



### รายงานวิจัยฉบับสมบูรณ์

## โครงการ การใช้สารสกัดจากสาหร่ายผมนางในการต้านการติดเชื้อแบคทีเรีย การติดเชื้อไวรัส และการเพิ่มภูมิคุ้มกันในกุ้ง

โดย ผศ. ดร. กนกพรรณ วงศ์ประเสริฐ

พฤษภาคม พ.ศ. 2554

### สัญญาเลขที่ RMU5180044

### รายงานวิจัยฉบับสมบูรณ์

โครงการ การใช้สารสกัดจากสาหร่ายผมนางในการต้านการติดเชื้อแบคทีเรีย การติดเชื้อไวรัส และการเพิ่มภูมิคุ้มกันในกุ้ง

ผู้วิจัย ผศ. ดร. กนกพรรณ วงศ์ประเสริฐ

สังกัด ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย และสำนักงานคณะกรรมการการอุดมศึกษา (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

#### กิตติกรรมประกาศ

งานวิจัยนี้ได้รับเงินสนับสนุนจาก โครงการทุนเพิ่มขีดความสามารถด้านการวิจัยของอาจารย์รุ่น กลางในสถาบันอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย และสำนักงานคณะกรรมการการอุดมศึกษา และได้รับการอนุเคราะห์การจัดหาตัวอย่าง สถานที่วิจัยภาคสนามบางส่วน จากศูนย์วิจัยและพัฒนาสาย พันธุ์กุ้ง (ศวพก) สังกัดศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ศช.) สำนักงานพัฒนา วิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.)

#### บทคัดย่อ

รหัสโครงการ: RMU5180044

ชื่อโครงการ: การใช้สารสกัดจากสาหร่ายผมนางในการต้านการติดเชื้อแบคทีเรีย การติดเชื้อไวรัส และ การเพิ่มภูมิคุ้มกันในกุ้งชื่อนักวิจัย: ผศ. ดร. กนกพรรณ วงศ์ประเสริฐ ภาควิชากายวิภาคศาสตร์ คณะ

วิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address: sckbp@yahoo.com

ระยะเวลาโครงการ : 15 พฤศจิกายน 2551 ถึงวันที่ 15 พฤษภาคม 2554

สาหร่ายผมนางเป็นสาหร่ายทะเลสีแดง ที่พบมากแถบทะเลทางภาคใต้ของประเทศไทย มีรายงาน ว่าสารสกัดจากสาหร่ายทะเลมีฤทธิ์ต้านเชื้อแบคทีเรียและไวรัสได้ งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อสกัดสารที่ มีฤทธิ์ต้านเชื้อแบคทีเรียและไวรัสจากสาหร่ายผมนาง และทดสอบการต้านเชื้อแบคทีเรียและไวรัสและ ความสามารถในการกระตุ้นภูมิคุ้มกันในกุ้งซึ่งเป็นสัตว์เศรษฐกิจของประเทศไทย โดยทำการสกัดสารจาก สาหร่ายผมนางโดยใช้วิธีการสกัด 2 วิธี คือ การสกัดด้วยตัวทำละลายต่างๆ คือ methanol, chloroform และ hexane และการสกัดด้วยน้ำเพื่อให้ได้สารกลุ่ม sulfated galactans (SGs) นำสารสกัด ์ ต่างๆ ที่ได้มาทดสอบคุณสมบัติการต้านเชื้อแบคทีเรียเรื่องแสง Vibrio harveyi (V. harveyi) ในจานเลี้ยงเชื้อ พบว่าสารสกัด ethanol extract มีฤทธิ์ต้านเชื้อ *V. harveyi* ได้ดีที่สุด เมื่อทดสอบการต้านเชื้อแบคทีเรียในกุ้ง พบว่ากุ้งที่ได้รับสารสกัด ethanol extract มีอัตราการรอดและระดับภูมิคุ้มกันสูงกว่ากลุ่มควบคุม สารสกัด SGs ที่เป็นวุ้น คือ WE2NGF สามารถต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ในกุ้งโดยกุ้งมีอัตราการ รอดสูง และ มีค่า Immune parameters ต่างๆ สูงกว่ากลุ่มควบคุม มีปริมาณการเพิ่มจำนวนของไวรัส และมี การแสดงออกของโปรตีน VP28 น้อยกว่ากลุ่มที่ไม่ได้รับสาร จากการทำ solid-phase virus binding assay พบว่า WE2NGF สามารถจับกับไวรัส WSSV ได้ และเมื่อกำจัดหมู่ sulfate จาก WE2NGF ความสามารถ ในการจับกับไวรัสลดลง การศึกษาโดยวิธี In vitro assay ในเม็ดเลือดกุ้ง พบว่า WE2NGF ช่วยลดการเกิด cytopathic effect ของเซลล์เม็ดเลือดกุ้ง และโดยวิธี Far Western blot analysis พบว่า WE2NGF สามารถ จับได้กับโปรตีนที่ผิวของ WSSV ที่น้ำหนักโปรตีน 12, 16, 19, 28 และ 39-41 kDa และเซลล์เม็ดเลือดกุ้งที่ ได้รับ WE2NGF และติดเชื้อ WSSV แสดงจำนวนปริมาณ fluorescent ของ VP28 น้อยกว่ากลุ่มเซลล์เม็ด เลือดที่ไม่ได้รับ WE2NGF โดยมีปริมาณเป็น 24% ของกลุ่มควบคุมที่ไม่ได้รับสารสกัด ส่วนเซลล์เม็ดเลือดที่ ได้รับ WE2NGF ที่กำจัดหมู่ sulfate ออก พบปริมาณ fluorescent ของ VP28 สูงขึ้นเป็น 83% ของกลุ่มที่ ไม่ได้รับสารสกัด WE2NGF การศึกษาโครงสร้างโดยวิธี NMR และ FT-IR spectroscopy พบว่า WE2NGF มีโครงสร้างทางเคมีเป็น repeating unit ของ 3-linked β-D-galactopyranose และ 4-linked 3,6anhydrogalactose โดยมีหมู่ sulfate ที่ตำแหน่ง C4 ของ D-galactopyranose และที่ C6 ของ Lgalactopyranose จากการศึกษาน้ำหนักโมเลกุลโดยวิธี polyacrylamide gel และ agarose electrophoresis พบว่า WE2NGF มีน้ำหนักประมาณ 100 kDa และ มีปริมาณซัลเฟตประมาณ 12%

ผลการทดลองแสดงให้เห็นว่า สารสกัดโดยตัวทำละลาย ethanol มีฤทธิ์ต้านเชื้อแบคทีเรีย Vibrio harveyi ได้ดีกว่าสารสกัดกลุ่ม sulfated galactans ช่วยลดอัตราการตายของกุ้งที่ได้รับเชื้อแบคทีเรีย และยัง มีคุณสมบัติกระตุ้นภูมิคุ้มกันของกุ้งด้วย ส่วนสารสกัด sulfated galactans มีคุณสมบัติในการต้านเชื้อไวรัส WSSV ในกุ้งได้โดยมีผลลดการเพิ่มปริมาณไวรัสในกุ้ง ช่วยกระตุ้นภูมิคุ้มกันกุ้ง การต้านเชื้อไวรัส WSSV ของ WE2NGF อาจเกิดจากคุณสมบัติในการจับกับโปรตีนที่ผิวของไวรัส โดยเฉพาะอย่างยิ่ง VP28 ซึ่งเป็น โปรตีนสำคัญที่ไวรัสใช้ในการจับและเข้าสู่เซลล์ ทำให้ขัดขวางการเข้าเซลล์ของไวรัส ส่งผลการเพิ่มจำนวน ของไวรัสในเซลล์ลดลง ลดอัตราการตายของเซลล์ และโครงสร้างสำคัญที่มีผลต่อการจับกันของเซลล์กับ ไวรัส น่าจะเป็นหมู่ sulfate ของ WE2NGF

**คำหลัก** สาหร่ายผมนาง, Sulfated galactans, การต้านเชื้อแบคทีเรียเรื่องแสง, การต้านเชื้อไวรัสตัวแดง ดวงขาว, การกระตุ้นระบบภูมิคุ้มกัน, กุ้ง,

#### **Abstract**

Project Code: RMU5180044

Project Title: The antimicrobial and antiviral activities of Gracilaria extracts and the application to

increase immunity in shrimp

Investigator: Assistant professor Kanokpan Wongprasert, Department of Anatomy, Faculty of

Science, Mahidol University

E-mail Address: sckbp@yahoo.com

Project Period: November 15, 2008 - May 15, 2011

It has been reported that substances extracted from seaweed have anti-bacterial and anti-viral activities. This research aimed to extract compounds with activity against bacteria and viruses from red seaweed Gracilaria fisheri (G. fisheri) and evaluate the ability of the extracts to stimulate immunity in shrimp. G. fisheri were extracted by using 2 methods: 1) extraction with solvents including methanol, ethanol, chloroform and hexane, and 2) extraction with water to obtain sulfated galactans (SGs). The different extracts were evaluated for anti-bacterial activities against Vibrio harveyi (V. harveyi) and SGs were evaluated for anti-viral activity against white spot syndrome virus (WSSV). The results demonstrated that the ethanol extract showed the highest anti-V. harveyi activity in vitro and increased levels of immune parameters in shrimp. Shrimp treated with the nonjelly fractions of SGs, WE2NGF, significantly increased the survival rate, the immune parameters levels and decreased amplification of viral protein 28 (VP 28) gene and VP 28 protein. The solidphase virus binding assay revealed the binding ability of WE2NGF with WSSV and on removal of sulfate from WE2NGF, the binding ability decreased. In vitro haemocytes culture showed that WE2NGF reduced the cytopathic effect induced by WSSV. Far Western blot analysis demonstrated the binding of WE2NGF with the viral surface proteins particularly 19, 24, and 28 kDa proteins. Haemocytes treated with WE2NGF showed less fluorescent intensity of VP28, compared to control (24% of the control). Moreover, haemocytes treated with desulfated-WE2NGF showed the intensity of fluorescent increased to 83% of control. Structure analysis by NMR and FT-IR spectroscopy showed that WE2NGF is a repeating unit of 3-linked  $\beta$ -D-galactopyranose and 4-linked 3,6-anhydrogalactose with sulfate groups at position C4 of the D-galactopyranose and C6 of the L-galactopyranose. Molecular weight determination of WE2NGF was about 100 kDa and the percentage of sulfation was about 12%. The results suggested that the ethanol extract had anti-V. harveyi activity, and its activity was better than SGs. Both ethanol extract and SGs had immune

boosting properties. The WE2NGF showed the potent anti-WSSV activity in shrimp by reducing the virus replication which might be the consequence of the binding of WE2NGF with proteins on the surface of the virus, particularly, VP28, an important protein in viral binding and entry into cells. Additionally, the important structure that affects the binding of WE2NGF to the virus might be the sulfate groups.

Keywords: Gracilaria fisheri, sulfated galactans, anti-WSSV, anti-V. harveyi, immunity, shrimp

#### วัตถุประสงค์หลัก

สกัดสารจากสาหร่ายผมนางเพื่อให้ได้สารที่มีคุณสมบัติต้านการติดเชื้อแบคทีเรียและไวรัส

#### วัตถุประสงค์ย่อย

- 2.1 สกัดสารจากสาหร่ายผมนางเพื่อให้ได้สารที่มีคุณสมบัติต้านการติดเชื้อแบคทีเรียและไวรัส
- 2.2 ทดสอบสารสกัดจากสาหร่ายผมนางในการต้านการติดเชื้อแบคทีเรีย Vibrio harveyi และเชื้อไวรัสตัว แดงดวงขาวในกุ้ง
- 2.3 ศึกษาผลของสารสกัดต่อภูมิคุ้มกันในกุ้ง
- 2.4 ศึกษาวิเคราะห์โครงสร้างทางเคมีของ Sulfated galactans
- 2.5 ศึกษากลไกของ Sulfated galactans ในการต้านเชื้อไวรัสตัวแดงดวงขาวในเซลล์เม็ดเลือดกุ้ง

#### บทน้ำ

สาหร่ายผมนาง (Glacilaria) เป็นสาหร่ายน้ำเค็มสีแดง (Rhodophyta) ที่อยู่ใน genus Gracilaria ซึ่ง มีอยู่หลายสายสายพันธุ์และพบอยู่ทั่วโลก ทั้งในประเทศเขตหนาวและเขตอบอุ่น ในประเทศไทยมีอยู่หลายสาย พันธุ์ เช่น Gracilaria fisheri และ Gracilaria tenuistipitata และมีชื่อเรียกตามท้องถิ่นเช่น สาหร่ายผมนาง สาย สาหร่ายข้อ สาหร่ายเขากวาง หรือสาหร่ายวุ้น แพร่กระจายอยู่ตามชายฝั่งของอ่าวไทยและฝั่ง มหาสมุทรอินเดีย เช่น จังหวัดตราด จันทบุรี ระยอง ชลบุรี ประจวบคีรีขันธ์ ชุมพร สุราษฎร์ธานี พัทลุง สงขลา ระนอง ปัตตานี และ นราธิวาส สาหร่ายผมนางเช่นเดียวกับสาหร่ายทะเลทั่ว ๆไป มีคุณค่าและมี บทบาทต่อชีวิตประจำวันของมนุษย์ ใช้เป็นอาหารมนุษย์ มีคุณค่าทางอาหาร ได้แก่ โปรตีน คาร์โบไฮเดรต เกลือแร่ โดยเฉพาะธาตุไอโอดีนและวิตามิน ใช้เป็นอาหารสัตว์ใช้เลี้ยง สุกร วัว ม้า ใช้ทำปุ๋ย สามารถใช้เป็น ปุ๋ยพืชสดได้ดี เพราะมีธาตุในโตรเจนและโปตัสเซียมสูง และยังมีแร่ธาตุปริมาณน้อย (Trace element) ที่ จำเป็นต่อพืชอย่างมาก เช่น ไอโอดีน ใบรอน ทองแดง ฯลฯ นิยมใช้สาหร่ายมาทำยารักษาโรค โดยใช้รักษาโรคกระเพาะ ยาระบาย และยาแก้โรคคอพอกและยังนำวุ้นมาทำเป็นแคปซูลสำหรับหุ้มยา นอกจากนี้ผู้ป่วย ที่เป็นโรค ลำใส่ใหญ่อักเสบ ริดสีดวงทวาร ใจสั่น ความดันโลหิตสูง หลอดเลือดแข็ง ข้ออักเสบ โรคอ้วน ต่างๆ

#### สารสกัดจากสาหร่ายผมนาง

สารสกัดที่สำคัญของสาหร่ายผมนางคือวุ้น agar ซึ่งประกอบด้วยส่วนประกอบสองส่วนคือ agarose และ agaropectin สาร agarose เป็น polysaccharide ที่เป็นกลาง ประกอบด้วยน้ำตาล เชื่อมโยงกันเป็น สาย น้ำตาล agarobiose ประกอบด้วยน้ำตาล D-galactose และ 3,6-L-galactose สาร agaropectin เป็น polysaccharide ที่เป็นกรดซึ่งประกอบด้วยสาร sulfate eater กรด pyruvic และกรด D-glucuronic (Araki,

1966) ชนิดและปริมาณของน้ำตาลในสาร polysaccharide ขึ้นอยู่กับแต่ละชนิดของสาหร่าย (Lahaye and Yaphe, 1988) สภาวะแวดล้อม (Bird, 1988) ปัจจัยทางด้านสรีระ (Christiaen et al., 1987; Craigie et al., 1984) วิธีการสกัด (Lemus et al., 1991; Freile-Pelegrin and Robledo, 1997) และฤดูกาล (Marinho-Soriano and Bourret. 2003) ปริมาณที่สกัดได้และคุณสมบัติทางกายภาพของวุ้น agar เช่นความแข็งแรง ของวุ้นและอุณหภูมิที่เริ่มเป็นวุ้น รวมทั้งคุณสมบัติทางเคมี เป็นสิ่งที่บอกถึงคุณภาพในเชิงพาณิชย์ เนื่องจากคุณสมบัติที่เป็นวุ้น จึงถูกนำมาใช้ประโยชน์อย่างกว้างขวางในอุตสาหกรรมอาหารสำเร็จรูป เครื่องสำอาง เวชภัณฑ์ นอกเหนือไปจากการนำมาใช้ในทางการแพทย์และทางวิทยาศาสตร์เทคโนโลยี

ในสาหน่ายผมนาง *G. cornea* มี ปริมาณสารคาร์โบไฮเดรทอยู่ประมาณ 27-33% ของน้ำหนักแห้ง และส่วนที่เป็น agar อยู่ 6-15% ของน้ำหนักแห้งและความแข็งแรงของวุ้นประมาณ 400-1,300 gต่อตร.ซม. (Israel et al., 2005; Viera et al., 2005) นอกจากคาร์โบไฮเดรท หรือ agar แล้ว สาหร่ายผมนางยังมี โปรตีนค่อนข้างสูง แต่มีไขมันปริมาณต่ำมาก ในสาหร่าย *G. cornea* ปริมาณของโปรตีนมีอยู่ประมาณ 21-48% และไขมันนั้นมีอยู่ประมาณ 2% ของน้ำหนักแห้ง (Israel et al., 2005; Viera et al., 2005) สำหรับ ปริมาณของไขมัน มีระดับของไขมันไม่อิ่มตัว และสาร prostaglandins อยู่ (Khotimchenko et al., 1991)

### คุณสมบัติในการต้านแบคทีเรียของสารสกัดจากสาหร่ายทะเล

โรคติดเชื้อแบคทีเรียหลายชนิดทำให้เกิดการตายของกุ้งจำนวนมาก ในอุตสาหกรรมการเลี้ยงกุ้ง ทำ ให้ผลผลิตลดน้อยลง ความพยายามในการป้องกันการติดเชื้อแบคทีเรียทำโดยการใช้ยาและสารเคมี ดังนั้นการใช้สารต้านแบคทีเรียจึงมีความต้องการสูงขึ้นในอุตสาหกรรมการเพาะเลี้ยงสัตว์น้ำ (Alderman and Michel, 1992) แต่สารต้านแบคทีเรียที่ใช้กับมนุษย์และสัตว์เมื่อนำไปใช้กับสัตว์น้ำก็มีปัญหาการ ละลาย การไม่ชอบกินของสัตว์ การเป็นพิษ มูลค่าการลงทุนสูง และกฎหมายบังคับเรื่องการจำกัดปริมาณ การตกค้างของยาต้านเชื้อแบคทีเรียในอาหาร ปัญหาการมีประสิทธิภาพของยาต้านเชื้อแบคทีเรียลดลง ประกอบกับการที่แบคทีเรียทนต่อยาต้านเชื้อ ทำให้มีความจำเป็นในการพัฒนาทางเลือกอื่นที่จะใช้ต้านเชื้อ แบคทีเรีย(Smith et al. 2003) มีรายงานว่าสารสกัดจากสาหร่ายทะเลมีคุณสมบัติต้านเชื้อแบคทีเรีย (Siddhanta et al. 1997, Mahasneh et al. 1995) โดยพบว่าสารสกัด fatty acid จากสาหร่ายมี คุณสมบัติต้านเชื้อแบคทีเรีย (Viso et al. 1987; Kellam et al. 1988) และ fatty acid (PUFA) ยังมีผล กระตุ้นต่อการกระตุ้นการเจริญเติบโตของปลาและกุ้ง (Changyi et al., 1997) สารสกัดจากสาหร่ายบางชนิด ให้สารสกัดที่มีประสิทธิภาพสูงในการต้านเชื้อแบคทีเรียหลายชนิด (Vlachos et al., โดยใช้ ethanol ี่ 1996) นอกจากนี้ยังมีรายงานว่า lectins ที่ได้จากการสกัดสาหร่ายทะเลมีประสิทธิภาพต้านเชื้อแบคทีเรีย Vibrio spp. (Liao et al., 2003) มีการค้นพบว่าสารสกัดด้วยน้ำร้อนจากสาหร่ายผมนาง *G. tenuistipitata* ที่ ไมโครgต่อgของน้ำหนักกุ้ง สามารถป้องกันกุ้ง ไม่ให้ตายจากการติดเชื้อแบคทีเรีย Vibrio alginolyticus ในกุ้งขาว Penaeus (Litopenaeus) vannamei ได้ (Hou and Chen, 2005) กุ้งที่ได้รับสาร สกัดจากการฉีดเข้ากล้ามเนื้อมีภูมิคุ้มกันต่อการติดเชื้อแบคทีเรียชนิดนั้น และมีอัตรารอดสูงกว่ากลุ่มควบคุม อย่างมีนัยสำคัญทางสถิติ การเพิ่มภูมิคุ้มกันนี้มีการเพิ่มปริมาณของเม็ดเลือดขาว ดัชนีการกินสิ่ง แปลกปลอมของเซลล์ ค่าเอนไซม์ phenoloxidase ค่า respiratory burst และค่าเอนไซม์ dismutase ค่า ต่างๆเหล่านี้สูงขึ้นในวันแรกๆหลังจากการฉีดสารสกัด และค่อยๆลดลงในวันที่ 5 และ 6 ในรายงานนั้นไม่มี การกล่าวถึงสารสกัดว่าเป็นสารประเภทใด

### คุณสมบัติในการต้านไวรัสของสารสกัดจากสาหร่ายทะเล

การสกัดสาหร่ายทะเลโดยวิธี cold water extract ทำให้ได้สารสกัด polysaccharides คือ sulfated galactan ที่มี alkali ที่ตำแหน่ง C4 ของ 1,3-link D-galactose และ ที่ C6 ของ 1,4 linked L-galactose และมีคุณสมบัติต้านไวรัส Herpes simplex type 1,2 โดยป้องกันการจับของไวรัส กับเซลล์เจ้า บ้าน (Mazumder et al., 2002) แต่อย่างไรก็ตามมีรายงานว่า sulfated polysaccharides ที่สกัดจาก สาหร่ายทะเลสีแดงและ carragenans สามารถระงับการ replication ของ retrovirus และ ยับยั้ง reverse transcripase ของไวรัส Herpes simplex ได้ (Solomon et al.,1966; Schaffrath et al., 1976) นอกจากนี้ ยังมีการจดสิทธิบัตรการใช้ sulfated polysaccharides จากสาหร่ายในการรักษาโรคติดเชื้อไวรัส AIDS อีก ด้วย (Neushul, 1988)

### การใช้สาหร่ายผมนาง (Gracilaria) ในการบำบัดน้ำจากบ่อเลี้ยงกุ้ง

สาหร่ายผมนางเจริญเติบโตได้ด้วยการใช้คาร์บอนไดออกไซด์ ในโตรเจน และฟอสฟอรัส จากน้ำทะเล สารเหล่านี้ก่อให้เกิดมลภาวะในน้ำทะเล สาหร่ายผมนางจึงช่วยลดมลภาวะนี้ นอกจากนั้นสาหร่ายผมนาง ยังช่วยขจัดโลหะหนัก โดยการดึงโลหะหนักออกจากน้ำทะเลให้เข้าไปติดกับเซลล์ของสาหร่ายด้วย

ในอุตสาหกรรมการเลี้ยงกุ้ง สาหร่ายผมนางถูกนำมาใช้ในขั้นตอนการบำบัดน้ำเสียที่ถ่ายออกมา จากบ่อกุ้งโดยวิธีการทางชีวภาพและนำน้ำที่บำบัดแล้วมาเพาะเลี้ยงกุ้งใหม่ เป็นการประหยัดการใช้น้ำ ป้องกันโรคระบาด รักษาความสมดุลของระบบนิเวศน์ และเป็นการเพิ่มพูนรายได้ให้แก่เกษตรกร แต่ อย่างไรก็ตามมีความความยากลำบากในการจัดการและปัญหาของการเลี้ยงสาหร่ายทะเล การเลี้ยงสาหร่าย ทะเลต้องการการดูแลเอาใจใส่ เช่นในเรื่องความเค็มของน้ำ การไหลของน้ำ และอื่นๆ นอกจากนั้น สาหร่าย ที่เพาะเลี้ยงและเก็บเกี่ยวมาได้ ซึ่งต้องกระทำอย่างต่อเนื่อง ก็ยังต้องนำมาแปรรูปเพื่อนำไปใช้ประโยชน์ หากเกษตรกรไม่มีโครงการที่จะทำประโยชน์อะไรกับสาหร่ายแล้ว ระบบบำบัดน้ำวิธีนี้ก็จะก่อปัญหาด้านการ จัดการ

จากการทบทวนวรรณกรรมข้างต้น ได้รายงานว่าสาหร่ายทะเลบางชนิดมีคุณสมบัติต้านการติด เชื้อแบคทีเรียและไวรัส แต่ยังไม่มีรายงานในสาหร่ายผมนางที่พบในประเทศไทย งานวิจัยนี้จึงมีสมมุติฐาน ที่ว่าสารสกัดจากสาหร่ายผมนาง *Gracilaria fisheri* น่าจะมี active compounds ที่มีคุณสมบัติต้านแบคทีเรีย และไวรัสที่ก่อให้เกิดโรคติดเชื้อในกุ้ง และกระตุ้นภูมิคุ้มกันในกุ้งได้ ดังนั้นในโครงการนี้ จึงมุ่งหวังที่จะนำ ความรู้เหล่านี้มาใช้ประโยชน์ เพื่อให้ได้สารสกัดจากสาหร่ายชนิดนี้เพื่อผสมเป็นอาหารกุ้ง และทดสอบ ความสามารถในการต้านโรคระบาดจากเชื้อแบคทีเรียและไวรัส ตลอดจนกลไกในการต้านเชื้อ เพื่อเป็นการ ใช้ประโยชน์จากสาหร่ายและช่วยเพิ่มผลผลิตกุ้ง

#### วิธีทดลองและผลการทดลอง

### ตัวอย่างสาหร่ายผมนาง กราซิลาเรีย ฟิชเชอไร *(Gracilaria fisheri)*

ทำการเก็บสาหร่ายผมนาง กราซิลาเรีย ฟิชเชอไร (Gracilaria fisheri) กายภาพ จากพื้นที่ทะเล อ่าวไทย จ.สุราษฏร์ธานี (จำแนกสายพันธุ์โดยดูจากลักษณะ ทางกายภาพ) นำสาหร่าย Gracilaria fisheri มาล้างด้วยน้ำทะเลที่กรองผ่านกระดาษกรอง Vaccuum pump ที่มีเส้นผ่าศูนย์กลางของรู 0.45 µ จำนวน 3 ครั้งและใช้ปากคีบและแปรงขนอ่อน ช่วยในการคัดแยกเอาสิ่งที่ไม่ต้องการ ออกจนหมด กำจัดเศษชิ้นส่วน ของสาหร่ายที่เน่าเสีย และส่วนพืชชั้นด่ำที่เป็นปรสิต (epiphyte) ที่ติดมากับสาหร่ายอาศัย อยู่บริเวณผิวของ สาหร่ายผมนางออก และนำมาสังเกตดูภายใต้กล้องจุลทรรศ์ (Mohamad et al., 2006) เพื่อให้แน่ใจ ว่าส่วน ที่จะนำไปสกัดไม่มีพืชชนิดอื่นหรือพืชชั้นด่ำปะปนมากับสาหร่ายเวลานำไปสกัด จากนั้นล้างด้วยน้ำก๊อก แบบ ใหลผ่าน 15 นาที แช่ด้วยน้ำกลั่น 1 ครั้ง นำไปตากแดดจนแห้ง และอบให้แห้งอีกครั้งที่อุณหภูมิ 35-40°C จากนั้น นำมาบด ให้เป็นผงโดยใช้เครื่องบด ผงบดสาหร่ายผมนางที่ได้จะนำไป 1) สกัดโดยใช้ตัวทำ ละลายต่างๆ และ 2) สกัดด้วยน้ำเพื่อให้ได้ Sulfated Galactans

### 1. การสกัดสารจากสาหร่ายด้วยตัวทำละลายต่าง ๆ ได้สารสกัดจากสาหร่าย คือ

นำผงบดสาหร่ายผมนางไปละลายในตัวทำละลาย methanol, chloroform, hexane, ethanol โดย ใช้เครื่อง Soxlet apparatus จากนั้นนำไประเหยแห้งอย่างเร็วใน Vaccuam pump จะได้ผงของสารสกัด methanol extract, สารสกัด chloroform extract, สารสกัด hexane extract และสารสกัด ethanol extract

### การทดสอบ การต้านเชื้อแบคทีเรียเรื่องแสง (V. harveyi)

### การเตรียมเชื้อแบคทีเรียเรื่องแสง V. harveyi

เลี้ยงแบคทีเรีย *V. harveyi* ในอาหารเลี้ยงเชื้อ (เตรียมจาก MHA 10.5 g, น้ำกลั่น 500 ml, artificial sea water(ASW) 15 g, Agar 7.5 g) จากนั้นใช้ 10% ของแบคทีเรียจาก stock ลงไปผสมกับอาหารเลี้ยง เชื้อ MHA medium แล้วนำไปบ่มที่อุณหภูมิ 30°C ที่มีอัตราเร็วการเหวี่ยง 250 รอบต่อนาที เป็นเวลา 24 ชั่วโมง โดยแบคทีเรีย *V. harveyi* ที่ใช้ในการทดสอบคุณสมบัติการต้านเชื้อแบคทีเรียของสารสกัดจาก

สาหร่ายผมนาง มีทั้งหมด 3 สายพันธุ์ ได้แก่ สายพันธุ์ 1114, สายพันธุ์ 15326 และสายพันธุ์ 39864 ซึ่งเป็น สายพันธุ์ที่มีความรุนแรงมาก

### การทดสอบ การต้านเชื้อแบคทีเรียเรื่องแสง V. harveyi

นำกระดาษกรองมาตัดเป็นวงกลมขนาดเส้นผ่าศูนย์กลาง 6 mm ทำการอบฆ่าเชื้อปนเปื้อน (autoclaved) จากนั้นนำกระดาษกรองวางลงในจานเลี้ยงเชื้อแบคทีเรีย *V. harveyi* หยดสารสกัดจาก สาหร่ายผมนางต่างๆ คือสารสกัดโดย methanol, ethanol, chloroform และ hexane ลงบนกระดาษกรอง วงกลม โดยมีปริมาตร 25 µl ที่มีความเข้มขันของสารสกัดแตกต่างกัน คือ 0.1, 0.5, 1, 5, 10 และ 20 mg/ml หยดสารสกัดความเข้มขันต่างๆลงบนกระดาษกรองวงละหนึ่งความเข้มขัน โดยวางในจานเลี้ยงเชื้อ เดียวกันในหนึ่งสารสกัด และกลุ่มควบคุมหยดตัวทำละลายของแต่ละชนิดของสารสกัด และมีกลุ่มควบคุม บวก (positive control) คือหยด Nofloxacin 0.5 mg/ml จากนั้นนำจานเลี้ยงเชื้อไปบ่มที่อุณหภูมิ 30°C เป็น เวลา 24 ชั่วโมง เพื่อให้เชื้อแบคทีเรียเจริญเติบโต เมื่อครบ 24 ชั่วโมงนำจานเลี้ยงเชื้อออกมาสังเกตบริเวณ รอบๆ กระดาษกรองวงกลมที่วางไว้ ถ้ามีลักษณะใสแสดงถึงบริเวณนั้นมีการยับยั้งการเจริญของเชื้อ แบคทีเรีย (zone of inhibition) บันทึกค่าเส้นผ่าศูนย์กลางของบริเวณ zone of inhibition โดยมีหน่วยเป็น mm ผลการทดลองได้จากค่าเฉลี่ย จากการทำการทดลองซ้ำ 3 ครั้ง

### การหาความเข้มข้นของสารสกัดจากสาหร่ายผมนางที่น้อยที่สุด ที่ยับยั้งการเจริญเติบโตของเชื้อ แบคทีเรียเรืองแสงได้ 50%, minimal inhibitory concentration (MIC)

เลี้ยงเชื้อแบคทีเรีย *V. harveyi* 100 µg ใน MHA medium (MHA 10.5 g, น้ำกลั่น 500 ml, ASW 15 g) ปริมาณ 1 ml ที่มีสารสกัดจากสาหร่ายผมนางที่สกัดด้วย Organic solvents ต่างๆ คือเมทานอล เอทธานอล คลอโรฟอร์ม และเฮกเซน ที่ความเข้มข้น 0.05, 0.1, 0.5 และ1 mgต่อmlต่อ หลอดทดลอง จากนั้นนำไปบ่มที่อุณหภูมิ 30°C ปั่นด้วยอัตราเร็ว 250 รอบต่อนาที เป็นเวลา 24 ชั่วโมง วัดการดูดกลืน แสง (OD) ที่ 600 นาโนเมตร เพื่อดูอัตราการเติบโตของแบคทีเรียเรืองแสง โดยผลการทดลองเปรียบเทียบ กับผลที่ได้จาก กลุ่มควบคุม คือ กลุ่มที่เลี้ยงเชื้อแบคทีเรีย *V. harveyi* ใน MHA medium ที่มี organic solvents ที่ใช้สกัดสาร

#### ทดสอบความเป็นพิษของสารสกัดเอทานอลจากสาหร่ายในตัวอ่อนของ Artemia

เริ่มด้วยการฟักไข่ Artemia 300 mg ในบีกเกอร์ที่มีน้ำ 800 ml ความเค็ม 30 ppt. ปริมาณออกซิเจน ปานกลาง เป็นเวลา 24 ชั่วโมง จนได้Artemiaระยะอินสตาร์ 1 (instar1) ใช้ Artemia ระยะอินสตาร์ 1 จำนวน 10 ตัว เลี้ยงไว้จานเลี้ยง (culture dish) ขนาดเส้นผ่านศูนย์กลาง 10 เซนติเมตร ความสูง 1 เซนติเมตร โดย เลี้ยงไว้ที่ความเข้มขันต่างๆ คือ 10, 100, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000 µg/ml ปริมาตร 5 mlและกลุ่มควบคุม บันทึกอัตราการตายของArtemiaที่เวลา 24 ชั่วโมงและคำนวณค่าความเข้มข้นที่น้อย ที่สุดที่มีความเป็นพิษ ทำการทดลองซ้ำ 5 ครั้ง

### ทดสอบคุณสมบัติ ในการต้านเชื้อแบคทีเรียเรื่องแสง (*V. harveyi* ) ในกุ้งขนาดเล็ก (post larvae)

นำ Artemia ระยะอินสตาร์1 (instar1) มา enrichment ด้วย ethanol extract จากสาหร่ายผมนาง ความเข้มข้น 1 mg/ml ที่เวลาต่างๆ คือ 2, 4, 6, 8 และ 24 ชั่วโมง และเพื่อให้ง่ายต่อการสังเกตปริมาณสาร สกัด ที่เข้าไปในตัวArtemiaจึงมีการผสมสีผสมอาหารกับสารสกัดเอทานอลก่อน ทำให้สังเกตได้ว่ามีปริมาณ ของสารสกัดเข้าไปในตัว Artemia เท่าไร พบว่าที่เวลาตั้งแต่ 6 ชั่วโมงถึง 24 ชั่วโมงมีปริมาณของสารสกัดใน ตัว Artemia มากใกล้เคียงกัน จึงเลือกเวลาที่ 6 ชั่วโมงมาใช้ในการ enrichment Artemiaเพื่อเป็นอาหารกุ้ง ขนาดเล็กต่อไป

กุ้งกุลาดำขนาดเล็ก (PL15) จากศูนย์วิจัยและพัฒนาสายพันธุ์กุ้งถูกนำมาเลี้ยงในกล่องพลาสติกใส ขนาด 500 ml ความเค็ม 15 ppt. กล่องละ 5 ตัว โดยการทดลองครั้งนี้แบ่งกุ้งออกเป็น 5 กลุ่ม กลุ่มละ 20 ตัว คือ 1) กลุ่มควบคุมที่ให้กุ้งกิน Artemia ธรรมดา 2) กลุ่มควบคุมที่ให้กุ้งกิน Artemia ที่มี ethanol ผสม กับ PBS.ในอัตราส่วน 1:1 3) กลุ่มที่ให้กุ้งกินArtemia ที่มีสารสกัดเอทานอลจากสาหร่ายผมนาง 0.5 mg/ml 4) กลุ่มที่ให้กุ้งกิน Artemia ที่มีสารสกัดเอทานอลจากสาหร่ายผมนาง 1 mg/ml โดยให้ Artemia เป็นเวลา 14 วัน ก่อนการใส่เชื้อแบคทีเรียเรื่องแสงที่ความเข้มข้น 1x10 °CFU ml ในสี่กลุ่มการทดลองแรกนี้ และ 5) กลุ่มควบคุมที่ให้กุ้งกิน Artemia ธรรมดาแต่ไม่มีการติดเชื้อ บันทึกอัตราการตายของกุ้งหลังจาก ติดเชื้อแบคทีเรีย V. harveyi ทุกวัน เป็นเวลา 7 วัน ทำการทดลองซ้ำ 4 ครั้ง

### ทดสอบคุณสมบัติ ในการต้านเชื้อแบคทีเรียเรื่องแสง (*V. harveyi*) ในกุ้งกุลาดำ (juvenile) ด้วยสาร สกัด ethanol extract จากสาหร่ายผมนางและ ทดสอบคุณสมบัติในการกระตุ้นภูมิคุ้มกันในกุ้ง

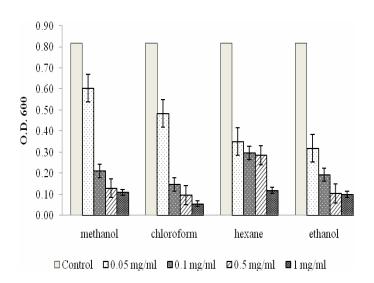
ทุ้งกุลาดำขนาด 20-25 g จำนวน 60 ตัว ซื้อจากฟาร์มเลี้ยงกุ้งจังหวัดฉะเชิงเทรา นำมาเลี้ยงในบ่อ ขนาด 80 ลิตร ความเค็ม 10 ppt. โดยเลี้ยงให้กุ้งปรับสภาพเป็นเวลา 3 วันก่อนเริ่มทำการทดลอง แบ่งกุ้ง ออกเป็น 5 กลุ่ม กลุ่มละ 30 ตัว คือ 1) กุ้งกลุ่มควบคุมที่ไม่ได้รับการฉีดสารใด ๆ 2) กลุ่มควบคุมที่ฉีดด้วย ethanol ผสมกับ PBS ในอัตราส่วน 1:1 3) กลุ่มของกุ้งที่ฉีดสารสกัด ethanol extract ที่ ความเข้มขัน 1 mg/g BW โดยฉีดสารสกัด 2 ครั้งคือ วันที่ 1 และวันที่ 3 ของการทดลองที่กล้ามเนื้อท้องปล้องที่ 2 ในปริมาตร 100ul/ ตัว จากนั้นเลี้ยงกุ้ง ต่อไปอีก 3 วัน จึงฉีดเชื้อแบคทีเรีย V. harveyi ที่ได้ทดสอบแล้วว่าทำให้กุ้งตายกับกลุ่มการทดลองทั้งสี่ กลุ่ม และ 5) กลุ่มควบคุมไม่มีการฉีดเชื้อ V. harveyi บันทึกอัตราการตายของกุ้งหลังจากฉีดเชื้อแบคทีเรีย V. harveyi กุกวัน เก็บตัวอย่างเม็ดเลือดมาทำการทดสอบคุณสมบัติในการกระตุ้นภูมิคุ้มกันกุ้งโดยวัดดัชนี ค่าภูมิคุ้ม กันต่าง ๆของกุ้ง คือ จำนวนเม็ดเลือดทั้งหมด (total hemocyte count), ชนิดของเม็ดเลือด

(differential hemocyte count), prophenoloxidase activity, ปริมาณ superoxide anions และ superoxide dismutase activity

#### ผลการวิจัย

สาหร่าย *Gracilaria fisheri* ที่เก็บจาก พื้นที่ทะเลอ่าวไทย จ. สุราษฏร์ธานี มีทัลลัสตั้งตรง เป็นรูป เรียวยาว ทรงกระบอก อวบน้ำ ลักษณะค่อนข้างเหนียว มีสีตั้งแต่เขียวอ่อน ไปจนกระทั่งสีน้ำตาลดำ (รูป 1)

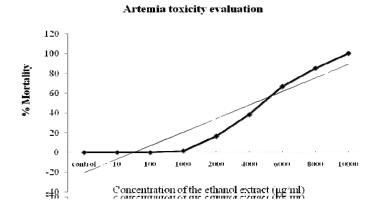



รูป 1. สาหร่ายผมนาง *Gracilaria fisheri* 

### การต้านเชื้อแบคทีเรียและความเข้มข้นของสารสกัดที่น้อยที่สุดที่สามารถยับยั้งการเจริญเติบโต ของแบคทีเรีย *V. harveyi* (Minimal Inhibitory Concentration, MIC)

การยั้บยั้งการเจริญเติบโตของแบคทีเรีย *V. harveyi* แสดงเป็นเส้นผ่าศูนย์กลางของบริเวณ zone of inhibition ผลการทดลองพบว่าสารสกัด methanol extract, ethanol extract และ chloroform extract มี ฤทธิ์ยั้บยั้งการเจริญเติบโตของแบคทีเรีย *V. harveyi* ใกล้เคียงกันและใกล้เคียงกับฤทธิ์ของ Norfloxacin และพบว่าเมื่อเพิ่มความเข้มข้นของสารสกัดทั้งสามชนิดจะมีฤทธิ์ยับยั้งการเจริญเติบโตของแบคทีเรียเป็น บริเวณกว้างขึ้น ส่วน hexane extract ที่ความเข้มข้นของ 0.1, 0.5, 1 mg/ml ไม่มีฤทธิ์ยับยั้งการ เจริญเติบโต ของแบคทีเรีย แต่มีฤทธิ์ยับยั้งเล็กน้อยที่ความเข้มข้น 5 และ 10 mg/ml (ตาราง1) ส่วนค่าของ MIC พบว่า Methanol extract และ Ethanol extract มีค่า MIC 0.1 mg/ml Hexane extract มีค่า MIC 0.2 mg/ml และ Chloroform extract มีค่า MIC 0.075 mg/ml เมื่อทดสอบโดยใช้ *V. harveyi* สายพันธุ์ 39864, 15326 และ 1114 (รูป2) และพบว่าอัตราการเจริญเติบโต ของแบคทีเรียเรืองแสง มีอัตราการการ เจริญเติบโตลดลงที่ใกล้เคียงกันในทั้ง 3 สายพันธุ์

|            | Identification zone of inhibition n diameter of G. fisheri extracts (mm) concentrations (mg/ml) |           |                        |                |           |                      |           |  |  |
|------------|-------------------------------------------------------------------------------------------------|-----------|------------------------|----------------|-----------|----------------------|-----------|--|--|
| Extracts   | contro                                                                                          | 0.1       | 0.5                    | 1              | 5         | 10                   | 20        |  |  |
| Mchanol    | 0                                                                                               | 7.5±0.57  | 8.75 <del>1</del> 0.95 | 10.25±1.7<br>3 | 9.5±1.82  | 1 <del>0±</del> 0.81 | 10.5±1.41 |  |  |
| Ethanol    | 0                                                                                               | 9.75±1.50 | 9.75±1.41              | 10.5±0.95      | 9.75±1.29 | 11±0.50              | 12±1.70   |  |  |
| Chleroform | 0                                                                                               | 7         | 7                      | 8              | 8.5±1.15  | 10±0.57              | 10.5±0.57 |  |  |
| Hexane     | 0                                                                                               | 5.5±1.40  | 5.75±1.64              | 6.25±2.32      | 8±2.30    | 8.5±1.80             | 7±2.08    |  |  |
| Nofloxacin |                                                                                                 |           | 11±1.0                 |                |           |                      |           |  |  |


**ตาราง 1**. ตารางแสดงเส้นผ่าศูนย์กลางของบริเวณที่มีการยับยั้งการเจริญของแบคทีเรีย *V. harveyi* strain 1114 (zone of inhibition)โดยสารสกัดสาหร่ายต่าง ๆที่ความเข้มข้นต่าง ๆกัน



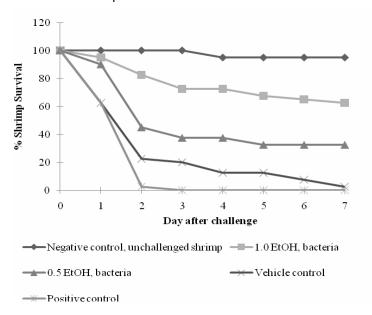
ร**ูป 2.** การดูดกลืนแสงที่ OD 600 นาโนเมตร ซึ่งบ่งบอกถึงการเจริญของแบคทีเรีย เมื่อใช้สารสกัดเมทา นอลและเอทานอลจากสาหร่ายผมนางที่ความเข้มขันต่างๆในแบคทีเรีย *V. harveyi* 

#### ค่าความเป็นพิษของสารสกัดเอทานอลจากสาหร่ายผมนางในตัวอ่อนของ Artemia

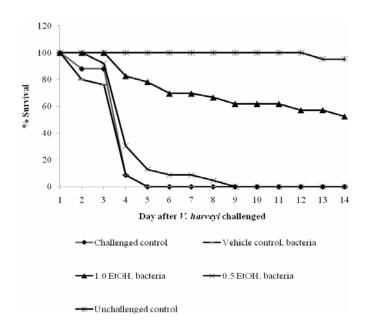
ค่าความเป็นพิษของสารสกัดจากเอทานอลในตัวอ่อนของArtemia (LC50) มีค่าประมาณ 4 mg/ml ซึ่งถือว่ามีความเป็นพิษที่ต่ำมาก (รูป 3)



รูป 3. แสดงอัตราการตายของ Artemiaในสารสกัดเอทานอลที่ความเข้มข้นต่างๆ


### ผลทดสอบคุณสมบัติในการต้านเชื้อแบคทีเรียเรื่องแสง (*V. harveyi* ) ในกุ้งขนาดเล็ก (post larvae)

จากการทดลองพบว่ากุ้งขนาดเล็กหลังจากติดเชื้อ *V. harveyi* ในกลุ่มที่ไม่ฉีดสารสกัดมีการตาย อย่างรวดเร็วหลัง คือ ตาย 100 % ในวันที่ 2 หลังได้รับเชื้อ ส่วนกุ้งที่กิน Artemia ที่มีสารสกัดเอทานอล 0.5 และ 1 mg/ml มีผลช่วยยืดอายุการอยู่รอดของกุ้ง เมื่อเทียบกับกลุ่มควบคุม โดยกุ้งที่กิน Artemia ที่มีสาร สกัดเอทานอล 1 mg/ml มีอัตราการรอดที่ 68% หลังจากการติดเชื้อ 7 วัน (รูป 4A)

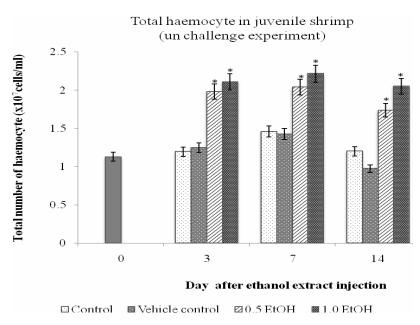

### การต้านการติดเชื้อ แบคทีเรีย *V. harveyi* ในกุ้งโต (juvenile shrimp)

จากการทดลองพบว่า หลังจากติดเชื้อ *V. harveyi* ในกุ้ง juvenile shrimp กลุ่มที่ไม่ฉีดสารสกัด มี การตายอย่างรวดเร็วหลัง ได้รับเชื้อ *V. harveyi* คือ ตาย 100 % ในวันที่ 3 หลังได้รับเชื้อ ส่วนกุ้งที่ฉีดสาร สกัด ethanol extract ที่ความเข้มข้น 1mg /g BW. มีผลการอยู่รอดของกุ้งมากกว่ากลุ่มควบคุม (รูป 4B)

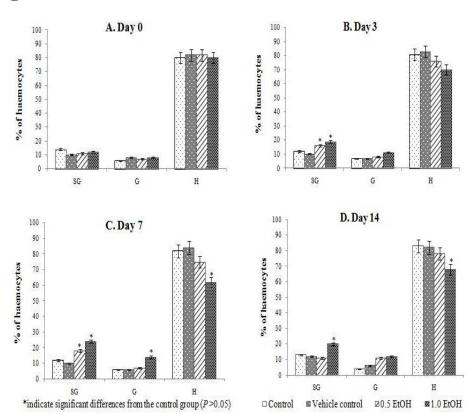
#### A: Post larvae shrimp



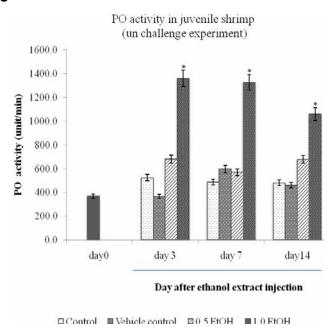
#### **B**: Juvenile shrimp



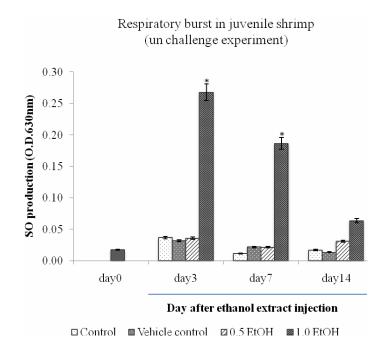

ร**ูป 4.** เปอร์เซ็นต์การรอดของกุ้งหลังจากให้เชื้อ *V. harveyi* 1x10<sup>6</sup> cfu/ml ใน **A)** กุ้งขนาดเล็กหลังจากกิน Artemiaที่มีสารสกัดจากสาหร่ายผมนาง Ethanol extract ที่ความเข้มข้น 0.5 และ 1 mg/ml. เป็นเวลา 5 วัน เทียบกับกลุ่มควบคุม **B)** กุ้งโตที่ฉีดสารสกัด ethanol extract ที่ ความเข้มข้น 0.5 และ 1 mg/g BW และ กุ้งกลุ่มควบคุมฉีดด้วย ethanol ผสมกับ PBS ในอัตราส่วน 1:1, กลุ่มควบคุมและกลุ่มควบคุมไม่มีการฉีด เชื้อ *V. harveyi* 


### คุณสมบัติในการกระตุ้นภูมิคุ้มกันในกุ้ง

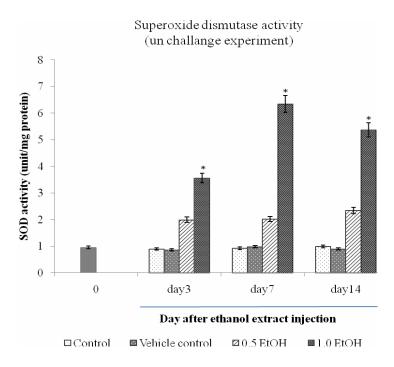
ระดับภูมิคุ้มกัน คือ จำนวนเม็ดเลือดทั้งหมด (total hemocyte count), ชนิดของเม็ดเลือด (differential hemocyte count), prophenoloxidase activity, superoxide anions และ superoxide dismutase activity ของกุ้งในกลุ่มที่ฉีดสารสกัด ethanol extract ที่ ความเข้มข้น 0.5 และ 1 mg/g BW มี ระดับสูงขึ้นอย่างมีนัยสำคัญเมื่อเทียบกับกลุ่มควบคุม ทั้งในวันที่ 3 วันที่ 7 และ วันที่14 (รูป 5)


Α









С



D



Ε



รู**ป 5.** แสดงค่าดัชนีต่างๆในการวัดระดับภูมิคุ้มกันกุ้งโดย A) แสดงจำนวนเม็ดเลือด B) ปริมาณของเม็ด เลือดชนิดต่างๆ C) ค่า PO activity D) ปริมาณ superoxide anion และ E) superoxide dismutase

### สรุปและอภิปรายผลการวิจัย

G. fisheri is important red seaweed specie that is found along the Southern coast of Thailand. Farmer generally culture G. fisheri in shrimp ponds as biofilters to help reduce nutrients in wastewater and decrease nitrogen compounds in shrimp pond effluence (Troell, et al., 1999). Besides, it has been observed that shrimp cultured with G. fisheri are healthy and grow fast. Previous evidences showed many species of red seaweed are potential sources of anti-bacterial agents and immunostimulants (Bansemir, et al., 2004, Puglisi, et al., 2007).

The present study showed that the solvent extracts of *G. fisheri* including the ethanol, methanol, chloroform and hexane extracts elicited antimicrobial activity against three virulence strains of *V. harveyi* namely, 1114, 15326 and 39864. The antimicrobial activity could be graded as moderate inhibition. The zones of inhibition of ethanol, methanol and chloroform extracts were larger than that of hexane extract. However the ethanol and methanol extract showed the best result among the four. Similar to the previous studies the methanol and chloroform extracts of *J. rubens* showed more potent antimicrobial activity than that of the hexane extract (Karabay-Yavasoglu, et al., 2007). This result was supported by the work of Bansemir et al (2006) that seaweed extraction with low polarity solvents yielded high antibacterial activity agents than high polarity ones. Screened by the value of antibacterial activity and the polarity of the extract, thus, the ethanol extract was a good candidate to be studied further.

Vibriosis mortality is induced by stressed factors such as poor water quality, high water temperature, crowding, low DO, and low water exchange (Brock and Lightner, 1990, Lightner, 1993) and usually causes 100% mortality of larvae in the hatchery stage of penaeid culture (Baticados, et al., 1990). Postlarvae and young juvenile shrimp *P. monodon* suffered mortalities within 48 hr of immersion with virulence strains of *V. harveyi*. Routinely, farmers protect their shrimp from vibriosis by water management (Sung, et al., 1999), good site selection, pond design and preparation (Lightner, 1993), reduction in pond biomass and antibiotic supplementation (Tendencia and de la Pe a, 2001). The present study aimed at feeding the ethanol extract of *G. fisheri* to the post larvae black tiger shrimp by means of bioencapsulation and examined its antibacterial activity against *V. harveyi*. The result showed shrimp fed with artemia enriched with

the ethanol extract at concentration 1.0 mg/ml could survive approximately 82.5 %. In general toxicity test, LC50 is considered strong when ranging between 0-80  $\mu$ g/ml, moderate between 80-250  $\mu$ g/ml, and indicated as weak when more than 250  $\mu$ g/ml (Ramos, et al., 2009). The result suggested the ethanol extract of *G. fisheri* at concentration 1.0 mg/ml was a good potential substance against *V. harveyi* activity and not toxic (LC50 was 4,295±463  $\mu$ g/ml). However its antibacterial activity in a large scale has to be further investigated.

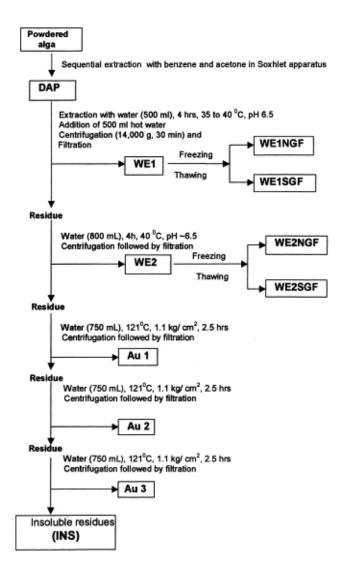
The previous studies reported the increased defense parameters in shrimp by various extracts of seaweed. Chiu-Hsia Chiu group showed that the hot-water extract of seaweed *G. tenuistipitata* could increase immune ability and resistance against *V. alginolyticus* infection in white shrimp *L. vannamei* (Hou and Chen, 2005). The post-larvae shrimp *P. monodon* fed with the secondary metabolites from a red marine seaweed *Hypnea musciformis* positively affected immune factors and showed significantly higher survival rate when challenged with *V. alginolyticus* (Jos, et al., 2008). *P. monodon* treated with the probiotic *Bacillus subtilis* BT23 inhibited the growth of *V. harveyi* and reduced 90% in accumulated mortality (Vaseeharan and Ramasamy, 2003). The present study also investigated the effects of *G. fisheri* ethanol extract on defense parameters in *P. monodon* both cellular and humoral response. In view of cellular response, the results revealed that the ethanol extract of *G. fisheri* increased the proliferation of all types of haemocytes. Two possible hypotheses of the effects of the *G. fisheri* ethanol extract on haemocyte proliferation have been proposed; 1) the ethanol extract stimulates haemocyte production in haematopoitic tissue (Van de Braak, et al., 2002) or 2) the ethanol extract stimulates the migration of haemocytes from tissues into haemolymph. Previous studied revealed that lipopolysaccharide (LPS)-treated shrimp showed

a higher mitotic index in haemocytes than control suggesting LPS can stimulate the proliferation of haemocyte cells (Van de Braak, et al., 2002). In this study, the ethanol extract might contain metabolites or compounds that can induce haemocyte proliferation in haematopoitic tissue and then haemocyte migrate to haemolymph. The decline in total number of haemocyte at day 14 after the ethanol extract injection might be due to the down regulation of haemocyte proliferation tissue by the low level of the ethanol extract. For the second hypothesis, the ethanol extract may contain metabolites that can attract haemocyte from tissues to haemolymph.

In shrimp, there are three types of haemocyte: hyaline, semi-granular and granular cells. The hyaline cell lacks large granule, readily attaches to surface and is involved in phagocytosis. The semi-granular and granular cells contain small and large granules, respectively, which are promptly discharged when the cell is exposed to pathogen. Semi-granular cell is active in encapsulation, while the granular cell contains components of the prophenoloxidase (proPO) system, an enzyme cascade responsible for melanin synthesis which is believed to aid in host defense (Soderhall, 1997). The results of DHC showed ethanol extract increased the number of semi granular cell and the number of cells sustained until the end of experiment whereas the number of granular cell showed no increase after day 7. The results suggested the different mechanisms of stimulation were employed for proliferation of the two cell types of haemocytes.

Phenoloxidase activity plays an important role in the host defense cascade that produces melanin formation (Soderhall and Cerenius, 1998). PO activity in *P. monodon* can be stimulated both *in vitro* and *in vivo* (Cammarata and Parrinello, 2009). It has been reported that the proPO system primarily exists in granular and semi granular haemocyte (Johansson and Soderhall, 1989,

Okumura, 2007). The present study showed increased levels of PO activity correlated with the increased number of granular and semi granular cells in shrimp injected with the ethanol extract of *G. fisheri* suggesting that the ethanol extract increased the number of granular and semi granular cells resulted in the increased PO activity. It might be possible that the ethanol extract increased the humoral immune response of shrimp.


It has been shown that pathogens induce reactive oxygen species (ROS) or oxidative stress which cause damage to cells and enhances mortality in infected shrimp. The parameters usually used to determine host response to ROS include respiratory burst and SOD activity. Respiratory burst represents superoxide radicals produced after process of ROS production during phagocytosis (Rosen, et al., 1995). Superoxide dismutase activity indicates the enzyme showed an ability to convert the harmful superoxide free radicals to become non-harmful substances oxygen (O<sub>2</sub>) or water (H<sub>2</sub>O<sub>2</sub>). High level of superoxide anion and SOD activity indicated the high response of cells to eliminate the harmful ROS. The present study demonstrated the increased levels of both respiratory burst and SOD activity after shrimp received the ethanol extract. The results suggested that ethanol extract might stimulate host cells to rapidly eliminate the *V. harveyi* induced ROS production. Cheng et al (2004) also reported seaweed increased both phenoloxidase activity and respiratory burst in *H. diversicolor supertexta*. Administrations of hot-water extract of *G. amansii*, by immersion, injection and dietary uptakes improved the defense ability of white shrimp *L. vannamei* by increasing THC, PO activity, respiratory burst, and resistance against *V. alginolyticus* (Fu, et al., 2007).

In this study, the active metabolites of ethanol extract of G. fisheri that play roles in prevention shrimp mortality against V. harveyi and increase defense parameters have not been analyzed. It has demonstrated that 93% of 938 compounds of red seaweed solvent extracts were halogenated compounds (McClintock and Baker, 2001). Volatile halogen compound found in the red seaweed Asparagopsis taxiformis mainly composed of bromine and iodine-containing haloforms (Burreson, et al., 1976). Various volatile components extracts of Jania rubens showed antimicrobial activity against both Gram-positive and Gram-negative bacteria and Candida albicans (Karabay-Yavasoglu, et al., 2007). Red seaweed Laurencia chondrioides have antibacterial activity against fish and human pathogenic bacteria and contained halogenated secondary metabolites. The chemical structures comprised sesquiterpenes, diterpenes, triterpenes, C15 acetogenins, and etc (Bansemir, et al., 2004). For Gracilaria spp, there were a few reports showed the antibacterial activity as well as the active metabolites particularly in shrimp. There are evidences showing that red seaweed Delisea pulchra effectively avoids a broad spectrum of bacterial infections and the promising molecules are known as furanones. It is suggested that furanones bind readily to the specific protein on bacterial receptor sites that receive the bacterial signaling molecules (N-acyl homoserine lactone) which normally induce surface colonization. This method of blocking bacterial communication effectively prevents bacteria from forming groups and becoming virulent (Maximilien, et al., 1998).

The overall results of this study suggested that ethanol extract of *G. fisheri* has an ability to block *V. harveyi* infection and could increase defense response especially humoral response in shrimp *P. monodon*. The active metabolites and mode of protection have to be clarified further.

#### 2. การสกัดสาร Sulfated Galactans จากสาหร่าย (Chattopadhyay et al., 2007)

นำผงสาหร่ายแห้งที่บดแล้วมา 260 g สกัดด้วย benzene และ acetone ขั้นตอนละ 20 ชั่วโมง (ขั้นตอนนี้เป็นการกำจัด รงควัตถุที่มีสีออกจากผงของสาหร่ายผมนาง) ด้วยเครื่อง Soxhlet apparatus แล้ว นำไปทำให้แห้ง ด้วยเครื่อง Rotary evaporator สุดท้ายจะได้ผงที่ไม่มีสีหรือสีขาวอมเหลือง (Depigmented algae powder, DAP) ประมาณ 164 g (รูป 6) นำผง DAP ที่ได้มา 10 g ละลายในน้ำกลั่น 500 ml ปรับ pH 6.5 ตั้งที่ไว้ที่อุณหภูมิ 35-40 °C เป็นเวลา 4 ชั่วโมง แล้วเติมน้ำต้ม 500 ml จากนั้นไปปั่นเหวี่ยงที่ความเร็ว 14,000 x g เป็นเวลา 30 นาที นำไปกรองด้วยกระดาษกรอง สุดท้ายจะแยกส่วน ที่เป็นน้ำใสและส่วนที่เป็น ตะกอน ส่วนที่เป็นน้ำใส นำไปแช่ที่อุณหภูมิ -20°C ข้ามคืนนำออกมาทำให้ละลาย จะพบว่ามีการแยกส่วนที่ เป็นวุ้น (WE1SGF) และ ส่วนที่ไม่เป็นวุ้นออกจากกัน (WE1NGF) (รูป 6) ส่วนที่เป็นตะกอนนำ มาเติมน้ำ 800 ml ปรับ pH 6.5 ตั้งที่ไว้ที่อุณหภูมิ 35-40°C เป็นเวลา 4 ชั่วโมง จากนั้นไปปั่นเหวี่ยงที่ความเร็ว 14,000xg 30 นาที แล้วนำไปกรองด้วยกระดาษกรอง แยกส่วนที่เป็นตะกอนและน้ำใส ออกจากกัน นำส่วน น้ำใส ไปแช่ที่อุณหภูมิ -10°C ข้ามคืน นำออกมาทำให้ละลายจะได้ส่วนที่เป็นวุ้น (WE2SGF) และส่วนที่ไม่ เป็นวุ้น (WE2NGF) ส่วนตะกอนที่กรองได้ในครั้งที่ 2 ให้เติมน้ำ 750 ml นำไป autoclaved ที่อุณหภูมิ 121 °C ความดัน 1.1 kg/cm² เป็นเวลา 2.5 ชั่วโมง จากนั้นนำไปปั่นเหวื่ยงที่ความเร็ว 14,000 x g 30 นาที นำไปกรองแยกส่วนที่ละลายน้ำ (Au) และส่วนตะกอนที่ไม่ละลายน้ำ (INS) จากนั้นทำให้สารสกัด ทั้งหมด ตกตะกอนโดยการเติม Isopropyl alcohol ปริมาตร 4 เท่าของสารสกัดตั้งต้น และนำไปปั่นเหวี่ยงที่ความเร็ว 8,000 x g 15 นาที เทส่วนที่เป็นน้ำทิ้งไปเก็บส่วนที่เป็นตะกอนไปทำให้แห้งด้วยเครื่อง Vacuum จะได้ผง ของสารสกัด ซึ่งสารสกัดขั้นนี้ จะได้ sulfated galactans จากสาหร่ายผมนาง (Mazumder et al., 2002)



รูป 6 ขั้นตอนการสกัดสารที่เป็นวุ้น (WE1SGF และ WE2SGF) ไม่เป็นวุ้น (WE1NGF และ WE2NGF) สาร ที่ละลายน้ำขั้นสุดท้าย (Au1, Au2 และ Au3) และสารที่ไม่ละลายน้ำ (INS); WE1NGF (water extraction 1 non - gelling fraction), WE2NGF (water extraction 2 non - gelling fraction), WE1SGF (water extraction 1 soft - gelling fraction), WE2SGF (water extraction 2 soft - gelling fraction), Au (autoclaved), and INS (insoluble residue)

### ทดสอบคุณสมบัติสารสกัด sulfated galactans จากสาหร่ายผมนางในการต้านเชื้อแบคทีเรียเรื่อง แสง (V. harveyi)

นำสารสกัด sulfated galactans จากสาหร่ายผมนางส่วนที่เป็นวุ้น (WE1SGF และ WE2SGF) สาร ไม่เป็นวุ้น (WE1NGF และ WE2NGF) สารสกัดด้วยน้ำ autoclaved ส่วนที่ละลายน้ำ (Au) มาทดสอบ คุณสมบัติการต้านเชื้อแบคทีเรียเรื่องแสง ( V. harveyi ) ในจานเลี้ยงเชื้อ

### ทดสอบการต้านเชื้อแบคทีเรียเรื่องแสง ( V. harveyi )

นำกระดาษกรองมาตัดเป็นวงกลมขนาดเส้นผ่าศูนย์กลาง 6 mm ทำการอบฆ่าเชื้อปนเปื้อน (autoclaved) จากนั้นนำกระดาษกรองวางลงในจานเลี้ยงเชื้อแบคทีเรียเรื่องแสง (*V. harveyi*) เตรียมจาน อาหารสำหรับเลี้ยงเชื้อ MHA agar (MHA 10.5 g , น้ำกลั่น 500 ml, ASW 15 g, Agar 7.5 g) เป็นจาน อาหารสำหรับเลี้ยงเชื้อแบคทีเรียเรื่องแสง (*V. harveyi*) จากนั้นหยดสารสกัด sulfated galactans จาก สาหร่ายผมนางส่วนต่างๆ คือสารสกัดส่วนที่เป็นวุ้น (WE<sub>1</sub>SGF และ WE<sub>2</sub>SGF) สารไม่เป็นวุ้น (WE<sub>1</sub>NGF และ WE<sub>2</sub>NGF) ลงบนกระดาษกรองวงกลม โดยมีปริมาตร 25 ไมโครลิตร ที่มีความเข้มข้นของสารสกัด แตกต่างกัน คือ 50, 150, 300 และ 600 ไมโครต่อกระดาษกรองวงกลม หยดสารสกัด และกลุ่มควบคุม (Cont.) หยดตัวทำละลายของสารสกัด คือ น้ำกลั่น (รูป 1) และมีกลุ่มควบคุมบวก (positive control) คือ หยด Norfloxacin (Norf.) 10 ไมโครตูต่อกระดาษกรองวงกลม จากนั้นนำจานเลี้ยงเชื้อไปบ่มที่อุณหภูมิ 30°C เป็นเวลา 24 ชั่วโมง เพื่อให้เชื้อแบคทีเรียเจริญเติบโต เมื่อครบ 24 ชั่วโมงนำจานเลี้ยงเชื้อออกมา สังเกตบริเวณรอบๆ กระดาษกรองวงกลมที่วางไว้ ถ้ามีลักษณะใสแสดงถึงบริเวณนั้นมีการยับยั้งการเจริญ ของเชื้อแบคทีเรีย (zone of inhibition) บันทึกค่าเส้นผ่าศูนย์กลางของบริเวณ zone of inhibition โดยมี หน่วยเป็นmm ผลการทดลองได้จากค่าเฉลีย จากการทำการทดลองซ้ำ 3 ครั้ง

# ทดสอบหาความเข้มข้นของสารสกัด sulfated galactans จากสาหร่ายผมนาง ที่น้อยที่สุด (Minimal Inhibitory Concentration, MIC) ที่สามารถยับยั้งการเจริญเติบโตของเชื้อแบคทีเรียเรืองแสง (*V. harveyi*)

เลี้ยงเชื้อแบคทีเรียเรื่องแสง (*V. harveyi*) 100 ไมโครg (Lennette et al., 1985) ใน MHA medium ปริมาณ 1 ml ที่มีสารสกัด sulfated galactans จากสาหร่ายผมนางส่วนต่างๆ คือส่วนที่เป็นวุ้น (WE<sub>1</sub>SGF และ WE<sub>2</sub>SGF) สารไม่เป็นวุ้น (WE<sub>1</sub>NGF และ WE<sub>2</sub>NGF)ที่ความเข้มข้น 50, 150, 300 และ600 ไมโครgต่อ mlต่อหลอดทดลอง จากนั้นนำไปบ่มที่อุณหภูมิ 30°C ปั่นด้วยอัตราเร็ว 250 รอบต่อนาที เป็นเวลา 24 ชั่วโมง วัดการดูดกลืนแสง (OD) ที่ 600 นาโนเมตร เพื่อดูอัตราการเติบโตของแบคทีเรียเรื่องแสง โดยผล

การทดลองเปรียบเทียบกับผลที่ได้จาก กลุ่มควบคุม คือ กลุ่มที่เลี้ยงเชื้อแบคทีเรียเรืองแสง (V. harveyi) ใน MHA medium

### ทดสอบการต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ในกุ้ง (ฉีดสารสกัดเข้ากล้ามเนื้อกุ้ง)

กุ้งกุลาดำขนาด 20-25 g จำนวน 50 ตัว ซื้อจากฟาร์มเลี้ยงกุ้งจังหวัดฉะเชิงเทรา นำมาเลี้ยงในบ่อ ขนาด 80 ลิตร ความเค็ม 10 ppt. โดยเลี้ยงให้กุ้งปรับสภาพเป็นเวลา 3 วันก่อนเริ่มทำการทดลอง แบ่งกุ้ง ออกเป็น 5 กลุ่ม กลุ่มละ 50 ตัว คือ 1) กลุ่มควบคุมที่ฉีดด้วย PBS, 2) กลุ่มที่ฉีดสารสกัด WE1NGF ความเข้มข้น 10 µg/ g BW, 3) กลุ่มที่ฉีดสารสกัด WE1NGF ความเข้มข้น 100 µg/ g BW 4) กลุ่มที่ฉีดสารสกัด WE2NGF ความเข้มข้น 100 µg/ g BW และ 5) กลุ่มที่ฉีดสาร WE2NGF ความเข้มข้น 100 µg/ g BW ฉีด สารสกัดเข้าที่กล้ามเนื้อท้องปล้องที่ 2 ในปริมาตร 100 ไมโครลิตรต่อตัว โดยฉีดสารสกัด 2 ครั้งคือ วันที่ 1 และวันที่ 3 ของการทดลอง เลี้ยงกุ้งต่อไปอีก 3 วัน จึงฉีดเชื้อไวรัส WSSV ปริมาตรที่ฉีดคือ 100 ul ต่อตัว บันทึกอัตราการตายของกุ้งหลังจากฉีดเชื้อไวรัส WSSV ทุกวัน

### การเตรียม Artemia ที่ enriched ด้วย sulfated galactans เพื่อใช้เป็นอาหารกุ้ง

เลี้ยง Artemia ระยะตัวเต็มวัย ในบีกเกอร์ที่มีความเข้มข้นของสารสกัด (WE₂NGF) 100 และ 200 µg/ml เป็นเวลา 6 ชั่วโมง จากนั้นนำมาใช้เป็นอาหารของกุ้งในการทดลองต่อไป

### ทดสอบการต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ในกุ้งกุลาดำ โดยให้กุ้งกิน Artemia ที่ ได้รับ sulfated galactans

กุ้งกุลาดำขนาด 5-10 g จำนวน 250 ตัว จากศูนย์วิจัยและพัฒนาสายพันธุ์กุ้ง (ศวพก.) นำมาเลี้ยง ในบ่อซีเมนต์ ความเค็ม 18 ppt. โดยเลี้ยงให้กุ้งปรับสภาพเป็นเวลา 7 วันก่อนเริ่มทำการทดลอง แบ่งกุ้ง ออกเป็น 5 กลุ่ม กลุ่มละ 50 ตัว คือ 1) กลุ่มควบคุมปกติ 2) กลุ่มควบคุมที่ให้กิน Artemia ปกติ 4) กลุ่มที่ให้กิน Artemia ที่ได้รับสารสกัด WE₂NGF ความเข้มขัน 100 μg/ml 5) กลุ่มที่ให้กิน Artemia ที่ได้รับสารสกัด WE₂NGF ความเข้มขัน 200 μg/ml ควบคุมระบบเลี้ยง และการให้อาหารเป็นเวลา 7 วัน จากนั้นจึงฉีดเชื้อไวรัส WSSV ปริมาตร 100 ul ต่อตัว บันทึกอัตราการ ตายของกุ้งหลังจากฉีดเชื้อไวรัส WSSV ทุกวัน เป็นเวลา 10 วัน และเก็บตัวอย่างกุ้งที่ วันที่ 0, 2, 5 และ 10 หลังจากฉีดเชื้อไวรัสตัวแดงดวงขาว เพื่อทำการตรวจวัดระดับ immune parameters ต่างๆ และปริมาณ การเพิ่มจำนวนไวรัส

### การศึกษาผลของสารสกัด sulfated galactans ต่อภูมิคุ้มกันในกุ้ง โดยศึกษาจาก Immune parameter ต่าง ๆ

ตรวจวัดการเปลี่ยนแปลงค่า immune parameters ต่างๆ เช่น

- 1. ค่าปฏิกิริยาฟืนอลออกซีเดส (phenoloxidase activity) เนื่องจาก ฟืนอลออกซีเดสเป็นเอนไซม์ที่ เกี่ยวข้องกับกลไกการป้องกันตนเองของกุ้ง โดยฟืนอลออกซีเดสจะทำหน้าที่เปลี่ยน สารประกอบฟืนอลเป็นควินโนน แล้วจึงเกิดกระบวน การโพลิเมอร์ไรเซชั่นเป็นเมลานิน ซึ่ง กระบวนการดังกล่าวจะมีการสร้างสารที่ยับยั้งการเจริญของจุลินทรีย์ที่มารุกรานได้
- 2. วัดค่า ซุบเปอร์ออกไซด์ แอนไอออน (superoxide anions) ซึ่งเป็นการวัดสารอนุมูลอิสระที่ เกิดขึ้นในกุ้ง

#### Phenoloxidase และ Superoxide anions activity

เก็บตัวอย่างเม็ดเลือด กุ้งกุลาดำ ที่เวลา 0, 2, 5 และ 10 วันหลังให้เชื้อไวรัสตัวแดงดวงขาว นำมา ทำการวัดค่า phenoloxidase และ superoxide anions activities

### ปริมาณไวรัสในกุ้งกุลาดำ (Viral load in shrimp)

เก็บตัวอย่างเหงือกกุ้ง ที่เวลา 0, 2, 5 และ 10 วัน หลังให้เชื้อไวรัสตัวแดงดวงขาว นำมาสกัด DNA ใน เพื่อทดสอบหาปริมาณ DNA virus ในกุ้งกุลาดำ โดยใช้ primer จำเพาะต่อ VP28 gene ของไวรัสตัวแดง ดวงขาว และเก็บตัวอย่างมาสกัดโปรตีน โดยหาปริมาณการแสดงออกของ VP28 protein ด้วยวิธี Western blotting analysis โดยใช้ anti-VP28 antibody

### การศึกษาโครงสร้างทางเคมีวิเคราะห์ของ Sulfated galactans

นำสารสกัด Sulfated galactans จากสาหร่ายผมนาง *Gracilaria fisheri* โดยวิธีการใช้น้ำเป็นตัวสกัด เพื่อแยกสารสกัด sulfated galactans ส่วนต่างๆ ได้แก่ ส่วนที่ไม่ละลายในน้ำหรือที่เป็นวุ้น (WE1SGF และ WE2SGF) ส่วนที่ละลายได้ในน้ำหรือไม่เป็นวุ้น (WE1NGF และ WE2NGF) และสุดท้ายสกัดด้วย autoclave (121°C) (Au.) มาวิเคราะห์หาโครงสร้างทางเคมี คือ

#### 1 ปริมาณ Sulfaion

การหาปริมาณ Sulfate ด้วยวิธี turbidimetrical barium chloride (BaCl<sub>2</sub>) (Craigie et al., 1984) สารสกัด 20 mg นำมาทำ hydrolysis ที่ 100°C ใน 2 N HCl (0.5 ml) เป็นเวลา2 h แล้วทดสอบหา sulfated contents โดยผสม 2 ml ของสารสกัดที่ hydrolyzed แล้ว กับ18 ml ของน้ำ Milli Q และ 2 ml ของ HCl (0.5 N) จากนั้นเติม 1 ml ของBaCl<sub>2</sub>-gelatin reagent ผสมให้เข้ากันตั้งทิ้งไว้อุณหภูมิห้อง นาน 30

นาที แล้วนำไปวัดค่าการดูดกลืนแสงที่ 550 nm. หาเปอร์เซนต์ของ Sulfated เปรียบเทียบกับ Standard คือ K₂SO₄

#### 2 ปริมาณ Total carbohydrate

การหาปริมาณ Total carbohydrate ด้วยวิธี phenol-sulfuric acid โดยใช้ galactose เป็น standard (Dubois *et al.*, 1956) ทำการผสมสารสกัด 1 ml, 5% phenol ในน้ำ 1 ml และ sulfuric acid 5 ml ให้เข้ากัน ตั้งทิ้งไว้ 10 นาที ที่อุณหภูมิห้อง จากนั้นนำไปตั้งใน ice bathอุณหภูมิ 15-20 °C นาน 15 นาที วัดค่าการ ดูดกลืนแสงที่ 490 nm.

#### 3. FT-IR spectroscopy

วิชี Fourier-transform (FT-IR) spectra เป็นการศึกษารูปแบบการแทนที่ด้วยหมู่ Sulfated ในสาร สกัด โดยนำสารสกัดมาผสมกับ KBr แล้วนำไปผ่านเครื่อง Nicolet Impact 410 FT-IR spectrometer ที่ คลื่นสัญญาณ400-4,000 cm<sup>-1</sup>.

### 4. <sup>13</sup>CNMR และ <sup>1</sup>H NMR spectroscopy

เป็นวิธีการหา Carbon และ Hydrogen atom ในสารสกัด โดยนำสารสกัด(40 mg) ละลายใน D<sub>2</sub>O และผ่านเครื่อง nuclear magnetic resonance (NMR) spectra (Bruker AVANCE500 NMR spectrometer) ที่ 80 °C. <sup>1</sup>H chemical shifts สัมพันธ์กับ internal deuterium ซึ่งเป็น standard ของ NMR

### 5. หาน้ำหนักโมเลกุล (Molecular weight) ของสารสกัด

10% polyacrylamide gel: ใช้ 10 ไมโครg ของสารสกัด WE1NGF และ WE2NGF จากสาหร่าย ผมนางมาทำการวิเคราะห์โดยแยกน้ำหนักโมเลกุลใน 10% polyacrylamides gel โดยใช้ buffer คือ 0.02M sodium barbital pH 8.6, 100 โวลด์ เป็นเวลา 1 ชั่วโมง จากนั้นย้อมด้วยสี 0.1% toluidine blue ที่ละลายใน 1% acetic acid 15 นาที และล้างด้วย 1% acetic acid 1 ชั่วโมง

0.5% agarose gel: ใช้ 30 ไมโครg ของสารสกัด WE1NGF และ WE2NGF จากสาหร่ายผมนาง มาทำการวิเคราะห์โดยแยกน้ำหนักโมเลกุลใน 0.5% agarose gel ใน 0.05M 1,3-diaminopropane acetate buffer pH 9.0, 110 โวลต์ เป็นเวลา 4 ชั่วโมง fixed gel ด้วย 0.1% N-acetyl-N,N,N-trymethylammonium bromide solution 12 ชั่วโมง จากนั้นย้อมด้วยสี 0.1% toluidine blue ที่ละลายใน acetic acid:ethanol:water ในอัตราส่วน 0.1 : 5 : 5 เป็นเวลา 15-20 นาที และล้างด้วย 1% acetic acid 1 ชั่วโมง

ศึกษาน้ำหนักโมเลกุลของสารสกัด sulfated galactans โดยมี standard marker เป็น high molecular dextran sulfate sodium salt จาก *Leuconostoc ssp.* (500 และ100 kDa), chondroitin 6-sulfate sodium salt จาก shark cartilage (60 kDa) และ low molecular dextran sulfate sodium salt จาก *Leuconostoc ssp.* (8 kDa).

### ทดสอบคุณสมบัติการจับระหว่าง WE<sub>2</sub>NGF กับไวรัสตัวแดงดวงขาว (WSSV)

ศึกษาคุณสมบัติการจับระหว่างสารสกัดส่วนที่ไม่เป็นวุ้น (WE₂NGF) กับไวรัส ด้วยวิธี solid-phase virus-binding assay โดยเคลือบสารสกัดที่ความเข้มข้น 0-100 ไมโครgต่อmlในสารละลาย PBS บนผิวของ จานเลี้ยงเซลล์ขนาด 96 หลุม บ่มที่อุณหภูมิ 28 o C เป็นเวลา 1 ชั่วโมง blocked ด้วย 2% BSA ใน PBS เป็นเวลา 1 ชั่วโมง ล้างออกด้วย PBS 3 ครั้ง แล้วใส่ไวรัสตัวแดงดวงขาวที่ความเข้มข้น 1:1,000 บ่มเป็น เวลา 2 ชั่วโมงที่อุณหภูมิ 28° C ตรวจวัดการจับของสารสกัดกับไวรัส โดยวิธี immunohistochemistry โดยใช้แอนติบอดี ต่อ envelope protein 28 (VP-28) ของไวรัสตัวแดงดวงขาวเป็น แอนติบอดีแรก และ แอนติบอดีตัวที่สองติดฉลากด้วย HRP ตรวจวัดผลบวกโดยใช้สารตั้งต้น 3,3-diaminobenzidine (DAB) นำไปวัดค่าการดูดกลืนแสงที่ความถี่ 492 nm นอกจากนี้ยังทดสอบคุณสมบัติการจับของสารสกัด (WE₂NGF) ที่ de-sulfation กับไวรัสด้วย

การกำจัดหมู่ซัลเฟต (desulfation) ของสารสกัดทำด้วยวิธี solvolytic desulfation และ dextran-SGs mixed วิธี Solvolytic desulfation นำ 2.5 mgของสารสกัด WE1NGF และ WE2NGF ละลายใน อัตราส่วนระหว่าง Me2SO: MeOH: pyrine (890:100:10 v/v) 1 ml บ่มที่อุณหภูมิ 100° C 4 ชั่วโมง หลังจากปล่อยให้เย็นลง นำสารตัวอย่าง dialyzed ด้วยน้ำก๊อก 1 ชั่วโมง และน้ำกลั่นเป็นเวลาข้ามคืน ตก ผลึกเก็บสารสกัดที่กำจัดหมู่ซัลเฟตแล้วคือ D-WE1NGF และ D-WE2NGF

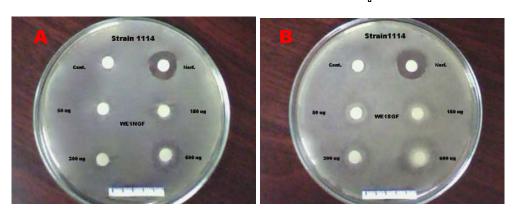
วิธี Dextran-mixed โดยนำ 2.5 mgของสารสกัด WE1NGF และ WE2NGF ผสมกับ 1.25 mgของ dextran ในน้ำกลั่น 1 ml บ่มที่อุณหภูมิ 100° C 1 ชั่วโมง โดย dextran จะจับกับหมู่ sulfate ของสาร สุดท้ายจะได้ Dextran-WE1NGF และ Dextran-WE2NGF เพื่อใช้ในการทดลองต่อไป

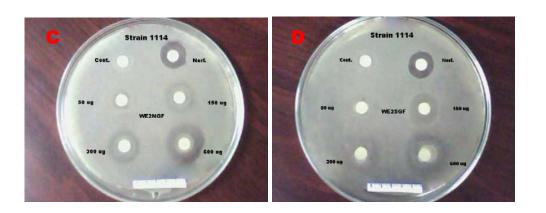
### ทดสอบต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ของ WE2NGF ในเซลล์เม็ดเลือดกุ้งกุลาดำ

เลี้ยงเซลล์เม็ดเลือดกุ้งกุลาดำ ( $3x10^6$  เซลล์ต่อหลุม) ในจานเลี้ยงเซลล์ขนาด 6 หลุม โดยแบ่ง ออกเป็น 4 กลุ่ม คือ 1) กลุ่มควบคุมปกติ (normal control), 2) กลุ่มที่ได้รับไวรัสตัวแดงดวงขาว (positive control), 3) กลุ่มที่ได้รับสารสกัด WE2NGF ความเข้มข้น 100  $\mu$ g/ml, 4) กลุ่มที่ได้รับสารสกัด WE2NGF ความเข้มข้น 100  $\mu$ g/ml กับไวรัสตัวแดงดวงขาว บ่มที่อุณหภูมิ 28 $^\circ$  C เป็นเวลา 2 ชั่วโมง เมื่อครบ กำหนดทำการล้างด้วย PBS เพื่อเอาไวรัสที่ไม่เกาะติดเซลล์ออก, เปลี่ยนอาหารเลี้ยงเชื้อ และสังเกตการ เปลี่ยนแปลงของเซลล์เม็ดเลือดกุ้งกุลาดำเป็นเวลา 3 วัน

### ทดสอบต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ของ WE2NGF ด้วยวิธี immunofluorescent (FITC)

เลี้ยงเซลล์เม็ดเลือดกุ้งกุลาดำ (3x10 เซลล์ต่อหลุม) ในจานเลี้ยงเซลล์ขนาด 6 หลุม โดยแบ่ง ออกเป็น 5 กลุ่ม คือ 1) กลุ่มควบคุมปกติ (normal control), 2) กลุ่มที่ได้รับไวรัสตัวแดงดวงขาว (positive control), 3) กลุ่มที่ได้รับสารสกัดส่วนที่ไม่เป็นวุ้น (WE₂NGF) ความเข้มขัน 100 μg/ml, 4) กลุ่มที่ได้รับสาร สกัดส่วนที่ไม่เป็นวุ้น (WE₁NGF) ความเข้มขัน 100 μg/ml กับไวรัสตัวแดงดวงขาว และ 5) กลุ่มที่ได้รับสาร สกัดส่วนที่ไม่เป็นวุ้น (WE₂NGF) ความเข้มขัน 100 μg/ml กับไวรัสตัวแดงดวงขาว บ่มที่อุณหภูมิ 28 °C เป็นเวลา 2 ชั่วโมง เมื่อครบกำหนดทำการล้างด้วย PBS เพื่อเอาไวรัสที่ไม่เกาะติดเซลล์ออก จากนั้น fixed เซลล์ด้วย 3.5% paraformaldehyde 15-20 นาที, blocked ด้วย 0.1% normal goat serum (NGS) ใน PBS เป็นเวลา 1 ชั่วโมง ล้างออกด้วย PBS 3 ครั้ง แล้วใส่ไวรัสตัวแดงดวงขาวที่ความเข้มขัน 1:1,000 บ่ม เป็นเวลา 2 ชั่วโมงที่อุณหภูมิ 28 °C ตรวจวัดการจับของสารสกัดกับไวรัส โดยใช้แอนดิบอดี ต่อ envelope protein 28 (VP-28) ของไวรัสตัวแดงดวงขาวเป็น แอนดิบอดีแรก และแอนดิบอดีตัวที่สองคือ goat antirabbit ติดฉลากด้วย fluorescein isothiocyanate (FITC) หลังจากนั้นย้อมนิวเครียสของเซลล์ด้วย 4, 6-Diamidino- 2-phenylindole (DAPI) solution เป็นเวลา 15 นาที ในที่มืด ล้างด้วย PBS สังเกตการติดสี FITC ภายใต้กล้อง fluorescent microscope


### ศึกษา protein-protein interactions ของ WE₂NGF, WSSV และเซลล์เม็ดเลือดกุ้ง ด้วยวิธี Far Western analysis


นำไวรัสตัวแดงดวงขาวบริสุทธิ์ และ hemocyte membrane protein นำมาแยกโปรตีนด้วย 12.5% SDS-PAGE จากนั้นย้ายโปรตีนลงใน nitrocellulose membrane และ blocked membrane ด้วย 10% skim milk ใน PBS เป็นเวลา 2 ชั่วโมง ล้าง membrane ด้วย PBS แล้วบ่มกับ WE $_2$ NGF(60 µg/ml) ที่อุณหภูมิ 4  $^{\circ}$ C ข้ามคืน หลังจากล้าง membrane ด้วย PBS แล้วบ่มด้วยแอนติบอดี LM5 ซึ่งเป็นแอนติบอดี ต่อ (1 $\rightarrow$ 4)- $\beta$ -D-galactan แอนติบอดีแรก เป็นเวลา 2 ชั่วโมง และแอนติบอดีตัวที่สองคือ goat anti-rabbit ติด ฉลากด้วย HRP เป็นเวลา 1 ชั่วโมง จากนั้นตรวจวัด immunoreactive bands ด้วย ECL detection kits

#### ผลการวิจัย

# ฤทธิ์ของสารสกัดจากสาหร่ายผมนางในการยั้บยั้งการเจริญเติบโตของแบคทีเรียเรื่องแสง (V. harveyi) ในจานเลี้ยงเชื้อ

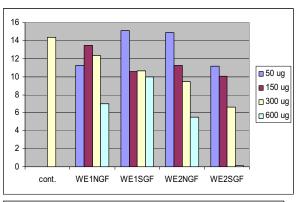
ผลจากการทดสอบคุณสมบัติสารสกัด sulfated galactans จากสาหร่ายผมนางในการต้านเชื้อ แบคทีเรียเรื่องแสง (*V. harveyi* ) ในจานอาหารเลี้ยงเชื้อ พบว่าสารสกัด sulfated galactans จากสาหร่าย ผมนาง WE2NGF และ WE2SGF ให้ผลการต้านเชื้อแบคทีเรียเรื่องแสง zone of inhibitionมากกว่า WE1SGF และ WE1NGF โดย WE2NGF ให้ผลดีกว่า WE2SGF และที่ความเข้มข้นของสารสกัดที่สูงขึ้น จะให้ผลในการต้านเชื้อแบคทีเรียเรื่องแสงได้ดีกว่าความเข้มข้นที่ต่ำกว่า (รูป 7) และ ตารางที่ 2

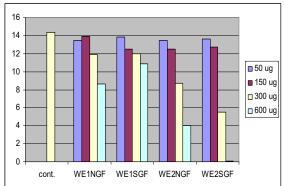


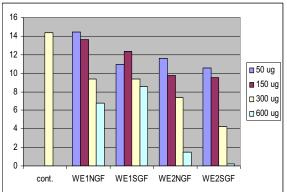


รูป 7. จานเลี้ยงเชื้อแบคทีเรียเรืองแสง *( V. harveyi )* สายพันธุ์ 1114 กับสารสกัดที่เป็นวุ้น (WE<sub>1</sub>SGF และ WE<sub>2</sub>SGF) และไม่เป็นวุ้น (WE<sub>1</sub>NGF และ WE<sub>2</sub>NGF ) ที่ความเข้มข้นต่าง ๆ (50 μg, 150 μg, 300 μg, 600 μg) A: WE1NGF, B: WE1SGF, C: WE2NGF และ D: WE2SGF

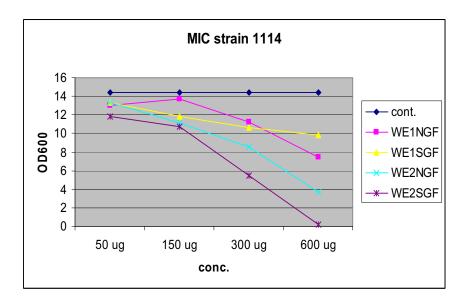
แบคทีเรียเรื่องแสง ( *V. harveyi*) สายพันธุ์ 1114


| Group               | บริเวณที่มีการยับยั้งการเจริญของแบคทีเรีย (zone of inhibition,mm) |            |            |            |            |  |  |  |  |
|---------------------|-------------------------------------------------------------------|------------|------------|------------|------------|--|--|--|--|
|                     | ความเข้มข้นของสารสกัด (µg/dish)                                   |            |            |            |            |  |  |  |  |
| Extracts            | control                                                           | 50         | 150        | 300        | 600        |  |  |  |  |
| WE₁NGF              | -                                                                 | -          | 10±1       | 14±2       | 16.67±3.05 |  |  |  |  |
| WE₁SGF              | -                                                                 | -          | -          | 11.5±0.71  | 16.67±3.05 |  |  |  |  |
| WE <sub>2</sub> NGF | -                                                                 | 13.33±2.88 | 16.67±4.16 | 19.67±5.13 | 22.67±4.93 |  |  |  |  |
| WE <sub>2</sub> SGF | -                                                                 | -          | 12         | 15         | 18.33±3.78 |  |  |  |  |
| Norfloxacin         |                                                                   | 13±1.41    |            |            |            |  |  |  |  |

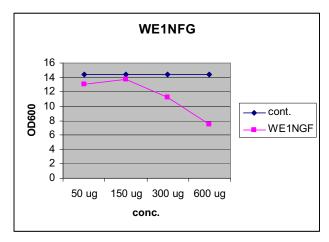

ตาราง 2 แสดงบริเวณที่เชื้อแบคทีเรียเรืองแสง (*V. harveyi*) ไม่สามารถเจริญเติบโตได้ (zone of inhibition) หน่วยเป็นmm


เนื่องจาก สารสกัดด้วยน้ำ autoclaved (Au<sub>1</sub>, Au<sub>2</sub> และ Au<sub>3</sub>) เมื่อตกตะกอนแล้วนำกลับมาละลายน้ำ ไม่สามารถที่จะละลายน้ำได้สมบรูณ์และเมื่อหยดลงกระดาษกรองวงกลมไม่สามารถที่จะกระจายตัวไปตาม กระดาษกรองได้ จึงไม่ได้ทำการทดสอบสารสกัดในส่วนนี้ต่อ จึงไม่มีผลการทดสอบสารสกัดต่อการต้านเชื้อ แบคทีเรียเรื่องแสงกับสารสกัดดังกล่าว

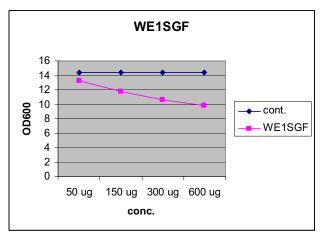
# ความเข้มข้นของสารสกัด sulfated galactans ที่น้อยที่สุด (Minimal Inhibitory Concentration, MIC) ที่สามารถยับยั้งการเจริญเติบโตของแบคทีเรียเรื่องแสง (*V. harveyi*)


นำสารสกัด sulfate galactans จากสาหร่ายผมนาง ส่วนที่ไม่เป็นวุ้น WE1NGF, WE2NGF และ ส่วนที่เป็นวุ้น WE1SGF, WE2SGF ซึ่งมีฤทธิ์ยับยั้งการเจริญเติบโตของแบคทีเรียเรื่องแสง (V. harveyi) ใน จานเลี้ยงเชื้อมาทำการทดลองต่อหา MIC ผลการทดลองพบว่า ความเข้มข้นของสารสกัด WE1NGF และ WE1SGF มีค่ามากกว่า 600  $\mu_{\rm g}$  /ml ส่วนความเข้มข้นของสารสกัด WE2NGF และ WE2SGF มีค่าเท่ากับ 400 และ 230  $\mu_{\rm g}$  /ml ตามลำดับ เมื่อทดสอบโดยใช้ V. harveyi สายพันธุ์ 1114 (รูป 8-13) และพบว่า อัตราการเจริญเติบโตลดลง

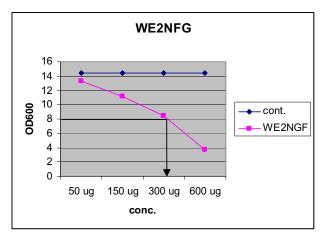




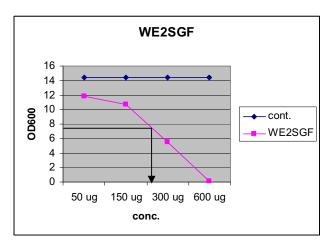




รูป 8. การดูดกลืนแสงที่ OD 600 นาโนเมตร ซึ่งบ่งบอกถึงการเจริญของแบคทีเรีย เมื่อใช้สารสกัด จากสาหร่ายผมนางที่ความเข้มข้นต่าง ๆ ในของแบคทีเรียเรืองแสง *(V. harvey i)* สายพันธุ์ 1114




รูป 9. MIC เฉลี่ย ของสารสกัด sulfate galactans จากสาหร่ายผมนาง

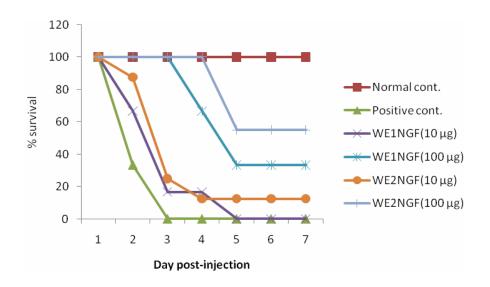



รู**ป 10.** ความเข้มข้นที่น้อยที่สุดของสารสกัด WE1NGF ที่สามารถยับยั้งแบคทีเรียได้ 50% เมื่อเปรียบเทียบกับ กลุ่มควบคุม => มากกว่า 600 μg



รู**ป 11.** ความเข้มขันที่น้อยที่สุดของสารสกัด WE1SGF ที่สามารถยับยั้งแบคทีเรียได้ 50% เมื่อเปรียบเทียบกับ กลุ่มควบคุม => มากกว่า 600 **μ**g

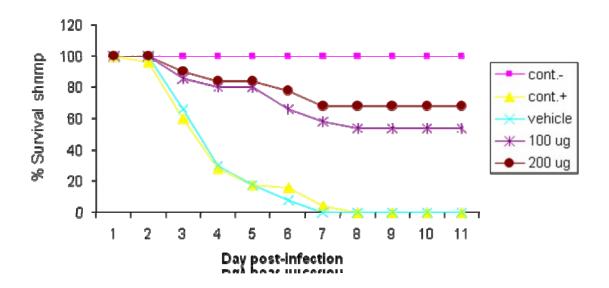



รู**ป 12.** ความเข้มข้นที่น้อยที่สุดของสารสกัด WE2NGF ที่สามารถยับยั้งแบคทีเรียได้ 50% เมื่อเปรียบเทียบกับ กลุ่มควบคุม => ~400 μg



ร**ูป 13.** ความเข้มข้นที่น้อยที่สุดของสารสกัด WE2SGF ที่สามารถยับยั้งแบคทีเรียได้ 50% เมื่อเปรียบเทียบกับ กลุ่มควบคุม => ~230 μg

## การต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ในกุ้งกุลาดำ

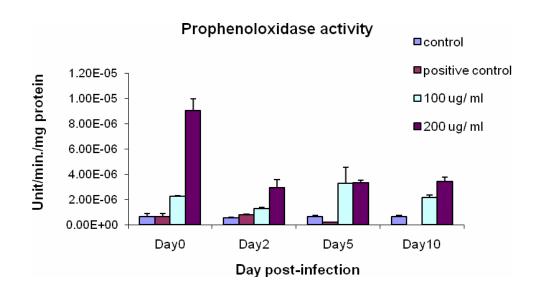

จากการทดลองเบื้องต้นพบว่ากุ้งกลุ่มที่ไม่ฉีดสารสกัด หลังจากติดเชื้อ WSSV มีการตายอย่าง รวดเร็วหลังได้รับเชื้อคือ ตาย 100 % ในวันที่ 2 หลังได้รับเชื้อ ส่วนกุ้งที่ฉีดสารสกัด WE1NGF, WE2NGF ที่ความเข้มข้น 10 และ 100  $\mu_{\rm g/g}$  BW มีผลช่วยยืดอายุการอยู่รอดของกุ้ง เมื่อเทียบกับกลุ่มควบคุม โดย ความเข้มข้นที่สูงกว่าจะให้การต้านเชื้อที่ดีกว่า และ WE2NGF ที่ความเข้มข้น 100  $\mu_{\rm g/g}$  BW มีผลช่วยยืด อายุการอยู่รอดของกุ้ง และการต้านเชื้อดีกว่า WE1NGF (รูป 14)



รูป 14. เปอร์เซ็นต์การรอดของกุ้งหลังจากฉีดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ในกลุ่มของกุ้งที่ฉีดสาร สกัด galactans sulfate จากสาหร่าย ที่ความเข้มข้น 10  $\mu_{\rm g}/{
m g}\,{
m BW}$  และ 100  $\mu_{\rm g}/{
m g}\,{
m BW}$ 

# การต้านการติดเชื้อไวรัสตัวแดงดวงขาว (WSSV) ในกุ้งกุลาดำที่กิน Artemia ที่ได้รับ sulfated galactans

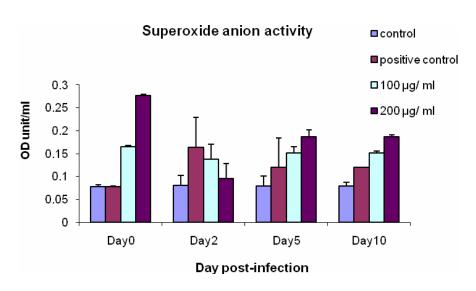
จากการทดลองก่อนหน้านี้ การฉีดสารสกัด sulfated galactans ในส่วน WE2NGF ให้ผลดีกว่า WE1NGF ดังนั้นการทดลองนี้จึงใช้สารสกัด WE2NGF ให้ Artemia ดูดซึม WE2NGF แล้วนำ Artemiaไป เป็นอาหารกุ้ง หลังจากให้กุ้งกิน Artemia 7 วัน จึงฉีดเชื้อไวรัส WSSV ให้กุ้ง พบว่าหลังจากให้เชื้อ WSSV 7-10 วัน กุ้งในกลุ่มที่กิน Artemia ที่ไม่ได้สารสกัด มีอัตราการตาย 100 % ส่วนกุ้งที่กิน Artemia ที่ได้สาร สกัด ที่ความเข้มข้น 100 และ 200  $\mu_{\rm g/}$  ml มีอัตราการรอดของกุ้งมากกว่ากลุ่มควบคุมที่ได้รับ Artemia ที่ ไม่มี sulfated galactans โดยมีอัตราการรอด 64 % และ 78 % ตามลำดับ (รูป 15) จากผลการทดลองจะ เห็นว่า WE2NGF มีผลช่วยป้องกันการตายของกุ้งจากการติดเชื้อไวรัส WSSV ได้




รูป 15. รูปแสดงเปอร์เซ็นต์การรอดของกุ้งกุลาดำกลุ่มต่างๆ หลังจากฉีดเชื้อไวรัสตัวแดงดวงขาว (WSSV) cont.-: กลุ่มกุ้งปกติ, cont.+: กลุ่มกุ้งติดเชื้อไวรัส (WSSV), vehicle : กลุ่มกุ้งติดเชื้อไวรัส (WSSV)ที่กิน Artemia ปกติ, 100  $\mu_{\rm g}$  : กลุ่มกุ้งติดเชื้อไวรัส (WSSV) ที่กิน Artemiaที่กินสารสกัด WE2NGF ความเข้มข้น 100  $\mu_{\rm g}$ /ml, 200  $\mu_{\rm g}$  : กลุ่มกุ้งติดเชื้อไวรัส (WSSV) ที่กิน Artemiaที่กินสารสกัด WE2NGF ความเข้มข้น 200  $\mu_{\rm g}$ /ml

## การศึกษา Immune parameters ในกุ้งที่ได้รับสารสกัด sulfated galactans

## Prophenoloxidase activity


ภายหลังจากการให้กุ้งกิน Artemia ที่ได้รับสารสกัด WE2NGF ที่ความเข้มข้น 100, 200  $\mu$ g/ ml เป็นระยะเวลา 7 วัน พบว่า ระดับ Prophenoloxidase activity มีแนวโน้มเพิ่มขึ้น เมื่อเทียบกับกลุ่มที่ไม่ได้ รับ WE2NGF และเมื่อฉีดเชื้อไวรัสตัวแดงดวงขาวให้กุ้งแล้วทำการเก็บเลือดกุ้งมาทดสอบระดับ Prophenoloxidase activity พบว่าทุกกลุ่มการทดลอง ระดับ Prophenoloxidase activity ลดลง แต่อย่างไร ก็ตามกุ้งที่ได้รับสารสกัด WE2NGF ความเข้มข้น 200  $\mu$ g/ ml ยังคงมีค่า Prophenoloxidase activity ที่สูง กว่ากลุ่มที่ไม่ได้รับสาร WE2NGF และพบว่ามีระดับคงที่จนสิ้นสุดการทดลอง (รูป 16) ส่วนกลุ่มอื่นๆ ระดับ ของ Prophenoloxidase activity จะลดลงตามเวลา



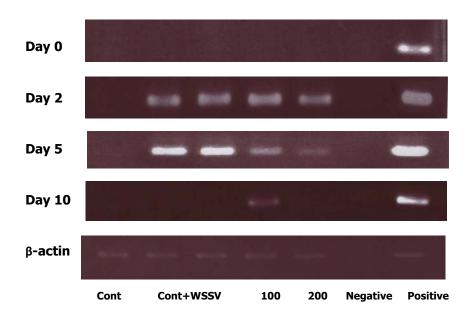
ร**ูป 16.** กราฟแสดงค่า Prophenoloxidase activity ในเม็ดเลือดกุ้งกุลาดำ ในกลุ่มการทดลอง หลังจากฉีด เชื้อไวรัสตัวแดงดวงขาว (WSSV). Control : กลุ่มกุ้งปกติ, positive control: กลุ่มกุ้งติดเชื้อไวรัส (WSSV), 100 µg/ ml : กลุ่มกุ้งติดเชื้อไวรัส (WSSV) ที่กิน Artemia ที่กินสารสกัด WE2NGF ความเข้มข้น 100 µg/ml, 200 µg/ ml: กลุ่มกุ้งติดเชื้อไวรัส (WSSV)ที่กิน Artemia ที่กินสารสกัด WE2NGF ความเข้มข้น 200 µg/ml

## Superoxide anion activity

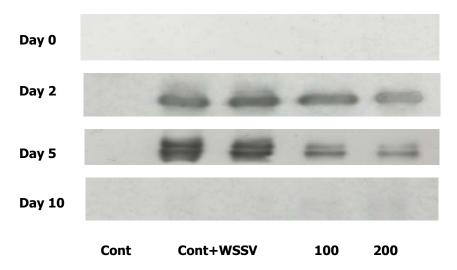
กลุ่มกุ้งทดลองที่ได้รับสารสกัด WE2NGF โดยการกิน Artemia ที่ความเข้มข้น 100, 200 µg/ ml เป็นระยะเวลา 7 วัน พบว่า ค่า Superoxidase anion activity มีแนวโน้มเพิ่มขึ้น เมื่อเทียบกับกลุ่มที่ไม่ได้รับ WE2NGF และเมื่อฉีดเชื้อไวรัสตัวแดงดวงขาวให้กุ้งแล้วทำการเก็บเลือดกุ้งมาวัดค่า Superoxidase anion activity พบว่ามีแนวโน้มลดลงเล็กน้อย (รูป 17)



รูป 17. กราฟแสดงค่า Superoxide anion activity ในเม็ดเลือดกุ้งกุลาดำแต่ละกลุ่มการทดลอง หลังจากฉีด เชื้อไวรัสตัวแดงดวงขาว (WSSV)


control: กลุ่มกุ้งปกติ, positive control: กลุ่มกุ้งติดเชื้อไวรัส (WSSV), 100 **µ**g/ ml : กลุ่มกุ้งติดเชื้อไวรัส (WSSV) ที่กิน Artemia ที่กินสารสกัด WE2NGF ความเข้มข้น 100 µg/ ml, 200 **µ**g/ ml : กลุ่มกุ้งติดเชื้อ ไวรัส (WSSV)ที่กิน Artemia ที่กินสารสกัด WE2NGF ความเข้มข้น 200 µg/ml

## ปริมาณไวรัส


จากการศึกษาปริมาณการเพิ่มจำนวนของไวรัสตัวแดงดวงขาวในเหงือกกุ้งกุลาดำในแต่ละกลุ่มการ ทดลอง โดยทำการสุ่มเก็บตัวอย่างกุ้งกุลาดำหลังการติดเชื้อไวรัสตัวแดงดวงขาวในวันที่ 0, 2,5 และ 10 โดยใช้ primer จำเพาะต่อ VP28 ของไวรัสตัวแดงดวงขาว พบว่าปริมาณของไวรัสในแต่ละกลุ่มมีความ แตกต่างกัน โดยกลุ่มที่ได้รับสารสกัด WE2NGF จากการกิน Artemia ที่ความเข้มขัน 100, 200  $\mu$ g/ ml มี ปริมาณการเพิ่มจำนวนของไวรัสน้อยกว่ากลุ่มที่ไม่ได้รับสารสกัด WE2NGF และพบว่าในวันที่ 10 ของการ ติดเชื้อกุ้งในกลุ่มที่ได้รับสารสกัด WE2NGF ที่ความเข้มข้น 100 และ 200  $\mu$ g/ ml ยังมีชีวิตอยู่และเมื่อ

ทดสอบปริมาณการเพิ่มจำนวนของไวรัสพบมีปริมาณไวรัสน้อยและไม่สามารถตรวจพบปริมาณไวรัสได้ใน กลุ่ม 100 และ 200 μg/ ml (รูป 18)

การทดลองด้วยวิธี Western blotting โดยใช้ แอนติบอดี้ต่อ VP28 envelope protein ของไวรัสตัว แดงดวงขาว พบว่า ปริมาณ VP28 proteinในเหงือกกุ้งของกลุ่มที่ได้รับสารสกัด WE2NGF ลดลง ซึ่งให้ผล คล้ายคลึงกับการใช้ primer จำเพาะต่อ VP28 DNA ของไวรัส (รูป 19)



ร**ูป 19** Agarose gel electrophoeesis แสดงผล PCR analysis ที่ใช้ specific primer ต่อ VP28 ใน เหงือกของกุ้งในแต่ละกลุ่มการทดลองหลังจากได้รับเชื้อ WSSV 0, 2, 5 และ 10 วัน



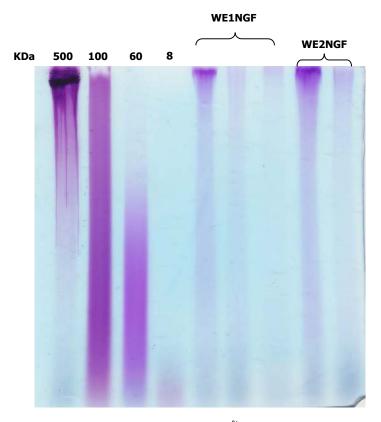
รู**ป 20** Western blotting analysis แสดง immunoreactive bands และ ความเข้มของ immunoreactive bands ที่จับกับ anti-VP28 ในเหงือกของกุ้งในแต่ละกลุ่มการทดลองหลังจากได้รับเชื้อ WSSV 0, 2, 5 และ 10 วัน

## ศึกษาโครงสร้างทางเคมีวิเคราะห์ของ Sulfated galactans

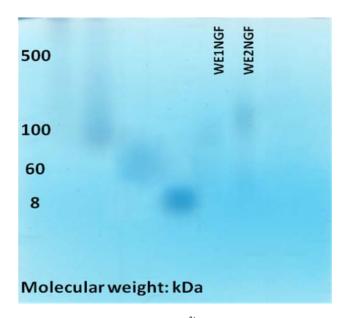
นำสารสกัด Sulfated galactans จากสาหร่ายผมนาง Gracilaria fisheri โดยวิธีการใช้น้ำเป็นตัวสกัด เพื่อแยกสารสกัด sulfated galactans ส่วนต่างๆ ได้แก่ ส่วนที่ไม่ละลายในน้ำหรือที่เป็นวุ้น (WE1SGF และ WE2SGF) ส่วนที่ละลายได้ในน้ำหรือไม่เป็นวุ้น (WE1NGF และ WE2NGF) และขั้นตอนสุดท้ายสกัดด้วย autoclave (Au.) มาวิเคราะห์หาโครงสร้างทางเคมี โดยวิธีทางเคมีวิเคราะห์ พบว่าสารสกัดส่วนที่ละลายได้ ในน้ำหรือไม่เป็นวุ้น คือ WE1NGF และ WE2NGF มีปริมาณชัลเฟตมากที่สุด คือ 10.94 ± 0.34 เปอร์เซ็นต์ และ 12.65 ± 0.39 เปอร์เซ็นต์ ตามลำดับ(ตาราง 3) ส่วนปริมาณน้ำตาลอยู่ในช่วง 31.67-54.97 เปอร์เซ็นต์ และศึกษาน้ำหนักโมเลกุลของสารสกัด Sulfated galactans ด้วยวิธี 10% polyacrylamide gel โดยเทียบกับ molecular standard marker คือ high moleculare weight dextran sulfate sodium salt from Leuconostoc ssp. (100 kDa), chondroitin 6-sulfate sodium salt from shark cartilage (60 kDa) และ low molecular weight dextran sulfate sodium salt from Leuconostoc ssp. (8 kDa). พบว่าสารสกัด WE1NGF และ WE2NGF มีน้ำหนักโมเลกุลประมาณ 100 kDa (รูป 20, 21)

เมื่อทำการศึกษารูปแบบของการแทนที่ด้วยซัลเฟตในสารสกัด sulfated galactans ของสาหร่าย ผมนาง(*Gracilaria fisheri*) นี้ โดยใช้ FT-IR spectroscopy แสดงให้เห็นถึงคุณลักษณะของ 3,6-anhydro-α-L -galactose (C-O vibration) ในตำแหน่งที่ 930 cm<sup>-1</sup> และ total sulfated ในตำแหน่งที่ 1250 cm<sup>-1</sup> (O=S=O asymmetric stretching vibration) (Rochas *et al.*, 1986). นอกจากนั้นยังพบคุณลักษณะของ

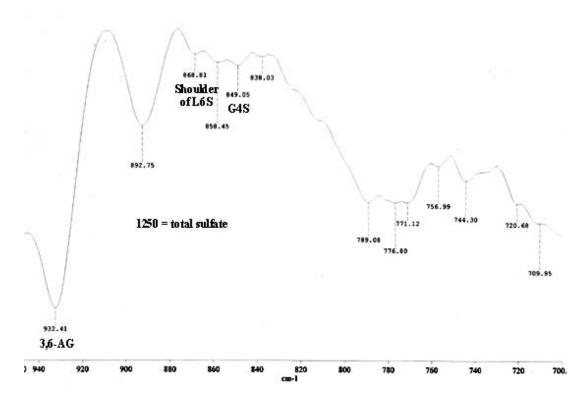
Axial sulfate ester at O-C-4 of 3-linked-β-D-galactose residues และ Shoulder of L-galactose-6-sulfate of agar polymer (Chopin *et al.*, 1999) ในตำแหน่งที่ 850 and 868 cm<sup>-1</sup> อีกด้วย (รูป 22)


และผลจากการศึกษาด้วย <sup>13</sup>CNMR และ <sup>1</sup>H NMR spectroscopy พบว่าสารสกัด Sulfated galactans จากสาหร่ายผมนาง (*G. fisheri*) นี้ประกอบด้วย 12 สัญญาณ (<sup>13</sup>C-NMR spectra) หลัก carbon ของ agarobiose units และ methylated agarose structure (Lahaye et al., 1986; Fernandez et al., 1989 and Flashaw et al., 1999). โดยพบว่าที่สัญญาณประมาณ 102.76, 70.55, 82.56, 69.10, 75.68 และ 61.71 ppm แสดงคุณลักษณะของ 3-linked β- D -galactopyranose units ในขณะที่สัญญาณ 98.56, 70.25, 80.45, 77.66, 75.98 และ 69.73 ppm แสดงถึงคุณลักษณะของ 4-linked 3,6-anhydrogalactose-α-L -galactopyranosyl units นอกจากนั้นยังพบสัญญาณใน spectra ที่บ่งชี้ว่ามี floridean starch อยู่ (С-2, 72.54; C-3, 74.14 และ C-5, 72.26 ppm) สัญญาณที่ต่ำแหน่ง 73.96 and 67 ppm เป็นคุณลักษณะของ C-5 of 6-O-methyl- D -galactose unit และ C-1 of 4-linked 3,6-anhydrogalactose-α- L -galactopyranosyl units linked to D -galactose-4-sulfate unit (Andriamanantoanina et al., 2007) (รูป 23)

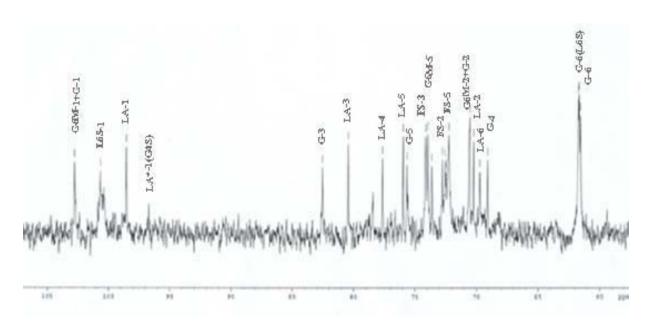
สำหรับ <sup>1</sup>H NMR spectroscopy ของสารสกัด Sulfated galactans แสดงให้เห็นสัญญาณของ agarobiose และ methylated agarose structure (Welti, 1977 and Lahaye et al., 1988) เช่นกัน ซึ่ง สัญญาณที่ 4.01 ppm เป็นคุณลักษณะ hydrogen atom ของ methyl group substituted on C-6 of the 3-linked β- D -galactopyranose unit. สัญญาณที่ 5.93 ppm แสดงคุณลักษณะ H-1 ของ floridean starch (Mazumder et al., 2002). นอกจากนั้นแล้วยังพบสัญญาณที่ 5.82, 4.54 และ 4.46 ppm แสดงถึง คุณลักษณะของ H-1, H-3 และ H-2 of L -galactose-6-sulfate (Maciel et al., 2007) และ H-5 of 3-linked β-D-galactopyranose linked to L-galactose-6-sulfate (Welti, 1977) (รูป 24)


จากการวิเคราะห์โครงสร้าง พบว่า WE2NGF มีโครงสร้างทางเคมีเป็น repeating unit เป็น 3-linked β-D-galactopyranose and 4-linked 3,6-anhydrogalactose และมีหมู่ sulfate ที่ตำแหน่ง C4 ของ D-galactopyranose (G4S) และที่ C6 ของ L-galactopyranose (L6S) (รูป 25)

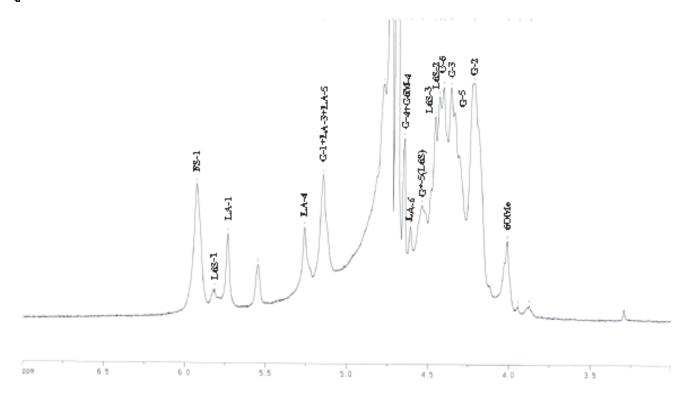
| Fraction | Cont       | Content (%)        |  |  |  |  |
|----------|------------|--------------------|--|--|--|--|
|          | Sulfate    | Total carbohydrate |  |  |  |  |
| WE1SGF   | 7.48±0.23  | 44.63±2.51         |  |  |  |  |
| WE1NGF   | 10.94±0.34 | 35.24±1.03         |  |  |  |  |
| WE2SGF   | 7.19±0.22  | 31.67±2.66         |  |  |  |  |
| WE2NGF   | 12.65±0.39 | 42.22±1.17         |  |  |  |  |
| Au       | 5.17±0.16  | 54.97±2.63         |  |  |  |  |


ตาราง 3 Chemical compositions of the sulfated galactans extracted from G. fisheri

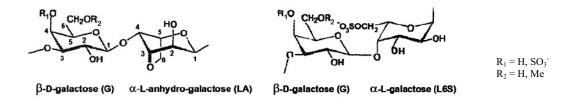



**รูป 20** Polyacrylamide gel electrophoresis (10%) แสดงน้ำหนักโมเลกุลของสารสกัด Sulfated galactans จากสาหร่ายผมนาง (*Gracilaria fisheri*) โดยใช้ molecular standard markers คือ dextran sulfate sodium salt (500, 100 kDa), chondroitin 6-sulfate sodium salt (60 kDa) และ dextran sulfate sodium salt (8 kDa).




**รูป 21** Agarose gel electrophoresis (0.5%) แสดงน้ำหนักโมเลกุลของสารสกัด WE1NGF และ WE2NGF จากสาหร่ายผมนาง (*Gracilaria fisheri* ) โดยใช้ molecular standard markers ของ dextran sulfate sodium salt (500, 100 kDa), chondroitin 6-sulfate sodium salt (60 kDa) และ dextran sulfate sodium salt (8 kDa).



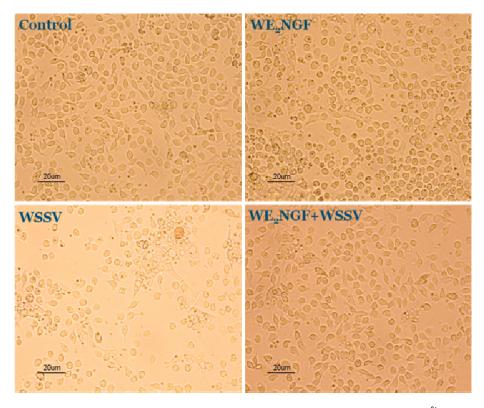

รู**ป 22** FT-IR spectra ใน KBr pellets ของสารสกัด WE2NGF จากสาหร่ายผมนาง (*G. fisheri*)



รูป 23 <sup>13</sup>C-NMR spectra ของสารสกัด WE2NGF จากสาหร่ายผมนาง (*G. fisheri*)



รูป **24** <sup>1</sup>H spectra ของสารสกัด WE2NGF จากสาหร่ายผมนาง (*G. fisheri*)




รูป 25 โครงสร้างของ WE2NGFจากสาหร่ายผมนาง (G. fisheri)

ศึกษากลไกการป้องกันการติดเชื้อไวรัสตัวแดงดวงขาวของ WE2NGF โดยใช้เซลล์เม็ดเลือดกุ้ง กุลาดำ

การเกิด Cytopathic effect (CPE) ของเซลล์เม็ดเลือดกุ้งหลังจากได้รับเชื้อไวรัสตัวแดงดวงขาว

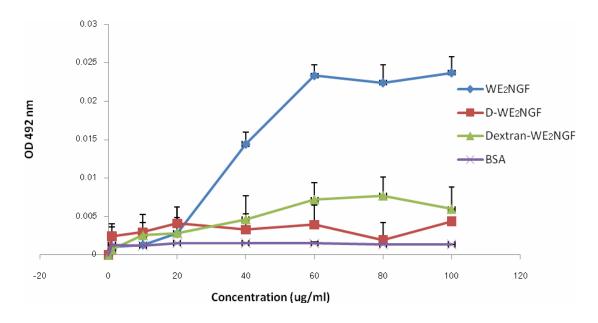
ผลจากทดลองในเซลล์เม็ดเลือดกุ้งกุลาดำ พบว่า WE2NGF สามารถลดการเกิด CPE ของเซลล์เม็ด เลือดกุ้งหลังจากได้รับเชื้อไวรัสตัวแดงดวงขาวได้ เมื่อเทียบกับกลุ่มที่ให้ไวรัสอย่างเดียว (WSSV) (รูป 26)



รู**ป 26** การเกิด cytopathic effect (CPE) ของเซลล์เม็ดเลือดกุ้งกุลาดำ หลังจากได้รับเชื้อไวรัสตัวแดงดวง ขาว (WSSV) เมื่อเซลล์ได้รับ WE2NGF ก่อนติดเชื้อ WSSV พบการเกิด CPE น้อยมาก

## การกำจัดหมู่ sulfate ออกจาก WE2NGF

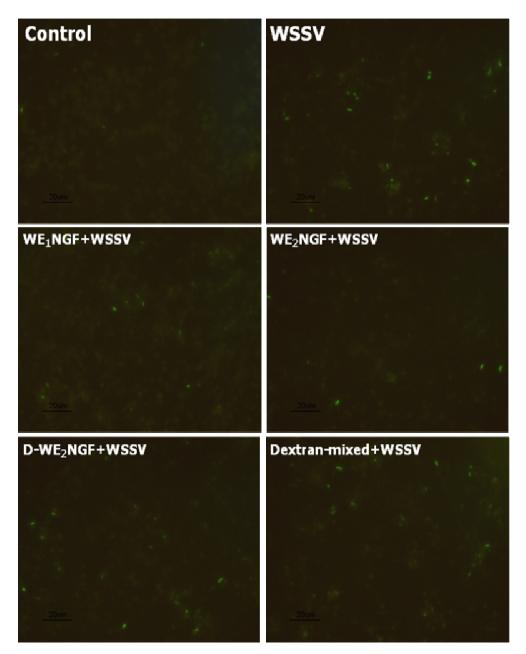
การกำจัดหมู่ซัลเฟตของสารสกัดด้วยวิธี solvolytic desulfation (D-WE1NGF และ D-WE2NGF) พบว่าสารสกัด sulfated galactans ที่กำจัดหมู่ sulfate ด้วยวิธี solvolytic desulfation มีปริมาณเปอร์เซ็นต์ ซัลเฟตน้อยลงเมื่อเทียบกับสารสกัดที่ไม่ได้ผ่านขั้นตอนการกำจัดหมู่ซัลเฟต ส่วน dextran-mixed (Dextran-WE1NGF และ Dextran-WE2NGF) มีปริมาณเปอร์เซ็นต์ซัลเฟตใกล้เคียงกับสารสกัดที่ไม่ได้ผ่านขั้นตอน การกำจัดหมู่ซัลเฟต (ตาราง 4) จากการทดลองนี้น่าจะเป็นไปได้ว่าการกำจัดหมู่ซัลเฟตด้วยวิธี solvolytic desulfation สามารถการดึงเอาหมู่ซัลเฟตที่มีในสารสกัดออกได้ ส่วนวิธี dextran-mixed เป็นการ นำเอาสาร dextran เข้าไปจับกับหมู่ซัลเฟตในสารสกัดนั้น ทำให้เมื่อวัดปริมาณเปอร์เซ็นต์ซัลเฟตจึงมีค่า เปอร์เซ็นต์ซัลเฟตใม่แตกต่างจากสารสกัด sulfated galactans ตั้งต้น


| Fraction       | Sulfate Content (%) |  |  |
|----------------|---------------------|--|--|
| WE1SGF         | 7.48±0.23           |  |  |
| WE1NGF         | 10.94±0.34          |  |  |
| WE2SGF         | 7.19±0.22           |  |  |
| WE2NGF         | 12.65±0.39          |  |  |
| D-WE1NGF       | 4.93±1.02           |  |  |
| D-WE2NGF       | 2.49±1.08           |  |  |
| Dextran-WE1NGF | 7.95±1.59           |  |  |
| Dextran-WE2NGF | 10.55±0.79          |  |  |

ตาราง 4 Percentage of sulfation ของ SGs

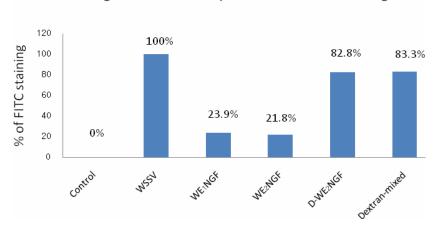
## ความสามารถในการจับกันของ WE2NGF กับโปรตีนบนผิวของไวรัสตัวแดงดวงขาว

จากการทดสอบคุณสมบัติการจับกันระหว่าง WE2NGF กับ ไวรัสตัวแดงดวงขาว พบว่า WE2NGF สามารถจับได้กับไวรัส ที่ความเข้มข้นตั้งแต่ 10-100  $\mu_{g}/$  ml (รูป 27) โดยความเข้มข้น 60  $\mu_{g}/$  ml เป็น ความเข้มข้นที่ดีที่สุดในการจับกันระหว่าง WE2NGF กับไวรัส และเมื่อทำการกำจัดหมู่ sulfate ออกจากสาร


WE2NGF และทดสอบการจับไวรัส พบว่าคุณสมบัติการจับกับไวรัสของสารสกัด WE2NGF ลดลง (รูป 27) แสดงให้เห็นว่าหมู่ sulfate ในสารสกัด WE2NGF น่าจะมีคุณสมบัติช่วยในการจับกับไวรัสตัวแดงดวงขาว



ร**ูป 27.** กราฟแสดงคุณสมบัติการจับกันได้ของไวรัส WSSV กับ WE₂NGF และ de-sulfated WE₂NGF (D-WE2NGF) ด้วยวิธี solid-phase virus binding assay

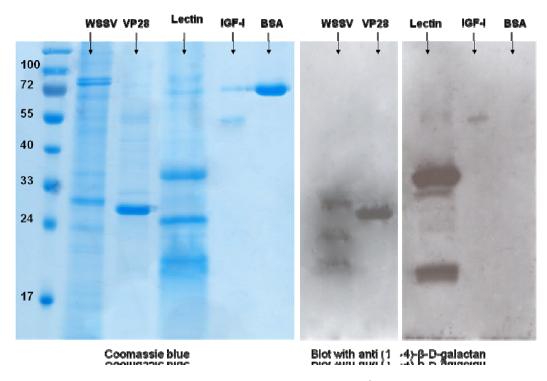

## Immunofluorescent

จากการตรวจสอบฤทธิ์ต้านการติดเชื้อไวรัสตัวแดงดวงขาว ด้วยวิธี immunofluorescent โดยใช้ แอนติบอดีแรกคือ rabbit anti-VP 28 และ แอนติบอดีที่สองคือ goat anti-rabbit ติดฉลากด้วย fluorescein isothiocyanate (FITC) ผลการทดลองพบว่าเซลล์เม็ดเลือดกุ้งที่ได้รับสารสกัด WE<sub>2</sub>NGF มีจำนวนเซลล์เม็ด เลือดกุ้งที่ติดเชื้อไวรัสมีลดลง คิดเป็นการติดเชื้อประมาณร้อยละ 24 ของกลุ่มควบคุม (WSSV, positive control) ในขณะที่เซลล์เม็ดเลือดกุ้งที่ได้ไวรัสที่บ่มเพาะกับ de-sulfated WE2NGF มีการติดเชื้อเพิ่มสูงขึ้น เป็นประมาณร้อยละ 83 ของกลุ่มควบคุม (รูป 28 A, B)



Α

## Binding of WSSV in hemocyte culture with FITC-labeling




В

ร**ูป 28** A). ภาพ Fluorescent แสดง FITC staining ของ VP 28 และ B) เปอร์เซ็นต์ FITC intensity ของ VP 28 ของไวรัสตัวแดงดวงขาวในเซลล์เม็ดเลือดกุ้งกุลาดำ ที่ให้สารสกัด WE2NGF และde-sulfated WE2NGF (D-WE2NGF) ที่ความเข้มข้น 100 **µ**g/ ml และให้ dextran จับกับหมู่ sulfate ของ WE2NGF (dextran-mixed)

## Far Western blot analysis

ผลการทดลองพบว่าสารสกัด WE2NGF สามารถจับได้อย่างชัดเจนกับโปรตีนของไวรัสตัวแดงดวง ขาว 3 แถบ คือ ที่แถบน้ำหนักโปรตีนที่ 19, 21, 28 kDa, purified VP 28 โปรตีน และจับได้กับ lectin, insulin-like growth factor ส่วน bovine serum albumin (BSA) WE2NGF ไม่สามารถจับได้ (รูป 29)



รู**ป 29.** รูปแสดง Far Western blot analysis โดยใช้แอนติบอดี LM5 ซึ่งเป็นแอนติบอดี ต่อ (1→4)-β-D-galactan แสดงการจับกันได้ของ WE2NGF (60 µg/ml) กับโปรตีนที่ผิวของไวรัสตัวแดงดวงขาวบริสุทธิ์ VP 28. WSSV; white spot syndrome virus, VP 28; viral protein 28, IGF-1; insulin-like rowth factor-I, BSA; bovine serum albumin

## สรุปและอภิปรายผลการวิจัย

สาหร่ายผมนางเป็นสาหร่ายทะเลสีแดง ที่พบมากแถบทะเลทางภาคใต้ของประเทศไทย มีรายงาน ว่าสารสกัดจากสาหร่ายทะเลมีฤทธิ์ต้านเชื้อแบคทีเรียและไวรัสได้ งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อสกัดสารที่ มีฤทธิ์ต้านเชื้อแบคทีเรียและไวรัสจากสาหร่ายผมนาง และทดสอบการต้านเชื้อแบคทีเรียและไวรัสและ ความสามารถในการกระตุ้นภูมิคุ้มกันในกุ้ง ซึ่งเป็นสัตว์เศรษฐกิจของประเทศไทย โดยทำการสกัดสารจาก สาหร่ายผมนางโดยใช้วิธีการสกัด 2 วิธี คือ การสกัดด้วยตัวทำละลายต่าง ๆคือ methanol, ethanol, chloroform และ hexane และการสกัดด้วยน้ำเพื่อให้ได้สารกลุ่ม sulfated galataus (SGs) นำสารสกัดต่าง ๆ ที่ได้มาทดสอบคุณสมบัติการต้านเชื้อแบคทีเรียเรื่องแสง Vibrio harveyi (V. harveyi) ซึ่งเป็นแบคทีเรียที่ ทำให้กุ้งตายเป็นจำนวนมาก จากการทดสอบในจานเลี้ยงเชื้อ พบว่าสารสกัด ethanol extract มีฤทธิ์ต้าน เชื้อ V. harveyi ใกล้เคียงกันกับสารสกัด methanol extract และ chloroform extract ซึ่งใกล้เคียงกับ Norfloxazin แต่มีฤทธิ์ดีกว่า hexane extract โดยมีค่า minimal inhibitory concentration (MIC) อยู่ในช่วง

75-200 µg/ml เมื่อทดสอบการต้านเชื้อแบคทีเรียในกุ้งขนาดเล็กและกุ้งวัยรุ่น พบว่ากุ้งที่ได้รับสารสกัด ethanol extract มีอัตราการรอดและระดับภูมิคุ้มกันสูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ สำหรับการ สกัดสาร SGS จากสาหร่ายผมนางโดยวิธีการสกัดด้วยน้ำ จะได้สารที่เป็นวุ้น คือ WE1SGF และ WE2SGF และสารที่ไม่เป็นวุ้น คือ WE1NGF และ WE2NGF ผลงานวิจัยพบว่า WE2NGF และ WE2SGF มี คุณสมบัติต้านเชื้อ *V. harveyi* ในงานเลี้ยงเชื้อ และมีค่า MIC ในช่วง 230-400 μg/ml ซึ่งมีค่ามากกว่า ethanol extract เมื่อน้ำ WE1NGF และ WE2NGF มาทดสอบการต้านเชื้อไวรัสตัวแดงดวงขาว (WSSV) ใน กุ้งพบว่า WE2NGF มีผลลดอัตราการตายของกุ้งได้ดีกว่า WE1NGF ได้ทำการ enrichment WE2NGF ให้กับไรทะเลที่เป็นอาหารกุ้ง และให้กุ้งกินไรทะเลที่ได้รับ WE2NGF 🛮 ติดต่อกัน 7 วัน ก่อนฉีดเชื้อ WSSV พบว่ากุ้งที่กินไรทะเลที่ได้รับ WE2NGF ความเข้มข้น 100 และ 200 μg/ml มีอัตราการรอดมากกว่ากุ้งที่กิน ของกลุ่มควบคุมตามลำดับ และมีค่า Immune ไรทะเลที่ไม่ได้รับสารสกัด คิดเป็น 64% และ 78% parameters ต่าง ๆ คือ prophenoloxidase และ superoxide anion activities สูงกว่ากลุ่มควบคุม โดยที่ กลุ่มที่ได้รับ WE2NGF  $\,$  ที่ 200  $\mu$ g/ml มีระดับสูงกว่ากลุ่ม 100  $\mu$ g/ml อย่างมีนัยสำคัญทางสถิติ และเมื่อ ตรวจวัดปริมาณการเพิ่มจำนวนของไวรัสโดยใช้ primer จำเพาะต่อ envelope protein VP28 ของไวรัส และ antibody ต่อ VP28 พบว่ากุ้งที่ได้รับ WE2NGF มีการเพิ่มจำนวนของไวรัส และมีการแสดงออกของโปรตีน VP28 น้อยกว่ากลุ่มที่ไม่ได้รับสาร

การศึกษาวิเคราะห์โครงสร้างทางเคมีของ WE2NGF พบว่ามีปริมาณซัลเฟตมากกว่า WE1NGF (12.65±0.39% และ 10.94±0.34% ตามลำดับ) ศึกษาน้ำหนักโมเลกุลโดยวิธี polyacrylamide gel และ agarose gel electrophoresis พบว่าทั้ง WE1NGF และ WE2NGF มีน้ำหนักประมาณ 100 kDa ศึกษา โครงสร้างโดยวิธี NMR และ FT-IR spectroscopy พบว่า WE2NGF มีโครงสร้างทางเคมีเป็น repeating unit เป็น 3-linked β-D-galactopyranose and 4-linked 3,6-anhydrogalactose และมีหมู่ sulfate ที่ ตำแหน่ง C4 ของ D-galactopyranose (G4S) และที่ C6 ของ L-galactopyranose (L6S) ศึกษากลไกที่ WE2 NGF ป้องกันการติดเชื้อ WSSV ในเม็ดเลือดกุ้ง โดยวิธี In vitro assay พบว่า WE2NGF ช่วยลดการ เกิด cytopathic effect (CPE) ของเซลล์เม็ดเลือดกุ้ง จากการทำ solid-phase virus binding assay พบว่า WE2NGF สามารถจับกับไวรัส WSSV โดยที่ความเข้มข้น 60 µg/ml สามารถจับได้กับ WSSV ได้ดีที่สุด และเมื่อกำจัดหมู่ sulfate จาก WE2NGF ความสามารถในการจับกับไวรัสลดลง เมื่อตรวจสอบการจับกัน ของ WE2NGF กับโปรตีนของไวรัส WSSV โดยวิธี Far Western blot analysis พบว่า WE2NGF สามารถ จับได้กับโปรตีนที่ผิวของ WSSV ที่น้ำหนักโปรตีน 12, 16, 19, 28 และ 39-41 kDa และผลของ Immunofluorsecent ต่อ VP28 ในเซลล์เม็ดเลือดกุ้ง ที่ได้รับ WE2NGF และติดเชื้อ WSSV แสดงให้เห็นว่า มีจำนวน positive fluorescent staining น้อยกว่ากลุ่มเซลล์เม็ดเลือดที่ไม่ได้รับ WE2NGF โดยมีปริมาณเป็น 24% ของกลุ่มควบคุมที่ที่ไม่ได้รับสารสกัด ส่วนกลุ่มเซลล์เม็ดเลือดที่ได้รับ W2NGF ที่กำจัดหมู่ sulfate ออก พบจำนวน positive staining สูงขึ้นเป็น 83% ของกลุ่มที่ไม่ได้รับสารสกัด WE2 NGF

ผลการทดลองแสดงให้เห็นว่า สารสกัดโดยตัวทำละลาย ethanol มีฤทธิ์ต้านเชื้อแบคทีเรีย Vibrio harveyi ได้ดีกว่าสารสกัดกลุ่ม sulfated galactans ช่วยลดอัตราการตายของกุ้งที่ได้รับเชื้อแบคทีเรีย และยัง มีคุณสมบัติกระตุ้นภูมิคุ้มกันของกุ้งด้วย ส่วนการสกัดสารจากสาหร่ายผมนางสารสกัดด้วยน้ำ ได้สารกลุ่ม sulfated galactans ที่มีฤทธิ์ต้านการติดเชื้อไวรัส WSSV ในกุ้งกุลาดำได้ดี คือ WE2NGF โดยมีผลลดการ เพิ่มปริมาณไวรัสในกุ้ง ช่วยกระตุ้นภูมิคุ้มกันกุ้ง การต้านเชื้อไวรัส WSSV ของ WE2NGF อาจเกิดจาก คุณสมบัติในการจับกับโปรตีนที่ผิวของไวรัส โดยเฉพาะอย่างยิ่ง VP28 ซึ่งเป็นโปรตีนสำคัญที่ไวรัสใช้ในการจับและเข้าสู่เซลล์ การจับกันของ WE2NGF กับ VP 28 โปรตีนบนผิวของไวรัส ทำให้ขัดขวางการเข้าเซลล์ ของไวรัส ส่งผลการเพิ่มจำนวนของไวรัสในเซลล์ลดลง ทำให้ลดอัตราการตายของเซลล์ และโครงสร้าง สำคัญที่มีผลต่อการจับกันของเซลล์กับไวรัส น่าจะเป็นหมู่ sulfate ของ WE2NGF

นอกจากนี้ผู้วิจัยยังได้ทำการสกัด lectin และ clone lectin gene จากสาหร่ายผมนาง ซึ่งได้ ผลการวิจัยมาแล้วบางส่วน (รายละเอียดดูจาก manuscript submitted ในภาคผนวก)

## หนังสืออ้างอิง

- Andriamanantoanina H., Chambat G. and M. Rinaudo. (2007). Fractionation of extracted Madagascan *Gracilaria corticata* polysaccharide: Structure and properties. Carbohydr. Polymers. 68: 77-88.
- Araki C (1966) Some recent studies on the polysaccharides of agarophytes. Proc Int Seaweed Symp 5:3–19.
- Bansemir, A., Blume, M., Schröder, S., and Lindequist, U. (2006b). Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 252 (1), 79-84.
- Bansemir, A., Just, N., Michalik, M., Lindequist, U., and Lalk, M. (2004a). Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chemistry and Biodiversity, 1 (3), 463-467.
- Baticados, M., Lavilla-Pitogo, C., Cruz-Lacierda, E., De la Pena, L., and Sunaz, N. (1990). Studies on the chemical control of luminous bacteria *Vibrio harveyi* and *V. splendidus* isolated from diseased Penaeus monodon larvae and rearing water. Diseases of Aquatic Organisms, 9 (2), 133-139.

- Bird KT (1988) Agar production and quality from Gracilaria sp. strain G-16: effects of environmental factors. Bot Mar 31:33–39.
- Brock, J., and Lightner, D. (1990). Diseases of crustacea. Diseases caused by microorganisms. Diseases of Marine Animals, 3, 245-349.
- Burreson, B., Moore, R., and Roller, P. (1976). Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta). Journal of Agricultural and Food Chemistry, 24 (4), 856-861.
- Cammarata, M., and Parrinello, N. (2009). The ascidian prophenoloxidase activating system. Information Systems Journal, 6, S67-S76.
- Chattopadhyay, K., Ghosh, T., Pujol, C.A., Carlucci, M.J., Damonte, E.B., and Ray, B. (2008). Polysaccharides from *Gracilaria corticata*: Sulfation, chemical characterization and anti-HSV activities. International Journal of Biological Macromolecules, 43, 346-351.
- Cheng, W., Juang, F., and Chen, J. (2004). The immune response of Taiwan abalone *Haliotis* diversicolor supertexta and its susceptibility to *Vibrio parahaemolyticus* at different salinity levels. Fish and Shellfish Immunology, 16 (3), 295-306.
- Chopin T., Kerin B.F. and R. Mazerolle. 1999. Phycocolliod chemistry as a taxonomic indicator of phylogeny in the Gigartinales, Rhodophyceae: A review and current developments using Fourier transform infrared diffuse reflectance spectroscopy. Phycological Research. 47: 167-188
- Chotigeat, W., Tongsupa, S., Supamataya, K., and Phongdara, A. (2004). Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture, 233, 23-30.
- Christiaen D, Stadler T, Ondarza M, Verdus MC (1987) Structures and functions of the polysaccharides from the cell wall of *Gracilaria verrucosa* (Rhodophyceae, Gigartinales). Hydrobiologia 151–152:139–146.
- Craigie JS, Wen ZC, Van der Meer JP (1984) Interspecific, intraspecific and nutritionallydetermined variations in the composition of agars from Gracilaria spp. Bot Mar 27:55–61.
- Falshaw R., Furneaux R.H., Pickering T.D. and D.E. Stevenson. 1999. Agars from Three Fijian Gracilaria Species. Botanica Marina. 42:51-59.

- Febles CI, Arias A, Gil-Rodriguez MC. (1995) In vitro study ofantimicrobial activity in algae (Chlorophyta, Phaeophyta and Rhodophyta) collected from the coast of Tenerife (in Spanish). Anuario del Estudios Canarios 34: 181-192.
- Freile-Pelegrin Y, Robledo D (1997) Influence of alkali treatment on agar from *Gracilaria cornea* from Yucatan, Mexico. J Appl Phycol 9:533–539.
- Fu, Y., Hou, W., Yeh, S., Li, C., and Chen, J. (2007). The immunostimulatory effects of hot-water extract of *Gelidium amansii* via immersion, injection and dietary administrations on white shrimp *Litopenaeus vannamei* and its resistance against *Vibrio alginolyticus*. Fish and Shellfish Immunology, 22 (6), 673-685.
- Hou, W., and Chen, J. (2005). The immunostimulatory effect of hot-water extract of Gracilaria tenuistipitata on the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish and Shellfish Immunology, 19 (2), 127-138.
- Israel A, Gavrieli J, Glazer A, Friedlander M (2005) Utilization of flue gas from a power plant for tank cultivation of the red seaweed *Gracilaria cornea*. Agauculture
- Johansson, M., and Soderhall, K. (1989). Cellular immunity in crustaceans and the proPO system. Parasitology today (Personal ed.), *5* (6), 171.
- Karabay-Yavasoglu, N., Sukatar, A., Ozdemir, G., and Horzum, Z. (2007). Antimicrobial activity of volatile components and various extracts of the red alga *Jania rubens*. Phytotherapy Research, *21* (2), 153-156.
- Khotimchenko SV, Vaskovsky VE, Przhemenetskaya VF (1991) Distribution of eicosapentaenoic and arachidonic acids in different species of *Gracilaria*. Phycochemistry 30:207-209.
- Lahaye M., Rochas C., and W. Yaphe. 1986. A new procedure for determination the heterogeneity of agar polymers in the cell walls of *Gracilaria* spp. (Gracilariaceae, Rhodophyta). Can. J. Bot. 64:579-585.
- Lahaye M., Revol J.F., Rochas C., McLachlan J. and W. Yaphe. 1988. The Chemical structure of *Gracilaria crassissima* (P. et H. Crouan in Schramm et Maze) P. et H. Cruan in Schramm et Maze and *G. tikvahiae* McLachlan (Gigartinales, Rhodophyta) Cell-Wall Polysaccharides. Botanica Marina. 31: 491-501.
- Lahaye, M. and Kaeffer, B. (1997). Seaweed dietary fibers structure physicochemical and biological properties relevant to intestinal physiology. Sciences Des Aliments, 17, 563-584.

- Lemus A, Bird KT, Kapraun DF, Koehn F (1991) Agar yield, quality and standing crop biomass of Gelidium serrulatum, Gelidium floridanum and Pterocladia capillacea in Venezuela. Food Hydocoll 5:469–479.
- Liao WR, Lin JY, Shieh WY, Jeng WL, Huang R. (2003) Antibiotic activity of lectins from marine algae against marine vibrios. J Ind Microbiol Biotechnol 30: 433–439
- Lightner, D. (1993). Diseases of cultured penaeid shrimp. *CRC handbook of mariculture, 1*, 393-486.
- Lightner, D. V., and Redman, R. M. (1998). Shrimp diseases and current diagnostic methods. *Aquaculture*, 164(1-4), 201-220.
- Maciel J.S.. Chaves, L.S., Souza, B.W.S., Teixeira, Darliol. A., Freitas, Anal.P., Feitosa, J.P.A. and R.C.M. de Paula. (2007). Structural characterization of cold extracted fraction of soluble sulfate polysaccharide from red seaweed *Gracilaria birdiae*. Carbohydr. Polymer.
- Marinho-Soriano E, Bourret E (2003) Effect of season on yield and quality of agar from *Gracilaria* species (Gracilariales, Rhodophyta). Bioresource Technology 90:329–333.
- Maximilien, R., de Nys, R., Holmstr m, C., Gram, L., Givskov, M., Crass, K., et al. (1998). Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. *Aquatic Microbial Ecology*, *15* (3), 233-246.
- Mazumder S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte BE, Ray B (2002) isolation, chemical investigation and antiviral activity of polysaccharides from *Gracilaria corticata* (Gracilariaceae, Rhodophyta). Int J Biol macromol 31:87-95.
- Melo MRS, Feitosa JPA, Freitas ALP, de Paula RCM (2002) Isolation and characterization of soluble sulfated polysaccharide from red seaweed *Gracilaria cornea*. Carbohydrate Polymers 49:491-498.
- Neushul, M., 1988. Method for the treatment of AIDS virus and other retroviruses. U.S. Patent no. 4,783,446.
- Okumura, T. (2007). Effects of lipopolysaccharide on gene expression of antimicrobial peptides (penaeidins and crustin), serine proteinase and prophenoloxidase in haemocytes of the Pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 22 (1-2), 68-76.

- Puglisi, M., Engel, S., Jensen, P., and Fenical, W. (2007). Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Marine Biology, 150 (4), 531-540.
- Ramos, S., Oliveira, J., C mara, C., Castelar, I., Carvalho, A., and Lima-Filho, J. (2009).

  Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Revista Brasileira de Farmacognosia, 19, 376-381.
- Rochas C, Lahayes M, Yaphe W (1986) Sulfate content of carageenan and agar determined by infrared spectroscopy. Bot Mar 29:335–340.
- Rosen, G., Pou, S., Ramos, C., Cohen, M., and Britigan, B. (1995). Free radicals and phagocytic cells. The FASEB Journal, 9 (2), 200.
- Schaffrath, D., H. W. Stuhslatz & H. Greiling (1976) Interactions of glycosaminoglycans with DNA and RNA synthesizing enzymes in vitro. Z Physiol. Chem. 357: 499-508.
- Shpigel M, McBride SC, Marciano S, Ron S, Ben-Amotz A (2005) Improving gonad colour and somatic index in the European sea urchin *Paracentrotus lividus*. Aquaculture 245:101–109.
- Smith AJ, Fourie AM, Robertson BL, du Preez DR (2003) Control of herbivorous isopod, *Paridotea reticulata*, in *Gracilaria gracilis* tank cultures. Aquaculture 217:385-393.
- Soderhall, K. (1997). Crustacean immunity. Developmental and Comparative Immunology, 21 (2), 205-205.
- Soderhall, K., and Cerenius, L. (1998). Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, *10* (1), 23-28.
- Solomon, J. J., K. A. Glatt & W. Okazaki (1966) Inhibitory effect of heparin on Rous Sarcoma virus. J Bact. 92: 1855-1856.
- Sung, H., Hsu, S., Chen, C., Ting, Y., and Chao, W. (2001). Relationships between disease outbreak in cultured tiger shrimp (*Penaeus monodon*) and the composition of Vibrio communities in pond water and shrimp hepatopancreas during cultivation. *Aquaculture*, 192 (2-4), 101-110.
- Sung, H., Li, H., Tsai, F., Ting, Y., and Chao, W. (1999). Changes in the composition of Vibrio communities in pond water during tiger shrimp (*Penaeus monodon*) cultivation and in the hepatopancreas of healthy and diseased shrimp. Journal of Experimental Marine Biology and Ecology, 236 (2), 261-271.

- Tendencia, E., and de la Pe a, L. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195 (3-4), 193-204.
- Troell, M., R nnb ck, P., Halling, C., Kautsky, N., and Buschmann, A. (1999). Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. Journal of Applied Phycology, 11 (1), 89-97.
- Van de Braak, C., Botterblom, M., Liu, W., Taverne, N., Van der Knaap, W., and Rombout, J. (2002). The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish and Shellfish Immunology, *12* (3), 253-272.
- Vaseeharan, B., and Ramasamy, P. (2003). Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Letters in Applied Microbiology, 36 (2), 83-87.
- Vidal R, Meneses I, Smith M (2003) Molecular genetic identification of crustose representatives of the order Corallinales (Rhodophyta) in Chile. Mol Phylogenetics Evolution 28:404-419.
- Viera MP, Go´mez Pinchetti JL, Courtois de Vicose G, Bilbao A, Sua´rez S, Haroun RJ, Izquierdo MS (2005) Suitability of three red macroalgae as a feed for the abalone *Haliotis tuberculata* coccinea Reeve. Aquaculture
- Vlachos V, Critchley AT, von Holy A. (1996) Establishment of a protocol for testing antimicrobial activity in southern African macroalgae. Microbios. 88(355):115-23.
- Welti, D. (1977). Carrageenanas. Part 2 The 300 MHz Proton Magnetic Resonance Spectra of Methyl  $\beta$ -D-galactopyranoside, Methyl 3,6-Anhydro- $\alpha$ -D-galactopyranoside, Agrose, Kappa-Carrageenan, and Segments of iota-Carrageenan and Agarose sulphate. J.Chem. Research (S) 312-313.

## **OUTPUT**

## **Publication**

## 1. Reprint:

Kanjana K., Radtanatip T., Asuvapongpatana S., Withyachumnarnkul B., **Wongprasert K**.\* Solvent extracts of the red seaweed *Gracilaria fisheri* prevent *Vibrio harveyi* infections in the black tiger shrimp *Penaeus monodon.* J. Fish & Shelfish Immunology. 2011, 30: 389-396. **Impact factor 2.892** 

2. Manuscript submitted to J. Bioscience เรื่อง "Identification and characterization of a novel Legume – like lectin cDNA sequence from the red marine algae, *Gracilaria fisheri*" โดย "Sukanya Suttisrisung, Saengchan Senapin, Boonsirm Withyachumnarnkul, **Kanokpan Wongprasert**\*"

## 3. Manuscript under preparation

- 3.1 เรื่อง "Structure and antiviral activity against white spot syndrome virus (WSSV) of sulfated galactans isolated from the red marine algae *Gracilaria fisheri* " โดย Kanokpan Wongprasert, Tawut radanatip, Jantana Praiboon, Boonsirm Withyachumnarnkul เพื่อ submit ต่อวารสาร Aquaculture
- 3.2 เรื่อง "In vitro inhibition of white spot syndrome vrirus infection in hemocytes of Penaeus monodon by sulfated galactans from red algae Gracilaria fisheri" โดย Tawut radanatip, Somluk Asuwapongpatana, Boonsirm Withyachumnarnkul, and Kanokpan Wongprasert ้ เพื่อ submit ต่อวารสาร Antiviral research

## การนำผลงานวิจัยไปใช้ประโยชน์เชิงพาณิชย์

มีการนำสารสกัด ethanol extract ไปใช้ในฟาร์มเพาะฟักกุ้งตัวอ่อน โดยนำสารสกัด ethanol extract ไปผสมกับ artemia ที่เป็นอาหารกุ้งระยะ post larvae เพื่อป้องกันการติดเชื้อแบคทีเรีย Vibrio harveyi ซึ่งกุ้งระยะนี้จะมีโอกาสติดเชื้อ Vibrio harveyi ได้ง่ายและมีอัตราการตายสูง

## กิจกรรมอื่น ๆที่เกี่ยวข้อง

ได้เสนอรายงานในที่ประชุมวิชาการ ดังนี้

- Kulwadee Kanjana, Somluk Asuvapongpatana, Boonsirm Withyachumnarnkul, Kanokpan Wongprasert. The immunostimulant activity of ethanol extract of *Gracilaria* fisheri against Vibrio harveyi infections in the shrimp Penaeus monodon. In The 33rd. Anatomy Association of Thailand Annual Conference, Thailand, 28-30 April, 2010.
- Kulwadee Kanjana, Tawut Radtanatip, Somluk Asuvapongpatana, Boonsirm Withyachumnarnkul, Kanokpan Wongprasert. The antibacterial and antioxidant activities of red seaweed Gracilaria fisheri extracts. In Proceedings of The International Anatomical Science and Cell Biology Conference, Singapore, 26-29 May, 2010.
- 3. Tawut Rudtanatip, Somluk Asuvapongpatana, Boonsirm Withyachamnarnkul, Kanokpan Wongprasert. Sulfated galactans from red seaweed *Gracilaria fisheri* stimulate immune response and inhibit white spot syndrome virus (WSSV) Activity in shrimp *Penaeus monodon*. In Proceedings of The Anatomy Association of Thailand Conference, 27-29 April, 2011.

## เชิงวิชาการ

## โครงการนี้ได้ผลิตนักศึกษาบัณฑิตระดับปริญญาโท 2 คน และนักวิจัย postdoctoral program 1 คน

- คือ 1. นส. กุลวดี กาญจนา หัวข้อวิทยานิพนธ์ เรื่อง "The antimicrobial activity of *Gracilaria Fisheri* extracts against *Vibrio harveyi* infection in shrimp *Penaeus Monodon."* สำเร็จการศึกษาระดับ ปริญญาโทเมื่อปี พศ. 2553 ปัจจุบันเป็นอาจารย์ที่ ม.วลัยลักษณ์ นครศรีธรรมราช
  - 2. นายทวุธ รัตนทิพย์ หัวข้อวิทยานิพนธ์ เรื่อง "Antiviral activity of sulfated galactans isolated from red seaweed *Gracilaria fisheri* against white spot syndrome virus (WSSV) *in vivo* and *in vitro*" คาดว่าจะสอบป้องกันวิทยานิพนธ์ระดับปริญญาโทในเดือน พฤศจิกายน ปี พศ. 2554
  - 3. นางสุกัญญา สุทธิศรีสังค์ นักวิจัย postdoctoral program หัวข้อวิจัย เรื่อง "Isolation and characterization of lectin from the red marine algae, *Gracilaria fisheri*"

#### ภาคผนวก

## 1. Reprint

Kanjana K., Radtanatip T., Asuvapongpatana S., Withyachumnarnkul B., **Wongprasert K.\*** Solvent extracts of the red seaweed *Gracilaria fisheri* prevent *Vibrio harveyi* infections in the black tiger shrimp *Penaeus monodon.* J. Fish & Shelfish Immunology. 2011, 30: 389-396.

2. Submitted manuscript เรื่อง "Identification and characterization of a novel Legume – like lectin cDNA sequence from the red marine algae, *Gracilaria fisheri*" โดย "Sukanya Suttisrisung, Saengchan Senapin, Boonsirm Withyachumnarnkul, **Kanokpan** Wongprasert\*"

## 3. การเสนอผลงานในที่ประชุม

- 3.1 Kulwadee Kanjana, Tawut Radtanatip, Somluk Asuvapongpatana, Boonsirm Withyachumnarnkul, **Kanokpan Wongprasert**. The antibacterial and antioxidant activities of red seaweed *Gracilaria fisheri* extracts. In Proceedings of The International Anatomical Science and Cell Biology Conference, Singapore, 26-29 May, 2010.
- 3.2 Tawut Rudtanatip, Somluk Asuvapongpatana, Boonsirm Withyachamnarnkul, **Kanokpan Wongprasert**. Sulfated galactans from red seaweed *Gracilaria fisheri* stimulate immune response and inhibit white spot syndrome virus (WSSV) Activity in shrimp *Penaeus monodon*. In Proceedings of The Anatomy Association of Thailand Conference, 27-29 April, 2011.



Contents lists available at ScienceDirect

## Fish & Shellfish Immunology

journal homepage: www.elsevier.com/locate/fsi



# Solvent extracts of the red seaweed *Gracilaria fisheri* prevent *Vibrio harveyi* infections in the black tiger shrimp *Penaeus monodon*

Kulwadee Kanjana <sup>a</sup>, Tawut Radtanatip <sup>a</sup>, Somluk Asuvapongpatana <sup>a</sup>, Boonsirm Withyachumnarnkul <sup>a,b,c</sup>, Kanokpan Wongprasert <sup>a,\*</sup>

the Ministry of Science and Technology, Chaiya District, SuratThani 84000, Thailand

#### ARTICLE INFO

Article history:
Received 28 July 2010
Received in revised form
1 October 2010
Accepted 19 November 2010
Available online 27 November 2010

Keywords: Immunostimulants Red seaweed Gracilaria fisheri Vibrio harveyi Penaeus monodon

#### ABSTRACT

Vibriosis is a common bacterial disease that can cause high mortality and morbidity in farmed shrimp. Since compounds from seaweed have been reported to have anti-bacterial and immunostimulant activity, this study was conducted to determine whether solvent extracts from the red seaweed Gracilaria fisheri might be a possible alternative for prevention and treatment of shrimp vibriosis caused by Vibrio harveyi. Seaweed extracts prepared using ethanol, methanol, chloroform and hexane were evaluated for anti-V. harveyi activity by the disc-diffusion method. The ethanol, methanol and chloroform extracts showed activity against a virulent strain of V. harveyi with potency (minimal inhibitory concentrations in the range of 90–190 µg ml<sup>-1</sup>) equivalent to the antibiotic norfloxacin. The ethanol extract was not toxic to the brine shrimp Artemia salina when it was fed to them for enrichment prior to their use, in turn, as feed for postlarvae of *Penaeus monodon*. Postlarvae fed with these enriched Artemia gave significantly lower mortality than control postlarvae after challenge with V. harveyi. In addition, P. monodon juveniles injected with the ethanol extract showed a significant increase in the total number of haemocytes and an increased proportion of semi-granulocytes and granulocytes when compared to control shrimp. The activities of phenoloxidase and superoxide dismutase were also increased, with an accompanying increase in superoxide anion production. When these juvenile shrimp were challenged with V. harveyi, mortality was markedly reduced compared to that of control shrimp. The results indicated that ethanol extracts of G. fisheri had immunostimulant and antimicrobial activity that could protect P. monodon against V. harveyi.

© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction

Several *Vibrio* species have been reported as pathogenic for penaeid shrimp. Among them, *Vibrio harveyi* (VH) is the most frequently detected species that infects the shrimp hepatopancreas to cause acute or chronic infections known as vibriosis. The black tiger shrimp *Penaeus monodon* is one of the most susceptible species to VH and when infected, mass mortality of larvae in hatcheries or juveniles in grow-out ponds are often observed [1]. In grow-out ponds, shrimp farmers control vibriosis by water management [2] and by reducing stress on shrimp [3]. In hatcheries, vibriosis is controlled by the reduction of rearing water

salinity (Withyachumnarnkul, pers. comm.), washing eggs with iodine and formaldehyde [4] and by using probiotics [5].

Gracilaria species are among the most useful red seaweeds in the world. They are used as feed for fish and other aquatic animals and are also the source of high quality agar [6], food for human consumption, and pharmaceutical components [7,8]. It has been reported that extracts form Gracilaria species contain active metabolites or compounds with antiviral, antifungal, and antibacterial activities [9]. An extract from Gracilaria corticata was highly active against the Gram-negative bacterium Proteus mirabilis [10]. The polysaccharide fucoidan from the brown seaweeds Cladosiphon okamuranus [11] and Sargassum polycystum elicited antiviral activity against white-spot syndrome virus (WSSV) in the shrimp Metapenaeus japonicus and P. monodon, respectively, and also inhibited growth of VH, Staphylococcus aureus and Escherichia coli [12]. Crude polysaccharide extracts form Sargassum fusiforme

<sup>&</sup>lt;sup>a</sup> Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Rajdhevi, Bangkok 10400, Thailand

b Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Rajdhevi, Bangkok 10400, Thailand <sup>c</sup> The Shrimp Genetic Improvement Center, the National Center for Genetic Engineering and Biotechnology, the National Science and Technology Development Agency,

<sup>\*</sup> Corresponding author. Tel.: +662 2015402; fax: +662 3547168. E-mail address: sckbp@mahidol.ac.th (K. Wongprasert).

could enhance immunological activities in the shrimp, Fenner-openaeus chinensis [13].

Gracilaria fisheri is a red seaweed commonly found along the coast of south-east Asian countries [14]. It is occasionally cultured in shrimp farms for wastewater treatment [15]. Because of the potential benefit for shrimp culture, the properties of ethanol extract of *G. fisheri* as an immunostimulant and anti-bacterial agent against VH in *P. monodon* were therefore studied and are reported herein.

#### 2. Materials and methods

#### 2.1. Samples

The red seaweed *G. fisheri*, brine shrimp (*Artemia salina*) and specific pathogen-free *P. monodon* were obtained from the Shrimp Genetic Improvement Center (SGIC), Chaiya District, Surat Thani, Thailand.

## 2.2. Preparation of G. fisheri crude extracts

The seaweed extraction was carried out according to the methods described previously [16,17]. Briefly, *G. fisheri* was washed with clean seawater, air-dried, powdered and extracted with different organic solvents in order of increasing polarity (i.e., hexane, chloroform, ethanol and methanol). Powdered seaweed (30 g) was extracted with 500 ml of each solvent using a Soxhlet apparatus for 24 h and then the solvent was evaporated in vacuum (rotator evaporator) at 60 °C until a dry residue (extract) was obtained. The extracts were stored at  $-20\,^{\circ}\text{C}$ .

#### 2.3. Brine shrimp preparation

Brine shrimp (A. salina) cysts (50 g) were transferred to 800 ml of artificial seawater at a salinity of 30 ppt. The water (28 °C) was aerated with mild air flow for 24 h, after which the nauplii (instar I) developed. They were cultivated for a further 12 h to become instar II. The instar I were used for cytotoxicity tests and the instar II as bioencapsulation agents to be enriched with the ethanol extract before they were fed to shrimp (see below).

## 2.4. In vitro screening of anti-bacterial activity of G. fisheri extracts

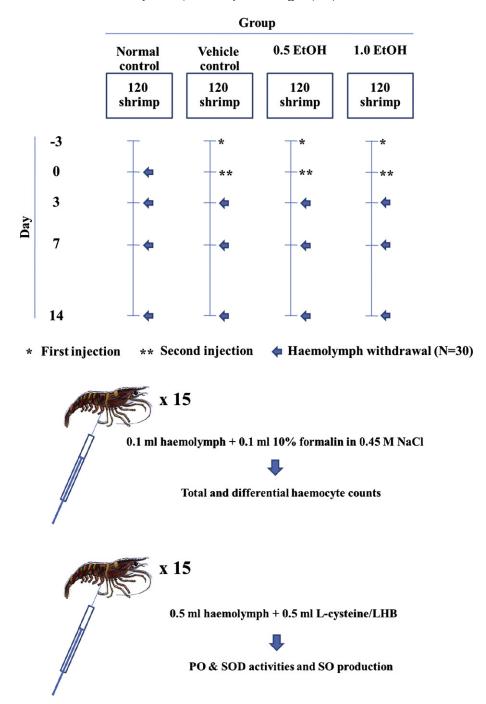
Anti-bacterial assays by the disc-diffusion method [18] were carried out using a strain of VH obtained from a commercial shrimp farm in Thailand and known to be virulent for shrimp. Filter-paper discs were impregnated with 20  $\mu l$  of different concentrations of crude solvent extracts of *G. fisheri* (0.05, 0.1, 0.5, 1, 5, 10, 20 mg ml $^{-1}$ ) or with a standard antibiotic (10  $\mu g$  norfloxacin from Bangkok Lab and Cosmetics, Bangkok, Thailand) as a positive control. The discs were overlaid on Mueller Hinton agar plates and incubated at 30 °C for 24 h. Paper discs treated with solvent alone served as negative controls. Zones of inhibition were determined as the difference between the disc diameter (6 mm) and the diameter of the inhibition zone [19]. The inhibition zones means of the solvent extracts were compared.

The minimum inhibitory concentrations (MIC) of the extracts were determined according to a method previously described [20]. The four extracts from *G. fisheri* were prepared at different concentrations ranging from 0.05 to 1.00 mg ml $^{-1}$  by serial dilution in broth that was then inoculated with 100  $\mu$ l of medium containing  $10^6$  CFU ml $^{-1}$  VH. The mixtures were incubated at 30 °C for 24 h after which the growth of VH was determined by spectrophotometer at OD 600. MIC was defined as the least concentration of crude extract that could reduce bacterial growth to 50% when compared

to the control mixture containing only VH plus broth. The seaweed extract that gave the largest zone of inhibition and the lowest MIC was chosen for further study in subsequent experiments. The result demonstrated that the ethanol extract showed the best anti-VH activity.

## 2.5. Safety test for the seaweed ethanol extract

A brine shrimp bioassay was performed to evaluate the toxicity of the ethanol extract following the method of Caldwell [21]. The extraction procedure yielded 150 mg of dry ethanol extract from 30 g dry seaweed. The extract was resuspended in ethanol and prepared in final concentrations of 0.01, 0.1, 1, 2, 4, 6, 8, and  $10 \text{ mg ml}^{-1}$  in artificial seawater in Petri dishes. Ten instar I *Artemia* were placed in each dish and maintained under ambient light for 24 h, after which the number of dead nauplii was determined using a stereomicroscope. Control group was treated identically without addition of extract to the seawater. Tests were carried out in triplicate. The lethal concentration of the extract was defined as that which caused 50% mortality of the nauplii (LC<sub>50</sub>).


#### 2.6. Enrichment of instars II by bioencapsulation

Although *A. salina* instar larvae I and II are routinely used in hatcheries as live-feed for *P. monodon* postlarvae, the instar II stage was chosen for bioencapsulation of the *G. fisheri* ethanol extract because it is the first stage at which *Artemia* begins feeding on small particles. Instar II larvae at a density of 120 nauplii ml<sup>-1</sup> were reared in triplicate glass tanks containing 250 ml of filtered seawater at 25 °C. The test larvae were enriched for 6 h with two different concentrations of 0.5 and 1.0 mg ml<sup>-1</sup> of the ethanol extract added to the seawater (i.e., two groups of 3 tanks each). No extract was added to the 3 control tanks. The enriched and control instar II larvae from each tank were then collected, washed, and kept individually for feeding to *P. monodon* postlarvae prior to challenges of the postlarvae with VH.

# 2.7. Defense parameters of P. monodon juveniles injected with the ethanol extract

*P. monodon* juveniles (a total of 480 individuals of 10–15 g BW) were arbitrarily divided into 4 groups, each with 4 replicates of 30 shrimp in rectangular plastic tanks ( $50 \times 80 \times 50$  cm) containing 80 L seawater at a salinity of 10 ppt (16 tanks total). They were fed twice daily with commercial pellets at 3% BW per day. The four groups were treated as follows. Group 1 comprised the untreated control. Group 2 comprised the vehicle control shrimp injected with a 1:1 mixture of ethanol and PBS. Group 3 comprised the test group injected with ethanol extract at 0.5 mg  ${\rm g}^{-1}$  BW (also called 0.5 EtOH group) and Group 4 comprised the test group injected with ethanol extract at 1.0 mg  $\mathrm{g}^{-1}$  BW (also called the 1.0 EtOH group). After two days of acclimatization, the vehicle control and test shrimp groups were injected intramuscularly with 100 µl of vehicle or extract solution. The injections were repeated 3 days later. At days 3, 7 and 14 following the second injection, 3 or 4 shrimp were arbitrarily selected from each tank of groups 1-4 for withdrawal of haemolymph (see below) to obtain a total of 30 haemolymph samples from each group (Fig. 1). Using these samples, the following parameters were determined: total haemocyte counts, differential haemocyte counts, phenoloxidase (PO) activity, superoxide anion (SO) production and superoxide dismutase (SOD) activity.

To determine total haemocyte and differential haemocyte counts,  $100~\mu l$  haemolymph was withdrawn from the ventral sinus of individual shrimp into a 1 ml syringe containing  $100~\mu l$  of 10%



**Fig. 1.** Diagram showing the time-frame of the injections of the ethanol extracts of the red seaweed *Gracilaria fisheri* into *Penaeus monodon* juveniles and haemolymph collections from the shrimp for determinations of their defense parameters. PO, prophenoloxidase; SO, superoxide; SOD, superoxide dismutase.

formalin in 0.45 M NaCl and transferred to a microfuge tube for further processing as previously described [22] so that hyalinocytes, semi-granulocytes and granulocytes could be distinguished by light microscopy according to Johansson et al. [23] and the percentage of each type of haemocytes was determined from a total of 400 cell counts.

To determine PO and SOD activities and SO production, 0.5 ml haemolymph was withdrawn into a 1 ml syringe containing 0.5 ml  $\iota$ -cysteine/LHB solution from individual 15 shrimp of a separate set; 400  $\mu$ l of the mixture was used for PO activity assay whereas the other two aliquots of 300  $\mu$ l were used for SO production and SOD

activity assays (Fig. 1). For PO determination, the mixture ( $400 \,\mu$ l) was centrifuged at 1000 g for 10 min at 4 °C and the pellet was resuspended in 0.5 ml of chilled cacodylate buffer (0.01 M sodium cacodylate, 0.45 M NaCl, 0.01 M CaCl<sub>2</sub>, 0.26 M MgCl<sub>2</sub>, pH 7.0), sonicated in ice bath and centrifuged at 40000 g for 20 min at 4 °C; the supernate was isolated as haemocyte lysate (HLS), which was immediately used for PO analysis according to Smith and Soderhall [24].

The production of reactive oxygen species or superoxide anion of haemocytes and SOD activity was quantified from haemocytes isolated from 300  $\mu$ l of the haemolymph mixture, according to the methods described [25,26].

## 2.8. V. harveyi challenge of P. monodon postlarvae

A stock of P. monodon PL 15 were kept in three 25-L tanks containing 30 ppt seawater at 27 °C. The experiment was conducted as a completely randomized design with five groups of PL15 each in 3 replicates of 100 shrimp. The 4 groups to be challenged with VH were as follows. Group 1 comprised the positive control of normal instar II larvae. Group 2 comprised the vehicle control of instar II larvae enriched with 1:1 ethanol and phosphate buffered saline (PBS). Group 3 comprised a test group of instar II larvae enriched with  $0.5~\text{mg ml}^{-1}$  of the ethanol extract (the 0.5~EtOHgroup) and Group 4 comprised a test group of instar II larvae enriched with 1.0 mg ml<sup>-1</sup>of the ethanol extract (the 1.0 EtOH group). Group 5 was the negative control group that consisted of normal instar II larvae that were not challenged with VH. The shrimp postlarvae were daily fed with either normal or enriched instar II larvae consecutively for 15 days before being immersed in seawater containing 1  $\times$   $10^6$  CFU  $ml^{-1}$  of VH. The cumulative mortality of shrimp was recorded daily for 7 days following the challenge.

### 2.9. V. harveyi challenge of P. monodon juveniles

*P. monodon* juveniles (10 shrimp of 10–15 g for each replicate) were stocked in rectangular plastic tanks (50  $\times$  80  $\times$  50 cm) containing 80 L seawater (10 ppt) and fed twice daily with commercial pellets at 3% BW per day. The shrimp were divided into 5 groups with 3 replicates each (a total of 15 tanks with 10 shrimp each) and acclimatized for 3 days before starting the experiment. The 5 groups were as follows. Group 1 comprised the positive control shrimp that were untreated. Group 2 comprised the vehicle control injected with a mixture of 1:1 ethanol and PBS. Group 3 comprised the test shrimp injected with 0.5 mg  $g^{-1}$  BW ethanol extract (the 0.5 EtOH group) and Group 4 comprised the test shrimp injected with 1.0 mg g<sup>-1</sup> BW ethanol extract (the 1.0 EtOH group). Group 5 comprised the negative control group that consisted of juvenile shrimp that were not challenged with VH. Injections of either vehicle or ethanol extracts were carried out using 100 µl solution at days 4 and 7 of the experiment and challenges took place on day 8 using a 100  $\mu$ l injection containing 1  $\times$  10<sup>6</sup> CFU ml<sup>-1</sup> VH. Cumulative mortality of the shrimp was monitored daily for 14 days following the challenge (i.e., until day 22 of the experiment).

### 2.10. Statistical analysis

Unless stated otherwise, all experiments were performed in triplicate. The data were expressed as mean  $\pm$  SD and analyzed by one way ANOVA followed by Turkey's multiple comparison and differences were considered significant if P < 0.05.

## 3. Results

# 3.1. Anti-bacterial activity of G. fisheri extracts by disc-diffusion assay

All extract types of *G. fisheri* tested (hexane, chloroform, methanol, and ethanol) showed inhibition zones against VH. The ethanol, methanol and chloroform extracts at 0.5 mg ml $^{-1}$  and norfloxacin gave similar inhibition zones that were larger than that of the hexane extract (Fig. 2). The MICs of the ethanol, methanol, chloroform and hexane extracts against VH were 90  $\pm$  5.5,  $100\pm9.5,\,90\pm9.7,\,$  and  $190\pm10.3\,$  µg ml $^{-1},\,$  respectively. Since the ethanol extract showed a large zone of inhibition and the lowest MIC value, it was chosen for subsequent experiments.

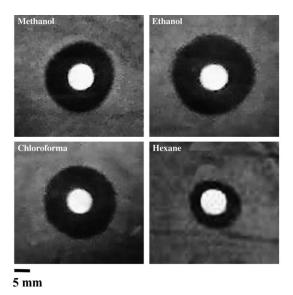
## 3.2. Safety test for the ethanol extract

A. salina instar I larvae showed no mortality when incubated with ethanol extracts at concentrations lower than 1.0 mg ml $^{-1}$  for 24 h (Fig. 3). Increasing mortality was observed at increasingly higher concentrations and the resulting LC50 was 4.29  $\pm$  0.5 mg ml $^{-1}$ .

### 3.3. Defense parameters of shrimp injected with the ethanol extract

Total haemocyte counts of the 0.5 EtOH and 1.0 EtOH groups were significantly higher than those of the control and vehicle groups at all assay times after injection (Fig. 4). On day 3 after extract injection, total haemocyte counts for the 1.0 EtOH group were about 2 times higher than that of the control groups (P < 0.05) and remained at that level to day 14. The numbers of semi-granulocytes and granulocytes of the 1.0 EtOH group were also significantly higher than those of the control groups (P < 0.05) on day 3 and reached maximum levels on day 7 (counts of semi-granulocytes at 5 times and granulocytes 3 times those of the control groups). They declined slightly thereafter and by day 14 reached the same levels as on day 3. The 0.5 EtOH group also showed an increase in the number of semi-granulocytes, but at lower levels than in the 1.0 EtOH group. However, the number of granulocytes in the 0.5 EtOH group was significantly higher than that of the control groups on day3 (P < 0.05) and the number was maintained at a high level through day 14. The hyalinocyte counts of the 0.5 and 1.0 EtOH groups were significantly (P < 0.05) higher than that of the control groups on day 3 and the high levels were maintained until the end of the experiment. There was no significant difference in the numbers of hyalinocytes between the 0.5 and 1.0 EtOH groups.

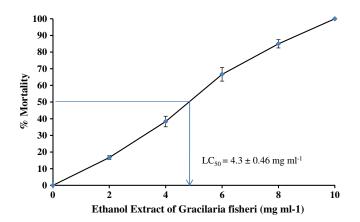
At day 3 after injection of ethanol extracts, PO activity in the 0.5 and 1.0 EtOH groups was significantly higher than that in the normal and vehicle control groups (P < 0.05), and that of the 1.0 EtOH group was significantly higher than that of the 0.5 EtOH group (P < 0.05) (Fig. 5). The enzyme activity remained until day 14, although there was a slight decline in the 1.0 EtOH group.


The production of super oxide anions in the 1.0 EtOH group was markedly higher at day 3 than that of the other groups (P < 0.05) but was somewhat lower on days 7 and 14. However, at day 14, it was still significantly higher (P < 0.05) than in the normal and vehicle control groups (Fig. 5). Super oxide production in the 0.5 EtOH group was not significantly different from that in the two control groups.

Three days after ethanol-extract injection, SOD activity in the 0.5 and 1.0 EtOH groups was significantly higher (2.2 times and 4 times, respectively) than that in the two control groups (P < 0.05). At day 7 and 14, SOD activity in the 0.5 EtOH group was the same as that on day 3, whereas that in the 1.0 EtOH group increased further to 6 and 5 times of that in the two control groups on days 7 and 14, respectively (Fig. 5).

# 3.4. The ethanol-extract protected P. monodon against V. harveyi infection

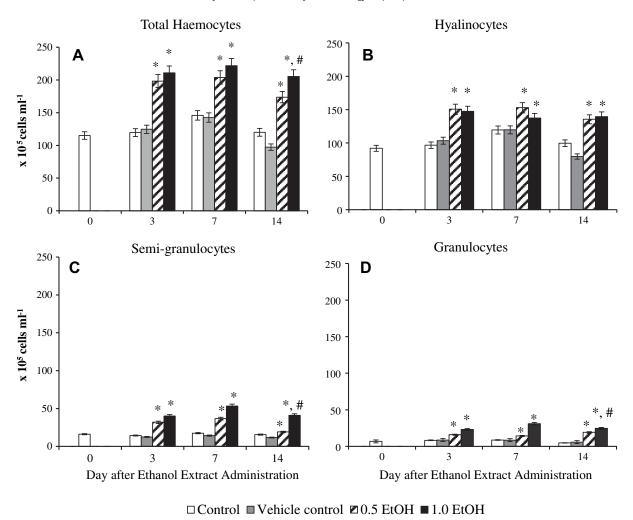
Cumulative mortality for PL 15 in the positive control group challenged with VH was 100% within 2 days while that in the vehicle control group was 77.5  $\pm$  2.3% within 7 days. By contrast, PL15 fed with ethanol-extract-enriched *Artemia* instar II larvae had lower mortality (P < 0.05) (44.5  $\pm$  2.7% and 17.5  $\pm$  3.3% at 7 days in the 0.5 and 1.0 EtOH groups, respectively) (Fig. 6).


In *P. monodon* juveniles, there was 100% mortality in 4 days after VH challenge in the normal and vehicle control groups, whereas mortality in the shrimp injected with 0.5 and 1.0 mg g BW $^{-1}$  of the ethanol extract was significantly lower at 39.6  $\pm$  2.3% and



| Concentration of the extract (mg ml <sup>-1</sup> ) |                |           |              |           |          |           |  |
|-----------------------------------------------------|----------------|-----------|--------------|-----------|----------|-----------|--|
|                                                     | 0.1            | 0.5       | 1            | 5         | 10       | 20        |  |
| Solvent Extract                                     |                |           |              |           |          |           |  |
| Methanol                                            | $7.5 \pm 0.57$ | 8.75±0.95 | 10.25±1.73   | 9.5±1.82  | 10±0.81  | 10.5±1.41 |  |
| Ethanol                                             | 9.75±1.50      | 9.75±1.41 | 10.5±0.95    | 9.75±1.29 | 11±0.50  | 12±1.70   |  |
| Chloroform                                          | $7\pm0.08$     | 7±0.04    | $8 \pm 0.90$ | 8.5±1.15  | 10±0.57  | 10.5±0.57 |  |
| Hexane                                              | 5.5±1.40       | 5.75±1.64 | 6.25±2.32    | 8±2.30    | 8.5±1.80 | 7±2.08    |  |
| Norfloxacin                                         | -              | 11±1.0    | -1           | 1-        | -        | -         |  |

Fig. 2. Vibrio harveyi inhibition zones (mm) by different solvent extracts of Gracilaria fisheri. The values are means  $\pm$  SD (N=9). The concentration of norfloxacin was 0.5 mg ml $^{-1}$ .


17.4  $\pm$  3.9%, respectively (P < 0.05) (Fig. 7). The difference between the two extract groups was also statistically significant (P < 0.05) and remained so until day 14 (72.7  $\pm$  3.3% and 35.1  $\pm$  2.9% mortality in the 0.5 and 1.0 EtOH groups, respectively).

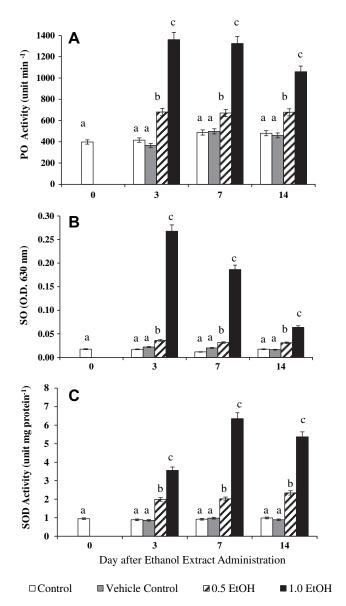


**Fig. 3.** Cumulative mortality and  $LC_{50}$  of *Artemia salina*, instar I stage, immersed in the ethanol extract of the red seaweed *Gracilaria fisheri* at different concentrations.

## 4. Discussion

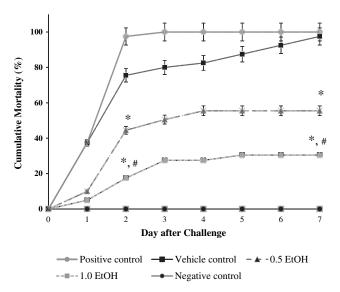
This study revealed an anti-VH effect of G. fisheri solvent extracts and the ability of the ethanol extract to protect P. monodon from vibriosis. Plant materials can be classified as antimicrobial agents based on MIC values of their extracts. Extracts with MIC values less than 100  $\mu g$  ml<sup>-1</sup> are classed as strong inhibitors, at 100–500  $\mu g$  ml<sup>-1</sup> as moderate inhibitors, at 500–1000  $\mu g$  ml<sup>-1</sup> as weak inhibitors and at more than 1000  $\mu g$  ml<sup>-1</sup> as inactive [27]. According to this classification the ethanol, methanol and chloroform extracts of G. fisheri could be graded as strong inhibitors against VH. Mixtures of both polar and non-polar properties of biologically active metabolites are of interesting natural product since they could traverse both hydrophilic and hydrophobic environments. This allows the compounds to be both partially water soluble and easily transported across cell membranes and other biological barriers. The components of biological extracts of midpolarity in between are ideal target for the first stage of fractionation of a crude extract. The finding that the extract from the high polarity solvent ethanol was superior to those obtained with the other three solvents used was similar to the experience described by others and suggested that the anti-VH compound(s) in the ethanol extract were polar. VH are Gram-negative bacteria with external membranes that contain highly hydrophilic substances




**Fig. 4.** Total and differential haemocyte counts of *Penaeus monodon* juveniles after receiving injections of the ethanol extract of the red seaweed *Gracilaria fisheri.* \*P < 0.05, compared to the value of the control; #P < 0.05, compared to the value of the corresponding time-points.

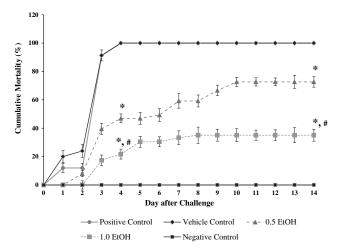
such as lipopolysaccharide and proteins that are permeability barriers to the hydrophobic compounds, including anti-bacterial drugs [28]. It is possible that polar bioactive compounds present in the ethanol extract might bind to porin proteins in bacterial outer membrane, causing conformational changes leading to easier transport of other polar bioactive compounds into the bacterial cell [29].

With respect to toxicity of the ethanol extract, substances are considered strongly toxic when their LC50 for Artemia instar I larvae are in the range of 0–80 μg ml<sup>-1</sup>, moderately toxic at  $80-250 \,\mu g \, ml^{-1}$ , and weakly toxic at more than  $250 \,\mu g \, ml^{-1}$  [30]. Since the LC<sub>50</sub> of our ethanol extract was 4290  $\pm$  460  $\mu$ g ml<sup>-1</sup>, it could be considered non-toxic to the Artemia instar I larvae. The subsequent experiments of feeding the ethanol-extract-enriched Artemia to P. monodon PL15 postlarvae and injecting the extract directly into P. monodon juveniles indicated that it was also nontoxic to P. monodon. Since Gracilaria and Gracilaria products are commonly used as human food and in the preparation of products for human food (e.g., agar) it is also likely that the ethanol extract would not cause health problems in humans if they ate shrimp that had been treated with the extract. A report on antimicrobial extracts of Gracilaria changii [31] also showed that they were nontoxic for brine shrimp and a mammalian cell line. However it has been demonstrated in a recent study that the ethyl acetate extracts


from the two red seaweed *Gracilaria salicornia* and *Hypnea flagelliformis* showed potent toxic effects against *Artemia* larvae,  $LC_{50}$  as less as 3, 4  $\mu$ g ml<sup>-1</sup>, respectively [32]. Thus it could be concluded that the toxicity levels of *Gracilaria* spp depend on the species and methods of extraction employed.

The anti-VH activity of the ethanol extract of G. fisheri for P. monodon postlarvae and juveniles was correlated with increased total haemocyte counts, increased granulocyte counts, increased PO and SOD activities and increased super oxide anion production. All these parameters are parts of the anti-bacterial defense mechanism in crustaceans [33]. Phenoloxidase (PO) is a key enzyme involved in production of reactive oxygen species, antimicrobial phenolic compounds and melanin in response to pathogens [33] and a high PO activity index has been suggested to be an indicator good defense capability in shrimp [34]. Since the PO response originates from semi-granulocytes and granulocytes [34], higher numbers are associated with higher potential for PO activity. Thus, our results suggested that the ethanol extracts stimulated haemocytic proliferation and differentiation. During bacterial infection, haemocytes also ingest pathogens by phagocytosis and destroy them in the cytoplasm by the production of reactive oxygen species, superoxide anions, hydrogen peroxide and hydroxyl radicals [35]. In addition, haemocytes produce SOD that catalyzes superoxide anions to hydrogen peroxide that acts as a substrate for




**Fig. 5.** Activities of phenoloxidase and superoxide dismutase, and levels of super oxide anion in total haemocytes of *Penaeus monodon* juveniles determined on day 3, 7 and 14 after receiving injections of the ethanol extract of the red seaweed *Gracilaria fisheri*. Different superscripts indicate statistically significant differences.

the production of the powerful microbicidal substance, hypochlorous acid [36]. All these increased activities and the increased haemocyte counts could have augmented the antimicrobial activity of the ethanol extract and accounted for the ability of shrimp treated with the extracts to better defend against VH challenge. Additionally, our further study reveals that the ethanol extract of G. fisheri contains polyphenols, polysaccharides and certain amount of protein (unpublished data). The polyphenols in the ethanol extract is speculated as an antioxidant to scavenge ROS [37] and the polysaccharides may responsible for activation of immune defense as those reported by others. Administration of hot-water extracts of Gelidium amansii [38] and Gracilaria tenuistipitata [39,40] increased total haemocyte counts, PO activity and respiratory burst of the white shrimp Litopenaeus vannamei and improved its ability to defend against Vibrio alginolyticus. Also, P. monodon PL fed with metabolites from the red seaweed Hypnea musciformis positively affected immune factors and showed significantly higher survival rates when challenged with V. alginolyticus [41].



**Fig. 6.** Cumulative mortality of *Penaues monodon*, postlarva 15 stage, challenged with *Vibrio harveyi* after being fed on *Artemia salina*, instar II larvae, that were enriched with ethanol extract of the red seaweed *Gracilaria fisheri* for 14 days.\*P < 0.05, compared to the value of the positive and vehicle controls; #P < 0.05, compared to the value of the 0.5 EtOH shrimp at the corresponding time-points.

It has been demonstrated that many of the solvent extracts from red seaweeds contain halogenated compounds [42]. Halogenated secondary metabolites from red seaweed Laurencia chondrioides showed anti-bacterial activity against fish and human pathogenic bacteria [43]. There is also evidence that the red seaweed Delisea pulchra effectively avoids a broad spectrum of bacterial infections via its halogenated compounds known as furanones [44]. The structures of furanones are similar to N-acyl homoserine lactones (AHLs) that comprise a class of bacterial intercellular signaling molecules produced by Gram-negative bacteria. AHLs orchestrate the expression of particular phenotypes within a population of bacterial clones via binding to the specific protein on bacterial receptors that induce colonization [45]. Furanones can bind specifically to the receptor sites of AHLs and therefore decrease AHL activity. This method of blocking bacterial communication effectively prevents bacteria from forming groups and becoming virulent



**Fig. 7.** Cumulative mortality of *Penaues monodon* challenged with *Vibrio harveyi* after injection with an ethanol extract of the red seaweed *Gracilaria fisheri*.  $^*P < 0.05$ , compared to the value of the positive and vehicle controls;  $^*P < 0.05$ , compared to the value of the 0.5 EtOH shrimp at the corresponding time-points.

[46]. Previous study reported the natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone, at 0.02 mg ml<sup>-1</sup>, could protect *Artemia* from VH, however a higher concentration ( $0.05 \text{ mg ml}^{-1}$ ) of the compound caused toxicity to the larvae [47]. In contrast to our result, a much higher concentration of the ethanol extract of *G. fisheri* ( $1.0 \text{ mg ml}^{-1}$ ) caused no death to the *Artemia*. Thus it is suggested that the active metabolite(s) of the ethanol extract of *G. fisheri* that fight against *V. harveyi* might contain only a small amount furanones. Hence, for a better understanding of the anti-bacterial and immunostimulant effects of the ethanol extract of *G. fisheri*, the bioactive compounds and their mechanisms of action need to be elucidated.

In conclusion, this present study showed that feed supplementation by bioencapsulation and injection of the ethanol extract from the red seaweed *G. fisheri* possessed potent antimicrobial activity against bacteria *V. harveyi*. The injection experiment exhibited the ability of the extract to stimulate cellular and humoral defense parameters in *P. monodon*. The results from the study may be useful to shrimp farmers since it suggests that co-cultivation of *G. fisheri* in shrimp ponds to remove ammonia may also be beneficial in terms of enhancing shrimp anti-bacterial defenses.

#### Acknowledgments

The authors would like to thanks Thailand Research Fund (TRF-MAG and TRF Research Scholar) and the Commission on Higher Education for grants support, Charoen Pokphan Foods Public Company for providing seaweed and shrimp feed pellets and Prof. Timothy Flegel for valuable comments and suggestions of the manuscript.

#### References

- [1] Jiravanichpaisal P, Miyazaki T, Limsuwan C. Histopathology, biochemistry, and pathogenicity of *Vibrio harveyi* infecting black tiger prawn *Penaeus monodon*. | Aquat Anim Health 1994;6(1):27–35.
- [2] Baticados M, Lavilla-Pitogo C, Cruz-Lacierda E, de la Pena L, Sunaz N. Studies on the chemical control of luminous bacteria Vibrio harveyi and V. splendidus isolated from diseased Penaeus monodon larvae and rearing water. Dis Aquat Organ 1990;9(2):133–9.
- [3] Lightner D. Diseases of cultured penaeid shrimp. CRC Handbook of Mariculture 1993;1:393—486.
- [4] Ahmad T, Tjaronge M, Suryati E. Performances of tiger shrimp culture in environmentally friendly ponds. Indonesian J Agric Sci 2003;4(2):48–55.
- [5] Gatesoupe FJ. The use of probiotics in aquaculture. Aquaculture 1999;180 (1–2):147–65.
- [6] Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of *Gracilaria*. Sci Asia 2006;32:11–7.
- [7] Wen X, Peng C, Zhou H, Lin Z, Lin G, Chen S, et al. Nutritional composition and assessment of Gracilaria lemaneiformis Bory. J Integr Plant Biol 2006;48(9):1047.
- [8] Fitton J. Antiviral properties of marine algae. Section 9. Advances in applied phycology utilization. In: World Seaweed Resources, an Authoritative Reference system. Amsterdam: ETI Bioinformatics; 2006.
- [9] Bansemir A, Blume M, Schroder S, Lindequist U. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 2006;252(1):79–84.
- [10] Kulik M. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 1995:101(6):585—99.
- [11] Takahashi Y, Uehara K, Watanabe R, Okumura T, Yamashita T, Omura H, et al. Efficacy of oral administration of fucoidan, a sulfated polysaccharide, in controlling white spot syndrome in kuruma shrimp in Japan. In: Flegel TW, editor. Advances in shrimp biotechnology. Bangkok: NationalCenter for Genetic Engineering and Biotechnology; 1998. p. 171–4.
- [12] Chotigeat W, Tongsupa S, Supamataya K, Phongdara A. Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture 2004;233(1-4):23-30.
- [13] Huang X, Zhou H, Zhang H. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immun 2006;20(5):750-7.
- [14] Lewmanomont K. The species of *Gracilaria* from Thailand. Tax. Econ. Seaweeds 1994;4:135–48.
- [15] Chirapart A, Lewmanomont K. Growth and production of Thai agarophyte cultured in natural pond using the effluent seawater from shrimp culture. Hydrobiologia 2004;512(1):117–26.

- [16] Passreiter C, Wendisch D, Gondol D. Sesquiterpene lactones from Neurolaenalobata. Phytochemistry 1995;39(1):133-7.
- [17] Rastrelli L, De Tommasi N, Berger I, Caceres A, Saravia A, De Simone F. Glycolipids from Byrsonima crassifolia. Phytochemistry 1997;45(4):647–50.
- [18] Miller RA, Walker RD, Baya A, Clemens K, Coles M, Hawke JP, et al. Antimicrobial susceptibility testing of aquatic bacteria: quality control disk diffusion ranges for Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658 at 22 and 28 °C. J ClinMicrobiol 2003;41(9):4318.
- [19] Hewitt W, Vincent S. Theory and application of microbiological assay. EUA. Academic Press; 1989.
- [20] Valgas C, de Souza SM, Smania EFA, Smania AJ. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 2007;38(2).
   [21] Caldwell GS, Bentley MG, Olive PJW. The use of a brine shrimp (*Artemia salina*)
- [21] Caldwell GS, Bentley MG, Olive PJW. The use of a brine shrimp (Artemia salina) bioassay to assess the toxicity of diatom extracts and short chain aldehydes. Toxicon 2003;42(3):301–6.
- [22] Sritunyalucksana K, Gangnonngiw W, Archakunakorn S, Fegan D, Flegel TW. Bacterial clearance rate and a new differential hemocyte staining method to assess immunostimulant activity in shrimp. Dis Aquat Org 2005;63:89–94.
- [23] Johansson MW, Keyser P, Sritunyalucksana K, Soderhall K. Crustacean haemocytes and haematopoiesis. Aquaculture 2000;191(1-3):45-52.
- [24] Smith V, Soderhall K. Beta-I, 3 Glucan activation of crustracean hemocytes in vitro and in vivo. Biol Bull 1983;164(2):299.
- [25] Munoz M, Cedeno R, Rodriguez J, van der Knaap WPW, Mialhe E, Bachere E. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, *Penaeus vannamei*. Aquaculture 2000;191(1–3):89–107.
- [26] Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247(10):3170.
- [27] Pretto JB, Filho VC, Noldin VF, Sartori MRK, Isaias DEB, Cruz ABZ. Antimicrobial activity of fractions and compounds from *Calophyllum brasiliense* (Clusiaceae/Guttiferae). Naturforsch 2004;59c:657–62.
- [28] Adwan K, Abu-Hasan N. Gentamicin resistance in clinical strains of *Enter-obacteriaceae* associated with reduced gentamicin uptake. Folia Microbiol 1998;43:438–40.
- [29] Alvarez MDLA, Debattista NB, Pappano NB. Synergism of flavonoids with bacteriostatic action against *Staphylococcus aureus* ATCC 25 923 and *Escherichia coli* ATCC 25 922. Biocell 2006;30(1):39–42.
- [30] Ramos SCS, Oliveira JCS, Câmara CAG, Castelar I, Carvalho AFFU, Lima-Filho JV. Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Rev Bras Farmacogn 2009;19:376–81.
- [31] Sasidharan S, Darah I, Jain K. In vivo and in vitro toxicity study of Gracilaria changii. Pharm Biol 2008;46:413-7.
- [32] Saeidnia S, Gohari AR, Shahverdi AR, Permeh P, Nasiri M, Mollazadeh K, et al. Biological activity of two red algae, *Gracilaria salicornia* and *Hypnea flagelliformis*. Phcog Res 2009;1(6):429–30.
- [33] Soderhall K. Crustacean immunity. Dev Comp Immunol 1997;21(2):205.
- [34] Johansson M, Soderhall K. Cellular immunity in crustaceans and the proPO system. Parasitol Today (Personal Ed.) 1989;5(6):171.
- [35] Chien YH, Pan CH, Hunter B. The resistance to physical stresses by *Penaeus monodon* juveniles fed diets supplemented with astaxanthin. Aquaculture 2003;216(1–4):177–91.
- [36] Beutler B. Innate immunity: an overview. Mol Immunol 2004;40:845-59.
- [37] Wang T, Rosa J, Guerun O. Total phenolic compounds, radical scavenging, and metal chelation of extracts from Icelandic seaweeds. Food Chem 2009;116:240–8.
- [38] Fu YW, Hou WY, Yeh ST, Li CH, Chen JC. The immunostimulatory effects of hot-water extract of *Gelidium amansii* via immersion, injection and dietary administrations on white shrimp *Litopenaeus vannamei* and its resistance against *Vibrio alginolyticus*. Fish Shellfish Immun 2007;22(6):673–85.
- [39] Hou W, Chen J. The immunostimulatory effect of hot-water extract of *Gracilaria tenuistipitata* on the white shrimp *Litopenaeus vannamei* and its resistance against *Vibrio alginolyticus*. Fish Shellfish Immun 2005;19(2):127–38.
- [40] Yeh TS, Chen JC. White shrimp Litopenaeus vannamei that received the hotwater extract of Gracilaria tenuistipitata showed earlier recovery in immunity after a Vibrio alginolyticus injection. Fish Shellfish Immun 2009;26:724–30.
- [41] Jos J, Lipton A, Subhash S. Impact of marine secondary metabolites (MSM) from *Hypnea musciformis* as an immunostimulant on hemogram count and *Vibrio alginolyticus* infection in the prawn, *Penaeus monodon*, at different salinities. ISR J Aquacult-Bamid 2008;60(1):65–9.
- [42] McClintock J, Baker B. Marine chemical ecology. CRC Pr; 2001.
- [43] BansemirA Just N, Michalik M, Lindequist U, Lalk M. Extracts and sesquiterpene derivatives from the red alga *Laurencia chondrioides* with antibacterial activity against fish and human pathogenic bacteria. Chem Biodivers 2004;1(3):463–7.
- [44] Manefield M, de Nys R, Naresh K, Roger R, Givskov M, Peter S, et al. Evidence that halogenated furanones from *Delisea pulchra* inhibit acylatedhomoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999;145(2):283.
- [45] Dunny GM, Winans SC. Cell–cell signaling in bacteria. ASM Press Washington, DC; 1999.
- [46] Maximilien R, de Nys R, Holmstrom C, Gram L, Givskov M, Crass K, et al. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga *Delisea pulchra*. Aquat Microb Ecol 1998;15(3):233–46.
  [47] Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P. Quorum
- [47] Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P. Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 2006;72:6419–23.

#### Editorial Manager(tm) for Journal of Biosciences Manuscript Draft

#### Manuscript Number:

Title: Identification and characterization of a novel Legume - like lectin cDNA sequence from the red marine algae, Gracilaria fisheri

Article Type: Research article

Keywords: Gracilaria fisheri: cDNA cloning; L- lectin; RACE-PCR; 3D structure

Corresponding Author: Kanokpan Wongprasert, Ph.D.

Corresponding Author's Institution: Faculty of Science, Mahidol University

First Author: Sukanya Suttisrisung

Order of Authors: Sukanya Suttisrisung;Saengchan Senapin;Boonsirm Withyachumnarnkul;Kanokpan Wongprasert, Ph.D.

Abstract: A legume type lectin (L-lectin) gene of the red algae, Gracilaria fisheri (GFL), was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of GFL was 1,714 bp and contained a 1,542 bp open reading frame encoding 513 amino acids with a predicted molecular mass of 56.5 kDa. Analysis of the putative amino acid sequence with NCBI-BLAST revealed a high homology (30-68%) with legume-type lectins (L-lectin) from Griffithsia japonica, Clavispora lusitaniae, Acyrthosiphon pisum, Tetraodon, nigroviridis, and Xenopus tropicalis. Phylogenetic relationship analysis showed the highest sequence identity to a glycoprotein of the red algae Griffithsia japonica (68%) (GenBank no. AAM93989). Conserved Domain Database analysis detected an N-terminal carbohydrate recognition domain (CRD), the characteristic of L-lectins, which contained two sugar binding sites and a metal binding site. The secondary structure prediction of GFL showed a  $\beta$ -sheet structure, connected with turn and coil. The most abundant structural element of GFL was the random coil, while the  $\alpha$ -helixes were distributed at the N- and C-termini, and 21  $\beta$ -sheets were distributed in the CRD. Computer analysis of three-dimensional structure showed a common feature of L-lectins of GFL which included an overall globular shape that composed of a β-sandwich of two anti-parallel β-sheets, monosaccharide-binding sites were on the top of the structure and proximity with a metal binding site. Northern blot analysis using a DIG-labeled probe derived from a partial GFL sequence revealed a hybridization signal of ~1.7 kb consistent with the length of the full-length GFL cDNA identified by RACE. No detectable band was observed from control total RNA extracted from filamentous green algae.

\*Cover Letter

Click here to download Cover Letter: covering letter to J. Biosciences.doc

Department of Anatomy, Faculty of Science, Mahidol University

272 Rama 6<sup>th</sup>. Rd., Rajdhevee, Bangkok 10400, Thailand

To: Editors

Journal of Biosciences

March 14, 2011

Dear Editors,

We would like to submit a manuscript entitled, " Identification and characterization

of a novel Legume - like lectin cDNA sequence from the red marine algae, Gracilaria

fisheri" "Sukanya Suttisrisung, Saengchan Senapin,

Withyachumnarnkul, and Kanokpan Wongprasert" for your consideration for

publication in the journal, Journal of Biosciences. This manuscript describes a full length

cDNA of a novel legume-like lectin cloned from the red algae, Gracilaria fisheri, namely

GFL by an EST search and RACE techniques, and bioinformatics analyses of its

secondary and tertiary structures. We believe this study provides an important

contribution to the research in lectins from macroalgae, in particular, genes-structure

relationships. Our manuscript presents research results that have not been published

previously and does not contain any copyright infringements or third party rights. All of

the authors have read the manuscript and agree to its submission for publication. Your

consideration is highly appreciated.

Sincerely yours,

Kanokpan Wongprasert, Ph.D.

Phone: 66-201-5447; Fax: 66-2354-7168

e-mail: sckbp@mahidol.ac.th

Identification and characterization of a novel Legume – like lectin cDNA sequence from the red marine algae, *Gracilaria fisheri* 

Sukanya Suttisrisung<sup>1</sup>, Saengchan Senapin <sup>1,2</sup>, Boonsirm Withyachumnarnkul, <sup>1,3</sup>

Kanokpan Wongprasert<sup>3\*</sup>

<sup>1</sup>Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science,

Mahidol University, Rama VI Road, Bangkok, Thailand

<sup>2</sup>National Center for Genetic Engineering and Biotechnology, National Science and Technology

Development Agency, Pathumthani, Thailand

<sup>3</sup>Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok,

Thailand

\*Corresponding author, e-mail: sckbp@mahidol.ac.th

Running title: Legume – like lectin cDNA sequence from Gracilaria fisheri

Abbreviations used: CRD, carbohydrate recognition domain; GFL, *Gracilaria fisheri* lectin; L-lectin, legume type lectin

#### **Abstract**

A legume type lectin (L-lectin) gene of the red algae, Gracilaria fisheri (GFL), was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of GFL was 1,714 bp and contained a 1,542 bp open reading frame encoding 513 amino acids with a predicted molecular mass of 56.5 kDa. Analysis of the putative amino acid sequence with NCBI-BLAST revealed a high homology (30-68%) with legume-type lectins (L-lectin) from Griffithsia japonica, Clavispora lusitaniae, Acyrthosiphon pisum, Tetraodon. nigroviridis, and Xenopus tropicalis. Phylogenetic relationship analysis showed the highest sequence identity to a glycoprotein of the red algae Griffithsia japonica (68%) (GenBank no. AAM93989). Conserved Domain Database analysis detected an N-terminal carbohydrate recognition domain (CRD), the characteristic of L-lectins, which contained two sugar binding sites and a metal binding site. The secondary structure prediction of GFL showed a β-sheet structure, connected with turn and coil. The most abundant structural element of GFL was the random coil, while the  $\alpha$ - helixes were distributed at the N- and C-termini, and 21 β-sheets were distributed in the CRD. Computer analysis of three-dimensional structure showed a common feature of L-lectins of GFL which included an overall globular shape that composed of a β-sandwich of two anti-parallel β-sheets, monosaccharide-binding sites were on the top of the structure and proximity with a metal binding site. Northern blot analysis using a DIG-labeled probe derived from a partial GFL sequence revealed a hybridization signal of ~1.7 kb consistent with the length of the full-length GFL cDNA identified by RACE. No detectable band was observed from control total RNA extracted from filamentous green algae.

Key words: Gracilaria fisheri: cDNA cloning; L- lectin; RACE-PCR; 3D structure

**Footnote:** The GenBank accession number for the GFL sequence reported in this paper is ACY56710.

#### 1. Introduction

Lectins are carbohydrate-binding proteins that are widely presented in all living organisms (Sharon 2008). They have been reported to play important roles in defense mechanism by immobilizing particles through agglutination (Espinosa *et al.* 2009) and encapsulation (Koizumi *et al.* 1999), to limit pathogen infection and cancer metastasis through their binding to carbohydrates on cell surfaces (Lu *et al.* 1994). Since they possess an ability to agglutinate cells or precipitate polysaccharides and glycoconjugates, they are used as tools for blood screening, cell identification and immunological research (Pinto *et al.* 2009). Many lectins are useful for viral inhibitors, such as N-acetylglucosamine-binding lectin extracted from the stinging nettle root of *Urtica dioica*, which has displayed pronounced antiviral properties (Shibuya *et al.* 1986). As well, mannose-binding lectins, such as cyanovirin-N derived from the blue green algae, *Nostoc ellipsosporum*, has showed high-affinity interactions with the envelope glycoprotein gp120 of HIV, enhancing its potential as an anti-HIV microbicide (Boyd *et al.* 1997).

Recent studies have shown that algae are a good source for novel lectins and they have unique molecular structures, carbohydrate-binding specificities and biological activities, which relate to beneficial roles of algal lectins in biochemical and biomedical applications. Marine algal lectins are of interest, because their small molecules can induce minor immunogenicity, their several disulfide bridges possess great stability, and also high specificity for complex carbohydrates and glycoconjugates (Nagano *et al.* 2005b). The presence of lectins in marine macroalgae was first established by Boyd *et al.* (1966). Thereafter, a number of reports on

distribution, isolation, characterization and biochemical properties of marine algae lectins have been published (Hori *et al.* 1981). It has been shown that lectins from marine algae exhibit protein properties similar to those of higher plant, but different in some aspects. Algal lectins are generally low molecular weight (about 10 - 30 kDa), and have a high content of acidic amino acids, giving isoelectric points ranging from 4-6 (Melo *et al.* 2004). They also possess thermostability, metal-independent hemagglutination, and have an affinity for glycoproteins but not for monosaccharides (Rogers and Hori 1993). These properties suggest that the algal lectins possess molecular structures and carbohydrate-binding specificities distinct from known lectins from other sources. Marine algal lectins have been reported both in monomeric and dimeric forms. Lectin isolated from *Gracilaria ornate* showed monomeric protein with molecular weight of approximately 17 kDa (Leite *et al.* 2005) and lectin from *Caulerpa cupressoides* had a dimeric protein of 45 kDa, consisting of 23 kDa subunits (Benevides *et al.* 2001).

Red marine algae *Gracilaria* spp. (Gracilariaceae) are important sources of high quality agar worldwide (Oliveira *et al.* 2000), and also are good sources of novel lectins. Several biomedical applications of lectin from *Gracilaria* spp. have been demonstrated. Hori *et al.* (1981) demonstrated that lower concentrations of lectin from *G. bursa-pastoris* showed stronger agglutination activity on mouse tumor cells FM3A, than lectins from land plant. Lectins extract from *G. tikvahae* HBOI strains G-3 and G-5 have been shown to induce high mitogenic activity on human lymphocytes and murine splenocytes, respectively (Bird *et al.* 1993). Recently, the lectin namely Griffithsin, isolated from a red algae *Griffithsia* sp. showed a highly potent HIV entry inhibitory effect and is currently being investigated as a potential microbicide for use in the prevention of the transmission of HIV (Mori *et al.* 2005). Although, several studies on marine algal lectins have been published (an amino-acid sequences obtained directly from purified

protein), few genes encoding lectins from algae have been isolated and characterized. The first amino acid sequence of marine algal lectin published was obtained from the red algae, *Bryothamnion triquetrum*, in the year 2000 (Calvete *et al.* 2000). Others have been reported for *Griffithsia japonica* (GenBank no. AAM93989), *Ulva pertusa* (Wang *et al.* 2004) and three species of *Hypnea* i.e. *H. japonica* (Hori *et al.* 2000), *H. cervicornis* and *H. musciformis* (Nagano *et al.* 2005a). However, cDNA sequences of lectins from the family Gracilariaceae, including *Gracilaria fisheri* have not been reported. Therefore, the present study was the first using expressed sequence tags (ESTs) from a public database and a set of molecular biology tools to clone and sequence a full-length lectin cDNA of *G. fisheri*, an important marine alga.

#### 2. Materials and Methods

#### 2.1 Algal samples

Vegetative thalli of the red algae, *G. fisheri*, and an un-identified species of filamentous green algae, were collected from the culture ponds at the Genetic Shrimp Improvement Center, Surat Thani, Thailand. They were cleaned of the epiphytes, rinsed with distilled water, frozen in liquid nitrogen, and stored at -80°C until used.

#### 2.2 RNA extraction

Total RNA was extracted from healthy thalli of *G. fisheri* using TRIZOL reagent (RMC, US), following the protocol as previously described (Dos Reis Falcão *et al.* 2008). Briefly, 1 g of frozen *G. fisheri* was powdered in liquid nitrogen using a mortar and pestle then put into a 15 ml Falcon tube containing 3 ml TRIZOL reagent and 0.3 ml 5 M KOAc. The sample was centrifuged at 8,000 X g at 4°C for 20 min. The supernatant was transferred to a new tube and

0.9 ml of cold ethanol, 1/3 volume of phenol: chloroform were added sequentially and then centrifuged at 8,000 X g at 4°C for 20 min. RNA in the supernatant was precipitated by addition of LiCl to a final concentration of 3 M, and incubated at -20°C for 3 h. The pellet was washed twice with 70% ethanol and air dried. RNA quality was assessed on 1% agarose gel electrophoresis. Total RNA was treated with RQ1 RNase-Free DNase (Promega, USA) to remove contaminating DNA. The amount of RNA was quantitated using a Beckman Coulter DU 530 U (Beckman Coulter, USA).

#### 2.3 Cloning of the partial fragment Gracilaria fisheri L-lectin (GFL) gene

A partial sequence of *G. fisheri* L-lectin (GFL) was obtained by RT-PCR using primers PGF1 and PGR1 (Table 1), designed from available partial lectin sequences of *G. changii* (GenBank no. DV963305 and DV962191). A 25 μl reaction solution contained 120 ng of RNA template, 100 μM of each primer, 0.5 μl of SuperScript One-Step RT/Platinum Taq mix (Invitrogen, USA), and 1X reaction buffer. The protocol comprised one initial step at 50°C for 30 min and 94°C for 2 min followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 1 min and final extension at 72°C for 5 min. PCR products were analyzed on 1.5% agarose gel electrophoresis. An amplified amplicon of 1,208 bp was excised and purified using QIAquick PCR purification kit (QIAGEN, Germany), and subsequently cloned into a pDrive Cloning Vector (QIAGEN, Germany). Recombinant plasmids were sequenced by 1<sup>st</sup>. BASE Ltd. (Malaysia).

#### 2.4 Cloning of full-length GFL cDNA by rapid amplification of cDNA ends (RACE)

The 3' and 5' RACE methods were employed to amplify the 3' and 5' regions of the GFL, respectively using a GeneRacer kit (Invitrogen, USA) and gene specific primers, following the instruction manual. Briefly, for 5' end amplification, total RNA of G. fisheri was treated with calf intestinal phosphatase to remove 5' phosphates and then treated with tobacco acid pyrophosphates to remove the 5' cap from full-length mRNA while leaving a 5' phosphate required for ligation. The 5' end of the treated mRNA was then ligated with the GeneRacer RNA oligomer by T4 RNA ligase, and then reverse transcribed using the GeneRacer oligo (dT) primer and avian myeloblastosis virus reverse transcriptase. A touch-down PCR was performed as suggested in the instruction manual using the Platinum Taq DNA polymerase, GeneRacer 5' primer G1 (specific to the GeneRacer RNA oligomer), and Gene specific primer PGR2 (Table 1). A nested PCR was then carried out using the primers G2 (GeneRacer 5' nested primer, Table 1) and PGRN, following the PCR conditions in the instruction manual. The amplified PCR products were cloned into a plasmid vector pCR4-TOPO, which was transformed into competent One Shot TOP10 cells with a TOPO TA Cloning kit. The recombinant plasmids were extracted and analyzed by DNA sequencing. For 3' end amplification, RNA was reversed transcribed using the GeneRacer oligo (dT) primer. The first round PCR was performed with the Gene specific primer PGF2 and G3 (GeneRacer 3' primer, Table 1). Nested PCR was then conducted with primers PGFN and G4 (GeneRacer 3' nested primer, Table 1). Cloning of amplified fragments was performed as mentioned above. Sequence information obtained from the above clones was used to design a pair of specific primers, FGF-F and FGF-R (Table 1), to amplify the full-length of GFL cDNA in a RT-PCR reaction using similar conditions as above, except 1.5 min was used in the extension step of 72°C. Amplified products were cloned and sent for sequencing.

#### 2.5 Sequence and structure analysis of GFL

A homology search of the GFL cDNA sequence was submitted to BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and EMBL (European Molecular Biology Laboratory, www.ebi.ac.uk/embl/) databases. An analysis for protein domains was carried out using Conserved Domain Database software (Marchler-Bauer *et al.* 2005) and InterPro database (http://www.ebi.ac.uk/InterProScan/). Prediction of the secondary structure of GFL was analyzed with SOPMA program (http://npsa-pbil.ibcp.fr/cgi-bin/npsa\_automat.pl?page=npsa\_sopma.html) and a tertiary structure analysis was performed using Swiss-Model (http://swiss-model.expasy.org) with the crystal structure of mammalian VIP 36 chain A (PDB 2DUR) (Satoh *et al.* 2007) as a template. A phylogenetic tree of GFL sequence was analyzed using the Molecular Evolutionary Genetics Analysis (MEGA 4) (Tamura *et al.* 2007).

#### 2.6 Northern blot analysis

To confirm the expression of GFL in *G. fisheri*, northern blot analysis was undertaken. Labeled DNA probe was prepared using a commercial PCR DIG-labeling mix (Roche Molecular Biochemicals, USA), according to the manufacturer's instructions. Primers PGFN and FGF-R (Table 1), expected to produce a 0.5-kb amplicon and recombinant plasmid containing a full-length GFL cDNA insert, were used in a labeling reaction. Total RNA samples extracted from *G. fisheri* and filamentous green algae (10 µg each) were denatured and separated in a 1.2% formaldehyde-denatured (w/v) agarose gel. The RNA was transferred to Nytran supercharge nylon membranes (Schleicher & Schull BioScience, USA). Hybridization was performed in Church's buffer (Church and Gilbert 1984) for 16 h at 55°C, then washed in 0.1 x SSC with 0.1% SDS at 55°C. The hybridized probe-anti-DIG-AP complex was visualized on Kodak X-ray

 film after incubation of the membrane with CDP-Star chemiluminescent substrate (Roche, Germany).

#### 3. Results

#### 3.1 cDNA cloning and sequence analysis of G. fisheri lectin

A 1,208-bp partial sequence (Clone A, Fig. 1) of G. fisheri lectin (GFL) was initially obtained by RT-PCR, using PGF1 and PFR1 primers designed from the EST database of G. changii (accession no. DV963305 and DV962191). Gene specific primers were subsequently designed from the known sequence for 3' and 5' RACE reactions. In a 5' RACE assay, a 232 bp fragment (Clone B) was generated, which contained 168 bp overlapping sequences with the initially isolated fragment. In a 3' RACE, a 594 bp fragment (Clone C) was obtained with a 152bp overlapping the known sequence. The continuous GFL cDNA of 1,680-bp (Clone D, Fig. 1) was amplified and confirmed that the combined sequences were correct. DNA sequence analysis revealed that the combined sequences of 1,714 bp included 74 nucleotides of 5'-untranslated region (UTR), a 1,542-nucleotide open reading frame, and a 92-nucleotide 3'-UTR including a stop codon (TAA) and poly (A) tail (Fig. 1 and 2). The sequence was deposited at GenBank under accession no. ACY56710. The entire 1,542 bp-open reading frame encodes a putative protein of 513 deduced amino acids with a postulated molecular weight of 56.5 kDa, and an isoelectric point of 5.8. BLASTP analysis of the entire deduced protein sequence showed high homology to legume-type lectin (L-lectin) or legume-like lectin proteins of many organisms, such as Griffithsia japonica (algae), Clavispora lusitaniae (fungi), Acyrthosiphon pisum (pea aphid), Tetraodon nigroviridis (pufferfish), Xenopus tropicalis (Western clawed frog), with ranges of 30-68 % identity and 47-77 % similarity. According to the rules of predict signal peptide (Nielsen et al. 1997), a putative signal peptide cleavage site between A19 and E20 was identified from the GFL sequence (Fig. 2). Conserved Domain Database (CDD) analysis detected an N-terminal carbohydrate recognition domain (CRD), characteristic of L-lectins, extending from residues 41 to residue 271. In addition, two sugar binding sites (D 126 and G 255), and a metal binding site (D 157), were present in the putative CRD. A C-terminal transmembrane domain, predicted by InterPro, was located from amino acids 479 to 499 (Fig. 2).

#### 3.2 The predicted structure of GFL

The overall schematic structure of GFL, and comparing of L- lectins from variety of organisms, are displayed in Fig. 3A. It revealed that the predicted lectin domain and signal peptide region were found in all sequences. The deduced amino acid sequence of GFL showed overall 68% identity with the 23 kDa leg-like lectin of the red algae *Griffithsia japonica* (accession no. AAM93989), 28-31% identities with the vesicular integral-membrane protein VIP36, *Verticillium albo-atrum* (accession no. XP\_003001019), and leg-like lectin *Clavispora lusitaniae* (accession no. XP\_002617077) from fungi. Sequence comparison of GFL with the animal lectins from the phyla Arthropoda and Vertebrata, showed 30% identity with the lectin\_VIP36\_VIPL from *Tetraodon nigroviridis* (accession no. CAF95369), 29% identity with vesicular integral-membrane protein VIP36 precursor from *Caligus rogercresseyi*, and 27-31% identities with the mannose-binding lectins from *Acyrthosiphon pisum* (accession no. XP\_001952501), *Culex quinquefasciatus* (accession no. XP\_001843193), *Xenopus tropicalis*, (accession no. NP\_001136372), *Danio rerio* (accession no. AAI33154), *Oryctolagus cuniculus*, (accession no. XP 002710070) (Fig. 3A).

Analysis of the secondary structure of GFL using Hierarchical Neural Network (Combet et al. 2000) demonstrated  $\beta$ -sheets structure connected with turn and coil (Fig. 3B). The putative GFL peptide contained 36% of  $\alpha$ -helix, 17% of  $\beta$  sheet, 7% of  $\beta$ -turn, and 40% of random coil. GFL comprised 21  $\beta$ -sheets distributed in the CRD, whereas the random coil was abundant in the structural element, and the  $\alpha$  helixes were distributed in the N- and C-termini (Fig. 3B). Swiss-Model structure prediction showed a similar folding mode and spatial configuration of GFL to PDB 2DUR Chain A (Satoh et al. 2007) (Fig. 3C). The CRD of GFL had an overall globular shape composed of a  $\beta$ -sandwich of two anti-parallel  $\beta$ -sheets, and it is noteworthy that the  $\beta$ -sheets occurred predominantly in the structure of this lectin (Fig. 3C). The overall folding of GFL, which were typically built from  $\beta$ -sheets, connected by turns and loops, created a very tight structural scaffold. The carbohydrate-binding sites were on the top of the structure and a metal binding site was on the upward surface of a  $\beta$ -strand, in close proximity with the carbohydrate-binding sites (Fig 3 C).

#### 3.3 Phylogenetic tree of the GFL

A phylogenetic tree was constructed by Molecular Evolutionary Genetics Analysis (MEGA 4) software based on the L-type lectins from Arthropoda, Vertebrata, Fungi and Rhodophyta (red algae). The result showed that GFL was closely related with L-lectin from the red algae *Griffithsia japonica* glycoprotein (accession no. AAM93989) with 100% bootstrap supported (500 bootstrap replicas) as expected but had far relationship with other L-type lectin which idenified as mannose binding lectins in Arthropoda and Vertebrata (Fig. 4).

#### 3.4 Transcriptional expression of GFL

To determine if the putative ORF of GFL identified by sequence analysis is transcriptionally active, total RNA from G. fisheri was subjected to northern blot analysis using DIG-labeled probe derived from a partial GFL sequence, and the results are shown in Fig. 5. RNA extracted from filamentous green algae was used as a control. Equivalent loading and integrity of the RNA in each lane was confirmed by ethidium bromide staining of the gel (Fig. 5A). The northern hybridization revealed the presence of GFL transcripts from only the G. fisheri RNA sample (Fig 5B). The size of the positive band estimated to be  $\sim 1.7$  kb, which was consistent with the transcript size predicted from the GFL cDNA.

#### 4. Discussion

The present study describes a full length cDNA of a novel legume-like lectin cloned from the red algae, *G. fisheri*, namely GFL by an EST search and RACE techniques. The full-length cDNA of GFL was 1,714 bp and contained 1,542 bp-open reading frame encoding a putative protein of 513 deduced amino acids. A search from BLASTP database demonstrated that GFL had high homology (30-68%) with legume-type lectins (L-lectin) from *Griffithsia japonica*, *Clavispora lusitaniae*, *Acyrthosiphon pisum*, *Tetraodon. nigroviridis*, and *Xenopus tropicalis* indicating GFL was a member of the L- lectin family. A phylogenetic tree analysis showed a close evolutionary relationship (68% identity) of GFL with a glycoprotein of the red algae, *Griffithisa japonica*. Moreover, they were not closely linked to any clusters of the other known L-lectins from other species. This suggested that the L-lectin genes from these two red algae might constitute a novel lectin. Although they are closely related, the primary structure of GFL was different from that of *G. japonica*, and that of other algal lectin sequences (Nagano *et al.* 2005a). Comparing the deduced amino acid sequences of other L-lectins, GFL showed a longer

size (513 aa) with a long carboxyl terminal chain. This suggested a highly variable molecular evolution of L-lectin in different species and it is noteworthy that a lectin in a given algae does not necessarily imply a similar lectin present in closely related species.

Typically, most of the L- lectins consist of two or four subunits, each with a single, small carbohydrate combining site with the same specificity, and a metal binding site (for calcium and manganese). Each subunit has a size of 25-30 kDa and is commonly composed of a single polypeptide chain of 200-300 aa (Sharon and Lis 2002). In the present study, the full length cDNA sequence of GFL encoded one subunit of 513 aa containing an N-terminal signal peptide of 19 aa and C-terminal transmenbrane domain of 21 aa. These lengths were similar to those of other reported L- type lectins. However, transmembrane domain of L- lectins from G. japonica and Clavispora lusitaniae is located at the N-terminal. Excluding the signal peptide (19 aa), GFL encoded a lectin protein of 494 aa with a molecular weight of 54.6 kDa and a pI of 5.7. In addition, many process sites such as glycosylation and phosphorylation were found in the Cterminal of GFL, suggesting possible sites of posttranslational processing. Indeed, L-lectins are generally synthesized as a pre-cursor and undergo an initial removal of an N-terminal signal peptide. They are subsequently post-translationally processed, that may consist of cleavage proteolysis, C-terminal trimming, sequence removal, and re-ligation of the original C- and Ntermini (Loris et al. 1998). Thus, the predicted molecular weight of mature protein of GFL may be smaller or larger than 54.6 kDa depending on the type of post-translational processing. X-ray crystallography and further analysis by mass spectrometry or SDS-PAGE of a purified GFL can determine its exact MW and help to elucidate its molecular basis.

The prediction of carbohydrate binding from the structural analysis of GFL demonstrated a potential binding with monosaccharides as normally shown in L-lectins. L-lectins typically use

a conserved set of amino acid residues, Asp, Gly (or Arg), as a binding site for monosaccharides while variable parts of polypeptide are used to achieve specificity (Sharon and Lis 2002). highly conserved key amino acids residues Asp (D126) and Gly (G255) were displayed in GFL and were assumed to be essential for carbohydrate binding (Sharma and Surolia 1997). However, the mannose binding site (QDNY) was not present, suggesting that GFL would not be a mannose binding lectin. Additionally, the GFL contained a metal binding site at Asp (D157), which was essential for correct folding and internal arrangements of the carbohydrate-binding site (Loris et al. 1998). The metal binding site is also crucial for its biological activity as shown in all Llectins that divalent cations (Mn<sup>2+</sup> and Ca<sup>2+</sup>) are required for hemagglutination activity (Sharon and Lis 2002). GFL also contained the characteristic site of Ala (A125) preceding to Asp (D 126) suggesting the location of a cis-peptide bond between Ala-Asp, which is known to be stabilized by metal ions (Sharon and Lis 2002). This arrangement is a key event in the metalinduced activation of GFL. It is important to note that the above findings of GFL were in contrast to those of other marine red algae lectins. It has been shown that most red algal lectins have low molecular weight, bind to large molecules such as glycoprotein or yeast mannan bearing high-mannose N-glycans, and they do not require divalent cations for hemagglutination (Rogers and Hori 1993). Nevertheless, these characteristics are extended to a high molecular mass lectin (57 kDa) from Gracilaria Cornea (Lima et al. 2005). However, it should be mentioned that some high molecular weight lectins (MW > 60000) from the red algae Ptilota serrata (Rogers et al. 1990) and P. filicina (Sampaio et al. 1998) are able to bind to monosaccharides such as D-galactose, D-fucose, N-acetylgalactosamine (GalNAc) or Nacetylglucosamine (GlcNAc) and also require metals for their biological activity. These data indicate that red algae have a diverse family of lectins, and each has a distinct structure and role.

Computer analysis of the secondary and tertiary structures also showed that GFL had the secondary and three-dimensional structures similarly to other L- lectins (Satoh *et al.* 2006). These included the carbohydrate-binding sites which located at the top of the protein structure, and was in the close proximity with the metal binding site.

Over 100 L-lectins have been isolated from seeds and others from shoot, root, bark and nodules of land plants (Van Damme et al. 1998). They have been reported to have diverse function, such as creating a symbiosis with soil bacteria, of the genus Rhizobium, fixing atmospheric nitrogen, rendering plants independent of supply of external nitrogen fertilizer (Fountain et al. 1977), and defense against pathogens by way of lectin-pathogen interaction via recognizing and immobilizing the pathogens, to prevent subsequent growth and multiplication (Etzler 1986). This kind of defensive role of lectins has not been clearly demonstrated in marine algae. However, they have been reported to have a role in recognition and adhesion of sexual gametes during reproduction (Kim and Kim 1999). Previous studies have also shown biological activities of lectins from marine algae in aggregation of fungi, bacteria, blue-green algae, diatoms, dinoflagellates and erythrocytes (Hori et al. 1996). Additionally, lectin-like proteins from the red algae, Eucheuma serra and Pterocladia capillacea, have been shown to inhibit the growth of the marine bacterium, Vibrio vulnificus, and it was suggested that the lectin mediated bacterial-algal recognition and binding via the specific carbohydrates on either the algal cell walls or plasma membranes of the bacteria, providing defense for the algae (Liao et al. 2003). From Northern blot analyses, it was demonstrated that GFL was expressed in vegetative thalli of G. fisheri, indicating that it is a constitutively expressed protein (Yao et al. 2003). However, in our study, the function of GFL in defense of the algae has not been elucidated.

In conclusion, the present study is the first identification of an L-lectin cDNA sequence from the red marine algae *G. fisheri*. L- lectins constitute a large family of homologous proteins that have diversity and specificity of protein—carbohydrate interactions (Sharon and Lis 1995). Therefore they are widely studied as useful tools in immunology and applications for the understanding of cell—cell recognition, adhesion, tumor spread, bacterial and viral infection, and inflammation (Rudiger *et al.* 2000). Hence, expression and purification of the GFL protein, and functional analyses will further elucidate its structure/function relationship. Understanding the carbohydrate recognition of GFL from *G. fisheri* and its biological activities could possibly draw a considerable economic attention to exploit novel and useful lectins from *G. fisheri*, for many applications, particularly as an anti-pathogen agent.

#### Acknowledgements

This work was supported by Mahidol University Postdoctoral Fellowship Program, the Thailand Research Fund and the Commission on Higher Education. We would like to thank the Shrimp Genetic Improvement Center, the National Center for Genetic Engineering and Biotechnology, the Ministry of Science and Technology at Surat Thani for algae samples, and Professor Dr. Peter Hanna for critical comments on the manuscript.

#### References

- Benevides N M B, Holanda M L, Melo F R, Pereira M G, Monteiro A C O, Freitas A L P 2001

  Purification and partial characterization of the lectin from the marine green alga *Caulerpa*cupressoides (Vahl) C. Agardh; *Bot. Mar.* 44 17-22
- Bird K, Chiles T, Longley R, Kendrick A, Kinkema M 1993 Agglutinins from marine macroalgae of the southeastern United States; *J. Appl. Phycol.* **5** 213-218
- Boyd M R, Gustafson K R, McMahon J B, Shoemaker R H, O'Keefe B R, Mori T et al 1997 Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development; *Antimicrob. Agents Chemother.* 41 1521-1530
- Boyd W, Almodóvar L, Boyd L 1966 Agglutinins in marine algae for human erythrocytes;

  \*Transfusion. 6 82–83\*\*
- Calvete J J, Costa F H, Saker-Sampaio S, Murciano M P, Nagano C S, Cavada B S et al 2000

  The amino acid sequence of the agglutinin isolated from the red marine alga

  Bryothamnion triquetrum defines a novel lectin structure; Cell Mol. Life Sci. 57 343-350
- Combet C, Blanchet C, Geourjon C, Deleage G 2000 NPS@: network protein sequence analysis; *Trends Biochem. Sci.* **25** 147-150
- Dos Reis Falcão V, Pedroso Tonon A, Cabral Oliveira M, Colepicolo P 2008 RNA Isolation method for polysaccharide rich algae: agar producing *Gracilaria tenuistipitata* (Rhodophyta); *J. Appl. Phycol.* **20** 9-12

- Espinosa E P, Perrigault M, Ward J E, Shumway S E, Allam B 2009 Lectins associated with the feeding organs of the oyster *Crassostrea virginica* can mediate particle selection; *Biol. Bull.* **217** 130-141
- Etzler M E 1986 Distribution and function of plant lectins; in The lectin: properties, functions and applications in biology and medicine (eds) I E Liener, Goldstein and N Sharon (New York: Academic Press) pp 371-425
- Fountain D W, Foard D E, Replogle W D, Yang W K 1977 Lectin release by soybean seeds;

  Science 197 1185-1187
- Hori K, Matsubara K, Miyazawa K 2000 Primary structures of two hemagglutinins from the marine red alga, *Hypnea japonica*; *Biochim. Biophys. Acta.* **1474** 226-236
- Hori K, Miyazawa K, Ito K 1981 Hemagglutinins in marine algae; *Bull. Jpn. Soc. Sci. Fish* **47** 793–798
- Hori K, Ogata T, Kamiya H, Mimuro M 1996 Lectin-like compounds and lectin receptors in marine microalgae: hemagglutination and reactivity with purified lectins; *J. phycol.* **32** 783-790
- Kim S-H, Kim G H 1999 Cell-cell recognition during fertilization in the red alga,

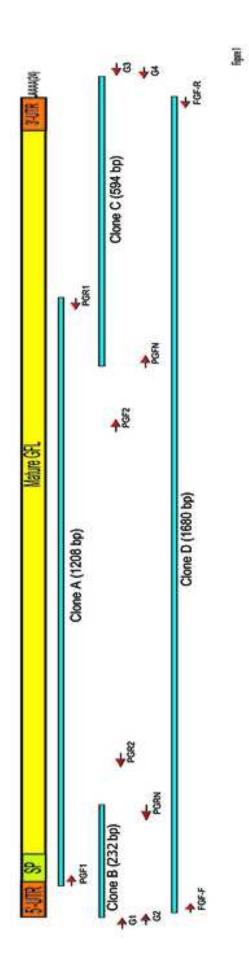
  \*Aglaothamnion oosumiense\* (Ceramiaceae, Rhodophyta); Hydrobiologia 398-399 81-89
- Koizumi N, Imamura M, Kadotani T, Yaoi K, Iwahana H, Sato R 1999 The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm *Bombyx mori* is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains; *FEBS Lett.* **443** 139-143
- Leite Y F, Silva L M, Amorim R C, Freire E A, de Melo Jorge D M, Grangeiro T B, Benevides

  N M 2005 Purification of a lectin from the marine red alga *Gracilaria ornata* and its

- effect on the development of the cowpea weevil *Callosobruchus maculatus* (Coleoptera: Bruchidae); *Biochim. Biophys. Acta.* **1724** 137-145
- Liao W R, Lin J Y, Shieh W Y, Jeng W L, Huang R 2003 Antibiotic activity of lectins from marine algae against marine vibrios; *J. Ind. Microbiol. Biotechnol.* **30** 433-439
- Lima M E, Carneiro M E, Nascimento A E, Grangeiro T B, Holanda M L, Amorim R C, Benevides N M 2005 Purification of a lectin from the marine red alga *Gracilaria cornea* and its effects on the cattle tick *Boophilus microplus* (Acari: Ixodidae); *J. Agric. Food Chem.* **53** 6414-6419
- Loris R, Hamelryck T, Bouckaert J, Wyns L 1998 Legume lectin structure; *Biochim. Biophys.*Acta. 1383 9-36
- Lu Y, Pelling J C, Chaney W G 1994 Tumor cell surface beta 1-6 branched oligosaccharides and lung metastasis; *Clin. Exp. Metastasis* **12** 47-54
- Melo F R, Benevides N M B, Pereira M G, Holanda M L, Mendes F N P, Oliveira S R M, Freitas A L P, Silva L M C M 2004 Purification and partial characterisation of a lectin from the red marine alga *Vidalia obtusiloba* C. Agardh; *Revista. Brasil. Bot.* **27** 263-269
- Mori T, O'Keefe B R, Sowder R C, 2nd, Bringans S, Gardella R, Berg S, Cochran P, Turpin J A, Buckheit R W, Jr., McMahon J B, Boyd M R 2005 Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga *Griffithsia* sp; *J. Biol. Chem.* **280** 9345-9353
- Nagano C S, Debray H, Nascimento K S, Pinto V P, Cavada B S, Saker-Sampaio S, Farias W R, Sampaio A H, Calvete J J 2005a HCA and HML isolated from the red marine algae *Hypnea cervicornis* and *Hypnea musciformis* define a novel lectin family; *Protein Sci.* 14 2167-2176

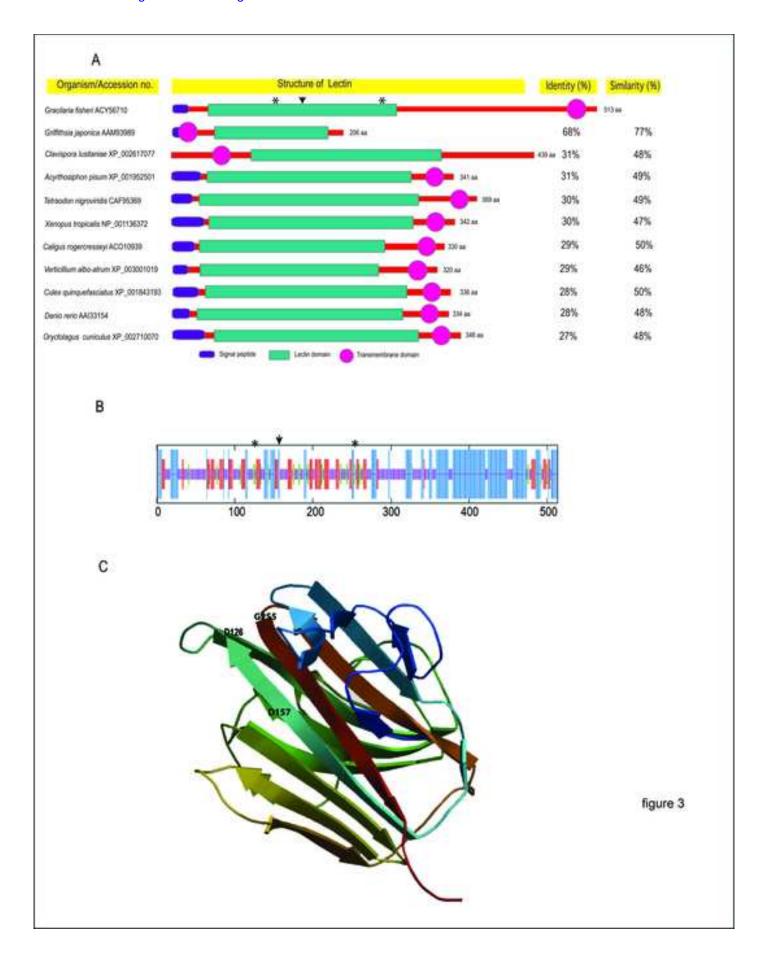
- Nagano C S, Gallego del Sol F, Cavada B S, Nascimento K S, Nunes E V, Sampaio A H, Calvete J J 2005b Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga *Hypnea musciformis*; *Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.* **61** 997-999
- Nielsen H, Engelbrecht J, Brunak S, von Heijne G 1997 Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites; *Protein Eng.* **10** 1-6
- Oliveira E C, Alveal K, Anderson R 2000 Mariculture of the agar-producing Gracilarioid red algae; Res. Fish. Sci. 8 345-378
- Pinto V P, Debray H, Dus D, Teixeira E H, de Oliveira T M, Carneiro V A, Teixeira A H, Filho G C, Nagano C S, Nascimento K S, Sampaio A H, Cavada B S 2009 Lectins from the red marine algal species *Bryothamnion seaforthii* and *Bryothamnion triquetrum* as tools to differentiate human colon carcinoma cells; *Adv. Pharmacol. Sci.* Article ID 862162
- Rogers D J, Fish B, Barwell C J 1990 Isolation and properties of lectins from two red marine algae: *Plumaria elegans* and *Ptilota serrata*; in Lectins: biology, biochemistry, clinical biochemistry (eds) T C Bog-Hansen and D L J Freed (St Louis: Sigma Chemical Company) pp 49-52
- Rogers D J, Hori K 1993 Marine algal lectins: new developments; *Hydrobiologia*. **260-261** 589-593
- Rudiger H, Siebert H C, Solis D, Jimenez-Barbero J, Romero A, von der Lieth C W, Diaz-Marino T, Gabius H J 2000 Medicinal chemistry based on the sugar code: fundamentals of lectinology and experimental strategies with lectins as targets; *Curr. Med. Chem.* 7 389-416

- Sampaio A H, Rogers D J, Barwell C J 1998 A galactose-specific lectin from the red marine alga Ptilota filicina; Phytochemistry. 48 765-769
- Satoh T, Cowieson N P, Hakamata W, Ideo H, Fukushima K, Kurihara M, Kato R, Yamashita K, Wakatsuki S 2007 Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36; *J. Biol. Chem.* **282** 28246-28255
- Satoh T, Sato K, Kanoh A, Yamashita K, Yamada Y, Igarashi N, Kato R, Nakano A, Wakatsuki S 2006 Structures of the carbohydrate recognition domain of Ca<sup>2+</sup> -independent cargo receptors Emp46p and Emp47p; *J. Biol. Chem.* **281** 10410-10419
- Sharma V, Surolia A 1997 Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity; *J. Mol. Biol.* **267** 433-445
- Sharon N 2008 Lectins: past, present and future; Biochem. Soc. Trans. 36 1457–1460
- Sharon N, Lis H 1995 Lectins proteins with a sweet tooth: functions in cell recognition; *Essays Biochem.* **30** 59-75
- Sharon N, Lis H 2002 How proteins bind carbohydrates: lessons from legume lectins; *J. Agric.*Food Chem. **50** 6586-6591
- Shibuya N, Goldstein I J, Shafer J A, Peumans W J, Broekaert W F 1986 Carbohydrate binding properties of the stinging nettle (*Urtica dioica*) rhizome lectin; *Arch. Biochem. Biophys.* **249** 215-224
- Tamura K, Dudley J, Nei M, Kumar S 2007 MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0; *Mol. Biol. Evol.* **24** 1596-1599
- Van Damme E J M, Peumans J, Pusztai A, Bardocz S 1998 Handbook of plant lectins:


  Properties and biomedical applications (Chichester: Wiley) pp 452

Wang S, Zhong F D, Zhang Y J, Wu Z J, Lin Q Y, Xie L H 2004 Molecular characterization of a new lectin from the marine alga *Ulva pertusa*; *Acta Biochim. Biophys. Sin.* 36 111-117
Yao J H, Zhao X Y, Liao Z H, Lin J, Chen Z H, Chen F, Song J, Sun X F, Tang K X 2003
Cloning and molecular characterization of a novel lectin gene from *Pinellia ternata*; *Cell Res.* 13 301-308

\_ \_


 Table 1
 List of oligonucleotide primers

| Name  | Sequence from 5' to 3'       | Remarks            |
|-------|------------------------------|--------------------|
| PGF1  | GCGTCCCACAATGTCCGTGCTGTT     | RT-PCR             |
| PGR1  | CGCGGATCAGCTGGCCTGTGATAT     | RT-PCR             |
| PGF2  | ACCAATGCTGCGTCGTCTTCCAGTAGTG | 3'RACE             |
| PGFN  | GCACACATCGCTTTCAGGGTCGTTGGAT | 3'RACE Nested PCR, |
|       |                              | Probe              |
| PGR2  | GGAGGTGAGGCGCACGACGTCTCTAC   | 5'RACE             |
| PGRN  | TACGGTTGGCGAAAGGTGTGGTGCACAT | 5'RACE Nested PCR  |
| G1    | GCACGAGGACACUGACAUGGACUGA    | 5'RACE (kit)       |
| G2    | GGACACTGACATGGACTGAAGGAGTA   | 5'RACE Nested PCR  |
|       |                              | (kit)              |
| G3    | GCTGTCAACGATACGCTACGTAACG    | 3'RACE (kit)       |
| G4    | CGCTACGTAACGGCATGACAGTG      | 3'RACE Nested PCR  |
|       |                              | (kit)              |
| FGF-F | ACTAACACACCTCCTTCTCTGTCC     | RT-PCR             |
| FGF-R | GCAGTGGCTGAGAGCGTTTTGTTC     | RT-PCR, Probe      |



| ato    | tee  | gtg        | ctg   | tto | gto  | ctc  | ctg    | cta   | ctc  | gcg | ctt  | cat   | gca              | ccc | ccc   | atc | ccc   | gcc | gag | cag   | cto | tice | cgc   | cag  |     |
|--------|------|------------|-------|-----|------|------|--------|-------|------|-----|------|-------|------------------|-----|-------|-----|-------|-----|-----|-------|-----|------|-------|------|-----|
| М      | s    | V          | L     | F   | v    | L    | $_{L}$ | L     | L    | A   | L    | H     | A                | P   | P     | I   | P     | A   | E   | 0     | L   | 5    | R     | 0    | 25  |
| gao    | cgt  | cag        | cgc   | cag | tat  | ccc  | aaa    | cta   | tto  | gag | ttc  | ecc   | tat              | ttg | ggc   | gce | ggc   | gat | ata | cac   | cac | PGR  |       | ege  |     |
| E      | R    | 0          | R     |     | Y    |      |        | L     |      | 937 | F    | P     |                  | L   | G     | A   | G     | D   | v   | н     | н   |      | F     | R    | 50  |
| can    | ecg  | tac        | gag   | ccc | age  | cca  | gca    | ggc   | gat  | cca | atc  | aac   | age              | tgg | ttc   | caa | cta   | ggt | acc | acc   | atg | ate  | acq   | ege  |     |
| Q      | P    |            | E     | P   | s    | P    | A      | G     | D    | P   | v    | N     | G                | W   | F     | Q   | L     | G   | T   | T     | M   | I    | T     | R    | 75  |
| agt    | cgc  | tet        | ggt   | aga | gac  | gto  | PGR    | cac   | ete  | acc | tcc  | acc   | age              | caq | qcc   | aat | caa   | gcc | atc | ttc   | tac | aac  | gee   | att  |     |
| s      | R    | s          | G     | R   | D    | v    | v      | R     | L    | т   | s    | A     | s                | 0   | A     | N   | 0     | A   | I   | F     | Y   | N    | A     | I    | 10  |
| ccc    | acc  | gac        | acc   | cad | aac  | tte  | aac    | aac   | tac  | ttt | gac  | ate   | gaa              | ato | gac   | act | ata   | cac | gat | age   | cat | gaa  | eca   | acc  |     |
| P      | т    | D          | T     | 0   | N    | F    | N      | G     | Y    | F   | D    | v     | E                | м   | D     | т   | v     | R   | D   | s     | н   | E    | P     | A    | 12  |
| -15. c | age  |            | aat   | -   | tte  | tte  | acc    | 331   | gat  | cat | cca  | coa   | cta              | ant | tet   | ane | ato   | апа | ato | age   | cat | acc  | .F.   |      | - 2 |
| D      | G    | M          | G     | F   | 100  | F    | T      | R     | 100  | R   | P    | R     |                  | G   | s     | A   | м     | G   | м   | S     | н   | T    | F     | v    | 15  |
| -      | ctg  | \$72.      | . jij | .3  |      | 375  | - 8.   | . 175 | 1978 | 191 | . R. | . 372 |                  |     | -57h. | ata | nnn   |     | ata |       | 277 | tat  | ata   | JE   |     |
| G      | L    |            | L     |     | I    |      |        | F     | S    | N   | S    |       | s                | 100 |       | V   |       | Y   | 100 | Y     |     | Y    |       |      | 13  |
|        | agt  |            |       |     |      |      |        |       |      |     |      |       |                  |     |       |     |       |     |     |       |     |      |       |      | -   |
|        | G    |            | K     | -   | W    |      | P      |       |      |     |      |       | D                |     | E     | L   | T     | K   |     | C     | T   |      | 705   | M    | 20  |
|        |      |            |       |     |      |      |        |       |      |     | -    |       |                  |     |       |     |       |     | _   |       |     |      | -     |      | 63  |
| 200    | cat  |            |       | - 3 | 1    |      |        | 100   |      |     |      | -     |                  |     |       | -   | -     |     | 1   |       |     |      |       |      | 21  |
| N      |      | P          |       | R   |      |      | v      | -     | F    |     | D    | G     | D                |     | н     | v   |       | v   | A   | М     | N   | P    | -     | S    | 22  |
| 703    | caa  | cgt        | rgg   | cac | acc  | tgt  | EEC    | 702   | gca  |     | ~@`  | gtg   | cga              | CEE | ccg   | EEC |       |     | 20  | 3     | cat | ctg  | gcg   |      |     |
| P      | Q    | R          | W     | н   | T    | C    | F      | K     | A    | S   | G    | V     | R                | r   | P     | F   | s     | G   | G   | G     | н   | L    | A     | F    | 25  |
| gct    | gcc  | gaa        | acg   | 999 | cat  | tto  | tat    | gcc   | aat  | cac | gag  | gtg   | cac              | gac | gcg   | gtg | ttc   | atc | gat | gaa   | ccg | gca  | tog   | gee  |     |
| A      |      | E          | T (   | (e) | н    | F    | Y      | А     | N    | н   | Е    | v     | н                | D   | A     | v   | F     | I   | D   | E     | P   | ٨    | S     | A    | 27  |
| aca    | icgt | teg        | tat   | caa | gac  | gat  | tac    | tac   | tet  | caa | caa  | tat   | ggc              | acg | ggt   | ggc | gcc   | gca | acc | aac   | cgt | cag  | caa   | cag  |     |
| T      | R    | S          | Y     | 0   | D    | D    | Y      | Y     | S    | Q   | PGF  | 2 Y   | G                | T   | G     | G   | A     | A   | T   | N     | R   | 0    | Ď     | Q    | 30  |
| tac    | aat  | gcg        | gat   | aac | tcg  | cgc  | acc    | aat   | gct  | geg | teg  | tet   | tee              | agt | agt   | ggc | gct   | tct | age | gct   | ggt | act  | gct   | gct  |     |
| Y.     | N    | A          | D     | N   | S    | R    | T      | N     | A    | A   | S    | S     | 5                | S   | S     | G   | A     | 3   | S   | A     | G   | T    | A     | A    | 32  |
| gcc    | gca  | gat        | aag   | gcg | ccc  | gaa  | tat    | cgc   | acc  | gat | ccg  | gac   | ccg              | gcc | ācā   | cgt | atc   | cac | cgc | ggt   | gcg | gac  | gcg   | cac  |     |
| A      | A    | D          | K     | A   | P    | E    | Y      | R     | T    | D   | P    | D     | P                | A   | A     | R   | 1     | H   | R   | G     | A   | D    | A     | H    | 35  |
| aca    | itcg | ctt        | tca   | ggg | tcg  | ttg  | gat    | ttg   | cag  | gtt | tac  | gag   | gtg              | tat | aac   | tcc | gtg   | tcg | gee | atg   | ctc | aag  | ggg   | ctc  |     |
| T      | \$   | $\Sigma_i$ | S     | G   | S    | L    | D      | L     | Q    | V   | Y    | E     | V                | Y.  | N     | S   | V     | S   | A   | M     |     | K    | G     | L    | 37  |
| ggt    | gac  | gag        | aat   | gca | cag  | gaa  | aca    | aag   | ctg  | aaa | ctg  | gag   | gge              | gtg | egt   | gat | atc   | aca | ggc | cag   | ctg | atc  | ege   | gaa  |     |
| G      | D    | E          | N     | A   | Q    | E    | T      | K     | L    | K   | L    | E     | G                | V   | R     | D   | I     | T   | G   | Q     | L   | I    | R     | E    | 40  |
| atq    | gag  | aaa        | cag   | aag | agc  | gat  | ctg    | tco   | cag  | ttg | gtt  | gat   | gte              | ttg | aga   | cat | ttg   | aag | gac | acg   | geg | gga  | gat   | ttg. |     |
| M      | Ε    | K.         | Q     | K   | S    | D    | L.     | S     | 0    | L   | V    | D     | ٧                | L   | R     | Н   | L     | ĸ   | D   | T     | A   | G    | D     | L    | 42  |
| tog    | tac  | gca        | tet   | gat | agg  | tto  | tac    | agt   | cag  | ctg | caa  | 999   | ctt              | cat | aac   | tca | ttg   | cgt | act | ttg   | aag | gag  | aag   | acg  |     |
| 5      | Y    | Α          | S     | D   | R    | F    | S      | S     | 0    | L   | Q    | G     | $\mathbf{I}_{t}$ | H   | N     | S   | L     | R   | T   | L     | ĸ   | E    | K     | T    | 45  |
| cat    | ggt  | att        | tet   | gat | teg  | cat  | gat    | gag   | ttg  | cac | gat  | gag   | ttg              | att | gat   | cat | cac   | gat | agt | att   | atg | gaa  | cag   | tca  |     |
| 11     | G    | 1          | S     | D   | S    | Н    | D      | £     | L    | H   | D    | E     | I,               | 1   | D     | H   | н     | D   | S   | Ι     | М   | E    | 0     | S    | 47  |
| 8.0    | ggt  |            |       |     |      |      |        |       |      |     |      |       |                  |     |       |     |       |     |     |       |     |      |       |      |     |
|        |      | 550        |       | 935 | W. 7 | -505 | 53, 57 |       |      |     |      |       | 33.13            |     |       |     | astan |     |     | -8.16 |     | Ħ    | 10.15 |      | 50  |
| tcc    | G    |            | _     |     |      |      |        |       |      |     |      | _     |                  |     |       |     |       |     |     |       |     |      |       |      | (0) |
| tco    | G    |            | ctc   | gea | tca  | cga  | aaa    | gta   | ggt  | cat | ato  | gto   | caa              | cat | tda   | tat | cqc   | acc | aat | gca   | tag | ata  | tta   | tat  |     |

**Figure3** Click here to download high resolution image



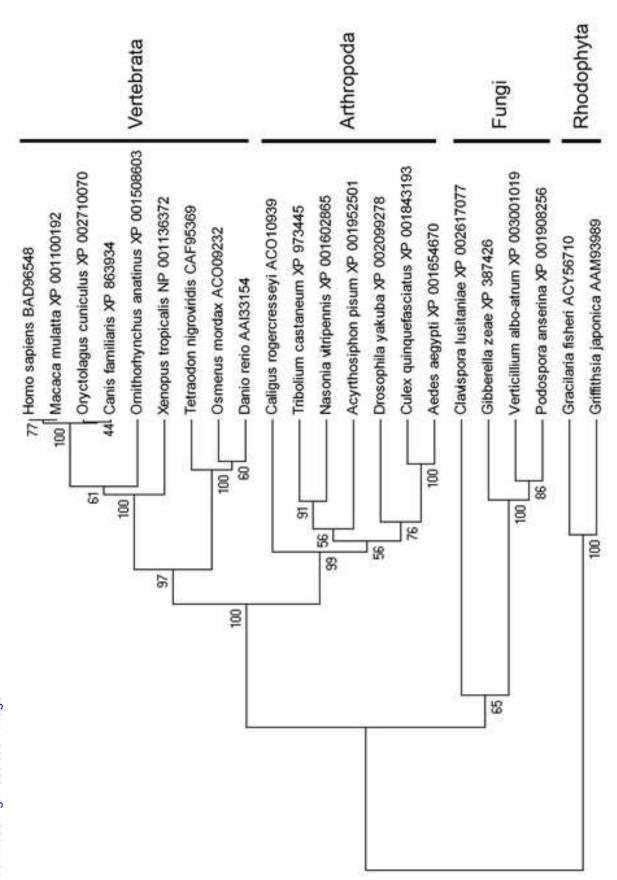
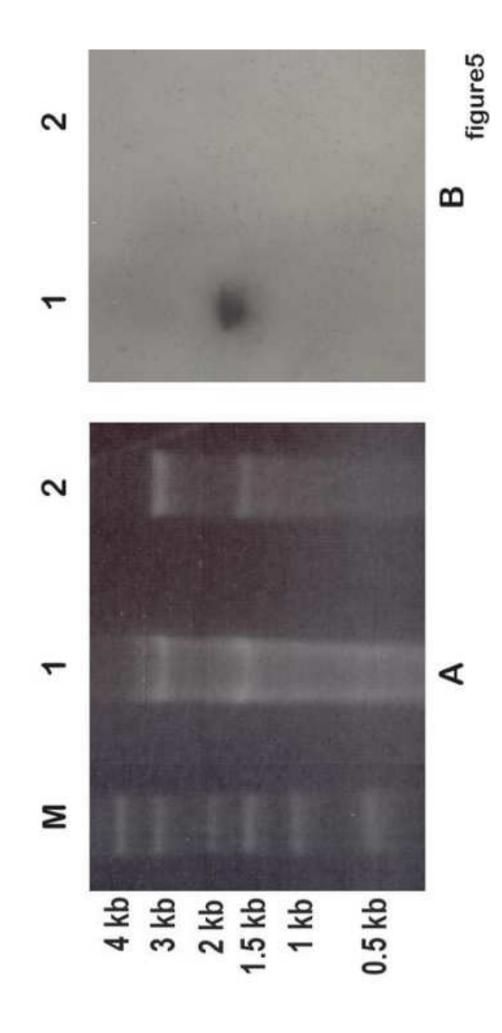




figure 4



#### Legends

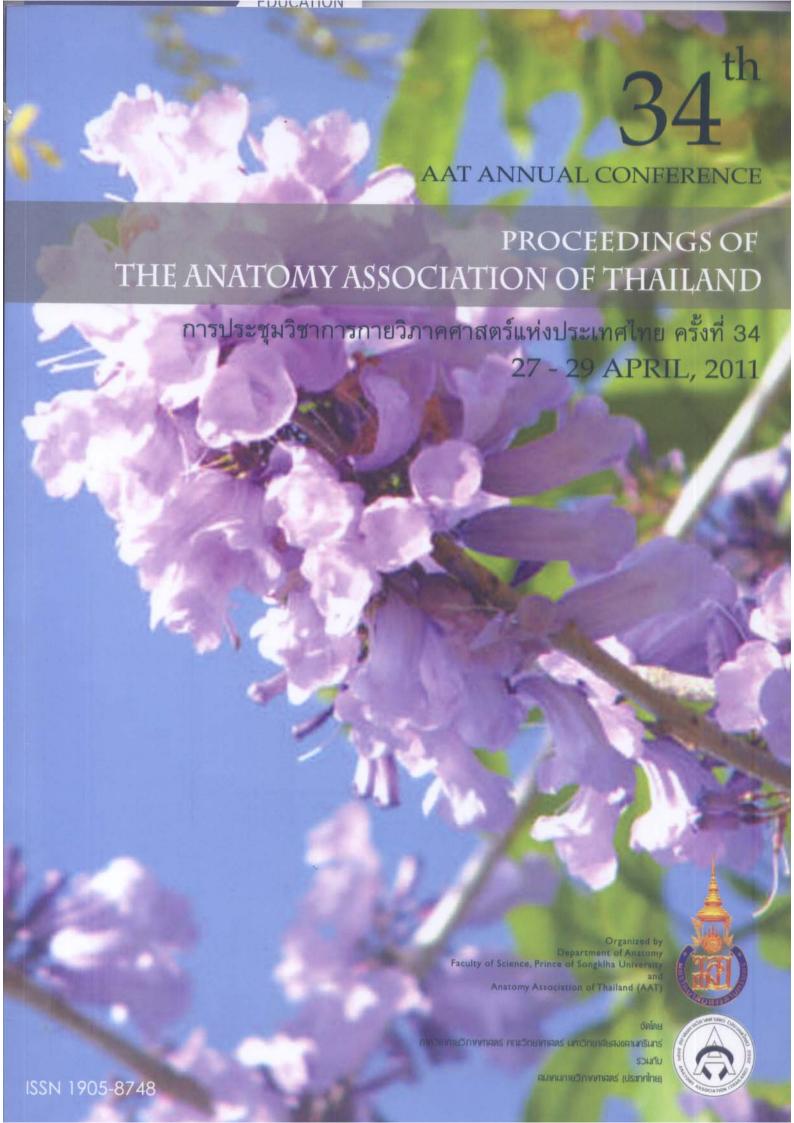
Click here to download Legends: Legend of figures.docx

Legend of figures

2

1

- 3 Figure 1 Schematic diagram of the cloning steps for GFL cDNA. Clones A-C represent partial
- 4 GFL sequences and clone D is a continuously amplified GFL cDNA. Arrows indicate primers.
- 5 The entire ORF including poly (A) tail of GFL (1,714 bp) is shown above the diagram. SP and
- 6 UTR indicate the signal peptide and untranslated regions, respectively.


7

- 8 Figure 2 Nucleotide and deduced amino acid sequences of the gene encoding GFL from
- 9 Gracilaria fisheri. Names of primers are indicated above the sequences and 5'- 3' is represented
- with arrows. The letters in boxes indicate the start codon (ATG) and stop codon (TAA). The bold
- 11 letters indicate a putative L-type lectin domain. Italics with underline represent putative N-
- 12 terminal signal peptide sequence and C-terminal transmembrane region. The predicted sugar
- binding sites are marked by circles. Arrow head indicates a metal binding site.

14

- 15 Figure 3 The predicted structures of GFL. A) Comparison of overall structure of GFL with
- 16 related L-lectins from other organisms. Red lines represent the putative amino acid sequences
- where the length is indicated on the right end. Purple and green boxes indicate putative signal
- 18 peptide and CRD domain, respectively. Pink circles mark predicted transmembrane regions.
- Asterisks show predicted sugar binding sites. The percentage of identity and similarity of GFL to
- other L-type lectins derived from BLASTP analysis is indicated on the right margin. B) The two-
- 21 dimensional structure of the predicted GFL polypeptide. The helices, sheets, turns and coils are
- 22 indicated as blue, red, green and purple vertical lines, respectively. Asterisks show predicted
- sugar binding sites. Arrow indicates a metal binding site. C) The computational 3-D structure of
- 24 GFL. β-sheets are indicated as patches. Turns and loops are indicated as lines. Amino acids

25 constituting sugar binding sites are indicated as D 126, G 255 and metal binding site is indicated 26 as D 157. 27 28 Figure 4 Phylogenetic analysis of L-lectin proteins. Accession numbers of the protein sequences from the GenBank database are indicated. Percentage bootstrap values (500 replicas) are given at 29 30 nodes of the tree. 31 32 Figure 5 Northern blot analysis of the expression of GFL. A) Ethidium bromide-stained 33 denaturing agarose gel of total RNA (10 µg) from G. fisheri (lane 1), and a filamentous green 34 alga (lane 2) **B)** The blot hybridized with DIG-labeled probe from GFL cDNA (0.5-kb fragment) 35 M, Perfect RNA marker 0.2-10 kb.



P-NC-5

## Sulfated Galactan from Red Seaweed *Gracilaria* fisheri Stimulates Immune Response and Inhibits White Spot Syndrome Virus (WSSV) Activity in Shrimp *Penaeus monodon*

Tawut Rudtanatip<sup>1</sup>, Somluk Asuvapongpatana<sup>1</sup>, Boonsirm Withyachamnarnkul<sup>1,2,3</sup>, Kanokpan Wongprasert<sup>1\*</sup>

#### Abstract

It has been reported that sulfated galactan (SG) showed an extensive range of physiological functions such as anticoagulant, antioxidant, antiviral activities and immunostimulants. Therefore, the present study aims to explore the immunostimulatory effect of SG in shrimp *Penaeus monodon*. SG was isolated from *Gracilaria fisheri* and supplemented to shrimp by using Artemia as a vector. Shrimp were fed with Artemia enriched with two concentrations of SG (100 and 200 μg/ml) for 7 days and the immune parameters were determined. Shrimp were then intramuscularly injected with WSSV. The survival rates and immune parameters were investigated for 14 days. The results revealed that shrimp fed with Artemia enriched with SG stimulated the increase in phenoloxidase (PO), superoxide anion (O<sup>-</sup><sub>2</sub>) activities and superoxide dismutase (SOD) expression in shrimp *P. monodon*. Upon WSSV injection, the SG-fed shrimp showed higher survival rates than positive control shrimp. The results suggested that SG isolated from *G. fisheri* exhibited an immunostimulants and anti-WSSV activity in shrimp *P. monodon*.

Keywords: Sulfated galactan, antiviral activity, WSSV, immune parameters, Penaeus monodon

#### Background

It has been reported that sulfated galactan (SG) showed many biological activities including anticoagulant, antimicrobial, antitumor, anticancer, antioxidant, antiviral and immunostimulants. Previous studies revealed some seaweed contain SG. Therefore, the present study aimed to investigate the ability of SG to stimulate immune response and its antiviral activity against WSSV infection in shrimp *Penaeus monodon (P. monodon)*.

#### Materials and Methods

SG was isolated from *Gracilaria fisheri* (G. fisheri) by cold water extraction. Shrimp were fed with Artemia enriched with 2 different concentrations of SG (100 and 200 μg/ml) for 7 days prior to WSSV injection. Shrimp fed with Artemia without SG were defined as positive control. The survival rates of shrimp were determined for a period of 15 days. The survived shrimp from each group were collected to determine the immune parameters including phenoloxidase (PO), superoxide anion (O<sub>2</sub>) and superoxide dismutase (SOD) activities.

All experiments were performed in triplicate. Data were expressed as mean  $\pm$  SD and analyzed by one-way ANOVA. The statistically significant difference was required at P < 0.05.

#### Results, Discussion and Conclusion

The results revealed that at day 14 after WSSV injection, shrimp fed with SG at 100 and 200  $\mu$ g/ml showed the survival rates of 33% and 53% of normal control, respectively. Whereas shrimp fed with Artemia without SG (positive control) showed 0% survival rate (Fig. 1).

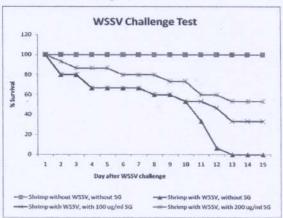



Fig. 1. Percentages of shrimp survival after WSSV injection

For immune parameter analysis, shrimp fed with Artemia enriched with SG at 100 and 200  $\mu$ g/ml for 7 days showed the increase in PO and  $O_2^-$  activities compared to normal shrimp (PO were 343.6% and 1,386% of control;  $O_2^-$  were 212.4%

Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

<sup>&</sup>lt;sup>2</sup> Centex Shrimp, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
<sup>3</sup> The Shrimp Genetic Improvement Center, Chaiya District, SuratThani 84000, Thailand

<sup>\*</sup>Corresponding author e-mail: sckbp@mahidol.ac.th

and 355.6% of control, respectively) (Fig. 2A and B). By western blot analysis, SG fed shrimp showed relative higher SOD expression in gill, hepatopancreas and lymphoid organ at day 3 and 6 of feeding program compared to normal shrimp. However, SOD expression in hemocyte could not be detected in this study (Fig. 3). After WSSV injection, shrimp fed with SG showed higher levels of PO and O<sub>2</sub> activities at day 5 and 10 after challenge, compared to positive control at the respective time points (Fig. 2).

The results suggested that SG could stimulate immune responses including PO, O<sub>2</sub> activities and SOD expression and thereby protect shrimp from WSSV infection. In conclusion, the present study showed that SG from G. fisheri exhibited immunostimulant and antiviral activities in shrimp P. monodon.

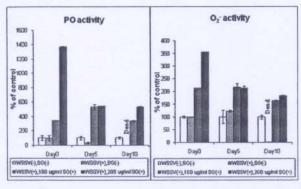



Fig. 2 The immune parameters of shrimp

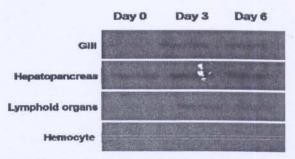



Fig. 3 Western blot analysis showing SG induced SOD expression in different tissues

#### Acknowledgements

This research is supported by TRF and TRF-MAG.

#### References

- Liu H, Söderhäll K, Jiravanichpaisal P. Antiviral immunity in crustaceans. Fish Shellfish Immun., 2009, 27:79-88.
- Mazuder S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B. Isolation, chemical investigation and antiviral activity of polysaccharide from Gracilaria corticata (Gracilariaceae, Rhodophyta). *Int. J. Biol. Macromol.*, 2002, 31:87-95.

### ฤทธิ์การกระตุ้นภูมิคุ้มกันและต้านเชื้อไวรัสตัวแดงดวงขาวในกุ้งกุลาดำ

ของ sulfated galactan จากสาหร่ายผมนาง

ทวุธ รัตนทิพย์<sup>1</sup>, สมลักษณ์ อสุวพงษ์พัฒนา<sup>1</sup>, บุญเสริม วิทยชำนาญกุล<sup>1,2,3</sup>, กนกพรรณ วงค์ประเสริฐ <sup>1\*</sup> บทคัดย่อ

มีรายงานคุณสมบัติต่างๆของ Sulfated galactan (SG) เช่น การต้านการแข็งตัวของเลือด, ด้านอนุมูลอิสระ, ด้านเชื้อ ไวรัส และกระตุ้นภูมิคุ้มกัน ในการศึกษาครั้งนี้มีวัตถุประสงค์เพื่อตรวจสอบคุณสมบัติการกระตุ้นภูมิคุ้มกันของ SG ที่สกัด จากสาหร่ายผมนางในกุ้งกุลาคำ โดยนำ SG ความเข้มข้น 100 และ 200 ไมโครกรัมต่อมิลลิลิตรเสริมกับไรแดง และให้กุ้ง กินไรแดงที่เสริม SG เป็นเวลา 7 วัน และตรวจวัดภูมิคุ้มกันของกุ้ง ทำการทดสอบการด้านเชื้อไวรัสตัวแดงดวงขาวโดยฉีด ไวรัสเข้าบริเวณกล้ามเนื้อกุ้ง จากนั้นตรวจวัดอัตราการรอดและภูมิคุ้มกันของกุ้ง ผลการวิจัยพบว่ากุ้งที่กินไรแดงที่เสริม SG มีระดับของ phenoloxidase (PO), superoxide anion (O 2) และ superoxide dismutase (SOD) สูงกว่ากุ้งปกติ และเมื่อทดสอบ การด้านเชื้อไวรัสตัวแดงดวงขาว พบว่ากุ้งมีอัตราการรอดและมีระดับภูมิคุ้มกัน PO, O 2 และ SOD สูงกว่ากุ้งที่ไม่ได้รับ SG ผลการวิจัยชี้ให้เห็นว่า SG จากสาหร่ายผมนางมีคุณสมบัติช่วยเพิ่มภูมิคุ้มกันและด้านเชื้อไวรัสตัวแดงดวงขาวในกุ้งกุลาคำ

คำสำคัญ: Sulfated galactan, การด้านเชื้อไวรัส, ไวรัสตัวแคงควงขาว, กระตุ้นภูมิคุ้มกัน, กุ้งกุลาคำ



# INTERNATIONAL ANATOMICAL SCIENCES AND CELL BIOLOGY CONFERENCE

26 - 29 May 2010



Organised by:









#### **Oral 1-7**

#### THE ANTIBACTERIAL AND ANTIOXIDANT ACTIVITIES OF RED SEAWEED, GRACILARIA FISHERI EXTRACTS

Kulwadee Karnjana<sup>1</sup>, Tawut ratdanatip<sup>1</sup>, Somluk Asuvapongpatana<sup>1</sup>, Boonsirm Withyachumnarnkul<sup>1,2</sup> and Kanokpan Wongprasert<sup>1</sup>

<sup>1</sup>Department of Anatomy and <sup>2</sup> Centex Shrimp, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Numerous studies revealed that compounds from seaweed possess antimicrobial and antioxidant activities. Therefore, the aim of the study was to explore the antimicrobial and antioxidant activities of the solvents extracts from red seaweed, Gracilaria fisheri. The organic solvents including ethanol, methanol, chloroform and hexane were used to extract G. fisheri. The antibacterial activities of all crude extracts were evaluated against the virulence strains of gram-negative bacteria Vibrio harveyi using the disc diffusion method and the minimal inhibitory concentrations of all extracts were determined. The antioxidant activity of G. fisheri extracts was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, compared with the activity of curcumin and vitamin C in term of 50% inhibition concentration (IC<sub>so</sub>). Brine shrimp bioassay was performed to investigate the toxicity of the ethanol extract of G. fisheri. By disc diffusion method, all extracts showed active antimicrobial activities against the three strains of V. harveyi. The ethanol, methanol and chloroform extracts showed antibacterial activities against V. harveyi as good as that of norfloxacin (antibiotic) but better than the hexane extract. The minimal inhibitory concentrations of the four extracts were in the range of 75-200 µg/ml. For DPPH free radical-scavenging test, the ethanol extract showed a better free radical-scavenging activity (IC<sub>50</sub> 12.14  $\mu g/ml$ ) than those of other solvent extracts. The activity was closed to that of curcumin (IC<sub>so</sub> 13.39  $\mu g/ml$ ) ml) but higher than vitamin C ( $IC_{50}$  4.83 µg/ml). Brine shrimp bioassay test of the ethanol extract showed the LC50 approximately 4 mg/ml. The results suggested that the ethanol extract of G. fisheri was not toxic, exhibited antibacterial activity against V. harveyi and could be a potential natural source of antioxidant.

#### Oral 2-1

#### STUDY OF CIRCLE OF WILLIS USING MAGNETIC RESONANCE IMAGING

#### S.Melani Rajendran and B.Haripriya

Department of Anatomy Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Chennai-600 116, India

Anomalies of Circle of Willis play an important role in cerebrovascular accidents especially in cerebral infarction. With increased incidents of hypertension and Diabetes Mellites, cases of cerebral infarction has increased. The Circle of Willis and its anastomosis is of great significance when one of the major arteries supplying the brain becomes occluded. Therefore the diagnosis of intracranial aneurysms and stenosis prior to carotid endarterectomy is important. 50 patients at random who came to the Outpatient department of Radiology and Imaging sciences, Sri Ramachandra Medical College and Research Institute for undergoing Magnetic Resonance Imaging were chosen for this study. The technique used was three dimensional Magnetic resonance angiography. Also Circle of Willis and its branching pattern was studied in 10 brains of human cadavers. Out of fifty cases, thirty cases were found to be normal. Other findings included hypoplasia of anterior cerebral artery, internal carotid artery, posterior cerebral artery and posterior communicating artery. Also stenosis of internal carotid artery and basilar artery were seen. One case showed ectactic change in the basilar artery. Therefore Magnetic Resonance Imaging is the most powerful non-invasive method to demonstrate collateral circulation via basal communicating arteries and to identify hemodynamically relevant anatomic variants of the circle of Willis.