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Abstract

This paper describes the simulation of the generation of high speed liquid jet injected to quiescent
air including the compressible liquid dynamics in the nozzle (before injection) using computational fluid
dynamics technique (FLUENT code). In this study, in the experiment, the high speed liquid jet is
generated by using the impact driven method which the liquid retained in nozzle cavity is impacted by a
high velocity projectile. In the numerical model, velocity of projectile driving through the nozzle was
calculated with conservation equation of momentum of projectile. At initial condition, closed system
domain consists of two parts which are nozzle and test chamber containing the compressible liquid and
air respectively. In this study, projectile impact velocities are 300 m/s and 700 m/s. Three types of liquid
jets, e.g. water and diesel were investigated. The CFD results show good agreement to the previous
experimental results. In addition, simulation results proved the dynamics characteristics of multiple pulsed
high speed liquid jets driven by projectile impact. From this study, it is the first reveal on the
characteristics of the high speed liquid jet injected into quiescent air and liquid dynamics in the nozzle
using CFD technique and will be further challenge for the study in this field.
Keywords: High-speed liquid jet, impact driven method, compressible flow, CFD

1. Introduction injection. This is because the atomization and

There have been a number of studies of
the characteristics of high speed liquid jet over a
number of years. Its fundamental is essence to
apply to many industrial technologies such as
cutting, drilling, mining, and tunneling etc. In the
combustion, moreover, the fuel sprayed to high
speed liquid condition may be beneficial in
improving combustion in such applications as

SCRAM (supersonic combustion RAM) and direct

mixing are likely to be enhanced and the bow
shock wave will provide significantly increased air
temperatures. For medical engineering, in drug
injection, needle may be replaced with high speed
liquid jet to deliver drug through skin, called
“‘needle free injection”. This is drug delivery
benefit which is the improving activation because
drug solution can be become to be small particle,
increasing the surface of interaction between drug

and tissue and the preventing infection in the
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patient and administrator by contaminated
injection. In addition, diameter of the hole after
injection with high speed liquid jet is very small
therefore scar can heal up better.[1,2] For drug
delivery, it notes that the liquid jet velocity should
be limited around 100 — 200 m/s, depending on
design condition, which is very different from the
combustion technologies. However, in both
applications the high speed liquid jet can be
generated by the same method called “impact
driven method or impulsive method.”

Impact Driven Method (IDM) technique
presented by Bowden-Brunton in 1958 [3] is a
method for producing high speed liquid jet. The
liquid contained in cavity of station is driven by
high speed projectiie and accelerated to high
velocity. Liquid flow behavior in liquid sac during
jet generation process directly affects the
characteristics of high speed liquid jet. In 2003, K.
Pianthong et al.[4] presented the one dimensional
model which can quite comprehensively describe
the driven jet generation process during projectile
traveling in the nozzle cavity. This model
considered the liquid shock wave reflection for
estimating the pressure of compressed liquid in
step nozzle and the velocity of the high speed
liquid jet emerging from the nozzle. Their model
results showed good agreement to the previous
experimental results. Moreover, phenomena of
multiple pulsed liquid jets which were frequently
presented in previous experiments can be
described by their model. However, K. Pianthong
et al’s model can not be applied for other
geometry of nozzle such as, mostly used, conical
nozzle, because it must be calculated from two-
dimensional model. A drawback in such model

was confirmed by the A. Matthujak et al.’s work

[5] which the second and third reflection driving

CST

pressures measured from experiment are much
lower than that pressure from calculation.

Recently, numerical method such as
Computational Fluid Dynamics (CFD) has been
employed to investigate the high speed liquid jet
characteristics. In 2003 K.Pianthong et al [6]
reported the simulation of shock wave structure
ahead of the jet on model of stationary solid jet
shaped in steady flow field of compressible air.
Then, Zakrzewski et al.[7] improved Pianthong et
al’'s work by using the species transport equation
to predict transient development of liquid jet and
this improvement can describe numerically the
process of interaction between the air and high
speed liquid jet. Although, in previous studies,
CFD results quietly agreed with experimental
results, nozzle flow wasn’t considered. Thus,
further work from these researcher groups [8]
showed simulation of shock propagating on all of
material in jet generation process by using
AUTODTN-2DTM software. The work shows the
shock propagating in projectile, liquid sac and
nozzle material but it seems that the tool can not
predict transient development of high speed liquid
jet.

In this study, simulation of the pulsed
high speed liquid jet generation process by using
the CFD program (FLUENT) is presented. In this
study, step and conical nozzle cavity is the main
focus, where water and diesel are used.
Simulation model are validated by comparison
with results from previous study’s K. Pianthong
[9,10] and A. Matthujak et al [5]. Static pressure
at orifice entrances and dynamic pressure at
orifice exit are plotted in series. Moreover profile
of jet velocity is presented and discussed. This
provides more understanding on high speed liquid

jet phenomena and its generation process, and
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this information will be then useful for the future

study of high speed injection and related fields.

2. Supersonic liquid jet generation by impact
driven method

The high-speed fuel jet is generated by
using Bowden-Brunton method [3] as show in
Fig.1. By this method, liquid retained in the nozzle
is impacted by a high velocity projectile. On the
impact, the high speed liquid jet forms and injects
from nozzle to the test chamber. In this paper,
K.Painthong’s studies [9,10] are used as main
references where supersonic liquid jet was
visualized by using a high speed video camera
with shadowgraph optical system to describe its
dynamics characteristics. In his works, the
shadowgraph optical system assists in the

capture of shock wave and detail of experimental

apparatus was described in his studies.
Vp (mfs)

High speed liquid jet

Test chamber

Fig. 1 Generation of supersonic liquid jet by
impact driven method
3. CFD modeling of jetting formation process

3.1 Geometry model

Detail of nozzle geometry used in this
study is shown in Fig 2. Mechanism of high
speed jet generation is shown as Fig.1. This
setup can be modeled on closed system domain

with axis-symmetric geometry where was divided

into nozzle cavity zone and test chamber zone

CST

(shown in Fig. 3). The chamber zone being 50
mm height and 250 mm width was meshed with
60,000 of quadrilateral elements. This is fixed in
all cases in this study, however another zone can
not do that because captured region must be
changed that dimension and mesh size
corresponding to the nozzle cavity lengths. In this
zone, interval size along x-direction (dx) must be
fixed on 0.3 mm to provide the moving mesh for
projectile motion. In Fig 3, the mesh was densely
created at the area of high shear flow and
interaction between high speed liquid jet and

quiescent air.

5.5

16.5

21

Scale: mm Scale: mm

15 15

Fig. 2 Nozzle geometries

[ CTETTET
- Nozzle cav |t)
JlIllIl

=Axis line

g| —
—_

Fig. 3 Mesh construction

3.2 Projectile movement model

The movement of projectile in nozzle
cavity is assumed as the motion of a moving wall.
Therefore moving mesh of nozzle cavity zone
was constructed. The projectile velocity during jet
generation process can be computed from a
simple force balance on the projectile in x-

direction such that

Test chamber
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.t[dv :j'(F(t)/m) dt (1)
f I

where V is the projectile velocity, F is
the driving force and m is the mass of the
projectile. The velocity at any time t calculated

using an explicit Euler formula as
Vi =V H(F(D/m)At (2)

This formula is used to specify the motion
of a moving wall (or projectile front wall) with the

linear velocities at every time step (dt) by using

User Define Function (UDF), provided by software.

In this study, the mass of projectile is 4.2 g. The
force acting on the projectile, in x-direction, is
simply resistance force of compressed liquid
pressure but the friction force along projectile wall
is neglect. The projectile initial velocities being
300 m/s or 700 m/s and the atmospheric pressure
are set as initial condition in the domain.
Sometime, projectile might impact the nozzle
shoulder, resulting from too high projectile
momentum remaining. In this situation, the
projectile will release such momentum into nozzle
material, and its velocity is then zero before it
rebounds by compressed liquid reaction force. In
addition the calculation process is finished when
the projectile arrive at the entry point. Because of
the most different pressure across two phase
zones, for some time, the pressure fluctuation can
be induced by high speed liquid jet generation.
Consequently, some of liquid phase is evaporated
to be the gas phase by cavitations process.
Therefore, this phenomenon need to be

considered in which state pressure is lower than

vapor pressure of liquid. The full cavitation

CST

models presented by Ashok K. Singhal et al.[11]
and [12] are applied to specify the vapor pressure
and cavitation rate in liquid and air flow. This
assumption might be incorrect, because the liquid
must be evaporated to its vapor gas, instead of
air. However, properties of our liquid vapor and

air are comparable.

3.3 Liquid properties model

Under the initial condition, the fluids
phase was divided into liquid phase in nozzle
cavity and air phase in test chamber. The air
density can be simply specified by using ideal gas
formula for improving a simulation of
compressible air flow. Although, in nozzle cavity,
it is more complicated to specify the liquid flow to
be compressible, this can be modified by using
formula including the instant liquid density (eq.(3))
and sound speed (eq.(4)) [13]. In the formula,
variable P and are the liquid pressure and density
respectively and constant value B is the bulk
modulus of elastic of the liquid, which is useful
liquid property. In addition, it seems that the
density and sound speed correspond to liquid
pressure with time dependent. The liquids used in
this study and its properties are listed in Table 1.

Table 1 Liquid properties

Bulk Vapor Surface

Liquid modulus pressure tension

(GPa) (Pa) (N/m)

Water 2.24 3,169 0.0717

Diesel 1.6 1,378 0.0244
Po 3)

[10 (P-P) /B]

2 =1—(P|13—P0)X\£§ "
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3.4. Solver modeling

The CFD commercial code (FLUENT) is
used as the tool to simulate the dynamics
characteristics of jet generation process. The
mixture model with velocity slip was used for
specifying the properties of mixture within the
multiphase flow. In the unsteady flow solution, the
time step sized (dt) of 0.1 microseconds was set;
therefore, results from each calculation can be
recorded. Turbulence model is the standard k-e
model with segregate solver for non-linear

equations.

4. Validation of CFD simulation

This section presents the validation
results of dynamics characteristics of jet
generation process by comparison with previous
works. Water and diesel liquid jet characteristics
performing in average velocity are shown in Fig.4.
These jets driven by projectile with velocity of 300
m/s emerge from conical nozzle which its
geometry shown in Fig.4. The average velocities
calculated by CFD method are compared with
such that by experimental results of K.Pianthong
works [13,14]. We observe that trends of average
jet velocity are slightly different. After 30
microseconds of flow time, calculated results
seem that a water jet velocity is higher over that
of diesel, even if there are an opposite results at
over 30 microseconds, because the bulk modulus
of elastic of the water is greater than that of the
diesel. In addition, the diesel can form the droplet
and be atomized into air easily when it was

sprayed.
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Fig .4 Average velocities

In Fig. 5, the absolute static pressure
history inside the nozzle, result data from the
experiment of A.Matthujak [9] and CFD simulation,
are compared. In this case, the water was
retained in nozzle cavity, whose geometry shown
in Fig.5 and driven by projectile with velocity of
300 m/s. From Fig. 5, we found that the three
peak pressures which were created by multiple
water shock reflection during jet generation
process. However, the pressure fluctuation
corresponding to the shock waves released from
nozzle container wall at initial stage can not be
captured by the CFD simulation, because this
situation is not considered in CFD modeling. The
value of the peak pressures measured in CFD
are 1.1, 0.4 and 0.3 GPa and such those in
experimental results are 1.24, 0.6 and 0.27 GPa.
The results from CFD are fairly similar to the
experimental results, but at some stage the
pressure histories from those results are more
different, such as the time at 60 to 70
microsecond and 110 to 120 microseconds.
Because of simple cavitation model employed in
the CFD, the super cavitation process occurring

during jet generation process inside nozzle cavity

can not be specified by CFD model.
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Fig .5 Pressure histories in side nozzle cavity

5. Results and discussions

This section presents the dynamics
characteristics of jet generation process and high
speed liquid jet obtained from CFD simulation.
Position of projectile during the process, static
pressure at orifice entrance and dynamics
pressure at orifice exit can be plotted in series.
lllustrations of profile of jet velocity are presented
and described. Moreover, the effect of two nozzle
geometries which are step and conical on high
speed liquid jet and its generation process will be
explored by using the above CFD modeling.

5.1 Relationship between static pressure and

dynamic pressure
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Fig. 6 Dynamics characteristics of jet generation

process in (a) conical nozzle and (b) step nozzle

Dynamics characteristics of jet generation
process which are the relationship among the
position of projectile during the process, the static
pressure at orifice entrance, and the dynamics
pressure at orifice exit are shown in Fig. 6. We
found that the static pressure is higher than the
dynamic pressure. This means that liquid jet
emerging from nozzle can not convert all of
potential energy in nozzle cavity into kinetic
energy, because while liquid jet was emerging
from nozzle by driving of the static pressure, the
pressure is also applied to reflectively propagate
shock wave in liquid as well. Number of peak
pressures in case of conical and step nozzle are
three peaks similarly. However, maximum static
pressure at orifice entrance occurring inside
conical nozzle is higher than which inside step
nozzle. In case of conical nozzle the first peak
produces the highest pressure (1.5 GPa) while in
the case of step nozzle the highest pressure peak

occurs at second peak (0.7 GPa).

(ww) uogisod sj3osfold
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5.2 Jet velocity profile
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Fig. 7 Jet velocity profile of diesel emerging from
step nozzle (km/s) at at (a) 90 and (c) 120

microseconds

Profile of diesel jet velocity created by
projectile impact velocity of 300 m/s with step and
conical nozzle is shown in Fig. 7. We observe
that conical nozzle gives us the maximum velocity
of 1,300 m/s, which is higher than which from
step nozzle, 800 m/s, because the maximum
pressure buildup inside conical nozzle is higher.
Moreover, multiple diesel jet pulses occurrence
can be found. The jets emerging from conical
nozzle can be dispersed better than which from
other nozzle, because the local velocity of the jet
pulses corresponds to peak static pressure inside

nozzle cavity; therefore,

200

CST

- -
(=] w
T

w
T

}
w
T

Y-direction (mm)
o

0
-
o

L

v

—

w
T

L | T I T B R
100 120 140 160 180
X-direction (mm)

- -
(=] o
T

w

Y -direction (mm)
h o

L
o
T

TR (TSI (T NTIN N (AN N '

TR TR R S

|
200

-15L

100
X-direction (mm)

120 140 160 180

Fig. 8 Jet velocity profile of diesel emerging from
conical nozzle (km/s) at (a) 90 and (c) 120

microseconds

6. Concluding remarks
In this study, high speed jets s
experimentally generated by using the Impact
Driven Method, from the impact of a high velocity
projectile on the liquid package contained in the
nozzle cavity. The Computational Fluid Dynamics
(CFD) technique is employed for simulation of jet
generation process by IDM method within closed
system. The two fluids model consisting of liquid
and air can be successfully calculated. The CFD
results show good agreement to the previous
experimental results. We found that in case of
conical nozzle first pressure peak produces the
highest pressure while in case of step nozzle the
highest pressure differently occurs at second
pressure peak. This is relative to local velocity

and dispersion of high speed liquid jet.

200
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Abstract

High speed liquid jet can be applied and benefit in many fields such as combustion, cutting
technology, and medical engineering. Liquid jet can be accelerated into high speed condition by using the
methods called “Impact Driven Method” by which the liquid retained in the nozzle is impacted and then
driven by a high-speed projectile. Understanding dynamic characteristics of jet generation process is
essential for applying it into those technologies. So far, there are few studies in such researched areas,
especially the flow inside nozzle cavity, because it is vary difficult to access in the experiment. Therefore,
this study investigates the dynamic characteristics of impact driven process in a step nozzle using the
Computational Fluid Dynamic (CFD) simulation. Fluid flows with transient simulation can be specified as
two phase flow which consists of air and compressible diesel containing in the test chamber and step
nozzle, in the initial stage, respectively. Effects of projectile velocity and mass of projectile on the
characteristics of jet generation process and jet velocity are presented. Also the flow behavior due to
various initial conditions is discussed in this study. It is found that the simulation shows good agreement
with previously experimental results. In addition, information from this study provides the better
understand on the flow phenomena of high speed liquid jet and its generation process. Moreover, the
success of this study can be extended to many applications in the related fields.
Keywords: Computational Fluid Dynamic (CFD), Impact Driven Method, Compressible fluid.

1. Introduction velocity will enhance shear-induced atomization

For a few decades, much attempt has [1]. In this situation, in addition, fuel and air
been put into researching of high-speed liquid jet interactions such as jet-shock wave interaction,
for many technologies including combustion, induced swirl, and intense shear layer have

cutting, mining, and medical engineering. been suggested as potential ways to increase

Therefore, jet characteristics which are essential
for such applications have been investigated.

In  combustion, with higher injection
pressure and the resulting higher injection
velocity, the combustion efficiency of direct

injected engine is increased, because the high

mixing during the combustion.

In the cutting technologies, the use of
high speed liquid jets as a means of breaking
specimens has prove to be a very promising
technique. The potential for major advantage in

cutting technology has been demonstrated
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experimentally and in practice. The advantages
include considerable reduction in dust and noise
generated during cutting operation, elimination of
sparking, and ignition hazards, and stable
equipment with lower maintenance cost [2].

For medical engineering, in drug
injection, needle may be replaced with high
speed liquid jet to deliver drug through skin,
called “needle-free jet injection”. This drug
delivery benefits the improving activation,
because the drug solution can become vary
small particle, increasing the surface of
interaction between drug and tissue. It also
prevents infection in the patient and
administrator by contaminated injection. In
addition, diameter of the hole after injection with
high speed liquid jet is very small; therefore,
scar can heal up faster [3]. For drug delivery, it
notes that the liquid jet velocity should be limited
around 100 — 200 m/s. Moreover, nozzles with
small diameter are required, usually around 0.1
mm [4]

Understanding of characteristics of high
speed liquid jet and its generation process is
essential to apply to those applications.
Therefore, many researchers have attempted to
explore the jet flow phenomena.

In 1958, F.P.Bowden et al. [5] showed
the report of the phenomena of high speed liquid
jet impact on the solid. The jets were generated
by the method called “Impact Driven Method,
IDM” and liquid jet at hypersonic range can be
created. This method is useful to generate high
speed liquid jet in the present works in the field.

With the IDM method, generally, when
the liquid packaged in nozzle cavity is impacted

by high speed object, shock propagations and
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reflections in liquid are found in H H shi and
A.Matthujak’s studies [6-7]. Based on this
situation, Pianthong et al.[8] presented the one
dimensional model which considered the liquid
shock wave reflection for estimating the pressure
of compressed liquid in step nozzle and the
velocity of the high speed liquid jet emerging
from the nozzle. From the model results,
however, only limited parameter of the process
can be predicted such as maximum injection
pressure, jet velocity, and maximum compressed
liquid inside nozzle, while detail of jet flow field
can not be predicted and showed.

Consequently, in this study, simulation
of the generation process of pulsed high speed
liquid jet by using the CFD program (FLUENT) is
presented. In the study, step nozzle cavity is
used as geometrical model. Simulation model
are validated by comparison with results from
previous study’s Pianthong [9], and Shi [6]. The
shock waves reflection inside the nozzle cavity
during jet generation process can be captured
by the simulation. This clarifies how pressure
buildup inside step nozzle occurs resulting in
development of liquid jet and providing more
understanding on high speed liquid jet

phenomena and its generation process.

2. CFD modeling
2.1. Mechanism of impact driven method
The high-speed diesel jet is generated
by using Bowden-Brunton method [5] as show in
Fig.1. By this method, liquid retained in the
nozzle is impacted by a high velocity projectile.
On the impact, the high speed liquid jet forms

and injects from nozzle to the test chamber.



TSME - ICOME

Projectile

High Speed
Liquid Jet

Fig. 1 Generation of supersonic liquid jet by

impact driven method

2.2. CFD modeling of generation process of
impact driven high speed liquid jet

Step nozzle geometry used in this study
is shown in Fig 2. The geometry includes mainly
two parts which are cavity and orifice tube.
Variable Lc, Lo, and Dn are cavity length, orifice
length, and orifice diameter respectively.
Geometrical domain and grid construction are
shown in Fig 3. From the mechanism of high
speed jet generation shown as Fig.1, this setup
can be modeled in closed domain with axis-
symmetric geometry divided into nozzle cavity
zone and test chamber zone. The test chamber
zone, being 50 mm height and 250 mm width,
was meshed with 60,000 of quadrilateral
elements. This is fixed in all cases in this study,
however the nozzle sac region is varied,
depending on the dimension and mesh size
corresponding to the nozzle cavity lengths. In
this transient zone, the interval size along x-
direction (dx) is fixed at 0.3 mm to provide the
moving mesh for projectile motion. The mesh
was densely created at the area of high shear
layer and interaction between the high speed

liquid jet and the quiescent air.

Moving wall
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geometry of high speed liquid jet simulation

2.3. Model of projectile movement and liquid
properties

The movement of the projectile in the
nozzle cavity is assumed as the motion of a
moving rigid wall. Therefore, the moving mesh of
nozzle cavity zone was constructed. The
projectile velocity equaling wall movement during
jet generation process after the impact can be
computed from a simple force balance on the
projectile front and the liquid package in x-
direction. It is assume that the force acting by
the projectile, in x-direction, is simply the
resistance force of compressed liquid pressure
but the friction force along projectile wall is
neglect. Thus, the velocity at any time t

calculated by using an explicit Euler formula as

Vi =V +(F(t)/m)t 1)
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where V is the projectile velocity, F is
the driving force and m is the mass of the
projectile. This formula is used to specify the
motion of a moving wall (or projectile front wall)
with the linear velocities at every time step (dt)
through the User Define Function (UDF),
provided by the software.

At the initial condition, two fluid phases
were divided into liquid water phase in the
nozzle cavity and air phase in the test chamber.
The air density is simply specified by using ideal
gas formula to cope with the compressible flow
field in the simulation. Furthermore, in the nozzle
cavity, it is much more complicated to specify
the water as the compressible liquid. In this
study, it is can be modified by using the formula
including the instant liquid density (eq.(2)) and
sound speed (eq.(3)) [10]. In the formula,
variable P and P are the liquid pressure and
density respectively, and the constant value B is
the bulk modulus of elastic of the liquid.
Subscript 0 and 1 denote the respective quantity
at the initial and current time level. In addition, it
seems that the density and the sound speed
corresponded to liquid pressure with time
dependent, significantly. Properties of diesel

liquids are used in this study.

yo)
) = 9 (2)
P [1.0—(P1—P0)/B]

alzl_(Pl_PO)xﬁ (3)
B Po

In addition, because of the vary high
pressure gradient across two phase zones,
sometimes, the pressure fluctuation can be

induced by high speed liquid jet generation;

The First TSME International Conference on Mechanical Engineering

20-22 October, 2010, Ubon Ratchathani

consequently, some of liquid phase is
evaporated to be the gas phase by cavitation
process. The full cavitation models presented by
Singhal et al.[11] and Fluent user’'s guide [12]
are applied to specify the vapor pressure and
cavitation rate in liquid and air flow. This
assumption might not be accurate, but
acceptable, because the liquid must evaporate
to its vapor gas, instead of air. However,
properties of our liquid vapor and moist air are
comparable.

The CFD commercial code (FLUENT) is
used as the tool to simulate the dynamics
characteristics of jet generation process. The
mixture model with velocity slip was used for
specifying the properties of mixture within the
multiphase flow. In the unsteady flow solution,
the time step sized (dt) of 0.1 microseconds was
set; therefore, results from each calculation can
be recorded. Turbulence model is the standard
k-e model with segregate solver for non-linear

equations.

3. Validation of CFD simulation

This section presents the validation of
dynamic characteristics of jet generation process
by comparing results in this study with previous
works of Painthong and Shi [7, 10]. In this study,
the conditions in which projectile velocities
around 300 to 700 m/s and the step nozzle are
used are investigated.

Diesel liquid jet characteristics showing
in term of average velocities defined as the jet
penetration divided by emerging time are shown
in Fig.4. These jets were driven by projectile
having the velocity of 700 m/s. The average

velocities calculated by the CFD method are
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compared with those by experimental results of

Pianthong works [10]. Average overall jet
velocity of both results is quite similar, about
1100 m/s, even through in the simulation the jet
need more time to accelerate at the earlier
stage. This indicates that, in the simulation, the
penetration of high speed liquid jet might take
longer time to accelerate for a few

microseconds; however, in the experiment, it is

not possible to capture.
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Fig. 5 Injection pressure and jet velocity with

driven brass piston

For momentum exchange method which
the projectile impacts on the brass piston instead
of the liquid, maximum injection pressures and
average jet velocity resulting from simulation and

Shi’s experimental results are quite comparable
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as shown in Fig 5. It shows that, when the
piston mass is increased, the injection pressure
and jet velocity decrease. This is due to the
momentum conservation which giving the slower

piston movement.

4.1 Effect of projectile velocities

Because projectile velocity is the one of
important parameters, many researchers have
investigated the effect of the parameters on the
characteristic of the injection by using
experiment apparatus or mathematical model.
Nevertheless, they can not thoroughly reveal
how those parameters relate to the
characteristics of jet injection, because in
experiment it is impossible to direct
measurement of jet characteristics and the
parameter, especially projectile velocity and
injection  pressure inside. Consequently,
influence of those parameters can be presented
guessingly.

Therefore, this section investigates the
influence of projectile velocity on dynamic
characteristics of jet injection by using CFD
simulation. There are projectile velocities which
were ranged from 300 — 700 m/s with same
nozzle geometry, and 4.2 g of projectile mass.
Increasing projectile velocity can create pressure
inside nozzle cavity and jet velocity to higher
condition as shown in Fig 6 and Fig 7.

It is found that average jet velocity and
injection pressure with the impact at high
velocity rise to high values, while the number of
pressure peak, being injection impulse, is
independent of projectile velocity. Furthermore,
the striking of projectile on cavity shoulder was

found for the projectile velocity at 600 — 700
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m/s. The striking and non-striking of projectile

result in histories of injection pressure differently;
besides, duration of jet generation process under
the striking is shorter than that under the non-
striking as shown in Fig. 6(b). This is because
momentum of projectile was suddenly released
to nozzle material during striking of projectile on
the container even though it is only reduced by

the liquid.
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Fig. 6 Effect of projectile velocity on dynamics
characteristics of high speed liquid jet: (a)

velocity and (b) static pressure

The Fig 7 shows the profile of diesel jet
velocity created by projectile impact velocity of
300 m/s and 500 m/s at 40, 60, and 80 us. We
observe that liquid jet impacted with high velocity
projectile gives us the high jet velocity around

1400 m/s, at emerging time of 80 us, because
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the maximum pressure buildup inside nozzle
cavity is higher, due to lager momentum
transfer. However, it is quite semblance in the jet
shape. This means that the shape of liquid jet
significantly relate to pressure fluctuation inside

nozzle cavity.
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4.2 Effect of projectile density

One of important parameters at jet
generation process is mass of projectile
according to density of projectile at constant
volume. However, previous studies have been
hardly conducted such point to discussion.

In this study, it is the first time that this
point is investigated. The densities being 200,
400, 600, 800, 1000, 1200, 1400, 1600, and
1800 m3/kg and the fixed size nozzle being
4,682 cavity volumes with 7.887 Lo/Dn are used

on calculation.
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The influence performs on Fig 8 and Fig
9. From Fig 8 (a), we found that increasing
projectile densities in range of lower than the
liquid density does produce higher jet average
velocity. However, while the density of projectile
is higher than the density of the liquid, the
average jet velocities are hardly varied with the
projectile density. The pressure histories inside
cavity are similar. However, the process — end
time of jet generation is much shorter with usage
of light projectile, as shown in Fig 8(b). In
addition, although the first peak pressures inside
nozzle value is found that it is not dependent on

projectile density, the second and the third peak

The First TSME International Conference on Mechanical Engineering

20-22 October, 2010, Ubon Ratchathani

values are significantly varies with projectile

density. It is possible for the momentum
exchange at high rate with long duration after
the impact of projectile.

The Fig 9 shows the profile of diesel jet
velocity created by projectile densities of 300
and 500 m3/kg at 40, 60, and 80 ps. It is found
that at initial stage as 40 and 60 ys the shape of
liquid jet is slightly changed with variation of
projectile densities. The duration of jet
generation process with light projectile is shorter
than, process ending at 85 us, such with heavy
projectile, at 160 us, resulting in difference of

both jet formations of 80 us.
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5. Concluding remarks

In this study, the Computational Fluid
Dynamics (CFD) technique is employed for
simulation of jet generation process by IDM
method within closed domain. The CFD results
show good agreement to the previous
experimental results. Effect of velocities and
densities of projectile can be clearly investigated
and described. We found that average jet
velocity and injection pressure with the impact at
high velocity and heavy projectile rise to high
values. However, while the density of projectile
is higher than the density of the liquid, the
average jet velocities are hardly varied with the
projectile density. Moreover, from simulation
results, pressure fluctuation inside nozzle cavity

considerably associate to the liquid jet formation.
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Abstract. In this study, the functional operation of the commercial injection device was explored,
and major operating parameters, which are jet velocity, jet penetration, piston movement, and other
dynamic phenomena, for the needle-free jet injection, are thoroughly investigated by using the high
speed video camera. During the operation process of the needle-free injection device, the frame rate
of 1,500 frames per second (fps) was applied. The water is used as working liquid and is driven
through a 0.17 mm diameter orifice nozzle, into the quiescent air and the tissue stimulant being
20 % polyacrylamide gel. It is found that the velocity of the free jet in the air is around 85 m/s while
the piston movement with free load is at velocity of 5 m/s. In addition, the required jet shape for the
drug delivery by the injection was also observed from visualization results. Moreover, from those
results, jet generation process in the device can be further simulated and investigated with CFD
simulation for the better understanding of needle-free jet injection process and providing useful
information in the design of needle -free jet injection apparatus.

Introduction

Jet injectors deliver liquid medication or vaccine through a nozzle orifice via a high pressure,
high speed narrow stream that penetrates the skin, as shown symmetric in Fig. 1. Drug or vaccine
can be delivered to intradermal, subcutaneous, or intramuscular tissue depending on operating
parameters performed by the jet injector device. The devices designed to deliver the drug were first
developed in the 1940’s and were widely used for mass immunization campaigns from the 1950’s
to the 1980°s [1, 2]. It is believed that jet injection devices should improve the efficacy of the drug,
due to better distribution in tissues where liquid drug delivered via jet injection is dispersed more
widely; in addition, site pain after injection is very small, in a range of hundred micrometers. This
mechanism was confirmed by J. Baxter’s studies [3-4]. An important advantage of jet injectors over
other novel needle-free drug delivery methods is that parenteral delivery of drug to the same sites as
those used in needle and syringe delivery may allow for use of the same vaccine formulations with
the same proven efficacy [2].

Tissue

N

Liquid jet

Fig. 1 Needle-free jet injection method



The device, there are many disadvantage of needle free jet injection device distributed in the
market; therefore, the development have been required to improve efficiency of the jet injection
method and the device. One study compared two alternative jet injector devices with standard
device showed that the jet injector devices were associated with higher levels of pain and more local
reactions; moreover, there is blood contamination in head of jet injection device after injection [1,
5]. This is because the device generates the liquid jet at high velocity and impact pressure resulting
in blood splashed back from the patient [1, 2, 5]. For this reason, understanding on effects of the
parameters on characteristics and behavior of needle-free jet injection for the completely
controllable device has been essence to correctly specify the hole depth, created by the jet liquid jet,
in the target tissue [2].

The devices have been concerned with injection efficiency corresponding to operating
parameters which are jet penetration depth, liquid dispersion, jet velocity, volume ejected, and
nozzle diameter. In works of Joy Schramm-Baxtera et al. [3, 6] mentioned that with increasing the
nozzle diameter and jet velocity, the shape of liquid dispersion at the end of the hole in simulant
tissue is changed and jet penetration depth is increased. Further works [4] from this research group
showed that depth of the injection hole increases with ejected volume before reaching an asymptotic
volume. In addition, Shergold et al. [7] explored the penetration of a soft solid by a liquid jet
injection from commercial needle-free jet injection devices, and revealed the discharge
characteristic. A high pressure pulse, around 20-35 MPa, during the first 1-5 ms of injection,
followed by steady decay in liquid pressure was found. However, those previous studies did not
explore the jet generation behavior inside the nozzle during injection process; even if, it directly
affects on the characteristics of jet injection.

Therefore, in this study major operating injection parameters, which are jet velocity, jet
penetration, piston movement, and other dynamic phenomena, for the needle-free jet injection, are
thoroughly investigated by using high speed video camera in experiment, and this provided the
preliminary data in validation of the CFD modeling of needle-free jet generation process.

Material and method

Jet production

The jets used in these experiments were produced from a commercial, spring-driven growth
hormone jet injector, Cool Click [Bioject2000 Inc.] through an orifice of 170 mm in diameter. The
maximum liquid volume ejected was 0.5 ml. In experiment, the jet is injected into the air and 20 %
polyacrylamide gel, in which a nozzle tip attached the gel during the injection, and deionized (DI)
water was used as the jet fluid. To gain a better understanding of the dynamics of the jet penetration
in both medium, a high-speed video camera (Photron Fastcam SA5) was used to capture the jet flow
phenomena in the medium and piston behavior during a jet ejection. During the operation process of
the needle-free injection device, the frame rate of 15,000 frames per second (fps) was applied, and
the major operating parameters, which are jet velocity, jet penetration, and piston movement is
thoroughly investigated.

Polyacrylamide gels

20% Polyacrylamide gel were used as a model soft material which Young’s modulus and
hardness, Hoo, reported by Schramm-Baxter et al. [6] are 0.22 MPa and 41 Hoo, respectively. The
20% gel was created by the addition of initiators (10% ammonium persulfate (APS) and
N,N,NO,NO-tetramethylethylenediamine (TEMED)) to a 40% (w/v) acrylamide solution. The
acrylamide solution was mixed with DI water to create solutions possessing acrylamide
concentrations in the range of 20% w/v, and the gel was polymerized by the addition of 60 ul 10%
APS and 12 ul TEMED to the acrylamide solution of 6 ml.
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From the mechanism of needle-free jet injection process, this setup can be modeled in a
closed system domain with axi-symmetric geometry divided into two zone: nozzle cavity zone
being full of dose liquid and air zone, as shown in Fig. 2. The CFD commercial code (FLUENT) is
used as the tool to simulate the dynamic characteristics of the jet generation process. In the
simulation, the two-fluid model consisting of liquid and air can be calculated by using the volume
of fraction (VOF) model for interaction between fluid jet and air. The air and liquid density are
simply specified to be compressible fluid by using the formula of ideal gas and compressible liquid
including the instant liquid density, respectively. The turbulence model is the standard k-¢ model
with segregate solver for the non-linear equations. The velocity of the piston movement assuming
as a moving wall during the injection is computed from the resulting force from the combination of
spring, pressure, and friction forces acting on the piston in x-direction. The initial spring force can
be calculated from Hooke’s law equation where the spring force constant tested by using Rimac
Spring Tester is around 17.8 kN/m.
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Fig.3 Characteristics of the jet generation process



Results and discussion

Characteristics of the jet generation process

Dynamics characteristics of the piston and the jet injected into quiescent air, expressed as
average velocities defined as its penetration distance along the medium divided by emerging time,
are shown in Fig.3. It is observed that, water volume ejected is decreased, the jet velocity slightly
increase, for 0.2 and 0.5 of the volume; moreover, differently higher average jet velocity is found
for 0.1 ml, as shown in Fig. 3 (a). Average velocity of piston movement during jet injection process,
as shown in Fig. 3 (a), is found to be steady decay over remaining 0.15 — 0. 2 m/s, before there is a
high velocity pulse during the first 1-10 ms. This corresponds to the discharge characteristics,
expressed as stagnation pressure, which was found by Shergold et al. [7]. In addition, duration time
of the pulse is significantly extended with increasing the volume ejected, because the momentum
exchange between piston and high volume liquid in a nozzle requires the long amount of the time.

Fig 4 Dispersion of liquid in 20% polyacrylamide

Penetration behavior of jet injected into 20% polyacrylamide

Fig 3 shows the series of image of jet penetration into polyacrylamide gel. It is found that, in
the first 0 - 13.86 ms, the gel is continuously penetrated by the jet liquid, especially along
perpendicular, before the liquid is dispersed into the gel in all direction for 20.79 to 34.65 ms, as
shown in Fig 4. That is to say jet penetration into the gels produces a hole starting at the point of jet
impact to create a point source at the end of a hole, and this contribute to a circular dispersion of
fluid from this point.
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Simulation results

The average velocities of the jet ejected to the air and piston movement during jet generation
calculated by the CFD method are compared with the experimental results, as shown in Fig 5. It is
observed that the average velocity trends from the both method are only slightly different; although,
the CFD simulation gives higher average velocities than those from experiments. In the simulation,
the phenomenon of the atomization is specified by simply VOF two phase flow model, and this
causes the spray atomization, corresponding to dynamics drag, occurring jet injection into the air is
not fully taken into account in the CFD model. This is in accord with the results shown in Fig 6.
The thin jet can be found in CFD results while cloud of liquid atomization occurring around the jet
during jet injection can be captured by a high-speed video camera.
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Fig 6 Visualization of the jet ejected into the air

Concluding remarks

In this study, the functional operation of the commercial injection device was explored, and
major operating parameters, which are jet velocity, jet penetration, piston movement, for the needle-
free jet injection, are thoroughly investigated by using the high speed video camera. The water is
used as working liquid and is driven through a 0.17 mm diameter orifice nozzle, into the quiescent
air and the tissue stimulant being 20 % polyacrylamide gel. It is found that water volume ejected is
decreased, the jet velocity slightly increase, for 0.2 and 0.5 of the volume, and differently higher
average jet velocity is found for 0.1 ml. The average velocity of piston movement during jet
injection process is found to be steady decay over remaining 0.15 — 0. 2 m/s after the high velocity
pulse during the first 1-10 ms. In addition, from experimental results, jet generation process in the
device can be further simulated and investigated with CFD simulation for the better understanding
of needle-free jet injection process. The CFD results show good agreement to the results from the
experiment both quantitatively and qualitatively. The CFD modeling of the jet injection process can
be applied to provide the useful information in design of needle-free jet injection device.
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Abstract

High speed liquid jets have been applied to many fields of engineering, sciences, and medicines. Therefore, the
investigation of its characteristics by modern and in-expensive method is beneficial to the fields. In this study, the
high speed liquid jets is experimentally generated by using the momentum exchange method, called “Impact
Driven Method (IDM)”, by the impact of a high velocity projectile on the liquid package contained in the nozzle
cavity. The shock pulse reflection within the liquid package in the nozzle resulted from the impact then causes the
multiple pulsed jets. In this study, the Computational Fluid Dynamics (CFD) technique is employed to simulate
the jet generation process by IDM method within a closed domain. In the simulation, two-fluid model consisting
of liquid and air can be successfully calculated by using a two phase flow mixture model and a moving mesh for
the projectile motion. The CFD results showed good agreement to the previous experimental study results. In
addition, simulation results captured the wave propagation within liquid in the nozzle and proved the dynamic
characteristics of multiple pulsed high speed liquid jets initiated by the impact driven method for the first time.
This would be the breakthrough in simulation of the compressible flow of liquid and air in the supersonic ranges.

It will also be vary useful fundamentals for future studies of high speed injections and related fields

Keywords: high speed liquid jets, impact driven method, Computational Fluid Dynamics
(CFD), shock reflection



1. Introduction

There have been a number of studies of the characteristics of high speed liquid jet over a
number of years. Its fundamental is essential to apply to many industrial technologies such as
cutting, drilling, mining, and tunneling etc. In the combustion, moreover, the fuel sprayed to
high speed liquid condition may be beneficial in improving combustion in such applications as
SCRAM (supersonic combustion RAM) and direct injection. This is because the atomization
and mixing are likely to be enhanced and the bow shock wave will provide significantly
increased air temperatures. For medical engineering, in drug injection, needle may be replaced
with high speed liquid jet to deliver drug through skin, called “needle-free jet injection”. This
drug delivery benefits the improving activation, because the drug solution can become vary
small particle, increasing the surface of interaction between drug and tissue. It also prevents
infection in the patient and administrator by contaminated injection. In addition, diameter of the
hole after injection with high speed liquid jet is very small, therefore scar can heal up faster [1-
2]. For drug delivery, it notes that the liquid jet velocity should be limited around 100 — 200
m/s, depending on design condition, which is very different from the combustion technologies.
However, in both applications the high speed liquid jet can be generated by the same method
called “impact driven method or impulsive method.”

Impact Driven Method (IDM) technique presented by Bowden and Brunton in 1958 [3]
is a method for producing high speed liquid jet. The liquid contained in nozzle cavity is driven
by high speed projectile and accelerated to high velocity. Liquid flow behavior in liquid sac
during jet generation process directly affects the characteristics of high speed liquid jet. O’
Keefe et al.[4] presented a development of the Bowden and Brunton technique for the
production of high speed liquid jets by using a projectile with 1.77 km/s. They described the
motion of water column in tapered section by applying the 1-D, unsteady equations of
compressible fluid flow. Further analysis of the jet nozzle flow was mathematically presented

in 1973 by Ryhming [5]. His model focused mainly on one-dimensional, incompressible flow.
2



Generally, when the liquid packaged in nozzle cavity is impacted by high speed object, shock
propagations and reflections in liquid are always found. However, this was not considered in O’
Keefe and Ryhming’s study. Therefore, in 1977 Lesser [6] presented the basic mechanics of
supersonic jet generation by using the theory of guides acoustic waves. His theory is the
fundamental of shock propagations in liquid providing the estimation of liquid jet velocity
created by IDM. Accordingly, Shi et al.”s experiment [7] showed the liquid shock reflection
process in term of pressure history in nozzle cavity and described the effects of shock reflection
on liquid jet characteristics. Recently, Pianthong et al.[8] presented the most popular one
dimensional model which can comprehensively describe the driven jet generation process
during projectile traveling in the nozzle cavity. This model considered the liquid shock wave
reflection for estimating the pressure of compressed liquid in step nozzle and the velocity of the
high speed liquid jet emerging from the nozzle. Their model results showed good agreement to
the previous experimental results. Moreover, phenomena of multiple pulsed liquid jets which
were frequently presented in previous experiments can be described by their model. However,
Pianthong et al.’s model can not be applied for other nozzle geometries such conical nozzle or
curved sac, because of the higher dimension effect. A drawback in such model was confirmed
by the Matthujak et al.’s work [9], which the second and third shock reflection can be captured
by using pressure transducer, showing in term of the pressure history. It is found that driving
pressures measured from experiments are much lower than that pressure from the calculations.
Recently, numerical method such as Computational Fluid Dynamics (CFD) has been
employed to investigate the high speed liquid jet characteristics. In 2003 Pianthong et al [10]
reported the simulation of shock wave structure ahead of the jet with model of stationary solid
jet shaped in steady flow field of compressible air. Then, Zakrzewski et al.[11] improved
Pianthong et al’s work by using the species transport equation to predict transient development
of liquid jet and this improvement can describe numerically the process of interaction between

the air and high speed liquid jet. Although, in previous studies, CFD results well agreed with



experimental results, the nozzle flow characteristics wasn’t considered in simulations. Thus,
further work from these researcher groups [12] showed simulation of shock propagating on all
of material in jet generation process by using AUTODTN-2D"™ software. The work shows the
shock propagating in projectile, liquid sac and nozzle material but it seems that the tool can not
precisely predict transient development of high speed liquid jet.

In this study, simulation of the generation process of pulsed high speed liquid jet by
using the CFD program (FLUENT) is presented. In the study, nozzle cavities, including step
nozzle, conical nozzle, and bell nozzle are used as geometry model to contain liquid water or
diesel. Simulation model are validated by comparison with results from previous study’s
Pianthong [13-14], Shi [7,15], and Mutujak [9]. The shock waves reflection inside the nozzle
cavity during jet generation process can be captured by the simulation. This clarifies how
pressure buildup inside nozzle occurs resulting in development of liquid jet and providing more
understanding on high speed liquid jet phenomena and its generation process. This information
will also be very useful fundamentals for future studies of high speed injection and related

fields.

2. Supersonic liquid jet generated by impact driven method

The principle of generating high speed liquid jet by using Bowden and Brunton method
[3] is sketched in Fig.1. By this method, liquid retained in the nozzle is impacted by a high
velocity projectile. On the impact, the high speed liquid jet forms and injects from nozzle to the
test chamber. In some of previous study such as Shi’s experiment [7, 15], projectile was not
used to impact the liquid directly, but piston which projectile impact was used to drive the
liquid into the test chamber. It is called momentum exchange method. In this paper, works of
Painthong [13-14], Shi, [7, 15] and Mutthujak [9] are used as main references where supersonic
liquid jet was investigated with variously experimental technique. In works of Pianthong, the

shadowgraph optical system and a high speed video camera assist in the capture of shock wave

4



in series, while the pressure history during jetting process can be captured in work of Shi and
Mutthujak using pressure transducers. The detail of their apparatus was described in their

study.

Projectile

High Speed
Liquid Jet

Fig. 1. Generation of high speed liquid jet by impact driven method

3. CFD modeling of generation process of impact driven

high speed liquid jet

3.1 Geometry model

Details of nozzle geometries used in this study are shown in Fig 2. Two types of nozzle
which are conical and step nozzle with cavity volume of 4.68 cm® and 6.54 cm?, respectively,
are investigated. Moreover, nozzle shapes in study of Shi [7, 15] are also used in simulation to
investigate the effect of jet generation methods including; direct impact method and momentum
exchange method. In this study, the commercial CFD package (FLUENT) was used.
Geometrical domains of both methods are shown in Fig 3 where the bell cavity, volume of 4.20
cm?®, was used. From the mechanism of high speed jet generation shown as Fig.1, this setup can
be modeled in closed system domain with axis-symmetric geometry divided into nozzle cavity
zone and test chamber zone as shown in Fig. 4. The test chamber zone being 50 mm height and
250 mm width was meshed with 60,000 of quadrilateral elements. This is fixed in all cases in
this study, however the nozzle sac region is varied, depending on the dimension and mesh size
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corresponding to the nozzle cavity lengths. In this transient zone, the interval size along x-
direction (dx) is fixed at 0.3 mm to provide the moving mesh for projectile motion. In Fig 4, the

mesh was densely created at the area of high shear layer and interaction between the high speed

vy

Fig. 2. Nozzle geometries (a) Conical nozzle and (b) step nozzle

liquid jet and the quiescent air.
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Fig. 4. Computational domain of axis-symmetric geometry of high speed liquid jet



3.2 Projectile movement model

The movement of the projectile in the nozzle cavity is assumed as the motion of a
moving rigid wall. Therefore, the moving mesh of nozzle cavity zone was constructed. The
projectile velocity during jet generation process, after the impact can be computed from a

simple force balance on the projectile front and the liquid package in x-direction as

t t

j dv = j (F(t)/m) dt 1)

t b

where V is the projectile velocity, F is the driving force and m is the mass of the

projectile. The velocity at any time t calculated by using an explicit Euler formula as
V, =V, +(F(t)/m)at (2)

This formula is used to specify the motion of a moving wall (or projectile front wall)
with the linear velocities at every time step (dt) through the User Define Function (UDF),
provided by the software. In the simulation, the mass of projectile are 4.2 g and 0.038 g which
are similar to that the studies of Pianthong [13-14], Mutthujak [9], and Shi [7,15]. The force
acting by the projectile, in x-direction, is simply the resistance force of compressed liquid
pressure but the friction force along projectile wall is neglect. For direct impact of projectile,
such initial velocities of 300 m/s, 700 m/s, and 414 m/s following the previous study are set as
initial movement of the wall, while the velocity in simulation of momentum exchange method
can be computed from formula of conservation of momentum in the system of the projectile
and brass piston. The atmospheric pressure and ambient temperature are set as initial condition
in the domain. Sometime, projectile might impact the nozzle trap, resulting from too high
projectile momentum remaining. In this situation, the projectile will release such momentum
into nozzle material, and its velocity is then zero before it rebounds by compressed liquid
reaction force. In addition the calculation process is finished when the projectile arrive at the

entry point. Because of the most different pressure across two phase zones, sometimes, the



pressure fluctuation can be induced by high speed liquid jet generation; consequently, some of
liquid phase is evaporated to be the gas phase by cavitation process. Therefore, this
phenomenon needs to be considered when the local pressure is lower than vapor pressure of
liquid. The full cavitation models presented by Singhal et al.[16] and Fluent user’s guide [17]
are applied to specify the vapor pressure and cavitation rate in liquid and air flow. This
assumption might not be accurate, but acceptable, because the liquid must evaporate to its

vapor gas, instead of air. However, properties of our liquid vapor and moist air are comparable.

3.3 Liquid properties model

At the initial condition, two fluid phases were divided into liquid water phase in the
nozzle cavity and air phase in the test chamber. The air density is simply specified by using
ideal gas formula to cope with the compressible flow field in the simulation. Furthermore, in
the nozzle cavity, it is much more complicated to specify the water as the compressible liquid.
In this study, it is can be modified by using the formula including the instant liquid density
(eq9.(3)) and sound speed (eq.(4)) [18]. In the formula, variable P and p are the liquid pressure
and density respectively, and the constant value B is the bulk modulus of elastic of the liquid.
Subscript 0 and 1 denote the respective quantity at the initial and current time level. In addition,
it seems that the density and the sound speed corresponded to liquid pressure with time

dependent, significantly. Liquids used in this study and their properties are listed in Table 1.
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Table. 1. Properties of water and diesel used in this study

Vapor Surface

Liquid Bulk modulus pressure Molecular Specific heat tension
(GPa) (Pa) weight (1/(kg.K) coefficient

(9) (N/m)

Water 2.24 3,169 18 4,182 0.0717

Diesel 1.6 1,378 170 1,850 0.0244

3.4 Solver modeling

The CFD commercial code (FLUENT) is used as the tool to simulate the dynamics
characteristics of jet generation process. The mixture model with velocity slip was used for
specifying the properties of mixture within the multiphase flow. In the unsteady flow solution,
the time step sized (dt) of 0.1 microseconds was set; therefore, results from each calculation
can be recorded. Turbulence model is the standard k-e model with segregate solver for non-

linear equations.

4. Validation of CFD simulation

This section presents the validation of dynamic characteristics of jet generation process
by comparing results in this study with previous works. Water and diesel liquid jet
characteristics showing in term of average velocities defined as the jet penetration divided by
emerging time are shown in Fig.5. These jets driven by projectile having the velocity of 300
m/s, emerge from conical nozzle which its geometry is shown in Fig.2 (a). The average
velocities calculated by the CFD method are compared with those by experimental results of
Pianthong works [13-4]. We observe that trends of average jet velocity are just slightly
different. At first 30 microsecond, the experimental and CFD results are very closed, however,
at the after stage, the CFD simulation gives higher average velocities than those from
experiments. Also, calculated results show that the water jet velocity is higher over that of

diesel, even if there are an opposite results at over 30 microseconds, because the bulk modulus




