

รายงานวิจัยฉบับสมบูรณ์

โครงการ:- Urokinase plasminogen activator ในมะเร็งท่อน้ำดื่

นางสาว ตวงพร สุทธิพงษ์ชัย ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สัญญาเลขที่ RMU5180039

รายงานวิจัยฉบับสมบูรณ์

โครงการ:- Urokinase plasminogen activator ในมะเร็งท่อน้ำดื่

นางสาว ตวงพร สุทธิพงษ์ชัย ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดย สำนักงานคณะกรรมการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการนี้ได้รับทุนสนับสนุนจากทุนเพิ่มขีดความสามารถด้านการวิจัยของอาจารย์รุ่นกลางใน สถาบันอุดมศึกษา ตามโครงการความร่วมมือระหว่าง สำนักงานคณะกรรมการการอุดมศึกษาไทยกับ สำนักงานกองทุนสนับสนุนการวิจัย (สกว)

ผู้วิจัยขอขอบคุณผู้มีอุปการคุณที่ได้ให้ความช่วยเหลือในด้านต่างๆ ดังนี้

รศ.คร.บรรจบ ศรีภา ภาควิชาพยาธิวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น สำหรับการ ชี้แนะ และ ความช่วยเหลือในการฝึกนักศึกษาในด้าน immunohistochemistry การวิเคราะห์เปรียบเทียบกับ ข้อมูลทางคลินิก รวมทั้ง ตัวอย่างเนื้อเยื่อมะเร็งท่อน้ำดี ข้อมูลทางคลินิกผู้ป่วย และเซลล์มะเร็งท่อน้ำดี

ศ. คร.นพ. อภิวัฒน์ มุทิรางกูร ภาควิชากายวิภาคศาสตร์ คณะแพทยศาสตร์ จุฬาลงกรณมหาวิทยาลัย สำหรับการชี้แนะ และความช่วยเหลือในการฝึกนักศึกษาในด้านตรวจสอบสถานภาพการเติมหมู่เมทิวให้กับ DNA

รศ.คร. ศราวุฒิ จิตรภักดี ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิคล สำหรับคำแนะนำใน ด้าน Chromatin immunoprecipitation

รศ.คร. ฤทัยวรรณ โต๊ะทอง ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล สำหรับคำแนะนำ และข้อเสนอแนะต่างๆ

ศ. ดร. ประพนธ์ วิไลรัตน์ ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล สำหรับ ข้อเสนอแนะต่างๆและคำชี้แนะในการปรับปรุง manuscript

ศ.คร. สถิตย์ สิริสิงห ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิคล สำหรับเซลล์มะเร็ง ท่อน้ำคื และ Prof. G. Alpini จาก Department of Medicine, The Texas A&M University System Health Science Center สำหรับเซลล์ท่อน้ำคื

นักศึกษา สำหรับความทุ่มเทในการทำการทดลอง ดังมีรายนามดังนี้ นาย สิทธิสม วิจิตรบูรพัฒน์ นางสาว ปาริฉัตร ธัมมรติ ดร.อาภาภรณ์ เมนะคงคา และ นายอรุณา ประสพธรรม

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล และ ศูนย์เครื่องมือรวมคณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล สำหรับความอนุเคราะห์ในการใช้เครื่องมือและสถานที่ รหัสโครงการ: RMU5180039

ชื่อโครงการ: Urokinase plasminogen activator ในมะเร็งท่อน้ำดี

ชื่อนักวิจัย: นางสาว ตวงพร สุทธิพงษ์ชัย ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address : sctsc@mahidol.ac.th ระยะเวลาโครงการ : 3 ปี (2551-2554)

บทคัดย่อ

มะเร็งท่อน้ำดีพบมากในภาคตะวันออกเฉียงเหนือของประเทศไทย โดยเฉพาะบริเวณที่พบการ ระบาดของพยาธิใบไม้ในตับสูง การแพร่กระจายของมะเร็งเป็นสาเหตุสำคัญของการเสียชีวิตของผู้ป่วย เอ็นใชม์ urokinase plasminogen activator (uPA) เป็นปัจจัยหนึ่งของการแพร่กระจายของมะเร็ง ผลการย้อม ี ชิ้นเนื้อมะเร็งท่อน้ำดีพบว่า เนื้อเยื่อตัวอย่างส่วนใหญ่มี uPA และพบความสัมพันธ์กับการบุกรุก การ แพร่กระจาย และอัตราการเสียชีวิตของผู้ป่วย จาก zymogram พบว่าเซลล์มะเร็งท่อน้ำดีทั้งสามชนิคมี uPA ที่ หลั่งออกมา และที่จับอยู่ที่ผิวเซลล์ ในขณะที่ไม่พบ uPA ในเซลล์ท่อน้ำดีปกติ (H69) ในเซลล์มะเร็งท่อน้ำดี ทั้งสามชนิด พบว่าเอ็นไซม์ uPA มากใน KKU-M213, HuCCA-1 และ น้อยใน KKU-100 ในเซลล์ KKU-100 ยังพบเอ็นไซม์ที่มีฤทธิ์กระตุ้นเอ็นไซม์ Plasminogen ที่ยังไม่ทราบชนิดอีกด้วย การยับยั้งฤทธิ์ของ uPA ในเซลล์ KKU-M213 ด้วยสารยับยั้ง uPA (4-Iodo-benzo[b]thiophene-2-carboxamidine, B428) สามารถลด ความสามารถในการบกรกของเซลล์มะเร็งได้ จากการศึกษาปริมาณ uPA mRNA ในเซลล์ต่างๆ และอัตรา การสลายของ mRNA พบว่ากลไกที่ทำให้เซลล์มีการแสดงออกของ uPA แตกต่างกัน ไม่ได้เกิดจากความ แตกต่างของการสลาย mRNA จึงน่าจะเกิดเนื่องจากความแตกต่างของอัตราการสร้าง mRNA หรือขั่นตอน ก่อนหน้านั้น อย่างไรก็ตาม จากการศึกษา DNA methylation บน uPA promoterและการจับกันระหว่าง uPA promoter กับ transcription factor NF-kB พบว่าทั้งสองไม่น่าจะเป็นกลไกที่ทำให้เซลล์มะเร็งท่อน้ำคีมีการ สร้าง uPA มากขึ้น การศึกษาวิถีการส่งสัญญาณในมะเร็งท่อน้ำคื โดยใช้ตัวยับยั้งต่อ p42/p44 MAPK, p38 MAPK, PI3K และ ErbB2 และ HGF ซึ่งเป็นตัวกระตุ้น HGF receptor พบว่าในเซลล์ KKU-M213 ควบคุม การแสดงออกของ uPA ผ่านทาง p42/p44 MAPK

โดยสรุป จากการพบความสัมพันธ์ระหว่างการแสดงออกของ uPA ในเนื้อเยื่อมะเร็งท่อน้ำดี กับการ บุกรุก การแพร่กระจาย และอัตราการเสียชีวิตของผู้ป่วย และ ความสำคัญของ uPA ต่อกระบวนการการบุก รุกของเซลล์มะเร็งนี้ ชี้แนะว่า uPA น่าจะเป็น marker ที่ใช้คาดการณ์ความรุนแรงของโรค และ น่าจะเป็น จุดเป้าหมายของยาในการยับยั้งการแพรกระจายและการบุกรุกของมะเร็งชนิดนี้ uPA ที่สูงขึ้นในเซลล์มะเร็ง ท่อน้ำดีน่าจะเกิดเนื่องจากมีการสร้าง uPA mRNA มากขึ้น ซึ่งกระบวนการนี้ถูกควบคุมอย่างน้อยโดย ERK pathway

Project Code: RMU5180039

Project Title: Urokinase plasminogen activator in cholangiocarcinoma

Investigator: Dr. Tuangporn Suthiphongchai Department of Biochemistry, Faculty of

Science, Mahidol University

E-mail Address: sctsc@mahidol.ac.th

Project Period: 3 years (2008-2011)

Abstract

Cholangiocarcinoma (CCA), a bile duct cancer, is the most abundant cancer in Northeast Thailand. Invasion and metastasis are a cause of death in the cancer patients. To invade, cancer cells secrete variety of proteases to degrade extracellular matrix and basement membrane barrier. The most important one is the urokinase-type plasminogen activator (uPA). In this study, uPA was expressed in most CCA tissues. The level of expression was correlated with invasion and metastasis of CCA patients but inversely correlated with patient longevity in a group of patients with small tumor size. Plasminogen gelatin zymography showed that secreted uPA and bound uPA were found in all CCA cell lines but not cholangiocytes, H69, with the levels being high in KKU-M213 and HuCCA-1 and low in KKU-100, respectively. Specific uPA inhibitor, 4-iodo-benzo[b]thiophene-2-carboxamidine (B428), diminished enzyme activity concommitant with the reduction of invasive ability of KKU-M213 cells indicating that uPA proteolytic activity is required for CCA cell invasion. Investigation of uPA mRNA level among cell lines and determination of mRNA stability indicated that the difference in uPA level among cell lines was due to the difference in uPA mRNA level which did not result from mRNA stability, thus it should be caused by the difference in transcription or upstream. Study of signal transduction regulating uPA mRNA showed that ErbB2, PI3K or p38 MAPK inhibitor or HGF did not significantly affect uPA secretion of KKU-M213 cells. On the contrary, MEK/ERK inhibitor, U0126, partially suppressed its expression. Thus uPA expression is partly regulated by MEK/ERK pathway.

In conclusion, the correlation between uPA expression and invasion, metastasis and survival of CCA patients, and its importance in CCA cell invasion suggested uPA as potential prognostic marker and therapeutic target for CCA. Up-regulation of uPA level in CCA cell, KKU-M213, resulted from increase mRNA synthesis which is partly regulated by ERK pathway.

สารบัญ

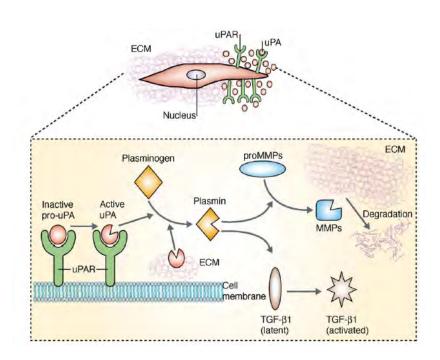
	หน้า
กิตติกรรมประกาศ	i
บทกัดย่อ	ii
บทนำ	1
วัตถุประสงค์ของโครงการ	4
วิธีการทดลอง	5
ผลการทดลอง	10
วิจารณ์และสรุปผลการทคลอง	24
อกสารอ้างอิง	26
ภาคผนวก	28

1. บทนำ

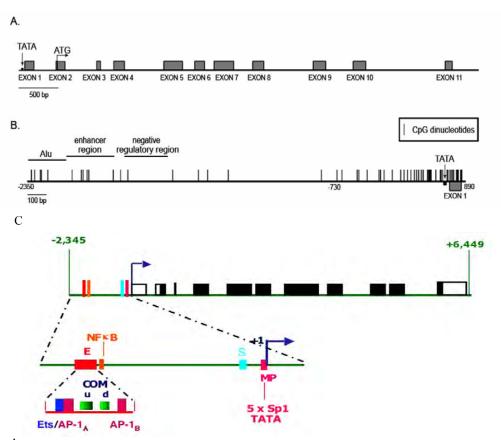
มะเร็งเกิดจากการที่เซลล์ปกติมีการเปลี่ยนแปลงไปทำให้ระบบการควบคุมการเจริญเติบโต การ แบ่งเซลล์ผิดปกติ เซลล์จะแบ่งตัวมากผิดปกติและไม่สามารถควบคุมได้อย่างถูกต้อง สาเหตุ สำคัญคือมี การเปลี่ยนแปลงของยืน (genetic alteration) โดยเฉพาะยืนที่เกี่ยวข้องกับการเจริญเติบโต การแบ่งเซลล์ การตายของเซลล์ นอกจากนี้เซลล์มะเร็งยังสามารถแพร่กระจายไปยังส่วนอื่นๆ ของร่างกายได้ (metastasis) ซึ่งการแพร่กระจายของมะเร็งนี้เป็นสาเหตุหลักที่ทำให้ผู้ป่วยเสียชีวิต

Cholangiocarcinama หรือ มะเร็งท่อน้ำดี เป็นมะเร็งพบมากในแถบเอเชีย โดยเฉพาะทางภาค ตะวันออกเฉียงเหนือและภาคเหนือของประเทศไทย (Sripa and Pairojkul, 2008) มะเร็งชนิดนี้มีการ คาคการณ์โรคไม่ดีนัก กล่าวคือมีอัตราการแพร่กระจายและอัตราการตายสูง จึงถือได้ว่าเป็นปัญหา สาธารณสุขที่สำคัญของชาติ มีรายงานจำนวนมากทั้งทางด้านระบาควิทยาและการศึกษาในสัตว์ทคลองชี้ บ่งว่า ปัจจัยเสี่ยงหลักในการเกิดมะเร็งท่อน้ำดีในประเทศไทย คือการติดเชื้อพยาธิในไม้ในตับ (Opisthorchis viverrini) (Bhamarapravati and Thamavit, 1978, Sripa, 2003, Sripa et al., 2007) การวิจัย เพื่อให้ได้ความรู้พื้นฐาน โดยเฉพาะความรู้เกี่ยวกับการ ควบคุมการ เจริญเติบโต, การแพร่กระจาย และ พยาธิสภาพ ของเซลล์มะเร็งท่อน้ำดี จะทำให้เข้าใจถึง กระบวนการเกิดมะเร็งมากขึ้น ซึ่งจะนำไปสู่การ พัฒนาในการวินิจฉัย ป้องกัน และรักษา โรคมะเร็ง

ปกติเซลล์ในเนื้อเยื่อหนึ่งๆจะอยู่รวมกันโดยมี basement membrane เป็นตัวห่อหุ้มและเป็น ขอบเขตของเนื้อเยื่อนั้นๆ การที่เซลล์มะเร็งจะแพร่กระจายออกจากแหล่งที่อยู่ของมันได้จะต้องมีการ ทำลาย basement membrane และ extracellular matrix ที่ห่อหุ้มอยู่ ฉะนั้นการทำลาย extracellular matrix จึงถือเป็นคุณสมบัติสำคัญสำหรับการบุกรุกของเซลล์ มีรายงานว่าเซลล์มะเร็งหลายชนิคมีความสามารถ ในการสร้างและหลั่งเอ็นไซม์ที่เกี่ยวข้องกับการทำลาย extracellular matrix matrix metalloproteinases (MMPs) และ serine protease เช่น urokinase plasminogen activator มากขึ้น และ ปริมาณ เอ็นไซม์ เหล่านี้มีความสัมพันธ์กับความสามารถในการบุกรุก matrigel (artificial extracellular matrix) และการ แพร่กระจายของเซลล์มะเร็ง (Crowe and Shuler, 1999) MMPs สามารถย่อย extracellular matrix proteins ได้โดยตรง ในขณะที่ uPA เป็นเอ็นไซม์โปรตีเอสที่ค่อนข้างจำเพาะต่อ plasminogen เอ็นไซม์นี้ จะเร่งการทำลาย extracellular matrix โดยใปกระตุ้น plasminogen (inactive) ให้เป็น plasmin (active) ซึ่งเป็น protease ที่ไม่ค่อยมีความจำเพาะต่อ substrate มากนัก (รูปที่ 1) Plasmin จะสามารถย่อย extracellular matrix proteins ได้หลายชนิด ทั้ง laminin, fibronectin และ collagen นอกจากนี้ plasmin ยังสามารถกระตุ้นการทำงานของ MMPs หลายชนิด โดยการย่อย pro-MMPs ให้เป็น active MMPs ได้ อีก (Andreasen et al., 1997, Mazar et al., 1999) บนผิวเซลล์มี uPA receptor ซึ่งเชื่อว่าการจับกันของ uPA กับ receptor นี้เป็นการตรึง uPA ให้อยู่บนผิวเซลล์ในตำแหน่งที่เหมาะสมในการส่งเสริมการบุกรุก extracellular matrix ของเซลล์ (Blasi, 1999, Dano et al., 2005) นอกจากการทำหน้าที่เป็น protease แล้ว


uPA ยังสามารถทำหน้าที่ส่งสัญญาณกระคุ้นขบวนการต่างๆของเซลล์ได้อีก ในการนี้ uPA จะมาจับ uPA receptor บนผิวเซลล์มะเร็ง ซึ่งการจับกันระหว่าง uPA และ receptor สามารถส่งสัญญาณกระคุ้นการ เคลื่อนที่และการแบ่งเซลล์ ผ่านทาง integrin (Ossowski and Aguirre-Ghiso, 2000) และ ยังมีรายงานว่า uPA สามารถกระคุ้น growth factor เช่น ตัด pro-HGF ให้เป็น active HGF ส่วน plasmin สามารถกระคุ้น TGF-beta และ FGF ใต้ในทำนองเดียวกัน ซึ่งเป็นที่ทราบดีว่า growth factors เหล่านี้ มีฤทธิ์ในการ กระคุ้นการเคลื่อนที่ของเซลล์มะเร็งหลายชนิด (Blasi, 1999) โดยสรุป uPA สามารถส่งเสริมการบุกรุก เนื้อเยื่อของเซลล์มะเร็งใด้โดยผ่านกลไกสามอย่าง คือ ทำลาย extracellular matrix, ส่งสัญญาณเข้าไป ภายในเซลล์ กระคุ้น growth factors ที่มีฤทธิ์กระตุ้นการเคลื่อนที่ (Blasi and Sidenius, 2010, Smith and Marshall, 2010)

จากการทดลองเบื้องต้นพบว่าเซลล์มะเร็งท่อน้ำดีทั้งสามชนิด KKU-100, KKU-213 และ HuCCA-1 ซึ่งมีความสามารถในการบุกรุก matrigel สูง มีการหลั่งเอ็นไซม์ uPA ออกมาเป็นปริมาณสูง จึงตั้ง สมมุติฐานว่ามะเร็งท่อน้ำดีมีความผิดปกติในการควบคุมการสร้าง uPA ทำให้สร้าง uPA ออกมาเป็น ปริมาณสูง ซึ่งเป็นผลให้เซลล์มีความสามารถในการบุกรุก extracellular matrix ได้ดี


uPA gene ของมนุษย์มีขนาด 6.4 kb ประกอบด้วย 11 exon upstream จาก TATA box มีลักษณะที่ ชี้ว่ามีการควบคุมการ transcription อย่างเข้มงวด ประมาณ 2kb upstream เป็นบริเวณ enhancer ซึ่งมี binding site สำหรับ transcription factor หลายชนิด เช่น Sp1, Ets (PEA3), AP1, NF-KB นอกจากนี้ การ สร้าง uPA ยังถูกกระคุ้นด้วยสัญญาณหลากหลายแบบ เช่น phorbolester, growth factors โดยผ่านวิถีต่างๆ เช่น Ras/ERK, PI3K pathways ซึ่งวิถีเหล่านั้นมักจะไปกระคุ้น transcription factors ตัวอย่าง เช่น phorbolester กระคุ้นการสร้าง uPA โดยไปกระคุ้นการทำงานของ NF-KB โดยปกติการแสดงออกของ uPA จะถูกควบคุมให้แสดงออกเมื่อต้องการ เช่น ในกบวนการ tissue remodeling หรือ ในการปิดปากแผล ในกรณีนี้การสร้าง uPA จะถูกควบคุมด้วย external stimuli ต่างๆ อย่างไรก็ตาม ในมะเร็งหลายชนิด โดยเฉพาะมะเร็งชนิดแพร่กระจายมีความผิดปกติในการกวบคุมการแสดงออกของขึ้น uPA ทำให้เซลด์มี การสร้าง uPA ออกมามาก โดยอาจเกิดจาก transcription factor และ/หรือสัญญาณที่กระคุ้น transcription factor เหล่านี้ จากการศึกษาโดย Chromatin immunoprecipitation (ChIP) พบ Sp1 บน uPA promoter ใน เซลด์ PC3 ซึ่งเป็นแซลด์มะเร็งชนิดแพร่กระจาย แต่ไม่พบใน เซลด์ Hela ซึ่งเป็นมะเร็งที่ไม่แพร่กระจาย (Ibanez-Tallon et al., 2002) รายงานของ Tanaka และคณะ ชี้แนะว่า TGF-beta มีผลเพิ่มปริมาณ uPA mRNA และ กระคุ้นการบุกรุกของเซลด์มะเร็งรังไข่ ผ่านทาง Src-ERK-PI3K-NF-KB และ Src-ERK-AP-1 pathways (Tanaka et al., 2004)

นอกจากการเพิ่มฤทธิ์ของ transcription factor แล้ว ยังมีรายงานว่าในมะเร็งชนิดแพร่กระจาย อย่าง น้อยในมะเร็งเต้านม และ ต่อมลูกหมาก มีการเปลี่ยนแปลงทางด้าน epigenetic ซึ่งเป็นผลให้มีการ แสดงออกของ uPA สูงกว่าปกติ โดย promoter ของ uPA ในมะเร็งดังกล่าว มีหมู่ Methyl ที่เบส C ใน ตำแหน่ง CpG น้อยกว่า (hypomethylation) ในเซลล์ปกติ หรือในเซลล์มะเร็งที่ไม่แพร่กระจาย (Pakneshan et al., 2005) และ การกระตุ้นการเติมหมู่ methyl โดยใช้ S-Adenosylmethionine มีผลยับยั้งลดปริมาณ uPA ลดการบุกรุกของเซลล์มะเร็งเต้านม ซึ่งผลดังกล่าวสามารถหักล้างได้ด้วยการเติม 5'azacytidine ซึ่งเป็นสาร ส่งเสริมการตัดหมู่ methyl ออก (demethylating agent) (Pakneshan et al., 2004)

โดยสรุป uPA เป็น serine protease ที่มีความสำคัญในการเคลื่อนที่ และ การบุกรุกของเซลล์ โดย uPA ส่งเสริมการย่อย extracellular matrix นอกจากนี้ uPA ยังมีผลกระตุ้นการเซลล์ผ่านทาง uPA receptor และ ทางการกระคุ้น pro form ของ growth factor หลายชนิดให้เป็น active form ในมะเร็งหลายชนิดพบมี การแสดงออกของ uPA เป็นปริมาณสูงกว่าปกติ โดยระดับ uPA นี้ มีความสัมพันธ์กับความสามารถในการ บุกรุกและแพร่กระจายของมะเร็ง ความผิดปกติในการควบคุมการแสดงออกของ uPA ในมะเร็งต่างๆอาจ แตกต่างกันไป ซึ่งมีรายงานว่า มีความผิดปกติตั้งแต่ การเพิ่มจำนวนของ uPA ยืน การเพิ่มฤทธิ์ของ transcription factor ทั้งโดยตรงและโดยอ้อม (ผ่านทางสัญญาณต่างๆ) และ ทาง epigenetic มีสถานภาพ ของการเติมหมู่ methyl ที่ promoter ที่เปลี่ยนแปลงไป ดังนั้น ในโครงการนี้จึงต้องการศึกษาถึงความสำคัญ ของ uPA ต่อการบุกรุกของเซลล์มะเร็งท่อน้ำดี ความผิดปกติที่เป็นสาเหตุให้มะเร็งท่อน้ำดีมีการหลั่ง uPA สูง และความสัมพันธ์ของอุบัติการณ์ของเพิ่มขึ้นของ uPA กับ ความรุนแรงของโรคมะเร็งท่อน้ำดีในคนใช้

รูปที่ 1 การทำงานของ uPA/uPAR ในการกระตุ้น plasminogen (Blasi and Carmeliet, 2002)

รูปที่ 2 Diagram แสดง uPA gene (A) ตำแหน่งที่มักพบ CpG methylation (CpG island) บน uPA promoter แสดงโดยเส้นคำแนวตั้ง (B) และuPA gne แสดงตำแหน่งที่ transcription factor จับบน promoter (C) (Pakneshan et al., 2005, Crippa, 2007)

2. วัตถุประสงค์ของโครงการ

uPA เป็นเอ็นไซม์โปรตีเอส ที่มีความสำคัญในการบุกรุก และ การแพร่กระจายของมะเร็งหลาย ชนิด ผลการทดลองเบื้องต้นแสดงว่าเซลล์มะเร็งท่อน้ำดีทั้งสามชนิดซึ่งมีความสามารถในการบุกรุกสูง มีการหลั่ง uPA ในปริมาณสูง อย่างไรก็ตาม ยังไม่เป็นที่ทราบว่าการเพิ่มขึ้นของ uPA ในเซลล์มะเร็งท่อ น้ำดีนี้เกิดจากสาเหตุใดและมีความสำคัญอย่างไร ในโครงการนี้ ต้องการศึกษาถึงความสำคัญของ uPA ต่อการบุกรุกของเซลล์มะเร็งท่อน้ำดี กลไกที่ทำให้มะเร็งท่อน้ำดีมีการหลั่ง uPA สูง และความสัมพันธ์ ของอุบัติการณ์ของเพิ่มขึ้นของ uPA กับ ความรุนแรงของโรคมะเร็งท่อน้ำดีในคนไข้ ดังนั้น วัตถุประสงค์จำเพาะได้แก่

- 1. ศึกษาความสัมพันธ์ของระดับ urokinase plasminogen activator (uPA) กับความรุนแรงของมะเร็งท่อ น้ำดี
- 2. ตรวจวิเคราะห์ปริมาณ uPA ที่หลั่งออกจากเซลล์มะเร็งท่อน้ำดี เทียบกับเซลล์ท่อน้ำดีที่ไม่ได้เป็น มะเร็ง (H69) และ เทียบกับความสามารถในการบุกรุก matrigel

- 3 ศึกษาความสำคัญของ uPA ต่อความสามารถในการบุกรุก matrigel ของเซลล์มะเร็งท่อน้ำดี โดย ใช้สารยับยั้ง
- 4 ศึกษาการควบคุมปริมาณ uPA โดย signal transduction pathways เช่น ERK และ PI3K
- 5 ศึกษาความผิดปกติในกลไกการควบคุมการสร้างและหลั่ง uPA ในเซลล์มะเร็งท่อน้ำดี โดยวิเคราะห์ ขั้นตอนต่างๆ ในการควบคุมการผลิต uPA ในเซลล์มะเร็ง เทียบกับ เซลล์ H69 ได้แก่
 - วิเคราะห์ปริมาณ mRNA ในเซลล์มะเร็งท่อน้ำคื
 - ตรวจสอบการเพิ่มจำนวนยืน uPA ในเซลล์มะเร็ง
 - วิเคราะห์สถานภาพของการเติมหมู่ methyl บน uPA promoter
 - ศึกษาการจับของ transcription factors กับ uPA promoter

2. วิธีดำเนินการวิจัย

2.1. Cell lines ที่ใช้ในการทคลอง

Human cholangiocarcinoma cell lines ที่มาจากผู้ป่วยมะเร็งท่อน้ำดีไทย KKU-100, KKU-213 ได้รับความอนุเคราะห์จาก รศ.ดร. บรรจบ ศรีภา มหาวิทยาลัยขอนแก่น และ HuCCA-1 จาก ศ. ดร. สถิตย์ สิริสิงห มหาวิทยาลัยมหิดล และ เซลล์ท่อน้ำดี (immortalized cholangiocyte) H69 จาก Prof. G. Alpini The Texas A&M University จะถูกเลี้ยงในอาหารเลี้ยงเซลล์ HAM ที่มี 10% FBS ในตู้อบ 37°C, 5% carbon dioxide

2.2. ศึกษาความสัมพันธ์ของระดับ urokinase plasminogen activator (uPA) กับความรุนแรงของมะเร็ง ท่อน้ำคื

นำชิ้นเนื้อมะเร็งท่อน้ำคีตัวอย่างใน parafilm slide (ซึ่งได้รับความอนุเคราะห์จาก รศ. คร. บรรจบ ศรีภา) มาย้อม immunohistochemistry โดยใช้ anti-uPA เป็น primary antibody และ HRP-conjugated secondary antibody ตรวจสอบการติดสีด้วยกล้องจุลทรรศน์ เปรียบเทียบการ แสดงออกของ uPA กับ ความรุนแรงของโรค

2.3. การตรวจวัดระดับ uPA ที่หลั่งออกมา และ uPA บนผิวเซลล์ ของเซลล์มะเร็งท่อน้ำดี เทียบกับ ของเซลล์ท่อน้ำดี

เลี้ยงเซลล์จนได้ 70% confluent แล้วเปลี่ยนเป็นอาหารเลี้ยงเซลล์ incubate ต่ออีก 6 ช.ม. ในระหว่างนี้เซลล์จะหลั่ง uPA ออกสู่ media จากนั้น เก็บ conditioned media มาตรวจสอบ uPA activity โดย plasminogen-gelatin zymography โดยโปรตีนใน conditioned media จะถูกแยกด้วย กระแสไฟฟ้าบน 10% SDS-PAGE ที่มี plasminogen และ gelatin หลังจากนั้น incubate gel ใน reaction buffer ในระหว่างนี้ uPA จะกระตุ้น plasminogen ให้เป็น plasmin ที่ active ซึ่งจะย่อย

gelatin ในเจล หลังจากย้อมเจลด้วย Coomassie blue บริเวณที่มี plasminogen activator activity จะ ปรากฏเป็นแถบใส ซึ่งไม่ปรากฏในเจลที่ไม่มี plasminogen

ส่วน uPA บนผิวเซลล์ เตรียมโดย elute uPA ที่จับกับ uPA receptor บนเซลล์ด้วย glycine pH3 และตรวจวัด โดย plasminogen gelatin zymography เปรียบเทียบปริมาณ uPA ของ เซลล์มะเร็ง กับ เซลล์ H69

2.4. ตรวจสอบปริมาณ uPA receptor ในเซลล์มะเร็งทั้งสามชนิด

เนื่องจาก uPA receptor ทำงานร่วมกับ uPA โดยเป็นกลใกในการตรึง uPA ให้อยู่ในบริเวณที่เซลล์ จะคืบคลานออกไป และ ยังสำคัญในการรับสัญญาณจาก uPA เข้ามาในเซลล์ ซึ่งมีผลกระตุ้นการ เคลื่อนที่ และ การแบ่งเซลล์ ปริมาณ uPA receptor จึงน่าจะมีความสำคัญต่อฤทธิ์ของ uPA เราจึง จะทำการวัดปริมาณ uPA receptor ในเซลล์โดยวิธี western blot โดยใช้ anti-uPA receptor และ เปรียบเทียบกับผลทางชีววิทยา ซึ่งจะศึกษาต่อไป

- 2.5. การศึกษาความสำคัญของ uPA ต่อความสามารถในการบุกรุก matrigel ของเซลล์มะเร็งท่อน้ำดี โดยใช้สารยับยั้ง
 - 2.5.1. ศึกษาผลของ uPA inhibitor ต่อ uPA activity โดยตรวจวัด uPA activity โดย zymography การศึกษาผลของ uPA inhibitor ต่อ uPA activity กระทำโดยตรวจวัด uPA activity โดย zymography ในสภาวะที่มี uPA inhibitor ในเจล และ/หรือ ใน reaction buffer เทียบกับสภาวะ ปกติ

เลี้ยงเซลล์จนได้ 70% confluent แล้วเปลี่ยนเป็นอาหารเลี้ยงเซลล์ที่ไม่มี serum Incubate ต่อไปอีก 6 ช.ม. ในระหว่างนี้เซลล์จะหลั่ง uPA ออกสู่ media จากนั้น เก็บ conditioned media มา ตรวจสอบผลของ uPA inhibitor ต่อ uPA activity โดย plasminogen-gelatin zymography ในเจลที่ มีและไม่มี uPA inhibitor (20 µM B418, 4-Iodo-benzo[b]thiophene-2-carboxamidine HCl) โดย โปรตีนใน conditioned media จะถูกแยกด้วยกระแสไฟฟ้าบน 10% SDS-PAGE ที่มี plasminogen และ gelatin ในสภาวะที่ไม่มี reducing agent หลังจากนั้น incubate gel ใน reaction buffer ใน สภาวะที่มีและไม่มี uPA inhibitor ในระหว่างนี้ uPA จะกระดุ้น plasminogen ให้เป็น plasmin ที่ active ซึ่งจะย่อย gelatin ในเจล หลังจากย้อมเจลด้วย Coomassie blue บริเวณที่มี plasminogen activator activity จะปรากฏเป็นแถบใส Normalize band intensity ที่เกิดในเจลแต่ละเจล ด้วย trypsin ซึ่งถูก load ในเจลแต่ละเจลในปริมาณที่เท่ากัน แต่ไม่ถูกยับยั้งด้วย uPA inhibitor 2.5.2. การตรวจวัดความสามารถของ uPA inhibitor ในการยับยั้งการบุกรุกของเซลล์มะเร็งท่อน้ำดี ผ่าน Matrigel (Invasion assay) โดยใช้ Transwell

ความสามารถของเซลล์ ในการบุกรุกผ่าน Matrigel (synthetic extracellular matrix) และ 8 µm เมมเบรน (หรือ ที่เรียกว่า invasive ability) จะถูกตรวจวัด โดยใช้วิธี Transwell in vitro invasion assay โดยดูจากจำนวนเซลล์ที่สามารถบุกรุก ลงไปอยู่ด้านล่างของเมมเบรน

ก่อนทำการทดลองจะต้องทำการเคลื่อบเมมเบรนของ upper chamber ของ transwell ด้วย $30~\mu g$ matrigel Trypsinize เซลล์ และเจือจางในอาหารเลี้ยงเซลล์ที่มี 0.2%~FBS ที่มีและไม่มี uPA inhibitor จากนั้น นำเซลล์ $2~\times10^5$ เซลล์ใส่ใน upper chamber ที่เคลือบด้วย Matrigel ไว้แล้ว ส่วน ใน lower chamber ใส่อาหารเลี้ยงเซลล์ที่มี $10\%~FBS~600\mu$ l incubate ในตู้อบ $CO_2~37^{\circ}C~6~$ ชม. เมื่อครบ กำหนดเช็ดเซลล์บน upper chamber ออก และย้อมเซลล์ที่บุกรุกเข้าไปใต้เมมเบรนด้วย 0.5%~ crystal violet ใน 25%~ Methanol 20~ นาที ล้างสีส่วนเกินออกด้วยน้ำกลั่น และนับจำนวน เซลล์ ใต้กล้องจุลทรรศน์ กำลังขยาย 10x~ ได้ค่าเป็น จำนวนเซลล์/ field

2.6. ศึกษาการควบคุมปริมาณ uPA โดย signal transduction pathways

Incubate เซลล์กับสารยับยั้งหรือสารกระตุ้นโปรตีนต่างๆ ที่เป็น receptor หรือ mediator ใน signal transduction pathway ที่ได้มีรายงานว่าควบคุม uPA ได้แก่ สารยับยั้ง ErbB2 kinase activity (AG825), PI3K activity (LY294002), ERK1/2 (U0126), p38 MAPK (SB203580) และ สารกระตุ้น c-Met (HGF) ในสภาวะที่ไม่มี serum เป็นเวลา 6 ชม. จากนั้นนำ conditioned medium มาวิเคราะห์หาปริมาณ uPA โดย plasminogen gelatin zymography

- 2.7. ศึกษาความผิดปกติในกลไกการควบคุมการสร้างและหลั่ง uPA ในเซลล์มะเร็งท่อน้ำดี โดย วิเคราะห์ขั้นตอนต่างๆ ในการควบคุมการผลิต uPA เทียบกับในเซลล์ที่ไม่เป็นมะเร็ง ได้แก่
 - 2.7.1. วิเคราะห์ปริมาณ uPA และ PAI-1 proteins ที่หลั่งจากเซลล์มะเร็งท่อน้ำคื

การที่ uPA ใน conditioned media และ บนผิวเซลล์มะเร็งมีประมาณสูงนั้น เกิดจากการ สร้าง uPA สูง หรือ การกระตุ้นการหลั่ง uPA จึงวิเคราะห์ปริมาณ uPA ในเซลล์มะเร็ง และ ที่ หลั่งออกมา และ เทียบกับที่ได้จากเซลล์ H69 โดยวิธี western blot โดยใช้ uPA antibody นอกจากนี้ activity ของ uPA ถูกควบคุมด้วย plasminogen activator inhibitor ซึ่งชนิดหลักที่ ควบคุมคือ PAI-1 เราจึงวัด ระดับ PAI-1 ใน conditioned media โดยวิธี western blot โดยใช้ PAI-1 antibody

2.7.2. การตรวจวัดระดับ uPA และ uPAR mRNA

เพื่อศึกษาความผิดปกติในกลไกการควบคุมการสร้างและหลั่ง uPA ในเซลล์มะเร็งท่อน้ำดี โดยวิเคราะห์ขั้นตอนต่างๆ ในการควบคุมการผลิต uPA ในเซลล์มะเร็ง เทียบกับ เซลล์ H69 โดย ในขั้นแรกได้วิเคราะห์ระดับ uPA mRNA ในเซลล์มะเร็งท่อน้ำดี เทียบกับ เซลล์ H69 และ เทียบ กับปริมาณ uPA ที่หลั่งจากเซลล์ ลงเซลล์จำนวน 10° เซลล์ใน plate ขนาด 100 มม แล้วนำไป incubate ในตู้ CO2 incubator อุณหภูมิ 37 °C เป็นเวลา 2 วัน (จะได้ประมาณ 80% confluence) จึงทำการ trypsinize เซลล์เพื่อ นำเซลล์มาสกัด RNA ด้วยชุดสกัด RNA, RNeasy mini kits (Qiagen) วัดปริมาณ RNA ที่ OD260 แล้วคำนวณปริมาณ RNA จากสูตร (RNA (ng/ul) = 40 x dilution factor x OD260) ทำการเปลี่ยน RNA ที่สกัดได้ จำนวน 2 µg ไปเป็น cDNA ด้วย Superscript III-Reverse transcription (Invitrogen) แล้วนำ cDNA ที่ได้ ไปทำการหาปริมาณของการแสดงออกของยืนที่สนใจด้วยวิธี realtime PCR ด้วยเครื่อง Applied Biosystems 7500 Real-Time PCR System และทำการ วิเคราะห์ผลด้วยโปรแกรม 7500 system SDS software version 1.3.1 โดยใช้ primers ดังตารางที่ แสดงไว้ข้างล่าง

ตารางแสดง primers ในการทำ Realtime-PCR

mRNA	Primer sequence 5' → 3'	Product size (kb)
uPA	TTGCTCACCACAACGACATT	193
	ATTTCAGCTGCTCCGGATA	
пРАR	GGTGACGCCTTCAGCATGA	93
ur AK	CCCACTGCGGTACTGGACAT	93
β-actin	CTCTTCCAGCCTTCCTT	100
	AGCACTGTGTTGGCGTACAG	100
18sRNA	GTAACCCGTTGAACCCCATT	151
1081011/14	CCATCCAATCGGTAGTAGCG	131

2.7.3. เปรียบเทียบความเสถียรของ uPA mRNA

นำเซลล์มะเร็งท่อน้ำดี 2 ชนิด ที่มีระดับ mRNA ที่แตกต่างกัน มาเปรียบเทียบความเสถียร ของ uPA mRNA เพื่อพิสูจน์ว่า ระดับ mRNA ที่แตกต่างกันนั้นเป็นผลมาจากการสลายที่น้อยลง หรือไม่ นำเซลล์มา incubate กับ 1 μ g/ml actinomycin D ซึ่งจะยับยั้งการสังเคราะห์ mRNA ใหม่ และตรวจวัด mRNA ของ uPA ที่เหลือที่เวลาต่างๆ (0-8 ชั่วโมง) ด้วยวิธี real-time RT-PCR ตาม หัวข้อ 2.7.2 ระดับ mRNA ถูก normalized ด้วย β -actin mRNA และคำนวนเป็นอัตราส่วนเทียบ กับเวลาเริ่มต้น

2.7.4. วิเคราะห์สถานภาพของการเติมหมู่ methyl บน CpG ใน uPA promoter

เนื่องจากมีรายงานอย่างน้อยในมะเร็งเต้านม และ มะเร็งต่อมลูกหมาก ว่าการเพิ่มการสร้าง uPA เกิดจาก promoter มี CpG methylation น้อยลง ซึ่งทำให้ยืนมี transcription สูงขึ้น เราจึงตั้ง สมมุติฐานว่าในมะเร็งท่อน้ำดีอาจมีความผิดปกติในทำนองเดียวกัน

CpG methylation จะตรวจสอบโดย Methylation specific PCR (MSP) โดย modify cytosine (C) ใน genomic DNA ด้วย bisulfite ซึ่งจะทำการเปลี่ยน unmethylated C ให้เป็น U

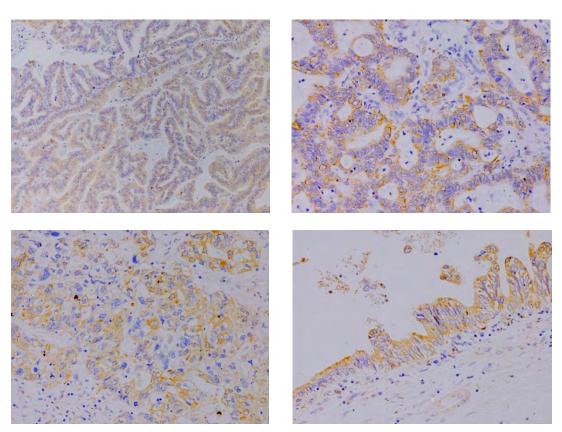
ในขณะที่ methylated C จะไม่ถูกเปลี่ยน จากนั้นนำ DNA ที่ถูก modified วิธีโดยย่อมีดังนี้ lyse เซลล์และสะกัด DNA ด้วย phenol chloroform isoamyl alcohol หลังจาก denatured 1µg DNA ด้วย 0.2 M NaOH จึงนำ DNA มา modified โดยทำปฏิกริยากับ 30 µl of 10 mM hydroquinone and 520 µl 3.9 M sodium bisulfite ที่ pH 5 ที่ 55°C เป็นเวลา 16 ชั่วโมง นำ modified DNA มาท ให้บริสุทธิ์ โดยใช้ Wizard DNA purification resin ตามด้วยตกตะกอน ethanol นำ modified DNA ที่บริสุทธิ์มาเพิ่มจำนวน (amplify) ด้วย PCR โดยใช้ primer ที่จำเพาะต่อ methylated และ unmethylated DNA ดังตาราง ตรวจสอบ PCR products โดยการแยกด้วยกระแสไฟฟ้าบน polyacrylamide gel

Primer name	Sequence $5' \rightarrow 3'$	Product size (bp)
Methylated	AAG TAC GCG GGG TTC GGG TC TAT ATC AAA ACC CGC CCC GAC G	93
Unmethylated	TGT GGA AGT ATG TGG GGT TTG GGT T	103
j	TAC TCT ATA TCA AAA CCC ACC CCA ACA	

2.7.5. ตรวจสอบการจับกันระหว่าง transcription factor NF-kB และ uPA promoter โดยใช้ chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation เป็นวิธีการตรวจสอบการจับกันระหว่างโปรตีน กับ DNA เนื่องจาก promoter ของ uPA มีตำแหน่งให้ transcription factor ต่างๆมาจับมากมาย ใน จำนวนนี้ transcription factor ที่มักพบ overexpress ในมะเร็งชนิดต่างๆ ได้แก่ NFkB เราจึงจะ ตรวจสอบว่า uPA promoter ของเซลล์ที่มีการสร้าง uPA ปริมาณสูง จะมี NF-kB มาจับอยู่ มากกว่าเซลล์ที่ไม่ได้สร้าง uPA หรือไม่

นำสารสะกัดจากนิวเคลียสมาทำการ cross-link ด้วย formaldehyde ซึ่งทำให้ DNA และ โปรตีน ที่จับกันอยู่ เชื่อมกัน จากนั้นนำไป sheer ให้สาย DNA ขาดออกเป็นสายสั้นๆ โดยใช้ sonicator จนได้ DNA ขนาดประมาณ 500 bp และ นำไป incubate กับ antibody ที่จำเพาะต่อ โปรตีนที่เราสนใจ (ในที่นี้คือ anti-NF-kB) และใส่ protein A bead เพื่อไปจับกับ antibody และ ตกตะกอน antibody และ โปรตีน-DNA complex ที่ antibody จับอยู่ ดังนั้น NF-kB และ DNA ที่ จับกับ NF-kB จะตกตะกอนลงมา หลังจากล้าง สิ่งอื่นๆที่จับอย่างไม่จำเพาะออกแล้ว จึงทำลาย cross link และ ย่อย protein จะได้ชิ้นของ DNA ที่จับกับ NF-kB ซึ่งนำมา amplified โดยวิธี PCR เพื่อตรวจหาชิ้นของ DNA ที่ตรงกับส่วนของ promoter ที่สนใจ


3. ผลการทดลอง

3.1. ศึกษาความสัมพันธ์ของระดับ uPA กับความรุนแรงของมะเร็งท่อน้ำดี

การข้อมชิ้นเนื้อ immunochemistry โดยใช้ anti-uPA antibody และ counter stain ด้วย Mayer's hematoxylin ในผู้ป่วย 175 ราย ซึ่งแยกตามลักษณะทาง histology ได้ดังตารางที่ 1 ตัวอย่างของชิ้นเนื้อที่ ข้อมติด uPA แสดงในรูปที่ 3 ซึ่ง uPA จะติดสีน้ำตาล ส่วนสีน้ำเงินคือ hematoxylin โดยให้เกรคตาม สัดส่วนความเข็มในการติดสี (มี uPA) ของเซลล์มะเร็งในชิ้นเนื้อ ดังนี้ 0, +, ++ และ +++ คือ ไม่ติดสี ติดสีจาง ปานกลาง และ เข้ม ตามลำดับ โดยจัดกลุ่มดังนี้ 0 และ + อยู่ในกลุ่มมี uPA น้อย (low uPA expression) และ ++ และ +++ อยู่ในกลุ่มมี uPA มาก (high uPA expression) จากการเปรียบเทียบการ ติดสีเป็นเกรคดังกล่าว กับ ปัจจัยต่างๆที่เกี่ยวกับความรุนแรงของโรค พบว่า การแสดงออกของ uPA ไม่ มีความสัมพันธ์กับ อายุ เพศ ขนาดของก้อนมะเร็ง ลักษณะทาง gross และ histology ของเนื้อเยื่อมะเร็ง หากแต่ มีความสัมพันธ์กับ การบุกรุกและแพร่กระจายของมะเร็งท่อน้ำดี อย่างมีนัยสำคัญ โดยมีค่า P = 0.005 และ 0.048 ตามลำดับ และ เมื่อพิจารณาในกลุ่มของผู้ป่วยที่มีก้อนมะเร็งขนาดเล็ก (< 5 ซม.) ยัง พบความสัมพันธ์แบบผกผันอย่างมีนัยสำคัญระหว่างการแสดงออกของ uPA กับระยะเวลาในการมีชีวิต อยู่ของผู้ป่วย (รูปที่ 4) สำหรับผู้ป่วยที่มีก้อนมะเร็งขนาดใหญ่จะมีอัตราการตายสูงอยู่แล้ว โดยไม่ขึ้นอยู่ กับว่าจะมี uPA มากหรือน้อย จากผลการทดลองนี้ชี้แนะว่า uPA น่าจะเป็น marker ที่ใช้ในการ คาดการณ์โรคได้ อย่างน้อยในกลุ่มผู้ป่วยที่มีก้อนมะเร็งขนาดเล็ก

ตาราง แสดงความสัมพันธ์ระหว่างระดับการแสดงออกของ uPA กับ ลักษณะทางพยาธิสภาพของผู้ป่วย

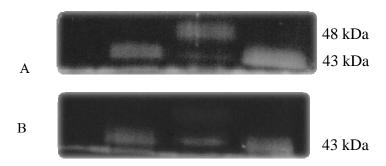
Parameters	uP	A	P-value
1 arameters	Low	High	1 - value
Age (yrs)			
< 50	22	23	0.801
≥ 50	66	63	
Gender			
Male	61	55	0.571
Female	27	31	
Tumor size (cm)			
≤ 5	29	28	0.852
> 5	59	58	
Histotype group			
Well diff.	36	36	0.313
Moderately diff.	19	24	
Poorly diff.	16	7	
Papillary	23	25	
Invasion			
Absent	24	9	0.005*
Present	64	77	
Metastasis			
Absent	50	36	0.048*
Present	38	50	

รูปที่ 3 Immunohistochemistry ของ uPA ในชิ้นเนื้อของผู้ป่วยมะเร็งท่อน้ำดื

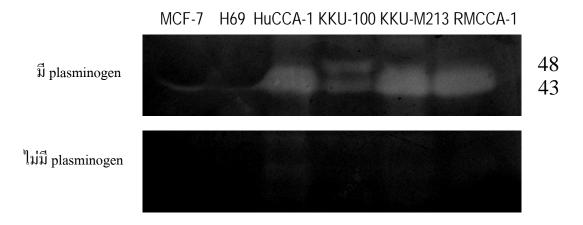
รูปที่ 4 Kaplan-Meier plot แสดงความสัมพันธ์ระหว่างระดับการแสดงออกของ uPA กับ ระยะเวลาใน การมีชีวิตอยู่ โดยใช้ข้อมูลจากกลุ่มผู้ป่วยก้อนมะเร็งมีขนาดเล็ก

3.2. การตรวจวัดระดับ uPA ที่หลั่งออกมา และ uPA บนผิวเซลล์ ของเซลล์มะเร็งท่อน้ำดื

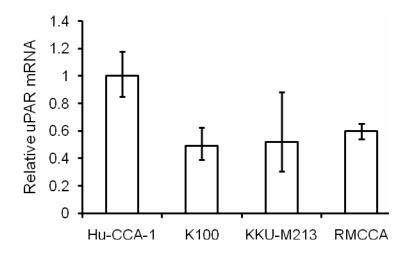
จากการวิเคราะห์ปริมาณ uPA ที่หลั่งออกจากเซลล์มะเร็งท่อน้ำคีสามชนิด และ เซลล์ immortalized cholangiocyte 1 ชนิด โดยนำ conditioned medium ที่เกิดจากการเลี้ยงเซลล์นาน 6 ชั่วโมง มาวิเคราะห์หา uPA ที่หลั่งออกสู่ conditioned medium นั้น ด้วยวิธี plasminogen zymography พบว่า ปริมาณ uPA ซึ่งประมาณจากความสว่างของแถบใสในตำแหน่งที่คาดการณ์ไว้บนเจล zympgram (~43 kD) ของ KKU-M213 และ HuCCA-1 มีปริมาณมาก ในขณะที่ KKU-100 มีปริมาณน้อย และ ไม่พบ uPA ในเซลล์ immortalized cholangiocyte (H-69) ในการตรวจวิเคราะห์ด้วยวิธีนี้ (รูปที่ 5A) อย่างไรก็ ตาม เป็นที่น่าสังเกตุว่า ใน KKU-100 มีแถบใสอีกแถบ ที่มีการเคลื่อนที่บนเจลอีเลคโตรโฟรีซิสซ้ากว่า ตำแหน่งของ uPA ซึ่งแสดงว่ามี proteolytic activity บริเวณนั้นด้วย ซึ่งจะได้ทดสอบต่อไปว่า แถบใสนี้ เป็น uPA ที่มีการตัด หรือ modified ที่แตกต่างจากการ activate uPA ปกติ หรือเป็น proteolytic enzyme อื่น

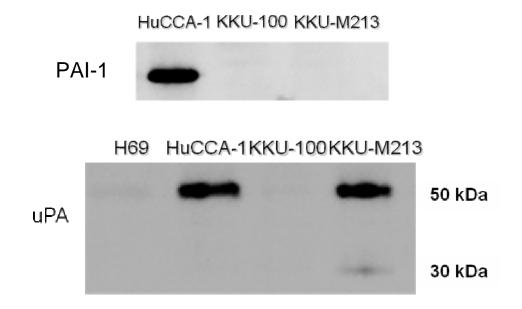

จากรูปที่ 6 จะเห็นว่าแถบใสที่อยู่บนเจลที่ 43 และ 48 kDa พบเฉพาะในเจลที่มี plasminogen และ gelatin แต่ไม่พบในเจลที่มีเพียง gelatin โดยไม่มี plasminogen แสดงว่า เอ็นไซม์ในบริเวณแถบทั้ง 2 มี ฤทธิ์เป็น plasminogen activator ไม่ใช่ gelatinase activity โดยกาดว่า แถบที่ 43 kDa น่าจะเป็น uPA

uPA ที่หลั่งออกมา จะจับกับ receptor (uPAR) บนผิวเซลล์ ซึ่งการจับกันนี้ เป็นการตรึง uPA อยู่ใน บริเวณที่ต้องการ ซึ่งจะทำงานโดยไปตัด plasminogen ซึ่งจับกับ receptor ของมันบนผิวเซลล์ ให้เป็น active plasmin ดังนั้น uPA ที่อยู่บนผิวเซลล์ (bound uPA) จึงมีความสำคัญในการย่อย ECM เราจึง ตรวจวัดปริมาณ bound uPA โดยชะ uPA ที่จับกับ uPAR ด้วย glycine buffer pH 3.0 แล้วนำมาตรวจหา ปริมาณโดย plasminogen gelatin zymography ซึ่งให้ผลเช่นเดียวกับ secreted uPA กล่าวคือ bound uPA มีมากใน KKU-M213 และ HuCCA-1 และ พบน้อยใน KKU-100 รูปที่ 5B สำหรับแถบใสบนเจลที่ 48 kDa ของ KKU-100 นั้นไม่พบว่าจับกับผิวเซลล์ นอกจากนี้ เรายังได้ทำการวัดปริมาณ uPAR mRNA และพบว่า HuCCA-1 มีการแสดงออกของ uPAR mRNA มากที่สุด ส่วน KKU-M213 และ KKU-100 มี uPAR mRNA พอๆกัน คือ ประมาณครึ่งหนึ่งของ HuCCA-1 (รูปที่ 7)

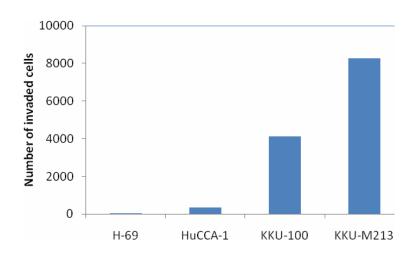

นอกจากนี้ uPA activity ถูกควบคุมด้วย plasminogen activator inhibitor (PAI) PAI หลักที่มีผล ยับยั้ง uPA activity คือ PAI-1 จากการทดลองโดยใช้ western blot พบว่า HuCCA-1 เท่านั้น ที่มีหลั่ง PAI-1 ส่วน KKU-M213 และ KKU-100 ไม่พบ (รูปที่ 8)

เพื่อตรวจสอบว่าแถบใส ที่ 48 kDa บน zymogram ของ KKU-100 นั้นเป็น uPA หรือ protease อื่น ที่มีฤทธิ์ในการกระตุ้น plasminogen เราได้นำ conditioned media จากเซลล์เหล่านั้นมาตรวจสอบ uPA โดย western blot ด้วย antibody ที่จำเพาะต่อ uPA และ โดยเราตรวจพบ uPA ใน เซลล์ HuCCA-1 และ KKU-M213 แต่ไม่พบ uPA ใน KKU-100 ผลการทดลองนี้ชี้บ่งว่า แถบใส ที่ 48 kDa ของ KKU-100 นั้นเป็น protease อื่นที่มี plasminogen activator activity ไม่ใช่ uPA (รูปที่ 8)




รูปที่ 5 Plasminogen gelatin zymogram แสดงผลของ ปริมาณ uPA ที่หลั่งออกสู่ conditioned media (A) และ บนผิวเซลล์ (B) ของเซลล์มะเร็งท่อน้ำดีทั้งสามชนิด และ เซลล์ immortalized cholangiocyte

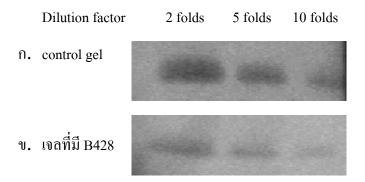
รูปที่ 6 เปรียบเทียบ Gelatin zymograms ของ conditioned media ของเซลล์ต่างๆ ในเจลที่ มี (A) และไม่มี
(B) plasminogen


รูปที่ 7 ปริมาณ uPAR mRNA ใน CCA cell lines โดย real-time RT-PCR normalized ด้วย 18sRNA คำนวน โดย 2 $^{-\Delta\Delta_{\mathrm{Ct}}}$ เมื่อเทียบกับ HuCCA-1

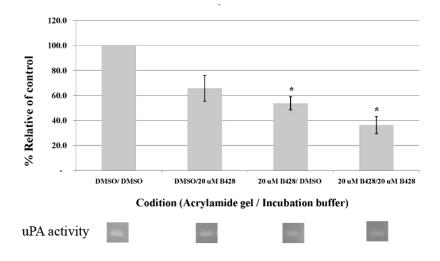
รูปที่ 8 ปริมาณ PAI-1 (A) และ uPA (B) ใน conditioned media ที่เลี้ยง CCA cell lines โดย western blot

 การตรวจวัดความสามารถในการบุกรุกผ่าน Matrigel (Invasion assay) และ การเคลื่อน (Migration assay) โดยใช้ Transwell

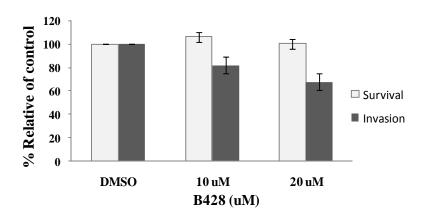
จากการศึกษาการบุกรุกของเซลล์ด้วยวิธี in vitro invasion assay โดยใช้ Transwell ที่มี Matrigel เคลื่อบ โดยนำเซลล์ใส่ใน upper chamber ของ Transwell และ incubate ไว้นาน 6 ชั่วโมง แล้วจึงนับ จำนวนเซลล์ที่บุกรุกมาด้านล่างของ Transwell membrane พบว่า KKU-M213 มีความสามารถในการ บุกรุก Matrigen and Transwell membrane สูงสุด รองลงมาคือ KKU-100 และ HuCCA-1 ตามลำดับ ส่วน H-69 แทบไม่มีการบุกรุกของเซลล์เลย (รูปที่ 9) นั่นคือ การบุกรุกของเซลล์ค่อนข้างมีแนวโน้ม เดียวกับปริมาณ uPA ที่หลั่งออกจากเซลล์ โดยดูจากความเข้มของแถบใสที่ 43 kDa ยกเว้น HuCCA-1 ซึ่งมี secreted uPA และ bound uPA สูงกว่า KKU-100 แต่มีความสามารถในการบุกรุกต่ำกว่า ทั้งนี้อาจ เนื่องจาก KKU-100 มี proteolytic activity อื่นช่วย ดังเห็นได้จาก แถบใสที่ 48 kDa และ HuCCA-1 หลั่ง PAI-1 ซึ่งมีฤทธิ์ในการยับยั้ง uPA acitivity



รูปที่ 9 เปรียบเทียบการบุกรุกของเซลล์มะเร็งท่อน้ำดีทั้งสามชนิด และ เซลล์ immortalized cholangiocyte หลังจาก incubate cell นาน 6 ชม. ค่าที่แสดงจำนวนเซลล์ที่บุกรุกลงมาใต้เมมเบรน

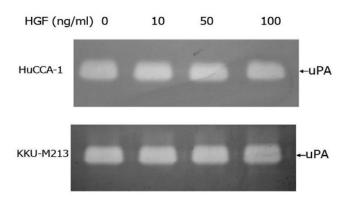

3.4. ศึกษาความสำคัญของ uPA ต่อความสามารถในการบุกรุก matrigel ของเซลล์มะเร็งท่อน้ำดี โดย ใช้สารยับยั้ง

ในขั้นแรก ได้ทำการตรวจสอบความสามารถของ uPA inhibitor (B428) ในการยับยั้ง uPA activity โดยเปรียบเทียบ uPA band intensity ในสภาวะที่ใส่ 20 µM B428 ลงใน plasminogen-gelatin gel และ ใน reaction buffer ที่ใช้ incubate เจล เทียบกับ สภาวะที่ไม่มี B428 แต่มี solvent ที่ใช้ละลายสารยับยั้ง ในปริมาณที่เท่ากัน (DMSO) และคำนวนออกมาเป็น relative band intensity ที่ normalize intensity ใน แต่ละเจล ด้วย band intensity ของ trypsin โดยให้ band intensity ของ control เท่ากับ 1 จากรูปที่ 10 จะ เห็นว่า band intensity ของเจลที่มีสารยับยั้ง ลดลงอย่างเห็นได้ชัด และปริมาณที่เหมาะสมในการ load เพื่อที่จะเห็นความแตกต่างได้ชัดเจน คือ 20 µl ของ conditioned media ที่นำมาเจือจาง 5 เท่าก่อน load และเมื่อเทียบ band intensity กับ control gel จะเห็นว่า 20 µM B428 ในเจล และ reaction buffer สามารถยับยั้ง uPA activity ได้ดีที่สุด โดยสามารถยับยั้งได้ราว 60% รูปที่ 11

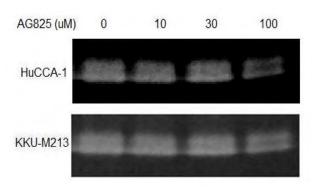

จากนั้น ทำการศึกษาความสำคัญของ uPA ต่อความสามารถในการบุกรุก matrigel ของเซลล์มะเร็ง ท่อน้ำดี โดย resuspend เซลล์ใน media ที่มี B428 และทำการวิเคราะห์หาความสามารถในการบุกรุก ด้วย in vitro invasion assay พบว่า B428 สามารถยับยั้งการบุกรุกของเซลล์มะเร็งท่อน้ำดีที่มี uPA สูง (KKU-M213) ได้อย่างมีนัยสำคัญ โดย 20 µM B428 สามารถยับยั้งการบุกรุกของเซลล์นี้ได้ 35% รูปที่

รูปที่ 10 ผลของ uPA inhibitor (B428) ต่อ uPA activity โดย Plasminogen gelatin zymogram

รูปที่ 11 ผลของ uPA inhibitor (B428) ต่อ uPA activity เมื่อใส่ inhibitor ในเจล และ/หรือ ใน reaction buffer แสดงโดยความเข้มของ band ใน plasminogen gelatin zymogram เทียบ กับ control ซึ่งไม่มี inhibitor

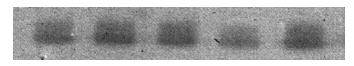


รูปที่ 12 ผลของ B428 ต่อการบุกรุกของเซลล์มะเร็งท่อน้ำดี ที่มี uPA สูง (KKU-M213)

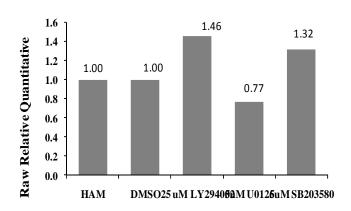

3.5. ศึกษาการควบคุมปริมาณ uPA โดย signal transduction pathways

เนื่องจากมีรายงานทาง immunohistochemistry ว่า ประมาณ 20-80% CCA tissue มีการ express ของ ErbB2 และ 30% มีการ express ของ c-Met นอกจากนี้พบว่า CCA cell line ที่มี ErbB2 และ c-Met express เป็นปริมาณสูง คือ KKU-M213 และ HuCCA ตามลำดับ มี uPA ปริมาณสูงด้วย และ receptors ทั้งสองนี้ยังมีผลส่งเสริม CCA cell invasion เราจึงตั้งสมมุติฐานว่า receptors เหล่านี้อาจส่งผลควบคุม การแสดงออกของ uPA จึงได้ตรวจสอบว่า ปริมาณ uPA ที่หลั่งจากเซลล์มะเร็งท่อน้ำดีถูกควบคุมด้วย receptor เหล่านี้หรือไม่ โดยดูผลของการยับยั้ง kinase activity ของ ErbB2 และกระตุ้น c-Met ด้วย growth factor ที่จำเพาะ (HGF) ต่อปริมาณ uPA พบว่า HGF แทบไม่มีผลกระตุ้นการหลั่ง uPA ใน CCA cell (รูปที่ 13) ส่วนการยับยั้ง ErbB2 kinase activity โดย AG825 ไม่มีผลลดปริมาณ uPA ที่หลั่งออก จากเซลล์ KKU-M213 อย่างมีนัยสำคัญ แต่มีผลลดปริมาณ uPA ที่หลั่งจาก HuCCA-1 cell เมื่อใช้ยาใน ความเข้มข้นสูง อย่างไรก็ตาม ความเข้มข้นของยาในช่วงที่สามารถยับยั้งการบุกรุกของเซลล์ถึง 50% (17 µM) ไม่มีผลต่อปริมาณ uPA ที่หลั่งออกมา (รูปที่ 14)

PI3K, ERK1/2 และ p38 MAPK เป็น signal pathways ที่สำคัญในการบุกรุกของเซลล์ และมี รายงานว่าควบคุมการแสดงออกของ uPA ในเซลล์มะเร็งหลากหลายชนิด เราได้ศึกษาความสำคัญของ pathways เหล่านี้โดยใช้สารยับยั้งที่จำเพาะต่อ pathway นั้นๆ จากรูปที่ 15 25 µM LY294002 (PI3K inhibitor), 5 µM SB203580 (p38MAPK inhibitor)ไม่มีผลต่อระดับ uPA ที่หลั่งจากเซลล์มะเร็งท่อน้ำดี KKU-M213 ในขณะที่ 5 µM U0126 (ERK1/2 inhibitor) ลดปริมาณ uPA ที่หลั่งจากเซลล์ ได้ทำการ วัดผลของสารยับยั้งเหล่านี้ต่อระดับ uPA mRNA พบว่ามีผลค่อนข้างสอดคล้องกับผลต่อระดับ uPA ที่ หลั่งออกมา คือ U0126 มีผลลด uPA mRNA แต่พบว่า LY294002 และ SB203580 มีผลเพิ่ม uPA mRNA เล็กน้อย (รูปที่ 16) ดังนั้น ผลจากทั้งระดับ uPA mRNA และ uPA ที่หลั่งออกมา แสดงว่า ERK1/2 น่าจะมีผลควบคุมปริมาณ uPA ในเซลล์นี้



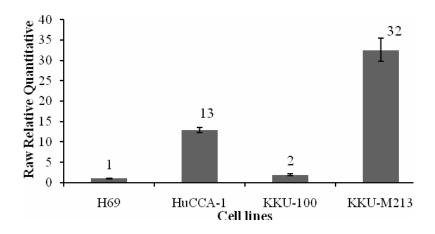
รูปที่ 13 ผลของ HGF (c-Met ligand) ต่อระดับ uPA ที่หลั่งจากเซลล์มะเร็งท่อน้ำดี KKU-M213



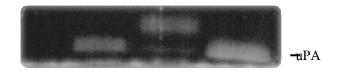
รูปที่ 14 ผลของ ErbB2 inhibitor (AG825) ต่อระดับ uPA ที่หลั่งจากเซลล์มะเร็งท่อน้ำดี KKU-M213

Media DMSO LY294002 U0126 SB203580

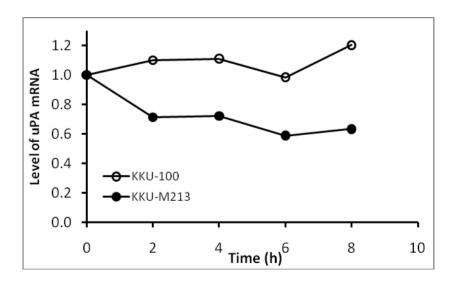
รูปที่ 15 ผลของ PI3K, ERK, p38 inhibitors ต่อระดับ uPA ที่หลั่งจากเซลล์มะเร็งท่อน้ำดี KKU-M213


รูปที่ 16 ผลของ PI3K, ERK, p38 inhibitors ต่อระดับ uPA mRNA ในเซลล์มะเร็งท่อน้ำดี KKU-M213

3.6. วิเคราะห์ปริมาณ uPA mRNA ในเซลล์มะเร็งท่อน้ำดี เทียบกับ H69

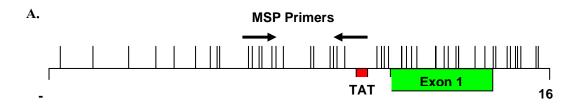

จากการทดลองที่ผ่านมาพบว่าเซลล์มะเร็งท่อน้ำดีหลายชนิด มีการหลั่ง uPA ออกจากเซลล์ มากกว่าเซลล์ท่อน้ำดีที่ไม่เป็นมะเร็ง เซลล์มะเร็งเหล่านี้มีความผิดปกติในกลไกการควบคุมการสร้าง และหลั่ง uPA อย่างไรหรือในขั้นตอนใด จึงทำให้มีปริมาณ uPA หลั่งออกจากเซลล์มะเร็งท่อน้ำดี มากกว่าปกติ เราจึงได้ทำการวิเคราะห์ขั้นตอนต่างๆ ในการควบคุมปริมาณ uPA ในเซลล์มะเร็ง เทียบกับ เซลล์ H69 ซึ่งเป็นเซลล์ท่อน้ำดีที่ไม่เป็นมะเร็ง โดยในขั้นแรกได้วิเคราะห์ระคับ uPA mRNA ใน เซลล์มะเร็งท่อน้ำดี เทียบกับ เซลล์ H69 และ เทียบกับปริมาณ uPA ที่หลั่งจากเซลล์มะเร็งหลากชนิด พบว่า ระคับ uPA mRNA ในเซลล์ต่างๆ มีความสัมพันธ์กับปริมาณ uPA ที่หลั่งจากเซลล์นั้นๆ กล่าวคือ KKU-M213 ที่ปริมาณ uPA mRNA และ uPA ที่หลั่งจากเซลล์ สูงสุด รองลงมาคือ HuCCA-1 ส่วน KKU-100 มีปริมาณ uPA mRNA และ ที่หลั่งจากเซลล์น้อยมาก และ H69 มีน้อยที่สุด จนไม่สามารถ ตรวจพบได้โดย zymogram (รูปที่ 17) ข้อมูลนี้ชี้ว่ระดับ uPA ที่หลั่งจากเซลล์น่าจะขึ้นกับปริมาณ uPA mRNA ดังนั้น การควบคุมที่ผิดปกติในเซลล์มะเร็งอันเป็นสาเหตุให้เซลล์มีการหลั่ง uPA มากขึ้น น่าจะ เกิดขึ้นในขั้นตอนที่ควบคุมระคับ mRNA หรือ ขั้นตอนก่อนหน้านั้น

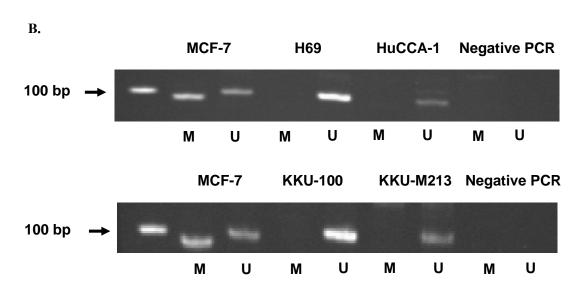
3.7. การเปรียบเทียบความเสถียรของ uPA mRNA


เนื่องจาก ผลการทดลองแสดงว่า เซลล์มะเร็งที่มีหลั่ง uPA มาก มี uPA mRNA เป็นปริมาณมาก เช่นกัน เซลล์มะเร็งเหล่านี้มีความผิดปกติในการควบคุมระดับ uPA อย่างไร จึงทำให้มี uPA mRNA ใน ระดับที่สูงกว่าปกติ ซึ่งมีความเป็นไปได้ 2 แบบคือ มีการสร้าง mRNA มากขึ้น หรือ มีการสลาย mRNA น้อยลง เราจึงได้ทำการทดลอง โดยยับยั้งการสร้าง uPA mRNA ใหม่ และวิเคราะห์อัตราการสลายของ uPA mRNA ที่มีอยู่ในเซลล์ที่มี uPA mRNA ปริมาณน้อย (KKU-100) และ มาก (KKU-M213) จากรูปที่ 18 จะเห็นว่า ไม่พบว่า uPA mRNA ของ KKU-M213 จะมีอัตราการสลายช้ากว่า uPA mRNA ของ KKU-100 แต่อย่างใด ในทางตรงกันข้าม มีแนวโน้มว่า uPA mRNA ของ KKU-100 มีความคงทนกว่า อีกด้วย นั่นแสดงว่า การที่ KKU-M213 มี uPA mRNA สูงไม่ได้เกิดเนื่องจากการที่ mRNA ของเซลล์นี้ มีอัตราการสลายช้ากว่าปกติ ดังนั้น จึงน่าจะเป็นเพราะมีอัตราการสร้างสูงกว่าปกติ

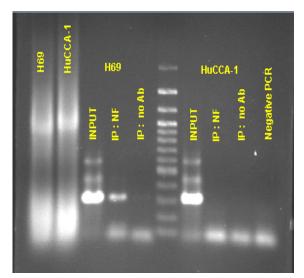
H69 HuCCA-1 KKU-100 KKU-M213

รูปที่ 17 ระดับ uPA mRNA ในเซลล์ท่อน้ำดีที่เป็นและไม่เป็นมะเร็ง (กราฟ) เทียบกับปริมาณ uPA ที่หลั่งจากเซลล์ (zymogram)


รูปที่ 18 ความเสถียรของ uPA mRNA ของ KKU-M213 เทียบกับ KKU-100 ยับยั้งการสร้าง mRNA ใหม่ ด้วย actinomycin D ติดตามการสลายของ uPA mRNA โดยวัดปริมาณ uPA mRNA ที่เหลืออยู่ ณ เวลา ต่างๆ


3.8. วิเคราะห์สถานภาพของการเติมหมู่ methyl บน CpG ใน uPA promoter

เนื่องจากมีรายงานในมะเร็งเด้านม และ มะเร็งต่อมลูกหมาก ว่าการเพิ่มการสร้าง uPA เกิดจาก promoter มี CpG methylation น้อยลง ซึ่งทำให้ยืนมี transcription สูงขึ้น เราจึงตั้งสมมุติฐานว่าในมะเร็ง ท่อน้ำคือาจมีความผิดปกติในทำนองเคียวกัน CpG methylation ตรวจสอบโดย Methylation specific PCR (MSP) โดยจะใช้ bisulfite ทำปฏิกริยา ทำให้เปลี่ยน unmethylated C (cytosine) ใน genomic DNA เป็น U ในขณะที่ methylated C จะไม่ถูกเปลี่ยน จากนั้นนำ DNA ที่ถูก modified มาเพิ่มจำนวน (amplify) บริเวณที่มีรายงานว่าเป็น CpG island มีตำแหน่ง CpG ที่พบการเติมหมู่เมทิว หลายตำแหน่ง ใกล้ๆกัน (รูปที่ 2) บริเวณนี้จะถูก amplified โดยใช้ primer ที่จำเพาะต่อ methylated และ unmethylated DNA ตรวจสอบ PCR products โดยการแยกด้วยกระแสไฟฟ้าบนเจล ผลจากเจล แสดงว่า ทั้ง เซลล์มะเร็งท่อน้ำดีที่มี uPA แสดงออกมาก หรือน้อย หรือเซลล์ท่อน้ำดีที่ไม่มี uPA มี promoter ในส่วน ที่ตรวจสอบ มีสถานภาพเป็น unmethylated promoter เหมือนกัน ดังนั้นความแตกต่างในการแสดงออก ของ uPA ใน cell lines เหล่านี้ จึงไม่น่าจะเกิดเนื่องจากการมี promoter methylation ที่แตกต่างกัน


3.9. ตรวจสอบการจับกันระหว่าง uPA promoter กับ transcription factor NF-kB

จากการที่มีหลักฐานหลายอย่างทำให้เชื่อได้ว่าการอักเสบเรื้อรังเป็นปัจจัยส่งเสริมการเกิดมะเร็งท่อ น้ำดี และ NF-kB pathway เป็น signaling pathway ที่ถูกกระตุ้นในสภาวะอักเสบ และ ใน uPA promoter มี NF-kB binding site ทำให้เราตั้งสมมุติฐานว่า NF-kB อาจเป็นตัวขับเคลื่อนให้ uPA มีการ แสดงออกสูง หากเป็นเช่นนั้น NF-kB น่าจะจับอยู่ที่ uPA promoter ในเซลล์ที่มี uPA สูง มากกว่า เซลล์ ที่ไม่มี uPA เราได้ตรวจหาการจับกันระหว่าง NF-kB กับ uPA promoter โดยทำ chromatin immunoprecipitation ในทางตรงกันข้ามเรากับพบว่า NF-kB จับกับ uPA promoter ใน H69 cell ซึ่งไม่ express uPA มากกว่า HuCCA-1 ซึ่ง express uPA สูง

รูปที่ 19 สถานภาพของการเติมหมู่ methyl บน CpG ใน uPA promoter เซลล์มะเร็งท่อน้ำดี (HuCCA-1, KKU-100, KKU-M213 และ เซลล์ท่อน้ำดีที่ไม่เป็นมะเร็ง (H69) A) แผนผังแสดงตำแหน่งที่ primer จับ B) PCR product จาก mehtylated primer (M) และ unmethylated primer ในเซลล์ต่างๆ

รูปที่ 20 Chromatin immunoprecipitation ของ H69 และ HuCCA-1 โดยใช้ NFkB antibody

4. วิจารณ์และสรุปผลการทดลอง

จากการศึกษาความสัมพันธุ์ของปริมาณ uPA ต่ออาการทางคลีนิคและพยาธิสภาพของผู้ป่วยมะเร็ง ท่อน้ำดี พบว่า ระดับ uPA ที่แสดงออกมีความสัมพันธ์โดยตรงอย่างมีนัยสำคัญกับการบุกรุกและการ แพรกระจายของมะเร็งท่อน้ำดีในผู้ป่วย นอกจากนี้ ยังพบความสัมพันธ์แบบผกผันอย่างมีนัยสำคัญกับ ระยะเวลาในการมีชีวิตอยู่ ในผู้ป่วยที่มีก้อนมะเร็งขนาดเล็ก สำหรับผู้ป่วยที่มีก้อนมะเร็งขนาดใหญ่ จะมี อัตราการตายสูงโดยไม่เกี่ยวข้องกับสถานภาพของ uPA ผลการทดลองนี้ชี้แนะว่า uPA น่าจะเป็น marker ที่ใช้ในการคาดการณ์โรคนี้ได้อย่างน้อยในกลุ่มผู้ป่วยที่มีก้อนมะเร็งขนาดเล็ก

จากการศึกษาความสำคัญของ uPA ต่อการบุกรุกของเซลล์มะเร็งท่อน้ำคีด้วยวิธี in vitro invasion assay โดยใช้ Transwell ที่มี Matrigel เคลือบ โดยศึกษาผลของการยับยั้ง uPA ต่อการบุกรุกของเซลล์ KKU-M213 ซึ่งมีการหลั่ง uPA มากที่สุด โดยใช้ uPA inhibitor (4-Iodo-benzo[b]thiophene-2-carboxamidine HCl, B428) พบว่า 20 µM B428 สามารถยับยั้งการบุกรุกของเซลล์ KKU-M213 จน เหลือ 65% เมื่อเทียบกับ control ที่มี 0.1% DMSO ซึ่งเป็นความเข้มข้นเท่ากับที่อยู่ในสารละลาย B428 B428 ความเข้มข้นที่ใช้นี้ สามารถยับยั้ง uPA activity เหลือ 35% เมื่อเทียบกับ control โดยดูจากการ ลดลงของ band intensity ใน zymogram gel ที่ได้เดิมยาความเข้มข้นเดียวกันลงไปในเจล และ ใน reaction buffer นั่นแสดงว่า uPA สำคัญต่อขบวนการบุกรุกของเซลล์มะเร็งท่อน้ำคี ผลทั้งจาก cell line (in vitro) และความสัมพันธ์จากคนไข้ ชี้ว่า uPA เป็นโปรตีนที่สำคัญต่อการบุกรุกและแพร่กระจายของ มะเร็ง ซึ่งเป็นปัจจัยสำคัญอย่างหนึ่งที่ทำให้ผู้ป่วยเสียชีวิต ดังนั้น uPA จึงน่าจะเป็นจุดเป้าหมายหนึ่งใน การรักษาและป้องกันการแพร่กระจายของมะเร็ง สำหรับผู้ป่วยที่มีก้อนมะเร็งขนาดเล็ก

จากการศึกษาการควบคุม uPA โดย signal transduction pathway พบว่า สัญญานจาก ErbB2 และ HGF/c-Met receptor แทบไม่มีผลต่อปริมาณ uPA เลย นอกจากนี้ intracellular mediator ที่สำคัญ เช่น PI3K, และ p38 ก็มีผลต่อการหลั่ง uPA น้อยมาก ส่วน ERK1/2 inhibitor มีผลทำให้การหลั่ง uPA ลดลง และ ยังลดระดับ uPA mRNA อีกด้วย

การวิเคราะห์ขั้นตอนต่างๆ ในการควบคุมการผลิต uPA ในเซลล์มะเร็ง เทียบกับ เซลล์ H69 ปริมาณ uPA mRNA มีความสัมพันธ์กับปริมาณ uPA ที่หลั่งออกจากเซลล์ โดยในเซลล์ที่มี uPA หลั่ง ออกมาสูง (KKU-M213) มีปริมาณ uPA mRNA สูงสุด และเซลล์ที่มี uPA หลั่งออกมาต่ำ (KKU-100) มี ปริมาณ uPA mRNA ต่ำ และ immortalized cholangiocyte (H-69) มีปริมาณ uPA mRNA ต่ำสุด และ ปริมาณ mRNA ที่ต่างกันนี้ไม่ได้เกิดเนื่องจากการอัตราการทำลายที่แตกต่างกัน จึงน่าจะเกิดจากความ แตกต่างของอัตราการสร้าง uPA mRNA อย่างไรก็ตามกลไกที่เกี่ยวข้องกับการเพิ่มการสร้าง uPA mRNA ในเซลล์มะเร็งท่อน้ำดีนั้นยังต้องศึกษาต่อไป ทั้งนี้จากการตรวจวิเคราะห์สถานภาพการเติมหมู่

เมทิวที่ CpG ของ uPA promoter และการศึกษาการจับกันระหว่าง uPA promoter กับ transcription factor NF-kBใน cell lines ต่างๆ พบว่า กระบวนการทั้งสอง ไม่น่าจะเป็นกลไกที่ทำให้เซล์มะเร็งสร้าง uPA mRNA ได้สูงขึ้นกว่าเซลล์ปกติ เนื่องจาก promoter ของเซลล์ท่อน้ำดีปกติอยู่ในสภาวะ unmethylated และ สามารถจับกับ NF-kB ได้ แต่แทบไม่มีการแสดงออกของ uPA เลย นอกจากนี้ ผล การทดลองใน H69 ยังชี้ให้เราเห็นว่า การสร้าง uPA mRNA ถูกควบคุมอย่างเข้มข้น การที่ promoter อยู่ ในสภาวะ unmethylated และจับกับ transcription factor NF-kB ไม่เพียงพอที่จะกระตุ้นการ transcription ของยืนนี้ได้ อาจมีมาตราการอื่นในการยับยั้งการแสดงออกของยืนนี้ก็ได้ ซึ่งจะต้องมี การศึกษาต่อไป

เอกสารอ้างอิง

- Andreasen PA, Kjoller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1-22.
- Bhamarapravati N, Thamavit W (1978) Animal studies on liverfluke infestation, dimethylnitrosamine, and bileduct carcinoma. Lancet 1:206-207.
- Blasi F (1999) Proteolysis, cell adhesion, chemotaxis, and invasiveness are regulated by the u-PA-u-PAR-PAI-1 system. Thromb Haemost 82:298-304.
- Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932-943.
- Blasi F, Sidenius N (2010) The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 584:1923-1930.
- Crippa MP (2007) Urokinase-type plasminogen activator. Int J Biochem Cell Biol 39:690-694.
- Crowe DL, Shuler CF (1999) Regulation of tumor cell invasion by extracellular matrix. Histol Histopathol 14:665-671.
- Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M, Romer J (2005) Plasminogen activation and cancer. Thromb Haemost 93:676-681.
- Ibanez-Tallon I, Ferrai C, Longobardi E, Facetti I, Blasi F, Crippa MP (2002) Binding of Sp1 to the proximal promoter links constitutive expression of the human uPA gene and invasive potential of PC3 cells. Blood 100:3325-3332.
- Mazar AP, Henkin J, Goldfarb RH (1999) The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis 3:15-32.
- Ossowski L, Aguirre-Ghiso JA (2000) Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12:613-620.
- Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735-31744.
- Pakneshan P, Szyf M, Rabbani SA (2005) Hypomethylation of urokinase (uPA) promoter in breast and prostate cancer: prognostic and therapeutic implications. Curr Cancer Drug Targets 5:471-488.
- Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11:23-36. Sripa B (2003) Pathobiology of opisthorchiasis: an update. Acta Trop 88:209-220.

- Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, Pairojkul C, Bhudhisawasdi V, Tesana S, Thinkamrop B, Bethony JM, Loukas A, Brindley PJ (2007) Liver fluke induces cholangiocarcinoma. PLoS Med 4:e201.
- Sripa B, Pairojkul C (2008) Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 24:349-356.
- Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Terao T (2004) Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J Biol Chem 279:8567-8576.

ภาคผนวก

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- Menakongka A, Suthiphongchai T (2010) Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol 16:713-722.
- Wijitburaphat S, Thummarati P, Menakongka A, Prasopthum A,Sripa B, Tohtong R,
 Suthiphongchai T High expression of urokinase plasminogen activator contributes to cholangiocarcinoma invasion in preparation

2. นำเสนอผลงานในการประชุม

- <u>Thummarati P</u>, Wijitburaphat S, Sripa S, Suthiphongchai T Urokinase plasminogen activator (upa) expression in cholangiocarcinoma presented at 3rd Biochemistry and molecular biology international conference at Changmai, April 6-8, 2011.
- Suthiphongchai T, Wijitburaphat S, Sripa S, Expression of urokinase-type plasminogen activator in cholangiocarcinoma presented at FAOBMB Shanghai, August 2009.

Online Submissions: http://www.wjgnet.com/1007-9327office wjg@wjgnet.com doi:10.3748/wjg.v16.i6.713

World J Gastroenterol 2010 February 14; 16(6): 713-722 ISSN 1007-9327 (print) © 2010 Baishideng. All rights reserved.

ORIGINAL ARTICLE

Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion

Apaporn Menakongka, Tuangporn Suthiphongchai

Apaporn Menakongka, Tuangporn Suthiphongchai, Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Author contributions: Menakongka A performed the experiments, analyzed the data and wrote the manuscript; Suthiphongchai T designed the study, analyzed the data and wrote the manuscript.

Supported by Mahidol University, Thailand and Thailand Research Fund (Suthiphongchai T); Strategic Consortia for Capacity Building of University Faculties and Staff Scholarship, Commission on Higher Education, Ministry of Education, Thailand (Menakongka A)

Correspondence to: Tuangporn Suthiphongchai, Associate Professor, Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok 10400,

Thailand. sctsc@mahidol.ac.th

Telephone: +662-2015609 Fax: +662-3547174

Received: October 21, 2009 Revised: November 27, 2009

Accepted: December 4, 2009

Published online: February 14, 2010

Abstract

AIM: To investigate the role of hepatocyte growth factor (HGF) in cholangiocarcinoma cell invasiveness and the mechanisms underlying such cellular responses.

METHODS: Effects of HGF on cell invasion and motility were investigated in two human cholangiocarcinoma cell lines, HuCCA-1 and KKU-M213, using Transwell *in vitro* assay. Levels of proteins of interest and their phosphorylated forms were determined by Western blotting. Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography.

RESULTS: Both cholangiocarcinoma (CCA) cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line. HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization, but did not affect the levels of secreted matrix metalloproteinase

(MMP)-2, MMP-9 and urokinase plasminogen activator, key matrix degrading enzymes involved in cell invasion. Concomitantly, HGF stimulated Akt and ERK1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines. Inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway by the PI3K inhibitor, LY294002, markedly suppressed HGF-stimulated invasion of both CCA cell lines, and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells.

CONCLUSION: These data indicate that HGF promotes CCA cell invasiveness through dyslocalization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.

© 2010 Baishideng. All rights reserved.

Key words: Hepatocyte growth factor; Invasion; Cholangiocarcinoma; PI3K; ERK

Peer reviewers: Hong Joo Kim, MD, PRO, Department of Internal Medicine, Sungkyunkwan University Kangbuk Samsung Hospital, 108, Pyung-Dong, Jongro-Ku, Seoul, 110-746, South Korea; Yu-Yuan Li, Professor, Department of Gastroenterology, First Municipal People's Hospital of Guangzhou, Guangzhou Medical College, Guangzhou 510180, Guangdong Province, China

Menakongka A, Suthiphongchai T. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. *World J Gastroenterol* 2010; 16(6): 713-722 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i6/713.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i6.713

INTRODUCTION

713

Cholangiocarcinoma (CCA) is a malignant tumor of the biliary epithelium associated with a high metastatic and mortality rate^[1]. Incidence of this cancer has increased

WJG | www.wjgnet.com

worldwide^[2], and in Thailand the highest incidence is in the northeastern region, where *Opisthorchis viverrini* infection is also prevalent^[3]. Although the exact molecular mechanisms of cholangiocarcinogenesis are still under investigation, alterations in important growth factor pathways, such as hepatocyte growth factor/Met and ErbB2, have been suggested as being involved^[4].

Overexpression and deregulation of Met, a receptor tyrosine kinase, have been reported in many types of cancers [5]. Met is activated via binding to its ligand, hepatocyte growth factor (HGF), also known as scatter factor (SF), a soluble factor first identified as a growth factor for hepatocytes and a dissociation factor for epithelial cells^[6]. Hitherto there have been a limited number of investigations into the role of Met in cholangiocarcinoma. Several reports have demonstrated a correlation between Met expression and CCA^[7-10]. Immunohistochemical data indicate high expression of Met in well-differentiated CCA and hyperplastic bile ducts of nontumorous liver surrounding CCA, whereas Met expression is low in poorly differentiated tumor [7,8]. Met expression is increased in early developmental stages of CCA, suggesting a role in cholangiocarcinogenesis^[9]. Moreover, there is a correlation between Met expression and CCA invasion through adjacent connective tissues^[11]. HGF level has been shown also to correlate with CCA differentiation stages in both human and rat models^[10,12].

HGF/Met activation induces a variety of biological processes, including cell scattering, invasion, proliferation and survival^[13-15]. Among the various cellular responses induced by HGF, cell invasion and metastasis have been implicated strongly in numerous cancer types. HGF has been reported to promote the main requirements of tumor invasion, namely, disruption of cell-cell adhesion complex, cell adhesion to extracellular matrix (ECM), cell motility and production of matrix degrading enzymes, such as matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA)^[15-18]. Phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) are the main intracellular signaling pathways implicated in HGF-induced invasion^[19,20].

The present study focuses on the role of HGF/Met in CCA cell invasion and the mechanisms underlying cellular responses. Here, we demonstrate that Met is overexpressed in human CCA cell lines and that HGF stimulation induces CCA cell invasion, motility and E-cadherin translocation, but has no effect on MMPs or uPA activity. Use of inhibitors of MEK and PI3K indicate that HGF induces invasion in two different CCA cell lines *via* distinct signaling pathways.

MATERIALS AND METHODS

Cell culture

Human CCA cell lines HuCCA-1 and KKU-M213 were kindly provided by Professor S Sirisinha (Mahidol University, Bangkok, Thailand)^[21,22] and Associate Professor B Sripa (Khon Kaen University, Khon Kaen,

Thailand)^[23,24], respectively. Cholangiocyte H69 cell line was kindly provided by Professor G Alpini (Texas A&M University, TX, USA) and Professor G Gores (Mayo Clinic, MN, USA). CCA cells were grown in HAM/F12 medium (Gibco Invitrogen Corp., Auckland, NZ) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin G sodium, 100 μg/mL streptomycin sulfate, 0.25 μg/mL amphotericin B (Invitrogen Corp., Auckland, NZ) and 15 mmol/L HEPES (USB Corp., OH, USA) at 37°C under a humidified 50 mL/L CO₂ atmosphere. H69 cells were cultured in DMEM/F12 and DMEM (1:1) (Gibco Invitrogen Corp., Auckland, NZ) supplemented with hormones, epidermal growth factor and 10% FBS as previously described^[25].

Western blotting analysis

Levels of Met, ERK1/2 and Akt and their phosphorylated forms, and E-cadherin, were determined by Western blotting. Cells (2×10^5) were cultured in 30-mm plates for two days, then incubated with 50 ng/mL recombinant NSO-produced human HGF (R&D Systems, Inc., MN, USA) in serum-free media for 15, 60 and 360 min in the presence or absence of LY294002 (Calbiochem, CA, USA) or U0126 (Tocris Bioscience, MO, USA). Cells were then lysed with $1 \times SDS$ loading buffer (50 mmol/L Tris-Cl pH 6.8, 2% SDS, 10% glycerol and 100 mmol/L β-mercaptoethanol) and lysate proteins were separated by 8% SDS polyacrylamide gel-electrophoresis. Proteins were transferred to nitrocellulose membrane (Hybond ECL, GE healthcare, Buckinghamshire, UK), which was incubated with antibodies specific for Akt, ERK1/2 and their phospho-forms (Cell Signaling Technology, Danvers, MA) or with anti-Met, anti-E-Cadherin, anti-β-actin (Santa Cruz Biotechnology, Santa Cruz, CA) and anti-phospho-Met (Cell Signaling Technology, Danvers, MA) antibodies, followed by HRP-conjugated secondary antibodies. Signals were developed using Enhance Chemiluminescence kit (GE Healthcare, Buckinghamshire, UK) and detected with FluorChem SP (Alpha Innotech Corporation, San Leandro, CA). Band densities were quantitated using AlphaEaseFC software (Alpha Innotech Corporation, San Leandro, CA). The data were presented in the relative band density when compared to those at zero time points.

Invasion and motility assay

HGF-induced CCA cell invasiveness was determined by Matrigel Transwell *in vitro* invasion assay as described by Albini *et al*²⁶ with some modification. In brief, the upper chamber of a Transwell unit (6.5-mm diameter polycarbonate membrane with 8-μm pore size) (Corning Incorporated Life Science, Corning, NY), was coated with 30 μg of Matrigel (BD Biosciences, Bedford, MA). Cells (80% confluent) were harvested using TrypLE Express (Invitrogen, Corp., Grand Island, NY) and resuspended in serum-free media in the presence or absence of 50 and 100 μmol/L LY294002 or 1 and 5 μmol/L U0126. A 200 μL aliquot of cell (10⁵) suspension was added to the upper chamber. The lower chamber was filled with 600 μL of serum-free media containing 10, 50 or

WJG | www.wjgnet.com

100 ng/mL human HGF as chemoattractant. BSA (0.1% in serum-free medium) was used as negative control. After 6 h of incubation at 37°C under CO2 atmosphere, non-invading cells in the upper chamber were removed and cells that invaded the Matrigel and had attached to the lower surface of the Transwell membrane were fixed with 25% methanol for 30 min and stained with 0.5% crystal violet. Invaded cells were counted in 5 random fields under light microscope at 100×100 magnification. The reported values represent mean ± 100 SE of the results obtained from three independent experiments.

Motility assay was performed using the Transwell chamber in the same manner as in the invasion assay but Matrigel coating was omitted.

Determination of gelatinase and urokinase plasminogen activator activities

Gelatinase (MMP-2 and MMP-9) and uPA levels secreted into conditioned media were determined by gelatin and plasminogen gelatin zymography under non-reducing conditions. Cells (80% confluent) were incubated with serum-free media in the presence of HGF (0, 10, 50 and 100 ng/mL) for 6 h. For gelatinase activity assay, 20 × concentrated conditioned media was mixed with SDS loading buffer in the absence of sulfhydryl reducing agent and electrophoresed in 7.5% SDS-polyacrylamide gel containing 1 mg/mL gelatin. uPA zymography was performed in a similar manner except that 10 µg/mL plasminogen and 1 mg/mL gelatin were copolymerized with 10% SDS-polyacrylamide gel and conditioned media was not concentrated. Gels were washed twice with 2.5% TritonX-100 for 1 h to remove SDS, then incubated for 18 h in reaction buffer (for gelatinase: 50 mmol/L Tris-HCl pH 7.5, 10 mmol/L CaCl2, 1 µmol/L ZnCl2 and 1% TritonX-100; for uPA: 100 mmol/L Tris-HCl pH 7.8, 150 mmol/L NaCl and 1% TritonX-100). Gels were stained for 2 h with 0.25% Coomassie blue and destained with 45% methanol and 10% acetic acid. Unstained bands in gelatin gel with estimated molecular weight of 65 and 85 kDa corresponded to MMP-2 and MMP-9 respectively, and that of 45 kDa in plasminogen-gelatin gel corresponded to uPA.

Immunofluorescence analysis

CCA cells (3 × 10⁵) were grown on sterile coverslips for two days. Then the monolayer cells were treated with 0-100 ng/mL HGF for 6 h. Cells were washed twice with PBS, fixed in solution containing 3% paraformaldehyde and 2% sucrose, permeabilized with 0.5% Triton X-100 and incubated with 10% FBS, 0.1% Triton X-100 in PBS. Cells were then incubated overnight at 4°C with mouse anti-E-cadherin monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA), followed by fluorescent Alexa Fluor[®] 568-conjugated goat anti-mouse IgG secondary antibodies (Molecular Probes, Eugene, OR). After washing with PBS, the coverslips were mounted with 0.01% para-phenylenediamine dihydrochloride (Sigma Aldrich, Inc., St. Louis, MO) in 70% glycerol, and visualized under a confocal laser scanning microscope

(Olympus FV1000; Olympus Corp. Tokyo, Japan) equipped with Olympus FV10-ASW 1.7 software.

Statistical analysis

Invasion and motility results are expressed as mean \pm SE. Multiple comparisons were performed using one-way analysis of variance (ANOVA) with P value < 0.05 considered statistically significant.

RESULTS

Met expression and phosphorylation in CCA cells

Western blotting analysis of both CCA cell lines (HuCCA-1 and KKU-M213) showed higher Met expression than in normal cholangiocytes (H69) (Figure 1A). Stimulation of cells by exogenous HGF resulted in induction of tyrosine phosphorylation at the critical autophosphorylation sites (pY1234/1235) in the catalytic domain of Met, but with a slight difference in the kinetics of Met activation between the two CCA cell lines; i.e. HGF stimulated a more rapid Met phosphorylation in HuCCA-1 cells (reaching a maximum at 15 min) than in KKU-M213 (maximum at about 15-60 min) (Figure 1B and C).

Effects of HGF on CCA cell invasiveness and motility

HGF has been reported as being able to induce invasion of several cancer cell types^[27]. Here, CCA cell invasiveness and motility in response to HGF were investigated using a Transwell *in vitro* invasion/motility assay. In the absence of HGF, CCA cells showed abilities to migrate and invade, which were stimulated further by HGF in a dose-dependent manner over the concentration range of 10-100 ng/mL (Figure 2). Although basal migration and invasion abilities of HuCCA-1 were relatively low when compared to that of KKU-M213, they were dramatically stimulated by HGF to levels comparable to those of HGF-induced KKU-M213.

H69 cells, immortalized cholangiocytes, possessed very low invasive ability. Of 10^5 cells added to the upper compartment of the Transwell chamber, only 70 ± 21 cells invaded in the control and 335 ± 72 cells invaded upon HGF treatment. Although the HGF could induce H69 invasion, the level of invasion was marginal when compare to those of CCA cell lines.

Effects of HGF on E-cadherin expression and localization and matrix metalloproteinases and uPA secretion

HGF is able to induce changes in expression and localization of E-cadherin resulting in cell movement in several type of cancers^[28-30]. To investigate the possibility of an involvement of E-cadherin in HGF-induced CCA cell migration, we determined the effects of HGF on E-cadherin expression by Western blotting and on localization by immunofluorescence staining. E-cadherin protein level did not change within 6 h of HGF treatment (Figure 3A). However, immunofluorescence demonstrated that HGF altered E-cadherin localization from the cell boundary to the cytoplasmic compartment

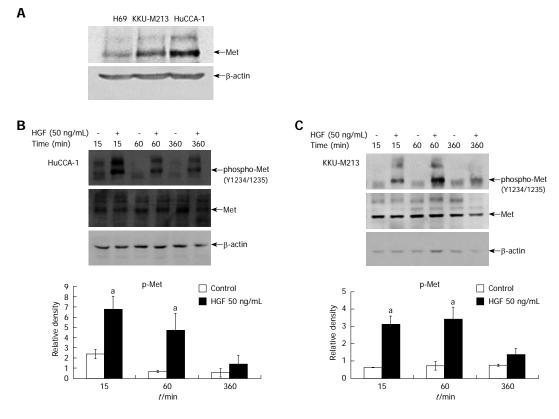


Figure 1 Steady state level of Met expression in cholangiocarcinoma cell lines and activation by hepatocyte growth factor (HGF). Cell lysates from 80% confluent cells cultured in 10% fetal bovine serum (FBS) medium were examined for Met expression by Western blotting analysis (A). Lysates from HuCCA-1 (B) and KKU-M213 (C) cells treated with or without 50 ng/mL HGF for various times were analyzed by Western blotting for levels of Met and phospho-Met (pY1234/1235). The graphs show band densities of phospho-Met relative to those at zero time points. Data are presented as mean ± SE of results obtained from three independent experiments. ^aP < 0.05, compared with untreated control.

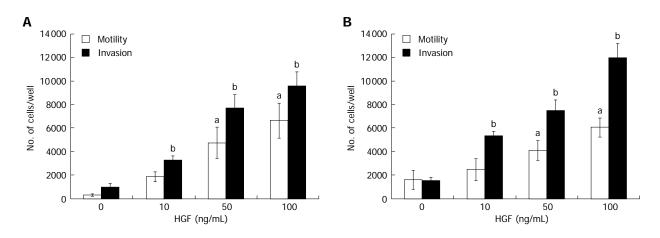


Figure 2 HGF induction of cholangiocarcinoma motility and invasiveness. In vitro invasion and motility assays of HuCCA-1 (A) and KKU-M213 (B) cells were conducted in a Transwell unit coated with and without Matrigel. Cells (105) in serum-free medium were plated in the upper chamber of a Transwell unit and 0-100 ng/mL HGF added to the lower chamber. After 6 h of incubation, cells invading to the lower compartment of the Transwell unit were stained and counted. The numbers of invaded/ motile cells are presented as mean ± SE of results obtained from three independent experiments. ^aP < 0.05 and ^bP < 0.01, compared with untreated control.

(Figure 3B and C).

The effect of HGF on secretion of matrix degrading enzymes, a major factor contributing to cell invasiveness, was investigated by gelatin zymography. Zymograms from conditioned media of HuCCA-1 cells showed a clear band indicating MMP-2 activity, while those of KKU-M213 cells revealed both MMP-2 and MMP-9 activities (Figure 4A), demonstrating that the two CCA cell lines constitutively expressed high amounts of MMP-2 and/or MMP-9 at basal levels. However, these enzyme activities were not increased following HGF treatment (Figure 3A). Similarly, high basal activity of uPA was found in both CCA cell lines, which was not affected by the presence of HGF (Figure 4B).

Involvement of ERK1/2 and PI3K signaling pathways in HGF-induced CCA cell invasiveness

The mechanism responsible for HGF-induced inva-

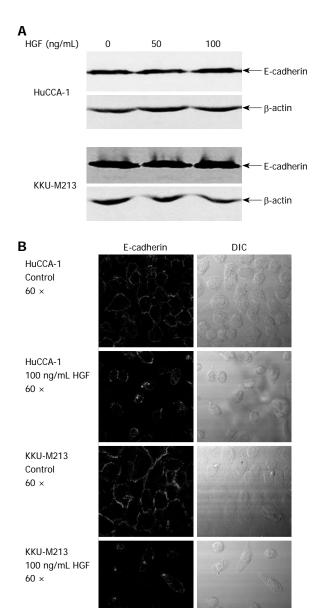


Figure 3 Effects of HGF on E-cadherin expression and localization. At cholangiocarcinoma (CCA) cells were treated with HGF for 6 h, then cell lysate was analyzed by Western blotting with anti-E-cadherin and - β -actin monoclonal antibodies; B: After treatment with 0 and 100 ng/mL HGF for 6 h, cells were analyzed by immunofluorescence using anti-E-cadherin antibody and visualized under confocal laser scanning microscopy (60 × objective magnification plus 2 × digital magnification).

siveness of CCA cell lines was investigated by examining the signaling pathways of ERK1/2 and PI3K. HGF (50 ng/mL) stimulated both HuCCA-1 and KKU-M213 phosphorylation of ERK1/2 and Akt, with the latter being the major downstream effector of PI3K (Figure 5A and B). However, different time response profiles were observed between these two cell lines in HGF-induced ERK1/2 and Akt activation. In KKU-M213 cells, HGF significantly induced activation of ERK1/2 and Akt at up to 360 min, whereas in HuCCA-1 cells, after 360 min of induction, activation decreased to nearly those of unstimulated levels.

To confirm the roles of these two signaling pathways

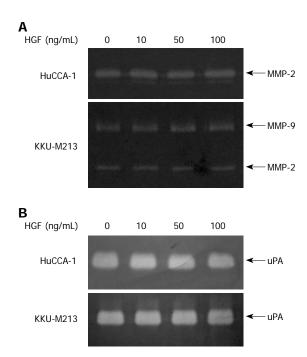


Figure 4 Effect of HGF on levels of secreted matrix degrading enzymes from cholangiocarcinoma HuCCA-1 and KKU-M213 cell lines. Cells were treated with various concentrations of HGF (0-100 ng/mL) in serum-free medium for 6 h. Conditioned media were then analyzed for MMP-2 (approximate 65 kDa) and MMP-9 (approximate 85 kDa) gelatinolytic activity by gelatin zymography (A) and for uPA by plasminogen-gelatin zymography (B).

in response to HGF stimulation, we tested the antagonistic effect of U0126 and LY294002; a MEK1 and a PI3K inhibitor, respectively. LY294002 (50 µmol/L) inhibited HGF-stimulated phosphorylation of Akt in both CCA cell lines to an undetectable level (Figure 6A) and markedly inhibited HGF-induced cell invasion, but did not have any significant effect on the invasion of non HGF-stimulated cells (Figure 6B and C). U0126 (1 and 5 µmol/L) reduced HGF-induced invasion of KKU-M213 cells (to 29% and 18% of untreated control, respectively) (Figure 7C). However, U0126 only had a marginal inhibitory effect on HGF-induced invasion of the HuCCA-1 cell line (Figure 7B). Nevertheless, U0126 completely inhibited ERK1/2 phosphorylation of HuCCA-1 cells, whereas phospho-ERK1/2 was still detectable in KKU-M213 cells even at the highest U0126 concentration used (Figure 7A).

DISCUSSION

Overexpression of Met has been reported in CCA and is correlated with progression and invasion of this type of cancer^[9,11]. In this study, we demonstrated that HGF induced cell invasion, motility and change in E-cadherin localization in two human CCA cell lines, HuCCA-1 and KKU-M213, both of which overexpress Met; but without affecting secretion of the matrix degrading enzymes, MMP-2, MMP-9 and uPA. However, the signaling pathways underlying HGF-induced invasiveness of the two cell lines were different, with ERK1/2 activation being more important for HGF-induced KKU-M213 cell invasion than for HuCCA-1 cell invasion.

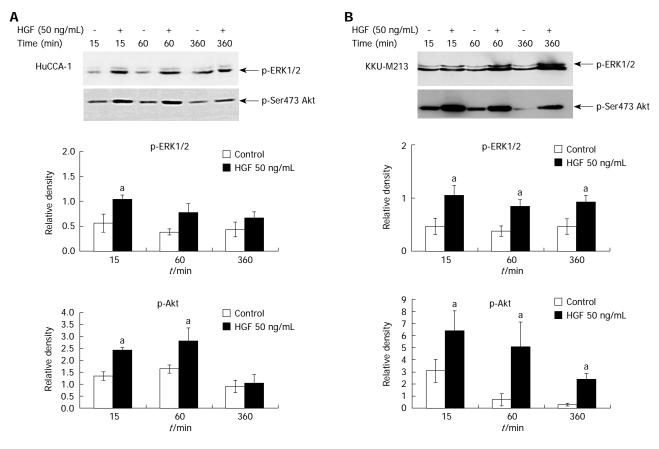


Figure 5 HGF induction of ERK1/2 and Akt phosphorylation in cholangiocarcinoma HuCCA-1 and KKU-M213 cell lines. About 80% confluent cells were treated with 50 ng/mL HGF in serum-free medium for 15, 60, 360 min. Lysates from HuCCA-1 (A) and KKU-M213 (B) cells were assessed for total and phosphorylated forms of ERK1/2 and Akt by Western blotting assay. The graphs showed band densities of phospho-ERK1/2 and phospho-Akt relative to those at zero time points. Data are presented as mean ± SE of results obtained from three independent experiments. ^aP < 0.05, compared with untreated control.

Two major factors contributing to an increase in cancer cell invasiveness are enhancement of extracellular matrix degradation and activation of cell motility. The effects of HGF on induction of these phenomena vary with different cell types. For instance, HGF enhances cell motility but not MMP-9 or uPA activities in breast cancer MDA-MB-231 cell line^[16], while it induces both motility and matrix degrading enzyme expression in colon cancer Caco-2, prostate cancer PC-3 and DU-145 cells^[31,32]. In our study, HGF induced invasion of both CCA cell lines by increasing motility but not MMP-2, MMP-9 or uPA levels. As the expression of the basal levels of these matrix degrading enzymes was already high in both CCA cell lines, this may be sufficient for providing cellular transmigration. Therefore, induction of cell motility alone by HGF, without augmenting extracellular matrix degrading enzyme levels, appears to be sufficient for cell invasiveness. Alterations of only some process(es) required for cell invasion have been reported as being able to alter cell invasiveness. For instance, inhibitors of ERK1/2^[33] and myosin light chain kinase^[34] suppress prostate cancer cell invasion by decreasing cell motility but not matrix degrading enzyme activity.

E-cadherin is the key mediator of cell-cell adhesion. Cell scattering induced by HGF results from disruption of E-cadherin function, either by reducing expression or changing its cellular localization^[29]. In this study, we found

that HGF caused E-cadherin to move from membrane to cytoplasm but had no effect on amount. These results are consistent with previous studies in a keratinocyte cell line, in which HGF reduced E-cadherin at cell-cell boundaries without changing its protein level [35,36]. Although we did not investigate the mechanism of HGF-disrupted E-cadherin function, previous reports have implicated the involvement of Ras-RIN2-Rab5 and β-catenin in this process. Kimura et al^[37] demonstrated in a cell free system that HGF activates Ras which binds and activates RIN2, a Rab5-GEF (guanine nucleotide exchange factor of Rab5), leading to Rab5 activation. This active Rab5, a small G protein regulating endocytosis, in turn promotes E-cadherin endocytosis. In addition, Shibamoto et al³⁶ showed that HGF promotes tyrosine phosphorylation of β-catenin and decreases E-cadherin at the cell-cell boundaries resulting in the reduction of cell-cell adhesion mediated by E-cadherin.

Basement membrane normally acts as a barrier for tumor cell invasion; therefore, it is generally expected that the rate of invasion at which a cell degrades this barrier should be slower than or equal to the rate of cell migration. However, with the HuCCA-1 cell line, the basal cell invasion rate (with no HGF stimulation) was higher than that of migration. This suggests that some component(s) in Matrigel may have a role in inducing HuCCA-1 cell invasion. In support of this notion,

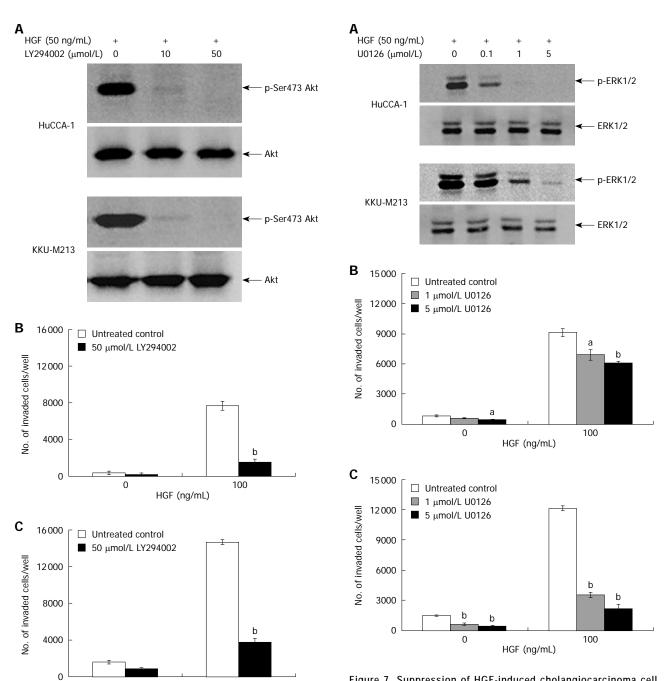


Figure 6 Suppression of HGF-induced cholangiocarcinoma cell invasiveness by Pl3-kinase inhibitor, LY294002. HuCCA-1 and KKU-M213 cells were treated with 50 ng/mL HGF in the absence (control) or presence of 10 and 50 μ mol/L LY294002 for 6 h, and subsequently Akt phosphorylation was determined by Western blotting (A). In vitro invasion of HuCCA-1 (B) and KKU-M213 (C) cells was evaluated in the absence or presence of HGF with or without 50 μ mol/L LY294002. Numbers of invaded cells are presented as mean \pm SE of results obtained from three independent experiments. bP < 0.01, compared with control.

HGF (ng/mL)

100

Chintala *et al* $^{[38]}$ have shown that Matrigel and components of ECM (namely, type IV collagen and fibronectin) induce migration and invasion of many glioma cell lines.

In the KKU-M213 cell line, HGF was better at inducing invasion than migration, and this was not related to the stimulation of secretion of matrix degrad-

Figure 7 Suppression of HGF-induced cholangiocarcinoma cell invasiveness by MEK1 inhibitor, U0126. HuCCA-1 and KKU-M213 cells were treated with 50 ng/mL HGF in the absence (control) or presence of 0.1, 1 and 5 μ mol/L U0126 for 6 h, and subsequently ERK1/2 phosphorylation was determined by Western blotting (A). *In vitro* invasion of HuCCA-1 (B) and KKU-M213 (C) cells was evaluated in the absence or presence of HGF with or without 1 and 5 μ mol/L U0126. Numbers of invaded cells are presented as mean \pm SE of results obtained from three independent experiments. aP < 0.05 and bP < 0.01, compared with control.

ing enzymes. A possible explanation is the existence of a synergism between HGF and extracellular matrix component(s) in the Matrigel. A combination of HGF and Matrigel induced higher motility than HGF alone (data not shown). Cooperation between HGF and ECM component(s) to promote cell migration could occur by enhancing the function of integrins^[16,39], adhesion molecules regulating a variety of cellular properties including adhesion and migration by binding to ECM com-

ponents. HGF induces cell scattering and migration by increasing integrin $\alpha 2$ expression in MDCK cells^[39] and also promotes breast cancer MDA-MB-231 cell invasion and adhesion by inducing integrin aggregation at lamellipodia, thereby enhancing avidity of integrins to their ligands in ECM and increasing association of integrin to actin, which may participate in cell migration^[16].

A variety of signaling pathways are involved in HGFinduced cell invasiveness, including PI3K, ERK1/2 and Src^[40]. In CCA, Src, FAK^[41] and ERK1/2^[42] are involved in HGF-induced HuCCA-1 cell invasion. Here, we showed that HGF induced Met activation concomitant with the promotion of both ERK1/2 and Akt phosphorylation in these two CCA cell lines. To reveal the involvement of ERK and PI3K pathways in HGF-induced invasion, inhibitors of specific signaling transduction pathways were used. PI3K inhibitor (LY294002) significantly inhibited both HuCCA-1 and KKU-M213 cell invasion stimulated by HGF, while basal invasion was marginally affected. As for the ERK pathway, U0126, a specific inhibitor of MEK1, drastically reduced HGF-promoted KKU-M213 cell invasion, while slightly reducing HGF-induced HuC-CA-1 invasion, even though it inhibited ERK1/2 phosphorylation of the latter cell line to a greater extent than in the former. The insensitivity of HGF-stimulated HuC-CA-1 invasion to U0126 treatment suggests a reduced dependence of this CCA cell line on the ERK signaling pathway, whereas HGF-induced KKU-M213 invasion is dependent on both PI3K and ERK1/2 activation.

ERK1/2 activation is known to regulate a variety of cellular functions, such as proliferation, differentiation, migration, and invasion in response to diverse extracellular stimuli^[43]. Duration of ERK1/2 activation is one of the factors determining a particular cellular response [39,44]. McCawley et al^[45] showed that EGF and HGF have the ability to induce SCC-12F keratinocyte migration. These two growth factors induce sustained ERK1/2 activation, which is associated with enhanced MMP-9 expression and SCC cell migration^[45,46]. In MDCK cells, HGF induces sustained ERK1/2 activation, promoting cell scattering and migration via the enhancement of integrin-α2 expression, whereas EGF induces transient ERK1/2 activation, which has no effect on cell scattering^[39]. Our data indicated that prolonged ERK1/2 activation was crucial for HGF-induced invasion of KKU-M213 cells, but was not necessary for HuCCA-1 cells in which HGF rapidly and transiently activated ERK. Thus, sustained ERK activation provides a possible explanation for the difference in downstream signaling pathways observed in HGFinduced invasion of the two CCA cell lines. Moreover, this sustained ERK1/2 activation may be responsible for a synergism between HGF and Matrigel in KKU-M213 cells by inducing integrin expression, as in MDCK cells [39].

In summary, this study provides evidence for the contribution of a HGF signaling pathway to the induction of CCA cell invasion. HGF promoted invasion *via* stimulation of cell motility, but not MMP or uPA secretion. HGF regulated invasiveness of two independent CCA cell lines by different signaling pathways, with PI3K being a com-

mon pathway underlying HGF-induced invasiveness in both cell lines, whereas the importance of ERK1/2 was determined by the duration of ERK1/2 activation. However, the mechanisms regulating temporal ERK1/2 activation and possible synergism between HGF and matrix in inducing invasion remains to be elucidated. Understanding the signaling mechanism responsible for CCA invasiveness will be valuable to help identify better targets for cancer therapy, such as that associated with a common rather than a cell specific pathway.

ACKNOWLEDGMENTS

The authors thank Professor S Sirisinha, Dr. B Sripa, Professor G Gores and Professor G Alpini for their generous gifts of cholangiocarcinoma and cholangiocyte cell lines and Professor P Wilairat for critical reading of the manuscript.

COMMENTS

Background

Cholangiocarcinoma (CCA) is a malignant tumor of the biliary epithelium associated with a high metastatic and mortality rate. Incidence of this cancer has increased worldwide, and the highest incidence occurs in northeast Thailand. Overexpression of Met has been reported in CCA and is correlated with progression and invasion of this type of cancer.

Research frontiers

Hepatocyte growth factor (HGF)/Met activation induces a variety of biological processes, including cell scattering, invasion, proliferation and survival. Although several reports have demonstrated a correlation between Met expression and CCA, hitherto there have been only a limited number of detailed investigations into the role of Met in cholangiocarcinoma.

Innovations and breakthroughs

HGF induced cell invasion and motility and altered E-cadherin localization in two human CCA cell lines overexpressing Met, without affecting the matrix degrading enzymes, matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA). This is the first report of a difference in the signaling pathways responsible for the HGF-induced invasiveness of the two human CCA cell lines, in that ERK1/2 activation is more important for HGF-induced invasion of one cell line than of the other.

Applications

Understanding the role of HGF/Met in CCA invasiveness and the molecular mechanisms underlying this process provides valuable information to help identify targets for future treatment of CCA patients.

Terminology

Phosphoinositide 3-kinase (PI3K) and ERK are signaling molecules downstream of many receptor tyrosine kinases including Met. These proteins have been shown to play an important role in cell invasion, a crucial factor of cancer metastasis. In this study HGF is shown to stimulate cell invasion and motility of CCA cell lines through PI3K and/or ERK pathways.

Peer review

CCA is a common malignant tumor with a high metastatic and mortality rate. Investigation into its molecular mechanism is important for understanding the pathogenesis of CCA. This study focused on the role of HGF/Met in CCA cell invasion and the mechanisms underlying cellular responses. Although a number of papers on this field have been published, this study still adds some new information into the knowledge already documented.

REFERENCES

- Sirica AE. Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. *Hepatology* 2005; 41: 5-15
- 2 Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol

- Hepatol 2006; 3: 33-42
- 3 **Sripa B**, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. *Curr Opin Gastroenterol* 2008; **24**: 349-356
- 4 **Sirica AE**, Lai GH, Zhang Z. Biliary cancer growth factor pathways, cyclo-oxygenase-2 and potential therapeutic strategies. *J Gastroenterol Hepatol* 2001; **16**: 363-372
- Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 2002; 13: 41-59
- 6 Tamagnone L, Comoglio PM. Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev 1997; 8: 129-142
- 7 Endo K, Yoon BI, Pairojkul C, Demetris AJ, Sirica AE. ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. *Hepatology* 2002; 36: 439-450
- 8 Terada T, Nakanuma Y, Sirica AE. Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. *Hum Pathol* 1998; 29: 175-180
- 9 Aishima SI, Taguchi KI, Sugimachi K, Shimada M, Sugimachi K, Tsuneyoshi M. c-erbB-2 and c-Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma. *Histopathology* 2002; 40: 269-278
- 10 Varnholt H, Asayama Y, Aishima S, Taguchi K, Sugimachi K, Tsuneyoshi M. C-met and hepatocyte growth factor expression in combined hepatocellular and cholangiocarcinoma. Oncol Rep 2002; 9: 35-41
- Joo HH, Song EY, Jin SH, Oh SH, Choi YK. [Expressions and clinical significances of c-met, c-erbB-2, COX-2, and IL-6 in the biliary tract cancers] *Korean J Gastroenterol* 2007; 50: 370-378
- 12 **Lai GH**, Radaeva S, Nakamura T, Sirica AE. Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated "intestinal-type" biliary cancer chemically induced in rat liver. *Hepatology* 2000; **31**: 1257-1265
- 13 Hammond DE, Carter S, Clague MJ. Met receptor dynamics and signalling. Curr Top Microbiol Immunol 2004; 286: 21-44
- Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915-925
- 15 **Trusolino L**, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. *Nat Rev Cancer* 2002: 2: 289-300
- Trusolino L, Cavassa S, Angelini P, Andó M, Bertotti A, Comoglio PM, Boccaccio C. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J 2000; 14: 1629-1640
- 17 Maulik G, Madhiwala P, Brooks S, Ma PC, Kijima T, Tibaldi EV, Schaefer E, Parmar K, Salgia R. Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. J Cell Mol Med 2002; 6: 539-553
- 18 Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. *Crit Rev Oncol Hematol* 2005; 53: 35-69
- 19 Lee WJ, Wu LF, Chen WK, Wang CJ, Tseng TH. Inhibitory effect of luteolin on hepatocyte growth factor/scatter factorinduced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chem Biol Interact 2006; 160: 123-133
- 20 Ueoka Y, Kato K, Wake N. Hepatocyte growth factor modulates motility and invasiveness of ovarian carcinomas via ras mediated pathway. Mol Cell Endocrinol 2003; 202: 81-88
- 21 **Sirisinha S**, Tengchaisri T, Boonpucknavig S, Prempracha N, Ratanarapee S, Pausawasdi A. Establishment and characterization of a cholangiocarcinoma cell line from a

- Thai patient with intrahepatic bile duct cancer. Asian Pac J Allergy Immunol 1991; 9: 153-157
- 22 Sriurairatana S, Tengchaisri T, Sirisinha S. Ultrastructural characteristics of liver fluke associated human cholangiocarcinoma cell lines. Southeast Asian J Trop Med Public Health 1996; 27: 57-62
- 23 Seubwai W, Wongkham C, Puapairoj A, Khuntikeo N, Wongkham S. Overexpression of vitamin D receptor indicates a good prognosis for cholangiocarcinoma: implications for therapeutics. *Cancer* 2007; 109: 2497-2505
- 24 Sripa B, Leungwattanawanit S, Nitta T, Wongkham C, Bhudhisawasdi V, Puapairoj A, Sripa C, Miwa M. Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol 2005; 11: 3392-3397
- 25 Grubman SA, Perrone RD, Lee DW, Murray SL, Rogers LC, Wolkoff LI, Mulberg AE, Cherington V, Jefferson DM. Regulation of intracellular pH by immortalized human intrahepatic biliary epithelial cell lines. *Am J Physiol* 1994; 266: G1060-G1070
- 26 Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN. A rapid in vitro assay for quantitating the invasive potential of tumor cells. *Cancer Res* 1987; 47: 3239-3245
- 27 Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. *Int J Cancer* 2006; 119: 477-483
- 28 Royal I, Park M. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J Biol Chem 1995; 270: 27780-27787
- 29 Miura H, Nishimura K, Tsujimura A, Matsumiya K, Matsumoto K, Nakamura T, Okuyama A. Effects of hepatocyte growth factor on E-cadherin-mediated cell-cell adhesion in DU145 prostate cancer cells. *Urology* 2001; 58: 1064-1069
- 30 Kim CH, Kim J, Kahng H, Choi EC. Change of E-cadherin by hepatocyte growth factor and effects on the prognosis of hypopharyngeal carcinoma. *Ann Surg Oncol* 2007; 14: 1565-1574
- 31 **Kermorgant S**, Aparicio T, Dessirier V, Lewin MJ, Lehy T. Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction. Evidence for PI3 kinase and PKC involvement. *Carcinogenesis* 2001; **22**: 1035-1042
- 32 Fujiuchi Y, Nagakawa O, Murakami K, Fuse H, Saiki I. Effect of hepatocyte growth factor on invasion of prostate cancer cell lines. Oncol Rep 2003; 10: 1001-1006
- 33 Suthiphongchai T, Phimsen S, Sakulkhu U, Tohtong R. PD98059-inhibited invasion of Dunning rat prostate cancer cells involves suppression of motility but not MMP-2 or uPA secretion. Oncol Rep 2006; 15: 1605-1610
- 34 Tohtong R, Phattarasakul K, Jiraviriyakul A, Sutthiphongchai T. Dependence of metastatic cancer cell invasion on MLCKcatalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dis 2003; 6: 212-216
- 35 Watabe M, Matsumoto K, Nakamura T, Takeichi M. Effect of hepatocyte growth factor on cadherin-mediated cell-cell adhesion. Cell Struct Funct 1993; 18: 117-124
- 36 Shibamoto S, Hayakawa M, Takeuchi K, Hori T, Oku N, Miyazawa K, Kitamura N, Takeichi M, Ito F. Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1994; 1: 295-305
- 37 Kimura T, Sakisaka T, Baba T, Yamada T, Takai Y. Involvement of the Ras-Ras-activated Rab5 guanine nucleotide exchange factor RIN2-Rab5 pathway in the hepatocyte growth factor-induced endocytosis of E-cadherin. J Biol Chem 2006; 281: 10598-10609
- 38 Chintala SK, Gokaslan ZL, Go Y, Sawaya R, Nicolson GL,

- Rao JS. Role of extracellular matrix proteins in regulation of human glioma cell invasion in vitro. *Clin Exp Metastasis* 1996; **14**: 358-366
- 39 **Liang CC**, Chen HC. Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin alpha 2 expression that is involved in cell scattering. *J Biol Chem* 2001; **276**: 21146-21152
- 40 **Christensen JG**, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. *Cancer Lett* 2005; **225**: 1-26
- 41 **Pongchairerk U**, Guan JL, Leardkamolkarn V. Focal adhesion kinase and Src phosphorylations in HGF-induced proliferation and invasion of human cholangiocarcinoma cell line, HuCCA-1. *World J Gastroenterol* 2005; **11**: 5845-5852
- 42 **Leelawat K**, Leelawat S, Tepaksorn P, Rattanasinganchan P, Leungchaweng A, Tohtong R, Sobhon P. Involvement of c-Met/hepatocyte growth factor pathway in cholangio-carcinoma cell invasion and its therapeutic inhibition with

- small interfering RNA specific for c-Met. *J Surg Res* 2006; **136**: 78-84
- 43 Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. *Cancer Metastasis Rev* 2003; 22: 395-403
- 44 Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signalregulated kinase activation. Cell 1995; 80: 179-185
- 45 McCawley LJ, O'Brien P, Hudson LG. Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)- mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J Cell Physiol 1998; 176: 255-265
- 46 McCawley LJ, Li S, Wattenberg EV, Hudson LG. Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J Biol Chem 1999; 274: 4347-4353
 - S- Editor Wang JL L- Editor Logan S E- Editor Lin YP

(Manuscript นี้ ยังใม่เสร็จสมบูรณ์ โปรดอย่านำไปใช้อ้างอิง)

High level of urokinase plasminogen activator contributes to cholangiocarcinoma

invasion, metastasis and survival

Sitsom Wijitburaphat¹, Parichut Thummarati¹, Apaporn Menakongka, Aruna

Prasopthum, Banchob Sripa, Rutaiwan Tohtong, Tuangporn Suthiphongchai

Sitsom Wijitburaphat, Parichut Thummarati, Apaporn Menakongka, Aruna

Prasopthum, Rutaiwan Tohtong, Tuangporn Suthiphongchai, Department of

Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand

Banchob Sripa, Department of Pathology, Faculty of Medicine, Khon Kaen

University, and The Liver Fluke and Cholangiocarcinoma Research Center, Khon

Kaen University, Khon Kaen 40002, Thailand

Author contributions: Wijitburaphat S, Thummarati P, Menakongka A, Prasopthum

A performed experiments and analyzed data. Sripa B provided specimens and

advice and analyzed the data in immunohistochemistry. Tohtong R provided

valuable suggestion. Suthiphongchai T designed the study, analyzed the data,

prepared the manuscript and provided financial support for this work.

Supported by a grant from Thailand Research Fund and Faculty of Science, Mahidol

University, Thailand (Suthiphongchai T) and Institutional Strengthening Program,

Faculty of Science, Mahidol university (Thummarati P).

Correspondence to: Tuangporn Suthiphongchai, Department of Biochemistry,

Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

sctsc@mahidol.ac.th

Telephone: +662-2015609

Fax: +662-3547174

ABSTRACT

AIM: To examine level of urokinase plasminogen activator (uPA) expression in cholangiocarcinoma (CCA) tissues, correlate it with various pathological parameters and study its impact on CCA cell invasion in vitro.

METHODS: Level of uPA expression in CCA tissue was determined by immunohistochemistry. Level of uPA, PAI-1, uPAR from CCA cell lines were mornitor by zymography, western blot or realtime RT-PCR, respectively. Two uPA inhibitory methods, a specific protease inhibitor (B248) and siRNA against uPA, were used to disrupt uPA function. Cell invasion were detected using Transwell.

RESULTS: Immunohistochemical study showed that 85.3% (131 of 174) of CCA tissues expressed uPA in bile duct region. High uPA expression was correlated with invasion and metastasis of CCA patients and with short survival rate of patients with small tumor size. Plasminogen gelatin zymography showed that secreted uPA and bound uPA were found in all CCA cell lines but not cholangiocytes, H69, with the levels being high in KKU-M213 and HuCCA-1 and low in KKU-100, respectively. (Plasminogen gelatin zymography and western blot showed that three CCA cell lines, HuCCA-1, KKU-100 and KKU-M213, secreted higher levels of uPA compared to cholangiocyte, H69, with the level being high in KKU-M213 and HuCCA-1 and low in KKU-100, respectively. Levels of bound uPA among these cell lines were also similar to that of secreted uPA.) On the other hand, HuCCA-1 expressed highest uPAR mRNA and is the only cell line secreted PAI-1. From zymography, KKU-100 also possessed another plasminogen activator (PA) band which was proven to be other protease rather than uPA by its inability to be detected by uPA antibody. Moreover, inhibiting uPA with specific uPA inhibitor, B428, as well as siRNA against uPA reduced invasive ability of KKU-M213, high uPA expressing CCA cell indicating the importance of uPA in invasion process of CCA cells.

CONCLUSION: High uPA expression correlated with invasion, metastasis and survival of CCA patients, and is important for CCA cell invasion, suggesting uPA as potential prognostic marker and therapeutic target for CCA.

Introduction

Cholangiocarcinoma (CCA), a cancer originated from biliary epithelium, is an incurable cancer with very high mortality rate. It is the second most common liver cancer. Although it is considered a rare malignancy, during recent decades, its incidence and mortality rate are increasing worldwide (Patel 2002). The highest incident rate was observed in Northeast, Thailand where there is high prevalence of liver fluke (*Opisthorchis viverrini*) infection (Sripa B Liver fluke induces cca 07). People in this region are used to eating fermented raw freshwater fish which can be contaminated with liver fluke as well as nitrosamines produced by bacteria during fermentation process. It is believed that the intake of liver fluke plus nitrosamines contributes to CCA development. In fact, both *O. viverrini* and nitrosamine have been classified by IARC as group I carcinogen (ref). Moreover, Ov and N-nitrosodimethylamine synergistically induces CCA development in hamster (ref). This disease is difficult to diagnose and patients usually present at the late stage, with high invasion and metastasis, thus resulting in high mortality rate.

Metastasis is a multi-step process which involves spreading of cancer cells from primary to secondary site. During this process, cancer cells first invade the surrounding tissue, penetrate the blood or lymphatic vessels, and form a new tumor at the distant sites. In order to invade, cancer cells acquire the ability to degrade extracellular matrix and basement membrane to generate a space for cell to migrate out of its original site. This is accomplished by secreting variety of matrix degrading proteases including matrix metalloproteinases (MMP) and serine proteases, plasminogen/ plasmin system (ref).

uPA is a serine protease which regulates plasminogen/plasmin system and is involved in ECM degradation, cancer invasion and metastasis. uPA is synthesized as a single-chain proenzyme which can be activated by proeolytic cleavage to be two-chain active uPA or single chain low molecular weight uPA by other proteases such as plasmin, kallikrein, cathepsin B, etc. (Bansal V 06 Production and purification of urokinase). Active uPA cleaves inactive plasminogen to active plasmin, a broad-specific serine protease, which is capable of degrading variety of ECM proteins. Besides, plasmin and uPA can also activate several types of matrix

metalloprotenases (MMPs) which can also degrade ECM. Therefore, uPA multiplies protease power in ECM degradation which is critical step for cancer invasion. uPA system is composed of uPA receptor (uPAR) and plasminogen activator inhibitor type 1 and 2 (PAI-1 and -2) which regulate uPA activity. Once secreted, uPA binds to uPAR on the cell surface. This binding focalizes uPA on the cell surface which in combination of the binding of plasminogen to its membrane receptor enhances its plasminogen activation capability. uPA and plasmin regulate each other with positive feedback loop as uPA activates plasminogen to plasmin which in turn activates uPA. Reciprocally, uPA activity is negatively regulated by PAI. The major one is PAI-1. (Dano K PA and cancer or uPAR signal nature rev).

Up-regulation of uPA has been reported in many types of cancers (Dass K evolving role) and plays an important role in invasion and metastasis of cancers such as breast (Thelma C. Hurd et al. 2007), prostate (D. Gavrilov et al. 2001), colon cancers (Shashikumar Harvey et al. 2007), and etc. Hitherto, there was no report of tissue expression of uPA and its correlation with clinical symptom in CCA patients. However, its expression has been demonstrated in some CCA cell lines (O paper, Chinese paper). In this study, we investigated the involvement of uPA in CCA by examining the correlations between its tissue expression and various clinicopathological parameters of patient, and studying its role in CCA cell invasion by inhibiting uPA function in high uPA expressing cell lines using siRNA against uPA or specific protease inhibitor.

METHODS AND MATERIALS

Patients and tissue samples

Archival paraffin-embedded tissue samples obtained from 174 patients who underwent liver surgical resection at Srinagarind hospital, Khon Kaen University, Thailand during 1999-2009 were used to generate tissue microarray in this retrospective study. All cases are intrahepatic CCA. Ages of the male patients ranged from 32 to 75 years with the mean of 56 ± 9 years and female patients ranged from 33 to 68 years with the mean of 57 ± 9 years.

Cell lines and cell culture

Human immortalized cholangiocyte cell line, H69, was a generous gift from Professor G Alpini (Texas A&M University, TX, USA) and Professor G Gores (Mayo Clinic, MN, USA). Three human CCA cell lines developed from Thai patients, KKU-100 (1), KKU-M213 and HuCCA-1 (2), and were kindly donated by Dr. B Sripa, (Khon Kaen University, Thailand) and Prof. S Sirisinha (Mahidol University, Thailand), respectively. The CCA cells were cultured in HAM's F-12 (Invitrogen, Grand Island, NY, USA) supplemented with 10% heat inactivated fetal bovine serum (FBS) (Invitrogen, Grand Island, NY, USA), 2 mM glutamine, 15 mM HEPES and 14 mM sodium bicarbonate, 100 U/mL of penicillin G and 100 U/mL streptomycin. The cells were incubated at 37°C under humidified 5% CO₂ atmosphere. H69 was grown in DMEM/F12:DMEM (1:1) (Gibco Invitrogen Corp., Auckland, NZ) supplemented with 10% FBS, hormones and epidermal growth factor as previously described (ref).

Tissue microarray and immunohistochemistry staining

Tissue microarray (TMA) was generated manually from the paraffin-embeded tissues. In brief, the region of interest from each paraffin block was identified on haematoxylin eosin-stained slide. Then, the slide was aligned with the surface of original paraffin block to locate sampling area. The area of interest in paraffin block was punched with 1-mm-diameter needle. Each punched tissue was transferred to new recipient paraffin block to generate TMA block manually. Five-µm-thickness section was cut from TMA block and mounted on silane-coated glass slide. The slide was used for immunohistochemical staining using monoclonal antibody against uPA (American diagnostica Inc., Stamford, CT, U.S.A., Ab No.3689). Briefly, the specimens were deparaffinized and dehydrated, then endogenous peroxidase activity in tissue section was blocked with 0.5% H₂O₂ in methanol for 30 min. After washing with PBS pH 7.4 and blocking with blocking solution containing 5% normal horse serum in PBS pH 7.4 for 30 min, the specimens were incubated with 0.5 μg/mL anti-uPA antibody, followed by horse radish peroxidase-conjugated secondary antibody (Invitrogen, Carlsbad, California, USA). The brown color corresponded to peroxidase activity was developed using diaminobenzidine (Sigma

-Aldrich, Seint Louis, Missouri, USA). The specimens were counter stained with Mayer's hematoxylin. Negative controls were performed in a similar way, but with no primary antibody.

Determination of plasminogen activator (PA) activity by plasminogen gelatin zymogram

uPA activity secreted from cells into conditioned media (CM) were determined by plasminogen gelatin zymogaphy under non-reducing condition as described by Heussen C and Dowdle EB (ref). Cells (3.5x10⁵) were cultured in 6-well plate for 2 days, then washed twice and incubated in serum-free media for 6 h. CM were collected, mixed with SDS loading buffer in the absence of reducing agent and electrophoresed in 8% SDS-polyacrylamide gel containing 10 μg/ml plasminogen and 1 mg/ml gelatin. After electrophoresis, gel was washed twice with 2.5% TritonX-100 for 1 h to remove SDS, and incubated for 18 hours in reaction buffer containing 100 mM Tris-HCl pH 7.8, 150 mM NaCl and 1% TritronX-100. Then gel was stained with 0.25% Coomassie blue and destained with 45% methanol and 10% acetic acid. A clear band with estimated molecular weight of 43 kDa represented uPA activity band. To confirm its PA (not gelatinase) activity, plasminogen-free gelatin zymogram gel was run in parallel as a negative control.

For detection of bound uPA, cells were washed twice with PBS and bound uPA was eluted by elution buffer (100 mM NaCl and 50 mM glycine-HCl pH 3.0). The eluate was neutralized by adding 0.5 M Tris-HCl pH 7.8 in the ratio of 4:1 (elution buffer : neutralization buffer) and analyzed by plasminogen gelatin zymography in the same way as that of secreted uPA.

Determination of uPA and PAI-1 proteins by immunoblot

uPA and PAI-1 protein levels in 40x concentrated CM, prepared as described in zymography, were determined by western blot analysis using anti-uPA, anti-PAI-1 antibodies (American Diagnostica Inc., Stamford, CT, U.S.A). Proteins were separated by 8% SDS-PAGE and transferred to nitrocellulose membrane (Hybond ECL, GE healthcare, Buckinghamshire, UK), which was then incubated with anti-uPA and anti-PAI-1 antibodies, followed by HRP-conjugated secondary antibodies. The uPA and PAI-1 bands were developed by enhanced chemiluminescence ELC

Plus reagent (GE Healthcare, Buckinghamshire, UK) and visualized by Fluor Chem SP (Alpha Innotech Corporation, San Leandro, CA).

Knock-down of uPA using siRNA against uPA

KKU-M213 cells were transiently transfected with siRNA against uPA (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) using siRNA Transfection Reagent (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) by reverse transfection following manufacturing's protocol with some modification. In brief, 6 μ L of siRNA and 6 μ L of transfection reagent were separately diluted in 100 μ L of siRNA Transfection Medium. The diluted siRNA solution was mixed with the diluted transfection reagent and incubated at room temperature for 15 min. The mixture was added onto 6-well plate that have just plated with CCA cell (2 x 10 5) in 0.8 mL transfection medium. uPA mRNA and secreted uPA were determined at 48 and 72 h after transfection. Control siRNA-A (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), scrambled sequence, was used as si-RNA negative control.

Semiquantitative realtime RT-PCR

uPA and uPAR mRNA expression was determined by realtime RT-PCR using ABI 7500 (Applied Biosystems, Foster City, CA, USA). RNA was extracted using RNeasy mini kit (Qiagen, Valencia ,CA, USA) following the manufacturer's protocol, and 2 µg total RNA were converted to cDNA by SuperScript™ III Reverse Transcriptase kit (Invitrogen, NY, USA) using random hexamer primer. cDNA was amplified by realtime PCR in a 20 µL reaction volume containing 0.5 U of HotStart Taq polymerase (Qiagen, Valencia, CA, USA), 1x FastStart Universal SYBR Green Master cocktail (Roche, Mannheim, Germany) and 4 pmol of each specific primer (5'-TTGCTCACCACAACGACATT -3' and 5'- ATTTTCAGCTGCTCCGGATA -3' for uPA 2005), 5'-GGTGACGCCTTCAGCATGA 5'--3' 5'-CCCACTGCGGTACTGGACAT for uPAR and (ref) GTAACCCGTTGAACCCCATT -3' and 5'- CCATCCAATCGGTAGTAGCG -3' for 18sRNA (ref), an internal control). The reactions were started with an initial heat activation step and followed by 40 thermal cycling. The mRNA levels among the test cells were analyzed by relative quantification $2^{-\Delta\Delta Ct}$ method.

Transwell in vitro invasion assay

CCA cell invasiveness was determined using Matrigel-coated Transwell chamber (8- μ m pore size polyvinylpyrrolidone-free polycarbonate filter with 6.5-mm diameter) (Corning, NY, USA) pre-coated with 30 μ g Matrigel (BD Biosciences, CA, USA). Cell suspension from 66-hour-siRNA-transfected cells (10^5 in 200 μ L) in FBS-free media was added to the upper chamber of the Transwell, while the lower chamber was filled with 600 μ L 10% FBS media. After incubation for 6 h at 37 °C in a CO₂ incubator, non-invaded cells were removed from the upper chamber, and invaded cells were fixed and stained for 30 min with 0.5% crystal violet in 25% methanol. The number of invaded cells in 5 random fields were counted under microscope (10x objective magnification) and expressed as means of total number of invaded cells \pm SE obtained from three independent experiments.

Statistical analysis

Correlation between uPA expression and clinicopathological factors were analyzed using the chi-square test. mRNA and invasion data were expressed as mean \pm SE from three independent experiments. Statistical analyses were performed using SPSS software, with the *P*-value < 0.05 considered significant difference.

RESULTS

Expression of uPA protein in CCA tissues by immunohistochemistry

To explore the role of uPA in CCA cell, we first examined uPA expression in tumor tissues from 174 CCA patients by immunohistochemistry using TMA. uPA protein were mainly localized in cytosolic part of CCA cells (Fig 1). The uPA staining was scored based on signal intensity to be negative, weak (+), moderate (++) and strong (+++) signals. Of all 174 cases, 131 (85.3%) of tissue samples were positively stained for uPA, with 45, 67, and 19 specimens scoring +, ++ and +++, respectively (Fig 1). Negative and + were grouped as low uPA expression and ++ and +++ were high uPA expression.

Table 1 summarized the correlation between uPA expression and clinicopathological parameters. There was no correlation between level of uPA expression and age, gender, tumor size, or histological type of the CCA patients. In

contrast, high uPA expression in the CCA tissues was positively correlated with invasion and metastasis with the P values of 0.005 and 0.048, respectively. However, no correlation between uPA expression and patient longevity was observed when total data set were used for analysis (data not shown). As the patients with large tumor size generally have high mortality rate which is irrelevant to uPA expression, this factor was eliminated from correlation analysis. By using the data from only a group of patients with small tumor size (≤ 5 cm), it was found that high level of uPA expression inversely correlated with survival rate with the P value of 0.027 (Fig 2).

Levels of secreted and bound uPA in CCA cell lines

Secreted uPA in the CM and bound uPA eluted from cell surface were determined by plasminogen-gelatin zymography. In all CCA cells, 43 kDa band was detected, KKU-100 gave another PA band at 48 kDa and no PA band was observed in immortalized cholangiocyte, H69 (Fig 3A). Western blot of 40x concentrated CM using anti-uPA antibody showed the major band at 50 kDa which was detected in KKU-M213 and HuCCA-1 (Fig 3B). This corresponded well with high level of 43 kDa band in zymogram from those two cell lines. Likewise, KKU-100 and H69, which, from zymogram, showed very faint and no band at 43 kDa, respectively (Fig. 3A), gave no band in western blot (Fig 3B). Thus, these indicated that uPA was the 43-kD PA band in zymogram and was overexpressed in all three CCA cell lines compared to cholangiocyte. Moreover, the inability of CM from KKU-100 to be detected by anti-uPA antibody indicated that the 48 kDa band of KKU-100 in zymogram represented other proteases capable of activating plasminogen rather than uPA. The slight difference in molecular weight of the two assay methods should be due to the different denaturation conditions since the protein was partially denatured with non-reducing-unheated condition in zymogram gel, whereas it was completely unfolded with reducing-heated condition in western blot.

In addition to the 50 kDa band, western blot of KKU-213 also showed another band at 30 kDa which should represent low-molecular-weight uPA (LMW-uPA) or B-chain of HMW two-chain uPA resulting from different uPA processing by proteolytic cleavage (ref Stepanova V V multidomain).

Once secreted, uPA can bind uPAR, a GPI-anchor protein, on the plasma membrane. This binding tethers uPA to the cell surface which will enhance its ability to promote ECM degradation (3). We then determined the level of bound uPA in CCA cell lines by zymogram and level of uPAR mRNA by real-time RT-PCR. Similar to level of secreted uPA, level of bound uPA was high in KKU-M213 and HuCCA-1, low in KKU-100, not found in H69 (Fig 3A). Besides, this zymogram also showed that only uPA band at 43kDa, not the PA at 48kDa, bound to the cell surface. All three CCA expressed uPAR mRNA with the level being highest in HuCCA-1, while that of KKU-M213 and KKU-100 being comparable at about 50% (Fig 2D).

In addition, uPA activity is regulated by its inhibitors, PAI-1 and PAI-2. The major one is PAI-1. Therefore, we determined the level of PAI-1 in 40x concentrated CM from CCA cell lines by western blot and found that PAI-1 was secreted from HuCCA-1, not KKU-100 nor KKU-M213 (Fig 2 C).

Effect of uPA inhibition on CCA cell invasion

Since uPA expressed in tumor tissues of the CCA patients and its level correlated with highly with invasion and metastasis, we investigated the role of uPA in CCA invasion by inhibiting uPA in high uPA expressing CCA cell, KKU-M213 and analyzing its effect on invasiveness by Transwell invasion assay. Treatment with uPA inhibitor, 10 μ M and 20 μ M B428, dose dependently reduced KKU-M213 cell invasiveness to 82 % and 68 %, respectively, compared with control (Fig 4). 20 μ M B428 suppressed uPA activity to about 36% (estimated from uPA band density), when it was added both in zymogram gel and in incubation buffer. Note that during the 6-hour period, the inhibitor did not significantly affected CCA cell survival.

The important of uPA in CCA cell invasion was confirmed by knocking down of uPA using siRNA against uPA. uPA mRNA expression was suppressed to about 40% during 48-72 h (Fig 5A); therefore, cell invasion was performed during 66-72 h after transfection. Suppression of uPA expression by siRNA against uPA inhibited KKU-M213 cell invasion to about % when compared to scrumble siRNA (Fig 5B). Therefore, inhibition of uPA both by inhibitor and by siRNA demonstrated that uPA is important for CCA cell invasion.

DISCUSSION

One of the key features required for cancer invasion and metastasis is the ability to degrade of ECM and basement membrane barrier to generate a space for cancer cells to move out of their primary site. This process is accomplished by the action of variety of proteolytic enzymes that work in concert to digest ECM proteins, including serine proteases and MMPs. uPA, a high-substrate specificity serine protease, is one of the important proteolytic enzymes contributing to this process. (uPA cleaves plasminogen (zymogen) to active plasmin, a serine protease with broad-substrate specificity. Active plasmin not only digests several ECM proteins but also activates variety of MMPs which also have ability to breakdown ECM components.) Besides ECM degradation, uPA/uPAR participates in cancer invasion via other mechanisms. First, it directly or indirectly activates variety of growth factors containing mitogenic, motogenic and/or angiogenic activities such as pro-HGF, basic FBS, TGF- β and VEGF (4, 5). Second, it promotes cell-ECM interaction by serving as adhesion receptor for vitronectin, an ECM protein, thus plays role in cell adhesion and in regulation of integrin function (6, 7). Third, it relays signal to diverse cytosolic effectors via interacting with variety of its co-receptors such as integrins, receptor tyrosine kinases, G-protein couple receptor, etc. Overexpression of uPA has been reported in many types of cancer and correlated with survival of cancer patients (8, 9). There were very few reports in uPA in cholangiocarcinoma. To our knowledge, there is only one report in Chinese showing that of invasion of uPA-expressing CCA cell line, QBC939, can be inhibited by tranexamic acid and 6-aminocaproic acid, inhibitors of plasminogen activation, (10) indicating that the cells require plasmin for invasion process. In this study, the correlation between uPA expression and invasion and metastasis of the CCA patients as well as the important of uPA on CCA cell invasion in vitro were demonstrated.

Upregulation of uPA has been reported in many types of cancers, such as breast (11), prostate (12), colorectal (13), gastric (14) and pancreatic (15) cancers, and its expression level correlated with cancer progression. Similarly, here immunohistochemistry data showed that uPA expression was observed in high

percentage (85.3%) of CCA specimens. High level of uPA expression correlated with invasion and metastasis of the CCA patients. This result corresponds with the various finding in several other cancers (ref, Nowichi TS 2010 Thyroid) and with its known function in promoting cell invasion by degradation matrix barrier. By using data from all patients, we found no significant correlation between uPA expression and patient longevity. The possible reason for the absence in this correlation is that several clinical features contribute to survival of intrahepatic CCA patients. Large tumor size, multifocal tumors, positive resection margin, gross appearance as massforming plus periductular infiltration, invasion and metastasis clinicopathological features related to poor prognosis and short survival outcome. (16). Moreover, our data showed that patients with large tumor size have short survival rate which is unrelated to uPA status. Influence from such factor was eliminated by using the data from patients with small tumor size (≤ 5 cm) for analysis. In that, high uPA expression significantly related to short patient survival. (Similar to our data, the correlation between uPA expression and survival rate has been reported in breast cancer (8) gastric carcinoma (17) and chondrosarcoma (9).) Therefore, uPA expression could serve as a potential prognostic marker at least in CCA patients with small tumor size.

The role of uPA in CCA invasion was investigated using CCA cell lines. Zymogram and western blot demonstrated that three human CCA cell lines secreted different levels of uPA with high KKU-M213 and HuCCA-1 and low in KKU-100. On the contrary, no uPA could be detected from non-cancer immortalized cholangiocyte, H69. Inhibition of uPA (expression by siRNA) suppressed cell invasion of high uPA expressing cell, KKU-M213 indicating its role in CCA invasion. Similarly, previous report in Chinese has demonstrated that inhibition of plasminogen activation by tranexamic acid or 6-aminocaproic acid reduces invasion of QBC939, uPA-expressing CCA cell line (10). This observation is consistent with those obtained from several other cancers (ref) suggesting a common role of uPA in invasion of numerous cancers including CCA. Therefore, uPA could serve as a potential target for preventing cancer invasion and metastasis. In fact, the drug

inhibiting uPA are in clinical trial in some cancer (ref). Our data suggested that it should be used to prevent CCA invasion as well.(may be in conclusion)

Although HuCCA-1 secreted high uPA and expressed highest uPAR mRNA, our previous data showed that its invasive ability is lower than KKU-M213 and KKU-100 (18). One possible explanation is that KKU-100 secreted another enzyme with plasminogen activator activity which may contribute to matrix degradation and invasion promotion, leading to high invasive ability. Alternatively it could partly be due to high level of PAI-1 expression which was secreted only from this cell, not the other two CCA cells. This PAI -1 inhibits uPA activity, thereby attenuates its ability to promote matrix degradation and cell invasion. Moreover, PAI-1 could also bind to uPA-uPAR complex and promotes complex internalization and degradation of uPA and PAI-1 in lysosome (4). This could explain why bound uPA on the cell surface of HuCCA-1 was not the highest, although this cell expressed the highest uPAR mRNA compared to the other two CCA cells.

In conclusion, we have showed that high uPA expression correlated with invasion and metastasis of uPA and also correlated with short survival of patients with small tumor size. Study in cell line overexpressing uPA also showed its invasive ability could be drastically suppressed by inhibition of uPA expression (activity) indicating that uPA is important for CCA cell invasion. Beside uPA, other members of uPA system (uPAR and PAI) would also contribute to the function of uPA in cancer invasion. Taken together, these data suggest uPA as prognostic marker and potential therapeutic target for CCA.

REFERENCES

- 1. Banchop Sripa SL, Takayuki Nitta, Chaisiri Wongkham, Vajarabhongsa, Bhudhisawasdi, Anucha Puapairoj, Chongrak Sripa, Masanao Miwa. Establishment and Characterization of an Opisthorchiasis-associated Cholangiocarcinoma Cell Lines. World journal of Gastroenterology. 2005;11:3392.
- 2. S. Sirisinha TT, S. Boonpucknavig, N. Prempracha, S. Ratanarapee, A. Pausawasdi. Establishment and Characterization of a Cholangiocarcnima Cell Line from a Thai Patient eith Intrahepatic Bile Duct Cancer. Asian Pacific Journal of Allergy and Immunology. 1991;9:153.
- 3. Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M, et al. Plasminogen activation and cancer. Thromb Haemost. 2005 Apr;93(4):676-81.

- 4. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008 Apr;34(2):122-36.
- 5. Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev. 2003 Jun-Sep;22(2-3):205-22.
- 6. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010 Jan;11(1):23-36.
- 7. Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010 May 3;584(9):1923-30.
- 8. Duffy MJ, Duggan C. The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin Biochem. 2004 Jul;37(7):541-8.
- 9. Hackel CG, Krueger S, Grote HJ, Oshiro Y, Hodges S, Johnston DA, et al. Overexpression of cathepsin B and urokinase plasminogen activator is associated with increased risk of recurrence and metastasis in patients with chondrosarcoma. Cancer. 2000 Sep 1;89(5):995-1003.
- 10. Wang S, Han B, Duan H. [The role of urokinase type plasminogen activator in invasion of bile duct carcinoma]. Zhonghua Yi Xue Za Zhi. 1996 Aug;76(8):594-6.
- 11. Hurd TC, Sait S, Kohga S, Winston J, Martinick M, Saxena R, et al. Plasminogen activator system localization in 60 cases of ductal carcinoma in situ. Ann Surg Oncol. 2007 Nov;14(11):3117-24.
- 12. Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR. Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer. 2001 May;37(8):1033-40.
- 13. Harvey SR, Sait SN, Xu Y, Bailey JL, Penetrante RM, Markus G. Demonstration of urokinase expression in cancer cells of colon adenocarcinomas by immunohistochemistry and in situ hybridization. Am J Pathol. 1999 Oct;155(4):1115-20.
- 14. Kaneko T, Konno H, Baba M, Tanaka T, Nakamura S. Urokinase-type plasminogen activator expression correlates with tumor angiogenesis and poor outcome in gastric cancer. Cancer Sci. 2003 Jan;94(1):43-9.
- 15. He Y, Liu XD, Chen ZY, Zhu J, Xiong Y, Li K, et al. Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis. Clin Cancer Res. 2007 Jun 1;13(11):3115-24.
- 16. Sirica AE, Dumur CI, Campbell DJ, Almenara JA, Ogunwobi OO, Dewitt JL. Intrahepatic cholangiocarcinoma progression: prognostic factors and basic mechanisms. Clin Gastroenterol Hepatol. 2009 Nov;7(11 Suppl):S68-78.
- 17. Cho JY, Chung HC, Noh SH, Roh JK, Min JS, Kim BS. High level of urokinase-type plasminogen activator is a new prognostic marker in patients with gastric carcinoma. Cancer. 1997 Mar 1;79(5):878-83.
- 18. Treekitkarnmongkol W, Suthiphongchai T. High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and proliferation through AKT/p70S6K. World J Gastroenterol. 2010 Aug 28;16(32):4047-54.

Table 1 Comparison between uPA expression and clinicopathological features

Variables -	uPA expression		0
	Low	High	- <i>P</i> -value
Age (yrs)			
< 50	22	23	0.793
≥ 50	66	63	
Gender			
Male	61	55	0.453
Female	27	31	
Tumor size (cm)			
≤ 5	29	28	0.911
> 5	59	58	
Histotype group			
Well diff.	33	31	0.065
Moderately diff.	16	20	
Poorly diff.	18	6	
Papillary	20	25	
Adenoaquamous	1	4	
Invasion			
Absent	24	9	0.005*
Present	64	77	
Metastasis			
Absent	50	36	0.048*
Present	38	50	

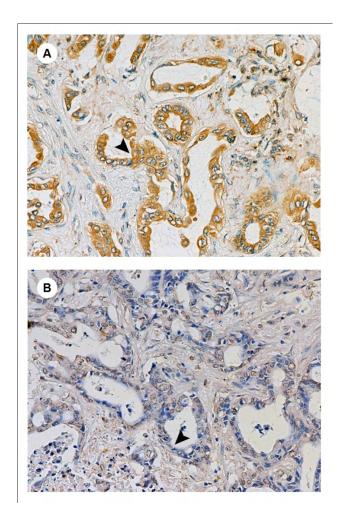


Fig 1

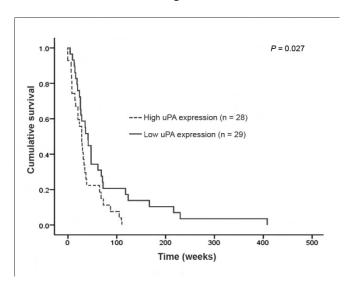
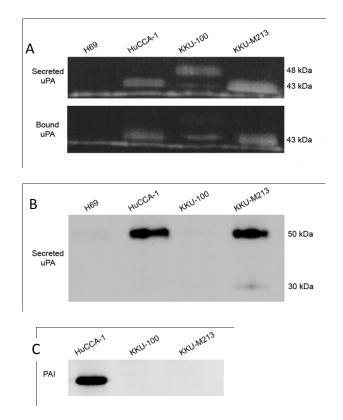



Fig 2B

D.

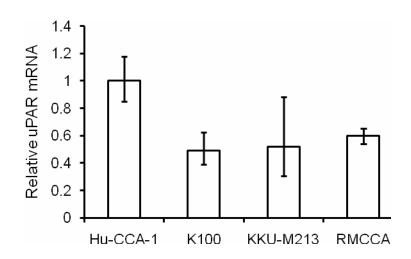


Fig 3



Fig 4 (invasion)