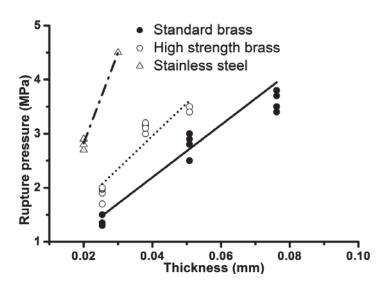

เพื่อการศึกษาอิทธิพลของปริมาตรในหัวฉีดที่มีผลต่อคุณลักษณะของลำพุ่ง ซึ่งแท่งกดมีความยาว แตกต่างกัน(ดังแสดงในรูปที่ 4.6 (c)) ตามปริมาตรที่บรรจุในหัวฉีด ทั้งนี้เพื่อรักษาระยะกระแทก ของลูกสูบให้คงที่

2) การปรับเทียบชุดทดลองของ Med-jet NFIS

เนื่องจากความดันแตกของแผ่นใดอะแฟรมเป็นพารามิเตอร์ที่สำคัญสำหรับการขับลำพุ่ง
ด้วยก๊าซแรงดันสูง ซึ่งเป็นพารามิเตอร์ที่เกี่ยวข้องกับความแข็งแรงหรือความหนาของแผ่น
ใดอะแฟรม ดังนั้นจึงจำเป็นอย่างยิ่งที่จะต้องทำการปรับเทียบหาความสัมพันธ์ระหว่างความหนา
และชนิดของวัสดุ กับความดันแตก เพื่อเป็นข้อมูลในการเลือกความดันที่จะใช้ในการทดลอง


ในการศึกษานี้ แผ่นใดอะแฟรมที่ใช้ จะเป็นแผ่นโลหะบาง 3 ชนิด ได้แก่ แบบที่ 1 แผ่น ทองเหลืองทั่วไป หนา 0.0254 - 0.0762 มิลิเมตร (0.001- 0.003 นิ้ว) แบบที่ 2 แผ่นทองเหลือง คุณภาพสูง (มีความแข็งและเหนี่ยวมากกว่าแผ่นทองเหลืองทั่วไป) หนา หนา 0.0254 - 0.0762 มิลิเมตร และ แบบที่ 3 แผ่นสแตนเลส หนา 0.02 - 0.03 มิลิเมตร ซึ่งลักษณะการใส่และการแตกหลัง การใช้งานของไดอะแฟรมแสดงดังรูปที่ 4.7 จะเห็นได้ว่า ที่หน้าประกบของไดอะแฟรมจะมีโอลิง และแผ่นกันรั่วหนา 0.5 มิลิเมตร ทับอยู่ (ดังในรูปที่ 4.7 (b)) ทั้งนี้เพื่อไม่ให้ก๊าซรั่วไหล ขณะทำงาน

รูปที่ 4.7 ลักษณะการวางแผ่นใดอะแฟรมและการแตกหลังการใช้งาน

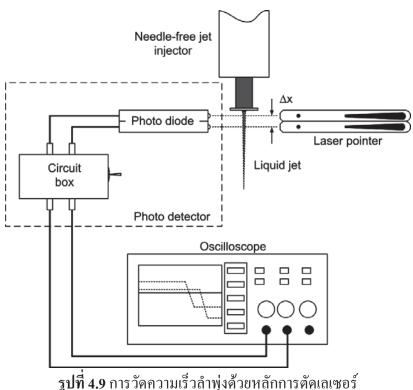
ผลการทคลองหาความสัมพันธ์ระว่างความหนา และชนิดของวัสดุ กับความคันแตก แสดง ดังกราฟในรูปที่ 4.8 พบว่าความคันแตกของแผ่นไดอะแฟรมที่ความหนา 0.02 – 0.08 มิลิเมตร จะมี ค่าอยู่ในช่วง 1.5 – 4.5 MPa เมื่อความหนาของแผ่นไดอะแฟรมเพิ่มขึ้น ความคันแตกจะมีค่าสูงขึ้น และความคันแตกสูงของสเตนเลสมีค่าสูงกว่าทองเหลือง เมื่อเทียบความหนาเดียวกัน เนื่องจาก สเตนเลสมีความแข็งแรง มากกว่าทองเหลืองนั้นเอง

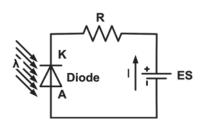
ตารางที่ 4.2 แสดงลักษณะการฉีกขาดของแผ่น ไดอะแฟรมแต่ละชนิด ที่ความหนาต่างๆ จะ เห็น ได้ว่า เมื่อความหนาหรือความแข็งแรงของแผ่น ไดอะแฟรมเพิ่มขึ้น รอยหลังการแตกจะมี ลักษณะราบเรียบ (เป็นวงกลม) ต่างจากแผ่นที่แข็งแรงน้อย รอยแตกจะเป็นริ้ว เพราะบางส่วนขาด และหลุดออกไม่หมด ซึ่งอาจทำให้ขัดขวางการ ไหลของก๊าซ ได้ ดังนั้นหมายความว่ายิ่งแรงคันแตก สูงขึ้น ประสิทธิภาพการทำงานของแผ่น ไดอะแฟรมยิ่งดีขึ้น

รูปที่ 4.8 ความสัมพันธ์ระว่างความหนา และชนิดของวัสดุ กับความดันแตก

ตารางที่ 4.2 แสดงลักษณะการฉีกขาดของแผ่นไดอะแฟรมแต่ละชนิด

ชนิด	ความหนา (mm)	ลักษณะการแตก
แบบที่ 1 แผ่นทองเหลืองทั่วไป	0.0254	
แบบที่ 1 แผ่นทองเหลืองทั่วไป	0.0508	
แบบที่ 1 แผ่นทองเหลืองทั่วไป	0.0762	
แบบที่ 2 แผ่นทองเหลืองคุณภาพสูง	0.0254	
แบบที่ 2 แผ่นทองเหลืองคุณภาพสูง	0.0381	8
แบบที่ 2 แผ่นทองเหลืองคุณภาพสูง	0.0508	
แบบที่ 3 สเตนเลส	0.01	
แบบที่ 3 สเตนเลส	0.03	


1.2 หลักการวัดความเร็วและความดันกระแทกของลำพุ่ง


การศึกษาการทำงานของอุปกรณ์ฉีคลำพุ่งเพื่อนำส่งยา มีพารามิเตอร์ที่สำคัญ 2 ค่าที่ชีวัด ประสิทธิภาพของลำพุ่ง คือ ความเร็วออก (Exit velocity) และความคันกระแทก (Impact velocity) ซึ่งในหัวข้อนี้จะได้กล่าวรายละเอียดหลักการและอุปกรณ์สำหรับวัดพารามิเตอร์เหล่านี้

1.2.1 การวัดเร็วความเร็วด้วย หลักการตัดแสงของวัตถุ

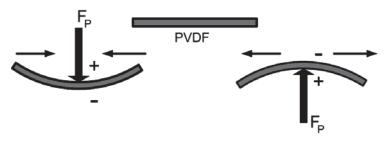
ในงานวิจัยนี้เราใช้หลักการที่เรียกว่า "การตัดเลย์เซอร์ของวัตถุ (Laser beam interrupt method)" เพื่อวัดความเร็วของลำพุ่งที่ออกจากหัวฉีด ดังแสดงดังรูปที่ 4.9 โดยอาศัยการตัดลำแสงที่ ส่องไปยังโฟโตไดโอด (Photo diode) ของวัตถุ โดยโฟโตไดโอดจะต่อเข้ากับวงจรไฟฟ้า มี รายละเอียดของวงจรดังแสดงในรูปที่ 4.10 วงจรประกอบด้วยตัวต้านทานแหล่งกำเนิดแรงดันไฟฟ้า (Battery) และ โฟโตไดโอด จะเห็นได้ว่า ขนาดแรงดันไฟฟ้าของวงจรนี้ นอกจากจะขึ้นอยู่กับ แหล่งกำเนิดไฟฟ้าและขนาดตัวต้านทานแล้ว ยังขึ้นอยู่กับความเข็มแสงที่ส่องบนโฟโตไดโอดอีก ด้วย ซึ่งเราเรียกอุปกรณ์ที่ต่อวงจรไฟฟ้าลักษณะนี้ว่า ชุดดักจับความเข็มแสง (Photo detector) ซึ่ง รายละเอียดจำเพาะของชุดดักจับความเข็มแสงในงาวิจัยนี้แสดงไว้บนตารางที่ 4.3

สำหรับการประยุกต์เพื่อวัดความเร็วของวัตถุนั้น จะต้องมีวงจรดักจับความเข็มแสงที่ ประกอบด้วยโฟโตไดโอด และตัวกำเนิดแสงเลเซอร์ (Laser source) สองคู่ โดยวางแต่ละคู่ ให้หัน หน้าเข้าหากัน และทั้งคู่จะวางห่างกันคงที่ (ณ ที่นี้ห่างกัน 12.5 มิลิเมตร) วงจรดักจับความเข็มแสง จะมีแรงดันและกระแสไฟฟ้าวิ่งเมื่อเปิดตัวกำเนิดแสงเลเซอร์ และแรงดันไฟฟ้าจะลดลง หากมีวัตถุ บังถำแสง

รูปที่ 4.10 วงจรไฟฟ้าของชุคดักจับความเข็มแสง

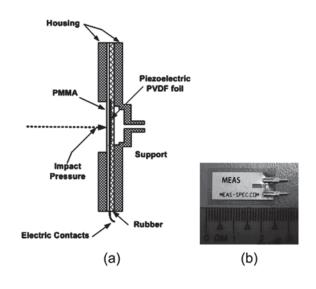
ตารางที่ 4.3 รายละเอียดจำเพาะของชุดดักจับความเข็มแสง

วกำเนิดแสงเลเซอร์ (Laser pointer)	รายละเอียด
กำลัง (Power)	50 mW
ความยาวคลื่น	650 nm
เส้นผ่านศูนย์กลางตัวเรือน	12.5 mm
ยี่ห้อ	Infiniter รุ่น 100 ×2
แหล่งกำเนิดแรงคันไฟฟ้า	AAA ×2
ฟโตไดโอด (Photo diode)	
ฟโตไดโอด (Photo diode) ชนิด	Silicon PIN
	Silicon PIN Visible light (380 – 740 nm)


วงจรชุดดักจับความเข็มแสง		
แหล่งกำเนิดแรงคันไฟฟ้า	Battery ขนาด 1 Volt	
ขนาดตัวต้านทาน	2 กิโลโอห์ม	

จากหลักการและการติดตั้งข้างต้น การวัดความเร็วของลำพุ่งนั้นสามารถทำได้ด้วย การดัก จับ(Trigger) ช่วงเวลา (Δt) ของสัญญาณแรงดัน ไฟฟ้าจากการบังแสงเลเซอร์ของลำพุ่งของเส้นแรก และเส้นที่สอง ด้วยออสซิลโลสโคป (Oscilloscope) โดยวางระยะห่างของเลเซอร์ (Δx) คงที่ เท่ากับ 12.5 มิลิเมตร ซึ่งจะได้ความเร็วของลำพุ่ง (v_j) ตามสมการ (4.1) ดังนี้

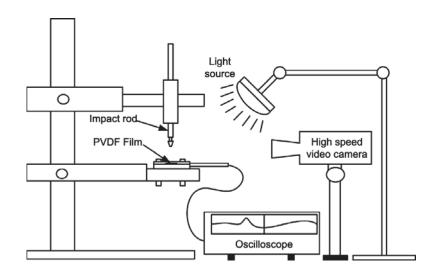
$$v_j = \frac{\Delta x}{\Delta t} \tag{4.1}$$


1.2.2 การปรับเทียบและหลักการวัดความดันกระแทกด้วยแผ่น PVDF

PVDF ย่อมาจาก คำว่า Polyvinylidene Fluoride เป็นวัสดุที่มีคุณสมบัติ Piezoelectricity โดยวัสดุจะมีแรงคันไฟฟ้าเกิดขึ้น เมื่อรับความเค้นหรือมีการยืดหรือหดตัว อันเนื่องมาจากแรงคัน ภายนอกที่มากระทำ ดังแสดงในรูปที่ 4.11แรงคันไฟฟ้าที่เกิดขึ้นนี้จะสัมพันธ์แบบเชิงเส้นกับ แรงคันที่วัสดุได้รับ ด้วยคุณสมบัตินี้เองจึงได้มีการนำเอาแผ่น PVDF มาประยุกต์ใช้เพื่อวัดความคัน กระแทก (Impact pressure) ของวัตถุ

รูปที่ 4.11 ลักษณะการเกิดแรงคันไฟฟ้าจากการขดงอของแผ่น PVDF

แผ่น PVDF ที่ใช้ในการศึกษานี้จะประกอบในตัวเรือนโลหะแสดงดังรูปที่ 4.12 แผ่น PVDF เป็นของบริษัท MEAS-SPEC หนา 28 ไมโครเมตร (ดังรูป 4.12 (b)) แผ่น PVDF ถูกติดตั้ง ภายในเรือนโลหะ ที่ประกอบไปด้วย ส่วนหน้าของเรือนโลหะจะเป็นแผ่นอะคริลิค หนา 6 มิลิเมตร ทำหน้าที่รับแรงกระแทกจากลำพุ่ง ส่วนที่สองเป็น PVDF ฟิล์ม และส่วนที่สามเป็นแผ่นยางหนา 1.8 เซนติเมตร ทำหน้าป้องกันความเสียหายจากกระแทกของ PVDF กับเรือนโลหะส่วนหลัง



รูปที่ 4.12 ตัวเรือนรับการกระแทก (a) และแผ่น PVDF (b)

ด้วยคุณสมบัติของ PVDF ที่ความสัมพันธ์ระหว่างแรงคันไฟฟ้ากับแรงคันที่กระทำ มี ลักษณะเป็นเชิงเส้น ดังนั้นการนำแผ่น PVDF ไปใช้เพื่อเป็นเครื่องมือวัดแรงคันกระแทก จำเป็นต้องหาความสัมพันธ์ระหว่างแรงคันที่กระแทกบนแผ่น PVDF กับแรงคันไฟฟ้าที่เกิดขึ้น ก่อน เพื่อไว้เป็นข้อมูลสำหรับเทียบในการทดลองจริง

การหาความสัมพันธ์ระหว่างแรงคันที่กระแทกบนแผ่น PVDF กับแรงคันไฟฟ้า โดยใช้ หลักการพื้นฐานจากวิธีของ Grinspana และ Gnanamoorthy [68] โดยมีรายละเอียดของอุปกรณ์ แสดงในรูปที่ 4.13 ชุดทดสอบประกอบด้วยส่วนสำคัญ คือ แท่งกระแทก (Impact rod) ชุดแผ่น PVDF ออสซิลโลสโคป (Oscilloscope) และ กล้องถ่ายภาพความเร็วสูง (High speed video camera) ยี่หอ Casio Exilim รุ่น Pro EX-F1 ความเร็วถ่ายภาพสูงสุด 1,200 fps โดยมีขั้นตอนการทดสอบมีคัง รายละเอียดต่อไปนี้

แท่งกระแทก (หนัก0.022 กรัม) จะถูกปล่อยจากความสูงระคับต่าง ให้กระทบชุดแผ่น PVDF ที่ต่อสายสัญญาณกับออสซิล โลส โคปเพื่อวันแรงคัน ใฟฟ้าที่เกิดขึ้น และช่วงเวลาของการ กระแทก ซึ่งเหตุการณ์ก่อนปล่อยและหลังหลังกระทบจะถูกบันทึกไว้ด้วย กล้องถ่ายภาพความเร็ว สูง

รูปที่ 4.13 ระบบปรับเทียบแรงคันไฟฟ้ากับความคันกระแทกบนแผ่น PVDF

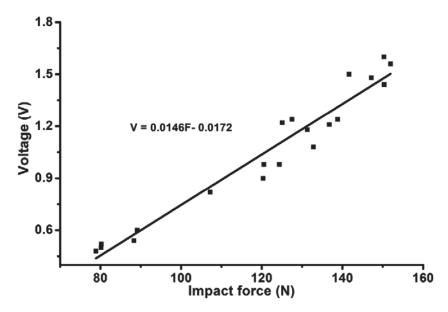
หลังจากทำการทดสอบ โดยเปลี่ยนความสูงของการปล่อยแท่งกระแทก จะได้ ความสัมพันธ์ ของแรงกระแทก (F) จากสมการอนุรักษ์โมเมนตัม ดังนี้

$$F = m \frac{v_1 + v_2}{T} \tag{4.2}$$

เมื่อ v_1 และ v_2 คือ ความเร็วก่อนกระทบและหลังกระทบตามลำดับ m คือ น้ำหนักของแท่ง กระแทก เท่ากับ 0.022 กรัม และ T คือ ช่วงเวลากระแทก จากสมการ 4.2 เขียนในรูปใหม่ได้เป็น

$$F = C \times \frac{(1+e)\sqrt{h_1}}{T} \tag{4.3}$$

เมื่อ C เป็นค่าคงที่มีค่าเท่ากับ


$$C = m \times \sqrt{2 \times g} \tag{4.4}$$

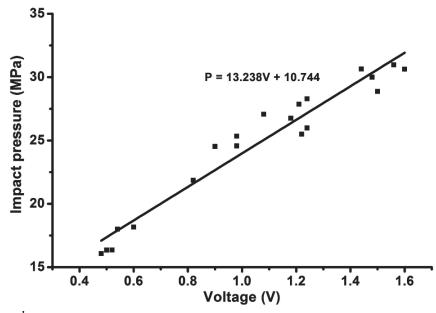
โดย g คือค่าคงที่ความโน้มถ่วงสากล (Constant of gravity) มีค่าเท่ากับ 9.81 m/s² และ e คือ สัมประสิทธิ์การกระแทก (Coefficient of restriction) มีค่าเท่ากับ

$$e = \frac{v_2}{v_1} = \sqrt{\frac{h_2}{h_1}} \tag{4.4}$$

ทั้ง h_1 และ h_2 คือ ความสูงที่ปล่อยตกและความสูงสูงสุดจากการสะท้อนหลังกระแทก ตามลำดับ ซึ่งหาได้จากภาพถ่ายของกล้องความเร็วสูง

ในการทคสอบค่าความสูง h_1 จะเปลี่ยนแปลงในช่วง 10 - 40 มิลิเมตร ซึ่งแต่ละความสูง สามารถคำนวณหาแรง (F) ที่กระแทกบน PVDF จากสมการ (4.3 - 4.4) ทั้งนี้ ช่วงเวลากระแทก (T) และ แรงคันไฟฟ้า (V) สามารถอ่านได้จากสัญญาณของออสซิล โลส โคป จากการทคสอบ ความสัมพันธ์ ระหว่าง แรงตกกระทบกับแรงคันไฟฟ้า แสดงในรูปที่ 4.14

รูปที่ 4.14 ความสัมพันธ์ของแรงกระแทกกับแรงคันไฟฟ้าจากแผ่น PVDF


เนื่องจาก แรงดัน ไฟฟ้าที่เกิดขึ้นเป็นผลมาจาก ความเค้น (Stress) ที่เกิดขึ้นบนแผ่น PVDF ซึ่งมีความสัมพันธ์ โดยตรงกับความดันกระแทก (P) ซึ่ง สามารถคำนวณหา ได้จาก สมการ (4.5)

$$P = \frac{F}{A} \tag{4.5}$$

เมื่อ F คือ แรงกระแทก (N) และ A คือ พื้นหน้าตัดตกกระทบ ทั้งนี้ปลายของแท่ง กระแทก มีหน้าตัดเป็นวงกลม ดังนั้นสามารถจัดรูปสมการ 4.5 ใหม่จะได้

$$P = \frac{4F}{\pi d^2} \tag{4.6}$$

โดย d คือ เส้นผ่านศูนย์กลางของปลายแท่งกระแทก มีค่าเท่ากับ 2.5 มิลิเมตร จากสมการ (4.6) และผลการทดสอบจากรูปที่ 4.14 จะ ได้ กราฟความสัมพันธ์ระหว่างความดันกระแทก กับ แรงดัน ไฟฟ้าแสดงดังรูปที่ 4.15 ซึ่งจะเป็นข้อมูลเฉพาะสำหรับชุดแผ่น PVDF เพื่อปรับค่าความดัน ไฟฟ้าที่ ได้จากทดลองให้เป็นความดันกระแทก

ร**ูปที่ 4.15** ความสัมพันธ์ของความดันกระแทกกับแรงดันไฟฟ้าจากแผ่น PVDF

บทที่ 5

คุณลักษณะการนำส่งยาด้วยลำพุ่งความเร็วสูงจากอุปกรณ์ที่ขับด้วยสปริง

บทนี้จะกล่าวถึงคุณลักษณะ ของลำพุ่งที่ขับด้วยสปริง อุปกรณ์ฉีดยา รุ่น Cool. Click ซึ่ง รายละเอียดกล่าวไว้แล้วในบทที่ผ่านมาเช่นเดียวกับรายละเอียดของเครื่องมือวัด ความเร็วและความ ดันกระแทกของลำพุ่ง นอกจากนี้ ในบทนี้จะได้ทำการศึกษา กระบวนการขับของอุปกรณ์ การเจาะ ของลำพุ่งในเนื้อเยื่อจำลอง (Tissue simulant) ที่ทำจาก PAMG (Polyacylamide gel) และลักษณะ ของลำพุ่งที่ฉีดในอากาศ โดยใช้กล้องถ่ายภาพความเร็วสูง (High Speed Video Camera, HSVC) และยังได้นำเอาระเบียบวิธีพลศาสตร์ของใหลเชิงตัวเลข (Computational Fluid Dynamics, CFD) มาช่วยในการศึกษาเพื่อจำลองพฤติกรรมการใหลของของใหลในหัวฉีดที่ขับด้วยสปริง

1.1 เครื่องมือและอุปกรณ์ถ่ายภาพลำพุ่ง

1.1.1 การเตรียม Polyacylamide gel เพื่อใช้เป็นเนื้อเยื่อจำลอง

PAMG (Polyacrylamide Gel) คือ เจลโพลิเมอร์ที่เกิดจากการรวมตัวของสารอะครีลาไมด์ (Acrylamide) และบิสอะครีลาไมด์ (Bisacrylamide) โมเลกุลเคี่ยวมารวมตัวกันเกิดเป็นโพลีเมอร์ มี ลักษณะเป็นร่างแห มีความใส สามารถปรับความหนาแน่นหรือคุณสมบัติเชิงกลของเจลด้วยการ ปรับอัตราส่วนผสมของบิสอะครีลาไมด์ สารตั้งต้นของ PAMG ประกอบด้วย

- น้ำปราสจากไอออน (Deionized)
- Acrylamide
- Bisacrylamide
- Ammonium persulfate
- TEMED

โดยทั่วไปสารอะคริลาไมด์และบิสอะคริลาไมด์จะผสมกันอยู่รูปของสารละลาย
(Acrylamide solution) การจับตัวเป็นโพลีเมอร์ ของอะคริลาไมด์และบิสอะคริลาไมด์เริ่มต้นโดย
เติมสารแอมโมเนียมเปอร์วัลเฟต (Ammonium persulfate) และใส่ TEMED (N,N,N,N –
Tetramethylenediamine) เพื่อเร่งให้เกิดปฏิกิริยาการจับตัวเป็นโพลีเมอร์อะคริลาไมด์และบิสอะคริลาไมด์ขึ้น โดยแอมโมเนียเปอร์ซัลเฟต และ TEMED จะเป็นตัวเร่งปฏิกิริยาการจับตัวของสารให้
เป็นโพลีเมอร์ หากเพิ่มปริมาณ TEMED หรือแอมโมเนียเปอร์ซัลเฟต ปฏิกิริยาให้การจับตัวเป็น
โพลีอะคริลาไมด์จะเร็วขึ้น

การเกิดปฏิกิริยาการจับตัวกันเป็นโพถีเมอร์ของอะครีลาไมด์จะเกิดได้ช้าหรือไม่เกิดเลย ขึ้นอยู่กับ pH และปริมาณออกซิเจนของปฏิกิริยา ซึ่งหาก มีค่า pH ต่ำและมีปริมาณออกซิเจนมาก ปฏิกิริยาโพลีเมอร์ของอะครีลาไมด์อาจไม่เกิด ดังนั้นบางครั้งจึงต้องกำจัดออกซิเจนก่อนโดยใช้ปั๊ม ดูดอากาศออก ก่อนที่จะเติม TEMED และแอมโมเนียเปอร์ซัลเฟต


ทั้งนี้ในการศึกษา 20 % PAMG ถูกนำมาใช้ทดสอบคุณลักษณะการเจาะของลำพุ่งที่ใช้ นำส่งยา จากการทดสอบของ Schramm-Baxter และคณะ [1] พบว่า 20 % PAMG มีค่า ยังโมคูลัส (Young's modulus) และ ความแข็ง (Hardness) เท่ากับ 0.22 MPa and 41 Hoo ตามลำดับ ซึ่งมี ปริมาณสารตั้งต้น และวิธีการเตรียมดังต่อไปนี้

- น้ำปราศจากไอออน (Deionized) 200 มิลิลิตร
- 40 % สารละลายอะครีลาไมด์ (Acrylamide solution) 50 มิลิลิตร
- ผงแอมโมเนียเปอร์ซัลเฟต (Ammonium persulfate) 10 กรัม
- TEMED 0.12 มิลิลิตร
- ขั้นตอนที่ 1 เตรียมสารละลาย 20 % อะครีลาไมด์ ด้วยการน้ำปราศจากไอออน 100 มิลิลิตร ผสมกับ 40 % สารละลายอะครีลาไมด์ 50 มิลิลิตร
- ขั้นตอนที่ 2 เตรียมสารละลาย 10 % แอมโมเนียเปอร์ซัลเฟต ด้วยการน้ำปราศจากไอออน 100 มิลิลิตร ผสมกับผงแอมโมเนียเปอร์ซัลเฟต 10 กรัม
- ขั้นตอนที่ 3 ผสมสารละลาย 10 % แอมโมเนียเปอร์ซัลเฟต 0.6 มิลิลิตร กับ TEMED 0.12 มิ ลิลิตร
- ขั้นตอนที่ 4 ผสมสารละลาย 20 % อะครีลาไมค์ 60 มิลิลิตร ผสมกับสารละลายที่ได้จาก ขั้นตอนที่ 3 ทิ้งไว้ให้เกิดปฏิกิริยาการจับตัวของอะครีลาไมค์เจล ในบริเวณที่มีแสง สว่างเพียงพอ

สารละลายจากขั้นตอนที่ 4 จะบรรจุและปล่อยให้เกิดปฏิกิริยาในกล้องสี่เหลี่ยมโปร่งแสง ขนาด 50×35×50 มิลิเมตร

1.1.2 ระบบถ่ายภาพด้วยกล้องจับภาพความเร็วสูง

เพื่อเป็นข้อมูลพื้นฐานสำหรับการออกแบบและสร้างอุปกรณ์นำส่งยาโดยใช้ลำพุ่งความเร็ว สูง จึงจำเป็นต้องพิจารณาคุณลักษณะทางพลศาสตร์ของลำพุ่ง โดยใช้กล้องถ่ายภาพความเร็วสูง (High Speed Video Carmera, HSVC) Photron รุ่น Fastcam SA5 ซึ่งสามารถถ่ายภาพด้วยความเร็ว สูงสุด 1,000,000 เฟรม ต่อวินาที สำหรับกรณีศึกษานี้ใช้อัตราความเร็วถ่ายที่ 15,000 – 30,000 เฟรม ต่อวินาที เพื่อการถ่ายลำพุ่งความเร็วสูงจากอุปกรณ์ฉีดยา Bioject รุ่น Cool click 2 มีหัวฉีดขนาด 0.17 mm รูปที่ 5.1 แสดงชุดทดลองและกล้องถ่ายภาพความเร็วสูง

จากรูปที่ 5.1 จะเห็นได้ว่า ระบบถ่ายภาพความเร็วสูงประกอบด้วย

- กล้อง HSVC ของ Photron รุ่น Fastcam SA5 ทำหน้าที่ถ่ายปรากฏการณ์เกิดขึ้น วางห่างจากบริเวณที่ตำแหน่งของปรากฏการณ์ที่จะถ่าย 250 มิลิเมตร
- แหล่งกำเนิดแสง (Light source) ให้แสงสว่างที่เหมาะสมกับการถ่ายภาพที่
 ความเร็วซัตเตอร์สูงๆ ของกล้อง ในที่นี้ใช้ไฟ ขนาด 1.5 kW
- อุปกรณ์นำส่งยาด้วยลำพุ่งความเร็วสูงของ Bioject รุ่น Cool. click
- เจลโปร่งแสง (Transparent gel) ทำหน้าที่เป็นวัสดุเนื้อเยื่อจำลองที่สามารถ มองเห็นปรากฏการณ์ที่เกิดขึ้นภายในได้ โดยการศึกษานี้เราใช้ 20% PAMG
- พื้นหลังสีดำ (Black background) วางไว้ด้านหลังเจลโปร่งแสง เพื่อช่วยตัดแสง รบกวนจากด้านหลังของเจล

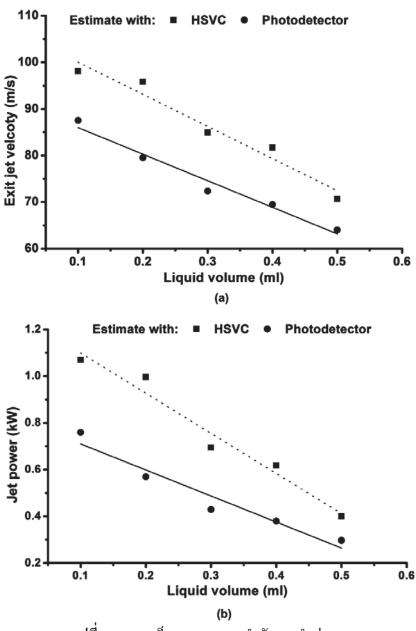
1.2 คุณลักษณะของลำพุ่ง

ในการศึกษา ของเหลวที่ใช้ฉีดเป็นน้ำ ที่ปริมาตรต่างๆ โดยฉีดในอากาศ และ 20% PAMG และทำการถ่ายภาพรูปร่างและปรากฏการณ์ลำพุ่งที่เกิดขึ้น จากภาพถ่ายสามารถเห็น การแหวก อากาศ เนื้อเยื่อจำลองของลำพุ่ง และกลไกการอัดของแท่งกดบนของเหลวในหัวฉีด นอกจากนี้แล้ว ยังทำการวัดความเร็วและความดันกระแทกของลำพุ่ง ด้วยหลักการตัดแสงของวัตถุและแผ่น PVDF ตามลำดับ ซึ่งรายละเอียดของเครื่องมือกล่าวไว้แล้วในบทที่ 4

1.2.1 ความเร็วออก และกำลังของลำพุ่ง

โดยทั่วไปลำพุ่งที่จะนำมาใช้ในการนำส่งยา นั้นคุณลักษณะตัวแรกที่จะต้องศึกษา คือ ความเร็วที่ออกจากหัวฉีด เนื่องจากการเจาะผิวหนัง ลำพุ่งต้องมีโมเมนตัมหรือพลังงานเพียงพอใน การเอาชนะความแข็งแรงของผิวหนังได้ ดังนั้น ในการศึกษานี้จึงได้ทำการวัดความเร็วออกของลำ พุ่ง ด้วยวิธี หลักการตัดแสงของวัตถุ ด้วยชุดดักจับความเข้มแสง (Photo detector) และกล้อง HSVC แต่อย่างไรก็ตาม ความเร็วไม่ใช่เพียงปัจจัยเดียวที่มีผลต่อประสิทธิภาพการนำส่งยาของลำพุ่ง โดย จะเกี่ยวข้องกับ ความลึกของการเจาะ ลักษณะการแพร่กระจายของยา โดยปัจจัยอื่นที่มีผลกับ ประสิทธิภาพเหล่านี้ นอกเหนือจากความเร็วออกแล้ว คือ คุณสมบัติของของเหลว เช่น ความ หนาแน่น รูปร่างของหัวฉีด เช่น เส้นผ่านศูนย์กลาง ดังนั้นจึงได้มีการกำหนด พารามิเตอร์ ตัวใหม่ ขึ้น เรียกว่า "กำลังของลำพุ่ง" หรือ "Jet power (P)" มีหน่วยเป็นวัตต์ (W) นั้นคือ

$$P_{o} = \frac{1}{8} \pi \rho D_{0}^{2} u_{0}^{3} \tag{5.1}$$

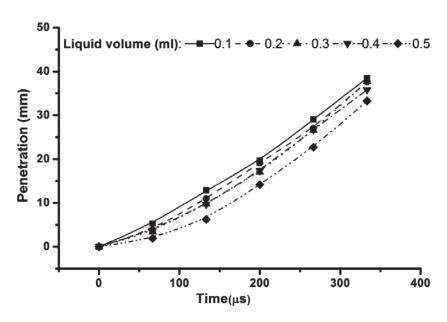

เมื่อ ho คือ ความหนาแน่นของของเหลว มีค่าเท่ากับ 998 $m kg/m^3$

D คือ เส้นผ่านศูนย์กลางหัวฉีด มีค่าเท่ากับ 0.17 มิลลิเมตร

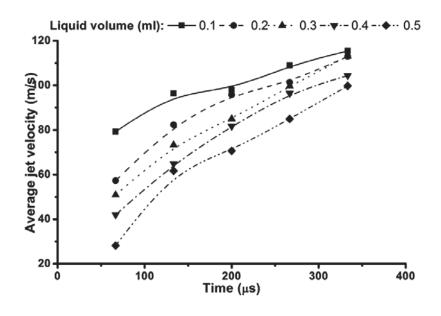
u คือ ความเร็วออกของลำพุ่ง ได้จากการทดลอง

รูปที่ 5.2 แสดงความเร็วออกของลำพุ่งที่วัดได้ และ กำลังของลำพุ่งที่ได้จากการคำนวณ โดยสมการ (5.1) จะพบว่า ที่ปริมาตรบรรจุ 0.1 ml ให้ค่าทั้งสองมากที่สุด และจะลดลงเรื่อยๆเมื่อ ปริมาณของเหลวเพิ่มขึ้น เป็นผลเนื่องจาก พลังงานสะสมต่อมวลต่างกัน เมื่อพลังงานที่สปริงถ่ายเท ให้น้ำมีค่าเท่ากันทุกกรณี แต่ปริมาณมวลที่รับพลังต่างกัน ส่งผลให้กรณีที่ของเหลวมีปริมาณน้อย จะมีพลังงานสะสมมากกว่าของเหลวที่มีปริมาณมาก ความเร็วของลำพุ่งที่ออกมาจึงเร็วกว่า

ความเร็วออกของลำพุ่งจากการทดลองนั้น ได้มาจาก ชุดดักจับความเข็มแสง และรูปถ่าย จากกล้อง HSVC จากรูป 5.2 (a) จะเห็นว่ามีค่าต่างกัน โดยค่าที่วัดจากรูปถ่าย จะสูงกว่าจากชุดดัก จับความเข้มแสง ทั้งนี้เนื่องจากใช้หลักการวัดความเร็วต่างกัน เมื่อความเร็วที่ได้จากชุดดักจับ ระยะ ของตัววัด (โฟโตไดโอด) จะคงที่ เท่ากับ 12.5 มิลิเมตร ซึ่งเวลาของลำพุ่งที่วัดได้จะอยู่ในช่วง 141-194 แร แต่ขณะเดียวกัน ความเร็วที่ได้จากภาพถ่ายของกล้อง HSVC นั้น วัดระยะทางจากหัวฉีดถึง ปลายลำพุ่งที่เวลาคงที่ที่ 200 แร โดยระยะของลำพุ่งที่วัดได้จะประมาณ 14 – 19 มิลลิเมตร หาก เปรียบเทียบกันจะพบว่า การหาความเร็วด้วยกล้อง HSVC ใช้เวลาและระยะห่างกว้างกว่าการหาความเร็วด้วยกล้อง ตำให้ค่าที่ได้จากกล้องสูงกว่าที่ได้จากดดักจับความเข้มแสง เพราะ ยิ่งระยะและเวลาเดินทางของลำพุ่งเพิ่มขึ้น ความเร็วของลำพุ่งยิ่งสูงขึ้น

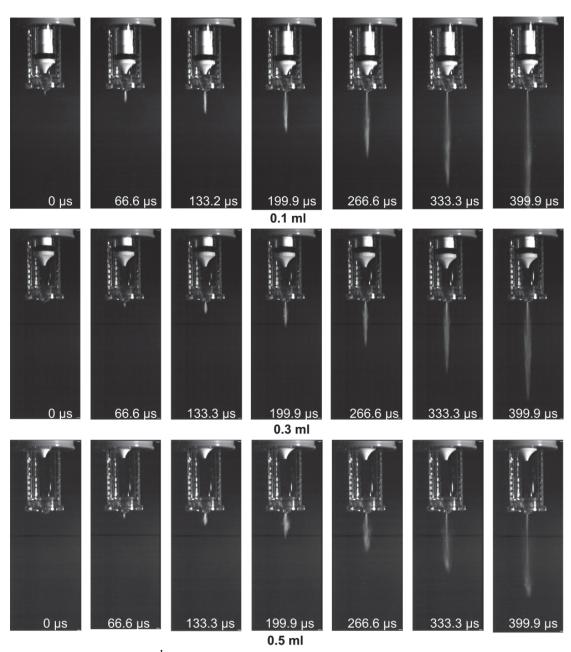


รูปที่ 5.2 ความเร็วออก (a) และกำลังของลำพุ่ง (b)


1.2.2 รูปร่างและความเร็วเฉลี่ยเฉพาะกาลของลำพุ่ง

จากภาพถ่าย HSVC ของลำพุ่งที่ออกจากหัวฉีดจะ เราสามารถคำนวณหาระยะแหวกอากาศ และความเร็วเฉลี่ยเฉพาะกาลของลำพุ่ง (Average jet velocity) ได้ดังแสดงในรูปที่ 5.3 และ 5.4 ตามลำดับ ซึ่งจะพบว่า อัตราการแหวกอากาศและความเร็วเฉพาะการของลำพุ่ง จะเพิ่มขึ้น เมื่อเวลา และระยะเดินทางเพิ่มขึ้น ที่ปริมาณน้ำ 0.1 ml ให้ค่าสูงสุด ความเร็วเฉลี่ยอยู่ที่ประมาณ 110 m/s ลำ พุ่งยาว 37 มิลลิเมตร ที่เวลา 340 นร และจะลดลงตามปริมาณน้ำที่บรรจุ ณ เวลาเดียวกัน เนื่องจาก พลังงานที่สปริงถ่ายเทให้น้ำกัน แต่ปริมาณมวลที่รับพลังต่างกัน ส่งผลให้กรณีที่น้ำน้อยจะมี พลังงานสะสมมาก ความเร็วของลำพุ่งที่ออกมาจึงเร็วกว่ากรณีที่น้ำมาก

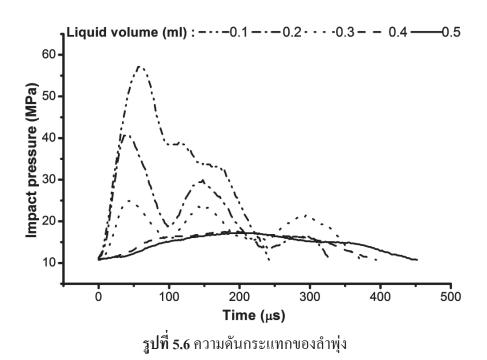
สำหรับการการนำส่งส่งยาโดยใช้ลำพุ่งนั้น ความเร็วเฉพาะกาลอาจไม่มีความจำเป็นที่ต้อง ศึกษา เนื่องจากระยะการหัวฉีดกับผิวหนังนั้นใกล้กันมาก ทำให้ความเร็วกระแทกเริ่มแรกของลำพุ่ง บนผิวหนังจึงมีค่าไม่สูงมากนัก แต่จากการศึกษานี้ชี้ให้เห็นว่า ความเร็วออกของลำพุ่ง ที่วัดด้วย เครื่องมือวัดต่างๆ ที่กล่าวในหัวข้อที่ผ่านมา จะมีความคลาดเคลื่อนจากความเร็วเริ่มแรกที่กระแทก บนผิวหนังอยู่ แต่อย่างไรก็ตามจากการทดลองทำให้เราทราบถึงแนวโน้มของการเปลี่ยนแปลง ความเร็วตามปริมาณของเหลวที่ฉีด



รูปที่ 5.3 การแหวกอากาศของลำพุ่ง

รูปที่ 5.4 ความเร็วเฉลี่ยเฉพาะกาลของลำพุ่ง

เมื่อพิจารณารูปร่างของลำพุ่ง (ดังแสดงในรูปที่ 5.5) จะเห็นได้ว่าลักษณะลำพุ่งที่เริ่มออก จากหัวฉีดจะมีรูปร่างแหลมเพรียว เพื่อเพิ่มประสิทธิภาพการเจาะผ่านผิวหนัง และลำพุ่งจะแตกเป็น ฝอยเมื่อลำพุ่งออกห่างจากหัวฉีด หรือลำพุ่งเดินทางในอากาศนานขึ้น ซึ่งหากปริมาณของเหลวน้อย (ที่ 0.1 ml) ลำพุ่งที่ออกมาในช่วงเวลาแรก จะมีรูปร่างปลายหัวเรียวแหลมมากกว่ากรณีที่มีของเหลว มากกว่า (ที่ 0.5 ml) ซึ่งช่วงเริ่มต้นหัวของลำพุ่งมีรูปร่างโต และจะมีแกนรูปร่างแหลมเรียว เมื่อเวลา ผ่านไป นั่นหมายความว่า ปริมาณของเหลวในหัวฉีด มีผลโดยตรงต่อประสิทธิภาพในการนำส่งยา โดยเฉพาะขนาดของรูเจาะหรือแผลที่เกิดหลังการฉีด


รูปที่ 5.5 ลักษณะรูปร่างของลำพุ่งตามปริมาตรการฉีด

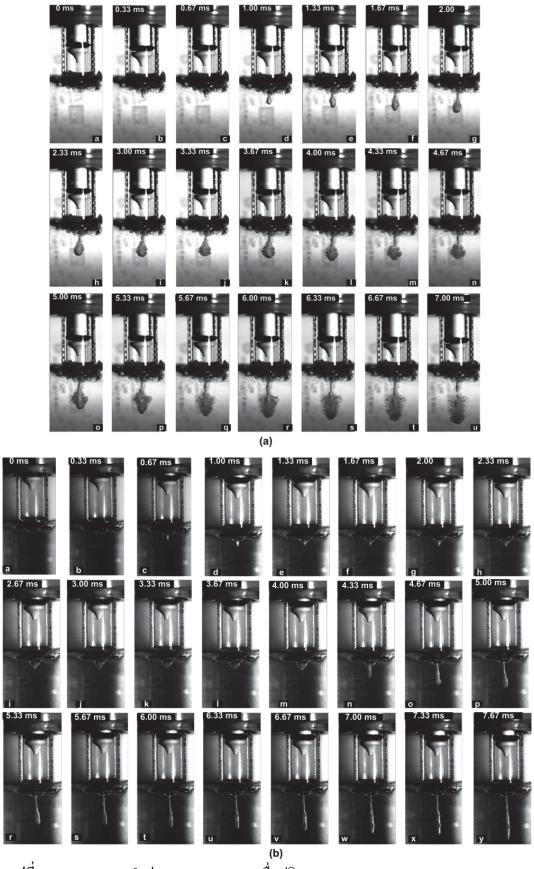
1.2.3 ความดันกระแทกของลำฟุง

ความคันกระแทกของลำพุ่งเป็นคุณลักษณะอีกประการของลำพุ่งที่เชื่อมโยงกับ ประสิทธิภาพการนำส่งยา ในการศึกษานี้ ความคันกระแทก (Impact pressure) จะวัดด้วยแผ่น PVDF ซึ่งหลักการทำงาน และการปรับเทียบได้กล่าวไว้อย่างละเอียดแล้วในบทที่ 4 ผลการทดลอง แสดงดังรูปที่ 5.6 ซึ่งแสดงกราฟความคันและเวลาจากการกระแทกของลำพุ่ง ด้วยน้ำในหัวฉีดที่มี ปริมาณของแตกต่างกัน ที่ 0.1 ml ความคันกระแทกมีค่าสูงสุดประมาณ 56 MPa และใช้เวลา กระแทกน้อยที่สุด ประมาณ 250 us เมื่อน้ำมีปริมาณมากขึ้น ความคันกระแทกจะลดลงแต่ใช้เวลา กระแทกมากขึ้น นอกจากนี้ยังสามารถสังเกตเห็นได้ว่าเมื่อน้ำในหัวฉีดน้อย (ที่ 0.1 - 0.3) กราฟ ความคัน จะมีลักษณะเพิ่มขึ้น-ลดลง เป็นช่วง (Pulse) มากขึ้น ในขณะที่ หากน้ำในหัวฉีดมาก (ที่ 0.4 – 0.5 ml) กราฟจะมีลักษณะราบเรียบขึ้น

การที่กราฟมีลักษณะเพิ่มขึ้น-ลดลงเป็นช่วงนั้น เป็นผลเนื่องจากคุณสมบัติการอัดตัวได้ (Compressible liquid) ของน้ำในขณะถูกขับออกจากหัวฉีด โดยจะเกิดคลื่นอัด (Compressed wave) ซึ่งเคลื่อนด้วยความเร็วเท่ากับความเร็วของเสียงในน้ำ โดยจะเคลื่อนที่กลับไปกลับมาในของเหลว ขณะฉีด ทำให้ลำพุ่งออกมามีลักษณะเป็นก้อนของเหลว ทั้งนี้หาก น้ำในหัวฉีดมีมากลักษณะความ เป็นก้อนของลำพุ่งจะน้อยลง (สังเกตได้ในรูปที่ 5.6 ที่ 0.4 - 0.5 ml) เนื่องจาก คลื่นอัดจะสูญเสีย พลังงานมากจากการเคลื่อนที่

ดังนั้น การประยุกต์นำลำพุ่งความเร็วสูงไปใช้ในการนำส่งยา จำเป็นอย่างยิ่งที่จะต้องเข้าใจ พฤติกรรมการไหลแบบอัคตัวได้ของของเหลว (Compressible liquid flow) ในหัวฉีด เพื่อการ ออกแบบหัวฉีดหรือกดไกการอัดของเหลวให้เหมาะสมกับการประยุกต์ใช้งาน

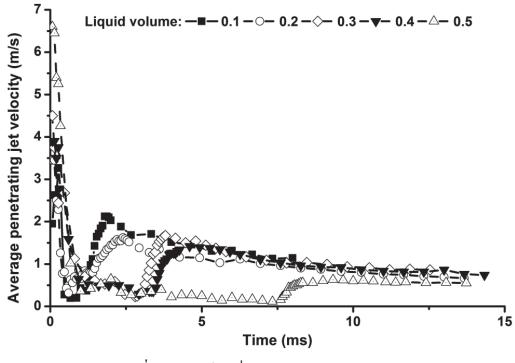
1.2.4 การเจาะผ่านเนื้อเยื่อจำลอง


จากผลการทดลอง รูปที่ 5.7 – 5.9 แสดงคุณลักษณะการเจาะของลำพุ่งใน 20% PAMG รูป ที่ 5.6 แสดง รูปถ่ายจากกล้อง HSVC เมื่อลำพุ่งเจาะ 20% PAMG ด้วยของเหลวในหัวฉีด 0.2 และ 0.4 ml (รูป 5.7 (a) และ 5.7 (b) ตามลำดับ) พบว่า การเจาะประกอบด้วยสามช่วง คือ

ช่วงที่หนึ่ง คือ ช่วงเริ่มต้น (Threshold stage) ซึ่งหัวกดเริ่มเคลื่อนที่ แต่ผิวของ 20% PAMG ยังไม่ทะลุ (ดังแสดงในรูป 5.7 (a (a-b) และ 5.7 (b-l)) เพราะความดันกระแทกและ โมเมนตัมของลำ พุ่งยังไม่สามารถเอาชนะความแข็งแรงของผิว 20% PAMG ได้ ทั้งนี้ช่วงเริ่มต้นจะใช้เวลาสั้นลง เมื่อ ปริมาณของเหลวในหัวฉีดลดลง ดังเห็นได้จากรูป 5.7(a) ซึ่งแสดงการเจาะของลำพุ่งจากปริมาณ ของเหลว 0.2 ml

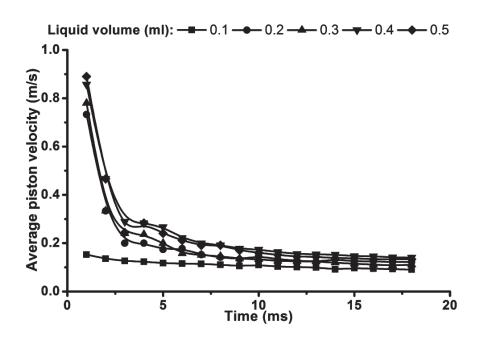
ช่วงที่สอง คือ ช่วงเจาะ (Penetrative stage) ซึ่งเป็นช่วงหลังจากความคันกระแทกและโมเม นตัมของลำพุ่งสามารถเอาชนะความแข็งแรงบนผิว 20% PAMG ได้ ทำให้ลำพุ่งสามารถเจาะทะลุ ผ่านเนื้อเยื่อจำลอง คังแสดงในรูปที่ 5.7 (a (c-g)) และ 5.6 (b (m-o)) ที่ช่วงนี้ การแพร่ของของเหลว เกิดขึ้นเล็กน้อยและสามารถสังเกตเห็นขนาดรูเจาะแคบๆได้ ซึ่งช่วงเจาะจะใช้เวลาสั้นกว่าช่วง เริ่มต้นและช่วงแพร่กระจาย

ช่วงที่สาม คือ ช่วงแพร่กระจาย (Dispersion stage) ช่วงนี้ความเร็วเจาะของลำพุ่งจะค่อยๆ ลคลง ขณะที่ของเหลวเริ่มแพร่กระจายคังแสคงในรูปที่ 5.7 (a (h-u)) และ 5.7 (b (p-y)) สภาวะนี้จะ คำเนินอยู่จนกระบวนการฉีคสิ้นสุค


โดยทั่วไปแล้วช่วงเวลาของกระบวนการเจาะของลำพุ่งจะขึ้นอยู่กับปริมาณของของเหลว ในหัวฉีด ดังนั้นงานวิจัยนี้จึงได้ศึกษาอิทธิพลของปริมาณน้ำที่ใช้ในการฉีด จากเริ่มจาก 0.1 จนถึง 0.5 ml รูปที่ 5.8 และ 5.9 แสดง ระยะแหวกและความเร็วเฉลี่ยของลำพุ่ง ที่เจาะผ่าน 20% PAMG ตามลำดับ ค่าที่ได้สอดคล้องกับปรากฏการที่เกิดขึ้นในรูปที่ 5.7 โดยสามารถสังเกตเห็นช่วงเจาะทั้ง สามช่วง ช่วงแรกระยะแหวกจะเพิ่มขึ้นอย่างรวดเร็ว (อยู่ในช่วงเวลา 0 - 1 ms) ก่อนจะเริ่มคงที่ และ เพิ่มขึ้นอย่างรวดเร็วอีกครั้งในช่วงเจาะ หลังจากนั้นระยะแหวกจะเพิ่มขึ้นอย่างช้าๆในช่วงการแพร่ (ดังแสดงในรูปที่ 5.8) ซึ่งสอดคล้องกับความเร็วเฉลี่ย ที่ดังแสดงในรูปที่ 5.9 โดยค่าจะเพิ่มขึ้นและ ลดลงอย่างรวดเร็ว ก่อนที่จะมีแนวโน้มคงที่ช่วงเวลาหนึ่ง (ช่วงเริ่มต้น) จากนั้นจะเพิ่มขึ้นอีกครั้ง (ช่วงเจาะ) และค่อยๆลดลง (ช่วงแพร่กระจาย) ทั้งนี้ช่วงเริ่มต้นจะใช้เวลานานขึ้น เมื่อปริมาณ ของเหลวในหัวฉีดเพิ่มมีมาก เนื่องจากความเร็วและโมเมนตัมเริ่มฉีดของลำพุ่งมีน้อย เมื่อปริมาณ ของเหลวมมาก

รูปที่ 5.7 การเจาะของลำพุ่งบน 20% PAMG เมื่อปริมาตรของเหลว (a) 0.2 ml และ (b) 0.4 ml

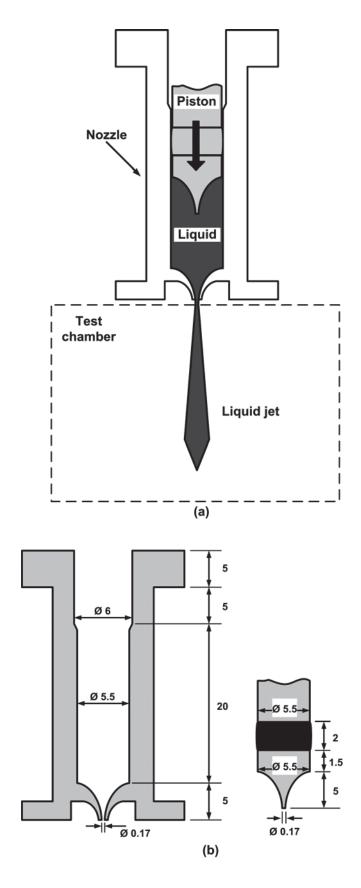
รูปที่ 5.8 ระยะแหวกของลำพุ่งใน 20% PAMG


รูปที่ 5.9 ความเร็วเฉลี่ยของลำพุ่งใน 20% PAMG

1.2.5 พฤติกรรมของหัวกด

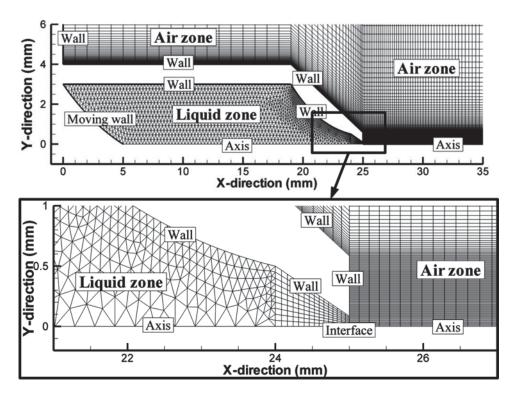
เมื่อทำการศึกษาอิทธิพลของปริมาณของเหลวในหัวฉีดที่มีต่อพฤติกรรมของหัวกด ผลที่ได้ แสดงในรูปที่ 5.10 โดยแสดงในรูปของความเร็วเฉลี่ย พบว่า หัวกดจะเคลื่อนที่ด้วยความเร็วใน ช่วงแรก (0 – 5 ms) เนื่องจากของเหลวมีช่วงยุบตัว (Compressed liquid stage) จากการกด ก่อนจะ

ช้าลงในช่วงถัดมา ซึ่งปริมาณของเหลวในหัวฉีดไม่มีผลกับความเร็วเฉลี่ยหัวกด ในช่วงยุบตัวมี ค่าประมาณ 0.3 – 0.35 m/s และหลังช่วงยุบตัว มีค่าประมาณ 0.15 - 0.17 m/s แต่อย่างไรก็ตาม ปริมาณของเหลวในหัวฉีดมีผลกับช่วงเวลายุบตัว โดยเมื่อปริมาณของเหลวมากขึ้น ช่วงเวลาการ ยุบตัวจะนานขึ้นด้วย สังเกตได้จาก รูปที่ 5.10 เปรียบเทียบระหว่างกรณีปริมาณของเหลว 0.1 และ 0.5 ml ที่จะมีช่วงเวลายุบตัวประมาณ 5 ms และ 11 ms ตามลำดับ


จากการศึกษา ไม่พบความสัมพันธ์ระหว่างช่วงยุบตัวหรือกุณสมบัติการยุบตัวของของไหล ที่มีผลกับกุณลักษณะของลำพุ่ง เนื่องจากช่วงแรกลำพุ่งถูกขับด้วยกลื่นอัด (Compressed wave) ใน ของเหลวซึ่งเคลื่อนที่เร็วเท่ากับความเร็วเสียงที่เดินทางในน้ำ ซึ่งเร็วกว่าการเคลื่อนที่ของหัวกดมาก ทำให้ลำพุ่งที่ออกมา (Exit jet) จึงขึ้นอยู่กับระยะทางการเคลื่อนที่ของคลื่นอัด ซึ่งก็คือปริมาตรของ ของเหลวในหัวฉีด และความเร็วกระแทกของหัวกด

รูปที่ 5.10 ความเร็วเฉลี่ยของหัวแท่งกด

1.3 การศึกษาลำพุ่งด้วยระเบียบวิชีพลศาสตร์ของใหลเชิงตัวเลข (CFD)


จากการทดลองที่ผ่านมาทำให้เราได้ทราบคุณลักษณะเบื้องต้นของลำพุ่ง และเพื่อเพิ่มความ เข้าใจเกี่ยวกับปรากฏการณ์การกำเนิดลำพุ่ง ในงานวิจัยนี้จึงได้นำเอาระเบียบวิธีพลศาสตร์ของไหล เชิงคำนวณมาช่วยคำนวณและอธิบาย ปรากกฏการณ์ดังกล่าว ทั้งนี้ แบบจำลอง และ ระเบียบวิธี คำนวณจะคล้ายกับ การจำลองการไหลของกการกำเนิดลำพุ่งด้วยวิธีการกระแทกในบทที่ 3 แต่มี รายละเอียดบางประการที่แตกต่างออกไป ตามหัวข้อต่อไปนี้

รูปที่ 5.11 กลไก (a) และรูปร่างของหัวฉีด (b)

1.3.1 ขอบเขตและรูปร่างของปัญหา

รูปร่างของหัวฉีดและขอบเขตของการปัญหาของการสร้างลำพุ่งจากอุปกรณ์ฉีดยาแสดง ซึ่งแสดงกลไกการขับและขนาดรปร่างหัวฉีดกับแท่งกดของอปกรณ์ ขนาดดังในรปที่ 5.11 CoolClick ที่จะใช้คำนวณใน CFD แท่งกคจะรับแรงกคจากสปริง เพื่อขับของเหลวที่บรรจในหัวฉีด ทรงกระบอกเส้นผ่านศูนย์กลาง 5.5 mm ให้ผ่านคองอดที่มีขนาด 0.17 mm และเป็นรูปโค้ง เพื่อให้ลำพุ่งมีความเร็วและรูปร่างแหลมคมสำหรับเจาะผิวหนังแต่อย่างไรก็ตามใน พาราโบลา แบบจำลอง CFD ของการศึกษานี้ จะไม่ได้ศึกษาการเจาะผ่านผิวหนัง แต่จะจำลองให้ไหลผ่าน อากาศที่อยู่กับที่เพื่อตัดความซับซ้อนของปัญหาการ ใหลและการแพร่ในเนื้อเยื่อ ทำให้ใน แบบจำลอง การใหลเป็นแบบสองสถานะ (ของเหลวและก๊าซ) โดยมีขอบเขตของปัญหาและกริด แสดงดังรูปที่ 5.12 รูปร่างของแบบจำลองจะเป็น แบบ Axis-symmetric ประกอบด้วย 2 ส่วน คือ ส่วนหัวฉีดที่บรรจุของเหลวหรือยา และส่วนที่สองจะเป็นห้องทดสอบที่บรรจุอากาศ กริดที่ใช้มี สองประเภท คือ สามเหลี่ยม (Triangle) สำหรับบริเวณในหัวถืดและ สี่เหลี่ยม (Rectangle) สำหรับ บริเวณในห้องผสม ซึ่งทั้งหมคอยู่ภายใต้ขอบเขตแบบระบบปิด ล้อมรอบด้วยผนัง (Wall boundary condition) รูปร่างขอบเขตและกริด เขียนขึ้นโดยใช้โปรแกรม GAMBIT ผนังและกริดด้านหัวกดจะ ถูกกำหนดให้เคลื่อนที่ได้ (Moving wall) โดนความเร็วจะเปลี่ยนแปลงตามแรงลัพธ์ที่กระทำบนหัว กค

รูปที่ 5.12 กริค และขอบเขตของปัญหา

1.3.2 แบบจำลองทางคณิตศาสตร์

1) แบบจำลองทางคณิตศาสตร์

ดังที่กล่าวไว้ในตอนต้น แบบจำลองทางคณิตศาสตร์ใน CFD ที่ถูกนำมาใช้กับการใหลของ ลำพุ่งจาก Cool.Click นี้เป็นแบบจำลองที่ใช้กับการกำเนิดลำพุ่งจากการกระแทก รายละเอียดสมการ ควบคุมและสมการถ่ายเท มีรายละเอียดดังในบทที่ 3 ซึ่งสามารถสรุปสาระสำคัญไว้ในตารางที่ 5.1 การใหลจะอยู่ในระบบปิด (Closed domain) ที่ประกอบด้วยของใหล สองชนิด คือ น้ำซึ่งเป็น ของเหลว และอากาศ ซึ่งการผสมกันของทั้งสองสาร จำลองด้วยการใหลแบบของใหลสองสถานะ แบบ Mixture การจำลองความปั่นป่วนใช้แบบจำลอง $k-\varepsilon$ การใหลเป็นแบบเปลี่ยนแปลงตาม เวลา โดยขนาดช่วงเวลาคำนวณ เท่ากับ $10~\mu s$

ตารางที่ 5.1 แบบจำลองทางคณิตศาสตร์ของลำพุ่งของเหลวใน CFD

ปัญหา	แบบจำลอง	
Fluid flow	Unsteady	
Turbulent flow	Standard k-e	
Two phase flow	Mixture	
Space	Axisymmetric	
Domain	Closed system	
Time interval	10 microsecond	
Solver	Segregate	

2) การเคลื่อนที่ของแท่งกด

การเคลื่อนที่ของแท่งกดในหัวฉีดระหว่างกำเนิดลำพุ่งสามารถกำหนดให้เสมือนการ เคลื่อนที่ของผนังและเปลี่ยนกริคภายในหัวฉีดดังกรณีของการขับด้วยการกระแทกของลูกปืนในบท ที่ 3 ความเร็วของหัวกด เมื่อเริ่มกระบวนการสามารถคำนวณได้จาก สมการอนุรักษ์โมเมนตัมอย่าง ง่ายบนหัวแท่งกด จากแรงลัพธ์ที่กระทำบนหัวกดของสปริง นั้นคือ

$$\int_{t_0}^t dV = \int_{t_0}^t \left(F(t)/m \right) dt \tag{5.2}$$

เมื่อ V คือ ความเร็วของหัวกด F คือ แรงลัพธ์ที่กระทำบนหัวกด และ m คือ มวลของ แท่งกด ซึ่งความเร็วของหัวกด ณ ช่วงเวลา t สามารถแจกแจงและคำนวณด้วยสมการ ออยเลอร์ (Explicit Euler formula) คังนี้

$$V_t = V_{t-\Delta t} + (F(t)/m)\Delta t \tag{5.3}$$

ความเร็วของการเคลื่อนที่ของหัวกดหรือผนัง สามารถคำนวณด้วย สมการ (5.3) ซึ่งเป็น ความสัมพันธ์เชิงเส้น ในช่วงเวลา Δt ผ่าน ฟังก์ชันของผู้ใช้ (User Define Function, UDF) ซึ่ง โปรแกรม Fluent เปิดช่องทางไว้ให้ ในการคำนวณ มวลของแท่งกดมีค่าเท่ากับ 22 กรัม

แรงลัพธ์ที่กระทำบนหัวกด ได้จากการรวมแรงสองแรง คือ อันที่ 1 แรงกดจากสปริง ซึ่งจะ เปลี่ยนแปลงตามระยะยุบ และขยายตัวของสปริง มีอัตราส่วนที่ก่ากงที่เท่ากับ 17.8 kN/m และ อันที่ 2 แรงต้านจากแรงดันของของเหลวที่ถูกอัดในหัวฉีด แรงทั้งสองนี้จะมีทิสทางทางตรงข้ามกันตาม แนวแกน ทั้งนี้ไม่พิจารณาแรงเสียดทานระหว่างหัวกดกับผนังหัวฉีด และกำหนดให้ความเร็ว เริ่มต้นของหัวกดเท่ากับศูนย์และสิ้นสุดกระบวนการเมื่อหัวกดชนกับบ่าหัวฉีด

3) คุณสมบัติของของใหล

ที่เงื่อนไขเริ่มต้นของทั้งสองสถานะถูกแบ่งให้อยู่หัวฉีดและห้องสอบสำหรับของเหลวและ อากาศตามลำดับ อากาศกำหนดให้มีคุณสมบัติเป็นก๊าซจิตภาพ (Ideal gas) เพื่อรองรับการไหลแบบ อัคตัวได้ (Compressible flow) เช่นเดียวกันในส่วนของเหลวในหัวฉีด ต้องกำหนดให้มีคุณสมบัติ อัคตัวได้ แต่เนื่องจากมีความแตกต่างจากก๊าซ คุณสมบัติสำคัญที่เกี่ยวข้องกับการอัคตัวได้ของ ของเหลว ได้แก่ ความหนาแน่น และความเร็วเสียงในของเหลว ต้องกำหนดผ่านฟังก์ชันภายนอก โปรแกรม Fluent ที่เขียนขึ้นเองผ่าน UDF โดย คุณสมบัติทั้งสองจะขึ้นอยู่กับการเปลี่ยนแปลงความ คัน ณ ช่วงเวลาก่อนและหลัง ดังแสดงในสมการ (5.4) และ (5.5) การศึกษานี้ใช้น้ำเป็นของใหล หลัก โดยมีคุณสมบัติที่สำคัญแสดงดังในตารางที่ 5.2

$$\rho_{1} = \frac{\rho_{o}}{\left[1.0 - \left(P_{1} - P_{0}\right)/B\right]}$$
 (5.4)

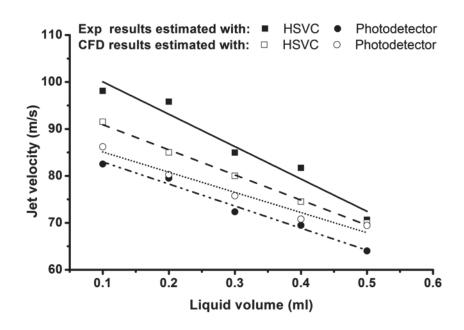
$$a_{1} = \frac{1 - (P_{1} - P_{0})}{B} \times \frac{\sqrt{B}}{\rho_{0}}$$
 (5.5)

- เมื่อ ho_a คือ ค่าความหนาแน่นเริ่มต้นของของเหลว เท่ากับ (kg/m³)
 - P_o คือ ความคันเริ่มต้นของของใหล (Pa)
 - P₁ คือ ความดันที่สภาวะต่อมาของของใหล (Pa)
 - B คือ ค่าสัมประสิทธิ์การกดอัดของของเลว ซึ่งมีค่าแสดงดังตารางที่ 5.2

ตารางที่ 5.2 คุณสมบัติของของใหล

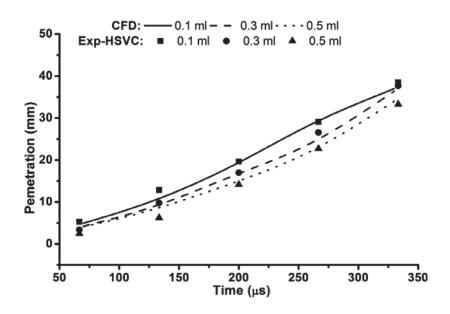
					Surface
Liquid	Bulk	Vapor	Molecular	Specific heat	tension
	modulus	pressure	weight	(J/(kg.K)	coefficient
	(GPa)	(×10 ⁻⁶ GPa)	(g)		(N/m)
Water	2.49	3,169	18	4182	0.0717

4) ระเบียบวิธีคำนวณ

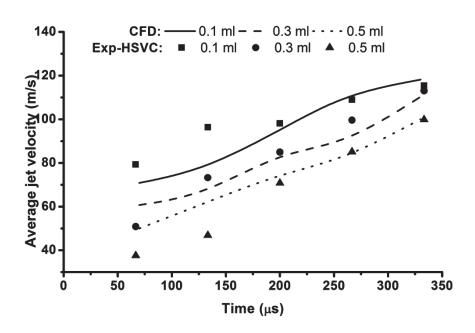

งานวิจัยนี้ใช้โปรแกรม CFD สำเร็จรูป Fluent ในการแก้คำนวณแก้ปัญหา สมการควบคุม เชิงอนุพันธ์หาคำตอบจากระเบียบวิธีปริมาตรสืบเนื่อง (Finite volume method) ด้วยการประมาณค่า จากระเบียบวิธีผลต่างต้นลมอันคับที่หนึ่ง (First order upwind) บนสมการโมเมนตัม สมการ พลังงาน สมการความปั่นป่วน และสมการส่งถ่ายของของผสม สำหรับค่าความคันใช้ แบบ Bodyforce weighted ขั้นตอนวิธีคำนวณสำหรับใช้แบบจำลองเชื่อมต่อความเร็วและความคัน (Pressurevelocity coupling) แบบ SIMPLE การคำนวณเป็นแบบขึ้นกับเวลา โดยขนาดช่วงเวลา เท่ากับ 10⁻⁵ วินาที โดยผลคำนวณได้ในแต่ละช่วงเวลาจะถูกบันทึกลงคอมพิวเตอร์

1.3.3 การยืนยันผลแบบจำลองทางคณิตศาสตร์

แบบจำลองทางคณิตศาสตร์ ของอุปกรณ์ Cool. Click ที่กล่าวจะยืนยันความถูกต้องด้วยการ นำผลที่ได้มาเปรียบเทียบกับการทดลอง โดยจะเทียบตัวแปรที่วัดจากกล้องความเร็วสูง (HSVC) และชุดดักจับความเข้มแสง (Photo detector) ซึ่งผลการเปรียบเทียบแสดงดังรูปที่ 5.13 ถึง 5.16

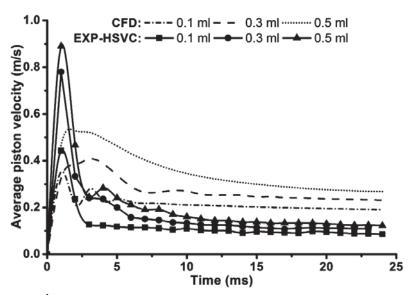

รูปที่ 5.13 แสดงความสัมพันธ์ระหว่างความเร็วออกของถำพุ่ง (Exit jet velocity) กับ ปริมาณของของเหลวในหัวฉีด ที่วัดได้จากภาพถ่ายของ HSVC และชุดดักจับความเข็มแสง พบว่า เมื่อปริมาณปริมาณของเหลวเพิ่มขึ้นความเร็วออกของลำพุ่งจะลดลง ซึ่งค่าที่วัดด้วยกล้องจะมีค่าสูง กว่า วัดด้วยชุดดักจับความเข้มแสง เนื่องจากกำหนดค่ากงที่ในการหาความเร็วไม่เหมือนกัน การวัด ด้วยชุดดักจับความเข้มแสงอ้างอิงที่ระยะคงที่เท่ากับ 12.5 mm ขณะที่ การวัดจากภาพถ่ายอ้างอิงที่ ช่วงเวลาต่างคงที่เท่ากับ 66.667 µs ด้วยเหตุผลเดียวกัน ผล CFD ที่วัดด้วยการอ้างอิงระยะจากชุดดัก จับความเข้มแสง มีค่าน้อยกว่าผล CFD ที่วัดด้วยการอ้างอิงเวลาของกล้อง HSVC

เมื่อเปรียบเทียบระหว่างผลการทดลองและผล CFD พบว่ามีแนวโน้มเดียวกัน แต่อย่างไรก็ ตาม หากเปรียบเทียบที่ระยะของพุ่งเดินทางไปได้ไม่ไกลมากนัก (กรณีวัดด้วย HSVC) การทดลอง จะมีค่าสูงกว่า CFD แต่ เมื่อระยะลำพุ่งไกลมากขึ้น (กรณีวัดด้วยชุดดักจับความเข้มแสง) การทดลอง จะให้ผลต่ำกว่า CFD นั้นหมายความว่า ความคลาดเคลื่อนของผลจากการคำนวณ เกิดขึ้นจากการ จำลองปรากฏการณ์การประทะกันระหว่างลำพุ่งของเหลวและอากาศในห้องทดสอบเป็นแบบอย่าง ง่ายที่ไม่ได้พิจารณากระบวนการแตกตัวของลำพุ่ง อีกทั้งในแบบจำลองไม่ได้พิจารณาอิทธิพลของ แรงต้านของอากาศที่มีต่อลำพุ่งด้วย



รูปที่ 5.13 ความเร็วลำพุ่งระหว่าง CFD กับ ผลการทดลอง

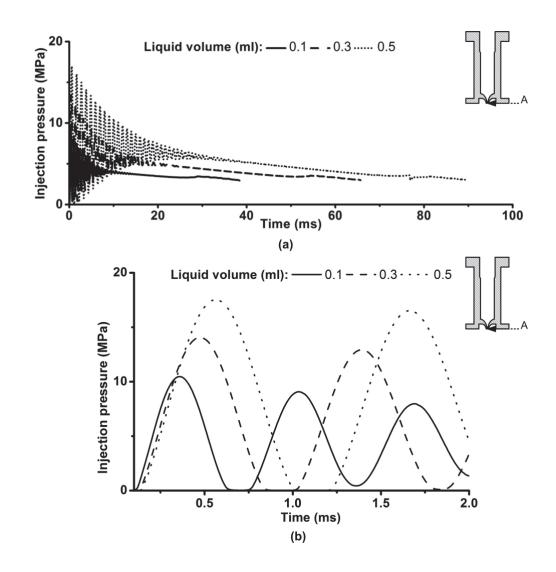
รูปที่ 5.14 และ 5.15 แสดงระยะแหวกอากาศและความเร็วเฉพาะกาลของลำพุ่ง โดย เปรียบเทียบผลที่ได้จากกล้องความเร็วสูงและ CFD พบว่ามีแนวโน้มใกล้เคียงกัน เมื่อเวลาเดินทาง ของลำพุ่งมากขึ้น และปริมาณของของเหลวในหัวฉีดน้อยลง ระยะแหวกอากาศและความเร็วเฉพาะ กาลของลำพุ่งจะมีค่าเพิ่มขึ้น ซึ่ง CFD และการทดลองให้ผลที่สอดคล้องกัน เนื่องจาก การที่ปริมาณ ของน้ำในหัวฉีดน้อย ทำให้ลำพุ่งที่ออกมาจากหัวฉีดจะมีขนาดเรียวแหลมมากกว่าที่มีน้ำมาก ส่งผล ต่ออัตราการเปลี่ยนสถานะของลำพุ่งจะน้อยกว่า เมื่อประทะกับอากาศ ดังจะเห็นได้จากรูปถ่ายจาก กล้องความเร็วสูง รูปที่ 5.5


รูปที่ 5.14 ระยะแหวกของลำพุ่งจาก CFD กับ ผลการทดลอง

ร**ูปที่ 5.15** ความเร็วเฉพาะกาลของลำพุ่งจาก CFD กับ ผลการทดลอง

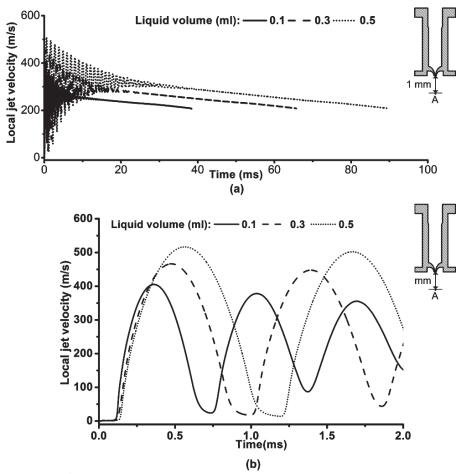
รูปที่ 5.16 แสดงการเปรียบเทียบความเร็วเฉพาะการของหัวกดที่เคลื่อนที่ระหว่างฉีดลำพุ่ง ที่ปริมาณน้ำในหัวฉีดต่างๆ พบว่า ผลจาก CFD และการทดลองมีความสอดคล้องกัน ความเร็วของ หัวกดในช่วง 5 ms แรกจะมีค่าสูงและลดต่ำลง อย่างรวดเร็ว จากนั้นจึงค่อยๆลดลงที่ละน้อย อันเป็น ผลจากการยุบตัวของน้ำเพราะแรงกดเมื่อเริ่มการฉีด และเมื่อพิจารณาอิทธิพลของปริมาณน้ำพบว่า หากน้ำในหัวฉีดมีมากขึ้นความเร็วของหัวกด จะมากขึ้นด้วย การที่ในช่วง 5 ms แรก ผล CFD ต่ำ

กว่าแต่หลังจากนั้น กลับมีค่าสูงกว่าการทดลอง บ่งบอกถึงการคำนวณสมบัติการยุบตัวของของไหล ใน CFD ยังมีความคลาดเคลื่อน จากความเป็นจริงอยู่ เนื่องจากยังมีหลายปัจจัยที่ไม่ได้พิจารณาใน แบบจำลอง เช่น อุณหภูมิของของไหลที่เกิดจากการอัดตัวและส่งผลต่อการยุบตัวของของเหลว เป็น ต้น

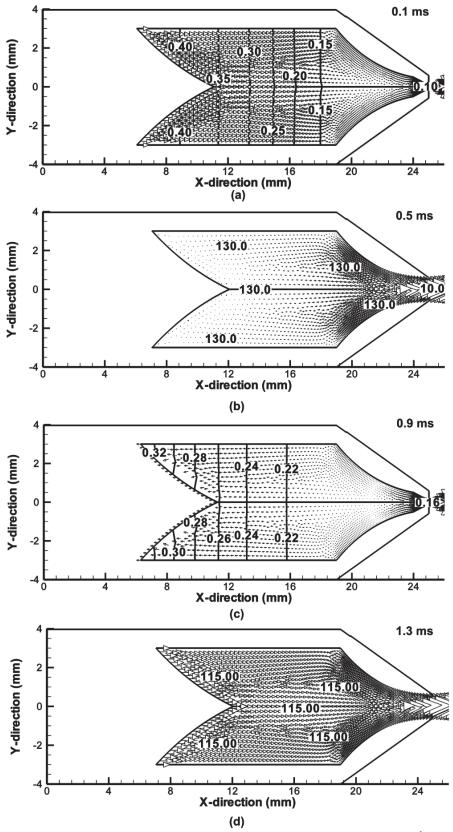


รูปที่ 5.16 ความเร็วเฉพาะกาลของหัวกดจาก CFD และการทดลอง

จากการเปรียบเทียบผลระหว่าง CFD กับการทดลอง ดังที่ผ่านมา เป็นการยืนยันความถูกต้อง ของแบบจำลอง CFD ของ Cool. Click และผลที่ได้จากการคำนวณ ดังนั้นจึงสามามารถที่จะนำเอา แบบจำลองนี้มาคำนวณกรณีศึกษาอื่นๆเพิ่มเติมได้ หรือนำผลที่ได้จากการยืนยันแล้ว มาวิเคราะห์ และอภิปราย เพื่อให้เกิดความเข้าใจกระบวนสร้างลำพุ่งสำหรับนำส่งยาเพิ่มมากขึ้น


1.3.4 กระบวนการกำเนิดลำพุ่ง

เป็นที่ทราบกันคือยู่แล้วถึงข้อได้เปรียบของการนำ CFD มาช่วยในการคำนวณปัญหาการไหล คือ ให้ผลบางอย่างที่ ไม่มาสามารถทำได้ หรือทำได้ยากในการทดลอง สำหรับปัญหาการกำเนิดลำ พุ่งความเร็วสูงจากอุปกรณ์ Cool. Click ก็เช่นเดียวกัน ซึ่งในหัวข้อนี้จะนำเสนอและอภิปราย กระบวนการสร้างลำพุ่ง จากผลการคำนวณปรากฏการณ์ด้วย CFD โดยจะอ้างอิง ค่าความดันฉีด (Local injection pressure) ที่ปากทางออกหัวฉีด ค่าความเร็วเฉพาะที่ (Local velocity) ณ จุดห่างจาก ปากหัวฉีด 1 mm และรูปแบบความดันและเวกเตอร์การไหลในหัวฉีด


รูปที่ 5.17 ความดันฉีดที่ปากทางออกหัวฉีด (a) แบบเต็มกระบวนการ (b) ช่วงเวลา 2 ms

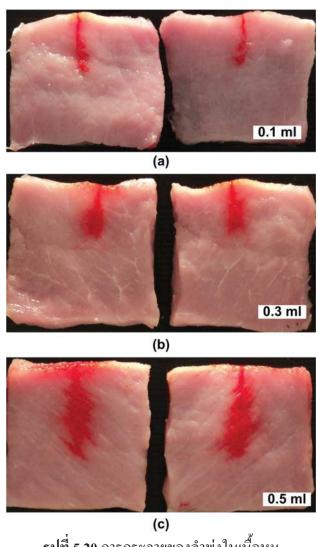
รูปที่ 5.17 และ 5.18 แสดงค่าความคันฉีดและความเร็วเฉพาะที่ ณ ตำแหน่ง A ที่เวลา และ ปริมาณฉีดของของเหลวต่างๆ พบว่าค่า ความคันและความเร็วมีลักษณะแกว่งกลับไปกลับมาใน ช่วงแรก ก่อนจะนิ่งพร้อมค่อยๆลดลงอย่างต่อเนื่อง ที่ปริมาตรของไหลมากดูเหมือนว่าความเร็วและ ความคันจะมีสูงกว่า กรณีหัวฉีดบรรจุของเหลวน้อย และต้องใช้เวลาในการฉีดนาน แต่อย่างไรก็ ตาม เมื่อพิจารณาช่วงเริ่มแรกของกระบวนการ (ที่เวลา 0 – 0.25 ms) พบว่า ลำพุ่งมีความคันฉีดและ ความเร็วสูงกว่ากรณีอื่น ก่อนจะลดต่ำลงเมื่อเวลาผ่านไป ด้วยเหตุนี้ ความเร็วออก (Exit velocity) ของลำพุ่งกรณีปริมาณของเหลวน้อยจึงมีค่าสูง

รูปที่ 5.18 ความเร็วที่จุดห่างปากทางออกหัวฉีด 1 mm (a) แบบเต็มกระบวนการ (b) ช่วงเวลา 2 ms

มีข้อสังเกตว่า ความเร็วเฉพาะที่ และความคันฉีคสูงสุดจะเกิดขึ้นกับกรณีบรรจุน้ำ 0.5 ml (มี ค่าสูงถึง 515 m/s และ 17 MPa ตามลำคับ) แต่ในทางกลับกัน ความเร็วออก (Exit velocity) (มี ค่าประมาณ 70 m/s) และ ความเร็วเฉพาะกาลของลำพุ่ง กลับมีค่าต่ำที่สุด ดังแสดงในรูปที่ 5.13 นั่น หมายความว่า ปริมาตรของเหลวฉีดยิ่งมีมาก ยิ่งทำให้ความเร็วของอนุภาคของเหลวที่หลุดออก เริ่มแรก (Exit jet) มีค่าต่ำ แต่อนุภาคที่ใหลผ่านหัวฉีดตามออกมา จะมีความเร็วสูง แน่นอนว่า พฤติกรรมนี้ มีผลกับประสิทธิภาพการนำส่งยา เนื่องจากความเร็วออกเป็นความเร็วกระแทกและ เจาะผิวหนังซึ่งมีผลต่อประสิทธิภาพการเจาะและแหวกเนื้อเยื่อเพื่อนำส่งยา ขณะที่ความเร็วของ อนุภาคที่ตามออกมา มีผลต่อการแพร่กระจายของเนื้อยา ในเนื้อเยื่อ ดังนั้น หากมีการศึกษาเพิ่มเติม จะช่วยให้สามารถพัฒนาอุปกรณ์ที่มีประสิทธิภาพการนำส่งยาเพิ่มขึ้นได้ในอนาคต

รูปที่ 5.19 ระดับความดันและเวกเตอร์ของการใหลระหว่างการกำเนิดลำพุ่ง (MPa) ที่ (a) $0.1~\mathrm{ms}$ (b) $0.5~\mathrm{ms}$ (c) $0.9~\mathrm{ms}$ และ (d) $1.3~\mathrm{ms}$

จากรูปที่ 5.17 และ 5.18 พบการแกว่งของค่าความคันฉีคและความเร็วเฉพาะที่ ซึ่งพฤติกรรม นี้มีสาเหตุมาจากการเคลื่อนที่ของอนุภาคหรือคลื่นชอค์กในหัวฉีคระหว่างการฉีคลำพุ่ง ดังนั้น เพื่อให้ความเข้าใจมากขึ้น รูปที่ 5.19 จึงแสดงรูปแบบการกระจายความคันและเวกเตอร์การไหล ของอนุภาค ที่เวลาต่างๆภายในหัวฉีคที่บรรจุน้ำปริมาณ 0.3 ml จากรูปจะพบการกระจายความคัน และทิศทางของอนุภาค ช่วงเริ่มการฉีคที่ 0.1 ms รูป 5.19 (a) ความคันค้านบริเวณใกล้หัวกค (มีค่าประมาณ 0.4 MPa) จะมีค่าสูงกว่าบริเวณคอขอด (มีค่าประมาณ 0.15 MPa) และอนุภาคจะ เคลื่อนที่พร้อมหัวกคในทิศที่จะไปทางออกของหัวฉีด สาเหตุที่อนุภาคของเหลวเคลื่อนที่เกิดจาก การขุบตัวของของเหลวในช่วงเริ่มฉีด ช่วงเวลานี้ความคันที่ใกล้ทางออกหัวฉีคจะสูงขึ้นเรื่อยๆ จาก การสะสมของอนุภาค จนถึงช่วงเวลา 0.5 ms (รูปที่ 5.19 (b)) ความคันเพิ่มขึ้นสูงสุดมีค่าประมาณ 130 MPa และกระจายทั่วบริเวณ อนุภาคจะมีการเคลื่อนที่น้อยลง หลังจากนั้นอนุภาคเริ่มเคลื่อนที่ กลับพร้อมหัวกค ความคันในหัวฉีคเริ่มลดลงเนื่องจากอนุภาคบางส่วนถูกปล่อยออกจากหัวฉีค (ดัง แสคงในรูปที่ 5.19 (c) ช่วงเวลา 0.9 ms) เพื่อสะสมอนุภาคและสร้างแรงคันใหม่ให้สูงดังรูปที่ 5.19 (d)


1.4 การกระจายของลำฟุ่งในเนื้อหมู

การศึกษาพฤติกรรมการใหลและกำเนิดลำพุ่งของ อุปกรณ์ Cool.Click ที่ผ่านมา เป็นการ ทำความเข้าใจถึงการใหลที่เกิดขึ้น ระหว่างการฉีดและเป็นพฤติกรรมของการฉีดลำพุ่งในอากาศ เป็นส่วนใหญ่ ดังนั้นเพื่อทำความเข้าใจคุณลักษณะการกระจายตัวของขอเหลวในเนื้อเยื่อหลังการ ฉีด งานวิจัยนี้จึงได้ทำการฉีดของเหลวในเนื้อหมูที่ควบคุมตัวแปรที่ไม่เกี่ยวข้องให้ได้มากที่สุด

เนื้อหมูที่ใช้เป็นส่วนสันนอกของหมูตัวเคียวกันชำแหละมาแล้ว และแช่แข็งมา 10 ชั่วโมง ตัดเป็นชิ้น หนา 5 mm สูง 100 mm กว้าง 100 mm ว่างในกล่องยึดก่อนฉีดด้วยน้ำผสมสีผสมอาหาร สีแดง อัตราส่วน 50 mg ต่อ น้ำ 500 ml หลังการฉีดทิ้งไว้ 30 นาทีก่อนผ่าเนื้อดูลักษณะการกระจาย ของน้ำในเนื้อ ผลที่ได้แสดงดังรูปที่ 5.20 โดยแสดงลักษณะการกระจายของขงเหลวในเนื้อหมูหลัง การฉีดด้วยน้ำปริมาณต่างๆ สิ่งที่พบ คือ ที่ปริมาตร 0.5 ml ของเหลวสามารถแพร่กระจายได้ลึกและ กว้างที่สุด แต่มีข้อสังเกตว่า ความลึกของ 0.1 และ 0.3 ml ไม่ต่างกันมาก และดูเหมือนว่ากรณี 0.3 ml การแพร่กระจายของน้ำไม่ดีเท่ากรณี 0.1 และ 0.5 ml เพราะสังเกตเห็นก้อนมวลของเหลวที่ปลาย รูเจาะของลำพุ่งอยู่

ปรากฏการณ์ การกระจายของของเหลวหลังการฉีด สามารถอธิบายจากการศึกษาที่ผ่านมา ได้ดังนี้ ความลึกของการเจาะและการกระจายจะขึ้นอยู่กับความเร็วออกและความเร็วตามของ อนุภาคลำพุ่งที่ออกจากหัวฉีด สังเกตได้จาก ความลึกของการแพร่กรณี 0.1 ml ใกล้เคียงกับ 0.3 ml แต่ตื้นกว่า 0.5 ml มาก (จากการศึกษาที่ผ่านมา กรณี 0.1 ml มีความเร็วออกสูงที่สุด) บ่งชี้ว่า ที่ 0.3 ml มีโมเมนตัมออกน้อย และ โมเมนตัมของอนุภาคตามมาก็มีไม่เพียงพอ (แม้จะสูงกว่ากรณี 0.1 ml

จากความเร็วเฉพาะที่ รูปที่ 5.18) ที่จะขับให้อนุภาคแทรกซึมผ่านเนื้อหมูได้ ทำให้เกิดก้อนของเหลว ขังตัวในเนื้อหมู ซึ่งแตกต่างจากกรณี 0.1 ml ที่ลักษณะของการแพร่จะไปในทิศทางแนวลึก มีการ กระจายด้านข้างน้อย เนื่องจากความเร็วออกสูง (โมเมนตัมของอนุภาคออกสูง) แต่ความเร็วของ อนุภาคของเหลวตามไม่สูงนั้นเอง สำหรับกรณี 0.5 ml นั้นแม้ ความเร็วออกจะไม่สูงเท่ากับกรณี 0.1 ml แต่กำลังของลำพุ่งหรือโมเมนตัมตามของอนุภาคของเหลวจากการฉีด มีสูงที่สุด ของเหลวที่ กระจายในเนื้อหมูจึงมีลักษณะ แพร่ลงในแนวลึกและออกค้านข้างด้วยคังรูปที่ 5.20 (c)

รูปที่ 5.20 การกระจายของลำพุ่งในเนื้อหมู

บทที่ 6

คุณลักษณะการนำส่งยาด้วยอุปกรณ์ขับจากแก๊สแรงดันสูง: Med-jet NFIS

บทนี้จะกล่าวถึงการศึกษาคุณลักษณะของลำพุ่งที่สร้างขึ้นจากอุปกรณ์นำส่งยาต้นแบบ Med-jet NFIS โดยนำเสนอในเทอมของความเร็วและความดันของลำพุ่งที่วัดได้จาก หลักการตัด แสงของวัตถุ และ แผ่น PVDF ตามลำดับ ซึ่งรายละเอียดเครื่องมือวัดและหลักการทำงานของ เครื่องต้นแบบ ได้กล่าวไว้แล้วอย่างละเอียดในบทที่ 4 แต่ก่อนที่จะอภิปรายผลนั้น เริ่มแรกจะได้ กล่าวถึง เงื่อนไขและรูปแบบการศึกษาลำพุ่งความเร็วสูง จาก Med-jet NFIS เสียก่อน

1.1 เงื่อนไขและรูปแบบการศึกษา

Med-jet NFIS ที่แสดงในรูปที่ 6.1 เป็นชุดต้นแบบของอุปกรณ์นำส่งยาด้วยลำพุ่งความเร็ว สูง โดยอาศัยต้นกำลังจากระบบไฮดรอลิก และใช้ก๊าซแรงดันสูงขับแท่งกด ให้ดันของเหลวพุ่ง ออกมาจากหัวฉีด ด้วยความเร็ว เป็นชุดต้นแบบที่สร้างขึ้นมาเพื่อใช้สำหรับการศึกษาทดลองเป็น หลัก เพื่อเป็นการเก็บข้อมูลพื้นฐาน ก่อนการพัฒนาและออกแบบอุปกรณ์ที่จะนำไปใช้งานจริงใน อนาคต ซึ่งหลักการทำงาน และส่วนประกอบที่สำคัญได้กล่าวไว้แล้วในบทที่ 4 ดังนั้น ในหัวข้อนี้ จะกล่าวถึงเฉพาะรูปแบบการศึกษาและวิธีการกำหนดเงื่อนการทดลอง เท่านั้น โดยจะไม่กล่าวถึง รายละเอียดของชุดทดลองและเครื่องมือวัดทั้งหมด

รูปที่ 6.1 ชุดต้นแบบของอุปกรณ์นำส่งยาด้วยลำพุ่งความเร็ว Med-jet NFIS

คุณลักษณะของลำพุ่งที่จะทำการทดลอง คือ ความเร็วและความดันของลำพุ่ง ด้วยใช้ หลักการตัดแสงของวัตถุ และแผ่น PVDF วัดค่าดังกล่าวตามลำดับ โดยทำการเปลี่ยนแปลงปริมาตร ของของเหลวในหัว ณ ที่นี้ ใช้น้ำบริสุทธิ์เป็นสารทำงาน ทำได้โดยเปลี่ยนความของแท่งกด เพื่อ รักษาระยะห่างระหว่างแท่งกดกับลูกสูบขับให้คงที่ ใช้แท่งกด 5 ขนาดเพื่อปรับปริมาตร 0.1 0.2 0.3 0.4 และ 0.5 ml (ขนาดสั้นสุดสำหรับปริมาตร 0.5 ml และยาวสุดสำหรับ 0.1 ml)

รูปที่ 6.2 แท่งกด ขนาดต่างๆ

เพื่อศึกษาอิทธิพลของลักษณะการขับของลูกสูบบนแท่งกด ในการศึกษานี้จึงมีลูกสูบขับ 3 ลักษณะ ดังแสดงในรูปที่ 6.2 ซึ่งลูกสูบขับมีน้ำหนักเท่ากัน คือ 43 g และมีรายละเอียดดังนี้

แบบที่ 1 คือ ลูกสูบยาวแบบมีโอลิง ใช้สำหรับการขับแท่งกดโดยให้ลูกสูบติดกับแท่งกด ก่อนการทำงาน ทำให้ไม่มีการกระแทกของลูกสูบบนแท่งกด (Non-impact) และก๊าซแรงดันสูงจะ ขับลูกสูบต่อเนื่อง ไม่มีการรั่วไหลออกเพราะมีโอลิงกันรั่วด้านข้าง เพื่อทำการศึกษา อิทธิพลของ แรงดันขับคงที่และต่อเนื่อง ที่มีต่อลำพุ่ง

แบบที่ 2 คือ ลูกสูบขับแบบสั้นไม่มีโอลิง (Impact with no o-ring) ใช้สำหรับขับแท่งกด ซึ่ง ก่อนทำงาน ลูกสูบและแท่งกด จะมีระยะห่างกัน 10 mm และ เมื่ออุปกรณ์เริ่มทำงานในช่วงแรก ลูกสูบขับจะวิ่งเพิ่มความเร็วตามระยะห่างนี้ ก่อนจะชนแท่งกดและขับของไหล ทั้งนี้แรงดันก๊าซจะ ลดลงเรื่อยๆ เนื่องจากการรั่วไหลออกทางด้านข้างของลูกสูบ (เพราะไม่มีโอลิงเหมือนแบบที่ 1) เพื่อทำการศึกษาคุณลักษณะของลำพุ่ง ที่กำเนิดจากการกระแทก และความดันก๊าซที่ลดลงต่อเนื่อง

แบบที่ 3 คือ ลูกสูบขับแบบสั้นมีโอลิง (Impact with o-ring) หลักการทำงานจะคล้ายแบบ ที่ 2 แต่ลูกสูบจะมี โอลิง สำหรับกันก๊าซรั่วใหล หลังการกระแทกบนแท่งกด เพื่อทำการศึกษากรณี การกระแทกและมีแรงดันขับต่อเนื่อง

รูปที่ 6.3 ลักษณะของลูกสูบขับที่ใช้ขับแท่งกด

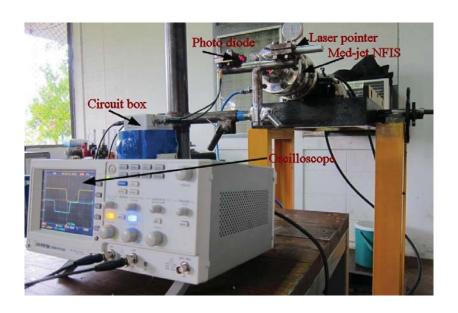
ทั้งนี้เพื่อให้ผลการทดลองสามารถนำมาเปรียบเทียบ กับอุปกรณ์ Cool.Click ของบทที่ผ่าน มาได้ ดังนั้น หัวฉีดที่ใช้ในการทดลองจึงเป็นหัวฉีดสำเร็จรูปอันเดียวกันกับของ Cool.Click ที่มี เส้นผ่านศูนย์กลางคอขอดเท่ากับ 0.17 mm นอกจากนี้แล้ว เนื่องจาก Med-jet NFIS ใช้อากาศที่ถูก อัดด้วยกระบอกไฮดรอลิก ขับลูกสูบและแท่งกด เพื่อขับหรือสร้างลำพุ่งความเร็วสูง ดังนั้นระดับ ความดันที่ใช้จำเป็นต้องเป็นความดันเสมือนกับแรงกดของสปริงในอุปกรณ์ Cool.Click ซึ่งมีวิธีการ คำนวณความดันดังกล่าวดังนี้

กรณี Cool Click

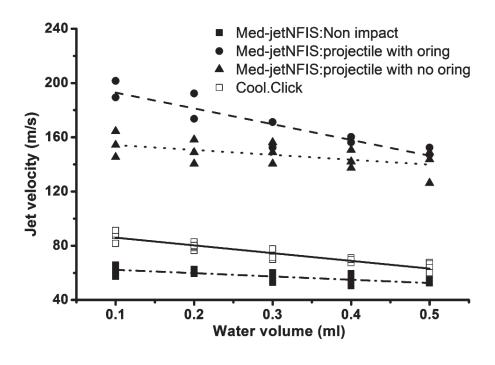
สปริงของ Cool.Click มีค่าคงที่เท่ากับ 17.8 kN/m มีระยะยุบในการฉีด (ทุกครั้งจะเท่ากัน) เท่ากับ 30 mm ดังนั้น จากแรงกดเริ่มแรกตามแนวแกนแท่งกดมีค่าเท่ากับ

$$F \times \Delta x = 17.8 \text{ kN/m} \times 0.03 \text{ m} = 0.534 \text{ kN}$$

กรณี Med-jet NFIS


เส้นผ่านศูนย์กลางของลูกสูบขับเท่ากับ 20 mm เมื่อต้องใช้แรงกดเริ่มแรกเท่ากับของ Cool.Click จะได้แรงดันเทียบเท่าดังนี้

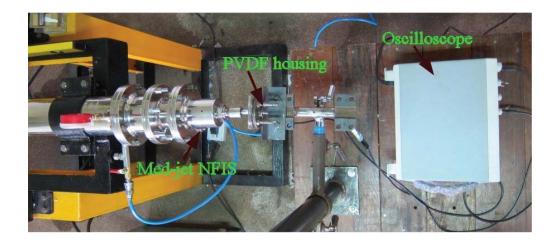
$$\frac{F \times \Delta x}{A} = \frac{0.534 \text{ kN} \times 1,000 \times 4}{\pi \times 0.02^2 \text{ mm}} = 17.0 \text{ bar}$$


นั้นหมายความว่า ระดับความดันก๊าซหรือความดันแตกของแผ่นไดอะแฟรมที่ต้องการที่ ต้องการ คือ 17 bar จากการ ปรับเทียบความดันแตกของแผ่นไดอะแฟรมในบทที่ 4 (รายละเอียด อธิบายไว้ในหัวข้อ 4.1.2 และรูปที่ 4.8) พบว่าทองเหลืองแบบ 2 หนา 0.0254 mm (0.001 นิ้ว) ให้ ความดันใกล้เคียงที่สุด ดังนั้นในการทดลองจึงใช้แผ่นทองเหลืองขนาดนี้เป็นแผ่นไดอะแฟรม ทุกการทดลอง

1.2 ความเร็วออกของลำฟุง

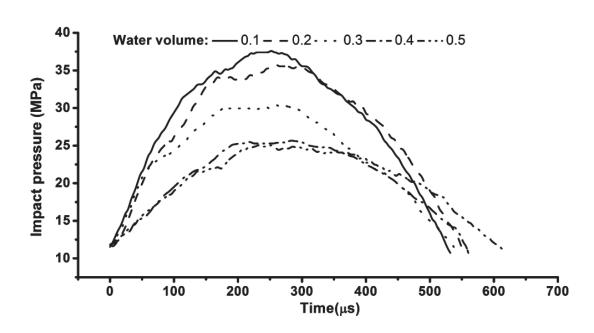
คังเช่นการศึกษาในอุปกรณ์นำส่งยาด้วยลำพุ่งที่มีขายในท้องตลาด รุ่น Cool. Click จากบท ที่ผ่านมา ชุดต้นแบบ Med-jet NFIS ก็ได้ทำการทดสอบความเร็วของลำพุ่งเช่นเดียวกัน โดย เปลี่ยนแปลงปริมาตรของของใหลและวิธีการขับแท่งกด แล้วใช้หลักการตัดแสงของวัตถุ วัด ความเร็ว ดังแสดงในรูปที่ 6.4 โดยทำการทดลอง ซ้ำ 3 ครั้ง ผลที่ได้แสดงในรูปที่ 6.5

รูปที่ 6.4 การวัดความเร็วออกของลำพุ่งด้วยหลักการตัดแสงของวัตถุ


รูปที่ 6.5 ความเร็วออกของลำพุ่งจาก Med-jet NFIS

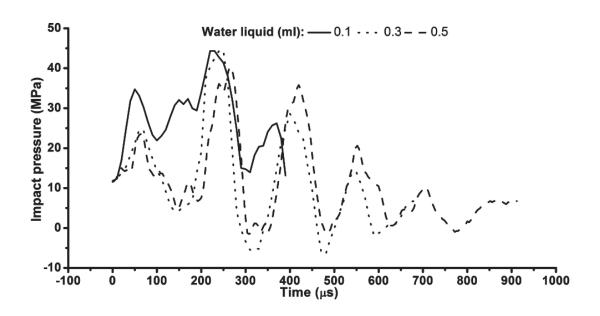
รูป 6.5 แสดงความเร็วออกของลำพุ่งที่กำเนิดจาก Med-jet NFIS ที่ปริมาตรของเหลวต่างๆ โดยเทียบกับผลของ Cool.Click ด้วย พบว่า เมื่อปริมาตรเพิ่มขึ้น ความเร็วจะลดลง การขับด้วยการ กระแทกของลูกสูบที่มีโอลิงจะให้ค่าความเร็วออกสูงสุด 160 – 200 m/s และจะมีค่าน้อยสุดกับกรณี ไม่มีการกระแทก เนื่องจากความเร็วที่วัดได้เป็นความเร็วออกจากหัวฉีดหรือความเร็วเริ่มของลำพุ่ง ทำให้หากปริมาตรลดลง มวลของเหลวที่รับพลังงานจากลูกสูบและแท่งกดมีน้อย พลังงานต่อหน่วย จึงมีมาก ของเหลวจึงมีความดันฉีดสูง ลำพุ่งที่ออกจากหัวฉีดจึงเร็วขึ้นด้วย นอกจากนี้การกระแทก แท่งกดก่อนที่จะขับทำให้ เกิดการเคลื่อนที่ของคลื่น ชอค์กในหัวฉีด และสะสมความดันขึ้นที่ บริเวณใกล้ทางออก ลำพุ่งที่ถูกฉีดออกมามีความเร็วสูงกว่ากรณีไม่มีการกระแทก

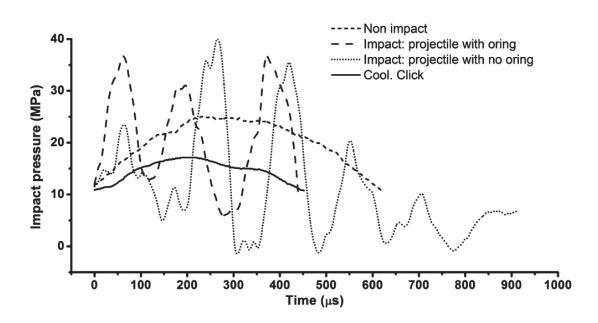
เมื่อทำการเปรียบเทียบแนวโน้มกราฟความเร็วออกกับปริมาตรน้ำ พบว่า ความชั้นของ กราฟมีน้อย เมื่อลูกสูบปิดการรั่วไหลด้วยโอลิงและไม่มีการกระแทก หมายความว่า อัตราการ เปลี่ยนแปลงความเร็วออกมีน้อย เมื่อปริมาตรของเหลวเพิ่มขึ้น เมื่อลูกสูบถูกขับด้วยความดันก๊าซ คงที่นั้นเอง ซึ่งหากเทียบกรณีดังกล่าวกับการขับด้วยสปริงของ Cool. Click พบว่าความเร็วออกจะ ช้ากว่า แต่ความชั้นของกราฟมีน้อย เนื่องจากความดันของก๊าซลดลงน้อยมาก เพราะปริมาตรของ ห้องอัดก๊าซมีขนาดใหญ่มาก เมื่อเทียบกับปริมาตรที่ก๊าซขนาดตัวเพื่อขับลูกสูบ ซึ่งต่างจากสปริงที่ แรงจะลดลงเรื่อยๆ เมื่อตัวมันขยายตัว


1.3 ความดันกระแทกของลำพุ่ง

ในหัวข้อนี้จะกล่าวถึงความคันกระแทกของลำพุ่งที่กำเนิดจาก Med-jet NFIS ด้วยการวัด จากแผ่น PVDF ซึ่งรายละเอียดของเครื่องมือวัด และการปรับเทียบข้อมูลได้กล่าวไว้แล้วในบทที่ 4 หัวข้อ 4.2.2 ซึ่งการติดตั้งเครื่องมือวัดแสดงในรูปที่ 6.6 โดยมีเงื่อนไขในการทดลองเช่นเดียวกับ หัวข้อที่ผ่านมา คือ เปลี่ยนปริมาตรหัวฉีด และลักษณะการขับแท่งกด

รูปที่ 6.6 การวัดความดันด้วยแผ่น PVDF (ภาพถ่ายมุมมองด้านบน)


รูปที่ 6.7 แสดงความดันกระแทกที่ได้จากการวัดด้วยแผ่น PVDF ของลำพุ่งที่ขับโดยไม่มี การกระแทก ที่ปริมาตรของเหลวต่างๆ พบว่า ความกระแทกสูงสุด มีค่าประมาณ 37 MPa ที่ ปริมาตรของเหลวน้อยที่สุด 0.1 ml และมีค่าน้อยที่สุดเท่ากับ 23 MPa ที่ 0.5 ml ซึ่งเมื่อของเหลวใน หัวฉีดมีปริมาตรมาก ความดันกระแทกจะลดต่ำลง แต่ช่วงเวลากระแทกจะนานขึ้น ทั้งนี้เนื่องจาก ความเร็วลำพุ่งที่ลดลง (จากผลการทดลองในหัวข้อที่ผ่านมา) และมวลของเหลวที่เพิ่มขึ้น ทำให้ โมเมนตัมของลำพุ่งที่ออกจากหัวฉีดมีน้อยกว่ากรณีที่ฉีดของเหลวปริมาตรน้อยๆ


รูปที่ 6.7 ความคันกระแทก ของลำพุ่งที่ขับโคยไม่มีการกระแทก

กราฟความดันกระแทกของลำพุ่งที่ขับด้วยการกระแทกลูกสูบแบบไม่มีโอลิง แสดงดังรูปที่ 6.8 พบว่า แนวโน้มของกราฟค่อนข้าง ปั่นป่วน ขึ้นลงตลอดการฉีด เช่นเดียวกับกรณีที่ผ่านมาเมื่อ ปริมาณของเหลวในหัวฉีดเพิ่มขึ้น ระยะเวลาการฉีดจะเพิ่มขึ้นตามด้วย การสั่นของกราฟความดัน เกิดขึ้นเนื่องจาก ปรากฏการณ์ที่เกี่ยวโยงกับการสะท้อนของคลื่น ชอค์กในหัวฉีด ดังที่เกิดขึ้นกับ การสร้างลำพุ่งความเร็วสูงด้วยการกระแทก ที่กล่าวไว้ในบทที่ 3 เนื่องจาก การกระแทกในช่วงเริ่ม ฉีด และความดันหลังลูกสูบลดลงอย่างต่อเนื่อง ของกรณีนี้ เกิดขึ้นคล้ายกับกรณีดังกล่าว

เมื่อเปรียบเทียบกราฟความดันกระแทกจากการขับด้วยวิธีต่างๆ ดังแสดงในรูปที่ 6.9 พบว่า การขับลูกสูบแบบไม่มีโอลิงให้ความดันกระแทกสูงสุด (ประมาณ 40 MPa) แต่กราฟก็สั้นมากที่สุด และใช้เวลาฉีดนาน (ประมาณ 950 µs) ที่สุดเช่นเดียวกัน ขณะลำพุ่งที่สร้างด้วยแบบลูกสูบมีโอลิง และไม่กระแทกกับของ Cool.Click กราฟค่อนข้างราบเรียบ เนื่องไม่มีการกระแทกก่อนขับ และ แรงกดจากก๊าซและสปริงลดลงน้อยมากระหว่างขับ ทำให้การสั่นของลูกสูบเพราะการสะท้อนของ คลื่นชอด์กในหัวฉีดมีน้อย

รูปที่ 6.8 ความคันกระแทก ของลำพุ่งที่ขับด้วยการกระแทกลูกสูบแบบ ไม่มีโอลิง

รูปที่ 6.9 เปรียบเทียบความดันกระแทกของลำพุ่งที่ ปริมาตรของเหลว 0.5 ml

1.4 การกระจายลำพู่งในเนื้อหมู

เพื่อเป็นการตรวจสอบการทำงานจริงของอุปกรณ์ Med-jet NFIS เราได้ทำการฉีดทดสอบ ในเนื้อหมู ขอบแบบไม่มีการกระแทก ดังแสดงในรูปที่ 6.10 โดยทำการฉีดที่ปริมาณของเหลว 0.2 และ 0.4 ml พบว่า (ในเบื้องต้น) ลำพุ่งสามารถเจาะทะลุผ่านเนื้อหมูได้เช่นเดียวกับอุปกรณ์ที่มีขาย ในท้องตลาด (Cool.Click) ความลึกของรูจะไม่แตกต่างกันมากนักเนื่องจากความเร็วออกและกำลัง ของลำพุ่งเปลี่ยนแปลงตามปริมาณเพียงเล็กน้อย แต่มีข้อสังเกตว่า รูเจาะมีความลึกมากกว่าฉีดด้วย Cool.Click ทั้งที่ ถำพุ่งมีความเร็วออกและกำลังน้อยกว่า หมายความ ความลึกที่เพิ่มขึ้นจากการฉีด ด้วย Med-jet NFIS เกิดขึ้นจากกำลังของอนุภาคที่ตามลำพุ่งออกมามีค่าสูงนั้นเอง แต่อย่างไรก็ตาม จะเห็นได้ว่าลำพุ่งกระจายน้อยเมื่อเทียบกับการฉีดด้วย Cool.Click (ในรูป 5.21)

ร**ูปที่ 6.10** การกระจายของลำพุ่งในเนื้อหมูจากการฉีดด้วย Med-jet NFIS ที่ปริมาณน้ำ (a) 0.2 ml และ (b) 0.4 ml

บทที่ 1

สรุปและข้อเสนอแนะ

จากการศึกษาและทคลองที่ผ่านมาของงานวิจัยนี้ สามารถสรุปผลการศึกษาและ มี ข้อเสนอแนะกับนักวิจัยท่านลื่นที่จะได้ดำเนินการต่อไป ดังต่อไปนี้

1.1 สรุปผลการศึกษา

- 1 งานวิจัยนี้ได้ทำการศึกษา ทบทวนงานวิจัยอื่นๆที่เกี่ยวข้อง กับการสร้างลำพุ่งความเร็วสูง ด้วยการกระแทก ทั้งวิธีศึกษาด้วย การทดลอง แบบจำลองทางคณิตศาสตร์ และ ระเบียบวิธี พลศาสตร์การไหลเชิงคำนวณ (CFD)
- 2 งานวิจัยนี้ได้ทำการ ทบทวนวรรณกรรม และงานวิจัยที่เกี่ยวข้อง กับการนำส่งยาด้วยลำพุ่ง ความเร็วสูง ทั้งมุมมองเชิงวิศวกรรม และทางการแพทย์ เพื่อเป็นความรู้พื้นฐานสำหรับ ออกแบบและสร้างชุดทดลอง เพื่อศึกษาคุณลักษณะของลำพุ่งความเร็วสูงที่กำเนิดจากการ กระแทก เพื่อการประยุกต์ใช้สำหรับนำส่งยาผ่านผิวหนัง
- 3 งานวิจัยนี้ได้เสนอแบบจำลองทางคณิตศาสตร์ด้วยระเบียบวิธีพลศาสตร์การไหลเชิง คำนวณ (CFD) ของการไหลที่เปลี่ยนแปลงตามเวลา แบบหลายสถานะ (Multiphase flow) และอัคตัวได้ (Compressible flow) จากขอบเขตปัญหาของกระบวนการกำเนิคลำพุ่งด้วย การกระแทก
- 4 งานวิจัยนี้ประสบความสำเร็จในการจำลองปรากฏการณ์การไหล ในหัวฉีดและการกำเนิด ลำพุ่งจากการกระแทกของลูกปืน ด้วย CFD ซึ่งเมื่อเปรียบเทียบผลกับการทดลองที่ผ่าน มาแล้วพบว่า ให้ผลอยู่ในช่วงที่ยอมรับได้
- 5 งานวิจัยนี้สามารถอธิบายปรากฏการณ์การใหล ในช่วงกระบวนการกำเนิดลำพุ่งจากการ กระแทกได้อย่างชัดเจนมากยิ่งขึ้น จากผลของ CFD ที่บางมุมมอง การทดลองไม่สามารถ ทำได้ นอกจากนี้ จากการจำลองด้วย CFD ทำให้เห็นอิทธิพลของพารามิเตอร์ อันได้แก่ ความยาวท่อหัวฉีด เส้นผ่านศูนย์กลางคอขอด ความยาวคอขอด ความหนาแน่น และ ความเร็วของลูกปืน ที่มีต่อกระบวนการกำเนิดลำพุ่ง และคุณลักษณะของมัน
- 6 งานวิจัยนี้พบว่าปรากฏการณ์ สะท้อนและเคลื่อนที่ของชอร์กในหัวฉีด ในระหว่าง กระบวนการสร้างลำพุ่งด้วยการกระแทก มีผลต่อคุณลักษณะของลำพุ่งที่เกิดขึ้น
- 7 งานวิจัยนี้ได้ออกแบบ สร้างอุปกรณ์ และปรับเทียบเครื่องมือ สำหรับวัดความเร็วออก และ ความคันกระแทกของลำพุ่ง โดยการวัดความเร็วจะอาศัยหลักการตัดแสงของวัตถุ ขณะที่ ความคันกระแทก ได้นำคุณสมบัติ Piezoelectricity ของแผ่น Polyvinylidene Fluoride (PVDF) มาประยุกต์ใช้

- 8 งานวิจัยนี้ได้ทำการศึกษาลักษณะทางกายภาพ และการทำงานของอุปกรณ์นำส่งยาด้วยลำ พุ่งความเร็วสูงที่มีขายอยู่ในท้องตลาด ของบริษัท Merck ผลิตโดยบริษัท Bioject รุ่น Cool.Click
- 9 งานวิจัยนี้ได้ทำการศึกษาพฤติกรรมการไหลและคุณลักษณะของลำพุ่งที่กำเนิดจากอุปกรณ์ Cool.Click ด้วยวิธีการทดลอง จาการถ่ายภาพด้วยกล้องความเร็วสูง วัดความเร็วออกและ ความดันกระแทกของลำพุ่ง และด้วยวิธีพลศาสตร์การไหลเชิงคำนวณ (CFD)
- 10 งานวิจัยนี้พบว่า เมื่อของเหลวในหัวฉีคมีปริมาณมากขึ้น ความเร็วออกและความคันของลำ พุ่งจาก Cool.Click จะมีความค่าลดลง และการเคลื่อนที่ของแท่งกดมีลักษณะสั่น ขณะขับ ของใหลออกจากหัวฉีด ทำให้ความเร็วที่ปากทางออกหัวฉีด มีลักษณะสั่นด้วย เนื่องจาก อิทธิพลของการอัดตัวได้และการเคลื่อนที่ของคลื่นชอค์กของของเหลวในหัวฉีด
- 11 งานวิจัยนี้ ได้ทำการออกแบบและสร้างชุดต้นแบบ อุปกรณ์นำส่งยาด้วยลำพุ่งที่ขับด้วย แก๊สแรงคันสูง (Medical Jet Needle Free Injection System, Med-jet NFIS) โดยอาศัยต้น กำลังจากระบบไฮดรอลิก และใช้ก๊าซแรงคันสูงขับแท่งกด เพื่อคันของเหลว ให้เป็นลำพุ่งที่ มีความเร็ว
- 12 งานวิจัยนี้ได้ทำการศึกษาคุณลักษณะของลำพุ่งสำหรับนำส่งยาจากชุดต้นแบบ Med-jet NFIS โดยใช้หลักการขับลูกสูบ 3 ลักษณะ คือ 1) ลูกสูบแบบมีโอลิงและไม่กระแทกก่อน ขับ 2) ลูกสูบแบบมีโอลิงและกระแทกก่อนขับ และ 3) ลูกสูบแบบไม่มีโอลิงและกระแทก ก่อนขับ
- 13 งานวิจัยนี้พบว่า ถำพุ่งนำส่งยาจากชุดต้นแบบ Med-jet NFIS แบบ ไม่มีโอถิงและกระแทก ก่อนขับให้ความเร็วมีความเร็วออกและความคันขับสูงที่สุด แต่กราฟความคันขับ มี ลักษณะสั่น เนื่องจากการสั่นของลูกสูบขับที่ได้รับอิทธิพลจากการเคลื่อนที่ของคลื่นชอค์ก ของของเหลวในหัวฉีด และการสั่นของความคันจะน้อยลงและมีลักษณะของกราฟ ใกล้เคียงกับแนวโน้มกราฟที่ได้จาก Cool.Click เมื่อใช้ลูกสูบแบบมีโอถิงและไม่มีการ กระแทกก่อนขับ

1.2 ข้อเสนอแนะ

1. เนื่องจากเป็นปัญหาที่ซับซ้อนมาก แบบจำลองทางคณิตศาสตร์ด้วยระเบียบวิธีพลศาสตร์ การ ใหลเชิงคำนวณ (CFD) ของลำพุ่งที่กำเนิดจากการกระแทก ในการศึกษานี้ยังมีข้อที่ต้อง ปรับปรุงอยู่ เช่น แบบจำลองนี้ไม่ปรากฏคลื่นชอค์กในอากาศ เนื่องจากการเคลื่อนที่ด้วย ความเร็วของลำพุ่ง แต่อย่างไรก็ตามแบบจำลองนี้ก็เหมาะสมกับลำพุ่งที่ความเร็วไม่สูงมาก นัก อย่างเช่นกับกรณีที่เกิดกับการนำส่งยา

- 2. ข้อมูลที่ได้จากการศึกษาลำพุ่งความเร็วสูงที่เกิดจากการกระแทก ด้วย CFD สามารถนำไป เป็นข้อมูลพื้นฐาน หรือประยุกต์ใช้งานกับ งานด้านอื่นๆ (ที่ไม่ใช้เพียงแต่การนำส่งยา เท่านั้น) ที่นำลำพุ่งของเหลวมาใช้งาน เช่น การตัดวัสดุ และการเผ้าไหมในเครื่องยนต์ เป็น ต้น
- 3. ข้อมูลที่ได้จากการศึกษานี้ส่วนใหญ่ เป็นลำพุ่งที่ฉีดทิ้งในบรรยากาศ ดังนั้น นักวิจัยท่านอื่น ที่สนใจควร ศึกษาพฤติกรรมการแพร่ของลำพุ่ง ในเนื้อเยื่อ โดยเฉพาะด้วยการจำลองใน CFD เพราะจะช่วยค่าใช้จ่ายในห้องทดลองได้
- 4. ในงานวิจัยต่อไปจำเป็นต้อง ทำการทดลอง เพื่อศึกษาคุณลักษณะของลำพุ่งจากชุดต้นแบบ Med-jet NFIS เพิ่มเติม โดยเฉพาะ การทดสอบอิทธิพลของพารามิเตอร์อื่น เช่น ชนิดของ ก๊าซ ขนาดรูปของหัวฉีด และความดันก๊าซ ที่มีผลต่อลำพุ่ง และการแพร่ในเนื้อเยื่อ
- 5. จากข้อมูลในงานวิจัยนี้ ผู้วิจัยที่จะทำการศึกษาต่อ สามารถนำไปเป็นข้อมูลพื้นฐานสำหรับ ออกแบบชุคทคลองหรืออุปกรณ์นำส่งยาแบบใหม่ได้
- 6. เนื่องจากชุดต้นแบบ Med-jet NFIS มีขนาดใหญ่และการใช้งานยุ่งยากเพราะถูกออกแบบ มาเพื่อทำการทดลองเป็นหลัก ดังนั้นจึงยังห่างไกลกับการนำไปใช้จริง ควรมีการปรับปรุง อุปกรณ์ในระดับต่อไป ให้ใกล้เคียงกับการใช้งานจริงมากขึ้นกว่านี้

เอกสารอ้างอิง

- 1. Pianthong K. Supersonic Liquid Diesel Fuel Jets: Generation, Shock Wave Characteristics, Auto-ignition Feasibilities. News South Wales, Australia: The University of News South Wales; 2002.
- 2. Milton BE, Pianthong K. *Pulsed supersonic fuel jet A review of their characteristics* and potential for fuel injection. *International Journal of Heat and Fluid Flow*. 2005;25:656-71.
- 3. Bowden FP, Brunton JH. *The Deformation of Solids by Liquid Impact at Supersonic Speeds. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences*. 1961;263: 433-50.
- 4. Shi HH. *Study of Hypersonic Liquid jets*. Sendai, Miyagi, Japan: Tohoku University; 1994.
- 5. Matthujak A, Hossein SHR, Takayama K, Sun M, Voinovich P. *High speed jet formation* by impact acceleration method. Shock Waves. 2007;16:405-19.
- 6. Giudice EL, Campbell JD. *Needle-free vaccine delivery. Advanced Drug Delivery Reviews*. 2006;58:68–89.
- 7. O'Hagan DT, Rappuoli R. *Novel approaches to pediatric vaccine delivery. Advanced Drug Delivery Reviews*. 2006;58:29–51.
- 8. Arora A, Prausnitzc MR, Mitragotri S. *Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics*. 2008;364:227–36.
- 9. Keefe JDO, Wrinkle WW, Scully CN. Supersonic liquid jet. Nature. 1967;213:23 5.
- 10. Shi HH, Takayama K. Generation of high speed liquid jets by high speed impact of a projectile. JSME International Journal. 1995;38:181 90.
- 11. Shi HH, Koshiyama K, Itoh M. Further study of the generation technique of high speed liquid jets and related shock wave phenomena using a helium gas gun. Japanese Journal of Applied Physics. 1996;35:4147 56.
- 12. Corner JR. Theory of the interior ballistics of guns. New York: Wiley & Sons, Inc; 1950.
- 13. Pianthong K, Zakrzewski S, Behnia M, Milton BE. *Supersonic liquid jets: Their generation and shock wave characteristics. Shock Waves.* 2002;11:457–66.
- 14. Stilp A, Hohler V. Experimental Methods for Terminal Ballistics and Impact Physics. 1 ed. Zukas JA, editor. New York: Wiley, John & Sons; 1990.
- 15. Zukas JA. *Introduction to Impact Phenomena. Zukas JA, editor.* New York: Wiley, John & Sons; 1990 January 1990.

- 16. Bernier H. Scaling and Designing Large-Bore Two-Stage High Velocity Guns. Davison L, Hori Y, editors. USA: Springer Berlin Heidelberg; 2006 Thursday March 30.
- 17. Ryhming IL. *Analysis of unsteady incompressible jet nozzle flow. Journal of Applied Mathematics and Physics.* 1973;24:149 64.
- 18. Lesser M. *Thirty years of liquid impact research: a tutorial review. Wear.* 1995;186-187:28 34.
- 19. Pianthong K, Milton BE, Behnia M. Generation and shock characteristics of unsteady pulsed supersonic liquid jets. Journal of the International Institutes for Liquid Atomization and Spray Systems. 2003;13:425 620.
- 20. Field JE, Lesser M. On the mechanics of high speed liquid jets. Proceeding of the royal society of London Series A, mathematical model and physical sciences. 1977;357:143-62.
- 21. Pianthong K, Zakrzewski S, Behnia M, Milton BE. *Characteristics of impact driven supersonic liquid jets. Experimental Thermal and Fluid Science*. 2003;27:589–98.
- 22. Pianthong K, Takayama K, Milton BE, Behnia M. *Multiple pulsed hypersonic liquid diesel fuel jets driven by projectile impact. Shock Waves*. 2005;14:73-82.
- 23. Pianthong K, Matthujak A, Takayama K, Milton BE, Behnia M. *Dynamic characteristics* of pulsed supersonic fuel sprays. Shock Waves. 2008;18:1-10.
- 24. Pianthong K, Matthujak A, Takayama K, Saito T, Milton BE. *Visualization of supersonic liquid fuel jets. Journal of Flow Visualization and Image Processing*, 2006;13(3):217-42.
- 25. Leach SJ, Walker GL. Some Aspects of Rock Cutting by High Speed Water Jets.

 Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences. 1966;260(1110):295-310.
- 26. Momber AW. Concrete failure due to air-water jet impingement. Journal of Material Science, 2000;35:2785 9.
- 27. Shichang Y. Dimensionless modeling and optimum design of water jet cutting system.

 USA: The University of Wisconsin Madison; 1993.
- 28. Dowding CH, Dickinson RM. Water jet cutting of experimental rock discontinuities. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1981;18:235 43.
- 29. Hood M, Nordlund R, E.Thimons. A Study of rock erosion using high-pressure water jets. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1990;27:77-86.

- 30. Mohaupt UH, Burns DJ. *Machining Unreinforced Polymers with High-velocity Water Jets*. Third SESA International Congress on Experimental Mechanics; May 13-18; Los Angeles 1973. p. 152-7.
- 31. Rehbinder G. *Slot cutting in rock with a high speed water jet. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts*. 1977;14:229-34.
- 32. Harris HD, Mellor M. Cutting rock with water jets. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1974;11:343 58.
- 33. Rehbinder G. A Theory about cutting rock with a water jet. Rock Mechanics. 1980;12: 247 57.
- 34. Brunton JH. *High Speed Liquid Impact. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences*. 1966;260(1110):79-85.
- 35. Bourne NK, Obara T, Field JE. *High-Speed Photography and Stress Gauge Studies of Jet Impact upon Surfaces. Philosophical Transactions: Mathematical, Physical and Engineering Sciences*. 1997;355 (1724):607-23.
- 36. Field JE. Stress Waves, Deformation and Fracture Caused by Liquid Impact.

 Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences. 1966;260(1110):86-93.
- 37. Lesser MB, Field JE. *The impact of compressible liquid. Ann Rev Fluid Mech.* 1983;15:97-122.
- 38. Obara T, Bourne NK, Field JE. *Liquid-jet impact on liquid and solid surfaces. Wear.* 1995;186-187:388-94.
- 39. Bourne NK. On stress wave interactions in liquid impact. Wear. 2005; 258:588–95.
- 40. Shi H-H, Takayama K, Nagayasu N. *The measurement of impact pressure and solid surface response in liquid-solid impact up to hypersonic range. Wear.* 1995;186-187:352-9.
- 41. Martini FH, Timmons MJ. *Human anatomy*. New Jersey: Prentice Hall; 1997.
- 42. Graaff VD. Human Anatomy. 6 ed. Boston: Mc Graw-Hill; 2001.
- 43. Geerligs M. *Skin layer mechanics* Netherlands: Eindhoven University of Technology; 2009.
- 44. Shergold OA, Fleck NA, King TS. *The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection. Journal of Biomechanics*. 2006;39:2593–602.

- 45. Schramm-Baxter J, Mitragotri S. *Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. Journal of Controlled Release*. 2004;97 527–35.
- 46. Baxter J, Mitragotri S. *Jet-induced skin puncture and its impact on needle-free jet injections: Experimental studies and a predictive model. Journal of Controlled Release*. 2005;106:361–73.
- 47. Harding LM, Adeniyi A, Everson R, Barker S, Ralph DJ, Baranowski AP. *Comparison* of a needle-free high-pressure injection system with needle-tipped injection of intracavernosal alprostadil for erectile dysfunction. International Journal of Impotence Research. 2002;14:498–501.
- 48. Theintz GE, Sizonenko PC. Risks of jet injection of insulin in children. European Journal of Pediatrics. 1991;150:554-6.
- 49. Hoffman PN, Abuknesha RA, Andrews NJ, Samuel D, Lloyd JS. *A model to assess the infection potential of jet injectors used in mass immunisation. Vaccine*. 2001;19:4020–7.
- 50. Jackson LA, Austin G, Chen RT, Stout R, DeStefano F, Gorse GJ, et al. *Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine*. 2001;19:4703–9.
- 51. Baxter JR. Fundamental mechanisms of drug delivery by jet injection: basis for the development of a painless microjet injector. USA: University of California, Santa Barbara; 2004.
- 52. Hemond BD, Wendell DM, Hogan NC, Taberner AJ, Hunter IWs. *A Lorentz-Force Actuated Autoloading Needle-free Injector*. 28th IEEE EMBS Annual International Conference; 2006 Aug 30-Sept 3; New York City, USA.
- 53. Taberner AJ, Ball NB, Hogan NC, Hunter IW. *A Portable Needle-free Jet Injector Based on a Custom High Power-density Voice-coil Actuator*. 28th IEEE EMBS Annual International Conference; 2006 Aug 30-Sept 3; New York City, USA.
- 54. Arora A, Hakim I, Baxter J, Rathnasingham R, Srinivasan R, Fletcher DA, et al. Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets.

 Proceedings of the National Academy of Sciences of the United States of America. 2007;104

 (11):4255-60.
- 55. Stachowiak JC, Muhlen MGv, Li TH, Jalilian L, Parekh SH, Fletcher DA. *Piezoelectric control of needle-free transdermal drug delivery. Journal of Controlled Release*. 2007;124:88–97.
- 56. Stachowiak JC, Li TH, Arora A, Mitragotri S, Fletcher DA. *Dynamic control of needle-free jet injection. Journal of Controlled Release*. 2009;135:104–12.

- 57. Schramm J, Mitragotri S. *Transdermal Drug Delivery by Jet Injectors: Energetics of Jet Formation and Penetration. Pharmaceutical Research.* 2002;19:1673-9.
- 58. Baker AB, Sanders JE. Fluid Mechanics Analysis of a Spring-Loaded Jet Injector. IEEE Transactions on Biomedical Engineering. 1999;46:235-42.
- 59. Chen K, Zhou H. *An experimental study and model validation of pressure in liquid needle-free injection. International Journal of the Physical Sciences*. 2011;6(7):1552-62.
- 60. Symons DD. Inertial liquid loading on the nozzle of a needle-free injection device. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2004;218:233-40.
- 61. Wendell DM, Hemond BD, Hogan NC, Taberner AJ, Hunter IW. *The Effect of Jet Parameters on Jet Injection*. The 28th IEEE

EMBS Annual International Conference; 2006 Aug 30- Sept 3; New York City, USA.

- 62. Schramm-Baxtera J, Katrencikb J, Mitragotri S. *Jet injection into polyacrylamide gels: investigation of jet injection mechanics. Journal of Biomechanics*. 2004;37:1181–8.
- 63. Donnelly RF, Morrow DIJ, McCarron PA, Garland MJ, Woolfson AD. *Influence of solution viscosity and injection protocol on distribution patterns of jet injectors: Application to photodynamic tumour targeting. Journal of Photochemistry and Photobiology B: Biology.* 2007;89:98–109.
- 64. Inoue N, Kobayashi D, Kimura M, Toyama M, Sugawara I, Itoyama S, et al. Fundamental investigation of a novel drug delivery system, a transdermal delivery system with jet injection. International Journal of Pharmaceutics. 1996;137:75-84.
- 65. Chen K, Zhou H, Li J, Cheng GJ. *Modeling and Analysis of Liquid Penetration into Soft Material with Application to Needle-Free Jet Injection.* 3rd International Conference on Bioinformatics and Biomedical Engineering; 2009 11-13 June; Beijing.
- 66. Grinspana AS, Gnanamoorthy R, *Impact force of low velocity liquid droplets measured using piezoelectric PVDF film*. Colloids and Surfaces A: Physicochemistry Enginerring Aspects, 356 (2010) 162–168.

The 23rd Conference of the Mechanical Engineering Network of Thailand

November 4 – 7, 2009, Chiang Mai

Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique

Wirapan Seehanam*, Wuttichai Sittiwong, Kulachate Pianthong, Anirut Matthujak

Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University,
Ubon Ratchathani, Thailand 34190

*Corresponding Author: E-mail: wirapan seehanam@yahoo.com Tel: 0-4535-3381, Fax: 0-4535-3380

Abstract

This paper describes the simulation of the generation of high speed liquid jet injected to quiescent air including the compressible liquid dynamics in the nozzle (before injection) using computational fluid dynamics technique (FLUENT code). In this study, in the experiment, the high speed liquid jet is generated by using the impact driven method which the liquid retained in nozzle cavity is impacted by a high velocity projectile. In the numerical model, velocity of projectile driving through the nozzle was calculated with conservation equation of momentum of projectile. At initial condition, closed system domain consists of two parts which are nozzle and test chamber containing the compressible liquid and air respectively. In this study, projectile impact velocities are 300 m/s and 700 m/s. Three types of liquid jets, e.g. water and diesel were investigated. The CFD results show good agreement to the previous experimental results. In addition, simulation results proved the dynamics characteristics of multiple pulsed high speed liquid jets driven by projectile impact. From this study, it is the first reveal on the characteristics of the high speed liquid jet injected into quiescent air and liquid dynamics in the nozzle using CFD technique and will be further challenge for the study in this field.

Keywords: High-speed liquid jet, impact driven method, compressible flow, CFD

1. Introduction

There have been a number of studies of the characteristics of high speed liquid jet over a number of years. Its fundamental is essence to apply to many industrial technologies such as cutting, drilling, mining, and tunneling etc. In the combustion, moreover, the fuel sprayed to high speed liquid condition may be beneficial in improving combustion in such applications as SCRAM (supersonic combustion RAM) and direct

injection. This is because the atomization and mixing are likely to be enhanced and the bow shock wave will provide significantly increased air temperatures. For medical engineering, in drug injection, needle may be replaced with high speed liquid jet to deliver drug through skin, called "needle free injection". This is drug delivery benefit which is the improving activation because drug solution can be become to be small particle, increasing the surface of interaction between drug and tissue and the preventing infection in the

patient and administrator by contaminated injection. In addition, diameter of the hole after injection with high speed liquid jet is very small therefore scar can heal up better.[1,2] For drug delivery, it notes that the liquid jet velocity should be limited around 100 – 200 m/s, depending on design condition, which is very different from the combustion technologies. However, in both applications the high speed liquid jet can be generated by the same method called "impact driven method or impulsive method."

Impact Driven Method (IDM) technique presented by Bowden-Brunton in 1958 [3] is a method for producing high speed liquid jet. The liquid contained in cavity of station is driven by high speed projectile and accelerated to high velocity. Liquid flow behavior in liquid sac during jet generation process directly affects the characteristics of high speed liquid jet. In 2003, K. Pianthong et al.[4] presented the one dimensional model which can quite comprehensively describe the driven jet generation process during projectile traveling in the nozzle cavity. This model considered the liquid shock wave reflection for estimating the pressure of compressed liquid in step nozzle and the velocity of the high speed liquid jet emerging from the nozzle. Their model results showed good agreement to the previous experimental results. Moreover, phenomena of multiple pulsed liquid jets which were frequently presented in previous experiments can be described by their model. However, K. Pianthong et al.'s model can not be applied for other geometry of nozzle such as, mostly used, conical nozzle, because it must be calculated from twodimensional model. A drawback in such model was confirmed by the A. Matthujak et al.'s work [5] which the second and third reflection driving

pressures measured from experiment are much lower than that pressure from calculation.

Recently, numerical method such as Computational Fluid Dynamics (CFD) has been employed to investigate the high speed liquid jet characteristics. In 2003 K.Pianthong et al [6] reported the simulation of shock wave structure ahead of the jet on model of stationary solid jet shaped in steady flow field of compressible air. Then, Zakrzewski et al.[7] improved Pianthong et al's work by using the species transport equation to predict transient development of liquid jet and this improvement can describe numerically the process of interaction between the air and high speed liquid jet. Although, in previous studies, CFD results quietly agreed with experimental results, nozzle flow wasn't considered. Thus, further work from these researcher groups [8] showed simulation of shock propagating on all of material in jet generation process by using AUTODTN-2DTM software. The work shows the shock propagating in projectile, liquid sac and nozzle material but it seems that the tool can not predict transient development of high speed liquid

In this study, simulation of the pulsed high speed liquid jet generation process by using the CFD program (FLUENT) is presented. In this study, step and conical nozzle cavity is the main focus, where water and diesel are used. Simulation model are validated by comparison with results from previous study's K. Pianthong [9,10] and A. Matthujak et al [5]. Static pressure at orifice entrances and dynamic pressure at orifice exit are plotted in series. Moreover profile of jet velocity is presented and discussed. This provides more understanding on high speed liquid jet phenomena and its generation process, and

this information will be then useful for the future study of high speed injection and related fields.

Supersonic liquid jet generation by impact driven method

The high-speed fuel jet is generated by using Bowden-Brunton method [3] as show in Fig.1. By this method, liquid retained in the nozzle is impacted by a high velocity projectile. On the impact, the high speed liquid jet forms and injects from nozzle to the test chamber. In this paper, K.Painthong's studies [9,10] are used as main references where supersonic liquid jet was visualized by using a high speed video camera with shadowgraph optical system to describe its dynamics characteristics. In his works, the shadowgraph optical system assists in the capture of shock wave and detail of experimental apparatus was described in his studies.

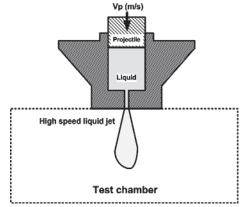


Fig. 1 Generation of supersonic liquid jet by impact driven method

3. CFD modeling of jetting formation process

3.1 Geometry model

Detail of nozzle geometry used in this study is shown in Fig 2. Mechanism of high speed jet generation is shown as Fig.1. This setup can be modeled on closed system domain with axis-symmetric geometry where was divided into nozzle cavity zone and test chamber zone

(shown in Fig. 3). The chamber zone being 50 mm height and 250 mm width was meshed with 60,000 of quadrilateral elements. This is fixed in all cases in this study, however another zone can not do that because captured region must be changed that dimension and mesh size corresponding to the nozzle cavity lengths. In this zone, interval size along x-direction (dx) must be fixed on 0.3 mm to provide the moving mesh for projectile motion. In Fig 3, the mesh was densely created at the area of high shear flow and interaction between high speed liquid jet and quiescent air.

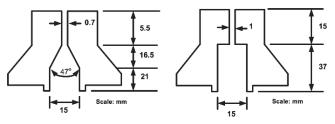


Fig. 2 Nozzle geometries

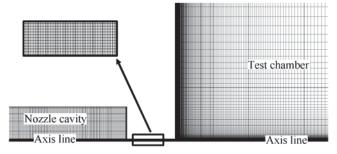


Fig. 3 Mesh construction

3.2 Projectile movement model

The movement of projectile in nozzle cavity is assumed as the motion of a moving wall. Therefore moving mesh of nozzle cavity zone was constructed. The projectile velocity during jet generation process can be computed from a simple force balance on the projectile in x-direction such that

$$\int_{t_0}^t dV = \int_{t_0}^t \left(F(t) / m \right) dt \tag{1}$$

where V is the projectile velocity, F is the driving force and m is the mass of the projectile. The velocity at any time t calculated using an explicit Euler formula as

$$V_{t} = V_{t-\Delta t} + (F(t)/m)\Delta t \tag{2}$$

This formula is used to specify the motion of a moving wall (or projectile front wall) with the linear velocities at every time step (dt) by using User Define Function (UDF), provided by software. In this study, the mass of projectile is 4.2 g. The force acting on the projectile, in x-direction, is simply resistance force of compressed liquid pressure but the friction force along projectile wall is neglect. The projectile initial velocities being 300 m/s or 700 m/s and the atmospheric pressure are set as initial condition in the domain. Sometime, projectile might impact the nozzle shoulder, resulting from too high projectile momentum remaining. In this situation, the projectile will release such momentum into nozzle material, and its velocity is then zero before it rebounds by compressed liquid reaction force. In addition the calculation process is finished when the projectile arrive at the entry point. Because of the most different pressure across two phase zones, for some time, the pressure fluctuation can be induced by high speed liquid jet generation. Consequently, some of liquid phase is evaporated to be the gas phase by cavitations process. Therefore, this phenomenon need to he considered in which state pressure is lower than vapor pressure of liquid. The full cavitation

models presented by Ashok K. Singhal et al.[11] and [12] are applied to specify the vapor pressure and cavitation rate in liquid and air flow. This assumption might be incorrect, because the liquid must be evaporated to its vapor gas, instead of air. However, properties of our liquid vapor and air are comparable.

3.3 Liquid properties model

Under the initial condition, the fluids phase was divided into liquid phase in nozzle cavity and air phase in test chamber. The air density can be simply specified by using ideal gas formula for improving а simulation compressible air flow. Although, in nozzle cavity, it is more complicated to specify the liquid flow to be compressible, this can be modified by using formula including the instant liquid density (eq.(3)) and sound speed (eq.(4)) [13]. In the formula, variable P and are the liquid pressure and density respectively and constant value B is the bulk modulus of elastic of the liquid, which is useful liquid property. In addition, it seems that the density and sound speed correspond to liquid pressure with time dependent. The liquids used in this study and its properties are listed in Table 1.

Table 1 Liquid properties

	Bulk	Vapor	Surface	
Liquid	modulus pressure tens		tension	
	(GPa) (Pa)		(N/m)	
Water	2.24	3,169	0.0717	
Diesel	1.6	1,378	0.0244	

$$\rho_{1} = \frac{\rho_{o}}{\left[1.0 - (P_{1} - P_{0})/B\right]}$$
 (3)

$$a_1 = \frac{1 - (P_1 - P_0)}{B} \times \frac{\sqrt{B}}{\rho_0}$$
 (4)

3.4. Solver modeling

The CFD commercial code (FLUENT) is used as the tool to simulate the dynamics characteristics of jet generation process. The mixture model with velocity slip was used for specifying the properties of mixture within the multiphase flow. In the unsteady flow solution, the time step sized (dt) of 0.1 microseconds was set; therefore, results from each calculation can be recorded. Turbulence model is the standard k-e model with segregate solver for non-linear equations.

4. Validation of CFD simulation

This section presents the validation results of dynamics characteristics of jet generation process by comparison with previous works. Water and diesel liquid jet characteristics performing in average velocity are shown in Fig.4. These jets driven by projectile with velocity of 300 m/s emerge from conical nozzle which its geometry shown in Fig.4. The average velocities calculated by CFD method are compared with such that by experimental results of K.Pianthong works [13,14]. We observe that trends of average jet velocity are slightly different. After 30 microseconds of flow time, calculated results seem that a water jet velocity is higher over that of diesel, even if there are an opposite results at over 30 microseconds, because the bulk modulus of elastic of the water is greater than that of the diesel. In addition, the diesel can form the droplet and be atomized into air easily when it was sprayed.

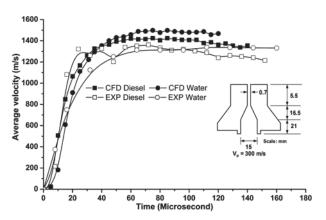


Fig .4 Average velocities

In Fig. 5, the absolute static pressure history inside the nozzle, result data from the experiment of A.Matthujak [9] and CFD simulation, are compared. In this case, the water was retained in nozzle cavity, whose geometry shown in Fig.5 and driven by projectile with velocity of 300 m/s. From Fig. 5, we found that the three peak pressures which were created by multiple water shock reflection during jet generation process. However, the pressure fluctuation corresponding to the shock waves released from nozzle container wall at initial stage can not be captured by the CFD simulation, because this situation is not considered in CFD modeling. The value of the peak pressures measured in CFD are 1.1, 0.4 and 0.3 GPa and such those in experimental results are 1.24, 0.6 and 0.27 GPa. The results from CFD are fairly similar to the experimental results, but at some stage the pressure histories from those results are more different, such as the time at 60 to 70 microsecond and 110 to 120 microseconds. Because of simple cavitation model employed in the CFD, the super cavitation process occurring during jet generation process inside nozzle cavity can not be specified by CFD model.

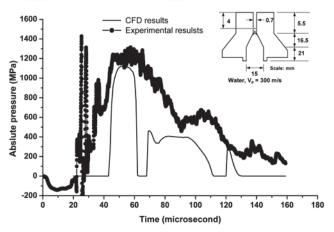
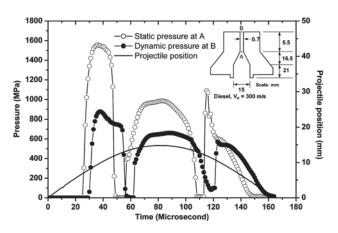



Fig .5 Pressure histories in side nozzle cavity

5. Results and discussions

This section presents the dynamics characteristics of jet generation process and high speed liquid jet obtained from CFD simulation. Position of projectile during the process, static pressure at orifice entrance and dynamics pressure at orifice exit can be plotted in series. Illustrations of profile of jet velocity are presented and described. Moreover, the effect of two nozzle geometries which are step and conical on high speed liquid jet and its generation process will be explored by using the above CFD modeling.

5.1 Relationship between static pressure and dynamic pressure

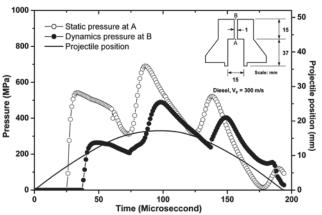
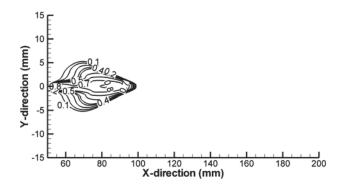



Fig. 6 Dynamics characteristics of jet generation process in (a) conical nozzle and (b) step nozzle

Dynamics characteristics of jet generation process which are the relationship among the position of projectile during the process, the static pressure at orifice entrance, and the dynamics pressure at orifice exit are shown in Fig. 6. We found that the static pressure is higher than the dynamic pressure. This means that liquid jet emerging from nozzle can not convert all of potential energy in nozzle cavity into kinetic energy, because while liquid jet was emerging from nozzle by driving of the static pressure, the pressure is also applied to reflectively propagate shock wave in liquid as well. Number of peak pressures in case of conical and step nozzle are three peaks similarly. However, maximum static pressure at orifice entrance occurring inside conical nozzle is higher than which inside step nozzle. In case of conical nozzle the first peak produces the highest pressure (1.5 GPa) while in the case of step nozzle the highest pressure peak occurs at second peak (0.7 GPa).

5.2 Jet velocity profile

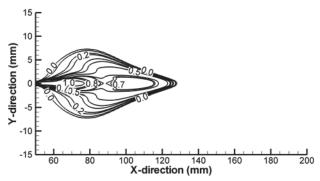
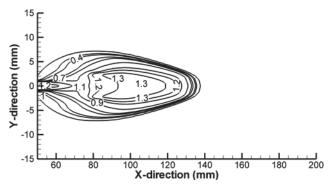



Fig. 7 Jet velocity profile of diesel emerging from step nozzle (km/s) at at (a) 90 and (c) 120 microseconds

Profile of diesel jet velocity created by projectile impact velocity of 300 m/s with step and conical nozzle is shown in Fig. 7. We observe that conical nozzle gives us the maximum velocity of 1,300 m/s, which is higher than which from step nozzle, 800 m/s, because the maximum pressure buildup inside conical nozzle is higher. Moreover, multiple diesel jet pulses occurrence can be found. The jets emerging from conical nozzle can be dispersed better than which from other nozzle, because the local velocity of the jet pulses corresponds to peak static pressure inside nozzle cavity; therefore,

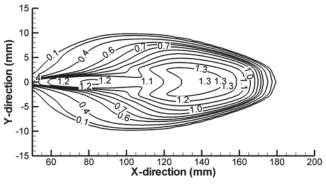


Fig. 8 Jet velocity profile of diesel emerging from conical nozzle (km/s) at (a) 90 and (c) 120 microseconds

6. Concluding remarks

this study, high speed iets experimentally generated by using the Impact Driven Method, from the impact of a high velocity projectile on the liquid package contained in the nozzle cavity. The Computational Fluid Dynamics (CFD) technique is employed for simulation of jet generation process by IDM method within closed system. The two fluids model consisting of liquid and air can be successfully calculated. The CFD results show good agreement to the previous experimental results. We found that in case of conical nozzle first pressure peak produces the highest pressure while in case of step nozzle the highest pressure differently occurs at second pressure peak. This is relative to local velocity and dispersion of high speed liquid jet.

7. Acknowledgement

This research is financially supported by the Thailand Research Fund (RTF), contract N0. RMU5180020 and the Nation Research Of Thailand (NRCT) through Ubon Ratchatani University Research Grant fiscal year 2007.

8. References

- [1] Giudice,E.L. and Campbell,J.D. (2006) Needle-free vaccine delivery, *Advanced Drug Delivery Reviews*, Vol. 58, 2006, pp. 68 - 89.
- [2] Baxter, J.S. and Mitragotri, S. (2009) Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power, *Journal of Controlled Release*, Vol. 97, 2009, pp. 527 535.
- [3] Bowden,F.P. and Brunton,J.H. (1958) Damage to solids by liquid impact at supersonic speed, *Nature*, Vol. 181, 1958, pp. 873 875.
- [4] Pianthong,K., Milton,B.E., and Behnia,M. (2003) Generation and shock characteristics of unsteady pulsed supersonic liquid jets, *Journal of the International Institutes for Liquid Atomization and Spray Systems*, Vol. 13, 2003, pp. 425 620. [5] Matthujak,A., Hossein,S.H.R., Takayama,K.,
- [5] Matthujak,A., Hossein,S.H.R., Takayama,K., Sun,M., and Voinovich,P. (2007) High speed jet formation by impact acceleration method, *Shock Waves*, Vol. 16, 2007, pp. 405 419.
- [6] Pianthong,K., Zakrzewski,S., Behnia,M., and Milton,B.E. (2003) Characteristics of impact driven supersonic liquid jets, *Experimental Thermal and Fluid Science*, Vol. 27, 2003, pp. 589 598.
- [7] Zakrzewski,S., Milton,B.E., Pianthong,K., and Behnia,M. (2004) Supersonic liquid fuel jets injected into quiescent air, *International Journal of Heat and Fluid Flow*, Vol. 25, 2004, pp. 833 840.

- [8] Pianthong,K., Matthujak,A., Takayama,K., Saito,T., and Milton,B. (2006) Visualization of supersonic liquid fuel jets, *Journal of Flow Visualization and Image Processing*, Vol. 13, 2006, pp. 217 242.
- [9] Pianthong,K., Takayama,K., Milton,B., and Behnia,M. (2005) Multiple pulsed hypersonic liquid diesel fuel jets driven by projectile impact, *Shock Waves*, Vol. 14, 2005, pp. 73 82.
- [10] Pianthong,K., Matthujak,A., Takayama,K., Miton,B.E., and Behnia,M., (2008) Dynamic characteristics of pulsed supersonic fuel sprays, *Shock Waves*, Vol. 18, 2008, pp. 1 10.
- [11] Singhal,A.K., Athavale,M.M., Li,H., and Jaing,Y. (2002) Mathematical basic and valodation of the full cavitation model, *Journal of Fluids Engineering*, Vol. 124, 2002, pp. 617 624. [12] Fluent Inc. (2005) FLUENT 6.2 User's Guide. [13] Fluent Inc. (2005) FLUENT 6.2 UDF Manual.

Dynamic Characteristics of Impact Driven Jet in a Step Nozzle

Wirapan Seehanam*, Kulachate Pianthong, Wuttichai Sittiwong

Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani, Thailand 34190

*Corresponding Author: Email wirapan_seehanam@yahoo.com, Tel. 045 353 308, Fax. 045 353 309

Abstract

High speed liquid jet can be applied and benefit in many fields such as combustion, cutting technology, and medical engineering. Liquid jet can be accelerated into high speed condition by using the methods called "Impact Driven Method" by which the liquid retained in the nozzle is impacted and then driven by a high-speed projectile. Understanding dynamic characteristics of jet generation process is essential for applying it into those technologies. So far, there are few studies in such researched areas, especially the flow inside nozzle cavity, because it is vary difficult to access in the experiment. Therefore, this study investigates the dynamic characteristics of impact driven process in a step nozzle using the Computational Fluid Dynamic (CFD) simulation. Fluid flows with transient simulation can be specified as two phase flow which consists of air and compressible diesel containing in the test chamber and step nozzle, in the initial stage, respectively. Effects of projectile velocity and mass of projectile on the characteristics of jet generation process and jet velocity are presented. Also the flow behavior due to various initial conditions is discussed in this study. It is found that the simulation shows good agreement with previously experimental results. In addition, information from this study provides the better understand on the flow phenomena of high speed liquid jet and its generation process. Moreover, the success of this study can be extended to many applications in the related fields.

Keywords: Computational Fluid Dynamic (CFD), Impact Driven Method, Compressible fluid.

1. Introduction

For a few decades, much attempt has been put into researching of high-speed liquid jet for many technologies including combustion, cutting, mining, and medical engineering. Therefore, jet characteristics which are essential for such applications have been investigated.

In combustion, with higher injection pressure and the resulting higher injection velocity, the combustion efficiency of direct injected engine is increased, because the high

velocity will enhance shear-induced atomization [1]. In this situation, in addition, fuel and air interactions such as jet-shock wave interaction, induced swirl, and intense shear layer have been suggested as potential ways to increase mixing during the combustion.

In the cutting technologies, the use of high speed liquid jets as a means of breaking specimens has prove to be a very promising technique. The potential for major advantage in cutting technology has been demonstrated

experimentally and in practice. The advantages include considerable reduction in dust and noise generated during cutting operation, elimination of sparking, and ignition hazards, and stable equipment with lower maintenance cost [2].

For medical engineering, drug injection, needle may be replaced with high speed liquid jet to deliver drug through skin, called "needle-free jet injection". This drug delivery benefits the improving activation, because the drug solution can become vary particle, increasing the surface interaction between drug and tissue. It also infection the prevents in patient administrator by contaminated injection. In addition, diameter of the hole after injection with high speed liquid jet is very small; therefore, scar can heal up faster [3]. For drug delivery, it notes that the liquid jet velocity should be limited around 100 - 200 m/s. Moreover, nozzles with small diameter are required, usually around 0.1 mm [4]

Understanding of characteristics of high speed liquid jet and its generation process is essential to apply to those applications. Therefore, many researchers have attempted to explore the jet flow phenomena.

In 1958, F.P.Bowden *et al.* [5] showed the report of the phenomena of high speed liquid jet impact on the solid. The jets were generated by the method called "Impact Driven Method, IDM" and liquid jet at hypersonic range can be created. This method is useful to generate high speed liquid jet in the present works in the field.

With the IDM method, generally, when the liquid packaged in nozzle cavity is impacted by high speed object, shock propagations and reflections in liquid are found in H H shi and A.Matthujak's studies [6-7]. Based on this situation, Pianthong et al.[8] presented the one dimensional model which considered the liquid shock wave reflection for estimating the pressure of compressed liquid in step nozzle and the velocity of the high speed liquid jet emerging from the nozzle. From the model results, however, only limited parameter of the process can be predicted such as maximum injection pressure, jet velocity, and maximum compressed liquid inside nozzle, while detail of jet flow field can not be predicted and showed.

Consequently, in this study, simulation of the generation process of pulsed high speed liquid jet by using the CFD program (FLUENT) is presented. In the study, step nozzle cavity is used as geometrical model. Simulation model are validated by comparison with results from previous study's Pianthong [9], and Shi [6]. The shock waves reflection inside the nozzle cavity during jet generation process can be captured by the simulation. This clarifies how pressure buildup inside step nozzle occurs resulting in development of liquid jet and providing more understanding on high speed liquid jet phenomena and its generation process.

2. CFD modeling

2.1. Mechanism of impact driven method

The high-speed diesel jet is generated by using Bowden-Brunton method [5] as show in Fig.1. By this method, liquid retained in the nozzle is impacted by a high velocity projectile. On the impact, the high speed liquid jet forms and injects from nozzle to the test chamber.

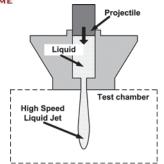


Fig. 1 Generation of supersonic liquid jet by impact driven method

2.2. CFD modeling of generation process of impact driven high speed liquid jet

Step nozzle geometry used in this study is shown in Fig 2. The geometry includes mainly two parts which are cavity and orifice tube. Variable Lc, Lo, and Dn are cavity length, orifice length, and orifice diameter respectively. Geometrical domain and grid construction are shown in Fig 3. From the mechanism of high speed jet generation shown as Fig.1, this setup can be modeled in closed domain with axissymmetric geometry divided into nozzle cavity zone and test chamber zone. The test chamber zone, being 50 mm height and 250 mm width, was meshed with 60,000 of quadrilateral elements. This is fixed in all cases in this study, however the nozzle sac region is varied, depending on the dimension and mesh size corresponding to the nozzle cavity lengths. In this transient zone, the interval size along xdirection (dx) is fixed at 0.3 mm to provide the moving mesh for projectile motion. The mesh was densely created at the area of high shear layer and interaction between the high speed liquid jet and the quiescent air.

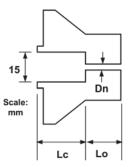


Fig. 2 Nozzle geometry

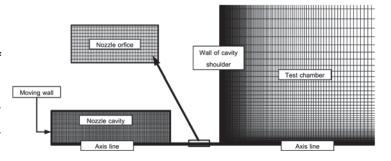


Fig. 3 Computational domain of axis-symmetric geometry of high speed liquid jet simulation

2.3. Model of projectile movement and liquid properties

The movement of the projectile in the nozzle cavity is assumed as the motion of a moving rigid wall. Therefore, the moving mesh of nozzle cavity zone was constructed. The projectile velocity equaling wall movement during jet generation process after the impact can be computed from a simple force balance on the projectile front and the liquid package in x-direction. It is assume that the force acting by the projectile, in x-direction, is simply the resistance force of compressed liquid pressure but the friction force along projectile wall is neglect. Thus, the velocity at any time t calculated by using an explicit Euler formula as

$$V_{t} = V_{t-\Delta t} + (F(t)/m)\Delta t \tag{1}$$

where V is the projectile velocity, F is the driving force and m is the mass of the projectile. This formula is used to specify the motion of a moving wall (or projectile front wall) with the linear velocities at every time step (dt) through the User Define Function (UDF), provided by the software.

At the initial condition, two fluid phases were divided into liquid water phase in the nozzle cavity and air phase in the test chamber. The air density is simply specified by using ideal gas formula to cope with the compressible flow field in the simulation. Furthermore, in the nozzle cavity, it is much more complicated to specify the water as the compressible liquid. In this study, it is can be modified by using the formula including the instant liquid density (eq.(2)) and sound speed (eq.(3)) [10]. In the formula, variable P and ρ are the liquid pressure and density respectively, and the constant value B is the bulk modulus of elastic of the liquid. Subscript 0 and 1 denote the respective quantity at the initial and current time level. In addition, it seems that the density and the sound speed corresponded to liquid pressure with time dependent, significantly. Properties of diesel liquids are used in this study.

$$\rho_{1} = \frac{\rho_{o}}{\left[1.0 - (P_{1} - P_{0})/B\right]}$$
 (2)

$$a_1 = \frac{1 - (P_1 - P_0)}{B} \times \frac{\sqrt{B}}{\rho_0}$$
 (3)

In addition, because of the vary high pressure gradient across two phase zones, sometimes, the pressure fluctuation can be induced by high speed liquid jet generation;

consequently, some of liquid phase evaporated to be the gas phase by cavitation process. The full cavitation models presented by Singhal et al.[11] and Fluent user's guide [12] are applied to specify the vapor pressure and cavitation rate in liquid and air flow. This assumption might not accurate, be acceptable, because the liquid must evaporate to its vapor gas, instead of air. However, properties of our liquid vapor and moist air are comparable.

The CFD commercial code (FLUENT) is used as the tool to simulate the dynamics characteristics of jet generation process. The mixture model with velocity slip was used for specifying the properties of mixture within the multiphase flow. In the unsteady flow solution, the time step sized (dt) of 0.1 microseconds was set; therefore, results from each calculation can be recorded. Turbulence model is the standard k-e model with segregate solver for non-linear equations.

3. Validation of CFD simulation

This section presents the validation of dynamic characteristics of jet generation process by comparing results in this study with previous works of Painthong and Shi [7, 10]. In this study, the conditions in which projectile velocities around 300 to 700 m/s and the step nozzle are used are investigated.

Diesel liquid jet characteristics showing in term of average velocities defined as the jet penetration divided by emerging time are shown in Fig.4. These jets were driven by projectile having the velocity of 700 m/s. The average velocities calculated by the CFD method are

compared with those by experimental results of Pianthong works [10]. Average overall jet velocity of both results is quite similar, about 1100 m/s, even through in the simulation the jet need more time to accelerate at the earlier stage. This indicates that, in the simulation, the penetration of high speed liquid jet might take longer time to accelerate for a few microseconds; however, in the experiment, it is not possible to capture.

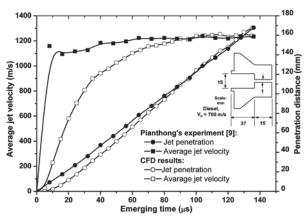


Fig. 4 Jet velocities and penetration distance

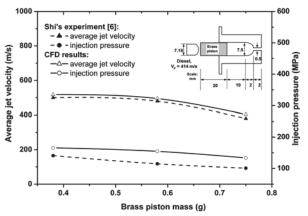


Fig. 5 Injection pressure and jet velocity with driven brass piston

For momentum exchange method which the projectile impacts on the brass piston instead of the liquid, maximum injection pressures and average jet velocity resulting from simulation and Shi's experimental results are quite comparable as shown in Fig 5. It shows that, when the piston mass is increased, the injection pressure and jet velocity decrease. This is due to the momentum conservation which giving the slower piston movement.

4.1 Effect of projectile velocities

Because projectile velocity is the one of important parameters, many researchers have investigated the effect of the parameters on the characteristic of the injection by using experiment apparatus or mathematical model. Nevertheless, they can not thoroughly reveal how those parameters relate the characteristics of jet injection, because in it impossible experiment is to measurement of jet characteristics and the parameter, especially projectile velocity and inside. injection pressure Consequently, influence of those parameters can be presented guessingly.

Therefore, this section investigates the influence of projectile velocity on dynamic characteristics of jet injection by using CFD simulation. There are projectile velocities which were ranged from 300 – 700 m/s with same nozzle geometry, and 4.2 g of projectile mass. Increasing projectile velocity can create pressure inside nozzle cavity and jet velocity to higher condition as shown in Fig 6 and Fig 7.

It is found that average jet velocity and injection pressure with the impact at high velocity rise to high values, while the number of pressure peak, being injection impulse, is independent of projectile velocity. Furthermore, the striking of projectile on cavity shoulder was found for the projectile velocity at 600 – 700

m/s. The striking and non-striking of projectile result in histories of injection pressure differently; besides, duration of jet generation process under the striking is shorter than that under the non-striking as shown in Fig. 6(b). This is because momentum of projectile was suddenly released to nozzle material during striking of projectile on the container even though it is only reduced by the liquid.

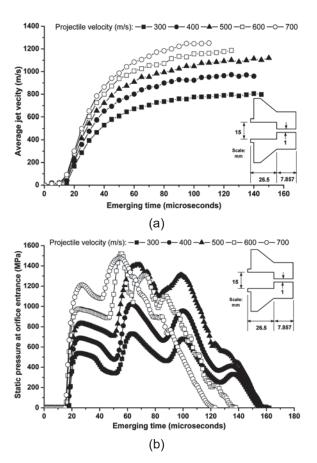


Fig. 6 Effect of projectile velocity on dynamics characteristics of high speed liquid jet: (a) velocity and (b) static pressure

The Fig 7 shows the profile of diesel jet velocity created by projectile impact velocity of 300 m/s and 500 m/s at 40, 60, and 80 μ s. We observe that liquid jet impacted with high velocity projectile gives us the high jet velocity around 1400 m/s, at emerging time of 80 μ s, because

the maximum pressure buildup inside nozzle cavity is higher, due to lager momentum transfer. However, it is quite semblance in the jet shape. This means that the shape of liquid jet significantly relate to pressure fluctuation inside nozzle cavity.

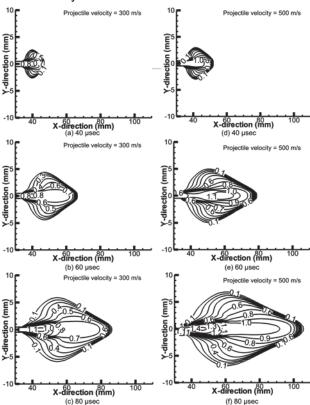


Fig. 7 Effect of projectile velocity on jet velocity profiles (km/s)

4.2 Effect of projectile density

One of important parameters at jet generation process is mass of projectile according to density of projectile at constant volume. However, previous studies have been hardly conducted such point to discussion.

In this study, it is the first time that this point is investigated. The densities being 200, 400, 600, 800, 1000, 1200, 1400, 1600, and 1800 m³/kg and the fixed size nozzle being 4,682 cavity volumes with 7.887 Lo/Dn are used on calculation.

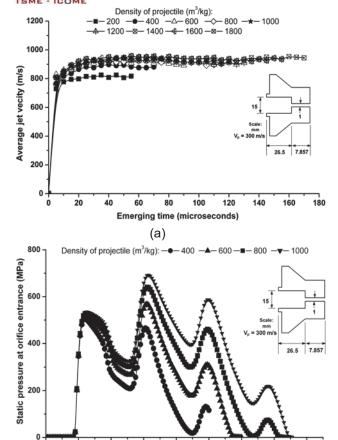


Fig. 8 Effect of projectile densities on dynamics characteristics of high speed liquid jet: (a) velocity and (b) static pressure

(b)

Emerging time (microseconds)

The influence performs on Fig 8 and Fig 9. From Fig 8 (a), we found that increasing projectile densities in range of lower than the liquid density does produce higher jet average velocity. However, while the density of projectile is higher than the density of the liquid, the average jet velocities are hardly varied with the projectile density. The pressure histories inside cavity are similar. However, the process — end time of jet generation is much shorter with usage of light projectile, as shown in Fig 8(b). In addition, although the first peak pressures inside nozzle value is found that it is not dependent on projectile density, the second and the third peak

values are significantly varies with projectile density. It is possible for the momentum exchange at high rate with long duration after the impact of projectile.

The Fig 9 shows the profile of diesel jet velocity created by projectile densities of 300 and 500 m 3 /kg at 40, 60, and 80 μ s. It is found that at initial stage as 40 and 60 μ s the shape of liquid jet is slightly changed with variation of projectile densities. The duration of jet generation process with light projectile is shorter than, process ending at 85 μ s, such with heavy projectile, at 160 μ s, resulting in difference of both jet formations of 80 μ s.

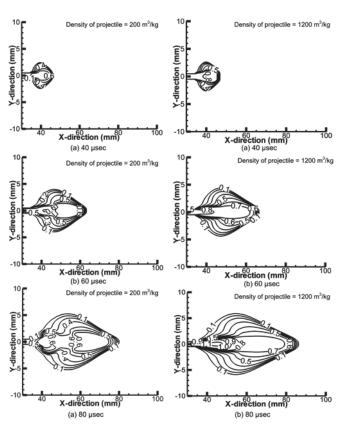


Fig. 9 Effect of projectile densities on jet velocity profiles (km/s)

5. Concluding remarks

In this study, the Computational Fluid Dynamics (CFD) technique is employed for simulation of jet generation process by IDM method within closed domain. The CFD results show dood agreement to the experimental results. Effect of velocities and densities of projectile can be clearly investigated and described. We found that average jet velocity and injection pressure with the impact at high velocity and heavy projectile rise to high values. However, while the density of projectile is higher than the density of the liquid, the average jet velocities are hardly varied with the projectile density. Moreover, from simulation results, pressure fluctuation inside nozzle cavity considerably associate to the liquid jet formation.

6. Acknowledgement

This research is financially supported by the Thailand Research Fund (RTF), contract N0. RMU5180020, the Nation Research of Thailand (NRCT) through Ubon Ratchatani University Research Grant fiscal year 2007 and the Commission on Higher Education (CHE) of Thailand.

7. References

- [1] Milton, B.E. and Pianthong, K. (2005). Pulsed supersonic fuel jet A review of their characteristics and potential for fuel injection, *International Journal of Heat and Fluid Flow*, Vol. 25, pp.656 671.
- [2] Shichang, Y. (1993). Dimensionless modeling and optimum design of water jet cutting system, Ph.D. Thesis, The University of Wisconsin Madison.

- [3] Giudice, E. L. and James, D.C. (2006). Needle-free vaccine delivery, *Advanced Drug Delivery Reviews* Vol.58, pp.68 89.
- [4] Shergold, O. A. Fleck, N. A. and King, T. S. (2006). The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection, *Journal of Biomechanics* Vol.39, pp.2593-2602.
- [5] Bowden, F. P. and Brunton, J. H. (1961). The Deformation of Solids by Liquid Impact at Supersonic Speeds, *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*, Vol.263, pp.433 450.
 [6] Shi, H. H.(1994). Study of Hypersonic Liquid jets. Ph.D. Thesis, Tohoku University.
 [7] Matthujak, A., Hossein, S.H.R., Takayama,
- K., Sun,M. and Voinovich, P. (2007). High speed jet formation by impact acceleration method, *Shock Waves*, Vol.16, pp.405 419.
- [8] Pianthong, K., Milton, B.E. and Behnia, M. (2003). Generation and shock characteristics of unsteady pulsed supersonic liquid jets. *Journal of the International Institutes for Liquid Atomization and Spray Systems*, Vol.13, pp.425 620.
- [9] Pianthong, K., Takayama, K., Miton, B.E. and Behnia, M. (2005). Multiple pulsed hypersonic liquid diesel fuel jets driven by projectile impact, *Shock Waves*, Vol.14, pp.73 82.
- [10] Fluent Inc., (2005). FLUENT 6.2 UDF Manual. Fluent Inc, Lebanon.
- [11] Singhal, A.K., Athavale, M.M., Li, H. and Jaing. Y. (2002). Mathematical basic and valodation of the full cavitation model, *Journal of Fluids Engineering*, Vol.124, pp.617 624.
- [12] Fluent Inc., (2005). FLUENT 6.2 User's Guide, Fluent Inc, Lebanon.

Investigation on the Characteristics of Needle - Free Injection Device

Wirapan Seehanam^a, Kulachate Pianthong^b and Wuttichai Sittiwong^c

Department of Mechanical Engineering, Faculty of Engineering,

Ubon Ratchathani University, Thailand

^awirapan_seehanam@yahoo.com, ^bk.pianthong@gmail.com, ^csittiwong@hotmail.com

Keywords: needle-free injection, CFD, high speed video camera, impact driven method.

Abstract. In this study, the functional operation of the commercial injection device was explored, and major operating parameters, which are jet velocity, jet penetration, piston movement, and other dynamic phenomena, for the needle-free jet injection, are thoroughly investigated by using the high speed video camera. During the operation process of the needle-free injection device, the frame rate of 1,500 frames per second (fps) was applied. The water is used as working liquid and is driven through a 0.17 mm diameter orifice nozzle, into the quiescent air and the tissue stimulant being 20 % polyacrylamide gel. It is found that the velocity of the free jet in the air is around 85 m/s while the piston movement with free load is at velocity of 5 m/s. In addition, the required jet shape for the drug delivery by the injection was also observed from visualization results. Moreover, from those results, jet generation process in the device can be further simulated and investigated with CFD simulation for the better understanding of needle-free jet injection process and providing useful information in the design of needle -free jet injection apparatus.

Introduction

Jet injectors deliver liquid medication or vaccine through a nozzle orifice via a high pressure, high speed narrow stream that penetrates the skin, as shown symmetric in Fig. 1. Drug or vaccine can be delivered to intradermal, subcutaneous, or intramuscular tissue depending on operating parameters performed by the jet injector device. The devices designed to deliver the drug were first developed in the 1940's and were widely used for mass immunization campaigns from the 1950's to the 1980's [1, 2]. It is believed that jet injection devices should improve the efficacy of the drug, due to better distribution in tissues where liquid drug delivered via jet injection is dispersed more widely; in addition, site pain after injection is very small, in a range of hundred micrometers. This mechanism was confirmed by J. Baxter's studies [3-4]. An important advantage of jet injectors over other novel needle-free drug delivery methods is that parenteral delivery of drug to the same sites as those used in needle and syringe delivery may allow for use of the same vaccine formulations with the same proven efficacy [2].

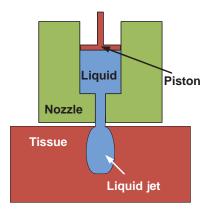


Fig. 1 Needle-free jet injection method

The device, there are many disadvantage of needle free jet injection device distributed in the market; therefore, the development have been required to improve efficiency of the jet injection method and the device. One study compared two alternative jet injector devices with standard device showed that the jet injector devices were associated with higher levels of pain and more local reactions; moreover, there is blood contamination in head of jet injection device after injection [1, 5]. This is because the device generates the liquid jet at high velocity and impact pressure resulting in blood splashed back from the patient [1, 2, 5]. For this reason, understanding on effects of the parameters on characteristics and behavior of needle-free jet injection for the completely controllable device has been essence to correctly specify the hole depth, created by the jet liquid jet, in the target tissue [2].

The devices have been concerned with injection efficiency corresponding to operating parameters which are jet penetration depth, liquid dispersion, jet velocity, volume ejected, and nozzle diameter. In works of Joy Schramm-Baxtera et al. [3, 6] mentioned that with increasing the nozzle diameter and jet velocity, the shape of liquid dispersion at the end of the hole in simulant tissue is changed and jet penetration depth is increased. Further works [4] from this research group showed that depth of the injection hole increases with ejected volume before reaching an asymptotic volume. In addition, Shergold et al. [7] explored the penetration of a soft solid by a liquid jet injection from commercial needle-free jet injection devices, and revealed the discharge characteristic. A high pressure pulse, around 20-35 MPa, during the first 1-5 ms of injection, followed by steady decay in liquid pressure was found. However, those previous studies did not explore the jet generation behavior inside the nozzle during injection process; even if, it directly affects on the characteristics of jet injection.

Therefore, in this study major operating injection parameters, which are jet velocity, jet penetration, piston movement, and other dynamic phenomena, for the needle-free jet injection, are thoroughly investigated by using high speed video camera in experiment, and this provided the preliminary data in validation of the CFD modeling of needle-free jet generation process.

Material and method

Jet production

The jets used in these experiments were produced from a commercial, spring-driven growth hormone jet injector, Cool Click [Bioject2000 Inc.] through an orifice of 170 mm in diameter. The maximum liquid volume ejected was 0.5 ml. In experiment, the jet is injected into the air and 20 % polyacrylamide gel, in which a nozzle tip attached the gel during the injection, and deionized (DI) water was used as the jet fluid. To gain a better understanding of the dynamics of the jet penetration in both medium, a high-speed video camera (Photron Fastcam SA5) was used to capture the jet flow phenomena in the medium and piston behavior during a jet ejection. During the operation process of the needle-free injection device, the frame rate of 15,000 frames per second (fps) was applied, and the major operating parameters, which are jet velocity, jet penetration, and piston movement is thoroughly investigated.

Polyacrylamide gels

20% Polyacrylamide gel were used as a model soft material which Young's modulus and hardness, Hoo, reported by Schramm-Baxter et al. [6] are 0.22 MPa and 41 Hoo, respectively. The 20% gel was created by the addition of initiators (10% ammonium persulfate (APS) and N,N,0,N0-tetramethylethylenediamine (TEMED)) to a 40% (w/v) acrylamide solution. The acrylamide solution was mixed with DI water to create solutions possessing acrylamide concentrations in the range of 20% w/v, and the gel was polymerized by the addition of 60 ul 10% APS and 12 ul TEMED to the acrylamide solution of 6 ml.

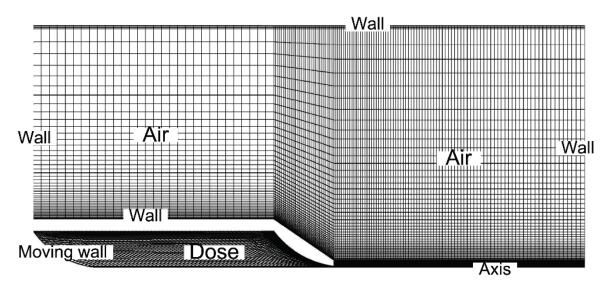


Fig. 2 CFD Modeling

CFD modeling

From the mechanism of needle-free jet injection process, this setup can be modeled in a closed system domain with axi-symmetric geometry divided into two zone: nozzle cavity zone being full of dose liquid and air zone, as shown in Fig. 2. The CFD commercial code (FLUENT) is used as the tool to simulate the dynamic characteristics of the jet generation process. In the simulation, the two-fluid model consisting of liquid and air can be calculated by using the volume of fraction (VOF) model for interaction between fluid jet and air. The air and liquid density are simply specified to be compressible fluid by using the formula of ideal gas and compressible liquid including the instant liquid density, respectively. The turbulence model is the standard k- ϵ model with segregate solver for the non-linear equations. The velocity of the piston movement assuming as a moving wall during the injection is computed from the resulting force from the combination of spring, pressure, and friction forces acting on the piston in x-direction. The initial spring force can be calculated from Hooke's law equation where the spring force constant tested by using Rimac Spring Tester is around 17.8 kN/m.

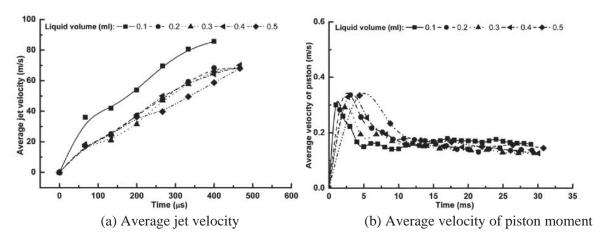


Fig.3 Characteristics of the jet generation process

Results and discussion

Characteristics of the jet generation process

Dynamics characteristics of the piston and the jet injected into quiescent air, expressed as average velocities defined as its penetration distance along the medium divided by emerging time, are shown in Fig.3. It is observed that, water volume ejected is decreased, the jet velocity slightly increase, for 0.2 and 0.5 of the volume; moreover, differently higher average jet velocity is found for 0.1 ml, as shown in Fig. 3 (a). Average velocity of piston movement during jet injection process, as shown in Fig. 3 (a), is found to be steady decay over remaining 0.15 - 0.2 m/s, before there is a high velocity pulse during the first 1-10 ms. This corresponds to the discharge characteristics, expressed as stagnation pressure, which was found by Shergold et al. [7]. In addition, duration time of the pulse is significantly extended with increasing the volume ejected, because the momentum exchange between piston and high volume liquid in a nozzle requires the long amount of the time.

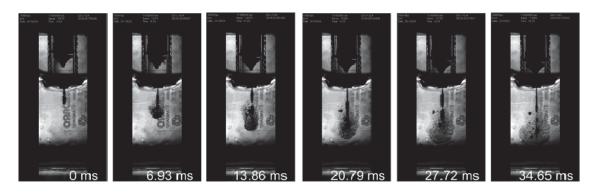


Fig 4 Dispersion of liquid in 20% polyacrylamide

Penetration behavior of jet injected into 20% polyacrylamide

Fig 3 shows the series of image of jet penetration into polyacrylamide gel. It is found that, in the first 0 - 13.86 ms, the gel is continuously penetrated by the jet liquid, especially along perpendicular, before the liquid is dispersed into the gel in all direction for 20.79 to 34.65 ms, as shown in Fig 4. That is to say jet penetration into the gels produces a hole starting at the point of jet impact to create a point source at the end of a hole, and this contribute to a circular dispersion of fluid from this point.

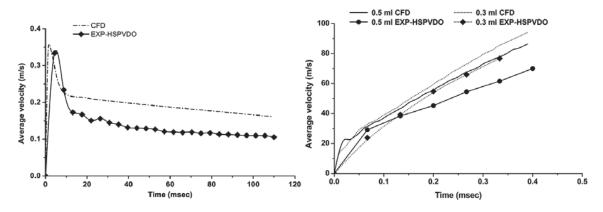


Fig 5 Average velocity

Simulation results

The average velocities of the jet ejected to the air and piston movement during jet generation calculated by the CFD method are compared with the experimental results, as shown in Fig 5. It is observed that the average velocity trends from the both method are only slightly different; although, the CFD simulation gives higher average velocities than those from experiments. In the simulation, the phenomenon of the atomization is specified by simply VOF two phase flow model, and this causes the spray atomization, corresponding to dynamics drag, occurring jet injection into the air is not fully taken into account in the CFD model. This is in accord with the results shown in Fig 6. The thin jet can be found in CFD results while cloud of liquid atomization occurring around the jet during jet injection can be captured by a high-speed video camera.

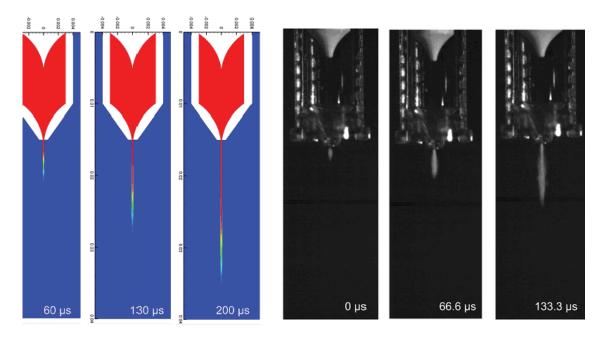


Fig 6 Visualization of the jet ejected into the air

Concluding remarks

In this study, the functional operation of the commercial injection device was explored, and major operating parameters, which are jet velocity, jet penetration, piston movement, for the needle-free jet injection, are thoroughly investigated by using the high speed video camera. The water is used as working liquid and is driven through a 0.17 mm diameter orifice nozzle, into the quiescent air and the tissue stimulant being 20 % polyacrylamide gel. It is found that water volume ejected is decreased, the jet velocity slightly increase, for 0.2 and 0.5 of the volume, and differently higher average jet velocity is found for 0.1 ml. The average velocity of piston movement during jet injection process is found to be steady decay over remaining 0.15 – 0. 2 m/s after the high velocity pulse during the first 1-10 ms. In addition, from experimental results, jet generation process in the device can be further simulated and investigated with CFD simulation for the better understanding of needle-free jet injection process. The CFD results show good agreement to the results from the experiment both quantitatively and qualitatively. The CFD modeling of the jet injection process can be applied to provide the useful information in design of needle-free jet injection device.

Acknowledgments

This work was granted by the Office of the Higher Education Commission and Thailand Research Fund (RTF), contract N0. RMU5180020, the National Research Council of Thailand (NRCT) through Ubon Ratchatani University Research Grant fiscal year 2007. Wirapan Seehanam was supported by CHE Ph.D. Scholarship

References

- [1] B.E. Milton., and K. Pianthong: International Journal of Heat and Fluid Flow, Vol. 25 (2005), p. 656-671.
- [2] E. L. Giudice and D.C. James: Advanced Drug Delivery Reviews 58 (2006), p. 68–89.
- [3]-24 J.Baxter and S. Mitragotri: Journal of controlled release. Vol. 97 (2004), p. 517-535
- [4] -25 J.Baxter and S. Mitragotri: Journal of controlled release. Vol. 106 (2005), p. 361-373
- [5]-26 L. A. Jackson, G. A. Robert, T. Chen, R. Stout, F. DeStefano , G. J. Gorse, F. K. Newman, O. Yu and B. G. Weniger: Vaccine. Vo.19 (2001), p. 4703 4709.
- [6] Joy Schramm-Baxtera, Jeffrey Katrencikb, Samir Mitragotria: Journal of Biomechanics Vol. 37 (2004), p. 1181–1188.
- [7]-28 O. A. Shergold, N. A. Fleck and T. S. King: Journal of Biomechanics Vol. 39 (2006), p. 2593-2602.

Investigation on the Generation Process of Impact

Driven High Speed Liquid Jet using CFD Technique

Wirapan Seehanam, Kulachate Pianthong*, Wuttichai Sittiwong,

Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University,

Thailand

Phone: +66-4535-3309

Fax: +66-4535-3308

Email: k_pianthong@gmail.com

Abstract

High speed liquid jets have been applied to many fields of engineering, sciences, and medicines. Therefore, the

investigation of its characteristics by modern and in-expensive method is beneficial to the fields. In this study, the

high speed liquid jets is experimentally generated by using the momentum exchange method, called "Impact

Driven Method (IDM)", by the impact of a high velocity projectile on the liquid package contained in the nozzle

cavity. The shock pulse reflection within the liquid package in the nozzle resulted from the impact then causes the

multiple pulsed jets. In this study, the Computational Fluid Dynamics (CFD) technique is employed to simulate

the jet generation process by IDM method within a closed domain. In the simulation, two-fluid model consisting

of liquid and air can be successfully calculated by using a two phase flow mixture model and a moving mesh for

the projectile motion. The CFD results showed good agreement to the previous experimental study results. In

addition, simulation results captured the wave propagation within liquid in the nozzle and proved the dynamic

characteristics of multiple pulsed high speed liquid jets initiated by the impact driven method for the first time.

This would be the breakthrough in simulation of the compressible flow of liquid and air in the supersonic ranges.

It will also be vary useful fundamentals for future studies of high speed injections and related fields

Keywords: high speed liquid jets, impact driven method, Computational Fluid Dynamics

(CFD), shock reflection

1

1. Introduction

There have been a number of studies of the characteristics of high speed liquid jet over a number of years. Its fundamental is essential to apply to many industrial technologies such as cutting, drilling, mining, and tunneling etc. In the combustion, moreover, the fuel sprayed to high speed liquid condition may be beneficial in improving combustion in such applications as SCRAM (supersonic combustion RAM) and direct injection. This is because the atomization and mixing are likely to be enhanced and the bow shock wave will provide significantly increased air temperatures. For medical engineering, in drug injection, needle may be replaced with high speed liquid jet to deliver drug through skin, called "needle-free jet injection". This drug delivery benefits the improving activation, because the drug solution can become vary small particle, increasing the surface of interaction between drug and tissue. It also prevents infection in the patient and administrator by contaminated injection. In addition, diameter of the hole after injection with high speed liquid jet is very small, therefore scar can heal up faster [1-2]. For drug delivery, it notes that the liquid jet velocity should be limited around 100 – 200 m/s, depending on design condition, which is very different from the combustion technologies. However, in both applications the high speed liquid jet can be generated by the same method called "impact driven method or impulsive method."

Impact Driven Method (IDM) technique presented by Bowden and Brunton in 1958 [3] is a method for producing high speed liquid jet. The liquid contained in nozzle cavity is driven by high speed projectile and accelerated to high velocity. Liquid flow behavior in liquid sac during jet generation process directly affects the characteristics of high speed liquid jet. O' Keefe et al.[4] presented a development of the Bowden and Brunton technique for the production of high speed liquid jets by using a projectile with 1.77 km/s. They described the motion of water column in tapered section by applying the 1-D, unsteady equations of compressible fluid flow. Further analysis of the jet nozzle flow was mathematically presented in 1973 by Ryhming [5]. His model focused mainly on one-dimensional, incompressible flow.

Generally, when the liquid packaged in nozzle cavity is impacted by high speed object, shock propagations and reflections in liquid are always found. However, this was not considered in O' Keefe and Ryhming's study. Therefore, in 1977 Lesser [6] presented the basic mechanics of supersonic jet generation by using the theory of guides acoustic waves. His theory is the fundamental of shock propagations in liquid providing the estimation of liquid jet velocity created by IDM. Accordingly, Shi et al.'s experiment [7] showed the liquid shock reflection process in term of pressure history in nozzle cavity and described the effects of shock reflection on liquid jet characteristics. Recently, Pianthong et al.[8] presented the most popular one dimensional model which can comprehensively describe the driven jet generation process during projectile traveling in the nozzle cavity. This model considered the liquid shock wave reflection for estimating the pressure of compressed liquid in step nozzle and the velocity of the high speed liquid jet emerging from the nozzle. Their model results showed good agreement to the previous experimental results. Moreover, phenomena of multiple pulsed liquid jets which were frequently presented in previous experiments can be described by their model. However, Pianthong et al.'s model can not be applied for other nozzle geometries such conical nozzle or curved sac, because of the higher dimension effect. A drawback in such model was confirmed by the Matthujak et al.'s work [9], which the second and third shock reflection can be captured by using pressure transducer, showing in term of the pressure history. It is found that driving pressures measured from experiments are much lower than that pressure from the calculations.

Recently, numerical method such as Computational Fluid Dynamics (CFD) has been employed to investigate the high speed liquid jet characteristics. In 2003 Pianthong et al [10] reported the simulation of shock wave structure ahead of the jet with model of stationary solid jet shaped in steady flow field of compressible air. Then, Zakrzewski et al.[11] improved Pianthong et al's work by using the species transport equation to predict transient development of liquid jet and this improvement can describe numerically the process of interaction between the air and high speed liquid jet. Although, in previous studies, CFD results well agreed with

experimental results, the nozzle flow characteristics wasn't considered in simulations. Thus, further work from these researcher groups [12] showed simulation of shock propagating on all of material in jet generation process by using AUTODTN-2DTM software. The work shows the shock propagating in projectile, liquid sac and nozzle material but it seems that the tool can not precisely predict transient development of high speed liquid jet.

In this study, simulation of the generation process of pulsed high speed liquid jet by using the CFD program (FLUENT) is presented. In the study, nozzle cavities, including step nozzle, conical nozzle, and bell nozzle are used as geometry model to contain liquid water or diesel. Simulation model are validated by comparison with results from previous study's Pianthong [13-14], Shi [7,15], and Mutujak [9]. The shock waves reflection inside the nozzle cavity during jet generation process can be captured by the simulation. This clarifies how pressure buildup inside nozzle occurs resulting in development of liquid jet and providing more understanding on high speed liquid jet phenomena and its generation process. This information will also be very useful fundamentals for future studies of high speed injection and related fields.

2. Supersonic liquid jet generated by impact driven method

The principle of generating high speed liquid jet by using Bowden and Brunton method [3] is sketched in Fig.1. By this method, liquid retained in the nozzle is impacted by a high velocity projectile. On the impact, the high speed liquid jet forms and injects from nozzle to the test chamber. In some of previous study such as Shi's experiment [7, 15], projectile was not used to impact the liquid directly, but piston which projectile impact was used to drive the liquid into the test chamber. It is called momentum exchange method. In this paper, works of Painthong [13-14], Shi, [7, 15] and Mutthujak [9] are used as main references where supersonic liquid jet was investigated with variously experimental technique. In works of Pianthong, the shadowgraph optical system and a high speed video camera assist in the capture of shock wave

in series, while the pressure history during jetting process can be captured in work of Shi and Mutthujak using pressure transducers. The detail of their apparatus was described in their study.

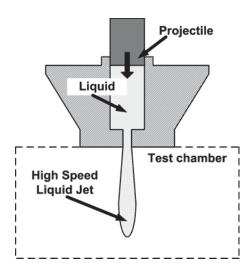


Fig. 1. Generation of high speed liquid jet by impact driven method

Details of nozzle geometries used in this study are shown in Fig 2. Two types of nozzle

3. CFD modeling of generation process of impact driven high speed liquid jet

3.1 Geometry model

which are conical and step nozzle with cavity volume of 4.68 cm³ and 6.54 cm³, respectively, are investigated. Moreover, nozzle shapes in study of Shi [7, 15] are also used in simulation to investigate the effect of jet generation methods including; direct impact method and momentum exchange method. In this study, the commercial CFD package (FLUENT) was used.

Geometrical domains of both methods are shown in Fig 3 where the bell cavity, volume of 4.20 cm³, was used. From the mechanism of high speed jet generation shown as Fig.1, this setup can be modeled in closed system domain with axis-symmetric geometry divided into nozzle cavity zone and test chamber zone as shown in Fig. 4. The test chamber zone being 50 mm height and 250 mm width was meshed with 60,000 of quadrilateral elements. This is fixed in all cases in this study, however the nozzle sac region is varied, depending on the dimension and mesh size

corresponding to the nozzle cavity lengths. In this transient zone, the interval size along x-direction (dx) is fixed at 0.3 mm to provide the moving mesh for projectile motion. In Fig 4, the mesh was densely created at the area of high shear layer and interaction between the high speed liquid jet and the quiescent air.

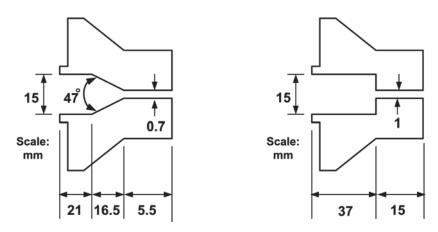


Fig. 2. Nozzle geometries (a) Conical nozzle and (b) step nozzle

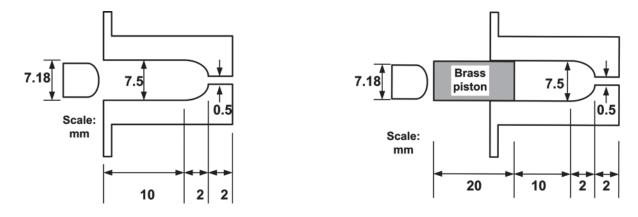


Fig. 3. Generation method (a) direct impact and (b) momentum exchange

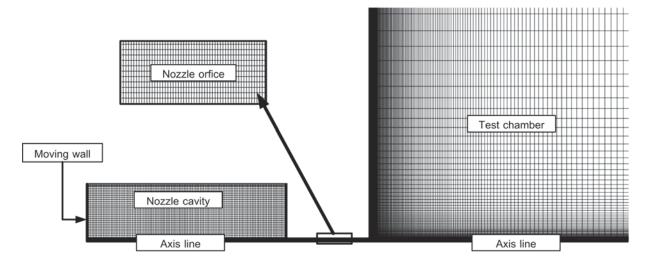


Fig. 4. Computational domain of axis-symmetric geometry of high speed liquid jet

3.2 Projectile movement model

The movement of the projectile in the nozzle cavity is assumed as the motion of a moving rigid wall. Therefore, the moving mesh of nozzle cavity zone was constructed. The projectile velocity during jet generation process, after the impact can be computed from a simple force balance on the projectile front and the liquid package in x-direction as

$$\int_{t_0}^t dV = \int_{t_0}^t \left(F(t) / m \right) dt \tag{1}$$

where V is the projectile velocity, F is the driving force and m is the mass of the projectile. The velocity at any time t calculated by using an explicit Euler formula as

$$V_{t} = V_{t-\Delta t} + (F(t)/m)\Delta t \tag{2}$$

This formula is used to specify the motion of a moving wall (or projectile front wall) with the linear velocities at every time step (dt) through the User Define Function (UDF), provided by the software. In the simulation, the mass of projectile are 4.2 g and 0.038 g which are similar to that the studies of Pianthong [13-14], Mutthujak [9], and Shi [7,15]. The force acting by the projectile, in x-direction, is simply the resistance force of compressed liquid pressure but the friction force along projectile wall is neglect. For direct impact of projectile, such initial velocities of 300 m/s, 700 m/s, and 414 m/s following the previous study are set as initial movement of the wall, while the velocity in simulation of momentum exchange method can be computed from formula of conservation of momentum in the system of the projectile and brass piston. The atmospheric pressure and ambient temperature are set as initial condition in the domain. Sometime, projectile might impact the nozzle trap, resulting from too high projectile momentum remaining. In this situation, the projectile will release such momentum into nozzle material, and its velocity is then zero before it rebounds by compressed liquid reaction force. In addition the calculation process is finished when the projectile arrive at the entry point. Because of the most different pressure across two phase zones, sometimes, the

pressure fluctuation can be induced by high speed liquid jet generation; consequently, some of liquid phase is evaporated to be the gas phase by cavitation process. Therefore, this phenomenon needs to be considered when the local pressure is lower than vapor pressure of liquid. The full cavitation models presented by Singhal et al.[16] and Fluent user's guide [17] are applied to specify the vapor pressure and cavitation rate in liquid and air flow. This assumption might not be accurate, but acceptable, because the liquid must evaporate to its vapor gas, instead of air. However, properties of our liquid vapor and moist air are comparable.

3.3 Liquid properties model

At the initial condition, two fluid phases were divided into liquid water phase in the nozzle cavity and air phase in the test chamber. The air density is simply specified by using ideal gas formula to cope with the compressible flow field in the simulation. Furthermore, in the nozzle cavity, it is much more complicated to specify the water as the compressible liquid. In this study, it is can be modified by using the formula including the instant liquid density (eq.(3)) and sound speed (eq.(4)) [18]. In the formula, variable P and ρ are the liquid pressure and density respectively, and the constant value B is the bulk modulus of elastic of the liquid. Subscript 0 and 1 denote the respective quantity at the initial and current time level. In addition, it seems that the density and the sound speed corresponded to liquid pressure with time dependent, significantly. Liquids used in this study and their properties are listed in Table 1.

$$\rho_{1} = \frac{\rho_{o}}{\left[1.0 - (P_{1} - P_{0})/B\right]} \tag{3}$$

$$a_1 = \frac{1 - \left(P_1 - P_0\right)}{B} \times \frac{\sqrt{B}}{\rho_o} \tag{4}$$

Table. 1. Properties of water and diesel used in this study

		Vapor			Surface
Liquid	Bulk modulus	pressure	Molecular	Specific heat	tension
	(GPa)	(Pa)	weight	(j/(kg.K)	coefficient
			(g)		(N/m)
Water	2.24	3,169	18	4,182	0.0717
Diesel	1.6	1,378	170	1,850	0.0244

3.4 Solver modeling

The CFD commercial code (FLUENT) is used as the tool to simulate the dynamics characteristics of jet generation process. The mixture model with velocity slip was used for specifying the properties of mixture within the multiphase flow. In the unsteady flow solution, the time step sized (dt) of 0.1 microseconds was set; therefore, results from each calculation can be recorded. Turbulence model is the standard k-e model with segregate solver for non-linear equations.

4. Validation of CFD simulation

This section presents the validation of dynamic characteristics of jet generation process by comparing results in this study with previous works. Water and diesel liquid jet characteristics showing in term of average velocities defined as the jet penetration divided by emerging time are shown in Fig.5. These jets driven by projectile having the velocity of 300 m/s, emerge from conical nozzle which its geometry is shown in Fig.2 (a). The average velocities calculated by the CFD method are compared with those by experimental results of Pianthong works [13-4]. We observe that trends of average jet velocity are just slightly different. At first 30 microsecond, the experimental and CFD results are very closed, however, at the after stage, the CFD simulation gives higher average velocities than those from experiments. Also, calculated results show that the water jet velocity is higher over that of diesel, even if there are an opposite results at over 30 microseconds, because the bulk modulus