

บทคัดย่อ

ในงานวิจัยนี้ ผู้วิจัยเน้นการวิเคราะห์หาตัวชี้วัดพลังงาน (Energy intensity) ของภาคบุนเดส์ ภาคอุตสาหกรรม และภาคครัวเรือนระหว่างปี พ.ศ. 2533–2550 โดยใช้หลักการ Decomposition ตามวิธี Divisia method โดยแสดงการเปลี่ยนแปลงจากการเปลี่ยนแปลงโครงสร้าง (Structural change) และจากการเปลี่ยนแปลง Energy intensity ผลลัพธ์ที่ได้นี้สามารถใช้เป็นข้อมูลในการพยากรณ์การใช้พลังงานของแต่ละภาคเศรษฐกิจและของประเทศให้แม่นยำมากขึ้น ในการศึกษาครั้งนี้ได้ใช้แบบจำลองสภาพเชิงคณิตศาสตร์ Long-range Energy Alternative Planning Package (LEAP) ช่วยในการสร้างแบบจำลองสภาพในการพยากรณ์ ผลจากการพยากรณ์การใช้พลังงานระหว่างปี พ.ศ. 2551-2573 (ค.ศ. 2008-2030) แล้วนำไปสู่การวิเคราะห์ถึงเทคโนโลยีการผลิตไฟฟ้าที่ต้องใช้ โดยแบบจำลองแบบ Dynamic Programming ที่ชื่อว่า Wien Automatic System Planning Package (WASP) และหารูปแบบการจัดใช้พลังงานของประเทศจากแบบจำลอง Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) ผลการศึกษาร่วมถึงการใช้พลังงานอย่างมีประสิทธิภาพ และการใช้พลังงานหมุนเวียน ภายใต้การรับอนุญาตผลิตไฟฟ้า และการจำกัดการปล่อยก๊าซ CO_2

ผลการวิเคราะห์หาตัวชี้วัดพลังงาน (Energy intensity) ของภาคบุนเดส์ ภาคอุตสาหกรรม และภาคครัวเรือนโดยใช้วิธี Divisia method พบว่าค่าตัวชี้วัดพลังงานและแนวโน้มในภาคเศรษฐกิจที่ศึกษาสามารถนำมาพยากรณ์การใช้พลังงานในอนาคตได้ ในปี ค.ศ. 2007 การใช้พลังงานรวมของภาคบุนเดส์ ภาคอุตสาหกรรม และภาคครัวเรือนและอาคาร เท่ากับ 55,479 ktoe และจะเพิ่มเป็น 165,103 ktoe ในปี ค.ศ. 2030 และความต้องการไฟฟ้ารวมเพิ่มจาก 139,789 GWh ในปี ค.ศ. 2007 เป็น 369,516 GWh ในปี ค.ศ. 2030 เมื่อใช้มาตรการภายใต้การรับอนุญาตผลิตไฟฟ้า WASP model ได้เลือกโรงไฟฟ้าที่สะอาดมากขึ้น ปล่อยก๊าซ CO_2 น้อยลง แต่ราคาไฟฟ้าก็สูงขึ้น ผลจากการศึกษาครั้งนี้ พบว่าระหว่างปี ค.ศ. 2008-2030 นั้น ต้นทุนเฉลี่ยของการผลิตไฟฟ้าเท่ากับ 4.48, 4.55, 4.61, 4.83 และ 5.32 USc/kWh สำหรับกรณี BAU และกรณีภายใต้การรับอนุญาต 25\$/tC, 50\$/tC, 100\$/tC และ 200\$/tC ตามลำดับ และการปล่อยก๊าซ CO_2 ลดลงจาก 284 ล้านตันในกรณี BAU เหลือ 280, 273, 268 และ 255 ล้านตันตามลำดับ

การศึกษาการจำกัดการปล่อย CO_2 โดย MESSAGE model ในภาคอุตสาหกรรมและบุนเดส์พบว่า ในภาคอุตสาหกรรม มาตรการประหยัดพลังงานมีความคุ้มค่าและช่วยลดการใช้พลังงานของประเทศ รวมถึงลดการปล่อย CO_2 แต่การจำกัดการปล่อย CO_2 ทำให้ระบบผลิตในอุตสาหกรรมใช้พลังงานทดแทนมากขึ้น ซึ่งเทคโนโลยีพลังงานทดแทนเหล่านี้ ยังมีประสิทธิภาพดีจึงทำให้การใช้พลังงานของประเทศจะมากขึ้น สำหรับการขนส่งทางถนนพบว่า การจำกัดการปล่อย CO_2 ไม่ทำให้การใช้พลังงานเปลี่ยนแปลง ผลการวิจัยนี้ยังแสดงถึงมาตรการด้านประหยัดพลังงานสามารถใช้บังคับได้กับทุกภาคเศรษฐกิจและมีความคุ้มค่า แต่มาตรการด้านการลดก๊าซ CO_2 เช่นภายใต้การรับอนุญาต และการจำกัดการปล่อยก๊าซ CO_2 นั้นมีผลที่แตกต่างกัน ซึ่งการจะนำไปกำหนดเป็นนโยบายจึงต้องมีการศึกษาเชิงลึกต่อไป

Abstract

In this research report, the energy intensity indicators during 1990-2007 in the transport, industrial, and household sectors are analyzed and decomposed by using the “Divisia method”. Results of decomposition reveal the effects from the changes from structural effect and energy intensity effect. Results of energy intensities are used to forecast long-term energy consumption in the transport, industrial, and household sectors by using a simulation model called “Long-term Energy Alternatives Planning Package (LEAP)”. Thailand’s energy scenarios from LEAP model are generated during 2008-2030. Then total national energy consumption could be divided into electricity and thermal usages. The total electricity demand in Thailand is determined during 2008-2030. A dynamic programming model called “Wien Automatic System Planning Package (WASP)” is used to develop “Power Development Plan (PDP)” for power capacity expansion planning during 2008-2030 under “least-cost planning (LCP)” concept. In the LCP of Thailand, “carbon tax” measures are introduced to WASP to investigate changes in electricity generation cost, generation mix, renewable power generation, and CO₂ mitigation in the power sector. Finally an optimization model called “Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE)” is used to investigate the policy measures on energy efficiency improvement, alternative energy resources, and CO₂ limitation in the transport and industrial sectors.

Decomposition of energy consumption in the transport, industrial, and household sectors during 1990-2007 results in energy intensity trends, which are used to forecast energy demand in 2030. Results show that national energy consumption will increase from 55,479 ktoe in 2007 to 165, 103 ktoe in 2030, and total electricity demand will increase from 139,789 GWh in 2007 to 369,516 GWh in 2030. In the business-as-usual (BAU), fossil fuels dominate the generation mix and coal is the majority in additional plants. When carbon taxes are included in the price of fossil fuels, the least-cost model selects cleaner power generation technologies resulting in less CO₂ emissions; but generation costs increase from 4.48 USc/kWh in the BAU to 4.55, 4.61, 4.83 and 5.32 USc/kWh for the carbon tax rates of 25, 50, 100 and 200US\$/tC, respectively. CO₂ emissions from power generation decrease from 284 million tonne CO₂ in the BAU to 280, 273, 268, and 255 millions tonne CO₂ for the carbon tax rates of 25, 50, 100 and 200US\$/tC, respectively.

Results indicated that energy efficiency improvement is the cost effective while some renewable energy and alternative energy sources more expensive when compared to the traditional energy sources. The traditional resources planning considers only supply side options to meet the demand while in the “Integrated Resources Planning (IRP)” both supply and demand side options are considered simultaneously as well as the external costs such as costs of CO₂ emissions. Results also reveal that energy efficiency improvement is the common measure among economic sectors; but national policy measures on implementation of carbon tax and CO₂ reduction target should be investigated by sectoral approach.

Keywords: Energy intensity, Structural effect, Efficiency improvement, Least-cost planning, optimization, Carbon tax, CO₂ mitigation, GHG reduction target.