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ABSTRACT

This project presents mathematical models of blood flow problem to study blood
- magnetic particle flow in small vessels and through coronary arteries taking into ac-
count of arterial wall deformation under pulsatile condition. To investigate the behav-
ior of the pulsatile blood flow in the system of coronary arteries, blood is modeled as
an incompressible non-Newtonian fluid. Transient phenomena of blood and magnetic
particle flow through the coronary arteries are simulated by solving the three dimen-
sional unsteady state Navier-Stokes equations, continuity equation, level set equation
and MAXWELL equations. Distributions of velocity, pressure and wall shear stresses are
determined in the system under the pulsatile conditions on the boundaries. Flow behav-
ior of liquid drug is presented. Effect of branching vessel and stenotic arteries on flow
problem and the effect of magnetic field on the drug flow are investigated. In addition,
this project also presents behaviour of the pressure gradient driven transient flow of a
liquid in micro-annulas (microflow) under a Navier slip boundary condition. Knowledge
gained from this project gives a better understanding of the mechanism of microflows in
the system of coronary arteries in order to improve drug-delivery technique to the target
cell.
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Tun1nAweeann F, luaunisi (9), mmmuﬁqwmimﬁﬂmmﬁﬁLﬂuLﬁ@Lﬁmﬁ“umm
WAY ﬂmmmmimuﬂwmmq LL@”SJWJ’]N‘MW]LLMHP]WW]@@@ (isotopic, homogenous and
|ncompre88|blefIU|d) LAZERLNENIAROUTIR I NABAAILANNIIANNABLEEY LAZALNNST

wWAa-alang sail
V-v=0, (14)

ov
Pf§+pf(V-V)V—V-U:F, (15)

AUTU X N Quer (1) 102N p; ABATANNUUILULTANADA, v = [u, v, w]TABINIAATANNLT
g ulA, uaz F Aausniauaningzinaradlva luniaanssainusaluunsaasianda
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TNAUALININ 471 o AANUIETIATHLINLAL (stress tensor) NTEN1IDAUINLlAANTeNAD
T
o= —pl+n(Vv+ (Vv)T), (16)

Inefl n ABATANNTATB4ABA (blood viscosity) WAL p ABAINALLALA (blood pressure)
Futsanden 11lsdenla no- slip donTiaumuRTe ANt (Ty,) fviunls

ﬂ’J’WNL?’J"ﬂ’NLZ\]@ﬂLﬂ‘LAﬂ’WﬂQV} ‘JJM”V]@WHV]?J@QLM@QiM@@@ﬂ (Fout) Lﬁ"]ﬂ’]ﬁl&ﬂiﬁﬂ’ﬂ\‘ima’ﬁﬁﬂ
@@ﬂ@mmmvuumh stress-free condition

vV = Vg onl}y,
- (17)

= 0 onTl,u.
ga1vfuReuluatin (static condition) Tu stationary bodies ANUWWULIBINANTLNAAN
B 2131197005118 lAA28IANN19URIMNNTLEA (Maxwell’'s equations) A

V-B =0

VxH =0 (18)

TPENAMI N UUULDINANTUNIAN B WATAIINUINTBIAUINILIWAN H HAduduiuefiu
9%

B = uouH+B,, (19)
P4 B, = pop,M A8 residual flux density Wa% uo ABA1 permeability 18981n1A TagisaL
WAL L, Af relative permeability YANAANTUNLIAN
AINANNIT (18);, La"]mma‘ammmmﬂwmLLuummWaﬂemmmmimm Fnelusman A
SR8 B = V x A T9ganAnadiy (18), LL@VImﬂ‘Lmﬂmmuum

V x (VxA)=V(V-A) - AA,

Ay Coulomb gauge V - A =0, @4n19 (18), nagLiu

V X (g 'V x A= M) = 0,VX € Qs

or AA = =V X (popM),

til = o - ' [~
TIAAANN1I TR URIANE LNIUAN A

v

HA9ANNTARAUNTAITZULNTA L3R N AL IANNLT LT

U= (¥, ¥, U,
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Tulamun Q. wazialunanszanaaasqaninnng wWililesiamunzas wazanus
slmmwrmuumu@ﬂmm 1A O, Lﬂ@@uwiﬂws@mﬂmumﬂ wazlaasnisandana (Laplace
equation) 83LNENSIARBUTILETTLLRRR Fai

VAU =0, VXE Qu;. (21)

vovoy o . o . 4 -
ann13zAutigninEn g lunisdiuanuddsuulaseespanniunauninmuiveannisie
18414 (mesh distortion) uazfnan 1o Wienne azipdeulUfs LN aceannig

t
r = X +/ U, dt, (22)
0
t
y = Y +/ U, dt, (23)
0
t
;= Z+/ U, dt. (24)
0

dl dl dl o ¥ A o ¥ < a o dl dl ¥
Reuladunandunedszy Ae nsrvualuaedlia auniauds uaziin wasunlinsex
AunaULaNIasaUNIA HLAD

U =v =1V, on dQ, (25)

P27

muu WEUSLS Lﬁ"ﬂ,ﬂ’&?’?\‘lLLUU’Q’W@@\WINW%T&M?W ﬂ‘j‘vﬂ’m_lﬂQEI@Nﬂ’Wﬁ‘L“H\‘I@%WHﬁM’W\T“’I A L\‘l’ﬂ‘lﬂ?l
ﬂ’?"llﬂ‘l_l ﬂ\'mﬁ\lﬂ’ﬁ‘l/] (1) EN'&NT]’TE“V] (22) Gﬁﬁl‘ﬂﬂﬁuqﬂﬂﬁi‘m@ﬂu%sﬂ’ﬂ\‘i ‘ﬂﬂ\‘iiﬁﬂ ﬂ%ﬂ’]ﬂLL"N Tu

LN ngaen Tnedidaudls Vv, Tuls UBNEY O uazsauls v, p, A, U lulna UTLARRLT
Qdef

ANNISANITNAINA

PEINATIAE AL IENEN AR 19192190 mm@qmim (v.p,A W) € = [H! (Qaep)]*
HY (Qaer) X [H' (Qaep)]? X [H (Qaes))? TR LT ALAAZIIAN Wﬁmamﬂ@mmﬂm
Aaauailu (Dirichlet boundary conditions) Wa¥AM3L (v, p,A U) € S = {(V,p,A,T) €
SV =0 LW ey, p = 00N ey, A=00n ey, WAL T =0 UW I, }

/ B (V-v)dQ = 0, (26)
Qgef

/ (pﬂ-gv + nVV:VV + ppv-(v-V)v
Qaey ot

—pV-v) d) :/ V- (0-n)ds (27)
8Qdef

13



/ (VA:VA—A-V x (uouTM)> Q) = 0, (28)
Qgey

and
/ VU VT dQ = 0, (29)
Qgey

T8N Qs e, Vuesy WAL ey, ABAIURANTNIBL NTIANAINNITY AIHAL ANEILHLARN
wazANEaNTgNAIue luaneiisaziiulaowauiiwusia (surface integral terms)
Az llanugniandunageat (test functions) WuguanvaL

e ! v v

Iummmwwﬂ?wuﬁmﬂ PNAULUTLILRRADWES O Tt 19Aesandanisulasaunis
(26) - (29) mmimzuuwnmmmm ”Lﬂ@g’LuWﬂmmqm Lmﬂﬂﬁ 17)s 3z lan

[ 5 ae = o (30)
Q

.0 N .
/(pfv-—v + VvV VvV + ppv-(v-V)v
Q ot

—pv-v) ] dQ = 0, (31)
/(VA;VA—A-Vx (MO;/,TM)) | dQ = 0, (32)
Q
LA
/v@:v\y | dQ = 0, (33)
Q

Tneinayiusaeatands ¥, (i = 2, y, z) aunsaaunslnainiinauaalii

Vi = VixIx,+Viyly, +V,z17,,

Uiy = VixIxy+Viyly, +V;z1z,,

(34)
Vi, = VixIx.+Viyvly,+V,; 21z,
LAZAMTUNINTUNAADL
\iji,x = \iji,X]X,ac + \i]i,Y]Y,ac + ‘i’z‘,zlz,x,
‘i’i,y = \iji,X[X,y + ‘i’i,YIY,y + \i’i,Z[Z,y, (35)

\iji,z = \ifi,X]X,z + ‘i’i,Y]Y,z + \ili,ZIZ,z'

uaz peEmsvueRtaiuALlIdmsY U, manunsoianaeyiussesiindulamsy
A u,v,w, A, A, and A, anale
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nsAnETu ludasin

Tnansannd lnAnauwnmanian luilugueluiiadeaniussunumiiu tduae A = (0,0, 4.)
waz Uu 09, war 00 Anawsmdandailugue Tuhe A, = 0 LL@”‘Luﬂmmmqmmum

WIAN (magnetization) A M = (M., M,) Iuwuﬂquumluﬂﬁmeaﬂmwumemmmm
wianiiu
M, =0,M,=5x10*A-m™*

waTAIUFLAUNALTS
M, =aarctan ( —A,, ),
Ko u Y
(36)
b
My = g arctan <_MAZ’$> s

1089 ¢ LAY b ARAINITIRLART ANNANANT (13),) LFIAINITO AU DL TIURI AT N M LAAN
Fmag = (Fmagxa Fmagy)

ndail

Finag, = i(MxAz,yr + MyAzyy),

(37)

Finag, = (= My Avs = MyA. ).
Tunnarnenmsivates enllfunssusdenlunanaldeaTNALENTAL LINANTUNIBYNA
219114914 mﬁqaumﬂ ANNDUNIA LAY L;’Yﬂuﬂ’]ﬂ Tunagesdis u?mmﬁi%ﬁmqmﬁ@ hor-
izontal channel vmmmm 6.2 jim WAZENA 45 ym @ummmmﬂmqn@m Lmummuﬂﬂmq
0.5 um Lmvmuumim@@mimmﬂﬂi‘ummmmﬂﬂmumﬂmmmmw 1.85 cm/s ATUANTT
m@\m@mﬂmmm@muuw AafianAnumiiniede 1 14 0.0035 Pa - s LAZATAINNMLA
LLuu ps 411 1060 kg - m—3 @umﬂmmwmﬂwﬂmmmmmmqwmuuu 1112 kg-m~
AN relative permeability i, mmmummmﬂu 5 % 10° uazdwiLiilaiiareaanniden

1w 0.99998 ANUATNITTART o Ay b AT 1 x 10~ Uz 3% 107° AINATAL
AEILNALIA Arbitrary Lagranglan Eulerian approach ‘1/1’151,‘1/1L'a‘ﬁmmm@ﬁ‘i_l’mn@iﬂﬂm\i

ﬂqﬁ‘Lﬂ@ﬂui‘ﬂLL‘LI'LILN‘H“]J@QIF’]N’&?’]\?LL@JIJ@T.IV]L?]@@MV]1‘1J ﬂ’]ﬁ‘ﬂ’}ﬁuﬁ‘l’\lﬂﬂﬂ@\‘iLN‘T]‘I]@TMN@JJ%
ﬂﬂﬂUﬂW?LﬂﬂﬂuW1ﬂﬂ@Qﬂuﬂqﬂ[ﬂ’N“‘] @mmumm Zﬁiﬁlﬂ'& Iuiwuuwmm@ﬂum ANN19I0ATUNE
mimmummm L’Nﬂﬂiﬂ Ium:“ﬂﬂmmmmﬂuumi'ﬁuﬂmvmwﬂumﬂ WJElﬂ’ﬁ“ﬂ'j‘q,NQ@
HALLLA1 A9 Lﬁ‘ﬂﬂﬁmﬁﬁ‘ﬂﬂﬁuf]ﬂﬁ‘ﬂLL‘LI'].]ﬂ’]ﬁ‘VLﬁ@ LL@”ﬂW?ﬂﬁ‘”@’]ﬂﬂ’WLLNﬂueLuﬁW‘U‘UVIN‘ﬂuﬂWﬂ

me@@miﬂﬂmmimim
a‘ﬂw 1 WAALNTANITNANAA (finite element mesh) Lmvmmmmmaﬂmﬂu@ﬂ (the ex-

ternal magnetic field) faluszun Tl lunnsfnenihlssnaume 3519 aundn uas
1791 qama
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Magnetic source Air

|

Tissue
o Vessel
o
o
Tissue
Figure 1: *

717 1 T uaeHALA L IANUNTIBIUADALADAANADY LATUNAINIULAAUINUNLANGA
AN UNINAT

A |
grevan

(c) t = 2.43 milli sec.

Figure 2: *
dl i [~ tdl ' o o dld = d‘ dl [
g‘]ﬁ/} 2 LINLARTAITNLTINLINTF N mmmzummwmﬂmem@fauwiﬂﬂmmim

MM
yren
. i}

(c) t =1.18 milli sec.

Figure 3: *

dl i [~} dl ! o o Qlld dl Qll [
gﬂ‘i/l 3 LQﬂLMﬂ?ﬂQWNL?Q‘WLQ@’Wl’N’] mm‘mzumummﬂmmgmﬂLﬂ@@u‘miﬂﬂu
ya4lua
(a) t =0 sec. (b) ¢t = 0.69 milli sec.

HHHHH ‘513»5

v d e
aynIAvIaNIARaaun llAvedlua

)}

77 4 1INEaTAINIEMIRIANT UTUTTLLT
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(c) t = 0.53 milli sec.

Figure 5: *
dl i [~3 dl ! [ o dlal ¥ dl all o
gﬂ‘Vl 5 MINFIATAITNLTIVILINTF N @WM?U?ZUUV\N@‘I@’W‘WLﬂ’]@lamﬂmﬂ@@u%iﬂﬂumﬂﬂiﬂ@

4000 ! ‘
= =0 partices
3500] P PRI I N 5pamdes .
Y, : === 3particles
3000 L .—.‘.K i
)] SRR RSP R e
2 1 :
o) i
w B
1) " R .
g [RIIEE 5
0_1500.\\.; .,.‘,\_‘\. ]
1000 & .
0 I | i i i I |
0 5 10 15 20 2% 30 ki 40

Distance along flow direction from inlet boundary (micro m )

Figure 6: *
dl [ % = Qi
gﬂ‘Vl 6 LINAURATNLUILLNUUANDALAAANLINT t = Os
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(a) t =0 sec. (b) t = 7.18 micro sec.

(c) t = 9.96 micro sec.

Figure 7: *

717 7 1ninesA N3 199289 MALATAUNIATINAIAN97] THIELLBUNALNIANATUIUE
BUNIA

?ﬂw2f5u@ﬂuQﬂWWﬁﬂQWNwﬁmﬂﬂm%mluﬂﬂﬂﬂm%ﬂwmﬂuﬂﬂﬂﬂﬂuTuMuﬂ@ﬂmﬁﬂu@”
Lﬂﬂ@%ﬂﬂﬁ]mwuaﬂminuﬂimumtnluwuw@ﬂ@ﬁﬂﬂﬂﬂuﬂﬂIuﬂian4@ tmuqqﬂuﬂﬁﬂiuaiﬂiu
‘mﬂuﬂum@qu@ﬂ@n@@ﬁ1iﬂv16 LAPSNINILANUNF R AR NLLIUNUIBMETIAAN ¢ = 0
mﬁuiUﬂ?QWHQjwu@ﬂuquﬂuﬂﬁﬂMWQﬂuTu%&ﬂM@wn@qWWHWQﬁﬂﬂuwu@ﬁuqquQQuﬂﬁﬂ
'aLWlumqmumwwqmmm@qw@@ﬂwqmuﬂmﬂﬁﬂj?ﬂ%'?u@mqvnnmaiﬂqwmmnm@qm@quau@”
ﬂﬂﬂﬂ@@umeQQQnﬁﬂ@ququa@uﬂﬁﬁﬂﬁﬂimujQQWﬂmuﬁuuurw@ﬂL?nuuimmmkuqwuuu
ﬁwa@qﬁaﬁuq?nuamQﬂqﬂﬂﬁﬂuﬁhm@QEHﬂﬂﬂiﬂiﬂﬂhﬁ?mnaﬁﬂumqﬂig
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2. WOANSTNNMSnaTasaslnandgLsIARLUUANNe g malaaula
NUIAULUUARL

Tz udnaunit anddaniangmansasu syl lunianisAnwng Anssnaes

v v

a413 (materials) mumim‘l‘mﬁmmﬁLL@“’quﬁmefmmmquuwmmuﬁﬁﬂummmgﬁﬁﬁ
iﬂmmiwmmmimummmimqmw (biological and engineering devices) Wazssil
Tulpsainasuazunluainas [12] emlmﬂ\mﬂLL@”ivuumusLmﬁ:Lﬁmmmrm mﬂumm
?m\immium@mmmim‘fmmmm m@imimiﬂm (microflow) [2, 9, 8, 10] FatNaLTU LASeN
NﬂLsﬁ@L‘H@L‘W@\‘i (fuel cell devices) avuum?mmm (drug delivery systems) [23] 10AF39
m@um@mmw (biological sensing) WAy memmﬂ@ﬂuwmmu (energy conversion de-
vices) [17] ma‘wqmﬂafa‘uma‘vlmmﬂwmimlmvuummmﬂummuumL@ﬂ@m:rmslum
W\mmumma‘yuu um@mﬂ‘wﬂqmzﬁu%iuma*ﬁnmiu‘[m‘lﬂmLW@MmmmmL‘ﬂﬂ@‘wmu
Aaarunalnges lulas et ez U LU e AL [71.

mwumﬁuamtmLw;lul,w_l‘i_lmmmum LL‘LA‘Lm\Wl (incompressible Newtonlan fluids) ddnng
mmuimm mmm@mmmmum (Contmwty equatlon) LL@“’ZQNﬂ’]?LuLQm zﬂlﬁmm (Navier-
Stokes equations) LL@:L@@u@mm@ummﬂu Taeialyl Lﬂ@uimﬂwm@uwuﬂmhm@mm?uu:uu
Tu-ad (no-slip) Farunvanaiaresasivaiifafuadoudatugue [22] fauuanua
NIMAfadIAUILLN laLa mmﬁumuﬁlﬂuhﬁw@mmu Tu-adtl launnsmaanslng Coulomb
and Couette LLﬁﬁﬁwﬁﬂgmﬁmfmmmLsﬁuﬁ“u‘ﬁ'ﬁuﬁummaﬂmmmmiﬁ@uuaqmmuﬁ\i [19]

di ' 2 Y o a - ¥ &
Lmiumumu”l,mmmimm@@ﬂusvmuiuimume uazlainisdszunananaransiaslva
srAUN L@ﬂ@ (molecular dynamic simulations) INBMIIRADUEITNTINRUBINIADLAUDITDY

¥ VY

m@qmmmmmmum [1,4,6] Lmvmmvuimammmwmﬁmum@w@wmmmm@mmum
uuiuivuuiuimmmeu,mﬂmaﬂumﬂmm‘vuuﬂummﬂ Suidlasnandaanilunaes
Aufiiin fusunmssesssunlulasfime] dufenislvazeseunalussunlalpsdudduny
ﬂ@ﬂjm@@u”l,ﬁ waznsaaLanansafatule (3,24, 30, 35] faduitenls Tu-add Adludy

feanFudmiunslvaresedivaluneunslulnslnes

1umq‘@%m&Lﬂﬂﬁﬂﬁﬂiﬂﬂmaﬂmmmmmmyuaqm@umﬁqﬁu Luﬁﬂﬁgﬁﬁ Lm@lf‘ifauvlmﬁwﬂu
wunyia bl IhamfnuFiresaeamvad luluiaududanuisnasudsiailudnaouiuiunsaay
(shear stress) uumammvmﬁwmmmm”m@mm (theﬂwd solid mterface) Fandnaou

1N ﬂ’J”]NEI']"JL“N@@']J (slip length) Gﬁxiﬂﬁ‘]_lf]ilﬂf)’]ﬁJN’\ﬂﬁﬁ‘@uﬂﬂﬁl‘ﬂ\iﬂ%‘@@ﬂ RPN [32
13] GQLLN’J’]LQ@uiﬂﬂ’]ﬁ‘ﬁ@ﬂLLUULML’DEI?LL@“’»LQ?‘LIﬂ’W?L@u@S\I’m’J’] 200 ﬁLL@Qﬂﬁ]’]N LLIﬂL‘WQVLm
'j“LIV"I’J’]N@‘Lﬂ@@"mﬂm\luﬂ@@ﬁ‘lfﬂﬂ'w}iﬂﬂ"]M?LL@“’Qﬁ’]ﬂﬁ‘?ﬁ\lﬁqﬂf)’]ﬁ‘LﬁJ’ﬂvLﬁ\Iu"]uﬂ\l’]uL’ﬂ\‘i FL‘LAﬂ"lﬁ‘ﬂﬂ‘]ﬂ"'l

mﬂmm@wmmmimmﬂuimmﬂm LL@Wmﬂmmmwu’mwmmam Lﬂ?’ﬂ\‘lﬁ\lﬂiﬁ\ltﬂﬁ‘m@



1umumu wﬂﬁmmmmmiwm@mmﬂ‘mm@wmmmslmvmuvl,uimmmvlm LASNANIT
1/1m@mmusl:wmmmuumuumﬂuhLummmﬁ [11,32,19] LL@”iﬂL?NN%WJ‘QHU’]\‘]’&QNWE’]H’WN

mﬂfﬂmuhmﬂuslumium ﬂ‘l?u‘f,@ﬂmmummmmiﬂuwum‘ummimimmme paE s
m@”mmiammﬂmmmm”l,mmu‘w@iuimmmeuimmquum LazaenaiissAnann
‘Lumqmﬂmmmﬂwmum HnnsAnenisiaresetatnuuiininifeunaruautinlniiiau
mmmuhmm@umeummmﬂ [5, 14, 15, 21, 26, 20, 18, 34] uasiinAdeLaanle
m’]mugjimmmmummmmmmmqmm@ﬁ[ 5].

DulNaNAlRat LN U LazHAlRAL TR et iuunIg InateTa s LU L NI
mﬂlr;muﬁﬁmiumﬁﬂ @mﬂﬁﬁmi‘;@ﬂwmﬂ [22,29,27, 28] uaRTinNlnaRatE

Tadnuesdwiunsdinetiewlaadt e luununil ”memiﬂﬂmmaLfmﬂmmuvmum 1 (steady
state solutions) vasn"7laresaesmarlunenaunelndeu gl [31, 16] ”Lumm@um

Faeloug mmimmm@@ﬂLmum\ﬂmmmuﬁmmmﬂmmuﬂuLqm (transient flow) U84

raqmadiiainilaylunananlulas maReulanizeuuuuady uazlauandludiugninazes
ANNENIENARUABAUINAIHITT UATALINUIIAUTBITBYNAT

wailunn wazaNNIsEIAdAAIEAS (Problem Description and Mathematical Formu-
lation)

Turigeil mmwmsm’]mﬂmmuﬂuLqmmm 289918939 Nl Luﬂuwmmmqwm WULAIT
(an incompressible Newtonian fluid) mumm\m@mmmimimmme Taeiunu z Wi

IuLLu’JLLﬂuM@ﬂﬂ@QV}@ﬂ@Nu mnwmuﬂuﬂﬁﬁ‘iuaﬂﬁ?vﬂ@ummm%‘mwmmum (conti-
nuity equation) LL@::@NM?L‘LAL'J?J?—@IWM (Navier-Stokes equations) mmiﬂu

V.v =0, (1)
ov 1 1

i - Fx72
8t+(v Viv = f prerV v, (2)

TPE9 p BAT vV ABAMNAULAZIINABTANIFIANNANAL, V BaT V2 A8 AAHUANTNT
= . o O a o o =
L@l (gradient operator) LAy AWM Ua4 (Laplace operator) ANNATAL, f AB

UNTINIZRBURIMNAT, p WA 1 ABANNUUILUL (density) WAZANNMLA (viscosity)TBs
UBILNAN

AunNL ARl B A SR LR U FUdUIN AN Feannisnellil
o = —pl+2ud, (3)

o o

IR reIuTesilatugL (rate of deformation tensor) flfuwuUsALALNLANIGY

Faaunsaelylil ,
d = 5(VV+(Vv)T) (4)
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Tnef o = (aw) e d = (d;j) ﬂ’amul,sﬁfaiﬂumwam LL@”@mwmmwﬁmm@ﬂmﬂ AN
AP AT | ﬂ@LNW?ﬂGﬁL@ﬂ@ﬂEm (identity matrix)

Tuunuifiamedongsnszuan (cylindrical polar coordinates, (1,6, 2)), v = €,v, +€pvs+€,u
UAZFIANTEUNNIINTALWN AR
0 0 0

V=e6_—-—+e—+e — 5

ra 6 rOr zaza ( )

Imw e, e have. ﬂ’ﬂ Lqmmmuuqﬂuummu WUALNUANHA LAZUUILNUNAN mmmmu
FeThudNIANL AL LAY ENNTILE LA TAN AR 7 81390 delaiT

1 0 10vg Ou

ro. — T 5

ror ar(7or) r o 0z

@4_ @—F @4_%% — _@4_ @4_12 @ +i@ (7)
P\ar "0 "o T ae) T P o M o2 Trar Uar ) T 2o )

ﬂQEIﬂ’]';TVL‘Vl@L‘ljuLL‘]_I‘LI’&NNWM?L‘Vlf;l‘l_lﬂ‘l_lLLﬂuM@ﬂ?Jﬂ\mﬂﬂ@N mimumﬂwmu LL@v@Quﬂivﬂ‘ﬂU
?Jml,fml,mmmmmiumLmemLL@ WUAANHE (the radial and transverse directions)

wmuﬂuﬁuﬂ TuA

= 0, (6)

v, = 0, vy = 0. (8)

¥

NITUNBANNANIN AW IUENNTANABLHY (6) 1N n

ou
0z
AIWA I U = u(r, ) Waz8INaTiu g, = 0 BUzANITIMaLIULLL horizontal WAZAYELENNNT
(7) NaneIdli
L (82u 18u) ou 19p

ozt ror) "o T s0s (10)

— 0, (9)

il Aansannislnazesaesinanelaauuussuiingnmnisaeunlas g(1) Geanmnso
wanslanqeaynInyisas (Fourier series) lAn

% = q(t) =ap + i[ancos(nwt) + by sin(nwt)]. (11)

n=1

ARWNG 1. AENT MHALINTBINALTasBYNINY T sunuguLUNIsI AU aean9AILes
s azvinTuaussiulugodaenansns (11)

v

IaANAZAN TUNIATNNALRAITIALATIZY (analytical solutions) ADIANNITATLIAN S
A4 191z AN ULEITaRa 1S (11) Aredandianiduuid@aa siuAa

ap - inw
% = Re (che t>, (12)

n=0
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Taeh

Cn = an —bui, €™ = cos(nwt) + isin(nwt).

Iummmmﬂmm‘l,mmmm La?’m’u,ﬂummmuumL\muvlfum‘u@u TunsAneni azledenle

mm@mmmummmﬂ uuﬂ@ ‘V]N’)ZQNNZQ?JMQ”N?J@\?LM@‘)LL@vﬂ@\‘ILL?IQ r = R, mmiﬂu
[N LLﬂHV@ﬂW@NW‘LAﬁﬂUWJ%@\‘]LL‘NLﬂuﬁﬁ’&ﬂuﬁl?ﬂﬁl@u?\‘i Lﬂ‘ﬂuuuNQﬁNNﬁ @NNW)’WI@VLNIV’]?
LL‘N‘LAL@Z\]@‘LAV}W’JEIV’VJ’]NL?’JI‘LALL‘LA’)LLﬂ‘LAM@ﬂ o (%), J;W]’WL\‘i@iﬂ‘ﬂﬂ’]?l’ﬂ‘].lLL‘]_I‘]_IL‘LAL’JF;I?@@‘]JV"I@

w(R,t) — T,(t) = —z@, (13)

v

Tred 4 ﬁfam'}wﬁmmmmmm uae i ﬁfammmq?ﬁmﬁﬂ Lﬂ?‘@wmmumqmumﬂﬁ@
18381N"7 (13) LARIATLSY mﬂuuummmmwmﬂmmﬂuﬂnmummmiuumuﬂumn Pt
ﬂﬂim@@uﬂuummmlm Gumfaummmwmmuwuﬁﬂumm@wmmevm@mmmmm

muwm”wﬂuwﬂmaﬂummum?m@@uwmwm (relatlve movement) am(R t) uuﬂmm
Lfa@uuummmmvmﬂwmmmummuwmmiuim1u1nu L L‘VMVLWNWM?‘LI Seulal —
0, @4n17 (13) ﬂﬂ‘ﬂL\‘l@uVL‘ﬂﬂﬂ“ﬂ’ﬂUIu@@ﬂ mmvmmmu [ — oo, @NNN3T (13)ﬂ@L\1ﬂu1ﬂJ sur-
face traction ?J‘ﬂdNQ‘I/]ﬂ"]ULﬁ‘EIU@ﬂ’N'&NU?m WWAR 0, (R, t) =0

1
o

mmuﬂmmwwmamﬂuwu anuAmelulasiiineed dude 5(t) = 0 A9l
{8998 0, (R, t) = p2, a1naxnIe (13) m%imq

u(R,t) = —l%(R t). (14)

NALRAL LN UATIRIMSUAUINAMNLSINUUAALIAT (Exact Solution for the Transient
Velocity Field)

mmumﬁ 10 Lﬂumma\mmu Lﬁ"m’m%‘ﬂfﬂ superposition principle mmummfma
PAIANNTT uuﬂﬂm u, WUNALRAEUaY (10) 115U ap/az = cpem™t, @Jlm'] mm@mw
ANYIUBIANNIT (10) AMTU 22 = Re (30, ¢, ™) AB u = 32 Re(uy,).

v

11NTNURAAN 1, LTIBNANNNT

M 82Un 18“71 . 8un _ Cn inwt
<3r2+r07“) o ol o

w9 lvnaieat lugilang

1 v v d9/ v
NNFUNUANANNITINALR T (15) Al

p(0fn  10f
or? r Or

) einwt . inwfnemwt — C_neinwt. (17)
1%

24



AU n = 0, AN (17) nanendl

82]”0 aJo Co o
v 2 18
Or2 97, H?” ’ (18)

4o L
TR naaadia lulu )
f()(’f’) = (Al + Agll’l ’I") —|— ﬁ'IAQ.

ANEINALRAE f(r) AEINTALIAANTA (bounded) r = 0, lIIABNINTT Ay = 0 LAZAYNY 1911A

N c
Uy — fQ(T) = A1—|——O’I“2. (19)

ANUFU n > 1, aNn1g (17)
Cn

1 0%f, 1 Jf,
= 2
zor Yo T T B 20

Tnen 2 = nB2N1a B2 = —22 Inaiwiua v 7 = 8,r, a¢la21 aunis (20) naneily

Pfo | Ofa ¢
72 n n 72 n ,2
G T AT = (21)

aunnslaluaiisanasnpaasiuaNNIIINAURIANNIIILALTASUALIAWE (zero-order Bessel

equation) wazinalaassana i

Imﬂm d, LL@q, n Lﬂummwﬁwmﬁ (integration constants) Jo HAT Y, ﬂfaﬁqnmummm
@ummuﬂ m@wumwum@mmmummu LL@ A f,w maummmﬂmﬁmwummmm u,m

Yo(Bar) wﬁ\mmam (singularity) 1/1 r =0, mmmmifn en = 0.

GLumammLfa@ﬂLfawuu@muﬂﬂuLLﬁ‘q‘uumu (driving force) mm‘wuﬂélﬂ fne = C, WAZAL

1@%1@%1?&%1&6@'11/\1@1414% (20), Lﬁ"VQJL@ C = pnw. muuwmmamiﬂmmﬂmmi (20)
Gk .
Cnl

fn - fnc + fnp = dnJO(BnT) + . (23)
pnw

91N (16), (20), (23) WAL superposition principle, PRl e

(A1 + = ) +ZRe Kd Jo(Bar) + ;%) emwt} .

v v

WU o = ag — iby, ANANNITVNHU LIINLQN
2 Cni inwt
A1—|——r +ZReKd Jo(Bar) + pn—w)e } (24)
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uaznilulaon
ou

- inwt
5 o +;Re o1 (Bur)e™) (25)

Tned luannisr1emuil wlaenansos (identity)

dJ()(SL')
dx

= —Ji(x).

v

ANEINNTWNUN (24) way (25) Tueulamiaay (14) 1 ln

(A1+ R2+l—) ZReKd Jo(BaR) +

— Bndny (ﬁn"")) einwt:| = 0. (26)

LW@GLVI’&NT]’W (26) @WN’WDI‘HiﬂVlﬂL’JZ\H t, Lﬁ"?ﬁ]@\iﬂ’?ﬁ‘W@uﬂ\W] LLZ\]"’@Nﬂ‘j“”a‘V] ‘Vi@’]ﬂ‘ﬂ’ﬂ\‘l

dmet el viag TiuRe . .
A+ 2R+ 12R = 0
4p

2
LAY y
dn[Jo(BnR?) — 180 1 (BnRR)] + p;zw =0
RN - y
A = — ZM (1+§), (27)
d = —Cpt . (28)

sl Taeinsunui (27) way (28) s (24), 1371990
apR? r\N2 2] > Cnl Jo(Bnr) ot
= — 1—1(— —_— | — R -1 inwt |
“ 4u [ (R) + R} ; © [pnw (Jo(ﬂnR) — 18, J1(BnR) ‘
aadanm 01 1 = 0, Baleat (29)naneiliy
CLQR2 7\ 2 - Cpl JO(BnT) inwt
= — 1—(— _ -1 inw
“ 4y [ <R) } ;Re {pnw <Jg(ﬁnR) ‘ ’ (30)

dl N = a
TIABNALRALIURINTTR AR

Y Y

°l|ﬂiNLﬂl§l 2 Eﬂ I>R LLZ\]JJ?J‘L!’W@I‘VI&I‘W@ 1PIRNNNTNU TN UK A LR (29) lanag

N _CLQlR - Cni JO(BnT) ) inwt)
T M (s (i +) ) o

n=
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D

mmmmmﬂummwmmmmmmmwmmmLmvmmmm (fluid-solid interface) ?WUL?EI‘]J
@ZLM‘I&1®°]J®L@‘I&’)"] ’&‘Lﬂ?\lﬂ’)’mLﬁ")?]’]ﬁ\m’WﬂGlWIJ"J’W\W@\W]@T]Z\]NL‘]j‘LALL‘LILILﬂEI’Jﬂu(unIfOFm)

WARINA 301 ag = —AeR, ¢, =0 zﬁm%umﬂj n>1,ua% = aR/vI =25 lnaf o uaz
3 Aaw1anRimesady wimﬂumﬂq‘tu [25] HaLRaETilansafUNAENETRY Matthew UaS
Hill (2007) mmﬂma‘mm\m [16].

v

¥ 1% ¥ (1 2/0/ I a o d” dd‘ g
anwedanareny wiuladnaeuidatnsaunguuaieas luynnstinaaniulille

NZ‘]LQ@EILLN‘IJE?"I‘II’PN?QJIIH?"Iﬂ"IﬁvLﬁ@LL@%@N’]NLL?QLﬂu (Exact Solution of the Flow Rate
and Stress Field)

ANNUALRALIAINTY LULUILNUNAN (axial velocity solution) (29) 131411N19DWIEFATINT
Tualaannaunisg

Q) = fR 2rru(r,t) dr
_ _a 7rR3 27 00 cpietnwt R Jo(Bnr)
=~ () — Re [an — o (Jo(ﬁnR)(ilﬁnJl(,BnR) - 1) " dT} :

. (32)
RINLANAN DY ;
dx[ile( r)] = xJo(x),
3l ]
%[TJl(ﬁnr)] = ﬁnTJO(ﬁnT) (33)
LL@zﬁqﬁu .
/ rdo(Bur) dr = — [T (B R = R (B.R). (34)
0 Bn /617,

Faviu TSN IUNUT ANNNTINLLE U (32), 1971A90

__a07TR3 R\ 27 Cpiet RJ1(6.R) _R_z]
o == (1+5) pre{Z o [ o 3 }

n=1
(35)
[% 9;/ 901/ dl ' ' da/ ' o 910/ éj
mmuﬂ?‘mmmmmmmm\lmwimmuw@uslwmxmm [O,T] ZQ']N’W?QV’]']H'JW,DL@@QH
T
Qr = fo
_ _a 7rR3T 27 ¢y inwT RJ1(BnR) R2
= = (l +4) - SwRe {Zn Lo (emT 1) [ﬁn[Jo(ﬁnR;—lﬁnjl(,BnR)] - T} } '
(36)

mammm 4 mmumuﬂim@umw (ao) “IJ@\?@El’i’lﬂ’]‘iLﬂ@EluLLﬁ@\ﬂJ@\iLL‘Nmu amannslug
azifinTuennadaan niziinnetadeady | st eanslsimudmiasudsznays
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Tufin (cpe™t) 1a98mannlasunLlasanaisem, mmﬁuﬁuﬁ@”m’mﬁmmmﬂmLL@”

v v |

ANeN T gL ludaLauin AMNNALRALITIGY ag mﬂmummmﬂmuwmumemsﬁ@u
(complex parameter) LaslanF UL ATaTiHeN A A TTe U Seaslafunnemsaagetiliy

Pnaadnll

Aa 1l TRz UUARUINLIIAL (stress field) Turaaman an v = e,0+e0+e.u(r) WAy
aun1g (5), wazlaan

0 0 OJu/or
Vv = 0 0 0 . (37)
Ju/or 0 0

v v

AMNANNITUI AL WAZAVLFNNT (4) WazauN19 (29) 7azle

drr = d09 = dzz = dr@ = d@z = 07

_ aor ~ Bnd1(Bar) ) inwt:|
+n¥; me (Jo(ﬂnR)—lﬁnjl(ﬁnR) et (38)

Fatii AanaNnIg (3),1911A70

Opp =099 = Oz, = —P = (7<t)£lﬁ —Fpo(t), Org = 062 = O’

Cn BTLJl (5n7”) inwt
‘““”_ZR [n (Jo (BuR) — lﬁnJl(ﬁnR)>e 1 49

Tneid g(¢) gnienau (1) 20ued po (1) wuan e wazannisngniaanluasnpaesivteule

PaausaAuNLuLaule

Qafanm 5 dmsuasnsznauad (a0) m@\a@m'ﬂmﬂ,ﬂ@ﬂmmmmeu BN L@@uiumﬂaLu@a

Lﬂu@m”mﬂmmmqvﬁmaﬂ lmmvw AN INEALTENENaReLIReU A SuAd LT
nauENIINiIn ¢, et ﬁnmmﬂ,ﬂ@ﬂw,t,ﬂ@ummu

AnsnarasmMTIaLLULdalnangAngsuniglua (Influence of Boundary Slip on Flow
Behaviour)

v 1 1 v v 1

pasiEALRAELALTR (exact solution) R laaniinaaiiian 1uﬁqm@ﬁw"mﬁﬂm%w%wmm
mmmqmﬂ (slip length) ARRAANNEY @mqm'ﬂm LazusAuTadTadiva Tnafianoun
m@Laaﬂmuﬂﬂﬂumimmuuﬂmmeu@mamwLL@ WUUAALIATES
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nsd 1: dp/dz = ag

AMFUNIL, ¢, = 0 §WFLYNT) n > 1 UATAIIUAINANNIT (29), (35) Uaz (39) Lnaxin
11 AMHLEALUNRA (normalized velocity), 8m31n1gwaLlng (normalized flow rate) Waziaa
LALLRBULNRA (normalized shear stress) 1

. p r\z 20, .
u = _aORZU - |:1_ <E> +E:| T un8+ut7’ans’ (40)
win 2p B R
@0 = -2oq = (1+7). @)
1 r
= ——0y, = —. 42
o o = (42)

v

aadILne 6 ANNITIUNALIZNALANLAINEIURAD u), UAT U, .. IAANAULIN u, = 1 —

(r/R)? Lﬂummmﬂmmuﬁmmmﬁimmu”lfn T,u mfmJ anaiFenTan mmmmm‘uiu aal

=

sﬁ\‘lﬁ’ﬂlﬂﬂLlﬂﬂﬁ‘ﬂ'ﬂ’mL?’DLLU‘].IW’]?’]IU@@EI@ mmmmuw@m Ufrans = 2L/ R ﬂ@ﬂ’\ﬁ‘Lﬂ@@uiﬂﬂJﬂQ

b

ﬁ‘ﬂ‘l/]‘j\'iLL‘IN (rigid body translation) TUAALNUUAN (axial direction) muu memmmﬂ

a9n naeasiTaaLline superposition ﬁnmmmmmmuiu any LL@“mmmmmmmlu
mmmumiﬂmm?ﬂmmmLﬂummmummuﬂqummmmaﬂ | LAZLULAWINNNTIAREY

MQ1ﬂﬂ®QiﬂWiQLLﬂﬂ@w1NﬂﬂiﬂLﬂﬂﬂ’??Lﬂ@‘?;luzm’mv‘ﬂﬂﬂﬂq?Lﬂ@ﬂui‘ﬂ@@’]ﬁ‘LL@v@ﬂﬁuvﬂm\iLLﬁ\‘i

Lﬂu Suitesnatnitustauaenluaediva Wusassainauendasy Femienduly
feuluidelu-ady

PARINA 7 877017 MaTudngnuda Lmuﬁummtmﬁmaﬁ I mmﬁuﬁuﬁiymwﬁmm
Anslvauay mmmqmmﬂ (41) mmmmmiﬂumi@@ﬂLmum@mmmﬂmmm e

AUUARINNENILTIAAL WJHﬂ’\i‘Qﬂﬂﬁlﬁ‘Wﬂ’]ﬂM@@?ﬁ?Uﬁ”ﬁ]’ﬂ\i w, R WAL ag ﬁl’]\‘l"‘l

0.0.1  *N9ad 2: dp/dz = a;cos(wt)

AUFUNIE, a =0, a=a €R ¢ =0 I 0 > 2 WeAuazaINlunIg

aBune iazlaiaulsuun 1N (dimensionless variables) melyil

B =BR, == € [0,1, I'=—, t'== =%, (43)

’
R
LAZAINANNNT (29), 1371/

W — Re Jo(B°17) . )Z-e%t*z‘]
: KJO</3*>—Z*/3*J1<6*> ! | (44)
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AUUA b
Jo( *T*)

o Jo(5r°) e
“lp
w u* = Re[(A+ Bi—1) (cos(2nt*)i — sin(2nt*))]
(46)

= —DBcos(2mt*) 4+ (1 — A)sin(2nt*).

dl ¥ ¥ = i a " a
ud A uaz B lunaleasnnsuan s ulalugilaasnisdmesidget 4+ uaziandu
Lummﬁﬁmiﬁqmumﬁqsﬁ@u deasluannsnaslaaingd memfa@ﬁﬁ mmm‘?‘q 1wl

@@@QHM‘N @ﬂ@’luﬁlﬁ\mﬂ&lu '121'3‘@ Lﬂ%@ﬂ@'ﬂl&ﬂﬁl’]\ﬂﬁ\lm\‘imuﬂu * muu meumum&ma
Wmmummqmuwuﬁ@ymw v uaz I TulnmuaIuINa Laziilesnas p? = —%2 =

22 g=mif?, 3l

o py=Lay Lo B, g

T ERREY:

Toe 6 = R, /2 WluniaRimaslsauns Lazidaisinivua 1
2p

Jo(B%) =70 + Ao, Ji(B) =+ Aty Jo(BrT) = yor + Aort,s (48)
azlaan
Jo(B*1*) _ i Yo = "By + A)] = [Xo = I*B(A — )i
F T ) AR AP ARSI W N s Wy Ty wpery E R
Yor[Yo — l*ﬁ(’h + A)] 4 Xor[Ao = *B(M — 71)] (50)
Yo = 1B + M)+ Mo = B —m)]2
Xor[Yo = UB(v1 + M) — Yor[Xo — FB(M — 71)]' (51)

Yo = I*B(m + A2 + Ao = IFB(A — m)]?
Aunalann d1uiU [y| < 1 gRaauniiu (asymptotic formulae) [34] maliliianansnuinlil

Talun1sUssunnuanienduiud s lasail

| o
Julw +yi) = Ja(@) + s (@) = @), Sly) ~— (5) (52)
Faviu dmsy B <1, saansonatlszanainnelilil
Q Q2
To(5%) = Jo(B — Bi) = Jo(B) — 151 a(B) ~ B = Jo(B) + BB ~ 1+ i
2 o) o) Q2
B = B3 = 50y = BB~ i () - B = 5 -5 1=
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72,,,*2
N
2

w1+ S iy = B -2 [ B

v v

AMNFATUNAU LATANNT (48), LA

2 2 2 23
B—, ’leg, )\1:—§+f—6, Yor =1, Aop =

—~

r
Yo =1, A= 5

v v

mﬂmﬂmummqmﬂmum@ (50) waz (51) ‘wﬂvﬂm

[1—1*%]+@[%+l*52( —ff—;ﬂ 1— B4(1 — 8r*2)/16

A= L= B (B g e (1_%>]Q 7T T+ (54)
) 1 ) I TS
[1—[*?—;‘]Q+ R (1-@3—;)}2 2[4+ (§+17)]
Fatiu 131azle
SO Gl i) cos(2mt*) + prLs - S8 o). (56)

2[1+ B4 (L4 1%)] L+ B4 (5 +17)

DnalauriL (asymptotic expression) %ﬂ\i;um@qmm%ﬂﬁ LmeiﬁLﬁu@ﬂ'wﬁm L@WJIW ANINLEY
mﬂwmimmmmmﬂu W’]sﬂm@ﬂmmmim JULAAZANARATI1ITDINANAL @ﬂ‘w 1 LAAY
A5 AN £ = n mmmfmmemmmmmmmqmmﬁ (slip length), Famun
N1ANANNIT (56) A% “uiulnatnet AL AN nTINALLALAN L m’mmuiﬂﬁﬁ simple su-
perposition 193uaLeat Tuadtl (non-slip solution) LazANNFILBILARBUANTBITRDUTT UAL
YANANHLTNLAN AN (normalized velocity) mu@ﬂﬂqummmﬂﬂmm Buay
adtnwafimas ¢,

Tupall 1319z ug s liuiEnEna1ed I* REaUINAYINLET 19T RAITUIAYHITITARL
UUNTRN28998 TUADT 7 = 1 141987 ¢* = n (AMUIWFAN) AINANNIT (56) 1971A210 ARMIEY

Ty (slip velocity) 1 r* = 1 a2 t* = n AB

ur I*
-8 _ 57
B 14U (L+17) 57)

%qgﬁmﬂim@mwmLfr«]um@wﬁwmm I* eaunALETuuULlENaU ANANnIII
TN P

O(uz/ )
ol

* /2 _ 36 (7 *
O2(uz/3?) =B (E+alr) <0, at = L (58)

= O’ = —
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Figure 1: Velocity profiles for various different values of slip length I* at a typical instant
of time t* = n, obtained from (56) with 5 = 0.02.

o

et annsnaglannanudadsaaluunisiulangegen i+ = 1/52 99 2 uans
BNBNATBIANNLNNARLRBANNITNTIAALNNI WiuladaauIgRaiaunnfiL (asymptotic
formulae) Hanunn il ssnnauanlnesnas1aiieanss Tusaeenail wuaeanld 4 = 0.02

YU LI1ATNATUNBATINTT MARNNANNTT (35) 13IWLQN

el e s

dl dyd ' a " a ¥ "o aal a " a ¥
GIJ\‘IBJZQL@l@ﬂ%L‘IJEI‘LA’ﬂEﬂ‘L&ﬁ“]J‘IJﬂQW’]?’]NLﬁ]‘ﬂﬁ‘ﬂ\‘isﬁﬂuﬁ LL@‘“W\mmuLmmeumimmummmu
=

smmuim”l,mmmum@mﬂmﬂmmﬂummumm mmumﬂmu 1178 mmwmmwmmuimm

AU I FaTIR s BUAUAN NN TN NN T T AN T ALAAIAINNFNTUS 72191 Q* ua I*
ISR LIS N!

0'(t) = 222 ) -

7Ta1R2

Auuelu ¢ = C(1), D = D(1) lag

e[ D) [ ()
o) =% |7 ] 0= )
Zlpn
Q*(t*) =Re {[(1 4+ i)(C + Di) — B] [icos(2t*) — sin(2mt*)] }
—(C = D — B)sin(2rt*) — (C + D)cos(2mt*). (61)
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Figure 2: Influence of slip length [* on slip velocity on the tube wall. The solid line is
obtained from the exact solution (44), while the dots are obtained from the asymptotic
solution (57).

Faunalan
J1(5%)
Jo(B*) — I*B*J1(B*)

[vo = 1*Bn +M)] = o — B0 — )] i

- . - 5. (62)
[0 = IB(m + A)]" + [Mo — *B(A — ™))

- [’717‘ + )\lri]

AINULINUAY C WA D LAZANNT (60) 1311m07

(1 + 20 = By + M)+ (= 7)o = FB(A — 7)) N —3 (55 +1")
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Figure 3: Influence of slip length [* on flow rate. The solid line is obtained from the exact
solution, while the dots are obtained from the asymptotic solution.
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Figure 1: The major vessels of the coronary circulation
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Figure 2: The angiogram of the RCA with stenosis.
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Figure 3: Geometry of the system of human coronary arteries.
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Figure 4: The periodic blood pressure and flow rate waveforms oscillating within systolic
and diastolic levels with cardiac period T" = 0.8s.
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Table 1: Values of the parameters a%, o, §9 and 67

Artery vessel | n | @ B9 aP 3P

Aorta 11 1.7048 | -7.5836 | 8.1269 |-12.4156
Q=57222 |2]|-6.7035 | -2.1714 | -6.1510 | -1.1072
p=97.2222 | 3|-2.6389 | 2.6462 | -1.333 | -0.3849
A=6.7287 | 4| 0.7198 | 0.2687 | -2.9473 | 1.1603
LCA 11 0.1007 | 0.0764 | -3.3107 | -2.2932

Q =0.1589 |2 |-0.0034 | -0.0092 | -9.8639 | 8.0487
p=84.9722 | 3| 0.0294 | 0.0337 | 3.0278 | 3.8009
41 0.0195 | -0.0129 | 2.2476 | -3.2564

RCA 11 0.0393 | 0.0241 | 5.9369 | 3.6334

Q =0.0896 |2 |-0.0360 | 0.0342 |-11.1997 | 2.1255
7 =95.3333 | 3|-0.0131 | 0.0026 | -2.2778 | -3.7528
4 | -0.0035 | -0.0041 | 2.7333 | -0.6375
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0 W TALULL Dirichlet type } Ua% (-,-) AB inner product UWENNW83 square integrable
function L?(2)
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(a) (b)

Figure 5: The finite element mesh of the three-dimensional coronary artery: (a) with
branches; (b) with no branch.
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Figure 6: Pressure field in a cardiac cycle at various points in the RCA and the LCA.
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(b)

Figure 7: The distribution of blood velocity (cm/sec): (a) from the base of the Aorta to
the RCA and the LCA: (b) at the end parts of the RCA and the LAD.
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(b)

Figure 8: Blood pressure (mmHg) at the beginning (left column) and the peak (right
column) of the systolic period in the system of coronary artery: (a) with no branch; (b)
with branch.
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(a) with branches (b) with no branch

Figure 9: Pressure along the main artery of the RCA at the beginning (dashed line) and
the peak (solid line) of the systolic period: (a) with branch, (b) with no branch.

(a) with branches (b) with no branch

Figure 10: Pressure along the main artery of the LCA connecting to LAD at the beginning
(dashed line) and the peak (solid line) of the systolic period: (a) with branch, (b) with
no branch.
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Figure 11: Transient flow rate through the main artery of the RCA: (a) with branches, (b)

with no branch.

(b) with no branch
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(a) with branches

Figure 12: Transient flow rate through the mai
with branches, (b) with no branch.

53
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n artery of the LCA connecting to LAD: (a)



(a) with branches (b) with no branch

Figure 13: Wall shear stresses along the main arteries of the RCA at the beginning
(dashed line) and the peak (solid line) of the systolic period: (a) with branch, (b) with
no branch.

(a) with branches (b) with no branch

Figure 14: Wall shear stresses along the main artery of the LCA connecting to LAD at the
beginning (dashed line) and the peak (solid line) of the systolic period: (a) with branch,
(b) with no branch.
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(a) with branches (b) with no branch

Figure 15: Velocity field at the entrance (solid line) and at the end (solid line with square)
of the main artery of the RCA during an cardiac cycle.

(a) with branches (b) with no branch

Figure 16: Velocity field at the entrance (solid line) and at the end (solid line with square)
of the main artery of the LCA connecting to LAD during an cardiac cycle.
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Figure 9: Streamline plot 284 B(tesla)
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ABSTRACT. In this work, we investigate the behavior of the pulsatile blood
flow in the system of human coronary arteries. Blood is modeled as an in-
compressible non-Newtonian fluid. The transient phenomena of blood flow
through the coronary system are simulated by solving the three dimensional
unsteady state Navier-Stokes equations and continuity equation. Distributions
of velocity, pressure and wall shear stresses are determined in the system under
pulsatile conditions on the boundaries. Effect of branching vessel on the flow
problem is investigated. The numerical results show that blood pressure in
the system with branching vessels of coronary arteries is lower than the one in
the system with no branch. The magnitude of wall shear stresses arises at the
bifurcation.

1. Introduction. The major vessels of the coronary circulation as shown in Fig.
1 are the left coronary (LCA) that divides into left anterior descending (LAD) and
circumflex branches (LCX), and the right coronary artery (RCA). The left and right
coronary arteries originate at the base of the aorta which ensure a rich supply of
oxygenated blood and lie on the surface of the heart. Through these vessels, blood
is distributed to different regions of the heart muscle. As one get older, vessels may
become hardened and contain fatty deposits or atheroma formations on the inner
lining of the vessel. This reduces the vessel’s ability to expand during the systole.
The deposition of atheromas in the arteries causes narrowing of the coronary arteries
known as the coronary artery disease (CAD). These arterial changes occur silently,
and symptoms are often present until atheroma formation occludes more than two
thirds of the vessel [12]. Fig.2 shows the angiogram of a stenosed coronary artery.
Today the CAD is considered as one of the major causes of human death. Most
of the cases are associated with some form of abnormal blood flow in arteries due
to the existence of stenoses. To create a new pathway for blood flow, the technique
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Key words and phrases. Mathematical Modelling, Blood flow, Human Coronary Artery.
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Thailand Research Fund.
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FIGURE 1. The major vessels of the coronary circulation

FIGURE 2. The angiogram of the RCA with stenosis.

of coronary artery bypass grafting (CABG) has been widely used for patients with
severe coronary artery diseases. In a CABG operation, the surgeon grafts the patient
own blood vessels, such as veins from the legs or arteries from the chest or arms,
onto the diseased coronary artery.

Over the last two decades, a large number of bypass grafts have been implanted
worldwide. However, up to 25 percents of grafts fail within one year and up to
50 percents fail within ten years after surgery [13]. Today, it has been recognized
that one of the most important determinations in a successful bypass operation is
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the information of the rheological behavior of blood, the flow speed, the pressure
distribution, the wall shear stress, and the wall deformation in cardiac cycles. Thus
over the last two decades, extensive research has been carried out to study blood
flow problems in the coronary artery, including experimental, analytical and nu-
merical studies. Studies for both normal and stenotic vessels have been carried out
for idealized arteries, idealized arterial bifurcations, branchings, and for specific,
clinically important cases such as the aortic arch, the carotid artery, and the coro-
nary arteries. In most work, blood is assumed to be a Newtonian fluid which is
generally a valid approximation for the rheological behavior of blood in the large
blood vessels with diameter of 2-3 millimeters [4, 6, 15]. Fei et al. [6] constructed
three dimensional iliofermoral bypass graft distal anastomoses under various con-
ditions of anastomotic angle configurations of 20, 30, 40, 45, 50, 60 and 70 degree.
The flow patterns and wall shear stress were numerically simulated. Staalsen et
al. [15] performed the end-to-side anastomosis with polyurethane graft on the pig
abdominal aorta.

To investigate the relationship between hemodynamic effect of the blood circu-
lation and vascular diseases in small vessels, the non-Newtonian effect of the blood
has been considered [3, 8, 9, 18]. Basombrio et al. [3] constructed numerical ex-
periments for non-trivial flow, close to realistic situations in hemodynamics. The
non-Newtonian effect based on the Casson’s rheological model was included. Jie et
al. [8] also included the effect of non-Newtonian property of blood in the model.
They investigated the influence of the non-Newtonian property of fluid on the wall
shear stress and flow phenomena. It is noted that the studies mentioned above used
totally unrealistic boundary conditions, such as constant velocity at the inlet and
constant pressure at the outlet. In 2006, Wiwatanapataphee et al. [18] studied
the effect of the bypass graft angle on the blood flow. They simulated the three-
dimension unsteady non-Newtonian blood flow in the artificial artery bypass graft
using realistic boundary condition arising from heart pump. The effect of using
different bypass graft angles, 45°, 60° and 90°, on the flow pattern was investigated
in that study.

In this work, we extend our previous work [18] on two aspects. Firstly, the
computational model is constructed based on the real geometry of human coronary
arteries by using CT scans. Secondly, the model includes the aorta, the left and
the right coronary arteries, and mimics the pulsatile flow condition. In comparison
with previous work, these two new features represent a significant step method
toward the application of mathematical model in surgery, as the model with these
features enable the computation of blood distribution to each part of the coronary
artery system so as for doctors to determine the critical conditions for surgery. It
also provide a computed aided means for doctors to design the geometry of bypass
grafts if necessary.

The rest of this paper is organized as follows. In section two, the complete
set of governing equations for blood flow is presented. In section three, a Bubnov-
Galerkin finite element method and numerical scheme for the solution of the problem
is formulated. In section four, numerical simulations for flow through the coronary
artery are shown. Finally some conclusions and the clinical significance of the results
are presented in section five.

2. Mathematical Model. The reliability of a robust mathematical model for sim-
ulating blood flow in the coronary artery system depends on the proper construction
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of the 3 essential components: the geometry of the system, the flow mechanism and
relevant boundary conditions, and the underlying differential equations governing
the dynamics of the flow.

The construction of the computation domain of the system of human coronary
arteries is based on over four hundreds computed tomography (CT) images of a
patient. From the CT images, we first obtain the real geometry of many cross-
sections. These cross-sections are then smoothed and connected to form the 3-D
domain. Figure 3 shows the 3-D geometry of the system of human coronary.

FIGURE 3. Geometry of the system of human coronary arteries.

For the dynamics of blood flow, we assume blood as an incompressible non-
Newtonian fluid. The governing equations of blood flow consist of the continuity
equation and the Navier-Stokes equations, which can be expressed in vector notation
as follows:

V-u=0 inQ, (1)
ou 1
— -Vju=-V_. in Q, 2
5 + (u-V)u p o in{y (2)

where u is the blood velocity vector in the lumen region, p is the density of blood,
o is the total stress tensor which is defined by

o = —pI +29(4)D, (3)
where p is the pressure and D is the rate of deformation tensor given by
1
D = o (Vu+(Vu)),

in which 1 and + denote respectively the viscosity of blood and shear rate. Various
non-Newtonian models have been proposed to describe the relation between n and
4. In this work, we use Carreau’s shear-thinning model, namely,

. n—1)/2
N= "N+ (M0 — Noo) [1+(>\v)2]( V ;
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FIGURE 4. The periodic blood pressure and flow rate waveforms
oscillating within systolic and diastolic levels with cardiac period
T =0.8s.

in which 79 and 7., denote the zero shear viscosity and the infinite shear viscosity;
the consistency index, n, is a parameter whose value is between 0 and 1; 4 =
2tr(D?) is a scalar measure of the rate of deformation tensor:

v = \/2111% + 2us? + 2uz? + (ury + u2,)? + (u2, + uzy)? + (U1, + use)?

In the human cardiovascular system, due to the pulsatile pressure created by the
heart pump, blood is pushed from aorta to the left and the right coronary arteries
from which blood is distributed to different part of the heart muscle. In most
existing model, the computational region is limited to one artery and the flow rate
to this artery is fixed, which obviously does not describe the real situation. Thus,
in this work, we construct the model consisting of the aorta, the RCA and the
LCA, with which the flow rate on the entry of the aorta is specified while the flow
rate to the RCA and The LCA is allowed to be determined based on the system
configuration and the flow condition which is more realistic and allow determination
of flow behaves under different conditions. As blood is pumped into the aorta with
a fixed pulsatile flow rate and is distributed to different branches and exits, we set
the condition on the entry of the aorta as pulsatile velocity boundary condition,
and the condition on the exits of arteries as pressure boundary condition, while the
conditions on the blood-vessel wall are non-slip boundary condition.
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TABLE 1. Values of the parameters a?, of, 6% and 67

Artery vessel | n a® B2 ol Jo14

Aorta 1| 1.7048 | -7.5836 | 8.1269 |-12.4156
Q=5.7222 | 2 |-6.7035 | -2.1714 | -6.1510 | -1.1072
p=97.2222 | 3 |-2.6389 | 2.6462 | -1.333 | -0.3849
A=6.7287 |4 0.7198 | 0.2687 | -2.9473 | 1.1603
LCA 1| 0.1007 | 0.0764 | -3.3107 | -2.2932

Q =0.1589 | 2| -0.0034 | -0.0092 | -9.8639 | 8.0487
p=84.9722 | 3| 0.0294 | 0.0337 | 3.0278 | 3.8009
41 0.0195 | -0.0129 | 2.2476 | -3.2564

RCA 1] 0.0393 | 0.0241 | 5.9369 | 3.6334

Q =0.0896 | 2 |-0.0360 | 0.0342 |-11.1997 | 2.1255
P =95.3333 | 3 |-0.0131 | 0.0026 | -2.2778 | -3.7528
41 -0.0035 | -0.0041 | 2.7333 | -0.6375

Thus, on the entry of aorta, the velocity is set to the pulsatile velocity
uin(t) = Q(t)/A, (4)

where A and Q(t) are the cross-section area of the inlet surface and the pulsatile
flow rate. The typical pressure and flow rate profiles in different parts of the arterial
system are as shown in figure 4. According to reference [18], the flow waveform can
be expressed by the following Fourier series:

4
Qt)=Q + Z a%cos(nwt) + BY sin(nwt). (5)
n=1

On the exits, the pulsatile condition is used. According to [18], the pulsatile pressure
takes the form of the following Fourier series:

4
p(t) =P+ Z af cos(nwt) + BE sin(nwt), (6)

n=1

_ 27
where @ is the mean volume flow rate, w = T is the angular frequency with period
T = 0.8s and p is the mean pressure. Thus, on the outlet boundary, the boundary
condition is

o-n=—p(t)n, (7)

where n is the outward unit normal vector at the boundary. No-slip condition is
applied to the outer arterial wall. The values of Q, p, a@, of, 6% and 67 are as
shown in Table 1.

In summary, the blood flow problem in the system of human coronary arteries is
governed by the following boundary value problem.

BVP: Find u and p such that equations (1)-(2) and all boundary conditions are
satisfied.



RUNNING HEADING WITH FORTY CHARACTERS OR LESS 7

3. Numerical Algorithm Based on the Finite Element Method. To develop
a variational statement corresponding to the BVP, we consider the following alter-
native problem:

Find u € [HY(Q)]?, and p € H*(Q) such that for all w* € [H(Q)]?, and wP €
H}(9), all boundary conditions are satisfied and

(V-u,wP) =0,
(gl;w) +((u- V)u,w") = % (V- [pl +n(Vut (T w),

where H'(Q) is the Sobolev space W'2(Q) with norm || - [|1.2.0 and Hj(Q) = {v €
H'(Q)|v = 0 on the Dirichlet type boundary}, and (,-) denotes the inner product
on the square integrable function space L?(12).

Using boundary conditions (4) and (7), we have

00T
Qo
. T
/ »07dOU; + / @ujaidQUi L [0 yriap
O0x; p.) Oz
Q Q . Q .
1 0® 0P 1 0® 09
- Y)m— dQU; + — Y) ——=—dQU;j
+p/n(7)3xj oz, + p/n(’y)8xj Ox; J (10)
Ql 1 Q1
+- / o drp = 0,
P
Peait

where ¥ = (’l/)l, 1/)2, c ey QpM)T, ¢ = (d)la ¢2, .. ay ¢L)T and Uz = (U1i7 Uiy + + uLi)
in which the superposed dot represents a time derivative.

Standard procedures for the development of the Galerkin finite element formulation
lead to the following system

cTu =0,
MU + A(u)U + G(n)U + CP =0,

The above system can be rewritten as

(11)

cTU =0,
MU+D,U+CP =0,

In the present study, we solve the system of equation (12) using an implicit time
integration scheme. For a typical time step (¢, — tp41), we have

CT"U,qq =0,
M N
(At +Du) Un+1+CPn+1+:

(12)

M (13)
At Un,
which is nonlinear because D,, depends on U,,;1. To deal with this nonlinearity for

an iterative solution of (13), we use the following iterative updating:
cTuf =0

n+1
M i i A pi M i

(14)
Atn it Atn
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(a) (b)

FIGURE 5. The finite element mesh of the three-dimensional coro-
nary artery: (a) with branches; (b) with no branch.

where the superscript 7 denotes evaluation at the ith iteration step. Therefore,

in a typical time step (t, — t,4+1), starting with U%,, = U, we determine
Uity and Pflﬂ by solving system (14) repeatedly until HU::Q_ll —Ul ]| < eu
and [P — Pl || <ep

By repeatedly using the above procedure for n =0, 1, 2, . .. we can determine
the state U and P of the system at tg, t1, t2, . . .. If the norm |U,41 — U,]|

and ||P,4+1 — Py, are sufficiently small, then the system approaches the so-called
steady state.

4. Results and Discussion. We have simulated the three-dimensional blood flow
through the system of coronary artery with branches and with no branch. The
computation region, as shown in Figure 3, represents the system of human coronary
arteries. The system of the coronary arteries consists of the right coronary artery
(RCA) and the left coronary artery (LCA) which typically runs for 1 to 25 mm and
then bifurcates into the left anterior descending (LAD) artery and the left circumflex
artery (LCX) [1]. In this study, the volume and surface area of the coronary system
are 30.872 cm® and 82.615 cm?. The area and perimeter of the inlet aorta are
6.712 cm? and 9.893 cm. The area and perimeter of exit boundary of the aorta are
8.0243 cm? and 10.0559 cm. The lengths of the RCA, the LAD and the LCX are
14.9215 cm, 8.7269 cm and 8.2293 cm, respectively.

Flow simulations were conducted under typical physiological conditions. The
fluid properties are typical of human blood with the density of 1.06 g-cm™2 [17].
The mean flow rate (Q)) and mean pressure (p) of the aorta are equal to 95.37 ml - s~
and 97.2222 mmHg, respectively. Two domain finite element meshes of the system
with and with no branch are shown in Figure 5 consisting of 15,510 tetrahedral
elements with 121,194 degrees of freedom and 13,106 tetrahedral elements with
104,019 degrees of freedom, respectively.

Figure 6 illustrates pressure field in a cardiac cycle at various points in the system
with branches. It is noted the pressure decreases linearly along the arterial axis.
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FIGURE 6. Pressure field in a cardiac cycle at various points in the
RCA and the LCA.

Figure 7 shows the vector plot of the blood flow in the system with branches at
the peak of the systole. It shows that the flow of blood passes through the RCA at
40 cm/sec at the beginning originating from the aorta of the heart and 5 cm/sec
at the end of the RCA. When it arrives at the bifurcation, it splits into two parts.
This reduces the pressure distribution along the artery line while the magnitude
of wall shear stresses rises at the bifurcation as shown in figures 13(a) and 14(a).
The results indicate that artherosclerotic lessions is likely to develop around the
branchings of the artery.

To investigate the branchings on blood flow in the system of human coronary
arteries, pressure distribution, velocity field, flow rate and wall shear stress are in-
vestigated. Figure 8 shows distributions of blood pressure in the system of coronary



10

B. WIWATANAPATAPHEE, YONG HONG WU AND T. SIRIAPISITH

(b)

FIGURE 7. The distribution of blood velocity (em/sec): (a) from
the base of the Aorta to the RCA and the LCA: (b) at the end
parts of the RCA and the LAD.
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(b)

FIGURE 8. Blood pressure (mmHg) at the beginning (left column)
and the peak (right column) of the systolic period in the system of
coronary artery: (a) with no branch; (b) with branch.

artery with no branch and with branches at the beginning and the peak of the sys-
tolic period. Figures 9 and 10 present pressure profiles along the main arteries of the
RCA and the LCA connecting to LAD. The figures indicate that blood pressures in
the system with branches is significantly less than the ones in the system with no
branch. Figures 11 and 12 show transient flow rate through the main arteries of the
RCA and the LCA with branches and with no branch, respectively. They show that
the model with branches allows more flow rate of blood passing through the main
artery with branches. Figures 13 and 14 show the wall shear stresses along the
main arteries of the RCA and the LCA connecting to LAD, respectively. Compared
with the results obtained from the model with no branch, the wall shear stress tends
to increase in the model with branches. The figures depict the appearance of the
high wall shear stress around the bifurcation area of the model with branches but
at the end of the model with no branches. Figures 15 and 16 show blood speed
during a cardiac cycle at the entrance (the beginning from the aorta of the heart)
and at the end of the main arteries of the model with branches and with no branch.
In the model with branches, the blood passes through the RCA with highest speeds
of 40 cm/sec at the entrance (solid line) and 5 cm/sec at the end (solid line with
square) of the artery as shown in Figure 15(a). In the model with no branch, the
blood passes through the RCA with highest speed of 42.5 cm/sec at the entrance of
the RCA and it flows with highest speed of 17.5 cm/sec when it arrives to the end
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(a) with branches (b) with no branch

FIGURE 9. Pressure along the main artery of the RCA at the be-
ginning (dashed line) and the peak (solid line) of the systolic period:
(a) with branch, (b) with no branch.

(a) with branches (b) with no branch

FIGURE 10. Pressure along the main artery of the LCA connecting
to LAD at the beginning (dashed line) and the peak (solid line) of
the systolic period: (a) with branch, (b) with no branch.

of the artery as shown in Figure 15(b). The results also indicate that in the LCA
connecting to LAD with branches, the blood passes through the main artery with
highest speeds of 33 cm/sec at the entrance and 25 cm/sec at the end of the artery
as shown in Figure 16(a). In the model with no branch, blood passes through the
main artery with highest speeds of 30 cm/sec at both the entrance and at the end
of the artery as shown in Figure 16(b).

5. Conclusions. In this work, we present the simulation results of the blood flow
through the system of the coronary arteries taking into account the pulsatile condi-
tions at the boundaries. The effect of branchings of the artery on the flow problem
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FIGURE 11. Transient flow rate through the main artery of the
RCA: (a) with branches, (b) with no branch.
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FiGURE 12. Transient flow rate through the main artery of the
LCA connecting to LAD: (a) with branches, (b) with no branch.

is investigated. The blood is assumed to be an incompressible non-Newtonian fluid.
From the results, it is noted that an branchings is a key factor contributing to a
reduction in the pressure distribution and an increase in the wall shear stresses
along the artery axis. The results show that the branchings of the artery has an
significant effect on the blood flow. The artherosclerotic lessions will develop due
to the higher wall shear stresses at the bifurcation.
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