

สัญญาเลขที่ RMU5180030

รายงานวิจัยฉบับสมบูรณ์

โครงการ

(ภาษาไทย) การศึกษาปัจจัยการทำนายโรคระดับโมเลกุลของโรคมะเร็งปอดชนิดอะดีโนคาร์ซิโนมา

(ภาษาอังกฤษ) Molecular Prognostic and Predictive Factors in Lung Adenocarcinoma

ผศ.นพ.วีโรจน์ ศรีอุพารพวงศ์
หน่วยมะเร็งวิทยา ภาควิชาอายุรศาสตร์
คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย
และสำนักงานคณะกรรมการการอุดมศึกษา
(ความเห็นในรายงานนี้เป็นของผู้วิจัย สาว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Project Code : RMU5180030

(รหัสโครงการ) RMU5180030

Project Title : Molecular Prognostic and Predictive Factors in Lung Adenocarcinoma

(ชื่อโครงการ) การศึกษาปัจจัยการทำนายโรคระดับโมเลกุลของโรคมะเร็งปอดชนิดอะดีโน carcino คาร์ซิโนมา

Investigator : Virote Sriuranpong

(ชื่อหัววิจัย) ผศ.นพ.วิโรจน์ ศรีอุพารพวงศ์

E-mail Address : vsmdcu40@gmail.com

Project Period : 3 yr 15 May 2008 – 14 May 2011

(ระยะเวลาโครงการ) 3 ปี 15 พฤษภาคม 2551 – 14 พฤษภาคม 2554

กิตติกรรมประกาศ

โครงการวิจัยต่างๆ จะไม่สามารถดำเนินไปได้ถ้าไม่ได้รับความร่วมมือและอนุเคราะห์จากหลาย ๆ ฝ่าย ผู้วิจัยขอขอบคุณคณาจารย์ร่วมวิจัยทุกท่านที่ได้ให้ความร่วมมือในโครงการวิจัยเป็นอย่างดี พญ.ชนิดา วินะยา弩ติคุณ ซึ่งได้ทุ่มเทศึกษาและทำงานวิจัยให้ลุล่วงซึ่งเป็นกำลังสำคัญของ โครงการวิจัย ศ.นพ.ดร.อภิวัฒน์ มุทิรังกูร ที่ได้ให้คำแนะนำช่วยเหลืออย่างดี ด้าน มะเร็ง วิทยาสมาคมที่ให้ความร่วมมือเข้าร่วมโครงการวิจัยสหสถาบัน แพทย์ พยานาล และเจ้าหน้าที่ ในหน่วยมะเร็งวิทยา หน่วยศัลยกรรมทรวงอก หน่วยรังสรักษาและมะเร็งวิทยา โรงพยาบาล จุฬาลงกรณ์ ที่ได้ช่วยประสานงานและร่วมดูแลผู้ป่วยโรคมะเร็งปอด ผู้ป่วยโรคมะเร็งปอดที่มา รับการรักษาที่หน่วยมะเร็งวิทยา โรงพยาบาลจุฬาลงกรณ์ และครอบครัวของผู้วิจัยที่ได้เสียสละ และอุดหนักับการทำงานของผู้วิจัยตลอดเวลา

Abstract

Background: Recent advance in treatment of lung cancer especially the targeted therapy with tyrosine kinase inhibitors (TKI) leading to the better outcomes. One of the most important biomarker for adenocarcinoma is the somatic mutation of epidermal growth factor receptor (EGFR) which serves as both predictive and prognostic biomarker. However, the EGFR mutation has been reported in approximately 30 percent of adenocarcinoma in general population. Thus searching for additional biomarkers for lung cancer is needed. Our projects aim to characterize both EGFR biomarker in a comprehensive manner and search for novel plasma biomarker of lung cancer.

Materials and Methods: Comprehensive pattern of EGFR mutation will be performed by mutation analysis of exon 18 to exon 21 of EGFR from 450 tumor tissue collections through 17 cancer centers throughout the country. Pattern of mutation will be analyzed in correlation to several clinical parameter including outcomes derived from TKI treatment. For plasma biomarker study, a quantitative PCR-based assay was used to determine the level of SHP1P2 methylation in plasma. Blood samples were prospectively collected from 58 patients with advanced NSCLC, 20 patients with early NSCLC and 52 healthy volunteers.

Results: Comprehensive pattern of EGFR mutation is currently ongoing. Expected results will be available within one year. In the plasma biomarker study, most of the healthy volunteers had undetectable levels of SHP1P2 methylation. In contrast, median level of SHP1P2 methylation in pre-treatment patients with advanced NSCLC was 770 pg/ml [0–26500 pg/ml] which was significantly higher than those of healthy controls. Furthermore, the advanced NSCLC patients who had baseline level of SHP1P2 methylation of less than 700 pg/ml had higher median progression-free survival (5.2 vs. 2.6 months, $p = 0.009$) and median overall survival (12.6 vs. 7.6 months, $p = 0.01$) when compared to those who had SHP1P2 methylation greater than 700 pg/ml. From the multivariate analysis, levels of SHP1P2 methylation were significantly associated with the survival rates in advanced NSCLC patients.

Conclusion: Circulating SHP1P2 methylation is a potential non-invasive biomarker for NSCLC. This biomarker may be used to develop risk-adaptive treatment for patients with lung cancer.

Keywords : Lung cancer, adenocarcinoma, biomarkers

บทคัดย่อ

ที่มา: ปัจจุบันมีความก้าวหน้าในการพัฒนาวิธีการรักษาโรคมะเร็งปอดอย่างมาก โดยเฉพาะการพัฒนาการรักษาแบบมุ่งเป้า (targeted therapy) มีการนำยาต้านไทโรซีนไคเคนสماใช้รักษาผู้ป่วยมะเร็งปอดระยะแพร่กระจาย โดยผลการศึกษาพบว่าได้ผลดีโดยเฉพาะเมื่อผู้ป่วยเป็นโรคมะเร็งปอดชนิดอัลตราโนโนมาร์ซิโนมาที่มีการกลยุทธ์ของยีน EGFR ในเนื้อเยื่อมะเร็ง นอกจากนี้ยังพบว่าการกลยุทธ์ของ EGFR เป็นหัวใจสำคัญในการทำนายโรคและปัจจัยทำนายผลการตอบสนองต่อยาต้านไทโรซีนไคเคนส์อย่างไรก็ตาม ในผู้ป่วยโรคมะเร็งทั่วไปจะสามารถตรวจพบการกลยุทธ์ของ EGFR ได้เพียง 30 เปอร์เซนต์โดยประมาณ ดังนั้นจึงมีความจำเป็นอย่างยิ่งที่ต้องศึกษาเพิ่มเติมเกี่ยวกับ EGFR และตรวจหาปัจจัยทำนายโรคระดับโมเลกุล อีกที่เป็นประโยชน์ต่อการรักษาโรคมะเร็งปอด โครงการวิจัยนี้แบ่งเป็นการศึกษาแบบแผนของการกลยุทธ์ของ EGFR ในโรคมะเร็งปอดของประเทศไทย และโครงการศึกษาหาปัจจัยทำนายโรคระดับโมเลกุลในพลาสมารูปแบบผู้ป่วย

วัสดุและวิธีการทดลอง: โครงการศึกษาแบบแผนการกลยุทธ์ของ EGFR ในโรคมะเร็งปอดจะกระทำโดยการตรวจหาการกลยุทธ์ของ EGFR บริเวณ exon 18 ถึง exon 21 โดยรวมรวมตัวอย่างเนื้อเยื่อมะเร็งของผู้ป่วยโรคมะเร็งปอดที่เคยได้รับยาต้านไทโรซีนไคเคนจำนวน 450 รายจากโรงพยาบาลทั่วประเทศไทย 17 แห่ง โดยจะเก็บข้อมูลทางคลินิกเพื่อวิเคราะห์หาความสัมพันธ์กับแบบแผนการกลยุทธ์ของ EGFR สำหรับโครงการตรวจหาปัจจัยทำนายโรคในพลาสม่า ใช้เทคนิคการตรวจด้วยพีซีอาร์เพื่อวัดระดับของ การเติมหมู่เมทิลบน SHP1P2 ในพลาสมารูปแบบผู้ป่วย โดยเก็บตัวอย่างเลือดจากผู้ป่วยโรคมะเร็งปอดระยะแพร่กระจาย 58 ราย มะเร็งปอดระยะที่ผ่าตัดได้ 20 ราย และอาสาสมัครที่ไม่มีโรคอีก 52 ราย

ผลการศึกษา: โครงการศึกษาแบบแผนการกลยุทธ์ของ EGFR ยังอยู่ในระหว่างดำเนินการ โครงการตรวจหาปัจจัยทำนายโรคในพลาสมารูปแบบ SHP1P2 ที่มีเมทิลเลชั่น มีค่าสูงในผู้ป่วยโรคมะเร็งปอดระยะแพร่กระจาย 770 pg/ml [0–26500 pg/ml] โดยสูงกว่าอาสาสมัครปกติที่ไม่สามารถวัดระดับได้อย่างมีนัยสำคัญ ในผู้ป่วยมะเร็งปอดที่มีระดับ SHP1P2 ที่มีเมทิลเลชั่นน้อยกว่า 700 pg/ml จะมีค่ามัธยฐานของการปลดการกำเริบของโรค (5.2 เที่ยบกับ 2.6 เดือน, $p = 0.009$) และ ค่ามัธยฐานของการมีชีวิตรอด (12.6 เที่ยบกับ 7.6 เดือน, $p =$

0.01) สูงกว่ากลุ่มที่มีค่าสูง 700 pg/ml เมื่อวิเคราะห์ด้วยวิธี multivariate ระดับของ SHP1P2 ที่มีเมทิลเลชั่น มีความสัมพันธ์กับอัตราการอญ่ารอดอย่างมีนัยสำคัญทางสถิติ

บทสรุป: การตรวจระดับของ SHP1P2 ที่มีเมทิลเลชั่นในพลาสม่าเป็นวิธีการตรวจปัจจัยระดับโมเลกุลที่สะดวกและไม่อันตรายในการทำนายลึงการพยากรณ์โรค และอาจนำไปประกอบการตัดสินใจในการเลือกรักษาโรคมะเร็งปอดระยะแพร่กระจายในอนาคต

1. บทนำ

โรคมะเร็งปอดเป็นโรคมะเร็งที่มีความรุนแรงมากที่สุดชนิดหนึ่ง แนวทางการรักษาโรคมะเร็งปอดใหม่เป็นการรักษาอย่างมีเป้าหมายเฉพาะ (targeted therapy) ทำให้การรักษามีประสิทธิภาพดีขึ้นและมีผลข้างเคียงลดลง เช่น ยาต้าน tyrosine kinases ที่ออกฤทธิ์ต้าน EGFR ที่มีการนำมาใช้รักษาโรคมะเร็งปอด จากการศึกษาที่ผ่านมาของคณะผู้วิจัยพบว่าผู้ป่วยโรคมะเร็งปอดในประเทศไทยชนิด adenocarcinoma มีอุบัติการณ์ของการกลยุทธ์ของ egfr สูงถึงมากกว่า 50% ซึ่งสอดคล้องกับการเป็นปัจจัยหนึ่งที่กำหนดการตอบสนองต่อยาต้าน tyrosine kinases แต่ผู้ป่วยมะเร็งปอดชนิด adenocarcinoma อีกจำนวนมากที่ไม่ตอบสนองต่อยาต้าน tyrosine kinases หรือเกิดการต้านทานอย่างหลัง ซึ่งยังไม่ทราบแน่ชัดถึงปัจจัยระดับโมเลกุลที่เป็นตัวกำหนดการทำนายโรคหรือการตอบสนองต่อยาเคมีบำบัดอื่น

2. วัตถุประสงค์ของโครงการ

- 2.1. เพื่อค้นหาปัจจัยในการทำนายโรคอื่นนอกจากการกลยุทธ์ของยีน EGFR ของเซลล์เนื้อเยื่อและสารพันธุกรรมในพลาสมารูปแบบผู้ป่วยมะเร็งปอดชนิด adenocarcinoma
- 2.2. เพื่อศึกษาการประยุกต์ใช้ของ การตรวจหาการกลยุทธ์ของยีน EGFR จาก DNA ที่ได้จาก plasma ผู้ป่วยโรคมะเร็งปอดชนิด adenocarcinoma
- 2.3. เพื่อพัฒนาเซลล์สายพันธุ์มะเร็งปอดจากผู้ป่วย adenocarcinoma เพื่อใช้ศึกษาลักษณะมะเร็งในเชิงเปรียบเทียบระหว่างเซลล์ที่มีการกลยุทธ์และไม่มีการกลยุทธ์ของ egfr

3. วิธีการทดลอง

- 3.1. โครงการตรวจหาสภาวะเหนือพันธุกรรมของ promoter 2 ของ *SHP1* ในพลาสมารูปแบบผู้ป่วยโรคมะเร็งปอด รายละเอียดในเอกสารแนบ revised manuscript submitted to Journal of Thoracic Oncology
- 3.2. โครงการศึกษาแบบแผนการกลยุทธ์ของเอพิเดอร์มอลิโกรทแฟคเตอร์รีเซปเตอร์ และการตอบสนองต่อการรักษาในมะเร็งปอดชนิดอะดีโนкар์ซิโนมา คณะผู้วิจัยจะทำ

การคัดเลือกตัวอย่างจากผู้ป่วยโรคมะเร็งปอดที่เข้ารับการตรวจรักษาในโรงพยาบาล
จำนวน 17 แห่งที่เข้าร่วมการวิจัยทั่วประเทศ โดยมีเกณฑ์การคัดเลือกดังต่อไปนี้

3.2.1. เกณฑ์การคัดเลือกเข้า (inclusion criteria)

ผู้ป่วยได้รับการวินิจฉัยว่าเป็นโรคมะเร็งปอดลุกลามระยะ III B ที่มีมะเร็งลุกลามมี
น้ำในเยื่อหุ้มปอด หรือระยะ IV หรือมะเร็งที่กลับเป็นช้าและไม่สามารถรักษาด้วย
การผ่าตัดหรือฉายรังสีได้

ผู้ป่วยได้รับการรักษาด้วยยาต้าน tyrosine kinase ในการรักษาโรคมะเร็งปอด
โดยไม่จำกัดลำดับสูตรของการรักษา

ในกรณีที่สามารถติดตามผู้ป่วยได้ ผู้ป่วยให้ความยินยอมเข้าร่วมการวิจัย โดย
ยินยอมให้ตรวจชิ้นเนื้อและหรือตรวจเลือดเพิ่มเติม และให้เก็บข้อมูลทางคลินิก
เกี่ยวกับผลการรักษา หรือได้รับอนุมัติเพื่อเก็บข้อมูลจากสถาบันที่เข้าร่วมการ
วิจัยในกรณีที่ติดตามผู้ป่วยไม่ได้

มีชิ้นเนื้อยื่อมะเร็งปอดทางพยาธิที่ได้จากการผ่าตัดหรือการตัดชิ้นเนื้อจากการ
ส่องกล้องหรือวิธีอื่นที่ให้ผลชิ้นเนื้อเพียงพอต่อการตรวจเพิ่มเติมในข้อ 7.2 โดย
ลักษณะทางพยาธิวิทยาเป็นชนิด adenocarcinoma โดยมีจำนวนเซลล์มะเร็งใน
ตัวอย่างเนื้อยื่อมะเร็งน้อยกว่าพื้นที่ประมาณ 5 mm²

3.2.2. เกณฑ์การคัดเลือกออก (exclusion criteria)

ผู้ป่วยได้รับการวินิจฉัยว่าเป็น non-small cell carcinoma ชนิดอื่นนอกจาก
adenocarcinoma อาทิเช่น squamous cell carcinoma, large cell carcinoma,
non-small cell lung cancer NOS, mixed type

ผู้ป่วยได้รับการวินิจฉัยว่าเป็นมะเร็งอวัยวะอื่นยกเว้น basal cell carcinoma หรือ
squamous cell carcinoma ของผิวหนัง carcinoma in situ ของปากมดลูก
ภายในระยะเวลา 5 ปีก่อนหรือหลังการวินิจฉัยโรคมะเร็งปอด

3.2.3. การศึกษาหาแบบแผนการกลยุทธ์ของ egfr จากตัวอย่างมะเร็งปอด จาก ตัวอย่างชิ้นเนื้อทางพยาธิจากผู้ป่วยที่ได้ผ่านเกณฑ์คัดเลือกจากข้อ 3.2.1 และ 3.2.2 พยาธิแพทย์จะวินิจฉัย ตัดชิ้นเนื้อ และกำหนดขอบเขตของก้อนมะเร็ง โดย

เลือกบริเวณที่มีเซลล์มะเร็งในก้อนมะเร็งเป็นจำนวนไม่น้อยกว่า 70% ของพื้นที่ และนำตัวอย่างดังกล่าวมาคัดเลือกเซลล์ระดับจุลภาค (microdissection) เนื้อเยื่อที่ถูกตัดแยกจะนำมาสักด NA และนำไปขยายบริมาณโดยวิธี polymerase chain reaction (PCR) โดยศึกษาการกลยยพันธุ์ของ egfr ด้วยวิธี quantitative PCR ด้วยเทคนิค high resolution melting curve ร่วมกับการตรวจสำดับเบสด้วยวิธี pyrosequencing ของ exon 19 และ 21 กรณีที่ไม่พบการกลยยพันธุ์ของ exon 19 หรือ 21 จะทำการตรวจเพิ่มเติมสำหรับ exon 18 และ 20 เพิ่มเติม

3.2.4. การเก็บข้อมูลทางคลินิกที่เกี่ยวข้องกับผลการรักษา การศึกษาจะติดตามเก็บข้อมูลทางคลินิกของผู้ป่วย ได้แก่ ข้อมูลพื้นฐาน (demographic data) วันที่ได้รับการวินิจฉัย ข้อมูลการใช้ยาเคมีบำบัดและยาต้าน tyrosine kinases รวมถึงระยะเวลาที่รักษา ผลการตอบสนองสูงสุด วันที่มีการกำเริบมากขึ้นของโรค วันที่ผู้ป่วยเสียชีวิต หรือวันที่ติดตามการรักษาเป็นวันสุดท้าย ทั้งนี้ การเก็บข้อมูลทั้งหมดเป็นการติดตามข้อมูลของการดูแลรักษาโดยแพทย์ผู้วิจัย โดยไม่มีการส่งข้อมูลการศึกษาหากการกลยยพันธุ์ของ egfr ให้แพทย์ผู้รักษาผู้ป่วยทราบล่วงหน้าเพื่อให้การดูแลรักษาเป็นไปตามมาตรฐานที่มีอยู่ในขณะทำการศึกษา และไม่ให้กระบวนการศึกษามีผลต่อการตัดสินใจของแพทย์ผู้ดูแลรักษา การวิเคราะห์ข้อมูลจะกระทำในรูปแบบเชิงพรรณนา (descriptive study)

3.2.5. การศึกษาวิเคราะห์หาความคุ้มค่าทางเศรษฐศาสตร์ จากข้อมูลที่ได้จากการศึกษาในข้อ 7.1-7.3 จะนำไปวิเคราะห์เพื่อประมาณการข้อมูลค่าใช้จ่ายและประโยชน์ที่ได้รับ โดยคำนึงถึงผลกระทบประโยชน์ที่ได้รับเบริยบเทียบระหว่างการเลือกใช้ยาโดยใช้เพียงข้อมูลทางคลินิกเป็นปัจจัยในการเลือกผู้ป่วยเพื่อทำการรักษาด้วยยาต้าน tyrosine kinases และ การเลือกใช้โดยมีปัจจัยทางด้านผลการวิเคราะห์ทางชีวโมเลกุลถึงการกลยยพันธุ์ของ egfr ร่วมด้วย

3.2.6. การคำนวณขนาดตัวอย่างในการวิจัย เนื่องจากยังไม่มีการเก็บข้อมูลในระดับประเทคโนโลยีต่ำ ครอบคลุมมาก่อน และการศึกษาเป็นการวิเคราะห์จากข้อมูลเชิงพรรณนา (analysis of descriptive data) ตัวอย่างของการวิจัยจึงคำนวณจากวัตถุประสงค์หลัก เพื่อประมาณค่าความซุกการกลยยพันธุ์ โดยใช้ผลการศึกษา ก่อนหน้านี้ของผู้วิจัยซึ่งพบว่าความซุก 57% ต้องการขนาดตัวอย่างเท่ากับ 400 ราย เพื่อให้สามารถประมาณในประชากรได้ผิดพลาดไม่เกิน 5% ด้วยความ

เชื่อมั่น 95% และเป็นตัวแทนของข้อมูลทั้งประเทศ โดยประมาณการความถ้วนเหล่านี้ในการตรวจหาการกลับพันธุ์ของ egfr ไว้ที่ 20% คิดเป็นจำนวนผู้ป่วย

3.3. โครงการสร้างเซลล์สายพันธุ์มะเร็งปอดชนิด adenocarcinoma ในผู้ป่วยที่มีการกระจายของโรคมะเร็งไปที่เยื่อหุ้มปอด ทำให้มีน้ำในเยื่อหุ้มปอดซึ่งมีเซลล์มะเร็งอยู่ด้วย เป็นภาวะที่เหมาะสมที่จะนำมาทำเซลล์สายพันธุ์มะเร็งปอด โดยเบื้องต้นจะทำการเลี้ยงอยู่ในภาวะปราศจากซีรัมเพื่อให้เซลล์ปรับสภาพ จากนั้นนำมาเพาะเลี้ยงในมีเดียที่มีซีรัมเซลล์สายพันธุ์ที่ได้จะนำมาตรวจสอบเบื้องต้นถึงลักษณะพื้นฐานบางประการโดยเฉพาะการกลับพันธุ์ของ EGFR, K-ras เซลล์สายพันธุ์ที่ได้จะนำไปศึกษาต่อด้วย gene expression profiling ด้วย microarray technology เพื่อให้ได้แคนต์ตาลอกของยีนที่เป็น markers ของเซลล์มะเร็งปอดในแต่ละกลุ่มเพื่อการศึกษาต่อเนื่องต่อไป

4. ผลการทดลอง

4.1. โครงการตรวจหาสภาวะเหนือพันธุกรรมของ promoter 2 ของ *SHP1* ในพลาสมาของผู้ป่วยโรคมะเร็งปอด โปรดดูรายละเอียดในเอกสารแนบ revised manuscript submitted to Journal of Thoracic Oncology

4.2. โครงการการศึกษาแบบแผนการกลับพันธุ์ของเอพิเดอร์มอลิกราฟแฟคเตอร์รีเซ็บเตอร์ และการตอบสนองต่อการรักษาในมะเร็งปอดชนิดอะดีโนคาร์ซิโนมา

ปัจจุบันอยู่ในระหว่างดำเนินการ โดยมีหน่วยงานที่เข้าร่วมโครงการวิจัยดังต่อไปนี้

ลำดับ ที่	โรงพยาบาล	ผู้จัดหลัก	จำนวนผู้ป่วยที่เข้าร่วม
1	โรงพยาบาลจุฬาลงกรณ์	นพ.วิโรจน์ ศรีอุพารพวงศ์	50
2	โรงพยาบาลศิริราช	นพ.วิเชียร ศรีมนินทร์นิมิต	50
3	โรงพยาบาลรามาธิบดี	นพ.เอกภพ สิริชัยนันท์	50
4	โรงพยาบาลราชวิถี	พญ.สุดสาท เลาหวินิจ	50
5	โรงพยาบาลพระมงกุฎเกล้า	นพ.กสานต์ สีตلامณ์	30
6	โรงพยาบาลภูมิพลอดุลยเดช	นพ.ฉัตรชัย คุวัฒน์เพศala	15
7	โรงพยาบาลสมเด็จพระปีนกเกล้า	นพ.จตุรงค์ ตันติเมืองคลสุข	15
8	โรงพยาบาลวชิรพยาบาล	นพ.ชาญยุทธ บันติทิวาณวงศ์	10
9	สถาบันมะเร็งแห่งชาติ	นพ.วิชิต อาการน์วิรัตน์	30

10	ศูนย์มะเร็งลำปาง	พญ.สิริกุล ศรฤทธิชิงชัย	10
11	ศูนย์มะเร็งอุตตรธานี	พญ.กฤตยา ชนาครีจันทร์	10
12	โรงพยาบาลศูนย์ขอนแก่น	พญ.ปาริชาต พงษ์ไทย	10
13	โรงพยาบาลศรีนครินทร์ ขอนแก่น	พญ.อี้อมแม่ สุขประเสริฐ	20
14	ศูนย์มะเร็งลพบุรี	นพ.ปิติ พรประเสริฐสุข	20
15	โรงพยาบาลพระปักเกล้า จันทบุรี	นพ.ธีรยุทธ นัมคณิสราณ์	20
16	โรงพยาบาลศูนย์สุราษฎร์ธานี	นพ.พิสิทธิ์ สุวรรณประทีป	10
17	โรงพยาบาลสงขลานครินทร์	พญ.ภัทรพิมพ์ สรรพวีรวงศ์	50

รวมจำนวนผู้ป่วยและชื่นเนื้อที่คาดว่าจะได้จำนวน 450 ราย ขณะนี้ได้รับอนุมัติให้ดำเนินงานวิจัยจากคณะกรรมการพิจารณาจริยธรรมในงานวิจัยของสถาบันต่าง ๆ แล้ว คาดว่าจะดำเนินการแล้วเสร็จในเดือนพฤษภาคม 2555

4.3. โครงการสร้างเซลล์สายพันธุ์มะเร็งปอดชนิด adenocarcinoma

ปัจจุบันการดำเนินงานวิจัยยังไม่ประสบความสำเร็จ ตัวอย่างเนื้อยื่นมะเร็งปอดที่ได้สามารถเพาะเลี้ยงได้เพียง 1-3 passages ไม่สามารถพัฒนาเพาะเลี้ยงเซลล์สายพันธุ์โรคมะเร็งปอดได้

5. สรุปและวิจารณ์ผลการทดลอง

5.1. โครงการตรวจหาสภาวะหน่อพันธุกรรมของ promoter 2 ของ SHP1 ในพลาสม่าของผู้ป่วยโรคมะเร็งปอด

โปรดดูรายละเอียดในเอกสารแนบ revised manuscript submitted to Journal of Thoracic Oncology

5.2. โครงการการศึกษาแบบแผนการกลยุทธ์ของเอพิเดอร์มอลิโกรทแฟคเตอร์ซึ่งเป็นต่อร์และการตอบสนองต่อการรักษาในมะเร็งปอดชนิดอะดีโนคาร์ซิโนมา

โครงการอยู่ในระหว่างดำเนินการ

5.3. โครงการสร้างเซลล์สายพันธุ์มะเร็งปอดชนิด adenocarcinoma

โครงการดำเนินการไม่สำเร็จ

6. ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

6.1. โครงการตรวจหาสภาวะเหนือพันธุกรรมของ promoter 2 ของ *SHP1* ในพลาสมาของผู้ป่วยโรคมะเร็งปอด

ผู้วิจัยจะขยายงานวิจัยเพื่อประเมินความเป็นไปได้ของการนำการวัดระดับ methylation ของ promoter 2 ของ *SHP1* เพื่อใช้ในการศึกษาทำนายผลโรคมะเร็งปอด และศึกษาในการประเมินระยะของโรคโดยใช้การตรวจหารอยโรคในต่อมน้ำเหลืองของผู้ป่วยโรคมะเร็งปอดที่ได้รับการผ่าตัดเพื่อเปรียบเทียบการประเมินระยะโรคในต่อมน้ำเหลืองด้วยวิธีการวัดระดับ methylation ของ promoter 2 ของ *SHP1* กับการตรวจทางพยาธิวิทยา

6.2. โครงการการศึกษาแบบแผนการกลยุทธ์ของเอพิเดอร์มอลกราฟแฟคเตอร์รีเซปเตอร์ และการตอบสนองต่อการรักษาในมะเร็งปอดชนิดอะดีโนคาร์ซิโนมา

โครงการดำเนินได้ล่าช้ากว่าที่ประมาณไว้เนื่องจากเป็นการศึกษาหลายสถาบัน ทำให้มีความล่าช้าในขั้นตอนดำเนินงาน อย่างไรก็ตาม โครงการได้เริ่มเปิดดำเนินงานและได้รับความร่วมมือจากมะเร็งวิทยาสมาคมเป็นอย่างดีในขณะนี้ คาดว่าจะสามารถดำเนินงานให้สำเร็จลุล่วงไปได้

6.3. โครงการสร้างเซลล์สายพันธุ์มะเร็งปอดชนิด adenocarcinoma

ทางผู้วิจัยมีข้อจำกัดทางด้านเทคนิคการเพาะเลี้ยงเซลล์สายพันธุ์ จำเป็นอย่างยิ่งที่จะต้องพึ่งการเรียนรู้จากผู้ชำนาญในด้านนี้ ขณะนี้ได้มีการประสานงานกับทาง อ.ภก.ปิติ จันทร์รัชติ ซึ่งเป็นผู้มีประสบการณ์การทำงานวิจัยเพาะเลี้ยงเซลล์ปฐมภูมิมาก่อน คาดว่าจะสามารถสร้างเซลล์สายพันธุ์มะเร็งปอดได้ในที่สุด

7. Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

3.1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) พร้อมแจ้งสถานะของการตีพิมพ์ เช่น submitted, accepted, in press, published)

Epithelial-specific methylation marker, a potential plasma biomarker in advanced non-small cell lung cancer. Chanida Vinayanuwattikun, M.D.;virote sriurangpong, M.D. Ph.D.;Suepong Tanasanvimon, M.D.;Poonchavist Chantranuwat, M.D.;Apiwat Mutirangura, M.D., Ph.D. Submitted to J Thoracic Oncol, under 2nd & final revision

3.2. การนำผลงานวิจัยไปใช้ประโยชน์

7.2.1. เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/บุคคลทั่วไป)

ผลการศึกษาอาจนำไปใช้พัฒนาเป็นวิธีการตรวจเพื่อบอก prognosis ของโรคมะเร็งปอดที่มีความสะดวกในการตรวจ เนื่องจากใช้สิ่งส่งตรวจเป็นพลาสม่าจากผู้ป่วยซึ่งได้จากการเจาะเลือด มีความเสี่ยงต่อผู้ป่วยน้อย และอาจประยุกต์ใช้เพื่อตรวจในโรคมะเร็งชนิดอื่น ๆ ได้อีก

7.2.2. เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับหรือวิธีทำงาน)

ไม่มี

7.2.3. เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)

อาจเป็นที่สนใจต่อกลุ่มวิจัยการศึกษา biomarker ในโรคมะเร็ง

7.2.4. เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)

โครงการวิจัยได้ผลลัพธ์เป็นนักวิจัยระดับปริญญาเอก พญ.ชนิดา วินะยานุ วัตติคุณ

3.3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุม วิชาการ หนังสือ การจดสิทธิบัตร)

7.3.1. Detection of aberrant SHP-1 promoter 2 methylation, an implication in advanced non-small cell lung cancer. Chanida Vinayanuwattikun,

Virote Sriuranpong, Apiwat Mutirangura. Presented in Annual Meeting of American Society of Clinical Oncology 2010, Chicago, IL, US.

7.3.2. The biology of circulating nucleic acid in non-small cell lung cancer and prognostic implication. Chanida Vinayanuwattikun, Virote Sriuranpong, Apiwat Mutirangura. Poster presentation in Annual Meeting of American Association for Cancer Research 2011, Orlando, FL, US.

Virote

From: em.jto.0.231c5e.e1d53332@editorialmanager.com on behalf of Journal of Thoracic Oncology [thoraciconcology@earthlink.net]
Sent: 18 ພຶສພາ 2554 18:52
To: Virote Sriuranpong
Subject: JTO Decision

CC: jetti@njhealth.org, dgbeer@umich.edu

May 18, 2011

RE: JTO-D-10-00979R2 , entitled "Epithelial-specific methylation marker, a potential plasma biomarker in advanced non-small cell lung cancer"

Dear Dr. Sriuranpong,

I am pleased to inform you that your paper has been found acceptable for publication pending minor revision. I anticipate that you will easily be able to answer the further criticisms of the reviewer in a satisfactory manner. I will verify that this has been done upon receipt of the revised manuscript. Please find the comments of the reviewer listed below.

Please include the following materials when you submit your revision:

Copyright transfer and financial disclosure forms signed by all authors, scanned and uploaded with the revision.

High resolution figures in either .tif or .eps format with a resolution of at least 300 dpi.

An itemized, point-by-point response to the comments of the reviewer. (Label file "Response to Reviewers")

One version of the revised manuscript that includes continuous line and page numbers; these numbers should be used in the "Response to Reviewers" to indicate where specific changes have been made in response to the editorial feedback and review. This version should also include "highlighting" in the manuscript to highlight new material. This feature can be found on the formatting toolbar in Microsoft under highlight. (Label file "Highlighted Version")

Finally, please include a version of the manuscript without highlighting and line numbers. (Label file "Revised Version")

The revisions should be completed by Aug 16, 2011 to avoid being considered as a new submission.

To submit a revision, go to <http://jto.edmgr.com/> and log in as an Author. You will see a menu item called "Submission Needing Revision." Please click on this item to obtain your submission record and begin the revision process.

Your username is: virote_s
Your password is: sriuranpo543544

With Kind Regards,

Dr. David G. Beer
Associate Editor
Journal of Thoracic Oncology

ภาคผนวก 2. Accepted manuscript to Journal of Thoracic Oncology

Title

Epithelial-specific methylation marker, a potential plasma biomarker in advanced non-small cell lung cancer

Authors

Vinayanuwattikun Chanida M.D.^{1,2}

Sriuranpong Virote M.D., Ph.D.²

Tanasanvimon Suepong M.D.²

Chantranuwat Poonchavist M.D.³

Mutirangura Apiwat M.D., Ph.D.⁴

Authors' affiliations

Inter-Department Program of Biomedical Sciences, Faculty of Graduate School,
Chulalongkorn University1, Division of Medical Oncology2, Department of Medicine,
Department of Pathology3, Center of Excellence in Molecular Genetics of Cancer and
Human Diseases, Department of Anatomy4, Faculty of Medicine, Chulalongkorn
University and The King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand.

Corresponding Author

Sriuranpong Virote

Division of Medical Oncology, Dept. of Medicine

Faculty of Medicine, Chulalongkorn University &

The King Chulalongkorn Memorial Hospital

Bangkok, Thailand 10330.

Tel: +662-256-4533 Fax: +662-256-4534

Email: vsmdcu40@gmail.com

Acknowledgments

This project was financially supported by The Royal Golden Jubilee to C.V., The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) to C.V. and V.S., The Higher Education Research Promotion and National Research University Project of Thailand, Office of Higher Education Commission, The

Ratchadaphiseksomphot Endowment Fund [HR1162A93]) and MUATRF intermediate level researcher grant MRU5180030 to V.S. and MUA-TRF senior research scholar to A.M. from The Ministry of University Affairs and the Thailand Research Funds The authors thank the nursing staffs of medical oncology unit for blood samples collection from non-small lung cancer patients and Ms. Pornrutsami Jintaridh, Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, for providing valuable blood samples from healthy volunteers. Part of this work was presented at the 2010 ASCO meeting, 4–8 June 2010, Chicago, USA.

Title

Epithelial-specific methylation marker, a potential plasma biomarker in advanced non-small cell lung cancer

Abstract

Background: Under physiological conditions, leukocytes contribute to the majority of circulating DNA in plasma. Therefore, detection of Src homology-2-containing protein-tyrosine phosphatase 1 promoter 2 (SHP1P2) methylation in epithelial tumor-derived circulating nucleic acid may serve as a potential non-invasive biomarker for non-small cell lung cancer (NSCLC).

Materials and method: A quantitative PCR-based assay was used to determine the level of SHP1P2 methylation in plasma. Blood samples were prospectively collected from 58 patients with advanced NSCLC, 20 patients with early NSCLC and 52 healthy volunteers.

Results: Most of the healthy volunteers had undetectable levels of SHP1P2 methylation. In contrast, median level of SHP1P2 methylation in pre-treatment patients with advanced NSCLC was 770 pg ml^{-1} [$0\text{--}26500 \text{ pg ml}^{-1}$] which was significantly higher than those of healthy controls. Furthermore, the advanced NSCLC patients who had baseline level of SHP1P2 methylation of less than 700 pg ml^{-1} had higher median progression-free survival (5.2 vs. 2.6 months, $p = 0.009$) and median overall survival (12.6 vs. 7.6 months, $p = 0.01$) when compared to those who had SHP1P2 methylation greater than 700 pg ml^{-1} . From the multivariate analysis, levels of SHP1P2 methylation were significantly associated with the survival rates in advanced NSCLC patients.

Conclusion: Circulating SHP1P2 methylation is a potential non-invasive biomarker for NSCLC. This biomarker may be used to develop risk-adaptive treatment for patients with lung cancer.

Running title

Plasma SHP-1 promoter-2 methylation and lung cancer

Key words: SHP-1, methylation, biomarker, lung cancer

Introduction

Recently, it has been shown that extracellular, free-circulating nucleic acids in plasma and serum (CNAPS) is a valuable biomarker that can be used to detect the presence of several diseases such as cancer, cardiovascular disease, pulmonary thromboembolism, connective tissue disease, infections, and organ transplantation ¹⁻³. In patients with cancer, an ideal candidate for CNAPS biomarker should come from unique genetic sequences present in the tumor cells. For example, the presence of viral genetic material such as *Epstein-Barr* virus in a tumor tissue or blood from patients with nasopharyngeal carcinoma is important because these items can be used as a prognostic and treatment monitoring tool ¹¹⁻¹⁴. However, there are a few of these markers available and most of them are limited to a few viral-associated malignancies.

Examinations of the genetic and epigenetic alterations of CNAPS can also be used as a noninvasive tool to detect, monitor the outcome of a disease and assess the patient's response to treatment in non-small-cell lung cancer (NSCLC) ⁴⁻⁶. Even though these markers may have promising diagnostic and prognostic potentials in NSCLC patients, application of these biomarkers in the clinical setting has been limited because the prevalence of detection these genetic alterations are so variable and can range from 44 to 63% in the plasma ⁴⁻¹⁰. These percentages indicate that there is a need to find a more specific and sensitive biomarker that can accurately detect and predict the course of lung cancer as well as the patients' response to treatment.

As a result of this, we decided to search for a suitable candidate marker for NSCLC. We have previously reported discovering a unique epithelial-specific epigenetic marker found on Src homology-2-containing protein-tyrosine

phosphatase 1 (*SHP1*) gene that encodes for a non-receptor protein tyrosine phosphatase. Methylation of *SHP1* at the promoter-2 region (SHP1P2) is a tissue-specific methylation which has a role in determining the differential expression of *SHP1* between epithelial and hematopoietic cells ¹⁵. Methylation of SHP1P2 is ubiquitous in all epithelial cells but in normal hematopoietic cells, SHP1P2 is fully unmethylated ¹⁶. This type of tissue specific methylation profile may serve as a specific marker for epithelial malignancies in CNAPS because a significant proportion of circulating nucleic acids in human is derived from hematopoietic cells ¹⁷. Therefore we assessed the levels of methylated SHP1P2 and CNAPS in the plasma of patients with NSCLC to see if these biomarkers could be used as noninvasive diagnostic and prognostic tools. The results from this study will be extremely useful for physicians diagnosing and treating lung cancer as well as other types of cancer.

Materials and Methods

Study population

NSCLC patients who received treatment at the King Chulalongkorn Memorial Hospital were recruited into this study. Only patients with either a confirmed histological or cytological diagnosis were enrolled into the study. All advanced NSCLC patients were treated and managed according to the standards of local clinical practice.

In this study, age- and sex-matched healthy volunteers served as negative controls (Controls group) and were recruited from a Bangkok community. No one in the Controls had any significant medical condition. (Supplement table 3).

Written informed consents were obtained from all participants. The study was approved by the Ethics Committee of Faculty of Medicine, Chulalongkorn University.

Sample collection and DNA preparation

Blood specimens from all NSCLC patients were collected prior to receiving any treatment in EDTA tubes. Subsequent blood specimens were collected from

patients receiving chemotherapy on day 0 of the first and second cycle. Plasma was harvested after centrifugation and stored at -80°C until further analysis. DNA was extracted from 0.5 to 2 ml of plasma by using QIAamp blood minikit (Qiagen, Hilden, Germany), following the manufacturer's instructions. DNA was treated with sodium bisulfite using EZ DNA Methylation-GoldTM kit (Zymo Research, Orange, CA, US) before methylation assessment. After that, levels of CNAPS and SHP1P2 methylation were quantitated by quantitative PCR.

Quantitative analysis for circulating DNA level

Circulating DNA level was quantitated by using a real-time PCR by ABI Prism, 7500, Sequence Detection System with dual hybridization probe specific sequence for GAPDH (NC_000012). The PCR primers were designed as follows: 5'-CTA-CTC-TTT-CCA-CCC-TCG-GAG-T-3' (forward) and 5'-TGA-GGC-CCT-GCA-GCG-TAC-TC-3' (reverse). The dual hybridization probe sequence is TAMRA-5'-TTG-GGG-TCC-CAA-CGT-GCG-TCG-3'-VIC. Extracted leukocyte DNA from healthy subjects was used to generate the standard curve. Experiments were performed in duplicate. The threshold cycle of the unknown target sample was obtained with a relative amount of DNA in the experimental sample. The total level of circulating DNA was calculated by using the following equation $C=Q*V_{DNA}/V_{PCR} *V_{ext}$, where C = the target concentration in plasma (pg ml^{-1}), Q = the target quantity (pg) determined by a sequence detector in PCR, V_{DNA} = the total volume of DNA obtained after extraction, V_{PCR} = the volume of DNA used for PCR, and V_{ext} = the volume of the plasma used for DNA extraction.

Quantitative measurement of SHP1P2 methylation by methylation-specific primers polymerase chain reaction (MSP-PCR)

Methylation-specific primers polymerase chain reaction (MSP-PCR) and primers for SHP1P2 were used as previously described ¹⁶. Briefly, a duplex MSP-PCR was performed on bisulfite-treated DNA with the following oligonucleotides: 5'-TGT-GAA-CGT-TAT-TAT-AGT-ATA-GCG-3' (forward methylation), 5'-CCA-AAT-AAT-ACT-TCA-CGC-ATA-CG-3' (reverse methylation), 5'-GTG-AAT-GTT-ATTATA-GTA-TAG-TGT-TTG-G-3' (forward unmethylation) and 5'-TTC-ACA-CATACA-AAC-CCA-AAC-AAT-3' (reverse unmethylation). The PCR products for methylated and unmethylated alleles were electrophoresed, visualized, and quantitated by using Phosphorimager and Image Quant Software (GE healthcare Life Sciences). The SHP1P2 methylation index (MI) was calculated by the intensity of the methylated amplicon divided by the sum of all intensities (both methylated and unmethylated amplicons.)

Quantification of SHP1P2 methylation by using absolute quantitative analysis of methylated alleles (AQAMA)

The absolute quantitative analysis of methylated alleles (AQAMA) was performed as previously described ¹⁸. AQAMA with dual hybridization probe was used to accurately measure the level of SHP1P2 methylation in the plasma. All *SHP-1* bisulfite oligonucleotide sequences were derived from GenBank accession number U47924.1. Primers for *SHP-1* bisulfite were: 5'-GGT-GGA-GGA-GGG-AGA-GAT-GT-3' (forward) and 5'-AAC-ACA-TAT-ATA-CCT-TAC-ACA-CTC-CAA-A-3' (reverse). Methylation- and unmethylation-specific dual hybridization probe sequences were 5'-VIC-ACG-AAC-CCA-AAC-GAT-CCC-ACG-TAMRA-3' and 5'-FAM-CAC-ATA-CAA-ACC-CAA-ACA-ATC-CCA-CA-TAMRA-3', respectively. All PCRs were performed in duplicate. All PCR products were electrophoresed and visualized by using SYBR green.

The standard curves were generated from mixing various proportions of known methylated (HeLa) and unmethylated DNA (leukocyte) prior to the bisulfite modification. The amount of SHP1P2 methylation was calculated by using the following equation: Quantitative SHP1P2 = C* Methylation index, where C = the target concentration in plasma (pg ml⁻¹). Methylation index was calculated by using the following equation: Methylation index = $mSHP1P2 / (mSHP1P2 + uSHP1P2)$, where $mSHP1P2$ = the amount of methylated SHP1P2 and $uSHP1P2$ = the amount of unmethylated SHP1P2.

Statistical analysis

Mann-Whitney *U*-test was used to assess the difference between the non-parametric distributed variables. Most of the data were expressed in median unless otherwise indicated. χ^2 or Fisher's exact test was used to compare between categorical variables. The Pearson's correlation was used to assess the correlation between each variable. The receiver operator characteristic (ROC) curve was used to analyze the measurements of SHP1P2 methylation assays. The differences in the SHP1P2 methylation between baseline and follow-up samples were analyzed by using the Wilcoxon matched-pairs signed rank test. In a two-sided test, $p \leq 0.01$ was considered to be statistically significant. All statistical analyses were performed by using SPSS version 16.0 (SPSS Inc, Chicago, IL, US).

Kaplan-Meier method was used to analyze survival rates. Progression-free survival (PFS) was defined as the time interval between the first date of chemotherapy and date when tumor progression became evident whereas overall survival (OS) was defined as the time elapsed between start of treatment and death. Log-rank test was used to distinguish the differences between the survival curves. Cox proportional hazards' regression analysis was used to estimate univariate and multivariate hazard ratios for both PFS and OS.

Results

Study Population

A total of 58 patients with advanced NSCLC were enrolled into the study. The median age of these patients was 59 years. Majority of the patients were male (39/58, 67%) and had adenocarcinoma histology (45/58, 76%) (Table 1). All patients had platinum-based chemotherapy. 91% of the patients had a combination of chemotherapy with either gemcitabine (36%) or paclitaxel (55%). Only 9% of the patients were treated with one agent. All advanced NSCLC patients received treatment according to their physical status and age. Five patients prematurely stopped treatment after one cycle of chemotherapy; three refused to continue chemotherapy, one had progressed while the other one became severely hypersensitive to chemotherapy and had to stop treatment. All patients were included in the survival analysis. Data up to December 2009 showed that 46.6% of the patients were alive and 10.7% did not progress. The median follow-up time in this study was 7.2 months (range: 0.7–15.0 months). The median OS was 9.9 months (95% CI: 5.8–14.0 months) and the median PFS was 3.5 months (95% CI: 2.3–

4.7 months). Overall, our treatment results in patients with advanced NSCLC were consistent with other previously published reports^{19, 20}.

Reliability of absolute quantitative analysis of methylated alleles (AQAMA) in detecting methylated SHP1P2

The level of methylation on a target DNA sequence is usually measured with a semi-quantitative technique like the MSP-PCR. In order to be able to accurately quantitate a small amount of nucleic acid, target DNA in plasma, a more sensitive tool is needed. Hence in this study, we investigated the potential use of AQAMA-PCR with a dual hybridization probe to assess the amount of methylated alleles in the plasma. The assay was validated by comparing the measurements obtained from the semiquantitative MSP-PCR to the AQAMA-PCR by using a known set of concentrations of mixed SHP1P2 methylated samples. The AQAMA-PCR technique showed a near-perfect linearity of the known samples with Pearson's correlation coefficient of $r^2 = 0.99$ whereas the MSP-PCR had $r^2 = 0.78$ (Figure 1). This indicated that AQAMA-PCR was precise in its detection of SHP1P2 methylation in the plasma. Thus, we decided to use AQAMA-PCR to determine the levels of methylated SHP1P2 in patients with advanced NSCLC.

Pretreatment levels of SHP1P2 methylation in patients with advanced NSCLC and the Controls

Levels of SHP1P2 methylation in patients with advanced NSCLC and the Controls are shown in Supplement table 4. When we used the AQAMA-PCR, the levels of SHP1P2 methylation in most of the Controls were undetectable (20 of 52 [38%] subjects; detectable range: 0–200 pg ml⁻¹) (Supplement table 5). In contrast, the levels of SHP1P2 methylation in most of the patients with advanced NSCLC (35 of 38 [92%]) were significantly higher with a median of 770 pg ml⁻¹ [0–26500 pg ml⁻¹; $p < 0.001$]. The different levels of methylation were independent of age, sex, and smoking status (Supplement figure 5 and 6). These results were consistent with the differential plasma-derived SHP1P2 methylation levels between advanced NSCLC and the Controls stemmed from the contribution of circulating DNA by cancer cells.

We further explored the possibility of using the level of SHP1P2 methylation as a diagnostic marker for lung cancer. The area under the ROC curve was 0.93.

Significant differences were seen between advanced NSCLC patients and the controls (95% confidence interval (CI): 0.86–0.99). The cut-off level of SHP1P2 methylation at 35 pg ml^{-1} was a suitable level to distinguish between the advanced NSCLC and the Controls with a sensitivity of 89.5% and specificity of 90.4% (Supplement table 6 and figure 7). When we used SHP1P2 MI, our results were similar to the findings mentioned above. Patients with advanced NSCLC had a median SHP1P2 MI of 17% (range 0–62.6%) whereas in the Controls, this continued to be undetectable. This data is further supported by the amount of circulating tumor DNA detected; the total circulating nucleic acid level in patients with advanced NSCLC was significantly higher compared to the controls. However, according to our ROC analysis, the sensitivity of our finding was modest at 0.69 (Figure 2) which was consistent with a less power of discrimination of total circulating DNA among these conditions.

This indicated that SHP1P2 methylation in circulating DNA may be a potential advanced lung cancer biomarker.

Levels of SHP1P2 methylation in chemotherapy-naïve advanced NSCLC patients

We decided to investigate whether SHP1P2 methylation could be used to diagnose NSCLC. In order to do this, plasma from 58 advanced NSCLC patients was collected before receiving treatment. The median level of plasma SHP1P2 methylation in chemotherapy-naïve advanced NSCLC patients was 680 pg ml^{-1} (range: 0–28000 pg ml^{-1}). The levels of SHP1P2 methylation were not significantly correlated with other demographic variables such as sex, age, smoking status, histology and performance status (data not shown). Thus, SHP1P2 methylation can be used to detect patients with advanced NSCLC.

Prognostic factor of plasma SHP1P2 methylation in advanced NSCLC patients

Aside from its ability to diagnose patients with advanced NSCLC, we investigated whether SHP1P2 methylation could be used as a prognostic biomarker. The ROC curve analysis was used to predict the survival outcome in patients prior to receiving treatment. At a cut-off level of 700 pg ml^{-1} , SHP1P2 methylation could separate patients into two groups according to their OS, above or below median OS, with a sensitivity of 68% and a specificity of 70%.

This cut-off level of 700 pg ml^{-1} was used to analyze PFS and OS. Most of the chemotherapy-naïve advanced NSCLC patients had baseline plasma SHP1P2 methylation levels of $\geq 700 \text{ pg ml}^{-1}$. According to our survival analyses, in advanced

NSCLC patients with baseline plasma SHP1P2 methylation levels of $\geq 700 \text{ pg ml}^{-1}$, the PFS was 2.6 months (95% CI: 1.3–3.8) and OS was 7.6 months (95% CI: 3.5–11.6). As for patients with $< 700 \text{ pg ml}^{-1}$ SHP1P2 methylation levels, the PFS was 5.2 months (95% CI: 2.7–7.7; $p = 0.009$) and OS was 12.6 months (95% CI: 10.7–14.4; $p = 0.01$) (Figure 3).

Moreover, according to the univariate analysis in advanced NSCLC patients, baseline SHP1P2 methylation level was the only independent prognostic factor for both PFS and OS with $p = 0.01$ and 0.01, respectively, whereas age, sex, smoking status, **performance status** and chemotherapy regimen were not a significant prognostic factor. When multivariate analysis was used, the level of SHP1P2 at 700 pg ml^{-1} was again an important prognostic factor. SHP1P2 levels of $\geq 700 \text{ pg ml}^{-1}$ had a hazard ratio of 1.482 (95% CI: 1.096–2.006) and 2.710 (95% CI: 1.209–6.581) for disease progression and death, respectively (Table 2). These results indicated that the pretreatment level of SHP1P2 methylation in plasma was an important prognostic factor in advanced NSCLC patients.

Response to chemotherapy treatment according to the levels of plasma SHP1P2 methylation

Conventionally, a few cycles of chemotherapy are required before physicians can evaluate the patients' response to treatment. As a result of this, we decided to see if the levels of SHP1P2 methylation can be used to monitor the response to chemotherapy. In order to do this, an additional follow-up blood sample was collected from each patient before the second cycle of chemotherapy treatment. A total of 42 follow-up blood samples were collected. There were no significant correlation between the changes of plasma SHP1P2 methylation levels and the response of lung cancer to chemotherapy treatment. Additional analyses showed that the changes of SHP1P2 methylation levels were not correlated to PFS ($p = 0.133$) and OS outcomes ($p = 0.995$).

Levels of plasma SHP1P2 methylation in patients with early stage NSCLC

We also investigated the levels of plasma SHP1P2 methylation in 20 resectable NSCLC (Table 3) patients. The levels of SHP1P2 methylation in patients with stages I–III NSCLC were higher than the Controls with a median of 1249 pg ml^{-1} (range 358–10488 pg ml^{-1}). This finding is consistent with the results seen in patients with advanced NSCLC. On the other hand, the total circulating DNA levels in plasma from

patients with early stages of NSCLC were comparable to the Controls (Figure 4). This indicated that levels of circulating DNA were not as sensitive and specific when compared to SHP1P2. Hence only levels of SHP1P2 methylation can be used to distinguish patients with early stages of NSCLC from healthy controls.

Discussion

In many circumstances, the nucleic material derived from cancer cells may significantly contribute to CNAPS²¹⁻²³. In patients with internal organ malignancies such as lung cancer, access to the tumor tissue is generally difficult and hence will affect the diagnosis of the patient. Therefore, the use of CNAPS is very attractive because of its convenient, noninvasive access to specimens. Here, we have demonstrated that quantitative evaluation of the level of the tissue-specific epigenetic modification at the proximal 5'-element of SHP1 in plasma may serve as a potential biomarker to diagnose and prognosis lung cancer. The level of SHP1P2 methylation is significantly higher in plasma derived from patients with various stages of NSCLC compared to the healthy controls. Moreover, the high level of SHP1P2 methylation in pretreatment patients displayed a significant correlation to survival outcome and served as an independent prognostic factor in advanced NSCLC.

Several attempts in searching for a useful biomarker in lung cancer have demonstrated its sensitivity and specificity to be moderate⁴⁻⁶. Detection rates of hypermethylated promoters of tumor suppressor genes such as *p16*, *death-associated protein kinase*, *glutathione S-transferase P1*, and *DNA repair gene O⁶-methylguanine-DNA-methyltransferase* are approximately 50% in CNAPS⁵. An additional study using six genetic markers such as tumor suppressor gene (*BLU*), *cadherin 13 gene* (*CDH13*), the *fragile histidine triad gene* (*FHIT*), the *cell cycle control gene p16*, the *retinoic acid receptor β gene* (*RARβ*), and the *Ras association domain family 1 gene* (*RASSF1A*) displayed 63% rate of detection of promoter hypermethylation of these genetic markers in CNAPS⁶. Our current report revealed high sensitivity and specificity of 89.5 and 90.4% of SHP1P2 methylation in plasma, respectively, in distinguishing lung cancer from healthy controls. Our results yielded better detection rates in CNAPS due to the fact that the methylation of SHP1P2 is exclusively found in epithelial cells and not in hematopoietic cells.

The amount of CNAPS is an indirect indicator of the tumor burden in cancer patients. The high levels of CNAPS may represent high tumor burden which can be associated with more tumor resistance and poorer treatment outcome. However,

our study could not demonstrate a good correlation between the changes of serially measured level of SHP1P2 methylation according to the treatment cycle and the clinical radiographic response to chemotherapy. One possible explanation is that the chemotherapy treatment may cause the release of tumor DNA into the circulation and interfere with the equilibrium of CNAPS. Furthermore, a larger cohort would be needed to adequately address these issues.

Under physiological conditions, the circulating nucleic acid can be detected at a low level and is predominately contributed from hematopoietic cells ¹⁷. Our data demonstrated that the detection of SHP1P2 methylation in plasma of lung cancer patients with the AQAMA-PCR is feasible and has a very high sensitivity. Its specificity was also obtained when we validated the assay. One of the most important factors is that SHP1P2 methylation is exclusively found in epithelial cancer cells and not in hematopoietic cells. It is interesting to further explore the potential application of using SHP1P2 methylation as a diagnostic or prognostic biomarker for other types of epithelial malignancies.

In conclusion, our study has demonstrated the potential use of measuring epithelial tissue specific epigenetic modification of SHP1P2 in CNAPS which may be used to support the diagnosis and predict the prognosis of NSCLC in advanced patients.

Acknowledgments

This project was financially supported by The Royal Golden Jubilee which was given to C.V., The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), The National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund [HR1162A(3)], MUA-TRF intermediate level researcher grant MRU5180030 and MUA-TRF senior research scholar from the Ministry of University Affairs and the Thailand Research Funds.

The authors would like to thank the nursing staffs of the medical oncology unit for collecting blood samples from patients and Ms. Pornrutsami Jintaridth, Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, for providing us with blood samples from healthy volunteers.

References

1. Butt AN, Swaminathan R. Overview of circulating nucleic acids in plasma/serum. *Annals of the New York Academy of Sciences* 2008;1137:236-242.

2. Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy. *Cancer research* 1977;37:646-650.
3. Tsang JC, Lo YM. Circulating nucleic acids in plasma/serum. *Pathology* 2007;39:197-207.
4. Usadel H, Brabender J, Danenberg KD, et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. *Cancer research* 2002;62:371-375.
5. Esteller M, Sanchez-Cespedes M, Rosell R, et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. *Cancer research* 1999;59:67-70.
6. Hsu HS, Chen TP, Hung CH, et al. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. *Cancer* 2007;110:2019-2026.
7. Gautschi O, Bigosch C, Huegli B, et al. Circulating deoxyribonucleic Acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy. *J Clin Oncol* 2004;22:4157-4164.
8. Sozzi G, Conte D, Mariani L, et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. *Cancer research* 2001;61:4675-4678.
9. Sozzi G, Conte D, Leon M, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. *J Clin Oncol* 2003;21:3902-3908.
10. Andriani F, Conte D, Mastrangelo T, et al. Detecting lung cancer in plasma with the use of multiple genetic markers. *International journal of cancer* 2004;108:91-96.
11. Mutirangura A, Pornthanakasem W, Theamboonlers A, et al. Epstein-Barr viral DNA in serum of patients with nasopharyngeal carcinoma. *Clin Cancer Res* 1998;4:665-669.
12. Chan KC, Leung SF, Yeung SW, et al. Persistent aberrations in circulating DNA integrity after radiotherapy are associated with poor prognosis in nasopharyngeal carcinoma patients. *Clin Cancer Res* 2008;14:4141-4145.
13. Leung SF, Zee B, Ma BB, et al. Plasma Epstein-Barr viral deoxyribonucleic acid quantitation complements tumor-node-metastasis staging prognostication in nasopharyngeal carcinoma. *J Clin Oncol* 2006;24:5414-5418.

14. Lin JC, Wang WY, Chen KY, et al. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. *The New England journal of medicine* 2004;350:2461-2470.
15. Banville D, Stocco R, Shen SH. Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. *Genomics* 1995;27:165-173.
16. Ruchusatsawat K, Wongpiyabovorn J, Shuangshoti S, et al. SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. *Journal of molecular medicine (Berlin, Germany)* 2006;84:175-182.
17. Lui YY, Chik KW, Chiu RW, et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. *Clinical chemistry* 2002;48:421-427.
18. de Maat MF, Umetani N, Sunami E, et al. Assessment of methylation events during colorectal tumor progression by absolute quantitative analysis of methylated alleles. *Mol Cancer Res* 2007;5:461-471.
19. Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. *The New England journal of medicine* 2002;346:92-98.
20. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. *The New England journal of medicine* 2006;355:2542-2550.
21. Stroun M, Anker P, Maurice P, et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. *Oncology* 1989;46:318-322.
22. Anker P, Mulcahy H, Chen XQ, et al. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. *Cancer Metastasis Rev* 1999;18:65-73.
23. Anker P, Mulcahy H, Stroun M. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies? *Int J Cancer* 2003;103:149-152.

Table and legends

Table 1 Demographic data and treatments of advanced NSCLC patients

Characteristic	No of Patients (%)
NSCLC patients	58
Age, in years	
Median	59 years
Range	37-83 years
Sex	
Female	19 (33)
Male	39 (67)
Histology	
Adenocarcinoma	45 (76)
Squamous cell carcinoma	6 (11)
Large cell carcinoma	2 (4)
Other	5 (9)
Smoking status	
Smoker	33 (57)
Non-smoker	25 (43)
ECOG performance status	
ECOG 0	6 (10)
ECOG 1	47 (81)
ECOG 2	5 (9)
First-line chemotherapy	
Paclitaxel/carboplatin	32 (55)
Gemcitabine/carboplatin	21 (36)
Carboplatin	5 (9)
Total regimen of treatment	
< 2 regimen	35 (60)
≥ 2 regimen	23 (40)

Table 2 Results of survival analysis using Cox-proportional Hazard Model in advanced NSCLC patients. Clinical parameters were correlated with the levels of SHP1P2 methylation.

Abbreviation: CI, confidence interval, ND \pm not determine, *, statistical significance.

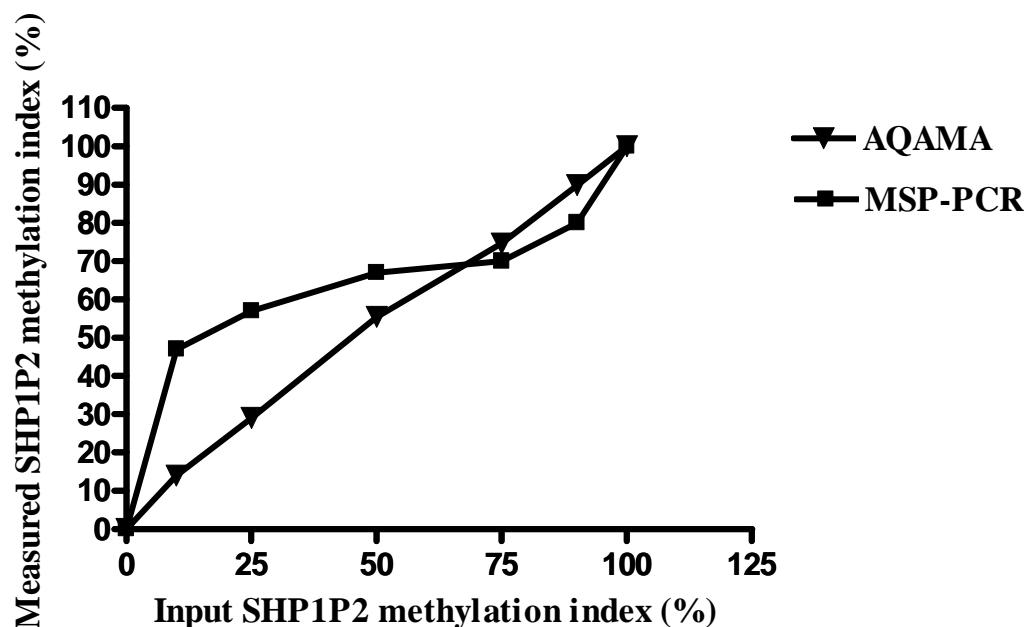
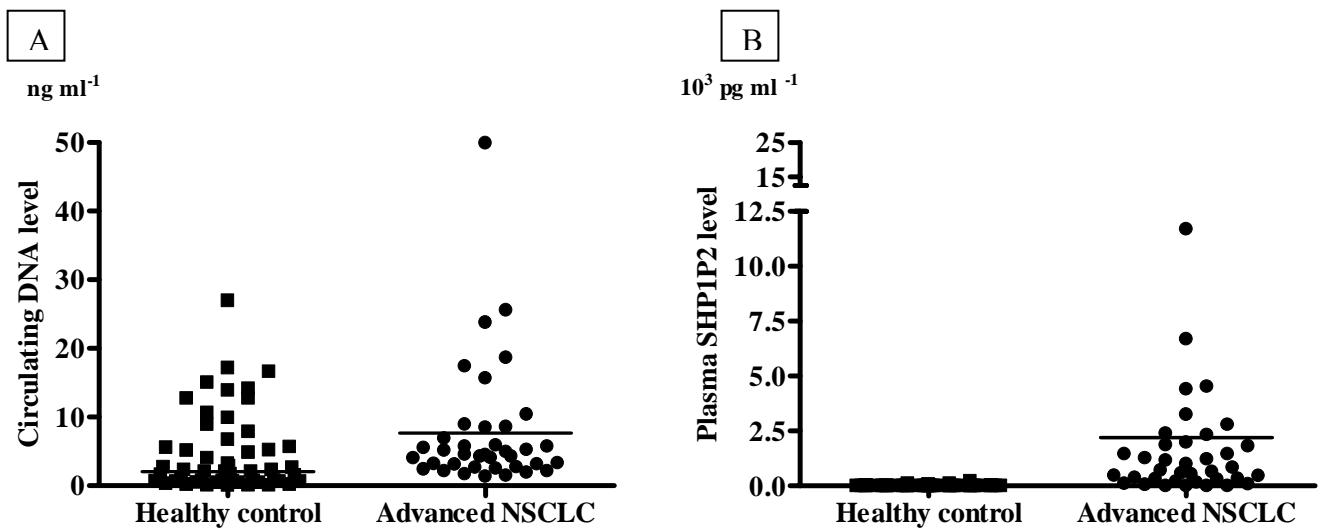

Factor	Univariate Hazard ratio of death (95% CI)	p-value	Multivariate Hazard ratio of death (95% CI)	p-value	Univariate Hazard ratio of recurrence (95% CI)	p-value	Multivariate Hazard ratio of recurrence (95% CI)	p-value
Sex male vs. female	1.24 (0.56-2.72)	0.58	0.64 (0.19-2.12)	0.47	1.02 (0.75-1.39)	0.86	0.98 (0.63-1.52)	0.94
Age <60 vs. >60 yr	1.12 (0.54-2.30)	0.75	1.38 (0.65-2.95)	0.39	1.03 (0.77-1.37)	0.82	1.00 (0.75-1.35)	0.96
Smoking status yes vs. no	1.52 (0.72-3.21)	0.26	1.98 (0.57-6.84)	0.27	1.00 (0.75-1.33)	0.97	0.99 (0.64-1.52)	0.96
ECOG 0 or 1 vs. 2	0.79 (0.23-2.65)	0.70	0.34 (0.07-1.55)	0.16	0.72 (0.27-1.88)	0.50	0.67 (0.20-2.24)	0.52
Regimen Rx < 2 vs. ≥ 2	2.58 (1.13-5.91)	0.02	2.8 (1.19-6.58)	0.01	ND		ND	
SHP1P2 methylation ≥ 700 vs. < 700 pg ml $^{-1}$	2.36 (1.22-5.64)	0.01*	2.71 (1.20-6.07)	0.01*	1.47 (1.09-1.97)	0.01*	1.48 (1.09-2.00)	0.01*

Table 3 Patient baseline characteristics of resectable NSCLC


Characteristic	No of Patients (%)
NSCLC patients	20
Age, in years	
Median	61 years
Range	45-83 years
Sex	
Female	4 (20)
Male	16 (80)
Histology	
Adenocarcinoma	14 (70)
Squamous cell carcinoma	4 (20)
Large cell carcinoma	1 (5)
Other	1 (5)
Smoking status	
Smoker	12 (60)
Non-smoker	8 (40)

Staging UICC	
Stage I	13 (65)
Stage II	-
Stage III	7 (35)
Adjuvant chemotherapy	
Yes	6 (30)
No	14 (70)
Adjuvant radiation	
Yes	4 (20)
No	16 (80)

Figures and legends

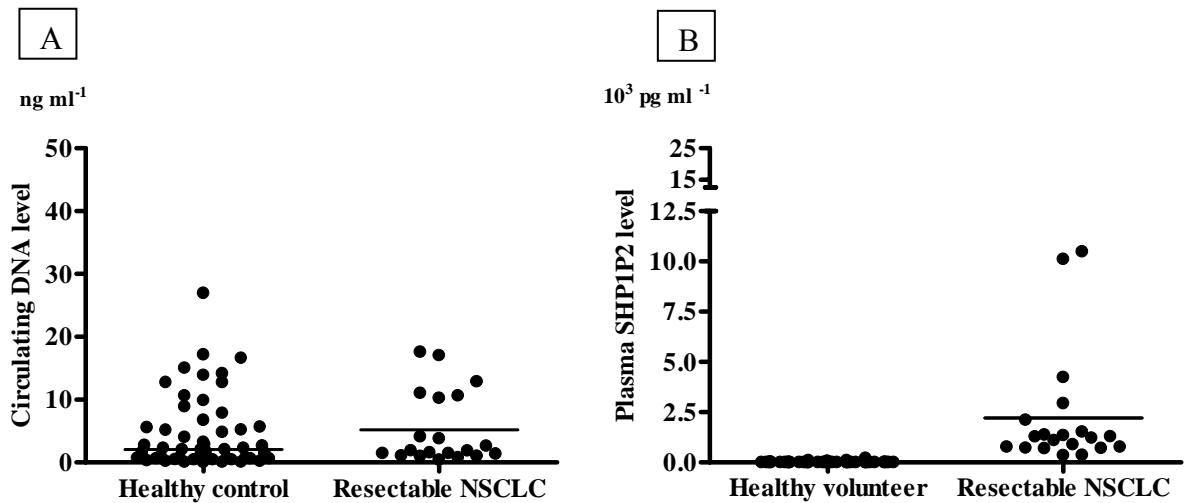

Figure 1 Comparisons between absolute quantitative analysis of methylated alleles (AQAMA) PCR and the conventional methylation specific primers (MSP) PCR. AQAMA-PCR is more accurate when compared to MSP-PCR. Standard samples were generated by mixing known fully methylated SHP1P2 DNA extracted from Hela cells and known fully unmethylated SHP1P2 DNA from leukocytes. This standard was used to compare the performances of MSP-PCR with that of AQAMA-PCR. Results of AQAMA-PCR (solid line, filled triangle) showed a near-perfect correlation to the known concentrations of the mixed samples compared to the semi-quantitative measurement of MSP-PCR (solid line, filled square).

Figure 2 The levels of SHP1P2 methylation showed better diagnostic capability in patients with advanced NSCLC compared to the total circulating DNA. Pretreatment plasma samples from 52 healthy controls and 38 advanced NSCLC were collected. Both circulating DNA (panel A) and SHP1P2 methylation (panel B) in advanced NSCLC patients were significantly higher than those of the healthy controls. However, the levels of SHP1P2 methylation in most of the healthy controls were undetectable in contrast to the variable levels of circulating DNA of the healthy controls.

Γ

Figure 3 Levels of plasma SHP1P2 methylation was used to predict the survival rates in patients with advanced NSCLC. Results from Kaplan-Meier survival curve analysis for progression-free survival (PFS) (panel A) and overall survival (OS) (panel B) in patients with advanced NSCLC showed that patients with low levels $< 700 \text{ pg ml}^{-1}$ (solid line, filled circle) had better PFS and OS compared to those with high levels $\geq 700 \text{ pg ml}^{-1}$ of SHP1P2 methylation (solid line, filled triangle).

Figure 4 Plasma levels of SHP1P2 methylation was detected in 20 resectable NSCLC patients with stages I-III NSCLC. Total amount of circulating DNA (panel A) and SHP1P2 methylation (panel B) were higher in patients with early stages of NSCLC compared to the healthy controls. Most of the controls from panel B had undetectable SHP1P2 levels when compared to those that were detectable (panel B) and had a wider distribution of circulating DNA (panel A).

Supplementary data

Table 4. Characteristics of patients with advanced NSCLC and sex- and age-matched healthy controls

Baseline characteristic	No. of case	No. of control
Age		
< 60 yr	21	27
>60 yr	17	25
Sex		
Male	20	23
Female	18	29
Smoking status		
Smoking	19	0
Non-smoker	19	52
All		

Table 5. Comparative analysis of the detection rate of any level of plasma SHP1P2 methylation in patients with advanced NSCLC and sex- and age-matched healthy controls.

Group	Healthy controls	Advanced NSCLC	p-value
SHP1P2 methylation any level	20	35	<i>p</i> <0.001
No aberrant detection	33	3	
Total	52	38	

Table 6. ROC analysis of the sensitivity and specificity of the level of plasma SHP1P2 methylation as a means of distinguishing patients with advanced NSCLC from sex- and age-matched healthy controls.

Plasma SHP1P2 methylation cut-off (pg ml-1)	Sensitivity	Specificity
0.4	92.1%	71.2%
12.8	89.5%	86.5%
35.9	89.5%	90.4%
99.2	84.2%	94.2%
114.8	84.2%	96.2%

Γ

Figure 5 Levels of plasma SHP1P2 methylation were not correlated to the age of the Controls by the Pearson correlative coefficient ($R^2 = 0.0018$).

Γ

Figure 6 Levels of plasma SHP1P2 in the Controls were not associated with sex ($p = 0.3$).

Γ

Figure 7. Plotted ROC curve used to establish the cut-off level for plasma SHP1P2 methylation

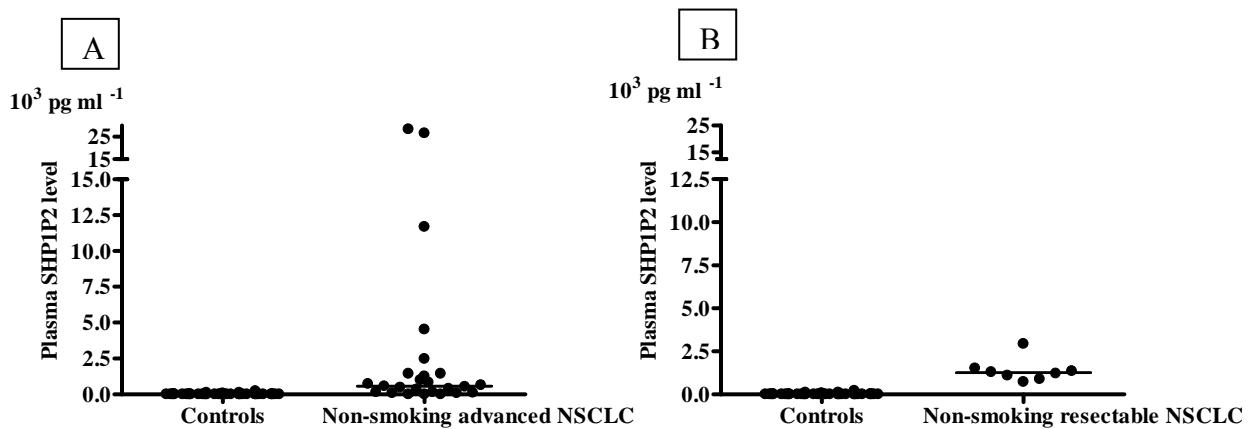


Figure 8. Comparison of the differences in levels of SHP1P2 methylation between the healthy controls and the non-smoking subset of patients with advanced NSCLC (panel A) or resectable NSCLC (panel B). The level of SHP1P2 methylation remained significantly higher and exhibited a wider range of distribution ($p<0.001$), similar to that of the whole population of NSCLC patients. These results indicate that smoking status has no significant influence on SHP1P2 methylation.