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ABSTRACT: We calculate the two-loop effective potential of the non-local NJL model de-
rived from the Sakai-Sugimoto model in string theory. In contrast to conventional NJL with
4-fermion contact interaction, the chiral symmetry was previously found to be dynamically
broken for arbitrary weak coupling at the one-loop level. We calculate the one and two-
loop contribution to the effective potential of the non-local NJL model and found that the
two-loop contribution is negative. The two-loop potential for the chirally symmetric vac-
uum is also negative but larger than the combined effective potential of the chirally broken
vacuum at the two-loop level. The chiral symmetry breaking thus persists for arbitrary
weak coupling.
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1 Introduction

Spontaneous Symmetry breaking (SSB) plays an important role in modern particle physics
theory. Higgs mechanism in the standard model, for example, can be used to generate
masses of elementary particles, leptons and quarks. The generation of quark masses by
spontaneous symmetry breaking inevitably breaks the chiral symmetry of the QCD. Chiral
symmetry breaking (xSB) could also be generated dynamically by the vacuum expectation
value (vev) of chiral condensate ¥(x)i(y). Dynamical ySB can explain masses of mesons
and hadrons which are responsible for most of the visible mass in the universe. It can also
explain hadronic particle generation in strong interaction at low energies. The key idea
of SSB is that any theory whose Lagrangian is invariant under some associated symmetry
where vacuum state of such theory is not invariant and hence its vacuum carries non-trivial
quantum number associated with the symmetry. In the spontaneous broken phase, there
is an existence of Nambu-Goldstone (NG)-boson [1]. One can classify NG-boson into 2
cases i.e. on one hand, NG-boson is massless elementary particle and on the other hand,
such boson could be a composite particle. Dynamical symmetry breaking (DSB) usually



occurs as a result of the interaction between constituent particles in the theory and yields
a composite NG boson.

For chiral symmetry breaking of the QCD, the NG boson is usually identified with
e.g. the three pions from the breaking of SU(2)r, x SU(2)g to SU(2)y or the eight light
mesons from the breaking of SU(3)1, x SU(3)r to SU(3)y flavour diagonal. This symmetry
breaking pattern [2] was successfully used to explore properties of the light hadrons and
gives precise predictions of light hadronic spectra [3]. Early stage of xSB in the strong
interaction was demonstrated by the linear-sigma model [4] and the current-algebra ap-
proach [5, 6]. At the present, there is an incorporation between xSB and principle of
effective field theory which gives a systematic framework to study QCD at low-energies,
the so-called chiral perturbation theory [7]. The theory starts with an effective theory of
hadrons with chiral symmetry in the action and use the SSB to generate a chiral symmetry
breaking vacuum. The observed meson spectra shows good agreement with the prediction
of the chiral perturbation theory [8, 9].

To address the chiral symmetry breaking/restoration phase transition, ones need to
work with the action of quarks instead of hadrons. Nambu-Jona-Lasinio (NJL) model [10]
is a model of quarks with four-fermion interaction which is employed to demonstrate the
dynamical chiral symmetry breaking in the strong interaction independent of the confine-
ment. Originally, NJL was formulated to explain mass of the nucleon as a consequence of
the xSB. NJL model has been widely used as a description of low-energy effective model of
hadrons in QCD with zero or finite-temperature [11-14] and electroweak symmetry break-
ing by top-quark condensation or other fermions within or beyond the standard model
[15-17]. NJL model is a very successful effective model to describe many hadronic proper-
ties in low-energy QCD, for example, the mesons and baryons mass spectra, the pion decay
constant, and the pion form factor (see [11-13] for review).

Despite the success of the NJL as a low-energy phenomenological model approach
to low-energy QCD, the original NJL model does not address confinement. There are
extensions of the NJL where inclusions of non-local interactions have been proposed in the
literature (see [18] and references therein). One can simply reproduce the non-local NJL
interaction from the QCD Lagrangian by integrating out the gluon field from the one-gluon
exchanging diagram [15, 18].

In the non-local NJL approach, interaction depends on the momenta carried by the
quarks leading to a momentum-dependent quark mass, generated by the spontaneous xSB.
It has been shown that a non-local NJL model could lead to quark confinement with
acceptable values of the parameters [19]. This phenomenon originates from the fact the
quark propagator has no real poles and consequently quarks have no asymptotic states.
There are several other advantages of the non-local NJL approach over the original (local)
NJL model i.e. the nonlocality regularizes the model in a manner that anomalies [20]
and gauge invariance [21] are preserved and the momentum-dependent regulator makes
the theory finite to all orders in the 1/N, expansion. Finally the dynamical quark mass
is momentum dependent in contrast to the original NJL. model and consistent with lattice
simulations of QCD [22]. As a result, one can see that the non-local NJL model may

have more predictive power and be more realistic. There are two major applications of



the non-local NJL model in the strong interaction. Firstly, it is incorporated in the quark
model to give mass spectra of excited mesons in good agreement with the experimental
data [23]. Secondly, the thermodynamics of nuclear matter and QCD phase diagram could
be explained quantitatively well by using non-local NJL model (with Polyakov-loop) [24].

A non-local NJL model can also be constructed from certain intersecting-branes con-
figurations in string theory. The Sakai-Sugimoto model (SS) [25, 26] is a D8-D8-D4
intersecting-branes model in type ITA string theory. The background spacetime is generated
from a stack of N, D4-branes. An z* coordinate is compactified into a circle with radius
R and the D4-branes wrap around the z*. On the boundary of the 10-dimensional space,
a stack of Ny D8 and D8 are located at 2 = —L/2 and L/2 respectively. The left (right)-
handed quarks live on the D8 (D8)-D4 intersection in the form of open-string excitations.
They are thus separated by distance L on the boundary and there is a U(Nyf)r, x U(Nyf)r
chiral symmetry. Geometrically, when the D8 and D8 merge at certain radial coordinate,
the chiral symmetry breaking U(Ny)r x U(Ny)g — U(Ny)y occurs.

We will not be considering the SS model in its full details in the present work but
would rather focus on the low-energy effective 5-dimensional field theory limit of the model.
In contrast to the strong coupling regime where the supergravity picture of intersecting
branes provide simple geometrical interpretation of the theory, the weak coupling limit has
its own unique picture of chiral symmetry breaking in terms of non-local NJL. model in 5
dimensions.

In such intersecting branes setting there are two crucial parameters i.e. the 5-dimensional
't Hooft coupling, A and the length scale of separation between D8-D8 flavor branes, L.
One can consider the hierarchy of those parameter as A < L which is the weak coupling
regime. In such limit, we can treat left- and right-handed quarks as weakly interacting by
single (five dimensional) gluon exchange process. The non-local NJL interaction is repro-
duced by integrating out gluon fields in bulk spacetime from such D-branes configuration.
In terms of effective potential in holographic non-local NJL, the nonzero solution of chiral
quark condensate exists at arbitrary weak coupling [27, 28]. In contrast, if one considers
the SS model in compactified case i.e. R is finite, and includes the KK tower of states.
The xSB will happen only above a certain value of 't Hooft coupling [29]. In any cases,
the analysis has been done on the effective potential of the non-local NJL at the one-loop
level. It is interesting to investigate whether the two-loop contribution would change the
profile of the effective potential in any significant way.

We will start by reviewing the method of effective action in 5 dimensions when gauge
fields propagate in 5 dimensions and fermions are localized in 4 dimensional subspace. By
integrating out heavy gauge fields, we will obtain the effective fermionic action of the SS
NJL model. Subsequently, by using auxiliary field approach, we integrate out the residual
fermionic fields to obtain the effective scalar action of the SS NJL model. One-loop and
two-loop contributions of the action are then calculated and discussed. Chiral symmetry
breaking is demonstrated at both one and two-loop levels.



2 The effective Lagrangian

We start with the effective action of the single-intersection model where left-handed quarks
are located at a single intersection of N, D4 and Ny D8 branes [27],

1
7= [@a{-imPun PN S ot (0, Adas . (@)
95
where M, N,--- = 0,1,2,3,4 and p v, --- = 0,1,2,3. Integrating by part and fix the
gauge, the action can be rewritten in the following form,
1 1 .
S = E /d5x {5 Ay OAM 45 (2 JM AM} + /d4xq25“zﬁqu, (2.2)

where we have defined J* = g% qTL a* qr, and set J*) = 0.

The gauge fields live in 5 dimensions and it is natural to integrate them out to obtain
4-dimensional effective action of the fermions. For consideration of the chiral symmetry
breaking, we can bosonize the fermion bilinear and integrate out the fermions subsequently.
In order to integrate out the heavy-gauge field Ap;. We recall the procedure from [30], start
with

il do g :/[dH] oi | e 2 (H@).i() //[dH] oi | d' 2 (H@)0) (2.3)
where H(z) and [(x) are heavy and light fields respectively. In our case, Aps is the heavy

field and ¢r, g are the light fields. The actions with and without the light fields are given
by

/def(AM,qL) = % /d5x {%AMDAM+6(3:4)JMAM}
95
+ / d*zql 5", qr, (2.4)
/d5$$(AM,O):i2/d5CC%AMDAM. (2.5)
95

By using functional path integral as demonstrated in appendix A, the effective action after
integrating out the heavy gauge field can be read off from eq. (A.3),

ot Zi/d4xq25“3qu
9 4 A + i
_ 16;2 / d*z d'y Gz —y, 0) |¢! () 5" C]L(y)] [qL(y) &, qL(:U)]. (2.6)

Next, we extend the Lagrangian (2.1) to the the left and right-handed quark fields located
at different intersections, D4-D8 and D4-D8 respectively [27], this is the low-energy field



theory limit of the SS model,

1 L
7= /d{ - @FMNFMN”C’”“E) 6" 00+ A
5

L
+4 <x4 — 5) q}%a“ (i 0y —{—Aﬂ)qR},

1 L R L L L R
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95
+/d4ﬂ:qTL a"id, qL+/d4xq%J“i8“ 4R (2.7)
where we define JM. = ¢24f M JM = g2t oM and Al 4 0) are the gauge
(L)—g5qL qr , ()—95‘130 qRr Mo A gaug

fields in 5-dimensional spacetime which are located on the D4-D8 and D4-DS intersections
respectively.

Then the generating functional of the above action is given by
/[dAg\? d A App exp {iy(AS\?, A g, QR)}

— / [d A a A App

X exp {g% /deAg\? gMNDAE\?)
5

1 L L
- ?/ dx dyd <x4 + 5) o <y4 - 5) J(]‘g)(x) Gun(z—y, zt —yh) J(]}g)(y)
5
+i/d4xqza“i3MqL+i/d4xq};a“iauq3}. (2.8)

Using eq. (2.8), the effective action in the integrating out procedure is written by

Ja AP AP App exp {7 (A, A v an) }

e ff —
f[d A(ﬂ {) dA(”)] AFP exp {z&”(A(n (), A(M),O, 0)}

= exp {i/d4x (q}&“i@MqL—FqLU“i(%qR)

—igs / d*z d*y g} (x) 7" qu(2) G (x =y, L) qh(y) 0" qr(y) }-(2-9)
Finally, we obtain the effective non-local Lagrangian in the Feynman gauge as
S = /d4x (qTL " i 0, qr, + q% "0, qr)

1 %
—gg/d4x d'y s 9w G-y, L) gl (x) 3" qr(z) qly(y) 0¥ qr(y),



= /d4x(q25“i8ﬂqL+qEJ“i8ﬂqR)

2
* 4% d'z d'yG(z—y. L) [qp(@) - ar(y)] [ak(y) - a(@)], (2.10)

where we used the Fierz identity <q2(:{3) ot qL(:U)) (q}r%(y) ou qR(y)) = -2 (qz(x) : QR(y))

<q}r%(y) -qL(az)>. The dot in the right-hand side is the contraction in the colour indices,

therefore each fermion bilinear in the final expression of the effective interaction Lagrangian
is a colour singlet. There is a non-local interaction between two colour singlet operators in
the theory.

3 Effective potential at one-loop : Auxiliary field approach

In this section, we will calculate the effective potential from the effective action eq. (2.10).
Actually, there are many ways to perform this kind of calculation. We will use the standard
method of effective field theory i.e. bosonize the fermion bilinear which would become the
chiral condensate and integrate out the heavy-residual fields (in our case is the fermion
fields) and then we can automatically obtain the effective potential with one-loop radiative
correction from the effective Lagrangian.

Following ref. [27], we start with the auxiliary field method. This method is used to
study the symmetry breaking of the model by introducing the auxiliary field to the effective
Lagrangian. In our case is the bosonized complex fields i.e.

T(a,) = 5 Glo — 1) al (@) - arly)
T(y.a) = T'(avy) = 5 Gla = 1. L) ah0) - au0) 3.

where the coupling A\/N, is related to the gg coupling in the effective Lagrangian by the
2
relation \ = 45% Ne.

Substituting auxiliary fields from eq. (3.1) into the effective action eq. (2.10), we obtain

Soff = /d4x (qz a"i0,qr —|—q}[2 " 10, qr) (3.2)

v [ iy <_ At % T 2) g (@) - ar(y) + T(@ ) () - qL<m>> |

In the chiral (Weyl) basis, one can rewrite the Lagrangian as

. N T(@) T(w)

N G Y

S = [ daqw) (19+ T@) P+ T() Pr) o) - [
where we imposed the simplifying ansatz T'(z,y) = T'(|]z — y|) consistent with the Poincare
symmetry of the expectation value of the operator. This is justified since we are considering
expectation value of T'(z,y) in the vacuum to study the chiral symmetry breaking.
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Figure 1. One-loop expansion of fermion fields.

We are ready to integrate out the fermion fields in eq. (3.3), it reads
gl Ten = /[dc}dq} exp{i.7(q,¢,T,T)} //[dc}dq} exp {i.7(q,4,0,0) },

— exp {Tr In (1 L L@ P+ T() PR) / iy Ne T@) T(x) } (3.4)

) X Gz, L)

The identities [[dgdq] exp {i [ d*z q(z) A q(z)} = det A = exp(Tr In.A) are used above.
Then the effective potential with one-loop expansion can be determined from the effective

action,

V:aff = eff

- 4 N, T(z)T(x) P T(x) P, +T(x) Pg
_/d Rt )+T1<1+ 5 > (3.5)

where Tr = Trgpinor Treolour Trlavor Trspacetime 1S the trace over all indices (i.e. spinor, color,

flavor, spacetime). The physical meaning of this procedure is depicted by figure 1.

The second term in the effective potential can be calculated by expansion

TP,+TP

i

> = Trspinor Trcolor Trﬂavor Trspacetime

i 12" ! [(TPLZ;TPR)] ,

/ d*kp ln< (kE;;(kE)>7 (3.6)

Trspinor ]-spinor =2 (in chiral baSiS) » Treolor Leolor = Ne

4
Travor 1aavor = Nf s Trspacetime = /d z=V,

n=1

where we used the following relations;

%:/(CW; 52 @=v)  (T§PL+TH§PR)?=TTkK. (3.7)



The momentum has been Euclideanized and henceforth we will drop the subscript.
Finally, the effective potential at one-loop is given by (scaled by factor Ny)

22 2\3 4 7
Vicloop = Ne [/ d'z T(x) T(x) % —/ % In <1 + %Z(M)] . (3.8)

The equation of motion (the gap equation) of the scalar T'(x) from the effective action,

eq. (3.8), is

e @ IR T(k)
/d4xT(x)e K )\ = EiTh) T (3.9)

Apart from the trivial solution 1" = 0 for the chiral-symmetric vacuum, the general solution
to the gap equation 6V.g/6T (k) = 0 can be solved perturbatively either analytically or
numerically (see appendix C). Non-vanishing 7" solution corresponds to chiral symmetry
breaking vacuum which has lower energy and thus represents a true vacuum. We can
obtain approximate solution by solving the gap equation in 2 regions of momentum, small
and large k (i.e. T(k)T (k) > k? and T(k)T (k) < k? respectively). The two solutions then
can be matched to determine the unknown constants. An approximate solution from such
method is in the following form [27]

To=hke =\/3 L0 < k < ky,
T(k) =T(k) = (3.10)
et = ko <k <A

s [ T0IT(H) T(k) T(k)
Vi —loop = N, / W24 T(kj)T(kﬁ) —1In (1 + T) ] . (3.11)

By substituting approximate propagator eq. (3.10) into eq. (3.11), we can demonstrate that

there is chiral symmetry breaking vacuum induced by small momentum contribution to the
one-loop potential. The details are discussed in section 5. Essentially, since the integrand
in eq. (3.11) is a negative-definite function of variable k? /T (k)T (k), the one-loop potential
is always negative for nonzero T regardless of the exact form of the solution of the gap
equation. It is obvious that the solution with nonzero T gives the lower potential than the
chiral symmetric solution 7" = 0.

It is remarkable that the chiral symmetry breaking of the one-loop potential occurs at
any weak coupling. The reasons are the boundness of the positive classical term (the first
term in the right-hand side of eq. (3.11)) whilst the negative loop term (the second term in
the right-hand side of eq. (3.11)) is not bounded for low momentum. The solution of the gap
equation, eq. (3.10), is a constant for the low momentum, resulting in In(1/k?)-divergence
of the loop term as k — 0, regardless of \.



4 Effective potential at two-loop level

Even though the one-loop potential demonstrates the possibility of chiral symmetry break-
ing solution, higher loops contribution could likewise be significant. In this section, we
will calculate the effective potential at two-loop level by following Jackiw’s functional ef-
fective action method [31]. The two-loop contribution can be calculated from the vacuum
expectation value of the interaction Lagrangian Z;(x)

Vatoop = 1 (0] T et @ Z1@) 0y, (4.1)

where 7 is the time-ordering operator. In order to obtain the two-loop contribution, we
simply use the conventional Feynman rules to calculate all possible two-loop diagrams exist
in the effective theory of fermion and auxiliary scalar. The propagator G of the field ¢ to
be used in the evaluation of the 2-loop diagrams is defined by the inverse of the functional
operator, namely

G ) = —
YT 56(x) 66 (y)

In the previous section, we recall the effective Lagrangian

/d4x Lo (). (4.2)

S = [ dlo ["q-wq(x) +4(@)T(@) Pra(@) + (@) T@) Pra(@) = 5F 5oy

S = [t taw) = [ dto[a@) T(a) Pralz) + 2(0) (@) Pra(o) (4.3)

The functional operator S~! of the quark fields and D! of the complex scalar fields from

the effective Lagrangian therefore can be written as

. 52.5,
iS k) = /d4xe_lk'($_y) _ T el ,

®) Sty oa(y)
— }+T(k) P, + T(k) Pg,

, 5.7,
~D—1 k) = d4 —ik-(x—y) ef;f
D () / ve 5T (z) 0T (y)’
Ne
= _m. (4-4)

Noting that, P! has no kinetic term for the scalars 7,7 . The vertices of the interaction
in the effective action are given by [31, 32]

I, = /d41' e ik (z—y—2) (_i)gégyeff
og

(x)0q(y) T(2)’
=il (4.5)
_ 4 e*l’k-(mf —z) (_i)gégyeff
e~ fa T 5@ 0a) T
=1Pgr. (4.6)



Putting everything together, the two-loop contribution is (see figure 2 for the corresponding
diagram)

4 4
Vtoop = —iTr / % (jT‘; L1 S(p) TR S(k) D(p — k),

_ 2p-kG(p—Fk, L)
A / i SO RO

where we have used

¥—TP,—TPg _ ¥—TP,—TPgr (48)
<k+TPL+TPR) (k_TPL_TPR> B-TT .
and
Tr{PL(ys—TPL—TPR)PR(k—TPL—TPR)}: 2p - k. (4.9)

Using Wick rotation i.e. ¥ — ikg, d*k — id*kg , we obtain the two-loop contribution in

Euclidean space
dkp 1
4 _
(27) [k%E + T(kp) T(kE)]

‘/2—loop = _4772>‘Nf/

(4.10)

/ d*pp QPE'k‘EefL‘pEka‘
4 —
@™ |ph + 7o) T(r) |
The angle integration can be evaluated as shown in appendix D to be
- - )‘Nf LAdl;: i;:4E LAd~ ]5%7]
2=loop = YA B BT 2 A PE T, 2 A
0o B LT The) | o [+ 12T (0m) T (o)

= (=1 T(n—1)A"T
XZIO oy {_(n—{—3)(n—|—5)B

3—n 5—n 'BQ)
47 4 7T A

pE—kE‘

X 2(142 —B2) 2F1(

3—-n 5—n B2>

2 2 )
+(B (n+2)_2A) 2F1( 4 7Ta 7A2

}, (4.11)

where kg = Lk, pp =L pp, A = Py + k% ., B = 2pg kg . Henceforth, for convenience
we will simply write the Euclidean momentum without a subscript.

5 Results and Discussions

Adding all of the one-loop and two-loop contributions, the total effective potential becomes

Vet = ‘/1_100p + ‘/2—loop,
4
. / dp

T (k)T (k)
REThTwE " (1 T

+ VYZ—loop- (51)
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Figure 2. Two-loop vacuum diagram for V5_jo0p, solid line is the fermion and dash line is the
scalar.

The resulting effective potential of the scalar shows the possibility of chiral symmetry
breaking at nontrivial T'(k) # 0 since the sign of the one-loop contribution is opposite to
the classical action of the scalar. The 2-loop effect as given in the form of eq. (4.11) could
be either positive or negative depending on the relative sizes of each n-term. A closer
investigation reveals that the n = 0 term is the largest and it is negative. The odd-n
terms are positive with smaller values than the preceding even-n terms. Consequently,
the entire two-loop potential is negative. Since the chiral symmetric solution 7= T = 0
gives larger negative two-loop contribution than the chirally broken case (with smaller
denominator of the integrand in eq. (4.11)). It is thus possible that the difference of 2-loop
contributions would compensate the one-loop effect and alter the true vacuum of the theory
in a significant way. We will demonstrate that the two-loop contribution is small comparing
to the leading one-loop and the chiral symmetry breaking persists. In evaluation of the
momentum integrals, we will apply a UV-cutoff A required in non-renormalizable effective
field theory. The cutoff will be taken to be larger than Ty and smaller than 1/L.

5.1 1-loop

Since both one-loop and two-loop contributions scale with the number of flavour Ny, we
will simply suppress the N; factor henceforth. First, we will consider 1-loop contribution
of the scalar to the effective potential and demonstrate that the potential has nontrivial
minima when using the ansatz solution of the gap equation as given in eq. (3.10). The
1-loop integrations, eq. (3.11), can be performed in two separate momentum regions and

rewritten as the following
T(R)T(k) —In{1+
k)

Vet / d*k
N. ) @n)* | B2+ T(k)T(

B </0T+/TA> <§l:§4

— 11 —



Ty 1 & ()" (1 -n) '
- 1672 <1D2 B 5 +2 Z n F4n*3(LT0, LAa ’I’L) . (52)

where we define the function

T 4n—4
F4n_3(LTO, LA, 77,) = E4n_3(2nLT0) — E4n_3(2nLA) <XO> s

The function Fy,_3(LTy, LA;n) decreases very rapidly with n, therefore the sum in the
one-loop potential, eq. (5.2), can be approximated by truncating at finite n with a high
precision.

The one-loop contribution will be explored by fixing one and two of the 3 param-
eters, A\, L, A and numerically plot the effective potential with respect to the remaining
parameters. The physically-valid region of the parameter space for our SS NJL model is
To = /AN L? < A <1/L. As shown in figure 3, the one-loop potential is negative at any
nonzero values of A, \, L corresponding to nonzero values of Ty = /\/L3. Since when
T = 0, the potential is zero and less preferred than negative potential occuring at any
coupling A, chiral symmetry breaking thus naturally occurs for any weak coupling (i.e.
To < 1/L). In figure 3(a), the potential approaches negative constant for A = 0.7 — 0.8
for A = 0.1, L. = 1. If we instead fix the UV-cutoff scale A = 0.5, the potential will be
a decreasing function with A as demonstrated in figure 3(b). Figure 3(c) also shows the
one-loop potential at fixed A = 0.3, A = 0.5 as a function of L. It is important that we
restrict ourselves to the physical region Ty < A < 1/L in our consideration of the effective
potential in the nonlocal NJL model.

We also plot the potential landscape in the physical region at fixed L = 1, as is shown
in figure 4.

5.2 2-loop

In this section, we investigate the 2-loop contribution to the effective potential. Using the
one-loop approximate scalar ansatz, eq. (3.10), the two loop integration given by eq. (4.11)
can be separated into 3 terms,

A ToL ToL AL AL ToL AL
Voloop = =75 U dk / dﬁ+/ dk / dp’+2/ dkz/ dﬁ}
R T 4m3 L5 | g 0 ToL ToL 0 ToL
it P
| B2+ L2 T(k/L)T(R/D) | |5+ L2 T(3/L) T(5/L) |

X (-1 [ w(n-1)A""
X; Iy {(n—{—3)(n—|—5)B

X

X

3—n 5—n”B2>
4 7 4 77 A2

2(A% — B?) 2F1<

3—n 5—n”32)
4 7 4 777 A2

—|—(B2 (n+2) —2A2) 2F1(

}. (5.3)
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Figure 3. One-loop effective potential per colour as a function of A, A, L.

Figure 4. One-loop effective potential per colour as a function of A, A for L = 1.

The overall 2-loop contribution scales with A\/L®. The integration in the low momentum
region has additional (TpL)% x (ToL)" ! factor for each n-term in the sum. The integration
in the high momentum region, on the other hand, has additional (AL)® x (AL)"~! de-
pendence for each n-term. The cross term integration has additional overall scaling factor
(ToL)3(AL)3 for all n. We perform numerical integration on each n-term and add them
up. Since the integrand for each n is a smooth and well-behave function with no singulari-
ties and abrupt changes, numerical integration yield very precise results. The value of the
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integration for each n-term decreases rapidly with n and the error is less than 1076 if we
truncate the sum at n = 10.

Figure 5 shows the effect of 2-loop contribution to the effective potential. Similar to
the one-loop case, the chiral-symmetry broken vacuum solution has lower energy than the
chiral symmetric one (T' = T = 0). However, there is one crucial difference between one and
two-loop potential. The magnitude of 2-loop contribution could increase with the cutoff
in contrast to the 1-loop which saturates to negative constant. This is originated from the
AL dependence of the potential in eq. (5.3) getting larger with increasing A resulting in

the decreasing function of the effective potential with the cutoff.

Eifective potential versus UV —cutoff Effective potential versus UV —cutoff
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Figure 5. Effective potential up to 2-loop as a function of A for N. = 3, A = 0.1 (a), 0.01 (b);
L = 1. The 2-loop contributions for both chirally broken and symmetric solutions are shown in (c)
in comparison to the chirally broken 1-loop.

When the 't Hooft coupling is very small, A < 0.08, interesting phenomenon occurs. As
we can see from figure 6 (a), the ratio (magnitude) of the 2-loop to 1-loop increases sharply
as A — 0. From eq. (5.2) and (5.3), since Vi_jo0p ~ A?N, while Va_j0p ~ A, the ratio of the
2-loop to 1-loop potential will scale as (AN,) ™! and the 2-loop contribution will be dominant
for sufficiently small \. However, since both one and two loop contributions are negative
and together they are larger in magnitude than the two-loop potential of the chirally sym-
metric solution (figure 5 (c)), the chirally broken vacuum always has lower potential as is
demonstrated in Figure 5 (¢) and 6 (b). Chiral symmetry breaking therefore persists for
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Figure 6. The ratio of Va_ioop/Vi—100p decreases rapidly with increasing A (a). In (b), the effec-
tive potential for small A remains negative (and smaller than the chirally symmetric case), chiral
symmetry breaking thus persists. The cutoff A is set to 0.9 and L = 1 for these plots.

arbitrary weak coupling. One might anticipate the chirally symmetric potential to become
more negative than the chirally broken one as A\ — 0 since Va_jqop(sym) < Va_jo0p(xSB)
and Va_i00p/Vi—loop ~ (N.A)~!. However, a closer investigation reveals that the differ-
ence Va_1oop(5ym) — Va_ioop (XSB) =~ AVa_j0p(sym) for very small X and Vi_jo0p(xSB) is
actually larger in magnitude (i.e. more negative) than AVi_jop(sym). Consequently, the
chirally broken solution still has lower potential than the chirally symmetric one even for
extremely small coupling.

6 Conclusions

SS intersecting-branes model provides a geometrized model of chiral symmetry breaking
and confinement in both weak and strong coupling regimes. The effective field theory at
low energy (E < 1/L) from the SS model is a type of NJL model with non-local 4-fermion
interaction. In constrast to conventional NJL with 4-fermion contact interaction which
requires sufficiently large coupling to break chiral symmetry, the holographic non-local
NJL model prefers chirally broken phase for arbitrarily weak coupling at the 1-loop level.
In this work, we found that the 2-loop effect does NOT change this feature of the model
and the chiral symmetry breaking persists for arbitrary weak coupling. The 2-loop effect
can be understood as the antiscreening of the non-local 4-fermion interaction induced from
the coupling of fermion with the cloud of scalar condensate. The 2-loop contribution in our
model is suppressed below the 1-loop contribution for A = 0.08. One of the suppression
factor is the number of colour degrees of freedom N. = 3 when the coupling A is fixed.
Bosonization of the fermion bilinear into a colour-singlet scalar naturally matches the loop
expansion of the effective potential with the 1/N,. expansion. The large-N, expansion
makes it manifest that the 1-loop contribution scales as (N.)! and the 2-loop scales as
(N,)°. The higher-order loops are therefore suppressed by negative power of N, and so on.

The solution to the gap equation in our model gives fermion condensate proportional
to \/A/L3 resulting in A\>-dependence of the one-loop potential while the two-loop scales as
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A. Therefore the two-loop contribution becomes dominant to the one-loop for very small
coupling. However, since the difference between the two-loop contribution of the chirally
symmetric and broken solutions is smaller than the size of the one-loop potential of the
chirally broken solution, chiral symmetry remains broken for arbitrary small coupling.
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A Integrating out heavy gauge field for single intersection model

According to the standard technique of path integral (see [30], or textbooks in QFT), the

generating function of the action in eq. (2.4) is written by
/[dAM] App exp {i.#(An.qr)},
~ 5. 1|1 M 4\ M . YRS
= [dAM]AFpexp{z dm% §AMDA + 0@ JY Ay | +i [ dxqpo zaqu},
:/[dAM] AFP

X exp {%/d%lAMDAM
95 2

7 1
2 d’z d°y S (z*) 6 (y*) 3 JM(2) Gun(z —y, z* —y*) TV (y)
5

+ 2/ dz qz alid, qL}, (A1)
where App is the Faddeev-Popov’s determinant. In the Feynman-gauge, the propagator,
Gun(z,21) of the gauge field Ay can be written as

1
Gun (z, z*) = WQMNG($7$4)7

1
T 8n2 ((x4)§]\j]\;2)3/2' (A.2)
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Using eq. (2.5,A.1) in eq. (2.3), we obtain
eiy’eﬁ» — /[dAM] AFP ez‘fd“mf(AM(m),qL(m)) // [dAM] AFP eifd4m$(AAI(:B),0)

= /[d Ap] App

) 1
Xexp{%/de—AMDAM
95 2

7 1
— 7 &’z d°y s (z*) 6 (y") 3 JM (@) Gun(z —y, z* —y*) TV (y)
5

+i/d4quLa“18MqL}
) 1
//[dAM]AFp exp{g—z/d5x§AMDAM},
5

1 1 _ _
= exp { = o [ ey g ol @) ul@) Gl — v, 0) 24} 0) 7 0s(0)

+i/d4xq25“i8ﬂqL},

2
= exp { - 1/ d'z d'y 169;2 Gz —y,0) |q} (x) 5" qL(y)] [qz(y) Oy qL(w)}
+i/d4xq25“i8ﬂqL}, (A.3)

where we used J@ = 0 and Fierz identity (q;r; 10" qr.2) (qTL 30uqr4) = (q;r; 10" qr.4) (q;r; 30uqL2) -

B Fourier transform in Euclidean 5-dimensions
The coordinates of a d dimensional Euclidean space are given by

r1 = x cos b,

T9 = x sinfy cos by,

r3 = x sinfy sinfy cos s,

T4 = x sinfy sinfy sinf3 cos by,

r5 = x sinfy sinfy sinf3 sin 4 cos O,

T, = x sinfy sinfy sinfs --- sind,,_1 cos b,

Tpi1 = x sinfy sinfy sinfz --- sinf, 1 sinb,, (B.1)

where only 6,, € [0,27) (so that x,41 € [—x,+x,]) and other angles range from 0 to 7. For
Fuclidean momentum in 5 dimensions, the components are

k1 = k cosfy,

ko = k sinfy cosby,
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ks = k sinfq sinfy cosbs,
ks = k sin 6y sinfy sinf3 cosf,,

ks = k sin6q sinfy sinf3 sinfy . (B.2)
The volume element in 5-dimension is thus
d°k = k* sin® 0, sin® 0, sin O3 dk df; d b3 db,. (B.3)

With this measure, the Fourier transform in 5 dimensional Euclidean space can be
performed as the following

ko~ 5.
F(:C) = / ;Z,]T];E) F(k‘) ezk-x — / (;iwl;g) F(k‘) elk:}: cos@l’

dk 6 dfy dfs dfy k* sin® 6, sin® By sin O F (k) et F @ cos01,

=~

Il
3
—

(2m)°

1 0o . s s 27
— - / F(k)E* dk / elkecostn ¢in3 9, de,y / sin? 0y dbs / sin 05 dbs / dbs,
(2m)° Jo 0 0 0 0
1 sin(k z) cos(k:x)}

“ dkﬁ(k)k4[ Gor " (ol

(B.4)

Given an explicit functional form F (k), the transform can be completed.

However, in the situation where the quarks are localized at particular 2* and the gauge
fields in 5 dimensions are integrated out to obtain the effective 4-dimensional action, we
will need to perform the Fourier transform of the propagator given in eq. (A.2) under
the condition that the gauge fields are propagating at a fixed distance in z* direction.

4 coordinate and the Fourier

The Fourier integration will split into a delta function in x
transform in the Euclidean 4 dimensions.

For example, in our model, the Fourier transform becomes

Gk, k) = /d59€G(ﬂc,L)eik'm:/ dac4eik”4/d4xG(w,L)e“‘3'5’37
= 5(k4)/d5'3 dfy dby dfs x3 sin? 0y sin by G(x, L) etk cosOr
> 1 Ji(k
= 5(/€4)/ 73903 dx M (2) (2m),
0 (L2+552)5 kax

42 *  (kx)? Ji(kw)
= —— (kq) d(kx),
oy 1

3
k kL2 + (kx)?)?
e~ Lk
= (kq)dn? — (B.5)
where J,(x) , is Bessel function. If we neglect the momentum in bulk spacetime say, k4 = 0,
we obtain
e~ Lk
G(k,0) = 47° — (B.6)
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C Gap equation at two-loop

In this section, we will derive the gap equation at the two-loop level. Start with the

two-loop effective potential

22 23 4
Vg = Ne [/ d*zT(z) T(x) ( “;L ) —/ (5734 In (1 + T(kg(k)ﬂ

d'k d'p G(p—k, L) 2p -k
) PRt TR | [1?+T0) Tw) | o

The functional derivative of Vg with respect to T'(q) gives the gap equation

Vg & PN B (22 + L?)?
5ﬂ®_5ﬂ@{m/d T [ G T 5

—NJ}i$m0+T%?m>
dAk dp G-k, L) 2p-k
‘5/@@4/@w%pa+ﬂmfwﬁ[w+T@T@ﬁ}’
_ e /d4 / o = 50 () — q) (2 + L2

d'k T(k)
— N, SOk —
/ enl T TH O F9

4 4
(_ 2 T(p) 6@ (p — q) - TW*@><WM@ @
K2+ T(E)T(k))* [0 +T()T(P)] [ +TKk)T

_ T(p)T(p)T(k)§W(k—q) B
K2+ T(k)T(K))” [P+ T(p)T(p))* [k
- e [ dtaeie T(x) . T
A(2m)t Gz, L) (2mi¢@+T(q
A / d*k 2q- kG(q— T(
@mt) @M 2+ T(k) TR [ + T(a)
A / dk 2q-k:G(q—k L) T(k) T (k)
@m)t ) @™ (k2 4+ T(k)T(k)]* [¢2 + T(q)

k, L) k?

+2

+2
where we have used the symmetric property of the propagator G(k, L) i.e. G(k —p,L) =

G(lk —p|,L) = G(]p — k|, L). One then obtains the E.O.M. (6 Vog/d T(q) = 0) as

& 4.%, e—iq-x T(.%') _ T(q)
A/d D) T T T

k*T(q)
(k2 +T(k)T(k)]” [¢2 + T(q) T(q)])

d*k
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+2>\/ 2q-kG(g— k. L) —0.(C3)

C.1 The k* > T(k)T(k) approximation

We will approximate the gap equation in two regimes. First when k% > T'(k) T'(k), eq. (C.3)
becomes

No [ oy e T(@) T(q)
¢ K $7_N
X /d“ C) ¢ ¢

4 2
T
+2A/ﬁ2q-kcz(q—k, )T

4 q4
T(k)T(k)T(q)
+2)\/ 12q-kG(q —k,L)k4—q4:0. (C.4)
Multiply by ¢* and neglect the last term in the left-hand side, we obtain
N.q¢* 4 —ice T(x) 9 d*k T(q)
d e _———— — N.q¢°T 2N | ——=2q-kG(qg—k, L) —= =0(C.5
L [ dtwein I - NPT + 20 [ G20 kGla— kD) S = 0C5)

The last term represents the non-local screening effect of the scalar which is N.-suppressed
comparing to the other terms. If we neglect the screening effect and Fourier transform the
rest, the one-loop gap equation is recovered,

V2 ( fog) +M\T(2) =0, (C.6)

where V? is the Euclidean Laplacian in 4 dimensions.
C.2 The T'(k)T (k) > k* approximation

Next, we consider to the low momentum regime i.e. T'(k)T (k) > k?, the E.O.M. in this
limit is given by

& 4xe—iq-x T(.%') _ &
A /d G, ) VT T

4
+2A/%2q-kG(q—k,L) ROk [(;{)(QT oF

d'k (k) (k)T() _
+2>\/(2 2 kGl =k D) o L =0 (O

Neglecting the third term in the left-hand side, the gap equation becomes

Ne Top—— T(x) _ L d*k 2q-kG(q—k, L) 1
J ey = Yorg 2 G r T T T T Y

The last term on the right-hand side represents the non-local screening effect of the scalar
which is N .-suppressed. Again, the one-loop gap equation is recovered when the screening
effect is neglected.

The gap equation at one-loop level is solved in ref. [27] as given in eq. (3.10). We use
this approximate solution in the evaluation of the effective potential.
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D Evaluation of the 2-loop angle integration

We will integrate out the internal angle of Euclidean 4-dimension, we start with the two-

loop effective potential,

Veotoop = —42ANy [ Ak ! / dipr  2pp-kp e lvehsl
—loop = ) - 1 _
CoY [k + T(kp) Te) |/ T [+ Tor) Twr) | | pe — ke

Am2ANy A (272) kj;
= IANE
(2m)8 /0 : [k? +T(kE)T’(kE>}

/ dpE/ do 47T pE sin®f cos@ e L\/pE_QpEkE cos 0+k2,
pE+TpE)TpE] \/pE—QpEkE cos 0 + k%

LNy R (Lkg)*
4L57T3/0 (Lkz) [(LkE)2+L2T(kE)T(kE)}
LA
X/o d(Lpg) (Lp)’

[(LPE)z + L2 T (pE) T(PE)]

1
X/ d(cosf) cosf+/1— cos?6
—1

o~V (LpE)?=2(Lpp) (Lkp) cos0+(Lkp)?

\/(LpE)2 —2(Lpg)(Lkg) cos® + (Lkg)?

L ANy A i i >
4 [573 BT 2 3 PE ) 2 7
0 [k;E + L2 T (kg) T(k:E)} 0 {pE + L*T(pg) T (pE)

1 —vVA—-Bzx
x | dva/1-2? e
/1 T T T T

Where/;:EELkE,ﬁEELpE, AEﬁ%—i—]}Q s BEQ};E];E

(D.1)

. . |
Expanding function &~ = + >~

u

o0

n—0 n, gives

AN LA k4 LA ~
Vortoop =~ o2z / ke — B / dpp B
mo U B 2T ke) The) | S [+ 2T (o) ()|

X/lld:vx\/l—xQ \/ﬁ; (—nll)" (\/A—Bx)n,

AN LA ]{?4 LA ~
:_4L5f3/ e T I / e o
™ Jo (83, + L2 T (k) T(kp) | Jo [+ L2 T(v) T(ps) |

—1) i —
XZ( ) dr z\/1 — 22 (A—Bw)Tl,
= n! J_4

AN LA k?4 LA ~
:_4L5f3/ ke = r / e 1 "
o R 12T T(he) | o [+ L2 T (o) Tior) |



n=0

> (= 1) T(n—1)A""
<2 {_(n—{—3)(n—|—5)B

X

3—n 5-n 'Bz)

2 2 1.
2(14 B)ZFI( 4 0 4 717A2

3—nmn 5—n B2>

2 o 42 9.2
+(B2(n+2) 2A)2F1( s

}, 02)

where 9 Fi(a,b;c; z) is the hypergeometric function.
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We review the holographic multiquark states in the deconfined quark-gluon plasma. Nuclear
matter can become deconfined by extremely high temperature and/or density. In the deconfined
nuclear medium, bound states with colour degrees of freedom are allowed to exist. Using
holographic approach, the binding energy and the screening length of the multiquarks can be
calculated. Using the deconfined Sakai-Sugimoto model, the phase diagram of the multiquark
phase, the vacuum phase, and the chiral-symmetric quark-gluon plasma can be obtained. Then
we review the magnetic properties of the multiquarks and their phase diagrams. The multiquark
phase is compared with the pure pion gradient, the magnetized vacuum, and the chiral-symmetric
quark-gluon plasma phases. For moderate temperature and sufficiently large density at a fixed
magnetic field, the mixed phase of multiquark and pion gradient is the most energetically preferred
phase.

1. Introduction

At low energy, only hadrons can be observed. Due to the large coupling of the strong
interaction on large distance scale, the genuine constituents of the nuclear matter are confined
within the baryons and mesons. They can be explored only with a high energy probe,
for example, in the deep inelastic scattering (DIS) experiments. When the energy scale
involved is sufficiently large, roughly few hundred MeVs, the interaction among quarks and
gluons become perturbatively weak, the phenomenon known as the asymptotic freedom. The
quarks and gluons subsequently become “deconfined” from the confinement of the strong
interaction.

For effectively free quarks and gluons, perturbative treatment of the Quantum
Chromodynamics (QCD) has been proven very successful in making verifiable quantitative
and reliable predictions. The QCD background calculations of the scattering of quarks
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and gluons at the Tevatron give accurate and vital results, which are crucial in providing
the benchmark for the search of New Physics beyond the Standard Model. Nevertheless,
unexpected ridge-like signals related to the strong interaction are already observed from the
collision of proton and proton at the Large Hadron Collider (LHC) [1]. Further investigations
are required in order to determine whether this ridge structure could be explained by the
perturbative QCD or if it is nonperturbative in nature.

A general picture of the deconfinement process of the quarks and gluons within
hadrons is currently incomplete at the most. Naively, from argument of the RGE
(Renormalization Group Equation) running of the beta function, effectively free quarks and
gluons are expected to appear at high energies and/or temperatures. Transition from non-
perturbative phase of nuclear matter to the perturbative regime, where the perturbative
QCD is reliable, is explored most successfully in the lattice approach. Lattice studies of the
QCD predicts the deconfinement temperature around 175MeV [2]. Nuclear matter at such
temperature would undergo a phase transition into a deconfined phase called the quark-
gluon plasma (QGP). Most bound states of light quarks would melt down at this temperature
leaving free quarks and gluons in the plasma. Remarkably, the mesonic states of heavy quarks
(e.g., charmonium) in the nuclear matter at such high temperature tend to persist melting
at least until 1.5T. [3-5] due to the remaining screened Coulomb-type binding potential
between quark and antiquark. Multiquark states such as baryons can also exist in the QGP
up to certain temperatures provided that the baryonic charge density is sufficiently large.

In the confined phase, only colour singlet states can exist as free particle due to the
confinement. Above the deconfinement, quarks and gluons with colour charges can propa-
gate with more freedom in the plasma. It is therefore possible that the coloured multiquark
states such as diquarks could also exist in the deconfined nuclear medium. Similar to the
mesonic states of the heavy quarks, these multiquarks could persist melting up to relatively
high temperature above the deconfinement. We can expect the multiquarks to be abundant in
the nuclear matter when the density is large up to temperature well above the deconfinement
temperature. Consequently, it is interesting to investigate the physical properties of the
multiquarks as well as their thermodynamical phase diagram in details. Unfortunately,
perturbative QCD based on quarks and gluons is not reliable during the deconfinement phase
transition. Lattice QCD is applicable only when the baryon density is small.

An alternative approach to study the strongly coupled gauge theory is the holographic
model based on the AdS/CFT correspondence [6, 7]. A string theory in the curved
background generated by D-branes source is conjectured to be dual to the gauge theory
on the branes. The duality suggests a correspondence between the strongly coupled gauge
theory on the branes and the weakly coupled string theory in the bulk. Extension of the
duality to the finite temperature gauge theory can be done by adding a black hole horizon
to the near-horizon limit of the background spacetime [8]. Baryons and multiquarks can be
holographically constructed using the baryon vertex and strings [9-12].

In this paper, we will review the physics of the holographic multiquarks in the
quark-gluon plasma using mainly the Sakai-Sugimoto (SS) model [13, 14]. The SS model
and the holographic setup of the multiquarks is discussed in Section 2. Section 3 describes
the thermodynamical properties and the phase diagram of the multiquark nuclear phase.
Magnetic properties of the multiquark phase and the corresponding phase diagram are
discussed in Sections 4 and 5, respectively. Section 6 concludes our paper. To present the main
results of this paper, a summary table of the deconfined nuclear phase in the SS model is given
in Table 1.



Advances in High Energy Physics 3

Table 1: Summary table of the phases in the deconfined Sakai-Sugimoto model, B represents the external
magnetic field.

B=0 vacuum Multiquark (MQ) ¥S-QGP
Region i t . .
s;;gclgn in parameter d =0 (ie., u < Usource) d >0 (i.e., 4 > Hsource) d>0
0<n, $03
Preferred at low p, low T High p, low T high T
Importgnt Mixing of different ng-multiquarks
properties
B#0 magnetized vacuum Vo MQ-Vg xS-QGP
Hsource = 0 Hsource = 0 Hsource > 0 Hsource = 0
Region in V=0 V>0 V>0 V=0
parameter space d=0 d=(3/2)BVey d>0 (2 psource) d>0
ja=0 ja=0 ja=0 ja=(3/2)Bu
0<n; <03
Preferred at none Low p, low T High p, low T High T
Configuration A, B
Important - higch T
ties merging at hig
proper and/or high B

2. Multiquark States and the Holographic Models

In addition to baryons and mesons, the possibility of multiquark states were recognized
by Gell-Mann since the proposal of the quark model. Qmén—multiquark (n+m > 3) such
as the tetraquark and dibaryon were proposed since 1977 by Jaffe [15-17] using the MIT
bag model. There are theoretical models of colour-singlet multiquarks using interactions
of various origins, for example, chromomagnetism, flux tube confinement, and hadronic
molecules. Despite the theoretical possibilities, conclusive discovery of the multiquarks has
yet to be confirmed experimentally (see [18] and references therein).

Series of experimental results from RHIC suggests that the produced QGP is strongly
coupled (sQGP) [19-22]. The fact that the QGP is strongly coupled near-and-above the
deconfinement temperature T, suggests the possibility of the existence of exotic bound states
with colour degrees of freedom in the deconfined QGP. Recall that an interaction between
two heavy quarks in the confined phase at 0 < T < T, can be described empirically by the
screened Cornell potential

1-eMo@Dr| o
Vo5(r,T) = or| ———— | = =MD" 2.1
o T) or[ cara il (2.1)

where Mp is the Debye screening mass depending on T and «a is the effective coupling.
The first part represents the (colour-screened) confining force due to QCD string with the
effective string tension o; it is around 0.20 (GeV)?* as suggested by the lattice studies. The
second part represents the effective (colour-screened) Coulomb potential due to transverse
string oscillation. By definition, the effective string tension ¢ vanishes at T > T.. As a result,
only the screened Coulomb part contributes to the interaction between quarks but within the
range of screening length M. Yet, as suggested by [23], a short string-like configuration of
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colour fields at low T becomes longer strings at-and-near T, which contribute to the binding
between quarks and gluons. Therefore, the bound states of gluons and quarks can exist in
both colour-singlet and colour-nonsinglet forms in the sQGP.

The studies of the multibody bound states in the sQGP were initiated by Shuryak and
colleagues [23-25]. Based on the studies in [23], three proposed multibody bound states: (i)
diquark or “polymer-chain” (qgg---gq); (ii) baryons (ggq); (iii) closed (3-)chains of gluons
(ggg) seem to exist only for T = (1-1.5)T.. Importantly, the existence of these bound states
could affect the thermodynamical and hydrodynamical properties of the sQGP.

The holographic models of colour-singlet baryon was originally investigated by Witten
et al. [9, 10]. In the AdSs x S° background, a D5-brane wrapping the subspace S°> with N,
strings attached is proposed to be a dual description of a baryon. A holographic dual of a
k-quark (k < N.) with colour degrees of freedom is discussed in [11] (see also [26]) for the
supersymmetric background. There is a number of interesting articles investigating various
possibilities of the multiquarks in both confined and deconfined medium, some of them
consider deformed baryon vertex [12, 27-33]. Notably, [12] uses a simplified configuration
with only one point-like baryon vertex to describe a variety of classes of the multiquarks with
and without the colour degrees of freedom. We will focus our attention to such multiquark
model in this paper.

In recent years, the AdS/CFT correspondence has attracted interests in its applicability
to the phenomenological studies of non-perturbative QCD. However, this correspondence
cannot provide the gravity dual of the large N. QCD. As its name suggests, the AdS/CFT
have the gauge theory side, which is conformal, differing from the confining behaviour of the
real-world QCD. There has been many attempts to engineer the holographic model whose
the confining feature is taken into account [8, 34-36].

One natural way is to consider a stack of N, D4-branes, in Type IIA string theory,
whose the world volume possesses one compact spatial direction [8]. In the near-horizon
metric of a near-extremal D4-brane, the compactified spatial circle shrinks to zero size at some
finite value of the radial direction representing a smooth cutoff of the spacetime. This feature
can provide us with the confining spacetime background in which the potential between a
holographic quark-antiquark bound state is mainly contributed by the tension of string lying
along the “hard-wall.” Consequently, the potential is linearly proportional to the separation
between two ends of the string resulting in the confinement of quarks and antiquarks in the
dual gauge theory.

At finite temperature, the time coordinate becomes Wick-rotated, and the asymptotic
circumference of the time circle equals to the inverse of the temperature, T~'. Consequently,
the confining spacetime background at finite temperature has two compact directions. The
metric of the geometry then can be written as

3/2 22 ,
2 _ L .. i g7 2 2 @ du 5
ds® = <RD4> [6,, dx'dx! + doj +f(u)d92] + < . ) [_f(u) +u dQ4], (2.2)

where 0 is the Euclidean time with temperature dependent period 660; = ff = T-1, 0, is the
compact spatial circle with period 66, = (4Jr/3)(R3/2/u}\/2), and f(u) =1- (up/u)®. Notice
that f(u) equals zero for u = u, but equals one as u approaches infinity. This f(u) factor
renders the 6, — u subspace a cigar-like shape, while the 6; — u subspace has a cylindrical
shape. However, there is an alternative supergravity solution whose the time and the compact
spatial coordinates exchange the role. That is, 0; is the compact spatial coordinate with fixed
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Table 2: Brane configuration of the Sakai-Sugimoto model.

0 1 2 3 4 5 6 7 8 9

N. D4 o
Ny D8(D8) o X X X X X X X X

circumference, 0, is the Euclidean time with period 66, = f = (4or/3)(R¥?/ u;/ %), and
f(u) =1~ (ur/u)’. In other words, there are two geometries which can be the supergravity
solution. The comparison of the free energy between these two competing geometries tells
us about the deconfinement phase transition in the gauge theory side. It is important to
emphasize that the asymptotic circumference of the time circle can be variable depending on
the temperature, namely, 66; = T~!, while the 0,-circle has a fixed circumference. As a result,
the phase transition occurs once the asymptotic circumferences of the two circles become the
same in both geometries such that they have the same value of free energy. This gives rise
to the deconfinement transition line in the T — p phase diagram of the holographic nuclear
matter [8, 37]. For a concise review, see [38].

2.1. The Sakai-Sugimoto Model

More realistic holographic dual of the large N, QCD is the Sakai-Sugimoto (SS) model
[13, 14]. The brane construction of the SS model is a stack of N. D4 branes intersecting
with Ny D8- and Ny anti-D8-branes, where Ny « N, such that the presence of the probe
branes D8/anti-D8-branes does not affect the D4 background. This is called the probe limit,
corresponding to the quenched approximation in the lattice QCD.

Stack of Ny D8 and D8 branes are introduced as the flavour branes. They are located
at separation distance Ly along the compactified x4 direction at the boundary u — oo. Open-
string excitation with one end on the flavour branes behave like a chiral “quark.” In the
setup where D8 and D8 are parallel in the (x4, u) projection, each chiral excitation on each
stack of branes transform independently, therefore the theory has a chiral symmetry. For the
setup where D8 and D8 connect, forming a U-shape or a V-shape configuration in the (x4, )
projection, chiral symmetry is broken.

To obtain a SUSY broken QCD at low energy, the boundary conditions of the
superpartners in the x4 direction are chosen so that the zeroth modes vanish (Scherk-Schwarz
mechanism). For energies below the first KK modes, the gauge theory therefore contains only
gluons and chiral quarks. If the number of the stack of D4-branes source N. is chosen to be 3,
this low-energy gauge theory will look exactly like QCD. The brane configuration of the SS
model is shown in Table 2.

Note that the “x” sign signifies that the coordinate is occupied by an infinite extending
direction of the D-brane world volume and the “0” sign means that the coordinate is occupied
by a compact direction of the D-brane world volume. This holographic model is a QCD-like
theory in many aspects. (i) It is nonsupersymmetric resulting from the antiperiodicity for
superpartners around the x* circle. (ii) It has the confining behaviour and the deconfinement
phase transition in the same way as mentioned above. In the confined phase, the x?
coordinate is the cigar-like compact direction and x° (the Euclidean time) is the cylindrical
compact direction. In the deconfined phase, the two coordinates exchange their roles. To
summarize, the coordinates 0; and 6, in (2.2) can be specified in the confined and deconfined
phase as shown in Table 3.
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Table 3: Geometric assignment of the compactified bulk coordinates in the Sakai-Sugimoto model.

Confined phase (T < Tgecont) Deconfined phase (T > T4econf)
0, 0 x4
6, x* x°
fw) 1— (un/u)’ 1- (ur/u)’

(iii) It has dynamical quarks resulting from the presence of the flavour branes. (iv) The
phases of chiral symmetry breaking and chiral symmetric quark-gluon plasma (yS-QGP) can
be realized. There exist two configurations of the flavour D8- and anti-D8-branes, both satisfy
the equation of motion. One is the connected configuration of the D8- and anti-D8-branes
representing the chiral symmetry breaking phase. Another is the parallel configuration of the
D8- and anti-D8-branes lying along the radial direction of the bulk spacetime representing
the chiral symmetric phase. Note that Tchirat = Tdeconf When the separation between the D8-
and anti-D8-branes Ly = 0.97R; R = the radius of the x4 circle, while Tgeconf < Techirat When
Lo $0.97R [37].

Since the SS model is the holographic model which gives exactly the particle content
of the QCD at low energy, we will consider the holographic multiquarks in the deconfined SS
model. The idea is to construct a gravity dual of the 5-dimensional gauge theory with chiral
fermions which gives approximately the 4-dimensional QCD at low energy. The inevitable
supersymmetry of the dual gauge theory in the string construction is broken at the position
of the flavour branes used to introduce the chiral fermions. To construct the SS model, stack
of D4-branes is used as the source to generate a curved background of the type IIA string
theory. After taking the near-horizon limit and adding a black hole horizon, we arrive at the
following background metric:

3/2 3/2 2
2_( U 2 g g 2 Rp4 2542, du
ds? = <—RD4> <f(u)dt +6;j dxidxl + dox, ) + <—u ) <u 40} + - ) (2.3)

2o N, u 3/4
Fu = v €4, e? = gS<R—> , R%4 = ]rgSNcl‘;’, (2.4)
4 D4

where f(u) = 1 - u}/u’, ur = 16a°R},T?/9. Note that the compact x4 coordinate (x4
transverse to the probe D8-branes), with arbitrary periodicity 2or R, never shrinks to zero. The
volume of the unit four-sphere Q4 is denoted by V; and the corresponding volume 4-form
by e4. F) is the 4-form field strength, I; is the string length, and g; is the string coupling.
The dilaton in this background has u-dependence, and its value changes along the radial
direction u. This is a crucial difference in comparison to the AdS-Schwarzschild metric case
where dilaton contribution is constant.

In the Sakai-Sugimoto model of D4-D8-branes construction, the D4-brane wrapping
the S* is used as the baryon vertex. Remarkably, it was found that the baryon can also
be realized as an instanton in the bulk of N, D4-brane-induced background spacetime,
corresponding to baryon in the Skyrme model on the gauge theory side. This instanton can
be described in terms of the Chern-Simons action in the bulk. Therefore, these two pictures
of baryon are equivalent.

A Dn-brane wrapping an internal subspace S” accommodate a U (1) which will couple
to certain n-form field of the string background and becomes charged under the U(1). To
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(@)

Figure 1: An illustration of the holographic multiquark states (a) k-baryon with k;, = k < N and k, =
N¢ -k, (b) (N¢ + k)-baryon with k;, = N, + k and k, = k, and (c) j-mesonance with k, = 2j and k, = N,.

cancel this charge for the entire background, a number of N strings emerging from the vertex
is required. While a string emerging from the vertex contributes a negative U(1) charge,
a string entering the vertex in the opposite orientation contributes a positive unit of U (1)
charge. Therefore, as long as the number of strings emerging from the vertex subtracting the
number of strings entering the vertex is N,, the configuration is allowed to exist since the
total charge of the background is still zero.

Based on the charge cancelation at the vertex, three classes of exotic multiquarks
are proposed in [12]. Namely, they are k-baryons, (N, + k)-baryon, and j-mesonance
(strongly coupled bunch of mesons), corresponding to diquark, some exotic baryons such
as pentaquark and a bunch of mesons, respectively. We parameterize kj as the number of
hanging strings which extends from the vertex to the boundary and k, as the number of radial
strings extending from the vertex to the horizon. Figure 1 shows 3 classes of the holographic
multiquarks. Their conditions are summarized as the following.

For k-baryon,

kn +k, = Ng, kn = k. (2.5)
For (N, + %)—baryon,
kn—k-=N;  kn=N.+k (2.6)
For j-mesonance,
ky = 2j, k; = N.. (2.7)

Note that the values of k and j can be as large as N, x N £

2.2, Force Balance Condition

Using the field background shown in the last section, the total action of these exotic
multiquark states can be generally written as

S= SD4 + khSFl + krgpl. (2.8)
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The DBI action of D4-brane
-1
Sper = f dx’dg’T,, T, = (e"i’ Qr)Pa P/ 2) \/-det(g), (2.9)

and the Nambu-Goto action of kj, hanging strings and k, radial strings can be written as

_ TNu/flue) L Y u\3 s __T
o= e S g [ e (R) S g,

(2.10)

respectively. Note that 7 is the total time over which we evaluate the action and u. is the
position where the D4-brane vertex is located.

Now let us write the force condition. As will be seen later, this is the equilibrium
condition for the existence of the multiquark states. Assume the vertex to be a point at the
cusp position u. that does not receive any distortion from the attached strings. The distortion
of the baryon vertex due to the attached strings is discussed in details in [39, 40]. Because of
the spherical symmetry of the configuration in the (x1, x2, x3) subspace, the action is sensitive
to only the variation in the holographic direction u. The variation of the action gives the
volume term as well as the surface term. The equation of motion is obtained by requiring
that the volume term and surface term vanishes separately. The volume term gives the Euler-
Lagrange equation which determines the shape of the hanging strings. On the other hand, the
surface term provides the equilibrium condition of the configuration at the tip . under the
variation in the u direction, that is, the force balance condition at the cusp. It can be written
as [12]

BeGo(x) - kuB+ k=0, (211)
where
1 3/2 !
Go(x) = L@I = ? <1, B= Ue . (2.12)
1-x ‘ Vil? + f(u) (ue/ Roa)?

Obviously, B is always less than one, thus we obtain the equilibrium condition

ki, > %Gg(x) +ky. (2.13)

Together with (2.5), (2.6), and (2.7), we obtain the lower bound of the hanging string
parameter for each multiquark configuration as
for k-baryon,

kyn=k> %(Go(x) +3), (2.14)

for (N, + E)-baryon,

kn=N.+k> %Go(x) +k, (2.15)
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for j-mesonance,
j> %(Go(x) +3). (2.16)

Note that Go(x) = 1 at T = 0 and it is an increasing function of the temperature.

2.3. Binding Energy and Screening Length

Theoretically, all of these bound states are allowed to exist. But a question arises which
multiquark state is more stable than another. This can be addressed by considering the
binding energies of each class of the multiquarks. Naturally, the binding energy of each of
these holographic bound states is the total energy of the configuration subtracted by the
energy of the free quarks. Similar to the calculation of Wilson loop in [41], the binding energy
in the large N limit could be estimated to be the total classical action divided by 7.

The solution or the shape of the hanging strings can be obtained by using the Nambu-
Goto action from (2.10), the regulated energy of the hanging strings (subtracted by energy of

the free quarks) is
Ep = —f do\/ f( )——f du. (2.17)
ur

From the equilibrium condition corresponding to the surface term, that is, (2.11) and (2.12),

we obtain 5 s
u? = f(uc)B ( Uc > ) (2.18)
¢ 1-B%2 \ Rps
where
ky
B = B(kp, k;, x) = ey (2.19)
Consider Sg; in (2.10), the Lagrangian,
_ 4y uy® 2.20
2 =1lu +f(u)<R>, (2.20)
does not explicitly depend on o, such that we can define the constant of motion
H=L- u’a—li = const. (2.21)
ou
This leads to f(uc)(uc/RD4)3 _ f(u)(u/RD4)3 o)
\ul + Flue)(ue/Ros)®  A\/u? + f(u) e/ Ros)® |
Eliminating u/, using (2.18) and (2.22), we have the relation
2 6
, u)“(u/R
o SR -

f(ue) (ue/ Rpa)* (1 - B2)
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Using the above equation, we obtain the size of the radius of the multiquark state as

3/2 . _ A3 _ B2
LR dyJ(B (1-2)(1-B) o0
Y

F 1 -3 (P -3 - (1-x3)(1-B?))’

and together with (2.17), we also have

- Ue © y3 _ x3 ~ ~ ~
Epi = E{L dy N R T 1] (1 x)}. (2.25)

Therefore, the total energy of the vertex D-brane and the radial strings are

E_NCuT \/1—x3+<ﬁ>é+<ﬁ)l—x
Y 3x N./ x N, x
NZ

"

(2.26)

where £ represents the terms within the brace of (2.25).

By numerical calculations, we compare the E/N, (the energy per degrees of freedom)
versus L (the size of radius of the bound states) of the 3 classes of the multiquark as
in Figure 2. The deeper the binding energy is, the harder the multiquark will melt in the
thermal bath. From Figure 2, the colour singlet N.-baryon has deeper binding well than
the (k < N.)-baryon and (N, + E)—baryon. As expected, the (k < N.)-multiquark is bound
more tightly as k gets larger. For (N, + k)-baryon, the bound state is less tightly bound, as
k increases. Similarly, a j-mesonance has the binding energy less than j mesonic states. It
becomes closer to j mesons as j grows.

The screening length L* can also be numerically calculated. It is defined to be the
value at which the binding energies become zero from negative values at small distances. The
numerical results, as shown in Figure 3, indicate that the multiquark states of all classes have
smaller screening lengths as the temperature increases, with approximately L* ~ 1/T for a
fixed k, k, and j. Furthermore, L* is larger as k and j increases for k-baryon and j-mesonance,
respectively, while it is smaller as k increases for (N, +%)—baryon. Interestingly, the saturation
of j-mesonance’s screening length occurs as j — oo, where L7 .ne approaches the
screening length of a meson L

*
meson*

3. Thermodynamic Properties of Holographic Multiquark

In the non-antipodal SS model, the holographic plasma can have two distinctive phase
transitions; a deconfinement and the chiral symmetry restoration [37]. The deconfinement
could occur at lower temperature than the chiral symmetry restoration. For the temperature
in between the two transitions, quarks and gluons are deconfined from the confining flux tube
but still interact strongly among each other through the remaining screened Coulomb-type
SU(N.) potential. Therefore, it is possible to have the multiquark phase in the temperature
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Figure 2: Comparison of the potential per N, between N,-baryon, k-baryon, and (N, + k)-baryon for
k/N;=0.8, ki/N.=2/3,and ky/N, = 2 at temperature T = 0.25.

range between that of the deconfinement and the chiral phase transition. This is consistent, at
least in a qualitative way, with the studies of the multibody bound states in the sQCD in the
framework of the real QCD [23] mentioned in the previous section.

To actually understand the physics of deconfined QGP, it is thus crucial to investigate
the thermodynamical properties of the holographic multiquark phase. In order to extract
the thermodynamic potential from the gravity dual model, the path integral approach in
quantum gravity [42] has been used. In this technique, the time direction is circled with
period f = 1/T in the same manner as the thermal circle in the finite temperature quantum
field theory. As discussed in [43] based on the early works [44, 45], the grand canonical
potential, or the Gibbs free energy, Q(T, ) has the leading contribution from the classical
Euclidean action of the bulk theory in the grand canonical ensemble, thatis, Q(T, y) ~ Sgﬂiiheu.
Similarly, the Helmholtz free energy F(T,ny) has the leading contribution from the Legendre
transform with respect to the baryonic charge of the classical Euclidean action, that is,
F(T,np) ~ §gﬂiihell in the canonical ensemble. If we are interested in the situation of nonfixed
baryon number density but fixed chemical potential, the relevant thermodynamic potential
is the grand canonical potential.

The deconfinement phase transition can be realized as the Hawking-Page transition
due to the competition between the action of the background geometry corresponding to the
confined phase and the action of the background corresponding to the deconfined phase [8].
Since the coloured multiquark matter can exist only in the deconfined phase (however, the
colour-singlet multiquarks such as a baryon can also exist in the confined phase), its grand
canonical potential in the Sakai-Sugimoto model is § times the combination of the classical
action of the deconfining spacetime geometry and the configuration of flavour sector, which
includes N¢ D8-D8-branes, the probe D4-brane vertex, and the radial strings. Note that the
part of hanging strings, extending from the baryon vertex to the flavour branes, is neglected,
and we assume that there is no distortion of the vertex due to the connecting strings (such
distortion is discussed in [39, 40]). As a result, the baryon vertex is embedded into the flavour
branes and becomes an instanton on them.
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Figure 3: (a) the screening lengths of k-baryons with respect to k, (b) the screening lengths of (N + k)-
baryons with respect to k, and (c) the screening lengths of j-mesonance with respect to j for T = 0.15-0.35.

Intriguingly, whereas the deconfining spacetime geometry action (scales as N?2)
dominates the action of the fundamental matter sector (scales as N.Ny), the dominating part
can be ignored in the consideration of the holographic phase transition in the deconfined
phase. Above the deconfinement, the multiquarks phase competes with the vacuum phase
and the chiral-symmetric quark-gluon plasma. In this section, we will explore the phase
diagram of the deconfined nuclear matter especially the region of the parameter space where
the multiquark phase is dominant. Then we will study the thermodynamics of the multiquark
nuclear matter in the dilute and dense limits.
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Figure 4: Configurations of yS-QGP (a) vacuum (b), and multiquark nuclear phase (c) in x4 —u projection.

3.1. Phase Diagram

In order to determine a phase diagram, we need to find which phase of nuclear matter is
thermodynamically preferred to others in a particular region of the parameter space. For
the grand canonical ensemble at a fixed y, the thermodynamically preferred phase is the
configuration with the grand canonical potential smaller than that of all other phases.

We will first determine the brane configuration in the presence of the external sources
by minimizing the classical action. The position of the tip 1. of the D8-D8 will be determined
from the equilibrium condition at the tip. The resulting brane configuration corresponds
to the multiquark nuclear phase. On the other hand, the vacuum phase corresponds to
the configuration with zero sources and density, and the yS-QGP phase is dual to the
brane configuration with parallel branes without a tip. The x4 — u projecion of the brane
configuration for each deconfined phase is schematically shown in Figure 4. Then we will
define the normalized grand canonical potential using the action of the D8-branes. The action
of each brane configuration is divergent from the limit # — oo. By subtracting with the
action of the vacuum configuration, we can regulate the grand canonical potential of each
configuration. By comparing the grand canonical potential of each phase, we finally draw a
phase diagram in (y, T) parameter space.

Start with the DBI action of the D8-branes

SDS = —Ug ’[ d9X€_¢ Tr \/— det(gMN + 2.71'[1’?1\41\[), (31)

where gy is the induced metric of the D8-world volume and the field strength tensor of the
gauge group U (Ny) living in the N flavour branes is

F=dA+iANA. (3.2)

While the full D8-brane world-volume gauge fields is

1
A =Asuny + ———+#, (3.3)

VN,
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we turn on only the time component of the diagonal subgroup U (1) part, &4/ /2N 7 in order

to introduce the finite chemical potential, or equivalently finite baryon density [43, 46]. From
the deconfining spacetime metric, (2.3), the DBI action of the D8-branes becomes

Spg =N j du uﬂ/f(u)(xﬂu))2 +us (1 - (fzo(u))2>, (3.4)
where the factor N is defined to be
5
= M, (3.5)

as the result of integrating out all world-volume coordinates except the holographic direction
u. And a are defined as

27al A

. \/27,: (3.6)

The action does not depend on ay, hence we can define a constant
65ps

6 iOu

a=

d= (3.7)

uay(u)

. \/f(u) () + w3 (1= (3, )*)

, (3.8)

which can be interpreted as the electric displacement field along the holographic direction.
Similarly for the variation of action with respect to x4(u), we can define another constant of
motion, says I, so that we can rearrange to obtain

(x,(w)* = u3f1(u) [f(u) (ui: wd) 1] _1/ (3.9)
from which at large u
x4(u) = % - g%, (3.10)
where L, is the separation between D8 and D8 branes at u — oo defined by
Ly= ZJ‘Oo Xy (u)du. (3.11)

The parameter I can be thought of as the curvature of the D8-D8-branes around the cusp. It
becomes zero when the flavour embedding is in the parallel configuration representing the
chiral-symmetric QGP. According to [47], this means that it can be used as an order parameter
of the nuclear matter/ yS-QGP phase transition.
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We will set Ly = 1 to allow the possibility of the chiral symmetry restoration as separate

phase transition from the deconfinement. Apply the equilibrium condition at the cusp u. (see
the appendix), we obtain I in terms of x/ (u.),

fue)\Jub +uld?

r- (1) (6.12)
VI ) (2, 10)) + 1i2?
=13 f (ue) [<u§ + d2> - %] (3.13)

where

Tlc(T,ns)El+%<?)3+3nsm. (3.14)

Note that the formula of x) (1) is derived from the variation of the total action, in which the
D8-branes action has been transformed to possess the dynamical variable d rather than a;,

8Siotal _ a(ng +Spa+ SFl) ~0 (3.15)

ou, ou,

This is reminiscent of the way we obtain the equilibrium condition of the multiquark vertex,
(2.11), minimizing the surface terms with respect to u..

It is important to emphasize that the parameter n is the number of radial strings
in the unit of N,. Due to the zero length of the hanging strings, we cannot distinguish the
different classes of multiquarks proposed in Section 2 for a particular value of ng, but some
possibilities, j-mesonance for example, can be ruled out by examining their thermodynamic
stability. This will be shown in this subsection.

Before going further to calculate the classical action, let us comment about the electric
displacement d. It has been shown in [48] that it is related to the baryon number density.
The baryon number density corresponds to the number density of instantons, ny4, on the D8-
branes. It also contributes to the Chern-Simons (CS) action of the flavour branes [13].

Beginning with the D8-brane CS term [49]

Hs

Sbs = 5

f Cs ATr 2za'F)°. (3.16)
R4xR, xS*

It is convenient to rescale the RR (Ramond-Ramond) field following the Appendix of [13]
such that

1
SSs = f CATrF
D8 4:8.71'3 R4xR, xS4 3 r g

1
4:8.71'3 R4xR, xS4

(3.17)
Fy ws(A),
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where the last expression is obtained through the integration by part. F4 = dCj; is the RR
4-form field strength and ws(<#) is the CS 5-form:

ws(A) = Tr<e4<;c2 - %43# + %45) (3.18)

satisfying dws = Tr ¥3. Using the fact that integrating the Fy flux over the S* in the N, D4-
branes background gives

1
— Fy =N, .19
2 G 4 c (3 )

and the relevant term is only the first term in the CS 5-form, (3.18), once turning on only the
time-component of the diagonal U (1)y, field, we obtain

5CS _ JO NTr(F AF). (3.20)

D8
24.71' 2 RxR, 4 /2

Assuming a uniform distribution of D4-branes in R® at u = u., we have [50]

1 Te(FAF) = R3n46(u — u)d®x du, (3.21)
8ar?

where n4 is defined to be the (dimensionless) number density of instantons, or the wrapped
D4-branes, at u = u,.. From the viewpoint that the low-energy effective theory on the D8-brane
includes the Skyrme model [13], it is natural to interpret n4 as the baryon number density.

Using (3.6), (3.20), and (3.21), we obtain

N V-
Sts = ’“—iﬁf du G (1) 61— ). (322)

From both the DBI and CS parts of D8-branes action, the equation of motion with respect to
the U(1) gauge field gives [48]
2w R* N
== __ - 3.23
N (3.23)
Note that this reflects the one-dimensional electrostatic effect in which the point electric
charges are put at 1., generating constant electric field in the holographic direction.

The normalized grand canonical potential from the holographic model can be defined
using the D-brane action as

1 ~
Q(p) = 5 Soslxa(), a0 (W] (3.24)
Since the D-brane action diverges from the limit # — oo of the integration, the grand

canonical potential needs to be regulated by subtracting with the grand canonical potential
of the vacuum phase at the same temperature.
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Apart from the grand canonical potential, the chemical potential also needs to be
holographically identified in the dual bulk theory. To this end, the time component of the
U(1)y gauge field o is taken into account. From the field/operator matching scheme,
a bulk field evaluated at u — oo, that is, the boundary of the spacetime background
plays a role as the source of the dual operator in the generating function of correlation
functions in quantum field theory. In other words, this nonnormalizable mode of the bulk
field is dual to the coefficient of the field operator. Since the chemical potential is the
coefficient of the charge density operator term, it can be holographically identified as
Ho(0). By rescaling for convenience, we can write the dimensionless chemical potential
as

u = dp(c0). (3.25)
Similarly, the baryon number density in our normalization is given by

_0Q(Tp) _

3.26
o d, (3.26)

np =

even though the true baryon number density is n4 defined in (3.23). Consequently, d can
then be used to denote the baryon number density.

Since the free energy in the canonical ensemble is the combination of the on-shell
Legendre-transformed D8-brane action and the source term, it is convenient to obtain y
through

_ 9%, d) (327)
od ' '

where the free energy is holographically defined as the Legendre-transformed D8-brane
action plus the source terms

1/~
?E(Tr d) = ﬁ (SDS [T/ X4 (u)/ d(u)]on—shell + Ssource(Tr d/ uc)) . (328)
The Legendre-transformed action Spg is given by

Sps = Sps + /Uj d(u)ay du, (3.29)

=N F du i\ f (u) (x, () + w1+ Z—i (3.30)
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The chemical potential can then be written as

_ 1 * 6.§Dg 6§D8 axi
”‘W{Lg d”<6d(u) T ox, od

on-shell

T,Lg,uc
~ on-shell (3 31 )
auc aSDS aSsource aSsource
+ — _—t —— + — .
od pp, \ ue — Buc )|, od  |riym

The second, third, and fourth terms drop out. It is clear from (3.15) corresponding to the
equilibrium at the cusp that the third and fourth terms vanish. For the second term, it is
because 6Spg/ 6x)(u) is constant as can be seen from (3.30) that Sps depends only on x;.
Integrating over the remaining gives 0L /0d, which is zero, due to the scale fixing condition
Lo = 1. Hence we obtain

W= f ag(u )+l35§>;ixrce . (3.32)

T,Lo,uc

Now, it is ready to express the grand canonical potential for the multiquark (baryon
corresponds to n; = 0) phase. Using (3.24), (3.4), (3.8), (3.9), we obtain the formulae of the
grand canonical potential for the multiquark matter. The chemical potential can be calculated
from (3.32) by eliminating a; via (3.8) and substituting (3.9). The grand canonical potential
and the baryon chemical potential of the phases can be expressed as the following:

Nuclear (Including Exotics) Phase

© 1"2 -1/2 u5
o= duli- , 3.33
=], ”[ @ +u3d2>] NrEv e (333

- 2 2
Hnuc = fuc du [1 - f(u) (us + u3d2)] \/7 3 \/f(uc) + Tls(uc uT). (3.34)
Recall that I' depends on u,, d, T and n, according to (3.12) and (3.14). The last two terms in
(3.34) come from the derivative of the source-term action with respect to d.

There are at least other two phases that compete with the multiquark phase: the
vacuum phase and the chiral-symmetric QGP phase. From the above formula of Q.. and
Unuc, We can obtain the grand canonical potential and the chemical potential of the vacuum
simply by (i) setting d = 0, (ii) dropping the source terms in (3.34), (iii) changing the lower
bound of integration from u. to ug, and (iv) replacing I' by the constant of motion in the
vacuum configuration, from 6Spg/6x), I'p = f (uo)ug. Thus we obtain

Vacuum Phase, d = 0

e} 1"2 -1/2
Qvac = f dull- u5/2. (335)
Up [ f(u)us]
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Similarly, the grand canonical potential and the chemical potential of the yS-QGP phase can
be obtained by setting x}(u) = 0, reflecting its parallel configuration, and turning off the
source terms. That is, setting I' = 0 in (3.33) and (3.34), changing lower bound of integration
to ur and dropping the source terms in (3.34) give

XS-QGP Phase, x;(u) =0

ud

Qo= [ i (336)
*® d

fogp = | du——. (3.37)
ur Vv uS + d2

The phase transition in the parameter space (y, T) is obtained by comparing the grand
canonical potential between two phases at a particular T and p. Let us say the transition
between phase 1 with the grand canonical potential €; and phase 2 with €,. Phase 1 is
thermodynamically preferred once Q; < €, and vice versa. There is a first order phase
transition when Q; = €. This kind of phase transition can be seen in the transition between
the vacuum and yS-QGP phases and the transition between the yS-QGP and the nuclear
matter. However, the phase transition between the vacuum and nuclear matter phases is of
the second-order as seen from (3.34). The density d is continuous near y = ponset, Which is
Hnuc(d = 0), and behaves as d ~ (pnuc — Honset). Note that this reflects the absence of the
interactions between the multiquarks and baryons. As a result, the critical chemical potential
defined to be the value, at which

2
od __oQ (3.38)
op ou?
has a discontinuity, is given by ponset. By numerical calculations, the phase transition lines
can be obtained as shown in Figure 5. The phase diagram between the chiral-broken vacuum
and the chiral symmetric QGP phases was first obtained in [51]. The phase diagram of
all 3 deconfined phases including the baryonic nuclear phase (without the multiquarks) is
originally discussed in [48].

This phase diagram also shows the presence of the multiquark phase which can be
mixed in the region of normal baryon phase (with n; = 0), say B + C for ng = 0.1, and C for
ns = 0.3. The multiquark matter with 0 < ny < 0.5 is less stable than the normal baryon due
to the larger value of the grand canonical potential. Above n; = 0.3, it can be shown that the
multiquark phase is unstable to density fluctuations, that is, Op/0d < 0, in some regions of
high T and certain range of y. For approximately n; > 0.5, the multiquark phase is unstable
thermodynamically to density fluctuations for most of the temperatures.

If the multiquark matter can exist in the quark-gluon plasma, it should mix with the
normal baryon states in thermal equilibrium with the populations following the Boltzmann

factor
E
exp <—kB—T>, (339)

where E is the binding energies for the states. It is interesting to explore more about the
population of these multiquark states in the quark-gluon plasma potentially produced in the
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Figure 5: The phase diagram of deconfined nuclear matters in the Sakai-Sugimoto model. Multiquark
phase is shown as the region on the lower right corner where it is divided into 3 parts according to the
value of the colour strings ns. A, B, C represent the region where multiquark phase with n; = 0 (N,-
baryon), 0.1, 0.3 is the most thermodynamically preferred.

heavy-ion collision experiments such as the RHIC and the LHC. Existence of these multiquark

states contribute significantly to the hydrodynamical and thermodynamical properties of the
deconfined plasma.

3.2. Thermodynamic Relations

In the grand canonical ensemble, the grand canonical potential G is the function of the
dynamical variables: the volume V, the temperature T, and the chemical potential y. Its
differential is

dGg = -PdV - SdT - Ndy, (3.40)

where the coefficients P, S, and N are the pressure, entropy, and the total number of particles,
respectively. It is better to understand the system of QGP in terms of volume density of

extensive parameters. Let us define the volume density of Gg, S, and N to be Q, s, and d,
respectively. Hence, the pressure is

— GQ —
P=-22=-Q(T,p). (3.41)

From (3.26) and (3.41), we use the chain rule to obtain

opP ou
—=| == 3.42
od|r od Td’ (3.42)
so that
d
P(d,T,ns) = u(d, T,ns)d —J u(d,T,ns)d(d), (3.43)
0

where we have assumed that the regulated pressure is zero when there is no nuclear matter,
thatis, d = 0.
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While the equations of motion cannot be obtained analytically, we can find them in the
limit of very small and very large density. Using (3.34) and (3.43), we take d = 0 and use the
binomial expansion, then (see [52] for details)

p:§f_%¥ﬂf, (3.44)

where

© u—5/2
ag = f du — s

) 1- fOuO/qu
3.45
. (3.45)

_(” o R R A
ﬂww_Lf%Mhhﬁﬁw<WLﬁ%<l9ﬁ w) )

Note that we have used the fact that 7. of (3.14) becomes 1y + O(d), where 7 is 1, with u,
replaced by uy. Similarly, fj is defined to be f(u) with u = 1. On the other hand, for the limit
of large d in (3.34), the pressure from (3.43) becomes [12]

P £<F(1/5)F(3/10)>d7/5‘

- 35 r'(1/2) (3-46)

Numerically, the relations between the pressure and the density of the multiquark
matter for different values of n, are plotted in Figure 6. This is consistent with the results of
analytic calculations that P ~ d? for small d and P ~ d’/5 for large d. Since the relations are
not sensitive to the change of T, therefore we present only the plots at T = 0.03. The transition
from small to large d is apparent at d. = 0.072. We can also see the dependence of pressure
on 1, from the plots. The pressure of the multiquarks with larger 7, is smaller for small 4. On
the other hand, the pressure of the multiquarks with smaller n, is merely slightly larger in
the large d limit. Actually, the pressure is nearly insensitive to the changing of n, for d > d.
as is implied from (3.46).

From the differential of the free energy, the entropy density can be written as

OFe

__JTE 3.47
s 3T (3.47)

where ¥ is the free energy density which relates to the grand potential density as ¥ =
Q + ud. Using (3.41), the entropy density becomes

_op ou

Since the pressure P and the contribution of D8-branes to the baryon chemical potential (y —
Usource) are insensitive to the changing of the temperature, the entropy density is dominated
by the derivative of psource With respect to T, That is,

a,usource
5= —< aT )d. (3.49)
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Figure 6: Pressure versus density of the multiquark phase in logarithmic scale at T = 0.03, zoomed in
around the transition region.

It is found numerically in [52] that u. is approximately constant with respect to the
temperature range between the gluon deconfinement and the chiral symmetry restoration,

we thus obtain
a,usource _ 0 /1
aT ol <§uc \/f(uc) +ng(ue - uT))

(3.50)
(1672 /9)°T5 3272
=- — N s
ug\/1- (ur/uo)’ ?
such that
(1672/9)°Tod 327°Td
5= + . (3.51)

ns—yg
uZ\/1- (ur/ug)®

The entropy density has the temperature dependence ~T° for small n,, whereas it is
dominated by the colour term, that is, s « n,T, for larger n,. This agrees with the numerical
results shown in Figure 7. We already know that the free quarks and gluons in the yS-QGP
have the entropy density scales as T® [48]. Intriguingly, the presence of the colour charges
of multiquarks implies that the multiquark matter in the sQGP behave less like free particles
with the weaker temperature dependence s ~ n,T. Also confirmed numerically in Figure 7 is
the linear dependence of the entropy density to the density d.

From (3.43), it is important to note that the pressure is mainly contributed from the
flavour D8-brane part since psource is mostly constant with respect to the density. This is
because the constant part of u with respect to the density will cancel out when substituted into
(3.43). Conversely, the entropy density is mainly contributed from the source term, namely,
the vertex and radial strings.

Lastly, the dependence of the baryon chemical potential y on d is plotted in Figure 8.
The p — d relation is found to be mostly independent of the temperature. It is found that the
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Figure 7: Entropy versus temperature of the multiquark phase in logarithmic scale for ns = 0 (a), 0.3 (b).
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Figure 8: The baryon chemical potential versus number density of the multiquark phase at T = 0.03.

relation can be well approximated by the power law with y ~ d for small density and y ~ d?/°
for large density. The difference indicates that the behaviour of multiquark quasiparticles is
more like fermions as a consequence of the DBI action [48].
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4. Magnetic Properties of Holographic Multiquarks in
the Quark-Gluon Plasma

In the deconfined SS model, the multiquark phase has been shown to be the most
thermodynamically preferred in the extremely dense and warm condition (in the temperature
range above the deconfinement but below the chiral symmetry restoration). It is possible
that the real dense and warm QCD soup also energetically prefers the multiquark phase in
such condition. In the early universe, during the electroweak phase transition, the Higgs
mechanism could create enormous magnetic fields in the boundary region between two
domains with different vacuum expectation values [53]. These gigantic fields could have
crucial impact on the phase transitions of the warm nuclear soup at later epoch. Collision of
energetic charged particles at the hadron and heavy ion colliders could produce extremely
large magnetic fields in the vicinity of the collision point. At RHIC and LHC, it has been
estimated that the induced local magnetic fields could be as large as 10'41° Tesla [54]. Finally,
magnetic fields of order of 10! Tesla could be produced by the magnetars on the large
astrophysical scale [55]. Therefore, it is interesting to investigate the effects of extremely
strong magnetic fields to the multiquark phase above the deconfinement temperature.

To mimic behaviour of the strongly coupled nuclear matter in the presence of a
uniform magnetic field, we turn on another component of the U (1) C U(Ny) field denoted as
ay . The nonnormalizable modes of a} are identified with the vector potential of the magnetic
field B (not to be confused with B used in Section 2), defined in units of 1/27xra’. We choose
the direction of the magnetic field so that

ay = Bx. (4.1)

As before, the baryon chemical potential y of the corresponding gauge matter at the boundary
is identified with the nonnormalizable mode of the DBI-gauge field by

p=ay (u— o). (4.2)

Additional sources of the baryonic charge in terms of the instanton and strings
contribute the following action

Ssource = Nd(uc) %uc V f(uc) +ng(ue —ur)
(4.3)

=N dl’lsource/

where ng = k, /N, is the number of radial strings in the unit of 1/N, as in the zero magnetic
field case. The electric displacement, d(u;) = 9L/da} |.., representing the baryonic charge
density from the D4 at 1, has been approximated to be d (the exact value is d— (3/2)Ba$*(c0)).
This action does not contain the gauge fields of the flavour branes and thus does not affect the
equations of motion. However, it contributes tidal weight to the total configuration, pulling
down the flavour branes closer to the horizon. The scale-fixing condition Ly = 1 is determined
by the equilibrium between this tidal weight of the additional sources (including the tension
of the colour strings) and the tension of the flavour branes. The position u, of the tip of the
connecting branes determined from this condition will also depend on the magnetic field in
presence.
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The response of the flavour branes to the magnetic field is encoded in the axial af
component of the U(1) induced through the Chern-Simons action of the branes in the bulk.
In the boundary gauge theory, this corresponds to the axial anomaly described by the Wess-
Zumino-Witten action [56]. The non-normalizable mode of a{‘ at the boundary is identified
with the response of the chiral condensate to the external magnetic field, af'(u — o) = Vo,
which we will call the pion gradient.

The D-brane and the Chern-Simons action of the configuration can be calculated
straightforwardly to be

e 2
Sps = JUI duud’? \/1+ %\/1 + f(u) (af 2 ((19/)2 + f(u)udx, (4.4)

Scs = —%./Uf du (azaXaXa{" - 52‘1;/“8/,“?)' (4.5)

where /U = N.R2,/ (6r2(27ra’)®) defines the brane tension. To preserve the gauge invariance
of the total action in the situation where the gauge transformation does not vanish at the
spatial infinity, addition of surface terms effectively results in the factor 3/2 in the Chern-
Simons action [57].

Appearance of horizon in the background spacetime connects classical behaviour of
the bulk physics to the physics of the quantum gauge matter at the boundary in a holographic
manner. The brane-bulk interaction provides a solid correspondence between bulk fields and
operators of the gauge theory on the boundary. Classical solutions of the gauge fields on the
D8-D8 probe as well as its geometric configuration will describe physics of the dense strongly
coupled nuclear matter in the presence of the external magnetic field in a holographic manner.

By conventional variational method, the equations of motion with respect to the gauge
field components are given by the Euler-Lagrange equation with respect to the gauge field

component ay , ai',

Vud + Ba2 f (u)a .3 v
= = =ja - 5Bp+3Bay, (4.6)
\/1 + fu) (@) = (a) )" + f(uw)udx}
Vi + B2i2aV
" % =d- ;Ba{‘(oo) +3Baj. (4.7)

V14 Fu) (@) = (@) + faux?

Note that d, j4 are the baryon charge density and current density of the dual gauge matter at
the boundary (u — oo) given by

jH(x,u — o0) =

u— oo (4.8)

i
VS
&
=
N——
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They can be presented with the gauge fields as

N Vi T By
VU F (@) = (@) + flupef

[*e]

(4.9)
) Vus + B2l f (u)al?
JjA =

\/1 + f(u)(af* Z_ (az)v)2 + f(u)udx}

o)

The action does not explicitly depend on x4, consequently the associate constant of
motion allows us to rewrite x} (1) as the following:

-1

1l , @10

(%)) = — W [f () (Cw) + DW)*) = (ja - (3/2)Bu +3Bal)’]
4 (U - qu(u) &

where

/TG ) (Cat) + DGwo?) = (s = (3/2) By + 3B (1)), )

F , @)
VL e udxd (ue)
and C(u) = u° + B*u?, D(u) = d + 3Baj'(u) - 3BV¢/2.
From the scale-fixing condition
Lo = ZI xy(u)du =1, (4.12)

the position of the tip u. of the brane configuration is determined by the equilibrium of forces
to be, (see the appendix),

1 [ o (fe(Cor D2) - (ja - (3/2)Bp + 3Ba} (u0)”)
|2

(xl (uc))z =
4 foud | (1 +(1/2) (ur/uc)® + 3ns\/ﬁ)2

~1]. (4.13)

The introduction of the Chern-Simons interaction of the gauge fields to the magnetic field
results in the dependence of x, on the gauge field ay, af. It is consequently required to solve
(4.6), (4.7), and (4.12) simultaneously. Since the physical parameters, y, Vo, also depend on
the gauge field components by ay (o) = 1, at*(o0) = Vip, we need a triple-shooting algorithm
to solve for the solutions numerically.

Under the boundary conditions aov(uc) = Usources a{‘(uc) = 0, the values of u., p, Vo
are chosen so that they solve the equations of motion and satisfy a} (o) = p, af'(c0) = Ve.
If the solutions also satisfy the scale fixing condition (4.12), we keep the solutions, otherwise
we adjust the value of u, and repeat the shooting procedure.
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Figure 9: Position u, of the vertex for n, = 0 (normal baryon) and fixed j4 = 0 as a function of (a) d with
fixed B=0.10, T =0.10, (b) Bwith fixedd =1, T =0.10, (¢) T with fixed B = 0.10, d = 1. The lower (blue)
line is the configuration A with u, close to ur, and the upper (red) line is the configuration B with large
separation between u. and ur.

4.1. Two Multiquark Configurations and the Multiquark Merging

The numerical solutions obtained by the shooting algorithm reveal two possible multiquark
configurations, one with small and one with large u.. The small-u, configuration (configura-
tion A) has longer stretch in the u-direction, therefore it contains higher gluon content and
larger energy. The free energy of this configuration is consequently larger than the large-u,
configuration (configuration B) and becomes less energetically favoured. The relationships
between 1. and the baryonic density, the magnetic field, and the temperature are shown in
Figure 9 (from [58]).

From Figure 9, the density dependence of the two configurations shows that as
density increases, configurations A and B diverge from each other. They become two
distinctive phases at large densities. On the other hand, the increase of magnetic field and
temperature merges the two configurations together. At the critical field and /or temperature,
configurations A and B merge and disappears (i.e., they do not satisfy the scale-fixing
condition anymore).

In Figure 10, the chemical potential and the pion gradient response of the multiquark
phase are plotted as functions of the magnetic field for the multiquark phase with the
number of colour strings n; = 0, 0.1, 0.2. Magnetic merging occurs at higher field for the
multiquarks with smaller 7. Interestingly, the less-preferred configuration A has a negative
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Figure 10: Comparison between the baryon chemical potential (a) and the pion gradient (b) as a function
of Batfixed ja =0, d =1, T = 0.10; for n; = 0 (normal baryon), the bottom graph; n; = 0.10, the middle
graph; ng = 0.20, the top graph. The blue lines are the configuration A with u, close to ur, and the red lines
are the configuration B with large separation between u. and ur.

linear response V¢ to the magnetic field for small fields. Thorough investigation in [58]
reveals that both multiquark configuration A, B are more thermodynamically preferred
than the magnetized vacuum, and each configuration is stable under density fluctuations
since

PFs _ op
od>  od

>0, (4.14)

where the free energy ¥g will be defined in the next subsection.

We would like to emphasize that there are actually two possible multiquark phases
for the deconfined nuclear matter at finite density. Even though phase B is more energetically
preferred, both multiquark phases could coexist in general situation. Large magnetic field
or high temperature could merge the two multiquark configurations into one. Remarkably
once they merge, the multiquark can no longer exist since it does not satisfy the scale fixing
condition. They would either turn into a multiquark configuration with larger density or a
chiral-symmetric QGP. We will discuss more on the thermodynamic properties and phase
diagram of the multiquark phases in the subsequent sections.

4.2. Thermodynamic Properties of the MQ-V ¢ Phase

The holographic principle conjectures that the partition function of the string theory in the
bulk is equal to the partition function of the gauge theory on the boundary. The free energy
of the gauge matter at the boundary is equivalent to the string action in the bulk, namely, the
DBI action up to a periodicity factor [59]. The D8-brane action from (4.4) can be calculated to
be

fa)(1+ f(u)udx}
fu) <C(u) + D(u)2> — (ja- (3/2)Bu+3BaY)"

Sps = N F du C(u) (4.15)



Advances in High Energy Physics 29

0.66
1.2
0.64
0.62
up 0.6 o 20 40 60 80 100
B
0.58 08
0.6

(a) (b)

Figure 11: Relation between 1y and external magnetic field B of the vacuum for (a) the temperature T =
0.02-0.15, the upper lines have higher temperatures, (b) g saturates to the approximate value of 1.23 at
large field for all temperatures (only T = 0.10 curve is shown here).

The action is divergent from the limit # — oo and we need to regulate it using the action of
the magnetized vacuum. For the magnetized vacuum, the field a, af, the baryon density,
and chemical potential are set to zero giving

ac

S[magnetized vacuum]| = f \/C(u)(l + f(u)udx? du, (4.16)

where

1
V@0 (@) Cu) / f (o) Cluo) 1)

LA (4.17)

The position uy is the tip of the connecting brane configuration, since there is no source,
x,(ug) — oo and the branes and antibranes connect smoothly. Figure 11 shows ug as a
function of the magnetic field and temperature. The value of 1y converges to approximately
1.23 for high fields for all temperatures.

The regulated free energy at fixed density is then defined to be

Fe(d,B) =Q(u, B) + ud, (4.18)

where Q(y,B) = Slaop(u),a:(u)](e.om.) — S[magnetized vacuum], and the total action
Slao(u), a1(u)](e.o.m.) is given by Spg + Scs.
The corresponding magnetization at fixed density is subsequently

_ a?E(d/ B)

M(d, B) = 55|,

(4.19)

For ns = 0,0.1,0.2 we can plot the free energy and magnetization of the multiquark-V ¢ matter
as a function of the magnetic field as shown in Figure 12. Configuration A has larger free
energy and magnetization than configuration B. The magnetic merging is clearly visible at
critical fields. The critical field for multiquark with higher number of colour strings 7, is
smaller, reflecting less stability. The magnetization is approximately linear for small fields for
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Figure 12: The free energy and magnetization of the multiquarks nuclear matter at fixed ja =0, d =1, and
T = 0.10 for ngy = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration A with u, close to
ur, and the lower lines are the configuration B with large separation between u. and ur.

both configurations. The free energy of configuration A is clearly larger than configuration
B, implying that it is less energetically preferred. Here and henceforth, we will focus our
consideration to the multiquarks in configuration B.

For moderate fields B = 0.05-0.15, we can study the temperature dependence of the
baryon chemical potential and the free energy of the MQ-V¢ phase as shown in Figure 13.

Remarkably, they inherit the temperature dependence from the factor /f(u) = 1/1 - u3./u3

in the spacetime metric of the background SS model,

= po(d, BY[1 - (Tz)é (4.20)

F = Fo(d, B){/1- (%)6 (4.21)

where for d = 1, B = 0.10, o = 1.1849, Fy = 0.7976, respectively. The best-fit values of T
for the chemical potential and the free energy are 0.269 and 0.233, respectively. Note that the
characteristic temperature Ty of the chemical potential is slightly larger than the value of the
free energy due to the additional temperature dependence of the u. in the free energy case
[60]. It should be noted that the temperature dependence becomes significant for T 2> 0.10.
When the magnetic field is applied to the multiquark phase, the chiral condensate
responds to the field by developing the pion gradient V¢ in the direction of the applied field.
For moderate fields, the response is linear, V¢ « B, as we can see from Figure 10. The induced
domain wall is stable among the multiquarks, carrying baryon density dv, = 3BV¢/2 [56].
Figure 14 shows the relationship between the pion gradient and the magnetic field in
the temperature range T = 0.02-0.15. For d = 1, the slope m (or the linear response) of the

response V¢ to B depends on the temperature approximately as m = my\/1 - (T/Tp)®, and

T 6
V¢ = Bmy 1‘(?) , (4.22)

where mg = 0.347, T, = 0.177.
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Figure 13: For d = 1, B = 0.10, (a) the baryon chemical potential as a function of T, the best-fit curve
is in the form po\/1 - (T/Tp)® with po = 1.1849, Ty = 0.269; (b) the free energy as a function of T, the

best-fit curve is in the form Fy\/1 - (T/ To)6 with Fy = 0.7976, Ty = 0.233. Other curves within the range
B = 0.05-0.15 can also be fitted well with the same Tj.
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Figure 14: (a) The pion gradient versus magnetic field for T = 0.02-0.15 at d = 1, lower lines have higher
temperatures. (b) The linear response or slope of the linear function between the pion gradient and the
magnetic field as a function of the temperature for the range B = 0.05-0.15 and density d = 1. The red line

is the best-fit curve in the form my\/1 - (T/ To)® with mg = 0.347, T, = 0.177.

The pion gradient is induced naturally by the magnetic field as a result of axial
anomaly in the boundary gauge theory. It can be described by the Wess-Zumino-Witten
action in the chiral perturbation theory whilst the similar effect is represented by the Chern-
Simons action of the string theory in the bulk [56]. The pion gradient forms a domain
wall which also carries baryonic charge and contributes to the total baryon density of the
gauge matter. However, the population of the baryon density from the domain wall in the
MQ-V¢ phase decreases as the total density grows. This is shown in Figure 15. The ratio
Ry, =dv,/d = 3BV can be approximated by a power law of the density as

Ry, = (const.)d™®/®,

. 3Bmo, [, <T>6
Y Ty’

(4.23)

as a result of (4.22).
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Figure 15: (a) The pion gradient as a function of B for density d = 1,10,100 at T = 0.10. (b) The density ratio
of the pion gradient with respect to the total baryon density of the multiquark phase at B = 0.10 and T =
0.10 in the double-log scale.

As the nuclear matter gets denser, the linear response of the chiral condensate to the
magnetic field becomes smaller. The multiquark contribution to the baryonic charge density
becomes dominant. In the extremely dense situation, the dominating phase of the deconfined
nuclear matter is the multiquark with tiny mixture of the pion gradient when the magnetic
field is present.

The remaining important issue is whether the MQ-V¢ phase is more thermodynam-
ically preferred than other phases such as the pure pion gradient and the chiral-symmetric
QGP. Under which circumstances that the MQ-V¢ phase is the most preferred and what the
phase diagram of the deconfined nuclear matter in the SS model looks like are to be discussed.

5. Comparison to Other Phases

In the presence of the magnetic field, there are 4 possible nuclear phases in the deconfined
SS model. For zero baryonic charge density and currents, there is a brane configuration
corresponding to a magnetized vacuum. For nonzero baryon density, there are 3 possible
brane configurations corresponding to 3 different nuclear phases:

MQ-V Phase

jA =0, Hsource = I.Z(‘)/(uc), V(P = a?(oo)/ a?(uc) =0,

Pure Pion Gradient Phase

The same conditions with the MQ-V¢ phase except, psource = 0O, ag (uc)#0, d =
(3/2)BVey, xj(uc;) — oo,

¥S-QGP

xy(u) =0and Vo = af(oo) =0, Usource = ag(uc =ur) =0, ja = (3/2)Bpu (in order to satisfy
the equation of motion at ur with f(ur) = 0).

The pure pion gradient phase corresponds to the brane configuration with no
instanton at the tip u., where D8 and D8 connect and thus Usource = 0. The chiral condensate
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Figure 16: The free energy as a function of the density of the pure pion gradient phase compared to the
multiquark-V¢ phase at fixed d =1.0, T = 0.

responds to the magnetic field by generating a gradient in the direction of the field. The
induced domain wall carries baryonic charge density according to d = 3BV/2 [56]. Since
there is no instanton at the tip, the branes connect smoothly just like in the case of vacuum
and x} (u.) — oo.

The yS-QGP phase corresponds to the brane configuration with the D8 parallel to the
D8. Both branes never connect, and the distance between them in the direction x; is fixed to
Lo. There is also no instanton source at the tip and psource = 0. Chiral symmetry demands that
ai' (o) = V¢ = 0. Remarkably, the equation of motion in the bulk automatically governs that
the axial current is generated with j4 = 3Bu/2, a linear response of the magnetic field [57].

In the following subsections, we will compare the MQ-V ¢ with the pure pion gradient
phase and subsequently the yS-QGP phase. By using the free energy at fixed density, it will be
demonstrated that the pure pion gradient is always less energetically preferred than the MQ-
Vo for sufficiently large chemical potential. The second order phase transition lines between
the 2 phases are drawn. The MQ-V ¢ phase is shown to be more preferred than the yS-QGP for
moderate fields and temperatures. For very large field and temperature, the yS-QGP phase is
the most thermodynamically preferred at a fixed density. Phase diagrams between the MQ-
Vi and the yS-QGP for a fixed magnetic field and temperature are drawn and approximated
with the power law.

5.1. Multiquark-Domain Wall versus Pure V¢ Phase

The pure pion gradient phase has been explored in details in [56] using the effective field
theory with the anomalous WZW action. The zero-temperature behaviour in the confined
SS model and the bottom-up AdS/QCD model is studied in [47] and [61], respectively.
Reference [62] compares the pure pion gradient phase with the yS-QGP by approximating
f(u) =1 for the pure pion gradient phase. In this subsection, we will present the results from
[63] where the full temperature dependence is taken into consideration.

Figure 16 shows the free energy at fixed density d = 1 of the pure V¢ and the MQ-
V¢ phases as functions of the magnetic field. Apparently, the MQ-V¢ is more energetically
preferred than the pure pion gradient. At higher densities, since y ~ d for the pure V¢ [63]
and pu ~ d",n < 1 for the MQ-V¢, the dominant term ud in the free energy will make the MQ-
V¢ phase even more energetically preferred (with smaller free energy). It has been confirmed
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Figure 17: The onset chemical potential of the multiquark-V¢ phase as a function of T, B (for B —
oo, Uy = 1.23 is used). These lines can be served as the transition lines between the V¢ phase on the
left and multiquark-V¢ phase (n; = 0) on the right. The dotted line represents schematic transition to the
chiral-symmetric QGP phase.

numerically down to d = 0.1 that the MQ-V¢ is always more thermodynamically preferred
than the pure V¢ phase.

However, in the region of the parameter space, where the baryon chemical potential
is smaller than the onset chemical potential of the multiquarks, only pure V¢ phase can
exist. The curve of the onset chemical potential of the multiquarks can thus be served as
the second order transition line between the two phases. It depends on both the temperature
and magnetic field in presence given by

Honset = %uc \/f(uc) + ns(uc - uT)/ (51)

where u, is a function of both B and T. The phase diagram (u, T) between the pure V¢ and
MQ-V¢ is shown in Figure 17.

The dotted line in the phase diagram represents a schematic transition from a chirally
broken nuclear phases to the chiral-symmetric QGP phase. The transition from the pure V¢
to the yS-QGP is investigated in [62]. Transition between the MQ-V¢ and the yS-QGP will be
discussed in the next subsection.

5.2. Multiquark-Domain Wall versus yS-QGP Phase

In this subsection, we explore the phase diagram of the MQ-V¢ and the yS-QGP phases. For a
fixed density, the baryon chemical potential and the free energy of each phase can be plotted
as in Figure 18 [58, 60]. The MQ-Vy is energetically preferred for small and intermediate
fields for a fixed density. As the field increases further, the chiral-symmetric QGP becomes
more favourable. At even larger fields, the curve of the yS-QGP has a break signifying a
phase transition to the lowest Landau level [62, 64].

The phase diagrams (d, B) for fixed temperature and (d, T') for fixed magnetic field are
presented in Figure 19. At given magnetic field and temperature, the MQ-V¢ phase is more
energetically preferred for a sufficiently large density. Dense nuclear matter prefers to form
multiquark states even in the presence of the magnetic field. Nevertheless, for a given density,
sufficiently high field and temperature will make the MQ-V¢ phase less preferred than the
xS-QGP.
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Figure 18: For the dense multiquark with d = 100, T = 0.10, (a) the chemical potential, (b) the free energy
as a function of B. The multiquark curves in red are compared with the yS-QGP curves in blue for the
chemical potential and the free energy.
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Figure 19: The phase diagram of the dense nuclear phases involving multiquarks when gluons are
deconfined for (a) T = 0.10 and (b) B = 0.20. The chiral-symmetric quark-gluon plasma and the chirally
broken MQ-V¢ phase are represented by yS and ySB, respectively, n; is the number of colour strings in
fractions of 1/N..

The transition lines between the yS-QGP and the MQ-V¢ phases in the (d, B) phase
diagram can be approximated with a power law,

B ~ 404380436). (5.2)

for multiquarks with ng = 0(0.2) at T = 0.10. This is weaker than the power-law B ~ d*/*
of the yS-QGP transition to the lowest Landau level studied in [64]. On the other hand, the
transition line in the (d, T) phase diagram is weaker than a logarithm, yet still an increasing
function of d.
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6. Conclusions

In this paper, we review the development of the holographic multiquark states in the
deconfined quark-gluon plasma. We discuss their physical properties such as the binding
energy, the screening length, the thermodynamical properties and the equation of state. Using
the Sakai-Sugimoto model, we also explore the possible phase diagram of the multiquark
matter. The multiquark phase is the most energetically preferred when the density and/or
the baryon chemical potential is sufficiently large and the temperature is not too high. Even
though the multiquark states with colour degrees of freedom are less preferred than the
colour-singlet baryons, they are more energetically favoured than the other phases in such
dense condition.

The magnetic properties and the magnetic phase diagram of the multiquark matter are
subsequently reviewed. There are 2 possible holographic multiquark configurations, both of
them are stable under density fluctuations. High magnetic field and temperature merge the 2
configurations into one. Once they merge, they transit to the multiquark configurations with
larger densities, or to the chiral-symmetric QGP phase. In the region of the parameter space
with sufficiently large densities and moderate fields at a fixed temperature, the magnetized
multiquark phase is the most thermodynamically preferred. For a fixed magnetic field,
sufficiently high temperature will melt the multiquarks into quarks and gluons regardless
of the density.

In the region of parameter space with small density and baryon chemical potential
(U < Honset Of the multiquarks), another magnetized nuclear phase called the pure pion
gradient is dominant. When chiral symmetry is broken, an external strong magnetic field
could induce a response of the chiral condensate in the direction of the applied field.
The generated pion gradient also carries baryonic charge density and the corresponding
chemical potential. However, once p > ponset Of the multiquarks, the multiquark
phase is always energetically preferred than the pure pion gradient. Inevitably, the pion
gradient is also induced in the multiquark matter under the external field and render
the multiquark matter in a mixed MQ-V¢ phase. The population of the pion gradient
in the mixed phase is found to be a decreasing function with respect to the baryon
density.

Appendix
Force Condition of the Multiquark Configuration

The forces on the D4-brane in the flavour D8-branes are balanced among three forces from the
tidal weight of the D4-brane, the force from the strings attached to the D4, and the force from
the D8-branes. Varying the total action with respect to u. gives the surface term. Together
with the scale-fixing condition 2 f:: dux(u) = Lo = 1, we obtain [48]

<i(uc) - (assource/auc)>
0S/0x,

xy(ue) = , (A1)

Uc

as the condition on u,.
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The Legendre transformed action is given by

S= r L(x,(u),d)du

=N f:o du j% +ulx} (A.2)

A (C0 + D) - (ja- 2+ 300t )

where C(u) = w’ + B*u?, D(u) = d + 3Ba‘*(u) — 3BV¢/2. 1t is calculated by performing
Legendre transformation with respect to a)’ and af", respectively. Note that the Chern-
Simons action is also included in the total action during the transformations.

The Chern-Simons term with the derivatives a¥’, a? eliminated is

Scs = —ngB fw du (ag (ja - (3/2)Bu+3Bay ) — f(u)D(u)ai')\/1/ f (u) + ug”‘f' (A3)

e \/f(u) <C(u) + D(u)2> — (ja - (3/2)Bu +3Ba))’

Lastly, in order to compute x), (1) we consider the source term [12]

Ssource = ./Ud(uc) [%uc \/f(uc) + ns(uc - uT)] (A4)
= Jvd#source/ (A.5)

where ng = k, /N, is the number of radial strings in the unit of 1/N.. We have approximated
the electric displacement at the position of the D4 brane source, d(u.) = —0L/ aa0/|uc =d-
(3/2)Bai! (o) with d.

From (A.1), (A.2), (A.3), (A.5), and setting aé’ (Uc) = Hsource a{‘(uc) = 0 we can solve
to obtain

1 | o (fo(Ce+ D) = (ja - (3/2)By+3Ba} ()"

feu2 | &

(%3 (ue))? = >
c (1 +(1/2) (ur/uc)® + 3ns\/ﬁ>

~1{, (A.6)

where f. = f(u.), Cc.=C(u.), Dc = D(u,).

When we fix the parameter ng, the temperature T, the baryon density d, the axial
current j4 = 0 (by minimizing the action with respect to a{‘(oo)), and setting a{‘(uc) =
0, a(‘)/ (Uc) = Hsource, then the position u. of the D4-brane is completely determined as a function
of the magnetic field B. Once the equations of motion are solved, the value of y = a; (c0) and
a{‘(oo) are determined.

In the case of no magnetic field and finite baryon density, the force balance condition at
the tip can be obtained simply by using (A.6). It can be done by setting all spatial components
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of bulk U (1) gauge fields to be zero, leaving only the time component nonvanishing. This
results in C. = u2 and D, = d. Therefore, we obtain

5 2
() = | 2 fo(ue+ &) 1, A7)

Cfadd |2 (1+@/2) (ur /ue)’ +3ns\/ﬁ)2

implying the force balance condition at the tip.
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1 Introduction

Duality between gravity and gauge theory in spacetime with different dimensionalities has
been discovered by Maldacena in 1998 [1]. The type-IIB string theory in AdSs x S5 is con-
jectured to be dual to a gauge theory in four dimensional Minkowski spacetime (My) at the
boundary of the AdS space. The correspondence can be used as a complementary method
to study the strongly coupled gauge theory in four dimensional Minkowski spacetime, a
cousin of quantum chromodynamics, by avoiding the uncontrollable non-perturbative cal-
culation via the application of weak-strong duality. We can deal with this problem by
alternatively performing calculations in the tractable weakly interacting string theory in



five (plus five compact dimensions which provide details that are not relevant here) di-
mensional Anti de Sitter space (AdSs). The duality is extended to a finite temperature
situation by adding a horizon in the radial coordinate [2]. The string theory in an AdS
space with black hole horizon in the radial direction is proposed to be dual to a gauge the-
ory at finite temperature. The duality is made quantitative in the sense that the Hawking
temperature in the bulk theory corresponds to the temperature of the gauge theory on the
boundary. The AdS/CFT correspondence provides the first string-theoretic example of the
underlying generic principle of the holographic duality (i.e. the holographic principle).

The idea of holographic duality was originally proposed by 't Hooft [3] in a generic
quantum gravity situation involving a gravitational horizon. The precise string theoretic
version was given by Susskind [4]. When an object falls into a black hole, it will be
stretched, torn apart into bits and eventually the bits will be smeared out over the horizon.
Consequently, all of the bulk information is spread over the horizonal surface resulting in
an effective boundary description of the bulk theory. The bulk world is holographically
encoded on the boundary. Connection between AdS space and holography was further
clarified by Witten [5] after discovery of the AdS/CFT correspondence.

Given an AdS space, the weakly-coupled bulk gravity theory corresponds to a strongly-
coupled boundary gauge theory. Adding a black hole to the AdS space, the dual gauge
theory on the boundary becomes thermal with the temperature equal to the correspond-
ing Hawking-Page temperature of the background [6]. It is thus interesting to investigate
the intermediate situation where there exists a massive object before gravitational collapse
into a black hole in the AdS space and search for the dual description in the gauge theory
side. It is argued in ref. [7, 8] that the degenerate fermions in the AdS correspond to the
composite multitrace operator constructed from product of single trace operators in the
large central charge limit on the boundary. It is not unreasonable to think of this “free”
fermionic operator as the conformal cousin of a QCD nucleon such as neutron and proton.
These “free fermions”, however, still interact with each other by the colour-singlet inter-
action of order 1/N assuming negligible in the large N limit. The colour-singlet (glueball)
exchange on the boundary corresponds holographically to the gravitational interaction in
the bulk. While gravity pulls the bulk mass together causing the gravitational collapse,
the colour-singlet interaction should be responsible for the deconfinement phase transition
of the injected mass in the dual picture.

Arguably, the gravitational collapse of the star in the AdS would correspond to a
thermalization process of the dual gauge matter on the boundary [9-15]. Consideration
of the mass limit of the fermionic star in the AdS bulk could reveal certain details of
the pre-thermalization process in the dual gauge picture. The mass limit of the AdS star
corresponds to the minimum amount of injected mass required in order for the bound-
ary gauge matter to start the thermalization process (since the bulk gravitational collapse
starts when injected mass exceeds the mass limit). Specifically, it is also interesting to ask
what the dual object of the bulk temperature is on the boundary world before black hole
formation? Should it correspond to some parameter characterizing the superheated phase
of gauge matter before the start of the thermalization? Moreover, what is the exact nature
of the colour-singlet (glueball exchange) interaction responsible for the deconfinement of



the dual gauge matter into the thermalized deconfined plasma (which is the dual picture
of the gravitational collapse caused by gravity)?

The heavy-ion collision experiments at RHIC and CERN’s LHC (Large Hadron Col-
lider) smash two charged ions at extreme energies, producing dense and hot nuclear matter
with properties of the strongly coupled plasma. In the vicinity of the collision point, the
induced magnetic field could be enormous [16]. Understanding the physics of dense hot
nuclear plasma under such circumstances requires nonperturbative treatments of the strong
interaction and the holographic method is one option. One holographic dual of the mag-
netized nuclear matter at finite temperature is proposed to be a magnetized black brane in
the AdS space [17]. It was found that the entropy density of the magnetized brane in the
AdS obeys the third law of thermodynamics with entropy S ~ T' (temperature) for small
temperature.

In this article, we consider a fermionic star in the holographic AdSs background in
the presence of external magnetic field at finite bulk temperature. The mass limit and
other properties of the star is studied with respect to the changes in the magnetic field
and bulk temperature. Even though there is no complete understanding of the dual de-
scription in the gauge theory side of this situation, we argue certain aspects of the duality.
In section 2, the Tolman-Oppenheimer-Volkoff (TOV) equation [18, 19] in the background
AdSs is calculated starting from the general dimensionality. The energy levels of the bulk
charged fermions in the presence of the magnetic field are calculated in the flat space ap-
proximation. The pressure and density of the bulk fermions at finite field and temperature
are subsequently derived. Section 3 presents analytic and numerical results for each case
of finite temperature and field. The mass limits depend crucially on the field and bulk
temperature. The mass-radius relations for each case are discussed in section 4. The bulk
adiabatic index and sound speed of the fermions inside the AdS star are discussed in sec-
tion 5. The entropy density and total entropy in the bulk are also computed. Section 6
investigates the dependence of mass limit on the AdS radius. Section 7 contains further
discussions and summary of our results.

2 Holographic star under external magnetic field

The study of the magnetized star in the AdS space consists of two main calculations. First,
the pressure and energy density need to be calculated for the system of charged fermions in
the magnetic field at arbitrary temperature. The star will be assumed electrically neutral
and we will focus only on the effect of magnetic field to the charged particles. At zero
temperature, the energy states of the charged fermions in the magnetic field are separated
naturally into Landau levels. The partition function in the macrocanonical ensemble of
these energy levels will provide the generic expression for the pressure and energy density
of the fermionic system at finite temperature. The pressure and energy density are subse-
quently used in the equation of state required by the TOV equation in the 5-dimensional
AdS spacetime. Even though we will focus on interpreting the results of the bulk AdS star
in terms of the dual gauge theory, the calculations in the bulk picture are self-consistent and
satisfactorily describe a real magnetized fermionic star in the 5-dimensional AdS spacetime.



2.1 The equations of hydrostatic equilibrium for a spherical symmetric star
in d dimensions

In order to study the behaviour of a degenerate star in d-dimensional AdS spacetime, we
derive the spherical symmetric TOV equation in d dimensions as given in appendix A. In
the presence of external magnetic field, the pressure of the fermionic matter in the star is
actually anisotropic due to the quantization of the energy levels. However, in the classical
limit where the momentum in the direction of the magnetic field is much larger than the
square root of the magnetic field, < p? > /m?c? > 2Beh/m?>c3, the pressure becomes
isotropic [20, 21] and the spherical symmetric TOV equation is applicable. The resulting
equations of motion describing the AdS star in the spherical symmetric approximation are
T(r) = Top(r)/po for the temperature T'(r), and

évi;)p (r) rd_Q, (2.1)

W0 =n0) (G - g n ) B 0). (22)

M (r) =

where B(r) = (1 — Mﬁy + 72—22)*1/2,l is the AdS radius, V;_s is the area of S92 and
Cy1 = w_;?%. To solve the equations of motion, we need the equation of state or the
explicit expression of P(r), p(r) in terms of the chemical potential p(r). Standard evalua-

tion of the partition function requires the layout of energy states of the fermionic system
which can be obtained in the following subsection.

2.2 Relativistic Landau energy level in 5 dimensions

We now solve the Dirac equation to find the relativistic energy level of a charged fermion in
the presence of external magnetic field in the 5 dimensional spacetime. As an approxima-
tion, we will ignore the effect of curvature on the energy levels of the fermions. The effects
of gravity and the AdS curvature will be considered only through the Einstein equations
stated in the previous subsection. Starting from the Dirac equation in flat space

iy 0, — meyp =0, (2.3)

where m is the mass of the fermion. The gamma matrices are chosen to be in the Dirac
representation as the following

10 0 &
0 = ¥ = 2.4
g (0 _1>, gl (_5 0>7 (2.4)

where 1 and & are 2 x 2 identity matrix and Pauli matrices respectively. We will consider
only the positive energy solution since we are interested in the particle not the antiparticle.
The positive energy solution ¢ () = u(p) e P* = u(p) e FHPT satisfies the equation
(v"pu —m)u(p) = 0. Let h = 1 and consider a particle in an external magnetic field,

the effect of the magnetic field can be taken into account by adding the field momentum,



Pu — Pp — qAu. We will choose the magnetic field to point in the z direction and uni-
formly distributed over the entire x,y, z space. The equation of motion of the fermion in
5 dimensional space becomes

{p2 +p2 + p? + pl — 2qBapy + ¢*B*z* — qBo.}¢ = (E? — m*c?) ¢. (2.5)

The momentum component in the extra dimension is represented by p,, corresponding to
the coordinate w. We have assumed the solution in the form ¢ = e!(Pv¥+r=2+Pww) £ (1) and
neglect the effect of the AdS curvature to the momentum component p,,. This is a good
approximation as long as the AdS radius of curvature is large compared to the wavelength
of the bulk fermions.

The energy condition from the equation of motion is given by

E2=m?t +p* P+ p2 P+ (2n—v+1)2mcPupB. (n=0,1,2,..., v=+1)

If we let j =n — 5, then we have

1
E} =m?ct +pic® + poc® + (j + 2> Amc*pp B, (2.6a)
o1
= m2t 4 2 (J + 2) d4mc’ppB. vk =p?+py) (2.6b)

From equation (2.6a) and (2.6b), energy is quantized in the x —y plane and contains certain
degeneracy of states, i.e., there are several states with the same one-particle energy. The
number of states g; of a discrete energy level j is

g gsLyL Pit+1 gsmLyLy , o 9
9j = h;/dpxdpydxdy = sh:; y277/p' pdp = % (Pj+1 _pj)a
_gsﬁLxLyZl B Cep22 (02 2\ 2 g 2
= T( mupB). (. pjc” = (pz +py) ¢ =4jmc’ppB) (2.7)

where gs(= 2s+ 1) is a spin degeneracy independent of j. The degeneracy is proportional
to the field and vanishes for B — 0. The discrete energies from the degrees of freedom
of the plane perpendicular to the magnetic field is called the Landau levels, characterizing
the statistical properties of the fermionic system. Extension to finite temperature situation
can be done by considering the corresponding partition function.

2.3 Pressure and energy density under magnetic field at finite temperature

Thermodynamical pressure and energy density of the magnetized fermion gas can be cal-
culated from the grand canonical partition function given by

1 [e%¢) i _ (Ej_'u)
InZ = 72 / dp,dpaqsdzdx aqs Z giln{1+4+e *87 ,
oo prd

LoL,L.L o > _(Bi—n)
_ Yshalyl-Liads (47TmMBB)/ dp-dpags Y In (1 e FET |,
e prd

_ (W) (27) /(;Oopndpniln (1 + e_(%é_;)> . (2.8)

J=0



Use the Euler-Maclaurin formula (see appendix B) and certain tricks of integration, we
finally have the pressure in the asymptotically approximated form
kT kT

P=—ImM/=——
V Vv

77nc2 —kpT 2
= (% /“ C ) de— T/MkBT ((# E _mQCz) d
T\ 2nt me2 \ €2 B 0 ev +1 4

(ln Z() +1n ZB)

2
<(u+k§Ty) _ mQCz) 2rm i, B )
kgT dy| — | ———2— —
i /0 ey +1 Y ( 3ht > (= me?)
T dy > dy
—kpT [ " kpT 2.9
B/O ey+1+B/Oey+1 (2.9)
Likewise the energy density is given by
U=2 d dpaasdzd b
= g2 | dp=dpadsdz xAdSZg]fja
j=0 z=legkpT —|— 1
L, L,L.Laqgs E;
— B2 RS (4w B) / dpzdpAdsZ —
B J=0 z_le’“BT +1
8gsm*mupBV ee > E;
= (BB [T an Y, —2—. (210)
h 0 . it
=0 z=1eFBT 41
Again, use the Euler-Maclaurin formula and tricks of integration, so that pc? = % = %

becomes

(kpTy)?* 2 2)
pc? ~ M /“ € i—m%z dek‘BT/ T (M kBTy) ( < e dy
—\ hie? me? c? 0 (ev+1)

2
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M7m62 Kt \ 8
dy e K eekBT kT Y
_k:BT/ et —i—k:BT/ dy —/ «r de—Q/ kBT —(,u 5Ty) e dy
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u—ch
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Both expressions for the pressure and energy density are in the remarkable form with the

dy (4 — me?)

dependence on B separated out in simple quadratic functions. The integrations can be cast
into logarithmic and polylogarithmic functions depending only on the temperature (and
not the field) as are shown in the next section.

3 Numerical results

In this section, the equations of motion, eq. (2.1), (2.2) will be solved numerically. To
emphasize effects of both temperature and external magnetic field, the physical properties



of the degenerate star in the AdSs under the influence of both temperature and external
magnetic field are investigated by dividing into 4 cases; 1.) T=0,B =0,2.) B=0,T7 > 0,
3.) B>0,T=0,and 4.) B,T > 0. Before going into the details of each case, we integrate
equations (2.9) and (2.11) to obtain

_ 9571'2

P = <304h4> [3u(7’)5 — 1Om2c4u(r)3 + 15m408,u(7") —8mPct0 — 101{:)29T2m2047rzu(r)
c

me2— (r)
+ TERT 7t u(r) + 10k5T% 12 u(r)® — 1203 T3m?c* Lis <—e FgT )

me2—u(r)

me?—p(r)
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2 2
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where Lig(z) =Y 10y z—f is a polylogarithm function. For numerical analysis, we set G5 =
Gl,G=c=h=kp=pug=101=1, m=0.1. We can transform the numerical results to
the SI unit by using the table of dimensional translation given in appendix C. The coupled
equations of motion between mass and chemical potential (eq. (2.1), (2.2)) are numerically
solved to find the chemical potential and the accumulated mass within the star. The density
and pressure profiles can be subsequently obtained. The boundary conditions at the center
of star are chosen to be M(r =0) =0 and u(r = 0) = e ~ 2.718281828 for every case.

3.1 Case I, zero temperature and zero magnetic field

This is the condition of degenerate star in AdSs considered in ref. [7]. The fermions degen-
erate into the lowest possible energy states filling the energy levels up until the Fermi energy
in 5 dimensions. In this limit, the pressure and the energy density, eq. (3.1), (3.2), reduce to

2
" (3’&%4) (3u(r)” = 10m?c p(r)® + 15m*Fp(r) — 8m°c'%), (3.3a)
2 gs2m* 5 24, 033 5 10
e <1504h4) (3u(r)® — 5m>ctp(r)? + 2m3e1?). (3.3b)

First, the surface of the star can be defined at the radial distance, R, where the pressure
becomes zero. Apparently from eq. (3.3a), the pressure is zero when u(r = R) = mc?. On
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Figure 1. The accumulated mass(a) and the chemical potential(b) distribution in the degenerate
star at T'=0, B =0.
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Figure 2. The density(a) and the pressure(b) distribution in the degenerate star at T'=0, B = 0.

—1.3848, 1. Therefore
in this case, both the pressure and energy density become zero at the radius R where
w(R) = mc?.

The accumulated mass, the chemical potential, the density and the pressure distribu-

the other hand, from eq. (3.3b), the density vanishes when p/mc? =

tion of the star versus the radius are presented in figure 1 and 2. Relations between the
total mass and the central chemical potential/density of the degenerate star are shown in
figure 3.

From the numerical solution, the edge of the degenerate star is at r = 17.6922 where the
pressure drops to zero. In figure 1(a), the accumulated mass grows rapidly, in particular
for the interval between » = 0 and r = 5. Beyond the central region, the accumulated
mass increases less rapidly and becomes steady. The behavior of the accumulated mass
is determined by the density and the pressure distribution within the star. Initially, both
the energy density and pressure in figure 2, decrease rapidly then they drop to zero more
gradually at larger distance. The chemical potential also behaves similarly (figure 1(b)).
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Figure 3. The relation between mass and central chemical potential /density (in logarithmic scale)
of the degenerate star at T'=0, B = 0.

It is clear that the matter in the star becomes extremely dense in the region near the
core. Figure 3 shows the mass curve of the degenerate star as a function of the central

chemical potential and density. From numerical analysis, the maximum mass is found to be

Mpax = 0.767302 for the central chemical potential equal to el 933

—0.122306

or at the central energy
density equal to e . This maximal mass can be interpreted to be the mass limit
above which gravitational collapse occurs. A mass injection into an empty AdS space until
the accumulated mass exceeds the mass limit would result in a gravitational collapse in
the bulk. The collapse corresponds to a thermalization process to finite temperature of the
dual gauge matter. Therefore, the mass limit corresponds to the minimum injected mass
required by the dual gauge matter to start the thermalization process into the thermal
equilibrium. After deconfinement thermalization, the dual gauge matter is in thermal
equilibrium at the Hawking temperature at this mass limit, i.e. Tyauge = TH with [22]

1 T4+ 1
Tn = 0 (7) + 27ry’ (34)

1/2
where the horizon radius r, = ¢ ((\/1 +4MCy/0? — 1)/2) for AdSs. Note that the
mass dependence of the Hawking-Page temperature in the limit of large (r4 > ¢) and
small (r; < ¢) black hole in the AdS is

S (MCy)M4 1
H = s on /MO,

(3.5)

respectively.

It is interesting to note that for ry /¢ < \/m (small black hole with negative specific
heat after the gravitational collapse), the higher the mass limit, the smaller temperature
the dual gauge matter would thermalize to. This corresponds to M < 3¢%/4Cy = 97 /32 (for
¢ =1, approximately 0.8836). The mass limit of our AdS star for T, B = 0 is roughly 0.767
and therefore the black hole at the end of gravitational collapse for AdS star at this mass
limit is a small black hole with small negative specific heat.



3.2 Case 11, zero temperature and finite magnetic field

For this case, the magnetic field is turned on and the mass limit and other properties at
zero temperature are studied by comparing to the results of Case I. Since the changes from
case I is small, we will present the results using the numerical differences between the two
cases. Starting from the pressure and energy density for nonzero magnetic field

2
P = <Sgsczh4> (3/1(7“)5—10m204,u(7')3+15m408,u(r)—8m5cw—20m204,u2332(,u—m02)) ,
(3.6a)
gs2m? Am>2r? u2, B2
pc? = <15C4h4> (3u(r)5 —sm2ctu(r)® + 2m5clo) — mc? <3h4B (3.6b)

Observe that the pressure of the star has almost the same form as the pressure in Case I.

The correction term to the pressure from the magnetic field contains the factor ,u—zngcz. '21“he
4 B
bt

as in case I, the surface of the star is defined in

density appears to be smaller due to the contribution from the term —mc? (

Since the pressure vanishes at p = mc?

the similar way, at u(R) = mc?. Interestingly at this radius, the density becomes negative
3.2.2 2 p2
_4m criupB

p(R) = - (37)

due to the interaction energy between the fermion’s magnetic moment and the external
field. Interestingly, there is a critical field strength where the density becomes zero,
me?  [3u® — 5ud 4 2

B, = : 3.8
5 5 (3.8)

where u = u/mc? is a rescaled chemical potential. For magnetic field stronger than this
critical value, the energy density becomes negative and there is no star formation or black
hole in the bulk. Since there is no horizon in the bulk, the dual gauge matter is at zero
temperature under extremely strong magnetic field.

Likewise, there is a critical field where the pressure becomes zero,

2

B. = TZ;(ul)\/;O(Suva9u+8). (3.9)
For u > 1, Bl is always smaller than B., therefore the pressure becomes negative before
the density as the field is increased. At u = 1, both B, and B, are zero.

For numerical study, the magnetic field strength is chosen to be 0.10 and 0.20 for our
consideration. Figure 4 show that the mass limit, comparing to case I, decreases when
the magnetic field increases. The maximum mass for B = 0.2 is appreciably smaller than
the maximum mass at B = 0.1. Consider the equation of state in the energy density part
(eq. (3.6b)). Since the coupled equations of motion between mass and chemical potential
of the star (eq. (2.1) and (2.2)) involve the energy density, decreasing the energy density
leads to the decrease of mass and the chemical potential of the star comparing to case 1.
The increase of the chemical potential subsequently leads to the decrease in the pressure of
the star. Numerical analysis confirms these behaviour as are shown in figure 5. Note that
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Figure 4. The relation between mass and central chemical potential (a) and central density (b) of
the degenerate star at T' = 0, the mass difference between the nonzero magnetic field case and the

T, B = 0 case is presented.
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Figure 5. The difference of the density (a), the chemical potential (b), the pressure (c), between
finite and zero magnetic field cases for T' = 0.

in the core region (0 < r < 1.4), the density increases due to the increase of the chemical
potential. However, in the outer region of the star, the effect of the magnetic field becomes
dominant resulting in the decrease of the density. Accumulated mass eventually becomes

smaller than the mass in case I.
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The maximal mass or the mass limit of the AdS star when the magnetic field is turned
on is smaller than the mass limit in case I. Therefore the dual gauge matter under magnetic
field thermalizes to larger temperature when the accumulated mass exceeds the mass limit
even though it requires smaller injected mass in order to start the thermalization. Gravi-
tational collapse of an AdS star under strong magnetic field corresponds to thermalization
of the magnetized gauge matter from zero to finite temperature. Remarkably, the ther-
malized temperature (at the mass limit) is larger than when the field is absent previously
discussed in case I. The magnetized gauge matter thermalizes more easily by requiring
smaller injected mass, and also becomes hotter after the deconfinement thermalization.

3.3 Case III, finite temperature and zero magnetic field

For finite bulk temperature, the bulk fermions become thermal in the AdS space. Since the
kinetic energy of the particles increases, the pressure becomes larger and the star grows
bigger. Again, we study the small changes in the mass limit and other properties of the star
by comparing the results to the zero temperature case. The pressure and energy density,
eq. (3.1), (3.2) in this case reduce to

2
P = (3gsjh4> [3@(7")5 — 10m2ctu(r)® + 15mAcBu(r) — 8m®c!® — 10k5T?*m? A r?u(r)
c

meZ— (r)
+ TEET 7 u(r) + 10502 u(r)® — 120k T3m?c* Lig (—e FaT >

me?—p(r)

Arpd 27 B 5057 meoulr)
+ 360kzT *mc*Liy | —e *BT — 360kRT° Lis | —e kBT , (3.10)

2 2
pc? = <lg;c47;z4) [3u(r)5—5m204,u(7“)3—|—2m5010—5k%T2m204W2u(r)+7k4BT47r4u(r)

me? —p(r)

me?—p(r)
+-10ké7ﬁw2u003+30k%7ﬂnf%9142(-e FBT >._150k%7ﬁnﬁc4L@3<—e RpT )

mczfu(v')

4md 27 N T 5757 ; me —u(r)
+ 360kLT*mc2Liy ( —e 8T ) —360k%T°Lis (—e %57 | |. (3.11)

It is interesting to investigate the large temperature limit, kg7 > mc?, u. In this limit,
the polylogarithmic function becomes a zeta function Lig(—1) = —(1 —217%)((s) and thus

<2\ 675
r= (3gc4h4> 74(5)(kBT)5, for large kpT. (3.12)

If we assume the star to be in a uniform temperature, this implies that the thermal fermions
are not confined within a finite-size star when the temperature is sufficiently large, i.e.
kgT > mc?, . The result is not surprising, any particles with sufficiently large kinetic
energy will escape the gravitational influence of the star.

We set temperature values in the simulation unit to be 0 — 0.3. Figure 6 show that
temperature increasing hardly affects the mass limit. For this case, the surface of star is
defined at u(r = R) = mc? since the density and pressure do not necessarily reduce to
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Figure 6. (a) The mass curves for B = 0 as a function of the central chemical potential. (b) The
radius of the AdS star as a function of the central chemical potential for B = 0.
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Figure 7. The difference of the density (a), and the chemical potential (b), between finite and
zero temperature cases for B = 0.

zero. The maximum masses increase with the bulk temperature. This is because the small
increase in the temperature affects the Fermi-Dirac distribution very slightly. Most particles
are still in the same quantum states, mostly degenerate, and a very small part of the
particles occupy higher energies than the Fermi energy and exert more pressure. Increasing
temperature thus results in a small increase of pressure and energy density. Consequently,
when temperature increases, the maximum mass also grows. For T" > 0.1,0.2, the energy
density and chemical potential reduce to zero at much larger radii as shown in figure 7.
For sufficiently large temperature, even though the chemical potential reduces to mc? at
smaller radii, the pressure does not reduce to zero. In other words, the thermal bulk
fermions refuse to be confined within a finite-size star above a critical temperature.

To interpret the results in the dual gauge picture, caution has to be made regarding the
bulk temperature. During the thermalization process corresponding to the gravitational
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Mass Limits variations
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Figure 8. The mass limit curves for T'= 0.3, B = 0.01 and 7' = 0.3, B = 0.5 in comparison to the
mass limit curve at T, B = 0.

collapse in the gravity picture, the gauge matter is not in thermal equilibrium until a black
hole is formed when the mass injection exceeds the mass limit. A zero-bulk-temperature
AdS star collapsing into a black hole becomes thermal at nonzero Hawking temperature
due to the emergence of a horizon. Therefore, the bulk temperature does not correspond
to any sort of temperature of the gauge matter on the boundary world. One of the effects
of the bulk temperature of the fermions in the AdS star is the increase of mass limit.
Once a black hole is formed from gravitational collapse of the warm AdS star, the corre-
sponding Hawking temperature is always smaller than the the zero bulk temperature case.
After thermalization process, the dual gauge matter will be in thermal equilibrium at lower
temperature than the case of zero bulk temperature collapse. However, the total injected
energy is larger than the zero bulk temperature case. The bulk temperature thus serves as
a parameter which delays the onset of the thermalization process as well as reducing the
temperature of the resulting thermal equilibrium.

Certainly, the dual gauge matter at exactly the same temperature can be alternatively
achieved by injecting mass into a black hole in AdS space, increasing its mass and reduc-
ing the corresponding Hawking temperature (however, if we keep increasing the black hole
mass, it will finally become large black hole with positive specific heat and the temperature
will start to increase with the mass). This choice would correspond to in-equilibrium ther-
malization where the gauge matter is always kept at thermal equilibrium as temperature
decreases. The final thermal equilibrium at certain temperature can always be achieved by
infinitely many different thermalization processes.

3.4 Case 1V, finite temperature and finite magnetic field

We now consider effects from both the finite bulk temperature and nonzero magnetic field
to the mass limit and other properties of the star. The equations of state have the full
form according to eq. (3.1) and (3.2). Again, it is interesting to consider the extreme limit

— 14 —



of large temperature in the presence of the magnetic field. For nonzero field, the pressure
in this limit becomes
2
P= <3(9)CZM> <6275§(5)(kBT)5 — 20kpTm?c* % B In 2) , for kpT,upB > u, (3.13)
provided that the field B is also comparably large. From eq. (3.13), the star will have
definite surface at finite radius when B oc T?. Sufficiently hot star requires sufficiently
strong field to confine its fermionic content.

We see the similar behaviour as in case II and III, temperature increase leads to the
increase of the mass limit whereas the effect of the magnetic field is the opposite. In fig-
ure 8, when we set the field B = 0.01, the temperature 7' = 0.3 has stronger effect on the
profile of the star. The mass limit becomes larger than the mass limit in the case of the
zero temperature and magnetic field. Similar to case I1I, when the temperature increases,
the mass limit grows larger (the upper line in the figure 8). However, if the magnetic field
is enhanced further to B = 0.5, the mass limit becomes smaller than the zero-field zero-
temperature mass limit. Namely, the influence of the magnetic field has overcome those of
the temperature when it is sufficiently large.

Let us summarize implications for the thermalization of the dual gauge matter from
the results in this mixed situation with 7, B > 0. Generically, turning on the bulk tem-
perature results in a larger mass limit in the AdS space while finite magnetic field leads
to a smaller mass limit. If the injected mass exceeds the mass limit, gravitational collapse
will occur and we end up with a black hole. The injected mass at the mass limit is also
the minimum mass required for the dual gauge matter to start the thermalization. The
Hawking temperature of the black hole can be identified with the temperature of the dual
gauge matter at thermal equilibrium after the non-equilibrium thermalization process cor-
responding to the collapse, it is larger (smaller) for finite field (bulk temperature) than the
collapse with T\, B = 0. The field and the bulk temperature compete with opposite effects.

For zero-field finite temperature collapse, the final black hole has higher mass and
thus corresponds to small temperature of the gauge matter. The final equilibrium at the
same temperature can be achieved via in-equilibrium process by injecting mass into a black
hole resulted from gravitational collapse of an AdS star with 7, B = 0 (case I). On the
contrary, when the field is turned on, we need to extract mass from a magnetized black
hole, reducing its mass and increasing its Hawking temperature in order to achieve the
thermal equilibrium at the same temperature and magnetic field.

The black hole immersed in the constant magnetic field in 4 dimensions was originally
investigated in ref. [23]. Extension to the magnetized black hole in AdSs spacetime is
required to fully understand the holographic description of the strongly coupled magnetized
gauge matter, one such solution (magnetic brane) is discussed in ref. [17]. It is found that
the entropy density of the black brane in AdSs is proportional to T' for small T and has a
T3 dependence for higher temperatures. We will calculate the entropy density of the AdS
star and compare to the case of magnetic brane in section 5. However, as stated above,
we have assumed the field is not sufficiently strong that it affects the spacetime of the
background and our analyses are thus limited to the moderate magnetic field situation.
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Figure 9. Relationships between mass and radius of the fermionic star.

4 Mass-radius relations

The mass sequences diagram of the AdS star for each case can be presented by the mass-
radius plot of the star as shown in figure 9. Figure 9(a) is the mass-radius sequence for case
I with zero temperature and zero magnetic field. The stars in this case have larger radius
than case I (zero temperature, finite field) in figure 9(b) but smaller radius than case
III (zero field, finite temperature) in figure 9(c). Interesting competition between temper-
ature and magnetic field can be seen in figure 9(d), a sufficiently large field helps to confine
the fermions within a finite-size star even for relatively higher temperatures comparing to
case III.

For sufficiently high temperature, the mass-radius curve can change the way it spirals
to the attractor fixed point at ©(0) — oo. For B = 0 in figure 9(c), the curve with
T = 0.3 “oscillates down” to the fixed point from the small radii instead of the typical
anticlockwise spiralling. This is because at this temperature the radius of the star is an
increasing function of 1(0) with no oscillation as we can see from figure 6(b). For B = 0.1
in figure 9(d), the curve with 7' = 0.3, “oscillates down” to the fixed point from the large
radii without spiralling. It should be remarked that for case I and III (zero field), the mass
at the attractor fixed point for p(0) — oo is around 0.7. For case IT and IV at B = 0.1,

,16,



the fixed point mass for p(0) — oo is around 0.68. The radius of the AdS star at the fixed
point decreases with the field but does not depend very sensitively on the temperature.

5 The adiabatic index, sound speed, entropy density and total entropy
of the AdS star

Many interesting physical properties of the fermions squeezed within the AdS star by its
own gravity can be illustrated by certain thermodynamic and transport quantities. In this
section, we consider two transport coefficients, the adiabatic index and sound speed of the
AdS fermionic matter for each limiting case. The entropy density and total entropy of the
AdS star are discussed subsequently.

Generically the adiabatic index, I', and the sound speed, cg, of a medium are defined as

poOP _p o
£ L2
Pop P°°
pOuP
P 0,p

= (5.1)

which can be calculated through the dependence on the chemical potential p of both P
and p. The general expressions for both quantities are very lengthy but they are simplified
for the zero-temperature limit.

For T = 0, finite B,

r_ 3(u? —1)2 — 402 3ud — 5ud + 2 — 5v?
© 3u2(u—1)2(u+1) \ (3u2 + 9u + 8)(u—1)2 — 2002 )’

1 [ (u2—1)2 — 42
= 2\/( u2(ug - 1; ’ (53)

where u = p/mc? is the rescaled chemical potential and v = upB/mc? is the rescaled

(5.2)

magnetic energy of the fermions.

For T, B = 0,
14w\ 3u? + 6u? + 4u + 2
I = 5 5 , (5.4)
U 3u® 4+ 9u + 8
1 1

A number of remarks are in order for the zero-temperature limit. From eq. (5.3) and (5.5),
the sound speed for the nonzero field case (v? > 0) is shown to be larger than the case with
B = 0. For B = 0 since > mc? (u > 1), the sound speed is always real and the upper
limit of ¢, is always smaller than 1/2 or half the speed of light. For nonzero field, reality
condition of ¢, leads to the constraint v < v/3(u? —1)/2. Namely, for a given u, the upper
limit on the magnetic field for ordinarily-compressible fermionic matter is

V3

By —
0 np 2

(u® = 1). (5.6)
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Figure 10. The adiabatic index and sound speed of the fermionic matter in the AdS star. The
T,B > 0 label represents 7' = 0.3, B = 0.2 curve, the T" > 0 and B > 0 label represents T" =
0.3,B=0and T'=0,B = 0.1 curve respectively.

On the other hand, the upper limit from the light speed cs < 1 is satisfied trivially for any
value of B.

Numerical results for each case are presented in figure 10. The B > 0 and T > 0 label
represents the curve with 7' = 0,B = 0.1 and B = 0,7 = 0.3 respectively. The T, B > 0
label represents the curve with T'= 0.3, B = 0.2.

When a thermodynamical system is injected with energy until it reaches a thermal
equilibrium, the total energy density, pressure and number density are related to the en-
tropy density by the relation s7' = P + p — un where the entropy density in our case can

be computed via

_op

T or

(5.7)

)
m
from the Gibbs-Duhem relation. Using eq. (3.1), the entropy density of the fermionic
content of the AdS star at finite temperature can be calculated to be

w(r)
5Bt g m? (u(r) — me?) e*s”

2m w(r)
T [ e*BT 4 kBT

c“m—p(r)

2 cZm—p(r)
—450k3 T Lis (—e t5T >+360c2k:j49mT3Li4 (—e kot )

472
S =
15¢th4

M(r)ch'm
— 5B**kpuim? In (e kpT 4 1>

ch—u(r)

. . c2m—u(r)
+90k T3 (c*m—p(r)) Lia <—e kBT > —90c*kmT? (c*m—pu(r)) Lis (—e FpT )

Zm—p(r)

Zm— (r)
—90c* kEm2T? Lig (—e kBT ) + 30 k5m2T (02m — u(r)) Lis (—e RpT >

+ 7 kT3 u(r) + 5m2 kT u(r) (u(r)z - (mcz)z) ] : (5.8)
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Figure 11. The entropy density of the fermionic matter in the AdS star. The T, B > 0 label
represents 7' = 0.3, B = 0.2 curve and the B = 0 label represents 7" = 0.03, B = 0 curve respectively.

The entropy density of the fermion gas approaches zero as T' — 0, a typical behaviour from
a quantum ensemble satisfying the third law of thermodynamics. In the low temperature
limit, the last two terms of eq. (5.8) remain dominant and thus

N 4tk p(r)

15(hc)d [SkBT(M2 —m?ct) + 7772(kBT)3] . (5.9)

It is interesting to compare the T-dependence of our entropy density with the magnetized
black hole studied in ref. [17] where s ~ T for small temperatures and s ~ T for larger
temperatures. In our case of the fermions in the AdS star, the origin of the temperature de-
pendence is the typical behaviour of free relativistic fermi gas persisting in any dimensions.
For the magnetized AdS black hole, the entropy is determined from the central charge of
the AdSs subspace of AdS3 x T2 interpolating with the AdSs. However, it must be aware
that the bulk temperature of the AdS star and the Hawking temperature of the black hole
are two distinct kinds of temperature. Only the latter corresponds to the temperature of
dual gauge matter at a thermal equilibrium.

The entropy density of the magnetized fermion gas given by eq. (5.8) also depends
on the magnetic field s ~ B2. The dependence nevertheless vanishes in the 7' — 0 limit.
However, this formula is the result of the Euler-Maclaurin formula which is a good approxi-
mation for kT > upB, i.e. sufficiently high temperature. For smaller temperatures, start-
ing with eq. (2.8), the zeroth mode becomes dominant and the field-dependence becomes
s~ OrlnZ ~ B. This is also similar to the behaviour of the magnetized black brane [17].

The entropy density from two numerical solutions are shown in figure 11. Since s is
an increasing function of 7', the star at relatively small temperatures will have smaller
entropy density. For small temperatures or small entropy density, we can approximate
sT < P, p, un leading to P + p >~ un.

Next we calculate the total entropy of the AdS star which should be equivalent to the
entropy of the dual gauge matter before the thermalization. The total entropy of the star
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Figure 12. The total entropy as a function of radius of the AdS star for B =0.1;7 = 0.1,0.2,0.3
and B =0.1,0.2,0.3; T = 0.1.
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Figure 13. The total entropy as a function of mass of the AdS star for B = 0.1;7 =
0.1,0.2,0.3 (from left to right) and B = 0.1,0.2,0.3;7 = 0.1 (from right to left).

should be the lower bound of the total entropy of the black hole at the end of gravitational
collapse when the mass of the AdS star exceeds the mass limit. This black hole entropy in
turn corresponds to the total entropy of the dual gauge matter at the end of thermalization.
In d dimensions, the total entropy is given by

R
S = / s(r) Ha-2 ri=2 dr, (5.10)
0 d—2

where the volume factor 2Vy_or?2/(d — 2) becomes 47213 /3 for d = 5.

Figure 12 shows the total entropy of the AdS star for B = 0.1 at temperature
T = 0.1,0.2,0.3 and for T' = 0.1 under field B = 0.1,0.2,0.3. The total entropy is an
increasing function of the temperature and a decreasing function of the magnetic field.
From small radii, the total entropy is an increasing function of the star radius. This is a
similar behaviour to the accumulated mass which is also a global quantity. Remarkably,
the total entropy converges to zero in the attractor fixed point (0) — oo limit. As the
central density grows, the content of the AdS star concentrates more in the central re-
gion resulting in the decrease of total entropy towards zero (the volume weighing factor 73
enhances contribution in the outer region in contrast to the core).
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The black hole at the end of gravitational collapse should possess at least the same
amount of total entropy as the initial AdS star above the mass limit. The second law of
thermodynamic demands that the entropy of the AdS star above the mass limit is always
less than the black hole entropy after the collapse [25]. The entropy increase could continue
until it reaches the maximum when a black hole is formed [26]. Unfortunately, the time evo-
lution of the entropy during the gravitational collapse is not completely known. Partially
because the thermal entropy is ill-defined during off-equilibrium processes and partially
due to the geometric nature of black hole entropy at the end of the collapse. There are
other kinds of entropy that can be assigned to the AdS star and the black hole. The
entanglement entropy quantifies how much we do not know about the region behind the
horizon and it is consistent with the geometric nature of the Bekenstein-Hawking entropy
of the black hole. Entanglement entropy is found to increase in a different manner from
the Kolmogorov-Sinai entropy [14, 15] during the collapse. However, all kinds of entropy
are found to increase approximately linearly during the initial state of the gravitational
collapse and saturate to a constant value at the end.

Fach maximum of the M-S curve in figure 13 corresponds holographically to the en-
tropy of the dual gauge matter at the beginning of the thermalization process. It is also
proportional to entropy of the black hole after gravitational collapse assuming the linear
progression to the saturated Bekenstein-Hawking entropy mentioned above. Arguably, the
increase of entropy of the dual gauge matter from the injected mass state to the thermal
equilibrium should also be the linear progression following by saturation as well. Note that
the entropy is not maximal at the maximal mass nor the maximal radius as we can see
from figure 12, 13.

6 Dependence of mass limit on the AdS radius

We vary the curvature radius of the AdS space, [, and study the changes in the profile
of the star in this section. For simplicity, we will set the temperature and the external
magnetic field to be zero. We let the curvature radius to be 1,3,5 and 7, and observe
considerable changes in the mass limit of the star as are shown in figure 14. The mass
limit of the degenerate star increases evidently when we raise the curvature radius of the
AdS space. Moreover, the peak of the mass limit curve shifts to the lower central density
side. Note that increasing [ corresponds to decreasing the bulk cosmological constant A.
For | = 3, the maximum mass is 1.96473(r = 27.4029) for the central chemical potential
1(0) = €%3825 or the central energy density p(0) = e=338948  For | = 5, the maximum
mass is 2.92023(r = 33.5921) for the central chemical potential 1(0) = %3 or the central
energy density p(0) = e~ 48441 For [ = 7, the maximum mass is 3.71782(r = 38.4035) for

— 01115 _ 586373

the central chemical potential 1(0) or the central energy density p(0)

7 Conclusions and discussions

In this work we have found that both temperature and external magnetic field affect the
mass limit and other physical properties of the fermionic AdS star. The increase of bulk
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Mass Limit at T=B=0, |=1(Lower line), I=3(Dashed), I=5(Dotted), |I=7(Upper line)

T 5 0 5
In p(0)

Figure 14. The relation between mass and central energy density (in logarithmic scale) of the
degenerate star for varying AdS radius [ =1 —7.

temperature enables the pressure and energy density of the star to increase. Consequently,
the mass limit becomes slightly greater due to the larger pressure. This is the typical behav-
ior of the Fermi gas at finite temperature. Too large temperature results in the the fermions
refusing to be confined within a finite-size star, they will leak to the space inevitably.

In the presence of external magnetic field, the mass limit decreases when the magnetic
field increases. As we can see from eq. (3.1) and (3.2), an increase in the magnetic field
results in a smaller energy and pressure density as well as a smaller chemical potential.
The mass limit becomes smaller naturally. There is an interesting competition between
the temperature and the magnetic field to the density profile and mass limit of the star.
Extremely strong magnetic field tends to make the bulk fermions stay in the Landau states
with lower energies whilst the temperature causes the particles to flee the star.

The radius of curvature of the AdS space also affects the mass limit evidently. When
the radius of curvature increases, the mass limit increases substantially as are shown in fig-
ure 14. Interestingly, the peak of the mass limit curve shifts to the lower central density side.

Gravitational collapse in the AdS space has holographic dual in terms of the non-
equilibrium thermalization of the gauge matter on the boundary. Even though the Hawk-
ing temperature of the black hole at the end of the gravitational collapse can be matched
with the temperature at thermal equilibrium of the gauge matter at the end of thermaliza-
tion, the bulk temperature of the AdS star does not seem to have such a straightforward
relationship with the dual gauge matter. The Hawking temperature of the resulting black
hole is not directly related to the temperature of the fermionic star before the collapse but
inversely proportional to the mass of the star. Therefore it is the mass limit studied in our
work which corresponds to the temperature of the gauge matter at the thermal equilibrium
after thermalization, i.e. Tyauge ~ \/3/327 Mjimit (the black hole formed at our mass limit
is small AdS black hole with negative specific heat, the precise relationship is given in
eq. (3.4)), for a given mass injection Myt in the dual gauge picture. The mass limit also
plays the role of the minimum injected mass required for the dual gauge matter to undergo
the thermalization into the thermal equilibrium. Larger mass limit means that it requires
more injected energy to thermalize, and once it thermalizes, the gauge matter will be at
lower Hawking temperature.
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It should be remarked that the AdS black holes formed at the end of the gravita-
tional collapse of the AdS stars at our mass limits are small black holes with negative
specific heat. They are previously thought to be less thermodynamically preferred than
the AdS vacuum in the context of the AdS/CFT correspondence and only the large AdS
black hole with positive specific heat was considered relevant for the dual of the thermal
gauge matter. However, inevitable collapse at the mass limits corresponding to small AdS
black holes suggest that there might exist the phase of thermal gauge matter with negative
specific heat dual to these black holes at the end of the gravitational collapse. Injecting
more mass would make these AdS black holes and their gauge duals eventually become
thermodynamically stable with positive specific heat.

Entropy density of the AdS star under uniform magnetic field is found to show in-
teresting behaviour; s ~ T for small and s ~ T3 for higher bulk temperatures. Such
T-dependence is typical for free fermion gas (modulo the magnetic field existence) and it is
amusingly similar to the T-dependence of the magnetic black brane entropy in the AdS [17]
even though the latter is the Hawking-Page temperature of the brane, not the bulk temper-
ature of the material making up the brane itself. Nevertheless, the correspondence between
the bulk and boundary exists throughout the gravitational collapse as long as the back-
ground is the AdS. The holographic duality suggests that the Hilbert spaces of both the
gravity and gauge theory as well as their partition functions are equivalent. A global probe
for the number of degrees of freedom on both sides of the duality is the entropy. The total
entropy of the AdS star above the mass limit, which indicates the lower bound of the black
hole entropy at the end of gravitational collapse, should also be the lower bound of the total
entropy of the gauge matter at the end of thermalization in the dual picture, Sgauge 2 Sads-
We found that the entropy (at the mass limit) of the AdS star is an increasing (decreasing)
function of the temperature (magnetic field), similar behaviour to the mass limit.

The remaining unanswered question is the exact correspondence between the gravita-
tional collapse in the bulk and non-equilibrium deconfinement thermalization of the dual
gauge matter. If bulk gravity is dual to colour-singlet glueball interaction and it causes
the gravitational collapse in the AdS, how could the glueball exchange describe the decon-
finement thermalization in the dual gauge picture? Should there exist the critical glueball
density corresponding to the mass limit in the bulk which determines the deconfinement
phase transition on the gauge theory side? What is the boundary (CFT) gauge description
of the TOV equation and more generically the Einstein equation in the (AdS) bulk? What
are the duals of bulk temperature and other thermodynamic and transport quantities such
as the adiabatic index and sound speed of the AdS star in the gauge theory side?
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A The equation of hydrostatic equilibrium for a spherical symmetric star
in d dimensions

We solve the Einstein equation in d-dimensional spacetime in this section. Starting from

the Einstein equation,
R
GMV = R“V — g“u§ = Vd72Cd7]_TMV7 (Al)

where R" | ¢ R, TV Vi o, C4_;1 are Ricci tensor, metric tensor, Ricci scalar, energy-

momentum tensor, the area of S~2 and constant (ﬁ%

perfect fluid, the energy-momentum tensor is given by

) respectively. Assuming a

where we use a spherically symmetric metric in d dimensions in the polar coordinates [24]
ds* = A(r)c2dt* — B(r)dr® — r2dQ3_,

d—3
= A(r)Pdt? — B(r)dr?® — r?df? — r*sin® 6, (d@% +--+ H sin? QidG?lQ)

=2
d—23j-1
= A(r)2dt? — B(r)dr? — r?d6? — r?sin® 6, | d63 + Z H sin? Qidﬁjz . (A3
j=3i=2
The Lagrangian of this metric is then given by
. . d—2 ]_1 .
L= A(r)c*t® — B(r)i* — 267 — r%sin® 6, | 63 + Z H sin? 92-9? . (A.4)
j=3 i=2

We will use the Euler-Lagrange equation to find the equations of motion and read off the

oL\ L
o, <8q> = 5 (A.5)

connections,

Consider t component, the equation of motion is

. A
and the connections are
A/
Ptrt = Fttr = ﬂ (A7)
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The equation of motion in the » component reads

d—2j—-1

A/ 2 . B/ . 12 0 . X
i+ gttt g (B X Iwted ] —o (as)
j=3i=2
and the connections in the » component are
Al c? B’ —r —rsin? 6,
Frtt — TR rw — @I%lm — f’Fr9292 — T’
—rsin?6; Iy
e ,Frejej == Tl H Sin2 91 (Ag)
i=2

Likewise, the equation of motion in the #; component is

d—2j—-1

N : ' .
01 + ;7"91 — sin 6 cos 01 9% + Z H sin? «91-0]2 =0, (A.10)
j=3i=2
and the connections in the #; component are
1% = L0 g, coso
ror T T O T 0T 0202 T — S Cos v,
j—1
...,Faéjej = —sinfq cos b, l_Is.in2 0;, (A.11)
i=2

where 3 < j < d — 2. Similarly, the equation of motion in the  component is

d—2j-1
.9 . . )
Oy + ;7’“92 + 2 cot 016165 — sin 65 cos O E H sin? 91'9]2' =0, (A.12)
j—4 i=3

and the relevant connections are

62 _ 92 _ 1 02 — 02 —
r rfy I Oar ;7F 0102 — r 0201 — COtHl’
j—1
. ,ngjgj = —sin 6y cos Oy H sin? 6;, (A.13)
=3

where 4 < j < d — 2. The equation of motion in the 6; (j > 3) component is

2 Z{;Ql %;21 sin 6; cos 0; sin? 6

0 + ~#0; + 2ot 01616 + : ]’; ) 6,6;
d—2 k-1 ‘
— Z H sin 0 cos 0; sin” ;0% = 0, (A.14)
k=j+1i=j+1

and the connections in 6; component are

0; 05
l“rgj—F

0;r

0 0

J — J — J —
610, = r 6,0, = cot 6y, I’ 06, = T

1 J-
T,’ Gjel
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J 2 sin 0; cos 0; sin® 0); k1

z;él 0; . s 2
= —— =cot 0,1}, , = —sinf;cosb; sin” 0;, (A.15)
sz% sin? 6; o i=lj_£1

where 2 < I < j—1and j+ 1 < k < d— 2. The Ricci tensor and Ricci scalar can be
calculated from

Rpa;w = aﬂrpua B a Fp + Fp;mr)\mf - Fp F/\,um
R,, =R LA
R = RH;L — gMVR,LLI/'

After some calculations, we have

A A'B' (A/)Q Al
= - - d—2
R =94p 1482~ 142B + )2 AB’
AT AB (A
= - +(d—2
R, 2AB 4AB2 4A2B + )2 B?%’
A’ B’ 1
o _ B L
o, 2rAB  2rB2 ( B>
Al B’ 1
)
= 1 —
s, 2rAB  2rB2 ( B)
Rﬁi _ Al B Bl ( l
%~ 2rAB  2rB2 B
Comsider G, = R — %t (R'\y+ R, + R + R, + .+ R+ + Ry =
Vy_oCy1T', — RY, — (RT,, oot 393;32) = 2V;_5Cy_1pc?, then
B’ (d—2)(d—3) 1
(d— 2)TBQ 2 l=5]= 2Vy_2Cq-1p¢7, (A.17)
_ 2 _ B 2 _
B _ (d 3)B= B2 rVa—2Cy_1pc®  (d—3) ‘ (A18)
r @-2) ;

If we consider an AdS space(with a negative cosmological constant, A), then the Einstein
equation reads

GHV + Ag“u = Vd72Cd71TMV7 (A.lg)

and equation (A.18) becomes

— 2 _
5 (d 3)B _ B 2rVa—oCy1pc®  (d=3)  2Ar ' (A.20)
r (d—2) r (d—2)
Change B — B2, so that
, d=3), 3 rVig—oCyq_1pc? (@d=3) Ar
B o D=8 (d—2) 2r (d—2))° (A.21)
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The solution to this equation is

1

B2 — . (A.22)
2¢2Vy_oCy_ d— 2Ar2
1- W J prd=2dr + m
oA _ 1
Let G=5)@a=1y = 2> then
1 1
B2 — — ) (A.23)

Also the accumulated mass can be defined to be

2Vd72 / d—2
M = dr. A.24
)= [t (A21)
Consider G", = R’ — % (Rtt + R", + Rebl + R%Q t..ot Rai&i Tt Razd_fQ) -
Vi_oCy 1 T7. = R", — (Rtt T Regd—;) = 9V;_5Cy_1 P,, then
(d-=2)A" (d—2)(d—3) 1y
5 3 1-— 5)= 2V 2Cq_1Pr.
Use equation (A.17) from G!, and multiply by rB/(d — 2),
A/ B/ 2Vd_20d_1 2
£ 40 Zld2bd g P). A25
AT BT a—p Pleth) (A.25)
Change A — A2, B — B2, equation (A.25) becomes
A B’ Vd,QCd,1TB2 2
—t+t 5 =—"F——F P,
A7 B @2 D)
Solve this equation to find relations between A and B,
2x(r)
A% (r) = = A2
where
Vi—2Cy—
x(r)= ﬁ / (p(r) 4P, (r)) rB? (r) dr. (A.27)
Finally we obtain the coupled equations of motion from equation (A.24) and (A.27)
2V
M/ (T) = (d‘/i 22) P (T) Td727 (A28a)
Va—2Cy—
X (r) = ﬁ (p(r) &+ Pr(r) rB? (r). (A.28b)

Moreover, when we consider the energy momentum conservation V, 7%, = 0 by letting
v=rand P, =Fy, =...=P,=...=F, ,=P, A— A?. it leads to the TOV equation
in d-dimension,

dP A

PR 2 PR
e (pc +P) 1
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Next we want to rewrite this equation in the form containing thermodynamic quantities
such as the chemical potential, the entropy, and the temperature of matter within the
spherically symmetric star. From thermodynamic relations involving the entropy density s;

sT = P+ pc® — un, (A.29)
s dT' = dP —n dp, (A.30)

the TOV equation can be rewritten as
A’ A’
/ A / el
s(T —i—TA)—I—n(u +uA> 0, (A.31)

implying two equations to be satisfied simultaneously

A A
T +T— = — =0. A.32
+T— =p +n (A.32)
The temperature equation can be solved to obtain the redshifted temperature profile
within the star 7' = T /A(r) where A(0) =1 and Tp is the temperature at the star center.
The chemical potential equation similarly gives

() = Apéi)' (A.33)

The coupled equations of motion can then be written in terms of the accumulated mass
and chemical potential as the following

M (1) = S (), (A 340)
0 =ulr) (G = 2 () 4 P ) B () ) (A 340)

B Euler-Maclaurin formula

A slowly converging series can be evaluated effectively by using an integral as in the Euler-
Maclaurin formula

Jz;)f<]+;) %/Ooo f(CC) dx—i_i(f/(O)—f/(OO))-f—O(CCs) (Bl)

In this article, the partition function sum over Landau states is approximated using this
conventional method by letting

_ 2.4 2 .2 4 2 B
f(z) = In <1+exp (“ Vmiet + pic? + demciu )) (B.2)

kpT

where z = j + 1/2.
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quantity dimensionless variable | physical variable

density p POP
pressure P poP
1
10 \ 3
mass M (Gcho) M
T
. A \3
radius r ( a ,00) r
1
4r4 5
temperature %T
B 1
4pt)5
magnetic field B MB

LB

mp 2\5
Table 1. Dimensional translation table of physical quantities, the rescale parameter py = <’CL§ h4)

where m,, and m, are the rest mass of particles and the mass used in simulation, respectively.

C Dimensional translation table

5
m.
(22)
— ms

po = ~ga— where m, and mg are the rest mass of particles and the mass used in
simulation, respectively.
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ABSTRACT: We study phase diagram of the dense holographic gauge matter in the Sakai-
Sugimoto model in the presence of the magnetic field above the deconfinement temperature.
Even above the deconfinement, quarks could form colour bound states through the remain-
ing strong interaction if the density is large. We demonstrate that in the presence of the
magnetic field for a sufficiently large baryon density, the multiquark-pion gradient (MQ-
V) phase is more thermodynamically preferred than the chiral-symmetric quark-gluon
plasma. The phase diagrams between the holographic multiquark and the chiral-symmetric
quark-gluon plasma phase are obtained at finite temperature and magnetic field. In the
mixed MQ-v7¢ phase, the pion gradient induced by the external magnetic field is found
to be a linear response for small and moderate field strengths. Its population ratio de-
creases as the density is raised and thus the multiquarks dominate the phase. Temperature
dependence of the baryon chemical potential, the free energy and the linear pion gradi-
ent response of the multiquark phase are well approximated by a simple analytic function
WJ1= %2 inherited from the metric of the holographic background.
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1 Introduction

Discovery of the AdS/CFT correspondence [1] and the generalization in terms of the holo-
graphic principle have provided us with alternative theoretical methods to explore the
physics of strongly coupled gauge matter. Holographic models have been constructed to
mimic behaviour of the strongly coupled gauge matter in various situations. The Sakai-
Sugimoto (SS) model [2, 3] is a holographic model which contains chiral fermions in the
fundamental representation of U(IV.). Its low energy limit is the closest holographic model
of the QCD so far. It can also accommodate distinctively the chiral symmetry restoration
and the deconfinement phase transition in the non-antipodal case [4]. It provides inter-
esting possibility of the existence of the exotic nuclear phase where quarks and gluons are
deconfined but the chiral symmetry is still broken.

In the SS model, there are two background metrics describing a confined and a decon-
fined phase. The deconfined phase corresponds to the background metric with a black hole
horizon. The Hawking temperature of the black hole is identified with the temperature of
the dual “QCD” matter. When gluons are deconfined, the thermodynamical phase of the
nuclear matter can be categorized into 3 phases, the vacuum phase, the chirally broken
phase and the chiral-symmetric phase. In the deconfined phase, the interaction between
quarks and gluons become the screened Coulomb potential. If the coupling is still strong,
bound states of quarks could form (see ref. [5-10] for multiquark related studies). The
phase diagram of the holographic nuclear matter in the SS model is studied in details in
ref. [11] and extended to include multiquarks with colour charges in ref. [10]. It has certain
similarity to the conventional QCD phase diagram speculated from other approaches e.g.
the existence of critical temperature line above which chiral symmetry is restored. The
phase diagram also shows the thermodynamic preference of the multiquark phase with
broken chiral symmetry for moderate temperature in the situation when the density is suf-
ficiently large. As an implication, it is thus highly likely that matters in the core of neutron
stars are compressed into the multiquark nuclear phase. A thorough investigation on the



multiquark star suggests higher mass limits of the neutron stars if they have multiquark
cores [12].

When the magnetic field is turned on, the phase structure becomes more complicated.
Magnetic field induces the pion gradient or a domain wall as a response of the chiral con-
densate of the chirally broken phase [13]. In the confined phase, this is distinctive [14].
However, it is demonstrated in ref. [15] that the pion gradient is subdominant to the contri-
bution from the multiquarks in the chirally broken deconfined phase. It was also shown in
ref. [15] that for sufficiently large density, the multiquark phase is more thermodynamically
preferred than the chiral-symmetric quark-gluon plasma for small and moderate magnetic
field strengths. Therefore it is interesting to explore the phase diagram of the deconfined
nuclear matter in the presence of the external magnetic field. We establish two phase
diagrams between the chirally broken multiquark (ySB) and the chiral-symmetric quark-
gluon plasma (xS-QGP), one at fixed temperature, 7" = 0.10, and another at fixed field,
B = 0.20. The magnetic phase diagram of the similar model for zero baryon density is
investigated in ref. [16]. The phase diagram at finite density without instanton source is
explored in ref. [17] with the approximation f(u) ~ 1. We found that in the presence of
the instanton for T 2 0.10, this approximation is no longer valid.

Our main results demonstrate that for a given magnetic field and moderate tempera-
ture, the most preferred nuclear phase in the SS holographic model is the multiquark-pion
gradient (MQ-v/¢) phase provided that the density is sufficiently large. We also study the
temperature dependence of the baryon chemical potential, the free energy, and the linear
response of the pion gradient of the mixed MQ-v7¢ phase and show that they inherit the
temperature dependence mostly from the SS background.

Extremely strong magnetic fields could have been produced in many situations. The
Higgs mechanism in the cosmological electroweak phase transition could create enormous
magnetic fields in the region between two different domains with different Higgs vacuum
expectation values [18] which could play vital role in the phase transitions of the nuclear
soup at later times. At the hadron and heavy ion colliders, colliding energetic charged
particles could produce exceptional strong magnetic field locally. The local magnetic fields
produced at RHIC and LHC are estimated to be in the order of 1014~!5 Tesla [19]. On
the astrophysical scale, certain types of neutron stars called the magnetars could produce
magnetic fields as strong as 10'° Tesla [20].

This article is organized as the following. In section 2, the setup of the deconfined SS
model with additional baryon vertex and string sources are discussed. Main results are
elaborated in section 3. Section 4 concludes the article.

2 Holographic setup of the magnetized multiquark phase

The setup we will use is the same as in ref. [15], the Sakai-Sugomoto model with additional
baryon vertex and strings (baryon vertex is introduced in ref. [21, 22]). Starting from a
10 dimensional type ITA string theory with one dimension compactified into a circle which
we will label 24, Two stacks of D8-branes and D8-branes are then located at distance
L from each other in the z* direction at the boundary. This separation will be fixed



at the boundary and it will play the role of the fundamental scale of our holographic
model. Open-string excitations with one end on the D8 and D8 will represent quarks with
different chiralities. In the background where the D8 and D8 are parallel, excitations for
each chirality are independent and there is a chiral symmetry in the background and at
the boundary. For background with connecting D8 and D8, chiral symmetry is broken and
there is a chiral condensate. When the energy of the connecting configuration is minimal
and there is no extra sources, we define the corresponding boundary gauge matter to be in
a vacuum phase.

Since the partition function of the string theory in the bulk is conjectured to be equal to
the partition function of the gauge theory on the boundary, the free energy of the boundary
gauge matter is equivalent to the superstring action in the bulk (modulo a periodicity
factor) [23]. We turn on non-normalizable modes of the gauge field @ ,af!,a} (defined
in units of Rps/2ma’) in the D8-branes and identify them with the vector potential of
the magnetic field, B (defined in units of 1/27’), the gradient of the chiral condensate,
v, and the baryon chemical potential, u, at the boundary respectively. These curious
holographic correspondence between the branes’ fields and the thermodynamical quantities
of the gauge matter at the boundary allows us to study physics of the strongly coupled
non-Abelian gauge matter at finite density in the presence of the external magnetic field.
Electric field can also be added using other components of the gauge field on the DS8-
branes [16, 24] but we will not consider such cases here.

The background spacetime of the Sakai-Sugimoto model is in the form

) u \3/? ) o ) Rp 3/2 Yy du?
ds® = [ — w)dt” + 0;:dxtda? + dxs”) + (—) <u dQ; + —> 2.1
<RD4> (f( ) J 4 ) U 4 f(u) ( )

3/4
Fuyy = 27;/564, e® = g, <RLD4> , R?b4 = wgchlg’,
where f(u) =1 —ud/u3, ur = 1672 R}, T?/9. Vj is the volume of the unit four-sphere Q4
and €4 represents the volume 4-form. [s and g, are the string length scale and the string
coupling respectively. R is the compactified radius of the x* coordinate. This radius is
different from the curvature Rp4 of the background in general. The dilaton field is denoted
by ¢ which will be eliminated by the function of u as stated above.
The direction of the magnetic field is chosen so that the vector potential is

a¥ = Bus. (2.2)

The baryon chemical potential p of the corresponding gauge matter is identified with the
non-normalizable mode of the DBI gauge field at the boundary by

p=ay (u— o). (2.3)

The five-dimensional Chern-Simon term of the D8-branes generates another axial part

of the U(1), af, by coupling it with B and a(‘)/ . In this way, the external magnetic field
induces the axial current j4 associated with the axial field af!. The non-normalizable mode
of this field at the boundary corresponds to the response of the chiral condensate to the



magnetic field which we call the pion gradient, \7¢. External field causes the condensate
to form a domain wall which can be characterized by the gradient of the condensate with
respect to the direction of the applied field. The pion gradient also acts as a source of the
baryon density in our gauge matter.

Additional sources of the baryon density and the baryon chemical potential can be
added to the configuration in the form of the baryon vertex and strings. The vertex
appears as an instanton at the tip u. of the brane configuration and the strings hang down
from the vertex to the horizon ur [10, 11].

Suonree = N[ uer/Flue) + nslue = ur)|, 24)
= Ndﬂsource (25)

where ng = k. /N, is the number of radial strings in the unit of 1/N,. Since the radial strings
could merge with strings from other multiquark and generate a binding potential between
the multiquarks, this number therefore represents the colour charges of the multiquark
in the deconfined phase. It is interesting to note that when there is only string source
representing quark matter, the quark matter becomes thermodynamically unstable under
density fluctuations [11]. However, adding baryon vertex together with the strings makes
the multiquark configuration stable under the density fluctuations [10]. The multiquark
phase is even more thermodynamically preferred than the xS-QGP when the density is
sufficiently large and the temperature is not too high.

With this setup, then the DBI and the Chern-Simon actions of the D8-branes config-
uration can be calculated to be

Spg = N/OO du u5/2\/ 1+ 5—5\/1 + f(u)(a’lA)2 — (a6v)2 + flu)uda?, (2.6)

3 (o.0]
&mzﬁN/CM@@%ﬁu@@wﬁ% (27)

where N' = NR%,/(67%(2ra’)3) defines the brane tension. The factor 3/2 in the Chern-
Simon action fixes the surface effect of the region with uniform magnetic field as explained
in ref. [14]. We have to add extra surface terms to preserve the gauge invariance since the
gauge transformation does not vanish at the boundary in this case.

We can write down the equations of motion with respect to each gauge field ag , a‘f‘ as

Vud + B2u? f(u)a? . 3
f(way :]A—53u+33a}{, (2.8)
V1 Fu)(@)? — (@ )2 + fluyuda??
Vb + B2uZ oV 3
W PR do = d - SBaf() +3Baf. (2.9)

V1 Fu)(@)? = (@ )2 + fluyuda?
d,ja are the corresponding density and current density of the dual gauge matter at the
boundary of the background (u — o) given by

5S€Om
jH(x,u — o0) = (2.10)
5AM U—00
= (4,42 (211)



In terms of the gauge fields, they are

Vud + B2u? a6v

d= - 5Ba{‘(oo), (2.12)
V1 Fa) (@) = ()2 + fupuda?
s = Vud + B2u? f(u)a? _ §BM- (2.13)

V1 Fa) (@) = )2 + fupuda?

In order to solve these equations, we need to specify the boundary conditions. Due to the
holographic nature of the background spacetime, the boundary conditions correspond to
physical requirement we impose to the gauge matter. If we want to address chirally broken
phase of the gauge matter, we will take a’f‘(oo) = ¢ to be an order parameter of the
chiral symmetry breaking (also a response to the external magnetic field) and minimize
the action with respect to it. This results in setting j4 = 0. On the other hand, if we want
to study the chiral-symmetric gauge matter (or chiral-symmetric quark-gluon plasma for
N. = 3 case), #; and a{'(c0) will be set to zero. For vacuum phase, a} ,af! and d, j4 will
be set to zero.

In any cases, since the total action does not depend on x4(u) explicitly, the constant
of motion gives

1 [u3[f(u)(0(u) + D(u)?) — (ja — 2Bu+ 3Ba})?]

() (u))? = - 1]_1, (2.14)
ud f(u) F?

where

ul/F(ue)y/ F ) (O (ue) + D(ue)? > (a = 3B+ 3Bay (ue))? 2 (ue)
\/1 + f(u $4 (UC)

F = (2.15)

and C(u) = v’ + B?u?, D(u) = d + 3Bai'(u) — 3Byp/2. The constant of motion with
respect to x4(u) relates the slope z; at arbitrary u to the value at u,,

() = { (fe(Ce+ D?) — (ja — 3Bu+3Bal (u.)?)
e feud Ld? (1+ 3(%)3 + 3n,V/F.)?

The calculation of 2 (u.) is described in the appendix as a result from the equilibrium and
scale fixing condition

Ly = 2/ 2 (u) du = 1. (2.16)

The equations of motion eq. (2.8), (2.9) can be solved numerically under the con-
straint (2.16). The value of p, /¢, u. and the initial values of ay (u.),ai (u.) are chosen so
that aj (00) = p,ail(00) = V¢ and Lo = 1 are satisfied simultaneously. Since there are 3
conditions to be satisfied in finding the physical solutions numerically, we need the use the
shooting algorithm for 3 targets at once.



3 Magnetic phase diagram of the dense nuclear phase

Generically, the action (2.6) and (2.7) are divergent from the u — oo limit of the integration
and we need to regulate it using the action of the vacuum which is also divergent. The
contribution from the region © — oo is divergent even when the magnetic field is turned off
and it is intrinsic to the DBI action in this background. The divergence can be understood
as the infinite zero-point energy of the system and thus could be systematically removed
by regularisation.

Therefore the regulated free energy is given by

Fr = Qu, B) + pd, (3.1)

where Q(p, B) = Slao(u), a1 (u)](e.o.m.) — S[magnetized vacuum]. Note that we need to
Legendre transform the DBI and the Chern-Simon action to obtain the bulk action as a
function of the non-normalizable modes a ,ai" in order to identify it with the free energy
of the gauge matter at the boundary. In terms of the free energy at the boundary, this is
equivalent to the Legendre transform of the grand canonical with respect to p and d.

We can calculate the total action satisfying the equation of motion

Slao(u), a1(u)](e.o.m.) = Spg + Scs to be

()(1+f() %)
N/ du Olu \/f(u D(w)?) — (ja— 2Bu+3Ba))?’ (3:2)

ay (j —3Bu+3Ba ) = f(w)D(w)ai' ) /s + udzf?
SCS:—/\/;B/ du( . " )/rto L (33

7@€ + D@~ (ja— Bu-+ 384t

The three nuclear phases above the deconfinement temperature are governed by the
same equations of motion, each with specific boundary conditions as the following,

magnetized vacuum phase: ag ,al 0;d,j4 =0,
multiquark-pion gradient phase: @ () = fsource, @1 (ue) = 0,a1(00) = Ve, ja = 0,
xS-QGP phase: z(u) = 0,ay (u. = ur) = 0,ai'(c0) = 0,j4 = 3 Bp.

We will demonstrate later that in the mixed phase, the pion gradient is generically domi-
nated by the multiquark when the chiral symmetry is broken. In ref. [15], it is shown that
the pure pion gradient phase is always less preferred thermodynamically than the mixed
phase of MQ-v/¢. It is interesting to note that for the pure pion gradient phase, a large
magnetic field is required in order to stabilize the generated domain wall [13]. This critical
field is determined by the mass of the pion in the condensate, By ~ m2/e. In ref. [15],
this critical behaviour is confirmed in the holographic SS model (the zero-temperature sit-
uation is studied in ref. [25]). More investigation of the pure pion gradient phase in the
holographic model should be conducted especially when the field is large since the distinc-
tive feature of physics from the DBI action becomes apparent in this limit. We will leave
this task for future work and focus our attention to the mixed MQ-v/¢ phase in this article.
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Figure 1. The position ug of the connected D8-D8 vacuum configuration as a function of B for
T = 0.02 — 0.15. The upper lines have higher temperatures.

The action of the magnetized vacuum when we set ag , a‘f‘ =0and d,ja =0 is

S[magnetized vacuum] = / \/C(u)(l + flwyudzf)|  du,
uo

vac
where
1

s f@uCw) _ 1)
\/f (e (et — 1)

The position uy where z/;, — oo is the tip of the brane configuration of the magnetized

(3.4)

xﬁl(u) lvac =

vacuum. It increases slightly with temperature as is shown in figure 1. The difference
between each temperature decreases as the magnetic field gets larger and all curves converge
to the same saturated value ug = 1.23 in the large field limit.

We can study the temperature dependence of the magnetized multiquark nuclear mat-
ter by considering its baryon chemical potential and the free energy as shown in figure 2.
Both the chemical potential and the free energy decrease steadily as the temperature rises,
regardless of the magnetic field. This is originated from the temperature dependence of
flu)y=1- Z—% of the SS background in the deconfined phase. The temperature dependence

6
could be fit very closely with the function /1 — (Tlo) as the following

i = po(d, B)y|1— (%)6 (3.5)
F = Fo(d, B) |1 — (%)6 (3.6)

where for d =1, B = 0.10; puo = 1.1849, Fy = 0.7976 respectively. For the baryon chemical
potential (free energy), the best-fit value of Ty is 0.269 (0.233). The fittings are shown
in figure 3. This could be explained by noting that the regulated free energy is given by
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Figure 2. The chemical potential (a), the pion gradient (b), and the free energy (c) of the
multiquark phase with baryon density d = 1 as a function of B for temperature 7' = 0.02 — 0.15.
The lower curves represent multiquark at higher temperatures.

ud 4+ Q(u, B). The contribution from the first term is dominant therefore the free energy
has almost the same temperature dependence as the chemica31 potential. However, there is
a minor contribution from Spg+Scg containing f(u.) = 1— Z—g which for small temperature
fractions modifies the temperature function in the following manner,

T6 T6 T6
Ciy|1 =5+ 0|1 = % = Coy|1— = 3.7
1 T16+ 2 T26 0 Tg, ( )

where C' 2 are some arbitrary constants and Cp, Ty are given by

Cy = C1 + Oy, (3.8)
1 1 C C
= A A —é + —(25 . (3.9)
TO C1+Cy Tl T2
It should be noted from figure 3 that the temperature dependence is significant for
T 2 0.10 and the approximation f(u) ~ 1 is not accurate for temperature in this range.
The characteristic temperatures we found here are consistent with the phase diagram of
the multiquark in figure 7.
In the multiquark phase when the magnetic field is turned on, the pion gradient is
induced by the field in addition to the multiquark. The multiquark phase thus contained

the mixed content of multiquarks and the pion gradient. For moderate fields (not too
large), the response is linear 7o o< B. In contrast to the case of pure pion gradient phase,



H FE
1.185¢ ,

1.180¢
1.175¢
1.170¢
1.165¢

0.79¢

0.78¢

0.77}

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Figure 3. For d = 1, B = 0.10,(a) the baryon chemical potential as a function of T', the best-fit
curve is in the form pgy/1 — (Tlo)6 with pg = 1.1849, Ty = 0.269; (b) the free energy as a function

of T, the best-fit curve is in the form Fy,/1 — (%)6 with Fy = 0.7976, Ty = 0.233. Other curves
within the range B = 0.05 — 0.15 can also be fitted well with the same Tj.
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Figure 4. The linear response or slope of the linear function between the pion gradient and the
magnetic field as a function of the temperature for the range B = 0.05 — 0.15 and density d = 1.
The red line is the best-fit curve in the form mg,/1 — (T%)6 with mg = 0.347, Ty = 0.177.

the domain wall in the mixed MQ-57¢ phase is stable among the surrounding multiquarks
even for small field. The critical magnetic field to stabilize the domain wall in the case of
pure pion gradient is not required in the mixed phase.

Figure 2 (b) shows a linear relation between the pion gradient and the magnetic field
which is valid up to moderate fields. For d = 1, we found that the slope, m (or the
linear response), of this linear function depends on the temperature approximately as

m=mgy/1— (TZO)G, and

T 6
Ve ~ Bmgy|1— <?0> , (3.10)

where mg = 0.347,1Ty = 0.177. The curve fitting is shown in figure 4. The density depen-
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Figure 5. (a) The pion gradient as a function of B for density d = 1,10,100 at T = 0.10. (b) The
density ratio of the pion gradient with respect to the total baryon density of the multiquark phase
at B =0.10,7 = 0.10 in the double-log scale.

dence is encoded in mo = mg(d), Ty = To(d). As the density increases, the slope of the linear
response of the pion gradient becomes smaller as is shown in figure 5. The ratio of the pion
gradient density and the total baryonic density Ry, = dy,/d = 3Bvy¢/2d [14] for B =
0.10,7 = 0.10 is plotted in the log-scale in figure 5 (b). It could be well approximated by

Ry, ~ (const.)d ™%/, (3.11)
3BQm0 T 6

~ ——\ 1= | = 12

& <T0> , (3.12)

from eq. (3.10). This implies that the multiquark states are more preferred than the pion
gradient in the presence of the magnetic field, the denser the nuclear matter, the more
stable the multiquarks become and the lesser the population of the pion gradient.

Finally we compare the free energy of the MQ-s7¢ phase and the chiral-symmetric
quark-gluon plasma phase. For high density, d = 100, this is shown in figure 6. For a given
density, the multiquark phase is more thermodynamically preferred than the xS-QGP for
small and moderate fields. As the magnetic field gets larger, the xS-QGP becomes more
thermodynamically preferred. When the field becomes very strong, the transition into
the lowest Landau level finally occurs [26]. For a fixed density, increasing magnetic field
inevitably results in the chiral symmetry restoration. The phase transition between the
MQ-v7¢ and the xS-QGP is a first order since the free energy is continuous at the transition
and the slope has a discontinuity. It implies that the magnetization, M (d, B) = _88%7 of
the nuclear matter abruptly changes at the transition.

On the other hand, for a fixed field and the moderate temperature, the increase in the
baryon density could make the multiquark phase more stable than the xS-QGP. This is
shown in the phase diagram in figure 7. At a given magnetic field, the multiquark phase
could become the most preferred magnetized nuclear phase provided that the density is
made sufficiently large and the temperature is not too high. In contrast, the effect of
the temperature is the most dominant for chiral-symmetry restoration even when the field
is turned on. Sufficiently large temperature will induce chiral-symmetry restoration for

,10,
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Figure 6. For the dense multiquark with d = 100,7 = 0.10, (a) the chemical potential, (b) the
free energy as a function of B. The multiquark curves in red are compared with the xS-QGP curves
in blue for the chemical potential and the free energy.
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Figure 7. The phase diagram of the dense nuclear phases involving multiquarks when gluons are
deconfined for (a) T'= 0.10 and (b) B = 0.20. The chiral-symmetric quark-gluon plasma and the
chirallly broken MQ-v7¢ phase are represented by xS and xSB respectively, ns is the number of
colour strings in fractions of 1/N.,.

most densities as is shown the figure 7(b). Nevertheless, theoretically we can always find
sufficiently large density above which the multiquark phase is more preferred.

The transition line between the MQ-v/¢ and the xS-QGP phases in the (d, B) phase
diagram can be approximated by a power-law

B ~ 0+438 (0.436) (3.13)

for the multiquark with ny, = 0 (0.2). This power-law is weaker than the transition
line of the xS-QGP to the lowest Landau level studied in ref. [26] for the antipodal SS
model (B ~ d?/?). The multiquarks with more colour charges (ns > 0) are less preferred
thermodynamically but they require higher densities. On the other hand, the transition
line in the (d,7T) phase diagram is an increasing function of d but weaker than the log-
arithmic of the density. Nevertheless, theoretically for a fixed B,T, we can always find
sufficiently large density above which the MQ-v/¢ phase is preferred. The high density
region is actually dominated by the multiquark phase indeed.
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4 Conclusion

We explore the properties of the miltiquark-domain wall (MQ-v7¢) solution of the SS
model above the deconfinement temperature. The temperature dependence of the baryon
chemical potential, the pion gradient linear response (m), and the free energy of the MQ-

V¢ phase has been studied and fitted with a simple function, ,/1 inherited from

_ 1
75’
the deconfined SS background. Their characteristic temperatures, Ty, are different from
one another depending on other parameters such as u., the position of the baryon vertex.
Remarkably, they do not depend on the field for moderate field strength B = 0.05 — 0.15.
For chirally broken deconfined nuclear matter in the presence of the magnetic field,
the nuclear matter with finite baryon density and chemical potential could respond to the
magnetic field by inducing a pion gradient or a domain wall of the chiral condensate. This
pion gradient response is found to be a linear function of the field for moderate fields at any
density. However, we demonstrate further that the population ratio of the pion gradient
decreases as the density increases. The other sources of the baryon charge namely the
multiquarks finally dominate the chirally broken nuclear phase and most of the baryon
density is in the form of the multiquark at high density.

Magnetic phase diagram of the dense gauge matter have been explored in the decon-
fined SS model. At fixed magnetic field and moderate temperature, the MQ-v/¢ phase are
more preferred than the xS-QGP for the high density region. The transition line in the
(d, B) phase diagram at 7' = 0.10 can be fitted closely with the power-law B ~ ((0-438 (0.436)
for the multiquark with ns = 0 (0.2). On the other hand, the transition line in the (d,T")
phase diagram is weaker than the logarithmic of the density but nevertheless it is an increas-
ing function with respect to the density. These imply that for sufficiently large density, the
chirally broken multiquark phase is the most preferred nuclear phase even in the presence
of the external magnetic field.

The situation when density becomes extremely large and being dominant occurs in the
core of dense star such as the neutron star. Therefore it is very likely that the core of dense
warm star composes primarily of the multiquark nuclear matter even when an enormous
magnetic field is present such as in the core of the magnetars. It is possible that a large
population of the warm magnetars has multiquark cores. These warm dense objects could
be relatively more massive than typical neutron stars.
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A Force condition of the multiquark configuration

Fixing the characteristic scale L to 1 for the brane configuration requires balancing three
forces in the gravity picture. The D8-brane tension must be in equilibrium with the tidal
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weight of the D4 source and the string tension of the colour strings. The derivation of the
2y (u.) presented here is the same as in ref. [15], it is included for completeness.

We vary the total action with respect to u. to obtain the surface term. Imposing the
scale-fixing condition 2 flfco duz!y(u) = Lo = 1, we found that [11]

7 8Ssource ag

We perform the Legendre transformed action with respect to ag " and a‘f" to obtain

(A1)

)
Uc

as the condition on ..

=N ujodu ﬁ%—zﬁxf
3 2
x\/f(u)(C’(u) + D(u)?) — <jA - §B,u + 3Bag) , (A.2)

where C(u) = v’ + B?>u?, D(u) = d + 3Ba{ (u) — 3Bv7¢/2. Note that the Chern-Simon

action are included in the total action during the transformations.

The Chern-Simon term with the derivatives a"”, a? eliminated is

3 00 (a(‘)/(jA — %Bu +3Ba)) — f(u)D(u)a‘f‘) ﬁ + udzf?
SCS - —N§B/ du .

Uc

7€ + D)~ (34— $Bu-+ 38aY)

From eq. (A.1), (A.2), (A.3), (2.5), and the boundary conditions, a} (u.) =
Usources af (ue) = 0, we can solve to obtain the condition for the static equilibrium

(xil(UC))Q

_ 1 [g(fc(CchD?) — (ja — 3Bu+3Bay (u0)*) 1}
T foul Ld? (1+ 2(%)3 + 3ne/To)? ’

where f. = f(u.),Ce. = C(ue), D. = D(uc).
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ABSTRACT: The magnetized pure pion gradient (5/¢) phase in the deconfined Sakai-
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has very small effects on the phase. The thermodynamical properties of the phase show
that the excitations behave like scalar solitonic free particles. By comparing the free energy
of the pion gradient phase to the competing multiquark-pion gradient (MQ-v/¢) phase, it
becomes apparent that the pure pion gradient is less thermodynamically preferred than the
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smaller than the onset value of the multiquark, the dominating magnetized nuclear matter
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1 Introduction

Physics of dense nuclear matter is one of the most challenging area due to the lack of
appropriate theoretical modeling. On one hand, the entities in the nuclear matter strongly
couple to one another and therefore the perturbative treatment cannot be applied in a
straightforward manner. On the other hand, the lattice approach to the Quantum Chro-
modynamics (QCD) can be applied to the situations of hot nuclear matter. The lattice
results predict the deconfinement phase transition at temperature around 175 MeV for the
dilute nuclear matter. However, this approach also faces difficulty in describing the nuclear
matter with finite density due to the fermion sign problem.

An alternative and complementary approach is the application of the holographic prin-
ciple or the AdS/CFT correspondence [1-3] to study the properties of the nuclear matter.
The Sakai-Sugimoto (SS) model [4, 5] is a holographic model which could approximate
the QCD at low energy most accurately. Starting with a type ITA string background with
D4-branes as the source. Take the near-horizon limit and add the black hole horizon to gen-
erate Hawking-Page temperature to be identified with the temperature of the dual gauge
matter. Since we need an approximately 4 dimensional QCD, one of the 5 dimensional sub-
space is compactified into a circle whose radius is chosen so small that the Kaluza-Klein
states are much heavier than the relevant energy scales and temperatures.

The quarks and antiquarks are introduced as open-string excitations on the stack of Ny
flavour D8 and D8 branes located at fixed separation distance in the compactified coordi-
nate. The boundary conditions of the sparticles in the circle are chosen to be antisymmetric
at the location of the flavour branes and the zeroth modes are thus eliminated. Conse-
quently, the gauge theory at the flavour branes is a SUSY-broken 5 dimensional Yang-Mills
theory with quarks and antiquarks in the fundamental representation. The effective theory
has the same particle content as the QCD. Using the AdS/CFT correspondence, the bulk
theory of this brane configuration is conjectured to be dual to the QCD-like gauge theory at
the boundary. The striking feature of the SS model is that it provides a natural geometric
realization of the chiral symmetry breaking. When the D8 and D8 merge at certain location



in the radial coordinate, the quarks and antiquarks do not transform independently under
the chiral transformation and therefore the chiral symmetry is broken in the connected
brane configuration. A chiral symmetric configuration occurs when the two flavour branes
are parallel and the dual gauge matter will be in the chiral symmetric phase.

Subsequent investigation reveals that the SS model accommodates the exotic possibil-
ity that the chiral symmetry restoration and the deconfinement can occur separately [6]
when the distance between the D8 and D8 branes in the compactified dimension is not
too large. The deconfinement could occur at relatively low temperature while the chiral
symmetry would be restored at larger temperature. Even though both the chiral symmetry
breaking and the confinement are results of the strong coupling of the gauge theory, they
are independent of one another as far as we know. It is thus possible that the real QCD
also has distinctive chiral symmetry restoration and deconfinement.

Chiral condensate of the QCD-like dense matter is explored in ref. [7] using the Wess-
Zumino-Witten induced anomalous term in the chiral perturbation theory and in ref. [8]
using the bottom-up AdS/QCD based on the confined SS model. When the magnetic field is
applied, the condensate will respond by developing a gradient in the direction of the applied
field. This gradient also carries the baryonic charge density proportional to the applied field
and the gradient of the condensate. Holographic studies of the chiral condensate response
to the magnetic field is investigated in ref. [9] for the confined SS model. In ref. [10],
the pure pion gradient phase is explored and compared with the chiral symmetric quark-
gluon plasma phase in the zero temperature approximation of the deconfined SS model. In
ref. [11], it is roughly compared with the mixed phase of the multiquark-pion gradient (MQ-
V) using a zero-instanton limit of the multiquark configuration. The preliminary results
suggest that the pure pion gradient phase might be thermodynamically less preferred than
the MQ-v/¢ phase. In this article, we perform a thorough investigation into the pure pion
gradient phase at finite temperature as well as its thermodynamical comparison to the
MQ-v/ in order to obtain a more definitive quantitative result. It is found that the pure
pion gradient phase is insensitive to the change of temperature in the range 7" = 0 — 0.16.
It is also shown that the pure pion gradient phase is generically less preferred than the
MQ-s7¢ phase except when the baryon chemical potential is smaller than the onset value
of the multiquarks. In that region of the phase diagram, the dominating phase is the pure
pion gradient.

The article is organized as the following. In section 2, we setup the holographic model
of the magnetized chirally broken nuclear phase without an instanton. A zero tempera-
ture solution is obtained and relevant dual physical quantities as well as their relation-
ships are discussed. Thermodynamical properties of the pure pion gradient phase at finite
temperature and the comparison with the multiquark phase are discussed in section 3.
Section 4 concludes the article.

2 Holographic setup of the magnetized chirally broken phase

In the non-antipodal SS model, a stack of N. D4-branes generates a curved 10 dimensional
spacetime in type IIA string theory. The near-horizon limit of this background is then



taken and the black hole horizon is added by introducing the factor f(u) [3, 12] into the
background. The z* direction is compactified with certain radius to obtain an effective
(1 + 3) dimensional subspace in the low energy limit. The resulting spacetime of the
Sakai-Sugimoto model is in the form

2 u )\ 2 i g 2 Rpa\*? (5, o  du?
ds® = B (f(w)dt® + 6;5da*da? + day”) + — udQ4—|—m

y 3/
6¢ = Js (R—> ) R%4 = 779ch127
D4
where f(u) = 1 — ud/u?, ur = 1672R},T?/9. T is the Hawking-Page temperature of
the black hole which is identified with the temperature of the dual gauge matter at the
boundary. Rp4 is the curvature of the background which is generically different from
the compactified radius R of the z* coordinate. ¢ is the dilaton field, a function of u in
this background.

We then introduce stacks of Ny D8 and D8 flavour branes with separation Lg on the
circle of compactified z* at the boundary v — oco. Open string excitations with one end on
these branes behave like chiral “quarks” and “antiquarks” in the fundamental representa-
tion of the U(Ny). In the brane configuration where D8 and D8 are parallel, open-string
excitations on each stack of branes transform independently under the chiral transforma-
tion and thus we have a chiral symmetric background. The dual gauge matter will be in
the chiral symmetric phase. On the other hand, in the connecting brane configuration,
chiral symmetry is broken at the tip and the corresponding gauge matter will be in the
chirally broken phase [6].

To add the baryonic density to the boundary gauge matter, the non-normalizable mode
of the a} component of the U(1) C U(N #) field is turned on. The baryon chemical potential
u of the corresponding gauge matter is identified with the non-normalizable mode of the
DBI gauge field at the boundary by [13]

p = al (u— o). (2.1)

To turn on the magnetic field, another component ag is used as the vector potential
generating the magnetic field. The direction of the magnetic field is chosen so that the
vector potential is

a¥ = Bus. (2.2)

The Chern-Simons action in the background couples these two components to the third
component af of the U(1), generating the response to the external magnetic field. The
response appears as the gradient of the chiral condensate along the direction of B at the
boundary which is defined to be af!(u — 00) = 7. Here and henceforth, we will call /¢
a pion gradient.



The DBI and the Chern-Simons actions are then given by

Sps = ./\//OO du u??y )1+ i—j\/l + f(w)(af)? — (a)))? + f(u)udz?, (2.3)

3 [e.e]
Scsg = —5,/\// du (8ra¥ a at¥ — dpal ay’aid), (2.4)
Uc

where N' = N.R%,/(67%(2ra’)3) defines the brane tension. The factor 3/2 in the Chern-
Simons action comes from addition of surface term in order to maintain the gauge invariance
of the total action in the situation when the gauge transformation does not vanish at the
boundary (see ref. [9] for details). The integration limit u. is the position of the tip of the
D8-branes where it connects with the DS.

A

Consequently, the equations of motion with respect to each gauge field a(‘)/ ,ay are

Vi £ B2 f(u)ay! —ja->Bu+3BdY. (25)
U T@@ 2 — (@) 2 + fwta? ’
Vb + B2 af — d— 2 Baoo) + 3Bal. (2.6)
S T2 — @ + i 2

The corresponding density and current density, d, j4, at the boundary(u — oo) are defined

as
6 eom
J*(z,u — 00) = (?Au o (2.7)
= (d,j). (2.8)
They are related to the components of the U(1) gauge field by
Vb + B2uZ oV
d= u? ST a4 3 Bat(o0), (2.9)
V1 F@) @) = (@f)? + flwdal e 2
_ Vud + B2u? f(u)a
ja = flu)ay — 5By (2.10)

VI F@@) = (@ )+ f()ua?

For the phase of pure pion gradient where chiral symmetry is broken, the axial current j4
is set to zero and the density d = %B Vv is the definition adapted from the Wess-Zumino-
Witten action of the boundary gauge theory [7].

The constant of motion with respect to z4(u) for the pure pion gradient phase yields

-1

L@ @(Cw) + Dw)?) - 9B2 (e - gﬂ
-1

(xil(u)) - u3f(u) 2 ) (2'11)



where

Ui’\/f(u_c)\/ 7 ) (C () + D(ue)?) — 982 (af (ue) — ) ) (ue)
F = (2.12)
V1 flue)ud @/ (uc)
— 32 \/ F(ue)C(ug) — 9B2 (aOV (1) — g>2 (2.13)

with C(u) = u® + B*u?, D(u) = d — 3B7¢/2 + 3Ba!(u). wu. is the position where the
D8 and D8 branes connect. Since there is no instanton in this case, the branes connect
smoothly at u.. We also have D(u.) = 0 from a{'(u.) = 0, and 2/;(u.) = occ.

Since the DBI action, eq. (2.3), is divergent from the limit u — oo, we would need the
action of the magnetized vacuum for the regularization. For the magnetized vacuum, we
can let the non-normalizable modes, ag ,a’f‘ =0 and d,j4 = 0. The vacuum action then

takes the following form

S[magnetized vacuum]| = / \/C(u)(l + f(u)udzf) du,
uo

vac
where
1

2y (W) vac = :
5(_fwdCw)
\/ et (et — 1)

Again, the position of the tip of the brane configuration is denoted by ug. The temperature

(2.14)

and field dependence of the position uy are given in figure 1 of ref. [14]. It saturates
approximately at 1.23 for all temperatures at high magnetic field. The action of the
vacuum will be used to regulate the infinity of the DBI action from the limit v — oo when
we calculate the free energy of the dual gauge matter in the subsequent section.

2.1 Zero temperature approximation f(u) ~ 1

We can numerically solve the equations of motion, eq. (2.5), (2.6) by using the shooting
algorithm. However, it is illustrative to consider first the limiting case of zero temperature
approximation where f(u) ~ 1 and the equations of motion are sufficiently simplified that
they yield exact analytic solutions. Later on we will actually find from the numerical
solutions that most physical properties of the pion gradient phase are insensitive to the
change of temperature. Interestingly, the bulk theory becomes dual to the Nambu-Jona-
Lasinio (NJL) type model in the zero-temperature limit [15].
Starting from the equations of motion, eq. (2.5), (2.6), can be rewritten as

ay’(ay = %) = fwat'af* (2.15)
9B2 AV _ p
Fluaf ot = = l(cgm 1k puta? + fa - ). (2.16)
From eq. (2.15), for f =1 we can solve to obtain
N2 2
(@ =5) = (5) = ai? = (ve) (217)



Using eq. (2.16), direct integration leads to

ay = % +4/ <g)2 — (vp)? coshI(u) (2.18)
alt =/ (g)Q — (v¢)? sinhI(u), (2.19)

A du\/gm,uc,B) R (R | INCED

g(u,ue, B) = 1+ uzl? (2.21)

W(Cu) 9B (8 — (v9)?) 1] o
u(C(uc) — 9B%((5)? — (V¢)?)) ’

by using the boundary conditions a{'(u.) = 0 and eq. (2.17) at u,.. Additionally, there are

where

~
—~

<
~—

Il

=1+ [ (2.22)
two constraints which need to be satisfied,
1
cosh I, = g , (2.23)
(5)2 = (Ve)?

Ly=1= 2/ du zy(u), (2.24)

where I, = I(u — o0). In the zero temperature case z7; is given by

2 ) = | u3(Cu) = 9BX((5)2 = (v9)?) —1/2
i = [ <U§(C(uc) —9B2((8)2 — (v)?)) 1)] : (2.25)
The pion gradient is thus

Ve = %tanh I. (2.26)

In order to obtain the solutions, we numerically solve for u. from the constraints eq. (2.23)
and eq. (2.24) simultaneously by fixing two parameters among (B, d, /¢, 1t). The solutions
always have & > /¢ as a reality condition.

As is found in ref. [10] for the pure pion gradient and ref. [11, 16] for the model with
instantons, there are 2 possible brane configurations satisfying the scale fixing condition
Ly = 1, one with small and one with large u.. The brane configuration with small u. has
longer stretch in the u-direction and therefore has higher energy than the configuration with
large u.. The excess energy makes this configuration less preferred thermodynamically. For
the pure pion gradient phase, there is also the small-u,. configuration (for sufficiently large
u and small B) which we found to be less preferred thermodynamically even than the
vacuum. Therefore this configuration will not be considered in this article.

The solutions can be explored by slicing through the plane in the parameter space at
fixed magnetic field (B), fixed density (d), and fixed chemical potential (u) respectively. At
fixed B, the solutions are shown in figure 1 for the position u. and the chemical potential



Figure 1. The position u. (a) and the chemical potential (b) as a function of the density at fixed
magnetic field B in the zero temperature limit.

as a function of the density. For small B, the position u. has certain variation with respect
to the density. As B increases, u. saturates to an almost constant curve with a slight
density dependence. The chemical potential at fixed B(> 0.1) is found to be an exact
linear function of the density. The slope of the linear function is inversely proportional to
B. The relation can be summarized into the following simple form

W= %% for B > 0.1. (2.27)
This implies from d = 3Bv/¢/2 that u = 257¢ for B > 0.1. The linear relation between
u and d can be interpreted as the absence of self-interaction among the pion gradient
excitations. Each pion gradient excitation seems to behave as free entity for B > 0.1.
For small B < 0.1, we also find the linear relation between p and d. It will be shown
subsequently that u ~ d/B? for small B in the analysis at fixed pu.

For fixed d, the position u. and the chemical potential are shown as functions of B in
figure 2, 3 for d = 1.0. Solutions exist for the entire range of B, down to u.(B = 0) = 0.
The chemical potential i is found to be inversely proportional to B as is shown in figure 3.
This is consistent with eq. (2.27).

For fixed pu, figure 4 shows interesting transition between 2 regions of the parameter
space. In figure 5, the relation between d and B is shown to be approximately quadratic
for B < 0.2 and linear for B 2 0.2. From d = 3Bv/p/2, this implies that /¢ is a linear
function of B for B < 0.2 and a constant function for B 2 0.2. Figure 4(b) confirms the
behaviour. Since the saturation at large B occurs around 7 = u/2, the slope of the linear
region, B < 0.2, is therefore proportional to p. Consequently, for small B, 7 ~ puB. The
behaviour at small B is similar to the behaviour found in ref. [7, 9] for the confined phase.
The result in the deconfined phase of the SS model in the zero temperature limit was first
obtained in ref. [10].

It should be noted that the nonlinear effects of the DBI action become apparent for
B = 0.2 where 7@ ~ /2. From eq. (2.20), (2.26) since I, — o0 as B — 00, the saturation
always occurs at 7o ~ u/2 for any p. As B increases, the pion gradient does not change
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Figure 2. Position u. as a function of B at a fixed density d = 1.0 in the zero temperature limit,
the position ug of the magnetized vacuum is shown for comparison.
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Figure 3. Chemical potential as a function of B at d = 1.0,7" = 0 in the logarithmic scale.

but its baryonic density increases linearly with the field. This sy¢-saturation is a new effect
observed only in the theory with DBI gauge interaction.

3 Thermodynamical properties of the pure pion gradient phase

In the pure pion gradient phase, since a)j — oo at u,, the integrand of the action diverges
at u. in addition to the limit ©u — oo. This also occurs with the magnetized vacuum where
)y is divergent at ug. However, the limit which makes the integral and consequently the
action divergent comes only from u — oo (the divergences at ug . are weaker than a simple
pole and thus finite over integration). We can therefore regulate the action by subtracting
the total action with the action of the magnetized vacuum in the usual manner.
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Figure 4. The density (a), the pion gradient (b), and the position u. (c) as a function of B at
fixed p =0.2,7 = 0.
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Figure 5. The density as a function of B at = 0.2,7 = 0 in the logarithmic scale.

Generically, the free energy can be defined at fixed density (in the canonical ensemble)
or fixed chemical potential (in the grand canonical ensemble), they are related by the
Legendre transform. In the holographic model, the free energy of the dual gauge matter
at a fixed chemical potential is proportional to action of the D8-branes. Therefore, the



regulated free energy in the canonical ensemble (Helmholtz free energy) is given by

where Q(p, B) = Slag(u),ai(u)](e.o.m.) — S[magnetized vacuum| = F(u, B), the free
energy in the grand canonical ensemble (also known as the grand potential or Landau
free energy).

We can calculate the total action satisfying the equation of motion

Slao(u), a1 (u)](e.o.m.) = Spsg + Scs to be

Sps :/\/'/Oodu C () )1+ f(wpuaf) ! (3.2)
J(@)(C(w) + D(w)?) — 9B2(alf — &)

g :_NéB C>oal
- i /uc \/f(U)(C(U)+D(U)2)_932<ag_%)2

For zero temperature the total action reduces to

Se.om. = N/ \/ — 931; uc’)B) BB (C(u) - 9—52 <gag(u) - (Vtﬂ)2>> .

We can compute this action by substituting eq. (2.18) into the expression. The free energy

at fixed chemical potential F(u, B) of the pure pion gradient phase at zero temperature is
shown in figure 6. Once d, u > 0, the free energy becomes smaller than the free energy of the
magnetized vacuum (being negative) and thus thermodynamically preferred than the vac-
uum phase. The magnetization at fixed chemical potential M (u, B) = % therefore
increases from zero and becomes constant M (u = 0.2, B) ~ 0.0152 at large field (B > 0.2)
as we can see from the slope of figure 6. On the other hand, the magnetization at fixed
d=1.0, M(d,B) = —W%i(g’B), of the pure pion gradient phase is a rapidly decreasing
function of B as is shown in figure 7.

The pressure of the pure pion gradient as a function of the density can be calculated

using eq. (2.27) and d = ‘?9—1; (see ref. [17]),

d
P(d, B) = p(d, B)d — /O u(d, B) d(d), (3.4)
= %k(B)dQ, (3.5)

where k(B) = 4/3B for B > 0.1. The quadratic dependence of the pressure on the
density without higher order term reveals that the pion gradient excitations behave like
free particles without either repulsive or attractive interaction among themselves.

For the parameter space in the region d < 1, B < 1 such as the regions shown in
figure 4, 5, since \y¢ ~ uB,d = 3B</¢/2, we have d = auB? for some constant «. In this
case, the linear relations between p and d is still valid and the equation of state is again
given by eq. (3.5) with k(B) = 1/aB? (for i = 0.2, ~ 4.634). This behaviour is similar

,10,
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Figure 6. The Landau free energy as a function of B at fixed p = 0.2, 7 = 0.
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Figure 7. The Helmholtz free energy as a function of the density of the pure pion gradient phase
compared with the multiquark-s7¢ phase at fixed d = 1.0,7 = 0. The number of colour strings ng

represents the colour charges of the multiquark in unit of 1/N,. Baryon corresponds to multiquark
with ngs = 0.

to what found in ref. [7] using the Wess-Zumino-Witten term in the boundary theory and
in ref. [9, 10] for the confined and deconfined SS model at zero temperature.
The energy density can be calculated straightforwardly

d
P =/0 p(n, B) dn, (3.6)
= %k(B)dQ, (3.7)

where k(B) = 1/aB?,4/3B for small and large B respectively. The results are remarkably
similar to the results from the bottom-up AdS/QCD model considered in ref. [8]. The
equation of state then becomes simply P = p representing free gas of the solitonic excita-
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Figure 8. The difference between the density, the pion gradient, and the position u. of the /¢
phase at T'=0.14 and 7' = 0 as a function of B for u = 0.2.

tions of the the pion gradient. The adiabatic index, I', and the sound speed, cs, are then
calculated to be

poP _p 4
Py pe b (3.8)
cs =1, (3.9)

the typical behaviour of the free gas.

For nonzero temperature, the full equations of motion, eq. (2.5), (2.6) can be solved
numerically by double shooting algorithm aiming for two conditions to be satisfied at once:
ait(u.) = 0,Lg = 1 (with 2, from eq. (2.11)) while fixing B, and d (and consequently
V). The boundary conditions, a} (c0) = p,af(00) = V¢, are adjusted until we hit the
target conditions. It is found that the temperature dependence of every physical quantity
of the pure pion gradient is very weak. Figure 8 shows the difference of the density, the
pion gradient, and the position u. at fixed = 0.2 between 7' = 0.14 and T' = 0. Observe
that the difference in the temperature dependence of the density and the pion gradient are
the most distinctive in the transition region when the magnetic field changes from small
to large values.

3.1 Comparison to the multiquark-s/¢ phase

We would like to consider whether the pure pion gradient phase is thermodynamically
preferred than the other nuclear phases in certain regions of the parameter space. In
the deconfined SS model in the presence of the magnetic field, there are generically 3
possible phases in addition to the vacuum; the chiral symmetric QGP phase, the chirally
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broken phase of multiquark-\7¢ (MQ-57¢), and the pure pion gradient (5/¢) phase. The
multiquark nuclear phase has been studied in ref. [11, 14, 18] and found to be the most
preferred phase for the dense deconfined nuclear matter under moderate external magnetic
fields. The multiquark phase actually has certain mixture of the pion gradient as the source
for the baryon density. This is inevitable since the response of the nuclear matter to the
external magnetic field is in the form of the spatial variation of the chiral condensate in
the direction of the applied field which we call the pion gradient.

However, the ratio of the pion gradient population with respect to the multiquark
decreases as d grows [14]. It is thus suggestive that the multiquark phase is likely to be
more thermodynamically preferred than the pion gradient phase. In this subsection we
directly compare the two phases at zero temperature using the free energy at fixed density
d = 1.0. The MQ-v/¢ phase imposes the boundary conditions (see ref. [11, 14] for details);

ja =0, af(uc)—O ao (ue) = zue/ f(ue) + ng(ue — ur),

where ng is the number of colour strings (hanging from the baryon vertex down to the
horizon) in fractions of 1/N,.

The result is shown in figure 7. Clearly, the multiquark-pion gradient (MQ-57¢) phase
is more preferred than the pure pion gradient phase. Similar behaviours are confirmed for
small d >~ 0.1 and large d > 1. Especially at large densities, since the baryon chemical
potential of the MQ-v/¢ phase increases slower than a linear function [11] whilst it is linear
for the v7¢ phase, the dominant term ud in the free energy for the MQ-v/¢ phase becomes
much smaller and thus more stable thermodynamically.

However, there is a region of parameter space where the ¢ phase is dominant. When
the baryon chemical potential 1 < pionset = p(d = 0) = 3uo\/ (ug) + ns(up — ur) of the
multiquark, the multiquarks cease to exist and the pion gradient which can be constructed
at arbitrarily small p (since g ~ d) will be dominating. The corresponding transition line
in the (u,T") diagram for B = 0 is shown in figure 8 of ref. [18]. For B > 0, dependence
of ug on B affects the transition line accordingly as shown in figure 9. The dotted line
represents schematic transition to the chiral symmetric quark-gluon plasma (yS-QGP)
phase. The chiral symmetry restoration between the magnetized vacuum and the xS-QGP
has been studied in ref. [19]. The transition between the pure pion gradient phase and
the xS-QGP has been explored in ref. [10] with f = 1 approximation for the pure pion
gradient. Since we found that the 7 phase is insensitive to the change of temperature,
the results in ref. [10] should be justified to be a good approximated phase diagram. The
chiral symmetry restoration between the MQ-s7¢ phase and the x.S-QGP phase has been
investigated in ref. [14].

4 Conclusions and discussions

The behaviour of the chirally broken pure pion gradient phase in the deconfined SS model is
studied in the zero temperature limit and subsequently at finite temperature. The magnetic
response of the chirally broken phase is linear sy ~ pB for small field and saturates to
constant value 7 ~ /2 for large field.

,13,
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Figure 9. The onset chemical potential of the multiquark-\7¢ phase as a function of T, B (for
B — 00, up = 1.23 is used). These lines can be served as the transition lines between the 7¢ phase
on the left and multiquark-s7¢ phase (ns = 0) on the right. The dotted line represents schematic
transition to the chiral symmetric QGP phase.

Relationship between p and d is also linear u = k(B)d where k(B) ~ 1/B?,1/B for
small and large B respectively. This implies that the excitations of the pion gradient behave
like a free gas with no interaction among each other. The equation of state is thus simply
P = p with the sound speed equal to the speed of light. The free energies at fixed p and
d are obtained numerically. Magnetization at fixed p increases with B for small field and
drops to constant value for large field. Magnetization at fixed d is a decreasing function
with respect to the magnetic field.

Using the free energy at fixed density, we show that the pure sy phase is less preferred
thermodynamically than the MQ-v/¢ phase at zero temperature. The configuration of the
pure pion gradient phase is found to be insensitive to the change of temperature, the
difference of the free energy at fixed pu for 7' = 0 and T" = 0.14 is minimal, only about
< 2 x 1074 On the other hand, the free energy of the MQ-v/¢ phase is a decreasing
function in the temperature [14]. Therefore, we can conclude that the pure pion gradient
phase is generically less preferred than the MQ-v/¢ for general situation.

However, there is an exception for small chemical potential, y ~ 0.175 — 0.41. When
1 < ponset Of the multiquarks, the multiquarks simply cannot exist while the pion gradient
can be induced at arbitrarily small p. Therefore, in this region of the parameter space,
the pure pion gradient phase is dominating over any other phases. The transition lines
are given by g = fionset in the (u,T') plane. The interior of certain classes of the dense
astrophysical objects such as the magnetars [20] would have the corresponding regions
where the chemical potential (and the density) and temperature fall into this range. In
those regions, the dominating nuclear phase which governs physics of the stars would be
the pure pion gradient.

Finally, the conversion factors to the corresponding physical quantities in the natural
unit (h = ¢ = 1) are the following (see e.g. ref. [9], we have set Rps = 1 in this article):
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1/27a’ for B, Rpy/2nd’ for p, 27a/N/Rpy for d, and R2),f./2ma’ for 7 where fr
is the pion decay constant. For the magnetic field, the conversion factor 1/2wa’ with
a’~1 = 0.2 GeV? corresponds to approximately 5.37 x 104 Tesla in the SI unit.
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