

การศึกษาสมรรถนะตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าโดยใช้เซอร์โมอิเล็กทริกร่วมกับตัวรวมรังสีพาราโบลา

บทคัดย่อ

ในการศึกษาสมรรถนะตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าโดยใช้เซอร์โมอิเล็กทริกร่วมกับตัวรวมรังสีพาราโบลานี้ แบ่งการศึกษาออกเป็น 4 ส่วนดังนี้

ส่วนที่หนึ่งของโครงการนี้ ได้สร้างและทดสอบตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าเซอร์โมอิเล็กทริกร่วมกับตัวรวมรังสี ตัวเก็บรังสีอาทิตย์ประกอบด้วยแผ่นปิดที่ทำจากกระจก ซึ่งว่างอากาศแผ่นดูดกลืนรังสีอาทิตย์ เซอร์โมอิเล็กทริกโมดูล เครื่องระบายความร้อนแบบครึ่งรูปสี่เหลี่ยมผืนผ้า และตัวรวมรังสีอาทิตย์ ตัวรวมรังสีติดตั้งอยู่ที่ด้านข้างของตัวเก็บรังสีอาทิตย์ (ทิศตะวันออกและทิศตะวันตก) รังสีอาทิตย์ตรงและรังสีกระจายทำความร้อนให้แผ่นดูดกลืน เป็นเหตุให้เกิดอุณหภูมิแตกต่างระหว่างอุณหภูมิด้านร้อนและด้านเย็นของเซอร์โมอิเล็กทริกโมดูล เกิดการผลิตไฟฟ้าจากเซอร์โมอิเล็กทริกโมดูลความร้อนเพียงส่วนน้อยจากรังสีอาทิตย์ที่แปลงเป็นไฟฟ้า ขณะที่ความร้อนส่วนใหญ่เพิ่มอุณหภูมิให้กับแผ่นดูดกลืนรังสี อากาศแวดล้อมไฟล์ไฟล์เข้าเครื่องระบายความร้อนที่ติดอยู่ในช่องด้านล่างและได้รับความร้อนจากเครื่องระบายความร้อน จานน้ำอากาศร้อนจะไฟล์ขึ้นไปยังช่องด้านบนเพื่อรับความร้อนจากแผ่นดูดกลืนรังสี เป็นการปรับปรุงให้ประสิทธิภาพเชิงความร้อนและประสิทธิภาพรวมของระบบมีค่าเพิ่มขึ้น พบว่ามุ่งตัวรวมรังสีที่เหมาะสมคือที่มุ่ง 60° ซึ่งให้ค่าความร้อนและกำลังไฟฟ้าสูงกว่ากรณีไม่ติดตัวรวมรังสีอย่างมีนัยสำคัญ

ส่วนที่สองทำการวิเคราะห์พลังงานและเอกสารจึงของตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าโดยใช้เซอร์โมอิเล็กทริก การวิเคราะห์พลังงานใช้ก្រោមข้อที่หนึ่งของเซอร์โมไดนามิกส์ และการวิเคราะห์เอกสารจึงใช้ก្រោមข้อที่สองของเซอร์โมไดนามิกส์ พบว่าประสิทธิภาพเชิงความร้อนเพิ่มขึ้นเมื่ออัตราการไฟของอากาศเพิ่มขึ้น ขณะที่กำลังไฟฟ้าและประสิทธิภาพการแปลงพลังงานขึ้นกับผลต่างระหว่างอุณหภูมิด้านร้อนและด้านเย็นของเซอร์โมอิเล็กทริก ที่ผลต่างระหว่างอุณหภูมิด้านร้อนและด้านเย็นของเซอร์โมอิเล็กทริกเท่ากับ 22.8°C ได้กำลังไฟฟ้าสูงสุดเท่ากับ 2.13 W และประสิทธิภาพการแปลงพลังงานเท่ากับ 6.17% ประสิทธิภาพเอกสารจึงมีค่าต่ำสุดและสูงสุดเท่ากับ 7.4% และ 8.4% ตามลำดับ

ส่วนที่สามทำการวิเคราะห์สมรรถนะและเครชูลาศาสตร์ของตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าเซอร์โมอิเล็กทริกสำหรับผลิตน้ำร้อน ตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าเซอร์โมอิ-

เล็กทrigic ประกอบด้วยแผ่นปิดที่ทำจากกระเจ ช่องว่างอากาศ แผ่นดูดกลืนรังสีอาทิตย์ เครื่องโมอิเล็กทริก โมดูล เครื่องรับความร้อนที่ใช้น้ำเป็นสารทำงาน และถังเก็บน้ำร้อน จากการทดลองพบว่า ประสิทธิภาพเชิงความร้อนและประสิทธิภาพรวมของระบบเท่ากับ 74.9% และ 77.3% ตามลำดับ ที่ อัตราการไหหล้า 0.33 kg/s ที่ผลต่างระหว่างอุณหภูมิด้านร้อนและด้านเย็น 27.1°C สามารถผลิต กำลังไฟฟ้าได้ 3.6 W การวิเคราะห์เครชชูค่าสตอร์แสดงให้เห็นว่า ตัวเก็บรังสีอาทิตย์แบบผสมความร้อน ไฟฟ้าเครื่องโมอิเล็กทริกที่อัตราการไหหล้า 0.33 kg/s ให้ระยะเวลาคืนทุนสั้นที่สุดและอัตราการ ผลตอบแทนภายใน (IRR) สูงสุด

ส่วนสุดท้ายได้ทำการสร้างและทดสอบสมรรถนะของตัวเก็บรังสีอาทิตย์แบบผสมความร้อนไฟฟ้าเรอร์โนอิเล็กทริกร่วมกับตัวรวมรังสีพาราโบลา พบว่ากำลังไฟฟ้าที่ผลิตได้สูงสุดเท่ากับ 1.03 W และประสิทธิภาพการแปลงพลังงานไฟฟ้าเท่ากับ 0.38% ที่ผลต่างระหว่างอุณหภูมิด้านร้อนและด้านเย็นของเรอร์โนอิเล็กทริกเท่ากับ 12°C ส่วนประสิทธิภาพเชิงความร้อนสูงสุดเท่ากับ 43.3% ที่อัตราการไหลของน้ำเท่ากับ 0.24 kg/s

Performance study of hybrid thermoelectric solar collector with compound parabolic concentrator

Abstract

The hybrid thermoelectric solar collectors are investigated in this study, which divide in four main parts as follow:

First, a hybrid TE solar air collector with flat-plate reflectors has been developed and tested. The TE solar collector was composed of transparent glass, air gap, an absorber plate, thermoelectric modules, rectangular fin heat sink and two flat plate reflectors. The flat plate reflectors were placed on two sides of the TE solar collector (east and west directions). The direct and reflect incident solar radiations heat up the absorber plate so that a temperature difference is created between the thermoelectric modules that generate a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. The ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel where it receives additional heating from the absorber plate. Improvements to the thermal energy and electrical power outputs of the system can be achieved by the use of the double pass collector system with reflector and TE technology. It was found that the optimum position of the reflectors is 60° , which gave significantly higher thermal energy and electrical power outputs over the TE solar collector without reflectors.

Second, Analysis of energy and exergy has been performed for a double-pass thermoelectric solar air collector. Energy analysis, which is based on the first law of thermodynamics, and exergy analysis, which is based on the second law, were applied for evaluation of the system efficiency. It was observed that the thermal efficiency increases as the air flow rate increases. Meanwhile, the electrical power output and the conversion efficiency depended on the temperature difference between the hot and cold side of the TE modules. At a temperature difference of 22.8°C , the unit achieved a power output of 2.13 W and the conversion efficiency of 6.17%. The exergy efficiency varies from a minimum of 7.4% to a maximum of 8.4%, respectively.

Third, performances and economic analyses of a hybrid thermoelectric (TE) solar water heater have been studied. The hybrid TE solar water heater was composed of transparent glass, air gap, an absorber plate, thermoelectric modules, water cooled heat sinks and storage water tank.. The experiment shows that the thermal and overall efficiencies increase as the water flow rate increases. The maximum and overall efficiencies were 74.9 and 77.3%, respectively, at the water flow rate of 0.33 kg/s. At a temperature difference of 27.1°C, the unit achieved a power output of 3.6 W. Moreover, economic analysis indicates that the payback period of the hybrid TE solar water heater operates at the water flow rate of 0.33 kg/s is shorter and higher IRR.

Finally, a hybrid TE solar air collector with flat-plate reflectors has been developed and tested. Results shows that the maximum power output of 1.03 W and the electrical-power generation efficiency of 0.38% were obtained when the temperature difference was 12°C. Meanwhile, the thermal efficiency increases as the water flow rate increases. The maximum thermal efficiency was 43.3% corresponding to the water flow rate of 0.24 kg/s.