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1. สําหรับหัวหนาโครงการวิจัยผูรับทุน  รายงานความกาวหนาประกอบดวย 
    1.1 การดําเนินงาน             
 ดําเนินการไปไดเรียบรอยโดยปจจุบันกําลังดําเนินการตอยอดงานวิจัยตอไปในทิศทางของ glueball  
physics และ deconfinement และความเปนไปไดของควารกกลูออนพลาสมาท่ีมีความจุความรอนเปนลบ  เรายัง 
พบวากาซของเฟอรมิออนในสองมิติก็สามารถมีความจุความรอนเปนลบไดเชนเดียวกัน  นอกจากนี้ยังกําลังทําการ 
คํานวณ effective action ในแบบจําลอง nonlocal Nambu-Jona-Lasinio model ท่ีมาจาก Sakai-Sugimoto model   
อีกดวย  งาน nonlocal NJL สวนหน่ึงสําเร็จเปนผลงานเขียนเปนบทความสงตีพิมพแลว สวนงานการศึกษาควารกกลู
ออนพลาสมาท่ีความจุความรอนเปนลบกําลังดําเนินการ  เรายังขยายการศึกษา nonlocal NJL model ไปสูกรณีท่ี
ความหนาแนนและอุณหภูมิมีคามากดวย เพื่อใชศึกษาแผนภาพเฟส 
 
   1.2 รายละเอียดผลการดําเนินงานของโครงการ  
สรุปยอ (summary) ประกอบดวยวัตถุประสงคและการดําเนินงานวิจัย รวมท้ังผลงานวิจัยท่ีไดรับ  
        
วัตถุประสงคของโครงการ 
 
 1.) ประยุกตใชความสมมูล AdS/CFT ในการศึกษาสมบัติของควารก-กลูออน พลาสมาท่ีอุณหภูมิสูง 
กวา 175 MeV ซึ่งเปนอุณหภูมิการเปลี่ยนสถานะจากสภาพที่ควารกและกลูออนถูกกักขังในฮาดรอนไปสูสถานะท่ีมัน 
กลายเปนพลาสมารอนท่ีควารกและกลูออนเปนอิสระ ศึกษาปริมาณ transport coefficients ในพลาสมาน้ีโดยใช  
dual string theory ในอวกาศโคงชนิดตางๆ  
 2.) ศึกษาสมบัติของสสารนิวเคลียรท่ีสภาวะสุดโตงอ่ืนๆ เชน เมื่อความหนาแนนสูงมากๆ เชน  
ภายในดาวนิวตรอนโดยใชสมมูล AdS/CFT 
 3.) ศึกษาสมบัติของทฤษฎีเกจและทฤษฎีความโนมถวงจากมุมมองของความสมมูล AdS/CFT  
ศึกษาอันตรกิริยาใหมๆท่ีอาจจะมีไดจากสมมูลของอันตรกิริยาของสตริงแบบเปดและแบบปด (open-closed string  
duality) [8] 
 4.) ศึกษาสมบัติของโพเมอรอน (pomeron) [9,12]ในอันตรกิริยาแบบเขมโดยใชมุมมองของทฤษฎีสตริง  
เปรียบเทียบผลกับผลท่ีไดจากทฤษฎี S-matrix [13]และที่ไดจากการคํานวณใน Quantum Chromodynamics (QCD) 
 5.) ศึกษา quasi-normal modes ของหลุมดําและประยุกตใชสมมูลAdS/CFT เพ่ือทํานายพฤติกรรมของ 
สสารนิวเคลียรในควารกกลูออนพลาสมาจากขอมูลของ quasi-normal modes ท่ีมี 
             6.) ศึกษาการประยุกตใชสมมูล AdS/CFT ใน condensed matter physics 
 
การดําเนินการวิจัย     ในท่ีผานมาได 

1.)  พิจารณามัลติควารกในแบบจําลอง Sakai-Sugimoto ท่ีสมมูลกับมัลติควารกและฮาดรอน 
(hadronic bound state) ในทฤษฎีแบบเกจ  ศึกษาสมบัติของมันใน deconfined phase ของควาร
กกลูออนพลาสมา  ศึกษา magnetic and electric responses ผานทาง Dirac-Born-Infeld action ท่ี
เปน nonlinear generalization ของทฤษฎีท่ีบรรยาย gauge theory ภายใตอิทธิพลของ
สนามแมเหล็กไฟฟา 

2.)  วาดแผนภาพสถานะของสสารนิวเคลียรแบบมัลติควารกภายใตสนามแมเหล็กและอุณหภูมิสูงๆ



 

ภายใตสภาวะความหนาแนนตางๆกัน 
3.)  ศึกษาสมบัติของสสารนิวเคลียรแบบ pure pion gradient ซึ่งเกิดจาก response ตอสนามแมเหล็ก

ภายนอกของ chiral condensate 
4.) ศึกษาดาวภายใตสนามแมเหล็กสูงๆใน AdS space 5 มิติท่ีอุณหภูมิคาใดๆ เปนงานวิทยาพนธ

ปริญญาโทของผูชวยวิจัย Tossaporn Chullaphan  คา mass limit ของดาวเชนน้ีจะมี dual object 
เปนสสารนิวเคลียรอุณหภูมิสูงภายใตอิทธิพลของสนามแมเหล็กซึ่งนาจะเปนรูปแบบของสสาร
ภายในแกนของดาวนิวตรอนสนามแมเหล็กสูงท่ีเรียกวา magnetar 

5.) ศึกษาความเปนไปไดของสถานะควารกกลูออนพลาสมาท่ีมีความรอนจําเพาะเปนลบ และ
ความสัมพันธกับความหนาแนนของ glueball ในควารกกลูออนพลาสมาน้ันๆ 

6.) คํานวณ effective action ใน nonlocal Nambu-Jona-Lasinio model ท่ีมาจาก Sakai-Sugimoto 
model ท้ังในระดับหน่ึงและสองลูปอีกดวย  เราพบวา chiral symmetry breaking ยังคงเกิดข้ึนแม
เมื่อ ‘t Hooft coupling มีคานอยๆมากๆ   

 
2.  ผลงานวิจัยท่ีทําในหกเดือนท่ีผานมา ประกอบดวย 
 
 ศึกษาเพิ่มเติมความเปนไปไดของควารกลูออนพลาสมาท่ีมีมีความรอนจําเพาะเปนลบ   
สําหรับอิเลคตรอนหรือนิวตรอนในสองมิติเราพบเชนกันวาสามารถมีสถานะที่มีความจุความรอนเปนลบไดดวย ใน 
กรณีท่ีความหนาแนนพลังงานของกาซมีคาไมมากนัก ณ จุดเปลี่ยนสถานะเปนกาซ  แตยังตองพิจารณาความหมาย
ทางกายภาพของผลที่ไดตอไปวาในสองมิติน้ันเปนการเปลี่ยนสถานะของอะไรไปสูกาซของอิเลคตรอน 
 ศึกษาการประยุกตใชหลักการ holographic duality กับระบบ condensed matter  ศึกษาหลุมดําใน 1+3  
มิติท่ี coupled กับสนาม scalar ท่ีมีโครงสรางเปนโครงผลึก  งานแบบน้ีมีคนใชในการศึกษา high temperature  
superconductivity cuprates และพบกฎ power law scaling ของ optical conductivity ท่ีตรงกับการทดลอง 
 คํานวณ effective action ใน nonlocal Nambu-Jona-Lasinio model ท่ีมาจาก Sakai-Sugimoto model ท่ี 
ระดับหน่ึงและสองลูป กําลังขยายผลไปสูกรณีความหนาแนนและอุณหภูมิสูงๆ 
   
  3.  ผลงานวิจัยท่ีตีพิมพในวารสารวิชาการระดับนานาชาติ (หากยังไมมี ใหระบุชื่อเร่ืองและชื่อวารสาร 
     นานาชาติท่ีคาดจะตีพิมพได และจะตีพิมพไดเมื่อใด) 
 
 มีผลงานเปนบทความหนึ่งฉบับ กําลังสงพิจารณาเพื่อตีพิมพในวารสารนานาชาติตอไป ไดแก 
Chiral symmetry breaking from two-loop effective potential of the holographic non-local NJL model, Piyabut Burikham, Daris  
Samart, Suppiya Siranan, [arXiv:1302.4994]. 
 อน่ึง ในรายงานสุดทายของโครงการฉบับน้ีไดแนบผลงานทั้งหมด 5 บทความมาดวย 4 บทความไดรับ 
การตีพิมพเรียบรอยแลวใน Journal of High Energy Physics 3 บทความ ใน Advances in High Energy Physics 1  
บทความ เปน invited review article 
 
 
4.  กิจกรรมอ่ืนๆท่ีเกี่ยวของ ไดแก   
   (1) มีการพูดคุยกับนักวิจัยท่ีมหาวิทยาลัยเทคโนโลยี่สุรนารีและมหาวิทยาลัยราชมงคลอีสาน 



 

เกี่ยวกับความเปนไปไดในการขยายผลไปบรรยาย scattering ของอนุภาคนิวเคลียรท่ีพลังงานประมาณ 1-10 GeV  
เปนไปไดหรือไมท่ีจะตรวจจับควารกกลูออนพลาสมาท่ีมีความจุความรอนเปนลบท่ี heavy ion collision experiment 
อยางเชน LHC ของ CERN และในเร่ืองการศึกษาแผนภาพสถานะของสสารนิวเคลียรโดยใช nonlocal NJL model 
  (2) ไปเสนอผลงานและอภิปรายแลกเปลี่ยนกับนักฟสิกสจากญ่ีปุนในสาขาเอกภพวิทยาในงาน 

TJ2012: Japan-Thai Workshop in Cosmology รายละเอียดดังเวบไซต 
http://www.if.nu.ac.th/act/tj2012  จึงเบิกคาใชจายในการเดินทางจากทุนดวย 

  (3) ไดรับเชิญไปเสนอผลงานที่ SPC2013 โรงแรมเชียงใหมแกรนดวิว จังหวัดเชียงใหม รายละเอียด
ดังเวบไซต http://www.physics.science.cmu.ac.th/physics/index.php/news/news/130-spc2013  จึง
เบิกคาใชจายในการเดินทางสวนหน่ึงจากทุนดวย 

 
5.  ปญหาและอุปสรรค (ถามี) 
 -ความลาชาจากระเบียบการเบิกจายของคณะวิทยาศาสตรและของ จุฬาลงกรณมหาวิทยาลัย  จะมี 
ประโยชนอะไรท่ีจะออกนอกระบบแตประสิทธิภาพการทํางานยังลาชาเหมือนอยูในระบบราชการ  ระเบียบจุกจิกไร 
ประโยชนท่ีทําใหลาชายังมีอยูเหมือนเดิมเปนตัวการทําใหการดําเนินการลาชาและซับซอนยุงยากอยางไรเหตุอัน 
ควร 
 -หัวหนาโครงการตองสํารองจายเงินเดือนผูชวยวิจัยไปกอนเพราะเงินในบัญชีทุนวิจัยมีไมพอ ท้ังน้ีมา 
จากระบบการจายเงินท่ีลาชาของระบบราชการ  นอกจากนี้ยังคางเงินเดือนผูชวยวิจัยอีกหลายเดือนเพราะหัวหนา 
โครงการเองก็มีเงินไมพอสํารองจายไดหมด   
  
6.  ความเห็นและขอเสนอแนะ 
 
  การเขียนสงรายงานวิจัยตอสกว. น้ีหากลดจํานวนคร้ังใหเหลือรายปจะดีกวาเปนอยางมากเพราะ

เอกสารรายงานเหลาน้ีไมสําคัญเทาการทําวิจัยและผลงานวิจัยท่ีไดตีพิมพไปแลว  การทําเอกสารมาก
เกินไปยังทําลายทรัพยากรตนไมโดยไมจําเปนซึ่งนําไปสูภาวะโลกรอนอันเปนวิกฤตระดับโลกท่ีสําแดง
ผลมาคร้ังแลวคร้ังเลาในไมกี่ปท่ีผานมาและหากเราไมเร่ิมปรับเปลี่ยนวิธีการทํางานและการใชชีวิตของ
เราต้ังแตตอนน้ี เราก็อาจตองประสบภัยท่ีหนักหนาสาหัสเพิ่มข้ึนๆเร่ือยๆ 

 
  ไดรับทราบจากเพื่อนรวมวงการฟสิกสทฤษฎีวาหลายๆคนที่มีผลงานโดดเดน (ตีพิมพในวารสารที่มี 

IF 5-7 ตอเน่ืองหลายเปเปอร) ไมไดรับทุนสกว. ท้ังแบบตอเน่ืองในรุนกลาง รุนใหญและรุนใหมรวมถึงตัว
ของหัวหนาโครงการน้ีเองท่ีแมจะไดรับรางวัลผลงานดีเดน TRF-CHE Researcher Award แตกลับไมได
รับทุนสกว. ตอเน่ืองตอไป  ชีวิตของนักทฤษฎีฟสิกสท่ีลําบากอยูแลวก็ยิ่งลําบากขึ้นไปอีก  ผมจึงขอ
เสนอความคิดเห็นวาหากน่ีเปนนโยบายของสกว.สกอ. ท่ีจะตัดทุนสนับสนุนงานวิจัยทางฟสิกสทฤษฎีท่ี
ไมมีประโยชนในการนําไปประยุกตใชเชิงอุตสาหกรรมแลว เปนนโยบายท่ีผิดมหันตครับ  ผมทราบดีวา
สกว. มีนโยบายเพิ่มทุนไปทางวิจัยเพ่ือการเกษตรและอุตสาหกรรมซึ่งเปนนโยบายท่ีถูกตองอยางยิ่ง แต
การเพิ่มทุนท่ีควรใหแตไปตัดทุนท่ีมีอยูแลวโดยเฉพาะทุนวิจัยดานพื้นฐานคือสิ่งผิด เปนวิสัยทัศนท่ีผิด
แสดงถึงความไมเขาใจในธรรมชาติของวิทยาศาสตรและการวิจัยโดยแทจริง  การจะรีบตอยอดโดยไป
ลดพื้นฐานคือนโยบายที่ผิด 

  สิ่งท่ีสกว. ควรทําและตองรีบดําเนินการคือการเพิ่มทุนวิจัยในทุกดาน  หากจะเพิ่มทุนทาง
อุตสาหกรรมและเทคโนโลยี่ก็ตองเพิ่มทุนวิจัยพื้นฐานใหมากขึ้นไปดวย อยางนอยจํานวนนักวิจัย



 

พื้นฐานจะตองมีไมนอยกวานักวิจัยทางดานประยุกต  นักวิจัยนักวิชาการทางวิทยาศาสตรบริสุทธ์ิและ
ทางพื้นฐานเปนรากฐานของนักวิจัยในระดับประยุกตและระดับสูงข้ึนไป   หากเราไมมีพื้นฐานและ
รากฐานท่ีแข็งแรง มั่นคงและแนนหนาแลว การวิจัยเพ่ือประยุกตใชใดๆยอมทําไมไดผลดี  การจะวิจัย
นําองคความรูใดไปใชประโยชนในทางเทคโนโลยี่ ไปประยุกตในดานตางๆไดเราตองมีความรูความ
เขาใจในองคความรูพื้นฐานแตละดานเปนอยางดีเสียกอนเทาน้ัน  หากไมมีความรูทางฟสิกสพื้นฐาน
ของสสารดีพอ ไมมีความรูทางคณิตศาสตรชั้นสูงดีพอ ไมมีความรูทางการคํานวณโดยใชคอมพิวเตอรดี
พอ ยอมไมสามารถนําความรูพื้นฐานเหลาน้ีไปประยุกตใชอะไรได  ตัวอยางท่ีเห็นชัดท่ีสุดคือการ
ออกแบบโครงสรางหรือเคร่ืองยนตใดๆหรือแมกระท่ังวงจรอิเลกทรอนิกสตางๆในปจจุบันตองใช
คอมพิวเตอรและการสรางแบบจําลองทางคณิตศาสตรของระบบน้ันๆ  สมบัติพื้นฐานตางๆของวัสดุท้ัง
ทางเคมีและฟสิกสตองเปนท่ีเขาใจเปนอยางดีและปอนเขาในแบบจําลองอยางถูกตอง  คณิตศาสตรท่ีใช
คํานวณในแบบจําลองก็เปนคณิตศาสตรชั้นสูงท่ีพบเจอกันในงานวิจัยฟสิกสและคณิตศาสตรพื้นฐาน
ท้ังสิ้น  กวาจะมาถึงขั้นวิจัยเพื่อประยุกตใชในระดับเหลาน้ี องคความรูพื้นฐานเหลาน้ียอมตองถูกวิจัย
ศึกษาโดนนักฟสิกสทฤษฎีและนักคณิตศาสตรมากอน  โจทยปญหาท่ีนักวิจัยดานประยุกตพบเจอก็
สามารถนํามาปรึกษาหาคําตอบท่ีเหมาะกับกับนักวิจัยพื้นฐานทางฟสิกส เคมีและคณิตศาสตรได 

  อีกตัวอยางหน่ึงคือการใชโปรแกรม molecular dynamics ออกแบบยาในปจจุบัน  ตัวโปรแกรมถูก
เขียนข้ึนจากความรูทางกลศาสตรควอนตัม ทางเทอรโมไดนามิกสพื้นฐานของสารเคมีทางชีวภาพ
ตางๆซึ่งองคความรูพื้นฐานเหลาน้ีตองเปนศึกษาจนเขาใจกันเปนอยางดี  ไมวาจะเร่ืองกลศาสตร
ควอนตัมของพันธะทางเคมีตางๆ พลังงาน free energy ของโครงสรางเชน โปรตีนในการ fold และ 
unfold  ท่ีสําคัญท่ีสุดคือการศึกษาโครงสรางโดยใช Xray diffraction analysis ซึ่งถูกคนควาโดยนัก
ฟสิกสพื้นฐานตั้งแตรอยปกอนหนา  คนท่ีอานขอมูลจาก Xray diffraction ของ DNA และสรุปวาตองเปน
โครงสรางเกลียวคูก็เปนนักฟสิกสพื้นฐานที่มีความรูความเขาใจในหลักการและฟสิกสพื้นฐานของ Xray 
diffraction เปนอยางดีเย่ียม (Francis Crick)  ยังมีตัวอยางอีกหลายหลากมากมายถึงความเชื่อมโยง
โดยตรงของงานวิจัยพื้นฐานไปสูงานวิจัยประยุกต ท่ีจริงแลวงานวิจัยประยุกตเกือบทุกอันลวนวางอยู
บนพื้นฐานขององคความรูพื้นฐานทั้งสิ้น บางอยางใชเวลาเปนรอยป บางอยางใชเวลาชั่วขามคืนในการ
แปรองคความรูไปสูการประยุกตใช  เคร่ืองสแกนชวยวินิจฉัยโรค เคร่ือง Xray ตางๆในโรงพยาบาลเปน
หลักฐานโดดเดนชัดเจนวาแมกระท่ังงานวิจัยพื้นฐานทางฟสิกสอนุภาคและนิวเคลียรก็นําไปประยุกตใช
ประโยชนไดอเนกอนันต  เราเพียงไมรูเทาน้ันเองวาจะประยุกตใชอะไรกับอะไรในเมื่อเรายังไมศึกษา
คนควาจนรูวาความรูพื้นฐานน้ันๆคืออะไรกันแน  โลกแหงการสื่อสารดวยคลื่นแมเหล็กไฟฟาคงไมเปน
อยางในปจจุบัน  โลกไซเบอรแหงอินเตอรเนทคงไมมีในปจจุบัน หากไมมีงานวิจัยพื้นฐานทางฟสิกสและ
คณิตศาสตรโดยแมกซเวลล  หากเราไมมี CERN และนักฟสิกสอนุภาคท่ีเขียนโปรแกรมสคริปตและวาง
โครงสรางพื้นฐานของ world wide web และไมมีนักฟสิกสทฤษฎีท่ีคํานวณการใชสายใย fibre optic
สงผานขอมูลดวยแสง 

  ผมขอใหทางสกว. สกอ. และผูท่ีเกี่ยวของพิจารณาปรับแกนโยบายใดๆที่เขาใจผิดวาการตัดงบวิจัย
พื้นฐานไปโปะใหงานวิจัยประยุกตเปนสิ่งถูก  การสนับสนุนการวิจัยตองทําต้ังแตฐานไปสูยอด  สวนที่
เปนฐานในปจจุบันจะข้ึนห้ิงแคไหนก็ตองทํา เพราะนั่นคือธรรมชาติขององคความรูและการวิจัย  
ทัศนคติท่ีวา “วิจัยไปใชประโยชนอะไร?” เปนทัศนคติท่ีผิดธรรมชาติของงานวิจัย  เพราะเราตองศึกษา
คนควาใหรูกอนวาองคความรูน้ันคืออะไร กอนท่ีจะสามารถต้ังคําถามไดวามันจะเอาไปประยุกตใชอะไร
ได    

   



 

 
7.  งานที่จะทําในปตอไป  
 -ศึกษาสมบัติเชิง hydrodynamics ของมัลติควารกโดยพยายามสรุปผลและสงตีพิมพผลงานทุกๆหก 
เดือน 
 -ศึกษา Nambu-JonaLasinio model จากทฤษฎีสตริงและความเปนไปไดท่ีจะตอยอดตอไป 
 -ศึกษาสถานะความรอนจําเพาะเปนลบของควารกกลูออนพลาสมาและความสัมพันธกับความหนาแนน  
Glueball 
 
8.  รายละเอียดผูชวยวิจัย 
 คาตอบแทนผูชวยวิจัยจะให 5,000 บาทตอคนตอเดือน แตละเดือนจะใหไมเกินหน่ึงหมื่นบาท 

 นายทศพร จุลพันธ   36 เดือนเปนเงิน  200,000 บาทโดยมี 4 เดือนท่ีรับเดือนละหน่ึงหมื่นบาท ยังจาย
เงินเดือนไมหมด 

 นายฉัตรชัย พรหมสิริ  25 เดือนเปนเงิน 125,000 บาทยังจายเงินเดือนไมหมด 

 นายสมเกียรติ สุนทรสวัสดิ์   2 เดือนเปนเงิน 10,000 บาท จายเงินเดือนหมดแลว 
เงินเดือนดังกลาวบางสวนจายโดยทุนวิจัยบางสวนหัวหนาโครงการสํารองจายไปกอน และบางสวนยังไมได
จายใหผูชวยวิจัยเพราะเงินในบัญชีทุนไมพอ 
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Abstract: We calculate the two-loop effective potential of the non-local NJL model de-

rived from the Sakai-Sugimoto model in string theory. In contrast to conventional NJL with

4-fermion contact interaction, the chiral symmetry was previously found to be dynamically

broken for arbitrary weak coupling at the one-loop level. We calculate the one and two-

loop contribution to the effective potential of the non-local NJL model and found that the

two-loop contribution is negative. The two-loop potential for the chirally symmetric vac-

uum is also negative but larger than the combined effective potential of the chirally broken

vacuum at the two-loop level. The chiral symmetry breaking thus persists for arbitrary

weak coupling.

Keywords: non-local NJL model, Sakai-Sugimoto model, chiral symmetry breaking

http://arxiv.org/abs/1302.4994v2
mailto:piyabut@gmail.com
mailto:daris.sa@rmuti.ac.th
mailto:suppiya.si@rmuti.ac.th


Contents

1 Introduction 1

2 The effective Lagrangian 4

3 Effective potential at one-loop : Auxiliary field approach 6

4 Effective potential at two-loop level 9

5 Results and Discussions 10

5.1 1-loop 11

5.2 2-loop 12

6 Conclusions 15

A Integrating out heavy gauge field for single intersection model 16

B Fourier transform in Euclidean 5-dimensions 17

C Gap equation at two-loop 19

C.1 The k2 ≫ T (k) T̄ (k) approximation 20

C.2 The T (k) T̄ (k) ≫ k2 approximation 20

D Evaluation of the 2-loop angle integration 21

1 Introduction

Spontaneous Symmetry breaking (SSB) plays an important role in modern particle physics

theory. Higgs mechanism in the standard model, for example, can be used to generate

masses of elementary particles, leptons and quarks. The generation of quark masses by

spontaneous symmetry breaking inevitably breaks the chiral symmetry of the QCD. Chiral

symmetry breaking (χSB) could also be generated dynamically by the vacuum expectation

value (vev) of chiral condensate ψ(x)ψ(y). Dynamical χSB can explain masses of mesons

and hadrons which are responsible for most of the visible mass in the universe. It can also

explain hadronic particle generation in strong interaction at low energies. The key idea

of SSB is that any theory whose Lagrangian is invariant under some associated symmetry

where vacuum state of such theory is not invariant and hence its vacuum carries non-trivial

quantum number associated with the symmetry. In the spontaneous broken phase, there

is an existence of Nambu-Goldstone (NG)-boson [1]. One can classify NG-boson into 2

cases i.e. on one hand, NG-boson is massless elementary particle and on the other hand,

such boson could be a composite particle. Dynamical symmetry breaking (DSB) usually
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occurs as a result of the interaction between constituent particles in the theory and yields

a composite NG boson.

For chiral symmetry breaking of the QCD, the NG boson is usually identified with

e.g. the three pions from the breaking of SU(2)L × SU(2)R to SU(2)V or the eight light

mesons from the breaking of SU(3)L×SU(3)R to SU(3)V flavour diagonal. This symmetry

breaking pattern [2] was successfully used to explore properties of the light hadrons and

gives precise predictions of light hadronic spectra [3]. Early stage of χSB in the strong

interaction was demonstrated by the linear-sigma model [4] and the current-algebra ap-

proach [5, 6]. At the present, there is an incorporation between χSB and principle of

effective field theory which gives a systematic framework to study QCD at low-energies,

the so-called chiral perturbation theory [7]. The theory starts with an effective theory of

hadrons with chiral symmetry in the action and use the SSB to generate a chiral symmetry

breaking vacuum. The observed meson spectra shows good agreement with the prediction

of the chiral perturbation theory [8, 9].

To address the chiral symmetry breaking/restoration phase transition, ones need to

work with the action of quarks instead of hadrons. Nambu-Jona-Lasinio (NJL) model [10]

is a model of quarks with four-fermion interaction which is employed to demonstrate the

dynamical chiral symmetry breaking in the strong interaction independent of the confine-

ment. Originally, NJL was formulated to explain mass of the nucleon as a consequence of

the χSB. NJL model has been widely used as a description of low-energy effective model of

hadrons in QCD with zero or finite-temperature [11–14] and electroweak symmetry break-

ing by top-quark condensation or other fermions within or beyond the standard model

[15–17]. NJL model is a very successful effective model to describe many hadronic proper-

ties in low-energy QCD, for example, the mesons and baryons mass spectra, the pion decay

constant, and the pion form factor (see [11–13] for review).

Despite the success of the NJL as a low-energy phenomenological model approach

to low-energy QCD, the original NJL model does not address confinement. There are

extensions of the NJL where inclusions of non-local interactions have been proposed in the

literature (see [18] and references therein). One can simply reproduce the non-local NJL

interaction from the QCD Lagrangian by integrating out the gluon field from the one-gluon

exchanging diagram [15, 18].

In the non-local NJL approach, interaction depends on the momenta carried by the

quarks leading to a momentum-dependent quark mass, generated by the spontaneous χSB.

It has been shown that a non-local NJL model could lead to quark confinement with

acceptable values of the parameters [19]. This phenomenon originates from the fact the

quark propagator has no real poles and consequently quarks have no asymptotic states.

There are several other advantages of the non-local NJL approach over the original (local)

NJL model i.e. the nonlocality regularizes the model in a manner that anomalies [20]

and gauge invariance [21] are preserved and the momentum-dependent regulator makes

the theory finite to all orders in the 1/Nc expansion. Finally the dynamical quark mass

is momentum dependent in contrast to the original NJL model and consistent with lattice

simulations of QCD [22]. As a result, one can see that the non-local NJL model may

have more predictive power and be more realistic. There are two major applications of
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the non-local NJL model in the strong interaction. Firstly, it is incorporated in the quark

model to give mass spectra of excited mesons in good agreement with the experimental

data [23]. Secondly, the thermodynamics of nuclear matter and QCD phase diagram could

be explained quantitatively well by using non-local NJL model (with Polyakov-loop) [24].

A non-local NJL model can also be constructed from certain intersecting-branes con-

figurations in string theory. The Sakai-Sugimoto model (SS) [25, 26] is a D8-D8-D4

intersecting-branes model in type IIA string theory. The background spacetime is generated

from a stack of Nc D4-branes. An x4 coordinate is compactified into a circle with radius

R and the D4-branes wrap around the x4. On the boundary of the 10-dimensional space,

a stack of Nf D8 and D8 are located at x4 = −L/2 and L/2 respectively. The left (right)-

handed quarks live on the D8 (D8)-D4 intersection in the form of open-string excitations.

They are thus separated by distance L on the boundary and there is a U(Nf )L × U(Nf )R
chiral symmetry. Geometrically, when the D8 and D8 merge at certain radial coordinate,

the chiral symmetry breaking U(Nf )L × U(Nf )R → U(Nf )V occurs.

We will not be considering the SS model in its full details in the present work but

would rather focus on the low-energy effective 5-dimensional field theory limit of the model.

In contrast to the strong coupling regime where the supergravity picture of intersecting

branes provide simple geometrical interpretation of the theory, the weak coupling limit has

its own unique picture of chiral symmetry breaking in terms of non-local NJL model in 5

dimensions.

In such intersecting branes setting there are two crucial parameters i.e. the 5-dimensional

’t Hooft coupling, λ and the length scale of separation between D8-D8 flavor branes, L.

One can consider the hierarchy of those parameter as λ ≪ L which is the weak coupling

regime. In such limit, we can treat left- and right-handed quarks as weakly interacting by

single (five dimensional) gluon exchange process. The non-local NJL interaction is repro-

duced by integrating out gluon fields in bulk spacetime from such D-branes configuration.

In terms of effective potential in holographic non-local NJL, the nonzero solution of chiral

quark condensate exists at arbitrary weak coupling [27, 28]. In contrast, if one considers

the SS model in compactified case i.e. R is finite, and includes the KK tower of states.

The χSB will happen only above a certain value of ’t Hooft coupling [29]. In any cases,

the analysis has been done on the effective potential of the non-local NJL at the one-loop

level. It is interesting to investigate whether the two-loop contribution would change the

profile of the effective potential in any significant way.

We will start by reviewing the method of effective action in 5 dimensions when gauge

fields propagate in 5 dimensions and fermions are localized in 4 dimensional subspace. By

integrating out heavy gauge fields, we will obtain the effective fermionic action of the SS

NJL model. Subsequently, by using auxiliary field approach, we integrate out the residual

fermionic fields to obtain the effective scalar action of the SS NJL model. One-loop and

two-loop contributions of the action are then calculated and discussed. Chiral symmetry

breaking is demonstrated at both one and two-loop levels.
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2 The effective Lagrangian

We start with the effective action of the single-intersection model where left-handed quarks

are located at a single intersection of Nc D4 and Nf D8 branes [27],

S =

∫

d5 x

{

− 1

4 g25
FMN FMN + δ (x4) q†L σ̄

µ (i ∂µ +Aµ) qL

}

, (2.1)

where M,N, · · · = 0, 1, 2, 3, 4 and µ ν , · · · = 0, 1, 2, 3 . Integrating by part and fix the

gauge, the action can be rewritten in the following form,

S =
1

g25

∫

d5 x

{

1

2
AM �AM + δ (x4)JM AM

}

+

∫

d4x q†L σ̄
µ i ∂µ qL, (2.2)

where we have defined Jµ = g25 q
†
L σ̄

µ qL and set J (4) = 0.

The gauge fields live in 5 dimensions and it is natural to integrate them out to obtain

4-dimensional effective action of the fermions. For consideration of the chiral symmetry

breaking, we can bosonize the fermion bilinear and integrate out the fermions subsequently.

In order to integrate out the heavy-gauge field AM . We recall the procedure from [30], start

with

ei
∫

d4xLeff =

∫

[dH] ei
∫

d4xL

(

H(x),l(x)
)

/

∫

[dH] ei
∫

d4xL

(

H(x),0
)

, (2.3)

where H(x) and l(x) are heavy and light fields respectively. In our case, AM is the heavy

field and qL,R are the light fields. The actions with and without the light fields are given

by

∫

d5 xL
(

AM , qL
)

=
1

g25

∫

d5 x

{

1

2
AM �AM + δ (x4)JM AM

}

+

∫

d4x q†L σ̄
µ i ∂µ qL , (2.4)

∫

d5 xL
(

AM , 0
)

=
1

g25

∫

d5 x
1

2
AM �AM . (2.5)

By using functional path integral as demonstrated in appendix A, the effective action after

integrating out the heavy gauge field can be read off from eq. (A.3),

Seff = i

∫

d4x q†L σ̄
µ ∂µ qL

− g25
16π2

∫

d4x d4y G(x− y , 0)
[

q†L(x) σ̄
µ qL(y)

] [

q†L(y) σ̄µ qL(x)
]

. (2.6)

Next, we extend the Lagrangian (2.1) to the the left and right-handed quark fields located

at different intersections, D4-D8 and D4-D8 respectively [27] , this is the low-energy field
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theory limit of the SS model,

S =

∫

d5 x

{

− 1

4 g25
FMN F

MN + δ

(

x4 +
L

2

)

q†L σ̄
µ (i ∂µ +Aµ) qL

+ δ

(

x4 − L

2

)

q†R σ
µ (i ∂µ +Aµ) qR

}

,

=
1

g25

∫

d5 x

{

A
(L)
M gMN �A

(R)
N + δ

(

x4 +
L

2

)

JM
(L) A

(L)
M + δ

(

x4 − L

2

)

JM
(R) A

(R)
M

}

+

∫

d4x q†L σ̄
µ i ∂µ qL +

∫

d4x q†R σ
µ i ∂µ qR (2.7)

where we define JM
(L) ≡ g25 q

†
L σ̄

M qL , JM
(R) ≡ g25 q

†
R σ

M qR and A
(L)
M , A

(R)
M are the gauge

fields in 5-dimensional spacetime which are located on the D4-D8 and D4-D8 intersections

respectively.

Then the generating functional of the above action is given by
∫

[dA
(L)
M dA

(R)
M ]∆FP exp

{

iS
(

A
(L)
M , A

(R)
M , qL, qR

)

}

=

∫

[dA
(L)
M dA

(R)
M ]∆FP

× exp

{

i

g25

∫

d5xA
(L)
M gMN �A

(R)
N

− i

g25

∫

d5x d5y δ

(

x4 +
L

2

)

δ

(

y4 − L

2

)

JM
(L)(x)GMN (x− y , x4 − y4)JN

(R)(y)

+ i

∫

d4x q†L σ̄
µ i ∂µ qL + i

∫

d4x q†R σ
µ i ∂µ qR

}

. (2.8)

Using eq. (2.8), the effective action in the integrating out procedure is written by

eiSeff =

∫

[dA
(L)
M dA

(R)
M ]∆FP exp

{

iS
(

A
(L)
M , A

(R)
M , qL, qR

)

}

∫

[dA
(L)
M dA

(R)
M ]∆FP exp

{

iS
(

A
(L)
M , A

(R)
M , 0, 0)

} ,

= exp

{

i

∫

d4x (q†L σ̄
µ i ∂µ qL + q†R σ

µ i ∂µ qR)

− i g25

∫

d4x d4y q†L(x) σ̄
µ qL(x)Gµν (x− y , L) q†R(y)σ

ν qR(y)

}

.(2.9)

Finally, we obtain the effective non-local Lagrangian in the Feynman gauge as

Seff =

∫

d4x (q†L σ̄
µ i ∂µ qL + q†R σ

µ i ∂µ qR)

− g25

∫

d4x d4y
1

8π2
gµν G (x− y , L) q†L(x) σ̄

µ qL(x) q
†
R(y)σ

ν qR(y),
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=

∫

d4x (q†L σ̄
µ i ∂µ qL + q†R σ

µ i ∂µ qR)

+
g25
4π2

∫

d4x d4y G (x− y , L) [ q†L(x) · qR(y)] [ q
†
R(y) · qL(x)], (2.10)

where we used the Fierz identity
(

q†L(x) σ̄
µ qL(x)

)(

q†R(y)σµ qR(y)
)

= − 2
(

q†L(x) · qR(y)
)

(

q†R(y) · qL(x)
)

. The dot in the right-hand side is the contraction in the colour indices,

therefore each fermion bilinear in the final expression of the effective interaction Lagrangian

is a colour singlet. There is a non-local interaction between two colour singlet operators in

the theory.

3 Effective potential at one-loop : Auxiliary field approach

In this section, we will calculate the effective potential from the effective action eq. (2.10).

Actually, there are many ways to perform this kind of calculation. We will use the standard

method of effective field theory i.e. bosonize the fermion bilinear which would become the

chiral condensate and integrate out the heavy-residual fields (in our case is the fermion

fields) and then we can automatically obtain the effective potential with one-loop radiative

correction from the effective Lagrangian.

Following ref. [27], we start with the auxiliary field method. This method is used to

study the symmetry breaking of the model by introducing the auxiliary field to the effective

Lagrangian. In our case is the bosonized complex fields i.e.

T (x, y) =
λ

Nc
G(x− y, L) q†L(x) · qR(y),

T̄ (y, x) = T †(x, y) =
λ

Nc
G(x− y, L) q†R(y) · qL(x), (3.1)

where the coupling λ/Nc is related to the g25 coupling in the effective Lagrangian by the

relation λ =
g2
5

4π2 Nc .

Substituting auxiliary fields from eq. (3.1) into the effective action eq. (2.10), we obtain

Seff =

∫

d4x (q†L σ̄
µ i ∂µ qL + q†R σ

µ i ∂µ qR) (3.2)

+

∫

d4x d4y

(

− Nc

λ

T (x, y) T̄ (x, y)

G (x− y , L)
+ T̄ (y, x) q†L(x) · qR(y) + T (x, y) q†R(y) · qL(x)

)

.

In the chiral (Weyl) basis, one can rewrite the Lagrangian as

Seff =

∫

d4x q̄(x)
(

i ∂/+ T (x)PL + T̄ (x)PR

)

q(x)−
∫

d4x
Nc

λ

T (x) T̄ (x)

G (x, L)
, (3.3)

where we imposed the simplifying ansatz T (x, y) = T (|x− y|) consistent with the Poincare

symmetry of the expectation value of the operator. This is justified since we are considering

expectation value of T (x, y) in the vacuum to study the chiral symmetry breaking.
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…

Figure 1. One-loop expansion of fermion fields.

We are ready to integrate out the fermion fields in eq. (3.3), it reads

eiSeff =

∫

[dq̄ dq] exp
{

iS
(

q̄, q, T, T̄
)}

/

∫

[dq̄ dq] exp
{

iS
(

q̄, q, 0, 0
)}

,

= exp

{

Tr ln

(

1 +
T (x)PL + T̄ (x)PR

i ∂/

)

− i

∫

d4x
Nc

λ

T (x) T̄ (x)

G (x, L)

}

. (3.4)

The identities
∫

[dq̄ dq] exp
{

i
∫

d4x q̄(x)A q(x)
}

= detA = exp(Tr lnA) are used above.

Then the effective potential with one-loop expansion can be determined from the effective

action,

Veff = −Seff

=

∫

d4x
Nc

λ

T (x) T̄ (x)

G (x, L)
+ iTr ln

(

1 +
T (x)PL + T̄ (x)PR

i ∂/

)

, (3.5)

where Tr ≡ TrspinorTrcolour Trflavor Trspacetime is the trace over all indices (i.e. spinor, color,

flavor, spacetime). The physical meaning of this procedure is depicted by figure 1.

The second term in the effective potential can be calculated by expansion

Tr ln

(

1 +
(T PL + T̄ PR)

i ∂/

)

= TrspinorTrcolor Trflavor Trspacetime

×
∞
∑

n=1

(−1)n−1

n

[

(T PL + T̄ PR)

i ∂/

]n

,

= iNcNf V

∫

d4kE
(2π)4

ln

(

1 +
T (kE) T̄ (kE)

k2E

)

, (3.6)

where we used the following relations;

Trspinor 1spinor = 2 (in chiral basis) , Trcolor 1color = Nc ,

Trflavor 1flavor = Nf , Trspacetime =

∫

d4x = V ,

1

∂/
=

∫

d4k

(2π)4
k/

k2
ei k· (x−y) , (T k/PL + T̄ k/PR)

2 = T T̄ k2. (3.7)
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The momentum has been Euclideanized and henceforth we will drop the subscript.

Finally, the effective potential at one-loop is given by (scaled by factor Nf )

V1−loop = Nc

[

∫

d4xT (x) T̄ (x)
(x2 + L2)

3

2

λ
−
∫

d4k

(2π)4
ln

(

1 +
T (k) T̄ (k)

k2

)

]

. (3.8)

The equation of motion (the gap equation) of the scalar T (x) from the effective action,

eq. (3.8), is

∫

d4xT (x) e−ikx (x
2 + L2)

3

2

λ
=

T (k)

k2 + T (k) T̄ (k)
. (3.9)

Apart from the trivial solution T = 0 for the chiral-symmetric vacuum, the general solution

to the gap equation δVeff/δT̄ (k) = 0 can be solved perturbatively either analytically or

numerically (see appendix C). Non-vanishing T solution corresponds to chiral symmetry

breaking vacuum which has lower energy and thus represents a true vacuum. We can

obtain approximate solution by solving the gap equation in 2 regions of momentum, small

and large k (i.e. T (k)T̄ (k) ≫ k2 and T (k)T̄ (k) ≪ k2 respectively). The two solutions then

can be matched to determine the unknown constants. An approximate solution from such

method is in the following form [27]

T (k) = T̄ (k) =















T0 = k∗ ≡
√

λ
L3 , 0 < k ≤ k∗ ,

T 2
0

e−Lk

k ≡ λ
L3

e−Lk

k , k∗ < k < Λ .

(3.10)

Generically by using the gap equation, the one-loop potential can be rewritten to be

V1−loop = Nc

∫

d4kE
(2π)4

[

T (k)T̄ (k)

k2 + T (k)T̄ (k)
− ln

(

1 +
T (k) T̄ (k)

k2

)

]

. (3.11)

By substituting approximate propagator eq. (3.10) into eq. (3.11), we can demonstrate that

there is chiral symmetry breaking vacuum induced by small momentum contribution to the

one-loop potential. The details are discussed in section 5. Essentially, since the integrand

in eq. (3.11) is a negative-definite function of variable k2/T (k)T̄ (k), the one-loop potential

is always negative for nonzero T regardless of the exact form of the solution of the gap

equation. It is obvious that the solution with nonzero T gives the lower potential than the

chiral symmetric solution T = 0.

It is remarkable that the chiral symmetry breaking of the one-loop potential occurs at

any weak coupling. The reasons are the boundness of the positive classical term (the first

term in the right-hand side of eq. (3.11)) whilst the negative loop term (the second term in

the right-hand side of eq. (3.11)) is not bounded for low momentum. The solution of the gap

equation, eq. (3.10), is a constant for the low momentum, resulting in ln(1/k2)-divergence

of the loop term as k → 0, regardless of λ.
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4 Effective potential at two-loop level

Even though the one-loop potential demonstrates the possibility of chiral symmetry break-

ing solution, higher loops contribution could likewise be significant. In this section, we

will calculate the effective potential at two-loop level by following Jackiw’s functional ef-

fective action method [31]. The two-loop contribution can be calculated from the vacuum

expectation value of the interaction Lagrangian LI(x)

V2−loop = i 〈 0 | T ei
∫
d4xLI(x) | 0 〉, (4.1)

where T is the time-ordering operator. In order to obtain the two-loop contribution, we

simply use the conventional Feynman rules to calculate all possible two-loop diagrams exist

in the effective theory of fermion and auxiliary scalar. The propagator G of the field φ to

be used in the evaluation of the 2-loop diagrams is defined by the inverse of the functional

operator, namely

iG−1(x, y) =
δ2

δφ(x) δφ(y)

∫

d4xLeff (x). (4.2)

In the previous section, we recall the effective Lagrangian

Seff =

∫

d4x

[

i q̄(x) ∂/ q(x) + q̄(x)T (x)PL q(x) + q̄(x) T̄ (x)PR q(x)−
Nc

λ

T (x) T̄ (x)

G (x, L)

]

,

SI =

∫

d4xLI(x) =

∫

d4x
[

q̄(x)T (x)PL q(x) + q̄(x) T̄ (x)PR q(x)
]

. (4.3)

The functional operator S−1 of the quark fields and D−1 of the complex scalar fields from

the effective Lagrangian therefore can be written as

iS−1(k) =

∫

d4x e− i k·(x−y) δ2Seff

δq(x) δq̄(y)
,

= k/+ T (k)PL + T̄ (k)PR ,

iD−1(k) =

∫

d4x e− i k·(x−y) δ2Seff

δT (x) δT̄ (y)
,

= − Nc

λG (k, L)
. (4.4)

Noting that, D−1 has no kinetic term for the scalars T, T̄ . The vertices of the interaction

in the effective action are given by [31, 32]

ΓL =

∫

d4x e− i k·(x−y−z) (−i)3δ3Seff

δq(x) δq̄(y)T (z)
,

= iPL, (4.5)

ΓR =

∫

d4x e− i k·(x−y−z) (−i)3δ3Seff

δq(x) δq̄(y) T̄ (z)
,

= iPR . (4.6)
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Putting everything together, the two-loop contribution is (see figure 2 for the corresponding

diagram)

V2−loop = − iTr

∫

d4k

(2π)4
d4p

(2π)4
ΓL S(p) ΓR S(k)D(p − k),

= − λ

Nc
Nf Nc

∫

d4k

(2π)4
d4p

(2π)4
2 p · k G (p− k, L)

[

p2 − T (p) T̄ (p)
] [

k2 − T (k) T̄ (k)
] , (4.7)

where we have used

k/− T̄ PL − T PR
(

k/ + T PL + T̄ PR

)(

k/− T̄ PL − T PR

) =
k/ − T̄ PL − T PR

k2 − T̄ T
, (4.8)

and

Tr
{

PL ( p/− T̄ PL − T PR)PR ( k/ − T̄ PL − T PR)
}

= 2 p · k. (4.9)

Using Wick rotation i.e. k → i kE , d
4k → i d4kE , we obtain the two-loop contribution in

Euclidean space

V2−loop = −4π2λNf

∫

d4kE
(2π)4

1
[

k2E + T (kE) T̄ (kE)
]

×
∫

d4pE
(2π)4

2 pE · kE e−L
∣

∣ pE−kE

∣

∣

[

p2E + T (pE) T̄ (pE)
]
∣

∣

∣
pE − kE

∣

∣

∣

. (4.10)

The angle integration can be evaluated as shown in appendix D to be

V2−loop = − λNf

4L5π3

∫ LΛ

0
dk̃E

k̃4E
[

k̃2E + L2 T (kE) T̄ (kE)
]

∫ LΛ

0
dp̃E

p̃4E
[

p̃2E + L2 T (pE) T̄ (pE)
]

×
∞
∑

n=0

(− 1)n

n !

{

− π (n− 1)A
n−3

2

(n+ 3) (n + 5)B

×
[

2 (A2 −B2) 2F1

( 3− n

4
,
5− n

4
; 1;

B2

A2

)

+
(

B2 (n+ 2)− 2A2
)

2F1

( 3− n

4
,
5− n

4
; 2;

B2

A2

)

]}

, (4.11)

where k̃E ≡ LkE , p̃E ≡ L pE , A ≡ p̃2E + k̃2E , B ≡ 2 p̃E k̃E . Henceforth, for convenience

we will simply write the Euclidean momentum without a subscript.

5 Results and Discussions

Adding all of the one-loop and two-loop contributions, the total effective potential becomes

Veff = V1−loop + V2−loop,

= Nc

∫

d4kE
(2π)4

[

T (k)T̄ (k)

k2 + T (k)T̄ (k)
− ln

(

1 +
T (k) T̄ (k)

k2

)

]

+ V2−loop. (5.1)
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Figure 2. Two-loop vacuum diagram for V2−loop, solid line is the fermion and dash line is the

scalar.

The resulting effective potential of the scalar shows the possibility of chiral symmetry

breaking at nontrivial T (k) 6= 0 since the sign of the one-loop contribution is opposite to

the classical action of the scalar. The 2-loop effect as given in the form of eq. (4.11) could

be either positive or negative depending on the relative sizes of each n-term. A closer

investigation reveals that the n = 0 term is the largest and it is negative. The odd-n

terms are positive with smaller values than the preceding even-n terms. Consequently,

the entire two-loop potential is negative. Since the chiral symmetric solution T = T̄ = 0

gives larger negative two-loop contribution than the chirally broken case (with smaller

denominator of the integrand in eq. (4.11)). It is thus possible that the difference of 2-loop

contributions would compensate the one-loop effect and alter the true vacuum of the theory

in a significant way. We will demonstrate that the two-loop contribution is small comparing

to the leading one-loop and the chiral symmetry breaking persists. In evaluation of the

momentum integrals, we will apply a UV-cutoff Λ required in non-renormalizable effective

field theory. The cutoff will be taken to be larger than T0 and smaller than 1/L.

5.1 1-loop

Since both one-loop and two-loop contributions scale with the number of flavour Nf , we

will simply suppress the Nf factor henceforth. First, we will consider 1-loop contribution

of the scalar to the effective potential and demonstrate that the potential has nontrivial

minima when using the ansatz solution of the gap equation as given in eq. (3.10). The

1-loop integrations, eq. (3.11), can be performed in two separate momentum regions and

rewritten as the following

Veff
Nc

=

∫

d4k

(2π)4

[

T (k)T̄ (k)

k2 + T (k)T̄ (k)
− ln

(

1 +
T (k) T̄ (k)

k2

)

]

,

=

(
∫ T0

0
+

∫ Λ

T0

)

d4k

(2π)4

[

T (k)T̄ (k)

k2 + T (k)T̄ (k)
− ln

(

1 +
T (k) T̄ (k)

k2

)

]

,
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= − T 4
0

16π2

(

ln 2− 1

2
+ 2

∞
∑

n=1

(−1)n−1(1− n)

n
F4n−3(LT0, LΛ;n)

)

. (5.2)

where we define the function

F4n−3(LT0, LΛ;n) ≡ E4n−3(2nLT0)− E4n−3(2nLΛ)

(

T0
Λ

)4n−4

,

Em(z) ≡
∫ ∞

1

e−zt

tm
dt.

The function F4n−3(LT0, LΛ;n) decreases very rapidly with n, therefore the sum in the

one-loop potential, eq. (5.2), can be approximated by truncating at finite n with a high

precision.

The one-loop contribution will be explored by fixing one and two of the 3 param-

eters, λ,L,Λ and numerically plot the effective potential with respect to the remaining

parameters. The physically-valid region of the parameter space for our SS NJL model is

T0 =
√

λ/L3 < Λ < 1/L. As shown in figure 3, the one-loop potential is negative at any

nonzero values of Λ, λ, L corresponding to nonzero values of T0 =
√

λ/L3. Since when

T = 0, the potential is zero and less preferred than negative potential occuring at any

coupling λ, chiral symmetry breaking thus naturally occurs for any weak coupling (i.e.

T0 < 1/L). In figure 3(a), the potential approaches negative constant for Λ & 0.7 − 0.8

for λ = 0.1, L = 1. If we instead fix the UV-cutoff scale Λ = 0.5, the potential will be

a decreasing function with λ as demonstrated in figure 3(b). Figure 3(c) also shows the

one-loop potential at fixed λ = 0.3,Λ = 0.5 as a function of L. It is important that we

restrict ourselves to the physical region T0 < Λ < 1/L in our consideration of the effective

potential in the nonlocal NJL model.

We also plot the potential landscape in the physical region at fixed L = 1, as is shown

in figure 4.

5.2 2-loop

In this section, we investigate the 2-loop contribution to the effective potential. Using the

one-loop approximate scalar ansatz, eq. (3.10), the two loop integration given by eq. (4.11)

can be separated into 3 terms,

V2−loop =
λ

4π3L5

[
∫ T0L

0
dk̃

∫ T0L

0
dp̃+

∫ ΛL

T0L
dk̃

∫ ΛL

T0L
dp̃+ 2

∫ T0L

0
dk̃

∫ ΛL

T0L
dp̃

]

× k̃4
[

k̃2 + L2 T (k̃/L) T̄ (k̃/L)
]

p̃4
[

p̃2 + L2 T (p̃/L) T̄ (p̃/L)
]

×
∞
∑

n=0

(− 1)n

n !

{

π (n− 1)A
n−3

2

(n+ 3) (n + 5)B

×
[

2 (A2 −B2) 2F1

( 3− n

4
,
5− n

4
; 1;

B2

A2

)

+
(

B2 (n+ 2)− 2A2
)

2F1

( 3− n

4
,
5− n

4
; 2;

B2

A2

)

]}

. (5.3)
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Figure 3. One-loop effective potential per colour as a function of Λ, λ, L.

Figure 4. One-loop effective potential per colour as a function of Λ, λ for L = 1.

The overall 2-loop contribution scales with λ/L5. The integration in the low momentum

region has additional (T0L)
6×(T0L)

n−1 factor for each n-term in the sum. The integration

in the high momentum region, on the other hand, has additional (ΛL)6 × (ΛL)n−1 de-

pendence for each n-term. The cross term integration has additional overall scaling factor

(T0L)
3(ΛL)3 for all n. We perform numerical integration on each n-term and add them

up. Since the integrand for each n is a smooth and well-behave function with no singulari-

ties and abrupt changes, numerical integration yield very precise results. The value of the
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integration for each n-term decreases rapidly with n and the error is less than 10−6 if we

truncate the sum at n = 10.

Figure 5 shows the effect of 2-loop contribution to the effective potential. Similar to

the one-loop case, the chiral-symmetry broken vacuum solution has lower energy than the

chiral symmetric one (T = T̄ = 0). However, there is one crucial difference between one and

two-loop potential. The magnitude of 2-loop contribution could increase with the cutoff

in contrast to the 1-loop which saturates to negative constant. This is originated from the

ΛL dependence of the potential in eq. (5.3) getting larger with increasing Λ resulting in

the decreasing function of the effective potential with the cutoff.

V1-loop

V1-loop+V2-loop

Nc = 3, Λ = 0.1, L = 1

0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.00007
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-0.00004

-0.00003

L

V
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Effective potential versus UV-cutoff
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V1-loop
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V2-loopHsymmetricL

V2-loop

V1-loopHNc = 1L
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0.0000

Λ

V

Potentials versus coupling Λ for L=1, L=0.9

(c)

Figure 5. Effective potential up to 2-loop as a function of Λ for Nc = 3, λ = 0.1 (a), 0.01 (b);

L = 1. The 2-loop contributions for both chirally broken and symmetric solutions are shown in (c)

in comparison to the chirally broken 1-loop.

When the ’t Hooft coupling is very small, λ . 0.08, interesting phenomenon occurs. As

we can see from figure 6 (a), the ratio (magnitude) of the 2-loop to 1-loop increases sharply

as λ→ 0. From eq. (5.2) and (5.3), since V1−loop ∼ λ2Nc while V2−loop ∼ λ, the ratio of the

2-loop to 1-loop potential will scale as (λNc)
−1 and the 2-loop contribution will be dominant

for sufficiently small λ. However, since both one and two loop contributions are negative

and together they are larger in magnitude than the two-loop potential of the chirally sym-

metric solution (figure 5 (c)), the chirally broken vacuum always has lower potential as is

demonstrated in Figure 5 (c) and 6 (b). Chiral symmetry breaking therefore persists for
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Figure 6. The ratio of V2−loop/V1−loop decreases rapidly with increasing λ (a). In (b), the effec-

tive potential for small λ remains negative (and smaller than the chirally symmetric case), chiral

symmetry breaking thus persists. The cutoff Λ is set to 0.9 and L = 1 for these plots.

arbitrary weak coupling. One might anticipate the chirally symmetric potential to become

more negative than the chirally broken one as λ → 0 since V2−loop(sym) < V2−loop(χSB)

and V2−loop/V1−loop ∼ (Ncλ)
−1. However, a closer investigation reveals that the differ-

ence V2−loop(sym) −V2−loop(χSB) ≃ λV2−loop(sym) for very small λ and V1−loop(χSB) is

actually larger in magnitude (i.e. more negative) than λV2−loop(sym). Consequently, the

chirally broken solution still has lower potential than the chirally symmetric one even for

extremely small coupling.

6 Conclusions

SS intersecting-branes model provides a geometrized model of chiral symmetry breaking

and confinement in both weak and strong coupling regimes. The effective field theory at

low energy (E < 1/L) from the SS model is a type of NJL model with non-local 4-fermion

interaction. In constrast to conventional NJL with 4-fermion contact interaction which

requires sufficiently large coupling to break chiral symmetry, the holographic non-local

NJL model prefers chirally broken phase for arbitrarily weak coupling at the 1-loop level.

In this work, we found that the 2-loop effect does NOT change this feature of the model

and the chiral symmetry breaking persists for arbitrary weak coupling. The 2-loop effect

can be understood as the antiscreening of the non-local 4-fermion interaction induced from

the coupling of fermion with the cloud of scalar condensate. The 2-loop contribution in our

model is suppressed below the 1-loop contribution for λ & 0.08. One of the suppression

factor is the number of colour degrees of freedom Nc = 3 when the coupling λ is fixed.

Bosonization of the fermion bilinear into a colour-singlet scalar naturally matches the loop

expansion of the effective potential with the 1/Nc expansion. The large-Nc expansion

makes it manifest that the 1-loop contribution scales as (Nc)
1 and the 2-loop scales as

(Nc)
0. The higher-order loops are therefore suppressed by negative power of Nc and so on.

The solution to the gap equation in our model gives fermion condensate proportional

to
√

λ/L3 resulting in λ2-dependence of the one-loop potential while the two-loop scales as
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λ. Therefore the two-loop contribution becomes dominant to the one-loop for very small

coupling. However, since the difference between the two-loop contribution of the chirally

symmetric and broken solutions is smaller than the size of the one-loop potential of the

chirally broken solution, chiral symmetry remains broken for arbitrary small coupling.
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A Integrating out heavy gauge field for single intersection model

According to the standard technique of path integral (see [30], or textbooks in QFT), the

generating function of the action in eq. (2.4) is written by

∫

[dAM ]∆FP exp
{

iS
(

AM , qL
)}

,

=

∫

[dAM ]∆FP exp
{

i

∫

d5x
1

g25

[

1

2
AM �AM + δ (x4)JM AM

]

+ i

∫

d4x q†L σ̄
µ i ∂µ qL

}

,

=

∫

[dAM ]∆FP

× exp
{ i

g25

∫

d5x
1

2
AM �AM

− i

g25

∫

d5x d5y δ (x4) δ (y4)
1

2
JM (x)GMN (x− y , x4 − y4)JN (y)

+ i

∫

d4x q†L σ̄
µ i ∂µ qL

}

, (A.1)

where ∆FP is the Faddeev-Popov’s determinant. In the Feynman-gauge, the propagator,

GMN (x, x4) of the gauge field AM can be written as

GMN

(

x , x4
)

=
1

8π2
gMN G

(

x , x4
)

,

=
1

8π2
gMN

((x4)2 − x2)3/2
. (A.2)
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Using eq. (2.5,A.1) in eq. (2.3), we obtain

eiSeff =

∫

[dAM ]∆FP e
i
∫

d4xL

(

AM (x),qL(x)
)

/

∫

[dAM ]∆FP e
i
∫

d4xL

(

AM (x),0
)

=

∫

[dAM ]∆FP

× exp
{ i

g25

∫

d5x
1

2
AM �AM

− i

g25

∫

d5x d5y δ (x4) δ (y4)
1

2
JM (x)GMN (x− y , x4 − y4)JN (y)

+ i

∫

d4x q†L σ̄
µ i ∂µ qL

}

/

∫

[dAM ]∆FP exp
{ i

g25

∫

d5x
1

2
AM �AM

}

,

= exp
{

− i

g25

∫

d4x d4y
1

16π2
g25 q

†
L(x) σ̄

µ qL(x)G(x − y , 0) g25 q
†
L(y) σ̄µ qL(y)

+ i

∫

d4x q†L σ̄
µ i ∂µ qL

}

,

= exp
{

− i

∫

d4x d4y
g25

16π2
G(x− y , 0)

[

q†L(x) σ̄
µ qL(y)

] [

q†L(y) σ̄µ qL(x)
]

+ i

∫

d4x q†L σ̄
µ i ∂µ qL

}

, (A.3)

where we used J (4) = 0 and Fierz identity (q†L,1 σ̄
µ qL,2) (q

†
L,3 σ̄µ qL,4) = (q†L,1 σ̄

µ qL,4) (q
†
L,3 σ̄µ qL,2) .

B Fourier transform in Euclidean 5-dimensions

The coordinates of a d dimensional Euclidean space are given by

x1 = x cos θ1 ,

x2 = x sin θ1 cos θ2 ,

x3 = x sin θ1 sin θ2 cos θ3 ,

x4 = x sin θ1 sin θ2 sin θ3 cos θ4 ,

x5 = x sin θ1 sin θ2 sin θ3 sin θ4 cos θ5,
...

xn = x sin θ1 sin θ2 sin θ3 · · · sin θn−1 cos θn

xn+1 = x sin θ1 sin θ2 sin θ3 · · · sin θn−1 sin θn, (B.1)

where only θn ∈ [0, 2π) (so that xn+1 ∈ [−x,+x, ]) and other angles range from 0 to π. For

Euclidean momentum in 5 dimensions, the components are

k1 = k cos θ1 ,

k2 = k sin θ1 cos θ2 ,
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k3 = k sin θ1 sin θ2 cos θ3 ,

k4 = k sin θ1 sin θ2 sin θ3 cos θ4 ,

k5 = k sin θ1 sin θ2 sin θ3 sin θ4 . (B.2)

The volume element in 5-dimension is thus

d5k = k4 sin3 θ1 sin2 θ2 sin θ3 dk dθ1 dθ2 dθ3 dθ4. (B.3)

With this measure, the Fourier transform in 5 dimensional Euclidean space can be

performed as the following

F (x) =

∫

d5 k

(2π)5
F̃ (k) ei k·x =

∫

d5 k

(2π)5
F̃ (k) ei k x cos θ1 ,

=
1

(2π)5

∫

dk dθ1 dθ2 dθ3 dθ4 k
4 sin3 θ1 sin2 θ2 sin θ3 F̃ (k) e

i k x cos θ1 ,

=
1

(2π)5

∫ ∞

0
F̃ (k) k4 dk

∫ π

0
ei k x cos θ1 sin3 θ1 dθ1

∫ π

0
sin2 θ2 dθ2

∫ π

0
sin θ3 dθ3

∫ 2π

0
dθ4,

=
1

4π3

∫ ∞

0
dk F̃ (k) k4

[sin(k x)

(k x)3
− cos(k x)

(k x)2

]

. (B.4)

Given an explicit functional form F̃ (k), the transform can be completed.

However, in the situation where the quarks are localized at particular x4 and the gauge

fields in 5 dimensions are integrated out to obtain the effective 4-dimensional action, we

will need to perform the Fourier transform of the propagator given in eq. (A.2) under

the condition that the gauge fields are propagating at a fixed distance in x4 direction.

The Fourier integration will split into a delta function in x4 coordinate and the Fourier

transform in the Euclidean 4 dimensions.

For example, in our model, the Fourier transform becomes

G(k , k4) =

∫

d5 xG(x ,L) ei k·x =

∫ ∞

−∞
dx4 e

i k4 x4

∫

d4 xG(x ,L) e− i k·x,

= δ(k4)

∫

dx dθ1 dθ2 dθ3 x
3 sin2 θ1 sin θ2G(x ,L) e

i k x cos θ1 ,

= δ(k4)

∫ ∞

0

1
(

L2 + x̃2
)

3

2

x3 dx
π J1(k x)

k x
(2) (2π),

=
4π2

k
δ(k4)

∫ ∞

0

(k x)2 J1(k x)
(

(k L)2 + (k x)2
)

3

2

d(k x),

= δ(k4) 4π
2 e

−Lk

k
, (B.5)

where Jn(x) , is Bessel function. If we neglect the momentum in bulk spacetime say, k4 = 0,

we obtain

G(k , 0) = 4π2
e−Lk

k
. (B.6)
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C Gap equation at two-loop

In this section, we will derive the gap equation at the two-loop level. Start with the

two-loop effective potential

Veff = Nc

[

∫

d4xT (x) T̄ (x)
(x2 + L2)

3

2

λ
−
∫

d4k

(2π)4
ln

(

1 +
T (k) T̄ (k)

k2

)

]

− λ

∫

d4k

(2π)4

∫

d4p

(2π)4
G(p − k, L)

[

k2 + T (k) T̄ (k)
]

2 p · k
[

p2 + T (p) T̄ (p)
] . (C.1)

The functional derivative of Veff with respect to T̄ (q) gives the gap equation

δ Veff
δ T̄ (q)

=
δ

δ T̄ (q)

{

Nc

∫

d4xT (x)

∫

d4k

(2π)4
e−ik·x T̄ (k)

(x2 + L2)
3

2

λ

−Nc

∫

d4k

(2π)4
ln

(

1 +
T (k) T̄ (k)

k2

)

−λ

∫

d4k

(2π)4

∫

d4p

(2π)4
G(p − k, L)

[

k2 + T (k) T̄ (k)
]

2 p · k
[

p2 + T (p) T̄ (p)
]

}

,

=
Nc

λ

∫

d4xT (x)

∫

d4k

(2π)4
e−ik·x δ(4)(k − q) (x2 + L2)

3

2

−Nc

∫

d4k

(2π)4
T (k)

k2 + T (k) T̄ (k)
δ(4)(k − q)

−λ

∫

d4k

(2π)4

∫

d4p

(2π)4
2 p · kG(p − k, L)

×
(

− k2 T (p) δ(4)(p − q)
[

k2 + T (k) T̄ (k)
]2 [

p2 + T (p) T̄ (p)
]2 − T (k) T̄ (k)T (p) δ(4)(p − q)

[

k2 + T (k) T̄ (k)
]2 [

p2 + T (p) T̄ (p)
]2

− T (p) T̄ (p)T (k) δ(4)(k − q)
[

k2 + T (k) T̄ (k)
]2 [

p2 + T (p) T̄ (p)
]2 − p2 T (k) δ(4)(k − q)

[

k2 + T (k) T̄ (k)
]2 [

p2 + T (p) T̄ (p)
]2

)

,

=
Nc

λ (2π)4

∫

d4x e−iq·x T (x)

G(x,L)
− Nc

(2π)4
T (q)

q2 + T (q) T̄ (q)

+ 2
λ

(2π)4

∫

d4k

(2π)4
2 q · k G(q − k, L) k2 T (q)

[

k2 + T (k) T̄ (k)
]2 [

q2 + T (q) T̄ (q)
]2

+2
λ

(2π)4

∫

d4k

(2π)4
2 q · k G(q − k, L)T (k) T̄ (k)T (q)
[

k2 + T (k) T̄ (k)
]2 [

q2 + T (q) T̄ (q)
]2 , (C.2)

where we have used the symmetric property of the propagator G(k, L) i.e. G(k − p, L) =

G(|k − p| , L) = G(|p − k| , L). One then obtains the E.O.M. (δ Veff/δ T̄ (q) = 0) as

Nc

λ

∫

d4x e−iq·x T (x)

G(x,L)
− Nc

T (q)

q2 + T (q) T̄ (q)

+ 2λ

∫

d4k

(2π)4
2 q · kG(q − k, L)

k2 T (q)
[

k2 + T (k) T̄ (k)
]2 [

q2 + T (q) T̄ (q)
]2

– 19 –



+2λ

∫

d4k

(2π)4
2 q · kG(q − k, L)

T (k) T̄ (k)T (q)
[

k2 + T (k) T̄ (k)
]2 [

q2 + T (q) T̄ (q)
]2 = 0 . (C.3)

C.1 The k2 ≫ T (k) T̄ (k) approximation

We will approximate the gap equation in two regimes. First when k2 ≫ T (k) T̄ (k), eq. (C.3)

becomes

Nc

λ

∫

d4x e−iq·x T (x)

G(x,L)
− Nc

T (q)

q2

+2λ

∫

d4k

(2π)4
2 q · k G(q − k, L)

k2 T (q)

k4 q4

+2λ

∫

d4k

(2π)4
2 q · k G(q − k, L)

T (k) T̄ (k)T (q)

k4 q4
= 0. (C.4)

Multiply by q4 and neglect the last term in the left-hand side, we obtain

Nc q
4

λ

∫

d4x e−iq·x T (x)

G(x,L)
− Nc q

2T (q) + 2λ

∫

d4k

(2π)4
2 q · k G(q − k, L)

T (q)

k2
= 0 .(C.5)

The last term represents the non-local screening effect of the scalar which is Nc-suppressed

comparing to the other terms. If we neglect the screening effect and Fourier transform the

rest, the one-loop gap equation is recovered,

∇2

(

T (x)

G(x,L)

)

+ λT (x) = 0, (C.6)

where ∇2 is the Euclidean Laplacian in 4 dimensions.

C.2 The T (k) T̄ (k) ≫ k2 approximation

Next, we consider to the low momentum regime i.e. T (k) T̄ (k) ≫ k2 , the E.O.M. in this

limit is given by

Nc

λ

∫

d4x e−iq·x T (x)

G(x,L)
− Nc

T (q)

T (q) T̄ (q)

+ 2λ

∫

d4k

(2π)4
2 q · kG(q − k, L)

k2 T (q)
[

T (k) T̄ (k)
]2 [

T (q) T̄ (q)
]2

+2λ

∫

d4k

(2π)4
2 q · kG(q − k, L)

T (k) T̄ (k)T (q)
[

T (k) T̄ (k)
]2 [

T (q) T̄ (q)
]2 = 0. (C.7)

Neglecting the third term in the left-hand side, the gap equation becomes

Nc

λ

∫

d4x e−iq·x T (x)

G(x,L)
= Nc

1

T̄ (q)
− 2λ

∫

d4k

(2π)4
2 q · k G(q − k, L)

T (k) T̄ (k)T (q) T̄ (q)

1

T̄ (q)
. (C.8)

The last term on the right-hand side represents the non-local screening effect of the scalar

which is Nc-suppressed. Again, the one-loop gap equation is recovered when the screening

effect is neglected.

The gap equation at one-loop level is solved in ref. [27] as given in eq. (3.10). We use

this approximate solution in the evaluation of the effective potential.
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D Evaluation of the 2-loop angle integration

We will integrate out the internal angle of Euclidean 4-dimension, we start with the two-

loop effective potential,

V2−loop = −4π2λNf

∫

d4kE
(2π)4

1
[

k2E + T (kE) T̄ (kE)
]

∫

d4pE
(2π)4

2 pE · kE
[

p2E + T (pE) T̄ (pE)
]

e−L
∣

∣ pE−kE

∣

∣

∣

∣

∣
pE − kE

∣

∣

∣

= −4π2λNf

(2π)8

∫ Λ

0
dkE

(2π2) k4E
[

k2E + T (kE) T̄ (kE)
]

∫ Λ

0
dpE

∫ π

0
dθ

2 (4π) p4E sin2 θ cos θ
[

p2E + T (pE) T̄ (pE)
]

e−L
√

p2
E
−2 pE kE cos θ+k2

E

√

p2E − 2 pE kE cos θ + k2E

= − λNf

4L5 π3

∫ LΛ

0
d(LkE)

(LkE)
4

[

(LkE)2 + L2 T (kE) T̄ (kE)
]

×
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0
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4

[

(LpE)2 + L2 T (pE) T̄ (pE)
]

×
∫ 1

− 1
d(cos θ) cos θ

√

1− cos2 θ
e−

√
(LpE)2−2 (LpE) (LkE) cos θ+(LkE)2

√

(LpE)2 − 2 (LpE) (LkE) cos θ + (LkE)2

= − λNf

4L5π3
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0
dk̃E

k̃4E
[

k̃2E + L2 T (kE) T̄ (kE)
]

∫ LΛ

0
dp̃E

p̃4E
[

p̃2E + L2 T (pE) T̄ (pE)
]

×
∫ 1

− 1
dx x

√

1− x2
e−

√
A−B x

√
A−B x

, (D.1)

where k̃E ≡ LkE , p̃E ≡ L pE , A ≡ p̃2E + k̃2E , B ≡ 2 p̃E k̃E .

Expanding function eu

u = 1
u

∑∞
n=0

un

n ! gives

V2−loop = − λNf

4L5π3
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dk̃E

k̃4E
[

k̃2E + L2 T (kE) T̄ (kE)
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×
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,

= − λNf
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[
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]
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0
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×
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∑
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{

− π (n− 1)A
n−3

2

(n+ 3) (n + 5)B

×
[
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4
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, (D.2)

where 2F1(a, b; c; z) is the hypergeometric function.
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We review the holographic multiquark states in the deconfined quark-gluon plasma. Nuclear
matter can become deconfined by extremely high temperature and/or density. In the deconfined
nuclear medium, bound states with colour degrees of freedom are allowed to exist. Using
holographic approach, the binding energy and the screening length of the multiquarks can be
calculated. Using the deconfined Sakai-Sugimoto model, the phase diagram of the multiquark
phase, the vacuum phase, and the chiral-symmetric quark-gluon plasma can be obtained. Then
we review the magnetic properties of the multiquarks and their phase diagrams. The multiquark
phase is compared with the pure pion gradient, the magnetized vacuum, and the chiral-symmetric
quark-gluon plasma phases. For moderate temperature and sufficiently large density at a fixed
magnetic field, themixed phase ofmultiquark and pion gradient is themost energetically preferred
phase.

1. Introduction

At low energy, only hadrons can be observed. Due to the large coupling of the strong
interaction on large distance scale, the genuine constituents of the nuclear matter are confined
within the baryons and mesons. They can be explored only with a high energy probe,
for example, in the deep inelastic scattering (DIS) experiments. When the energy scale
involved is sufficiently large, roughly few hundred MeVs, the interaction among quarks and
gluons become perturbatively weak, the phenomenon known as the asymptotic freedom. The
quarks and gluons subsequently become “deconfined” from the confinement of the strong
interaction.

For effectively free quarks and gluons, perturbative treatment of the Quantum
Chromodynamics (QCD) has been proven very successful in making verifiable quantitative
and reliable predictions. The QCD background calculations of the scattering of quarks

mailto:piyabut@gmail.com
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and gluons at the Tevatron give accurate and vital results, which are crucial in providing
the benchmark for the search of New Physics beyond the Standard Model. Nevertheless,
unexpected ridge-like signals related to the strong interaction are already observed from the
collision of proton and proton at the Large Hadron Collider (LHC) [1]. Further investigations
are required in order to determine whether this ridge structure could be explained by the
perturbative QCD or if it is nonperturbative in nature.

A general picture of the deconfinement process of the quarks and gluons within
hadrons is currently incomplete at the most. Naively, from argument of the RGE
(Renormalization Group Equation) running of the beta function, effectively free quarks and
gluons are expected to appear at high energies and/or temperatures. Transition from non-
perturbative phase of nuclear matter to the perturbative regime, where the perturbative
QCD is reliable, is explored most successfully in the lattice approach. Lattice studies of the
QCD predicts the deconfinement temperature around 175MeV [2]. Nuclear matter at such
temperature would undergo a phase transition into a deconfined phase called the quark-
gluon plasma (QGP). Most bound states of light quarks wouldmelt down at this temperature
leaving free quarks and gluons in the plasma. Remarkably, themesonic states of heavy quarks
(e.g., charmonium) in the nuclear matter at such high temperature tend to persist melting
at least until 1.5Tc [3–5] due to the remaining screened Coulomb-type binding potential
between quark and antiquark. Multiquark states such as baryons can also exist in the QGP
up to certain temperatures provided that the baryonic charge density is sufficiently large.

In the confined phase, only colour singlet states can exist as free particle due to the
confinement. Above the deconfinement, quarks and gluons with colour charges can propa-
gate with more freedom in the plasma. It is therefore possible that the coloured multiquark
states such as diquarks could also exist in the deconfined nuclear medium. Similar to the
mesonic states of the heavy quarks, these multiquarks could persist melting up to relatively
high temperature above the deconfinement. We can expect the multiquarks to be abundant in
the nuclear matter when the density is large up to temperature well above the deconfinement
temperature. Consequently, it is interesting to investigate the physical properties of the
multiquarks as well as their thermodynamical phase diagram in details. Unfortunately,
perturbative QCD based on quarks and gluons is not reliable during the deconfinement phase
transition. Lattice QCD is applicable only when the baryon density is small.

An alternative approach to study the strongly coupled gauge theory is the holographic
model based on the AdS/CFT correspondence [6, 7]. A string theory in the curved
background generated by D-branes source is conjectured to be dual to the gauge theory
on the branes. The duality suggests a correspondence between the strongly coupled gauge
theory on the branes and the weakly coupled string theory in the bulk. Extension of the
duality to the finite temperature gauge theory can be done by adding a black hole horizon
to the near-horizon limit of the background spacetime [8]. Baryons and multiquarks can be
holographically constructed using the baryon vertex and strings [9–12].

In this paper, we will review the physics of the holographic multiquarks in the
quark-gluon plasma using mainly the Sakai-Sugimoto (SS) model [13, 14]. The SS model
and the holographic setup of the multiquarks is discussed in Section 2. Section 3 describes
the thermodynamical properties and the phase diagram of the multiquark nuclear phase.
Magnetic properties of the multiquark phase and the corresponding phase diagram are
discussed in Sections 4 and 5, respectively. Section 6 concludes our paper. To present the main
results of this paper, a summary table of the deconfined nuclear phase in the SSmodel is given
in Table 1.
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Table 1: Summary table of the phases in the deconfined Sakai-Sugimoto model, B represents the external
magnetic field.

B = 0 vacuum Multiquark (MQ) χS-QGP
Region in parameter
space d = 0 (i.e., μ < μsource) d > 0 (i.e., μ ≥ μsource) d > 0

0 ≤ ns � 0.3

Preferred at low μ, low T High μ, low T high T
Important
properties

Mixing of different ns-multiquarks

B /= 0 magnetized vacuum ∇ϕ MQ-∇ϕ χS-QGP

Region in
parameter space

μsource = 0 μsource = 0 μsource > 0 μsource = 0
∇ϕ = 0 ∇ϕ > 0 ∇ϕ > 0 ∇ϕ = 0
d = 0 d = (3/2)B∇ϕ d > 0 (μ ≥ μsource) d > 0
jA = 0 jA = 0 jA = 0 jA = (3/2)Bμ

0 ≤ ns � 0.3

Preferred at none Low μ, low T High μ, low T High T

Important
properties

Configuration A, B
merging at high T
and/or high B

2. Multiquark States and the Holographic Models

In addition to baryons and mesons, the possibility of multiquark states were recognized
by Gell-Mann since the proposal of the quark model. QmQ

n
-multiquark (n + m > 3) such

as the tetraquark and dibaryon were proposed since 1977 by Jaffe [15–17] using the MIT
bag model. There are theoretical models of colour-singlet multiquarks using interactions
of various origins, for example, chromomagnetism, flux tube confinement, and hadronic
molecules. Despite the theoretical possibilities, conclusive discovery of the multiquarks has
yet to be confirmed experimentally (see [18] and references therein).

Series of experimental results from RHIC suggests that the produced QGP is strongly
coupled (sQGP) [19–22]. The fact that the QGP is strongly coupled near-and-above the
deconfinement temperature Tc suggests the possibility of the existence of exotic bound states
with colour degrees of freedom in the deconfined QGP. Recall that an interaction between
two heavy quarks in the confined phase at 0 < T < Tc can be described empirically by the
screened Cornell potential

VQQ(r, T) = σr

[
1 − e−MD(T)r

MD(T)r

]
− α

r

[
e−MD(T)r

]
, (2.1)

where MD is the Debye screening mass depending on T and α is the effective coupling.
The first part represents the (colour-screened) confining force due to QCD string with the
effective string tension σ; it is around 0.20 (GeV)2 as suggested by the lattice studies. The
second part represents the effective (colour-screened) Coulomb potential due to transverse
string oscillation. By definition, the effective string tension σ vanishes at T > Tc. As a result,
only the screened Coulomb part contributes to the interaction between quarks but within the
range of screening lengthM−1

D . Yet, as suggested by [23], a short string-like configuration of
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colour fields at low T becomes longer strings at-and-near Tc which contribute to the binding
between quarks and gluons. Therefore, the bound states of gluons and quarks can exist in
both colour-singlet and colour-nonsinglet forms in the sQGP.

The studies of the multibody bound states in the sQGP were initiated by Shuryak and
colleagues [23–25]. Based on the studies in [23], three proposed multibody bound states: (i)
diquark or “polymer-chain” (qgg · · · gq); (ii) baryons (qqq); (iii) closed (3-)chains of gluons
(ggg) seem to exist only for T = (1–1.5)Tc. Importantly, the existence of these bound states
could affect the thermodynamical and hydrodynamical properties of the sQGP.

The holographicmodels of colour-singlet baryonwas originally investigated byWitten
et al. [9, 10]. In the AdS5 × S5 background, a D5-brane wrapping the subspace S5 with Nc

strings attached is proposed to be a dual description of a baryon. A holographic dual of a
k-quark (k < Nc) with colour degrees of freedom is discussed in [11] (see also [26]) for the
supersymmetric background. There is a number of interesting articles investigating various
possibilities of the multiquarks in both confined and deconfined medium, some of them
consider deformed baryon vertex [12, 27–33]. Notably, [12] uses a simplified configuration
with only one point-like baryon vertex to describe a variety of classes of the multiquarks with
and without the colour degrees of freedom. We will focus our attention to such multiquark
model in this paper.

In recent years, the AdS/CFT correspondence has attracted interests in its applicability
to the phenomenological studies of non-perturbative QCD. However, this correspondence
cannot provide the gravity dual of the large Nc QCD. As its name suggests, the AdS/CFT
have the gauge theory side, which is conformal, differing from the confining behaviour of the
real-world QCD. There has been many attempts to engineer the holographic model whose
the confining feature is taken into account [8, 34–36].

One natural way is to consider a stack of Nc D4-branes, in Type IIA string theory,
whose the world volume possesses one compact spatial direction [8]. In the near-horizon
metric of a near-extremal D4-brane, the compactified spatial circle shrinks to zero size at some
finite value of the radial direction representing a smooth cutoff of the spacetime. This feature
can provide us with the confining spacetime background in which the potential between a
holographic quark-antiquark bound state is mainly contributed by the tension of string lying
along the “hard-wall.” Consequently, the potential is linearly proportional to the separation
between two ends of the string resulting in the confinement of quarks and antiquarks in the
dual gauge theory.

At finite temperature, the time coordinate becomes Wick-rotated, and the asymptotic
circumference of the time circle equals to the inverse of the temperature, T−1. Consequently,
the confining spacetime background at finite temperature has two compact directions. The
metric of the geometry then can be written as

ds2 =
(

u

RD4

)3/2[
δij dx

idxj + dθ21 + f(u)dθ
2
2

]
+
(
RD4

u

)3/2
[
du2

f(u)
+ u2dΩ4

]
, (2.2)

where θ1 is the Euclidean time with temperature dependent period δθ1 = β ≡ T−1, θ2 is the
compact spatial circle with period δθ2 ≡ (4π/3)(R3/2/u1/2Λ ), and f(u) ≡ 1 − (uΛ/u)

3. Notice
that f(u) equals zero for u = uΛ but equals one as u approaches infinity. This f(u) factor
renders the θ2 − u subspace a cigar-like shape, while the θ1 − u subspace has a cylindrical
shape. However, there is an alternative supergravity solutionwhose the time and the compact
spatial coordinates exchange the role. That is, θ1 is the compact spatial coordinate with fixed



Advances in High Energy Physics 5

Table 2: Brane configuration of the Sakai-Sugimoto model.

0 1 2 3 4 5 6 7 8 9
Nc D4 o x x x o
Nf D8(D8) o x x x x x x x x

circumference, θ2 is the Euclidean time with period δθ2 = β = (4π/3)(R3/2/u1/2T ), and
f(u) ≡ 1 − (uT/u)

3. In other words, there are two geometries which can be the supergravity
solution. The comparison of the free energy between these two competing geometries tells
us about the deconfinement phase transition in the gauge theory side. It is important to
emphasize that the asymptotic circumference of the time circle can be variable depending on
the temperature, namely, δθ1 = T−1, while the θ2-circle has a fixed circumference. As a result,
the phase transition occurs once the asymptotic circumferences of the two circles become the
same in both geometries such that they have the same value of free energy. This gives rise
to the deconfinement transition line in the T − μ phase diagram of the holographic nuclear
matter [8, 37]. For a concise review, see [38].

2.1. The Sakai-Sugimoto Model

More realistic holographic dual of the large Nc QCD is the Sakai-Sugimoto (SS) model
[13, 14]. The brane construction of the SS model is a stack of Nc D4 branes intersecting
with Nf D8- and Nf anti-D8-branes, where Nf � Nc such that the presence of the probe
branes D8/anti-D8-branes does not affect the D4 background. This is called the probe limit,
corresponding to the quenched approximation in the lattice QCD.

Stack of Nf D8 and D8 branes are introduced as the flavour branes. They are located
at separation distance L0 along the compactified x4 direction at the boundary u → ∞. Open-
string excitation with one end on the flavour branes behave like a chiral “quark.” In the
setup where D8 and D8 are parallel in the (x4, u) projection, each chiral excitation on each
stack of branes transform independently, therefore the theory has a chiral symmetry. For the
setup where D8 and D8 connect, forming a U-shape or a V-shape configuration in the (x4, u)
projection, chiral symmetry is broken.

To obtain a SUSY broken QCD at low energy, the boundary conditions of the
superpartners in the x4 direction are chosen so that the zeroth modes vanish (Scherk-Schwarz
mechanism). For energies below the first KKmodes, the gauge theory therefore contains only
gluons and chiral quarks. If the number of the stack of D4-branes sourceNc is chosen to be 3,
this low-energy gauge theory will look exactly like QCD. The brane configuration of the SS
model is shown in Table 2.

Note that the “x” sign signifies that the coordinate is occupied by an infinite extending
direction of the D-brane world volume and the “o” signmeans that the coordinate is occupied
by a compact direction of the D-brane world volume. This holographic model is a QCD-like
theory in many aspects. (i) It is nonsupersymmetric resulting from the antiperiodicity for
superpartners around the x4 circle. (ii) It has the confining behaviour and the deconfinement
phase transition in the same way as mentioned above. In the confined phase, the x4

coordinate is the cigar-like compact direction and x0 (the Euclidean time) is the cylindrical
compact direction. In the deconfined phase, the two coordinates exchange their roles. To
summarize, the coordinates θ1 and θ2 in (2.2) can be specified in the confined and deconfined
phase as shown in Table 3.
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Table 3: Geometric assignment of the compactified bulk coordinates in the Sakai-Sugimoto model.

Confined phase (T < Tdeconf) Deconfined phase (T > Tdeconf)
θ1 x0 x4

θ2 x4 x0

f(u) 1 − (uΛ/u)
3 1 − (uT/u)

3

(iii) It has dynamical quarks resulting from the presence of the flavour branes. (iv) The
phases of chiral symmetry breaking and chiral symmetric quark-gluon plasma (χS-QGP) can
be realized. There exist two configurations of the flavour D8- and anti-D8-branes, both satisfy
the equation of motion. One is the connected configuration of the D8- and anti-D8-branes
representing the chiral symmetry breaking phase. Another is the parallel configuration of the
D8- and anti-D8-branes lying along the radial direction of the bulk spacetime representing
the chiral symmetric phase. Note that Tchiral = Tdeconf when the separation between the D8-
and anti-D8-branes L0 � 0.97R; R ≡ the radius of the x4 circle, while Tdeconf < Tchiral when
L0 � 0.97R [37].

Since the SS model is the holographic model which gives exactly the particle content
of the QCD at low energy, we will consider the holographic multiquarks in the deconfined SS
model. The idea is to construct a gravity dual of the 5-dimensional gauge theory with chiral
fermions which gives approximately the 4-dimensional QCD at low energy. The inevitable
supersymmetry of the dual gauge theory in the string construction is broken at the position
of the flavour branes used to introduce the chiral fermions. To construct the SS model, stack
of D4-branes is used as the source to generate a curved background of the type IIA string
theory. After taking the near-horizon limit and adding a black hole horizon, we arrive at the
following background metric:

ds2 =
(

u

RD4

)3/2(
f(u)dt2 + δij dxidxj + dx42

)
+
(
RD4

u

)3/2
(
u2dΩ2

4 +
du2

f(u)

)
(2.3)

F(4) =
2πNc

V4
ε4, eφ = gs

(
u

RD4

)3/4

, R3
D4 ≡ πgsNcl

3
s, (2.4)

where f(u) ≡ 1 − u3T/u
3, uT = 16π2R3

D4T
2/9. Note that the compact x4 coordinate (x4

transverse to the probe D8-branes), with arbitrary periodicity 2πR, never shrinks to zero. The
volume of the unit four-sphere Ω4 is denoted by V4 and the corresponding volume 4-form
by ε4. F(4) is the 4-form field strength, ls is the string length, and gs is the string coupling.
The dilaton in this background has u-dependence, and its value changes along the radial
direction u. This is a crucial difference in comparison to the AdS-Schwarzschild metric case
where dilaton contribution is constant.

In the Sakai-Sugimoto model of D4-D8-branes construction, the D4-brane wrapping
the S4 is used as the baryon vertex. Remarkably, it was found that the baryon can also
be realized as an instanton in the bulk of Nc D4-brane-induced background spacetime,
corresponding to baryon in the Skyrme model on the gauge theory side. This instanton can
be described in terms of the Chern-Simons action in the bulk. Therefore, these two pictures
of baryon are equivalent.

A Dn-brane wrapping an internal subspace Sn accommodate aU(1)which will couple
to certain n-form field of the string background and becomes charged under the U(1). To
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· · · · · ·

· · ·

(a) (b) (c)

Figure 1: An illustration of the holographic multiquark states (a) k-baryon with kh = k < Nc and kr =
Nc − k, (b) (Nc + k)-baryon with kh =Nc + k and kr = k, and (c) j-mesonance with kh = 2j and kr =Nc.

cancel this charge for the entire background, a number ofNc strings emerging from the vertex
is required. While a string emerging from the vertex contributes a negative U(1) charge,
a string entering the vertex in the opposite orientation contributes a positive unit of U(1)
charge. Therefore, as long as the number of strings emerging from the vertex subtracting the
number of strings entering the vertex is Nc, the configuration is allowed to exist since the
total charge of the background is still zero.

Based on the charge cancelation at the vertex, three classes of exotic multiquarks
are proposed in [12]. Namely, they are k-baryons, (Nc + k)-baryon, and j-mesonance
(strongly coupled bunch of mesons), corresponding to diquark, some exotic baryons such
as pentaquark and a bunch of mesons, respectively. We parameterize kh as the number of
hanging strings which extends from the vertex to the boundary and kr as the number of radial
strings extending from the vertex to the horizon. Figure 1 shows 3 classes of the holographic
multiquarks. Their conditions are summarized as the following.

For k-baryon,
kh + kr =Nc, kh = k. (2.5)

For (Nc + k)-baryon,

kh − kr =Nc, kh =Nc + k. (2.6)

For j-mesonance,

kh = 2j, kr =Nc. (2.7)

Note that the values of k and j can be as large asNc ×Nf .

2.2. Force Balance Condition

Using the field background shown in the last section, the total action of these exotic
multiquark states can be generally written as

S = SD4 + khSF1 + krS̃F1. (2.8)
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The DBI action of D4-brane

SDBI =
∫
dx0dξpTp, Tp =

(
e−φ(2π)pα′(p+1)/2

)−1√−det
(
g
)
, (2.9)

and the Nambu-Goto action of kh hanging strings and kr radial strings can be written as

SD4 =
τNcuc

√
f(uc)

6πα′
, SF1 =

τ

2πα′

∫L
0
dσ

√
u′2 + f(u)

(u
R

)3
, S̃F1 =

τ

2πα′
(uc − uT),

(2.10)

respectively. Note that τ is the total time over which we evaluate the action and uc is the
position where the D4-brane vertex is located.

Now let us write the force condition. As will be seen later, this is the equilibrium
condition for the existence of the multiquark states. Assume the vertex to be a point at the
cusp position uc that does not receive any distortion from the attached strings. The distortion
of the baryon vertex due to the attached strings is discussed in details in [39, 40]. Because of
the spherical symmetry of the configuration in the (x1, x2, x3) subspace, the action is sensitive
to only the variation in the holographic direction u. The variation of the action gives the
volume term as well as the surface term. The equation of motion is obtained by requiring
that the volume term and surface term vanishes separately. The volume term gives the Euler-
Lagrange equation which determines the shape of the hanging strings. On the other hand, the
surface term provides the equilibrium condition of the configuration at the tip uc under the
variation in the u direction, that is, the force balance condition at the cusp. It can be written
as [12]

Nc

3
G0(x) − khB + kr = 0, (2.11)

where

G0(x) ≡ 1 + x3/2√
1 − x3

, x ≡ uT
uc

< 1, B ≡ u′c√
u′c

2 + f(uc)(uc/RD4)
3
. (2.12)

Obviously, B is always less than one, thus we obtain the equilibrium condition

kh >
Nc

3
G0(x) + kr. (2.13)

Together with (2.5), (2.6), and (2.7), we obtain the lower bound of the hanging string
parameter for each multiquark configuration as

for k-baryon,

kh = k >
Nc

6
(G0(x) + 3), (2.14)

for (Nc + k)-baryon,

kh =Nc + k >
Nc

3
G0(x) + k, (2.15)



Advances in High Energy Physics 9

for j-mesonance,

j >
Nc

6
(G0(x) + 3). (2.16)

Note that G0(x) = 1 at T = 0 and it is an increasing function of the temperature.

2.3. Binding Energy and Screening Length

Theoretically, all of these bound states are allowed to exist. But a question arises which
multiquark state is more stable than another. This can be addressed by considering the
binding energies of each class of the multiquarks. Naturally, the binding energy of each of
these holographic bound states is the total energy of the configuration subtracted by the
energy of the free quarks. Similar to the calculation of Wilson loop in [41], the binding energy
in the largeNc limit could be estimated to be the total classical action divided by τ .

The solution or the shape of the hanging strings can be obtained by using the Nambu-
Goto action from (2.10), the regulated energy of the hanging strings (subtracted by energy of
the free quarks) is

EF1 =
1
2π

∫L
0
dσ

√
u′2 +

(
u

RD4

)3

f(u) − 1
2π

∫∞

uT

du. (2.17)

From the equilibrium condition corresponding to the surface term, that is, (2.11) and (2.12),
we obtain

u′2c =
f(uc)B2

1 − B2

(
uc
RD4

)3

, (2.18)

where

B = B(kh, kr , x) =
Nc

3kh
G0(x) +

kr
kh
. (2.19)

Consider SF1 in (2.10), the Lagrangian,

L =

√
u′2 + f(u)

(u
R

)3
, (2.20)

does not explicitly depend on σ, such that we can define the constant of motion

H ≡ L − u′ ∂L
∂u′

= const. (2.21)

This leads to
f(uc)(uc/RD4)

3√
u′2c + f(uc)(uc/RD4)

3
=

f(u)(u/RD4)
3√

u′2 + f(u)(u/RD4)
3
. (2.22)

Eliminating u′c using (2.18) and (2.22), we have the relation

u′2 =
f(u)2(u/RD4)

6

f(uc)(uc/RD4)
3(1 − B2)

− f(u)(u/RD4)
3. (2.23)
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Using the above equation, we obtain the size of the radius of the multiquark state as

L =
R3/2

D4

u1/2c

∫∞

1
dy

√√√√ (
1 − x3)(1 − B2)(

y3 − x3
)(
y3 − x3 − (1 − x3)(1 − B2)

) , (2.24)

and together with (2.17), we also have

EF1 =
uc
2π

⎧⎨
⎩
∫∞

1
dy

⎡
⎣
√√√√ y3 − x3(

y3 − x3
) − (1 − x3)(1 − B2)

− 1

⎤
⎦ − (1 − x)

⎫⎬
⎭. (2.25)

Therefore, the total energy of the vertex D-brane and the radial strings are

E =
NcuT
2π

(√
1 − x3

3x
+
(
kh
Nc

)E
x
+
(
kr
Nc

)
1 − x
x

)

∼ N2
c

L2
,

(2.26)

where E represents the terms within the brace of (2.25).
By numerical calculations, we compare the E/Nc (the energy per degrees of freedom)

versus L (the size of radius of the bound states) of the 3 classes of the multiquark as
in Figure 2. The deeper the binding energy is, the harder the multiquark will melt in the
thermal bath. From Figure 2, the colour singlet Nc-baryon has deeper binding well than
the (k < Nc)-baryon and (Nc + k)-baryon. As expected, the (k < Nc)-multiquark is bound
more tightly as k gets larger. For (Nc + k)-baryon, the bound state is less tightly bound, as
k increases. Similarly, a j-mesonance has the binding energy less than j mesonic states. It
becomes closer to j mesons as j grows.

The screening length L∗ can also be numerically calculated. It is defined to be the
value at which the binding energies become zero from negative values at small distances. The
numerical results, as shown in Figure 3, indicate that the multiquark states of all classes have
smaller screening lengths as the temperature increases, with approximately L∗ ∼ 1/T for a
fixed k, k, and j. Furthermore, L∗ is larger as k and j increases for k-baryon and j-mesonance,
respectively, while it is smaller as k increases for (Nc+k)-baryon. Interestingly, the saturation
of j-mesonance’s screening length occurs as j → ∞, where L∗

j-mesonance approaches the
screening length of a meson L∗

meson.

3. Thermodynamic Properties of Holographic Multiquark

In the non-antipodal SS model, the holographic plasma can have two distinctive phase
transitions; a deconfinement and the chiral symmetry restoration [37]. The deconfinement
could occur at lower temperature than the chiral symmetry restoration. For the temperature
in between the two transitions, quarks and gluons are deconfined from the confining flux tube
but still interact strongly among each other through the remaining screened Coulomb-type
SU(Nc) potential. Therefore, it is possible to have the multiquark phase in the temperature



Advances in High Energy Physics 11

E
/
N

c

L

0 0.1 0.2 0.3 0.4

0.05

0

−0.05

−0.1

−0.15

−0.2

−0.25

k

Nc Nc + k1

Nc + k2

Figure 2: Comparison of the potential per Nc between Nc-baryon, k-baryon, and (Nc + k)-baryon for
k/Nc = 0.8, k1/Nc = 2/3, and k2/Nc = 2 at temperature T = 0.25.

range between that of the deconfinement and the chiral phase transition. This is consistent, at
least in a qualitative way, with the studies of the multibody bound states in the sQCD in the
framework of the real QCD [23]mentioned in the previous section.

To actually understand the physics of deconfined QGP, it is thus crucial to investigate
the thermodynamical properties of the holographic multiquark phase. In order to extract
the thermodynamic potential from the gravity dual model, the path integral approach in
quantum gravity [42] has been used. In this technique, the time direction is circled with
period β = 1/T in the same manner as the thermal circle in the finite temperature quantum
field theory. As discussed in [43] based on the early works [44, 45], the grand canonical
potential, or the Gibbs free energy, Ω(T, μ) has the leading contribution from the classical
Euclidean action of the bulk theory in the grand canonical ensemble, that is,Ω(T, μ) ∼ Son-shell

bulk .
Similarly, the Helmholtz free energy F(T, nb) has the leading contribution from the Legendre
transform with respect to the baryonic charge of the classical Euclidean action, that is,
F(T, nb) ∼ S̃on-shell

bulk in the canonical ensemble. If we are interested in the situation of nonfixed
baryon number density but fixed chemical potential, the relevant thermodynamic potential
is the grand canonical potential.

The deconfinement phase transition can be realized as the Hawking-Page transition
due to the competition between the action of the background geometry corresponding to the
confined phase and the action of the background corresponding to the deconfined phase [8].
Since the coloured multiquark matter can exist only in the deconfined phase (however, the
colour-singlet multiquarks such as a baryon can also exist in the confined phase), its grand
canonical potential in the Sakai-Sugimoto model is β times the combination of the classical
action of the deconfining spacetime geometry and the configuration of flavour sector, which
includes Nf D8-D8-branes, the probe D4-brane vertex, and the radial strings. Note that the
part of hanging strings, extending from the baryon vertex to the flavour branes, is neglected,
and we assume that there is no distortion of the vertex due to the connecting strings (such
distortion is discussed in [39, 40]). As a result, the baryon vertex is embedded into the flavour
branes and becomes an instanton on them.
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Figure 3: (a) the screening lengths of k-baryons with respect to k, (b) the screening lengths of (Nc + k)-
baryons with respect to k, and (c) the screening lengths of j-mesonance with respect to j for T = 0.15−0.35.

Intriguingly, whereas the deconfining spacetime geometry action (scales as N2
c )

dominates the action of the fundamental matter sector (scales asNcNf), the dominating part
can be ignored in the consideration of the holographic phase transition in the deconfined
phase. Above the deconfinement, the multiquarks phase competes with the vacuum phase
and the chiral-symmetric quark-gluon plasma. In this section, we will explore the phase
diagram of the deconfined nuclear matter especially the region of the parameter space where
themultiquark phase is dominant. Thenwewill study the thermodynamics of themultiquark
nuclear matter in the dilute and dense limits.
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Figure 4: Configurations of χS-QGP (a) vacuum (b), and multiquark nuclear phase (c) in x4 −u projection.

3.1. Phase Diagram

In order to determine a phase diagram, we need to find which phase of nuclear matter is
thermodynamically preferred to others in a particular region of the parameter space. For
the grand canonical ensemble at a fixed μ, the thermodynamically preferred phase is the
configuration with the grand canonical potential smaller than that of all other phases.

We will first determine the brane configuration in the presence of the external sources
by minimizing the classical action. The position of the tip uc of the D8-D8 will be determined
from the equilibrium condition at the tip. The resulting brane configuration corresponds
to the multiquark nuclear phase. On the other hand, the vacuum phase corresponds to
the configuration with zero sources and density, and the χS-QGP phase is dual to the
brane configuration with parallel branes without a tip. The x4 − u projecion of the brane
configuration for each deconfined phase is schematically shown in Figure 4. Then we will
define the normalized grand canonical potential using the action of the D8-branes. The action
of each brane configuration is divergent from the limit u → ∞. By subtracting with the
action of the vacuum configuration, we can regulate the grand canonical potential of each
configuration. By comparing the grand canonical potential of each phase, we finally draw a
phase diagram in (μ, T) parameter space.

Start with the DBI action of the D8-branes

SD8 = −μ8

∫
d9Xe−φ Tr

√
−det

(
gMN + 2πα′FMN

)
, (3.1)

where gMN is the induced metric of the D8-world volume and the field strength tensor of the
gauge groupU(Nf) living in theNf flavour branes is

F = dA + iA ∧A. (3.2)

While the full D8-brane world-volume gauge fields is

A = ASU(Nf ) +
1√
2Nf

Â, (3.3)
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we turn on only the time component of the diagonal subgroup U(1) part, Â/
√
2Nf in order

to introduce the finite chemical potential, or equivalently finite baryon density [43, 46]. From
the deconfining spacetime metric, (2.3), the DBI action of the D8-branes becomes

SD8 = N
∫
duu4

√
f(u)

(
x′
4(u)
)2 + u−3(1 − (â′0(u))2), (3.4)

where the factor N is defined to be

N ≡ μ8βNfΩ4V3R
5

gs
, (3.5)

as the result of integrating out all world-volume coordinates except the holographic direction
u. And â are defined as

â =
2πα′Â
R
√
2Nf

. (3.6)

The action does not depend on â0, hence we can define a constant

d ≡ δSD8

δF̂0u

(3.7)

=
uâ′0(u)√

f(u)
(
x′
4(u)
)2 + u−3(1 − (â′0(u))2)

, (3.8)

which can be interpreted as the electric displacement field along the holographic direction.
Similarly for the variation of action with respect to x4(u), we can define another constant of
motion, says Γ, so that we can rearrange to obtain

(
x′
4(u)
)2 = 1

u3f(u)

[
f(u)

(
u8 + u3d2)
Γ2

− 1

]−1
, (3.9)

from which at large u

x4(u) ≈ L0

2
− 2
9

Γ
u9/2

, (3.10)

where L0 is the separation between D8 and D8 branes at u → ∞ defined by

L0 ≡ 2
∫∞

uc

x′
4(u)du. (3.11)

The parameter Γ can be thought of as the curvature of the D8-D8-branes around the cusp. It
becomes zero when the flavour embedding is in the parallel configuration representing the
chiral-symmetric QGP. According to [47], this means that it can be used as an order parameter
of the nuclear matter/χS-QGP phase transition.
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Wewill set L0 = 1 to allow the possibility of the chiral symmetry restoration as separate
phase transition from the deconfinement. Apply the equilibrium condition at the cusp uc (see
the appendix), we obtain Γ in terms of x′

4(uc),

Γ =
f(uc)

√
u8c + u3cd2√

f(uc)
(
x′
4(uc)

)2 + u−3c x′
4(uc) (3.12)

= u3cf(uc)

[(
u5c + d

2
)
− d2η2c(T, ns)

9f(uc)

]
, (3.13)

where

ηc(T, ns) ≡ 1 +
1
2

(
uT
uc

)3

+ 3ns
√
f(uc). (3.14)

Note that the formula of x′
4(uc) is derived from the variation of the total action, in which the

D8-branes action has been transformed to possess the dynamical variable d rather than a′0,

∂S̃total

∂uc
=
∂
(
S̃D8 + SD4 + S̃F1

)
∂uc

= 0. (3.15)

This is reminiscent of the way we obtain the equilibrium condition of the multiquark vertex,
(2.11), minimizing the surface terms with respect to uc.

It is important to emphasize that the parameter ns is the number of radial strings
in the unit of Nc. Due to the zero length of the hanging strings, we cannot distinguish the
different classes of multiquarks proposed in Section 2 for a particular value of ns, but some
possibilities, j-mesonance for example, can be ruled out by examining their thermodynamic
stability. This will be shown in this subsection.

Before going further to calculate the classical action, let us comment about the electric
displacement d. It has been shown in [48] that it is related to the baryon number density.
The baryon number density corresponds to the number density of instantons, n4, on the D8-
branes. It also contributes to the Chern-Simons (CS) action of the flavour branes [13].

Beginning with the D8-brane CS term [49]

SCS
D8 =

μ8

3!

∫
R4×R+×S4

C3 ∧ Tr
(
2πα′F)3. (3.16)

It is convenient to rescale the RR (Ramond-Ramond) field following the Appendix of [13]
such that

SCS
D8 =

1
48π3

∫
R4×R+×S4

C3 ∧ TrF3

=
1

48π3

∫
R4×R+×S4

F4 ω5(A),

(3.17)
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where the last expression is obtained through the integration by part. F4 = dC3 is the RR
4-form field strength and ω5(A) is the CS 5-form:

ω5(A) = Tr
(
AF2 − 1

2
A3F +

1
10

A5
)
, (3.18)

satisfying dω5 = TrF3. Using the fact that integrating the F4 flux over the S4 in the Nc D4-
branes background gives

1
2π

∫
S4
F4 =Nc, (3.19)

and the relevant term is only the first term in the CS 5-form, (3.18), once turning on only the
time-component of the diagonalU(1)V field, we obtain

SCS
D8 =

Nc

24π2

∫
R4×R+

1√
2Nf

Â0 ∧ Tr(F ∧ F). (3.20)

Assuming a uniform distribution of D4-branes in R
3 at u = uc, we have [50]

1
8π2

Tr(F ∧ F) = R−3n4δ(u − uc)d3x du, (3.21)

where n4 is defined to be the (dimensionless) number density of instantons, or the wrapped
D4-branes, at u = uc. From the viewpoint that the low-energy effective theory on the D8-brane
includes the Skyrme model [13], it is natural to interpret n4 as the baryon number density.

Using (3.6), (3.20), and (3.21), we obtain

SCS
D8 =

n4NcβV3

2πα′R2

∫∞

uc

du â0(u) δ(u − uc). (3.22)

From both the DBI and CS parts of D8-branes action, the equation of motion with respect to
theU(1) gauge field gives [48]

n4 =
2πα′R2N
βV3Nc

d. (3.23)

Note that this reflects the one-dimensional electrostatic effect in which the point electric
charges are put at uc, generating constant electric field in the holographic direction.

The normalized grand canonical potential from the holographic model can be defined
using the D-brane action as

Ω
(
μ
)
=

1
NSD8[x4(u), â0(u)]cl. (3.24)

Since the D-brane action diverges from the limit u → ∞ of the integration, the grand
canonical potential needs to be regulated by subtracting with the grand canonical potential
of the vacuum phase at the same temperature.



Advances in High Energy Physics 17

Apart from the grand canonical potential, the chemical potential also needs to be
holographically identified in the dual bulk theory. To this end, the time component of the
U(1)V gauge field Â0 is taken into account. From the field/operator matching scheme,
a bulk field evaluated at u → ∞, that is, the boundary of the spacetime background
plays a role as the source of the dual operator in the generating function of correlation
functions in quantum field theory. In other words, this nonnormalizable mode of the bulk
field is dual to the coefficient of the field operator. Since the chemical potential is the
coefficient of the charge density operator term, it can be holographically identified as
Â0(∞). By rescaling for convenience, we can write the dimensionless chemical potential
as

μ = â0(∞). (3.25)

Similarly, the baryon number density in our normalization is given by

nb = −∂Ω
(
T, μ
)

∂μ
= d, (3.26)

even though the true baryon number density is n4 defined in (3.23). Consequently, d can
then be used to denote the baryon number density.

Since the free energy in the canonical ensemble is the combination of the on-shell
Legendre-transformed D8-brane action and the source term, it is convenient to obtain μ
through

μ =
∂FE(T, d)

∂d
, (3.27)

where the free energy is holographically defined as the Legendre-transformed D8-brane
action plus the source terms

FE(T, d) =
1
N
(
S̃D8[T, x4(u), d(u)]on-shell + Ssource(T, d, uc)

)
. (3.28)

The Legendre-transformed action S̃D8 is given by

S̃D8 = SD8 +N
∫∞

uc

d(u)âV
′

0 du, (3.29)

= N
∫∞

uc

duu4
√
f(u)

(
x′
4(u)
)2 + u−3

√
1 +

d2

u5
(3.30)
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The chemical potential can then be written as

μ =
1
N

⎧⎨
⎩
∫∞

uc

du

(
δS̃D8

δd(u)
+
δS̃D8

δx′
4

∂x′
4

∂d

)∣∣∣∣∣
on-shell

T,L0,uc

+
∂uc
∂d

∣∣∣∣
T,L0

(
∂S̃D8

∂uc
+
∂Ssource

∂uc

)∣∣∣∣∣
on-shell

d,T,L0

+
∂Ssource

∂d

∣∣∣∣
T,L0,uc

⎫⎬
⎭.

(3.31)

The second, third, and fourth terms drop out. It is clear from (3.15) corresponding to the
equilibrium at the cusp that the third and fourth terms vanish. For the second term, it is
because δS̃D8/δx

′
4(u) is constant as can be seen from (3.30) that S̃D8 depends only on x′

4.
Integrating over the remaining gives ∂L0/∂d, which is zero, due to the scale fixing condition
L0 = 1. Hence we obtain

μ =
∫∞

uc

â′0(u) +
1
N

∂Ssource

∂d

∣∣∣∣
T,L0,uc

. (3.32)

Now, it is ready to express the grand canonical potential for the multiquark (baryon
corresponds to ns = 0) phase. Using (3.24), (3.4), (3.8), (3.9), we obtain the formulae of the
grand canonical potential for the multiquark matter. The chemical potential can be calculated
from (3.32) by eliminating a′0 via (3.8) and substituting (3.9). The grand canonical potential
and the baryon chemical potential of the phases can be expressed as the following:

Nuclear (Including Exotics) Phase

Ωnuc =
∫∞

uc

du

[
1 − Γ2

f(u)(u8 + u3d2)

]−1/2
u5√
u5 + d2

, (3.33)

μnuc =
∫∞

uc

du

[
1 − Γ2

f(u)(u8 + u3d2)

]−1/2
d√

u5 + d2
+
1
3
uc

√
f(uc) + ns(uc − uT ). (3.34)

Recall that Γ depends on uc, d, T and ns according to (3.12) and (3.14). The last two terms in
(3.34) come from the derivative of the source-term action with respect to d.

There are at least other two phases that compete with the multiquark phase: the
vacuum phase and the chiral-symmetric QGP phase. From the above formula of Ωnuc and
μnuc, we can obtain the grand canonical potential and the chemical potential of the vacuum
simply by (i) setting d = 0, (ii) dropping the source terms in (3.34), (iii) changing the lower
bound of integration from uc to u0, and (iv) replacing Γ by the constant of motion in the
vacuum configuration, from δSD8/δx

′
4, Γ0 = f(u0)u

8
0. Thus we obtain

Vacuum Phase, d = 0

Ωvac =
∫∞

u0

du

[
1 − Γ20

f(u)u8

]−1/2
u5/2. (3.35)
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Similarly, the grand canonical potential and the chemical potential of the χS-QGP phase can
be obtained by setting x′

4(u) = 0, reflecting its parallel configuration, and turning off the
source terms. That is, setting Γ = 0 in (3.33) and (3.34), changing lower bound of integration
to uT and dropping the source terms in (3.34) give

χS-QGP Phase, x′
4(u) = 0

Ωqgp =
∫∞

uT

du
u5√
u5 + d2

, (3.36)

μqgp =
∫∞

uT

du
d√

u5 + d2
. (3.37)

The phase transition in the parameter space (μ, T) is obtained by comparing the grand
canonical potential between two phases at a particular T and μ. Let us say the transition
between phase 1 with the grand canonical potential Ω1 and phase 2 with Ω2. Phase 1 is
thermodynamically preferred once Ω1 < Ω2 and vice versa. There is a first order phase
transition when Ω1 = Ω2. This kind of phase transition can be seen in the transition between
the vacuum and χS-QGP phases and the transition between the χS-QGP and the nuclear
matter. However, the phase transition between the vacuum and nuclear matter phases is of
the second-order as seen from (3.34). The density d is continuous near μ = μonset, which is
μnuc(d = 0), and behaves as d ∼ (μnuc − μonset). Note that this reflects the absence of the
interactions between the multiquarks and baryons. As a result, the critical chemical potential
defined to be the value, at which

∂d

∂μ
= −∂

2Ω
∂μ2

(3.38)

has a discontinuity, is given by μonset. By numerical calculations, the phase transition lines
can be obtained as shown in Figure 5. The phase diagram between the chiral-broken vacuum
and the chiral symmetric QGP phases was first obtained in [51]. The phase diagram of
all 3 deconfined phases including the baryonic nuclear phase (without the multiquarks) is
originally discussed in [48].

This phase diagram also shows the presence of the multiquark phase which can be
mixed in the region of normal baryon phase (with ns = 0), say B + C for ns = 0.1, and C for
ns = 0.3. The multiquark matter with 0 < ns < 0.5 is less stable than the normal baryon due
to the larger value of the grand canonical potential. Above ns = 0.3, it can be shown that the
multiquark phase is unstable to density fluctuations, that is, ∂μ/∂d < 0, in some regions of
high T and certain range of μ. For approximately ns > 0.5, the multiquark phase is unstable
thermodynamically to density fluctuations for most of the temperatures.

If the multiquark matter can exist in the quark-gluon plasma, it should mix with the
normal baryon states in thermal equilibrium with the populations following the Boltzmann
factor

exp
(
− E

kBT

)
, (3.39)

where E is the binding energies for the states. It is interesting to explore more about the
population of these multiquark states in the quark-gluon plasma potentially produced in the
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Figure 5: The phase diagram of deconfined nuclear matters in the Sakai-Sugimoto model. Multiquark
phase is shown as the region on the lower right corner where it is divided into 3 parts according to the
value of the colour strings ns. A, B, C represent the region where multiquark phase with ns = 0 (Nc-
baryon), 0.1, 0.3 is the most thermodynamically preferred.

heavy-ion collision experiments such as the RHIC and the LHC. Existence of thesemultiquark
states contribute significantly to the hydrodynamical and thermodynamical properties of the
deconfined plasma.

3.2. Thermodynamic Relations

In the grand canonical ensemble, the grand canonical potential GΩ is the function of the
dynamical variables: the volume V , the temperature T , and the chemical potential μ. Its
differential is

dGΩ = −PdV − SdT −Ndμ, (3.40)

where the coefficients P , S, andN are the pressure, entropy, and the total number of particles,
respectively. It is better to understand the system of QGP in terms of volume density of
extensive parameters. Let us define the volume density of GΩ, S, and N to be Ω, s, and d,
respectively. Hence, the pressure is

P = −GΩ

V
≡ −Ω(T, μ). (3.41)

From (3.26) and (3.41), we use the chain rule to obtain

∂P

∂d

∣∣∣∣
T

=
∂μ

∂d

∣∣∣∣
T

d, (3.42)

so that

P(d, T, ns) = μ(d, T, ns)d −
∫d
0
μ
(
d′, T, ns

)
d
(
d′), (3.43)

where we have assumed that the regulated pressure is zero when there is no nuclear matter,
that is, d = 0.
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While the equations of motion cannot be obtained analytically, we can find them in the
limit of very small and very large density. Using (3.34) and (3.43), we take d ≈ 0 and use the
binomial expansion, then (see [52] for details)

P � α0
2
d2 − 3β0(ns)

4
d4, (3.44)

where

α0 ≡
∫∞

u0

du
u−5/2

1 − f0u80/fu8
,

β0(ns) ≡
∫∞

u0

du
u−5/2

2
√
1 − f0u80/fu8

(
f0u

3
0

fu8 − f0u80

(
1 − η20

9f0
− u50
u5

)
+

1
u5

)
.

(3.45)

Note that we have used the fact that ηc of (3.14) becomes η0 + O(d), where η0 is ηc with uc
replaced by u0. Similarly, f0 is defined to be f(u)with u = u0. On the other hand, for the limit
of large d in (3.34), the pressure from (3.43) becomes [12]

P � 2
35

(
Γ(1/5)Γ(3/10)

Γ(1/2)

)
d7/5. (3.46)

Numerically, the relations between the pressure and the density of the multiquark
matter for different values of ns are plotted in Figure 6. This is consistent with the results of
analytic calculations that P ∼ d2 for small d and P ∼ d7/5 for large d. Since the relations are
not sensitive to the change of T , therefore we present only the plots at T = 0.03. The transition
from small to large d is apparent at dc � 0.072. We can also see the dependence of pressure
on ns from the plots. The pressure of the multiquarks with larger ns is smaller for small d. On
the other hand, the pressure of the multiquarks with smaller ns is merely slightly larger in
the large d limit. Actually, the pressure is nearly insensitive to the changing of ns for d > dc
as is implied from (3.46).

From the differential of the free energy, the entropy density can be written as

s = −∂FE

∂T
, (3.47)

where FE is the free energy density which relates to the grand potential density as FE =
Ω + μd. Using (3.41), the entropy density becomes

s =
∂P

∂T
−
(
∂μ

∂T

)
d. (3.48)

Since the pressure P and the contribution of D8-branes to the baryon chemical potential (μ −
μsource) are insensitive to the changing of the temperature, the entropy density is dominated
by the derivative of μsource with respect to T , That is,

s � −
(
∂μsource

∂T

)
d. (3.49)
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Figure 6: Pressure versus density of the multiquark phase in logarithmic scale at T = 0.03, zoomed in
around the transition region.

It is found numerically in [52] that uc is approximately constant with respect to the
temperature range between the gluon deconfinement and the chiral symmetry restoration,
we thus obtain

∂μsource

∂T
=

∂

∂T

(
1
3
uc

√
f(uc) + ns(uc − uT )

)

≈ −
(
16π2/9

)3
T5

u20

√
1 − (uT/u0)

3
− ns 32π

2T

9
,

(3.50)

such that

s ≈
(
16π2/9

)3
T5d

u20

√
1 − (uT/u0)

3
+ ns

32π2Td

9
. (3.51)

The entropy density has the temperature dependence ∼T5 for small ns, whereas it is
dominated by the colour term, that is, s ∝ nsT , for larger ns. This agrees with the numerical
results shown in Figure 7. We already know that the free quarks and gluons in the χS-QGP
have the entropy density scales as T6 [48]. Intriguingly, the presence of the colour charges
of multiquarks implies that the multiquark matter in the sQGP behave less like free particles
with the weaker temperature dependence s ∼ nsT . Also confirmed numerically in Figure 7 is
the linear dependence of the entropy density to the density d.

From (3.43), it is important to note that the pressure is mainly contributed from the
flavour D8-brane part since μsource is mostly constant with respect to the density. This is
because the constant part of μwith respect to the density will cancel out when substituted into
(3.43). Conversely, the entropy density is mainly contributed from the source term, namely,
the vertex and radial strings.

Lastly, the dependence of the baryon chemical potential μ on d is plotted in Figure 8.
The μ − d relation is found to be mostly independent of the temperature. It is found that the
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Figure 7: Entropy versus temperature of the multiquark phase in logarithmic scale for ns = 0 (a), 0.3 (b).
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Figure 8: The baryon chemical potential versus number density of the multiquark phase at T = 0.03.

relation can be well approximated by the power lawwith μ ∼ d for small density and μ ∼ d2/5

for large density. The difference indicates that the behaviour of multiquark quasiparticles is
more like fermions as a consequence of the DBI action [48].
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4. Magnetic Properties of Holographic Multiquarks in
the Quark-Gluon Plasma

In the deconfined SS model, the multiquark phase has been shown to be the most
thermodynamically preferred in the extremely dense andwarm condition (in the temperature
range above the deconfinement but below the chiral symmetry restoration). It is possible
that the real dense and warm QCD soup also energetically prefers the multiquark phase in
such condition. In the early universe, during the electroweak phase transition, the Higgs
mechanism could create enormous magnetic fields in the boundary region between two
domains with different vacuum expectation values [53]. These gigantic fields could have
crucial impact on the phase transitions of the warm nuclear soup at later epoch. Collision of
energetic charged particles at the hadron and heavy ion colliders could produce extremely
large magnetic fields in the vicinity of the collision point. At RHIC and LHC, it has been
estimated that the induced local magnetic fields could be as large as 1014-15 Tesla [54]. Finally,
magnetic fields of order of 1010 Tesla could be produced by the magnetars on the large
astrophysical scale [55]. Therefore, it is interesting to investigate the effects of extremely
strong magnetic fields to the multiquark phase above the deconfinement temperature.

To mimic behaviour of the strongly coupled nuclear matter in the presence of a
uniformmagnetic field, we turn on another component of theU(1) ⊂ U(Nf) field denoted as
aV3 . The nonnormalizable modes of aV3 are identified with the vector potential of the magnetic
field B (not to be confused with B used in Section 2), defined in units of 1/2πα′. We choose
the direction of the magnetic field so that

aV3 = Bx2. (4.1)

As before, the baryon chemical potential μ of the corresponding gaugematter at the boundary
is identified with the nonnormalizable mode of the DBI-gauge field by

μ = aV0 (u −→ ∞). (4.2)

Additional sources of the baryonic charge in terms of the instanton and strings
contribute the following action

Ssource = Nd(uc)
[
1
3
uc
√
f(uc) + ns(uc − uT )

]

� Ndμsource,

(4.3)

where ns = kr/Nc is the number of radial strings in the unit of 1/Nc as in the zero magnetic
field case. The electric displacement, d(uc) ≡ ∂L/∂aV

′
0 |uc , representing the baryonic charge

density from the D4 at uc has been approximated to be d (the exact value is d−(3/2)BaA1 (∞)).
This action does not contain the gauge fields of the flavour branes and thus does not affect the
equations of motion. However, it contributes tidal weight to the total configuration, pulling
down the flavour branes closer to the horizon. The scale-fixing condition L0 = 1 is determined
by the equilibrium between this tidal weight of the additional sources (including the tension
of the colour strings) and the tension of the flavour branes. The position uc of the tip of the
connecting branes determined from this condition will also depend on the magnetic field in
presence.
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The response of the flavour branes to the magnetic field is encoded in the axial aA1
component of the U(1) induced through the Chern-Simons action of the branes in the bulk.
In the boundary gauge theory, this corresponds to the axial anomaly described by the Wess-
Zumino-Witten action [56]. The non-normalizable mode of aA1 at the boundary is identified
with the response of the chiral condensate to the external magnetic field, aA1 (u → ∞) ≡ ∇ϕ,
which we will call the pion gradient.

The D-brane and the Chern-Simons action of the configuration can be calculated
straightforwardly to be

SD8 = N
∫∞

uc

duu5/2

√
1 +

B2

u3

√
1 + f(u)

(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4 ,
(4.4)

SCS = −3
2
N
∫∞

uc

du
(
∂2a

V
3 a

V
0 a

A′
1 − ∂2aV3 aV

′
0 a

A
1

)
, (4.5)

whereN =NcR
2
D4/(6π

2(2πα′)3) defines the brane tension. To preserve the gauge invariance
of the total action in the situation where the gauge transformation does not vanish at the
spatial infinity, addition of surface terms effectively results in the factor 3/2 in the Chern-
Simons action [57].

Appearance of horizon in the background spacetime connects classical behaviour of
the bulk physics to the physics of the quantum gaugematter at the boundary in a holographic
manner. The brane-bulk interaction provides a solid correspondence between bulk fields and
operators of the gauge theory on the boundary. Classical solutions of the gauge fields on the
D8-D8 probe as well as its geometric configuration will describe physics of the dense strongly
coupled nuclearmatter in the presence of the external magnetic field in a holographicmanner.

By conventional variational method, the equations of motion with respect to the gauge
field components are given by the Euler-Lagrange equation with respect to the gauge field
component aV0 , a

A
1 ,

√
u5 + B2u2f(u)a′A1√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

= jA − 3
2
Bμ + 3BaV0 , (4.6)

√
u5 + B2u2a′V0√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

= d − 3
2
BaA1 (∞) + 3BaA1 . (4.7)

Note that d, jA are the baryon charge density and current density of the dual gauge matter at
the boundary (u → ∞) given by

jμ(x, u −→ ∞) ≡ δSeom

δAμ

∣∣∣∣∣
u→∞

≡
(
d,�jA

)
.

(4.8)
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They can be presented with the gauge fields as

d =

√
u5 + B2u2a′V0√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

∣∣∣∣∣∣∣
∞

− 3
2
BaA1 (∞),

jA =

√
u5 + B2u2f(u)a′A1√

1 + f(u)
(
a′A1
)2 − (a′V0 )2 + f(u)u3x′2

4

∣∣∣∣∣∣∣
∞

− 3
2
Bμ.

(4.9)

The action does not explicitly depend on x4, consequently the associate constant of
motion allows us to rewrite x′

4(u) as the following:

(
x′
4(u)
)2 = 1

u3f(u)

⎡
⎣u3[f(u)(C(u) +D(u)2) − (jA − (3/2)Bμ + 3BaV0

)2]
F2

− 1

⎤
⎦

−1

, (4.10)

where

F =
u3c
√
f(uc)

√
f(uc)

(
C(uc) +D(uc)2

)
− (jA − (3/2)Bμ + 3BaV0 (uc)

)2
x′
4(uc)√

1 + f(uc)u3cx′2
4 (uc)

, (4.11)

and C(u) ≡ u5 + B2u2, D(u) ≡ d + 3BaA1 (u) − 3B∇ϕ/2.
From the scale-fixing condition

L0 = 2
∫∞

uc

x′
4(u)du = 1, (4.12)

the position of the tip uc of the brane configuration is determined by the equilibrium of forces
to be, (see the appendix),

(
x′
4(uc)

)2 = 1
fcu

3
c

⎡
⎢⎣ 9
d2

(
fc
(
Cc +D2

c

) − (jA − (3/2)Bμ + 3BaV0 (uc)
)2)

(
1 + (1/2)(uT/uc)

3 + 3ns
√
fc
)2 − 1

⎤
⎥⎦. (4.13)

The introduction of the Chern-Simons interaction of the gauge fields to the magnetic field
results in the dependence of x′

4 on the gauge field aV0 , a
A
1 . It is consequently required to solve

(4.6), (4.7), and (4.12) simultaneously. Since the physical parameters, μ,∇ϕ, also depend on
the gauge field components by aV0 (∞) = μ, aA1 (∞) = ∇ϕ, we need a triple-shooting algorithm
to solve for the solutions numerically.

Under the boundary conditions aV0 (uc) = μsource, a
A
1 (uc) = 0, the values of uc, μ,∇ϕ

are chosen so that they solve the equations of motion and satisfy aV0 (∞) = μ, aA1 (∞) = ∇ϕ.
If the solutions also satisfy the scale fixing condition (4.12), we keep the solutions, otherwise
we adjust the value of uc and repeat the shooting procedure.
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Figure 9: Position uc of the vertex for ns = 0 (normal baryon) and fixed jA = 0 as a function of (a) d with
fixed B = 0.10, T = 0.10, (b) B with fixed d = 1, T = 0.10, (c) T with fixed B = 0.10, d = 1. The lower (blue)
line is the configuration A with uc close to uT , and the upper (red) line is the configuration B with large
separation between uc and uT .

4.1. Two Multiquark Configurations and the Multiquark Merging

The numerical solutions obtained by the shooting algorithm reveal two possible multiquark
configurations, one with small and one with large uc. The small-uc configuration (configura-
tion A) has longer stretch in the u-direction, therefore it contains higher gluon content and
larger energy. The free energy of this configuration is consequently larger than the large-uc
configuration (configuration B) and becomes less energetically favoured. The relationships
between uc and the baryonic density, the magnetic field, and the temperature are shown in
Figure 9 (from [58]).

From Figure 9, the density dependence of the two configurations shows that as
density increases, configurations A and B diverge from each other. They become two
distinctive phases at large densities. On the other hand, the increase of magnetic field and
temperature merges the two configurations together. At the critical field and/or temperature,
configurations A and B merge and disappears (i.e., they do not satisfy the scale-fixing
condition anymore).

In Figure 10, the chemical potential and the pion gradient response of the multiquark
phase are plotted as functions of the magnetic field for the multiquark phase with the
number of colour strings ns = 0, 0.1, 0.2. Magnetic merging occurs at higher field for the
multiquarks with smaller ns. Interestingly, the less-preferred configuration A has a negative
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Figure 10: Comparison between the baryon chemical potential (a) and the pion gradient (b) as a function
of B at fixed jA = 0, d = 1, T = 0.10; for ns = 0 (normal baryon), the bottom graph; ns = 0.10, the middle
graph; ns = 0.20, the top graph. The blue lines are the configuration Awith uc close to uT , and the red lines
are the configuration Bwith large separation between uc and uT .

linear response ∇ϕ to the magnetic field for small fields. Thorough investigation in [58]
reveals that both multiquark configuration A, B are more thermodynamically preferred
than the magnetized vacuum, and each configuration is stable under density fluctuations
since

∂2FE

∂d2
=
∂μ

∂d
> 0, (4.14)

where the free energy FE will be defined in the next subsection.
We would like to emphasize that there are actually two possible multiquark phases

for the deconfined nuclear matter at finite density. Even though phase B is more energetically
preferred, both multiquark phases could coexist in general situation. Large magnetic field
or high temperature could merge the two multiquark configurations into one. Remarkably
once they merge, the multiquark can no longer exist since it does not satisfy the scale fixing
condition. They would either turn into a multiquark configuration with larger density or a
chiral-symmetric QGP. We will discuss more on the thermodynamic properties and phase
diagram of the multiquark phases in the subsequent sections.

4.2. Thermodynamic Properties of the MQ-∇ϕ Phase

The holographic principle conjectures that the partition function of the string theory in the
bulk is equal to the partition function of the gauge theory on the boundary. The free energy
of the gauge matter at the boundary is equivalent to the string action in the bulk, namely, the
DBI action up to a periodicity factor [59]. The D8-brane action from (4.4) can be calculated to
be

SD8 = N
∫∞

uc

duC(u)

√√√√√ f(u)
(
1 + f(u)u3x′2

4

)
f(u)

(
C(u) +D(u)2

)
− (jA − (3/2)Bμ + 3BaV0

)2 . (4.15)
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Figure 11: Relation between u0 and external magnetic field B of the vacuum for (a) the temperature T =
0.02–0.15, the upper lines have higher temperatures, (b) u0 saturates to the approximate value of 1.23 at
large field for all temperatures (only T = 0.10 curve is shown here).

The action is divergent from the limit u → ∞ and we need to regulate it using the action of
the magnetized vacuum. For the magnetized vacuum, the field aV0 , a

A
1 , the baryon density,

and chemical potential are set to zero giving

S
[
magnetized vacuum

]
=
∫∞

u0

√
C(u)

(
1 + f(u)u3x′2

4

)∣∣∣∣
vac
du, (4.16)

where

x′
4(u)
∣∣
vac =

1√
f(u)u3

(
f(u)u3C(u)/f(u0)u30C(u0) − 1

) . (4.17)

The position u0 is the tip of the connecting brane configuration, since there is no source,
x′
4(u0) → ∞ and the branes and antibranes connect smoothly. Figure 11 shows u0 as a

function of the magnetic field and temperature. The value of u0 converges to approximately
1.23 for high fields for all temperatures.

The regulated free energy at fixed density is then defined to be

FE(d, B) ≡ Ω
(
μ, B
)
+ μd, (4.18)

where Ω(μ, B) = S[a0(u), a1(u)](e.o.m.) − S[magnetized vacuum], and the total action
S[a0(u), a1(u)](e.o.m.) is given by SD8 + SCS.

The corresponding magnetization at fixed density is subsequently

M(d, B) = − ∂FE(d, B)
∂B

∣∣∣∣
d

. (4.19)

For ns = 0, 0.1, 0.2 we can plot the free energy andmagnetization of the multiquark-∇ϕmatter
as a function of the magnetic field as shown in Figure 12. Configuration A has larger free
energy and magnetization than configuration B. The magnetic merging is clearly visible at
critical fields. The critical field for multiquark with higher number of colour strings ns is
smaller, reflecting less stability. The magnetization is approximately linear for small fields for



30 Advances in High Energy Physics

0.1 0.2 0.3 0.4 0.5 0.6

B

0.65

0.7

0.75

0.8

0.85

0.9

0.95

FE

(a)

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

B

M

(b)

Figure 12: The free energy and magnetization of the multiquarks nuclear matter at fixed jA = 0, d = 1, and
T = 0.10 for ns = 0 (red), 0.10 (green), 0.20 (blue). The upper lines are the configuration A with uc close to
uT , and the lower lines are the configuration Bwith large separation between uc and uT .

both configurations. The free energy of configuration A is clearly larger than configuration
B, implying that it is less energetically preferred. Here and henceforth, we will focus our
consideration to the multiquarks in configuration B.

For moderate fields B = 0.05–0.15, we can study the temperature dependence of the
baryon chemical potential and the free energy of the MQ-∇ϕ phase as shown in Figure 13.

Remarkably, they inherit the temperature dependence from the factor
√
f(u) =

√
1 − u3T/u3

in the spacetime metric of the background SS model,

μ = μ0(d, B)

√
1 −
(
T

T0

)6

, (4.20)

F = F0(d, B)

√
1 −
(
T

T0

)6

, (4.21)

where for d = 1, B = 0.10, μ0 = 1.1849, F0 = 0.7976, respectively. The best-fit values of T0
for the chemical potential and the free energy are 0.269 and 0.233, respectively. Note that the
characteristic temperature T0 of the chemical potential is slightly larger than the value of the
free energy due to the additional temperature dependence of the uc in the free energy case
[60]. It should be noted that the temperature dependence becomes significant for T � 0.10.

When the magnetic field is applied to the multiquark phase, the chiral condensate
responds to the field by developing the pion gradient ∇ϕ in the direction of the applied field.
For moderate fields, the response is linear,∇ϕ ∝ B, as we can see from Figure 10. The induced
domain wall is stable among the multiquarks, carrying baryon density d∇ϕ = 3B∇ϕ/2 [56].

Figure 14 shows the relationship between the pion gradient and the magnetic field in
the temperature range T = 0.02–0.15. For d = 1, the slope m (or the linear response) of the

response ∇ϕ to B depends on the temperature approximately asm = m0

√
1 − (T/T0)

6, and

∇ϕ � Bm0

√
1 −
(
T

T0

)6

, (4.22)

wherem0 = 0.347, T0 = 0.177.
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Figure 13: For d = 1, B = 0.10, (a) the baryon chemical potential as a function of T , the best-fit curve

is in the form μ0

√
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6 with μ0 = 1.1849, T0 = 0.269; (b) the free energy as a function of T , the
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6 with F0 = 0.7976, T0 = 0.233. Other curves within the range
B = 0.05–0.15 can also be fitted well with the same T0.
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Figure 14: (a) The pion gradient versus magnetic field for T = 0.02–0.15 at d = 1, lower lines have higher
temperatures. (b) The linear response or slope of the linear function between the pion gradient and the
magnetic field as a function of the temperature for the range B = 0.05–0.15 and density d = 1. The red line

is the best-fit curve in the formm0

√
1 − (T/T0)

6 withm0 = 0.347, T0 = 0.177.

The pion gradient is induced naturally by the magnetic field as a result of axial
anomaly in the boundary gauge theory. It can be described by the Wess-Zumino-Witten
action in the chiral perturbation theory whilst the similar effect is represented by the Chern-
Simons action of the string theory in the bulk [56]. The pion gradient forms a domain
wall which also carries baryonic charge and contributes to the total baryon density of the
gauge matter. However, the population of the baryon density from the domain wall in the
MQ-∇ϕ phase decreases as the total density grows. This is shown in Figure 15. The ratio
R∇ϕ ≡ d∇ϕ/d = 3B∇ϕ can be approximated by a power law of the density as

R∇ϕ � (const.)d−6/5,

� 3B2m0

2d

√
1 −
(
T

T0

)6

,

(4.23)

as a result of (4.22).
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Figure 15: (a) The pion gradient as a function of B for density d = 1, 10, 100 at T = 0.10. (b) The density ratio
of the pion gradient with respect to the total baryon density of the multiquark phase at B = 0.10 and T =
0.10 in the double-log scale.

As the nuclear matter gets denser, the linear response of the chiral condensate to the
magnetic field becomes smaller. The multiquark contribution to the baryonic charge density
becomes dominant. In the extremely dense situation, the dominating phase of the deconfined
nuclear matter is the multiquark with tiny mixture of the pion gradient when the magnetic
field is present.

The remaining important issue is whether the MQ-∇ϕ phase is more thermodynam-
ically preferred than other phases such as the pure pion gradient and the chiral-symmetric
QGP. Under which circumstances that the MQ-∇ϕ phase is the most preferred and what the
phase diagram of the deconfined nuclear matter in the SSmodel looks like are to be discussed.

5. Comparison to Other Phases

In the presence of the magnetic field, there are 4 possible nuclear phases in the deconfined
SS model. For zero baryonic charge density and currents, there is a brane configuration
corresponding to a magnetized vacuum. For nonzero baryon density, there are 3 possible
brane configurations corresponding to 3 different nuclear phases:

MQ-∇ϕ Phase

jA = 0, μsource = aV0 (uc), ∇ϕ = aA1 (∞), aA1 (uc) = 0,

Pure Pion Gradient Phase

The same conditions with the MQ-∇ϕ phase except, μsource = 0, aV0 (uc)/= 0, d =
(3/2)B∇ϕ, x′

4(uc) → ∞,

χS-QGP

x′
4(u) = 0 and ∇ϕ = aA1 (∞) = 0, μsource = aV0 (uc = uT ) = 0, jA = (3/2)Bμ (in order to satisfy

the equation of motion at uT with f(uT ) = 0).
The pure pion gradient phase corresponds to the brane configuration with no

instanton at the tip uc, where D8 and D8 connect and thus μsource = 0. The chiral condensate
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Figure 16: The free energy as a function of the density of the pure pion gradient phase compared to the
multiquark-∇ϕ phase at fixed d = 1.0, T = 0.

responds to the magnetic field by generating a gradient in the direction of the field. The
induced domain wall carries baryonic charge density according to d = 3B∇ϕ/2 [56]. Since
there is no instanton at the tip, the branes connect smoothly just like in the case of vacuum
and x′

4(uc) → ∞.
The χS-QGP phase corresponds to the brane configuration with the D8 parallel to the

D8. Both branes never connect, and the distance between them in the direction x4 is fixed to
L0. There is also no instanton source at the tip and μsource = 0. Chiral symmetry demands that
aA1 (∞) = ∇ϕ = 0. Remarkably, the equation of motion in the bulk automatically governs that
the axial current is generated with jA = 3Bμ/2, a linear response of the magnetic field [57].

In the following subsections, we will compare the MQ-∇ϕwith the pure pion gradient
phase and subsequently the χS-QGP phase. By using the free energy at fixed density, it will be
demonstrated that the pure pion gradient is always less energetically preferred than the MQ-
∇ϕ for sufficiently large chemical potential. The second order phase transition lines between
the 2 phases are drawn. TheMQ-∇ϕ phase is shown to bemore preferred than the χS-QGP for
moderate fields and temperatures. For very large field and temperature, the χS-QGP phase is
the most thermodynamically preferred at a fixed density. Phase diagrams between the MQ-
∇ϕ and the χS-QGP for a fixed magnetic field and temperature are drawn and approximated
with the power law.

5.1. Multiquark-Domain Wall versus Pure ∇ϕ Phase

The pure pion gradient phase has been explored in details in [56] using the effective field
theory with the anomalous WZW action. The zero-temperature behaviour in the confined
SS model and the bottom-up AdS/QCD model is studied in [47] and [61], respectively.
Reference [62] compares the pure pion gradient phase with the χS-QGP by approximating
f(u) � 1 for the pure pion gradient phase. In this subsection, we will present the results from
[63] where the full temperature dependence is taken into consideration.

Figure 16 shows the free energy at fixed density d = 1 of the pure ∇ϕ and the MQ-
∇ϕ phases as functions of the magnetic field. Apparently, the MQ-∇ϕ is more energetically
preferred than the pure pion gradient. At higher densities, since μ ∼ d for the pure ∇ϕ [63]
and μ ∼ dn, n < 1 for the MQ-∇ϕ, the dominant term μd in the free energy will make the MQ-
∇ϕ phase even more energetically preferred (with smaller free energy). It has been confirmed
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Figure 17: The onset chemical potential of the multiquark-∇ϕ phase as a function of T, B (for B →
∞, u0 = 1.23 is used). These lines can be served as the transition lines between the ∇ϕ phase on the
left and multiquark-∇ϕ phase (ns = 0) on the right. The dotted line represents schematic transition to the
chiral-symmetric QGP phase.

numerically down to d = 0.1 that the MQ-∇ϕ is always more thermodynamically preferred
than the pure ∇ϕ phase.

However, in the region of the parameter space, where the baryon chemical potential
is smaller than the onset chemical potential of the multiquarks, only pure ∇ϕ phase can
exist. The curve of the onset chemical potential of the multiquarks can thus be served as
the second order transition line between the two phases. It depends on both the temperature
and magnetic field in presence given by

μonset =
1
3
uc

√
f(uc) + ns(uc − uT ), (5.1)

where uc is a function of both B and T . The phase diagram (μ, T) between the pure ∇ϕ and
MQ-∇ϕ is shown in Figure 17.

The dotted line in the phase diagram represents a schematic transition from a chirally
broken nuclear phases to the chiral-symmetric QGP phase. The transition from the pure ∇ϕ
to the χS-QGP is investigated in [62]. Transition between the MQ-∇ϕ and the χS-QGP will be
discussed in the next subsection.

5.2. Multiquark-Domain Wall versus χS-QGP Phase

In this subsection, we explore the phase diagram of theMQ-∇ϕ and the χS-QGP phases. For a
fixed density, the baryon chemical potential and the free energy of each phase can be plotted
as in Figure 18 [58, 60]. The MQ-∇ϕ is energetically preferred for small and intermediate
fields for a fixed density. As the field increases further, the chiral-symmetric QGP becomes
more favourable. At even larger fields, the curve of the χS-QGP has a break signifying a
phase transition to the lowest Landau level [62, 64].

The phase diagrams (d, B) for fixed temperature and (d, T) for fixed magnetic field are
presented in Figure 19. At given magnetic field and temperature, the MQ-∇ϕ phase is more
energetically preferred for a sufficiently large density. Dense nuclear matter prefers to form
multiquark states even in the presence of the magnetic field. Nevertheless, for a given density,
sufficiently high field and temperature will make the MQ-∇ϕ phase less preferred than the
χS-QGP.
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Figure 18: For the dense multiquark with d = 100, T = 0.10, (a) the chemical potential, (b) the free energy
as a function of B. The multiquark curves in red are compared with the χS-QGP curves in blue for the
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Figure 19: The phase diagram of the dense nuclear phases involving multiquarks when gluons are
deconfined for (a) T = 0.10 and (b) B = 0.20. The chiral-symmetric quark-gluon plasma and the chirally
broken MQ-∇ϕ phase are represented by χS and χSB, respectively, ns is the number of colour strings in
fractions of 1/Nc.

The transition lines between the χS-QGP and the MQ-∇ϕ phases in the (d, B) phase
diagram can be approximated with a power law,

B ∼ d0.438(0.436), (5.2)

for multiquarks with nS = 0(0.2) at T = 0.10. This is weaker than the power-law B ∼ d2/3

of the χS-QGP transition to the lowest Landau level studied in [64]. On the other hand, the
transition line in the (d, T) phase diagram is weaker than a logarithm, yet still an increasing
function of d.
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6. Conclusions

In this paper, we review the development of the holographic multiquark states in the
deconfined quark-gluon plasma. We discuss their physical properties such as the binding
energy, the screening length, the thermodynamical properties and the equation of state. Using
the Sakai-Sugimoto model, we also explore the possible phase diagram of the multiquark
matter. The multiquark phase is the most energetically preferred when the density and/or
the baryon chemical potential is sufficiently large and the temperature is not too high. Even
though the multiquark states with colour degrees of freedom are less preferred than the
colour-singlet baryons, they are more energetically favoured than the other phases in such
dense condition.

The magnetic properties and the magnetic phase diagram of the multiquark matter are
subsequently reviewed. There are 2 possible holographic multiquark configurations, both of
them are stable under density fluctuations. High magnetic field and temperature merge the 2
configurations into one. Once they merge, they transit to the multiquark configurations with
larger densities, or to the chiral-symmetric QGP phase. In the region of the parameter space
with sufficiently large densities and moderate fields at a fixed temperature, the magnetized
multiquark phase is the most thermodynamically preferred. For a fixed magnetic field,
sufficiently high temperature will melt the multiquarks into quarks and gluons regardless
of the density.

In the region of parameter space with small density and baryon chemical potential
(μ < μonset of the multiquarks), another magnetized nuclear phase called the pure pion
gradient is dominant. When chiral symmetry is broken, an external strong magnetic field
could induce a response of the chiral condensate in the direction of the applied field.
The generated pion gradient also carries baryonic charge density and the corresponding
chemical potential. However, once μ > μonset of the multiquarks, the multiquark
phase is always energetically preferred than the pure pion gradient. Inevitably, the pion
gradient is also induced in the multiquark matter under the external field and render
the multiquark matter in a mixed MQ-∇ϕ phase. The population of the pion gradient
in the mixed phase is found to be a decreasing function with respect to the baryon
density.

Appendix

Force Condition of the Multiquark Configuration

The forces on the D4-brane in the flavour D8-branes are balanced among three forces from the
tidal weight of the D4-brane, the force from the strings attached to the D4, and the force from
the D8-branes. Varying the total action with respect to uc gives the surface term. Together
with the scale-fixing condition 2

∫∞
uc
dux′

4(u) = L0 = 1, we obtain [48]

x′
4(uc) =

(
L̃(uc) − (∂Ssource/∂uc)

)
∂S̃/∂x′

4

∣∣∣∣∣∣∣
uc

, (A.1)

as the condition on uc.
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The Legendre transformed action is given by

S̃ =
∫∞

uc

L̃
(
x′
4(u), d

)
du

= N
∫∞

uc

du

√
1

f(u)
+ u3x′2

4

×
√
f(u)

(
C(u) +D(u)2

)
−
(
jA − 3

2
Bμ + 3BaV0

)2

,

(A.2)

where C(u) ≡ u5 + B2u2, D(u) ≡ d + 3BaA1 (u) − 3B∇ϕ/2. It is calculated by performing
Legendre transformation with respect to aV ′

0 and aA′
1 , respectively. Note that the Chern-

Simons action is also included in the total action during the transformations.
The Chern-Simons term with the derivatives aV ′, aA′ eliminated is

SCS = −N3
2
B

∫∞

uc

du

(
aV0
(
jA − (3/2)Bμ + 3BaV0

) − f(u)D(u)aA1
)√

1/f(u) + u3x′2
4√

f(u)
(
C(u) +D(u)2

)
− (jA − (3/2)Bμ + 3BaV0

)2 . (A.3)

Lastly, in order to compute x′
4(uc)we consider the source term [12]

Ssource = Nd(uc)
[
1
3
uc

√
f(uc) + ns(uc − uT )

]
(A.4)

� Ndμsource, (A.5)

where ns = kr/Nc is the number of radial strings in the unit of 1/Nc. We have approximated
the electric displacement at the position of the D4 brane source, d(uc) ≡ −∂L/∂aV ′

0 |uc = d −
(3/2)BaA1 (∞)with d.

From (A.1), (A.2), (A.3), (A.5), and setting aV0 (uc) = μsource, a
A
1 (uc) = 0 we can solve

to obtain

(
x′
4(uc)

)2 = 1
fcu

3
c

⎡
⎢⎣ 9
d2

(
fc
(
Cc +D2

c

) − (jA − (3/2)Bμ + 3BaV0 (uc)
)2)

(
1 + (1/2)(uT/uc)

3 + 3ns
√
fc
)2 − 1

⎤
⎥⎦, (A.6)

where fc ≡ f(uc), Cc ≡ C(uc), Dc ≡ D(uc).
When we fix the parameter ns, the temperature T , the baryon density d, the axial

current jA = 0 (by minimizing the action with respect to aA1 (∞)), and setting aA1 (uc) =
0, aV0 (uc) = μsource, then the position uc of the D4-brane is completely determined as a function
of the magnetic field B. Once the equations of motion are solved, the value of μ = aV0 (∞) and
aA1 (∞) are determined.

In the case of nomagnetic field and finite baryon density, the force balance condition at
the tip can be obtained simply by using (A.6). It can be done by setting all spatial components
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of bulk U(1) gauge fields to be zero, leaving only the time component nonvanishing. This
results in Cc = u5c and Dc = d. Therefore, we obtain

(
x′
4(uc)

)2 = 1
fcu

3
c

⎡
⎢⎣ 9
d2

fc
(
u5c + d

2)(
1 + (1/2)(uT/uc)

3 + 3ns
√
fc
)2 − 1

⎤
⎥⎦, (A.7)

implying the force balance condition at the tip.
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[39] C. G. Callan, A. Güijosa, and K. G. Savvidy, “Baryons and string creation from the 5-brane world-
volume action,” Nuclear Physics B, vol. 547, no. 1-2, pp. 127–142, 1999.
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1 Introduction

Duality between gravity and gauge theory in spacetime with different dimensionalities has

been discovered by Maldacena in 1998 [1]. The type-IIB string theory in AdS5×S5 is con-

jectured to be dual to a gauge theory in four dimensional Minkowski spacetime (M4) at the

boundary of the AdS space. The correspondence can be used as a complementary method

to study the strongly coupled gauge theory in four dimensional Minkowski spacetime, a

cousin of quantum chromodynamics, by avoiding the uncontrollable non-perturbative cal-

culation via the application of weak-strong duality. We can deal with this problem by

alternatively performing calculations in the tractable weakly interacting string theory in
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five (plus five compact dimensions which provide details that are not relevant here) di-

mensional Anti de Sitter space (AdS5). The duality is extended to a finite temperature

situation by adding a horizon in the radial coordinate [2]. The string theory in an AdS

space with black hole horizon in the radial direction is proposed to be dual to a gauge the-

ory at finite temperature. The duality is made quantitative in the sense that the Hawking

temperature in the bulk theory corresponds to the temperature of the gauge theory on the

boundary. The AdS/CFT correspondence provides the first string-theoretic example of the

underlying generic principle of the holographic duality (i.e. the holographic principle).

The idea of holographic duality was originally proposed by ’t Hooft [3] in a generic

quantum gravity situation involving a gravitational horizon. The precise string theoretic

version was given by Susskind [4]. When an object falls into a black hole, it will be

stretched, torn apart into bits and eventually the bits will be smeared out over the horizon.

Consequently, all of the bulk information is spread over the horizonal surface resulting in

an effective boundary description of the bulk theory. The bulk world is holographically

encoded on the boundary. Connection between AdS space and holography was further

clarified by Witten [5] after discovery of the AdS/CFT correspondence.

Given an AdS space, the weakly-coupled bulk gravity theory corresponds to a strongly-

coupled boundary gauge theory. Adding a black hole to the AdS space, the dual gauge

theory on the boundary becomes thermal with the temperature equal to the correspond-

ing Hawking-Page temperature of the background [6]. It is thus interesting to investigate

the intermediate situation where there exists a massive object before gravitational collapse

into a black hole in the AdS space and search for the dual description in the gauge theory

side. It is argued in ref. [7, 8] that the degenerate fermions in the AdS correspond to the

composite multitrace operator constructed from product of single trace operators in the

large central charge limit on the boundary. It is not unreasonable to think of this “free”

fermionic operator as the conformal cousin of a QCD nucleon such as neutron and proton.

These “free fermions”, however, still interact with each other by the colour-singlet inter-

action of order 1/N assuming negligible in the large N limit. The colour-singlet (glueball)

exchange on the boundary corresponds holographically to the gravitational interaction in

the bulk. While gravity pulls the bulk mass together causing the gravitational collapse,

the colour-singlet interaction should be responsible for the deconfinement phase transition

of the injected mass in the dual picture.

Arguably, the gravitational collapse of the star in the AdS would correspond to a

thermalization process of the dual gauge matter on the boundary [9–15]. Consideration

of the mass limit of the fermionic star in the AdS bulk could reveal certain details of

the pre-thermalization process in the dual gauge picture. The mass limit of the AdS star

corresponds to the minimum amount of injected mass required in order for the bound-

ary gauge matter to start the thermalization process (since the bulk gravitational collapse

starts when injected mass exceeds the mass limit). Specifically, it is also interesting to ask

what the dual object of the bulk temperature is on the boundary world before black hole

formation? Should it correspond to some parameter characterizing the superheated phase

of gauge matter before the start of the thermalization? Moreover, what is the exact nature

of the colour-singlet (glueball exchange) interaction responsible for the deconfinement of

– 2 –
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the dual gauge matter into the thermalized deconfined plasma (which is the dual picture

of the gravitational collapse caused by gravity)?

The heavy-ion collision experiments at RHIC and CERN’s LHC (Large Hadron Col-

lider) smash two charged ions at extreme energies, producing dense and hot nuclear matter

with properties of the strongly coupled plasma. In the vicinity of the collision point, the

induced magnetic field could be enormous [16]. Understanding the physics of dense hot

nuclear plasma under such circumstances requires nonperturbative treatments of the strong

interaction and the holographic method is one option. One holographic dual of the mag-

netized nuclear matter at finite temperature is proposed to be a magnetized black brane in

the AdS space [17]. It was found that the entropy density of the magnetized brane in the

AdS obeys the third law of thermodynamics with entropy S ∼ T (temperature) for small

temperature.

In this article, we consider a fermionic star in the holographic AdS5 background in

the presence of external magnetic field at finite bulk temperature. The mass limit and

other properties of the star is studied with respect to the changes in the magnetic field

and bulk temperature. Even though there is no complete understanding of the dual de-

scription in the gauge theory side of this situation, we argue certain aspects of the duality.

In section 2, the Tolman-Oppenheimer-Volkoff (TOV) equation [18, 19] in the background

AdS5 is calculated starting from the general dimensionality. The energy levels of the bulk

charged fermions in the presence of the magnetic field are calculated in the flat space ap-

proximation. The pressure and density of the bulk fermions at finite field and temperature

are subsequently derived. Section 3 presents analytic and numerical results for each case

of finite temperature and field. The mass limits depend crucially on the field and bulk

temperature. The mass-radius relations for each case are discussed in section 4. The bulk

adiabatic index and sound speed of the fermions inside the AdS star are discussed in sec-

tion 5. The entropy density and total entropy in the bulk are also computed. Section 6

investigates the dependence of mass limit on the AdS radius. Section 7 contains further

discussions and summary of our results.

2 Holographic star under external magnetic field

The study of the magnetized star in the AdS space consists of two main calculations. First,

the pressure and energy density need to be calculated for the system of charged fermions in

the magnetic field at arbitrary temperature. The star will be assumed electrically neutral

and we will focus only on the effect of magnetic field to the charged particles. At zero

temperature, the energy states of the charged fermions in the magnetic field are separated

naturally into Landau levels. The partition function in the macrocanonical ensemble of

these energy levels will provide the generic expression for the pressure and energy density

of the fermionic system at finite temperature. The pressure and energy density are subse-

quently used in the equation of state required by the TOV equation in the 5-dimensional

AdS spacetime. Even though we will focus on interpreting the results of the bulk AdS star

in terms of the dual gauge theory, the calculations in the bulk picture are self-consistent and

satisfactorily describe a real magnetized fermionic star in the 5-dimensional AdS spacetime.

– 3 –
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2.1 The equations of hydrostatic equilibrium for a spherical symmetric star

in d dimensions

In order to study the behaviour of a degenerate star in d-dimensional AdS spacetime, we

derive the spherical symmetric TOV equation in d dimensions as given in appendix A. In

the presence of external magnetic field, the pressure of the fermionic matter in the star is

actually anisotropic due to the quantization of the energy levels. However, in the classical

limit where the momentum in the direction of the magnetic field is much larger than the

square root of the magnetic field, < p2z > /m2c2 ≫ 2Be~/m2c3, the pressure becomes

isotropic [20, 21] and the spherical symmetric TOV equation is applicable. The resulting

equations of motion describing the AdS star in the spherical symmetric approximation are

T (r) = T0µ(r)/µ0 for the temperature T (r), and

M ′ (r) =
2Vd−2

(d− 2)
ρ (r) rd−2, (2.1)

µ′ (r) = µ (r)

(

B′(r)

B(r)
− Vd−2Cd−1

(d− 2)

(

ρ (r) c2 + Pr (r)
)

rB2 (r)

)

, (2.2)

where B(r) = (1 − MCd−1

rd−3 + r2

l2
)−1/2, l is the AdS radius, Vd−2 is the area of Sd−2 and

Cd−1 =
16πG

(d−2)Vd−2c4
. To solve the equations of motion, we need the equation of state or the

explicit expression of P (r), ρ(r) in terms of the chemical potential µ(r). Standard evalua-

tion of the partition function requires the layout of energy states of the fermionic system

which can be obtained in the following subsection.

2.2 Relativistic Landau energy level in 5 dimensions

We now solve the Dirac equation to find the relativistic energy level of a charged fermion in

the presence of external magnetic field in the 5 dimensional spacetime. As an approxima-

tion, we will ignore the effect of curvature on the energy levels of the fermions. The effects

of gravity and the AdS curvature will be considered only through the Einstein equations

stated in the previous subsection. Starting from the Dirac equation in flat space

i~γµ∂µψ −mcψ = 0, (2.3)

where m is the mass of the fermion. The gamma matrices are chosen to be in the Dirac

representation as the following

γ0 =

(

1 0

0 −1

)

, ~γ =

(

0 ~σ

−~σ 0

)

, (2.4)

where 1 and ~σ are 2× 2 identity matrix and Pauli matrices respectively. We will consider

only the positive energy solution since we are interested in the particle not the antiparticle.

The positive energy solution ψ (x) = u (p) e−ipx = u (p) e−iEt+i~p·~x satisfies the equation

(γµpµ −m)u (p) = 0. Let ~ = 1 and consider a particle in an external magnetic field,

the effect of the magnetic field can be taken into account by adding the field momentum,

– 4 –
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pµ → pµ − qAµ. We will choose the magnetic field to point in the z direction and uni-

formly distributed over the entire x, y, z space. The equation of motion of the fermion in

5 dimensional space becomes

{p2x + p2y + p2z + p2w − 2qBxpy + q2B2x2 − qBσz}φ =
(

E2 −m2c4
)

φ. (2.5)

The momentum component in the extra dimension is represented by pw corresponding to

the coordinate w. We have assumed the solution in the form φ = ei(pyy+pzz+pww)f (x) and

neglect the effect of the AdS curvature to the momentum component pw. This is a good

approximation as long as the AdS radius of curvature is large compared to the wavelength

of the bulk fermions.

The energy condition from the equation of motion is given by

E2
n = m2c4 + p2zc

2 + p2wc
2 + (2n− ν + 1) 2mc2µBB. (n = 0, 1, 2, . . . , ν = ±1)

If we let j = n− ν
2 , then we have

E2
j = m2c4 + p2zc

2 + p2wc
2 +

(

j +
1

2

)

4mc2µBB, (2.6a)

= m2c4 + p2nc
2 +

(

j +
1

2

)

4mc2µBB.
(

p2n = p2z + p2w
)

(2.6b)

From equation (2.6a) and (2.6b), energy is quantized in the x−y plane and contains certain

degeneracy of states, i.e., there are several states with the same one-particle energy. The

number of states gj of a discrete energy level j is

gj =
gs
h2

∫

dpxdpydxdy =
gsLxLy

h2
2π

∫ pj+1

pj

pdp =
gsπLxLy

h2
(

p2j+1 − p2j
)

,

=
gsπLxLy

h2
(4mµBB) .

(

∵ p2jc
2 =

(

p2x + p2y
)

c2 = 4jmc2µBB
)

(2.7)

where gs(= 2s+ 1) is a spin degeneracy independent of j. The degeneracy is proportional

to the field and vanishes for B → 0. The discrete energies from the degrees of freedom

of the plane perpendicular to the magnetic field is called the Landau levels, characterizing

the statistical properties of the fermionic system. Extension to finite temperature situation

can be done by considering the corresponding partition function.

2.3 Pressure and energy density under magnetic field at finite temperature

Thermodynamical pressure and energy density of the magnetized fermion gas can be cal-

culated from the grand canonical partition function given by

lnZ =
1

h2

∫ ∞

−∞
dpzdpAdSdzdxAdS

∞
∑

j=0

gj ln

(

1 + e
−(

Ej−µ)
kBT

)

,

=
gsLxLyLzLAdS

h4
(4πmµBB)

∫ ∞

−∞
dpzdpAdS

∞
∑

j=0

ln

(

1 + e
−(

Ej−µ)
kBT

)

,

=

(

4gsπmµBBV

h4

)

(2π)

∫ ∞

0
pndpn

∞
∑

j=0

ln

(

1 + e
−(

Ej−µ)
kBT

)

. (2.8)
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Use the Euler-Maclaurin formula (see appendix B) and certain tricks of integration, we

finally have the pressure in the asymptotically approximated form

P =
kBT

V
lnZ =

kBT

V
(lnZ0 + lnZB) ,

≃
(

gsπ
2

2h4

)

[

∫ µ

mc2

(

ǫ2

c2
−m2c2

)2

dǫ− kBT

∫
µ−mc2

kBT

0

(

(µ−kBTy)2

c2
−m2c2

)2

ey + 1
dy

+ kBT

∫ ∞

0

(

(µ+kBTy)2

c2
−m2c2

)2

ey + 1
dy

]

−
(

2π2m2µ2BB
2

3h4

)

[

(

µ−mc2
)

− kBT

∫
µ−mc2

kBT

0

dy

ey + 1
+ kBT

∫ ∞

0

dy

ey + 1

]

. (2.9)

Likewise the energy density is given by

U =
gs
h2

∫ ∞

−∞
dpzdpAdSdzdxAdS

∞
∑

j=0

gj
Ej

z−1e
Ej

kBT + 1

,

=
gsLxLyLzLAdS

h4
(4πmµBB)

∫ ∞

−∞
dpzdpAdS

∞
∑

j=0

Ej

z−1e
Ej

kBT + 1

,

=

(

8gsπ
2mµBBV

h4

)
∫ ∞

0
pndpn

∞
∑

j=0

Ej

z−1e
Ej

kBT + 1

. (2.10)

Again, use the Euler-Maclaurin formula and tricks of integration, so that ρc2 = U
V = U0+UB

V

becomes

ρc2 ≃
(

2gsπ
2

h4c2

)

[

∫ µ

mc2
ǫ2
(

ǫ2

c2
−m2c2

)

dǫ−kBT
∫

µ−mc2

kBT

0

(µ−kBTy)2
(

(µ−kBTy)2

c2
−m2c2

)

(ey + 1)
dy

+kBT

∫ ∞

0

(µ+ kBTy)
2
(

(µ+kBTy)2

c2
−m2c2

)

(ey + 1)
dy

]

+

(

2gsπ
2m2µ2BB

2

3h4

)

[

(µ−mc2)

−kBT
∫

µ−mc2

kBT

0

dy

(ey+1)
+kBT

∫ ∞

0

dy

(ey + 1)
−
∫ µ

mc2

ǫe
ǫ−µ

kBT

kBT
dǫ−2

∫
µ−mc2

kBT

0

(µ−kBTy) e−y

(ey + 1)
dy

+

∫
µ−mc2

kBT

0

(µ− kBTy) e
−y

(ey + 1)2
dy +

∫ ∞

0

(µ+ kBTy) e
y

(ey + 1)2
dy

]

. (2.11)

Both expressions for the pressure and energy density are in the remarkable form with the

dependence on B separated out in simple quadratic functions. The integrations can be cast

into logarithmic and polylogarithmic functions depending only on the temperature (and

not the field) as are shown in the next section.

3 Numerical results

In this section, the equations of motion, eq. (2.1), (2.2) will be solved numerically. To

emphasize effects of both temperature and external magnetic field, the physical properties
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of the degenerate star in the AdS5 under the influence of both temperature and external

magnetic field are investigated by dividing into 4 cases; 1.) T = 0, B = 0, 2.) B = 0, T > 0,

3.) B > 0, T = 0, and 4.) B, T > 0. Before going into the details of each case, we integrate

equations (2.9) and (2.11) to obtain

P =

(

gsπ
2

30c4h4

)

[

3µ(r)5 − 10m2c4µ(r)3 + 15m4c8µ(r)− 8m5c10 − 10k2BT
2m2c4π2µ(r)

+ 7k4BT
4π4µ(r) + 10k2BT

2π2µ(r)3 − 120k3BT
3m2c4Li3

(

−e
mc2−µ(r)

kBT

)

+ 360k4BT
4mc2Li4

(

−e
mc2−µ(r)

kBT

)

− 360k5BT
5Li5

(

−e
mc2−µ(r)

kBT

)

− 20kBTm
2c4µ2BB

2 ln

(

1 + e
µ(r)−mc2

kBT

)

]

, (3.1)

ρc2 =

(

gs2π
2

15c4h4

)

[

3µ(r)5 − 5m2c4µ(r)3 + 2m5c10 − 5k2BT
2m2c4π2µ(r) + 7k4BT

4π4µ(r)

+10k2BT
2π2µ(r)3+30k2BT

2m3c6Li2

(

−e
mc2−µ(r)

kBT

)

−150k3BT
3m2c4Li3

(

−e
mc2−µ(r)

kBT

)

+360k4BT
4mc2Li4

(

−e
mc2−µ(r)

kBT

)

−360k5BT
5Li5

(

−e
mc2−µ(r)

kBT

)

]

+

(

4m2π2µ2BB
2

3h4

)

×
[

mc2

1 + e
µ(r)−mc2

kBT

− µ(r)− kBT ln

(

1 + e
mc2−µ(r)

kBT

)

+kBT ln

(

1 + e
µ(r)−mc2

kBT

)

]

, (3.2)

where Lis(z) =
∑∞

k=1
zk

ks is a polylogarithm function. For numerical analysis, we set G5 =

Gl, G = c = ~ = kB = µB = l = 1, m = 0.1. We can transform the numerical results to

the SI unit by using the table of dimensional translation given in appendix C. The coupled

equations of motion between mass and chemical potential (eq. (2.1), (2.2)) are numerically

solved to find the chemical potential and the accumulated mass within the star. The density

and pressure profiles can be subsequently obtained. The boundary conditions at the center

of star are chosen to be M(r = 0) = 0 and µ(r = 0) = e ≃ 2.718281828 for every case.

3.1 Case I, zero temperature and zero magnetic field

This is the condition of degenerate star in AdS5 considered in ref. [7]. The fermions degen-

erate into the lowest possible energy states filling the energy levels up until the Fermi energy

in 5 dimensions. In this limit, the pressure and the energy density, eq. (3.1), (3.2), reduce to

P =

(

gsπ
2

30c4h4

)

(

3µ(r)5 − 10m2c4µ(r)3 + 15m4c8µ(r)− 8m5c10
)

, (3.3a)

ρc2 =

(

gs2π
2

15c4h4

)

(

3µ(r)5 − 5m2c4µ(r)3 + 2m5c10
)

. (3.3b)

First, the surface of the star can be defined at the radial distance, R, where the pressure

becomes zero. Apparently from eq. (3.3a), the pressure is zero when µ(r = R) = mc2. On
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Figure 1. The accumulated mass(a) and the chemical potential(b) distribution in the degenerate

star at T = 0, B = 0.
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Figure 2. The density(a) and the pressure(b) distribution in the degenerate star at T = 0, B = 0.

the other hand, from eq. (3.3b), the density vanishes when µ/mc2 = −1.3848, 1. Therefore

in this case, both the pressure and energy density become zero at the radius R where

µ(R) = mc2.

The accumulated mass, the chemical potential, the density and the pressure distribu-

tion of the star versus the radius are presented in figure 1 and 2. Relations between the

total mass and the central chemical potential/density of the degenerate star are shown in

figure 3.

From the numerical solution, the edge of the degenerate star is at r = 17.6922 where the

pressure drops to zero. In figure 1(a), the accumulated mass grows rapidly, in particular

for the interval between r = 0 and r = 5. Beyond the central region, the accumulated

mass increases less rapidly and becomes steady. The behavior of the accumulated mass

is determined by the density and the pressure distribution within the star. Initially, both

the energy density and pressure in figure 2, decrease rapidly then they drop to zero more

gradually at larger distance. The chemical potential also behaves similarly (figure 1(b)).
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Figure 3. The relation between mass and central chemical potential/density (in logarithmic scale)

of the degenerate star at T = 0, B = 0.

It is clear that the matter in the star becomes extremely dense in the region near the

core. Figure 3 shows the mass curve of the degenerate star as a function of the central

chemical potential and density. From numerical analysis, the maximum mass is found to be

Mmax = 0.767302 for the central chemical potential equal to e1.033 or at the central energy

density equal to e−0.122306. This maximal mass can be interpreted to be the mass limit

above which gravitational collapse occurs. A mass injection into an empty AdS space until

the accumulated mass exceeds the mass limit would result in a gravitational collapse in

the bulk. The collapse corresponds to a thermalization process to finite temperature of the

dual gauge matter. Therefore, the mass limit corresponds to the minimum injected mass

required by the dual gauge matter to start the thermalization process into the thermal

equilibrium. After deconfinement thermalization, the dual gauge matter is in thermal

equilibrium at the Hawking temperature at this mass limit, i.e. Tgauge = TH with [22]

TH =
1

πℓ

(r+
ℓ

)

+
1

2πr+
, (3.4)

where the horizon radius r+ = ℓ
(

(
√

1 + 4MC4/ℓ2 − 1)/2
)1/2

for AdS5. Note that the

mass dependence of the Hawking-Page temperature in the limit of large (r+ ≫ ℓ) and

small (r+ ≪ ℓ) black hole in the AdS is

TH ≃ (MC4)
1/4

πℓ3/2
,

1

2π
√
MC4

(3.5)

respectively.

It is interesting to note that for r+/ℓ <
√

1/2 (small black hole with negative specific

heat after the gravitational collapse), the higher the mass limit, the smaller temperature

the dual gauge matter would thermalize to. This corresponds toM < 3ℓ2/4C4 = 9π/32 (for

ℓ = 1, approximately 0.8836). The mass limit of our AdS star for T,B = 0 is roughly 0.767

and therefore the black hole at the end of gravitational collapse for AdS star at this mass

limit is a small black hole with small negative specific heat.
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3.2 Case II, zero temperature and finite magnetic field

For this case, the magnetic field is turned on and the mass limit and other properties at

zero temperature are studied by comparing to the results of Case I. Since the changes from

case I is small, we will present the results using the numerical differences between the two

cases. Starting from the pressure and energy density for nonzero magnetic field

P =

(

gsπ
2

30c4h4

)

(

3µ(r)5−10m2c4µ(r)3+15m4c8µ(r)−8m5c10−20m2c4µ2BB
2(µ−mc2)

)

,

(3.6a)

ρc2 =

(

gs2π
2

15c4h4

)

(

3µ(r)5 − 5m2c4µ(r)3 + 2m5c10
)

−mc2
(

4m2π2µ2BB
2

3h4

)

. (3.6b)

Observe that the pressure of the star has almost the same form as the pressure in Case I.

The correction term to the pressure from the magnetic field contains the factor µ−mc2. The
density appears to be smaller due to the contribution from the term −mc2

(

4m2π2µ2
BB2

3h4

)

.

Since the pressure vanishes at µ = mc2 as in case I, the surface of the star is defined in

the similar way, at µ(R) = mc2. Interestingly at this radius, the density becomes negative

ρ(R) = −4m3c2π2µ2BB
2

3h4
, (3.7)

due to the interaction energy between the fermion’s magnetic moment and the external

field. Interestingly, there is a critical field strength where the density becomes zero,

Bc =
mc2

µB

√

3u5 − 5u3 + 2

5
, (3.8)

where u ≡ µ/mc2 is a rescaled chemical potential. For magnetic field stronger than this

critical value, the energy density becomes negative and there is no star formation or black

hole in the bulk. Since there is no horizon in the bulk, the dual gauge matter is at zero

temperature under extremely strong magnetic field.

Likewise, there is a critical field where the pressure becomes zero,

B′
c =

mc2

µB
(u− 1)

√

1

20
(3u2 + 9u+ 8). (3.9)

For u > 1, B′
c is always smaller than Bc, therefore the pressure becomes negative before

the density as the field is increased. At u = 1, both Bc and B
′
c are zero.

For numerical study, the magnetic field strength is chosen to be 0.10 and 0.20 for our

consideration. Figure 4 show that the mass limit, comparing to case I, decreases when

the magnetic field increases. The maximum mass for B = 0.2 is appreciably smaller than

the maximum mass at B = 0.1. Consider the equation of state in the energy density part

(eq. (3.6b)). Since the coupled equations of motion between mass and chemical potential

of the star (eq. (2.1) and (2.2)) involve the energy density, decreasing the energy density

leads to the decrease of mass and the chemical potential of the star comparing to case I.

The increase of the chemical potential subsequently leads to the decrease in the pressure of

the star. Numerical analysis confirms these behaviour as are shown in figure 5. Note that
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Figure 4. The relation between mass and central chemical potential (a) and central density (b) of

the degenerate star at T = 0, the mass difference between the nonzero magnetic field case and the

T,B = 0 case is presented.
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Figure 5. The difference of the density (a), the chemical potential (b), the pressure (c), between

finite and zero magnetic field cases for T = 0.

in the core region (0 < r . 1.4), the density increases due to the increase of the chemical

potential. However, in the outer region of the star, the effect of the magnetic field becomes

dominant resulting in the decrease of the density. Accumulated mass eventually becomes

smaller than the mass in case I.
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The maximal mass or the mass limit of the AdS star when the magnetic field is turned

on is smaller than the mass limit in case I. Therefore the dual gauge matter under magnetic

field thermalizes to larger temperature when the accumulated mass exceeds the mass limit

even though it requires smaller injected mass in order to start the thermalization. Gravi-

tational collapse of an AdS star under strong magnetic field corresponds to thermalization

of the magnetized gauge matter from zero to finite temperature. Remarkably, the ther-

malized temperature (at the mass limit) is larger than when the field is absent previously

discussed in case I. The magnetized gauge matter thermalizes more easily by requiring

smaller injected mass, and also becomes hotter after the deconfinement thermalization.

3.3 Case III, finite temperature and zero magnetic field

For finite bulk temperature, the bulk fermions become thermal in the AdS space. Since the

kinetic energy of the particles increases, the pressure becomes larger and the star grows

bigger. Again, we study the small changes in the mass limit and other properties of the star

by comparing the results to the zero temperature case. The pressure and energy density,

eq. (3.1), (3.2) in this case reduce to

P =

(

gsπ
2

30c4h4

)

[

3µ(r)5 − 10m2c4µ(r)3 + 15m4c8µ(r)− 8m5c10 − 10k2BT
2m2c4π2µ(r)

+ 7k4BT
4π4µ(r) + 10k2BT

2π2µ(r)3 − 120k3BT
3m2c4Li3

(

−e
mc2−µ(r)

kBT

)

+ 360k4BT
4mc2Li4

(

−e
mc2−µ(r)

kBT

)

− 360k5BT
5Li5

(

−e
mc2−µ(r)

kBT

)

]

, (3.10)

ρc2 =

(

gs2π
2

15c4h4

)

[

3µ(r)5−5m2c4µ(r)3+2m5c10−5k2BT
2m2c4π2µ(r)+7k4BT

4π4µ(r)

+ 10k2BT
2π2µ(r)3+30k2BT

2m3c6Li2

(

−e
mc2−µ(r)

kBT

)

−150k3BT
3m2c4Li3

(

−e
mc2−µ(r)

kBT

)

+ 360k4BT
4mc2Li4

(

−e
mc2−µ(r)

kBT

)

− 360k5BT
5Li5

(

−e
mc2−µ(r)

kBT

)

]

. (3.11)

It is interesting to investigate the large temperature limit, kBT ≫ mc2, µ. In this limit,

the polylogarithmic function becomes a zeta function Lis(−1) = −(1− 21−s)ζ(s) and thus

P =

(

gsπ
2

30c4h4

)

675

2
ζ(5)(kBT )

5, for large kBT. (3.12)

If we assume the star to be in a uniform temperature, this implies that the thermal fermions

are not confined within a finite-size star when the temperature is sufficiently large, i.e.

kBT ≫ mc2, µ. The result is not surprising, any particles with sufficiently large kinetic

energy will escape the gravitational influence of the star.

We set temperature values in the simulation unit to be 0 − 0.3. Figure 6 show that

temperature increasing hardly affects the mass limit. For this case, the surface of star is

defined at µ(r = R) = mc2 since the density and pressure do not necessarily reduce to
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Figure 6. (a) The mass curves for B = 0 as a function of the central chemical potential. (b) The

radius of the AdS star as a function of the central chemical potential for B = 0.
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Figure 7. The difference of the density (a), and the chemical potential (b), between finite and

zero temperature cases for B = 0.

zero. The maximum masses increase with the bulk temperature. This is because the small

increase in the temperature affects the Fermi-Dirac distribution very slightly. Most particles

are still in the same quantum states, mostly degenerate, and a very small part of the

particles occupy higher energies than the Fermi energy and exert more pressure. Increasing

temperature thus results in a small increase of pressure and energy density. Consequently,

when temperature increases, the maximum mass also grows. For T & 0.1, 0.2, the energy

density and chemical potential reduce to zero at much larger radii as shown in figure 7.

For sufficiently large temperature, even though the chemical potential reduces to mc2 at

smaller radii, the pressure does not reduce to zero. In other words, the thermal bulk

fermions refuse to be confined within a finite-size star above a critical temperature.

To interpret the results in the dual gauge picture, caution has to be made regarding the

bulk temperature. During the thermalization process corresponding to the gravitational
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Figure 8. The mass limit curves for T = 0.3, B = 0.01 and T = 0.3, B = 0.5 in comparison to the

mass limit curve at T,B = 0.

collapse in the gravity picture, the gauge matter is not in thermal equilibrium until a black

hole is formed when the mass injection exceeds the mass limit. A zero-bulk-temperature

AdS star collapsing into a black hole becomes thermal at nonzero Hawking temperature

due to the emergence of a horizon. Therefore, the bulk temperature does not correspond

to any sort of temperature of the gauge matter on the boundary world. One of the effects

of the bulk temperature of the fermions in the AdS star is the increase of mass limit.

Once a black hole is formed from gravitational collapse of the warm AdS star, the corre-

sponding Hawking temperature is always smaller than the the zero bulk temperature case.

After thermalization process, the dual gauge matter will be in thermal equilibrium at lower

temperature than the case of zero bulk temperature collapse. However, the total injected

energy is larger than the zero bulk temperature case. The bulk temperature thus serves as

a parameter which delays the onset of the thermalization process as well as reducing the

temperature of the resulting thermal equilibrium.

Certainly, the dual gauge matter at exactly the same temperature can be alternatively

achieved by injecting mass into a black hole in AdS space, increasing its mass and reduc-

ing the corresponding Hawking temperature (however, if we keep increasing the black hole

mass, it will finally become large black hole with positive specific heat and the temperature

will start to increase with the mass). This choice would correspond to in-equilibrium ther-

malization where the gauge matter is always kept at thermal equilibrium as temperature

decreases. The final thermal equilibrium at certain temperature can always be achieved by

infinitely many different thermalization processes.

3.4 Case IV, finite temperature and finite magnetic field

We now consider effects from both the finite bulk temperature and nonzero magnetic field

to the mass limit and other properties of the star. The equations of state have the full

form according to eq. (3.1) and (3.2). Again, it is interesting to consider the extreme limit
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of large temperature in the presence of the magnetic field. For nonzero field, the pressure

in this limit becomes

P =

(

gsπ
2

30c4h4

)(

675

2
ζ(5)(kBT )

5 − 20kBTm
2c4µ2BB

2 ln 2

)

, for kBT, µBB ≫ µ, (3.13)

provided that the field B is also comparably large. From eq. (3.13), the star will have

definite surface at finite radius when B ∝ T 2. Sufficiently hot star requires sufficiently

strong field to confine its fermionic content.

We see the similar behaviour as in case II and III, temperature increase leads to the

increase of the mass limit whereas the effect of the magnetic field is the opposite. In fig-

ure 8, when we set the field B = 0.01, the temperature T = 0.3 has stronger effect on the

profile of the star. The mass limit becomes larger than the mass limit in the case of the

zero temperature and magnetic field. Similar to case III, when the temperature increases,

the mass limit grows larger (the upper line in the figure 8). However, if the magnetic field

is enhanced further to B = 0.5, the mass limit becomes smaller than the zero-field zero-

temperature mass limit. Namely, the influence of the magnetic field has overcome those of

the temperature when it is sufficiently large.

Let us summarize implications for the thermalization of the dual gauge matter from

the results in this mixed situation with T,B > 0. Generically, turning on the bulk tem-

perature results in a larger mass limit in the AdS space while finite magnetic field leads

to a smaller mass limit. If the injected mass exceeds the mass limit, gravitational collapse

will occur and we end up with a black hole. The injected mass at the mass limit is also

the minimum mass required for the dual gauge matter to start the thermalization. The

Hawking temperature of the black hole can be identified with the temperature of the dual

gauge matter at thermal equilibrium after the non-equilibrium thermalization process cor-

responding to the collapse, it is larger (smaller) for finite field (bulk temperature) than the

collapse with T,B = 0. The field and the bulk temperature compete with opposite effects.

For zero-field finite temperature collapse, the final black hole has higher mass and

thus corresponds to small temperature of the gauge matter. The final equilibrium at the

same temperature can be achieved via in-equilibrium process by injecting mass into a black

hole resulted from gravitational collapse of an AdS star with T,B = 0 (case I). On the

contrary, when the field is turned on, we need to extract mass from a magnetized black

hole, reducing its mass and increasing its Hawking temperature in order to achieve the

thermal equilibrium at the same temperature and magnetic field.

The black hole immersed in the constant magnetic field in 4 dimensions was originally

investigated in ref. [23]. Extension to the magnetized black hole in AdS5 spacetime is

required to fully understand the holographic description of the strongly coupled magnetized

gauge matter, one such solution (magnetic brane) is discussed in ref. [17]. It is found that

the entropy density of the black brane in AdS5 is proportional to T for small T and has a

T 3 dependence for higher temperatures. We will calculate the entropy density of the AdS

star and compare to the case of magnetic brane in section 5. However, as stated above,

we have assumed the field is not sufficiently strong that it affects the spacetime of the

background and our analyses are thus limited to the moderate magnetic field situation.
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Figure 9. Relationships between mass and radius of the fermionic star.

4 Mass-radius relations

The mass sequences diagram of the AdS star for each case can be presented by the mass-

radius plot of the star as shown in figure 9. Figure 9(a) is the mass-radius sequence for case

I with zero temperature and zero magnetic field. The stars in this case have larger radius

than case II (zero temperature, finite field) in figure 9(b) but smaller radius than case

III (zero field, finite temperature) in figure 9(c). Interesting competition between temper-

ature and magnetic field can be seen in figure 9(d), a sufficiently large field helps to confine

the fermions within a finite-size star even for relatively higher temperatures comparing to

case III.

For sufficiently high temperature, the mass-radius curve can change the way it spirals

to the attractor fixed point at µ(0) → ∞. For B = 0 in figure 9(c), the curve with

T = 0.3 “oscillates down” to the fixed point from the small radii instead of the typical

anticlockwise spiralling. This is because at this temperature the radius of the star is an

increasing function of µ(0) with no oscillation as we can see from figure 6(b). For B = 0.1

in figure 9(d), the curve with T = 0.3, “oscillates down” to the fixed point from the large

radii without spiralling. It should be remarked that for case I and III (zero field), the mass

at the attractor fixed point for µ(0) → ∞ is around 0.7. For case II and IV at B = 0.1,
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the fixed point mass for µ(0) → ∞ is around 0.68. The radius of the AdS star at the fixed

point decreases with the field but does not depend very sensitively on the temperature.

5 The adiabatic index, sound speed, entropy density and total entropy

of the AdS star

Many interesting physical properties of the fermions squeezed within the AdS star by its

own gravity can be illustrated by certain thermodynamic and transport quantities. In this

section, we consider two transport coefficients, the adiabatic index and sound speed of the

AdS fermionic matter for each limiting case. The entropy density and total entropy of the

AdS star are discussed subsequently.

Generically the adiabatic index, Γ, and the sound speed, cs, of a medium are defined as

Γ =
ρ

P

∂P

∂ρ
=
ρ

P
c2s, (5.1)

=
ρ

P

∂µP

∂µρ

which can be calculated through the dependence on the chemical potential µ of both P

and ρ. The general expressions for both quantities are very lengthy but they are simplified

for the zero-temperature limit.

For T = 0, finite B,

Γ =
3(u2 − 1)2 − 4v2

3u2(u− 1)2(u+ 1)

(

3u5 − 5u3 + 2− 5v2

(3u2 + 9u+ 8)(u− 1)2 − 20v2

)

, (5.2)

cs =
1

2

√

(u2 − 1)2 − 4
3v

2

u2(u2 − 1)
, (5.3)

where u ≡ µ/mc2 is the rescaled chemical potential and v ≡ µBB/mc
2 is the rescaled

magnetic energy of the fermions.

For T,B = 0,

Γ =

(

1 + u

u2

)

3u3 + 6u2 + 4u+ 2

3u2 + 9u+ 8
, (5.4)

cs =
1

2

√

1− 1

u2
. (5.5)

A number of remarks are in order for the zero-temperature limit. From eq. (5.3) and (5.5),

the sound speed for the nonzero field case (v2 > 0) is shown to be larger than the case with

B = 0. For B = 0 since µ ≥ mc2 (u ≥ 1), the sound speed is always real and the upper

limit of cs is always smaller than 1/2 or half the speed of light. For nonzero field, reality

condition of cs leads to the constraint v ≤
√
3(u2 − 1)/2. Namely, for a given u, the upper

limit on the magnetic field for ordinarily-compressible fermionic matter is

B0 =
µ

µB

√
3

2
(u2 − 1). (5.6)
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Figure 10. The adiabatic index and sound speed of the fermionic matter in the AdS star. The

T,B > 0 label represents T = 0.3, B = 0.2 curve, the T > 0 and B > 0 label represents T =

0.3, B = 0 and T = 0, B = 0.1 curve respectively.

On the other hand, the upper limit from the light speed cs ≤ 1 is satisfied trivially for any

value of B.

Numerical results for each case are presented in figure 10. The B > 0 and T > 0 label

represents the curve with T = 0, B = 0.1 and B = 0, T = 0.3 respectively. The T,B > 0

label represents the curve with T = 0.3, B = 0.2.

When a thermodynamical system is injected with energy until it reaches a thermal

equilibrium, the total energy density, pressure and number density are related to the en-

tropy density by the relation sT = P + ρ − µn where the entropy density in our case can

be computed via

s =
∂P

∂T

∣

∣

∣

µ
, (5.7)

from the Gibbs-Duhem relation. Using eq. (3.1), the entropy density of the fermionic

content of the AdS star at finite temperature can be calculated to be

s =
4π2

15c4h4

[

5B2c4µ2Bm
2
(

µ(r)−mc2
)

e
µ(r)
kBT

T

(

e
c2m
kBT + e

µ(r)
kBT

) − 5B2c4kBµ
2
Bm

2 ln

(

e
µ(r)−c2m

kBT + 1

)

−450k5BT
4Li5

(

−e
c2m−µ(r)

kBT

)

+ 360c2k4BmT
3Li4

(

−e
c2m−µ(r)

kBT

)

+90k4BT
3
(

c2m−µ(r)
)

Li4

(

−e
c2m−µ(r)

kBT

)

−90c2k3BmT
2
(

c2m−µ(r)
)

Li3

(

−e
c2m−µ(r)

kBT

)

−90c4k3Bm
2T 2Li3

(

−e
c2m−µ(r)

kBT

)

+ 30c4k2Bm
2T
(

c2m− µ(r)
)

Li2

(

−e
c2m−µ(r)

kBT

)

+7π4k4BT
3µ(r) + 5π2k2BTµ(r)

(

µ(r)2 − (mc2)2
)

]

. (5.8)
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Figure 11. The entropy density of the fermionic matter in the AdS star. The T,B > 0 label

represents T = 0.3, B = 0.2 curve and the B = 0 label represents T = 0.03, B = 0 curve respectively.

The entropy density of the fermion gas approaches zero as T → 0, a typical behaviour from

a quantum ensemble satisfying the third law of thermodynamics. In the low temperature

limit, the last two terms of eq. (5.8) remain dominant and thus

s ≃ 4π4kBµ(r)

15(hc)4
[

5kBT (µ
2 −m2c4) + 7π2(kBT )

3
]

. (5.9)

It is interesting to compare the T -dependence of our entropy density with the magnetized

black hole studied in ref. [17] where s ∼ T for small temperatures and s ∼ T 3 for larger

temperatures. In our case of the fermions in the AdS star, the origin of the temperature de-

pendence is the typical behaviour of free relativistic fermi gas persisting in any dimensions.

For the magnetized AdS black hole, the entropy is determined from the central charge of

the AdS3 subspace of AdS3 × T 2 interpolating with the AdS5. However, it must be aware

that the bulk temperature of the AdS star and the Hawking temperature of the black hole

are two distinct kinds of temperature. Only the latter corresponds to the temperature of

dual gauge matter at a thermal equilibrium.

The entropy density of the magnetized fermion gas given by eq. (5.8) also depends

on the magnetic field s ∼ B2. The dependence nevertheless vanishes in the T → 0 limit.

However, this formula is the result of the Euler-Maclaurin formula which is a good approxi-

mation for kBT ≫ µBB, i.e. sufficiently high temperature. For smaller temperatures, start-

ing with eq. (2.8), the zeroth mode becomes dominant and the field-dependence becomes

s ∼ ∂T lnZ ∼ B. This is also similar to the behaviour of the magnetized black brane [17].

The entropy density from two numerical solutions are shown in figure 11. Since s is

an increasing function of T , the star at relatively small temperatures will have smaller

entropy density. For small temperatures or small entropy density, we can approximate

sT ≪ P, ρ, µn leading to P + ρ ≃ µn.

Next we calculate the total entropy of the AdS star which should be equivalent to the

entropy of the dual gauge matter before the thermalization. The total entropy of the star
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Figure 12. The total entropy as a function of radius of the AdS star for B = 0.1;T = 0.1, 0.2, 0.3

and B = 0.1, 0.2, 0.3;T = 0.1.
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Figure 13. The total entropy as a function of mass of the AdS star for B = 0.1;T =

0.1, 0.2, 0.3 (from left to right) and B = 0.1, 0.2, 0.3;T = 0.1 (from right to left).

should be the lower bound of the total entropy of the black hole at the end of gravitational

collapse when the mass of the AdS star exceeds the mass limit. This black hole entropy in

turn corresponds to the total entropy of the dual gauge matter at the end of thermalization.

In d dimensions, the total entropy is given by

S =

∫ R

0
s(r)

2Vd−2

d− 2
rd−2 dr, (5.10)

where the volume factor 2Vd−2r
d−2/(d− 2) becomes 4π2r3/3 for d = 5.

Figure 12 shows the total entropy of the AdS star for B = 0.1 at temperature

T = 0.1, 0.2, 0.3 and for T = 0.1 under field B = 0.1, 0.2, 0.3. The total entropy is an

increasing function of the temperature and a decreasing function of the magnetic field.

From small radii, the total entropy is an increasing function of the star radius. This is a

similar behaviour to the accumulated mass which is also a global quantity. Remarkably,

the total entropy converges to zero in the attractor fixed point µ(0) → ∞ limit. As the

central density grows, the content of the AdS star concentrates more in the central re-

gion resulting in the decrease of total entropy towards zero (the volume weighing factor r3

enhances contribution in the outer region in contrast to the core).
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The black hole at the end of gravitational collapse should possess at least the same

amount of total entropy as the initial AdS star above the mass limit. The second law of

thermodynamic demands that the entropy of the AdS star above the mass limit is always

less than the black hole entropy after the collapse [25]. The entropy increase could continue

until it reaches the maximum when a black hole is formed [26]. Unfortunately, the time evo-

lution of the entropy during the gravitational collapse is not completely known. Partially

because the thermal entropy is ill-defined during off-equilibrium processes and partially

due to the geometric nature of black hole entropy at the end of the collapse. There are

other kinds of entropy that can be assigned to the AdS star and the black hole. The

entanglement entropy quantifies how much we do not know about the region behind the

horizon and it is consistent with the geometric nature of the Bekenstein-Hawking entropy

of the black hole. Entanglement entropy is found to increase in a different manner from

the Kolmogorov-Sinai entropy [14, 15] during the collapse. However, all kinds of entropy

are found to increase approximately linearly during the initial state of the gravitational

collapse and saturate to a constant value at the end.

Each maximum of the M -S curve in figure 13 corresponds holographically to the en-

tropy of the dual gauge matter at the beginning of the thermalization process. It is also

proportional to entropy of the black hole after gravitational collapse assuming the linear

progression to the saturated Bekenstein-Hawking entropy mentioned above. Arguably, the

increase of entropy of the dual gauge matter from the injected mass state to the thermal

equilibrium should also be the linear progression following by saturation as well. Note that

the entropy is not maximal at the maximal mass nor the maximal radius as we can see

from figure 12, 13.

6 Dependence of mass limit on the AdS radius

We vary the curvature radius of the AdS space, l, and study the changes in the profile

of the star in this section. For simplicity, we will set the temperature and the external

magnetic field to be zero. We let the curvature radius to be 1, 3, 5 and 7, and observe

considerable changes in the mass limit of the star as are shown in figure 14. The mass

limit of the degenerate star increases evidently when we raise the curvature radius of the

AdS space. Moreover, the peak of the mass limit curve shifts to the lower central density

side. Note that increasing l corresponds to decreasing the bulk cosmological constant Λ.

For l = 3, the maximum mass is 1.96473(r = 27.4029) for the central chemical potential

µ(0) = e0.3825 or the central energy density ρ(0) = e−3.38048. For l = 5, the maximum

mass is 2.92023(r = 33.5921) for the central chemical potential µ(0) = e0.083 or the central

energy density ρ(0) = e−4.88441. For l = 7, the maximum mass is 3.71782(r = 38.4035) for

the central chemical potential µ(0) = e−0.1115 or the central energy density ρ(0) = e−5.86373.

7 Conclusions and discussions

In this work we have found that both temperature and external magnetic field affect the

mass limit and other physical properties of the fermionic AdS star. The increase of bulk
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Figure 14. The relation between mass and central energy density (in logarithmic scale) of the

degenerate star for varying AdS radius l = 1− 7.

temperature enables the pressure and energy density of the star to increase. Consequently,

the mass limit becomes slightly greater due to the larger pressure. This is the typical behav-

ior of the Fermi gas at finite temperature. Too large temperature results in the the fermions

refusing to be confined within a finite-size star, they will leak to the space inevitably.

In the presence of external magnetic field, the mass limit decreases when the magnetic

field increases. As we can see from eq. (3.1) and (3.2), an increase in the magnetic field

results in a smaller energy and pressure density as well as a smaller chemical potential.

The mass limit becomes smaller naturally. There is an interesting competition between

the temperature and the magnetic field to the density profile and mass limit of the star.

Extremely strong magnetic field tends to make the bulk fermions stay in the Landau states

with lower energies whilst the temperature causes the particles to flee the star.

The radius of curvature of the AdS space also affects the mass limit evidently. When

the radius of curvature increases, the mass limit increases substantially as are shown in fig-

ure 14. Interestingly, the peak of the mass limit curve shifts to the lower central density side.

Gravitational collapse in the AdS space has holographic dual in terms of the non-

equilibrium thermalization of the gauge matter on the boundary. Even though the Hawk-

ing temperature of the black hole at the end of the gravitational collapse can be matched

with the temperature at thermal equilibrium of the gauge matter at the end of thermaliza-

tion, the bulk temperature of the AdS star does not seem to have such a straightforward

relationship with the dual gauge matter. The Hawking temperature of the resulting black

hole is not directly related to the temperature of the fermionic star before the collapse but

inversely proportional to the mass of the star. Therefore it is the mass limit studied in our

work which corresponds to the temperature of the gauge matter at the thermal equilibrium

after thermalization, i.e. Tgauge ∼
√

3/32πMlimit (the black hole formed at our mass limit

is small AdS black hole with negative specific heat, the precise relationship is given in

eq. (3.4)), for a given mass injection Mlimit in the dual gauge picture. The mass limit also

plays the role of the minimum injected mass required for the dual gauge matter to undergo

the thermalization into the thermal equilibrium. Larger mass limit means that it requires

more injected energy to thermalize, and once it thermalizes, the gauge matter will be at

lower Hawking temperature.
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It should be remarked that the AdS black holes formed at the end of the gravita-

tional collapse of the AdS stars at our mass limits are small black holes with negative

specific heat. They are previously thought to be less thermodynamically preferred than

the AdS vacuum in the context of the AdS/CFT correspondence and only the large AdS

black hole with positive specific heat was considered relevant for the dual of the thermal

gauge matter. However, inevitable collapse at the mass limits corresponding to small AdS

black holes suggest that there might exist the phase of thermal gauge matter with negative

specific heat dual to these black holes at the end of the gravitational collapse. Injecting

more mass would make these AdS black holes and their gauge duals eventually become

thermodynamically stable with positive specific heat.

Entropy density of the AdS star under uniform magnetic field is found to show in-

teresting behaviour; s ∼ T for small and s ∼ T 3 for higher bulk temperatures. Such

T -dependence is typical for free fermion gas (modulo the magnetic field existence) and it is

amusingly similar to the T -dependence of the magnetic black brane entropy in the AdS [17]

even though the latter is the Hawking-Page temperature of the brane, not the bulk temper-

ature of the material making up the brane itself. Nevertheless, the correspondence between

the bulk and boundary exists throughout the gravitational collapse as long as the back-

ground is the AdS. The holographic duality suggests that the Hilbert spaces of both the

gravity and gauge theory as well as their partition functions are equivalent. A global probe

for the number of degrees of freedom on both sides of the duality is the entropy. The total

entropy of the AdS star above the mass limit, which indicates the lower bound of the black

hole entropy at the end of gravitational collapse, should also be the lower bound of the total

entropy of the gauge matter at the end of thermalization in the dual picture, Sgauge & SAdS.

We found that the entropy (at the mass limit) of the AdS star is an increasing (decreasing)

function of the temperature (magnetic field), similar behaviour to the mass limit.

The remaining unanswered question is the exact correspondence between the gravita-

tional collapse in the bulk and non-equilibrium deconfinement thermalization of the dual

gauge matter. If bulk gravity is dual to colour-singlet glueball interaction and it causes

the gravitational collapse in the AdS, how could the glueball exchange describe the decon-

finement thermalization in the dual gauge picture? Should there exist the critical glueball

density corresponding to the mass limit in the bulk which determines the deconfinement

phase transition on the gauge theory side? What is the boundary (CFT) gauge description

of the TOV equation and more generically the Einstein equation in the (AdS) bulk? What

are the duals of bulk temperature and other thermodynamic and transport quantities such

as the adiabatic index and sound speed of the AdS star in the gauge theory side?
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A The equation of hydrostatic equilibrium for a spherical symmetric star

in d dimensions

We solve the Einstein equation in d-dimensional spacetime in this section. Starting from

the Einstein equation,

Gµ
ν = Rµ

ν − gµν
R

2
= Vd−2Cd−1T

µ
ν , (A.1)

where Rµ
ν , g

µ
ν , R, T

µ
ν , Vd−2, Cd−1 are Ricci tensor, metric tensor, Ricci scalar, energy-

momentum tensor, the area of Sd−2 and constant
(

16πG
(d−2)Vd−2c4

)

respectively. Assuming a

perfect fluid, the energy-momentum tensor is given by

Tµ
ν =

















ρc2

−Pr

−Pθ1
. . .

−Pθd−2

















, (A.2)

where we use a spherically symmetric metric in d dimensions in the polar coordinates [24]

ds2 = A(r)c2dt2 −B(r)dr2 − r2dΩ2
d−2

= A(r)c2dt2 −B(r)dr2 − r2dθ21 − r2 sin2 θ1

(

dθ22 + · · ·+
d−3
∏

i=2

sin2 θidθ
2
d−2

)

= A(r)c2dt2 −B(r)dr2 − r2dθ21 − r2 sin2 θ1



dθ22 +
d−2
∑

j=3

j−1
∏

i=2

sin2 θidθ
2
j



 . (A.3)

The Lagrangian of this metric is then given by

L = A(r)c2ṫ2 −B(r)ṙ2 − r2θ̇21 − r2 sin2 θ1



θ̇22 +
d−2
∑

j=3

j−1
∏

i=2

sin2 θiθ̇
2
j



 . (A.4)

We will use the Euler-Lagrange equation to find the equations of motion and read off the

connections,

∂τ

(

∂L

∂q̇

)

=
∂L

∂q
. (A.5)

Consider t component, the equation of motion is

ẗ+
A′

A
ṙṫ = 0, (A.6)

and the connections are

Γt
rt = Γt

tr =
A′

2A
. (A.7)
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The equation of motion in the r component reads

r̈ +
A′c2

2B
ṫ2 +

B′

2B
ṙ2 − r

B
θ̇21 −

r sin2 θ1
B



θ̇22 +
d−2
∑

j=3

j−1
∏

i=2

sin2 θiθ̇
2
j



 = 0, (A.8)

and the connections in the r component are

Γr
tt =

A′c2

2B
,Γr

rr =
B′

2B
,Γr

θ1θ1 =
−r
B
,Γr

θ2θ2 =
−r sin2 θ1

B
,

. . . ,Γr
θjθj

=
−r sin2 θ1

B

j−1
∏

i=2

sin2 θi. (A.9)

Likewise, the equation of motion in the θ1 component is

θ̈1 +
2

r
ṙθ̇1 − sin θ1 cos θ1



θ̇22 +
d−2
∑

j=3

j−1
∏

i=2

sin2 θiθ̇
2
j



 = 0, (A.10)

and the connections in the θ1 component are

Γθ1
rθ1

= Γθ1
θ1r

=
1

r
,Γθ1

θ2θ2
= − sin θ1 cos θ1,

. . . ,Γθ1
θjθj

= − sin θ1 cos θ1

j−1
∏

i=2

sin2 θi, (A.11)

where 3 6 j 6 d− 2. Similarly, the equation of motion in the θ2 component is

θ̈2 +
2

r
ṙθ̇2 + 2 cot θ1θ̇1θ̇2 − sin θ2 cos θ2

d−2
∑

j=4

j−1
∏

i=3

sin2 θiθ̇
2
j = 0, (A.12)

and the relevant connections are

Γθ2
rθ2

= Γθ2
θ2r

=
1

r
,Γθ2

θ1θ2
= Γθ2

θ2θ1
= cot θ1,

. . . ,Γθ2
θjθj

= − sin θ2 cos θ2

j−1
∏

i=3

sin2 θi, (A.13)

where 4 6 j 6 d− 2. The equation of motion in the θj (j > 3) component is

θ̈j +
2

r
ṙθ̇j + 2 cot θ1θ̇1θ̇j +

2
∑j−1

l=2

∏j−1
i=2
i6=l

sin θl cos θl sin
2 θi

∏j−1
i=2 sin

2 θi
θ̇lθ̇j

−
d−2
∑

k=j+1

k−1
∏

i=j+1

sin θj cos θj sin
2 θiθ̇2k = 0, (A.14)

and the connections in θj component are

Γ
θj
rθj

= Γ
θj
θjr

=
1

r
,Γ

θj
θ1θj

= Γ
θj
θjθ1

= cot θ1,Γ
θj
θlθj

= Γ
θj
θjθl
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=

∏j−1
i=2
i6=l

sin θl cos θl sin
2 θi

∏j−1
i=2 sin

2 θi
= cot θl,Γ

θj
θkθk

= − sin θj cos θj

k−1
∏

i=j+1

sin2 θi, (A.15)

where 2 6 l 6 j − 1 and j + 1 6 k 6 d − 2. The Ricci tensor and Ricci scalar can be

calculated from

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ,

Rµν =Rλ
µλν ,

R = Rµ
µ = gµνRµν .

After some calculations, we have

Rt
t =

A′′

2AB
− A′B′

4AB2
− (A′)2

4A2B
+ (d− 2)

A′

2rAB
,

Rr
r =

A′′

2AB
− A′B′

4AB2
− (A′)2

4A2B
+ (d− 2)

B′

2rB2
,

Rθ1
θ1

=
A′

2rAB
− B′

2rB2
− (d− 3)

r2

(

1− 1

B

)

,

Rθ2
θ2

=
A′

2rAB
− B′

2rB2
− (d− 3)

r2

(

1− 1

B

)

,

Rθi
θi

=
A′

2rAB
− B′

2rB2
− (d− 3)

r2

(

1− 1

B

)

.

Consider Gt
t = Rt

t − gtt
2

(

Rt
t +Rr

r +Rθ1
θ1

+Rθ2
θ2

+ . . .+Rθi
θi
+ . . .+R

θd−2

θd−2

)

=

Vd−2Cd−1T
t
t → Rt

t −
(

Rr
r + . . .+R

θd−2

θd−2

)

= 2Vd−2Cd−1ρc
2, then

(d− 2)
B′

rB2
+

(d− 2)(d− 3)

r2

(

1− 1

B

)

= 2Vd−2Cd−1ρc
2, (A.17)

B′ − (d− 3)

r
B = B2

(

2rVd−2Cd−1ρc
2

(d− 2)
− (d− 3)

r

)

. (A.18)

If we consider an AdS space(with a negative cosmological constant, Λ), then the Einstein

equation reads

Gµ
ν + Λgµν = Vd−2Cd−1T

µ
ν , (A.19)

and equation (A.18) becomes

B′ − (d− 3)

r
B = B2

(

2rVd−2Cd−1ρc
2

(d− 2)
− (d− 3)

r
− 2Λr

(d− 2)

)

. (A.20)

Change B → B2, so that

B′ − (d− 3)

2r
B = B3

(

rVd−2Cd−1ρc
2

(d− 2)
− (d− 3)

2r
− Λr

(d− 2)

)

. (A.21)
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The solution to this equation is

B2 =
1

1− 2c2Vd−2Cd−1

(d−2)rd−3

∫

ρrd−2dr + 2Λr2

(d−2)(d−1)

. (A.22)

Let 2Λ
(d−2)(d−1) =

1
l2
, then

B2 =
1

1− 2c2Vd−2Cd−1

(d−2)rd−3

∫

ρrd−2dr + r2

l2

=
1

1− MCd−1

rd−3 + r2

l2

. (A.23)

Also the accumulated mass can be defined to be

M (r) =
2Vd−2

(d− 2)

∫

ρrd−2dr. (A.24)

Consider Gr
r = Rr

r − grr
2

(

Rt
t +Rr

r +Rθ1
θ1

+Rθ2
θ2

+ . . .+Rθi
θi
+ . . .+R

θd−2

θd−2

)

=

Vd−2Cd−1T
r
r → Rr

r −
(

Rt
t + . . .+R

θd−2

θd−2

)

= 2Vd−2Cd−1Pr, then

(d− 2)A′

rAB
− (d− 2) (d− 3)

r2

(

1− 1

B

)

= 2Vd−2Cd−1Pr.

Use equation (A.17) from Gt
t and multiply by rB/(d− 2),

A′

A
+
B′

B
=

2Vd−2Cd−1

(d− 2)
rB
(

ρc2 + Pr

)

. (A.25)

Change A→ A2, B → B2, equation (A.25) becomes

A′

A
+
B′

B
=
Vd−2Cd−1rB

2

(d− 2)

(

ρc2 + Pr

)

,

Solve this equation to find relations between A and B,

A2 (r) =
e2χ(r)

B2 (r)
, (A.26)

where

χ (r) =
Vd−2Cd−1

(d− 2)

∫

(

ρ (r) c2 + Pr (r)
)

rB2 (r) dr. (A.27)

Finally we obtain the coupled equations of motion from equation (A.24) and (A.27)

M ′ (r) =
2Vd−2

(d− 2)
ρ (r) rd−2, (A.28a)

χ′ (r) =
Vd−2Cd−1

(d− 2)

(

ρ (r) c2 + Pr (r)
)

rB2 (r) . (A.28b)

Moreover, when we consider the energy momentum conservation ∇µT
µ
ν = 0 by letting

ν = r and Pr = Pθ1 = . . . = Pθi = . . . = Pθd−2
= P , A→ A2, it leads to the TOV equation

in d-dimension,

dP

dr
= −

(

ρc2 + P
) A′

A
.
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Next we want to rewrite this equation in the form containing thermodynamic quantities

such as the chemical potential, the entropy, and the temperature of matter within the

spherically symmetric star. From thermodynamic relations involving the entropy density s;

sT = P + ρc2 − µn, (A.29)

s dT = dP − n dµ, (A.30)

the TOV equation can be rewritten as

s

(

T ′ + T
A′

A

)

+ n

(

µ′ + µ
A′

A

)

= 0, (A.31)

implying two equations to be satisfied simultaneously

T ′ + T
A′

A
= µ′ + µ

A′

A
= 0. (A.32)

The temperature equation can be solved to obtain the redshifted temperature profile

within the star T = T0/A(r) where A(0) = 1 and T0 is the temperature at the star center.

The chemical potential equation similarly gives

µ(r) =
µ0
A(r)

. (A.33)

The coupled equations of motion can then be written in terms of the accumulated mass

and chemical potential as the following

M ′ (r) =
2Vd−2

(d− 2)
ρ (r) rd−2, (A.34a)

µ′ (r) = µ (r)

(

B′(r)

B(r)
− Vd−2Cd−1

(d− 2)

(

ρ (r) c2 + Pr (r)
)

rB2 (r)

)

. (A.34b)

B Euler-Maclaurin formula

A slowly converging series can be evaluated effectively by using an integral as in the Euler-

Maclaurin formula

∞
∑

j=0

f

(

j +
1

2

)

≈
∫ ∞

0
f(x) dx+

1

24
(f ′(0)− f ′(∞)) +O(x3). (B.1)

In this article, the partition function sum over Landau states is approximated using this

conventional method by letting

f(x) = ln

(

1 + exp

(

µ−
√

m2c4 + p2nc
2 + 4xmc2µBB

kBT

))

, (B.2)

where x = j + 1/2.
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quantity dimensionless variable physical variable

density ρ ρ0ρ

pressure P ρ0P

mass M
(

c10

G4ρ0

)
1
3
M

radius r
(

c4

Gρ0

)
1
3
r

temperature T
(ρ0c4~4)

1
5

kB
T

magnetic field B
(ρ0c4~4)

1
5

µB
B

Table 1. Dimensional translation table of physical quantities, the rescale parameter ρ0 =
(mp

ms
c2)

5

c4~4

where mp and ms are the rest mass of particles and the mass used in simulation, respectively.

C Dimensional translation table

ρ0 =

(
mp

ms
c2
)5

c4~4
where mp and ms are the rest mass of particles and the mass used in

simulation, respectively.
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Abstract: We study phase diagram of the dense holographic gauge matter in the Sakai-

Sugimoto model in the presence of the magnetic field above the deconfinement temperature.

Even above the deconfinement, quarks could form colour bound states through the remain-

ing strong interaction if the density is large. We demonstrate that in the presence of the

magnetic field for a sufficiently large baryon density, the multiquark-pion gradient (MQ-

▽ϕ) phase is more thermodynamically preferred than the chiral-symmetric quark-gluon

plasma. The phase diagrams between the holographic multiquark and the chiral-symmetric

quark-gluon plasma phase are obtained at finite temperature and magnetic field. In the

mixed MQ-▽ϕ phase, the pion gradient induced by the external magnetic field is found

to be a linear response for small and moderate field strengths. Its population ratio de-

creases as the density is raised and thus the multiquarks dominate the phase. Temperature

dependence of the baryon chemical potential, the free energy and the linear pion gradi-

ent response of the multiquark phase are well approximated by a simple analytic function
√

1 − T 6

T 6

0

inherited from the metric of the holographic background.
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1 Introduction

Discovery of the AdS/CFT correspondence [1] and the generalization in terms of the holo-

graphic principle have provided us with alternative theoretical methods to explore the

physics of strongly coupled gauge matter. Holographic models have been constructed to

mimic behaviour of the strongly coupled gauge matter in various situations. The Sakai-

Sugimoto (SS) model [2, 3] is a holographic model which contains chiral fermions in the

fundamental representation of U(Nc). Its low energy limit is the closest holographic model

of the QCD so far. It can also accommodate distinctively the chiral symmetry restoration

and the deconfinement phase transition in the non-antipodal case [4]. It provides inter-

esting possibility of the existence of the exotic nuclear phase where quarks and gluons are

deconfined but the chiral symmetry is still broken.

In the SS model, there are two background metrics describing a confined and a decon-

fined phase. The deconfined phase corresponds to the background metric with a black hole

horizon. The Hawking temperature of the black hole is identified with the temperature of

the dual “QCD” matter. When gluons are deconfined, the thermodynamical phase of the

nuclear matter can be categorized into 3 phases, the vacuum phase, the chirally broken

phase and the chiral-symmetric phase. In the deconfined phase, the interaction between

quarks and gluons become the screened Coulomb potential. If the coupling is still strong,

bound states of quarks could form (see ref. [5–10] for multiquark related studies). The

phase diagram of the holographic nuclear matter in the SS model is studied in details in

ref. [11] and extended to include multiquarks with colour charges in ref. [10]. It has certain

similarity to the conventional QCD phase diagram speculated from other approaches e.g.

the existence of critical temperature line above which chiral symmetry is restored. The

phase diagram also shows the thermodynamic preference of the multiquark phase with

broken chiral symmetry for moderate temperature in the situation when the density is suf-

ficiently large. As an implication, it is thus highly likely that matters in the core of neutron

stars are compressed into the multiquark nuclear phase. A thorough investigation on the

– 1 –
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multiquark star suggests higher mass limits of the neutron stars if they have multiquark

cores [12].

When the magnetic field is turned on, the phase structure becomes more complicated.

Magnetic field induces the pion gradient or a domain wall as a response of the chiral con-

densate of the chirally broken phase [13]. In the confined phase, this is distinctive [14].

However, it is demonstrated in ref. [15] that the pion gradient is subdominant to the contri-

bution from the multiquarks in the chirally broken deconfined phase. It was also shown in

ref. [15] that for sufficiently large density, the multiquark phase is more thermodynamically

preferred than the chiral-symmetric quark-gluon plasma for small and moderate magnetic

field strengths. Therefore it is interesting to explore the phase diagram of the deconfined

nuclear matter in the presence of the external magnetic field. We establish two phase

diagrams between the chirally broken multiquark (χSB) and the chiral-symmetric quark-

gluon plasma (χS-QGP), one at fixed temperature, T = 0.10, and another at fixed field,

B = 0.20. The magnetic phase diagram of the similar model for zero baryon density is

investigated in ref. [16]. The phase diagram at finite density without instanton source is

explored in ref. [17] with the approximation f(u) ≃ 1. We found that in the presence of

the instanton for T & 0.10, this approximation is no longer valid.

Our main results demonstrate that for a given magnetic field and moderate tempera-

ture, the most preferred nuclear phase in the SS holographic model is the multiquark-pion

gradient (MQ-▽ϕ) phase provided that the density is sufficiently large. We also study the

temperature dependence of the baryon chemical potential, the free energy, and the linear

response of the pion gradient of the mixed MQ-▽ϕ phase and show that they inherit the

temperature dependence mostly from the SS background.

Extremely strong magnetic fields could have been produced in many situations. The

Higgs mechanism in the cosmological electroweak phase transition could create enormous

magnetic fields in the region between two different domains with different Higgs vacuum

expectation values [18] which could play vital role in the phase transitions of the nuclear

soup at later times. At the hadron and heavy ion colliders, colliding energetic charged

particles could produce exceptional strong magnetic field locally. The local magnetic fields

produced at RHIC and LHC are estimated to be in the order of 1014−15 Tesla [19]. On

the astrophysical scale, certain types of neutron stars called the magnetars could produce

magnetic fields as strong as 1010 Tesla [20].

This article is organized as the following. In section 2, the setup of the deconfined SS

model with additional baryon vertex and string sources are discussed. Main results are

elaborated in section 3. Section 4 concludes the article.

2 Holographic setup of the magnetized multiquark phase

The setup we will use is the same as in ref. [15], the Sakai-Sugomoto model with additional

baryon vertex and strings (baryon vertex is introduced in ref. [21, 22]). Starting from a

10 dimensional type IIA string theory with one dimension compactified into a circle which

we will label x4. Two stacks of D8-branes and D8-branes are then located at distance

L from each other in the x4 direction at the boundary. This separation will be fixed

– 2 –
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at the boundary and it will play the role of the fundamental scale of our holographic

model. Open-string excitations with one end on the D8 and D8 will represent quarks with

different chiralities. In the background where the D8 and D8 are parallel, excitations for

each chirality are independent and there is a chiral symmetry in the background and at

the boundary. For background with connecting D8 and D8, chiral symmetry is broken and

there is a chiral condensate. When the energy of the connecting configuration is minimal

and there is no extra sources, we define the corresponding boundary gauge matter to be in

a vacuum phase.

Since the partition function of the string theory in the bulk is conjectured to be equal to

the partition function of the gauge theory on the boundary, the free energy of the boundary

gauge matter is equivalent to the superstring action in the bulk (modulo a periodicity

factor) [23]. We turn on non-normalizable modes of the gauge field aV
3 , aA

1 , aV
0 (defined

in units of RD4/2πα′) in the D8-branes and identify them with the vector potential of

the magnetic field, B (defined in units of 1/2πα′), the gradient of the chiral condensate,

▽ϕ, and the baryon chemical potential, µ, at the boundary respectively. These curious

holographic correspondence between the branes’ fields and the thermodynamical quantities

of the gauge matter at the boundary allows us to study physics of the strongly coupled

non-Abelian gauge matter at finite density in the presence of the external magnetic field.

Electric field can also be added using other components of the gauge field on the D8-

branes [16, 24] but we will not consider such cases here.

The background spacetime of the Sakai-Sugimoto model is in the form

ds2 =

(

u

RD4

)3/2
(

f(u)dt2 + δijdxidxj + dx4
2
)

+

(

RD4

u

)3/2 (

u2dΩ2
4 +

du2

f(u)

)

(2.1)

F(4) =
2πN

V4
ǫ4, eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNcl

3
s ,

where f(u) ≡ 1 − u3
T /u3, uT = 16π2R3

D4T
2/9. V4 is the volume of the unit four-sphere Ω4

and ǫ4 represents the volume 4-form. ls and gs are the string length scale and the string

coupling respectively. R is the compactified radius of the x4 coordinate. This radius is

different from the curvature RD4 of the background in general. The dilaton field is denoted

by φ which will be eliminated by the function of u as stated above.

The direction of the magnetic field is chosen so that the vector potential is

aV
3 = Bx2. (2.2)

The baryon chemical potential µ of the corresponding gauge matter is identified with the

non-normalizable mode of the DBI gauge field at the boundary by

µ = aV
0 (u → ∞). (2.3)

The five-dimensional Chern-Simon term of the D8-branes generates another axial part

of the U(1), aA
1 , by coupling it with B and aV

0 . In this way, the external magnetic field

induces the axial current jA associated with the axial field aA
1 . The non-normalizable mode

of this field at the boundary corresponds to the response of the chiral condensate to the
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magnetic field which we call the pion gradient, ▽ϕ. External field causes the condensate

to form a domain wall which can be characterized by the gradient of the condensate with

respect to the direction of the applied field. The pion gradient also acts as a source of the

baryon density in our gauge matter.

Additional sources of the baryon density and the baryon chemical potential can be

added to the configuration in the form of the baryon vertex and strings. The vertex

appears as an instanton at the tip uc of the brane configuration and the strings hang down

from the vertex to the horizon uT [10, 11].

Ssource = Nd
[1

3
uc

√

f(uc) + ns(uc − uT )
]

, (2.4)

= Ndµsource (2.5)

where ns = kr/Nc is the number of radial strings in the unit of 1/Nc. Since the radial strings

could merge with strings from other multiquark and generate a binding potential between

the multiquarks, this number therefore represents the colour charges of the multiquark

in the deconfined phase. It is interesting to note that when there is only string source

representing quark matter, the quark matter becomes thermodynamically unstable under

density fluctuations [11]. However, adding baryon vertex together with the strings makes

the multiquark configuration stable under the density fluctuations [10]. The multiquark

phase is even more thermodynamically preferred than the χS-QGP when the density is

sufficiently large and the temperature is not too high.

With this setup, then the DBI and the Chern-Simon actions of the D8-branes config-

uration can be calculated to be

SD8 = N
∫ ∞

uc

du u5/2

√

1 +
B2

u3

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4 , (2.6)

SCS = −3

2
N

∫ ∞

uc

du (∂2a
V
3 aV

0 aA′
1 − ∂2a

V
3 aV ′

0 aA
1 ), (2.7)

where N = NR2
D4/(6π

2(2πα′)3) defines the brane tension. The factor 3/2 in the Chern-

Simon action fixes the surface effect of the region with uniform magnetic field as explained

in ref. [14]. We have to add extra surface terms to preserve the gauge invariance since the

gauge transformation does not vanish at the boundary in this case.

We can write down the equations of motion with respect to each gauge field aV
0 , aA

1 as
√

u5 + B2u2 f(u)a′A1
√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

= jA − 3

2
Bµ + 3BaV

0 , (2.8)

√
u5 + B2u2 a′V0

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

= d − 3

2
BaA

1 (∞) + 3BaA
1 . (2.9)

d, jA are the corresponding density and current density of the dual gauge matter at the

boundary of the background (u → ∞) given by

jµ(x, u → ∞) ≡ δSeom

δAµ

∣

∣

∣

∣

u→∞

(2.10)

≡ (d, ~jA). (2.11)
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In terms of the gauge fields, they are

d =

√
u5 + B2u2 a′V0

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

∣

∣

∣

∣

∞

− 3

2
BaA

1 (∞), (2.12)

jA =

√
u5 + B2u2 f(u)a′A1

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

∣

∣

∣

∣

∞

− 3

2
Bµ. (2.13)

In order to solve these equations, we need to specify the boundary conditions. Due to the

holographic nature of the background spacetime, the boundary conditions correspond to

physical requirement we impose to the gauge matter. If we want to address chirally broken

phase of the gauge matter, we will take aA
1 (∞) ≡ ▽ϕ to be an order parameter of the

chiral symmetry breaking (also a response to the external magnetic field) and minimize

the action with respect to it. This results in setting jA = 0. On the other hand, if we want

to study the chiral-symmetric gauge matter (or chiral-symmetric quark-gluon plasma for

Nc = 3 case), x′
4 and aA

1 (∞) will be set to zero. For vacuum phase, aV
0 , aA

1 and d, jA will

be set to zero.

In any cases, since the total action does not depend on x4(u) explicitly, the constant

of motion gives

(x′
4(u))2 =

1

u3f(u)

[u3[f(u)(C(u) + D(u)2) − (jA − 3
2Bµ + 3BaV

0 )2]

F 2
− 1

]−1
, (2.14)

where

F =
u3

c

√

f(uc)
√

f(uc)(C(uc) + D(uc)2) − (jA − 3
2Bµ + 3BaV

0 (uc))2 x′
4(uc)

√

1 + f(uc)u3
c x′2

4 (uc)
(2.15)

and C(u) ≡ u5 + B2u2,D(u) ≡ d + 3BaA
1 (u) − 3B▽ϕ/2. The constant of motion with

respect to x4(u) relates the slope x′
4 at arbitrary u to the value at uc,

(x′
4(uc))

2 =
1

fcu3
c

[ 9

d2

(fc(Cc + D2
c ) − (jA − 3

2Bµ + 3BaV
0 (uc))

2)

(1 + 1
2(uT

uc
)3 + 3ns

√
fc)2

− 1
]

.

The calculation of x′
4(uc) is described in the appendix as a result from the equilibrium and

scale fixing condition

L0 = 2

∫ ∞

uc

x′
4(u) du = 1. (2.16)

The equations of motion eq. (2.8), (2.9) can be solved numerically under the con-

straint (2.16). The value of µ,▽ϕ, uc and the initial values of aV
0 (uc), a

A
1 (uc) are chosen so

that aV
0 (∞) = µ, aA

1 (∞) = ▽ϕ and L0 = 1 are satisfied simultaneously. Since there are 3

conditions to be satisfied in finding the physical solutions numerically, we need the use the

shooting algorithm for 3 targets at once.
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3 Magnetic phase diagram of the dense nuclear phase

Generically, the action (2.6) and (2.7) are divergent from the u → ∞ limit of the integration

and we need to regulate it using the action of the vacuum which is also divergent. The

contribution from the region u → ∞ is divergent even when the magnetic field is turned off

and it is intrinsic to the DBI action in this background. The divergence can be understood

as the infinite zero-point energy of the system and thus could be systematically removed

by regularisation.

Therefore the regulated free energy is given by

FE = Ω(µ,B) + µd, (3.1)

where Ω(µ,B) = S[a0(u), a1(u)](e.o.m.) − S[magnetized vacuum]. Note that we need to

Legendre transform the DBI and the Chern-Simon action to obtain the bulk action as a

function of the non-normalizable modes aV
0 , aA

1 in order to identify it with the free energy

of the gauge matter at the boundary. In terms of the free energy at the boundary, this is

equivalent to the Legendre transform of the grand canonical with respect to µ and d.

We can calculate the total action satisfying the equation of motion

S[a0(u), a1(u)](e.o.m.) = SD8 + SCS to be

SD8 = N
∫ ∞

uc

du C(u)

√

f(u)(1 + f(u)u3x′2
4 )

f(u)(C(u) + D(u)2) − (jA − 3
2Bµ + 3BaV

0 )2
, (3.2)

SCS = −N 3

2
B

∫ ∞

uc

du

(

aV
0 (jA − 3

2Bµ + 3BaV
0 ) − f(u)D(u)aA

1

)
√

1
f(u) + u3x′2

4
√

f(u)(C(u) + D(u)2) −
(

jA − 3
2Bµ + 3BaV

0

)2
. (3.3)

The three nuclear phases above the deconfinement temperature are governed by the

same equations of motion, each with specific boundary conditions as the following,

magnetized vacuum phase: aV
0 , aA

1 = 0; d, jA = 0,

multiquark-pion gradient phase: aV
0 (uc) = µsource, a

A
1 (uc) = 0, aA

1 (∞) = ▽ϕ, jA = 0,

χS-QGP phase: x′
4(u) = 0, aV

0 (uc = uT ) = 0, aA
1 (∞) = 0, jA = 3

2Bµ.

We will demonstrate later that in the mixed phase, the pion gradient is generically domi-

nated by the multiquark when the chiral symmetry is broken. In ref. [15], it is shown that

the pure pion gradient phase is always less preferred thermodynamically than the mixed

phase of MQ-▽ϕ. It is interesting to note that for the pure pion gradient phase, a large

magnetic field is required in order to stabilize the generated domain wall [13]. This critical

field is determined by the mass of the pion in the condensate, Bcrit ∼ m2
π/e. In ref. [15],

this critical behaviour is confirmed in the holographic SS model (the zero-temperature sit-

uation is studied in ref. [25]). More investigation of the pure pion gradient phase in the

holographic model should be conducted especially when the field is large since the distinc-

tive feature of physics from the DBI action becomes apparent in this limit. We will leave

this task for future work and focus our attention to the mixed MQ-▽ϕ phase in this article.
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Figure 1. The position u0 of the connected D8-D8 vacuum configuration as a function of B for

T = 0.02 − 0.15. The upper lines have higher temperatures.

The action of the magnetized vacuum when we set aV
0 , aA

1 = 0 and d, jA = 0 is

S[magnetized vacuum] =

∫ ∞

u0

√

C(u)(1 + f(u)u3x′2
4 )

∣

∣

∣

∣

vac

du,

where

x′
4(u)|vac =

1
√

f(u)u3
(

f(u)u3C(u)
f(u0)u3

0
C(u0)

− 1
)

. (3.4)

The position u0 where x′
4 → ∞ is the tip of the brane configuration of the magnetized

vacuum. It increases slightly with temperature as is shown in figure 1. The difference

between each temperature decreases as the magnetic field gets larger and all curves converge

to the same saturated value u0 = 1.23 in the large field limit.

We can study the temperature dependence of the magnetized multiquark nuclear mat-

ter by considering its baryon chemical potential and the free energy as shown in figure 2.

Both the chemical potential and the free energy decrease steadily as the temperature rises,

regardless of the magnetic field. This is originated from the temperature dependence of

f(u) = 1− u3

T

u3 of the SS background in the deconfined phase. The temperature dependence

could be fit very closely with the function

√

1 −
(

T
T0

)6
as the following

µ = µ0(d,B)

√

1 −
(

T

T0

)6

, (3.5)

F = F0(d,B)

√

1 −
(

T

T0

)6

. (3.6)

where for d = 1, B = 0.10; µ0 = 1.1849, F0 = 0.7976 respectively. For the baryon chemical

potential (free energy), the best-fit value of T0 is 0.269 (0.233). The fittings are shown

in figure 3. This could be explained by noting that the regulated free energy is given by
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Μ
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B
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0.78

0.79

0.80

FE

Figure 2. The chemical potential (a), the pion gradient (b), and the free energy (c) of the

multiquark phase with baryon density d = 1 as a function of B for temperature T = 0.02 − 0.15.

The lower curves represent multiquark at higher temperatures.

µd + Ω(µ,B). The contribution from the first term is dominant therefore the free energy

has almost the same temperature dependence as the chemical potential. However, there is

a minor contribution from SD8+SCS containing f(uc) = 1− u3

T

u3
c

which for small temperature

fractions modifies the temperature function in the following manner,

C1

√

1 − T 6

T 6
1

+ C2

√

1 − T 6

T 6
2

≃ C0

√

1 − T 6

T 6
0

, (3.7)

where C1,2 are some arbitrary constants and C0, T0 are given by

C0 = C1 + C2, (3.8)

1

T 6
0

=
1

C1 + C2

(

C1

T 6
1

+
C2

T 6
2

)

. (3.9)

It should be noted from figure 3 that the temperature dependence is significant for

T & 0.10 and the approximation f(u) ≃ 1 is not accurate for temperature in this range.

The characteristic temperatures we found here are consistent with the phase diagram of

the multiquark in figure 7.

In the multiquark phase when the magnetic field is turned on, the pion gradient is

induced by the field in addition to the multiquark. The multiquark phase thus contained

the mixed content of multiquarks and the pion gradient. For moderate fields (not too

large), the response is linear ▽ϕ ∝ B. In contrast to the case of pure pion gradient phase,
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Μ

T0 = 0.233
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0.77
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Figure 3. For d = 1, B = 0.10,(a) the baryon chemical potential as a function of T , the best-fit

curve is in the form µ0

√

1 − ( T

T0

)6 with µ0 = 1.1849, T0 = 0.269; (b) the free energy as a function

of T , the best-fit curve is in the form F0

√

1 − ( T

T0

)6 with F0 = 0.7976, T0 = 0.233. Other curves

within the range B = 0.05 − 0.15 can also be fitted well with the same T0.

H L

0.05 0.10 0.15
T

0.28

0.30

0.32

0.34

m

Figure 4. The linear response or slope of the linear function between the pion gradient and the

magnetic field as a function of the temperature for the range B = 0.05 − 0.15 and density d = 1.

The red line is the best-fit curve in the form m0

√

1 − ( T

T0

)6 with m0 = 0.347, T0 = 0.177.

the domain wall in the mixed MQ-▽ϕ phase is stable among the surrounding multiquarks

even for small field. The critical magnetic field to stabilize the domain wall in the case of

pure pion gradient is not required in the mixed phase.

Figure 2 (b) shows a linear relation between the pion gradient and the magnetic field

which is valid up to moderate fields. For d = 1, we found that the slope, m (or the

linear response), of this linear function depends on the temperature approximately as

m = m0

√

1 − ( T
T0

)6, and

▽ϕ ≃ Bm0

√

1 −
(

T

T0

)6

, (3.10)

where m0 = 0.347, T0 = 0.177. The curve fitting is shown in figure 4. The density depen-
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Figure 5. (a) The pion gradient as a function of B for density d = 1, 10, 100 at T = 0.10. (b) The

density ratio of the pion gradient with respect to the total baryon density of the multiquark phase

at B = 0.10, T = 0.10 in the double-log scale.

dence is encoded in m0 = m0(d), T0 = T0(d). As the density increases, the slope of the linear

response of the pion gradient becomes smaller as is shown in figure 5. The ratio of the pion

gradient density and the total baryonic density R▽ϕ ≡ d▽ϕ/d = 3B▽ϕ/2d [14] for B =

0.10, T = 0.10 is plotted in the log-scale in figure 5 (b). It could be well approximated by

R▽ϕ ≃ (const.)d−6/5, (3.11)

≃ 3B2m0

2d

√

1 −
(

T

T0

)6

, (3.12)

from eq. (3.10). This implies that the multiquark states are more preferred than the pion

gradient in the presence of the magnetic field, the denser the nuclear matter, the more

stable the multiquarks become and the lesser the population of the pion gradient.

Finally we compare the free energy of the MQ-▽ϕ phase and the chiral-symmetric

quark-gluon plasma phase. For high density, d = 100, this is shown in figure 6. For a given

density, the multiquark phase is more thermodynamically preferred than the χS-QGP for

small and moderate fields. As the magnetic field gets larger, the χS-QGP becomes more

thermodynamically preferred. When the field becomes very strong, the transition into

the lowest Landau level finally occurs [26]. For a fixed density, increasing magnetic field

inevitably results in the chiral symmetry restoration. The phase transition between the

MQ-▽ϕ and the χS-QGP is a first order since the free energy is continuous at the transition

and the slope has a discontinuity. It implies that the magnetization, M(d,B) = −∂FE

∂B , of

the nuclear matter abruptly changes at the transition.

On the other hand, for a fixed field and the moderate temperature, the increase in the

baryon density could make the multiquark phase more stable than the χS-QGP. This is

shown in the phase diagram in figure 7. At a given magnetic field, the multiquark phase

could become the most preferred magnetized nuclear phase provided that the density is

made sufficiently large and the temperature is not too high. In contrast, the effect of

the temperature is the most dominant for chiral-symmetry restoration even when the field

is turned on. Sufficiently large temperature will induce chiral-symmetry restoration for
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Figure 6. For the dense multiquark with d = 100, T = 0.10, (a) the chemical potential, (b) the

free energy as a function of B. The multiquark curves in red are compared with the χS-QGP curves

in blue for the chemical potential and the free energy.

Χs
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20 40 60 80 100
d
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Figure 7. The phase diagram of the dense nuclear phases involving multiquarks when gluons are

deconfined for (a) T = 0.10 and (b) B = 0.20. The chiral-symmetric quark-gluon plasma and the

chirallly broken MQ-▽ϕ phase are represented by χS and χSB respectively, ns is the number of

colour strings in fractions of 1/Nc.

most densities as is shown the figure 7(b). Nevertheless, theoretically we can always find

sufficiently large density above which the multiquark phase is more preferred.

The transition line between the MQ-▽ϕ and the χS-QGP phases in the (d,B) phase

diagram can be approximated by a power-law

B ∼ d0.438 (0.436) (3.13)

for the multiquark with ns = 0 (0.2). This power-law is weaker than the transition

line of the χS-QGP to the lowest Landau level studied in ref. [26] for the antipodal SS

model (B ∼ d2/3). The multiquarks with more colour charges (ns > 0) are less preferred

thermodynamically but they require higher densities. On the other hand, the transition

line in the (d, T ) phase diagram is an increasing function of d but weaker than the log-

arithmic of the density. Nevertheless, theoretically for a fixed B,T , we can always find

sufficiently large density above which the MQ-▽ϕ phase is preferred. The high density

region is actually dominated by the multiquark phase indeed.
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4 Conclusion

We explore the properties of the miltiquark-domain wall (MQ-▽ϕ) solution of the SS

model above the deconfinement temperature. The temperature dependence of the baryon

chemical potential, the pion gradient linear response (m), and the free energy of the MQ-

▽ϕ phase has been studied and fitted with a simple function,
√

1 − T 6

T 6

0

, inherited from

the deconfined SS background. Their characteristic temperatures, T0, are different from

one another depending on other parameters such as uc, the position of the baryon vertex.

Remarkably, they do not depend on the field for moderate field strength B = 0.05 − 0.15.

For chirally broken deconfined nuclear matter in the presence of the magnetic field,

the nuclear matter with finite baryon density and chemical potential could respond to the

magnetic field by inducing a pion gradient or a domain wall of the chiral condensate. This

pion gradient response is found to be a linear function of the field for moderate fields at any

density. However, we demonstrate further that the population ratio of the pion gradient

decreases as the density increases. The other sources of the baryon charge namely the

multiquarks finally dominate the chirally broken nuclear phase and most of the baryon

density is in the form of the multiquark at high density.

Magnetic phase diagram of the dense gauge matter have been explored in the decon-

fined SS model. At fixed magnetic field and moderate temperature, the MQ-▽ϕ phase are

more preferred than the χS-QGP for the high density region. The transition line in the

(d,B) phase diagram at T = 0.10 can be fitted closely with the power-law B ∼ d0.438 (0.436)

for the multiquark with ns = 0 (0.2). On the other hand, the transition line in the (d, T )

phase diagram is weaker than the logarithmic of the density but nevertheless it is an increas-

ing function with respect to the density. These imply that for sufficiently large density, the

chirally broken multiquark phase is the most preferred nuclear phase even in the presence

of the external magnetic field.

The situation when density becomes extremely large and being dominant occurs in the

core of dense star such as the neutron star. Therefore it is very likely that the core of dense

warm star composes primarily of the multiquark nuclear matter even when an enormous

magnetic field is present such as in the core of the magnetars. It is possible that a large

population of the warm magnetars has multiquark cores. These warm dense objects could

be relatively more massive than typical neutron stars.
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A Force condition of the multiquark configuration

Fixing the characteristic scale L0 to 1 for the brane configuration requires balancing three

forces in the gravity picture. The D8-brane tension must be in equilibrium with the tidal
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weight of the D4 source and the string tension of the colour strings. The derivation of the

x′
4(uc) presented here is the same as in ref. [15], it is included for completeness.

We vary the total action with respect to uc to obtain the surface term. Imposing the

scale-fixing condition 2
∫ ∞

uc
dux′

4(u) = L0 = 1, we found that [11]

x′
4(uc) =

(

L̃(uc) −
∂Ssource

∂uc

)

/

∂S̃

∂x′
4

∣

∣

∣

∣

uc

, (A.1)

as the condition on uc.

We perform the Legendre transformed action with respect to aV ′
0 and aA′

1 to obtain

S̃ =

∫ ∞

uc

L̃(x′
4(u), d) du,

= N
∫ ∞

uc

du

√

1

f(u)
+ u3x′2

4

×
√

f(u)(C(u) + D(u)2) −
(

jA − 3

2
Bµ + 3BaV

0

)2
, (A.2)

where C(u) ≡ u5 + B2u2,D(u) ≡ d + 3BaA
1 (u) − 3B▽ϕ/2. Note that the Chern-Simon

action are included in the total action during the transformations.

The Chern-Simon term with the derivatives aV ′, aA′ eliminated is

SCS = −N 3

2
B

∫ ∞

uc

du

(

aV
0 (jA − 3

2Bµ + 3BaV
0 ) − f(u)D(u)aA

1

)
√

1
f(u) + u3x′2

4
√

f(u)(C(u) + D(u)2) −
(

jA − 3
2Bµ + 3BaV

0

)2
.(A.3)

From eq. (A.1), (A.2), (A.3), (2.5), and the boundary conditions, aV
0 (uc) =

µsource, a
A
1 (uc) = 0, we can solve to obtain the condition for the static equilibrium

(x′
4(uc))

2 =
1

fcu3
c

[ 9

d2

(fc(Cc + D2
c ) − (jA − 3

2Bµ + 3BaV
0 (uc))

2)

(1 + 1
2(uT

uc
)3 + 3ns

√
fc)2

− 1
]

,

where fc ≡ f(uc), Cc ≡ C(uc),Dc ≡ D(uc).
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1 Introduction

Physics of dense nuclear matter is one of the most challenging area due to the lack of

appropriate theoretical modeling. On one hand, the entities in the nuclear matter strongly

couple to one another and therefore the perturbative treatment cannot be applied in a

straightforward manner. On the other hand, the lattice approach to the Quantum Chro-

modynamics (QCD) can be applied to the situations of hot nuclear matter. The lattice

results predict the deconfinement phase transition at temperature around 175 MeV for the

dilute nuclear matter. However, this approach also faces difficulty in describing the nuclear

matter with finite density due to the fermion sign problem.

An alternative and complementary approach is the application of the holographic prin-

ciple or the AdS/CFT correspondence [1–3] to study the properties of the nuclear matter.

The Sakai-Sugimoto (SS) model [4, 5] is a holographic model which could approximate

the QCD at low energy most accurately. Starting with a type IIA string background with

D4-branes as the source. Take the near-horizon limit and add the black hole horizon to gen-

erate Hawking-Page temperature to be identified with the temperature of the dual gauge

matter. Since we need an approximately 4 dimensional QCD, one of the 5 dimensional sub-

space is compactified into a circle whose radius is chosen so small that the Kaluza-Klein

states are much heavier than the relevant energy scales and temperatures.

The quarks and antiquarks are introduced as open-string excitations on the stack of Nf

flavour D8 and D8 branes located at fixed separation distance in the compactified coordi-

nate. The boundary conditions of the sparticles in the circle are chosen to be antisymmetric

at the location of the flavour branes and the zeroth modes are thus eliminated. Conse-

quently, the gauge theory at the flavour branes is a SUSY-broken 5 dimensional Yang-Mills

theory with quarks and antiquarks in the fundamental representation. The effective theory

has the same particle content as the QCD. Using the AdS/CFT correspondence, the bulk

theory of this brane configuration is conjectured to be dual to the QCD-like gauge theory at

the boundary. The striking feature of the SS model is that it provides a natural geometric

realization of the chiral symmetry breaking. When the D8 and D8 merge at certain location

– 1 –
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in the radial coordinate, the quarks and antiquarks do not transform independently under

the chiral transformation and therefore the chiral symmetry is broken in the connected

brane configuration. A chiral symmetric configuration occurs when the two flavour branes

are parallel and the dual gauge matter will be in the chiral symmetric phase.

Subsequent investigation reveals that the SS model accommodates the exotic possibil-

ity that the chiral symmetry restoration and the deconfinement can occur separately [6]

when the distance between the D8 and D8 branes in the compactified dimension is not

too large. The deconfinement could occur at relatively low temperature while the chiral

symmetry would be restored at larger temperature. Even though both the chiral symmetry

breaking and the confinement are results of the strong coupling of the gauge theory, they

are independent of one another as far as we know. It is thus possible that the real QCD

also has distinctive chiral symmetry restoration and deconfinement.

Chiral condensate of the QCD-like dense matter is explored in ref. [7] using the Wess-

Zumino-Witten induced anomalous term in the chiral perturbation theory and in ref. [8]

using the bottom-up AdS/QCD based on the confined SS model. When the magnetic field is

applied, the condensate will respond by developing a gradient in the direction of the applied

field. This gradient also carries the baryonic charge density proportional to the applied field

and the gradient of the condensate. Holographic studies of the chiral condensate response

to the magnetic field is investigated in ref. [9] for the confined SS model. In ref. [10],

the pure pion gradient phase is explored and compared with the chiral symmetric quark-

gluon plasma phase in the zero temperature approximation of the deconfined SS model. In

ref. [11], it is roughly compared with the mixed phase of the multiquark-pion gradient (MQ-

▽ϕ) using a zero-instanton limit of the multiquark configuration. The preliminary results

suggest that the pure pion gradient phase might be thermodynamically less preferred than

the MQ-▽ϕ phase. In this article, we perform a thorough investigation into the pure pion

gradient phase at finite temperature as well as its thermodynamical comparison to the

MQ-▽ϕ in order to obtain a more definitive quantitative result. It is found that the pure

pion gradient phase is insensitive to the change of temperature in the range T = 0 − 0.16.

It is also shown that the pure pion gradient phase is generically less preferred than the

MQ-▽ϕ phase except when the baryon chemical potential is smaller than the onset value

of the multiquarks. In that region of the phase diagram, the dominating phase is the pure

pion gradient.

The article is organized as the following. In section 2, we setup the holographic model

of the magnetized chirally broken nuclear phase without an instanton. A zero tempera-

ture solution is obtained and relevant dual physical quantities as well as their relation-

ships are discussed. Thermodynamical properties of the pure pion gradient phase at finite

temperature and the comparison with the multiquark phase are discussed in section 3.

Section 4 concludes the article.

2 Holographic setup of the magnetized chirally broken phase

In the non-antipodal SS model, a stack of Nc D4-branes generates a curved 10 dimensional

spacetime in type IIA string theory. The near-horizon limit of this background is then

– 2 –
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taken and the black hole horizon is added by introducing the factor f(u) [3, 12] into the

background. The x4 direction is compactified with certain radius to obtain an effective

(1 + 3) dimensional subspace in the low energy limit. The resulting spacetime of the

Sakai-Sugimoto model is in the form

ds2 =

(

u

RD4

)3/2
(

f(u)dt2 + δijdxidxj + dx4
2
)

+

(

RD4

u

)3/2 (

u2dΩ2
4 +

du2

f(u)

)

eφ = gs

(

u

RD4

)3/4

, R3
D4 ≡ πgsNcl

3
s ,

where f(u) ≡ 1 − u3
T /u3, uT = 16π2R3

D4T
2/9. T is the Hawking-Page temperature of

the black hole which is identified with the temperature of the dual gauge matter at the

boundary. RD4 is the curvature of the background which is generically different from

the compactified radius R of the x4 coordinate. φ is the dilaton field, a function of u in

this background.

We then introduce stacks of Nf D8 and D8 flavour branes with separation L0 on the

circle of compactified x4 at the boundary u → ∞. Open string excitations with one end on

these branes behave like chiral “quarks” and “antiquarks” in the fundamental representa-

tion of the U(Nf ). In the brane configuration where D8 and D8 are parallel, open-string

excitations on each stack of branes transform independently under the chiral transforma-

tion and thus we have a chiral symmetric background. The dual gauge matter will be in

the chiral symmetric phase. On the other hand, in the connecting brane configuration,

chiral symmetry is broken at the tip and the corresponding gauge matter will be in the

chirally broken phase [6].

To add the baryonic density to the boundary gauge matter, the non-normalizable mode

of the aV
0 component of the U(1) ⊂ U(Nf ) field is turned on. The baryon chemical potential

µ of the corresponding gauge matter is identified with the non-normalizable mode of the

DBI gauge field at the boundary by [13]

µ = aV
0 (u → ∞). (2.1)

To turn on the magnetic field, another component aV
3 is used as the vector potential

generating the magnetic field. The direction of the magnetic field is chosen so that the

vector potential is

aV
3 = Bx2. (2.2)

The Chern-Simons action in the background couples these two components to the third

component aA
1 of the U(1), generating the response to the external magnetic field. The

response appears as the gradient of the chiral condensate along the direction of B at the

boundary which is defined to be aA
1 (u → ∞) ≡ ▽ϕ. Here and henceforth, we will call ▽ϕ

a pion gradient.

– 3 –
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The DBI and the Chern-Simons actions are then given by

SD8 = N
∫ ∞

uc

du u5/2

√

1 +
B2

u3

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4 , (2.3)

SCS = −3

2
N

∫ ∞

uc

du (∂2a
V
3 aV

0 aA′
1 − ∂2a

V
3 aV ′

0 aA
1 ), (2.4)

where N = NcR
2
D4/(6π

2(2πα′)3) defines the brane tension. The factor 3/2 in the Chern-

Simons action comes from addition of surface term in order to maintain the gauge invariance

of the total action in the situation when the gauge transformation does not vanish at the

boundary (see ref. [9] for details). The integration limit uc is the position of the tip of the

D8-branes where it connects with the D8.

Consequently, the equations of motion with respect to each gauge field aV
0 , aA

1 are

√
u5 + B2u2 f(u)a′A1

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

= jA − 3

2
Bµ + 3BaV

0 , (2.5)

√
u5 + B2u2 a′V0

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

= d − 3

2
BaA

1 (∞) + 3BaA
1 . (2.6)

The corresponding density and current density, d, jA, at the boundary(u → ∞) are defined

as

jµ(x, u → ∞) ≡ δSeom

δAµ

∣

∣

∣

∣

u→∞

(2.7)

≡ (d, ~jA). (2.8)

They are related to the components of the U(1) gauge field by

d =

√
u5 + B2u2 a′V0

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

∣

∣

∣

∣

∞

− 3

2
BaA

1 (∞), (2.9)

jA =

√
u5 + B2u2 f(u)a′A1

√

1 + f(u)(a′A1 )2 − (a′V0 )2 + f(u)u3x′2
4

∣

∣

∣

∣

∞

− 3

2
Bµ. (2.10)

For the phase of pure pion gradient where chiral symmetry is broken, the axial current jA

is set to zero and the density d = 3
2B▽ϕ is the definition adapted from the Wess-Zumino-

Witten action of the boundary gauge theory [7].

The constant of motion with respect to x4(u) for the pure pion gradient phase yields

(x′
4(u))2 =

1

u3f(u)









u3

[

f(u)(C(u) + D(u)2) − 9B2
(

aV
0 − µ

2

)2
]

F 2
− 1









−1

, (2.11)
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where

F =
u3

c

√

f(uc)

√

f(uc)(C(uc) + D(uc)2) − 9B2
(

aV
0 (uc) − µ

2

)2
x′

4(uc)
√

1 + f(uc)u3
c x′2

4 (uc)
(2.12)

= u3/2
c

√

f(uc)C(uc) − 9B2
(

aV
0 (uc) −

µ

2

)2
, (2.13)

with C(u) ≡ u5 + B2u2,D(u) ≡ d − 3B▽ϕ/2 + 3BaA
1 (u). uc is the position where the

D8 and D8 branes connect. Since there is no instanton in this case, the branes connect

smoothly at uc. We also have D(uc) = 0 from aA
1 (uc) = 0, and x′

4(uc) = ∞.

Since the DBI action, eq. (2.3), is divergent from the limit u → ∞, we would need the

action of the magnetized vacuum for the regularization. For the magnetized vacuum, we

can let the non-normalizable modes, aV
0 , aA

1 = 0 and d, jA = 0. The vacuum action then

takes the following form

S[magnetized vacuum] =

∫ ∞

u0

√

C(u)(1 + f(u)u3x′2
4 )

∣

∣

∣

∣

vac

du,

where

x′
4(u)|vac =

1
√

f(u)u3
(

f(u)u3C(u)
f(u0)u3

0
C(u0)

− 1
)

. (2.14)

Again, the position of the tip of the brane configuration is denoted by u0. The temperature

and field dependence of the position u0 are given in figure 1 of ref. [14]. It saturates

approximately at 1.23 for all temperatures at high magnetic field. The action of the

vacuum will be used to regulate the infinity of the DBI action from the limit u → ∞ when

we calculate the free energy of the dual gauge matter in the subsequent section.

2.1 Zero temperature approximation f(u) ≃ 1

We can numerically solve the equations of motion, eq. (2.5), (2.6) by using the shooting

algorithm. However, it is illustrative to consider first the limiting case of zero temperature

approximation where f(u) ≃ 1 and the equations of motion are sufficiently simplified that

they yield exact analytic solutions. Later on we will actually find from the numerical

solutions that most physical properties of the pion gradient phase are insensitive to the

change of temperature. Interestingly, the bulk theory becomes dual to the Nambu-Jona-

Lasinio (NJL) type model in the zero-temperature limit [15].

Starting from the equations of motion, eq. (2.5), (2.6), can be rewritten as

a′V0 (aV
0 − µ

2
) = f(u)aA

1 a′A1 (2.15)

f(u)a′V0 a′A1 =
9B2aA

1 (aV
0 − µ

2 )

u5 + B2u2
(1 + fu3x′2

4 + fa′A2
1 − a′V 2

0 ). (2.16)

From eq. (2.15), for f = 1 we can solve to obtain

(

aV
0 − µ

2

)2
−

(µ

2

)2
= aA2

1 − (▽ϕ)2. (2.17)
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Using eq. (2.16), direct integration leads to

aV
0 =

µ

2
+

√

(µ

2

)2
− (▽ϕ)2 cosh I(u) (2.18)

aA
1 =

√

(µ

2

)2
− (▽ϕ)2 sinh I(u), (2.19)

where

I(u) ≡
∫ u

uc

du

√

g(u, uc, B)

[

C(u)

9B2
−

(

(µ

2

)2
− (▽ϕ)2

)]−1

, (2.20)

g(u, uc, B) ≡ 1 + u3x′2
4 (2.21)

= 1 +

[

u3(C(u) − 9B2((µ
2 )2 − (▽ϕ)2))

u3
c(C(uc) − 9B2((µ

2 )2 − (▽ϕ)2))
− 1

]−1

, (2.22)

by using the boundary conditions aA
1 (uc) = 0 and eq. (2.17) at uc. Additionally, there are

two constraints which need to be satisfied,

cosh I∞ =
µ

2

1
√

(µ
2 )2 − (▽ϕ)2

, (2.23)

L0 = 1 = 2

∫ ∞

uc

du x′
4(u), (2.24)

where I∞ ≡ I(u → ∞). In the zero temperature case x′
4 is given by

x′
4(u) =

[

u3

(

u3(C(u) − 9B2((µ
2 )2 − (▽ϕ)2))

u3
c(C(uc) − 9B2((µ

2 )2 − (▽ϕ)2))
− 1

)]−1/2

. (2.25)

The pion gradient is thus

▽ϕ =
µ

2
tanh I∞. (2.26)

In order to obtain the solutions, we numerically solve for uc from the constraints eq. (2.23)

and eq. (2.24) simultaneously by fixing two parameters among (B, d,▽ϕ, µ). The solutions

always have µ
2 > ▽ϕ as a reality condition.

As is found in ref. [10] for the pure pion gradient and ref. [11, 16] for the model with

instantons, there are 2 possible brane configurations satisfying the scale fixing condition

L0 = 1, one with small and one with large uc. The brane configuration with small uc has

longer stretch in the u-direction and therefore has higher energy than the configuration with

large uc. The excess energy makes this configuration less preferred thermodynamically. For

the pure pion gradient phase, there is also the small-uc configuration (for sufficiently large

µ and small B) which we found to be less preferred thermodynamically even than the

vacuum. Therefore this configuration will not be considered in this article.

The solutions can be explored by slicing through the plane in the parameter space at

fixed magnetic field (B), fixed density (d), and fixed chemical potential (µ) respectively. At

fixed B, the solutions are shown in figure 1 for the position uc and the chemical potential

– 6 –
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B = 3.0

B = 0.5

B = 0.2
B = 0.1

0 1 2 3 4
d

0.2

0.4

0.6

0.8

1.0

uc

(a)

B = 0.1

B = 0.2

B = 0.5

B = 3.0

0 1 2 3 4
d0

10

20

30

40

50

Μ

(b)

Figure 1. The position uc (a) and the chemical potential (b) as a function of the density at fixed

magnetic field B in the zero temperature limit.

as a function of the density. For small B, the position uc has certain variation with respect

to the density. As B increases, uc saturates to an almost constant curve with a slight

density dependence. The chemical potential at fixed B(≥ 0.1) is found to be an exact

linear function of the density. The slope of the linear function is inversely proportional to

B. The relation can be summarized into the following simple form

µ =
4

3

d

B
for B ≥ 0.1. (2.27)

This implies from d = 3B▽ϕ/2 that µ = 2▽ϕ for B ≥ 0.1. The linear relation between

µ and d can be interpreted as the absence of self-interaction among the pion gradient

excitations. Each pion gradient excitation seems to behave as free entity for B ≥ 0.1.

For small B < 0.1, we also find the linear relation between µ and d. It will be shown

subsequently that µ ∼ d/B2 for small B in the analysis at fixed µ.

For fixed d, the position uc and the chemical potential are shown as functions of B in

figure 2, 3 for d = 1.0. Solutions exist for the entire range of B, down to uc(B = 0) = 0.

The chemical potential µ is found to be inversely proportional to B as is shown in figure 3.

This is consistent with eq. (2.27).

For fixed µ, figure 4 shows interesting transition between 2 regions of the parameter

space. In figure 5, the relation between d and B is shown to be approximately quadratic

for B ≤ 0.2 and linear for B & 0.2. From d = 3B▽ϕ/2, this implies that ▽ϕ is a linear

function of B for B ≤ 0.2 and a constant function for B & 0.2. Figure 4(b) confirms the

behaviour. Since the saturation at large B occurs around ▽ϕ = µ/2, the slope of the linear

region, B ≤ 0.2, is therefore proportional to µ. Consequently, for small B, ▽ϕ ∼ µB. The

behaviour at small B is similar to the behaviour found in ref. [7, 9] for the confined phase.

The result in the deconfined phase of the SS model in the zero temperature limit was first

obtained in ref. [10].

It should be noted that the nonlinear effects of the DBI action become apparent for

B & 0.2 where ▽ϕ ≃ µ/2. From eq. (2.20), (2.26) since I∞ → ∞ as B → ∞, the saturation

always occurs at ▽ϕ ≃ µ/2 for any µ. As B increases, the pion gradient does not change

– 7 –
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u0

uc

d = 1.0

0.5 1.0 1.5 2.0 2.5 3.0
B

0.2

0.4

0.6

0.8

1.0

uc,0

Figure 2. Position uc as a function of B at a fixed density d = 1.0 in the zero temperature limit,

the position u0 of the magnetized vacuum is shown for comparison.

d = 1.0

slope = -0.999

-4 -3 -2 -1 1
logHBL

-2
-1

1
2
3
4
5

logHΜL

Figure 3. Chemical potential as a function of B at d = 1.0, T = 0 in the logarithmic scale.

but its baryonic density increases linearly with the field. This ▽ϕ-saturation is a new effect

observed only in the theory with DBI gauge interaction.

3 Thermodynamical properties of the pure pion gradient phase

In the pure pion gradient phase, since x′
4 → ∞ at uc, the integrand of the action diverges

at uc in addition to the limit u → ∞. This also occurs with the magnetized vacuum where

x′
4 is divergent at u0. However, the limit which makes the integral and consequently the

action divergent comes only from u → ∞ (the divergences at u0,c are weaker than a simple

pole and thus finite over integration). We can therefore regulate the action by subtracting

the total action with the action of the magnetized vacuum in the usual manner.
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Μ = 0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
B0.0

0.1

0.2

0.3

0.4

d

(a)

Μ = 0.2

0.0 0.5 1.0 1.5 2.0
B0.00

0.02

0.04

0.06

0.08

0.10
Ñj

(b)

Μ = 0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
B0.4
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0.6

0.7

0.8

0.9

1.0

1.1
uc

(c)

Figure 4. The density (a), the pion gradient (b), and the position uc (c) as a function of B at

fixed µ = 0.2, T = 0.

Μ = 0.2

-4 -3 -2 -1 1
logHBL

-6

-4

-2

logHdL

Figure 5. The density as a function of B at µ = 0.2, T = 0 in the logarithmic scale.

Generically, the free energy can be defined at fixed density (in the canonical ensemble)

or fixed chemical potential (in the grand canonical ensemble), they are related by the

Legendre transform. In the holographic model, the free energy of the dual gauge matter

at a fixed chemical potential is proportional to action of the D8-branes. Therefore, the
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regulated free energy in the canonical ensemble (Helmholtz free energy) is given by

FE(d,B) = Ω(µ,B) + µd, (3.1)

where Ω(µ,B) = S[a0(u), a1(u)](e.o.m.) − S[magnetized vacuum] ≡ F(µ,B), the free

energy in the grand canonical ensemble (also known as the grand potential or Landau

free energy).

We can calculate the total action satisfying the equation of motion

S[a0(u), a1(u)](e.o.m.) = SD8 + SCS to be

SD8 = N
∫ ∞

uc

du C(u)

√

√

√

√

f(u)(1 + f(u)u3x′2
4 )

f(u)(C(u) + D(u)2) − 9B2
(

aV
0 − µ

2

)2 , (3.2)

SCS = −N 3

2
B

∫ ∞

uc

du

(

3BaV
0 (aV

0 − µ
2 ) − f(u)D(u)aA

1

)
√

1
f(u) + u3x′2

4
√

f(u)(C(u) + D(u)2) − 9B2
(

aV
0 − µ

2

)2
. (3.3)

For zero temperature the total action reduces to

Se.o.m. = N
∫ ∞

uc

du

√

g(u, uc, B)

C(u) − 9B2((µ
2 )2 − (▽ϕ)2)

(

C(u) − 9B2

2

(µ

2
aV

0 (u) − (▽ϕ)2
)

)

.

We can compute this action by substituting eq. (2.18) into the expression. The free energy

at fixed chemical potential F(µ,B) of the pure pion gradient phase at zero temperature is

shown in figure 6. Once d, µ > 0, the free energy becomes smaller than the free energy of the

magnetized vacuum (being negative) and thus thermodynamically preferred than the vac-

uum phase. The magnetization at fixed chemical potential M(µ,B) = −∂F(µ,B)
∂B therefore

increases from zero and becomes constant M(µ = 0.2, B) ≃ 0.0152 at large field (B > 0.2)

as we can see from the slope of figure 6. On the other hand, the magnetization at fixed

d = 1.0, M(d,B) = −∂FE(d,B)
∂B , of the pure pion gradient phase is a rapidly decreasing

function of B as is shown in figure 7.

The pressure of the pure pion gradient as a function of the density can be calculated

using eq. (2.27) and d = ∂P
∂µ (see ref. [17]),

P (d,B) = µ(d,B)d −
∫ d

0
µ(d′, B) d(d′), (3.4)

=
1

2
k(B)d2, (3.5)

where k(B) = 4/3B for B ≥ 0.1. The quadratic dependence of the pressure on the

density without higher order term reveals that the pion gradient excitations behave like

free particles without either repulsive or attractive interaction among themselves.

For the parameter space in the region d ≪ 1, B ≪ 1 such as the regions shown in

figure 4, 5, since ▽ϕ ∼ µB, d = 3B▽ϕ/2, we have d = αµB2 for some constant α. In this

case, the linear relations between µ and d is still valid and the equation of state is again

given by eq. (3.5) with k(B) = 1/αB2 (for µ = 0.2, α ≃ 4.634). This behaviour is similar
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Μ = 0.2
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0.00
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Figure 6. The Landau free energy as a function of B at fixed µ = 0.2, T = 0.

d = 1.0

pure Ñj

mq–Ñj Hns = 0L

0.1 0.2 0.3 0.4 0.5 0.6
B

2

4

6

8

10
FEHd, BL

Figure 7. The Helmholtz free energy as a function of the density of the pure pion gradient phase

compared with the multiquark-▽ϕ phase at fixed d = 1.0, T = 0. The number of colour strings ns

represents the colour charges of the multiquark in unit of 1/Nc. Baryon corresponds to multiquark

with ns = 0.

to what found in ref. [7] using the Wess-Zumino-Witten term in the boundary theory and

in ref. [9, 10] for the confined and deconfined SS model at zero temperature.

The energy density can be calculated straightforwardly

ρ =

∫ d

0
µ(η,B) dη, (3.6)

=
1

2
k(B)d2, (3.7)

where k(B) = 1/αB2, 4/3B for small and large B respectively. The results are remarkably

similar to the results from the bottom-up AdS/QCD model considered in ref. [8]. The

equation of state then becomes simply P = ρ representing free gas of the solitonic excita-
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Figure 8. The difference between the density, the pion gradient, and the position uc of the ▽ϕ

phase at T = 0.14 and T = 0 as a function of B for µ = 0.2.

tions of the the pion gradient. The adiabatic index, Γ, and the sound speed, cs, are then

calculated to be

Γ ≡ ρ

P

∂P

∂ρ
=

ρ

P
c2
s = 1, (3.8)

cs = 1, (3.9)

the typical behaviour of the free gas.

For nonzero temperature, the full equations of motion, eq. (2.5), (2.6) can be solved

numerically by double shooting algorithm aiming for two conditions to be satisfied at once:

aA
1 (uc) = 0, L0 = 1 (with x′

4 from eq. (2.11)) while fixing B,µ and d (and consequently

▽ϕ). The boundary conditions, aV
0 (∞) = µ, aA

1 (∞) = ▽ϕ, are adjusted until we hit the

target conditions. It is found that the temperature dependence of every physical quantity

of the pure pion gradient is very weak. Figure 8 shows the difference of the density, the

pion gradient, and the position uc at fixed µ = 0.2 between T = 0.14 and T = 0. Observe

that the difference in the temperature dependence of the density and the pion gradient are

the most distinctive in the transition region when the magnetic field changes from small

to large values.

3.1 Comparison to the multiquark-▽ϕ phase

We would like to consider whether the pure pion gradient phase is thermodynamically

preferred than the other nuclear phases in certain regions of the parameter space. In

the deconfined SS model in the presence of the magnetic field, there are generically 3

possible phases in addition to the vacuum; the chiral symmetric QGP phase, the chirally
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broken phase of multiquark-▽ϕ (MQ-▽ϕ), and the pure pion gradient (▽ϕ) phase. The

multiquark nuclear phase has been studied in ref. [11, 14, 18] and found to be the most

preferred phase for the dense deconfined nuclear matter under moderate external magnetic

fields. The multiquark phase actually has certain mixture of the pion gradient as the source

for the baryon density. This is inevitable since the response of the nuclear matter to the

external magnetic field is in the form of the spatial variation of the chiral condensate in

the direction of the applied field which we call the pion gradient.

However, the ratio of the pion gradient population with respect to the multiquark

decreases as d grows [14]. It is thus suggestive that the multiquark phase is likely to be

more thermodynamically preferred than the pion gradient phase. In this subsection we

directly compare the two phases at zero temperature using the free energy at fixed density

d = 1.0. The MQ-▽ϕ phase imposes the boundary conditions (see ref. [11, 14] for details);

jA = 0, aA
1 (uc) = 0, aV

0 (uc) =
1

3
uc

√

f(uc) + ns(uc − uT ),

where ns is the number of colour strings (hanging from the baryon vertex down to the

horizon) in fractions of 1/Nc.

The result is shown in figure 7. Clearly, the multiquark-pion gradient (MQ-▽ϕ) phase

is more preferred than the pure pion gradient phase. Similar behaviours are confirmed for

small d ≃ 0.1 and large d ≫ 1. Especially at large densities, since the baryon chemical

potential of the MQ-▽ϕ phase increases slower than a linear function [11] whilst it is linear

for the ▽ϕ phase, the dominant term µd in the free energy for the MQ-▽ϕ phase becomes

much smaller and thus more stable thermodynamically.

However, there is a region of parameter space where the ▽ϕ phase is dominant. When

the baryon chemical potential µ < µonset ≡ µ(d = 0) = 1
3u0

√

f(u0) + ns(u0 − uT ) of the

multiquark, the multiquarks cease to exist and the pion gradient which can be constructed

at arbitrarily small µ (since µ ∼ d) will be dominating. The corresponding transition line

in the (µ, T ) diagram for B = 0 is shown in figure 8 of ref. [18]. For B > 0, dependence

of u0 on B affects the transition line accordingly as shown in figure 9. The dotted line

represents schematic transition to the chiral symmetric quark-gluon plasma (χS-QGP)

phase. The chiral symmetry restoration between the magnetized vacuum and the χS-QGP

has been studied in ref. [19]. The transition between the pure pion gradient phase and

the χS-QGP has been explored in ref. [10] with f = 1 approximation for the pure pion

gradient. Since we found that the ▽ϕ phase is insensitive to the change of temperature,

the results in ref. [10] should be justified to be a good approximated phase diagram. The

chiral symmetry restoration between the MQ-▽ϕ phase and the χS-QGP phase has been

investigated in ref. [14].

4 Conclusions and discussions

The behaviour of the chirally broken pure pion gradient phase in the deconfined SS model is

studied in the zero temperature limit and subsequently at finite temperature. The magnetic

response of the chirally broken phase is linear ▽ϕ ∼ µB for small field and saturates to

constant value ▽ϕ ∼ µ/2 for large field.
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Μ
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T

Figure 9. The onset chemical potential of the multiquark-▽ϕ phase as a function of T, B (for

B → ∞, u0 = 1.23 is used). These lines can be served as the transition lines between the ▽ϕ phase

on the left and multiquark-▽ϕ phase (ns = 0) on the right. The dotted line represents schematic

transition to the chiral symmetric QGP phase.

Relationship between µ and d is also linear µ = k(B)d where k(B) ∼ 1/B2, 1/B for

small and large B respectively. This implies that the excitations of the pion gradient behave

like a free gas with no interaction among each other. The equation of state is thus simply

P = ρ with the sound speed equal to the speed of light. The free energies at fixed µ and

d are obtained numerically. Magnetization at fixed µ increases with B for small field and

drops to constant value for large field. Magnetization at fixed d is a decreasing function

with respect to the magnetic field.

Using the free energy at fixed density, we show that the pure ▽ϕ phase is less preferred

thermodynamically than the MQ-▽ϕ phase at zero temperature. The configuration of the

pure pion gradient phase is found to be insensitive to the change of temperature, the

difference of the free energy at fixed µ for T = 0 and T = 0.14 is minimal, only about

. 2 × 10−4. On the other hand, the free energy of the MQ-▽ϕ phase is a decreasing

function in the temperature [14]. Therefore, we can conclude that the pure pion gradient

phase is generically less preferred than the MQ-▽ϕ for general situation.

However, there is an exception for small chemical potential, µ ≃ 0.175 − 0.41. When

µ < µonset of the multiquarks, the multiquarks simply cannot exist while the pion gradient

can be induced at arbitrarily small µ. Therefore, in this region of the parameter space,

the pure pion gradient phase is dominating over any other phases. The transition lines

are given by µ = µonset in the (µ, T ) plane. The interior of certain classes of the dense

astrophysical objects such as the magnetars [20] would have the corresponding regions

where the chemical potential (and the density) and temperature fall into this range. In

those regions, the dominating nuclear phase which governs physics of the stars would be

the pure pion gradient.

Finally, the conversion factors to the corresponding physical quantities in the natural

unit (~ = c = 1) are the following (see e.g. ref. [9], we have set RD4 = 1 in this article):
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1/2πα′ for B, RD4/2πα′ for µ, 2πα′N/RD4 for d, and R2
D4fπ/2πα′ for ▽ϕ where fπ

is the pion decay constant. For the magnetic field, the conversion factor 1/2πα′ with

α′−1 = 0.2 GeV2 corresponds to approximately 5.37 × 1014 Tesla in the SI unit.
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