บทคัดย่อ

เป็นเพปไทด์ที่มีประจุรวมเป็นบวกขนาดเล็กซึ่งเป็นสมาชิกเพียงตัวเดียวของ ครอบครัวแคทีลิซิดินที่พบในมนุษย์ แอลแอล-37 สร้างมาจากนิวโทรฟิลและเก็บอยู่ในเม็ดเล็กๆ ภายใน เซลล์ในรูปแบบเพปไทด์สายตั้งต้นที่เรียกว่า human cationic antimicrobial peptide 18 หรือ hCAP18 หลังจากที่กระตุ้นนิวโทรฟิลให้มีการปลดปล่อยสารออกจากเม็ดเล็กๆ hCAP18 จะถูกปลดปล่อยออกมา และถูกกระตุ้นการทำงานให้เป็นเพปไทด์ขนาดสมบูรณ์ที่เรียกว่า แอลแอล-37 โดยการตัดด้วยเอนไซม์ โปรตีเนส-3 ยังพบว่าแอลแอล-37 ถูกสร้างมาจากเซลล์เยื่อบุผิวที่บุอวัยวะต่างๆ รวมไปถึงเยื่อเมือกช่อง ปากอีกด้วย แต่ปริมาณที่สร้างมีไม่มากนัก พบว่าแอลแอล-37 ออกฤทธิ์ทางชีวภาพได้หลากหลาย เช่น ฤทธิ์ต้านจุลชีพ สะเทินฤทธิ์ของลิโพพอลีแซคคาไรด์ ฤทธิ์กระตุ้นการแบ่งเซลล์เพิ่มจำนวน ฤทธิ์กระตุ้น การอักเสบ ฤทธิ์ชักนำการเคลื่อนเหตุสารเคมี ฤทธิ์กระตุ้นการสร้างหลอดเลือด การส่งเสริมการหายของ แผล และอื่นๆ เป็นต้น วัตถุประสงค์: สำหรับโครงการวิจัยนี้ ข้าพเจ้าตั้งเป้าหมายที่จะศึกษาฤทธิ์ กระตุ้นการอักเสบของแอลแอล-37 ในช่องปาก โดยเฉพาะต่อเซลล์สร้างเส้นใยเหงือกของมนุษย์ (HGFs) โดยการกระตุ้นการสร้างอินเตอร์ลิวคิน-8 (IL-8) เอนไซม์ไซโคลออกซิจิเนส (COX) และพรอสตาแกลน-ิดินอี2 (PGE₂) ซึ่งเป็นสารสื่อกลางที่สำคัญในการกระตุ้นการอักเสบของโรคที่เกี่ยวข้องกับการอักเสบ ภายในช่องปาก โดยเฉพาะโรคปริทันต์ นอกจากนั้น จะตรวจสอบตัวรับและวิถีให้สัญญาณที่ใช้ในการ กระตุ้น IL-8 และ COX วั**สดุและวิธีการทดลอง:** เซลล์ HGFs ปฐมภูมิที่สกัดจากเนื้อเยื่อเหงือกปกติ ของผู้ป่วยที่เข้ารับการผ่าตัดฟันคุด ถูกเลี้ยงในอาหารเลี้ยงเซลล์ Dulbecco's Modified Eagle ซึ่งเติม fetal bovine serum ร้อยละ 10 (ปริมาตรโดยปริมาตร) และเพนนิซิลลิน/สเตรปโตมัยซินร้อยละ 1 (ปริมาตรโดยปริมาตร) จนกระทั่งมีจำนวนเซลล์ที่เพียงพอสำหรับการทดลอง เซลล์จะถูกกระตุ้นด้วย แอลแอล-37 ที่ความเข้มข้นต่างๆ ตามระยะเวลาที่กำหนดในสภาวะที่มีหรือไม่มีตัวยับยั้งที่จำเพาะต่อแต่ ละโมเลกุลในวิถีให้สัญญาณหรือแอนติบอดีที่สะเทินการทำหน้าที่ของตัวรับพิวริเนอร์จิก P2X₇ หลังจาก นั้น ได้สกัดอาร์เอ็นเอและโปรตีน ซึ่งจะถูกนำไปวิเคราะห์การแสดงออกของยีนที่สนใจโดยใช้ปฏิกิริยา ลูกโซ่ รีเวอร์ส ทรานสคริพเตส-พอลีเมอเรส (RT-PCR) เรียล-ไทม์ พีซีอาร์ และอิมมูโนบลอทติ้ง อาหาร เลี้ยงเซลล์ที่ไม่มีเซลล์จะถูกเก็บและนำไปวิเคราะห์หาปริมาณของ IL-8 และ PGE₂ โดยวิธีอีไลซ่า เพื่อ บ่งตำแหน่งของ p65 ซับยูนิตของนิวเคลียร์ แฟกเตอร์-แคปปาบี (NF-кB) จะย้อม HGFs ด้วย แอนติบอดีจำเพาะและตรวจการย้อมด้วยกล้องอิมมูโนฟลูออเรสเซนท์ นอกจากนั้น สกัดโปรตีนจาก นิวเคลียสและไซโทพลาซึมของ HGFs มาเพื่อตรวจหา p65 และ p50 ซับยูนิตของ NF-κB โดยวิธีอิมมู-์ โนบลอทติ้ง และตรวจการกระตุ้นไมโทเจน-แอคทิเวเตด โปรตีน ไคเนส (MAPK) โดยการเติมหมู่ ฟอสเฟตด้วยวิธีอิมมูโนบลอทติ้งโดยใช้แอนติบอดีที่จำเพาะต่อรูปแบบของ MAPK ที่เติมหมู่ฟอสเฟต และที่ไม่เติม ผลการศึกษา: ใช้ความเข้มข้นของแอลแอล-37 ที่ไม่เป็นพิษต่อเซลล์ ตั้งแต่ 0 ถึง 10 ไมโครโมลาร์ซึ่งวิเคราะห์โดยเทคนิคเอ็มทีที่ กระตุ้น HGFs แล้วพบว่าแอลแอล-37 สามารถกระตุ้นการ แสดงออกของ IL-8 และ COX-2 ในระดับอาร์เอ็นเอน้ำรหัสตามความเข้มข้นที่เพิ่มขึ้นของแอลแอล-37 ได้อย่างมีนัยสำคัญทางสถิติ (p < 0.01) ในขณะที่การแสดงออกของอาร์เอ็นเอนำรหัสของ COX-1 คงที่ สอดคล้องกับที่แอลแอล-37 สามารถกระตุ้นการสร้าง IL-8 โปรตีนในอาหารเลี้ยงเซลล์และการสร้าง

COX-2 โปรตีนในเซลล์ตามความเข้มข้นที่เพิ่มขึ้นของแอลแอล-37 ในขณะที่การแสดงออกของ COX-1 โปรตีนคงที่ จากการศึกษาเมื่อกระตุ้นเซลล์ด้วยแอลแอล-37 ในระยะเวลาต่างๆ พบว่าแอลแอล-37 กระตุ้นการแสดงออกของทั้ง IL-8 และ COX-2 ในระดับอาร์เอ็นเอนำรหัสและโปรตีนได้อย่างชั่วคราว นอกจากนั้น ระดับของ PGE₂ ซึ่งเป็นผลิตภัณฑ์หลักที่เกิดจากฤทธิ์ของ COX-2 ที่เพิ่มขึ้น มีระดับสูงขึ้น เมื่อกระตุ้นเซลล์ด้วยแอลแอล-37 ซึ่งถูกยับยั้งด้วย NS-398 ตัวยับยั้งจำเพาะต่อ COX-2 แสดงให้เห็น ว่าระดับที่เพิ่มขึ้นของ PGE₂ มาจากการแสดงออกที่เพิ่มขึ้นของ COX-2 การกระตุ้นเซลล์ด้วยแอลแอล-37 ไม่ได้ทำให้เกิดการเคลื่อนเข้าสู่นิวเคลียสของทั้งสองซับยูนิตของ NF-κB ได้อย่างชัดเจน แต่สามารถ กระตุ้นการเติมหมู่ฟอสเฟตให้กับวิถีให้สัญญาณของ p44/42 และ p46 JNK MAPK ได้อย่างชั่วคราว สอดคล้องกับการที่ MG-132 ซึ่งเป็นตัวยับยั้งของ NF-κB ไม่สามารถยับยั้งการกระตุ้นการแสดงออก ของ IL-8 และ COX-2 ในขณะที่ U0126 ซึ่งเป็นตัวยับยั้งของ p44/42 MAPK และทั้ง U0126 และ SP600125 ซึ่งเป็นตัวยับยั้งของ JNK สามารถยับยั้งการกระตุ้น IL-8 และ COX-2 ได้อย่างมีนัยสำคัญ ทางสถิติ (p < 0.01) ตามลำดับ นอกจากนั้น พบว่า HGFs มีการแสดงออกของตัวรับ $P2X_7$ ในระดับอาร์ เอ็นเอนำรหัสและในระดับโปรตีนที่คงที่ ซึ่งสอดคล้องกับกับการที่ตัวยับยั้งจำเพาะต่อตัวรับ P2X₇ และ แอนติบอดีที่สะเทินฤทธิ์ของตัวรับ P2X₇ สามารถยับยั้งการกระตุ้นการแสดงออกของ IL-8 และ COX-2 โดยแอลแอล-37 ได้อย่างมีนัยสำคัญทางสถิติ (p < 0.01) และการยับยั้งการกระตุ้นการแสดงออกของ COX-2 โดยตัวยับยั้งและแอนติบอดีที่สะเทินฤทธิ์ของตัวรับ P2X₇ ยังนำไปสู่การลดลงอย่างมีนัยสำคัญ ทางสถิติของระดับ PGE₂ ที่เพิ่มสูงขึ้นโดยการกระตุ้นด้วยแอลแอล-37 (p < 0.01) **สรุปผลการศึกษา** และข้อเสนอแนะสำหรับการศึกษาในอนาคต: แอลแอล-37 สามารถทำหน้าที่เป็นโมเลกุลที่กระตุ้น การอักเสบโดยการกระตุ้นการแสดงออกของ IL-8 และ ${
m COX}$ -2 และการสร้าง ${
m PGE}_2$ ในเซลล์สร้างเส้นใย เหงือกมนุษย์ในหลอดทดลอง โดยผ่านวิถีให้สัญญาณ p44/42 และ p46 JNK MAPK และตัวรับ พิวริเนอร์จิก P2X $_7$ ดังนั้น แอลแอล-37 ซึ่งถูกสร้างจากนิวโทรฟิลและเซลล์เยื่อบุผิวสามารถออกฤทธิ์ต่อ เซลล์ชนิดอื่นๆ เช่น เซลล์สร้างเส้นใย ในลักษณะที่เรียกว่าพาราคริน และแอลแอล-37 น่าจะเป็นโมเลกุล ที่สามารถทำหน้าที่ได้หลายอย่างไม่ใช่เป็นเพียงแค่เพปไทด์ต้านจุลชีพเพียงอย่างเดียว เป็นที่น่าสนใจที่ จะศึกษาถึงบทบาทในการกระตุ้นการอักเสบของแอลแอล-37 โดยเฉพาะบทบาทที่สำคัญของแอลแอล-37 ต่อพยาธิกำเนิดของโรคปริทันต์ในสัตว์ทดลองต่อไป

ABSTRACT

The small cationic antimicrobial peptide, LL-37, is the only member of the cathelicidin family in humans. It is predominantly synthesized by neutrophils and stored in the granules in a propeptide form, called human cationic antimicrobial peptide 18 or hCAP18. Upon neutrophil activation and then degranulation, the hCAP18 is released from the granules and then activated by proteolytic cleavage by the proteinase 3 enzyme to become a mature peptide, LL-37. To a much lesser extent, LL-37 can also be produced by epithelial cells lining several organs, including oral mucosa. It has been demonstrated that LL-37 can exert a number of various biological activities, such as, antimicrobial action, lipopolysaccharide neutralization, proliferative activity, pro-inflammatory activity, chemotaxis, angiogenesis, wound healing promotion, and so on. Objectives: Consequently, in this research project, I aimed to study the pro-inflammatory actions of LL-37 in the oral cavity, especially in human gingival fibroblasts (HGFs) by induction of interleukin-8 (IL-8), cyclooxygenase (COX) enzymes, and prostaglandin E2 (PGE2) production, which are considered essential pro-inflammatory mediators for oral inflammatory diseases, like periodontal disease. In addition, the cellular receptors and signaling pathways mediating IL-8 and COX induction were examined. Materials and Methods: Primary HGFs isolated from normal gingival biopsies of patients undergoing surgical removal of impacted third molars were grown in Dulbecco's Modified Eagle medium supplemented with 10% (vol/vol) fetal bovine serum and 1% (vol/vol) penicillin/streptomycin until a sufficient number of HGFs were obtained. Cells were treated with various doses of LL-37 for indicated times in the presence or absence of inhibitors specific against each signaling molecule or the neutralizing antibody against purinergic P2X₇ receptor. Then, total RNA and protein were extracted and analyzed for expression of genes of interest by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, and immunoblotting. The cell-free culture supernatants were collected and analyzed for the quantities of IL-8 and PGE₂ by an ELISA. To localize the p65 subunit of nuclear factor-kappaB (NF-κB), HGFs were stained with the specific antibody and the staining was observed under an immunofluorescence microscope. In addition, the nuclear and cytosolic extracts were isolated to determine the presence of the p65 and the p50 subunit of NF-κB by immunoblotting, and the activation of mitogen-activated protein kinase (MAPK) by phosphorylation was determined by immunoblotting using specific antibodies against the phosphorylated and total forms of each MAPK. Results: The non-toxic doses (0 to 10 μM) of LL-37, as determined by an MTT assay, were used to treat HGFs, and it was found that LL-37 significantly up-regulated IL-8 and COX-2 mRNA expression in a dose-dependent fashion (p < 0.01), while COX-1 mRNA expression was constitutive. Consistently, expression of the IL-8 protein in the culture supernatants and of the COX-2 protein in the cell lysate was induced by treatment with LL-37 in a dose-dependent manner, whereas COX-1 protein expression was constitutive. The time-course study revealed that LL-37 transiently induced both IL-8 and COX-2 mRNA and protein expression. Furthermore, the levels of PGE₂, a main product derived from the induced activity of COX-2, were elevated by LL-37 treatment, which were inhibited by pretreatment with NS-398, a specific COX-2 inhibitor, indicating that raised levels of PGE2 result from induced COX-2 expression. LL-37 treatment did not evidently cause the nuclear translocation of both subunits of NF-κB, but could transiently induce the phosphorylation of p44/42 and p46 JNK MAPK pathways. Accordingly, MG-132, an NF-κB inhibitor, did not inhibit the induction of IL-8 and COX-2 expression, whereas U0126, a p44/42 MAPK inhibitor, and both U0126 and SP600125, a JNK inhibitor, could significantly block the up-regulation of IL-8

and COX-2 (p < 0.01), respectively. In addition, it was shown that HGFs constitutively expressed mRNA and protein for P2X₇ receptor, in which several inhibitors specific against P2X₇ receptor and the neutralizing antibody against P2X₇ receptor could significantly abrogate IL-8 and COX-2 induction by LL-37 treatment (p < 0.01). The inhibition of COX-2 induction by these inhibitors and the neutralizing antibody also led to a significant decrease in raised PGE₂ levels by LL-37 treatment (p < 0.01). **Conclusions and suggestions for future studies:** LL-37 can function as a pro-inflammatory molecule by up-regulating IL-8, COX-2 expression and PGE₂ production in human gingival fibroblasts *in vitro* via p44/42 and p46 JNK MAPK pathways and purinergic P2X₇ receptor. Therefore, LL-37 that is produced by neutrophils and epithelial cells can exert a paracrine effect on other cell types, like fibroblasts, and this molecule should be now viewed as a multi-functional molecule rather than a simple antimicrobial peptide. It would be interesting to further investigate the pro-inflammatory role of LL-37, especially its critical role in the pathogenesis of periodontal disease *in vivo*.