลอดเลือดเพื่อมาสร้างภาพสามมิติที่
สามารถนำไปใช้ในการคำนวณเชิงตัวเลขได้ รูปที่ 3 แสดงรูปทรงสามมิติของระบบหลอดเลือดหัวใจ
ของมนุษย์

Figure 3: Geometry of the system of human coronary arteries.

ในการศึกษาการไหลของเลือดในระบบหลอดเลือดหัวใจนี้ ผู้วิจัยกำหนดให้เลือดเป็นของไหล
แบบนอนนิวโมเนียน สมการควบคุมคือสมการความต่อเนื่อง (continuity equation) และสมการ
เนเวียร์สโตกส์ (Navier-Stokes equations) ต่อไปนี้

∇ · u = 0 in Ω1, (1)
∂u
∂t

+ (u · ∇)u =
1

ρ
∇ · σ in Ω1, (2)

โดยที่ u คือเวกเตอร์ความเร็วของเลือดในท่อลูเมน ρ คือความหนาแน่นของเลือด σ คือค่าแรงเค้น
รวมซึ่งนิยามด้วย

σ = −pI + 2η(γ̇)D, (3)
โดยที่ p คือความดันเลือด และD คืออัตราของเทนเซอร์ที่แปรเปลี่ยนรูปไป (rate of deformation
tensor) หาได้จาก

D =
1

2

(
∇u+ (∇u)T ) ,
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ที่ซึ่ง η และ γ̇ คือค่าความหนืดและอัตราแรงเฉือน ตามลำดับ มีแบบจำลองนอนนิวโทเนียนหลาย
แบบที่ใช้อธิบายความสัมพันธ์ระหว่าง η และ γ̇ แต่ในที่นี้ ผู้วิจัยเลือกใช้แบบจำลองของCarreau’s
shear-thinning ดังนี้

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
,

ที่ซึ่ง η0 และ η∞ คือ zero shear viscosity และ infinite shear viscosity; ค่าพารามิเตอร์ n มีค่า
อยู่ระหว่าง 0 และ 1; γ̇ =

√
2tr(D2) คืออัตราแรงเฉือน นั่นคือ

γ̇ =
√
2u12x + 2u22y + 2u32z + (u1y + u2x)2 + (u2z + u3y)2 + (u1z + u3x)2.

หัวใจเป็นอวัยวะกลวงซึ่งประกอบด้วยกล้ามเนื้อพิเศษ ต่างจากกล้ามเนื้อชนิดอื่นคือ บีบตัวอยู่
ได้เองตลอดเวลา หัวใจทำหน้าที่เปิดให้เลือดผ่านไป และปิดกั้นไม่ให้เลือดไหลย้อนทางกลับที่เก่า
ตามปกติอัตราการเต้นของหัวใจผู้ชายเฉลี่ยประมาณ ๗๒ ครั้ง/นาที และผู้หญิงประมาณ ๗๕ -
๘๐ ครั้ง/นาที การทำงานของหัวใจจนครบรอบหนึ่งเรียกว่า รอบทำงานของหัวใจ (cardiac cy-
cle) กินเวลาประมาณ ๐.๘ วินาที (เมื่ออัตราหัวใจเฉลี่ย ๗๒ ครั้ง/นาที) ความดันเลือดในส่วน
ต่างๆ ของระบบการไหลเวียนไม่เท่ากัน โดยทั่วไปความดันเลือดแดงที่ส่งจากหัวใจนั้นมีความดัน
มากที่สุด ต่อจากนั้นจะค่อยๆ ลดลง จนถึงหลอดเลือดดำใหญ่ ที่จะเข้าหัวใจมีความดันน้อยที่สุด
ความดันเลือดแดงมีลักษณะเป็นคลื่น (pulsatile) คือ สูงสุดขณะหัวใจบีบตัว และต่ำสุดขณะหัวใจ
คลายตัว แต่ในหลอดเลือดเล็กๆ ลักษณะเป็นคลื่นจะค่อยๆหมดไปทีละน้อยเพราะความยืดหยุ่น
และความต้านทานของหลอดเลือด ความดันเลือดสูงสุดขณะหัวใจบีบตัว เรียกว่า ความดันซีสโต
ลิก (systolic pressure) ส่วนความดันเลือดต่ำสุดขณะหัวใจคลายตัว เรียกว่า ความดันไดอัสโต
ลิก (diastolic pressure) และความแตกต่างของความดันซีสโตลิก และไดอัสโตลิก เรียกว่า ความ
ดันชีพจร (pulse pressure) ค่าเฉลี่ยของความดัน ซีสโตลิก และไดอัสโตลิก เรียกว่า ความดัน
เฉลี่ย (mean pressure)

ในแบบจำลองส่วนใหญ่โดเมนที่ใช้คำนวณถูกจำกัดแค่หลอดเลือดโคโรนารีข้างใดข้างหนึ่ง และ
ใช้โดเมนเป็นท่อตรง หรือท่อโค้ง แทนหลอดเลือด นอกจากนี้มักกำหนดให้อัตราการไหลในอาทีรี่
เป็นแบบคงที่ ซึ่งทำให้ผลงานที่ได้ไม่สามารถนำไปใช้ประโยชน์ในทางคลีนิคได้จริง ดังนั้นในงาน
วิจัยนี้ ผู้วิจัยได้ใช้โดเมนซึ่งประกอบด้วย หลอดเลือดแดงใหญ่ (aorta) และหลอดเลือดหัวใจโคโรนา
รีทั้งข้างขวาและซ้าย และกำหนดให้เลือดไหลเข้าหลอดเลือดแดงใหญ่แบบคลื่น ส่วนเลือดไหลเข้า
หลอดเลือดหัวใจโคโรนารีทั้งข้างขวาและซ้ายให้เป็นไปตามกลไกของโครงสร้างของระบบ ขณะที่
เลือดถูกสูบฉีดเข้าไปในเอออร์ตาด้วยอัตราการไหลแบบคลื่น และถูกส่งไปยังแขนงหลอดเลือดต่างๆ
ผู้วิจัยได้กำหนดเงื่อนไขที่ทางเข้าของเอออร์ตาเป็นแบบเงื่อนไขขอบความเร็วแบบคลื่น (pulsatile
velocity boundary condition) และที่ทางปลายหลอดเลือดแดง (exits of arteries) ใช้เงื่อนไขค่า
ขอบเป็นแรงดันแบบคลื่น ขณะที่ที่ผนังหลอดเลือดใช้เงื่อนไขโนสลิป (non-slip boundary con-
dition)
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Figure 4: The periodic blood pressure and flow rate waveforms oscillating within systolic
and diastolic levels with cardiac period T = 0.8s.

ดังนั้น ณ ทางเข้าของเอออร์ตา ความเร็วเลือดเป็นความเร็วแบบคลื่น (pulsatile velocity)
ūin(t) = Q(t)/A, (4)

โดยที่ A และ Q(t) คือพื้นที่ภาคตัดขวางของผิวทางเข้า และ อัตราการไหลแบบคลื่่นตามลำดับ
รูปที่ 4 แสดงรูปแบบแรงดันและอัตราการไหลในแต่ละส่วนของระบบหลอดเลือดอาทิรี่ จากเอกสาร
อ้างอิงการศึกษาของ [18] รูปแบบคลื่นการไหลสามารถเขียนได้ในรูปของอนุกรมฟูเรียร์ ต่อไปนี้

Q(t) = Q+
4∑

n=1

αQ
n cos(nωt) + βQ

n sin(nωt). (5)

ณปลายหลอดเลือด เงื่อนไขแบบคลื่นของแรงดัน สามารถเขียนได้ในรูปของอนุกรมฟูเรียร์เช่นกัน
นั่นคือ

p(t) = p+
4∑

n=1

αp
ncos(nωt) + βp

nsin(nωt), (6)

โดยที่ Q̄ คืออัตราการไหลเฉลี่ย และ ω =
2π

T
คือความถี่เชิงมุม (angular frequency) ด้วยคาบ

T = 0.8 วินาที และ p̄ คือแรงดันเฉลี่ย (mean pressure) ดังนั้น ณ ปลายหลอดเลือด (outlet
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Table 1: Values of the parameters αQ
n , αp

n, θQn and θpnArtery vessel n αQ
n βQ

n αp
n βp

nAorta 1 1.7048 -7.5836 8.1269 -12.4156
Q̄ = 5.7222 2 -6.7035 -2.1714 -6.1510 -1.1072
p̄ = 97.2222 3 -2.6389 2.6462 -1.333 -0.3849
A = 6.7287 4 0.7198 0.2687 -2.9473 1.1603

LCA 1 0.1007 0.0764 -3.3107 -2.2932
Q̄ = 0.1589 2 -0.0034 -0.0092 -9.8639 8.0487
p̄ = 84.9722 3 0.0294 0.0337 3.0278 3.8009

4 0.0195 -0.0129 2.2476 -3.2564
RCA 1 0.0393 0.0241 5.9369 3.6334

Q̄ = 0.0896 2 -0.0360 0.0342 -11.1997 2.1255
p̄ = 95.3333 3 -0.0131 0.0026 -2.2778 -3.7528

4 -0.0035 -0.0041 2.7333 -0.6375

boundary) เงื่อนไขค่าขอบคือ
σ · n = −p(t)n, (7)

โดยที่ nคือเวกเตอร์หน่วยชี้ตั้งฉากออกจากบริเวณผิวขอบ เงื่อนไขแบบ โน-สลิป ถูกนำมาใช้บริเวณ
ผิวนอกของหลอดเลือด และค่าต่างๆของ Q̄, p̄, αQ

n , αp
n, θQn และ θpn ถูกแสดงใน Table 1

ขณะนี้ เราสามารถสรุปได้ว่า ปัญหาการไหลของเลือดในระบบหลอดเลือดหัวใจของมนุษย์สามารถ
อธิบายได้ด้วยปัญหาค่าขอบ (boundary value problem)

BVP: การหา u และ p ที่ซึ่งสอดคล้องกับสมการ (1)-(2) และเงื่อนไขค่าขอบทั้งหมด

สมการสมาชิกจำกัด (Finite element formualtion และเทคนิคการคำนวณ)

Variational statement ที่สอดคล้องกับ BVP ข้างต้นคือ
การหา u ∈ [H1(Ω)]3 และ p ∈ H1(Ω) ที่ซึ่ง สำหรับทุกๆ wu ∈ [H1

0 (Ω)]
3, และ wp ∈ H1

0 (Ω),
สอดคล้องกับทุกเงื่อนไขค่าขอบ และสมการต่อไปนี้

(∇ · u, wp) = 0,(
∂u
∂t
,wu

)
+ ((u · ∇)u,wu) =

1

ρ

(
∇ · [−pI + η(∇u+ (∇u)T )],wu

)
,

(8)

โดยที่H1(Ω)คือปริภูมิ SobolevW 1,2(Ω)ที่มีนอร์มเป็น ∥ · ∥1,2,Ω และH1
0 (Ω) = {v ∈ H1(Ω)|v =

0 ณ ขอบแบบ Dirichlet type } และ (·, ·) คือ inner product บนปริภูมิของ square integrable
function L2(Ω)
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ด้วยการใช้เงื่อนไขที่ขอบ (4) และ (7) เราจะได้ว่า∫
Ω2

Ψ
∂ΦT

∂xi
dΩUi = 0, (9)

∫
Ω1

ΦΦTdΩU̇i +

∫
Ω1

Φuj
∂ΦT

∂xj
dΩUi −

1

ρ

∫
Ω1

∂Φ

∂xi
ΨTdΩP

+
1

ρ

∫
Ω1

η(γ̇)
∂Φ

∂xj

∂ΦT

∂xj
dΩUi +

1

ρ

∫
Ω1

η(γ̇)
∂Φ

∂xj

∂ΦT

∂xi
dΩUj

+
1

ρ

∫
Γexit

ΦΨT dΓP = 0,

(10)

โดยที่ Ψ = (ψ1, ψ2, . . ., ψM)T , Φ = (ϕ1, ϕ2, . . ., ϕL)
T และ Ui = (u1i, u2i, . . ., uLi) ที่ซึ่ง

สัญลักษณ์ดอทบนตัวแปร คืออนุพันธ์เทียบกับเวลา

ด้วยวีธีการมาตรฐานในการพัฒนาสมการสมาชิกจำกัดกาเลอคิน (Galerkin finite element
formulation) เราจะได้ระบบสมการต่อไปนี้

CTU = 0,

MU̇+ A(u)U+ Ĝ(η)U+ ĈP = 0,
(11)

ซึ่งสามารถเขียนได้ในรูป
CTU = 0,

MU̇+DuU+ ĈP = 0,
(12)

ในงานวิจัยนี้ ผู้วิจัยได้หาแก้ระบบสมการข้างต้น (12) ด้วยเทคนิค implicit time integration scheme
สำหรับแต่ละช่วงเวลาสั้นๆ (tn → tn+1) เราได้ว่า

CTUn+1 = 0,(
M

∆tn
+Du

)
Un+1 + ĈPn+1+ =

M

∆tn
Un,

(13)

ซึ่งไม่เชิงเส้น เนื่องจากDu ขึ้นกับค่าของUn+1 ในการจัดการกับความไม่เชิงเส้นนี้สำหรับผลเฉลย
ซ้ำ(13) เราจะใช้ iterative updating ต่อไปนี้

CTUi+1
n+1 = 0,(

M

∆tn
+Di

n+1

)
Ui+1

n+1 + ĈP i+1
n+1+ =

M

∆tn
Ui

n,
(14)

โดยที่ตัวยก i แทนการคำนวณที่ช่วงเวลาที่ i ดังนั้น ที่ช่วงเวลา (tn → tn+1) เริ่มต้นด้วย U0
n+1 =

Un เราสามารถหาUi+1
n+1 andP i+1

n+1 โดยการแก้ระบบสมการ (14) ซ้ำๆ จนกระทั่งl
∥∥Ui+1

n+1 − Ui
n+1

∥∥ <
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εu and ∥∥P i+1
n+1 − P i

n+1

∥∥ < εp

ด้วยการกระทำซ้ำวิธีการข้างต้น สำหรับ n = 0, 1, 2, . . . เราสามารถหา U และ P ของ
ระบบที่เวลา t0, t1, t2, . . .. ถ้านอร์มของ ∥Un+1 − Un∥ และ ∥Pn+1 − Pn∥, เล็กมากพอ แล้ว
ผลเฉลยที่ n ของระบบจะลู่เข้าสู่ผลเฉลยที่แท้จริงของระบบ (steady state)

ผลของการศึกษา
ผู้วิจัยได้ทำการประมวลผลการไหลของเลือดในระบบหลอดเลือดหัวใจสามมิติ ทั้งที่มีแขนง และ
ไม่มีแขนงพื้นที่คำนวณดังแสดงใน รูปที่ 3 คือระบบหลอดเลือดหัวใจของมนุษย์ ระบบนี้ประกอบ
ด้วยหลอดเลือดโคโรนารีข้างขวา (RCA) และหลอดเลือดโคโรนารีข้างซ้าย (LCA) ซึ่งโดยทั่วไปมี
ความยาวตั้งแต่ 1 ถึง 25 มิลลิเมตร และแยกแขนงออกไปเป็น left anterior descending (LAD)
artery และ left circumflex artery (LCX) [1] ในการศึกษานี้ ปริมาตรและพื้นที่รวมของระบบ
คือ 30.872 cm3 และ 82.615 cm2 พื้นที่ผิวและเส้นรอบรูปของทางเข้าของเลือดที่เอออร์ตา (inlet
aorta) เป็น 6.712 cm2 และ 9.893 cm พื้นที่ผิวและเส้นรอบรูปของทางออกของเลือดที่เอออร์ตา
(exit boundary of the aorta) เป็น 8.0243 cm2 และ 10.0559 cm ความยาวของ RCA, LAD และ
LCX เป็น 14.9215 cm, 8.7269 cm และ 8.2293 cm ตามลำดับ

คุณสมบัติของของไหลถูกกำหนดให้เป็นเลือดของมนุษย์ที่มีความหนาแน่น 1.06 g · cm−3 [17]
อัตราการไหลเฉลี่ย (Q̄) และความดันเฉลี่ย (p̄) ในเอออร์ตาเป็น 95.37 ml · s−1 และ 97.2222

mmHgตามลำดับ โดเมนเมชสองชุดของระบบหลอดเลือดหัวใจทั้งมีแขนงและไม่มีแขนงดังแสดง
ในรูปที่ 5 ประกอบด้วยสมาชิกรูป tetrahedral จำนวน 15, 510 รูปที่มี 121, 194 degrees of free-
dom และ 13, 106 รูปที่มี 104, 019 degrees of freedom ตามลำดับ
รูปที่ 6 แสดงค่าแรงดันในหนึ่งช่วงการบีบตัวของหัวใจที่จุดต่างๆในระบบที่มีแขนง เราพบว่าความ
ดันเลือดจะลดลงอย่างเชิงเส้นในแนวแกนของหลอดเลือด รูปที่ 7 แสดงเวกเตอร์ความเร็วซีสโตลิก
ของเลือดในระบบที่มีแขนง จะเห็นได้ว่าเลือดไหลเข้าสู่ RCA ด้วยความเร็ว 40 cm/sec จากขั้ว
ของเออร์ตา และไหลออกด้วยความเร็ว 5 cm/sec ที่ปลายสุดของ RCA เมื่อเลือดไหลมาบรรจบ
ทางแยกของแขนง จะแยกออกไปเป็นสองส่วน เป็นผลให้แรงดันเลือดลดลงตามแนวแกนของหลอด
เลือด ขณะที่เพิ่มแรงเค้นเฉือนที่ผนังบริเวณทางแยกดังรูปที่ 13(a) และ 14(a) ผลการศึกษาแสดง
ให้เห็นว่า artherosclerotic lessions มักเกิดบริเวณแขนงของหลอดเลือด

ในการศึกษาอิทธิพลของแขนงหลอดเลือดต่อการไหลของเลือดในระบบหลอดเลือดหัวใจของ
มนุษย์ ผู้วิจัยได้ตรวจสอบการกระจายแรงดัน สนามความเร็วเลือด อัตราการไหล และแรงเค้นที่
ผนัง ดังรูปที่ 8 ซึ่งแสดงการกระจายของแรงดันในระบบที่ไม่มีแขนงและมีแขนง ที่เวลาที่หัวใจบีบ
ตัวสูงสุด (the peak of the systolic period) รูปที่ 9 และ 10 แสดงแรงดันตามแนวแกนหลัก
ของหลอดเลือด RCA และ LCA+ LAD ซึ่งจะเห็นว่าความดันเลือดในระบบที่มีแขนงจะต่ำกว่าใน
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(a) (b)
Figure 5: The finite element mesh of the three-dimensional coronary artery: (a) with
branches; (b) with no branch.

ระบบที่ไม่มีแขนงอย่างเห็นได้ชัด รูปที่ 11 และ 12 แสดงอัตราการไหลตามเวลา (transient flow
rate) ใน RCA และ LCA ที่มีแขนงและไม่มีแขนงตามลำดับ เราพบว่าในระบบที่มีแขนงเลือดไหล
เข้าสู่ระบบด้วยอัตราที่สูงกว่าในระบบที่ไม่มีแขนง

รูปที่ 13 และ 14 แสดงแรงเค้นเฉือนที่ผนังตามแนวแกนของหลอดเลือด RCAและ LCA+LAD
ตามลำดับ จากการเปรียบเทียบกับระบบที่ไม่แขนง เราพบว่าค่าแรงเค้นเฉือนที่ผนังหลอดเลือดของ
ระบบที่มีแขนงจะสูงกว่า โดยเฉพาะบริเวณทางแยก แต่ในระบบที่ไม่มีแขนงค่าแรงเค้นที่ปลายหลอด
เลือดจะสูงกว่าในระบบที่มีแขนง

รูปที่ 15 และ 16 แสดงความเร็วเลือดในช่วงหนึ่งจังหวะการเต้นของหัวใจ ที่ขั้วหัวใจ (the be-
ginning from the aorta of the heart) และที่ปลายหลอดเลือดของระบบที่มีแขนง และไม่มีแขนง
ในระบบที่มีแขนง เลือดจะไหลเข้าสู่ RCA ด้วยความเร็วสูงถึง 40 cm/sec (เส้นทึบ) และไหลออก
ด้วยความเร็ว 5 cm/sec ที่ปลายหลอดเลือด (เส้นทึบ-รูปสี่เหลี่ยม) ดังรูปที่ 15(a) ในระบบที่ไม่มี
แขนง เลือดไหลเข้าสู่ RCA ด้วยความเร็ว 42.5 cm/sec และไหลออกด้วยความเร็ว 17.5 cm/
sec ที่ปลายหลอดเลือด ดังรูป 15(b) และในหลอดเลือด LCA+LAD ที่มีแขนง เลือดไหลเข้าด้วย
ความเร็ว 33 cm/sec และไหลออกที่ปลายหลอดเลือดด้วยความเร็ว 25 cm/sec ดังรูปที่ 16(a)
ส่วนในระบบที่ไม่มีแขนง เลือดไหลเข้าและออกจาก หลอดเลือดด้วยความเร็ว 30 cm/sec ดังรูป
ที่ 16(b)
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Figure 6: Pressure field in a cardiac cycle at various points in the RCA and the LCA.
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(a)

(b)
Figure 7: The distribution of blood velocity (cm/sec): (a) from the base of the Aorta to
the RCA and the LCA: (b) at the end parts of the RCA and the LAD.
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(a)

(b)
Figure 8: Blood pressure (mmHg) at the beginning (left column) and the peak (right
column) of the systolic period in the system of coronary artery: (a) with no branch; (b)
with branch.

ข้อสรุปและความคิดเห็น

ในหัวข้อนี้ ผู้วิจัยได้นำเสนอผลจากการศึกษาการไหลของเลือดในระบบหลอดเลือดหัวใจโดยพิจารณา
เงื่อนไขค่าขอบแบบคลื่น อิทธิพลของแขนงหลอดเลือดต่อปัญหาการไหลของเลือดได้ถูกนำเสนอ
โดยสมมติว่าเลือดเป็นของไหลนอนนิวโทเนียนที่มีความหนาแน่นคงที่ จากผลการศึกษาเชิงคำนวณ
พบว่าแขนงของหลอดเลือดเป็นปัจจัยสำคัญที่ลดแรงดันเลือด และเพิ่มแรงเค้นที่ผนังด้านในของ
หลอดเลือดโดยเฉพาะบริเวณทางแยกนั่นคือโดยธรรมชาติของหลอดเลือดที่มีแขนง การเกิด artheroscle-
rotic lessions บริเวณทางแยกเป็นเรื่องปกติ
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(a) with branches (b) with no branch
Figure 9: Pressure along the main artery of the RCA at the beginning (dashed line) and
the peak (solid line) of the systolic period: (a) with branch, (b) with no branch.

(a) with branches (b) with no branch
Figure 10: Pressure along themain artery of the LCA connecting to LAD at the beginning
(dashed line) and the peak (solid line) of the systolic period: (a) with branch, (b) with
no branch.
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(a) with branches (b) with no branch
Figure 11: Transient flow rate through the main artery of the RCA: (a) with branches, (b)
with no branch.

(a) with branches (b) with no branch
Figure 12: Transient flow rate through the main artery of the LCA connecting to LAD: (a)
with branches, (b) with no branch.
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(a) with branches (b) with no branch
Figure 13: Wall shear stresses along the main arteries of the RCA at the beginning
(dashed line) and the peak (solid line) of the systolic period: (a) with branch, (b) with
no branch.

(a) with branches (b) with no branch
Figure 14: Wall shear stresses along the main artery of the LCA connecting to LAD at the
beginning (dashed line) and the peak (solid line) of the systolic period: (a) with branch,
(b) with no branch.
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(a) with branches (b) with no branch
Figure 15: Velocity field at the entrance (solid line) and at the end (solid line with square)
of the main artery of the RCA during an cardiac cycle.

(a) with branches (b) with no branch
Figure 16: Velocity field at the entrance (solid line) and at the end (solid line with square)
of the main artery of the LCA connecting to LAD during an cardiac cycle.
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4. แบบจำลองคณิตศาสตร์และเทคนิคเชิงคำนวณของการเคลื่อนที่ของ
อนุภาคยาเหลวไปกับกระแสเลือด ในหลอดเลือดโคโรนารี
การนำส่งอนุภาคยาไปยังเป้าหมายในร่างกายมนุษย์ด้วยพลังสนามแม่เหล็กเป็นวิธีการพาอนุภาค
แม่เหล็กขนาดนาโนสเกลไปยังเซลเป้าหมาย วิธีการนี้จะเพิ่มความเข้มข้นของยาให้กับบริเวณเป้า
หมาย และยังลดผลกระทบข้างเคียงของยา (side-effects) ได้อีกด้วย โดยที่อนุภาคยา คือของไหล
เชิงแม่เหล็ก (magnetic fluids) ที่ประกอบด้วยอนุภาคขนาดเล็กมาก (ultramicroscopic partil-
ces) ของ ออกไซด์แม่เหล็ก (magnetic oxide) ซึ่งจะถูกลากเข้าไปใกล้เนื้อเยื่อเป้าหมายด้วยแรง
จากสนามแม่เหล็ก ในหัวข้อนี้ ผู้วิจัยได้นำเสนอแบบจำลองคณิตศาสตร์เพื่ออธิบายการเคลื่อนที่
ของอนุภาคยาเหลวไปกับกระแสเลือด ภายใต้แรงจากสนามแม่เหล็ก ด้วยเทคนิคการคำนวณเชิง
สมาชิกจำกัดที่อาศัย level set method ถูกนำมาประยุกต์ใช้ในการหาผลเฉลยของระบบสมการ
เชิงอนุพันธ์ย่อยสามระบบ สนามแม่เหล็กไฟฟ้า (Electromagnetic field) จะถูกอธิบายด้วยสม
การแมกซ์เวล (Maxwell equation) สนามเวกเตอร์ความเร็วถูกควบคุมด้วยสมการเนเวียร์สโตกซ์
(Navier-Stoke equations) และผิวสัมผัสสามารถอธิบายได้ด้วย level set function การประมวล
ผลเชิงตัวเลขช่วยให้สามารถเข้าใจปรากฏการณ์ของไหลในหลอดเลือดโคโรนารี ได้ดีขึ้น ข้อมูลที่
ได้รับจะเป็นประโยชน์ในทางคลีนิค ต่อการพัฒนาเทคนิควิธี สำหรับการปรับปรุงการให้ยา ไปยัง
บริเวณเป้าหมายได้อย่างเหมาะสม

Figure 1: โดเมนคำนวณการเคลื่อนที่ของอนุภาคยาเหลวไปกับกระแสเลือดด้วยแรงจากสนาม
แม่เหล็ก



สมการควบคุมการเคลื่อนที่ของอนุภาคยาเหลวไปกับกระแสเลือด

ในหัวข้อนี้ ผู้วิจัยจะการศึกษาอิทธิพลของการตีบตันต่อการไหลของเลือดในหลอดเลือดโคโรนารี
ข้างขวา และตรวจสอบการเคลื่อนที่ของอนุภาคยาเหลวไปกับกระแสเลือดในหลอดเลือดโคโรนา
รีนี้ เราจะใช้เทคนิคเชิงคำนวณที่เรียกว่า level-set method เพื่อแสดงรูปร่างและผิวสัมผัสระหว่าง
สสารที่ต่างกันในระบบพิกัดคาร์ทิเชียลคงที่ (fixed Cartesian grid) ในที่นี้คือระหว่างอนุภาคยา
เหลว และน้ำเลือด กำหนดให้ Ω ⊂ R3 เป็นบริเวณหลอดเลือดโคโรนารีที่เต็มไปด้วยน้ำเลือด และ
อนุภาคยาจำนวนหนึ่งบริเวณต้นหลอดเลือด

การคำนวณผิวสัมผัสระหว่างอนุภาคยากับน้ำเลือดนั้น เราอาศัย level set function ϕ(x; t)
ซึ่งถูกนิยามในโดเมนที่มีผิวสัมผัสโค้งปิดของของไหลสองชนิด โดยที่ x คือตำแหน่งพิกัดในโดเมน
และ t คือ เวลา โดยการกำหนดค่าเริ่มต้นให้กับฟังก์ชันนี้ที่เวลา t = 0 (initialization)นั่นคือ

ϕ(x, t) = ±d

โดยที่ d คือระยะจากตำแหน่งพิกัด x ไปยังผิวสัมผัสโค้ง มีค่าเป็นบวกเมื่อ x อยู่นอกผิวสัมผัสโค้ง
ปิด และเป็นลบ เมืออยู่ภายในผิวโค้งปิด ที่เวลา t0 ผิวสัมผัสโค้งนี้ก็คือเซตของจุดทั้งหลายโดยที่

ϕ(x, t0) = 0

และมีเซตของจุดที่
ϕ(x, t0) = c

อยู่โดยรอบ โดยที่ c เป็นค่าคงที่บวกหรือลบใดๆ
เห็นได้ชัดว่า ขณะที่ผิวสัมผัสโค้งเปลี่ยนแปลงไปตามเวลา ฟังก์ชัน ϕ ที่จุดต่างๆบนโดเมนเมช

เปลี่ยนแปลงไปด้วย ในช่วงเวลาที่เพิ่มขึ้นเพียงเล็กน้อย (small increments of time) ในการพิจารณา
การเปลี่ยนแปลงของ ϕ ไปตามเวลานั้น เราพิจารณาฟังก์ชันของพิกัด x(t) ที่ซึ่งอธิบายเส้นทาง
ของจุดบนผิวสัมผัส นั่นคือ

ϕ(x(t), t) = 0

และด้วยกฎ chain rule เราได้ว่า
ϕt +∇ϕ · x′(t) = 0

กำหนดให้ n⃗ เป็นเวกเตอร์หน่วยตั้งฉากออกจากโค้้งสัมผัส เราสามารถเขียน n⃗ ในรูปของฟังก์ชัน
ϕ ได้ดังนี้

n⃗ =
∇ϕ
|∇ϕ|

,

โดยที่ ค่าสัมบูรณ์ของเกรเดียนของ ϕ คือ

|∇ϕ| ≡

√(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
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เนื่องจากฟังก์ชันความเร็ว F ในทิศ outward normal direction มีค่าเท่ากับ
F = x′(t) · n⃗

และด้วยการแทนค่า F และ n⃗ เราได้สมการควบคุมสำหรับฟังก์ชัน ϕ คือ
ϕt + F |∇ϕ| = 0,

โดยที่ F = F0 + εκ สำหรับค่าคงที่ ε ส่วน κ = −∇ · n⃗ คือ interface curvature นั่นคือ
ϕt = −F0|∇ϕ| − εκ|∇ϕ|

ด้วย first-order Taylor expansion เทียบกับ t เราสามารถประมาณค่าฟังก์ชัน ϕ ที่เวลา t+∆t

ได้จาก
ϕ(x, t+∆t) = ϕ(x, t) + (∆t)ϕt

ในการศึกษานี้กำหนดให้ของไหลทั้งสองเป็นของไหลแบบนอนนิวโทเนียน และเนื่องด้วยของไหล
ทั้งสองมีคุณสมบัติต่างกัน ค่าพารามิเตอร์ต่างๆที่แสดงคุณสมบัติของของไหล จึงมีความไม่ต่อเนื่อง
บริเวณผิวสัมผัสโค้ง ดังนั้นเราจึงต้องปรับค่าความหนาแน่น ρ และค่าความหนืด µ เป็นฟังก์ชัน
ของ ϕ ดังนี้

ρ(ϕ) = ρb + (ρd − ρb)ϕ,

µ(ϕ) = µb + (µd − µb)ϕ,

โดยที่ตัวห้อย b และ d แทน เลือด และอนุภาคยาตามลำดับ สมการควบคุมการไหลของของไหล
ทั้งสองคือสมการความต่อเนื่องและสมการเนเวียร์สโตกส์

∇ · v = 0 (1)
∂v
∂t

−−∇ ·
(
µ(ϕ)

ρ(ϕ)
∇v− vv− 1

ρ(ϕ)
pI
)

=
1

ρ(ϕ)
Fmag +

1

ρ(ϕ)
Fst, (2)

โดยที่ p และ vคือแรงดันและความเร็วของของไหลตามลำดับ และ Fmag คือแรงภายนอกอันเนื่องจาก
สนามแม่เหล็ก ส่วน Fst แรงตึงผิว (surface tension force) กระทำต่อผิวสัมผัสโค้ง

Fst = σδ(ϕ)κ(ϕ)n, (3)
โดยที่ σ และ δ(ϕ) คือสัมประสิทธิ์แรงตึงผิว (surface tension coefficient) และเดลต้าฟังก์ชัน
ในที่นี้กำหนดให้

δ(ϕ) = 6|∇ϕ||ϕ(1− ϕ)|. (4)
ในการที่จะควบคุมให้อนุภาคแม่เหล็ก (drugs) ไปยังบริเวณที่ต้องการรักษา เราจะใช้แรงภายนอก
จากสนามแม่เหล็กมาควบคุม การเคลื่อนที่ของอนุภาค ซึ่งแรงนี้สามารถอธิบายได้ด้วยสมการ

Fmag =
1

µr

(M · ∇)B, (5)
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โดยที่ µr คือค่า relative permeability ของสสารแม่เหล็ก และ M = (Mx,My,Mz) คือโมเมนต์
เชิงแม่เหล็กของ อนุภาคยา และ B = (Bx, By, Bz) คือความหนาแน่นของฟลักซ์แม่เหล็ก สำหรับ
เงื่อนไขสถิต (static condition) ใน stationary bodies ความหนาแน่นของฟลักซ์แม่เหล็กB สามารถ
อธิบายได้ด้วยสมการของแมกซ์เวล (Maxwell’s equations) นั่นคือ

∇B = 0
∇× H = J (6)

โดยที่ความหนาแน่นของฟลักซ์แม่เหล็กB และความแรงของสนามแม่เหล็กHมีความสัมพันธ์กัน
ดังนี้

B = µ0µrH+ Br, (7)
ที่ซึ่ง Br = µ0µrM คือ residual flux density และ µ0 คือค่า permeability ของอากาศ โดยรอบ
และ µr คือ relative permeability ของสสารแม่เหล็ก

จากสมการ (6)1,เราสามารถคำนวณความหนาแน่นของฟลักซ์แม่เหล็กได้จาก ศักย์แม่เหล็กAนั่น
คือ B = ∇× A ซึ่งสอดคล้องกับ (6)1 และโดยใช้คุณสมบัติ

∇× (∇× A) = ∇(∇ · A)−△A,
และ Coulomb gauge ∇ · A = 0, สมการ (6)2 กลายเป็น

∇× (µ−1
0 µ−1

r ∇× A−M) = J, ∀x ∈ Ω (8)
โดยที่ J คือความเข้มของกระแสไฟ ซึ่งสามารถคำนวณได้จาก

−∇ · (σ∇V − Je) = 0, ∀x ∈ Ω (9)
โดยที่ V คือ electric potential และ Je) คือ external current density ส่วน σ คือค่าการนำ
ไฟฟ้า (conductivity) ของสสาร สมการ (1) - (8) คือระบบสมการเชิงอนุพันธ์ย่อยของฟังก์ชันที่
ขึ้นกับเวลา vx, vy, vz, p และ ϕ และฟังก์ชันที่ไม่ขึ้นกับเวลา A แบบจำลองข้างต้นจะสมบูรณ์เมื่อ
ได้กำหนดเงื่อนไขค่าขอบของปัญหาที่ต้องการศึกษา ในการศึกษานี้ ผู้วิจัยกำหนดให้เลือดไหลเข้า
สู่หลอดเลือดด้วยความเร็วแบบคลื่น และไหลออกได้อย่างอิสระ ดังนี้

พิจารณาจากกลไกการไหลของเลือดในหลอดเลือดหัวใจ ซึ่งหัวใจเป็นเสมือนเครื่องปั๊มสองจังหวะ
คือจังหวะหรือช่วงที่คลายตัว (atria) และบีบตัว (ventricles contract) หัวใจฉีดเลือดไปเลี้ยงส่วน
ต่างๆของร่างกาย และสูบเลือดกลับเข้ามาในหัวใจเพื่อส่งไปฟอกที่ปอดในช่วง systole และ di-
astole ภาวะการไหลของเลือดตามจังหวะการเต้นของหัวใจ (pulsatile condition) แสดงดังรูปที่
1 สังเกตได้ว่าค่าความดันและอัตราการไหลของเลือดในช่วง systolic และ diastolic ซึ่งสามารถ
อธิบายได้ด้วยสมการ

p(t) = p(t+ nT ), Q(t) = Q(t+ nT ), (10)
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Figure 2: ค่าของความดันและอัตราการไหลของเลือดในช่วง systolic และ diastolic

Table 1: ค่าพารามิเตอร์ที่ใช้ในการคำนวณ
n αQ

n βQ
n αp

n βp
n1 0.0393 0.0241 5.9369 3.6334

2 -0.0360 0.0342 -11.1997 2.1255
3 -0.0131 0.0026 -2.2778 -3.7528
4 -0.0035 -0.0041 2.7333 -0.6375

สำหรับ n = 0,±1,±2, ...

เราสามารถเขียนฟังก์ชันคาบ (periodic function) ได้ด้วยอนุกรมฟูเรียร์ (Fourier series) ดังนี้
Q(t) = Q̄+

∑4
n=1 α

Q
n cos(

2nπt
T

) + βQ
n sin(

2nπt
T

),

p0(t) = p̄+
∑4

n=1 α
p
ncos(

2nπt
T

) + βp
nsin(

2nπt
T

),

(11)

โดยที่ Q̄ = 0.0896 litre/mimute และ p̄ = 95.3333 mmHg คืออัตราการไหลเฉลี่ยและแรงดัน
เฉลี่ยตามลำดับ T คือระยะเวลาในหนึ่งช่วงจังหวะการเต้นของหัวใจ และค่าต่างๆของ αQ

n , αp
n,

βQ
n และ βp

n แสดงดังตารางที่ 1 โดยที่ อัตราการไหลเฉลี่ย = 0.0896 ลิตร ต่อนาที และและความ
ดันเลือดเฉลี่ย เป็น 95.3333 มิลลิเมตรปรอท, T เป็นช่วงเวลาในหนึ่งคาบของการเต้นของหัวใจ
และค่าของสัมประสิทธ์ และ แสดงดังตารางที่ 1

ดังนั้นสำหรับ i, j = 1, 2, 3

||v|| = Q
A

on ∂Ωin

p = p0(t), (µn(ui,j + (uj,i)) · n = 0 on ∂Ωout
(12)

โดยที่ ū0(t) = Q(t)
A
, A คือพื้นที่ผิวเรียบที่เลือดไหลเข้าสู่ RCA, Q(t) อัตราการไหลแบบคลื่น
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(pulsatile flow rate) และ p0(t) คือความดันแบบคลื่น

ผลการคำนวณเชิงตัวเลข
ในการศึกษานี้ ผู้วิจัยกำหนดให้แหล่งผลิตสนามแม่เหล็กเป็น annealed copper standard ที่มี
โมเมนต์เป็น M = (5× 104, 5× 104, 0)T และโมเมนต์สำหรับอนุภาคแม่เหล็กคือ

Mx = atan−1

(
b

µ0µr

(Az,y − Ay,z)

)

My = atan−1

(
b

µ0µr

(Ax,z − Az,x)

)
Mx = atan−1

(
b

µ0µr

(Ay,x − Ax,y)

)
โดยที่ a และ b คือพารามิเตอร์ของสสารมีค่าเป็น 1× 10−4 และ 3× 10−5 ตามลำดับ

จากสมการ (2), แรงจากสนามแม่เหล็ก Fmag = (Fx, Fy, Fz)
T หาได้จาก

Fx =
1

µr

(Mx(Az,yx − Ay,zx) +My(Az,yy − Ay,zy) +Mz(Az,yz − Ay,zz))

Fy =
1

µr

(Mx(Ax,zx − Az,xx) +My(Ax,zy − Az,xy) +Mz(Ax,zz − Az,xz))

Fz =
1

µr

(Mx(Ay,xx − Ax,yx) +My(Ay,xy − Ax,yy) +Mz(Ay,xz − Ax,yz))

เลือดและอนุภาคยาเป็นของเหลวแบบนอนนิวโทเนียน และมีความหนาแน่นคงที่เป็น 1060 และ
1112 kg/m3 ตามลำดับ ค่า relative magnetic permeability ของ free space (µ0) และของ เนื้อ
เยือ, เลือด และอนุภาคยา(µr) เป็น 1.25664×10−16, 1.000, 0.99998 และ 5000 J/(A2·m)ตาม
ลำดับ ค่าการนำไฟฟ้า (electric conductivity) ของ เนื้อเยือ, เลือด , อนุภาคแม่เหล็ก และแหล่ง
ผลิตสนามแม่เหล็กคือ 0.3, 1.57, 1.0×10−12 และ 0.58 ×108 Siemens/m

รูปที่ 3แสดงโดเมนเมชของหลอดเลือดโคโรนารีข้างขวาที่ปกติ และอุดตันบริเวณช่วงก่อนทาง
แยกแขนงที่หนึ่ง และหลังทางแยกแขนงที่หนึ่งตามลำดับ รูปที่ 4 แสดงแรงดันเลือดและเวกเตอร์
ความเร็วในขณะที่หัวใจบีบตัวสูงสุด ในหลอดเลืือดโคโรนารีปกติ รูปที่ 5 และ 6 แสดงค่าแรงดัน
ในหลอดเลือดอุดตันขณะที่หัวใจคลายตัวและบีบตัวสูงสุด จะพบว่าค่าแรงดันจะลดลงอย่างมาก
บริเวณที่อุดตันโดยเฉพาะบริเวณคอของหลอดเลือดอุดตัน เลือดจะไหลด้วยความเร็วสูงที่คอของ
บริเวณที่อุดตัน (throat of the stenosis)

ในการตรวจสอบผลกระทบของดีกรีการอุดตันต่อรูปแบบการไหล ค่าแรงดัน และอัตราแรงเฉือน
ที่ผนัง ของหลอดเลือดพบว่าในหลอดเลือดปกติ เลือดจะไหลเข้าสู่ RCAด้วยความเร็วที่ค่อยๆลด
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Figure 3: หลอดเลือดโคโรนารีข้างขวาที่ปกติ และอุดตันบริเวณช่วงก่อนทางแยกแขนงที่หนึ่ง
และหลังทางแยกแขนงที่หนึ่ง

ลง ในขณะที่ความดันลดลงอย่างเชิงเส้น ดังรูปที่ 4 เมื่อดีกรีการอุดตันเพิ่มสูงขึ้น แรงดันจะเพิ่มสูง
ขึ้นมากในบริเวณก่อนการอุดตัน และลดลงอย่างมากในบริเวณที่อุดตัน เพื่อที่สามารถดันให้เลือด
ไหลผ่านท่อตันได้ ซึ่งเป็นผลให้ค่าอัตราแรงเฉือนสูงมากขึ้นด้วยในบริเวณที่อุดตัน แสดงดังรูปที่ 7
ผลจากการคำนวณการนำส่งอนุภาคยาเหลว ไปยังเซลเป้าหมายด้วยพลังสนามแม่เหล็ก แสดงดัง
รูปที่ 8 ถึงรูปที่ 10

รูปที่ 8 แสดงการเคลื่อนที่ของอนุภาคยาไปกับกระแสเลือดในหลอดเลือดโคโรนารีข้างซ้าย รูป
ที่ 9 และ 10 แสดงการกระจายค่าความหนาแน่นของฟลักซ์แม่เหล็ก B จะเห็นได้ว่าเนื้อเยื่อโดย
รอบบริเวณหลอดเลือดมีค่าฟลักซ์แม่เหล็กประมาณ 0.1 - 0.5 tesla ซึ่งจากการศึกษาพบว่าด้วย
แรงจากสนามแม่เหล็กนี้ อนุภาคยาเหลวจะถูกส่งไปยังเซลเป้าหมายได้สำเร็จ และจากการศึกษา
เราพบว่าปราศจากแรงจากสนามแม่เหล็ก อนุภาคยาจะกระจายไปยังแขนงเส้นเลือดอื่นด้วย
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Figure 4: แรงดันเลือดและเวกเตอร์ความเร็วในขณะที่หัวใจบีบตัวสูงสุด ในหลอดเลืือดโคโรนารี
ปกติ
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Figure 5: แรงดันเลือดในขณะที่หัวใจคลายตัวและบีบตัวสูงสุด ในหลอดเลืือดโคโรนารีที่อุดตัน
ก่อนทางแยกของแขนงที่หนึ่ง
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Figure 6: แรงดันเลือดในขณะที่หัวใจคลายตัวและบีบตัวสูงสุด ในหลอดเลืือดโคโรนารีที่อุดตัน
หลัง ทางแยกของแขนงที่หนึ่ง
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Figure 7: แรงดันเลือดและอัตราแรงเฉือนตามแนวแกนหลอดเลือด ในขณะที่หัวใจบีบตัวสูงสุด
ในหลอดเลืือดโคโรนารีแบบต่างๆ: เส้นทึบ สำหรับหลอดเลือดอุดตัน 65 %, เส้นประ สำหรับ
หลอดเลือดอุดตัน 50% และเส้นไข่ปลา สำหรับหลอดเลือดปกติ
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t = 0s t = 0.01s

t = 0.03s t = 0.05s

t = 0.07s t = 0.09s

Figure 8: การเคลื่อนที่ของอนุภาคยาไปกับกระแสเลือดในหลอดเลือดโคโรนารีข้างซ้าย
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Figure 9: Streamline plot ของ B(tesla)
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Figure 10: ความหนาแน่นของศักย์แม่เหล็กบริเวณระนาบที่จุดกึ่งกลางของแหล่งผลิตสนามแม่
เหล็ก
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Abstract. In this work, we investigate the behavior of the pulsatile blood
flow in the system of human coronary arteries. Blood is modeled as an in-
compressible non-Newtonian fluid. The transient phenomena of blood flow

through the coronary system are simulated by solving the three dimensional
unsteady state Navier-Stokes equations and continuity equation. Distributions
of velocity, pressure and wall shear stresses are determined in the system under
pulsatile conditions on the boundaries. Effect of branching vessel on the flow

problem is investigated. The numerical results show that blood pressure in
the system with branching vessels of coronary arteries is lower than the one in
the system with no branch. The magnitude of wall shear stresses arises at the
bifurcation.

1. Introduction. The major vessels of the coronary circulation as shown in Fig.
1 are the left coronary (LCA) that divides into left anterior descending (LAD) and
circumflex branches (LCX), and the right coronary artery (RCA). The left and right
coronary arteries originate at the base of the aorta which ensure a rich supply of
oxygenated blood and lie on the surface of the heart. Through these vessels, blood
is distributed to different regions of the heart muscle. As one get older, vessels may
become hardened and contain fatty deposits or atheroma formations on the inner
lining of the vessel. This reduces the vessel’s ability to expand during the systole.
The deposition of atheromas in the arteries causes narrowing of the coronary arteries
known as the coronary artery disease (CAD). These arterial changes occur silently,
and symptoms are often present until atheroma formation occludes more than two
thirds of the vessel [12]. Fig.2 shows the angiogram of a stenosed coronary artery.

Today the CAD is considered as one of the major causes of human death. Most
of the cases are associated with some form of abnormal blood flow in arteries due
to the existence of stenoses. To create a new pathway for blood flow, the technique
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Figure 1. The major vessels of the coronary circulation

Figure 2. The angiogram of the RCA with stenosis.

of coronary artery bypass grafting (CABG) has been widely used for patients with
severe coronary artery diseases. In a CABG operation, the surgeon grafts the patient
own blood vessels, such as veins from the legs or arteries from the chest or arms,
onto the diseased coronary artery.

Over the last two decades, a large number of bypass grafts have been implanted
worldwide. However, up to 25 percents of grafts fail within one year and up to
50 percents fail within ten years after surgery [13]. Today, it has been recognized
that one of the most important determinations in a successful bypass operation is
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the information of the rheological behavior of blood, the flow speed, the pressure
distribution, the wall shear stress, and the wall deformation in cardiac cycles. Thus
over the last two decades, extensive research has been carried out to study blood
flow problems in the coronary artery, including experimental, analytical and nu-
merical studies. Studies for both normal and stenotic vessels have been carried out
for idealized arteries, idealized arterial bifurcations, branchings, and for specific,
clinically important cases such as the aortic arch, the carotid artery, and the coro-
nary arteries. In most work, blood is assumed to be a Newtonian fluid which is
generally a valid approximation for the rheological behavior of blood in the large
blood vessels with diameter of 2-3 millimeters [4, 6, 15]. Fei et al. [6] constructed
three dimensional iliofermoral bypass graft distal anastomoses under various con-
ditions of anastomotic angle configurations of 20, 30, 40, 45, 50, 60 and 70 degree.
The flow patterns and wall shear stress were numerically simulated. Staalsen et
al. [15] performed the end-to-side anastomosis with polyurethane graft on the pig
abdominal aorta.

To investigate the relationship between hemodynamic effect of the blood circu-
lation and vascular diseases in small vessels, the non-Newtonian effect of the blood
has been considered [3, 8, 9, 18]. Basombrio et al. [3] constructed numerical ex-
periments for non-trivial flow, close to realistic situations in hemodynamics. The
non-Newtonian effect based on the Casson’s rheological model was included. Jie et
al. [8] also included the effect of non-Newtonian property of blood in the model.
They investigated the influence of the non-Newtonian property of fluid on the wall
shear stress and flow phenomena. It is noted that the studies mentioned above used
totally unrealistic boundary conditions, such as constant velocity at the inlet and
constant pressure at the outlet. In 2006, Wiwatanapataphee et al. [18] studied
the effect of the bypass graft angle on the blood flow. They simulated the three-
dimension unsteady non-Newtonian blood flow in the artificial artery bypass graft
using realistic boundary condition arising from heart pump. The effect of using
different bypass graft angles, 45o, 60o and 90o, on the flow pattern was investigated
in that study.

In this work, we extend our previous work [18] on two aspects. Firstly, the
computational model is constructed based on the real geometry of human coronary
arteries by using CT scans. Secondly, the model includes the aorta, the left and
the right coronary arteries, and mimics the pulsatile flow condition. In comparison
with previous work, these two new features represent a significant step method
toward the application of mathematical model in surgery, as the model with these
features enable the computation of blood distribution to each part of the coronary
artery system so as for doctors to determine the critical conditions for surgery. It
also provide a computed aided means for doctors to design the geometry of bypass
grafts if necessary.

The rest of this paper is organized as follows. In section two, the complete
set of governing equations for blood flow is presented. In section three, a Bubnov-
Galerkin finite element method and numerical scheme for the solution of the problem
is formulated. In section four, numerical simulations for flow through the coronary
artery are shown. Finally some conclusions and the clinical significance of the results
are presented in section five.

2. Mathematical Model. The reliability of a robust mathematical model for sim-
ulating blood flow in the coronary artery system depends on the proper construction
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of the 3 essential components: the geometry of the system, the flow mechanism and
relevant boundary conditions, and the underlying differential equations governing
the dynamics of the flow.

The construction of the computation domain of the system of human coronary
arteries is based on over four hundreds computed tomography (CT) images of a
patient. From the CT images, we first obtain the real geometry of many cross-
sections. These cross-sections are then smoothed and connected to form the 3-D
domain. Figure 3 shows the 3-D geometry of the system of human coronary.

Figure 3. Geometry of the system of human coronary arteries.

For the dynamics of blood flow, we assume blood as an incompressible non-
Newtonian fluid. The governing equations of blood flow consist of the continuity
equation and the Navier-Stokes equations, which can be expressed in vector notation
as follows:

∇ · u = 0 in Ω1, (1)

∂u

∂t
+ (u · ∇)u =

1

ρ
∇ · σ in Ω1, (2)

where u is the blood velocity vector in the lumen region, ρ is the density of blood,
σ is the total stress tensor which is defined by

σ = −pI + 2η(γ̇)D, (3)

where p is the pressure and D is the rate of deformation tensor given by

D =
1

2

(
∇u+ (∇u)T

)
,

in which η and γ̇ denote respectively the viscosity of blood and shear rate. Various
non-Newtonian models have been proposed to describe the relation between η and
γ̇. In this work, we use Carreau’s shear-thinning model, namely,

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

](n−1)/2
,
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Figure 4. The periodic blood pressure and flow rate waveforms
oscillating within systolic and diastolic levels with cardiac period
T = 0.8s.

in which η0 and η∞ denote the zero shear viscosity and the infinite shear viscosity;
the consistency index, n, is a parameter whose value is between 0 and 1; γ̇ =√

2tr(D2) is a scalar measure of the rate of deformation tensor:

γ̇ =
√
2u12x + 2u22y + 2u32z + (u1y + u2x)2 + (u2z + u3y)2 + (u1z + u3x)2.

In the human cardiovascular system, due to the pulsatile pressure created by the
heart pump, blood is pushed from aorta to the left and the right coronary arteries
from which blood is distributed to different part of the heart muscle. In most
existing model, the computational region is limited to one artery and the flow rate
to this artery is fixed, which obviously does not describe the real situation. Thus,
in this work, we construct the model consisting of the aorta, the RCA and the
LCA, with which the flow rate on the entry of the aorta is specified while the flow
rate to the RCA and The LCA is allowed to be determined based on the system
configuration and the flow condition which is more realistic and allow determination
of flow behaves under different conditions. As blood is pumped into the aorta with
a fixed pulsatile flow rate and is distributed to different branches and exits, we set
the condition on the entry of the aorta as pulsatile velocity boundary condition,
and the condition on the exits of arteries as pressure boundary condition, while the
conditions on the blood-vessel wall are non-slip boundary condition.
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Table 1. Values of the parameters αQ
n , α

p
n, θ

Q
n and θpn

Artery vessel n αQ
n βQ

n αp
n βp

n

Aorta 1 1.7048 -7.5836 8.1269 -12.4156
Q̄ = 5.7222 2 -6.7035 -2.1714 -6.1510 -1.1072
p̄ = 97.2222 3 -2.6389 2.6462 -1.333 -0.3849
A = 6.7287 4 0.7198 0.2687 -2.9473 1.1603

LCA 1 0.1007 0.0764 -3.3107 -2.2932
Q̄ = 0.1589 2 -0.0034 -0.0092 -9.8639 8.0487
p̄ = 84.9722 3 0.0294 0.0337 3.0278 3.8009

4 0.0195 -0.0129 2.2476 -3.2564
RCA 1 0.0393 0.0241 5.9369 3.6334

Q̄ = 0.0896 2 -0.0360 0.0342 -11.1997 2.1255
p̄ = 95.3333 3 -0.0131 0.0026 -2.2778 -3.7528

4 -0.0035 -0.0041 2.7333 -0.6375

Thus, on the entry of aorta, the velocity is set to the pulsatile velocity

ūin(t) = Q(t)/A, (4)

where A and Q(t) are the cross-section area of the inlet surface and the pulsatile
flow rate. The typical pressure and flow rate profiles in different parts of the arterial
system are as shown in figure 4. According to reference [18], the flow waveform can
be expressed by the following Fourier series:

Q(t) = Q+

4∑
n=1

αQ
n cos(nωt) + βQ

n sin(nωt). (5)

On the exits, the pulsatile condition is used. According to [18], the pulsatile pressure
takes the form of the following Fourier series:

p(t) = p+

4∑
n=1

αp
ncos(nωt) + βp

nsin(nωt), (6)

where Q̄ is the mean volume flow rate, ω =
2π

T
is the angular frequency with period

T = 0.8s and p̄ is the mean pressure. Thus, on the outlet boundary, the boundary
condition is

σ · n = −p(t)n, (7)

where n is the outward unit normal vector at the boundary. No-slip condition is
applied to the outer arterial wall. The values of Q̄, p̄, αQ

n , α
p
n, θ

Q
n and θpn are as

shown in Table 1.

In summary, the blood flow problem in the system of human coronary arteries is
governed by the following boundary value problem.

BVP: Find u and p such that equations (1)-(2) and all boundary conditions are
satisfied.
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3. Numerical Algorithm Based on the Finite Element Method. To develop
a variational statement corresponding to the BVP, we consider the following alter-
native problem:
Find u ∈ [H1(Ω)]3, and p ∈ H1(Ω) such that for all wu ∈ [H1

0 (Ω)]
3, and wp ∈

H1
0 (Ω), all boundary conditions are satisfied and

(∇ · u, wp) = 0,(
∂u

∂t
,wu

)
+ ((u · ∇)u,wu) =

1

ρ

(
∇ · [−pI + η(∇u+ (∇u)T )],wu

)
,

(8)

where H1(Ω) is the Sobolev space W 1,2(Ω) with norm ∥ · ∥1,2,Ω and H1
0 (Ω) = {v ∈

H1(Ω)|v = 0 on the Dirichlet type boundary}, and (·, ·) denotes the inner product
on the square integrable function space L2(Ω).

Using boundary conditions (4) and (7), we have∫
Ω2

Ψ
∂ΦT

∂xi
dΩUi = 0, (9)

∫
Ω1

ΦΦT dΩU̇i +

∫
Ω1

Φuj
∂ΦT

∂xj
dΩUi −

1

ρ

∫
Ω1

∂Φ

∂xi
ΨT dΩP

+
1

ρ

∫
Ω1

η(γ̇)
∂Φ

∂xj

∂ΦT

∂xj
dΩUi +

1

ρ

∫
Ω1

η(γ̇)
∂Φ

∂xj

∂ΦT

∂xi
dΩUj

+
1

ρ

∫
Γexit

ΦΨT dΓP = 0,

(10)

where Ψ = (ψ1, ψ2, . . ., ψM )T , Φ = (ϕ1, ϕ2, . . ., ϕL)
T andUi = (u1i, u2i, . . ., uLi)

in which the superposed dot represents a time derivative.

Standard procedures for the development of the Galerkin finite element formulation
lead to the following system

CTU = 0,

MU̇+A(u)U+ Ĝ(η)U+ ĈP = 0,
(11)

The above system can be rewritten as

CTU = 0,

MU̇+DuU+ ĈP = 0,
(12)

In the present study, we solve the system of equation (12) using an implicit time
integration scheme. For a typical time step (tn → tn+1), we have

CTUn+1 = 0,(
M

∆tn
+Du

)
Un+1 + ĈPn+1+ =

M

∆tn
Un,

(13)

which is nonlinear because Du depends on Un+1. To deal with this nonlinearity for
an iterative solution of (13), we use the following iterative updating:

CTUi+1
n+1 = 0,(

M

∆tn
+Di

n+1

)
Ui+1

n+1 + ĈP i+1
n+1+ =

M

∆tn
Ui

n,
(14)
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(a) (b)

Figure 5. The finite element mesh of the three-dimensional coro-
nary artery: (a) with branches; (b) with no branch.

where the superscript i denotes evaluation at the ith iteration step. Therefore,
in a typical time step (tn → tn+1), starting with U0

n+1 = Un we determine

Ui+1
n+1 and P i+1

n+1 by solving system (14) repeatedly until
∥∥Ui+1

n+1 −Ui
n+1

∥∥ < εu
and

∥∥P i+1
n+1 − P i

n+1

∥∥ < εp.
By repeatedly using the above procedure for n = 0, 1, 2, . . . we can determine

the state U and P of the system at t0, t1, t2, . . .. If the norm ∥Un+1 −Un∥
and ∥Pn+1 − Pn∥, are sufficiently small, then the system approaches the so-called
steady state.

4. Results and Discussion. We have simulated the three-dimensional blood flow
through the system of coronary artery with branches and with no branch. The
computation region, as shown in Figure 3, represents the system of human coronary
arteries. The system of the coronary arteries consists of the right coronary artery
(RCA) and the left coronary artery (LCA) which typically runs for 1 to 25 mm and
then bifurcates into the left anterior descending (LAD) artery and the left circumflex
artery (LCX) [1]. In this study, the volume and surface area of the coronary system
are 30.872 cm3 and 82.615 cm2. The area and perimeter of the inlet aorta are
6.712 cm2 and 9.893 cm. The area and perimeter of exit boundary of the aorta are
8.0243 cm2 and 10.0559 cm. The lengths of the RCA, the LAD and the LCX are
14.9215 cm, 8.7269 cm and 8.2293 cm, respectively.

Flow simulations were conducted under typical physiological conditions. The
fluid properties are typical of human blood with the density of 1.06 g · cm−3 [17].
The mean flow rate (Q̄) and mean pressure (p̄) of the aorta are equal to 95.37 ml · s−1

and 97.2222 mmHg, respectively. Two domain finite element meshes of the system
with and with no branch are shown in Figure 5 consisting of 15, 510 tetrahedral
elements with 121, 194 degrees of freedom and 13, 106 tetrahedral elements with
104, 019 degrees of freedom, respectively.
Figure 6 illustrates pressure field in a cardiac cycle at various points in the system

with branches. It is noted the pressure decreases linearly along the arterial axis.



RUNNING HEADING WITH FORTY CHARACTERS OR LESS 9

Figure 6. Pressure field in a cardiac cycle at various points in the
RCA and the LCA.

Figure 7 shows the vector plot of the blood flow in the system with branches at
the peak of the systole. It shows that the flow of blood passes through the RCA at
40 cm/sec at the beginning originating from the aorta of the heart and 5 cm/sec
at the end of the RCA. When it arrives at the bifurcation, it splits into two parts.
This reduces the pressure distribution along the artery line while the magnitude
of wall shear stresses rises at the bifurcation as shown in figures 13(a) and 14(a).
The results indicate that artherosclerotic lessions is likely to develop around the
branchings of the artery.

To investigate the branchings on blood flow in the system of human coronary
arteries, pressure distribution, velocity field, flow rate and wall shear stress are in-
vestigated. Figure 8 shows distributions of blood pressure in the system of coronary
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(a)

(b)

Figure 7. The distribution of blood velocity (cm/sec): (a) from
the base of the Aorta to the RCA and the LCA: (b) at the end
parts of the RCA and the LAD.
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(a)

(b)

Figure 8. Blood pressure (mmHg) at the beginning (left column)
and the peak (right column) of the systolic period in the system of
coronary artery: (a) with no branch; (b) with branch.

artery with no branch and with branches at the beginning and the peak of the sys-
tolic period. Figures 9 and 10 present pressure profiles along the main arteries of the
RCA and the LCA connecting to LAD. The figures indicate that blood pressures in
the system with branches is significantly less than the ones in the system with no
branch. Figures 11 and 12 show transient flow rate through the main arteries of the
RCA and the LCA with branches and with no branch, respectively. They show that
the model with branches allows more flow rate of blood passing through the main
artery with branches. Figures 13 and 14 show the wall shear stresses along the
main arteries of the RCA and the LCA connecting to LAD, respectively. Compared
with the results obtained from the model with no branch, the wall shear stress tends
to increase in the model with branches. The figures depict the appearance of the
high wall shear stress around the bifurcation area of the model with branches but
at the end of the model with no branches. Figures 15 and 16 show blood speed
during a cardiac cycle at the entrance (the beginning from the aorta of the heart)
and at the end of the main arteries of the model with branches and with no branch.
In the model with branches, the blood passes through the RCA with highest speeds
of 40 cm/sec at the entrance (solid line) and 5 cm/sec at the end (solid line with
square) of the artery as shown in Figure 15(a). In the model with no branch, the
blood passes through the RCA with highest speed of 42.5 cm/sec at the entrance of
the RCA and it flows with highest speed of 17.5 cm/sec when it arrives to the end
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(a) with branches (b) with no branch

Figure 9. Pressure along the main artery of the RCA at the be-
ginning (dashed line) and the peak (solid line) of the systolic period:
(a) with branch, (b) with no branch.

(a) with branches (b) with no branch

Figure 10. Pressure along the main artery of the LCA connecting
to LAD at the beginning (dashed line) and the peak (solid line) of
the systolic period: (a) with branch, (b) with no branch.

of the artery as shown in Figure 15(b). The results also indicate that in the LCA
connecting to LAD with branches, the blood passes through the main artery with
highest speeds of 33 cm/sec at the entrance and 25 cm/sec at the end of the artery
as shown in Figure 16(a). In the model with no branch, blood passes through the
main artery with highest speeds of 30 cm/sec at both the entrance and at the end
of the artery as shown in Figure 16(b).

5. Conclusions. In this work, we present the simulation results of the blood flow
through the system of the coronary arteries taking into account the pulsatile condi-
tions at the boundaries. The effect of branchings of the artery on the flow problem
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(a) with branches (b) with no branch

Figure 11. Transient flow rate through the main artery of the
RCA: (a) with branches, (b) with no branch.

(a) with branches (b) with no branch

Figure 12. Transient flow rate through the main artery of the
LCA connecting to LAD: (a) with branches, (b) with no branch.

is investigated. The blood is assumed to be an incompressible non-Newtonian fluid.
From the results, it is noted that an branchings is a key factor contributing to a
reduction in the pressure distribution and an increase in the wall shear stresses
along the artery axis. The results show that the branchings of the artery has an
significant effect on the blood flow. The artherosclerotic lessions will develop due
to the higher wall shear stresses at the bifurcation.
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