

รายงานวิจัยฉบับสมบูรณ์

โครงการ ผลของร่างจีดต่อการพัฒนาและรักษาโรคพยาธิใบไม้ตับ

และมะเร็งท่อน้ำดีในหมู่เยาวชนสเตอโร

โดย

รองศาสตราจารย์อธิการ์ดีนันท์ บุญมาศ

30 พฤษภาคม 2557

รายงานວิจัยສັບສມບູຮົນ

ໂຄຮງການ ພລຂອງຮາງຈຶດຕໍ່ອກການພັດນາແລະຮັກໝາໂຮຄພຍາອີບໄມ້ຕັບແລະມະເຮັງທ່ອໜ້າດີ
ໃນຫຼຸແອມສເຕວົ່ວ

ຮອງຄາສຕາຈາກຮົດກັດນິດາຕັນ ບຸນູມາສ

ກາຄວິຈາປະສິຕິວິທາ ຄະນະແພທຍຄາສຕົ່ງ ມາວິທຍາລ້ຽນຂອນແກ່ນ

ສັບສຸນໂດຍສໍາໜັກກອງທຸນສັບສຸນກາງວິຈີຍແລະສໍາໜັກງານຄະນະກວດການ
ອຸດມະກົມ

(ຄວາມເຫັນໃນรายงานທີ່ເປັນຂອງຜູ້ວິຈີຍ ສກວ. ໄນຈໍາເປັນຕົ້ນເຫັນດ້ວຍເສມອໄປ)

กิตติกรรมประกาศ

การศึกษาวิจัยเรื่องผลของร่างกายต่อการพัฒนาและรักษาโรคพยาธิใบไม้ตับและมะเร็งท่อน้ำดีในหนูเเมสเตอร์ สำเร็จลุล่วงได้ด้วยดี เนื่องจากได้รับการสนับสนุนเงินทุนวิจัย โดยสำนักกองทุนสนับสนุนการวิจัยและสำนักงานคณะกรรมการอุดมศึกษา ในการให้ทุนเพิ่มขีดความสามารถด้านการวิจัยของอาจารย์รุ่นกลางในสถาบันอุดมศึกษาวิจัย ตามสัญญาเลขที่ RMU5480002 และ โครงการปริญญาภูมิใจนภาภิเษกร่วมกับมหาวิทยาลัยขอนแก่น สัญญาเลขที่ PHD / 0280 /2552 รหัสนักศึกษา 5.Y.KK/52/N1

นอกจากทุนวิจัยแล้วต้องขอขอบคุณทีมงานวิจัยและทีบุคลากรทุกท่าน ดังนี้ ศ.ดร. โสพิค วงศ์คำ รศ. นพ. ชวัลิต ไพรожน์กุล รศ.ดร. อันทนา อารมย์ดี รศ.ดร.วัชรี คุณกิตติ ผศ.ดร.จริยา หาญวุฒิ วงศ์ อ.ดร. กุลธิดา วุฒิเวทีjaray อ.ดร.พรทิพย์ เหลื่อมหมื่นไวย์ อ.ดร. เยาวลักษณ์ ฉั่กมล และนักศึกษา เจ้าหน้าที่ภาควิชาปรสิตวิทยา เจ้าหน้าที่สัตว์ทดลองทุกคน คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น ที่ให้ความร่วมมือในการทำวิจัยเป็นอย่างดี ขอขอบคุณสัตว์ทดลองทุกตัวที่อุทิศตนเพื่อการศึกษาวิจัย และสุดท้ายขอขอบคุณพ่อแม่ ครอบครัวและบุคคลอันเป็นที่รักที่ให้กำลังใจมาตลอด

Abstract

Project Code : RMU5480002

Project Title : Effect of *Thunbergia laurifolia* on pathogenesis of hamster opisthorchiasis cholangiocarcinogenesis and anti-cholangiocarcinoma

Investigator : Associate Professor Thidarut Boonmars
Department of Parasitology, Faculty of Medicine, Khon Kaen University

E-mail Address : bthida@kku.ac.th

Project Period : 3 years

To clarify the effect of *Thunbergia laurifolia* on pathogenesis of *Opisthorchis viverrini* and cholangiocarcinoma (CCA) development therefore, the present study was performed to evaluate the efficacy of *T. laurifolia* *in vivo* and *in vitro* studies; i) *in vivo*, this study was evaluated the efficacy of *T. laurifolia* in various hamster models; hamsters infected with *O. viverrini* alone (OV), OV and praziquantel, OV-induced cholangiocarcinoma models and infection-induced cholangiocarcinoma and praziquantel models through gross and histopathological changes using H&E, sirius red, PCNA and CK19 staining and liver and kidney function tests. Moreover evaluation of the *T. laurifolia* effect in allograft hamster model using tumor volume ii) *in vitro*, *T. laurifolia* inhibited cell growth in human cholangiocarcinoma cells (M214) and hamster cholangiocarcinoma cells (Ham-1) using SRB assay, flow cytometer and real time PCR to detect gene expressions after *T. laurifolia* treatment. Results showed that *T. laurifolia* had an antioxidant and anti-inflammatory properties which improve liver function in hamsters with liver fluke infection and/or combination with praziquantel, as evidenced by a reduction of the inflammatory cells surrounding the hepatic bile ducts and inhibiting CCA development in hamster model that correlated with the results of the liver function tests. In addition, *T. laurifolia* inhibited cell proliferation with dose dependent and induced G2/M phase arrest which correlated with the results of apoptotic and cell cycle correlate to gene expressions. The present study suggests that *T. laurifolia* may useful for CCA prevention and treatment however; further study should focus on clinical trial.

Keywords: *Thunbergia laurifolia*, pathogenesis, opisthorchiasis, cholangiocarcinoma

บทคัดย่อ

รหัสโครงการ : RMU5480002
ชื่อโครงการ : ผลของரางจีดต่อการพัฒนาและรักษาโรคพยาธิใบไม้ตับและมะเร็งท่อน้ำดีในหนูเอมสเตอร์
ชื่อผู้วิจัย : รศ.ธิดารัตน์ บุญมาศ
ภาควิชาปรสิตวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น
E-mail Address : bthida@kku.ac.th
ระยะเวลาโครงการ : 3 ปี

ผลของร่างจีดในการเกิดโรคของพยาธิใบไม้ตับและการพัฒนาโรคมะเร็งท่อน้ำดี ดังนั้นการศึกษาครั้งนี้ได้ดำเนินการประเมินประสิทธิภาพของ ร่างจีดในสัตว์ทดลองและหลอดทดลองดังนี้ 1) ในสัตว์ทดลอง การศึกษานี้เป็นการประเมินประสิทธิภาพของร่างจีดในหนูเอมสเตอร์ในรูปแบบต่างๆ เช่น เอมสเตอร์ที่ติดเชื้อพยาธิใบไม้ตับเพียงอย่างเดียว ติดเชื้อพยาธิใบไม้ตับ และหรือร่วมกับการได้รับยาพาราซิคوانเทล ติดเชื้อพยาธิใบไม้ตับร่วมกับสารก่อมะเร็งเพื่อซักนำให้เกิดมะเร็งท่อน้ำดี และรูปแบบการติดเชื้อและซักนำให้เกิดมะเร็งท่อน้ำดีและหรือร่วมกับการได้รับยาพาราซิคوانเทล โดยศึกษาการเปลี่ยนแปลง มหาภัยวิภาคและจุลพยาธิวิทยาโดยการย้อมสีด้วย H & E, sirius red และการย้อมแอนติบอดีต่อ PCNA และ CK19 และศึกษาการทำงานของตับและไห นอกจากนี้การประเมินผลของร่างจีดในรูปแบบของการปลูกถ่ายเซลล์มะเร็งในหนูทดลอง 2) ในหลอดทดลองใช้ร่างจีดยับยั้งการเจริญเติบโตของเซลล์ในเซลล์มะเร็งท่อน้ำดีของคน (M214) และเซลล์มะเร็งท่อน้ำดีหนูเอมสเตอร์ โดยใช้ SRB ทดสอบ และ flow cytometer และเรียลไทม์พีซีอาร์เพื่อตรวจหาการแสดงออกของยีนหลังการรักษาด้วยร่างจีด ผลการศึกษาพบว่าร่างจีดมีคุณสมบัติต้านอนุมูลอิสระและต้านการอักเสบทำให้สภาพของตับดีขึ้นในหนูเอมสเตอร์ที่ติดเชื้อพยาธิใบไม้ตับและหรือการร่วมกับได้รับยาพาราซิคوانเทล โดยการลดการอักเสบของเซลล์ที่อยู่รอบ ๆ ท่อน้ำดีในตับและยับยั้งการพัฒนามะเร็งท่อน้ำดีซึ่งสัมพันธ์กับผลของการทดสอบการทำงานของตับ นอกจากนี้ร่างจีดยับยั้งการเพิ่มจำนวนเซลล์โดยไปเพิ่มช่วงเวลาของ G2/M ซึ่งสัมพันธ์กับผล apoptosis และมีความสัมพันธ์กับการแสดงออกของยีน การศึกษาครั้งนี้แสดงให้เห็นว่า ร่างจีดมีประโยชน์ในการป้องกันและรักษาโรคมะเร็งท่อน้ำดี อย่างไรก็ตามการศึกษาต่อไปควรมุ่งเน้นไปที่การวิจัยทางคลินิก

คำหลัก: ร่างจีด พยาธิกำเนิด โรคพยาธิใบไม้ตับ มะเร็งท่อน้ำดี

บทนำ

พยาธิใบไม้ตับ (*Opisthorchis viverrini* : OV) มีแหล่งระบาดในເອເຊີຍຕະວັນອອກເຈີຍໄຕ สำหรับ ประเทศไทยพบมีการระบาดมากที่สุดที่ภาคตะวันออกເຈີຍເໜືອ โดยเฉพาะในจังหวัดขอนแก่น จาก การศึกษาที่ผ่านมาพบว่า พยาธิใบไม้ตับเป็นปัจจัยเสี่ยงอย่างหนึ่งที่ก่อให้เกิดโรคมะเร็งท่อน้ำดี ซึ่ง สอดคล้องกับอุบัติการณ์การเกิดโรคมะเร็งท่อน้ำดีที่พบมากที่สุดในภูมิภาคนี้ เช่นกัน ดังนั้นการติดเชื้อ พยาธิใบไม้ตับ จึงเป็นสาเหตุสำคัญที่ก่อให้เกิดปัญหาต่อสุขภาพของประชากรในภูมิภาคนี้ ทั้งด้านโรค พยาธิใบไม้ตับและมะเร็งท่อน้ำดี โดยสาเหตุของการติดเชื้อพยาธิใบไม้ตับเกิดจากอุบัติสัยในการ บริโภคปลาในวงศ์ตะเพียน (cyprinoid fish) ที่มีระยะติดต่อเมตาเซอร์คารี (metacercaria) ปนเปื้อน อยู่ภายในเนื้อปลาที่ปรุงแบบสุกๆ ดิบๆ (Waikagul, 1998) เมื่อเกิดการติดเชื้อพยาธิ จะมีการหลั่งของ เสียงซึ่งเป็นแอนติเจนของมา ส่งผลให้ไปกระตุ้นระบบภูมิคุ้มกันของร่างกาย ทำให้มีการตอบสนองของ เชลล์อักเสบจำนวนมากต่อแอนติเจนของพยาธิ โดยจะมีการเรียกเชลล์อักเสบเข้ามาร้อมรอบริเวณที่มี พยาธิอาศัยอยู่ จึงทำให้เกิดการอักเสบขึ้น โดยเชลล์อักเสบนั้นจะมีการสร้างอนุมูลอิสระขึ้นเป็นจำนวน มากเพื่อไปทำลายพยาธิ แต่อนุมูลอิสระไม่เพียงจะทำลายเฉพาะพยาธิหรือแอนติเจนของพยาธิเท่านั้น ยังสามารถทำลายเชลล์ของไวสต์โดยผ่านกระบวนการออกซิเดชันและปฏิกิริยาไนเตรชัน ซึ่งอนุมูล อิสระที่สร้างขึ้นนี้สามารถทำความเสียหายให้กับสารชีวโมเลกุลต่างๆ ทั้งดีเอ็นเอ โปรตีน ลิพิด และคาร์ บอไฮเดรท โดยเฉพาะการเปลี่ยนแปลงลำดับเบสบนสายดีเอ็นเอของจีนที่เกี่ยวข้องกับกระบวนการเกิด มะเร็ง เช่น oncogene, tumor suppressor gene และ apoptotic gene เมื่อจีนเหล่านี้ผิดปกติไปหรือมี การสะสมเบสที่ผิดปกติจำนวนมากและไม่สามารถซ่อมแซมเบสที่เปลี่ยนแปลงไปให้เป็นปกติได้ก็จะทำ ให้เกิดการผ่าเหลาต่อไป จึงทำให้เป็นจุดเริ่มต้นของการเกิดมะเร็งและนำไปสู่การเกิดมะเร็งตามมา นอกจากนี้ผลของอนุมูลอิสระและไซโตโคน์ต่างๆ ที่สร้างขึ้นระหว่างกระบวนการอักเสบ ยังสามารถไป กระตุ้นการแสดงออกของยีนต่างๆ เช่น stress response genes และ cell proliferation gene โดยการ แสดงออกของยีนเหล่านี้ จะควบคุมการแบ่งตัวและการเปลี่ยนแปลงรูปร่างของเชลล์ ทำให้มีการแบ่ง เชลล์เพิ่มขึ้น เกิด hyperplasia ที่พบในโรคพยาธิใบไม้ตับ โดยการติดเชื้อพยาธิใบไม้ตับทำให้เกิดการ อักเสบของท่อน้ำดีทั้งระยะเฉียบพลันและเรื้อรัง หากไม่ได้รับการรักษา ปัจจุบันมีหลักฐานชัดเจนว่า การติดเชื้อเป็นเวลานานๆ ทำให้เกิดการอักเสบแบบเรื้อรังและสัมพันธ์กับการเกิดมะเร็ง และ พบว่าการติดเชื้อพยาธิช้าบอยๆ จะเพิ่มความเสี่ยงในการเกิดมะเร็งท่อน้ำดีมากขึ้น มีการใช้ยาหรือ สมุนไพรที่คุณสมบัติเป็นสารต้านการอักเสบและอนุมูลอิสระ เพื่อลดการอักเสบจึงเป็นอีกทางเลือกหนึ่ง ในการลดความเสี่ยงในการเกิดมะเร็งท่อน้ำดี สำหรับการรักษาโรคมะเร็งท่อน้ำดีในปัจจุบันพบว่า ยังไม่มีประสิทธิภาพดีพอ เนื่องจากผู้ป่วยที่มารับการรักษามักมาในระยะท้าย เนื่องมาจากหลายปัจจัย ด้วยกัน รวมถึงเครื่องมือหรือตัวชี้วัดที่ใช้ในการวินิจฉัยในช่วงแรกของการเกิดโรคยังไม่จำเพาะ ทำให้ ผู้ป่วยด้วยโรคป่วยส่วนใหญ่จะเสียชีวิตหรือมีชีวิตลดลงจากการรักษาไม่เกิน 5 ปี ซึ่งมีใน สัดส่วนที่น้อยมาก และเป็นที่ทราบกันดีอยู่แล้วว่าการพัฒนาเป็นมะเร็งทั้งมะเร็งท่อน้ำดีนี้มี จุดเริ่มต้นจากการอักเสบ ดังนั้นการลดหรือยับยั้งกระบวนการดังกล่าวอาจส่งผลต่อการพัฒนา เป็นมะเร็ง รวมถึงการซักนำหรือหยุดยั้งการแบ่งตัวของเชลล์มะเร็งส่งผลต่อการรักษามะเร็งต่อไป ปัจจุบันได้มีรายงานการใช้ยาหรือสารสกัดจากสมุนไพรหลายชนิด เพื่อต้านมะเร็ง ต้านการอักเสบ รวมไปถึงสารต้านอนุมูลอิสระมาทดลองใช้ในการลดการเจริญเติบโต การลุกลาม หรือรักษามะเร็ง

หลายๆ ชนิด ซึ่งพบว่าให้ผลดีในการศึกษาระดับเซลล์และสัตว์ทดลองแต่ให้ผลไม่ดีในผู้ป่วย รวมไปถึงยาที่ใช้ต้านมะเร็งมีราคาค่อนข้างสูง มีผลต่อผู้ป่วยถึงชีวิตได้เช่นกัน มีรายงานการใช้ยาหลายชนิดเพื่อต้านการเกิดมะเร็งท่อน้ำดี มากทดลองใช้ในการลดการเจริญเติบโตและการลุกลามของมะเร็งหลายๆ ชนิดซึ่งพบว่าให้ผลดีในการศึกษาระดับเซลล์และสัตว์ทดลองโดยยาจะไปยับยั้ง cyclooxygenase (COX-2) ซึ่งเป็นเอนไซม์สำคัญในการเปลี่ยนกรด arachidonic เป็น endoperoxide PGH2 สังเคราะห์ prostaglandin แต่อย่างไรก็ตามยังไม่มีรายงานการใช้ในยาดังกล่าวทางคลินิกอย่างจริงจังเนื่องจากมีผลเสียตามมาด้วยเช่นกัน และปัจจุบันพบการใช้สมุนไพรหลายชนิดในการรักษามะเร็งซึ่งมีทั้งที่ได้ผลดีและไม่ดีในหลอดทดลองสัตว์ทดลอง อย่างไรก็ตามraig จีดเป็นสมุนไพรไทยอีกชนิดหนึ่งที่มีการใช้มาตั้งแต่สมัยโบราณในการล้างสารพิษและลดไข้ โดยสารประกอบส่วนใหญ่เป็นสารจำพวก Flavonoids ได้แก่ apigenin, cosmosin delphinidin-3,5-di-O β -D-glucoside ซึ่งเป็นที่รู้กันดีว่ามีคุณสมบัติเป็น anti-oxidant , anti-inflammation & cancer activities โดยเฉพาะ apigenin มีรายงานการใช้ apigenin เป็น anti-cancer ในการศึกษาในเซลล์มะเร็งหลายๆ ชนิดเช่น pancreatic cancer cell line ผ่าน G2/M cell cycle arrest มีผลเป็น cytotoxic ต่อ leukemia cell line และยับยั้งการแบ่งตัวที่ G2/M phase, สำหรับ myeloidHL60 ยับยั้งการแบ่งตัวที่ G0/G1 phase สำหรับ erythroid TF1cells และ JAK/STAT pathway จากอดีตจนถึงปัจจุบันยังไม่มีรายงานการศึกษาผลของรางจีดในการต้านมะเร็งอย่างชัดเจน มีเพียงแต่คำอภิบายต่อปากของผู้ป่วยมะเร็งที่ไปใช้การรักษาแพทย์ทางเลือกแล้วได้ผลดี นอกจากนี้จากการศึกษาเบื้องต้นในสัตว์ทดลองของผู้วิจัยพบว่า การให้รางจีดสดหรือแห้งติดต่อกัน เป็นเวลา 3 สัปดาห์ สามารถลดขนาดของก้อนมะเร็งได้ถึงกึ่งหนึ่งโดยไม่ส่งผลต่อการเจริญเติบโตของสัตว์ทดลอง ดังนั้นที่มีวิจัยจึงมีความสนใจในการศึกษาสมุนไพรรางจีดในการป้องกันและรักษามะเร็งเป็นอย่างยิ่งโดยเฉพาะมะเร็งท่อน้ำดี โดยการสำรวจข้อมูลเชิงระบาด สัตว์ทดลอง และหลอดทดลอง หากraig จีดสามารถใช้ป้องกันหรือรักษามะเร็งได้จริง ก็จะเป็นประโยชน์ต่อมนุษยชาติอย่างยิ่ง เนื่องจากสามารถปลูกใช้ในครัวเรือนได้ง่ายและราคาถูก

การทดลอง

การทดลองในสัตว์ทดลอง

การติดเชื้อพยาธิใบไม้ตับในหมูทดลอง

นำปลาวงศ์ปลาตะเพียน (cyprinoid fish) ที่มีการติดเชื้อจากแหล่งระบาดในจังหวัดขอนแก่น มาปั่นให้ละเอียด จากนั้นนำไปปั่นในเครื่องปั่น (blender) ร่วมกับสารละลายน้ำมัน เป็นเวลา 3-5 นาที แล้วผสมเนื้อปลาที่ละเอียดด้วยสารละลายน้ำมัน 4:6 โดยปริมาตร แล้วนำไปย่อยใน shaking water bath ที่อุณหภูมิ 37 องศาเซลเซียสเป็นเวลา 1 ชั่วโมง จากนั้นนำไปย่อยแล้วมากรองด้วยตะแกรง ที่มีรูขนาดต่างๆ คือ 1,000, 425 และ 106 ไมโครเมตร ตามลำดับ โดยใช้น้ำเกลือ (0.85% NaCl) เป็นตัวเจือจาง นำตัวกอนที่ได้มาตักตะกอนใน sedimentation jar เพื่อเลือกหา metacercariae ของ พยาธิใบไม้ตับ *O. viverrini* ด้วยกล้อง stereomicroscope เมื่อครบตามจำนวนที่ต้องการจึงนับแยกເเอกสาระ metacercariae ที่มีชีวิตนำไปป้อนให้แอมสเตอร์ โดยให้ 50 metacercariae ต่อหมูหนึ่งตัว โดยสอดท่อ polyethylene tube ที่ต่อจากปลายเข็มเข้าทางหลอดอาหารของหมู แล้วจึงปล่อยพยาธิเข้าไปในขณะที่หมูแอมสเตอร์ กำลังสลบจากการดมด้วยอีเทอร์ หลังจากนั้น 3-5 นาที หมูก็จะกลับมาฟื้นเป็นปกติ

การทำ cholangiocarcinoma model (liver fluke plus carcinogen)

โดยการติดเชื้อพยาธิใบไม้ตับโดยการป้อนตัวอ่อนระยะ metacercariae และการให้สารก่อมะเร็ง N-nitrosodimethylamine ทำการติดเชื้อพยาธิใบไม้ตับ *O. viverrini* และให้น้ำดื่มที่ผสม NDMA 12.5 ppm ในน้ำดื่ม โดยให้หลังจากการติดเชื้อพยาธิใบไม้ตับ 1 สัปดาห์ เป็นระยะเวลา 2 เดือนติดต่อกันทุกวัน

การทำ cholangiocarcinoma model (hamster CCA cell line injection)

โดยนำ hamster CCA cell จำนวน 150,000 cells ฉีด intradermal injection บริเวณด้านหลังหมูแอมสเตอร์ ร่องกว่าก้อนมะเร็งจะเจริญขึ้นอย่างน้อย 0.5 cm จึงทำการทดลอง

การเตรียมและให้สมุนไพรร่างกายในสัตว์ทดลอง

ใบรงเจ็ดที่ใช้ในการทดลองนี้ได้จากการปลูกใบรงเจ็ดชนิดเดียว ใช้เองเพื่อทำการวิจัยของผู้วิจัยเอง เป็นสายพันธุ์ไทย ใบที่นำมาใช้เป็นใบระยะไม่อ่อนไม่แก่เกินไป กว้างประมาณ 4-5 เซนติเมตร ใบยาวราว 8-12 เซนติเมตร

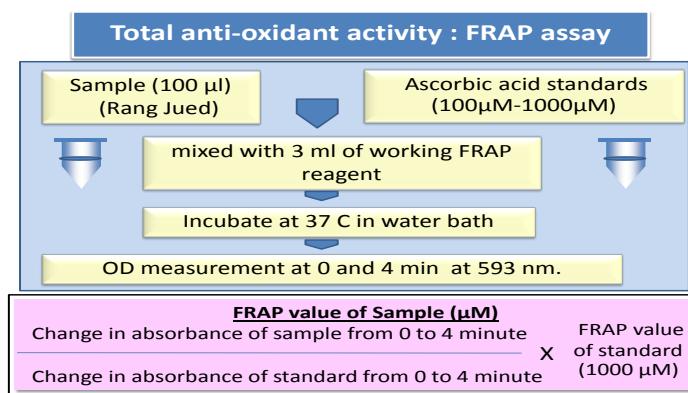
การเตรียมสมุนไพรสด

นำไปสมุนไพรร่างกายเจ็ดส่วนมาล้างและซับเพื่อบีบันด้วยน้ำกลัน โดยให้มีขนาดความเข้มข้นที่จะใช้คือ 100 mg/kg/day โดยจะทำการเตรียมใหม่ทุกวัน

การเตรียมสมุนไพรแห้ง

นำไปสมุนไพรร่างจีดสดมาล้างและตากแห้งให้แห้งเป็นเวลา 2 วัน นำไปบด และซั่งเพื่อผสมด้วยนำกลิ้น โดยให้มีขนาดความเข้มข้นที่จะใช้คือ 100 mg/kg/day โดยจะทำการเตรียมใหม่ทุกวัน

การเตรียมสมุนไพรแห้งต้ม


นำไปสมุนไพรร่างจีดแห้งบดและซั่งเพื่อผสมด้วยน้ำร้อน โดยให้มีขนาดความเข้มข้นที่จะใช้คือ 100 mg/kg/day โดยจะทำการเตรียมใหม่ทุกวัน

การเตรียมสมุนไพรสกัด

นำไปสมุนไพรร่างจีดสดมาล้างและต้มด้วยน้ำกลิ้น ซึ่งนำหัวหกของใบราชจีดนำไปรังจีดมาหันฝอยนำไปใส่ภาชนะสำหรับกลิ้น เติมน้ำลงไป ให้ท่วมใบราชจีดพอติดหลังจากนั้นต้มจนกระทั่งเดือด เมื่อน้ำเดือดให้เริ่มจับเวลา 30 นาทีและใช้ภาชนะรองรับสารที่กลิ้นตัวออกมามา เมื่อครบ 30 นาทีให้ปิดเครื่อง หยุดให้ความร้อน และนำภาชนะรองรับสารที่กลิ้นตัวออกจากที่รองรับ

หมายเหตุ: สำหรับความเข้มข้นของสมุนไพรที่จะนำมาใช้จริงจะปรับตามปริมาณของ apigenin ที่ตรวจพบในสมุนไพรสดหรือแห้ง โดยสารดังกล่าวมีคุณสมบัติเป็น anti-cancer รวมถึงค่า total anti-oxidant capacity ที่พบได้ เช่นกัน

การหา Total antioxidant capacity ของราชจีดสด และ แห้ง โดยใช้ FRAP assay

หาสารประกอบ apigenin ในราชจีดชนิดต่างๆ

หาสารประกอบ apigenin ในราชจีดชนิดต่างๆ เทียบกับ apigenin standard โดยใช้ Thin layer chromatography และหรือ HPLC

การทำ gene analysis

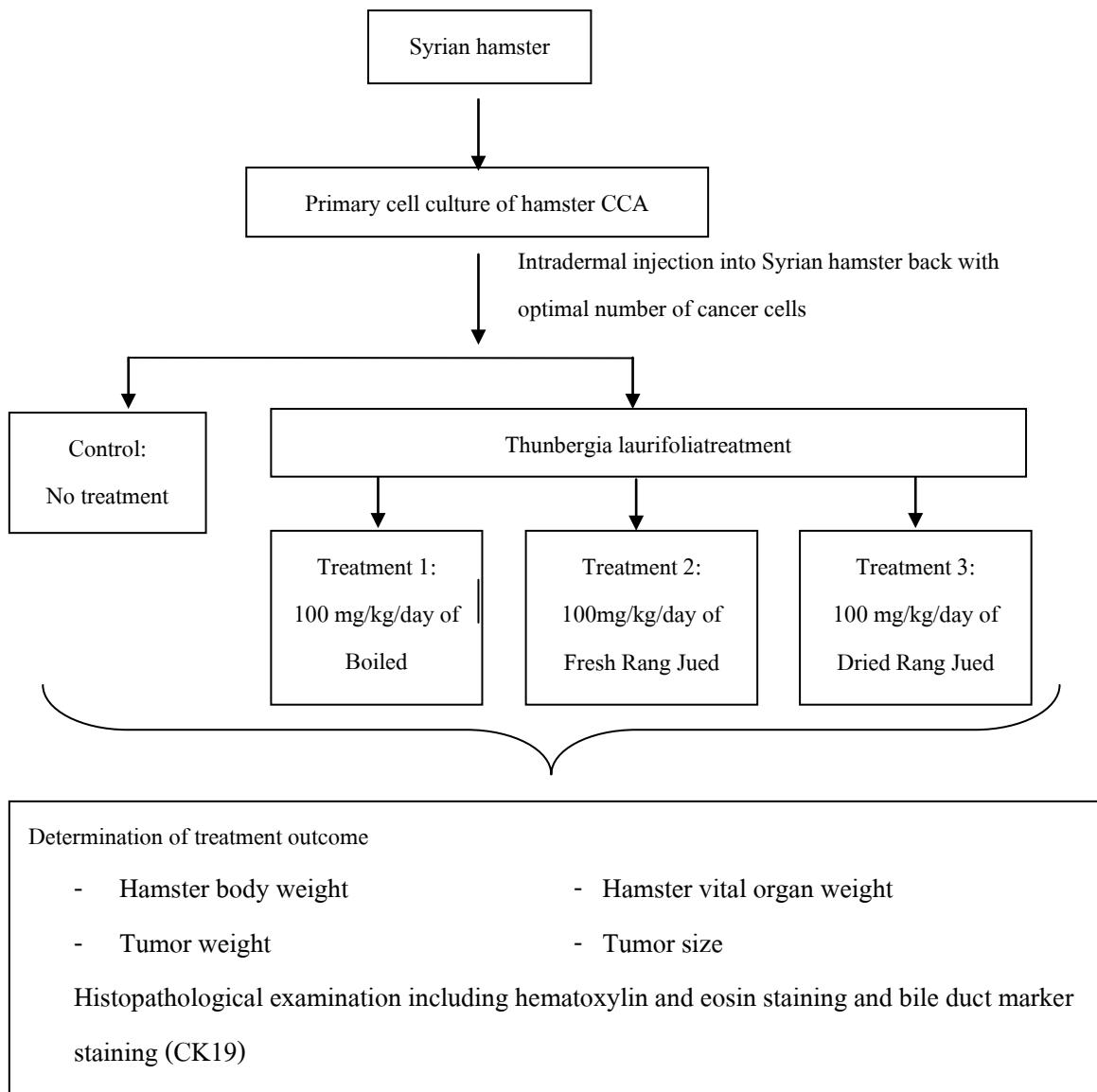
การสกัด Total RNA จากตับและการทำ RT-PCR โดยใช้ Trizol เพื่อศึกษาขึ้นที่เกี่ยวข้องกับการเกิดมะเร็งและหรือป้องกันการเกิดมะเร็ง นำส่วนตับ ชั้นน้ำหนักตับหนูประมาณ 300 มิลลิกรัม นำมา homogenize ด้วย glass homogenizer และเติม Trizol reagent 3 มิลลิตร และบดเพื่อให้เซลล์แตกแล้วนำใส่ tube ขนาด 1.5 มิลลิตร เพื่อนำไปปั่นแยกที่ 12,000 รอบ/นาที 4°C นาน 10 นาที และดูดเอาส่วนใส เติม chloroform 250 ไมโครลิตร ผสมให้เข้ากัน ตั้งทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 2-3 นาที นำไปปั่นแยกที่ 12,000 รอบ/นาที 8°C นาน 10 นาที และดูดเอาส่วนใสเติม isopropanol 300 ไมโครลิตร ตั้งทิ้งไว้ที่อุณหภูมิห้องเป็นเวลา 10 นาที นำไปปั่นแยกที่ 12,000 รอบ/นาที 4°C นาน 10 นาที ได้ตากอน RNA และ DNA สีขาวที่กันหลอด เทส่วนใสทิ้ง ล้างตากอนด้วย 75% ethyl alcohol ที่เย็นโดยกลั่วเบาๆ และจึงเท 75% ethyl alcohol ทิ้ง จากนั้นตั้งทิ้งไว้ให้แห้งประมาณ 10-20 นาที ทำการละลายตากอนด้วย DEPC-treated water 100 ไมโครลิตร เมื่อละลายหมดแล้วจึงทำการ heat shock โดยนำไปอุ่นใน water bath ที่อุณหภูมิ 70°C นาน 10 นาที และรีบเอาขึ้นมาวางบนน้ำแข็งทันที ทำลาย DNA ด้วย DNase 12.5 ไมโครลิตร, 10x DNase buffer 2.5 ไมโครลิตร และ RNase inhibitor 2.5 ไมโครลิตร ใช้ DNA 105 ไมโครลิตร จะได้ปริมาตรรวมเท่ากับ 125 ไมโครลิตร จากนั้นนำไปอุ่นใน water bath ที่อุณหภูมิ 37°C นาน 60 นาที หยุดปฏิกิริยาและแยกชั้นโปรตีนด้วย phenol+chloroform (1:1 โดยปริมาตร = 62.5+62.5 ไมโครลิตร)นำไปปั่นแยกที่ 12,000 รอบ/นาที 8°C นาน 10 นาที และดูดเอาส่วนใส ตกลากอน RNA ด้วย 1/10 โดยปริมาตรของ 2.5M Sodium acetate และ 2.5 เท่าของ absolute ethyl alcohol นำไปเก็บที่อุณหภูมิ -20°C นาน 30 นาที และนำไปปั่นแยกที่ 12,000 รอบ/นาที 4°C นาน 10 นาที ได้ตากอน RNA สีขาวอยู่ที่กันหลอด เทส่วนใสทิ้ง ล้างตากอนด้วย 75% ethyl alcohol ที่เย็นโดยกลั่วเบาๆ และนำไปปั่นแยกที่ 12,000 รอบ/นาที 4°C นาน 5 นาที เทส่วนใสทิ้ง ตั้งทิ้งไว้ให้แห้ง ละลายตากอนด้วย DEPC-treated water 50 ไมโครลิตร จะได้ RNA และนำไปวัดค่า OD ที่ความยาวคลื่น 260 และ 260/280 นาโนเมตร เพื่อนำมาคำนวณความเข้มข้นของ total RNA และทำ cDNA และใช้ในการศึกษาการแสดงออกของยีนที่เกี่ยวข้องกับการเกิดมะเร็งต่อไป

การตรวจวิเคราะห์ทางชิ้นเนื้อทาง Gross appearance, histopathology และ การย้อมการเกิด fibrosis, Immunohistology เพื่อศึกษา tumor markers เช่น CK19 และ PCNC เป็นต้น

การตรวจวิเคราะห์ทางชีวเคมี ต่างๆ วัดการเกิด fibrosis โดย hydroxyproline assay วัดผลของสมุนไพรต่อตับโดยวัดระดับ alanine aminotransferase (ALT) และ alanine aminotransferase (AST) วัดผลของสมุนไพรต่อไตโดยวัดระดับ blood urea nitrogen (BUN) และ creatinine

หมายเหตุ: วิธีการทดลองหรือการตรวจอาจเปลี่ยนแปลงไปตามจำเพาะและการใช้เทคนิคที่ทันสมัย ขึ้นที่มีการใช้ ณ เวลานั้นๆ

การศึกษาการป้องกันการพัฒนาของโรคพยาธิในไม้ตับและมะเร็งท่อน้ำดี


จำนวนหนูที่ใช้ทั้งหมดในการทดลอง คือ 256 ตัว โดยใช้จากตารางการคำนวณของ ILAR 1976 ทำการป้อนสมุนไพรางจีด ติดต่อกันทุกวันเป็นระยะเวลา 6 เดือน ความเข้มข้นของรางจีดที่ใช้ 100mg /kg/day ความเข้มข้นของ NDMA ที่ใช้ 12.5 ppm ในน้ำดื่ม จำนวนเมต้าเซอร์คารีของพยาธิในมัตับที่ใช้ 50 metacercariae / hamster ซึ่งออกแบบการทดลองดังนี้

กลุ่มที่	กลุ่ม	1 เดือน	2 เดือน	3 เดือน	6 เดือน	รวม
1	ควบคุม	8	8	8	8	32
2	OV	8	8	8	8	32
3	OV+NDMA	8	8	8	8	32
4	NDMA	8	8	8	8	32
5	รงจีด	8	8	8	8	32
6	OV+NDMA+รงจีด	8	8	8	8	32
7	NDMA + รงจีด	8	8	8	8	32
8	OV+รงจีด	8	8	8	8	32
รวม		128	128	128	128	256

การศึกษาการรักษามะเร็งท่อน้ำดี

จำนวนหนูที่ใช้ทั้งหมดในการทดลอง คือ 50 ตัว โดยใช้จากตารางการคำนวณของ ILAR 1976 ทำการป้อนสมุนไพรรงจีด ติดต่อกันทุกวันเป็นระยะเวลา 1-2 เดือน ขึ้นกับขนาดของมะเร็งของ กลุ่มควบคุมว่าโตเกินไปหรือไม่ ความเข้มข้นของรงจีดที่ใช้ 100mg /kg/day ซึ่งออกแบบการ ทดลองดังนี้

กลุ่มที่	กลุ่ม	1 เดือน	2 เดือน	รวม
1	CCA+ diluents	5	5	10
2	CCA+รังจีดต้ม	5	5	10
3	CCA + รังจีดสด	5	5	10
4	CCA+รังแห้ง	5	5	10
5	รังจีด	5	5	10
รวม		25	25	50

หมายเหตุ ความเข้มข้นจาก การทดลองในหลอดทดลอง จะนำไปปรับใช้ในการทดลองในสัตว์ทดลอง
การตรวจแต่ละค่าอาจมีการเปลี่ยนแปลงกับผลที่ได้ในแต่ละช่วงเพื่อให้สอดคล้องกัน

ขอบเขตของการวิจัย

โดยระบุขอบเขตของการวิจัยที่จะทำให้ชัดเจนว่า จะทำแค่ไหนครอบคลุมถึงอะไรบ้าง
การศึกษาทั้งในสัตว์ทดลอง

การศึกษาการป้องกันการพัฒนาของโรคร้ายในไม้ตับและมะเร็งท่อน้ำดี

ใช้โมเดลการทำให้เกิดมะเร็งโดยการติดเชื้อพยาธิในไม้ตับ(*Opisthorchis viverrini*) และให้สารก่อมะเร็ง (N-nitrosodimethylamine) โดยจะมีกลุ่มควบคุมของแต่ละการทดลองโดยแบ่งการทดลองเป็นกลุ่มที่ให้ยาหรือไม่ให้ แล้วทำการศึกษาเป็นช่วงๆ 1, 2, 3 และ 6 เดือน หรือปรับตามผลที่เกิดขึ้น ทำการศึกษาทางกายวิภาค พยาธิสภาพที่เปลี่ยนแปลง ค่าทางเคมีของเลือด แบบแผนการแสดงออกของยีนที่เกี่ยวข้องกับการเกิดมะเร็งหรือ ปัจจัยมะเร็ง และหรืออย้อม immunohistostaining ของ CK19 และ PCNA เป็นต้น

ใช้โมเดลการทำให้เกิดมะเร็งท่อน้ำดี โดยการฉีด hamster CCA cell line พร้อมกับการให้รังสี โดย จะทำการศึกษา ทางกายวิภาค โดยการวัดขนาดของก้อนมะเร็ง การเจริญเติบโตของหนูทดลอง พยาธิสภาพที่เปลี่ยนแปลง ค่าทางเคมีของเลือด แบบแผนการแสดงออกของยีนที่เกี่ยวข้องกับการเกิดมะเร็งหรือปัจจัยมะเร็ง และหรืออย้อม immunohistostaining ของ CK19 และ PCNA เป็นต้น

การศึกษาการรักษามะเร็งท่อน้ำดี

จะใช้โมเดลการทำให้เกิดมะเร็งท่อน้ำดี โดยการฉีด hamster CCA cell line หลังจากพับก้อนมะเร็ง อย่างน้อย 3 mm จึงทำการให้รังสี โดยจะทำการศึกษา ทางกายวิภาค โดยการวัดขนาดของก้อนมะเร็ง การเจริญเติบโตของหนูทดลอง พยาธิสภาพที่เปลี่ยนแปลง ค่าทางเคมีของเลือด แบบแผนการแสดงออกของยีนที่เกี่ยวข้องกับการเกิดมะเร็งหรือปัจจัยมะเร็ง และหรืออย้อม immunohistostaining ของ CK19 และ PCNA เป็นต้น

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

1.1 Sudsarn P, Wongchalee N, **Boonmars T**, Laummaunwai P, Chamgramol

Y, Pairojkul C, Juasook A, Boonjaraspinyo S. Sex differences in opisthorchiosis and the development of cholangiocarcinoma in Syrian hamster model. *Parasitol Res.* 2014 Mar;113(3):829-35.

Impact factor 2.85

1.2 Wonkchalee N, **Boonmars T**, Laummaunwai P, Aromdee C,

Hahnvajanawong C, Wu Z, Sriraj P, Aukkanimart R, Chamgramol Y, Pairojkul C, Juasook A, Sudsarn P. A combination of praziquantel and the traditional medicinal plant Thunbergia laurifolia on *Opisthorchis viverrini* infection and cholangiocarcinoma in a hamster model.

Parasitol Res. 2013 Dec;112(12):4211-9.

Impact factor 2.85

1.3 Wonkchalee O, **Boonmars T**, Aromdee C, Laummaunwai P, Khunkitti

W, Vaeteewoottacharn K, Sriraj P, Aukkanimart R, Loilome W,

Chamgramol Y, Pairojkul C, Wu Z, Juasook A, Sudsarn P.

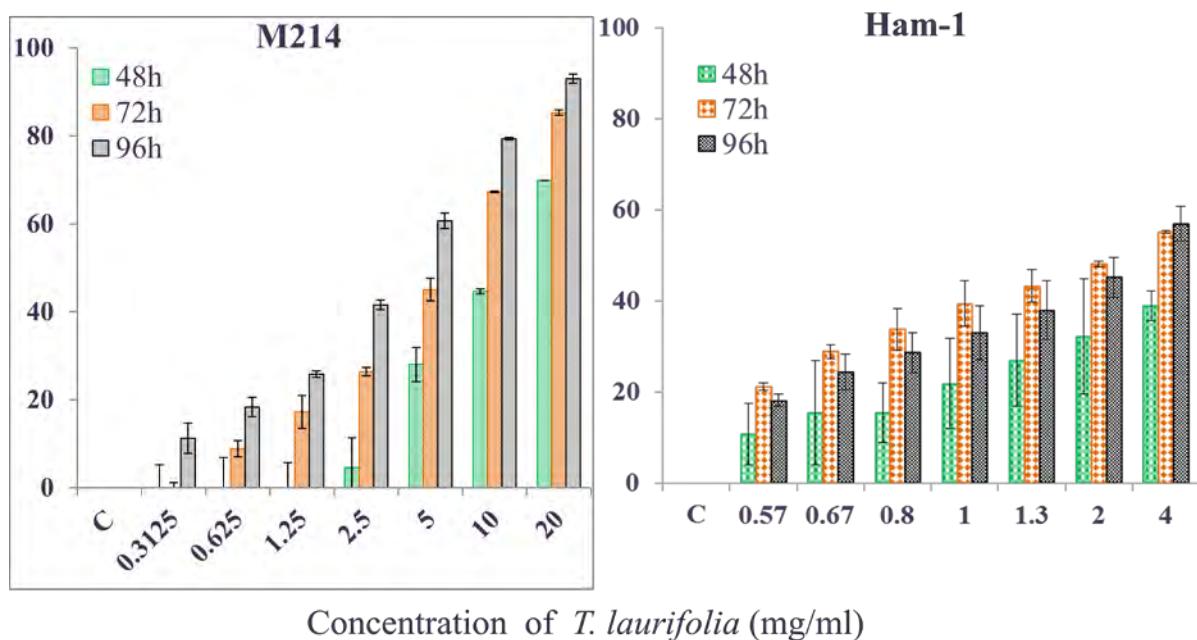
Anti-inflammatory, antioxidant and hepatoprotective effects of *Thunbergia laurifolia* Linn. on experimental opisthorchiasis. *Parasitol Res.* 2012 Jul;111(1):353-9.

Impact factor 2.85

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/บุคคลทั่วไป)
- เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับหรือวิธีทำงาน)
- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)

- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
 - ได้ผลิตบัณฑิตศึกษาระดับปริญญาเอกจำนวน 2 คน
 - คือ 1. นางสาวณัฏฐ์ชานันท์ (อรสา) วงศ์ชาลี กำลังจะจบการศึกษา
 - 2. นางสาวกัตยาณี สุตสาร จบการศึกษา

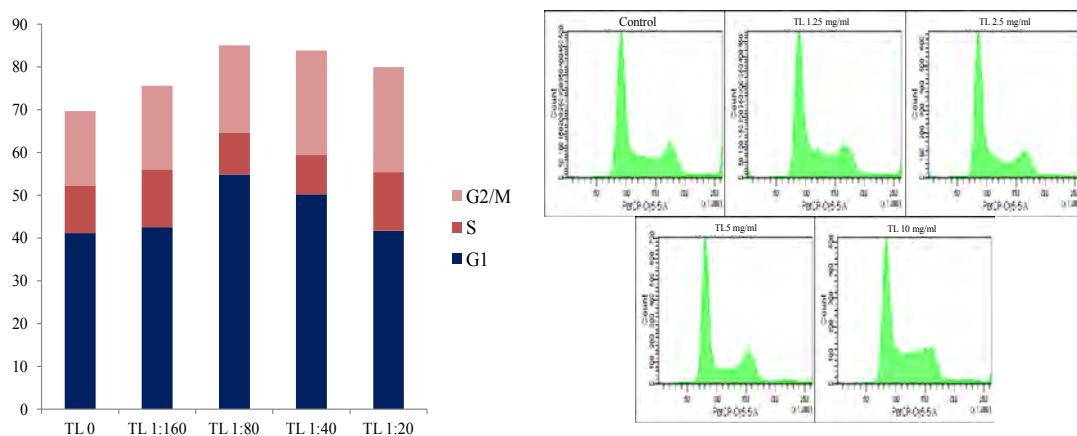

3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุม วิชาการ หนังสือ การจดสิทธิบัตร)

- 3.1 ประชุมและเสนอผลงานทางวิชาการ ในการประชุมนักวิจัยรุ่นใหม่ พบ เมธีวิจัยอาวุโส สกว. ครั้งที่ 13 เสนอผลงาน oral presentation เรื่อง Effect of medical plant *Thunbergia laurifolia* on hamster opisthorchiasis and cholangiocarcinoma
- 3.2 Precongress Symposium 2012 “การวิจัยและพัฒนาเพื่อกำจัดพยาธิใบไม้ตับและมะเร็งท่อน้ำดี” วันที่ 9 ตุลาคม 2555 ณ ห้องบรรยาย 2 คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น เสนอผลงาน oral presentation เรื่อง ผลิตภัณฑ์ธรรมชาติเพื่อป้องกันและรักษามะเร็งท่อน้ำดี : ความหวังที่รอคอย
- 3.3 The 1st Asian Parasites by Asian Parasitologists (APAP) Helminthes in Greater Mekong Subregion วันที่ 12 พฤษภาคม 2556 ณ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น
- 3.4 การนำเสนอผลงานในการประชุมที่มหาวิทยาลัย KAGAWA ณ เมือง KAGAWA ประเทศญี่ปุ่น ระหว่างวันที่ 19-20 ตุลาคม 2556
- 3.5 การนำเสนอผลงานในการประชุม “Basic and Applies Knowledge of Parasitic Diseases and Agents: Frontier Research on Parasites in Greater Mekong Sub Region” วันที่ 8 พฤษภาคม 2557 ณ คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น เรื่อง Opisthorchiasis associated cholangiocarcinoma :Risk factors for cholangiocarcinoma :Promising herbal medicine for CCA prevention and treatment
- 3.6 การประชุมวิชาการโครงการปริญญาเอกภาษาญี่นาภิเบก ครั้งที่ 15 ระหว่างวันที่ 28-30 พฤษภาคม 2557 จังหวัดชลบุรี

ผลการทดลอง

ผลของสารสกัด้างจีดต่อเซลล์มะเร็งท่อน้ำดีของคนและหนูแฮมสเตอร์

ผลที่ได้แสดงให้เห็นว่าสารสกัดจากการจีดส่งผลต่อเซลล์มะเร็งท่อน้ำดีของหนูแฮมสเตอร์และ เซลล์มะเร็งท่อน้ำดีของคนชนิดM123 ที่ความเข้มข้นที่แตกต่างกัน โดยความเข้มข้นที่ทำให้ IC50 อยู่ที่ความเข้มข้น 3.54 (ภาพ A) และ 3.8 กรัมต่อมิลลิลิตร (ภาพ B) ของเซลล์มะเร็งท่อน้ำดีของหนูแฮมสเตอร์และเซลล์มะเร็งท่อน้ำดีของคนชนิดM123 ที่ 48 ชั่วโมง พบว่ามีการลดลงอย่างมีนัยสำคัญในกลุ่มที่ได้รับสารสกัดจากสมุนไพรเมื่อเปรียบเทียบกับกลุ่มควบคุม

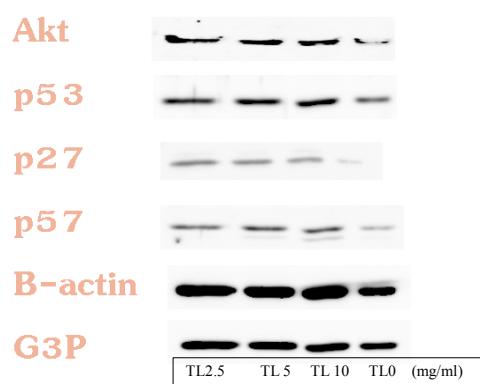

ภาพที่ 1 ผลของสารสกัดจากการจีดต่อเซลล์มะเร็งท่อน้ำดีของคน (A) และเซลล์มะเร็งท่อน้ำดีของหนูแฮมสเตอร์ (B)

ผลของสารสกัดรังจีดต่อ Cell cycle arrest ของเซลล์มะเร็งท่อน้ำดีของคนและหนูแมม สเตอร์

ผลการศึกษาพบว่าสารสกัดรังจีดที่ความเข้มข้นต่างๆ ได้แก่ 1.25 2.5 5 และ 10 มิลลิกรัมต่อมิลลิลิตร ส่งผลต่อการหยุดยั้งวัฏจักรเซลล์ที่แตกต่างกัน โดยพบว่าสารสกัดรังจีดที่ 2.5 และ 5 กรัมต่อมิลลิลิตรสามารถหยุดยั้งวัฏจักรเซลล์ที่ G2M phase ส่วนที่ 5 และ 10 มิลลิกรัมต่อมิลลิลิตร ดัง

ภาพ 2

Effect of TL on cell cycle of human cholangiocarcinoma cell after 48 hour post-treatment

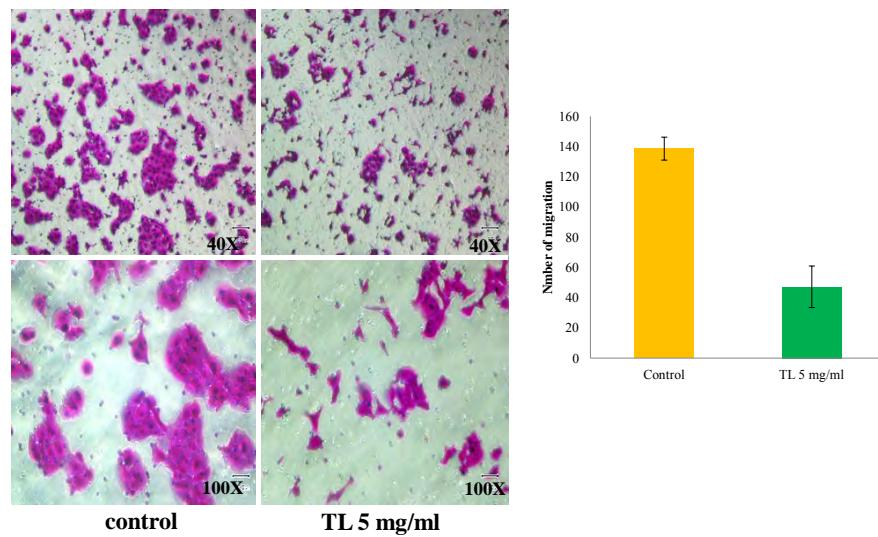


ภาพที่ 2 ผลของสารสกัดจากรังจีดยับยั้งเซลล์มะเร็งท่อน้ำดีของคน

ผลของร่างจีดต่อการแสดงออกของ apoptotic proteins

ผลการศึกษาพบว่าสารสกัดร่างจีดที่ความเข้มข้นต่างๆ ได้แก่ 0 2.5 5 และ 10 มิลลิกรัมต่อมิลลิลิตร ส่งผลต่อการซักนำให้เกิดการตายแบบ apoptosis โดยพบว่ามีการแสดงออกของโปรตีน Akt p53 p27 p57 สูงขึ้น ที่เวลา 24 ชั่วโมง ดังภาพที่ 3

Effect of TL on protein expression of human cholangiocarcinoma cell after 24 post-treatment

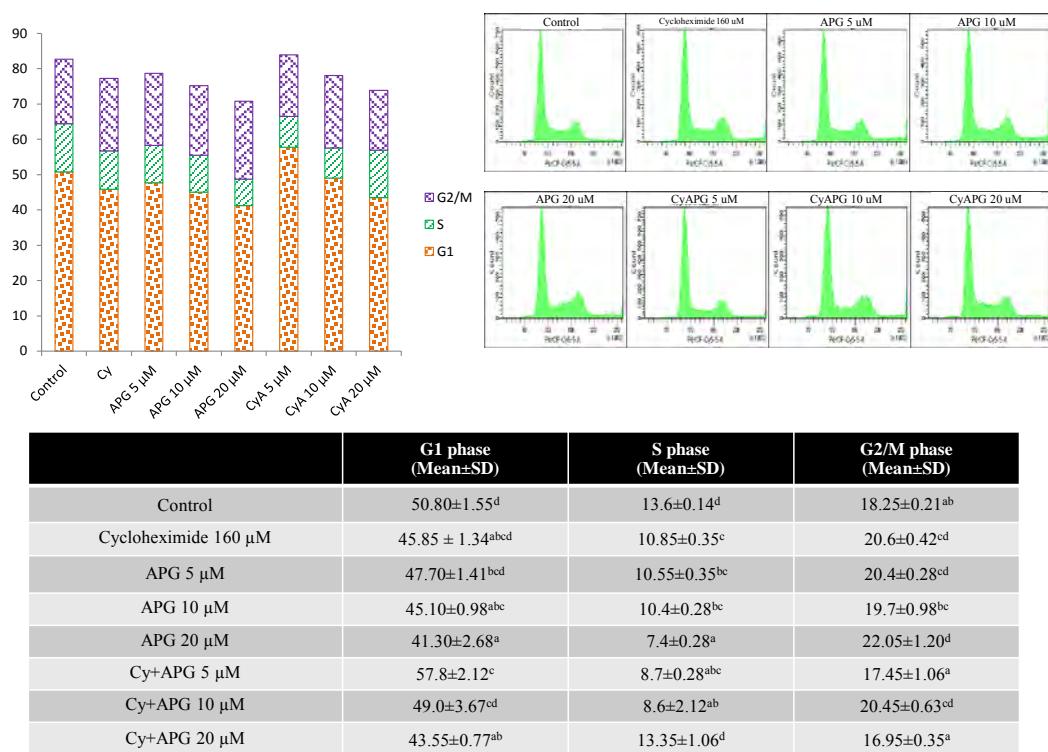

After treatment increase of p57, p27, p53 and Akt with dose-dependent

ภาพที่ 3 ผลของสารสกัดจากร่างจีดต่อการแสดงออกของ p57, p27, p53 และ Akt

ผลของร่างจีดต่อการแพร่กระจายของมะเร็ง โดยการทำ migration assay

ผลการศึกษาพบว่าสารสกัดร่างจีดที่ความเข้มข้นต่างๆ ได้แก่ 0 และ 5 มิลลิกรัมต่อมิลลิลิตร โดยพบว่าที่ความเข้มข้น 5 มิลลิกรัมต่อมิลลิลิตร ส่งผลยับยั้งการเคลื่อนที่ของเซลล์มะเร็ง ดังภาพที่ 4

Effect of TL on migration of human cholangiocarcinoma cell after 24 post-treatment

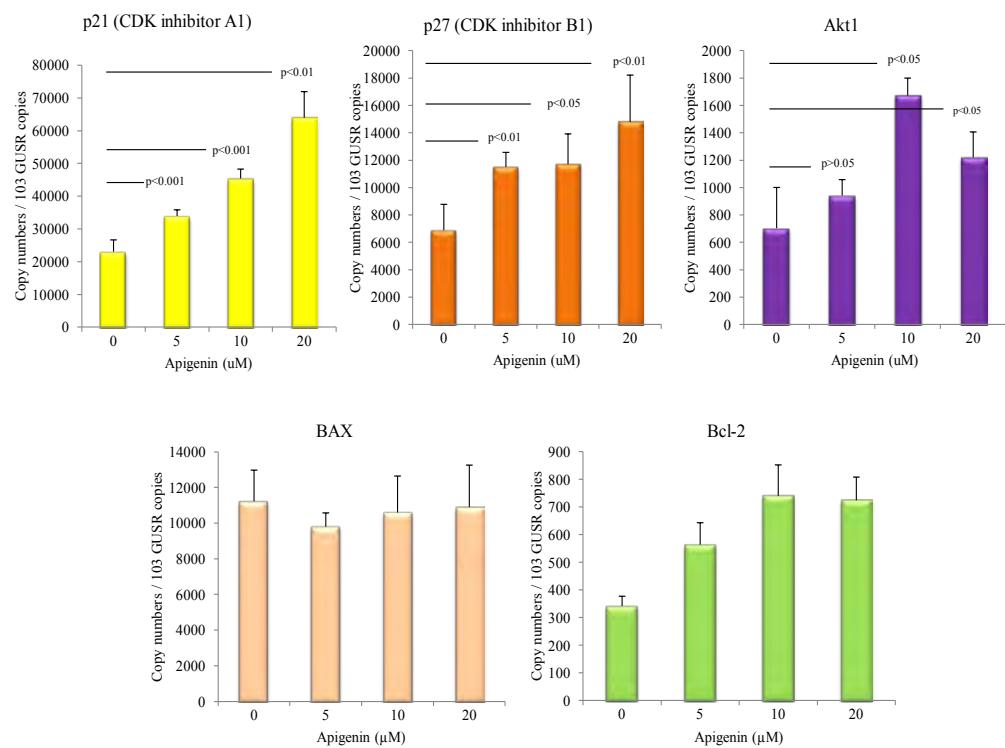


After treatment TL inhibited migration of CCA cell

ภาพที่ 4 ผลของร่างจีดต่อการแพร่กระจายของมะเร็ง โดยการทำ migration assay

ผลของ apigenin ต่อ Cell cycle arrest

ผลการศึกษาพบว่าสาร apigenin ที่ความเข้มข้นต่างๆ ได้แก่ 5 10 และ 20 μM ไม่โครงรัมต่อมิลลิลิตร และ ร่วมกับยาต้านมะเร็ง Cycloheximide ส่งผลต่อการหยุดยั้งวัฏจักรเซลล์ที่แตกต่างกัน ที่ช่วงของ G2M แต่ไม่มีนัยสำคัญทางสถิติ ดังภาพที่ 5

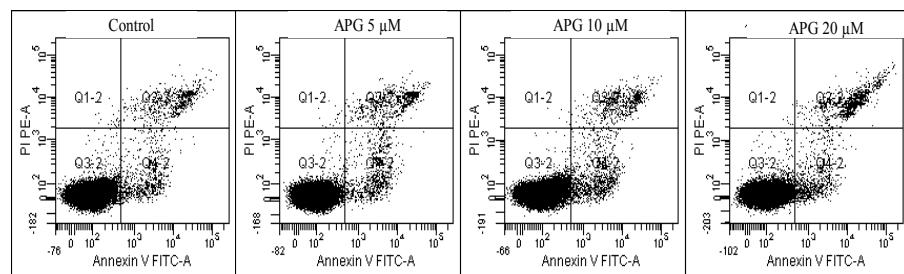


ภาพที่ 5 ผลของ apigenin ต่อ Cell cycle arrest

ผลของ apigenin ต่อการแสดงออกของ apoptotic genes

ผลการศึกษาพบว่าสาร apigenin ที่ความเข้มข้นต่างๆ ได้แก่ 5 10 และ 20 μ M โครงการมต่อ มิลลิลิตร ส่งผลต่อการเพิ่มขึ้นของการแสดงออกของยีน p21 p27 และ AKT ที่แตกต่างกัน อย่างมี นัยสำคัญทางสถิติเมื่อเทียบกับกลุ่มควบคุม ยกเว้นยีน BAX และ BCL2 ดังภาพที่ 6

Effect of apigenin on gene expression of human cholangiocarcinoma cell after 24 post-treatment

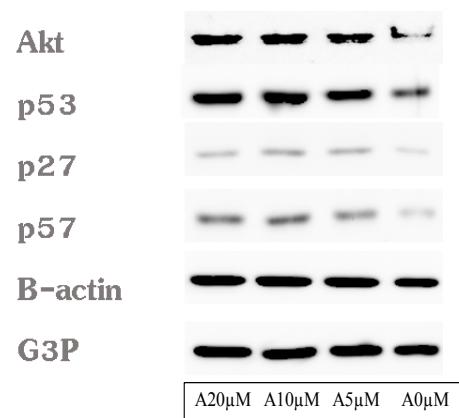


ภาพที่ 6 ผลของ apigenin ต่อการแสดงออกของ apoptotic proteins

ผลของ apigenin ต่อ apoptosis

ผลการศึกษาพบว่าสาร apigenin ที่ความเข้มข้นต่างๆ ได้แก่ 5 10 และ 20 μ M ไม่กระตุ้นต่อ มิลลิลิตร ไม่ส่งผลต่อการเกิด apoptosis ดังภาพที่ 7

Effect of apigenin on apoptosis of human cholangiocarcinoma cell

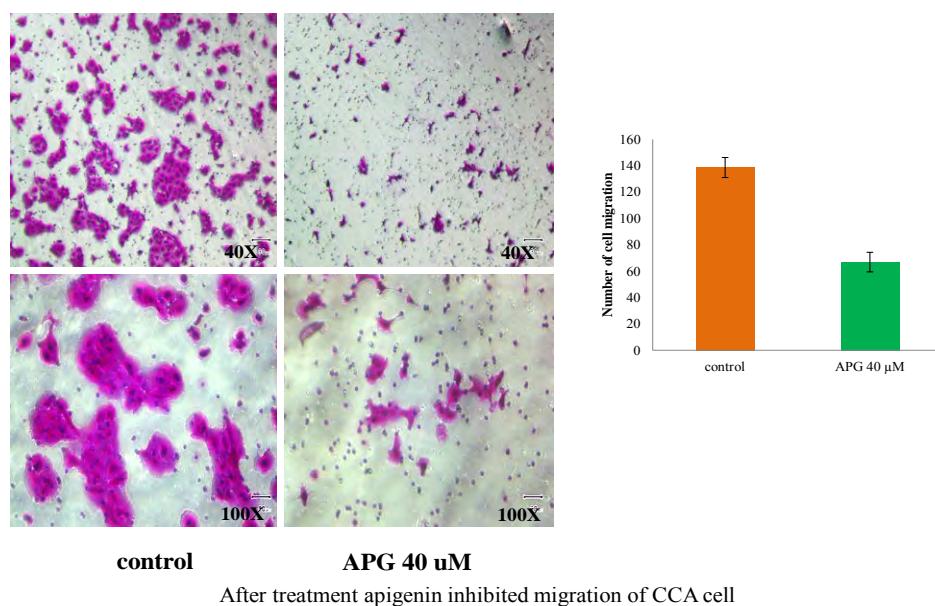

(Mean \pm SD)	Q1 (necrosis)	Q2 (dead cell)	Q3 (living)	Q4 (on going to dead)
Control	0.1 \pm 0.0016	2.2 \pm 0.17	95.27 \pm 0.05	2.43 \pm 0.32
APG 5 μ M	0.03 \pm 0.05	2.3 \pm 0.06	95.2 \pm 0.5	2.43 \pm 0.38
APG 10 μ M	0 \pm 0	1.67 \pm 0.4	94.4 \pm 1.35	4 \pm 1.5
APG 20 μ M	0 \pm 0	2.17 \pm 1.05	95.6 \pm 1.27	2.3 \pm 0.36

ภาพที่ 7 ผลของ apigenin ต่อการเกิด apoptosis

ผลของ apigenin ต่อการแสดงออกของ apoptotic proteins

ผลการศึกษาพบว่าสารสกัดรังจีดที่ความเข้มข้นต่างๆ ได้แก่ 5 10 และ 20 ไมโครโมล ส่งผลต่อการขัดขวางให้เกิดการตายแบบ apoptosis โดยพบว่ามีการแสดงออกของโปรตีน Akt p53 p27 p57 สูงขึ้น ที่เวลา 24 ชั่วโมง ดังภาพที่ 8

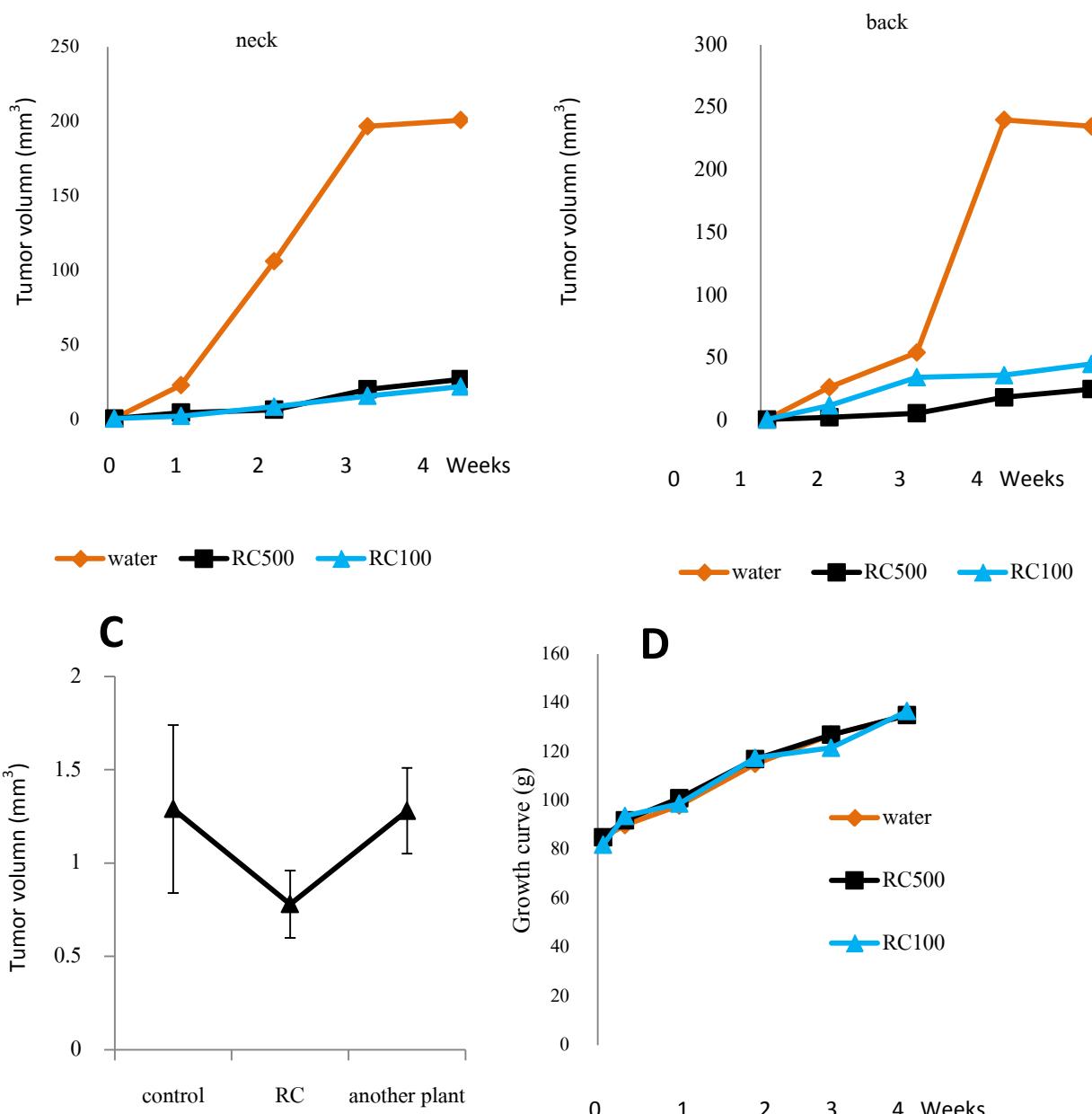
Effect of apigenin on protein expression of human cholangiocarcinoma cell after 24 post-treatment


After treatment increase of p57, p27, p53 and Akt with dose-dependent

ภาพที่ 8 ผลของ apigenin ต่อการแสดงออกของ apoptotic proteins

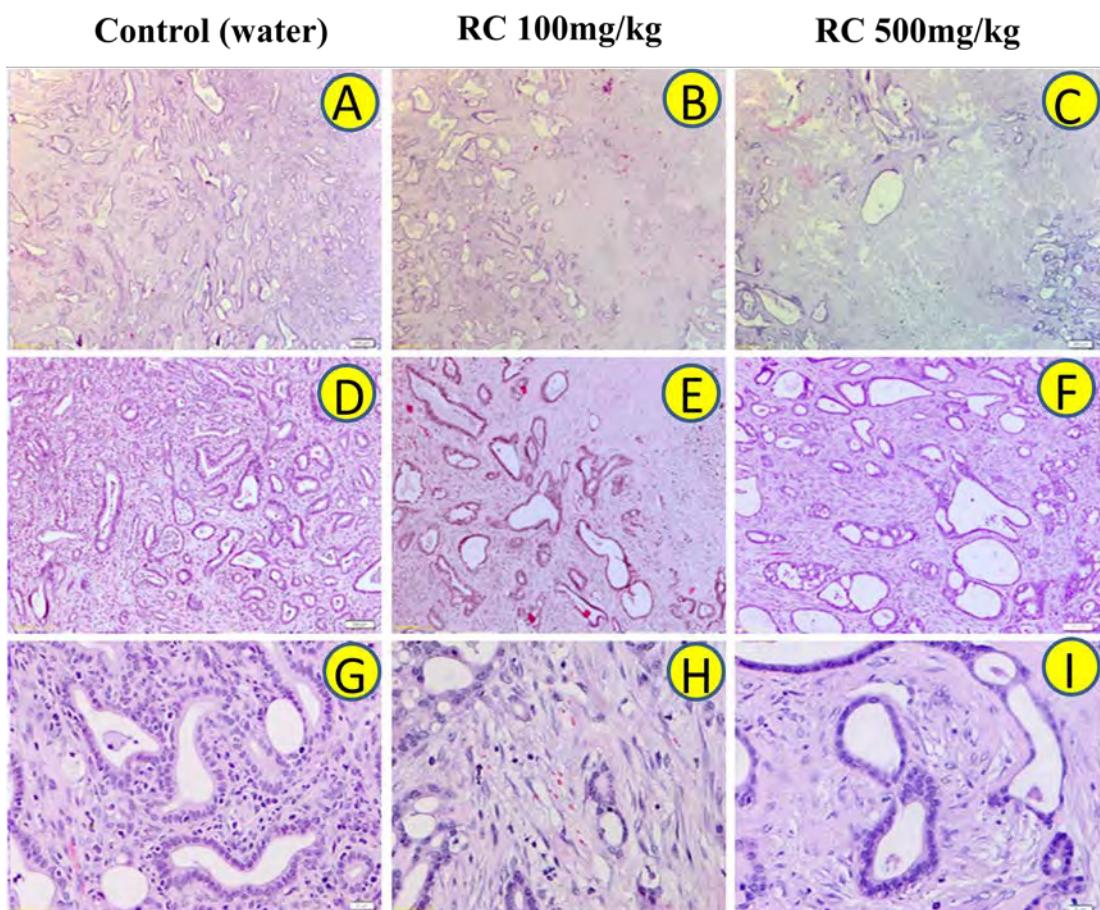
ผลของ apigenin ต่อการแพร่กระจายของมะเร็ง โดยการทำ migration assay

ผลการศึกษาพบว่าสารสกัดรงเจดที่ความเข้มข้นต่างๆ ได้แก่ 0 และ 40 ไมโครโมล โดยพบว่าที่ความเข้มข้น 40 ไมโครโมล ส่งผลยับยั้งการเคลื่อนที่ของเซลล์มะเร็ง ดังภาพที่ 9


Effect of apigenin on migration of human cholangiocarcinoma cell after 24 post-treatment

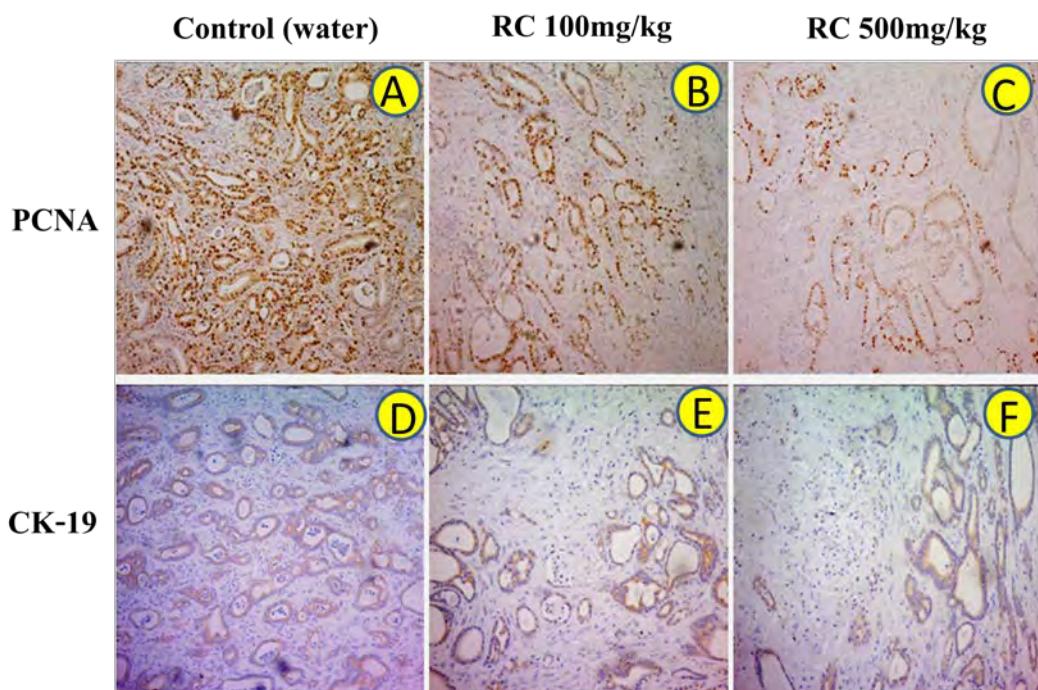
ภาพที่ 9 ผลของ apigenin ต่อการแพร่กระจายของมะเร็ง โดยการทำ migration assay

ร่างจัดยับยั้งการเจริญของมะเร็งท่อน้ำดีในหนูเอมสเตอร์ที่ทำการปลูกถ่ายมะเร็ง


ผลการศึกษาพบว่าสารสกัดรังจีดที่ความเข้มข้นต่างๆ ได้แก่ 100 และ 500 มิลลิกรัมต่อกิโลกรัม ส่งผลทำให้การเจริญของเซลล์มะเร็งท่อน้ำดีที่ได้ทำ allograph ในหนูเอมสเตอร์ลดลง จากการป้อนสารสกัดรังจีดติดต่อกันเป็นเวลา 1 เดือน โดยไม่ส่งผลต่อการเจริญเติบโตของหนู ดังภาพที่ 10

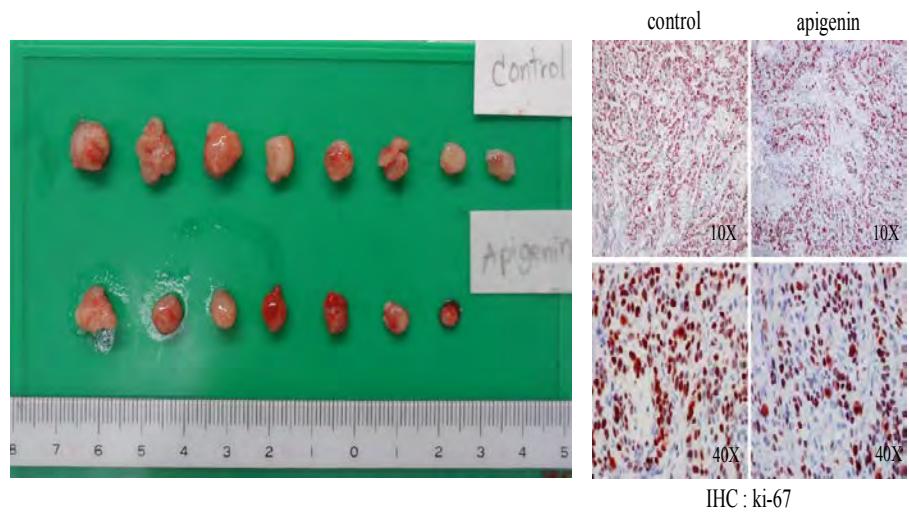
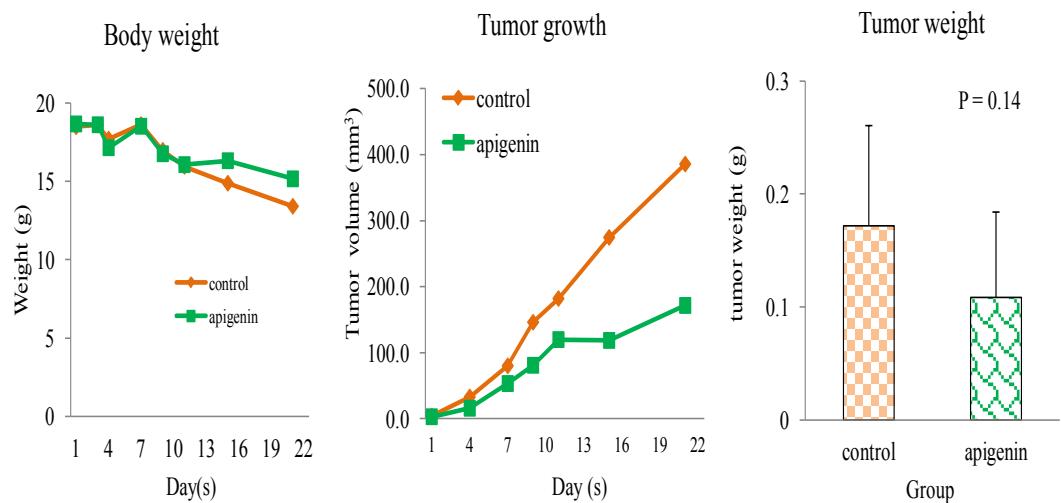
ภาพที่ 10 ผลของร่างจัดยับยั้งการเจริญของมะเร็งท่อน้ำดี โดยปริมาตรของก้อนมะเร็ง (A และ B) การเปรียบเทียบกับสมุนไพรชนิดอื่น (C) น้ำหนักของหนูทดลอง (D)

พยาธิสภาพของห้วยทดลองที่ได้รับร่างกายเพื่อยับยั้งการเจริญของมะเร็งท่อน้ำดี


ผลจากการให้สารสกัดร่างกายในโมเดลของการปลูกถ่ายมะเร็งท่อน้ำดีของหนูเอมสเตอร์ พบว่า การให้ร่างกายขนาด 100 มกต่อ กก และ 500 มกต่อ กก ส่งผลต่อการเพิ่มจำนวนของเซลล์มะเร็งดังภาพที่ 11

ภาพที่ 11 พยาธิสภาพของห้วยทดลองที่ได้รับร่างกายเพื่อยับยั้งการเจริญของมะเร็งท่อน้ำดี โดยการทำ allograft cholangiocarcinoma ในกลุ่มควบคุม (A,D,G) และ กลุ่มที่ให้สารสกัดความเข้มข้น 100 มกต่อ กก (B,E,H) and 500 มกต่อ กก (C,F,I)

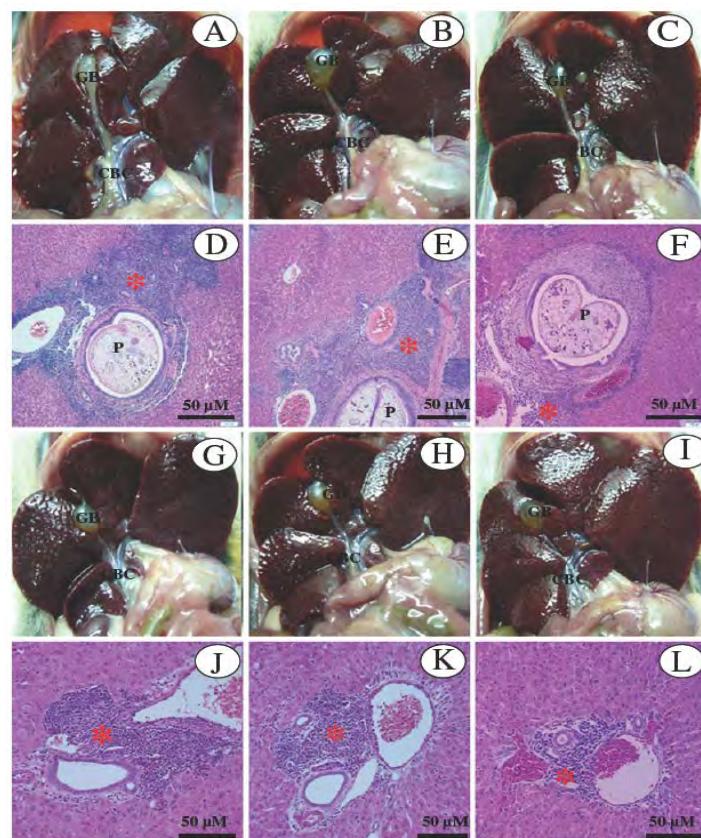
ผลการย้อมอิมมูโนอิสโตสำหรับ PCNA และ CK19



ผลจากการให้สารสกัดรังจีดในโมเดลของการปลูกถ่ายมะเร็งท่อน้ำดีของหนูเอมสเตอร์ พบร่วมกับการให้รังจีดขนาด 100 มกต่อ กก และ 500 มกต่อ กก ส่งผลต่อการเพิ่มจำนวนของเซลล์มะเร็ง โดยการย้อม PCNA และ CK19 โดยพบ positive area น้อยกว่าในกลุ่มควบคุม ดังภาพที่ 12

ภาพที่ 12 การย้อมอิมมูโนอิสโตสำหรับ PCNA และ CK19 ในกลุ่มควบคุม (A,D) และ กลุ่มที่ให้สารสกัดความเข้มข้น 100 มกต่อ กก (B,E) and 500 มกต่อ กก (C,F)

Apigenin ยับยั้งการเจริญของมะเร็งท่อน้ำดีในหนูน้ำดีเม้าส์ที่ทำการปลูกถ่ายมะเร็ง

ผลการศึกษาพบว่าการให้สาร apigenin ส่งผลทำให้การเจริญของเซลล์มะเร็งท่อน้ำดีที่ได้ทำ xenograph ในหนูน้ำดีเม้าส์ลดลง และนำหน้าของมะเร็งลดลงเมื่อเทียบกับกลุ่มควบคุม จากการป้อนสาร apigenin ติดต่อ กันเป็นเวลา 22 วัน โดยไม่ส่งผลต่อการเจริญเติบโตของหนู จากผลพยาธิวิทยา โดยการย้อม H&E นั้น พบว่าไม่ค่อยเห็นความแตกต่างในแง่ของรูปลักษณะของมะเร็งน้ำดี และจากการย้อม กวاف เป็นการย้อมด้วย ki-67 ซึ่งดูการ proliferative ของ cell โดย positive ใน cell ที่อยู่ระหว่างการแบ่งตัว ในช่วง late G1, S, G2 phase และ negative ใน G0 phase จากการทดลองบริเวณส่วนขอบของ ตัวอย่างจะ positive มากกว่าส่วนกลางและส่วนกลางของกลุ่มที่ได้รับยาจะพบพังผืดได้มากกว่ากลุ่ม ควบคุม ดังภาพที่ 13



ภาพที่ 13 Apigenin ยับยั้งการเจริญของมะเร็งท่อน้ำดีในหนูน้ำดมีส์ที่ทำการปลูกถ่ายมะเร็ง

ผลของร่างกายต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับในหนูเอม

สเตอร์

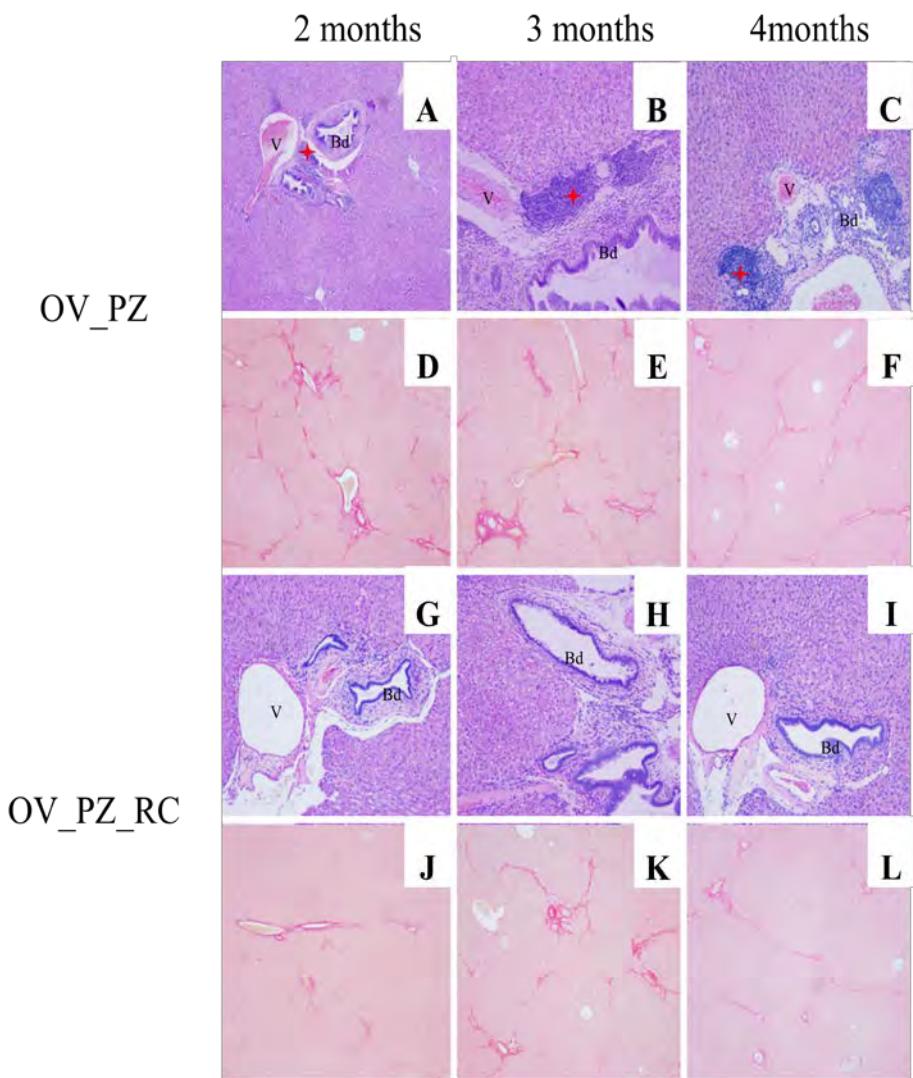
สารสกัดรังจีดที่ความเข้มข้น 100 มกต่อกรัมให้ต่อเนื่องเป็นเวลา 1 เดือน ส่งผลต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับในหนูเอมสเตอร์ที่ติดเชื้อพยาธิใบไม้ตับและหรือได้รับสารก่อมะเร็ง

ภาพที่ 14 ผลของร่างกายต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับในหนูเอมสเตอร์ ติดเชื้อพยาธิใบไม้ตับ (A, D) ติดเชื้อพยาธิใบไม้ตับและให้สารสกัดรังจีดสด (B, E), ติดเชื้อพยาธิใบไม้ตับและให้สารสกัดรังจีดสด (C, F) ได้รับสารก่อมะเร็ง (G, J) ได้รับสารก่อมะเร็งและให้สารสกัดรังจีดสด (H, K) ได้รับสารก่อมะเร็งและให้สารสกัดรังจีดแห้ง (H, K)
P: parasite; Asterisk: inflammation

ผลของร่างจีดต่อการโรคพยาธิใบไม้ตับและรักษาพยาธิใบไม้ในตับในหนูเอม

สเตอร์

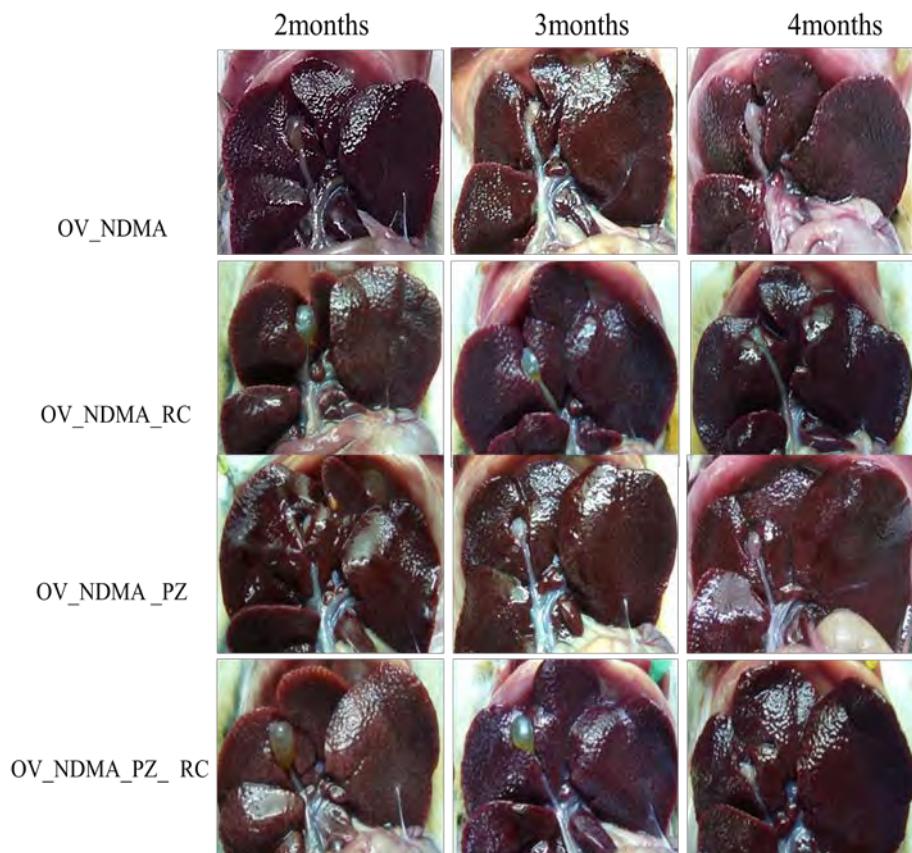
สารสกัดร่างจีดที่ความเข้มข้น 100 มกต่อกรัมให้ต่อเนื่องเป็นเวลา 2, 3 และ 4 เดือน ส่งผลต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับด้วยพาราซิคาวานเทลในหนูเอมสเตอร์ที่ติดเชื้อพยาธิใบไม้ตับ



ภาพที่ 15 ผลของร่างจีดต่อการโรคพยาธิใบไม้ตับและรักษาพยาธิใบไม้ในตับในหนูเอมสเตอร์

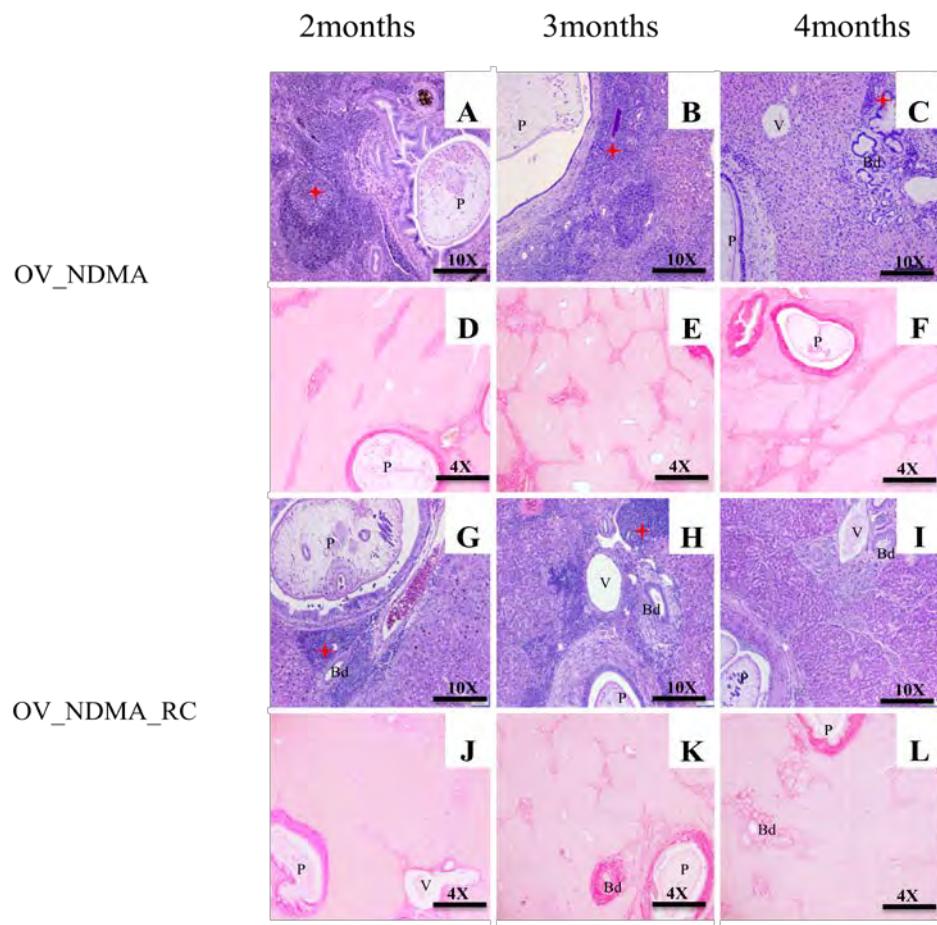
ลูกศรคือถุงน้ำดี

ผลของร่างจีดต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับในหนูแมมสเตอร์


สารสกัดร่างจีดที่ความเข้มข้น 100 mg/t ก่อให้ต่อเนื่องเป็นเวลา 2, 3 และ 4 เดือน ส่งผลต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับด้วยพาราซิคิวานเทลในหนูแมมสเตอร์ ที่ติดเชื้อพยาธิใบไม้ตับ ซึ่งแสดงโดยการย้อมสี H&E และ Sirius red

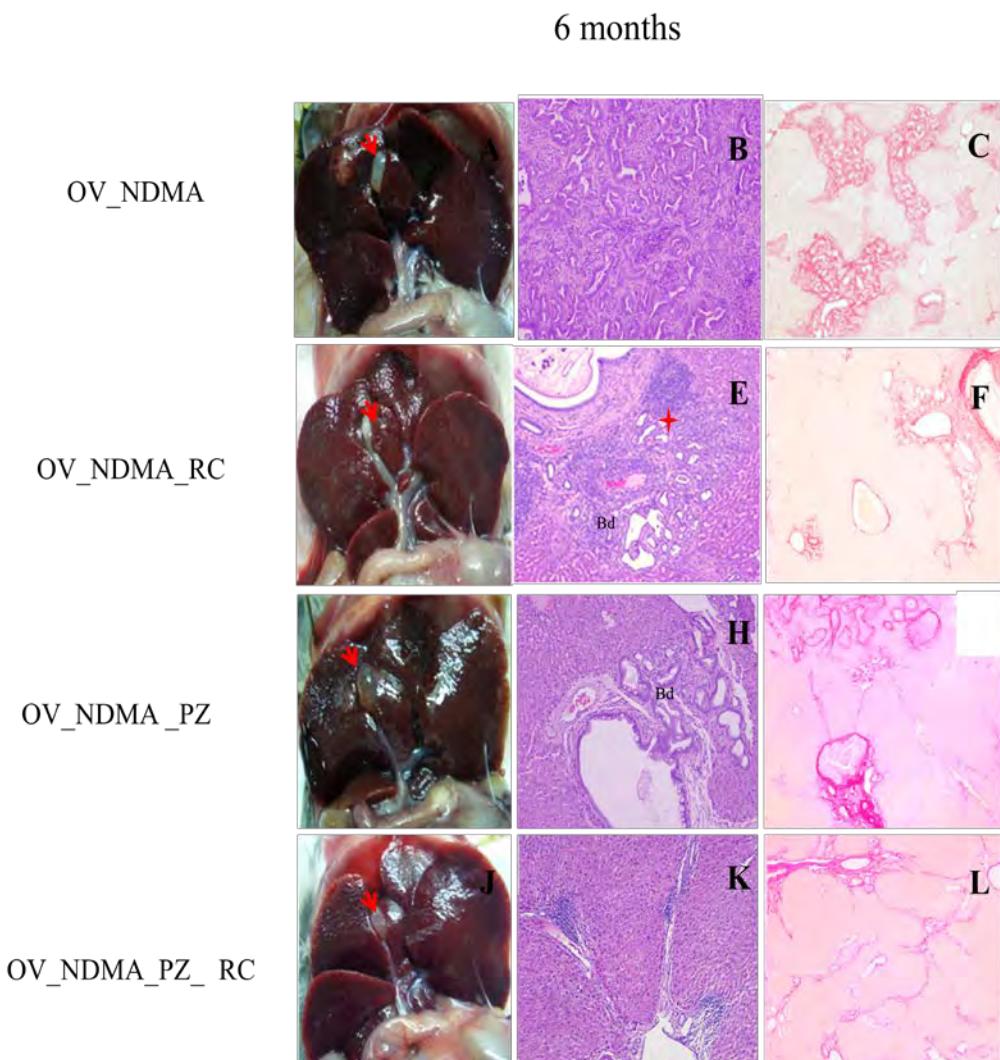
ภาพที่ 16 ผลของร่างจีดต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับใน
หนูแมมสเตอร์

ผลของร่างจีดต่อการลดการอักเสบและยับยั้งมะเร็งหลังการรักษาพยาธิใบไม้ในตับและการได้รับสารก่อมะเร็งในหนูเอมสเตอร์


จากภาพพบว่าร่างจีดส่งผลต่อการลดความหนาหรือขุ่นของถุงน้ำดีและสีของเนื้อตับ (OV_NDMA_RC, OV_NDMA_PZ_RC) เมื่อเทียบกับกลุ่มควบคุมที่ไม่ได้รับร่างจีด (OV_NDMA, OV_NDMA_PZ)

ภาพที่ 17 ผลของร่างจีดต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับและการได้รับสารก่อมะเร็งในหนูเอมสเตอร์ OV คือติดเชื้อพยาธิใบไม้ตับ, NDMA คือได้รับสารก่อมะเร็ง NDMA, RC คือได้รับสารสกัดรังจีด, PZ คือได้รับยาพาราซิคوانเทล

ผลของร่างกายต่อการลดการอักเสบและยับยั้งการเกิดมะเร็งหลังการรักษาพยาธิใบไม้ในตับและการได้รับสารก่อมะเร็งในหูและเมสเตอร์


จากภาพแสดงให้เห็นว่าการได้รับสารสกัดร่างกายเดือนเวลา 2, 3, และ 4 เดือน ส่งผลต่อการลดการอักเสบรอบท่อน้ำดีและการเกิดมะเร็งท่อน้ำดีล่าช้า (OV_NDMA_RC, OV_NDMA_PZ_RC เมื่อเทียบกับกลุ่มควบคุมที่ไม่ได้รับร่างกาย (OV_NDMA, OV_NDMA_PZ)

ภาพที่ 18 ผลของร่างกายต่อการลดการอักเสบหลังการรักษาพยาธิใบไม้ในตับและการได้รับสารก่อมะเร็งในหูและเมสเตอร์ OV คือติดเชื้อพยาธิใบไม้ตับ, NDMA คือได้รับสารก่อมะเร็ง NDMA, RC คือได้รับสารสกัดร่างกาย, PZ คือได้รับยาพาราซิคานาเกล

ผลของร่างกายต่อการฉะลอหรือยับยั้งการเกิดมะเร็งท่อน้ำดีในหนูเอมสเตอร์

จากภาพพบว่าการได้รับสารสกัดร่างกายต่อเนื่องเป็นเวลา 6 เดือน ส่งผลต่อการลดความหนาหรือขุ่นของถุงน้ำดีและสีของเนื้อตับ และนอกจากนี้ยังลดการเกิดมะเร็งท่อน้ำดี (OV_NDMA_RC, OV_NDMA_PZ_RC) เมื่อเทียบกับกลุ่มควบคุมที่ไม่ได้รับร่างกาย (OV_NDMA, OV_NDMA_PZ)

ภาพที่ 19 ผลของร่างกายต่อการฉะลอหรือยับยั้งการเกิดมะเร็งท่อน้ำดีในหนูเอมสเตอร์

OV คือติดเชื้อพยาธิไม้ตับ, NDMA คือได้รับสารก่อมะเร็ง NDMA , RC คือได้รับสารสกัดร่างกาย , PZ คือได้รับยาพาราซิคานเทล

**การตรวจค่าเลือดทางเคมีหลังการให้ร่างจีดในหนูแมมสเตอร์ที่ติดเชื้อ
และได้รับสารก่อมะเร็ง และยาพาราซิคามาเนล**

จากผลการตรวจการทำงานของตับและไทดับว่า สารสกัดร่างจีดไม่ได้ส่งผลต่อการทำงานของไตรีซิงแสดงโดยค่า BUN และ creatinin แต่ช่วยลดการอักเสบทำให้ค่า ALT ลดลง เมื่อเทียบกับกลุ่มที่ไม่ได้รับสารสกัดร่างจีดค่าเลือด

ตารางที่ 1 ผลการตรวจค่าการทำงานของตับและไทดับ

Group	ALT (U/L)	ALP (U/L)
	Mean ± SEM	Mean ± SEM
Normal 1M	90 ± 15 ^a	172.5 ± 47.5 ^{ab}
OV 1M	1121.1 ± 88.9 ^b	139.4 ± 4.79 ^{ab}
OVFRC 1M	605.33 ± 44.86 ^c	204.67 ± 37.7 ^b
OVDRC 1M	853.75 ± 56.73 ^d	130.25 ± 116.85 ^a
OVNDMA 6M	139.0 ± 54.9 ^a	105.3 ± 59.9 ^a
OVNDMARC 6M	124.4 ± 60.4 ^a	72.8 ± 13.7 ^a
OVNDMAPZ 6M	183.0 ± 14.1 ^a	75.0 ± 7.0 ^a
OVNDMAPZRC 6M	107.2 ± 41.9 ^a	69.6 ± 8.4 ^a

บทวิจารณ์

จากการศึกษาข้อมูลการใช้สมุนไพรในโมเดลของการใช้เพื่อเป็นการป้องกันและรักษามะเร็งท่อน้ำดีในหนูเอมสเตอร์พบว่ามีผลในการยับยั้งการ อักเสบ และการเกิดมะเร็งท่อน้ำดีให้พัฒนาช้าลงจริง ซึ่งอาจจะมาจากการมีคุณสมบัติเป็น สารต้านการอักเสบ (Anti-inflammation) และต้านสารอนุมูลอิสระ (anti-oxidant) รวมทั้งจากการศึกษา โดยใช้โมเดลที่เทียบกับการให้ยาถ่ายพยาธิในโมเดลมะเร็งยังพบว่า มีการพัฒนาการเกิดมะเร็งขึ้น ในขณะที่กลุ่มที่ให้ทั้งยาถ่ายพยาธิและสมุนไพรพบว่าไม่มี หรือมีน้อยมากของเซลล์มะเร็ง นอกจากนี้ยังได้ศึกษาเปรียบเทียบการเกิดมะเร็งท่อน้ำดีในหนูเพศผู้และเมียพบว่า ไม่แตกต่างกันอย่างมีนัยสำคัญซึ่งสอดคล้องกับในคนที่ต้องอาศัยปัจจัยภายนอกอื่นๆเข้ามาเกี่ยวข้องด้วย ซึ่งได้ตีพิมพ์แล้ว การศึกษาครั้งนี้ได้แสดงให้เห็นอย่างชัดเจนว่ารังสีมีฤทธิ์ต้านการอักเสบ และคุณสมบัติต้านอนุมูลอิสระ ทำให้การทำงานของตับในหนูเอมสเตอร์ที่ติดเชื้อพยาธิไปไม่ตับหรือหลังการบริหารงานของ NDMA ที่ดีขึ้น โดยการเปลี่ยนแปลงทางพยาธิวิทยาแสดงให้เห็นได้จาก การลดการอักเสบของเซลล์ที่อยู่รอบ ๆ ท่อน้ำดีของตับ มีความสัมพันธ์กับผลของการทดสอบการทำงานของตับ โดยเฉพาะอย่างยิ่ง ALT การแสดงให้เห็น การลดความเสียหายของเซลล์ตับ สารต้านอนุมูลอิสระที่สูงขึ้น แสดงให้เห็นโดยการวิเคราะห์ frap เนื่องจากการลดลงของเซลล์อักเสบรอบท่อน้ำดีในตับ และการลดลงของระดับ ALT นอกจากนี้ สาร apigenin ที่พบในรังสีดี มีผลการยับยั้งเซลล์มะเร็งท่อน้ำดี M214 โดยไปมีผลต่อวัฏจักรของเซลล์ที่ G2M phase และทำให้ส่งผลต่อการพัฒนาของมะเร็งท่อน้ำดีช้าลง ส่งผลต่อการซักนำให้เกิดการตายแบบ apoptosis บ้างแต่ไม่ชัดเจน โดยพบว่ามีการแสดงออกของโปรตีน Akt p53 p27 p57 สูงขึ้น นอกจากนี้สารสกัดรังสีดีส่งผลยับยั้งการเคลื่อนที่ของเซลล์มะเร็ง และส่งผลทำให้การเจริญของเซลล์มะเร็งท่อน้ำดีที่ได้ทำ allograph ในหนูเอมสเตอร์ลดลง

คุณสมบัติของสารสกัดรังสีดี

จากการศึกษาในครั้งนี้พบว่าสารสกัดที่นำมาใช้ในการทดสอบมีคุณสมบัติการเป็นสารต้านอนุมูลอิสระของสารสกัดรังสีดี ซึ่งสอดคล้องกับการศึกษาอื่นๆที่ผ่านมา (Oonsivilai et al., 2007) นอกจากนี้แล้ว มีรายงานการศึกษา phenolic profile ของสารสกัดรังสีดี พบว่ามีสาร apigenin, apigenin glucosides, phenolic acids เช่น caffeic acid, gallic acid และ protocatechuic acid และจากการทดลองพบว่าการใช้สารสกัดรังสีดีแบบสด และ แห้ง ส่งผลต่อผลของการต้านอนุมูลอิสระ ซึ่งสอดคล้องกับการศึกษาที่ผ่านมาพบว่ากรรมวิธีการซงชาหรือการเตรียมรังสีดีด้วยวิธีที่แตกต่างกันจะส่งผลที่แตกต่างกันด้วยโดย ในการศึกษานี้ใช้ทดลองคุณสมบัติของรังสีดีด้วยกรรมวิธี การทำซงชาที่แตกต่างกันเพื่อเลียนแบบซงชาที่มีกำหนดตามท้องตลาด มีวิธีดังนี้ คือ sun drying, oven drying and microwaving โดยแต่ละกรรมวิธีนำมาทดสอบเพื่อหา total phenolic content

และ antioxidant activity เปรียบเทียบกับรางจีดสุด โดย total phenolic content ทดสอบโดยใช้วิธี Folin-Ciocalteu method และ antioxidant activity ทดสอบโดย 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and ferrous ion chelating (FIC) assays จากผลการทดลองพบว่า microwave-dried ให้ค่า total phenolic content และ antioxidant activity สูงสุดเมื่อเปรียบเทียบกับกรรมวิธีการอื่น และนำ ผงรางจีดที่ได้จากการวิธี microwaving ไปใช้เปรียบเทียบกับชารางจีดในห้องทดลองพบว่า ให้ค่า total phenolic content และ antioxidant activity สูงกว่าชารางจีดในห้องทดลอง 5 และ 10 เท่าตามลำดับ (Chan and Lim 2006)

สารสกัดรางจีดยับยั้งการพัฒนา เพิ่มจำนวน และลดการกระจายของเซลล์มะเร็งท่อน้ำดี

จากการทดสอบการยับยั้งการเพิ่มจำนวนของสารสกัดรางจีดและสาร apigenin พบว่ายับยั้งวัฏจักรของเซลล์ที่ G2M แต่จากการทำ flow cytometre และทำให้ส่งผลต่อการพัฒนาของมะเร็งท่อน้ำดีชั้ลง ส่งผลต่อการซักนำให้เกิดการตายแบบ apoptosis บ้างแต่ไม่ชัดเจน โดยพบว่ามีการแสดงออกของโปรตีน Akt p53 p27 p57 สูงขึ้น เพื่อตรวจสอบผลต่อการซักนำให้เกิด apoptosis พบว่า สารสกัดรางจีด และ หรือ apigenin มีผลต่อการระตุนให้เกิดการตายน้อยมาก ซึ่งสอดคล้องกับผลการย้อมโปรตีน แต่สามารถยับยั้งการเคลื่อนที่ของเซลล์มะเร็งท่อน้ำดีได้จากการทำ immigration assay และส่งผลทำให้การเจริญของเซลล์มะเร็งท่อน้ำดีที่ได้ทำ allograph ในหนูเอมสเตอร์ลดลง ซึ่งสอดคล้องกับรายงานที่ผ่านมาของ Trochon et al (2000) พบว่าสาร apigenin สามารถยับยั้งมะเร็ง การเพิ่มจำนวนของ endothelial cell ที่ G2M phase และยับยั้งการแสดงออกของ p21 และ p27 ซึ่งต่างจากผลการทดลองครั้งนี้ และ Yin et al (2001) ที่ทำการทดสอบใน breast carcinoma cells และ Gupta et al (2001) ที่ทำการทดสอบใน human prostate carcinoma cells

สารสกัดรางจีดช่วยลดพยาธิสภาพจากการติดเชื้อพยาธิใบไม้ตับและหรือลดพิษจากสารก่อมะเร็ง และช่วยลดการเกิดมะเร็งท่อน้ำดี

ในทุกกลุ่มที่ได้รับสารสกัดรางจีดขนาด 100 มิลลิกรัมต่อกิโลกรัมติดต่อกันนาน 6 เดือน ไม่ส่งผลเสียต่ออวัยวะภายใน เช่น กระเพาะ ตับ ไต หรือ ม้าม แต่อย่างใด โดยยืนยันจากการพยาธิวิทยาและค่าเลือด ALT ALP บ่งบอกถึงเซลล์ตับอยู่ในระดับปกติ BUN และ Creatinine บ่งบอกถึงการทำงานของไตเป็นปกติ (ดังตารางที่ 1) ซึ่งชี้ให้เห็นว่ารางจีดไม่ส่งผลต่อการทำลายตับและไต อีกทั้งไม่ส่งผลต่ออัตราการเจริญเติบโตของสัตว์ทดลอง เนื่องจากสัตว์ทดลองมีน้ำหนักตัวเป็นปกติเมื่อเทียบกับกลุ่มควบคุม ซึ่งสอดคล้องกับการศึกษาที่ผ่านมา โดย วิรวรรณ วิสิฐพงศ์พันธ์และคณะ 2003 ที่ทดสอบความเป็นพิษของรางจีด ที่ขนาด 500 มิลลิกรัมต่อกิโลกรัม และ 10 กรัมต่อกิโลกรัม โดยไม่พบ

ความผิดปกติของค่าเลือดและพยาธิสภาพที่เกิดขึ้นกับหนูขาวที่ได้รับน้ำสกัดใบบางจีดแต่อย่างใด และ Chivapat et al. 2009 ชี้ว่ารายงานว่าการในการศึกษานี้เป็นการศึกษาพิชเรื่องจากการให้ร่างกายในหนูขาว โดยในกลุ่มหนูทดลองได้รับร่างกายจีดในขนาด 20, 200, 1,000, 2,000 and 2,000 มิลลิกรัมต่อ กิโลกรัมต่อวัน เป็นเวลา 6 เดือน คิดเป็น 1, 10, 50 และ 100 เท่าของขนาดที่ใช้ในคน จากผลการทดลองพบว่า สารสกัดร่างกายจีดไม่มีผลต่อน้ำหนักตัว พฤติกรรมและสุขภาพของหนูโดยทั่วไป (Body weight, Hematological test) อีกทั้งสารสกัดร่างกายจีดไม่ทำให้พิษสะสมและไม่ทำให้หนูตาย ผลทางด้านพยาธิสภาพไม่พบการเปลี่ยนแปลงที่ผิดปกติ

ผลจากการใช้ร่างกายจีดในหนูแมมสเตอร์ที่ติดเชื้อพยาธิใบไม้ตับและหรือให้สารก่อมะเร็งพบว่า ส่งเสริมทำให้การอักเสบรอบท่อน้ำดีลดลงอย่างเห็นได้ชัด (ดังภาพที่ 14 และ 16) สอดคล้องกับค่า ALT ที่ลดลงใกล้เคียงกับค่าปกติอย่างมีนัยสำคัญ (ดังตารางที่ 1) ซึ่งอาจเป็นผลมาจากการคุณสมบัติต้านการเสบและหรือต้านอนุมูลอิสระของร่างกายจีด โดยสอดคล้องกับการศึกษาของ Usanawarong et al (2000) และ Usanawarong and Thesiri (2001) ที่ใช้ร่างกายจีดในการลดพิษของ Paraquat และ Parathion ตามลำดับ สำหรับ Pramyothin et al (2005) ชี้ว่าหนูขาวได้รับการป้อน ethanol 4 กรัมต่อ กิโลกรัมต่อวัน เป็นเวลา 14 วัน ทำให้เกิดการอักเสบที่ตับ โดยพบเซลล์อักเสบจำนวนมากที่ตับ และหลังจากนั้นได้รับร่างกายจีด 25 มิลลิกรัมต่อ กิโลกรัมต่อวัน และ/หรือ Silymarin 5 มิลลิกรัมต่อ กิโลกรัมต่อวันเป็นเวลา 7 วัน ผลพบว่า ค่า ALT และ AST ในเลือดมีค่าลดลงเมื่อเปรียบเทียบกับกลุ่มที่ได้รับ ethanol และไม่ได้รับสมุนไพร และนอกจากนี้แล้วร่างกายจีดยังมีผลในการชะลอการเกิดมะเร็งท่อน้ำดีในหนูแมมสเตอร์ที่ติดเชื้อพยาธิใบไม้ในตับและได้รับสารก่อมะเร็ง NDMA และหรือได้รับยาพาราซิครวนเทล (ดังภาพที่ 19) นอกจากจะมาจากคุณสมบัติที่เป็นสารต้านการเสบและหรือต้านอนุมูลอิสระของร่างกายจีด แล้ว ยังอาจจะมาจากคุณสมบัติของการเป็นสมุนไพรถอนพิษ (detoxification) โดยมีรายงานการศึกษาจำนวนมากในสัตว์ทดลอง เช่นในปลาที่ได้รับ $(\text{Pb}(\text{NO}_3)_2$ ร่วมกับสารสกัดร่างกายจีดในขนาด 2 mg /g of fish food ให้ผลค่าเลือด blood chemistry(ALT, AST), hematological (CBC) และ histologicalอยู่ในเกณฑ์ปกติเมื่อเปรียบเทียบกับกลุ่มควบคุมที่ได้รับอาหารแบบปกติ จากการทดลองนี้สรุปว่าสารสกัดร่างกายจีดอาจมีส่วนในการช่วยลดพิษของ $\text{Pb}(\text{NO}_3)_2$ ได้ (Palipoch et al 2011) และยังมีรายงานการทดลองโดย Tangpong & Soisungwan, 2010) ใช้ร่างกายจีด เพื่อทดสอบความสามารถในการป้องกันพิษจากตะกั่ว (1 g/L) ที่สมองของหนูขาว การทดลองพบว่าร่างกายจีด (100 mg/kg และ 200 mg/kg) ไม่สามารถที่จะลดระดับของตะกั่วในกระแสเลือดหรือในสมองของหนูที่ได้รับพิษตะกั่วได้ แต่สามารถช่วยบรรเทาผลกระทบที่เกิดจากการเสียความทรงจำในหนูที่ได้รับพิษได้จากการทดสอบด้วยการให้หนูว่ายน้ำ และยังพื้นฟู caspase-3 activity อีกทั้งยังช่วยรักษาระดับของ total anti-oxidant capacity และ

anti-oxidant enzymes ในสมองของหนูที่ได้รับรังสีด้วย จากการศึกษานี้สรุปว่ารังสีอาจมีส่วนช่วยในการลดการตายของ neuronal cell และลดการสูญเสียความทรงจำในหนูที่ได้รับพิษจากตะกั่ว

การศึกษาในสัตว์ทดลองครั้งนี้เป็นรายงานการศึกษาแรกที่พบว่าสารสกัดรังสีดสามารถยับยั้งการเกิดมะเร็งท่อน้ำดีได้ ในการให้ติดต่อกันทุกวันนานถึง 6 เดือน และการให้หลังเริ่มมีการพัฒนาเป็นมะเร็งท่อน้ำดีแล้ว 3 เดือน และให้รังสีดติดต่อกันนาน 4 เดือนพบว่าการเกิดมะเร็งช้า และมีชีวิตอยู่ได้ตลอดการทดลองเมื่อเทียบกับกว่าก่ากลุ่มที่ไม่ได้รับ ซึ่งคาดว่ามาจากคุณสมบัติของการเป็น detoxification ทำให้สามารถลดพิษจาก NDMA และ นอกจากนี้คุณสมบัติ anti - oxidant และ anti-inflammation ยังเสริมทำให้พยาธิสภาพของตับดีขึ้นและสามารถมีชีวิตได้นานขึ้น

การศึกษารังสี แสดงให้เห็นถึงข้อดีของรังสีด จากการเป็นสารต้านอนุมูลอิสระและสารต้านการอักเสบ ใน แฮมสเตอร์ ที่ได้รับสารก่อมะเร็ง NDMA เช่นเดียวกับที่ติดเชื้อ *O. viverrini* นำ ไปสู่การลดพยาธิวิทยาของตับและการปรับปรุงการทำงานของตับ จากการศึกษาในหลอดทดลองพบว่า สาร apigenin ที่อยู่ในรังสีดส่งผลต่อการ metastasis ของเซลล์มะเร็งและทำให้เกิด cell cycle arrest ที่ G2M และรายงานครั้งนี้แสดงให้เห็นชัดว่าคุณสมบัติของสมุนไพรรังสีดเป็นสารลดพิษ ต้านอนุมูลอิสระสารต้านการอักเสบ และ ยับยั้งการพัฒนาและกระจายของมะเร็งท่อน้ำดี โดยสามารถป้องกันหรือชัลลกการเกิดมะเร็งท่อน้ำดีได้ในสัตว์ทดลองได้ ดังนั้นการศึกษาต่อไปในอนาคตจะทำการศึกษาในคนไข้ที่เป็นมะเร็งท่อน้ำดีระยะแรกๆ อาจส่งผลดีในการชัลลกการพัฒนาและกระจายของมะเร็งท่อน้ำดี หรือใช้ในคนที่มีความเสี่ยงสูงในการที่จะมีภาวะของการอักเสบของตับอย่างเรื้อรัง นอกจากนี้แล้วการทดลองในมะเร็งชนิดอื่นๆ ซึ่งอาจจะเป็นประโยชน์ในวงกว้างต่อไป

หนังสืออ้างอิง

1. วิรวรรณ วิสิฐพงศ์พันธ์และคณะ (2003) Thai Journal of Phytopharmacy 10(2); 23-36.
2. Chan, E.W.C., Lim, Y.Y. (2006) Antioxidant activity of *Thunbergia laurifolia* tea. *Journal of Tropical Forest Science* 18 (2): 130–136.
3. Chivapat S, Chavalittumrong P, Attawish A, Bansiddhi J, Padungpat S (2009) Chronic toxicity of *Thunbergia laurifolia* Lindl extract. *Journal of Thai Traditional and Alternative Medicine* 7(1): 18–25
4. Chattaviriya P, Morkmek N, Lertprasertsuke N, Ruangyuttikarn W (2010) Drinking *Thunbergia laurifolia* Lindl. leaf extract helps prevent renal toxicity induced by cadmium in rats. *Thai J Toxicology* 25(2): 124–132

5. Chanawirat A (2000) Protective effect of *Thunbergia laurifolia* extract on ethanol-induced hepatotoxicity in mice. Thesis, Mahidol University, Bangkok, Thailand
6. Gupta S, Afaq F, Mukhtar H(2001) Selective growthinhibitory, cellcycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. *Biochem Biophys Res Commun.* 5;287(4):91420.
7. Oonsivilai R, Cheng C, Bomser J, Ferruzzi MG, Ningsanond S (2007) Phytochemical profiling and phase II enzyme-inducing properties of *Thunbergia laurifolia* Lindl (RC) extracts. *J Ethnopharmacol* 114(3): 300-306
8. Oonsivilai R, Ferruzzi MG, Ningsanond S (2008) Antioxidant activity and cytotoxicity of Rang Chuet (*Thunbergia laurifolia* Lindl.) extracts. *As J Food Ag Ind* 1(02): 116-128
9. Palipoch S, Jiraungkoorskul W, Tansatit T, Preyavichyapugdee N, Jaikua W, Kosai P (2011) Protective efficiency of *Thunbergia laurifolia* leaf extract against lead (II) nitrate-induced toxicity in *Oreochromis niloticus*. *Journal of Medicinal Plants Research* 5(5): 719-728
10. Pramyothin P, Chirdchupunsare H, Rungsipipat A, and Chaichantipyuth C. (2005) Hepatoprotective activity of *Thunbergia laurifolia* Linn extract in rats treated with ethanol: in vitro and in vivo studies," *Journal of Ethnopharmacology* 102, (3), 408–411
11. Tangpong and Soisungwan (2010) *Toxicology Letters* 198 83–88
12. Trochon V, Blot E, Cymbalista F, Engelmann C, Tang RP, Thomaidis A, Vasse M, Soria J, Lu H, Soria C. (2000) Apigenin inhibits endothelialcell proliferation in G(2)/M phase whereas it stimulates smoothmuscle cells by inhibiting P21 and P27 expression. *Int J Cancer* . 1;85(5):6916
13. Usanawarong, S., and Thesiri, T. 2001. Effect of *Thunbergia Laurifolia* Linn. on Detoxication of Parathion in Rat. Department of Pharmacognosy and ToxicologyKhonkaen University. 13 p.
14. Usanawarong, S., Thesiri, T., Mahakunakorn, P., and Parasupattana, S. 2000. Effect of Thubergia Laurifolia Linn. on Detoxication of Paraquat. Department of Pharmacognosy and ToxicologyKhonkaen University. 11 – 17

ภาคผนวก

1. Reprints
2. บทความสำหรับการเผยแพร่

Sex differences in opisthorchiosis and the development of cholangiocarcinoma in Syrian hamster model

Pakkayanee Sudsarn · Nadchanan Wongchalee · Thidarut Boonmars ·
Porntip Laummaunwai · Yaovaluk Chamgramol · Chawalit Pairojkul ·
Amornrat Juasook · Sirintip Boonjaraspinyo

Received: 24 September 2013 / Accepted: 19 November 2013 / Published online: 7 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Worldwide, the highest incidence of cholangiocarcinoma (CCA) is found in northeast Thailand, the endemic area of *Opisthorchis viverrini* infection. Cumulated clinical data revealed that the majority of CCA patients are men. However, many other types of cancers are more commonly found in women. In this study, we investigated the sex differences in the development of CCA, induced by *O. viverrini* infection and *N*-nitrosodimethylamine administration, in Syrian hamsters. Histopathology, liver function tests, and fecal egg counts were analyzed. The results showed that there

are no sex differences in hamsters responses to *O. viverrini* infection and no prevalence of CCA development. Even though serum ALT level in *O. viverrini*-infected or CCA hamsters was significantly increased in female compared to male ($p < 0.05$) and uninfected control ($p < 0.05$), our results may imply that the higher prevalence of opisthorchiasis and CCA in men than in women in northeast Thailand may depend on behaviors of an individual exposed to risk factors rather than gender difference.

Introduction

Many reports have shown that men and women differ in their susceptibility to certain diseases, including cancers (Eliassen et al. 2006; Giannitrapani et al. 2006; Green et al. 2012). For example, females have a much greater risk of breast cancer, and men have a risk of prostate cancer (Eliassen et al. 2006; Green et al. 2012).

Opisthorchiasis, caused by *Opisthorchis viverrini* which is one of the risk factors for cholangiocarcinoma (CCA), is highly prevalent in northeast Thailand (Vatanasapt et al. 1990; Sriamporn et al. 2004; IARC 2011). Previous study has shown that the majority of opisthorchiasis and CCA cases are found in men (Poomphakwaen et al. 2009). This may be caused by different behaviors such as smoking, excessive drinking, and raw fish consumption. However, actual reasons for this sex differences in CCA remain obscure. Thus, the present study is intended to clarify the effect of sex differences on the pathology of opisthorchiosis and CCA development in an animal model. Previous studies using the hamster, *O. viverrini* model have used only male hamsters; here, we compare the results from male and female hamsters. We used

P. Sudsarn · N. Wongchalee · T. Boonmars (✉)

P. Laummaunwai · A. Juasook

Department of Parasitology, Faculty of Medicine,
Khon Kaen University, Khon Kaen 40002, Thailand
e-mail: boonmars@yahoo.com

P. Sudsarn · N. Wongchalee · T. Boonmars

Liver Fluke and Cholangiocarcinoma Research Center,
Faculty of Medicine, Khon Kaen University,
Khon Kaen 40002, Thailand

T. Boonmars · P. Laummaunwai

Research and Diagnostic Center for Emerging Infectious Diseases,
Khon Kaen University, Khon Kaen 40002, Thailand

Y. Chamgramol · C. Pairojkul

Department of Pathology, Faculty of Medicine,
Khon Kaen University, Khon Kaen 40002, Thailand

A. Juasook

Faculty of Veterinary Medicine, Mahsarakam University,
Mahsarakam 44150, Thailand

S. Boonjaraspinyo

Department of Community Medicine, Faculty of Medicine,
Khon Kaen University, Khon Kaen 40002, Thailand

Table 1 Experimental groups

Group ^a	Administered OV	Administered ND in drinking water	Serum sample taken at	Sacrificed at day 30 (n, sex)	Sacrificed at day 120 (n, sex)
1, OV ^b	50 mc at day 0	–	Day 30	5 ♂, 5 ♀	–
2, ND ^b	–	Day 0–30	Day 30	5 ♂, 5 ♀	–
3, OVND ^{bc}	50 mc at day 0	Day 0–30	Day 120	–	5 ♂, 5 ♀

Symbol ♂ indicates male and symbol ♀ indicates female

mc metacercariae

^a Five each of male and female hamsters per group

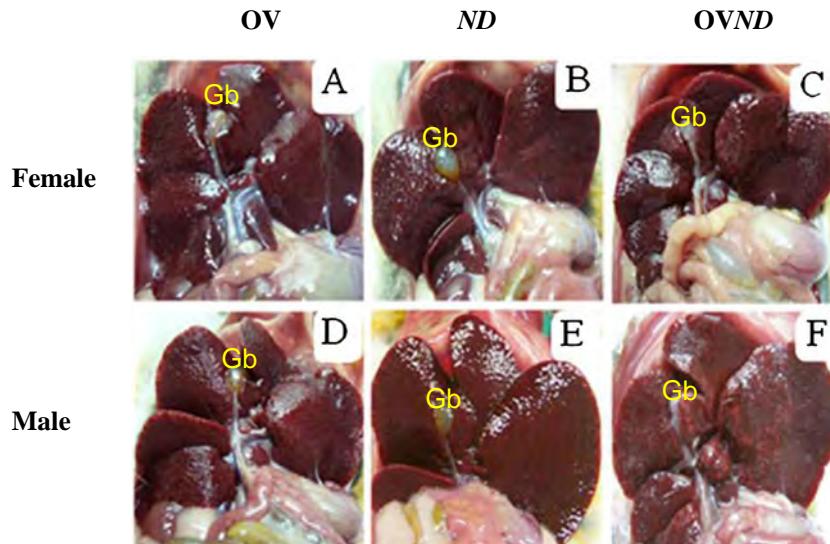
^b Groups 1 and 2 intended to show differences in inflammatory cell responses between male and female

^c Group 3 intended to show differences in CCA development between male and female

data obtained from histopathology, liver function tests, and fecal egg counts for analysis of sex difference.

Material and methods

Animals and rationale for the experimental design


Fifteen male and 15 female Syrian hamsters, 6 to 8 weeks old, from the Animal Unit, Faculty of Medicine, Khon Kaen University (Table 1), were divided equally into three groups with two purposes: (1) for inflammatory cell response of hamsters infected with *O. viverrini* (OV) (group 1) and hamsters administered *N*-nitrosodimethylamine (ND) (group 2) and (2) for CCA development of hamsters infected with *O. viverrini* and administered *N*-nitrosodimethylamine (OVND) (group 3). To induce hamster CCA development, *N*-nitrosodimethylamine was given daily in drinking water at day 0 to 30, and *O. viverrini* was given in a single dose at day 0. Five male and 5 female hamsters of each group were

sacrificed at day 30 or 120 postinfection; photographs were taken for comparison of the gross anatomy of the livers (Fig. 1). The experiment was conducted according to the guidelines of the Committee of Animal Ethics, Khon Kaen University (ethical clearance no. AEKKU 23/2554).

Parasite infection

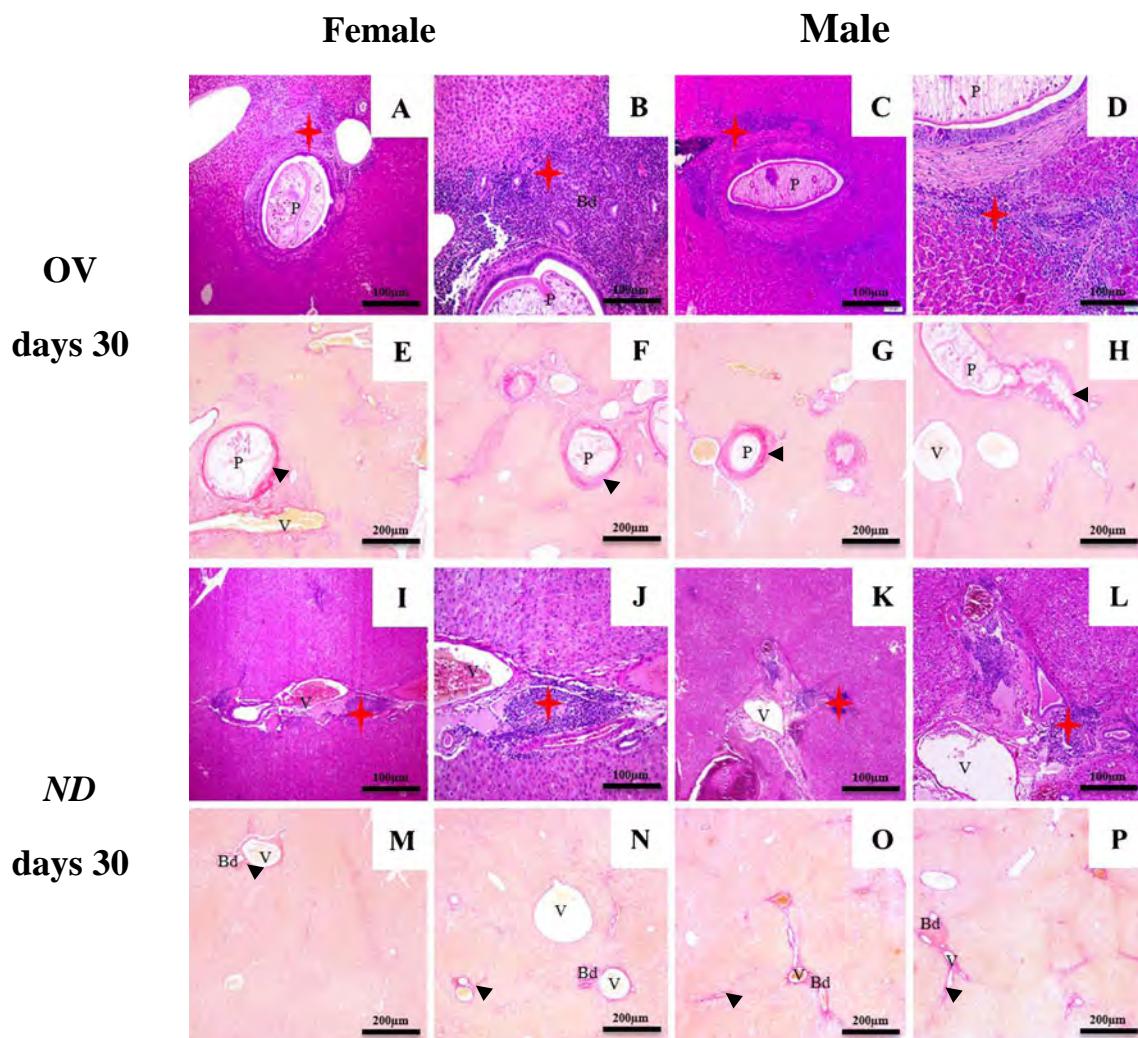
Cyprinoid fishes (such as *Henicorhynchus siamensis* and *Cirrhinus jullieni*) were bought from a local market in Khon Kaen province. The digestion process followed the method used in our previous studies (Wonkchalee et al. 2012). In brief, fishes were digested with pepsin–HCl at 37 °C for 1 h. After a complete digestion followed by filtration, *O. viverrini* metacercariae (a double-walled cyst, oval shape, oral, and ventral suckers were clearly seen, and excretory bladder appears as containing black brown granules; the average size of the encysted metacercaria is 201 µm × 167 µm) were collected under a stereomicroscope. Male and female hamsters were orally infected with 50 *O. viverrini* metacercariae each.

Fig. 1 Representative gross anatomy of livers of female (a–c) and male (d–f) hamsters infected with *O. viverrini* (OV) (a, d), hamsters administered with *N*-nitrosodimethylamine (ND) (b, e), and hamsters infected with *O. viverrini* and administered *N*-nitrosodimethylamine (OVND) (c, f). Gb gallbladder

Table 2 The average eggs per gram of feces from female and male hamsters infected with *O. viverrini* (OV) and infected with *O. viverrini* combined with *N*-nitrosodimethylamine hamster (OVND)

Groups	EPG (mean \pm SD)	
	Female	Male
OV at day 30	1,977.4 \pm 218.2	1,927.75 \pm 40.2
OVND at day 120	8,956.6 \pm 1,406.2	8,691.38 \pm 425.2

Time points (1 or 4 months) are indicated


N-nitrosodimethylamine preparation and administration

ND, purchased from Wako Pure Chemical Industries, Osaka, Japan, was used for inducing CCA development in

hamsters (Thamavit et al. 1978). *N*-nitrosodimethylamine was prepared in distilled water at a final concentration at 12.5 ppm for administration to the assigned hamster groups (daily for 30 days).

Fecal egg count

Two fecal pellets were collected from the rectum of each infected hamster (groups 1 and 3) after euthanasia. A formalin technique was employed for the quantitative *O. viverrini* egg count. In brief, fecal pellets were weighed, fixed, and broken up in 1 ml of 10 % formalin. Then, 0.2 ml of this solution with 10 μ l of 1 % iodine solution was sampled and smeared on a glass slide, and the number of *O. viverrini* eggs was counted under a microscope.

Fig. 2 Representative of histology of female and male hamsters' livers after infected with *O. viverrini* (OV) and administered with ND for 30 days. The liver sections were stained with hematoxylin and eosin (a–d, i–l) and Sirius red (e–h, m–p) in hamsters infected with *O. viverrini* (a–d, e–h)

and administered *N*-nitrosodimethylamine hamsters (ND) (i–l, m–p). *V* portal vein, *P* parasite, *Bd* bile duct. Red stars indicate inflammatory cell aggregation. Black head arrow indicates fibrosis

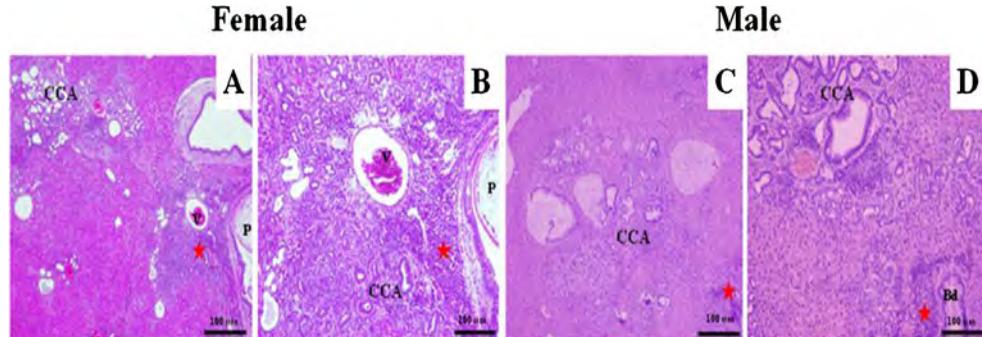
Table 3 Histopathological grading of female (F) and male (M) hamsters' livers after infected with *O. viverrini* (OV) and administered with *N*-nitrosodimethylamine (ND) for 30 days

Histopathology	Criteria	OV (F) (%)	OV (M) (%)	ND (F) (%)	ND (M) (%)
Inflammation	0 = none 1 = mild (hepatocyte, 1–4 small foci per 4× objective or 5–20 % per field) 2 = moderate (hepatocyte + portal area, 1–4 foci per 4× objective or 20–50 % per field) 3 = severe (hepatocyte + portal area >5 foci per 4× objective) or >50 % per field			40 60 40	50 60 50
Bile duct changes	0 = no proliferation 1 = mild proliferation (1–5 foci per 4× objective) 2 = moderate proliferation (6–10 foci per 4× objective) 3 = severe proliferation (>10 foci per 4× objective)		20 60 20	40 60 100	100
Granulomatous reaction	0 = absent 1 = present	100	80	100	100
Fibrosis	0 = no fibrosis 1 = portal fibrosis without fibrous septa 2 = portal fibrosis with short fibrous septa 3 = portal fibrosis with fibrous septa	20 80	40 60	40 60	50 50

Light microscopic observation

Liver sections stained with hematoxylin and eosin (H&E) were used for the histopathological study. In brief, liver tissue from each hamster was fixed with 10 % formalin, dehydrated with an ascending ethanol series, cleared in xylene, and then embedded in paraffin. Liver tissue sections were cut at 5 μ m thickness, deparaffinized and rehydrated, and then stained with H&E. Histological grading followed to the previous report (Boonjaraspinyo et al. 2010; Wonkchalee et al. 2012).

Sirius red staining for collagen


To compare the fibrosis between male and female hamsters, liver sections were first stained with hematoxylin for 8 min to show nuclei, and then, the slides were washed in running tap water for 10 min. Then, the slides were stained with a saturated aqueous solution of picric acid containing 0.1 % Sirius red (Sigma-Aldrich, St. Louis MO, USA) for 1 h, washed in two changes of acidified water (5 ml of glacial acetic acid in 1 L of

distilled water), dehydrated, cleared with xylene, and mounted. Collagen fibers in the connective tissues were stained red. The sections were observed and digitized under a light microscope (Olympus BX51; Tokyo, Japan) for grading fibrosis.

Measurement of serum liver enzymes

Hamster sera were obtained from groups of normal male and female hamsters, groups 1 and 2 at day 30 and group 3 at day 120 to determine liver damage through alanine aminotransferase (ALT) and bile duct proliferation or obstruction through alkaline phosphatase (ALP). Measurement of the ALT activity using Alanine Aminotransferase Activity Assay Kit (Cayman, Michigan, USA) is carried out by monitoring the rate of NADH oxidation in a coupled reaction system employing lactate dehydrogenase (LDH). The oxidation of NADH to NAD⁺ is accompanied by a decrease in absorbance at 340 nm. Under circumstances in which the ALT activity is rate limiting, the rate decrease is directly proportional to the

Fig. 3 Representative histology of livers at day 120 of female and male hamsters infected with *O. viverrini* and administered with *N*-nitrosodimethylamine (OVND) (a–d). V portal vein, P parasite, Bd bile duct, CCA cholangiocarcinoma area. Red stars indicate inflammatory cell aggregation

Table 4 Histopathological grading of livers at day 120 of female (F) and male (M) hamsters infected with *O. viverrini* and administered *N*-nitrosodimethylamine (OVND)

Histopathology	Criteria	OVND (F) (%)	OVND (M) (%)
Inflammation	0 = none 1 = mild (hepatocyte, 1–4 small foci per 4× objective or 5–20 % per field) 2 = moderate (hepatocyte + portal area, 1–4 foci per 4× objective or 20–50 % per field) 3 = severe (hepatocyte + portal area >5 foci per 4× objective) or >50 % per field	80 20	80 20
Goblet cell proliferation	0 = absent 1 = mild (+) 2 = moderate (++) 3 = severe (+++)	20 60 20	80 20
Bile duct change and cholangiocarcinoma	0 = absent proliferation 1 = mild proliferation without cholangiofibrosis 2 = moderate proliferation with cholangiofibrosis 3 = CCA area 5–20 % per 4× objective 5 = CCA area 30–50 % per 4× objective 6 = CCA area >50 % per 4× objective	40 20 20 20	60 20 20
Granulomatous reaction	0 = absent 1 = present	100	100

ALT activity in the sample. In the measurement of the ALP activity using Alkaline Phosphatase Assay Kit (Abcam, Cambridge MA, USA), ALP cleaves the phosphate group of the non-fluorescent 4-methylumbelliferyl phosphate disodium salt (MUP) substrate, resulting in an intense fluorescent signal.

Statistical analysis

All data were analyzed by SPSS version 19.0 using the correlation, one-way ANOVA, and generated mean and standard deviation. Grading of gross and histopathology was followed by previous reports (Boonjaraspinyo et al. 2010; Wonkchalee et al. 2012).

Results

Fecal egg count

Table 2 shows that the eggs per gram of feces (EPG) of infected female hamsters were similar to those observed in males in the same experimental group with no statistically significant difference. In group 3 at day 120, the numbers of eggs per gram of feces were four to five times higher when compared with the eggs per gram of feces in group 1 at day 30.

Gross pathology

The abnormal liver surfaces of group 2 at day 30 were similar to those of the *O. viverrini*-infected group (group 1) with

some dilation of the common bile duct and gallbladder. In group 3 at day 120, the common bile duct and gallbladder were similar in being opaque, as shown in Fig. 1.

Histopathological changes

Figure 2 shows the results of the *O. viverrini*-infected or *N*-nitrosodimethylamine-administered group (groups 1 and 2). Inflammatory cell infiltration surrounding the hepatic bile ducts was observed at day 30 in group 1 (Fig. 2(a–d)). Inflammatory cells were more often observed in female hamsters (Fig. 2(a, b)) than in males (Fig. 2(c, d)), especially at the common bile duct and hilar region. Fibrosis in infected

Table 5 The average (mean \pm SD) of serum alanine transaminase (ALT) and serum alkaline phosphatase (ALP) level in livers of female and male hamsters 1 and 4 months after the start of experiment

Groups	ALT (U/l)		ALP (U/l)	
	Female	Male	Female	Male
<i>N</i> ^a	108.8 \pm 39.7	104.4 \pm 19.4	169.8 \pm 23.0	93.2 \pm 8.43
OV ^b at day 30	1,056 \pm 83.4*	587.0 \pm 68.2	139.4 \pm 4.4	105.2 \pm 7.8
ND ^c at day 30	1,238.0 \pm 138.5*	899 \pm 17.3	99.2 \pm 3.6	72.7 \pm 30.4
OVND ^d at day 120	315.8 \pm 32.2*	213.6 \pm 46.8	91.4 \pm 6.2	77.3 \pm 8.7

* p <0.05

^aNormal hamster

^bHamsters infected with *O. viverrini*

^cHamsters administered *N*-nitrosodimethylamine

^dHamsters infected with *O. viverrini* and administered *N*-nitrosodimethylamine

female hamsters (Fig. 2(e, f)) was higher than that in males (Fig. 2(g, h)). At day 30, aggregations of inflammatory cells around the hepatic bile ducts were observed in both females and males of group 2 (Fig. 2(i–l)); in female hamsters (Fig. 2(i, j)), inflammatory cell infiltration was more pronounced than in males (Fig. 2(k, l)), especially at the common bile duct and hilar region. Fibrosis accumulation in infected female hamsters (Fig. 2(m, n)) was similar to that in male (Fig. 2(o, p)). Histopathological grading of female and male hamsters' livers 1 month after infection with *O. viverrini* and administration of ND are shown in Table 3.

As shown in Fig. 3, the group 3 of hamsters showed inflammatory cell infiltration and an increase of bile duct number and bile duct cancer at day 120 (Fig. 3(a–d)). A large area of CCA was more evident in female hamsters (Fig. 3(a, b)) than in males (Fig. 3(c, d)), especially near the hepatic bile ducts and subcapsular region. Histopathological grading of livers at day 120 of female and male hamsters is shown in Table 4.

Liver function tests

ALT and ALP levels in male and female hamsters in groups 1, 2, and 3 as shown in Table 5 were higher than those in normal uninfected male or female hamsters. Both serum ALT and ALP levels in all experimentals were always higher in females than in males. ALT serum levels were invariably significantly higher in females than in males ($p < 0.05$). In the case of ALP serum levels, these were usually higher in female hamsters, but not statistically significantly.

Discussion

Male hamsters were commonly used as an animal model in previous studies on opisthorchiosis and CCA (Thamavit et al. 1978). Our present study is the first to show the different pathologies between male and female hamsters. We found that females tended to exhibit a greater inflammatory infiltration in OV-infected group and earlier CCA development than males as evidenced by histopathological results and liver function test levels, ALT. Sex had no effect on parasite development as evidenced by EPG.

Estrogen in female does cause elevated liver damage leading to increasing liver enzymes (Lee et al. 2012; Cho et al. 2013); therefore, our present data showed that female in normal, groups 1, 2, and 3 had a higher level of ALT and ALP than those of observed in male. This is consistent with several reports showing that females are more susceptible to liver injury, e.g., from drugs and many xenobiotics (Kono et al. 2000; Miller 2001; Lorbek et al. 2013). In the case of alcoholics, females develop the symptoms of alcoholic liver injury more rapidly and severely than males (Gallucci et al. 2004;

Muller 2006; Eagon 2010). Females also have a higher risk of the incidence of diabetes as well as anemia and hypertension which are common side effects of diabetic disease (Kumar 1996). In a recent report, diabetes was found to increase the risk of the occurrence of gallbladder cancer and extrahepatic cholangiocarcinoma (Ren et al. 2011). In cases of bile duct ligation, females had slightly more advanced states of fibrosis and inflammation than males (Zivna et al. 2001). This is in agreement with our present results, which showed early and severe pathology of the liver after *O. viverrini* infection as well as enhanced CCA development.

In contrast, several diseases are more prevalent in males; this may depend not only on physiology but also on behaviors that make males more susceptible to infections, diseases, or cancer (Roberts et al. 2012; Walter et al. 2013). Several reports have shown a greater intensity of parasitic infection in males (Daniels and Belosevic 1995; Poulin 1996; Travi et al. 2002; Klein 2004; Liu et al. 2006; Klein et al. 2008; Idris et al. 2012; Morton and Garcia-del-Pino 2013). In addition to physiological factors, severity of disease might be associated with many other determinants such as lifestyle and environmental factors. The higher incidence of opisthorchiasis and CCA in men is likely due to behavioral differences, such as higher consumption of raw fish by men, often in a social setting that involves high intake of alcohol.

Acknowledgments This work was supported by the Thailand Research Fund through grant number RMU5480002, Khon Kaen University (KKU550405), and capital development capability in postgraduate research education, Faculty of Medicine, Khon Kaen University, and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the health cluster (SHeP-GMS). We thank the Department of Parasitology, Liver Fluke and Cholangiocarcinoma Research Center, the Animal Experimental Unit, Faculty of Medicine (I56203), Khon Kaen University, for their support.

References

- Boonjarsapinyo S, Boonmars T, Aromdee C, Kaewsamut B (2010) Effect of fingerroot on reducing inflammatory cells in hamster infected with *Opisthorchis viverrini* and *N*-nitrosodimethylamine administration. Parasitol Res 106(6):1485–1489
- Cho J, Kim L, Li Z, Rose NR, Talor MV, Njoku DB (2013) Sex bias in experimental immune-mediated, drug-induced liver injury in BALB/c mice: suggested roles for Tregs, estrogen, and IL-6. PLoS One 8(4):e61186
- Daniels CW, Belosevic M (1995) Disaccharidase activity in male and female C57BL/6 mice infected with *Giardia muris*. Parasitol Res 81(2):143–147
- Eagon PK (2010) Alcoholic liver injury: influence of gender and hormones. World J Gastroenterol 16(11):1377–1384
- Eliassen AH, Missmer SA, Tworoger SS, Spiegelman D, Barbieri RL, Dowsett M, Hankinson SE (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98(19):1406–1415

Gallucci RM, Sloan DK, O'Dell SJ, Reinke LA (2004) Differential expression of liver interleukin-6 receptor-alpha in female versus male ethanol-consuming rats. *Alcohol Clin Exp Res* 28(3):365–373

Gianmtrapani L, Soresi M, La Spada E, Cervello M, D'Alessandro N, Montalto G (2006) Sex hormones and risk of liver tumor. *Ann N Y Acad Sci* 1089:228–236

Green SM, Mostaghel EA, Nelson PS (2012) Androgen action and metabolism in prostate cancer. *Mol Cell Endocrinol* 360:3–13

IARC (2011) *Opisthorchis viverrini* and *Clonorchis sinensis*. IARC Monogr Eval Carcinog Risks Hum 100(7):347–376

Idris A, Moors E, Sohnrey B, Gault M (2012) Gastrointestinal nematode infections in German sheep. *Parasitol Res* 110(4):1453–1459

Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infection. *Parasite Immunol* 26(6–7):247–264

Klein PW, Easterbrook JD, Lalime EN, Klein SL (2008) Estrogen and progesterone affect responses to malaria infection in female C57BL/6 mice. *Gend Med* 5(4):423–433

Kono H, Wheeler MD, Rusyn I, Lin M, Seabra V, Rivera CA, Bradford BU, Forman DT, Thurman RG (2000) Gender differences in early alcohol-induced liver injury: role of CD14, NF- κ B, and TNF-alpha. *Am J Physiol Gastrointest Liver Physiol* 278:652–661

Kumar KM (1996) Gender difference in diabetes mellitus. *Int J Diab Dev Countries* 16:103–104

Lee EG, Mickle-Kawar BM, Reinke LA, Gallucci RM (2012) Estrogen suppresses hepatic IkappaB expression during short-term alcohol exposure. *Inflamm Res* 61(10):1053–1061

Liu L, Wang L, Zhao Y, Wang Y, Wang Z, Qiao Z (2006) Testosterone attenuates p38 MAPK pathway during *Leishmania donovani* infection of macrophages. *Parasitol Res* 99(2):189–193

Lorbek G, Perse M, Horvat S, Bjorkhem I, Rozman D (2013) Sex differences in the hepatic cholesterol sensing mechanisms in mice. *Molecules* 18(9):11067–11085

Miller MA (2001) Gender-based differences in the toxicity of pharmaceuticals—the Food and Drug Administration's perspective. *Int J Toxicol* 20:149–152

Morton A, Garcia-del-Pino F (2013) Sex-related differences in the susceptibility of *Periplaneta americana* and *Capnodis tenebrionis* to the entomopathogenic nematode *Steinernema carpocapsae*. *J Invertebr Pathol* 112(3):203–207

Muller C (2006) Liver, alcohol and gender. *Wien Med Wochenschr* 20:523–526

Poomphakwaen K, Promthet S, Kamsa-Ard S, Vatanasapt P, Chaveepojnkamjorn W, Klaewkla J, Sujirarat D, Pichainarong N (2009) Risk factors for cholangiocarcinoma in Khon Kaen, Thailand: a nested case-control study. *Asian Pac J Cancer Prev* 10(2):251–258

Poulin R (1996) Helminth growth in vertebrate hosts: does host sex matter? *Int J Parasitol* 26(11):1311–1315

Ren HB, Yu T, Liu C, Li YQ (2011) Diabetes mellitus and increased risk of biliary tract cancer: systematic review and meta-analysis. *Cancer Causes Control* 22:837–847

Roberts BJ, Dragon JA, Moussawi M, Huber SA (2012) Sex-specific signaling through Toll-like receptors 2 and 4 contributes to survival outcome of Coxsackievirus B3 infection in C57Bl/6 mice. *Biol Sex Differ* 3(1):25

Sriamporn S, Pisani P, Pipitgool V, Suwanrungruang K, Kamsa-ard S (2004) Prevalence of *Opisthorchis viverrini* infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. *Trop Med Int Health* 9:588–594

Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakorn S (1978) Effects of dimethylnitrosamine on induction of cholangiocarcinoma in *Opisthorchis viverrini*-infected Syrian golden hamsters. *Cancer Res* 38:4634–4639

Travi BL, Osorio Y, Melby PC, Chandrasekar B, Arteaga L, Saravia NG (2002) Gender is a major determinant of the clinical evolution and immune response in hamsters infected with *Leishmania* spp. *Infect Immun* 70(5):2288–2296

Vatanasapt V, Uttaravichien T, Mairiang EO, Pairojkul C, Chartbanchachai W (1990) Cholangiocarcinoma in north-east Thailand. *Lancet* 335:116–117

Walter RB, Brasky TM, Buckley SA, Potter JD, White E (2013) Height as an explanatory factor for sex differences in human cancer. *J Natl Cancer Inst* 105(12):860–868

Wonkchalee O, Boonmars T, Kaewkes S, Chamgramol Y, Aromdee C, Wu Z, Juasook A, Sudsarn P, Boonjaraspinyo S, Pairojkul C (2012) Comparative studies on animal models for *Opisthorchis viverrini* infection: host interaction through susceptibility and pathology. *Parasitol Res* 110(3):1213–1223

Zivna H, Zivny P, Palicka V, Nozicka J (2001) The differences in selected biochemical markers and histological findings after bile duct ligation in male and female rats. *Adv Clin Path* 5(4):147–153

Anti-inflammatory, antioxidant and hepatoprotective effects of Thunbergia laurifolia Linn. on experimental opisthorchiasis

Orasa Wonkchalee, Thidarut Boonmars, Chantana Aromdee, Porntip Laummaunwai, Watcharee Khunkitti, Kulthida Vaeteewoottacharn, et al.

Parasitology Research

Founded as Zeitschrift für
Parasitenkunde

ISSN 0932-0113
Volume 111
Number 1

Parasitol Res (2012) 111:353–359
DOI 10.1007/s00436-012-2846-5

Volume 108 • Number 5 • May 2011

Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

Anti-inflammatory, antioxidant and hepatoprotective effects of *Thunbergia laurifolia* Linn. on experimental opisthorchiasis

Orasa Wonkchalee · Thidarut Boonmars ·
 Chantana Aromdee · Porntip Laummaunwai ·
 Watcharee Khunkitti · Kulthida Vaeteewoottacharn ·
 Pranee Sriraj · Ratchadawan Aukkanimart ·
 Watchalin Loilome · Yaovaluk Chamgramol ·
 Chawalit Pairojkul · Zhiliang Wu · Amornrat Juasook ·
 Pakkayanee Sudsarn

Received: 19 January 2012 / Accepted: 24 January 2012 / Published online: 11 February 2012
 © Springer-Verlag 2012

Abstract *Thunbergia laurifolia* Linn (Rang Chuet) possesses antioxidant and anti-inflammatory properties as well as anticancer activities. The aim of the present study was to evaluate the efficacy of *T. laurifolia* in reducing inflammation

O. Wonkchalee · T. Boonmars (✉) · P. Laummaunwai · P. Sriraj ·
 R. Aukkanimart · A. Juasook · P. Sudsarn
 Department of Parasitology, Faculty of Medicine,
 Khon Kaen University,
 Khon Kaen 40002, Thailand
 e-mail: bthida@kku.ac.th

O. Wonkchalee · T. Boonmars · K. Vaeteewoottacharn · P. Sriraj ·
 R. Aukkanimart · A. Juasook · P. Sudsarn
 Liver Fluke and Cholangiocarcinoma Research Center,
 Faculty of Medicine, Khon Kaen University,
 Khon Kaen 40002, Thailand

C. Aromdee · W. Khunkitti
 Faculty of Pharmacology, Khon Kaen University,
 Khon Kaen 40002, Thailand

K. Vaeteewoottacharn · W. Loilome
 Department of Biochemistry, Faculty of Medicine,
 Khon Kaen University,
 Khon Kaen 40002, Thailand

Z. Wu
 Department of Parasitology, Gifu University Medicine,
 Graduate School,
 Gifu 5011194, Japan

Y. Chamgramol · C. Pairojkul
 Department of Pathology, Faculty of Medicine,
 Khon Kaen University,
 Khon Kaen 40002, Thailand

from pathological changes in Syrian hamsters infected with the human liver fluke *Opisthorchis viverrini*. Hamster groups were also administered *N*-nitrosodimethylamine (NDMA) and treated with *T. laurifolia*. Light microscopic observation of histopathological changes, liver function tests for alanine transaminase (ALT) and alkaline phosphatase (ALP) and kidney function tests for blood urea nitrogen (BUN) and creatinine were performed. Antioxidant effects of both fresh and dried Rang Chuet solutions were observed. Analysis of the histopathological changes showed anti-inflammatory properties, both in the case of *O. viverrini* infection or with NDMA administration, by reducing the aggregation of inflammatory cells surrounding the hepatic bile ducts as indicated by normal serum ALT, ALP, BUN and creatinine levels in treated Syrian hamsters. The present study found that fresh and dried Rang Chuet solutions clearly reduced the inflammatory cells in both *O. viverrini*-infected and NDMA-administered groups and was correlated with the total antioxidant capacity. These findings suggest that *T. laurifolia* possesses antioxidant and anti-inflammatory properties and that its application may be useful for prevention of the inflammatory process, one of the risk factors of *O. viverrini*-associated cholangiocarcinoma (CCA).

Introduction

Thunbergia laurifolia Linn, commonly known as laurel clock vine or blue trumpet vine, is native to India (Starr et al. 1999), and in the Indomalaya ecozone, the species occurs from Indo-china to Malaysia (Schonengerger 1999). It is locally known

as “kar tuau” in Malaysia and “Rang Chuet” in Thailand (Chan and Lim 2006). In Malaysia, juice from crushed leaves of *T. laurifolia* are taken for menorrhagia, placed into the ear for deafness and applied as a poultice for cuts and boils (Burkill 1966). In Thailand, leaves are used as an antipyretic and for their detoxifying effects, e.g., as an antidote for poisons (Ussanawarong et al. 2000; Ussanawarong and Thesiri 2001; Kanchanapoom et al. 2002). Several Thai herbal companies have started producing and exporting Rang Chuet tea (Chan and Lim 2006). The tea has been claimed to counteract the harmful effects of drugs, alcohol and cigarettes.

Opisthorchis viverrini, a human liver fluke, is the primary risk factor for cholangiocarcinoma (CCA), a rare but highly fatal disease most prevalent in Southeast Asia including Thailand (IARC 1994). Humans are infected by ingestion of raw cyprinid fish, which are contaminated by the infective stage known as metacercariae. After *O. viverrini* metacercariae ingestion, the excysted juveniles migrate to the bile canal at the duodenum and grow to adulthood at the common bile duct or gallbladder, an area which is suitable for their survival. At the early stages of infection, liver changes are due to the inflammatory response (eosinophils, monocytes and neutrophils) around the juvenile flukes in the intrahepatic bile ducts. The severity of inflammation gradually increases and reaches a maximum at about 3 to 4 weeks post-infection, as evidenced by the accumulation of mononuclear cells and eosinophils which infiltrate the intrahepatic bile ducts. The virulence of the disease also depends on the number of parasites and the duration of infection, which involves the host's immune response such as cytokine expression and free radicals (Pinlaor et al. 2004). Chronic infection with *O. viverrini* for many years is associated with hepatobiliary diseases (Sripa 2003) including the development of hepatobiliary cancer and CCA. Reducing the behavior of eating raw fish has proven to be difficult, so the infection rate of this parasite remains high. Therefore, reducing the pathogenesis from an *O. viverrini* infection may be one of the preferred options to reduce the risk of CCA development.

Our previous report (Boonjaraspinyo et al. 2009) showed that a traditional medicine, a mixture of turmeric and fingerroot, reduced the inflammatory cells surrounding the hepatic bile duct but could not be used for prevention of cholangiocarcinogenesis. Thus, the present study was performed to evaluate the efficacy of another Thai medicinal plant, *T. laurifolia* or Rang Chuet in Thai. *T. laurifolia* is widely used for detoxification from lead poisoning or other toxins (Ussanawarong et al. 2000; Ussanawarong and Thesiri 2001; Chattaviriya et al. 2010; Tangpong and Satarug 2010; Palipoch et al. 2011). Recently, several papers have reported that apigenin, one of the flavonoid compounds in Rang Chuet (Oonsivilai et al. 2007), has antioxidant (Chan and Lim 2006; Oonsivilai et al. 2008) and anticancer properties (Ujiki et al. 2006; Ruela-de-Sousa et al. 2010).

The anti-inflammatory and antioxidant effects of Rang Chuet were studied in a Syrian hamster opisthorchiasis model

and in hamsters with *N*-nitrosodimethylamine administration (NDMA). Histopathological changes were observed. Liver function tests for alanine transaminase (ALT) and alkaline phosphatase (ALP) and kidney function tests for blood urea nitrogen (BUN) and creatinine were performed. Total antioxidant capacity was measured by FRAP assay.

Materials and methods

Parasite preparation

Parasites were prepared following the method in a previous report (Wonkchalee et al. 2011a). In brief, *O. viverrini* metacercariae were obtained from naturally infected cyprinid fish in an endemic area of Khon Kaen, northeast Thailand. Fresh fish were digested in 1% pepsin/HCl and incubated at 37°C for 1 h and then filtered and precipitated with normal saline in a sedimentation jar. Afterwards the metacercariae—oval-shaped, with large, black excretory bladders—were identified under a dissecting microscope.

Rang Chuet preparation

Rang Chuet was acquired from a farm in Khon Kaen province, Thailand. Fresh and dried leaves were used; fresh leaves were minced in distilled water and dried leaves were ground into a powder and then kept until used. Rang Chuet powder was diluted with distilled water, then boiled for 30 min and 0.5 ml (or 100 mg/kg/day) of the solution was used for oral treatment of the assigned groups.

FRAP assay

The ferric-reducing antioxidant power (FRAP) of extracts was determined following the previous method of Chan and Lim (2006), with modifications. Samples had to be diluted because precipitation occurred upon color development. Dilutions of extracts (1 ml) were added to 2.5 ml phosphate buffer (0.2 M, pH 6.6) and 2.5 ml of potassium ferricyanide (1% w/v). Each mixture was incubated at 50°C for 20 min. A total of 2.5 ml trichloroacetic acid solution (10% w/v) was added to the mixture to stop the reaction. The mixture was then separated into aliquots of 2.5 ml and diluted with 2.5 ml water. A total of 500 µl ferric chloride solution (0.1% w/v) was added, and the resulting solution was allowed to stand for 30 min until the color was fully developed. Absorbance measured at 700 nm in triplicate was used to normalized with the Fe²⁺ standard curve. Results of the FRAP assay were expressed as millimoles per Fe²⁺ per gram.

Infection with *O. viverrini*

Fifteen Syrian hamsters were each administered 50 *O. viverrini* metacercariae by oral intragastric intubation, as in a

previous protocol (Wonkchalee et al. 2011b) and then fed with the assigned herb.

Animal groups

Thirty Syrian hamsters were divided into six groups: 1) infected with *O. viverrini* alone (OV), 2) infected with *O. viverrini* and administered with fresh Rang Chuet solutions (OVFRC), 3) infected with *O. viverrini* and administered with dried Rang Chuet solutions (OVDRC), 4) administered with NDMA alone (NDMA), 5) administered with NDMA and fresh Rang Chuet solutions (NDMAFRC) and 6) administered with NDMA and dried Rang Chuet solutions (NDMADRC). Hamsters were sacrificed on day 30; whole liver tissues were collected for observation of histopathological changes, and sera were tested for liver and kidney function. The protocol was approved by the Animal Ethics Committee of the Faculty of Medicine, Khon Kaen University, Thailand (Ethical Clearance No. AEKKU23/2554).

Light microscopic observation

Hamster livers were fixed in 10% buffered formalin. After fixation, liver tissue was soaked with phosphate-buffered saline and then dehydrated through a series of various concentrations of ethyl alcohol. The tissue was then embedded

in paraffin wax. Sections of 5 μm thickness were cut using a microtome and then stained with hematoxylin–eosin and observed under a light microscope, as in previous studies (Boonmars et al. 2009; Boonjaraspinyo et al. 2011). Photographs of each slide were taken at 10 \times and 40 \times magnification. The histological feature of liver biopsy and grading criteria levels are shown in Table 1.

Biochemical estimation

Measurement of serum liver enzymes and kidney function

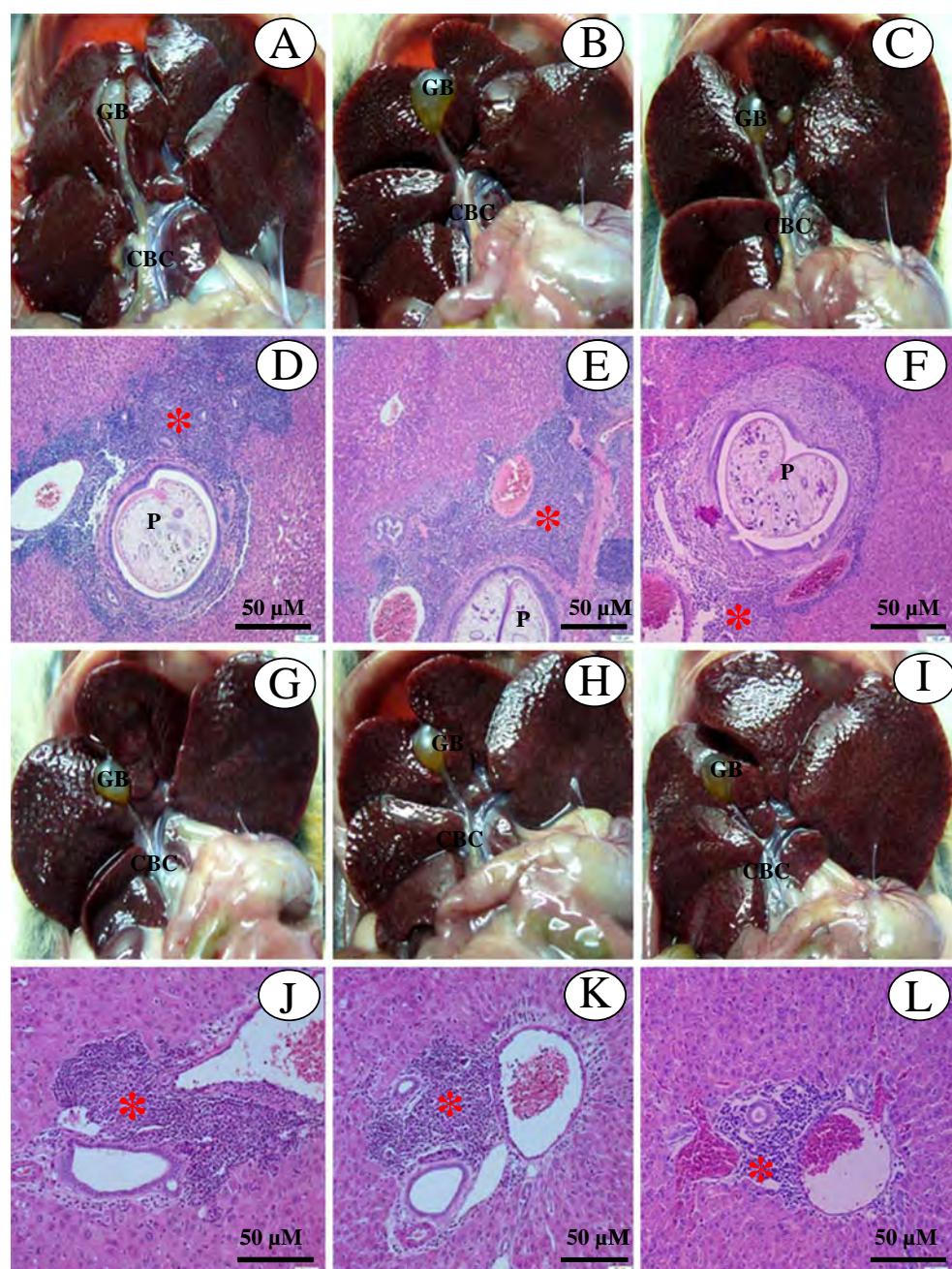
Syrian hamster sera were obtained to determine liver and kidney damage; ALT, ALP, BUN and creatinine analysis was performed at the Chemistry Room, Community Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University.

Statistical analysis

The data on histopathological changes and serum levels of ALT, ALP, BUN and creatinine were presented as means \pm SD. Statistics were analyzed using one-way ANOVA (SPSS version 13.0, USA). Values were considered statistically significant when $p < 0.05$.

Table 1 Histological feature of liver biopsy and grading criteria levels in the group of OV infection and administration NDMA with or without fresh Rang Chuet solutions (FRC) and with or without dried Rang Chuet solutions (DRC) by microscopic observation

Histopathology	Criteria	OV	OVFRC	OVDRC	NDMA	NDMAFRC	NDMADRC
Goblet cell proliferation	0	0	0	0	0	0	0
	1	0	0	0	0	0	0
	2	0	0	0	0	0	0
	3	0	0	0	0	0	0
Portal inflammation	0	0	0	0	0	0	0
	1	0	25% (1)	40% (2)	33.4% (2)	50% (2)	60% (3)
	2	50% (3)	25% (1)	40% (2)	66.6% (4)	50% (2)	40% (2)
	3	50% (3)	50% (2)	20% (1)	0	0	0
Focal inflammation	0	0	0	0	0	0	0
	1	0	0	0	33.4% (2)	50% (2)	60% (3)
	2	33.4% (2)	50% (2)	60% (3)	66.6% (4)	50% (2)	40% (2)
	3	66.6% (4)	50% (2)	40% (2)	0	0	0
Hepatic bile duct proliferation	0	0	0	0	100% (6)	100% (4)	100% (5)
	1	33.4% (2)	25% (1)	50% (2)	0	0	0
	2	66.4% (4)	75% (3)	50% (2)	0	0	0
	3	0	0	0	0	0	0


Goblet cell proliferation: [0=absent, 1=single or discrete group, 2=two or more group, 3=diffuse], portal inflammation: [0=minimal/no portal inflammation, 1=mild (sparking of inflammatory cells <1/3 of portal tract), 2=moderate (increase in inflammatory cells 1/3–2/3 of portal), 3=severe (dense packing >2/3 of portal tract)], focal inflammation: [0=none, 1=one focus or less per 10 \times objective, 2=two to four foci per 10 \times objective, 3=four to ten foci per 10 \times objective, 4=more than ten foci per 10 \times objective], hepatic bile duct proliferation: [0=absent, 1=focal, 2=scattering, 3=diffuse]

Results

Total antioxidant capacity

The effect of the temperature of diluents on total antioxidant capacity was evaluated. Fresh and dried Rang Chuet solutions using room temperature water resulted in 10.36 and 95.12 mmol Fe²⁺/g sample, respectively, while fresh and dried Rang Chuet solutions using boiling water showed 15.72 and 156.29 mmol Fe²⁺/g sample, respectively. Therefore, boiled dried Rang Chuet solutions were used to treat animal models.

Fig. 1 Gross and histopathological changes in the group of *O. viverrini* infection (OV; **a**, **d**), *O. viverrini* infection with fresh Rang Chuet solutions (OVFRC; **b**, **e**), *O. viverrini* infection with dried Rang Chuet solutions (OVDRC; **c**, **f**) and the group of administration NDMA (NDMA; **g**, **j**), administration NDMA with fresh Rang Chuet solutions (NDMAFRC; **h**, **k**), administration NDMA with dried Rang Chuet solutions (OVDRC; **i**, **l**). *GB* gall bladder, *CBC* common bile duct, *P* parasite. Asterisk indicates inflammation. Magnification $\times 10$

Inhibitory effects of Rang Chuet on inflammation

Observation of the gross pathology of the livers revealed few differences between groups with *O. viverrini* infection (OV) and those treated with Rang Chuet (OVFRC and OVDRC). Liver surfaces were smooth and shiny, with slightly opaque common bile ducts and straw-colored bile fluid. However, a reduction in thickening of the wall of the common bile duct was evident in both OVFRC and OVDRC groups (Fig. 1b, c).

Analysis of histopathological changes focused on the aggregation of inflammatory cells surrounding the hepatic

bile ducts and liver tissue, and hepatic bile duct proliferation. Histopathological changes in the *O. viverrini*-infected groups (Fig. 1a–f) were similar to those observed in the NDMA groups (Fig. 1g–l). Aggregation of inflammatory cells surrounding the hepatic bile ducts was observed both in *O. viverrini*-infected groups (Fig. 1a, d) and in those receiving NDMA administration (Fig. 1g, j). A reduction of inflammatory cells surrounding the intrahepatic bile ducts was observed in the OVFRC, OVDRC, NDMAFRC and NDMADRC groups (Fig. 1e, f, k, l). The degree of inflammatory aggregation is shown in Table 1.

Effects of Rang Chuet on liver enzyme and kidney function

Table 2 shows the activities of serum ALT, ALP, BUN and creatinine, which correlate with histopathological changes (Fig. 1). The liver and kidney serum markers (ALT, ALP, BUN and creatinine) in the Rang Chuet group remained within normal levels. Serum ALT levels increased about 3- to 10-fold after Syrian hamsters were administered with NDMA or infected with *O. viverrini*. There was a significant decrease in serum ALT in the groups of OVFRC ($p=0.012$), OVDRC ($p=0.001$) and NDMAFRC ($p=0.000$) at 1 month. Serum BUN, ALP and creatinine levels in the OV, OVFRC, OVDRC, NDMA, NDMAFRC and NDMADRC groups remained within normal levels.

Discussion

The present study clearly shows that Rang Chuet has anti-inflammatory and antioxidant properties which improve liver function in hamsters with liver fluke infection or after administration of NDMA. Pathological changes, as evidenced by a reduction of the inflammatory cells surrounding the hepatic bile ducts, were correlated with the results of the liver function tests (especially ALT) showing

decreased liver cell damage. Higher antioxidant activity, as shown by FRAP analysis, was due to the reduction of inflammatory cells surrounding the hepatic bile duct and to the reduction of ALT levels.

Examination of pathological changes in the livers revealed the anti-inflammatory property of Rang Chuet in Syrian hamsters with inflammatory cells induced by *O. viverrini* infection or NDMA administration. This was in agreement with a previous report in which Rang Chuet, administered at 5 g/kg to mice with induced paw edema, demonstrated anti-inflammatory activity at 3 h ($p>0.01$) and 6 h ($p>0.001$) (Pongphasuk et al. 2005). Histopathological results, supported by liver function tests, showed that Rang Chuet has no toxic side effects; this was in line with previous reports where Rang Chuet demonstrated no toxic effects in a mouse model at 8 g/kg/day for 30 days (Pongphasuk et al. 2005) and in a rat model at up to 2 g/kg/day for 6 months (Chivapat et al. 2009). The administration of NDMA was directly toxic to liver tissue and induced the infiltration of inflammatory cells surrounding the biliary tree and hepatic tissue by day 30, similar to the findings of Boonmars et al. (2009). Moreover, NDMA administration in rats induced chronic inflammation and led to liver tumors (Peto et al. 1991), bile duct proliferation and liver fibrosis (George et al. 2001). The anti-inflammatory property of Rang Chuet was clearly demonstrated by the reduction of inflammatory cells in hepatic tissue, leading to decreased serum ALT (Table 1) in all groups treated with a Rang Chuet solution. This result agrees with a previous study in which the extract compounds from Rang Chuet showed anti-inflammatory effects as well as antioxidant effects as determined by FRAP assay (Oonsivilai et al. 2007). In addition, phenolic profiling of Rang Chuet water extract revealed the presence of apigenin and apigenin glucosides as well as phenolic acids such as caffeic acid, gallic acid and protocatechuic acid (Oonsivilai et al. 2007); these compounds are involved in its anti-inflammatory and anticancer properties. About eight steroid

Table 2 Blood chemistry test serum levels of alanine transaminase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine (Cr), levels in the group of *O. viverrini* infection alone (OV), *O. viverrini* infection with fresh Rang Chuet solutions (OVFRC), *O.*

viverrini infection with dried Rang Chuet solutions (OVDRC) and administration NDMA alone (NDMA), administration NDMA with fresh Rang Chuet solutions (NDMAFRC), administration NDMA with dried Rang Chuet solutions (NDMADRC) compared normal control

Group	BUN (mg/dl) Mean±SEM	Creatinine (g/dl) Mean±SEM	ALT (U/l) Mean±SEM	ALP (U/l) Mean±SEM
Normal	22.0±4 ^a	0.3±0.1 ^a	90±15 ^a	172.5±47.5 ^a
OV	26.0±1.14 ^a	0.24±0.02 ^a	1,121.1±88.9 ^{c,d}	139.4±4.79 ^a
OVFRC	21.67±0.88 ^a	0.26±0.03 ^a	605.33±44.86 ^{b,c}	204.67±37.7 ^b
OVDRC	22.4±0.81 ^a	0.38±0.02 ^b	853.75±56.73 ^b	130.25±116.85 ^{a,b}
NDMA	18.6±0.6 ^b	0.22±0.02 ^a	1,238±154 ^d	99.20±3.97 ^a
NDMAFRC	17.4±0.68 ^b	0.26±0.02 ^a	1,016±77.57 ^c	142±18.03 ^a
NDMADRC	22.4±0.51 ^a	0.3±0.0 ^a	258.8±52.81 ^a	137.8±9.29 ^a

Mean with different superscripts are significantly different ($P<0.05$)

substances have also reportedly been found by thin-layer chromatographic study of the extracts.

The histopathology of Syrian hamsters infected with *O. viverrini* was similar to previous reports (Boonmars et al. 2007; 2008; 2009). At 30 days post-infection, a peak of inflammatory cells (mononuclear cells and eosinophils) was observed surrounding the hepatic bile ducts as well as epithelial hyperplasia, goblet cell metaplasia, adenomatous metaplasia and thickened periductal fibrosis (Fig. 1), findings which correspond with increased serum ALT level. A slight decrease in inflammatory cells was observed, both in the case of *O. viverrini* infection and NDMA administration, when a Rang Chuet diet was administered. Although the results were similar for all Rang Chuet-treated groups, different inflammatory inducers may trigger different host immune response mechanisms. The metabolized product from NDMA is directly toxic to the liver and subsequently generates an inflammatory cell response, whereas *O. viverrini* induces a host immune response, as evidenced by inflammatory cells surrounding the hepatic bile duct. Moreover, the present study shows that the antioxidant property was in agreement with previous reports, which found that Rang Chuet powder diluted with boiling water had a high antioxidant capacity with low toxicity (Wong et al. 2006; Oonsivilai et al. 2008).

The present study demonstrates the advantages of Rang Chuet as an antioxidant and anti-inflammatory agent in Syrian hamsters that were administered NDMA as well as in those infected with *O. viverrini*, leading to a reduction in liver pathology and an improvement in liver function.

Acknowledgements This work was supported by the Thailand research fund through RMU5480002, Khon Kaen University (KKU55) and the Royal Golden Jubilee-Ph.D. program (Grant No. PHD/0280/2552) to Miss. Orasa Wonkchalee and Associate Professor Thidarut Boonmars. We thank the Department of Parasitology, Liver Fluke and Cholangiocarcinoma Research Center, the Animal Experimental Unit, Faculty of Medicine, Khon Kaen University for their support.

References

Boonjaraspinyo S, Boonmars T, Aromdee C, Srisawangwong T, Kaewsamut B, Pinlaor S, Yongvanit P, Puapairoj A (2009) Turmeric reduces inflammatory cells in hamster opisthorchiasis. Parasitol Res 105:1459–1463

Boonjaraspinyo S, Boonmars T, Aromdee C, Puapairoj A, Wu Z (2011) Indirect effect of a turmeric diet: enhanced bile duct proliferation in Syrian hamsters with a combination of partial obstruction by *Opisthorchis viverrini* infection and inflammation by *N*-nitrosodimethylamine administration. Parasitol Res 108 (1):7–14

Boonmars T, Boonjaraspinyo S, Kaewsamut B (2009) Animal models for *Opisthorchis viverrini* infection. Parasitol Res 104:701–703

Boonmars T, Srirach P, Kaewsamut B, Srisawangwong T, Pinlaor S, Pinlaor P, Yongvanit P, Sithithaworn P (2008) Apoptosis-related gene expression in hamster opisthorchiasis post praziquantel treatment. Parasitol Res 102:447–455

Boonmars T, Srisawangwong T, Srirach P, Kaewsamut B, Pinlaor S, Sithithaworn P (2007) Apoptosis-related gene expressions in hamsters re-infected with *Opisthorchis viverrini* and re-treated with praziquantel. Parasitol Res 102:57–62

Burkhill I.H (1966) A dictionary of the economic products of the Malay Peninsula. Volume II (I–Z). Ministry of Agriculture and Cooperatives, Kuala Lumpur.

Chan EWC, Lim YY (2006) Antioxidant activity of *Thunbergia laurifolia* tea. Journal of Tropical Forest Science 18(2):130–136

Chattaviriy P, Morkmek N, Lertprasertsuke N, Ruangyuttikarn W (2010) Drinking *Thunbergia laurifolia* Lindl. leaf extract helps prevent renal toxicity induced by cadmium in rats. Thai J Toxicology 25(2):124–132

Chivapat S, Chavalittumrong P, Attawish A, Bansiddhi J, Padungpat S (2009) Chronic toxicity of *Thunbergia laurifolia* Lindl. extract. Journal of Thai Traditional and Alternative Medicine 7(1):18–25

George J, Rao KR, Stern R, Chandrakasan G (2001) Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology 156:129–138

IARC (1994) Infection with liver flukes (*Opisthorchis viverrini*, *Opisthorchis felineus* and *Clonorchis sinensis*). IARC monographs on the evaluation of carcinogenic risks to humans 61:121–175

Kanchanapoom T, Kasai R, Yamasaki K (2002) Iridoid glucosides from *Thunbergia laurifolia*. Phytochemistry 60(8):769–771

Oonsivilai R, Cheng C, Bomser J, Ferruzzi MG, Ningsanond S (2007) Phytochemical profiling and phase II enzyme-inducing properties of *Thunbergia laurifolia* Lindl. (RC) extracts. J Ethnopharmacol 114(3):300–306

Oonsivilai R, Ferruzzi MG, Ningsanond S (2008) Antioxidant activity and cytotoxicity of Rang Chuet (*Thunbergia laurifolia* Lindl.) extracts. As J Food Ag-Ind 1(02):116–128

Palipoch S, Jiraungkoorskul W, Tansatit T, Preyavichayapugdee N, Jaikua W, Kosai P (2011) Protective efficiency of *Thunbergia laurifolia* leaf extract against lead (II) nitrate-induced toxicity in *Oreochromis niloticus*. Journal of Medicinal Plants Research 5 (5):719–728

Pongphasuk N, Khunkitti W, Chitcharoenthum M (2005) Traditional medicine and nutraceuticals. WOCMAP Congress on Medicinal and Aromatic Plants—Volume 6, Palaniswamy UR, Gardner ZE, Craker LE eds. ISHS, Acta Horticulturae, p 680

Peto R, Gray R, Brantom P, Grasso P (1991) Dose and time relationships for tumor induction in the liver and esophagus of 4080 inbred rats by chronic ingestion of N-nitrosodiethylamine or *N*-nitrosodimethylamine. Cancer Res 51:6452–6469

Pinlaor S, Hiraku Y, Ma N, Yongvanit P, Semba R, Oikawa S, Murata M, Sripa B, Sithithaworn P, Kawanishi S (2004) Mechanism of NO-mediated oxidative and nitritative DNA damage in hamsters infected with *Opisthorchis viverrini*: a model of inflammation-mediated carcinogenesis. Nitric Oxide 11:175–183

Ruela-de-Sousa RR, Fuhler GM, Blom N, Ferreira CV, Aoyama H, Peppelenbosch MP (2010) Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis 1:19

Schonenberger J (1999) Floral structure, development and diversity in *Thunbergia* (Acanthaceae). Botanical Journal of the Linnean Society 130:1–36

Sripa B (2003) Pathobiology of opisthorchiasis: an update. Acta Tropica 88:209–220

Starr F, Martz K, Loope LL (1999) New plant records from East Maui for 1998. Bishop Mus Occ Pap 59(2):1–15

Tangpong J, Satarug S (2010) Alleviation of lead poisoning in the brain with aqueous leaf extract of the *Thunbergia laurifolia* (Linn.). Toxicol Lett 198(1):83–88

Ujiki MB, Ding XZ, Salabat MR, Bentrem DJ, Golkar L, Milam B, Talamonti MS, Bell RH, Iwamura T, Adrian TE (2006) Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol Cancer 29:5–76

Ussanawarong S, Thesiri T, Mahakunakorn T, Parasupattana S (2000) Effect of *Thunbergia laurifolia* Linn on detoxification of paraquat. Khon Kaen University Research Journal 5.

Ussanawarong S, Thesiri T (2001) Effect of *Thunbergia laurifolia* Linn on detoxification of parathion in rat. Khon Kaen University Research Journal 6:3–13

Wong CC, Li H, Cheng K, Chen F (2006) A systemic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

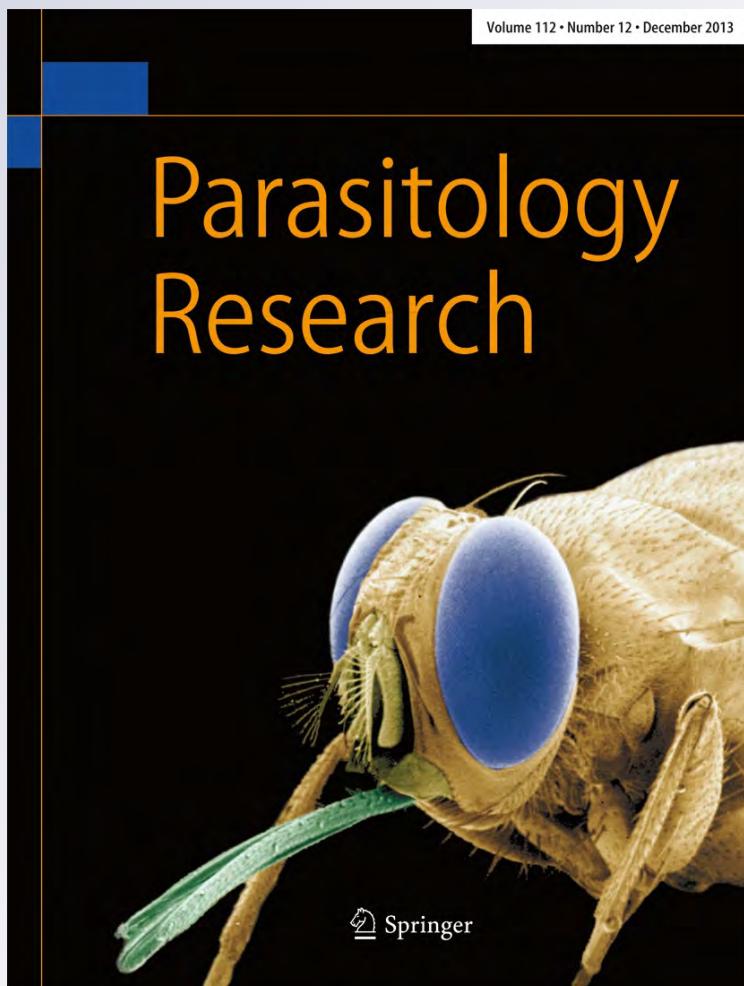
Wonkchalee O, Boonmars T, Kaewkes S, Chamgramol Y, Pairojkul C, Wu Z, Juasook A, Sudsarn P, Boonjaraspinyo S (2011a) *Opisthorchis viverrini* infection causes liver and biliary cirrhosis in gerbils. Parasitol Res 109(3):545–551

Wonkchalee O, Boonmars T, Kaewkes S, Chamgramol Y, Aromdee C, Wu Z, Juasook A, Sudsarn P, Boonjaraspinyo S, Pairojkul C (2011b) Comparative studies on animal models for *Opisthorchis viverrini* infection: host interaction through susceptibility and pathology. Parasitol Res Sep 1. [Epub ahead of print].

A combination of praziquantel and the traditional medicinal plant Thunbergia laurifolia on Opisthorchis viverrini infection and cholangiocarcinoma in a hamster model

Nadchanan Wonkchalee, Thidarut Boonmars, Porntip Laummaunwai, Chantana Aromdee, Chariya Hahnvajanawong, Zhiliang Wu, et al.

Parasitology Research


Founded as Zeitschrift für
Parasitenkunde

ISSN 0932-0113
Volume 112
Number 12

Parasitol Res (2013) 112:4211–4219
DOI 10.1007/s00436-013-3613-y

Volume 112 • Number 12 • December 2013

Parasitology
Research

 Springer

Your article is protected by copyright and all rights are held exclusively by Springer-Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

A combination of praziquantel and the traditional medicinal plant *Thunbergia laurifolia* on *Opisthorchis viverrini* infection and cholangiocarcinoma in a hamster model

Nadchanan Wonkchalee · Thidarut Boonmars · Porntip Laummaunwai · Chantana Aromdee · Chariya Hahnajanawong · Zhiliang Wu · Pranee Sriraj · Ratchadawan Aukkanimart · Yaovaluk Chamgramol · Chawalit Pairojkul · Amornrat Juasook · Pakkayanee Sudsarn

Received: 13 August 2013 / Accepted: 10 September 2013 / Published online: 21 September 2013
 © Springer-Verlag Berlin Heidelberg 2013

Abstract Cholangiocarcinoma (CCA) associated by *Opisthorchis viverrini* remains a health problem in Southeast Asia including Thailand. At present, there is still no efficient treatment for CCA. *Thunbergia laurifolia* is a traditionally used

medicinal plant; its aqueous leave extract possesses the antioxidant activity and anti-inflammatory on hamster opisthorchiasis had been reported previously. Here, we demonstrate the combined effects of the *T. laurifolia* extract plus antihelminthic drug, praziquantel (PZ) on hamsters with opisthorchiasis and hamsters with opisthorchiasis related-cholangiocarcinoma through light microscopic observations of histopathological changes, as well as liver function tests for alanine transaminase (ALT) and alkaline phosphatase, and kidney function tests for blood urea nitrogen and creatinine. Results showed *T. laurifolia* extract combined with praziquantel reduced inflammatory cell aggregation and inhibiting CCA development, which were correlated to the serum ALT level. These present studies suggest that administration of *T. laurifolia* after praziquantel treatment clearly improve the hepatobiliary system and could reduce the risk of subsequent CCA development in human.

N. Wonkchalee · T. Boonmars (✉) · P. Laummaunwai · P. Sriraj · R. Aukkanimart · P. Sudsarn
 Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
 e-mail: boonmars@yahoo.com

N. Wonkchalee · T. Boonmars · P. Sriraj · R. Aukkanimart · P. Sudsarn
 Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

T. Boonmars
 Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen 40002, Thailand

C. Aromdee
 Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen 40002, Thailand

C. Hahnajanawong
 Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

Z. Wu
 Department of Parasitology, Gifu University Graduate School of Medicine, Gifu 5011194, Japan

Y. Chamgramol · C. Pairojkul
 Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

A. Juasook
 Faculty of Veterinary Science, Mahasarakham University, Mahasarakham, Thailand

Introduction

Thunbergia laurifolia (laurel clock vine or blue trumpet vine is locally known as *Rang chuet* in Thailand) is widely used for detoxification from poisoning or other toxins (Tejasen and Thongthapp 1979; Ruengyuthakan 1980; Chanawirat 2000; Thongsaard and Marsden 2002; Srida et al. 2002; Khunkitti et al. 2003). In addition, *T. laurifolia* contains phenolic compounds which are involved in anti-inflammation and antioxidant (Oonsivilai et al. 2008). Our previous report (Wonkchalee et al. 2012) showed that a traditional medicine, derived from *T. laurifolia*, reduced the aggregation of inflammatory cells surrounding the hepatic bile duct in hamster with opisthorchiasis without any observable toxic side effects; this finding was in agreement with several previous reports

(Chattaviriya et al. 2010; Tangpong and Satarug 2010; Palipoch et al. 2011). However, it was unable to kill the parasite *Opisthorchis viverrini*, which is the cause of opisthorchiasis. Praziquantel is an effective antihelminthic drug for liver flukes such as *O. viverrini*; moreover, it can improve liver pathology by reducing hepatic fibrosis and collagen contents (Pinlaor et al. 2009). However, the adverse effect is due to the presence of dead worms which increase the inflammatory response of the cells surrounding the hepatic bile ducts containing dead worms which resulted in the liver cell damage (Pinlaor et al. 2004; Boonmars et al. 2007, 2008). Hence, the advantages and disadvantages of praziquantel treatment are of great concern.

It has been established that inflammation from any etiology constitutes the primary risk for several cancers, including cholangiocarcinoma (CCA). Prevention of CCA associated with *O. viverrini* in Thailand by changing the habit of eating uncooked raw cyprinoid fish is not well cooperative. Moreover, the CCA treatment remains a big problem because of many factors, the CCA stage, less efficacy chemotherapeutic drugs, and so on. Therefore, the present study was performed to evaluate the prevention, treatment, and adverse effects of *T. laurifolia* on hamster with opisthorchiasis treated with praziquantel and on hamster CCA induced by *N*-nitrosodimethylamine administration and *O. viverrini* infection.

Materials and methods

Parasite preparation and animal infection

Parasites were prepared as described in the previous report (Wonkchalee et al. 2012). In brief, metacercariae were obtained from naturally infected cyprinid fish in an endemic area of Khon Kaen, northeast of Thailand. Fresh fish were digested in 1 % pepsin/HCl and incubated at 37 °C for 1 h, then filtered and precipitated with normal saline in a sedimentation jar. Afterwards, the *O. viverrini* metacercariae oval-shaped, with large black excretory bladders were identified under a dissecting microscope. Each Syrian hamster was administered with 50 *O. viverrini* metacercariae by oral intragastric intubation.

T. laurifolia preparation

T. laurifolia leaves were collected from Khon Kaen province, Thailand. They were dried at 60 °C using hot air oven. Dried leaves were ground into a powder and then kept at –20 °C until used. For CCA prevention purpose, *T. laurifolia* powder was suspended in distilled water to get final concentration 100 mg/kg/dose or orally fed with 0.3 ml/hamster to the assigned groups on the day of infection. For CCA treatment purposes, *T. laurifolia* was used for oral treatment of the assigned groups started on 3 months after infection and diary continued fed until to the end of time point (around 6 months).

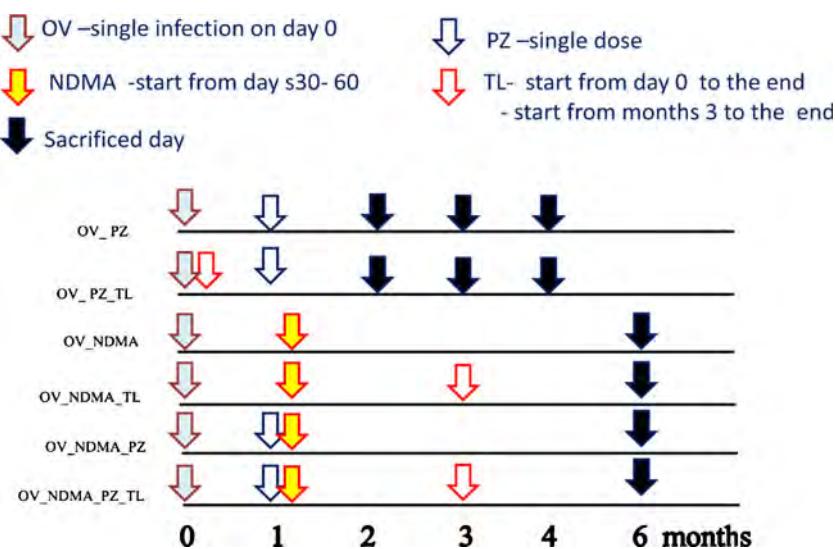
N-nitrosodimethylamine preparation and administration

N-nitrosodimethylamine (NDMA), purchased from Wako Pure Chemical Industries, Osaka, Japan, was used for inducing hamster CCA development (Thamavit et al. 1978). *N*-nitrosodimethylamine was prepared in distilled water at 12.5 ppm for administration to the assigned hamster groups (daily for a month started on day 30 to day 60).

Praziquantel preparation

Praziquantel was diluted with 2 % chemophor, a nonionic solubilizer and emulsifier (Sigma-Aldrich, St. Louis MO, USA). One month post-infection, a single dose of 400 mg/kg was administered orally to the assigned treatment groups.

Animal groups


Male Syrian hamsters, 6–8 weeks old, were divided into six groups: (a) infected with *O. viverrini* plus praziquantel (OV_PZ), (b) infected with *O. viverrini* plus praziquantel and *T. laurifolia* (OV_PZ_TL), (c) infected with *O. viverrini* plus *N*-nitrosodimethylamine (OV_NDMA), (d) infected with *O. viverrini* plus NDMA and *T. laurifolia* (OV_NDMA_TL), (e) infected with *O. viverrini* plus NDMA and praziquantel (OV_NDMA_PZ), and (f) infected with *O. viverrini* plus NDMA, praziquantel, and *T. laurifolia* (OV_NDMA_PZ_TL), as shown in Fig. 1. Five hamsters in each group were sacrificed on days 60, 90, 120, and 180. Whole liver tissues were collected for observation of gross pathology and histopathological changes, and sera were tested for liver and kidney function. The protocol was approved by the Animal Ethics Committee of the Faculty of Medicine, Khon Kaen University, Thailand (ethical clearance no. AEKKU 23/2554).

Macroscopic observation

Four lobes of the liver (right, left, caudate, and quadrate) were carefully studied for color, appearance of the margins, presence or absence of nodules, and granularity of surfaces, both visually and from photographs taken with a digital camera.

Light microscopic observation

Hamster livers were fixed in 10 % buffered formalin. After fixation, all pieces of liver tissues (5 mm thickness) were soaked with phosphate-buffered saline and then dehydrated through a series of various concentrations of ethyl alcohol. The tissue was cleared then embedded in paraffin wax. Sections of 5 µm thickness were cut using a microtome, then stained with hematoxylin and eosin and observed under a light microscope, as in previous studies (Boonmars et al 2009; Boonjaraspinyo et al. 2010). Photographs of each slide were

Fig. 1 Scheme of the treatments to animal groups

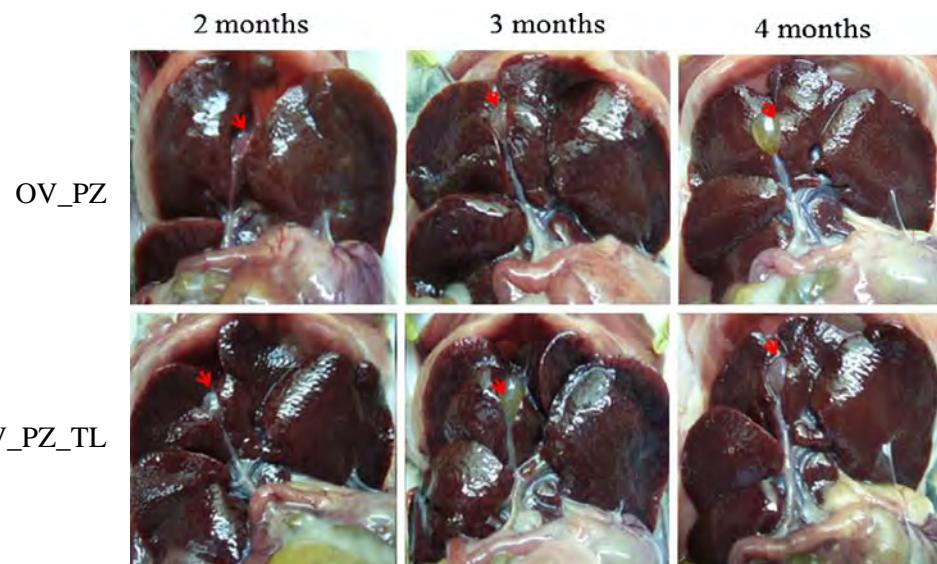
taken at $\times 4$ and $\times 10$ magnifications. To evaluate the degree of liver fibrosis, liver sections were stained with Sirius red, which stains collagen fibers in red color. After nuclear staining with hematoxylin for 8 min, the slides were washed in running tap water for 10 min, and then they were stained with a saturated aqueous solution of picric acid containing 0.1 % Sirius Red (Sigma-Aldrich, St. Louis MO, USA) for 1 h. The slides were then washed in two changes of acidified water (5 ml of glacial acetic acid in 1 L of distilled water). After dehydration and clearing with xylene, the liver sections were mounted. The sections were observed and digitized under a light microscope (Olympus BX51; Tokyo, Japan). The histological criteria for liver section were characterized into inflammation [0, no inflammation; 1, mild (small foci or 5–20 % per $4\times$ objective), 2, moderate (some portal area or 20–50 % per $4\times$ objective), 3, severe (most portal area or >50 % per $4\times$ objective)], bile duct change [0, absence proliferation or dilatation; 1, dilatation; 2, proliferation and dilatation], granulomatous [0, absence; 1, appear] and fibrosis [0, no fibrosis; 1, portal fibrosis without short fibrous septa; 2, portal fibrosis with short fibrous septa; 3, portal fibrosis with fibrous septa]. In addition, the histological studies of cholangiocarcinoma model are divided into inflammation criteria as above, goblet cell proliferation [0, absence; 1, mild; 2, moderate; 3, severe], bile duct change and cholangiocarcinoma [0, absent proliferation; 1, mild proliferation without cholangiofibrosis; 2, moderate proliferation with cholangiofibrosis; 3, CCA area 5–20 % per $4\times$ objective; 5, CCA area 30–50 % per $4\times$ objective; 6, CCA area >50 % per $4\times$ objective], granulomatous, and fibrosis criteria as above.

Liver and kidney function measurements

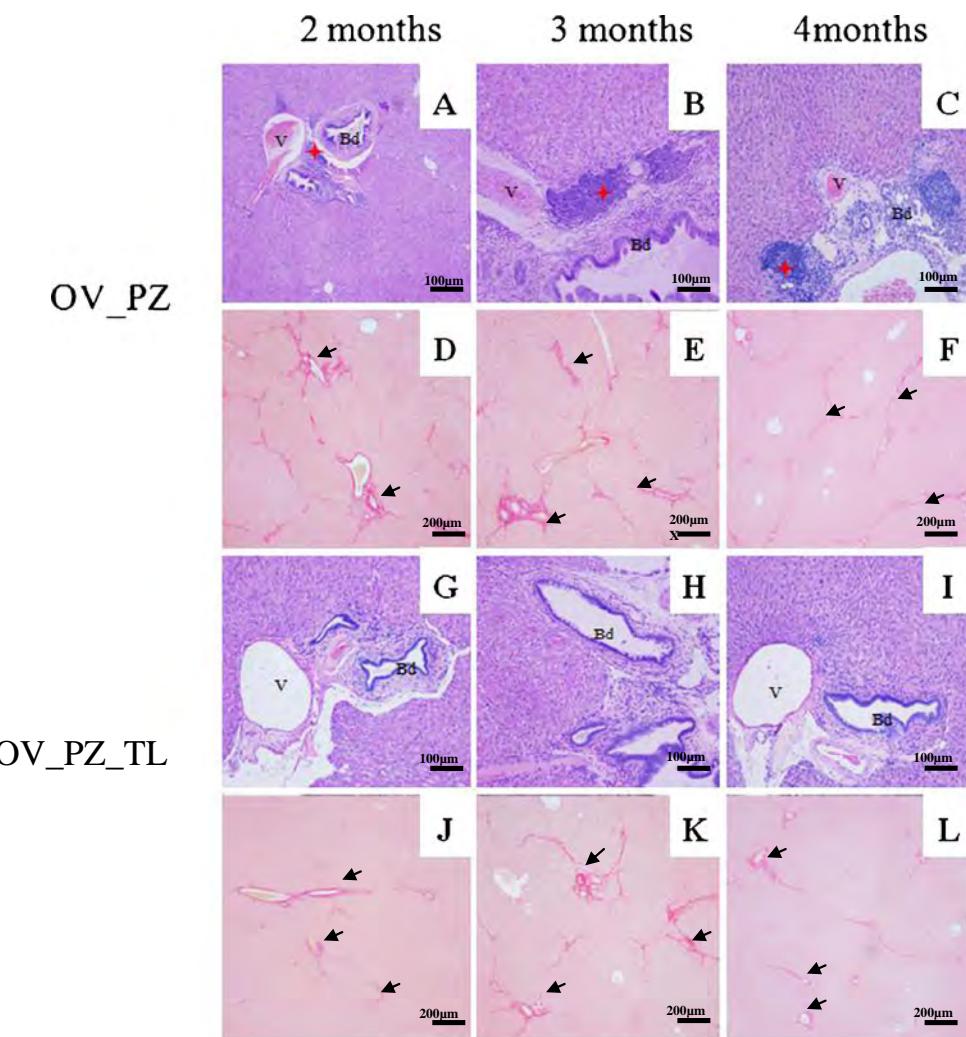
Hamster whole blood were collected from heart puncture of anesthesia hamsters in each group, and then sera were

determined to verify any damage on liver and kidney which were ALT, ALP, BUN, and creatinine by using Spectrophotometer (Automate RA 100) at the Chemistry Room, Community Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University.

Statistical analysis


To have statistically significant difference ($p < 0.05$), five hamsters in each group and each time point were followed by manual of animal technology (Barnett 2001). The data on histopathological changes and serum levels of ALT, ALP, BUN, and creatinine are presented as means \pm SD. Statistics were analyzed using one-way ANOVA (SPSS version 16.0, USA). Values were considered statistically significant when $p < 0.05$.

Results


Gross and histopathological changes in hamster opisthorchiasis treated with praziquantel and *T. laurifolia* on months 2, 3, and 4

Observation of the gross pathology of the livers revealed few differences between the *O. viverrini*-infected group treated with praziquantel (OV_PZ) and the group also administered *T. laurifolia* (OV_PZ_TL) and sacrificed after 2, 3, and 4 months. Liver surfaces were smooth, shiny, and straw-colored bile fluid similar to normal but slightly opaque common bile ducts (Fig. 2). Histopathological changes in all time points consisted primarily of aggregations of inflammatory cells surrounding the hepatic bile ducts and liver tissue and hepatic bile duct proliferation. Histopathological changes in the OV_PZ group by month 2 (Fig. 3a) were similar to those observed in that group on months 3 and 4, with a different

Fig. 2 Representative hamster livers from the infected plus praziquantel (OV_PZ) group and the infected plus praziquantel and *T. laurifolia* (OV_PZ_TL) group at 2, 3, and 4 months post-infection, red arrows indicate gallbladder

Fig. 3 Representative histopathology of hamster livers as revealed by hematoxylin and eosin and Sirius red staining. Shown are sections from the infected plus praziquantel (OV_PZ) group and the infected plus praziquantel and *T. laurifolia* (OV_PZ_TL) group at 2, 3, and 4 months post-infection. Red stars indicate inflammatory cell aggregation; black arrows fibrotic areas; Bd bile duct; v portal vein

degree of inflammatory cell infiltration but no statistically significant difference. The highest aggregation of inflammatory cells surrounding the hepatic bile ducts was observed in month 4 (Fig. 3c), followed by month 3 (Fig. 3b). Hepatic fibrosis was observed at all time points; it was predominantly observed on month 2 (Fig. 3d), followed by months 3 (Fig. 3e) and 4 (Fig. 3f), respectively, but no statistically significant difference. In the OV_PZ_TL group on months 2 (Fig. 3g), 3 (Fig. 3h), and 4 (Fig. 3i), a few inflammatory cells surrounding the hepatic bile duct were observed, which increased in a time-dependent manner after praziquantel treatment. A degree of hepatic fibrosis was less observed than the OV_PZ group at all time points with statistically significant difference ($p > 0.05$). Histopathology which focused on inflammatory cell aggregation and fibrosis of OV_PZ_TL group seemed to be better than OV_PZ group with statistically significant difference ($p > 0.05$). The histological criteria for liver sections have shown in Table 1.

Gross and histopathological changes in a hamster CCA model (opisthorchiasis and NDMA administration) treated with praziquantel and *T. laurifolia*

The liver surface of the CCA model (OV_NDMA) was reddish brown similar to all treated groups (OV_NDMA_TL, OV_NDMA_PZ and OV_NDMA_PZ_TL), but a CCA mass was found in the hepatic tissue. Opaque gallbladder and dilated bile ducts were observed in both groups of OV_NDMA (Fig. 4a) and OV_NDMA_TL (Fig. 4d), but not in both praziquantel treated groups: OV_NDMA_PZ (Fig. 4g) and OV_NDMA_PZ_TL (Fig. 4j). The entire section in groups of OV_NDMA (Fig. 4b) and OV_NDMA_PZ

(Fig. 4h) were observed CCA area. The aggregations of inflammatory cells with or without small CCA foci were found in both *T. laurifolia* treated groups, OV_NDMA_TL (Fig. 4e) and OV_NDMA_PZ_TL (Fig. 4k) but in different degree. The group of OV_NDMA_PZ_TL had an inflammatory cell aggregation, goblet cell number ($p < 0.00$), bile duct proliferation, and CCA area less than OV_NDMA_TL group with statistically significant difference ($p < 0.00$, $p < 0.00$, and $p < 0.01$, respectively). The degree of fibrosis was correlated with the CCA area predominantly in OV_NDMA (Fig. 4c), followed by OV_NDMA_PZ (Fig. 4i), OV_NDMA_TL (Fig. 4f), and OV_NDMA_PZ_TL (Fig. 4l) groups, respectively, but no statistically significant difference. The histological criteria for liver sections are shown in Table 2.

Liver and kidney functions

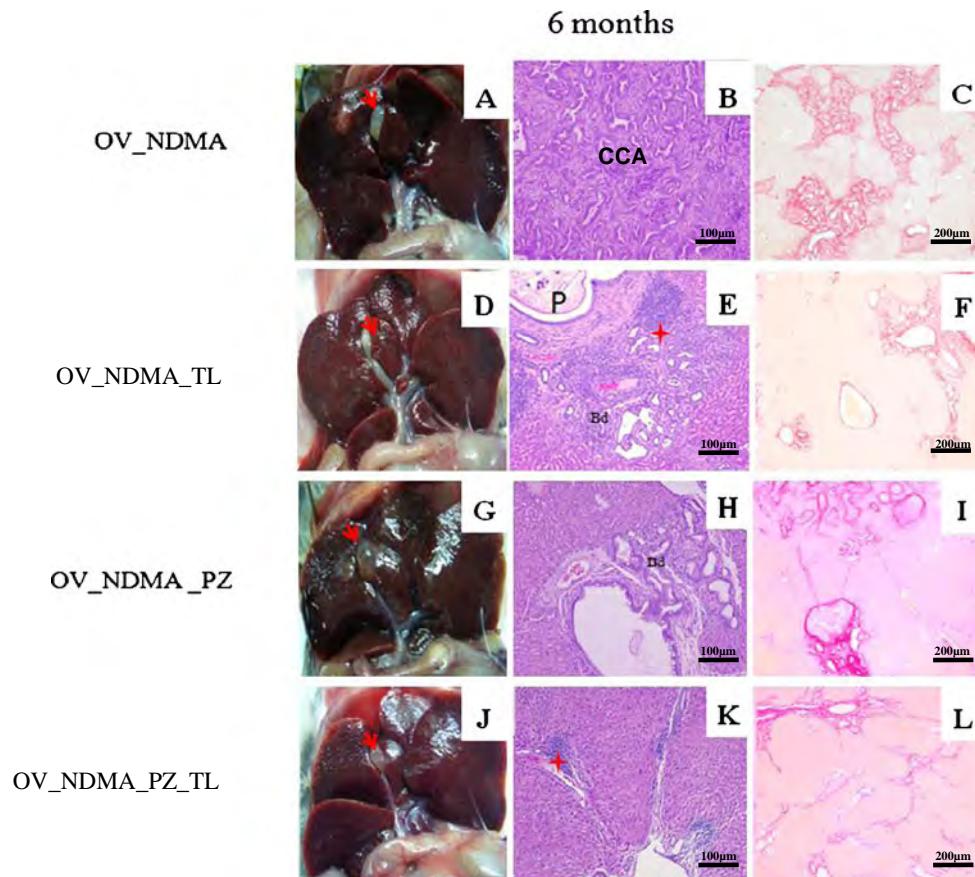

Table 3 shows the levels of serum ALT, ALP, BUN, and creatinine, which correlate with histopathological changes (Figs. 2, 3, and 4). The kidney serum markers (BUN and creatinine) in all *T. laurifolia* groups remained within normal levels indicating no renal toxic effect of *T. laurifolia*. The highest serum ALT levels were observed in the OV_PZ group at 2 months (492.5 ± 136.5), followed by OV_NDMA_PZ (183.0 ± 14.1), OV_PZ at 3 months (161.0 ± 88.1), and OV_NDMA (139.0 ± 54.9) groups, respectively. For the OV_RC_PZ group at 2, 3, and 4 months, serum ALT levels gradually decreased within normal levels (88.0 ± 12.8 , 82.5 ± 14.8 , and 76.0 ± 31.1 , respectively). Moreover, the serum ALT level in a CCA model, induced by *O. viverrini* infection and NDMA administration, was significantly decreased with *T. laurifolia* and/or praziquantel treatment ($p < 0.05$).

Table 1 Histopathological grading of hamster liver from the OV infection plus praziquantel group (OV_PZ) and the infected plus praziquantel and *T. laurifolia* group (OV_PZ_TL) at 2, 3, and 4 months post-infection

Histopathology	Criteria	OV_PZ 2 M	OV_PZ_TL 2 M	OV_PZ 3 M	OV_PZ_TL 3 M	OV_PZ 4 M	OV_PZ_TL 4 M
Inflammation	0=none 1=mild (small foci or 5–20 % per 4× objective) 2=moderate (some portal area or 20–50 % per 4× objective) 3=severe (most portal area or >50 % per 4× objective)	50 %	66.7 %	50 %	100 %		100 %
Bile duct change	0=absent proliferation/dilatation 1=dilatation 2=proliferation and dilatation		33.3 %	50 %	100 %	50 %	100 %
		100 %	66.7 %	50 %		50 %	
Granulomatous	0=absent 1=present	100 %	100 %	100 %	100 %	100 %	100 %
Fibrosis	0=no fibrosis 1=portal fibrosis without short fibrous septa 2=portal fibrosis with short fibrous septa 3=portal fibrosis with fibrous septa	50 %	66.7 %	50 %	100 %	50 %	100 %
		50 %	33.3 %	50 %		50 %	

Hamster which showed effect of PZ (no parasite in bile ducts) were including for histopathological grading

Fig. 4 Representative gross and histopathology of hamster livers inferred from digitized photos (a, d, g, j) and sections stained with hematoxylin and eosin (b, e, h, k) or with Sirius red (c, f, i, l) from hamster livers from the infected livers treated with *N*-nitrosodimethylamine (OV_NDMA) group, the infected plus *N*-nitrosodiethylamine and *T. laurifolia* (OV_NDMA_TL) group, the infected plus *N*-nitrosodimethylamine and praziquantel (OV_NDMA_PZ) group and the infected plus *N*-nitrosodimethylamine, praziquantel and *T. laurifolia* (OV_NDMA_PZ_TL) groups. All specimens are from animals sacrificed after 6 months. CCA cholangiocarcinoma; Red arrow gallbladder; red stars indicate inflammatory cell aggregation; Bd bile duct; p parasite

Discussion

The present study clearly shows that *T. laurifolia* could reduce inflammatory cell aggregation after praziquantel treatment, resulting in improvement and protection in the hepatobiliary system. Pathological changes, as evidenced by a reduction of inflammatory cells surrounding the hepatic bile ducts, were correlated with serum ALT level, showing decreased liver cell damage. Moreover, the present study is the first report to show that *T. laurifolia* has anti-CCA properties, as evidenced by a reduction of CCA area and inhibition CCA development as in sectioning slide.

Previous studies (Pinlaor et al. 2004; Boonmars et al. 2007; Boonmars et al. 2008) have shown that inflammatory cell infiltration surrounding the hepatic bile ducts increased after praziquantel treatment. Importantly, the present study shows that the use of *T. laurifolia* could reduce inflammatory cell infiltration after praziquantel treatment, resulting in a reduction of CCA risk. This is in agreement with our previous report (Wonkchalee et al. 2012) in which *T. laurifolia* administered at 100 mg/kg/day to hamsters with opisthorchiasis demonstrated anti-inflammatory activity at 1 month in which *T. laurifolia* administered at 5 g/kg to paw edema mice demonstrated anti-inflammatory activity at 3 h ($p > 0.01$) and 6 h ($p > 0.001$) (Chivapat et al. 2009) and in which *T. laurifolia* administered to rats treated with ethanol

demonstrated hepatoprotective activity (Pramyothin et al. 2005). Moreover, this result was similar to another previous report in which crude curcumin and finger root administration exhibited anti-inflammatory activity in hamster opisthorchiasis or NDMA administration alone (Boonjaraspinyo et al. 2010). These results were consistent with the normal levels (25–70 U/L) of serum ALT found in the *T. laurifolia* treated groups (Table 3). Moreover, from the serum levels of BUN and creatinine suggest that *T. laurifolia* had no renal toxicity, a finding which was in accordance with previous studies (Pramyothin et al. 2005; Chivapat et al. 2009). In 6 months, CCA hamster which were treated with OV_NDMA, CCA areas are found as shown in Fig. 4b, which was in agreement with previous reports (Boonjaraspinyo et al. 2010; Juasook et al. 2013). Interestingly, in the OV_NDMA_TL, a CCA treatment model by giving *T. laurifolia* during CCA appear, had reduced CCA areas more than the OV_NDMA_PZ. Although praziquantel can kill the *O. viverrini* parasite and reduce the pathology below the level seen in the OV_NDMA, CCA development was still observed in the OV_NDMA_PZ. Interestingly, praziquantel treatment followed by *T. laurifolia* treatment in the OV_NDMA_PZ_TL could inhibit CCA development. This may be due to a lack of inflammatory activation from parasites after praziquantel treatment and even it had immune response from parasite death. *T. laurifolia* could inhibit this host immune response during chronic stage

Table 2 Histopathological grading of hamster liver at 6 months post-OV infection of the infected plus *N*-nitrosodimethylamine (OV_NDMA) group, the infected plus NDMA and *T. laurifolia* (OV_NDMA_TL)

group, the infected plus NDMA and praziquantel (OV_NDMA_PZ) group, and the infected plus NDMA, praziquantel and *T. laurifolia* (OV_NDMA_PZ_TL) group

Histopathology	Criteria	OV_NDMA 6 M	OV_NDMA_TL 6 M	OV_NDMA_PZ 6 M	OV_NDMA_PZ_TL 6 M
Inflammation	0=none 1=mild (hepatocyte: 1–4 small foci per 4× objective or 5–20 % per field) 2=moderate (hepatocyte+portal area: 1–4 foci per 4× objective or 20–50 % per field) 3=severe (hepatocyte+portal area >5 foci per 4× objective) or >50 % per field	100 %	37.5 % 50 %	50 % 50 %	100 %
Globlet cell proliferation	0=absent 1=mild (+) 2=moderate (++) 3=severe (+++)		12.5 % 87.5 % 50 % 50 %		100 %
Bile duct change and Cholangiocarcinoma	0=absent proliferation 1=mild proliferation without cholangiofibrosis 2=moderate proliferation with cholangiofibrosis 3=CCA area 5–20 % per 4× objective 5=CCA area 30–50 % per 4× objective 6=CCA area >50 % per 4× objective				100 %
Granulomatous	0=absent 1=present	100 % 25 %	75 % 50 %	100 % 50 %	100 % 62.5 % 37.5 %
Fibrosis	0=no fibrosis 1=portal fibrosis without short fibrous septa 2=portal fibrosis with short fibrous septa 3=portal fibrosis with fibrous septa	50 % 50 %	25 % 62.5 % 12.5 %	50 % 50 %	

In praziquantel treatment group, only hamster which showed no parasite in the sections was histopathological grading

from its anti-inflammatory property; the resulting improvement in liver pathology was correlated with liver function tests, especially for ALT levels.

Although the metabolized product from NDMA is directly toxic to the liver and subsequently generates an inflammatory

cell response, our previous studies showed that *T. laurifolia* had high antioxidant and detoxification properties (Oonsivilai et al. 2008). Those results correlated to the anti-inflammatory property of *T. laurifolia* which was clearly demonstrated by the reduction of inflammatory cells in hepatic tissue, leading

Table 3 Serum liver enzymes and kidney function

Groups	ALT (U/L)	ALP (U/L)	BUN (mg/dl)	Creatinine (mg/dl)
Normal	104.4±19.41a	93.2±8.43a	22.4±1.9ab	0.36±0.08ab
OV_PZ 2 m	492.5±136.5b	320.0±369.1a	17.3±1.4ab	0.45±0.07ab
OV_PZ_TL 2 m	88.0±12.8a	86.3±25.1a	20.9±1.6ab	0.36±0.05ab
OV_PZ 3 m	161.0±88.1a	72.0±17.5a	22.9±1.3ab	0.56±0.15b
OV_PZ_TL 3 m	82.5±14.8a	59.0±5.7a	23.5±2.4ab	0.40±0.00bc
OV_PZ 4 m	116.5±19.1a	50.0±3.5a	21.5±0.35ab	0.35±0.07ab
OV_PZ_TL 4 m	76.0±31.1a	49.5±2.1a	23.7±0.7b	0.25±0.07a
OV_NDMA 6 m	139.0±54.9a	105.3±59.9a	16.5±1.4a	0.40±0.00ab
OV_NDMA_TL 6 m	124.4±60.4a	72.8±13.7a	23.1±1.3b	0.34±0.05ab
OV_NDMA_PZ 6 m	183.0±14.1a	75.0±7.0a	21.7±1.3ab	0.40±0.00ab
OV_NDMA_PZ_TL 6 m	107.2±41.9a	69.6±8.4a	23.8±2.6b	0.28±0.04a

Results from treated animals were compared with normal hamster. Group with different lowercase letters is statistically significant difference ($P<0.05$)

to decreased serum ALT in all *T. laurifolia* treatment groups (Table 3).

Praziquantel has been used for many years to treat liver fluke infections even through the cure rate of praziquantel treatment is not 100 % in both human (Bunnag and Harinasuta 1981; Bunnag et al. 1984) and hamster opisthorchiasis (Duenngai et al. 2013) which correlate to our present result. Several recent reports have shown that it can reduce liver fibrosis and egg granulomas in the liver of patients with blood and liver fluke infections (Pinlaor et al. 2010). However, other previous reports found that in the acute phase of post-praziquantel treatment, there was an increase in serum ALT level and inflammatory cell infiltration (Pinlaor et al. 2008; Boonmars et al. 2008). Those findings agree with our present findings (Fig. 3 and Table 3). Therefore, using *T. laurifolia* which has antioxidant and anti-inflammatory properties could reduce inflammation after praziquantel treatment. The outcome of this treatment is better than the combination of curcumin and praziquantel which was also shown to improve liver pathology (Charoensuk et al. 2011).

The present study is the first report to demonstrate the advantages of *T. laurifolia* post-praziquantel treatment by inhibiting inflammation and retarding cholangiocarcinoma development in a hamster CCA model. However, further studies on the identification of the active constituents in *T. laurifolia* that involves in the activity, as well as the mode of action should be carried out.

Acknowledgments This work was supported by grants from the Thailand Research Fund (grant no. RMU5480002), Khon Kaen University (KKU56) and the Royal Golden Jubilee Ph.D. Program (grant no. PHD/0280/2552) to Miss Nadchanan Wonkchalee and Associate Professor Thidarat Boonmars. We also thank the research affair for giving as an assistant researcher (RA56201), Animal Experimental Unit, Faculty of Medicine, Khon Kaen University for their support.

References

Barnett SW (2001) Animal Technology Calculations. In: Barnett SW, Barley J, Francis R, Lane S, Gardner R (eds) Manual of animal technology. Iowa, Oxford, pp 994–1110

Boonjaraspinyo S, Boonmars T, Aromdee C, Kaewsamut B (2010) Effect of finger root on reducing inflammatory cells in hamster infected with *Opisthorchis viverrini* and *N*-nitrosodimethylamine administration. Parasitol Res 106(6):1485–1489

Boonmars T, Srisawangwong T, Srirach P, Kaewsamut B, Pinlaor S, Sithithaworn P (2007) Apoptosis-related gene expressions in hamsters re-infected with *Opisthorchis viverrini* and re-treated with praziquantel. Parasitol Res 102(1):57–62

Boonmars T, Srirach P, Kaewsamut B, Srisawangwong T, Pinlaor S, Pinlaor P, Yongvanit P, Sithithaworn P (2008) Apoptosis-related gene expression in hamster opisthorchiasis post praziquantel treatment. Parasitol Res 102(3):447–455

Boonmars T, Boonjaraspinyo S, Kaewsamut B (2009) Animal models for *Opisthorchis viverrini* infection. Parasitol Res 104:701–703

Bunnag D, Harinasuta T (1981) Studies on the chemotherapy of human opisthorchiasis: III. Minimum effective dose of praziquantel. Southeast Asian J Trop Med Public Health 2(3):413–417

Bunnag D, Pungpark S, Harinasuta T, Viravan C, Vanijanonta S, Suntharasamai P, Migasena S, Charoenlarp P, Riganti M, Loo Areeswan S (1984) *Opisthorchis viverrini*: clinical experience with praziquantel in hospital for tropical diseases. Arzneimittelforschung 34(9B):1173–1174

Chanawirat A (2000) Protective effect of *Thunbergia laurifolia* extract on ethanol-induced hepatotoxicity in mice. Thesis, Mahidol University, Bangkok, Thailand

Charoensuk L, Pinlaor P, Prakobwong S, Hiraku Y, Laothong U, Ruangjirachuporn W, Yongvanit P, Pinlaor S (2011) Curcumin induces a nuclear factor-erythroid 2-related factor 2-driven response against oxidative and nitrative stress after praziquantel treatment in liver fluke-infected hamsters. Int J Parasitol 41(6):615–626

Chattaviriy P, Morkmek N, Lertrapsertsuke N, Ruangyuttikarn W (2010) Drinking *Thunbergia laurifolia* Lindl. leaf extract helps prevent renal toxicity induced by cadmium in rats. Thai J Toxicol 25(2):124–132

Chivapat S, Chavalittumrong P, Attawish A, Bansiddhi J, Padungpat S (2009) Chronic toxicity of *Thunbergia laurifolia* Lindl. extract. J Thai Tradit Alternat Med 7(1):18–25

Duenngai K, Boonmars T, Sithithaworn J, Sithithaworn P (2013) Diagnosis of early infection and post chemotherapeutic treatment by copro-DNA detection in experimental opisthorchiasis. Parasitol Res 112(1):271–278

Juasook A, Boonmars T, Wu Z, Loilome W, Veteewuthacharn K, Namwat N, Sudsarn P, Wonkchalee O, Sriraj P, Aukkanimart R (2013) Immunosuppressive prednisolone enhances early cholangiocarcinoma in Syrian hamsters with liver fluke infection and administration of *N*-nitrosodimethylamine. Pathol Oncol Res 19(1):55–62

Khunkitti W, Taweechaisupapong S, Aromdee A, Pese M (2003) Antimicrobial activity of *Thunbergia Laurifolia* crude extract. The 3rd world congress on medicinal plant and aromatic plants for human welfare, Chiang Mai, Thailand

Oonsivilai R, Ferruzzi MG, Ningsanond S (2008) Antioxidant activity and cytotoxicity of Rang Chuet (*Thunbergia laurifolia* Lindl.) extracts. As J Food Ag Ind 1(02):116–128

Palipoch S, Jiraungkoorskul W, Tansatit T, Preyavichayapugdee N, Jaikua W, Kosai P (2011) Protective efficiency of *Thunbergia laurifolia* leaf extract against lead (II) nitrate-induced toxicity in *Oreochromis niloticus*. J Med Plants Res 5(5):719–728

Pinlaor S, Hiraku Y, Ma N, Yongvanit P, Semba R, Oikawa S, Murata M, Sripa B, Sithithaworn P, Kawanishi S (2004) Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with *Opisthorchis viverrini*: a model of inflammation-mediated carcinogenesis. Nitric Oxide 11:175–183

Pinlaor S, Prakobwong S, Hiraku Y, Kaewsamut B, Dechakhamphu S, Boonmars T, Sithithaworn P, Pinlaor P, Ma N, Yongvanit P, Kawanishi S (2008) Oxidative and nitrative stress in *Opisthorchis viverrini*-infected hamsters: an indirect effect after praziquantel treatment. Am J Trop Med Hyg 78(4):564–573

Pinlaor S, Prakobwong S, Boonmars T, Wongkham C, Pinlaor P, Hiraku Y (2009) Effect of praziquantel treatment on the expression of matrix metalloproteinases in relation to tissue resorption during fibrosis in hamsters with acute and chronic *Opisthorchis viverrini* infection. Acta Trop 111(2):181–191

Pinlaor S, Prakobwong S, Hiraku Y, Pinlaor P, Laothong U, Yongvanit P (2010) Reduction of periductal fibrosis in liver fluke-infected hamsters after long-term curcumin treatment. Eur J Pharmacol 638(1–3):134–141

Pramyothin P, Chirdchupunsare H, Rungsipipat A, Chaichantipyuth C (2005) Hepatoprotective activity of *Thunbergia laurifolia* Linn extract in rats treated with ethanol: In vitro and in vivo studies. J Ethnopharmacol 102:408–411

Ruengyuthakan W (1980) The pharmacological studies of Rang Chuet leaves. Thesis, Chiangmai University, Thailand

Srida C, Hankete J, Khunkitti W, Aromdee C, Pese M (2002) Antioxidant activity of *Thunbergia Laurifolia* ethanolic extract. *Thai J Pham Sci* 26

Tangpong J, Satarug S (2010) Alleviation of lead poisoning in the brain with aqueous leaf extract of the *Thunbergia laurifolia* (Linn.). *Toxicol Lett* 198(1):83–88

Tejasen P, Thongthapp C (1979) The study of the insecticide antitoxicity of *Thunbergia laurifolia* Linn. *Chiang Mai Bull* 19:105–114

Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakorn S (1978) Effects of dimethylnitrosamine on induction of cholangiocarcinoma in *Opisthorchis viverrini* infected Syrian golden hamsters. *Cancer Res* 38:634–639

Thongsaard W, Marsden CA (2002) A herbal medicine used in the treatment of addiction mimics the action of amphetamine on in vitro rat strial dopamine release. *Neurosci Lett* 329(2): 129–132

Wonkchalee O, Boonmars T, Aromdee C, Laummaunwai P, Khunkitti W, Vaeteewoottacharn K, Sriraj P, Aukkanimart R, Loilome W, Chamgramol Y, Pairojkul C, Wu Z, Juasook A, Sudsarn P (2012) Anti-inflammatory, antioxidant and hepatoprotective effects of *Thunbergia laurifolia* Linn on experimental opisthorchiasis. *Parasitol Res* 111(1):353–359

Liver Fluke and Cholangiocarcinoma
Research Center
Khon Kaen University Thailand

บทคัดย่อ

Pre-Congress Symposium 2012

“การวิจัยและพัฒนาเพื่อกำจัดพยาธิใบไม้ตับและมะเร็งท่อน้ำดี”

(Research and Development for eliminating the liver fluke and cholangiocarcinoma)

วันที่ 9 ตุลาคม 2555

ณ ห้องบรรยาย 2 คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น

ศูนย์วิจัยพยาธิใบไม้ตับและมะเร็งท่อน้ำดี และภาควิชาชีวเคมี คณะแพทยศาสตร์

มหาวิทยาลัยขอนแก่น

**LIVER FLUKE AND CHOLANGIOMA RESEARCH CENTER
KHON KAEN UNIVERSITY**

Effects of *Thunbergia laurifolia* Linn. on experimental opisthorchiasis

Nadchanan Wonkchalee^{1,2}, Thidarut Boonmars^{1,2}, Chantana Aromdee³, Porntip Laummaunwai¹, Watcharee Khunkitti³, Kulthida Vaeteewoottacharn⁴, Pranee Sriraj^{1,2}, Ratchadawan Aukkanimart^{1,2}, Watcharin Loilome⁴, Yaovaluk Chamgramol⁶, Chawalit Pairojkul⁶, Zhiliang Wu⁵, Amornrat Juasook^{1,2}, Pakkayanee Sudsarn^{1,2}

¹Department of Parasitology, Faculty of Medicine, Khon Kaen University, ²Liver Fluke and Cholangiocarcinoma Research Center, ³Faculty of Pharmacology, ⁴Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Thailand; ⁵Department of Parasitology, Gifu University Medicine Graduate School, Japan; ⁶Department of Pathology, Faculty of Medicine, Khon Kaen University, Thailand

E-mail: jnadcha@gmail.com

Thunbergia laurifolia Linn. is locally known as Rang Chuet in Thailand. Rang Chuet properties are anti-oxidant and anti-inflammation including anti- cancer activities. Therefore, the present study is revealing the efficacy of *Thunbergia laurifolia* Linn. on reducing the inflammation through pathological changes. Syrian hamsters were divided into 6 groups, i) *Opisthorchis viverrini* infection(OV), ii) *N*-nitrosodimethylamine administration (NDMA), iii) OV plus fresh Rang Chuet, iv) NDMA plus fresh Rang Chuet, v) OV plus dried Rang Chuet vi) NDMA plus dried Rang Chuet. Gross and histopathology were observed under digital camera and light microscope respectively Liver function tests for alanine transaminase (ALT) and alkaline phosphatase (ALP) and kidney function tests (blood urea nitrogen (BUN) and creatinine) were investigated. Results showed that both fresh and dried Rang Chuet had the antioxidant capacity correlated to histopathological changes which showed the anti-inflammatory property in the case of OV plus Rang Chuet and NDMA plus Rang Chuet by reducing the aggregation of inflammatory cells surrounding the hepatic bile ducts, correlates to serum ALT, ALP, BUN and creatinine levels in Syrian hamsters treated groups. The present study found that fresh and dried Rang Chuet is clearly reduces the inflammatory cells in both treated groups , infected and administered NDMA groups and correlated with the total anti-oxidant capacity. This finding suggests that *Thunbergia laurifolia* Linn has anti-oxidant and anti-inflammatory properties which may useful for application of *Thunbergia laurifolia* Linn on prevention of inflammatory process which is the risk factors of *O. viverrini* associated - cholangiocarcinoma.

Certificate of Attendance

presented to

Nadchanan Wonkchalee

for the poster presentation

In the Pre-Congress Symposium 2012

"Research and Development for eliminating the liver fluke and cholangiocarcinoma"

Auditorium II, Faculty of Medicine, Khon Kaen University, Thailand

09 October 2012

Associate Prof. Vajarabhongsa Bhudhisawasdi
Director, Liver fluke and Cholangiocarcinoma Research Center

1st APAP

Proceedings of The 1st Asian Parasitologists (APAP): Helminthiases in Greater Mekong Subregion

12 May 2013

Faculty of Medicine, KKU

Khon Kaen, Thailand

Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; ² Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand; ³ The Royal Golden Jubilee Ph.D. Programme of Thailand Research Fund (RGU-TRF); ⁴ Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40002, Thailand; ⁵ Department of Microbiology; ⁶ Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand; ⁷ Department of Pathology, Gifu University Medicine, Graduate School, Gifu 501-1194, Japan; ⁸ Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
Email: jorasa@gmail.com

ABSTRACT

Praziquantel is the drug of choice for liver fluke infections, during which the parasites release a large amount of antigens, leading to an accumulation of inflammatory cells surrounding the hepatic bile ducts which causes cell damage. *Thunbergia laurifolia* Linn. is a traditional plant which has antioxidant and anti-inflammatory properties in vitro and in previous studies on hamster opisthorchiasis. Therefore, in the present study we demonstrated the combined effect of *Thunbergia laurifolia* Linn. (RO) plus praziquantel (PZ) on hamster opisthorchiasis and cholangiocarcinoma (CCA). Hamsters were divided into six groups: i) infected with *Opisthorchis viverrini* plus praziquantel (OV_PZ); ii) infected with *O. viverrini* plus PZ and RC (OV_PZ_RC); iii) infected with *O. viverrini* plus *N*-nitrosodimethylamine (OV_NDMA); iv) infected with *O. viverrini* plus NDMA and RC (OV_NDMA_RC); v) infected with *O. viverrini* plus NDMA and PZ (OV_NDMA_PZ); and vi) infected with *O. viverrini* plus NDMA, PZ and RC (OV_NDMA_PZ_RC). Light microscopic observation of histopathological changes, liver function tests for alanine transaminase (ALT) and alkaline phosphatase (ALP), and kidney function tests for blood urea nitrogen (BUN) and creatinine were performed. The study found that RC extracts clearly improve the hepatobiliary system by reducing inflammatory cell aggregation and inhibiting CCA development, results which were correlated with serum ALT level. These findings suggest that administration of *Thunbergia laurifolia* Linn. after praziquantel treatment may improve the hepatobiliary system and could reduce the risk of CCA development.

© 1st Asian Parasitologists (APAP): Helminthiases in Greater Mekong Subregion
A combination of praziquantel and traditional plant, *Thunbergia laurifolia* Linn, improve hepatobiliary system in Syrian hamster opisthorchiasis and cholangiocarcinoma

Khon Kaen University

Supported by The Royal Golden Jubilee Ph.D. Programme and PhD 0280/2552, RMU5480002 and TRF Senior Research Scholar Grant no. RTA5580004

2-2 Effect of *Thunbergia laurifolia* on experimental opisthorchiasis and cholangiocarcinoma

第69回日本寄生虫学会 西日本支部大会

プログラム・講演要旨

○ Wonkchalee N^{1,2}, Wu Z¹, Boonmars T^{2,3}, Nagano I¹, Maekawa Y¹, Pairojkul C⁴,
Chamgramol Y⁴, Warasawapati S⁴, Aromdee C⁵
¹Dept of Parasitol., Gifu Univ., ²Dept. of Parasitol., ³Liver Fluke & Cholangiocarcinoma
Research Center, ⁴Dept. of Pathol., Fac. of Med., ⁵Fac. of Pharm. Sci., Khon Kaen Univ.,
Thailand

Abstracts

It well known that liver fluke, *Opisthorchis viverrini* (OV), is a health problem in northeastern part of Thailand. This parasite has been reported that it correlated to the cholangiocarcinoma (CCA) development. Treatment of OV infection is very easy by efficacy drug, praziquantel but treatment of CCA is remained a problem. Therefore, prevention of CCA development by reducing liver pathology from OV infection is one of choices that may be effective. *Thunbergia laurifolia* is a medical plant that has antioxidant anti-inflammatory and anti-cancer activities. Therefore, the aim of study was to investigate the effect of *T. laurifolia* on opisthorchiasis and CCA through pathological changes, liver function tests for alanine transaminase (ALT) and alkaline phosphatase (ALP) and kidney function tests for blood urea nitrogen (BUN) and creatinine in animal model. The results showed *T. laurifolia* reduced the inflammatory cells surrounding hepatic bile ducts in OV group and reduced bile duct proliferation in CCA model compared to untreated group which correlated to the ALT level. Moreover, after treatment with praziquantel, the *T. laurifolia* treated group was trend to reduce inflammation and decrease serum ALT with time manner. Blood urea nitrogen and creatinine of *T. laurifolia* treated group were in normal level which suggests no toxic effect from this plant. This study suggests that *T. laurifolia* pathological changes in OV infection and CCA model which may be useful for prevention of CCA development.

会期：2013年10月19日(土)13:00～10月20日(日)17:00
会場：アルファあなぶきホール(香川県木田郡三木町池戸1750-1)

大会長：香川大学医学部国際医動物学 新井明治
大会事務局：香川大学医学部国際医動物学
〒761-0793 香川県木田郡三木町池戸 1750-1

Tel: 087-891-2122 E-mail: parawest@med.kagawa-u.ac.jp

RGJ - Ph.D. Congress XV

การประชุมวิชาการ
โครงการปริญญาเอกกาญจนากิจเอก ครั้งที่ 15

May 28-30, 2014
Jomtien Palm Beach Resort
Pattaya, Chonburi

The Royal Golden Jubilee Ph.D. Program
The Thailand Research Fund

ISBN 978-616-7739-44-1

Effect of *Thunbergia laurifolia* on Opisthorchiasis and *Opisthorchis viverrini* Infection-induced Cholangiocarcinoma

Nadchanan Wongchalee,^{a,b} Thidarut Boonmars,^{a,b} Zhiliang Wu,^c Chantana Aromdee,^a
Yaovaluk Chamgramol,^c Chawalit Pairojkul^c and Sakda Waraasawapati^c

^aDepartment of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

^bLiver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand.

^cDepartment of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.

^aFaculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen 40002, Thailand.

^cDepartment of Parasitology, Gifu University Graduate School of Medicine, Gifu 5011194, Japan.

Introduction and Objective

Thunbergia laurifolia is a herbal medicine used in Thai traditional medicine. It was reported to possess potency in anti-oxidant and anti-inflammation activity. The aim of the present study was to investigate the effect of *Thunbergia laurifolia* and its compound, apigenin, on opisthorchiasis and *Opisthorchis viverrini* infection-induced cholangiocarcinoma through histopathology, cell cycle arrest and gene expressions.

Methods

In vivo experiment: hamsters infected with *O. viverrini* only and infection-induced cholangiocarcinoma were treated with or without *T. laurifolia*. The histopathological changes among the various animal groups were compared. In vitro experiment: effects of *T. laurifolia* and apigenin on proliferation of cholangiocarcinoma cell were evaluated with SRB assay and trans-well migration assay. Effect on cell distribution was analyzed with flow cytometry. The expressions of cell cycle arrest related factors were analyzed with real-time PCR and western blot.

Results

In vivo treatment of *T. laurifolia* reduced inflammatory cell aggregation and pathology in infected and infection-induced cholangiocarcinoma group when compared with untreated control. *Thunbergia laurifolia* could also improve the damage of liver as indicated by the decreasing of serum ALT level. In vitro, both *T. laurifolia* and apigenin inhibited the proliferation of cholangiocarcinoma cell in a dose- and time-dependent manner and cell migration ability. Cell cycle distribution analysis indicated that *T. laurifolia* and apigenin arrested cell cycle at G2/M phase. Corresponding to the cell cycle arrest, the expressions of p53, p21, p27, CDK1 and 14-3-3 which are related to the suppression of G2/M phase process were increased and the expressions of cyclin B1 and cyclin D1 which are related to the promotion of cell cycle process were decreased.

Conclusion

The present study indicates that *T. laurifolia* could improve the inflammation and pathology of opisthorchiasis-associated cholangiocarcinoma. Both *T. laurifolia* and its main compound apigenin could inhibit the tumor cell proliferation by arresting cell cycle at G2/M phase. These findings provide new knowledge on prevention and treatment of plant diet on *O. viverrini* infection and human cholangiocarcinoma, and may contribute to control of opisthorchiasis-associated cancer.

Keywords: *Thunbergia laurifolia*, Rang Chuet, *Opisthorchis viverrini*, cholangiocarcinoma

Selected Reference:

- Oonsivilai, R.; Ferruzzi, M. G.; Ningsanond, S.; Antioxidant activity and cytotoxicity of Rang Chuet (*Thunbergia laurifolia* Lindl.) extracts. *As. J. Food Ag. Ind.*, 2008, 1(02), 116-128.

Nadchanan Wongchalee (ນັດຈະນັກ ວົງຈະລູ້) RGJ 11

Khon Kaen University, Thailand, Nursing, 2008

Khon Kaen University, Thailand, M.Sc, 2010

Research field: parasitology, molecular, health care

Thailand Research Fund Senior Research Scholar Meeting 2014

Professor Dr. Wanchai Maleewong

“Basic and Applies Knowledge of Parasitic Diseases and Agents: Frontier Research on Parasites in Greater Mekong Sub Region”

Venue: 8.00 - 16.00, 8 May 2014, KKU-MED-Alumni Association Meeting Room,
Third floor, Conventional Academic Building, Faculty of Medicine, Khon Kaen University, Khon Kaen

08.00 - 09.00	Registration
09.00 - 09.10	“Reception and Reporting Remarks” by Professor Dr. Wanchai Maleewong (TRF Senior Researcher, Thailand Research Fund, Chairman of Organizing Committee; Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University)
09.10 - 09.25	“Opening and welcome Remarks” by Assoc. Prof. Charnchai Panthongviriyakul, MD. (Dean, Faculty of Medicine Khon Kaen University)
09.25 - 10.00	1. “How to publish your research work in a peer-reviewed journal ?” by Prof. Wanpen Chaicumpa, D.V.M. (Hons.), Ph.D. (Chair Professor and Research Consultant, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University)
10.00 - 10.35	2. “Pathogen and animal Toxin Act: laboratory role and responsibility” (พ.ร.บ. เรื่องโรคและพิษจากสัตว์: บทบาทและความรับผิดชอบของห้องปฏิบัติการ) By Dr. Patravee Soisangwan (Director Bureau of Pathogen and Animal Act, Department of Medical Sciences, Ministry of Public Health)
10.35 – 10.55	Coffee / Tea Breaks
10.55 – 11.25	3. “Current status of Capillariasis in Thailand” by Prof. Pewpan Maleewong, MD. (Professor of Parasitology, Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University)
11.25 – 11.55	4. “Opisthorchiasis Associated Cholangiocarcinoma : Risk Factors for Cholangiocarcinoma (CCA), Promising Herbal Medicine for CCA Prevention and Treatment” by Assoc. Prof. Thidarut Boonmars, D.V.M., Ph.D. (Department of Parasitology, Faculty of Medicine, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University)
12.00 - 13.00	Lunch Symposium
13.00 – 13.20	5. “Detimental Effect of Water Submersion of Stools on Development of <i>Strongyloides stercoralis</i> ” by Assist. Prof. Witthaya Anamnart (Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University)
13.20 – 13.40	6. “Acanthamoeba Diagnosis” by Dr. Porntip Laummaunwai (Department of Parasitology, Faculty of Medicine, Khon Kaen University)
13.40 – 14.00	7. “Rapid Molecular Identification of Human Taeniod Cestodes by Pyrosequencing Approach” Assist. Prof. Dr. Tongjit Thanchomnang (Faculty of Medicine, Mahasarakham University)
14.00 – 14.20	8. “A Recombinant Matrix Metalloproteinase Protein from <i>Gnathostoma spinigerum</i> for Serodiagnosis of Human Gnathostomiasis” by Dr. Penchom Janwan (Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University)
14.20 – 14.40	9. “Molecular Variation in the <i>Paragonimus heterotremus</i> Complex in Thailand and Myanmar” by Dr. Oranuch Sanpool (Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University)
14.40 – 15.00	Coffee / Tea Breaks
15.00 – 15.30	10. “Current Status of Human Hookworm Infections, Ascariasis, Trichuriasis, Schistosomiasis Mekongi and Other Trematodiases in Lao People's Democratic Republic” by Dr. Sakhon Laymanivong (Centre of Malaria, Parasitology and Entomology, Ministry of Health, Lao PDR)
15.30 – 16.00	Closing Remark, Professor Dr. Wanchai Maleewong