บทคัดย่อ

รหัสโครงการ : RMU5380018

ชื่อโครงการ : การแก้ปัญหาย้อนกลับสำหรับข้อมูลสภาพความต้านทานไฟฟ้า

กระแสตรงในสามมิติ

ชื่อนักวิจัย : รศ. ดร. วีระชัย สิริพันธ์วราภรณ์

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

อีเมล์ : wsiripun@gmail.com; weerachai.sir@mahidol.ac.th

ระยะเวลาโครงการ: 15 มิ.ย. 2553 – 14 มิ.ย. 2556

ในโครงการนี้ เราได้พัฒนาโปรแกรมใหม่ที่ใช้ในการแปลความหมายข้อมูล DC Resistivity แบบที่ สามารถใส่ค่าความลาดชันได้ โปรแกรมนี้มีพื้นฐานการทำ forward modeling ด้วยเทคนิค hybrid finite difference – finite element ซึ่งเป็นการรวมเอาข้อดีของ finite difference ซึ่งได้แก่ความรวดเร็วในการ ทำงาน ซึ่งจัดว่าเป็นข้อด้อยของ finite - element และข้อดีของ finite element ซึ่งได้แก่การใส่ค่าความ ลาดชันได้ง่าย ซึ่งเป็นข้อด้อยของ finite difference การนำเทคนิคทั้งสองมารวมกันถือว่าได้ตัดข้อเสีย ของทั้งสองวิธีออกไป เหลือแต่ข้อดีเอาไว้ ส่วนเทคนิคการทำ inversion ก็เช่นเดิม ใช้เทคนิค data space Occam's inversion ซึ่งมีความเสถียรภาพสูง เมื่อนำโปรแกรมนี้ไปทดสอบกับข้อมูลเทียมและ ข้อมูลจริงพบว่าใช้ได้ผลดีมาก โปรแกรมมีประสิทธิภาพสูง สามารถนำไปใช้งานในภาคสนามได้จริง

คำหลัก: การแก้ปัญหาย้อนกลับ เทคนิควัดสภาพความต้านทานไฟฟ้า ไฟในต์ดิฟเฟอเรน ไฟ ในต์อิลิเมนต์

Abstract

Project Code : RMU5380018

Project Title : Three-Dimension (3-D) Direct Current (DC) Resistivity Inversion

Investigator : Associate Professor Dr. Weerachai Siripunvaraporn

Department of Physics, Faculty of Science, Mahidol University

E-mail Address: wsiripun@gmail.com

Project Period : 15 June 2010 – 14 June 2013

In this project, we have developed a direct current resistivity (DCR) inversion program that can incorporate the topography. The forward modeling routine for this program is developed based on the hybrid finite difference (FD) – finite element (FE) technique. The hybrid technique incorporates the advantages of both FD and FE together. The advantage for FD is the speed which is the disadvantage of FE, while the advantage of FE is the ability to incorporate the topography which is the disadvantage of FD. Combining both techniques gives us a code that avoids both disadvantages while gaining both advantages. The technique for the inversion is the same as before, i.e. the data space Occam's inversion which is robust and high stability. Testing the code with both synthetic and real field data, we found that it works effectively and can be used in the real field surveys.

Keywords: inverse problem, DC resistivity, Finite Difference, Finite Element