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Abstract

Mathematical models of ecosystems involving single specics or two species, namely a
predator-prey system, are modified to incorporate the effect of an external force or a third factor.
This can be the effect of the geomagnetic field variation on the cell membrane permeability in an
activated sludge process, or the effect of parasite invasion of a predator-prey system, or the effect
of toxicaﬁts on the population in a closed environment.

The resulting models consist of three nonlinear ordinary differential equations. The
research project is organized into mainly 4 stages. In the first stage, variation in the third factor
with time is taken under consideration in the form of one of the three differential equations which
comprise the model.

In the second stage, the variation in the third factor is not taken into the hodel, while the
prey population is divided into two groups; namely, the susceptible prey and the infective prey.

In the third stage, the variation in the third factor is still not taken into the model, while
the predator population is divided into two groups; namely, the susceptible predator and the
infective predator.

In the fourth and final stage, the third factor, which is the level of toxicants in this case,
is divided into two groups; namely, the level of toxicant in the environment, and that in the
population.

Analysis of the models are carried out using either the bifurcation theory or the singular
perturbation technique. The study allows us to better understand the systemns under study as well
as learn how to manage and control them more efficiently. The results of our study should
therefore yield valuable insights which has far reaching repercussions on the environmental

problems we are facing today.
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Dynamic Behavior of a Membrane Permeability Sensitive Model

for a Continuous Bio-Reactor Exhibiting Culture Rhythmicity
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ABSTRACT

A modified Monod model of a continuous microbial culture in which the yield term depends
linearly on the subsirate concentration is extended 1o incorporate the effect of external forces on the
cell membrane permeability. Bifurcation analysis of the new mathematical model, which consists of
three non-linear ordinary differential equations, shows that the model can simulate the oscilfatory
behavior observed in experimental data for ceriain ranges of the system parameters. Computer
simulation of the model is presented in suppors of our theoretical predictions.

INTRODUCTION

. Sustained oscillations in the patterns of microbial growth and product formation
have been frequently observed in continuous cultutes when the feed conditions and the
culture conditions remain constant [ 1, 2 ]. According to Yerushalmi et al. { 2 ), these
oscillations are even more pronounced in the long term fermentations or in the cell-retention
fermentations where the cells stay in the bio-reactor for long periods of time.

Although the mechanism for these oscillations is not yet fully understood, it is clear
that occurrence of such oscillatory behavior has adverse effects on the efforts to optimize
the operation of continuous bio-reactors. It also effects productivity of the process and
cornplicates its proper design. It is therefore most important to investigate in depth the
factors that cause such rhythmicities, the explanations for which range from experimental
errors to the changing microbial physiological behavior often attributed to changes in the
cellular metabolic pathway under certain conditions. Recent studies of the parameter affecting -
the cell physiology of C. acetobutylicurs showed a high sensitivity of growth and solvent
production to the cytoplasmic membrane permeability [ 2 }. A high permeability of the
cytoplasmic membrane promotes the growth of the microbial culture, the utilization of the
substrate and the biosynthesis of the solvents. The opposite result is obtained with a low
permeability of the cell membrane.

The controlling action of the cellular membrane permeability on the activities in
many anaerobic processes has been frequently observed. Examples include the influence of
plasma-membrane lipid composition and membrane fluidity on growth and solute
accumulation by S. cerevisiae | 3 |, growth of Closisidium thermecellum | 4 ], and growth and
production of ethanol and glycerol by yeast cultures | 5 §.
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In this paper, we consider a mathematical model which incorporates this sensitivity
to the cellular membrane permeability, the specific rate of change of which is assumed to
vary in a sinusoidal fashion. One physical controlling factor which has been proposed to
exert its biological effect on the cytoplasmic membrane permeability is the geomagnetic
field variation. This concept has been extensively investigated and is well supported by
experimental evidence [ 6, 7 ]. Attempts to incorporate such effects into a model of the
continuous microbial culture was carried out by Yerushalmi er al. [ 2 ]. We consider a
modification of their model based on an adaptation of the Monod model in which the yield
term is assumed to vary linearly with the substrate concentration. Through bifurcation
analysis, the model is shown to simulate different oscillatory behavior observed in
experimental data.

SYSTEM MODEL

Basically, microbial kinetics have varied in diverse ways from a model due to Monod
fashioned after Michaelis-Menten kinetics for single enzyme-substrate reactions. This simple
but valuable model views microbial growth as conversion of a fixed amount of substrate
{ or nutrient ) to biomass occurring autocatalytically in the presence of preexisting biomass
[ 8 ]. The yield coefficient Y in the Monod's model is constant. The most obvious departure
of the predictions of Monod's model, apparently, is in the variation of the stoichiometric

- coefficient Y. Theoretical studies of models in which the yield term varies linearly with the
substrate concentration can be found in the work of Agrawal er al. [ 8 ] and that of
Lenburyeral [9]. In [ 8 ), Agrawal et al. carried out an extensive theoretical investigation
of the dynamic behavior of isothermal continuous stirred tank biological reactors modelled
by the following mass balance equations on cells and the limiting substrate:

ds

'a"t— = _G(S)X“‘D(a)_ S) (1)
X = usx-px ' '
dt - (2)

where X denores the cells concentration; S the substrate concentration; u(S) the specific
growth rate; o(S) the specific substrate consumption rate; Sy the feed substrate
concentration; and D the dilution rate.

In their work, the function o(S) was assumed to have the form

H(S) : H.5
a(S = g _—__m= .
®) Y(s) (K + S)Y(S) (3)

where p_ is .ne maximum specific growth rate and K is the Monod constant while
the yield teem Y( S) has the form
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armount of bilocmass formed = aS+bh
Y( S ) = amount of substrate consurmed ( 4 )

which reflects the increase in the yield in response to an increase in the substrate
concentration S. This also includes the case of constant yield when a = 0.

The model equations { 1) and { 2 ) do not take into account the variation of the
membrane permeability with time. Since studies have confirmed high sensitivity of culture
growth and production to membrane permeability, it is suggested in [ 2 ] that the influence -
is incorporated into the system model so that the mass balance equation on the limiting
substrate 15 given by

’

ds n §X

da S+Kq

+D(Sg-9) (5)

where n' = kn, with k a proportionality canstant, and n the number of active nutrient
transport sites. According to Yerushalmi er 4l [ 2 ], permeation dynamics is the major
factor responsible for the formation of the active sugar ( nutrient ) trz isport sites, especially
in the aging celis. This is in turns due to the accumulation of the non-active deposits in the
cytoplasm which make the permeation control the incorporation of the protein in the lipid -
skeleton of the cytoplasmic membrane. This relationship may be described by the equation:

d d

where P measures the membrane permeability and k, is a ccastant of variation. Integrating
equation ( 6 ), we obtain the relation

X =k XP+ ki (7)

where k; is a constant of integration.
Using ( 7 ), equation ( 5 ) may be cast in the following form:

dS _  (CXP+Cy)S

at SrK)Y +D(So-S) (8)

where C; = kk Y and G, = kk;Y are constants. In other words, assuming that the yield
term is constant, the specific growth rate has the form :
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(CP+Cy 1 X)S
(S+Kmp) (9)

so that the mass balance equation for X becomes

dX _ (CXP+Cp)S
gt (S+Ky) DX (10)

in which the effect of permeability variation has been taken into account. On the other
hand, it is reasonable to expect the yield coefficient Y to reflect the varying amount of
nutrient mass required to produce a unit of biomass, as has been argued in [ 8 ] and
[ 9] for example. We therefore combine both effects by letting Y assume the form in
{ 4 ) so that the mass balance equation for S becomes

ds _ ([GXP+Gy)8

CO = (1)

Fxperimental evidence has shown that external forces such as electrical or magnetic
fields can contribute to permeability by introducing an ‘order’ in the composition of the
cytoplasmic membrane { see [ 2 | for more detail ). As a result, the cellular membrane
permeability can follow an oscillatory pattern which can be described by the following
equation:

dpP
a— = —Kcosggt)P (12)

where K is a proportionality constant. Equation (12 ) describes the periodic changes
in the cytoplasmic membrane permeability when there is no cells growth. If there is cells
giowth, the newly formed cells posses thin cell membrane “with high permeability which
cont:ibutes to an increase in the apparent permeability of the cells population. In the case
of influence from the geomagnetic field variations, the period is found to be approximately
24 hours, so that wy= 2 /24. However, to include other factors which may effect membrane
permeability in the similar manner, we let w; be an arbitrary constant frequency of oscillation
of the applied field. '

Thus, the variation in the permeability of the cells population, based on the overall
cells mass, can be described by the following equation:
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d dx
—(PX) = - tPX+ ¥, 2L
dt( ) Keos{wpt)PX+ ¥, =

in which the first term on the right was directly obtained from equation (12), describing
- the periodic changes in the membrane permeability, while the second term describes the
increase in the apparent permeability of the cells population due to the growth of the
culture and the formation of new cells, assuming that the inhibitory effect of other factors
such as the butanoal level is neglegible. '

Eliminating X from both sides of the above equation results in the following
expression:

— = -~ YcoskoptlPs (% —Pu (13)

where p is given by aquation ( 9 ).

Therefore, our system model consists of equations (10), (11}, and (14) with (9). We
are interested in the dynamic behavior and , in particular, the existence of different types
of oscillatory behavior in the system described by these three equations.

BIFURCATION ANALYSIS

For the following analysis, it is convenient to introduce new variables. Namel we
define T = Dt, x = Xfa,y =PC/D ,z =35 p=0C/aD , M=k, d = b/,
g = S5, a= 1D, B= 1,C/D,u = cos(wt), v =7ysin (o), and
w = wyD.

In these variables, our model equations becomes

dx z

- = (xy+P)M+Z*x {14)
dy _ _ P Zz R
Fi ouy +(f Y”Y*“;]M z (158)
dz z

5 -(xy+9)m+ (20 - 2) {16 )
du

o = Cov (17)
dv

d__r=mu (18)
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The above system has a steady state solution (x, y,, z,, u,, v,) obtained from eqﬁating
the right sides of equations ( 14 ) - ( 18 ) to zero, namely

Ys B (19)

Z
BT e i (20)
Xg = (zgtd) (zgz) (21)

and Us=0. Vg = 0 (22)

If we let
z
N
5 (Bxg+PIM
M+ 2 (24)

then the Jacobian matrix | of the system of equations ( 14 ) - { 18 ) evaluated at the
steady state ( x,, y,, Z, u,, v,} can be written as

-1 oxg 5 0 0
0 -1 o -ays O
6p X OP-Md)
12s+d ze+d * M{zg+.d)

0 0 0 0 -o
0 0 0 w 0

The 5 eigenvalues of | are found to be




J.SciSoc. Thailand, 24(1995) 103

;
A2 = %r(a)tgz\”"’(a) (25)

Ay = *iw
where
5% ~ Mad)
s = ,86"'——5_'—2
(8) Mize+ O (26)

2
I:S(Zs - Md) 4], _8p8 )

ALS) = r?(a)ﬂs{(ﬁa-ﬂlwz e
S

(27)

Zg+d

Due to the complex conugate eigenvalues % iw , therefore, the model will have a
pertodic solution for appropriate parametric values. In particular, by the theory of ordii:ary
differential equations, if the parametric values are sucn that all .igenvalues o.her tha Uy5
have negative real parts, then the simulated solution trajectorias close to the steady state
will approach a clrsed cycle surrounding the critical point { x, y, z, u, v) in the five
dimensional phase space. In this case the profile of x( T ) will be periodic with time
closely resembling the regular rhythmicity found in many experimental data. However,
such closed cycles lying on a plane in the phase space cannot simulate more irregular
oscillatory patterns also observed in other data, such as that taken from the work of
Paruleka er al {10] presented in Figure 1. Mere, alternatively low and high peaks can be
observed in the growth pattern. Such charactenistics appear in all their runs under d. ferent
operating parameters.

To investigate the possibility of such higher dimensional cscillations in our model,
we consider the system of equaticns (14 ) - (16 ) with o = 0, and let

5, = (BO-1)2(z+d)/ O ( 28)
6, = (2-Bb)(zs+d)y (29)
where
y = {zg+ )M
zsa—Md {30)
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According to Hopf bifurcation theory [ 11 ], if a value §_ can be found such that

) Re A,() = 0,
i) A (8) and A,(8.) are complex conjugates,

i)  Im A (8) = O,

iv)] Re A'(8)) # 0, where X' denotes the derivative of A,

v}  all other eigenvalues have negative real parts,

then the svstem of equations ( 14) - (16) with o = 0 will have a family of periodic
solutions for values of & in some open interval ( 8, ,6.+€). The result is stated in the

following theorem.

Theorem If
y > 0 (31)
B > 1 (32)
1- Y70 +1)
1/ > 0 > — 5 (33)
and vy > M > 128 (34)
@

then the system of equations ( 14 } - ( 16) with o = ¢ will have periodic solutions bifurcating
from a non-washout steady state for values of & in some open interval (& ,5 +€) where

is given by equation { 29 ).

Proof First, we show that with 8 so chosen, &, < &_by considerinig the equation

.2_ - 1
"F(e) = (B6) 2“39“?7? =0

The function F(8) is quadratic in 8 and has two real roots:

81, = L_B___W’ 0+ (35)
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Thus, for 6,> 0>8, , we have F(0) < 0, that is

1

T+1<0

(BO)° ~ 2(B0) +

Rearranging ( 36 ), we find
(B8)° — 2(BO) +1< (2B6 — B26°)Y

Multipying both sides by z,+d, we have

(#6 —1F (zg+d)

5o < (2-P0O)(zg + d)y

That is, we ha =

if 8> 08>8, . However,

o - Ty

so that if 0 satisfies inequality ( 33 ) then

o, > 1B > 8 > 6

which implies ( 39 ) as claimea.

Now, we observe that

r (s, = 0

and ABY = 4[-([39_1)2 . :;B%%]
s

(36)

(37)

(38)

(39)

(40)

(41)

105
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which is negative because of inequality ( 39 ). Thus,

ReA (8 ) = (8,02 = 0

and A (§,) and A, (8 ) are complex conjugates. Also, since we have strict inequality
in { 39),

Im i, (5.) = %PA@N”2*O

These are requirements i), ii), and iii), respectively.

Moreover, from ( 26 ) we have

. (ze —Md) _ 1
I"es.) = =
%) Mz + d)° Y(zg+ d)

and therefore Re A'; (§.) # 0 which is requirement iv). Finally, the 1emaining eige.ivalue
is Ay =-1<0

Thus, all requirements for Hopf bifurcation are met. For & in some open interval
(8, ,5.+€), the system of equations (14 ) - (16) witha = 0 will have a periodic solution
bifurcating from its steady state ( x, y,, z_). For the system of equations (14 ) - ( 18)
with o # 0, this means that if conditions ( 31 ) - (34 ) are satisfied a Hopf bifurcation
occurs on top of the existing periodic solution { due to the eigenvalues *iw ) giving rise
to solution trajectory on a 2-torus in the five dimensional phase space.

With the above choice of parametric values, Hopf bifurcation occurs at a non-washout
" steady state ( x,, y,, z,), namely y =820 and from (23 ),

19 (42)

Mg ' '
since 7°g > 0, with 8 chosen to be less than 1/p 1. Then, the value of d can be

determined from ( 30 ) as

Yzt T ZgM

d= M(Y+1) (43)
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Since

( vz - z,M) (Mz2 - zM) = M{( z2-z)

and z > 1 by the second inequality in ( 34 ), we have d > 0.

With these values of vy, B, 8, z, and d, the critical value §_can be found from ( 29).
[t is important to note that with our choice of v,

G<B1=1_4.-— ”[;(M‘<

2
B
since 61_1) < 1. Therefore 2-6f > 0 so that the value of &_ given by (29 ) will be

positive.

The parametric value & > 0 is then chosen to be in the interval ( §_,8_+€)
for some small € > 0 so that Hopf bifurcation may occur. Then, x_can be determined
from (20 ) and (24 ) as

p 4 = d(h.+ z jz/tv1 > 0 { 44)

H

Then, from ( 20 ) and ( 21 ) we find that

XM+ 2z
p= S( S)_Bxs
Zg
That is,
p = xs(l-eﬁ)/e {45)

which is positive since 8 < 1/f.
Finally, from ( 21 ), we have
Xs (46)

= + Z
ZO Zs+d 3 >,0

using the values of x_, y_, z and d found previously
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Fig. 1. Alternatively low and high peaks can be observed in the profile of cells concentravion | x ), for w Lich the
data peints have been taken from reference {10} of continuous culture with fixed ddusion rate: D = 0.2
he!, pH = 55, Temp = 30° C N
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Fig. 2. Computer simulatiun of ths model sysiem of equations { 14) - ( 18 ) with parametric values chosen
so that bifurcation occurs: M =1, y=1, =15 6 =08, vy, =15.d=0375 8&=21 x, =7875
p=13125 Zy;=57, @= /12and e =1 The solution trajectory, projected onto the ( %, y }-plane,
is seen to approach the closed curve on a torus surrcunding the steady state { %, vy, z, u, v, ) = (7.875,
15,150, 0)
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Fig. 3. The simulated time course of cells concentration x of Fig. @ exhibiting alternatively low and high peaks
resembling those observed in experimental data.
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2 4 6 8 10 12 14

Fig. «. The effect of varying the field density constant a. In the inset, where o =0, the solution trajectory

is seen to approach and lie on the plane y = B as time progresses.
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In Figure 2, we present a computer simulation of the model equations ( 14 ) - { 18)
with a# 0 and parametric values chosen to satisfy the bifurcation requirements ( 31)
-(34). The solution trajectory is seen to approach the closed curve on the surface of
a 2-torus surrounding the steady state ( x,, y,, 7, U, v )= (7875 15,15 0,0) in
the 5-dimensional phase space, seen here projected onto the ( x, y } - plane. The time course
of cells concentration is shown in Figure 3 exhibiting alternatively low and high peaks
which compares well with experimental data mentioned earlier { Figure 1 ). When different
parametric values were tried, we have been able to generate different oscillatory patterns
resemnbling those observed in experimental data of continuous cultures under different

operating parameters { 1, 10 j.

ASYMPTOTIC BEHAVIOR AND STABILI'i'Y ANALYSIS
On multiplying equation { 14 ) by y, equation ( 15) by x, and adding, we obtain
the equation

id:‘; = (au-1)w +B(w +,0)M‘7iZ

(47)

where w = xy. We see that equations ( 16 ) and { 47 ) involve only the two variables w
and z, and therefore can be solved without the help of equation (14). Letting ( W ( T),
Z (T)) be the solution to equations ( 16 ) and ( 47 ), equation ( 14 ) may then be written
as

dx
aT F(T) - x (48 )
where F(T ) = ( w({T)+ p) Mf;T- is a known function of T. Equation (48) can be

solved directly for the solution x = X (T).
Moreover, on substituting z = 0 in { 16 ), we find that

dz

= > O
atl,,  °

which tneans that

z(T)Y20 foralT 2 0O { 49)
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Consfdering equation { 47} with w =0, we also have

aw] _ Bz
dTlye M+2Z

for positive parametric values. Thus,
x(Ty(T)20 foral T20 { 50)
Using ( 49 ) and ( 50 ) in ( 48 ), we again have

x(T)2 0 forall T20 (51)

Therefore, we conclude that all solutions to our system model remain in the positive octant
of the ( %, v, z ) space.
Further, with ( 49 ), ( 50 ) and ( 51 }, equation { 15 } can be written as

dy

57 = "ouly-p)-y-BIG(T)-opu (52)

&MY+ p) 2(T) _ : -
where G(T) = M + TR0 is a known function which satisfies

G(T) 2 Qfercl T 20 (93)

Using the Liebnitz' formula to solve equation ( 52 ), we obtain

y ) p= e-av(T)—h(T){c _ GBOIeav(THh(t)u(t)dt} (54)

where h{M = OIG“)C" and ¢ is a constant of integration. Since ( 53 ) holds h( T ) is

. . . oy (T) .
increasing with T . Also, € <e” since -1< v(T) < 1. Thus, we have

—nim X - T \ IV
|e hi(Ty Ie““’u(t)dﬂ < g2¢ “‘T‘e"ml_'u(r)dt, < e
0 0
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Thus, letting T — e in ( 54 } we find
W(T)-B = ofey, (Mas T oo

where y_(T) is a bounded function. In other words, with o = 0, all solutions to the system
of equations ( 14 )-( 16 ) approach and lie, as time passes, on the plane y = B in the (x,
¥, Z ) space.

Figure 4 shows the effect of varying the field density constant o on the position and
shape of the solution trajectory. The solution trajectofies for smaller @ are closer to the
plane y = B

With regards to the stability of these periodic solutions, one can apply various stability
criteria ( see, for example, [ 11 | ) on the system of equations (16) and (47 ) with
o = 0 which describes the solution curve (%( T ),Z (T } ). It turns out to be very laborous
calculation if one allows complete generality for the system parameters. However, for the
case p =0 and P = 1, equations { 16 ) and ( 47 ) may be written as

dxy
= p—
e n(xz)x1 X (55)
dx - _ _ .
a7 = Z(Xa))ﬂ-ﬁ-)(? (56)
where x, = —, x,= 1- Z.
Z0 Zo
nixy) = {1-x3)
? 1+¢'*X2 (57)
and
. {xp) -
L(xs) = —
< 1+ W - %o {(58)
with ¢=M, and \y=i
) zp

By making use of the Poincare’s criterion and Friedrichs' bifurcation theory, the
following condition for orbitally stable periodic solution of equations { 55 Y and ( 56 ) can
be found [ 8 |:
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4an’(x25°) xz5"
32’”(!25') XZS‘ < Z“(Xz,') 1+‘_'-£)—_2i' (59 )
3”'()(29‘}‘-

where Xpg  is the value of a4 =1—is- at the critical value & of 8. That is, from
Z0

(24) and (29),

. 1 &
X2 = 1 —Z[m—d:l

Using { 57 ) and ( 58 ) in ( 59 ), we find that the bifurcated periodic solution will
be stable if

Flo.w) = [“*zs"W“*B’]{gx%s.""*3'*2:‘}"“*2:‘92 < 0 { 60)
where
9:(1‘0"4’—)(25‘)
(1+¢_x25.)

Therefore, the bifurcation originating at the critical value &_of & is stable if
F <0 and unstable if F > 0. Moreove, it can be shown that a stable bifurcated periodic
solution surrounds an unstable critical point. If it surrounds a stable critical point, it is
unstable.

CONCLUSIONS

A model of three ordinary differential equations is used to describe, under certain
simplifying hyvpotheses, a membrane permeability censitive chemostat systemn. Depending
on the values of the system parameters, the model system may exhibit sustained regular
oscillation in the form of a one frequency limit cycle. or a more irregular oscillation in the
form of a solution trajectory on the surface of a torus surrounding a non-washout steady
state. Thus, by incorporating the effcct of membrane permeability variation, the model is
shown to be capable of exhibiting oscillatory behavior which compares well with observed
experimental data. A stability investigation shows thar if the quantity F(¢, y) has positive
value then the bifurcated solutions are repelling and if 1t 15 negative then the solutions are
attracting.

Factoss such as electric and magnetic forces have been proposed to have significant
effects on cytoplasmic membrane permeability inducing oscillatory pattern in permeability
which in turn causes the rhythmicity in the microbial growth patterns. Some investigations
have been carried out in that Jdirection [ 2, 7 ). Nontheless, relatively little efforts have been
made, up to date, to model such effects of rhythmic vanation in membrane permeability
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on microbial culture, in order that their biochemical impact may be better understood and
appreciated. More in depth studies of the causes and mechanism of the rhythmicities are
clearly needed, the repercussions of these kind of studies in the large scale fermentation
industry being significant indeed.
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Bifurcation and Chaos

in a Membrane Permeability Sensitive Model
for a Continuous Bioreactor
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Abstract—In this paper, we investigate the dynamic behavior of a continuous stirred tank reactor
meodelled by cells and substrate balance equations which have been extended to incorporate the effect
of external forces on the cell membrane permeability. Bifurcation analysis done on the system of
three ordinary nonlinear differential equations which comprises the model shows that it can simulate
oscillatory behavior and more complex dynamic behavior which have been frequently observed in
experimental data. Investigation is carried out to identify parametric ranges for which we can expect
undesirable complex situations that can compromise the quality of the effiuent.

Keywords—Bifurcation, Limit cyeles, Continuous bicreactor, Membrane permeability, Chaotic

behavior.
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NOMENCLATURE

Proportionality constant, hr—1

Constant of integration, g/¢

Dilution rate, hr—1

Constants, g/

Number of active transport sites, hr—1

Measure of membrane permesability

Substrate concentration in the fermentation vessel, g/¢
Substrate concentration in the feeding solution, g/¢

Time, hr

Cell concentration in the fermentation vessel, g/¢

Yield coefficient for cell formation from the limiting substrate
Proportionality constants, hr—1!

Specific growth rate, hr—1

Maximum specific growth rate for the Monod model, Ar—1

External force field frequency, hr—%

1. INTRODUCTION

Continuous stirred tank reactors (CSTRs) are often used in wastewater treatment and biologi-
cal technologies, since they represent one of the simplest approaches to continuous processes [1].
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Activated sludge processes and the oxidation of some dangerous compounds usually take place in
well-mixed continuous reactors at ambient temperature. Most of these biological reactions, de-
scribed with Michaelis-Menton kinetics, exhibit chaotic behavior as shown by Agrawal et al. [2]
in their work on the theoretical investigations of isothermal continuous stirred tank biological
reactors. The appearances of limit cycles which can degenerate to chaos for certain values of the
control parameters of CSTRs have been more recently reported and discussed in {1,3]. Although
the mechanisms for this oscillatory behavior are not yet fully understood, it is clear that such
behavior affects the performance of the process and complicates its proper design and optimiza-
tion. Not only are these phenomena undesirable from the point of view of process control, they
can also give rise to potentially dangerous situations in the case of toxic compound treatment. It
is, therefore, necessary to investigate in depth the factors that cause such rythmicities in order
to better understand the underlying mechanisms and learn how best to avoid this undesirable
dynamic behavior. '

Basically, microbial kinetics have varied in diverse ways from a model due to Monod fashioned
after Michaelis-Menton kinetics for single enzyme-substrate reactions [1]. This model portrays
microbial growth as conversion of a'fixed amount of substrate (or nutrient) to biomass occurring
autocatalytically in the presence of pre-existing biomass. The yield coefficient, determined by
the amount of fresh biomass produced per unit mass of nutrient, remains fixed during the growth
process. The mass balance equations on cells and the limiting substrate can be expressed as

ax

= = DX + u(S)X, )
ds _ 8)
= =D(Sr - 8) - 57X, _ (2)

where X denotes the concentration of cells, § the substrate concentration, u(S) the specific
growth rate, Sr the feed substrate, and D denotes the dilution rate. Monod’s model regards the
yield coefficient ¥ as a constant and simply does not admit any periodic behavior. The most
obvious departure of the predictions of the Monod’s model is in the variability of the stoichiometric
coefficient Y, which has led to damped as well as sustained oscillations |4]. Other workers have
also theoretically studied the continuous reactor for the cases in which the specific growth rate
respends with time lag to changes in pH, or the Monod's equation holds for growth limitation, and
the case where growth inhibitors are formed during the process [5]. In [6], Lenbury et al. made
a theoretical study on the dynamic behavior of a single-vessel continuous bioreactor subject to a
growth inhibition at high concentration of the rate limitation substrate. Bifurcation and stability
analysis showed oscillatory behavior and complexity in terms of steady-states multiplicity and
characteristics.

Recent studies of the parameters affecting the cell physiology of C. acetobutylicum showed a
high sensitivity of growth and solvent production to the cytoplasmic membrane permeability [7].
A high permeability of the cytoplasmic membrane promotes the growth of the microbial cul-
ture, the utilization of the substrate, and the biosynthesis of the solvents. The opposite result is
obtained with low permeability of the cell membrane. The controlling action of the cellular mem-
brane permeability on the activities in many continuous processes has been frequently observed.
Examples include the influence of plasma-membrane lipid composition and membrane fluidity on
growth and solute accumulation by S. cerevisiae [8], growth of Clostridium thermocellum [9], and
growth and production of ethanol and glycerol by yeast cultures [10)].

In this paper, we consider a mathematical model which incorporates this sensitivity to the
cellular membrane permeability, the specific rate of change of which is assumed to vary in a
sinusoidal fashion. Bifurcation analysis of the model shows that it can exhibit oscillatory behavior
in the form of a closed orbit on the surface of a 2-torus for certain ranges of parametric values.
Further investigation shows that chaotic behavior can result for values of a control parameter
which correspond to the windows of chaos.
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2. SYSTEM MODEL

One physical mechanism which has been proposed to exert its biological effect on the vari-
ability of the cytoplasmic membrane is the geomagnetic field variation {7]. Due to its crystalline
structure, the performance of the cell membrane is influenced by such external forces. This con-
cept has been extensively investigated and is well supported by experimental evidence [11,12].
Attempts to incorporate the effects of external forces en the cell membrane permeability into a
model of the continuous bioreactor was carried out by Yerushalmi et al. [7] who asserted that,
as a result of the influence of the geomagnetic field, the cellular membrane permeability can
follow an oscillatory pattern which will in turn cause the complexed oscillatory behavior in the
bioreactor.

The geomagnetic field can exert its biological effect by introducing an “order” in the composi-
tion of the cytoplasmic membrane. It is well decumented (7] that the rodlike molecules in a liquid
crystal can orient themselves in a magnetic field which will increase the anisotropy of the liquid
crystals, making the cellular membrane more compact, resulting in a decrease in its permeability.
The opposite effect is observed when the external force is not so strong.

Studying the relationship between the magnetic field strength and the anisotropy of liquid
crystals, which is indirectly related to the cytoplasmic membrane permeability, it was found
in [7] that the variation of the membrane permeability P with time can be described by the

following equation:
dP

dt
where 7, is a proportionality constant which is related to the intensity of the external force field
that varies in a sinusoidal fashion (with a period of approximately 24 hours for the geometric
field variation).

Equation (3} describes the periodic changes in the cytoplasmic membrane permeability when
there is no cell growth. Growth of the cells contributes to an increase in the apparent permeability
of the cell population due to the newly formed cells which possess a thin cell membrane with high
permeability. Thus, the variations in the permeability of the cell population can be described by
the following equation:

= —; cos(wpt) P, - (3)

d(PX) )
T dt
where <3 is a proportionality constant. The second term in equation (4) describes the increase
in the apparent permeability due to the growth of the culture and the formation of new cells.
Eliminating X from both sides of {(4) results in the following equation for the dynamics of the
cells membrane permeability:

dx
= —; cos(wot) PX + vz —— e (4)

dP
— = —yr cos(wot) P + (y2 — Py, (5)

dt
where u is the specific growth rate. More detailed discussions on the derivation of the above
equations may be found in {7], where the inhibitory effect of buta.nol was also incorporated, but
which will be considered negligible here, however.

The rate of nutrient utilization in the continuous culture is proportional to the number of active

sugar transport sites which results in the following equation for nutrient uptake rate:

das n'S '

= X D(s
where n’ = kn, k being a proportionality constant, while the direct relationship between the
number of active transport sites and the membrane permeability can be expressed as

d(nX d(PX
(Zt : =k (dt : M
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Thus, integrating (7), we find that equation {6) reduces to
as (01 XP+ Cz)S
dt S+ Kn

where €y = kkp and C5 is a constant of integration.

+ D(Sr - 5),

(8)

Thus, our model system consists of equations (1),.(5), and (8), where the Monod model will

be assumed for the specific growth rate, that is

S
p(8) = S+K

3. BIFURCATION ANALYSIS

(9)

For the following analysis, it is convenient to introduce new variables. Namely, we define
T = Dt,a =n/D, 8§ = 12C1/tim, 1 = pm/D, w = wo/D, p = —C2/ttm, M = Km, z = X,

y=C1Plum, z = S, 2o = Sp, u = cos{wpt), and v = sin(wpt).
In these variables, our model equations (1), (5), and (8) become

dr  nzz s

dT ~ 2+ M '

dy

ET —ouy+ (B -y)—— +AJ

dz nz
ﬁ—-(my"p)z+M+(zo z),
du _ Wy

dT !

Lo

dT"‘— .

(10)
(11)
(12)
(13)

(14)

The above system has a steady state solution (zs, y¥s, 25, s, vs) obtained from equating the

right sides of equations (10)—(14) to zero, namely

1255 _
s+ M zs =0,
nZs
_ =0,
, (ﬁ yS)z3+M
—(zsys -P) +M + (20 — %) =0,
ug =0, vg =0,
from which we obtain
e M
8 = n— 1:
ys =ﬁs and
(z0—2,)+p
Tg = ~— =l 2
s ]
If we let
~ 5
zs+ M’

(15)
(16)
(17)

(18)
(19)
(20)

(21)

then the Jacobian matrix J of the system of equations (10)-(14) evaluated at the steady state

(zs,vs, 25, us,vs) can be written as

- Mné
0 0 Czg+ M 0
0 -1 0 —~afi
-8 -—xg (ﬁ— —) Py 0
0 0 0 0
. O 0 0 w
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The five eigenvalues of J are found to be

Mz = 5T(6) £ A1),

A3 = —1, | - (22)
)\4‘5 = :!:iw, ’
where
I'(6) = — (ﬁ - %) Zﬁ"if -1, (23)
A(8) = T*(8) — 4(n — 1)68. (24)

Due to the complex conjugate eigenvalues +iw, the linearized model will have a periodic
solution for appropriate parametric values. In particular, if the parametric values are such that the
eigenvalues A; and A2 both have negative real parts, then we will observe the solution trajectories
tending toward a periodic orbit in the phase space. This is the oscillatory behavior caused by
sinusoidal variation in the cellular membrane permeability due to the influence of the external
force field. We can show, however, that the system also possesses a natural frequency, which when
compounded with the forced frequency, can give rise to a more complicated dynamic behavior.
To do this, we consider the system of equations {10)-(12) with w = 0, for which the eigenvalues

are also Ay, Ag, and Az. Letting
Ig

(p— Bzs)(n—1)
then, according to Hopf bifurcation theory [13], if a value 8¢ can be found such that
(i) ReMi(dc) =0,
(ii) A1(d¢) and Az2(6c) are complex conjugates,
(iii) Im Ay1{éc) # 0,
(iv) ReAj(éc) # 0,
(v) all other eigenvalues have negative real parts,

S = (25)

then a Hopf bifurcation occurs and the system will have a family of periodic solutions for values
of § in some open interval (8¢, 8¢ + €). The result can be stated as in the following theorem.

THEOREM.” If
7> 1, (26)
p > ﬁ:l:s > 0, (27)

then the system of equations (10)—(14) with w = 0 will have periodic solutions bifurcating from
a nonwashout steady state for values of 6 in some open interval (§¢,6c + €), where 6¢ is given
by equation (25).

Proor. First, we note that if  and p are chosen to satisfy (26) and (27), then ¢ > 0. Substi-
tuting éc into 6 in (23) and using (18), we find I'(6¢) = 0, so'that Re A\;(6¢) = 0, which is the
requirement (i). Also, at § = 8¢, we have

A(sc) = —4(n - 1)écB <0,
so that A;(8¢) and Az(éc) are complex conjugates, and moreover,
Im Ay (6c) # 0.

Differentiating Re A1 (d¢) with respect to §, we find

M
Afée) = - (ﬁ - %) = +7?M #0,
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Figure 1. Computer simulation of model equations {10)—(14) with @ = 1.1, 8 = 1.5,
p=1ll,1=6,6 =0241, M = 2, w = 1256, z5 = 0.2, xg = 0.5, ys = 1.5, and
zg = 0.05. The solution trajectory approaches and eventually lies on a 2-torus, seen
here projected onto the coordinate planes.

and finally, A3 = —1 < 0. Thus, all requirements for Hopf bifurcation are met. For 8§ in some
open interval (6c,d0c + €), the system of equations (10)-(12) with w = 0 will have a periodic
solution bifurcating from its steady state (zs,ys, zs). For the system of equations (10)—(14) with
w # 0, this means that if conditions (26) and (27} are satisfied, a Hopf bifurcation occurs on top
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Figure 1. {cont.)

of the existing periodic solution, due to the eigenvalues + iw, giving rise to solution trajectories
on a 2-torus in the five-dimensional phase space.

Now, with the above choice of parametric values, Hopf bifurcation occurs at a nonwashout
steady state (zs,ys, zg5), namely ys = 3 > 0, and from (20),

zg =20 +(p - Brxs) >0,

while z5 > 0 by (27). In fact, the solution trajectory of the model equations (10)}-(12} remains
in the first octant (z > 0, y > 0, z > 0) of the (z,y, z) space since, on substituting z = 0 into
equation (12), we find

j—; = Zg > 0, (28)
here. Also, on the (z,z) plane y = 0 so that
dy
9T 8 >0,
and on the plane z = 0, we have
d—r =0
dT !

so that the solution trajectory does not cross the coordinate planes.

In Figure 1, we present a computer simulation of the model equations (10)-(14) with w # 0
and parametric values chosen to satisfy the bifurcation requirements (26) and {27), that is, n = 6,
8=15=ys, 5 = 0.5, and p = 11. Then, from (25), we find

bo = 0.125.

Thus, we chose § = 0.241 > §¢, which gives z5 = 0.05, M = 2, while w = 1.256, a = 1.1, and
zg = 0.2, The solution trajectory is observed to approach the closed curve on the surface of a
2-torus surrounding the steady state (s, ys, 25, us, vs) = (0.5,1.5,0.05,0, 0) in the 5-dimensional
phase space, seen here projected onto the coordinate planes.
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4. FORCE FIELD INTENSITY AND BIFURCATION DIAGRAM

We now investigate the influence of the force field intensity a on the dynamic behavior of the
model system (10)-(14) by first showing that the smaller the force field intensity «, the closer to
the plane y = B will the solution trajectory on the 2-torus lie.

Letting
. 12(1)
GiT)=s ———
(T) H{T) + AL (29)
we see by (28) that G(T') > 0 for all T. Thus, equation (12} can be written as
dly — 8
WD)~ w6y - 5) - abu. (30)
Using the Leibnitz’ formula, we then find
fr(—ou-G('r.))dr T I (cau-Glu)du,
y(Ty -3 =elo / e Jo (—afu)dr +C . (31)
0
Letting
T
WT) = [ G, (32)
0
it is easily seen that A(T") is an increasing function, and therefore, we have
T
y(T) - B = e~ouD=HD) {c —ap [ emOy) df} ,
0
where e ™7T) s 0 as T — 0.
Since eM™) < MT} 0 < 7 < T, we have
T T
e'““(r)“"(ﬂ/ U Ty (1) dr| < em @V TI-A(TI AT) / e My(rydr| =1.
0 0
Therefore,
W(T) -8l <ad,  asT - oo, (33)

which means that for small &, the time course of y{T') tends to a value close to 3 as time passes.
In fact, if @ = 0, then we have
y(T) — 8. as T — oo,

and the bifurcating solution trajectory eventually lies on the plane y = 8. The expression (33),
in fact, gives us a bound for the extent to which y will be perturbed from the value 3.

Now, we have shown that the critical point (xs,ys, z5) of the system of equations (10)-(12)
with w = 0 loses its stability and a Hopf bifurcation occurs when the two complex conjugate
eigenvalues A; and Ag cross the imaginary axis. In other words, at the value ¢ of our bifurcation
parameter &, the two eigenvalues A; and A; have a vanishing real part. Figure 2 shows the stability
region in the (s, 6) plane for a continuous stirred tank reactor modelled by equations (10)-(14)
under the conditions # = 1.5, p = 11, and 5 = 6. The region is the union of two sets $; and Sy,
where

Sy={(zs.8)|0<zs <pf~!,0<b<bc},
52 = {{z5.8) | o0~ < z5}.
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Figure 2. Stability diagram in the (z5,6) plane for the model system (10)-{14).

In §) U 85, solution trajectories near the steady state solution (z.y,z) = (zs,ys, 25} remain close
to that point as time passes.
On the other hand, in the instability region given by

So = {(xs.8) |0 < x5 < p37 1 6c < 6 < o0},

the reactor can exhibit bifurcation or chaotic behavior. The set is thus to be avoided from a
control point of view. The transition from periodic orbits to chaos is known to occur after a
cascade of period doubling, followed by the appearance of chaos windows. Following the work
presented by Schaffer {14] on how nonlinear dynamics can elucidate mechanisms in ecology and
epidemiology, we create a bifurcation diagram, shown in Figure 3, in the following manner. For
each value of the force field intensity a, the simulation of the model equations (10)-{14), for
parametric values in the region Sp, is allowed to run for a sufficiently long period of time, then
40 data points z(f,), n = 1,2,...,40, are collected every interval of 2n/w, the period of the
external force field. That is,

2nw
Th=To+ 0, n=1,2,....40,
[#3)

where Ty = 100 in Figure 3. The values £, = logz(T,), n = 1,2,...,40, are then plotted
against a which ranges from 0 to 3. All other parametric values are the same in all computer
simulations which generate the points in this figure. Yve see here that the solution is periodic for
small cr; all 40 data points for each value of a apparently fall on the same spot in the (a, £) plane.
Windows of chaos are observed for o in the approximate ranges 1.2 < e < 1.9 and 2.1 < & < 3,
although the chaotic scatter of data points is more pronounced in the second range. The data
points for each value of & no longer fall on the same spot, a characteristic which is markedly
different from the behavior in the range where a is small.
In Figure 4, we investigate the behavior in the range 2.1 < a < 3 more closely. Here, we plot

angn_ﬂfu;rﬂ, n=1,2,....,40,
where
A‘[u = maX&n, Mg = minEn,
n n

against . We observe that at o = 2.1, approximately, the 40 data points apparently fall on
the same spot. As ¢ increases, however, they bifurcate into two groups, one of which bifurcates
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Figure 4. Bifurcation diagram of the CSTR modelled by equations {10)—(14) in the
range 2 < a < 3 with parametric values of Figure 3: plot of H, versus a.

further into four. For a around 2.45, the solution is apparently no longer periodic. We do not
obtain the same value of 2(T) every interval of 2x/w. A similar chaos window can be observed
for a between the values 1.2 and 1.9, approximately, although not so marked. Periodicity is
recaptured, however, at a around 2.1 and 3.0 (points A and B, respectively).

Finally, Figure 5 shows the time course of z(T) for parametric values of Figure 3, but with

= 1.5, inside the range of a chaos window (point C). The solution is no longer periodic, as
is born out by the bifurcation diagram in Figure 3. Similar dynamic behavior of this type has
previously been observed in a model for the spread of measles reported in [14], where an increase
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Figure 5. The time course of the simulated substrate concentration z with @ = 1.5
and other parametric values as in Figure 3.

in the amplitude of an external factor can drive the system into behaving in such an unpredictable
manner.

5. CONCLUSIONS

We have investigated the dynamic behavior of a continuous stirred tank reactor modelled by
cells and substrate balance equations which have been extended to incorporate the effect of
external forces, such as the earth’s magnetic field, on the cell membrane permeability. From con-
siderations of the relationship between the anisotropy of the liquid crystals and the permeability
of the cytoplasmic membrane, it is deduced that the membrane permeability varies with time in a
sinusoidal fashion. The equation for the dynamics of variation in the permeability is then derived,
taking into account also the increase in the apparent permeability due to the newly-formed cells.

The balance equation for the nutrient uptake rate is also adjusted to take into account the
direct relationship between the membrane permeability and the number of active transport sites.

Bifurcation analysis done on the resulting model equations shows that, for suitable ranges of
parametric values, the model system admits oscillatory behavior as a result of a Hopf bifurcation
on top of the existing periodic solution due to the sinusoidal variation in the membrane perme-
ability. Consequently, if parametric values satisfy the conditions put down in the theorem, the
model system will have a solution whose phase space trajectory eventually lies on the surface of
a 2-torus.

Particular attention is then devoted to the identification of the operating zones in which it is
possible to carry out the continuous process while avoiding undesirable complex dynamic behav-
ior. Owing to the importance of the process and the hazardous nature of the compounds which
might be involved, we have attempted to identify the ranges of control parameters (6 and g,
specifically) to be avoided since they correspond to the region where complex dynamic behavior
is possible. The appearance of chaos windows for ranges of the external force field intensity
identified in the bifurcation diagrams is not only undesirable for control and design problems,
it can also give rise to potentially dangerous situations in the case where toxic compounds are
involved, such as in the operation of wastewater treatment processes. Clearly, further theoret-
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ical studies must be carried out to shed more light onto this complicated, but most frequently
observed dynamic behavior.
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ABSTRACT

A model of a continuous bio-reactor subject to product inhibition is considered where a one
hump substrate-limited specific growth rate is used. Analysis of the model is carried out
through singular perturbation arguments which allow us to derive explicit conditions on the
parameters that identify different dynamic behavior of the system, and specifically ascertain
the existence of a limit cycle composed of a concatenation of catastrophic transitions occurring
at different speeds. Moreover, the interactions between the limiting substrate and the growing
microorganisms can give rise to high-frequency oscillations, which can arise during the
transients toward the attractor or during the low-frequency cycle. This periodic burst of high-
frequency oscillations develops as a result of the effective product inhibitory mechanisms. The
analysis helps us in identifying the safe operating region in which undesirable complexed
dynamic behavior may be avoided.



1 INTRODUCTION

Viewing the behavior of microbial cultures within the framework of lumped kinetic models, a
multitude of models have been proposed and theoretically studied in diverse ways since the
model due to Monod [1] fashioned after Michaelis-Menten Kkinetics for single enzyme-
substrate reactions.

In [2], Yano and Koga made a theoretical study on the behavior of a single-vessel
continuous fermentation subject to a growth inhibition at high concentration of the rate
limiting substrate S. They used the following expression for their continuous fermentation
system :

;‘l': an (])
(K,/8)+1+ > (S/K,)

=1

where | and the K's are positive constants and n is a positive integer. Other workers [3-5]
have adopted simpler specific growth rate functions involving less control parameters but
exhibiting similar necessary characteristics as the usual substrate inhibition model, for example
the one hump substrate inhibition function

p=kSe™* )

where k and K are positive constants.

Later, Yano and Koga discussed in [6] the nature of the chemostat in which the specific
growth rate depends on the concentrations of both a substrate and an inhibitory product of a
microorganism. They assumed the specific growth rate equation as follows ;

pe )

P n
(K, +8) 1+[E;J

They showed, with the analog computer, that when the product formation was negatively
growth-associated, diverging as well as damped oscillations appeared. No oscillations could be
observed, on the other hand, when the product formation was either completely growth-
associated, or partially growth-assoctated. Oscillation phenomena are, however, not unusual in
continuous cultures {3]. Since such penchant for periodicity is undesirable from the point of
view of process control, it is necessary to identify the safe operating regions in which
complexed dynamic behavior may be avoided.

In [4], the dynamic behavior of a chemostat subject to product inhibition was analyzed
and classified in terms of multiplicity and stability of steady states and limit cycles. The
substrate was assumed to be in sufficient supply so that the model was reduced to a system of
two nonlinear differential equations involving only the cells and product concentrations.

In this paper, we consider the full three-variable product inhibition model consisting of
the following nonlinear differential equations ( described in more detail in [6] ):




ds m '
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— = uX-DP 6
3 - Mot (6)

where X(t) denotes the cells concentration at time t ; S(t) the substrate concentration at time t
; P(t) the produet concentration at time t; S the concentration of the feed substrate; VY the
cells to substrate yield; D the dilution rate; and 1, the constant for product formation.
Equations (4) and (5) are based on the well known Monod's model for cells and substrate
interaction, described in more detail in reference [1]. To take into account the inhibitory effects
of the substrate as well as the product increase in the chemostat, however, we adopt the
following expression for the specific growth rate function :

s

ll{Se_K_S
Ho= p (7)
1+ -
K

P

Further, the cells to substrate yield Y is assumed to vary linearly with the substrate level
at any time t, allowing for the positively-growth associated situation ; namely

y::AS+B (8)

Such substrate dependent yield has been used previously by several other workers in this field
[3-5].

Equation (6) describes the change in the product concentration as X and S change. The
first term on the right of this equation is the contribution to the rate of change in P, which is
assumed to vary directly as the rate at which X increases, g being the positive constant of
variation. The cells X, substrate S, and product P are extracted from the chemostat at a constant
dilution rate D, and hence the terms -DS, -DX, and -DP in the three model equations (4)
through (6).

The analysis of the model is done through a singular perturbation argument, assuming
that the substrate concentration exhibits fast dynamics. The time responses of the different
components in the system are assumed to decrease dynamically from top to bottom. The
structure of the corresponding attractors and the nature of the transients are then analyzed. It is
shown that the model system can exhibit low-frequency cycles in which periodic bursts of
high-frequency oscillations may develop giving rise to more complexed dynamical behavior
for specified ranges of the system parameters.



2  SYSTEM MODEL

In order to analyze the model system of equations (4), (5) and (6), together with (7) and (8)
through the singular perturbation technique, we-scale the dynamics of the three hierarchical
components of the system by means of two small dimensionless positive parameters € and &;

_S __ P _D _D _ kS
namely,weletx—S—F,y—X, Z= K, , dy —D,dz—g , d3—§ . (D——;,
_Me® _ k _ B _Sp
=k, TASs cPTas M eTg
We are led to the following system of differential equations ;
B g -n- LY _fxy.z) )
FT (x+P)(i+ez) '
dy _ _mxe*“"_d =£g(X,y,Z) (10)
at | 1vez 2 BV '
dz _nxe"”‘
— =g6 y-d,z |=edh(x,y,z) (11)
dt | I+ez

Thus, with £ and & small, the equation of the substrate concentration represents the fast
system, while that of the cells and product concentrations represent the intermediate and the
slow systems respectively. Under suitable regularity assumptions, the singular perturbation
method allows us to approximate the solution of the system (9)-(11) with a sequence of simple
dynamic transitons along the various equilibrium manifolds of the system and occurring at
different speeds. The resulting path, composed of all such transitions, approximates the
solution of the system in the sense that the real trajectory is contained in a tube around these
transients, and that the radius of the tube goes to zero with € and & . The formal proof of this is
not given because it is long and trivial and has already been discussed and extensively used in
the literature [7-10].

3 EXISTENCE OF LIMIT CYCLE

We now show that if € and & are sufficiently small and

a>1 (12)

prl-—— (13)

e“<2<ae[m{lwl)(l+ﬁ)+l} (14)
d, vd, a ja



ndp_ 1 (15)
yd, ae

then a limit cycle exists for the model system (9)-¢11).

and

We first prove that inequalities (12)-(15) guarantee that the geometry of the manifolds
f=0,g=0 and h=0isasinFig. 1.

Manifold f=0

We observe that this manifold is given by the equation
ax
y=SL-x00cr B +e2) (16)
which defines a surface y = ¢(x,z) which intersects the (x,y) plane along the curve
_dig e ,.
Y—Y(l X (x+B) = (17)

From equation (16), it is seen that the manifold intersects the (x,z) plane along the line
x =1 as shown in Fig. 1.
The slope of the curve in (17) is given by

d d; edX d; eax "
%=TIFXTF(X)E7‘%—[—)(3+(a—a[3—1)x2+a[3x—l3] (18)

which may vanish for some values of x <1.

Figure 1 Equilibrium manifolds of the model system (9)-(11). In this case, transitions of
different speeds develop into a closed cycle, where one, two and three arrows indicate
transitions at low-, intermediate-, and high-speed, respectively.



Manifold g =0

This manifold consists of 2 parts; the trivial manifold y = 0 and the nontrivial manifold given
by the equation

xe™ =d_2 (19)
l+ez o

1
which defines a surface z = y(x). We observe that at x = —
‘ , a

dz _,
dx

and so inequality (12) ensures that the point P(X,,yp,Z,) in Fig. ! is located on the manifold

f'= 0 at the point where x, = 1 <l

a -
We also need the point P to be located on the stable part of the manifold f = 0. This is
guaranteed by requiring that
1
F[—] <0 (20)
a

which is equivalent to.inequality (13)
The manifolds f = 0 and g = 0 intersect along the curve given by

d
y_l_(D

= G -0)(x+B)

reaching a maximum at the point M(x,,,¥y,Zy) Where

Finally, the curve f = g = 0 intersects the (x,z) plane at the point O(x,,y,,2,) where

Xo =1 and, from (19),
1{ ®
Zg=— -1 21
o) E[dzea J ( )

We see, therefore, that the left side of inequality (14) guarantees that z, > 0.

Thus, the manifold f= g = 0 is shaped as shown in Fig. 1. We note that the point R may
be located on the unstable part of the manifold f = 0. However, the transients also develop into
a limit cycle in the case that inequalities (12)-(15) are satisfied.




Manifold h =0
This manifold is given by the equation

z:ﬂ (22)
d,(1+¢z)

which defines a surface z = p(x, y). This intersects the manifold = 0 along the curve
2= (x4 B) (23)
yd,

using equation (16). Thus, z reaches a maximum along this curve at the point Q(x,¥q.2q)
where X, = %(1 —B) =xy

Also, the curve f = h = 0 intersects the (x,z) plane at the point (1,0,0) as seen in Fig. 1.
If we let N(Xy,¥n,2Zy) be the point on the curve f=h = 0 with x, =§ , then from equation

(23) we find that

2, =Il$[1_l](l+BJ (24)
vd, aa
while, from equation (19), we find that
z,,=1[ @ —1} (25)
e aed,

Therefore, so that the equilibrium point S where the curves f = g = 0 and f = g = 0 intersect
should be located on the unstable part of the manifold f = g = 0, we require

Zp < Zy

which 1s exactly the right side of inequality (14).
Finally, along this curve f = h = 0 given by equation (23),

when x =0, and therefore inequality (15) guarantees that the curve f=h = 0 crosses the curve
f=g =0 only once at the point S.

Now, starting from a point A = (x(0),y(0),z(0)) (see Fig. 1 where low-, intermediate-,
and high-speed trajectories are indicated, respectively, with one, two, and three arrows) at first
a high-speed transition develops at constant y and z while only the fast system



% = £(x(1),y(0),2(0))

15 active and the intermediate (y ) and slow (z) variables are frozen at their initial values

y(0) and z(0). The high speed transition brings the system to the point B on the stable part of
the fast manifold f = 0, at which point the intermediate system has now become active. A
second intermediate-speed transition takes place on the manifold at constant X (segment AB
in Fig. 1) until the point C isreached. A slow transition is then made along the curve
f =g = 0 until the point P is reached where the stability of the equilibrium manifold g = 0 is
lost and a quick transition then takes the state of the system to the equilibrium point E on the
stable trivial manifold y = 0. A slow transition then develops along this manifold until a point
is reached where the stability is again lost at some point F beyond O (see Fig. 1). The proof of
the existence and location of such a point F is lengthy and can be found in Schecter and
Osipove er al. [11,12]. At this point a quick jump again takes us back to the point D on the
stable manifold f= g = 0, resulting in a closed cycle DPEF lying on the equilibrium manifold
f=0.

Fig. 2 shows numerical simulation of the model equations (9)-(11) with parametric
values chosen to satisfy inequalities (12)-(15). The trajectory is seen here to develop into a
low-frequency limit cycle as theoretically predicted. The time courses of the three variables in
this case are shown in Fig. 3. ]
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Figure 2 Numerical simulation of the model equations {(9)-(11) where the parametric values
have been chosen to satisty inequalities (12)-(15), so that the solution trajectory tends toward a

low-frequency limit cycle as theoretically predicted. Here, e =0.1,86=0.01,B=0.8 , vy =2.0,
N=10.0,w=30,a=15,d,=0.25d,=03,d,=01, x(0)=0.5, y(0) =0.2, and z(0) =0.4.



1.00{ I - ) y\

0.725

0.50 _| . - 2.

0 25 - a.25 _|
l : i ,,
a.60 2
R L R T e L S e s
0 10000 20000 30000 40000 50000 . o 10000 20000 10000 40000 56000
2.0
1.5
1.0
c.s
€
0.0
T T " T T
0 10000 20000 10000 40060 50000

Figure 3 The time courses of the three variables x(t), y(t), and z(t) are shown here

corresponding to the case seen in Fig. 2. Here, e =0.1,6=0.01 ,$=0.8,y=2.0,n=10.0,
w=30.a=15,d,=025d,=03,d,=0.1, x(0)=0.5, y(0)=0.2, and z(0) = 0.4.

4 BURSTS OF HIGH-FREQUENCY OSCILLATIONS
For the occurrence of periodic burst of high-frequency oscillations during each low-frequency
cycle, we further require that the manifold f = 0 has an unstable portion. This i1s equivalent to

requiring that the slope given by equation (18) is positive at some value of x <1, say x =~

-

2
Letting x = % in (18) leads to the following inequality
B < 3a—4 (26)
27 —-6a

which ensures that the curve y = ¢(x,0) has positive slope on some interval containing the

point X =

o | —



Combining inequalities (13) and (26) leads to the requirement that

1 1 3a—4
I_E-a_2<ﬁ<—_27-6a .. 27)

It is also necessary to have

F(x)>0 (28)

so that the point R should be located now on the unstable branch of the manifold f = 0.
This is easily accomplished by letting

X =z~ (29)

LI s

for a sufficiently small @, then simply set

gl=ie"—‘=(

= —B)e~(1/3-6) ) (30)

(eI

Finally, in order that the transition goes back into high-frequency oscillations in each
low-frequency cycle, we require z, < z,,, which is equivalent to

e < I;B o-a(1-P)2 G1)

Figure 4 Equilibrium manifolds of the model system (9)-(11). In this case, transitions of
different speeds develop into a low-frequency cycle with a period of high-frequency oscillation
as identified in the text.



With all the above inequalities being satisfied, the equilibrium manifolds are shaped as
shown in Fig. 4. Starting from the point A, a fast transition takes us, as explained earlier, to the
point B on f = 0. An intermediate transition develops on this manifold until C is reached where
the stability of the equilibrium fast manifold is lost. A fast transition then takes the system to
the stable equilibrium point D. An intermediate speed transition is then made along this branch
of manifold unti! G is reached where the stability is again lost and a quick jump brings us to
the stable point H. This almost closes up the cycle but just misses the point B. The slow system
has become active and z has been slowly increasing since z > 0 here. Transitions then develop
following the same pattern but with slowly varying z as seen in Fig. 4 until M is reached, at
which point the trajectory develops into a slow cycle which goes back into the fast cycles since
inequality (31) guarantees that z; < z,,.

Thus, we have proved, by the above discussions, the following theorem

THEOREM If inequalities (12), (14), (15), (27), (30) and (31) hold then the system of
equations (9)-(11) has a periodic solution which will be a low-frequency limit cycle containing
high-frequency oscillations if €, 8, and 0 are sufficiently small.

Fig. 5 shows numerical simulation of the model equations (9)-(11) with parametric
values chosen to satisfy all inequalities mentioned in the above theorem. The corresponding
time courses of the three variables are shown in Fig. 6, where the burst of high frequency
oscillations is observed in each low-frequency cycle.

Figure 5 Numerical simulation of the model equations (9)-(11) where the parametric values
have been chosen to satisfy all the inequalities set out in the Theorem. The solution trajectory
is a low-frequency limit cycle which contains a period of high-frequency oscillations. Here,
€=0.1,58=001,p=002,y=20,n=100, 0=3.0, a=15, d, =025, d,=0.5,

d; =01, x(0)=0.5, y(0)=0.2 , and z(0)=0.2.
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Figure 6 The time courses of the three varibles x(t) , y(t) , and z(t} corresponding to the case
seen in Fig. 4 are shown here, where periodic bursts of high-frequency oscillations are clearly

observed. Here, €=0.1,8=0.01,B=0.02 ,y=2.0,1=100,0=3.0,a=15,d, =025,
d, =0.5,d, =01, x(0)=0.5, y(0)=0.2 , and z(0) = 0.2.

5 CONCLUSION

The dynamic behavior of a continuous bio-reactor described by equations (9)-(11) has been
investigated in this paper. Assuming that the time responses of the three components are highly
diversified, increasing from bottom to top, we were able to use standard singular perturbation
analysis to describe the nature of the transients and the attractors of the system.

Complexed oscillatory behavior is extremely undesirable not only for control and design
problems, but also for its potential for dangerous situations which may result in the case where
toxic compounds are involved, such as in the operation of toxic waste treatment processes.
Insights that can be gained from this type of analysis described above should prove most
valuable in the light of such considerations.
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MODELLING EFFECTS OF HIGH PRODUCT
AND SUBSTRATE INHIBITION ON OSCILLATORY BEHAVIOR
IN CONTINUOUS BIOREACTORS

ABSTRACT

In this study we consider a model for continuos bioreactors which
incorporates the effects of high product and substrate inhibition on the kinetics
and biomass and product yields. We theoretically investigate the possibility of
various dynamic behavior in the bioreactor over different ranges of operating
parameters to determine the delineating process conditions which may lead to
oscillatory behavior. Application of the singular perturbation technique allows us
to derive explicit conditions on the system parameters which specifically
ascertain the existence of limit cycles composed of concatenation of catastrophic
transitions occurring at different speeds. We discover further that the interactions
between the limiting substrate and the growing microorganisms can give rise to
high frequency oscillations which can arise during the transients toward the
attractor or during the low-frequency cycle. Such study can not only more fully
describe the kinetics in a fermentor but also assist in formulating optimum
fermentor bperating conditions and in developing control strategy for

maintaining optimum productivity.

Key words:  continuous bioreactors, product inhibition, substrate inhibition,

singular perturbation, oscillation.



NOMENCLATURE

X concentration of cells in bioreactor, g/£

S concentration of substrate in bioreactor, g/{

Sg concentration of substrate in the feeding solution, g/ é’
P concentration of product in biorector, g/¢

T time, h '

Ks, Kp positive constants, g/{

D dilution rate, h-!

Y yield coefficient, g cell/g substrate
7} specific growth rate, h-!

P maximum specific growth rate, h-!
INTRODUCTION

The growth of microorganisms is an unusually complicated phenomenon.
Viewing the behavior of microbial cultures within the framework of lumped
kinetic models, a multitude of models have been proposed and theoretically
studied in diverse ways since the model due to Monod [9] fashioned after
Michaelis-Menten kinetics for single enzyme-substrate reactions.

In ethanol fermentation, instantaneous biomass yield of the yeast
Saccharomyces cerevisiae was found by Thatipamala et al. in [15] to decrease
with the increase in ethanol concentration (P}, indicating a definite relationship
between biomass yield and product inhibition. It was also found in [15] that
substrate inhibition occurs when substrate concentration (S) is above 150 g/¢ .
Figure 1 shows experimental data taken from the work of Thatipamala et al. [15]
indicating the effect of substrate inhibition on the specific growth rate at low
ethanol concentrations. Figure 2, on the other hand, shows the effect of product

inhibition on the specific growth rate, with data taken from the same source [15].



A number of simple kinetic expressions have been suggested ih the
literature for specific growth rate p incorporating product and/or substrate
inhibition [2-4,16). Mainly, four types of inhibition correlations have been
suggested based on experimental observations: linear, exponential, hyperbolic,
and parabolic. In [16], Yano and Koga made a theoretical study on the behavior of
a single-vessel continuous fermentation subject to a growth inhibition at high
concentration of the rate limiting substrate S. They used the following expression

for their continuous fermentation system :

Pm
p= = : (1)
(Ks/S)+1+ Z',(S/Kj)J
=1

where p, and the K's are positive constants and n is a positive integer. Other

LI

workers [1,8] have adopted simpler specific growth rate functions involving less

control parameters but exhibiting similar necessary characteristics as the usual

substrate inhibition model, for example the one hump substrate inhibition function
M= kSe™S/Ks (2)

where k and K are positive constants

Later, Yano and Koga discussed in {17] the nature of the chemostat in
which the specific growth rate depends on.the concentrations of both a substrate
and an inhibitory product of a microorganism. They assumed the specific growth
rate equation as follows ;

| S |
= - 3)

KSan
(s+)+i§




They showed, with the analog computer, that when the product formatioﬁ was
negatively growth-associated, in which the rate of product formation decreases
with the increase in the cells concentration, diverging as well as damped
oscillations appeared. No oscillations could be observed, on the other hand, when
the product formation was either completely growth-associated, or partially
growth-associated. Oscillation phenomena are, however, not unusual in
continuous cﬁltures [1]. Since such peﬁchant for periodicity is undesirable from
the point of view of process control, it is necessary to identify the safe operating
regions in which complexed dynamic behavior may be avoided.

In [14], Ramkrishna et al. presented a chemostat model which assumed
that viable cells { X ) interact with a substrate ( S ) so as to produce the new viable
cells and a cell-killing product ( P ). This product interacts with viable cells to
form dead cells, in the process of which the cell-killing product may be released.

In [8], the dynamic behavior of a chemostat subject to product inhibition
was analyzed and classified in terms of multiplicity and stability of steady states
and limit cycles. The substrate was assumed to be in sufficient supply so that the
model was reduced to a system of two nonlinear differential equations involving
only the cells and product concentrations.

In this paper, we consider the full three-variable product inhibition model

consisting of the following nonlinear differential equations :

ax
— =X-DX @)
dIS—D(s 5)-Ex 5
o - DBF Y (3)
d
dF  nouX+mP-DP ©

dt



where X(t) denotes the cells concentration at time t; S(t) the suBstrate
concentration at time t; P(t) the product.concentration at time t; Sp the
concentration of the feed substrate, while D is the dilution rate at which the feed
substrate is being fed into the reactor and the content of the bio-reactor is being
removed, and mj is the constant for product formation. The term 1P in equation
(6) takes into account the release of the cell-killing product during the product's
interaction with viable cells to form dead cells, following the suggestion of
Ramkrishna et al. in their earlier mentioned paper [14]. Here, we assume that the
production rate is directly proportional to the amount of the product present, with
1M1 < D being the positive constant of variation.

We also adopt the following expression for the specific growth rate

function :

h=""p— (7)

where a and k are positive constants, to take into account the inhibitory effects
of both the substrate and the product increase in the chemostat.
Further, the cells to substrate yield Y defined as

v amount of cells produced

amount of substrate consumed

is assumed to vary linearly with the substrate level at any time t, allowing for the

positively-growth associated situation ; namely

Y =A+BS (8)

Such substrate dependent yield has been used previously by several other workers

in this field 1, 8].



The analysis of the model is done through -a singular perturﬁation
argument, assuming that the substrate concentration exhibits fast dynamics. The
time responses of the different components in the system are assumed to decrease
dynamically from top to bottom. The structure of the corresponding attractors and
the nature of the transients are then analyzed. It is shown that the model system
can exhibit low-frequency cycles in which periodic bursts of high-frequency
oscillations méy develop giving rise to more complexed dynamical behavior for

specified ranges of the system parameters.
SYSTEM MODEL

In order to analyze the model system of equations (4), (5) and (6), together
with (7) and (8) through the singular perturbation technique, we assume that the
substrate has fast dynamics, while the cells and product have intermediate and
slow dynamics respectively, and scale the time responses of the three hierarchical

components of the system by means of two small dimensionless positive

parameters € and & ; namely, we let x=-—-S—, y=X, z=—P—— d; =D,

Sp SKp ’
_D , _D-m __kSg _mew __ k _ A
dz—a > 43 = £0 ’m—st’n_ ea,y-—ASF,andB—BSF.Weare
led to the following system of differential equations :
dx 1xe™ Py
—=d{(1-x)- = f(x,y, 9
Pl e e il 2
dy [ oxe™ 4 ( ) 0
-- =& - = sy
it YL Trep C2|=C8XY,2Z (10)

dz nxe”

—dsz [ =ebdh |
m 1+SZY 32} edbh(x,y,z) (an



Thus, with € and & small, the equation of the substrate concentrétion
represents the fast system, while that of the cells and product concentrations
represent the intermediate and the slow systems, respectively. Under suitable
regularity assumptions, the singular perturbation method allows us to
approximate the solution of the system (9)-(11) with a sequence of simple
dynamic transitions along the various equilibrium manifolds of the system and
occurring at different speeds. The resulting path, composed of all such transients,
approximates the solution of the system in the sense that the real trajectory is
contained in a tube around these transients, and that the radius of the tube goes to
zero with € and 8. The formal proof of this is not given because it is long and
trivial and has already been discussed and extensively used in the literature

[7,10-12].
Two-dimensional dynamics

By means of singular perturbation analysis, the solution of the system of

equations (9)-(11) can be approximately found for small values of € and 3.
First, the slow (z) and intermediate (y) variables are frozen at their initial values
z(0) and y(0), and the evolution of the fast component of the system is
determined by solving the 'fast system' consisting of equation (9) with z set equal
to z(0). If, for simplicity of the following analysis, we assume that the starting
value of z is comparatively small, since § is small, the value of z remains small
during the initigl phase. The evolution of the system components can then be
approximately determined by first setting 8 =0 and z = 0 in the equations

(9)-(11). Thus, we are led to the following system :



—ax

dx_ _yxe Ty

3 =0T (12)
dy - —ax A
i sy[mxe —~d2] (13)

which is a fast-slow second-order system for which the dynamical behavior can
be analyzed and existence of limit cycles detected through the singular
perturbation principle. The results are summarized in Figure 3, where two cases
of interest can be identified. The conditions on the parameters identifying the

two cases are as follows.

Case !

The system (12) has an equilibrium manifold where x =0 given by

ax

y=(1—x)(x+ﬂ)3x—scp(x) (14)

which intersects the x-axis at the point x =1 as shown in Figure 3. The slope of

the curve in (14) is given by
dy &* e
l:TF(X)E—Z[—X3+(a—a|3—1)x2+a[3x—[3] (15)
X X X

B<57—%a (16)

which ensures that the curve y =@(x) has positive slope on some interval

1
containing the point x = 3



The equilibrium manifold of the intermediate system (13) consists of 2

parts, the trivial manifold y = 0 and the nontrivial manifold given by the equation

d;

(V)

xe ¥ =

(17)

In Case 1, the curve (17) intersects the graph of (14) at the point R in the

Figure 3 where x =X for which

F(X)>0 (18)
which means that the point'R is located on the unstable branch of the manifold
f= 0. This is easily accomplished by letting

1
R=——0 19
X 3 ( )

for a sufficiently small 6, then simply set

d -1 '
2 _ze X =(=-0)e(1/3-0) (20)
w 3 .

Thus, Case 1 is identified by the inequality (18) with (19) and (20).

Case 2

This case is then identified by the opposite inequality to (18), namely
F(x) <0 21)
However, since the nontrivial intermediate manifold is given by (17),

x> = (22)



d )
We see that (21) will be satisfied if 2 s sufficiently large as well as satisfying
©

2«1 (23)

to allow for X to be located to the left of the point x = 1 where the fast manifold
crosses the x-axis.

Thus, in Figure 3 where transitions of low, intermediate, and high speeds
are indicated by one, two, and three arrows, respectively, if we start from the
point marked by the number 1 above the curve x =0, then X < 0 here and a fast
transition develops toward the point 2 on the stable manifold (section AB), while
y still remains frozen at the initial value y(0). (If we start from the point 1 below
the curve x = 0, then % > 0 here and so a fast transition will develop toward point
3 on section CD of the manifold). Since the manifold is stable here, a transition
of intermediate speed is made along the curve as the intermediate system
becomes active. From point 2, the transition develops along the direction of
decreasing y since y <0 on the left of the curve g = 0. Once the point B is
reached, the manifold loses its stability and a fast transition is made towards the
point D on the stable section CD of the manifold. Transition of intermediate
speed upwards along this curve ends if either a stable equilibrium R is reached
in Case 2, or a quick jump brings the trajectory back to the section AB

completing a closed cycle ABDC in Case 1.
Three-dimensional dynamics
As z increases, the slow system (11) becomes active. We now show that,

for suitable values of the parameters and for € and & sufficiently small, the

system (9)-(11) has a unique attractor that is either a stable equilibrium or a low-

10
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frequency limit cycle which may exhibit high-frequency oscillations during a
finite interval of time.
To do this, we observe that the manifold
f(x,y,z) = 0 (24)

intersects the nontrivial intermediate manifold along the curve

f=g=0 (25)

given by the equation

xe ¥ d .
=2 (26)

l+ez o

1
which defines a surface z = y(x). We observe that at x = —
a

Thus, to ensure that the point P(xp,yp,zp) in Fig. 4 is located on the stable part

1
of the manifold f= 0 at the point where xp = — < 1, we require
a

F[l) <0 Q7

a

or equivalently,

11
prl-—-— (28)

and

a>1 (29)



Combining the inequalities (16) and (28), we arrive at the requirement that

>prxl-——— (30)
Now, the curve (25) is given by the equation
d;
y=—-x){(x+p)
@
which reaches a maximum at the point M (X, ¥ ,2Zp ) Where

1-p
™M=y

Finally, the curve f = g = 0 intersects the (x,z)-plane at the point

O(%y,¥0:2Z0 ) where Xo = 1 and, from (26),

1{ ® : 31
Z, =— -
0 € dzea ( )

We therefore require that

e < — (32)

to ensure that z, > 0.

We now analyze each of the two cases separately.



Casel

We observe that in this case the point R is located on the unstable part of
the manifold f = 0 and the curve f = g = 0 remains on the unstable part, as shown in
Figure 4, until the point M is reached. The curve then stretches along the stable part
of the manifold f= 0 until either the point S is reached in the cases 1(a) and 1(b),
or the point P is reached first in the cases 1(c) and 1(d). Thus, four subcases can be

identified as follows.
Casel(a) This case is identified by the inequality
a<l (33)

so that the turning point P is below the (x,z)-plane. Thus, starting from an initial
point A in Figure 4, a fast transient takes us to the point B on the stable part of the
fast manifolci f = 0. Transition of intermediate speed is then made along this
manifold in the direction of increasing y until the point C is reached where stability
is lost. A fast jump is made to the point D on the other stable branch of the
manifold f= 0 from which point a transition of intermediate speed develops until
stability is lost again at the point G. A quick jump back to H almost closes up the
cycle. However, z hasl been slowly increasihg in the meantime so that the same
cycling transitions are ‘repeated in the direction of increasing z, densely covering
the surface f= 0, until the point M is reached. The transient now follows the curve f
= g = 0 until the point S is reached in the case 1(a). In this case, the point S where
X =y = z=0 is on the stable part of the manifold f = g = 0 and thus the transitions

end at this stable equilibrium point.
Case 1(b This is the case identified by the inequality

a>1 (34)

13



14

so that the point P is located on f = 0 above the (x,z)-plane as shown in Figure 4
(b). This case is also identified by the fact that the point S, where f =g = h, is
located on the stable part of the curve f = g = 0. This situation is guaranteed by
requiring that

Zp >IN 3 5)

. . : 1
where N(xyn,¥N,2ZN) is the point on the curve f = h = 0 with x) =—. From
a

equating f and h to zero, we find that

_ndf 1yl
i)

while, from equation (26), we have

e 37
Zp = — -
P™e aed, 37

Therefore, so that S is located on the stable part of f=g =0, we require

O s ae M L)L 1 38
% ae Y5 "3 a+ﬁ + (38)

which guarantees that (35) holds.

In this case 1(b) then, the transition also reaches the point S first and ends
there since it is a stable equilibrium point where X = y = z = 0. Moreover, along

The curve f=h = 0 we have

nd,
z=—o0
yds3

when x = 0. Therefore we must also require that
ndp 1
—>

— 39
'Yd3 ae ( )

to ensure that the curve f=h = 0 intersects the curve f=g=0 only once.



Case 1(c) This case is identified by inequality (34) and the opposite
inequality to (38), that is

2 end; 1—l [l+ ]+1 40)
A YUY O ‘

which guarantees that the point P is reached first during the transition from the
point M in Figure 4(c). At the point P, there is a loss of stability and a quick jurmnp
to E takes place. A slow transition develops now along this manifold where x = 1
until a point is reached where stability ia again lost at some point F. A transition
of intermediate speed will develop along the fast manifold £ = 0 back to the point

L which completes the limit cycle in the case 1(c).

Case 1(d) In order that the transition goes back into high-frequency

oscillations in each low-frequency cycle, we need to require that z, < z,,, which
is equivalent to

o 1B —ag-pyr2

2 (4D

Thus, starting from the point A in Figure 4(d), a fast transition takes us, as
explained earlier, to the point B on f = 0. An intermediate transition develops on
this manifold until C is reached where the stability of the equilibrium fast
manifold is lost. A fast transition then takes the system to the stable equilibrium
point D. An intermediate speed transition is then made along this branch of
manifold until G is reached where the stability is again lost and a quick jump
brings us to the stable point H. This almost closes up the cycle but just misses the
point B. The slow system has becomes active and z has been slowly increasing
since Z>0 here. Transitions then develop following the same pattern but with
slowly varying z as seen in Figure 4(d) until M is reached, at which point the
trajectory develops into a slow cycle which goes back into the fast cycles since

inequality (41) guarantees that z, < zy,.



Case 2
We observe that in this case the point R is located on the stable part of the
fast manifold f = 0 as shown in Figure 5. Mainly 3 subcases can therefore be

identified here.

Case 2(a) If (21) as well as (33) hold then starting from the point A in Figure
5(a), a fast transition develops to the point B, followed by a transient of
intermediate speed to C, from which point a slow transient takes us to the stable

equilibrium point S where the transition ends.

Case 2(b) If (21) holds as well as (38) then, similarly to Case 2(a), transients
develop toward the stable equilibrium point S where X=y=2z=0 and the

transition ends.

Case 2(¢) Finally, if (21) holds as well as (40) then, from the point C in
Figure 5(c), the point P is reached first where the stability is lost. A quick jump to
E, followed by a transition at slow speed from E to F, then at intermediate speed

back to D, closes the trajectory up into a low-frequency limit cycle for this case

2(c).
The above analysis can be summarized by the following theorem.

Theorem If € and & are sufficiently small, and if (16), (30), (32), and (39)
hold, then system (9)-(11) has a global attractor which is a stable equilibrium if
(18) and (33) hold, or (18), (34) and (38) hold, or if (21) and (33) or (38) hold. It is
a low-frequency limit cycle if (21) and (40) hold, or if (18), (34) and (40) hold.
Moreover, if (18), (34) and (40) as well as (41) hold, then the attractor is a low-

frequency limit cycle which contains a period of high frequency oscillations.

16



NUMERICAL RESULTS AND DISCUSSION

Figure 6(a) shows a numerical simulation of the model equations (9)-(11)
with parametric values chosen to satisfy inequalities (18), (30), (32), (34), (39)
and (40). This is therefore the case 1(c) and the solution trajectory develops into a
low-frequency limit cycle as predicted. The corresponding time courses of the
three variables are shown in Figure 7(a).

Figure 6(b) shows a numerical simulations of the model equations (9)-(11)
with parametric values chosen to satisfy inequalities (18), (30), (32), (34), (39),
(40) as well as (41). This is therefore Case 1(d). The solution trajectory develops
into a low-frequency limit cycle which contains high frequency oscillations as
predicted in the above theorem. The corresponding time courses of the three
variables are shown in Figure 7(b). Such underlying high frequency cycles in the
biomass concentration profile have frequently been observed by a number of
investigators [16-18]. In [16], the total budding cells count in their bioreactor data
shows oscillatory behavior closely resembling our resuit of case 1(d) shown in
Figure 7(b). Experimenting with different values for the system parameters such
as [,ds, &, and so on, shows that the frequencies and amplitude of oscillations can
be appropriately adjusted to fit different chemostat conditions.

We observe that the constant a plays an important role in the kinetics of
the chemostat under study. Considering the model in equation (7), a is in fact an
indicator of how late or how soon the substrate inhibition sets in. In Figure 1,
substrate inhibition seems to set in approximately half way to the maximum
substrate level, éuggesting that a should by around 2. Thus, the numerical results
presented in Figures 6(a) and 6(b) can be considered as corresponding to the case
where substrate inhibition is late in setting in (@ <2 ). In Figure 6(c), we present a
numerical simulation of equations (9)-(11) in which a = 2.5, thus corresponding to
the situation where the inhibition sets in rather early { a > 2 ). With this value of a,

inequality (32) is violated and z, < (. Therefore, the transition develops from the

17



point E (in Figure 4(c) or 5(c)) all the way to the point (1, 0, 0) on the x-axis
which is a stable washout steady state of the system. Figure 7(c) shows the
corresponding time courses of the state variables in this case, where both the cells
and product levels are seen to decrease toward zero, while the substrate level tends
toward the maximum level (S = Sg).

Also, it is numerically found that solution trajectories can still develop as
theoretically pfedicted even though the values of € and § are not so small, and the
assumption that the three components of the system carry highly diversified

dynamics can be relaxed to a certain extent.

CONCLUSION

The appearance of sustained oscillations in bioreactor variables in
continuous cultures indicates the complex nature of microbial systems, and the
difficulties which may arise in bioprocess control and optimization.

In this paper, the dynamic behavior of a continuous bioreactor described
by equations (9)-(11) has been investigated, incorporating the inhibitory effect at
high levels of product and substrate concentrations. Assuming that the time
responses of the three components are highly diversified, increasing from bottom
to top, we were able to use standard singular perturbation analysis to describe the
nature of the transients and the attractors of the system. |

Complexed oscillatory behavior is extremely undesirable not only for
control and design problems, but also for its potential for dangerous situations
which may result in the case where toxic compounds are involved, such as in the
operation of toxic waste treatment processes. Insights that can be gained from this
type of analysis described above should prove most valuable in the light of such

congsiderations.
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FIGURE CAPTIONS

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

Effect of substrate inhibition on specific growth rate at low ethanol
concentration. (Data points taken from reference [15]).

Effect of product inhibition on specific growth rate. (Data points taken
from reference [15]).

Two possible cases of trajectory development for the two dimensional
fast-slow system (12), (13). Trajectories go toward a limit cycle
ABDC in Case 1, and toward a stable equilibrium point R in Case 2.

Trajectories of the model system (9)-(11} in Case 1 exhibiting four
possible subcases 1(a), 1(b), and 1(c) identified in the text.

Trajectories of the model system (9)-(11) in Case 2 exhibiting three
possible subcases 2(a), 2(b), and 2(c) identified in the text.

Numerical simulation of the model equations (9)-(11). Here, € = 0.1,
6=001, y=2.0, n=10.0, ® =3.0, d; =0.25, d; =0.25, and
d; = 0.1. In 6(a), the parametric values satisfy the inequalities of Case
1(c), with p = 0.8, a = 1.5, and the solution trajectory tends toward a
low-frequency limit cycle as theoretically predicted. In 6(b), the
parametric values satisfy the inequalities of Case 1(d), with § = 0.2,
a = 1.5, and the solution trajectory tends toward a low-frequency limit
cycle which contains a period of high-frequency oscillations. In 6(c),
B =0.2, and a = 2.5 which corresponds to the situation where
substrate inhibition is early in setting in. '

The time courses of the state variables x(t), y(t) and z(t) are shown
here corresponding to the three respective cases seen in Figure 6.

— represents X(1) + 2.2 in 7(a), x(t} + 0.4 in 7(b), and x(t) in 7(c).
0—o0 represents y(t).

x — x represents z(t) + 0.3 in 7(a), and z(t) in 7(b) and 7(c).
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Abstract

A model of the predator-prey dynamics, as modified by the action of a parasite, is considered in which the prey
population is divided into two classes, the susceptible and the infective members. The predator population is assumed
to be of a social type, and have very fast dynamics, with all of its members infected by the parasite. Analysis of the
mode!l is carried out through singular perturbation arguments which allow us to derive explicit conditions on the
parameters that identify different dynamic behavior of the system, and specifically ascertain the existence of a limit
cycle composed of a concatenation of catastrophic transitions occurring at different speeds.

Keywords: Parasite-host interaction; Singular perturbation; Limit cycles

1. Introduction

Many different researchers (Holmes and
Bethel, 1972; Moore and Lasswell, 1986; Dobson,
1988) have reported and extensively discussed the
ability of parasites to change the behavior of
infected hosts. It is well documented that the
physiological interactions between parasites and
their hosts often lead to changes in the behavior
of infected animals which are usually beneficial to
the pathogen and often detrimental to the host.
According to Dobson (1988), the induced changes
in host behavior have the effect of increasing the
rate of parasite transmission. To achieve this ef-
fect, however, it is observed that the mechanisms
involved in turns influence the host’s survival, and
occasionally they also affect its fecundity. This

establishes a conflict of interest between the para-
site and its host. It is now recognized that para-
sites and pathogens are important factors in
determining both the density and long-term popu-
lation dynamics of many population (Anderson
and May, 1979; Dobson, 1988). While previous
workers have mainly considered predation and
competition as important factors influencing both
the individual and social behavior of vartous ani-
mal species, more recent studies {Anderson and
May, 1979; 1986; Dobson, 1988) have now con-
sidered this interaction between parasites and
their host to have significant effects on both eco-
logical and evolutionary time scales (Dobson,
1988). Anderson and May (1986) proposed that
parasites and pathogens can be divided, according
to the response of the host to their presence, into

0303-2647/96/315.00 © (996 Elsevier Science Ireland Ltd. Al rights reserved
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two, broad classes: the microparasites and the
macroparasites. The former is characterised by
their ability to produce a sustained immunological
response in the host. These include the viruses,
bacteria and protozoa. The latter, on the other
hand, tends not to induce a sustained immunologi-
cal response, and includes the helminths and other
metazoan parasites,

Holmes and Bethel (1972) suggested four ways
in which the parasite may modify infected mem-
bers of the prey population: reduced stamina,
increased conspicuousness, disorientation, and al-
tered responses. In their earlier work, Arme and
Owen (1967) reported on sticklebacks, infected by
plerocercoids (Schistocephalus solidus), tending to
swim closer to the surface of lakes and making
themselves more susceptible to predation by birds.
It has also been documented (Tiner, 1953) that the
presence of larvae of Ascaris columnaris Leidy in
mice and squirrels produces incoordination, blind-
ness and loss of fear of larger animals. In other
specific examples such as the moose-wolf system on
Isle Royale (Freedman, 1990), this parasite-host
interaction has been discovered to be necessary in
the survival of the predator population.

In Dobson’s seminal work (1988), various simple
mathematical models were described which al-
lowed the author to examine the demographic and
evolutionary consequences, leading to the determi-
nation of how changes in the behavior of individ-
ual host affect both the net reproductive success of
the parasite and the population dynamics of the
parasite-host interaction.

More recently, Freedman (1990) studied a model
of predator-prey dynamics as modified by the
action of parasite. All predators in his model are
invaded by the parasite, while the prey population
is divided into two classes, the susceptible and the
infectives. Anderson and May (1979) have previ-
ously shown that invasion of a resident predator-
prey system by a new strain of parasite could cause
destabilization in the sense that limit cycles may
appear and extinction becomes possible. Freedman
(1990) showed the opposite effect that an unstable
(in the sense of extinction) system could be stabi-
lized. He was also able to derive the criteria for
persistence and discuss the stability of an interior
equilibrium.

In this paper, we consider an adapted version of
Freedman’s model, so that the density-dependent
death rate of the predator describes a social popu-
lation which tends to survive better in herds or
packs. Analysis of the model is carried out by
applying a singular perturbation technique. We
derive explicit conditions on the system parameters
which identify different dynamical behavior exhib-

_ited by the system. When the predator population

is assumed to have very fast dynamics with respect
to prey, the analysis can be carried out through
singular perturbation arguments which are based
on simple geometric characteristics of the equi-
librium manifolds of the fast, intermediate and
slow variables of the system, allowing one to derive
explicit conditions that guarantee the existence of a
limit cycle in the extreme case of very fast very slow
dynamics. The resuiting limit cycle is composed by
the alternate concatenation of two siow and two
fast transitions and has interesting biological inter-
pretations leading to better understanding of the
system under study.

2. The model

In his study, Freedman (1990) considered the
following model system of three ordinary differen-
tial equations:

S(OD*(X ()
X

- [ﬁu"‘ ﬁlz(f)]s(f)

_S()p (X()z(1)

S(6) = BHX (1))~

X(t) 0
. I{(n)yD*(Xx
10y = [Bor+ Bralsto) -2
IOpX ()20
Lo @
20 =20)] —3*(z(0)
S(OPX) + 1P
| X(0) I

with S(0) = 0, I{0) = 0, 2(0) = 0, where S(),
I, X(Oy=8) + I, z(1), t+ = 0, are the
susceptible, infective, total prey, and predator
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population densities, respectively. Here, B*( X} and
D*(X) are, respectively, the birth rate and the
natural death rate of the prey population, y*(z) is
the death rate of the predator in the absence of
prey, while p\(X) and p,(X) are the functional
responses of the susceptible and infective prey,
respectively, assumed by Freedman (1990) to de-
pend on X alone. The constant ¢ is the rate of
increase of predator per unit prey uptake.

For our specific purpose, we will make the
_ reasonable assumption that the birth rate B*(X)
and the natural death rate D*(X) of the prey
population both vary directly as the total prey
population X, namely;

B*(X) = BX (5)

where B, is a conswant, and similarly for D*(X).
We further assume that £,, which is the rate per
unit predator of prey infection due to parasitic
reproduction in the predator population, is negligi-
ble (#, = 0), while the infection rate of susceptible
prey in the absence of predator is f; #0. For

253

regularity reasen, if /1, > 0 in the system model,
the solution should not be very much different
from what we shall find hers under the assumption
that £, is zero, as long as §, is not too large.

The density-dependent death rate p*(z) of the
predator in the absence of prey is assumed to have
the form

y*(z)sa0+boz+ﬁ—z {6)
the graph of which can be seen in Fig. 1. Such a
mortality curve would describe the death rate of
social predators, such as wolves or hyenas, which
survive somewhal better by staying in a pack, so
that the mortality rate decreases initially as the
number of predators in the pack increases. When
the population density is too high then its mortality
rate begins to rise as described by the graph of the
function in Eq. (6). Field studies which support this
form of y*(z) can be found in the work by Barton
and Whiten (1993) which described feeding compe-
tition among female olive baboons. It was stated

T T T
0 1

I
2

Fig. 1. The graph of the density-dcpendent death rate of the predator described by Eq. (6). Here, a =02, 6= 0.05, ¢ = 0.2, d=1.0.
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Fig. 2. The three equilibriem manifolds /=0, g =0,i=0. The
intermediate manifold g =0 separates the line DP from the
line OQ.

that group-living is, on the one hand, a mutualistic
or cooperative solution to predation pressure or
resource acquisition. On the other hand, once the
group exists, characteristic patterns of interactions
between individuals within the group may then
reflect the social partitioning of resources; competi-
tion for food and mates. Brault and Caswell (1993)
also did a study on pod-specific demography of
killer whales. They investigated the suggestion that,
in social animals, group structure influefices the
vital rates and the fitness of members of the group
or ‘pod’.

Finally, the predator functional responses in Eq.
(3) are modified so that the functional response of
the susceptible population follows the Michaelis
Menten kinetics, while that of the infected popula-
tion varies directly as the density of the total prey
population (X). Namely, we let

_ o X
PEEYS

where o is the maximum predation rate and k is the
half saturation constant, while

po=vX

where y is a positive constant of variation.
We are thus led to the following system of
differential equations:

[ INY4

k+S

S=ByS+I)—DS—p,S— O

I= 84S — Dyl — iz (8)
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. o LS

=z| —ay—byz — + + 1ol
F=z| —ay— byz pla o :l
where the infected prey has an increasingly higher

functional response, owing to the action of the
parasites, than the uninfected prey.

&)

3. Singular perturbation analysis

To analyze the predator-prey dynamics as
modified by the action of a parasite, we consider
then the model equations (7)-(%) and scale the
dynamics of the three hierarchical components of
the system by means of two small dimensionless
positive parameters & and &, namely; we let x =1,
y=S8f=8B=8, ' =pf/e,D = De=D, «
= g8, a = aped, b = byed, ¢ = c8d, ! = led, and
i =ned. We are led to the following system of
differential equations:

x=08v—Dx—ypxz=f(x,p, z) (1
&= Blx+y) =~ Dy—By— =gz yz) (D)
+y
- {
352=z[—a—bz—d+z+$+qx}
= h{x, y, z) (12)

which shows that during transitions, when the right
sides of Eqs. (10-12) are finite but different from
zero, |7) is of the order 1/e and |Z| is of the order
1/e6. This means that, if £ and J are small, the
growth of infected population is slower than the
growth of the susceptible one, and the predator
population has, in comparison, very fast dynamics.
These assumptions are satisfied in many predator-
prey systems found in nature which are effected by
the host-parasite interactions.

We shall first show that if certain conditions on
the parametric values are satisfied then the equi-
librium manifolds of the system of Egs. (10-12) will
be shaped as in Fig. 2. Transients of varying speeds
along these manifolds will form a path which
results in a closed cycle in this case. Such a path
approximates the exact solution to the model
system Eqs. {(10-12) in the sense that the solution
trajectory will be contained in a tube around that
path and the radius of the tube goes to zero along
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with ¢ and 4. Consideration of the various regions
in the parameter plane, as delineated by the above
mentioned conditions on the parameters, then
allows us to gain a better insight into the effect of
parasite invasion on the stability of the predator-
prey system and the survival of the species.

As is well known (Muratori, 1991; Muratori and
Rinaldi, 1992), the system Egs. (10-12), with ¢ and
d small, can be analyzed with the singular perturba-
tion method which, under suitable regu-
arity assumptions, allows approximating the solu-
tion of the system Egs. (10-12) with a sequence of
simple dynamic transitions along the equilibrium
manifolds of the system and occurring at different
speeds. First, the slow (x) and intermediate (y)
variables are frozen at their initial values x{0) and
»{0), and the evolution of the fast component of the
system is determined by solving the ‘fast system’

200 = 1{(x(0).y(0),z(r)) (13)

Thus, z(¢) eventually tends toward a stable
equilibrium of z(x(0),y(0),z(0)) of Eq. (13), assum-
ing here that the system has unique stable equi-
librium. Then keeping x frozen at x(0), we look at
the ‘intermediate system’ which has now become
active, namely;

y() = 3(x (O),p(1).2(x(0),y{r}.2 (0))) (14)

where Z{x(0),y(0),z(0)} is a stable equilibrium of the
fast system (Eq. (13)) with y(0) substituted by y.

In Fig. 2, where low-, intermediate-, and high-
speed trajectories are indicated, respectively, with
one, two, and three arrows, the three equilibrium
manifolds of the system Eqgs. (10-12) are shown.
The intermediate manifold g =0 is seen here to
separate the line DP from the line OQ. Here, the
line DP lies along the intersection of the slow
manifold /=0 and the nontrivial fast manifold
given by an equation of the form y = ¢(x,z) on
which & = 0. The line OQ lies along the intersection
of the slow manifold f=0 and the trivial fast
manifold z =0 on which & =0 as well.

At first a high-speed transition develops at con-
stant x and y and brings the system from
(x(),y(0),2(0)) (peint R in Fig. 2) to a stable
equilibrium of the fast manifold # =0 (point S in
Fig. 2). Then, the intermediate system having now

become active, a second intermediate-speed transi-
tion takes place on the manifold at constant x
(segment ST in Fig. 2) until a point is reached
(point T' in Fig. 2) where the stability of the
equilibrium manifold # = 0 is lost and a quick
transition then takes the state of the system to the
equilibrium point on a stable part of the manifold,
which will be the point T in Fig. 2. A transition of
intermediate speed then develops along this part of
the manifold to the point D' of Fig. 2.

The proof of the existence and location of the
point T' can be found in Schecter (1985) and
Osipove et al. {1986). The direction of transition
along the line ST or T’ depends on the sign of j
namely g(x,y,z). Thus, let us assume that for
suitable values of the parameters the intermediate
(stable) manifold g = 0 separates the trivial mani-
fold z = 0 from the part of the non-trivial manifold
# = 0 on which the line TD' and CD lie (see Fig. 2),
and that g is positive below the manifold g = 0 and
negative above it. Under these conditions the
system moves toward point D' along the line TD’,
and when D' is reached we have a saddle-node
bifurcation of the fast system: the variable z at point
D’ is not at a stable equilibrium anymore and a
catastrophic transition from D to A’ occurs at a
very high speed. This almost closes the cycle but for
the fact that during this time the variable x has been
increasing very slowly, assuming that we have
started on the side of the manifold f= 0 where / >
(.

Once the system is at A', a slow motion develops
again from A’ in the direction of increasing y
because g is positive here. The same cycling is
repeated, densely covering the manifold 4 = 0 while
the variable x increases siowly until the equilibrium
point B’ on the manifold /=0 is reached where
% = 0. A high-speed transient brings the state of the
system back onto the non-trivial manifold 2= 0 at
the point C along the line of intersection between
the manifold A=0 and f=0. A transition of
intermediate speed to I then takes place along this
line followed by a catastrophic transition from D to
A. An intermediate speed transition from A then
brings us back to B', resulting in a closed cycle
AB'CD lying on the manifold f=0. (see Fig. 3a)
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{c) (d)

Fig. 3. Four possible cases identified in the text according to the relative positions of the three equilibrium manifolds.

4. Existence of limit cycle ) (@—nx)+2 \/b_—bd o0
y =
We now show that if ¢ and J are sufficiently . I—(a—nx)—2/bc+bd
small and ,
» By, 21
I > a+ c/d (15 ®a=p,- (21)
b < cld? (16)
[
D+ 8 —B>0 am zﬁ\/g— 22)
#> e (k1) E—M) ) MRCETTRps.
Jeib—d p B _ Bk d -
Xp= ol ¢ {(23)
D+f-B _p 19) I=(a—nxz)—5
B D

then a limit cycle exists for the model system
where Eqgs. {10-12).
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We first prove that Egs. (15-19) guarantee
that the geometry of the manifolds =0, g=0,
and A=0 1s as in Figs. 2 and 3a.

Manifold A=10

We observe that the manifold A=0 consists
of 2 parts; the trivial manifold z=0 and the
non-trivial manifold given by the equation

¢y :
—_— =7 24
a+bz+d+z k+y+:1x {24)

Eq. (24) defines a surface y = ¢(x,2) which
intersects the {x,y) plane at

[
(a——r]x)+£—i

rpmk 2 25
1—(a—11x)—a

so that y, > 0 for some values of x > 0 if

—" >0 *(26)
¢
l—a—=

using the fact that y, is a continuous function
of x in the neighbourhood of x =0.

Eq. (26) holds if Eq. (15) is satisfied. Further,
differentiating Eq. (24) with respect to y, we
find that, for a fixed x,

c e do

RNVl P 2

so that Eq. (16) implies that d¢/dz for z=0.
Thus, the manifold y=@{x,z) is shaped as in
Fig. 2, and the function y = ¢(x,z) has a min-
imum at point D with

e fis -

which is positive due to Eq. (16), and indepen-
dent of x. Therefore, we find that

Yo =Va™ (p[x,{,z,g)
k (@ —nx, )+ 2/bc—bd (28)
I—{a—nx,)—2./be+bd

Manifold f=0
This manifold is given by

By
- 29
=D + yz 29)
Thus,x > 0 for all y > 0 and
dx il
b, 30
dy D+r1z (30)

which is positive for y =0 so that the manifold
is as in Figs. 2 and 3a. Moreover,

)
;f: —D—yz<0
0x

for all positive values of z and of the parame-

ters, so that the equilibria of the intermediate

system Eq. (11) with y frozen are always stable.
The manifold: f=0 intersects the manifold

f =0 along the curve characterized by the value

of xg given in Eq. (23).

Manifold g=10

The manifold g =0 is given by the equation

x = p(y, z)=(D+§_B)y+B(szy) (31)

so that Eq. (17) implies that p is increasing with
y as well as with z. The manifold is thus shaped
as seen in Figs. 2 and 3a, and x increases from
C to D along line DQ. The manifold x =
p(»,z) is therefore below the line segment CD if

PYpzp)> Xc (32)
But x. = xz and y, = p,, therefore, Eq.

(32) is guaranteed by

pazp}>xp {33)

Using Eqgs. (27) and (28) in Eq. (33) we arrive
at Eq. (18) which guarantees that the manifold
x = p(y.z}) is below the line CD of Fig. 3a.
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v
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1.5
(36)

g 1.0 — (38) I

0.5 {37}

1V
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Four regions in the (D,B) parameter plane delineated by Egs. (35-37} where different dynamic behavior can be expected.
Here,a = 0.1, 6=10.025, c=0.1,d=10,/=03, k= 1.0=08=02=02=0.1, and = $.025.

Finally, along the line OB

x_ B g
b = 34
y D+yz|,_o D (39

while the intersection of manifold f= 0 with the
(x,7) plane (z=0) is given by

x D+g-8B
¥ B B

We also observe, considering Egs. (30) and
(31), that the slope 8x/@y decreases with z along
the manifeld f=0 but the slope of dx/dy the
manifold g=10 increases with z. Therefore, the
requiremnent that the line formed by Eq. (34) is
below the line formed by Eq. (35) will be assured
if Eq. (19} is satisfied.

Thus, the manifold g=0 separates the line
segment AB from the line segment DC of Fig. 3a
and the transitions of various speeds can develop

(35

as argued in the previous section. Starting from
the point C, a transition slowly develops along
PD towards the point D, since g < 0 here, where
a saddle-node bifurcation occurs. A catastrophic
transition from D to A then takes place followed
by a slow transition from A towards B, since the
line segment AB is below the manifold g=0 so
that g > 0 and y is increasing along this line.
Once a point B’ is reached a quick jump back to
C closes up the transition AB'CD, resulting in a
limit cycle composed of the concatenation of tran-
sitions occurring at two different speeds.

5. Parameter space classification of dynamic be-
havior

We now discuss the different cases into which
the transitions can develop according to different
regions in the parameter space. For fixed values of
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Fig. 5. Computer simulations of the model system Eqs. (10-12) with a=0.15=0025c=0.1, d=10/=03k=10=08, =
0.2=02=01=0025=1.0=050. In Figures (a}, (b), (c), and (d), the point (D,B) is located in Regions I, I, I1I, and 1V of Fig.

4, respectively.

the parameters a, b,c.d.k.l, a, f, B, 7, and 7, the
graphs of equations

D+ - B=0 (36)

D+/3-B=g_’ (37)
B D

and

k+y,) EEAP_"_*'_@:_E) (38)

B
a“m—d y B

divide the (D, B) space into four regions as shown in
Fig. 4.
In region I, inequalities {1519} are satisfied, and

therefore, the transitions are as in Fig. 3a and the
solution trajectories develop into a limit cycle
which is guaranteed by the discussions in the
previous section. Fig. 5a presents a computer
simulation of the model system Eqs. (10-12) with
(D,B)=(0.1,0.2) in this region I, showing the
predicted limit cycle seen here projected onto the
(y,z) plane.

In region II, inequality (18) is violated which
means that the requirement that the manifold f =0
is below CD cannot be guaranteed. The positions of
the manifolds can be as in Fig. 3b, in which case the
intersection point § of the three manifolds f = G,g =
0 and % =0, (the steady state) is located on the
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stable portion of the manifold #=0. When the
transitions reaches the point N on the line of
intersection between the manifolds f= 0 and A= 0,
a slow motion develops along this line in the
direction of increasing y and the transition ends
once the point § in Fig. 3b is reached. Thus the
solution trajectory is expected to spiral towards this
stable equilibrium point §. Fig. 5b presents a
computer simulation of the model system for this
case with (D,B) = (0.00002,0.2) in region lI,
showing the solution trajectory spiralling towards
the stable equilibrium state.

In region III, inequalities (17) and (18) are
violated. The property of the manifold g =0 that
p(y.z) increases with y is not guaranteed and it
is possible for the manifolds to be positioned in
this case as in Fig. 3c in which the line segment
DP is in the region where g > 0. This means that,
once the state of the system reaches the point T
transition of intermediate speed will develop in the
direction of increasing x toward the point P. We
therefore, have in this case an overflow in all three
populations. Fig. 5¢ shows an example of solution
trajectory in this case with (2,B) = (0.0002,0.8)
in region III :

Finally, in region IV inequality {i9) is now
violated and it can not be guaranteed that the
manifold g =0 is above the line segment AB. It
is then possible for the manifolds to be positioned
as shown in Fig. 3d. Here, along OB we have g
< 0, and once the state of the system reaches the
point T, a slow transition will develop in the
direction of decreasing y along TDO towards the
point O. In this case, we have extinction of all three
populations in the system under study. Fig. 5d
shows a computer simulation of the system model
in this case with (D,B)=(0.14, 0.08) in region IV
and the solution trajectory is observed to approach
the origin as time passes as expected.

6. Discussion

From the above analysis of our model system
Egs. (10-12), we can immediately make the follow-
ing observations and comments.

The ‘stable’ region 11 is located between the lines
given by Eqs. (36) and (37). In the case that f = ',

this means that for a stabilized situation, it is
necessary that we have

D<B<D+ § (39)

In other words, the birth rate of the susceptible
prey must not be less than its death rate, but should
not exceed the sum of its death rate and the rate
of infection f. This is not surprising and no more
than what we should expect.

Moreover, inequality {18) says that in order to
drive the system into the stable region I, the value
of the constant & in the response function of
uninfected prey should not be too large. In fact,
it must be smaller than the quantity on the right
hand side of inequality (18). This is again a rea-
sonable condition for parasite-host dynamics in
which the uninfected prey has lower functional
response than the infected prey. If, on the other
hand, o becomes too high, the system can desta-
bilize and limit cycles appear.

The interesting feature of the limit cycle which
is discovered to be composed of transitions of two
different speeds fits well with the host-parasite
dynamics obsetved in nature. When the number
of the predator”is low, susceptible and infected
preys grow relatively slowly for a long period until
they reach a biomass at which the situation be-
comes so attractive to members of the predator
population that we have an abrupt increase in the
number of the predator in a very short space of
time. This is then followed by a second long period
during which the prey biomass slowly decays. As
a result, the predator population also decreases
smoothly until it reaches a critical density at which
point its own mortality mechanisms destabilize it.
The predator population then collapses quickly to
almost extinction.

We also observe that if the parasite is no longer
present, which will be the case if f# =" =0 then
Egs. (17) and (19) cannot be satisfied simulta-
neously. This means analytically that the stable
region {Region 1I) no longer exists and neither does
Region I. The system may destabilize to extinction.
If, on the other hand, # and f' are non-zero, then
the stable region IT exists and the prey and predator
populations can tend toward the stable steady state
values as time progresses. In the case where inequal-
ities (15—19) are satisfied, the population densities
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will oscillate close to these steady state values.
This seems to indicate that stable existence of the
predator population depends, to a certain extent,
on the presence of the parasites. In other words,
the invasion of the parasite can stabilize the sys-
tem resulting in persistence and the survival of the
predator. This is in agreement with the observa-
tions made by several other authors who have
done extensive research work in this field (Peter-
son, 1977; Rau and Caron, 1979),

7. Conclusion

In this paper, singular perturbation arguments
have been used to detect limit cycle behavior as well

as describe other dynamical situations which are

observed in the predator-prey interaction which is
modified by the action of a parasite. Implicit
conditions have been derived which identify the
ranges of parametric values for which, in particular,
the existence of a parasite (§, > 0) can cause
destabilization and the appearance of limit cycles
(Region 1 of Fig. 4). On the other hand it is possible
to stabilize an unstable (in the sense of extinction)
system by driving the system into Region II of
Fig. 4. ‘

The method of analysis is based on purely
geometric arguments which is an extension of a
known method used to study relaxation oscillations
in second order systems (Hoppensteadt, 1974).
Examples where the method were applied can be
found in the work on a mathematical model of a
food chain by Muratori and Rinaldi (1992) and
more recently in the work of Lenbury and Kam-
nungkit (1995). The method allows us to describe
and identify different transients and attractors
which develop in our system in the case where it is
assumed that the predator population has infinitely
faster dynamics than that of the prey. Nevertheless,
experimenting with simulations has shown that the
limit cycle behavior is preserved even though this
assumption is not strictly satisfied and ¢ and 4 are
not necessarily small.

The analysis of our model seems to indicate that
in the absence of the parasites, the predator may
not be able to survive on the prey, given unfa-
vourable conditions. The absence of the parasites

can result in the persistence of the predator popula-
tion, in which case a paradoxical situation arises.
On the one hand, the parasites are an obligate
mutualist of the predator {Freedman, 1990); that is,
survival of the predator population is to some
extent dependent on the presence of the parasites in
the prey. On the other hand, the parasites cost the
predator some energy, causing detrimental effects
such as reduced fitness or reduced life span. This
paradox of mutualism remains a complex topic for
future research.
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Nomenclature

a, Basic mortality rate of predation.

byz  Surplus mortality rate of predation.

¢g,d parameters accounting for effect of group-
living on mertality rate.

€ Rate of increase of predator per unit uptake
of prey.

k Half saturation constant.

p.  Functional response of susceptible prey.

p»  Functional response of infective prey.

t Time.

z Predator population density.

B*  Birth rate of prey population.

B, Specific birth rate of prey.

D* Death rate of prey population.

D, Specific death rate of prey.

I Infective prey density.

S Susceptible prey density.

X  Total prey density.

o,  Maximum predation rate in function p,.

Bo Infection rate of susceptible prey in the
absence of predator.

£, Rate per unit predator of prey infection due
to parasitic reproduction in the predator
population.

g,  Scaling parameters, assumed small.

¥ constant of variation in function p,.

y*  Death rate of predator in absence of prey.
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HOW CAN NONLINEAR DYNAMICS ELUCIDATE MECHANISMS
RELEVANT TO ISSUES OF ENVIRONMENTAL MANAGEMENT AND
GLOBAL CHANGE

ABSTRACT

To illustrate how nonlinear dynamics can help elucidate mechanisms in
ecological and biotechnological processes relevant to the environmental issues, we
discuss recent work where bifurcation theory and singular perturbation theory are
applied to matnematical models of predator-prey systems invaded by parasites and
continuous bio-reactor in order to classify various dynamic behavior to be expected
in our systems according to different ranges of the system parameters. Through
bifurcation and stability analysis, we show that a model for a continuous bio-reactor
subject to product inhibition can exhibit complexed dynamic behavior in which up to
5 possible invariants can occur in a phase plane. Owing to the importance of the
process often used in waste water treatment, and the hazardous nature of the
compounds which might be involved, particular attention must be given to the
identification of the operating zone in which it is possible to carry out the process
while avoiding undesirable complexed dynamic behavior. We resort to the use of
singular perturbation techniques, however, to identify limit cycle behavior in a model
for a predator-prey system modified by the action of parasites.

INTRODUCTION

The theory of dynamical systems has had an impact in many areas including
physics, chemistry, and engineering. Not the less significant is its contribution to the
field of biology, where key issues in environmental management and global change
have engaged the interests of administrators, academics and researchers world wide.
How do we deal with environment-genotype interactions? What factors regulate
populations? How important are competitive interactions? What determines
community diversity and stablity? How does trophic structure evolve? Are there
general food web patterns which apply across the planet? What is the role of
competition in determining community patterns? How do we couple knowledge of
flows within ecosystems to build knowledge of global-scale processes? How do we
couple processes acting on vastly different temporal and spatial scales to address
important problems of environmental management? These are only a few of the key
biological questions being put forward in the scientific world.

To illustrate how nonlinear dynamics can help elucidate mechanisms in
ecological and biotechnological processes relevant to the environmental issues, we
discuss recent work where bifurcation theory and singular perturbation theory are
applied to mathematical modeis of predator-prey and continuous bio-reactor in order
to classify various dynamic behavior to be expected in our systems according to
different ranges of the system parameters.



CONTINUOUS BIO-REACTOR SUBJECT TO PRODUCT INHIBITION

A model for such a chemostat in which the growth of a microorganism is
inhibited by its product was presented and theoretically studied in a paper by Yano
and Koga [ 1 ] where the specific growth rate was assumed to have the form

HmS
= 1
" (Kg+8S) [1+(P/Kp)n] M

in order to cover wider problems of product inhibition. If the growth limiting
substrate (S) is supplied in sufficient amount so that S >> Kgq at any moment, then
the concentration change of S has little effect on the rates of change of cells
concentraition (X) and product concentration (P). The product inhibition system may
then be described by the following two - variable system:

dX

@t X - DX 2
m n (2)
@ o opp 3)
dt Yp

where D is the dilution rate. If the yield Yp is assumed constant, it can be shown [2]
that the system of Equations (2) and (3) will not admit periodic behavior. It was also
shown by Lenbury and Chiaranai [3] that if Yp is a linear function of the product
concentration, sustained oscillation in X and P is possible due to a Hopf bifurcation
in the system of differential equations which comprises the model. In this paper, we
shall therefore consider the system of Equations (2) and (3) with

Yp= A-BP (4)

where A and B are constants, allowing for the negatively-growth associated situation.
We also adopt for simplicity the function

B =Ho (1+P/ky-P2/ky) (5)

where mg, ki, and kp are positive constants, which results for linearizing the
exponential term in the ' one hump' product inhibition model

L =k(P+1)exp(-P/K) (6)
Introducing appropriate dimensionless variables will reduce the Equations (2)
through (5) to
dxl

I =-X] + Da M(Xz) xl (7)

dx
d—t2 =-X3 + DaM(xz2) X / y(x2) ®)



where y(x2) = (B -x2)/B ©)
M(xp) = 1+ % -ax] (10)

Letting )
L(x2) =M(xz)/y(x2) (11)
f,(X;, X2, Da) =-x; + DaM(xp)xy (12)
B(xyxy,Da) =-xp + Da Z(X2)%;, (13)

Equations (7) and (8) may be recast in vector form as
dx/dT =f(x,Da) (14)
Solving the equation
f(xXg,Da)=0 . (15)

for xg =(Xg,, Xs, ), we obtain the steady state solutions as
(a) trivial (washout) steady state : Xg, = Xs, = 0, and
(b) nontrivial steady state (s): Xg, = y(xsz) Xs, » M(st y= 1/Da

The Hopf bifurcation occurs at a steady state x; if the Jacobian matrix J of

14) evaluated at X, has urely imaginary eigenvalues, which requires that
S P

det] > 0 and trJ = Q. (16)

Applying conditions (16} to the functions in Equations (12) and (13), we find that for
positive det]J the following condition must be satisfied

1-2axg, <0 (17
while tr J = 0 is equivalent to the requirement that
* * 2 *
g(xs,) = (1-0p)(xs,)2+ 2x5 =B = 0 (18)

the other factors in trJ being always positive.

The function g(xgz) will have two distinct positive real roots xgz =r1] and
rp, with 1] < 19, if

/B >af -1>0 (19)



On the other hand, if af-1 <0 then g (xgz) has only one positive real root ry. In
fact, M'(x;:Z ), and correspondingly det J, changes signs when
af-1 =0 (20)

Finally, onset of instability of steady states Xg is realized when tr J = 0 and
(tr I)' = 0 which, from Equation. { 18 ), occurs when

aB2-p-1=0 1)

Applying the Poincare's criterion and Friedrich's bifurcation theory [4], we
may derive the following condition for the stability of the periodic solution which

*
bifurcates from the point Xg, = Xg, :

([3 - xgz )2 (3 - 14(1)(;2 )
3- 600(;2

9(1 - uB)xg, +11(x5,)? < 22)

It can be shown that a limit cycle bifurcating from the bifurcation point

* .
axg, = ry is always stable.

Substituting the appropriate root ry in (22), we find that a loss of stability of
the periodic solution which bifurcates from Xg =r| occurs when

(1—c)(~14¢? + 68¢c - 54)
p= (23)

(3¢2 - 38¢+27)
where ¢ = /1~ B(af -1).

Thus, it is clear from the above discussions that the two system parameters o
and [ determine the stability regions of bifurcating periodic solutions. Figure 1
shows the (a,3) plane divided into 5 regions by the graphs of Equations (20), (21),
(23) and the equation

ap = 1+ 20 24)
l+a

which holds when 1) is equal to the value 1/a exactly.
Following the representation used by Uppal ef al. [S] we show in Figure 2
typical steady state and limit cycle plots of Xg, versus w for each region, where

w=1-1/Da
There can be as many as eleven different types of qualitative phase plane which are
possible for different ranges of w, and correspondingly the Damkohler numbers.
These are labelled A through K in Table 1.

In Region I, there is no bifurcation (aB2 —B - 1> 0). Three types of phase
plane are possible: A, B and C.



Region II is bounded above by the line OLB2 —PB -1= 0 and below by the
graph of Equation (24). This region is also above the graph of Equation (23).

*
Therefore unstable bifurcation originates at the Damkohler number Da,
corresponding to the lower w value WT, with stable bifurcation originating at the

Damkohler number Da; corresponding to the upper w value w;. In this region,
two cases are possible, ITa and IIb, permitting seven types of phase plane, A through
G.

Region II is bound above by the graph of equation (24) and below by that of
equation (23). Here, rj lies below the value 1/0 and there can be two cases, Illa and
I1Ib, in this region admitting eight types of phase planes, A through C, E, and H
through K.

Region IV 1is one of stable bifurcation at the Damkohler number Da;‘.
Therefore, five types of phase plane trajectories are possible, A through C, E and L.
Figure 3 shows a computer simulation of the system model for o« = 0.273997 and f
= 3.9 in this region IV and Da = 1.891370559 of the type E, showing the predicted
asymptotically stable limit cycle surrounding the unstable steady state .

Finally, in Region V af-1 < 0 and no bifurcation occurs. Tr J-becomes
positive at Xs, for which M‘(XSZ) < 0 so that the non-washout steady states are

always unstable. Thus, there are 3 possible types of phase plane in this region, A, G
and K.

PREDATOR-PREY SYSTEM INVADED BY A PARASITE

Holmes and Bethel [6] suggested four ways which the parasite may modify
infected members of the prey population : reduced stamina, increased
conspicuousness , disorientation , and altered responses. In [7], Arme and Owen
reported on sticklebacks, infected by plerocercoids [Schistocephalus solidus], tending
to swim closer to the surface of lakes and making themselves more susceptible to
predation by birds. It has also been documented that the presence of larvae of
Ascaris columnaris Leidy in mice and squirrels produces incoordination, blindness
and loss of fear of larger animals. In other specific examples, this parasite-host
interaction is even discovered to be necessary to the survival of the predator
population.

In this paper, we consider an adapted version of the Freedman's model
proposed in his recent work [8], where the density-dependent death rate of the
predator describes a social population which tends to survive better in herds or packs.
Analysis of the model is carried out by applying the singular perturbation technique.
We derive explicit conditions on the system parameters which identify different
dynamical behavior exhibited by the system. When the predator population is
assumed to have very fast dynamics with respect to prey, the analysis can be carried
out through singular perturbation arguments which are based on simple geometric
characteristics of the equilibrium manifolds of the fast, intermediate and slow
variables of the system, allowing one to derive explicit conditions that guarantee the
existence of a limit cycle in the extreme case of very fast very slow dynamics. The
resulting limit cycle is composed by the alternate concatenation of two slow and two



fast transitions and has interesting biological interpretations leading to better
understanding of the system under study.

The reference model, after we have scaled the dynamics of the three
hierarchical components of the system by means of two dimensionless positive
parameters € and &, is the following system of differential equations:

X=B'y-Dx—yxz=1{(x,y,2) (25)
. (S AV A

&y = B(x+y) - Dy — By - —-- = g(x,y,2) 26)
k+y

sﬁz:z[-a—bz— © 4 ly +nx}sh(x,y,z) 27
d+z k+y

where x(t), y(t), and z(t) are the susceptible prey, infective prey, and the predator
population, respectively. Here p =€f’' is the rate of infection, D the natural death
rate of the infectives and the susceptibles, and B is the birth rate of the susceptible

prey. The density-dependent déath rate 'y*(z) of the predator in the absence of prey
is assumed to have the form ’
c

y*(z)za+bz+d+z (28)

Such a mortality curve would describe the death rate of social predators, such as
wolves or hyenas, which survive somewhat better by staying in a pack.

As is well known [9], the system (25)-(27), with € and & small, can be
analyzed with the singular perturbation method which, under suitable regularity
assumptions, allows approximating the solution of the system (25)-(27) with a
sequence of simple dynamic transitions along the equilibrium manifolds of the
system and occuring at different speeds. First, the slow (x) and intermediate (y)
variables are frozen at their initial values x(0) and y(0), and the evolution of the
fast component of the system is determined by solving the "fast system"

(1) = h(x(0),y(0), (1)) (29)

Thus z(t) eventually tends toward a stable equilibrium Z(x(0), y(0),z(0)) of
(29), assuming here that the system has unique stable equilibrium. Then keeping X
frozen at x(0), we look at the "intermediate system" which has now become active,
namely ;

y(1) = g(x(0),y(t),Z(x(0),y(t),(0))) (30)

where Z(x(0),y(t),z(0)) is a stable equilibrium of the fast system (29) with y(0)
substituted by y.

Referring to Figure 4, where low-, intermediate-, and high-speed trajectories
are indicated, respectively, with one , two , and three arrows, at first a high-speed
transition develops at constant x and y and brings the system from (x(0), y(0),2(0))
(point R in Fig. 4) to a stable equilibrium of the fast manifold h=0 (point S in
Fig. 4). Then a second intermediate-speed transition takes place on the manifold at



constant x (segment ST’ in Fig. 4) until a point is reached (point T in Fig. 4) where
the stability of the equilibrium manifold h =0 is lost and a quick transition then
takes the state of the system to the equilibrium point on a stable part of the manifold,
which will be the point T in Fig. 4. A transitien of intermediate speed then develops
along this part of the manifold to the point 1)’ of Fig. 4.

The resulting curve RST' TD' approximates the solution of the system, in the
sense that the real trajectory is contained in a tube arround that curve with the radius
of the tube going to zero with € and 0.

The direction of transition along the line ST or TD' depends on the sign of
y namely g(x, v, z). Thus, let us assume that for suitable values of the parameters the
intermediate ( stable ) manifold g = 0 separates the line ST’ on the trivial manifold
z = 0 from the line TD' on the nontrivial manifold h = 0 (see Fig. 4) and that g is
positive below the manifold g = 0 and negative above it. Under this conditions the
system moves toward point D’ along the line TI)’, and when D' is reached we have
a saddle-node bifurcation of the fast system : the variable z at point I is not at a
stable equilibrium anymore and a catastrophic transition from D’ to A’ occurs at a
very high speed. This almost closes the cycle but for the fact that during this time the
variable x has been increasing very slowly, assuming that we have started on the side
of the manifold f =0 where f> 0.

Once the system is at A’, a slow motion develops again from A’ in the
direction of increasing y because g is positive here. The same cycling is repeated,
densely convering the manifold h = 0 while the variable x increases slowly until the
equilibrium point B' on the manifold f = 0 is reached where X = 0. A high-speed
transient bring the state of the system back onto the nontrivial manifold h = 0 at the
point C along the line of intersection between the manifold h = 0 and £ = 0. A
transition of intermediate speed to D then takes place along this line followed by a
catastophic transition from D to A. An intermediate speed transition from A then
brings us back to B’, resulting in a closed cycle AB'CD lying on the manifold f = 0.
(See Fig. 4.)

It can be shown, from the above discussion, that if € and & are sufficiently
small and

c

I > a+a 31
b < d—cz» (32)
D+f8-B>0 (33)
B xg D+p-B
—(k AB_MTPTD
a>m_d( +YA)(yA B ) (34)
D+p-B P
mg <% (35)
. (a-nxa)+2+bec—bd
h =k
where T (a-mxa)—2/bc + bd o
xp = OIA_ (37)

" D+yza



Zp = % -d (38)

C
pk| (@-mnxs)+ d

Xp = (39)

D c

I-(a-mxp)-
then a limit cycle exists for the model system (25)-(27).

Figure 5 shows a computer simulation of the model system (25)-(27) when

the inequalities (31)-(35) are satisfied showing the solution trajectory tending toward

a stable limit cycle as predicted.

We observe that if the parasite is no longer present, which will be the case if

B =p*=0, then conditions (33) and (35) cannot be satisfied simuitaneously. The
system may destabalize to extinction. This seems to indicate that stable existence of
the predator population depends, to a certain extent, on the presence of the parasites.
In other words, the invasion of the parasite can stabalize the system resulting in
persistence and the survival of the predator. This is in agreement with the
observations made by several other authors who have done extensive research work
in this field.

CONCLUSION

We have illustrated, by way of two examples of mathematical models of
important biological processes, how the theories of nonlinear dynamics may be
applied to gain insightful information concerning the systems under study. The
results of such theoretical analysis lead to significant advances in the field of
theoretical biology, and have come a long way in the attempt at answering key
biological questions of environmental concerns that will engage the attention of
scientists, researchers, and administrators in the years to come,
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FIGURE CAPTION

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

The (a,B) plane delineated by graphs of Equations. (20)-(21), (23), and
(24) into 5 regions of qualitatively different dynamic behavior.
Typical plots of w versus Xg, for each region in the (c,8) plane.

stable steady state,
______ unstable steady state,
seccsee stable limit cycles,
0000000 unstable limit cycles.
Computer simulation of the model system (2) and (3) with parametric
values in Region IV (type 1), showing solution trajectories tending away
from the saddle point towards the stable limit cycle or the stable washout.
The three equilibrium manifolds f = 0, g = 0, h = 0. The intermediate
manifold g = 0 separates the line DP from the line OQ.
Computer simulations of the model system (25)-(28) when all the
conditions identified in the text for the existence of a limit cycle are
satisfied.
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SINGULAR PERTURBATION ANALYSIS OF A MODEL
FOR THE EFFECT OF
TOXICANT IN SINGLE-SPECIES SYSTEMS

ABSTRACT

We consider a mathematical model for the effect of toxicant levels on a
single-species ecosystem in the case where there is an initial instantaneous
introduction of toxicant into the environment. The population birth-rate as well as
the carrying capacity are assumed to be directly effected by the level of toxicant in
the environment as it is absorbed by the population. The toxicant level in the
population can be depleted at a constant specific rate, a part of which amount may
return to the environment. Through a singular perturbation analysis, we are able to
identify different dynamical behavior which may be possible to the system,
including the existence of sustained oscillation in the levels of toxicant in the

population and in the environment.

Key words : Toxicants, singular perturbation, sustained oscillation, single-species,

mathematical model.

INTRODUCTION

in the past decade or so, there has been a burst in the number of literatures
concerned with the study of effects of pollutants and toxicants on ecological
communities simply because such studies are not only of great interest from

environmental and conservational points of view, but also bear great relevance to



the decision making process of any abiding policy makers in matters of
environmental regulation and control.

Case studies and field observations ha\“/e yielded a number of insightful
articles such as the study by Nelson [1] on the problem of oil pollution of the sea,
and the work by Woodman and Cowling [2] on the effect of airborne chemicals
on forest health. From a physiological point of view, many researchers have
carried out studies on the effects of toxic substances on the human body and other
living organisms. Examples include the articie by Chen and Hsu [3] on the
polychlorinated biphenyl poisoning from toxic rice-bran oil in Taiwan, and the
paper by J.J. Ryan [4] concerning the variation of dioxins and furans in human
tissues. These studies lead to a number of valuable efforts to describe and
analytically study the effects of toxicants and pollutants on various ecosystems,
and on the human population or other living organisms, by utilizing mathematical
models. Examples of such work include a series of papers by Hallam and his
coworkers [5-8], a paper by Shukla ef al. [9] on a mathematical model for the
degradation and subsequent regeneration of a forestry resource, and & series of
papers by Carrier et al. [10-11] attempting to model the toxicokinetics of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in mammalians, including
humans.

More recently, Freedman and Shukla [12] proposed a model for the effect
of toxicant in single-species systems and one for predator-prey polluted systems.
So that their model should be more viable, they modelled the interactions of the
populations and the toxicants in the population and in the environment by means
of ordinary differential equations in terms of their concentrations with respect to
mass or volume of the total environment in which the population lives.

In their model for a single-species system, the amount of toxicant in the
population is depleted due to their death, some of which re-entering the
environment in proportion to the population biomass. Such a model was found to

exhibit no oscillatory behavior in the case that there is no more dumping of



toxicants after the initial instantaneous introduction. It was shown that provided
that the pollutant concentration was not sufficient to kill all the population,
eventually the toxicant would be removed and tiw population would recover to its
former level. However, cases have often been found in nature in which this is not
so, and persistence of toxicant levels in the population and the environment have
been observed such as the incidents described in the paper by Xober and Papke
[13] on their study of the concentrations of PCDDs and PCDFs in human tissues
36 years after accidental dioxin exposure.

Such toxic substances are persistent and bioaccumulate and therefore
contaminate air, water, soil, and most living organisms, including humans.
Accidental intoxication of humans by these substances can result in chronic
effects [11] and the possible toxicological consequences are of great concern.‘

The uncertainties inherent to the conventional response assesment make it
difficult to determine realistic allowable exposure limits for these substances, and
the debate on how such toxic substances should be regulated continues for
governments around the world [11]. More extensive studies which elucidate
quantitatively the toxicokinetics and dynamics of these substances are needed to
provide a credible basis for reducing the uncertainties involved in the response
assesments and regulation decision making.

In this paper, we therefore consider single-species in a closed
homogeneous environment, in which the carrying capacity and the population
birth-rate are both affected by the exogeneous introductign of toxicant. By
modifying the model proposed by Freedman and Shukla [12], we allow the
toxicant in the population to re-enter the enviromment, a part of which amount
varies directly as the toxicant level in the population alone.

We are interested in determining the different dynamics that may result
from the effects of toxicants on such a closed ecosystem. If the population is
assumed to have a very fast dynamics, as compared to the toxicant levels in the

population and in the environment, and the time responses of the different state



variables are assumed to increase from bottom to top, a singular perturbation
approach can be utilized and the structures of corre.spon(.iing attractors and the
nature of the transients can be analyzed geofhetrically. Explicit conditions are
derived which separate the various dynamic structures and identify, in particular,

the limit cycles in the case of extreme dynamics.

DESCRIPTION OF THE MODEL

Based on a model by Freedman and Shukla [12], we let

concentration of the population biomass

x(t)=
®) mass(or volume)of the total environment where the population lives
T(t) = concentration of the toxicant in the environment
mass(or volume)of the total environment where the population lives
U(t) = concentration of the toxicant in the total population

B mass(or volume)of the total environment where the population lives

It is assumed that the population growth is logistic. The absorbtion of the
toxicant in the environment by the population causes the birth-rate r of x to
diminish, and we shall therefore assume that r depends explicitly on T with the
following properties :
(M =1>0

r'(T)<(® for T=20

and r(T)=0 for some T.



The carrying capacity K(T) of the environment also decreases with the

increase in T and has the following general properties :
K(T)=Ky>0
and K (T)<0 for T=0.

The following system of ordinary differential equations can be derived.

2
. px -
=r(Tx- 1
k=r(Dx—Fn )
T=-8¢T—o;xT+nyxU+B;U (2)
Uz—6]U+a1xT—y1xU 3)

where & and 8, are the depletion rates of toxicant in the environment, and in the
population, respectively; o is the depletion rate of toxicant in the environment
due to its intake by the population; y, the depletion rate of toxicant in the
population due to their death or removal; and ©n the fraction of the toxicant which
re-enters the environment due to death. The term B;U in equation (2) takes into
account of the portion that is returned to the environment even in the absence of x,
since even though all population has died out, toxicants in their remains can still

keep re-entering the environment (T > 0 when x =0 and T = 0).



SINGULAR PERTURBATION ANALYSIS

In order to carry out the analysis, we introduce the following change of

)
variables and system parameters : dg = 8o , o= ad § ,di=—L, y= 11 ,
€ € €0 €0
Bzﬁ—é , y=¢T and z=2e8U. We are led to the following system of
€

differential equations.

X2
X=R{y)x- R f(x.y) (4)
y = e[-dgy — axy + nyxz +Bz] = g(x,y,2) (5)
z=¢d[-djz+axy —yxz]=h(x,y,2) (6)
where R(y)=e(T) and k(y)== ~.

Thus, during the transients, when the right hand sides of equations (4)-(6)
are finite but different from zero, |§| is of the order € and |2 is of the order £3.
This means that, for small values of ¢ and &, the change in the toxicant level in
the population takes place more slowly than that in the environment, and the
population has, in comparison, a very fast dynamics. This is quite a reasonable
assumptton in view of the field observations reported in the previously mentioned
studies.

So that the following analysis may be carried out explicitly in a simple

manner, we shall consider the case where the population birth-rate R has the form

R(y)=A -By (N



where A and B are positive constants, while the effect of the toxicant level on the
carrying capacity is negligent (k = constant).

Under the above assumptions, for small \values of ¢ and 6, the solution of
the system (4)-(6) for given initial conditions can be approximately found by
means of singular perturbation analysis [13, 14]. First, the slow (z) and
intermediate (y) variables are frozen at their initial values 2(0} and y(0), and the
evolution of the fast component of the system is determined by solving the "fast

system"”
% = f(x,y(0)) (8)

The fast variable x tends asymptotically to one of the stable equilibria of the fast

system on which % < 0. Figure 1 shows how a fast transient develops toward an

equilibrium manifold f =0 of the fast system. Here, slow, intermediate, and fast
transients are indicated by one, two, and three arrows, respectively.

Once the state of the system has reached the fast manifold f=0, the
variable with intermediate speed begins to become active and we can now

consider the "intermediate system".
y(0) = g(x(1), y(1),2(0) )

As before, the variable y(t) tends to a stable point of its equilibrium manifold

g = 0. Thus, it is seen in Figure 1 that the trajectories start from the point B of the
fast manifold and tend toward a stable point C of the intermediate manifold at
intermediate speed.

At this point, a slow transient develops subject to the constraints

f(x,y)=g(x,y,2)=0 (10)



and brings us to a stop at a stable equilibruim point D where f=g=h=0 or
reaches the point U where the manifold f =g =0 becomes unstable and a saddle-
node bifurcation occurs. A catastrophic transition at a very high speed takes place
from U to a stable point E on an eqﬁilibriurn manifold.

The directions in which the transitions take place are determined by the
signs of f, g, or h as each state variable becomes active. If ¢ and & remain
small, the resulting trajectory composed of all such transients of different speeds
represents a close approximation to the actual solution trajectory of the model
equations in the sense that the solution trajectory will lie in a small tube about
these transients and the radius of the tube tends to zero with £ and 8.

More detailed description of the singular perturbation technique céln be
found in [13] and [14], while examples of its application to mathematical models

can be found in [15 ] and [17].

DESCRIPTION OF THE EQUILIBRIUM MANIFOLDS

In order to determine the structure of the attractors and the nature of the

transients, we now identify the various equilibrium manifolds.

The Fast Manifolds
The manifold f=0 has 2 parts; namely, the trivial manifold x=0 and

the nontrivial one which is a surface parallel to the z axis given by the equation
x=a-by (in

where a=Ak and b=Bk

The surface in (11) crosses the (x,z)-plane along the line



(12)

ol

as seen in Figure 2.

Since
of 1 1
=—lta=bv)-x]-= 13
it (o 2 (13)

it is clear that % <0 on the surface given by the equation [11], and thus the

nontrivial fast manifold is always stable.

The Intermediate Manifold

This manifold is given by the equation g=0 which defines a surface

z=p(x,y) (14)
It intersects the nontrivial fast manifold along the curve

. (do + aa)y - ozby2
(B + ﬂay) — whyy

z=p(a—-by,y) (15)

We observe that this curve intersects the (x,y)-plane (z = () at the points where

y=0
a d
and =240 16
b b (16)

Thus, the curve { =g =0 reaches the (y,z)-plane in the first octant if



11
dp>0 (17)

Now, differentiating (15) with respect to y, we find that the numerator of g_z_
y

along the curve f=g=0is

Num{?;J = (dO +ao )(B + nact) — 2ba(p + may )y + nbzayyz (18)
f=g=0

Therefore the curve f=g=0 has a stationary point when the left hand side of

(18) vanishes. However, we find that the two roots of (18) are

_ 2ba(B+may)+ A a

y == +2baftA (19)
b2 2mbary b
1
where A= 2b[([5 +may )0 2B - nowdg )]2 (20)
Thus, for y; 5 to be real, we require that

o
a
Moreover, for at least one root to be less than P we need

1
2ba[3—2b[([3+nay)(a2[3—nocyd0)]2 <0 (22)

Squaring and rearranging (22) lead to the requirement that

S naydy

2
act —d, (23)



12

provided
ao—dg >0 (24)

At this point, we note that since

naydg S wydg
aa—-dg o

25)

the conditions (21) and (23) are quaranteed by the requirement that (23) and (24)
hold.

The Slow Manifold
This is the surface h =0 which defines a surface

z=¢(x,y) | (26)
that intersects the fast manifold f = 0 along the curve given by

aoy — bocy2

S Crey

27

for which z=0 when y=0 and y =% (see Figure 2).

Thus, we can identify essentially 5 cases of different dynamical behavior

as follows.

Case 1

This case is identified by the inequalities (23) and (24). The shape of the
fast manifold is therefore as shown in Figure 2(a) and the curve f =g=0 has a
stationary point P above the (y, z)-plane and intersects the (v, z)-plane at the point

H in the first octant.



Now, to also guarantee that the point S where f =g=h=0 is below the

point P we need that at y =y, we have

aoly, — bo&y% N (dg+ao}y, — aby%
(dj+ay)-byyy = (d) +may)-nbyy,

(28)

using (15) and (27).

Inequality (28) means that the part of the curve f=g=0 from C to P lies
"above" the surface h=0 while the line DG lies "below" the surface h=0.
Looking at the sign of h, we see that h > 0 along CP and h < 0 along DG which
determines the directions of the transients along these curves as shownin Figure
2(a). Moreover, for the curve f =g =0 and f = h =0 to be located with respect to
each other as shown in Figure 2{a) we require that at y =0, the slope along the
curve f=g=0 should be less than that along the curve f =h=0. That is, we

need

dz
dy

dz
< J—
dy

f=g=0 f=h=0

which leads to the inequality

dg +aa _aa
B+may d;+ay

or B> (do +a0L)(d1 +ay) _ nay

aa

(29)

Starting from some initial point, say A (see Figure 2(a)}), if A is above the
nontrivial fast manifold, f <0 here and a high speed transition will develop in the
direction of decreasing x towards the stable fast manifold (point B). As B is

approached, the intermediate system has become active and, since g < 0 here, a

i3



transition of intermediate speed will develop along the fast manifold towards
point C on the curve f=g=0. As mentioned above, along this portion of the
curve, h > 0 and so a slow transition develops 1n the direction of increasing z until
the point P is reached, at which point the stability of the manifold is lost. A
transition at a very high speed then takes place which brings us to the point D on

the trivial manifold x = 0. Since we are now in the region where h < (, transition

develops slowly along the line y = b until a point E is reached where the stability
a .

is again lost. The existence of such a point E in a similar system has been shown
in a previous work by Osipov et al. [18]. For the point E to be to the right of G as
in Figure 2(a), we further require that the second coordinate yg of this point is

positive, namely
yg>0 (30)

However, considering (16), this is easily accomplished if b is made sufficiently
small.

A quick jump from E will then take us back to the point F on the curve
f = g = 0 which completes the closed cycle FPDEEF in this case.

Thus, this is the case where the attractor is a limit cycle composed of a
concatenation of catastrophic transitions occurring at different speeds,
corresponding to the situation where persistence in the toxicant levels and the
population density is observed exhibiting sustained oscillations in all three state

variables.

14



Case 2
This case is shown in Figure 2(b), identified by the inequalities (24), (29)

and the one opposite to (23), namely
maydg

s (31)

This last inequality means that, in this case, the stationary point of the curve
f =g =0 is below the (y, z)-plane and the position of the manifolds are as shown
in Figure 2(b).

Starting at an initial point A, transitions will develop as described before
until C is reached, from which point a slow transition brings us to a stop at the
stable equilibrium point S where f =g=h=90.

This therefore corresponds to the case where population density and both

toxicant levels attain stable equilibrium values as time passes.

Case 3
This case is identified by inequalities (23), (24) and the one opposite to

inequality (29), namely

< (dg +ao)(d; +ay)
aol

p ay (32)

Thus , in this case, once we are at the point B on the fast manifold ( see the
Figure 2(c) ), h <o here and a slow transition will develop along the curve
f=g=20 in the direction of decreasing z instead. This takes us to a stop on the x-
axis (y=z=0)

This is therefore the case where toxicants eventually get depleted and the

population re-establishes itself as time passes.



Case 4
This case is identified by the inequalities (23), (24), (29), and the opposite
to inequality (28), namely |

aoy, — bay% (dg+aa)— ocby%
<
(d; +ay)-byy, ~ (d; +may)—nbyy,

(33)

This last inequality means that the point 8§ is above P on the curve f =g=0 as
seen in Figure 2(d).

Again the transitions develop from A to B then to C as before. However, a
slow transtion from C will stop at the point S since here f =g =h = 0. This is also
the case where each state variable attains an equilibrium value as time progresses.
Case 5

This last case is identified by (23), (24), (29), and

yg <0 (34)
However, considering (16), condition (34) can be satisfied if b is made
sufficiently large.

The manifolds are then positioned as shown in Figure 2(e). The
transitions, once P is reached, will make a quick jump to the point D on the (y, z)-
plane. Since the trivial manifold is stable troughout the line DG in this case, the
slow transition from D will continue until G is reached where g < 0. Transition is
then made toward the origin. This then corresponds to the case where the
population becomes extinct and the toxicant in the population of course gets
depleted as a result, while the toxicant level in the environment reaches a high
level then slowly depletes itself as time passes.

By the above analysis, we have proved the following theorem.

Theorem If e and § are sufficiently small and inequalities (21) and (24) hold,
then the system (4)-(6) has a unique global attractor in the first octant. The
attractor will be a stable equilibrium point if (23), (29) and (33) hold or (29), and
(31) hold, while it will be a limit cycle if inequalities (23), (28), (29) and (30)
hold.

16



Numerical simulations of the system (4) - (6) when the parametric values
are chosen to satisfy the requirements in each of the 5 cases are shown in

Figure 3.

CONCLUSION

In this paper, we have analyzed a model for the effects of a toxin
introduced into the environment of a single-species system. The population
growth is logistic, while the time responses of the different state variables are
assumed to increase from bottom to top. We have been able to identify five
separate cases in which different dynamic behavior can be observed. "

It has been shown that if the rate § at which the toxicant in the population
re-enters the environment is higher than the levels given by inequilities (21) and
(23) then toxicant will not get depleted to allow the population to recover its
former level. If this is further compounded by the condition where the effect of
toxicant on the birth-rate is too high (b >>1) then we can expect extinction of the
species which is case 5 identified above.

Thus, the model has proved to be quite versatile and fits well with field
observations, yielding greater insights into this perplexing problem of interactions
among the population and the toxicants in the environment which is of great

concern to us all.
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FIGURE CAPTION

Figure 1:

Figure 2:

Figure 3:

A fast (f = 0), intermediate (g = 0), and slow (h = 0) equilibrium
manifolds, with the fast (triple arrow), intermediate {(double arrow)

and slow (single arrow) transients.

The solution trajectories of the system (4)-(6) in the five cases
identified in the text. The attractor is a limit cycle in Case 1, and an
equilibrium in Case2, or 4. The population recovers itself in Case3,

but becomes extinct in Case 5.

Numerical simulations of the system (4)-(6) for each of the ﬁ\;e
cases identified in the text. Here, € =8 = k=1; Casel: a=0.5,
b=01,a =09, =09 y=09, n =09, dg= 0.3,
dy = 0.01; Case2: a=09,b=01,a=05,=09,y =09,
n =09,dg=04,d;=001; Case3: a = 0.5,b = 0.1, « = 0.9,
B=05vy=09,7n=01,dy=03,d; =0.01;Case4: a =0.9,
b=0.1,a

0.5,8=1097y=09 n=09dy=01,d; =05;
Case5:a=05,b=0.1,a=09,p=09, y= 09,7 = 09,
do = 0.001, d; = 0.01.



N v



a)Case 1
X A . Xt
F ffo A[ f=0
C < h=o c g
— :o
B ] ) B
/ Z h/=0
O - 0
G —
b)Case 2 c)Case 3
X4 x)r
A - A _
y t3 ; fgo
S h=0 g=o
B S B h=o0o
g=0 B
e Z z
0 // / | 0 /
G

d) Case 4

F S

y )

e) Case 5



10,

= 7.5
5.0
2.5
a.0 — — r
Q.008 0.125 0.250 0.275 0.500
Case 1
1] 0 500
5 0.375 _|
g | 0.250 4
5 Q.125 4
0.000
o T . i T { T T T T T T T 7 T T
0. 00 a5 0.50 75 00 0.470 0.475  0.480  0.485 0.430  ©0.495 0.500
X X
Case 2 Case 3
) §.25
5.00 _
.8 |
7 3.78
¥
.. 4
.50
3 -
1.25 4
2 0 oo
T T f ] T T T T
5 os & 9.7 B -] Q.000 0.125 0.250 0.375 0.500
X X
Case 4 Case 5



38

42

)

o 9 o -, o ¥ . ,‘ .
pda 1A imsInIIEH model system (62)-(64) Taald bifurcation analysis
i a ' LY ] o ‘ Y o

TRITOR LRSI L phase space ANHMUIAN 9 ATUIUIUUDY transients WAL attractors et

phase space 11 NUUALANAAY

Y 3w s

Fa
nauIteluduid Idih@ouiudly paper uazldSuRduwudrlu The Mahidol

[l F
University Journal muengifuuindlone til



39

Dynamical Modelling of the Effect of Toxicants on a

Single-Species Ecosystem



DYNAMICAL MODELLING OF THE EFFECT OF TOXICANTS
ON A SINGLE-SPECIES ECOSYSTEM

Yongwimon Lenbury*
Siriporn Hongthong

Nardtida Tumrasvin

Department of Mathematic‘s
Faculty of Science, Mahidol University
Rama 6 Rd., Bangkok 10400
Thailand
scylb@mahidol.ac.th

* to whom all correspondences should be addressed.



DYNAMICAL MODELLING OF THE EFFECT OF
TOXICANTS ON A SINGLE-SPECIES ECOSYSTEM

ABSTRACT

We consider a mathematical model of the effect of toxicants on single-species
in a closed homogeneous environment. The population birth-rate as well as the
carrying capacity are assumed to be directly effected by the level of toxicant in the
environment as it is absorbed by the population. The toxicant level in the population
can be depleted at a constant specific rate, a part of which amount may return to the
environment even in the absence of any living organisms. A Hopf bifurcafion analysis
is carried out yielding boundary conditions which divide the parametric plane into
regions of different dynamical behavior. It is found that when the natural birth rate of
the population is too low, no non-trivial equilibrium state exists in the system. At a
fixed sufficiently high natural birth rate, the system can settle back to its former stable
equilibrium state after the initial dumping of toxicant into the environment, provided
that the rate at which the toxicant in the population returns to the environment is not
too high. Sustained oscillation in the population and toxicant levels is exhibited for
suitable ranges of parametric values. However, if the per capita decay rate or birth rate
is too low, the system no longer admits a stable non-trivial equilibrium state if the

return rate is too high, and population may become extinct.

Keywords:  toxicants, modelling, single species, bifurcation.



INTRODUCTION

The question of effects of pollutants and toxicants on ecological communities
has become of grave concern to scientists, en;fironmental agencies and authorities on a
global scale, especially in the past decade or so. Toxic substances are persistent and
bioaccumulate, and therefore contaminate air, water, and most living organisms,
including humans. Accidental intoxication by these substances can result in chronic
effects and the possible toxicological consequences can no longer be disregarded. In
one of their papers, Xober and Papke [1] reports the incidents where concentrations of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDDs and PCDFs) in
human tissues can be detected 36 years after accidental dioxin exposure.

Several efforts have been made to qualitatively describe and study the effects
of toxicants and pollutants on various ecosystems. In a series of papers by Hallam and
his coworkers [2-5], analytical study was caried out utilizing various r'riathematicaI
models. Shukla er al. [6] later studied a mathematical model for the degradation and
subsequent regeneration of forestry resource. More recently, in papers by Carrier et al.
[7-8] , attempts were made to model the toxicokinetics of PCDDs and PCDFs in
mammalians, including humans.

Realistically, a great number of sociologtcal and physiological factors play a
part in the dynamics of toxicological pathways in nature. The resulting mathematical
model can be quite complexed, handled mainly by powerful computers, and requires a
great number of field data for its validation.

A relatively less complicated model involving only a few mathematical
equations is often preferred for its capability to give a deep understanding and a great
deal to new valuable insights to the system under study, while requiring fewer data for
its verification. It can moreover give policy makers the much needed preliminary
information to justify their decision or choice of actions concerning important
environmental issues.

In [9], Freedman and Shukla proposed a model for the effect of toxicant in
single species systems and one for predator-prey polluted systems. The interactions of
the population level (X) and toxicants in the population (U) and in the environment
(T) are modelled by means of ordinary differential equations in terms of their
concentrations with respect to mass or volume of the total environment in which the

population lives.



In their model for a single-species system, the amount of toxicant in the
population is depleted due to their death, some of which re-entering the environment
in proportion to the population biomass. Such a model was found to exhibit no
oscillatory behavior in the case that there is no more dumping of toxicants after the
initial instantaneous introduction. It was shown that provided that the pollutant
concentration was not sufficient to kill all the population, eventually the toxicant
would be removed and the population would recover to its former level. However,
cases have often been found in nature in which this is not so, and persistence of
toxicant levels in the population and the environment have often been observed such
as in the earlier mentioned paper by Xober and Papke [1].

In this paper, we therefore consider single-species in a closed homogeneous
environment, in which the carrying capacity and the population birth-rate are both
affected by the exogeneous introduction of toxicant. By meodifying the model
proposed by Freedman and Shukla [9], we allow the toxicant in the population to re-
enter the environment, a part of which amount varies directly as the toxicant level in
the population alone. This will account for the portion of toxicant in the population
carcasses which may keep re-entering the closed environment even in the dwindling
presence (x = () of the living organism.

We are interested in determining the different dynamics that may result from
the effects of toxicants on such a closed ecosystem. Application of the Hopf
bifurcation analysis allows us to derive boundary conditions which delineate the
parametric plane into regions of different dynamic behavior. It is shown that, after an
initial dumping of toxicant into the environment, if the toxicant level in the population
and the environment keep decaying at a constant per capita degradation rate, the
system can settle back to its former stable equilibrium state provided that the rate at
which toxicant in the population re-enters the environment is not too high. However,
if the natural birth rate is too low, the non-trivial equilibrium state no longer exists.
Moreover, even for high natural birth rate, the equilibrium state can become unstable,
and sustained oscillation in the population and toxicant levels is observed if the return

rate is high enough.



THE SYSTEM MODEL

Following Freedman and Shukla {9}, we let

concentration of the population biomass

X(t) = X T
® mass (or volume) of the total environment where the population lives
Tt - concentration of the toxicant in the environment
mass (or volume) of the total environment where the population lives
uct) concentration of the toxicant in the total population

mass (or volume) of the total environment where the population lives

It shall be assumed that the population growth is logistic, while the absorbtion
of the toxicant in the environment by the population causes the birth-rate (R ) of X to

diminish. We therefore assume that R depends explicitly on T with the following

properties:
R(O) =15 > 0 (1)
R(T) < 0 forT >0 (2)
and R(T) = 0 for some T. (3)

The carrying capacity K(T) of the environment is also effected by the level of

toxicant in the environment and has the following general properties

K(T) = K¢y > 0 @)

and K(T) < 0 for T 2 0. (5)



The toxicant levels in the environment, and in the population, have natural
depletion (or decaying) rates of &; and &;, respectively. The toxicant in the
environment is also depleted at a per capita rate o,y due to its intake by the population.
On the other hand, the toxicant in the population is depleted at a per capita rate of y

due to death or removal, a fraction of which amount re-enters the environment. We

therefore arrive at the following system of ordinary differential equations.

dX _ I'0X2

a - DX - K(T) ©6)
dT

i -8gT— o XT+£(X,U) (7
i _ 5, U+a XT—vy. XU

dt - - 1 al YI (8)

where the last term f(X,U) of equation (7) accounts for the fraction of toxicant in the
population which returns to the environment. Since this return rate must increase with
the increase in X or U, while in the absence of living organisms ( X = 0} toxicant can
still keep re-entering the environment at a positive rate which necessarily depends on
the Ievel of toxicant in the population (U) ét that moment in time. The function f{X,U)

is thus assumed to have the form

£(X,U) = ny;XU+pU (9)

where UNPE and P are positive constants.



STEADY STATES AND THEIR STABILITY

For the following analysis, we shall assume that the population natural birth-

rate has the form

R(T) = 15-nT , 15 > 0,1y > O. (10)

which satisfies the properties (1)-( 3) with r;, > and T = i—o We will also carry
1

out the analysis for the case where the effect of toxicant on the carrying capacity K is
negligible and therefore K = constant.
In order to carry out the stability analysis, we introduce the following change

' g X
of variables and system parameters : x = _(I)—(_’ y=T,z=U,a=1,b=r,
Ka K
dg = 8p.a = 1,y= Yl,andd1=5
Iy I‘O

The model equations (6)-(8) with (9) can then be written as

dx _ 2
a (a-by)x -x (1
dy
It = -dgy—axy+nyxz+fz (12)
dz

= ~djz+oxy-yxz (13)

dt



The system of equations (11)-(13) thus admits three steady states, namely

i) the washout steady state: (x,y,z) = (0,0,0)
ii) washout of toxicant only : (x,y,z) = (a,0,0)

iii) the nonwashout steady state(s), (X,¥,Z) satisfying

(a-by)-% = 0 (14)
—doy - oXy+nyXz+ Bz =0 (15)
—d(Z+0XY — yXZ =0 (16)

Solving equations (14)-(16) for X, we find

5+ 52 ~4(1—n)aydod,

¥l2 = 2(1-m)ay a7
where
& = af-dgy—dja
Then
_ a-xX
7=
_ oxy aX(a—X)
and Z = - = —
d; +9% dy +yx
We note that if
dny +dqa
B < L (18)



then 8 < 0 and both X; and X, are negative and have no physical meaning in our

system. Moreover, for values of B such that

8% < 4(1-m)oyd,d

the term under the square root sign in (17) is negative. The system therefore admits

only the washout steady states until [ crosses the critical value

1
Be = - [2/(1-moydd; + doy + dio] (19)

at which point the system undergoes a saddle node bifurcation and two more steady
states appear which move further apart as B increases. As B increases even further,
one of the roots given in (17) becomes negative as shown in Figure 1, and the bigger

B gets the roots can become either negative or bigger than a, in which case

a-x
y = o < 0, leaving us with only the two washout steady states, as shown in the

bifurcation diagram presented in Figure 1.

The Jacobian matrix evaluated at the trivial steady state (0,0,0) is

|_a 0 0
Jo =10 —dp+B O (20)
0 0 —81

one of whose eigenvalues is always positive (-namely a ), and one is always negative
( =8 ). This means that the washout steady state (0,0,0) is a saddle point for all

positive values of the system parameters and thus the dashed line along the pP-axis

signifying that the trivial steady state X= 0 is unstable.



The Jacobian matrix of the system (11-(13) evaluated at the steady state (a,0,0)

is

-a —ab 0
Ja =|0 —dg—aa nyat+P
0 ca —d;—va

and the corresponding eigenvalues are -a and

A &% ~4](dg +0a)(d; + ya) ~aa(rya + B)]
2

@1)

where

A= -dg-d;—aa-ya.

Expanding Az, we find that the term under the square root sign in (21) is

always positive. Moreover, the term will be less than AZ if

_ (do+ua)d; +72)
aa

B ya = B (22)

in which case the steady state (a,0,0) will be a stable node since A < (. On the other
hand if

2

B> (23)

then the point will be an unstable saddle point since one of the eigenvalues will be

positive.
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The Jacobian matrix evaluated at the nontrivial steady state (X,¥,z), whenever

it exists, is

J=|-ay+nyz —dg—oaX m/x-!-B (24)

X -bx ]
] |
%]

ay —yz oX -dy —yX

when X, y, and Z satisfy equations (14) through (16). The corresponding

characteristic equation is

A +a,02 +ajh+ag = 0. (25)
where
ag = bx|(nyz - aF)(d; +1%) +(ny% + B)eF - v2)] (26)
ay =%[dg +d; +(o+7)%] + bX(nyZ ~ o) 27
ay =dg +dy +(1+a+7)xX (28)
If we let
1 1,
q=321- 523 (29)
1 1
r=g(a1a2—3a0)~—§a2 (30)
11
_ 3.,.:2y213
S; =[r+(q” +r7)?] 31)

11
= [r-(@3 +r2)2 3 (32)
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In region II, however, ag > 0 while aja; > ag and the real parts of all 3
eigenvalues are negative. The non-trivial steady state is therefore a stable spiral node
in this case. As time passes, all trajectories starting from its neighborhood will spiral
toward the equilibrium point where X = X,.

In region III, ay > 0 and aja; < a( and limit cycle behavior can be observed
resulting from a Hopf bifurcation from the steady state solution which has now
become unstable. It is found numerically that the bifurcated limit cycle is stable
throughout this region.

Schematic diagram of different dynamic behavior and transients which may be
observed in each of the 10 ranges of parametric value P; namely, A through J, are
shown in Figure 1. Here, solid lines indicate stability, dashed ones indicate
unstability, while closed dots represent stable limit cycles resulting from supercritical
bifurcation and increasing in amplitude as f increases. The numbers of possible
transients or attractors in each of the 10 ranges, A through J, are given in Table 1.

In fact, substituting (26)-(28) into (40} and (42), we find that Hopf bifurcation

occurs for values of B for which aja; < ag or equivalently,

" 32X2(91 +92)+(a2 —61)[ny22 —0(?2)}3?2 .

B>P = 7 - Z TYX7 (43)
b%, (0¥, —¥2)
as well as ay > 0 which is equivalent to
v _ (MyZ—oyy)6
> = - - - TyX 44
B> B2 P ¥ (44)
where
. a- iz
Y2 = b
- 0X2¥2
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with

9] = do +OL)_{2
0y =dy +71X;

Thus, Hopf bifurcation occurs for values of P such that

B > max(B],B5) (45)

In Figure 1, four different possibilities in region III are schemetically shown

according to the value of ' relative to the values P, B); and B;.

Finally, numerical simulations of the model system (11)-(13) in the different
cases discussed above are shown in Figure 3, in which parametric values for Figures
3(a), 3(b), and 3(c) are chosen to be in region I, II, and III of Figure 2, respectively.
The corresponding time series of the various cases are shown in Figure 4, where
sustained oscillation is observed when the paremetric values fall inside the region [II
where periodic solution has been predicted. In region II, on the other hand, the
trajectory is seen to first approach the origin, which is a saddle point, then gets
repulsed as the population recovers itself and returns to its equilibrium value at the
stable steady state (a, 0, 0). However, if in this region we have a very low degradation
rate and birth rate and very high return rate, the population level x is capable of
dropping all the way to zero. The toxicant level reaches a high level so fast that the
population does not have time to recover itself, in which case the population can

become extinct.
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CONCLUSION

We have considered a mathematical model of the effect of toxicants on a
single species system in a closed homogeneous environment. Application of the Hopf
bifurcation analysis led us to the conclusion that if the return rate 5, namely the rate at
which the toxicant in the population re-enters thee environment is sufficiently low, a
stable non-trivial equilibruim state exists in which case the population persists while
the toxicant level may degenerate to zero or tend toward an acceptable level.

However, for a fixed value of the self degradation rate dy and birth rate ry, if B

increases beyond the critical values BT and B; given in the paper, the system becomes
unstable and the toxicant level can rise to an undesirably high level. Through our
analysis, we found that the system can exhibit up to 10 different types of phase space,
and a possibility of up to 5 transients or attractors.

This study of the various dynamic behavior which is possible in such an
important process should serve as a useful tool for trying to understand and efficiently

control such interesting but complexed ecosystems.
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stable node

unstable node

saddle point

limit cycle

Total

D | E
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2 | 2
1 -
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Table 1




FIGURE CAPTION

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

TABLE 1.

Schemetic diagrams to present X as a function of B , showing five
different cases which are possible, in the region Il of Figure 2, for
various values of the parameter pr. The dashed lines indicate unstable
steady states, the solid lines indicate stable ones, while the closed dots
indicate stable limit cycles. The dashed vertical line is the line g = p,
whose relative position gives rise to 10 possible types of phase

space; A through J.

The graphs of equations (40) and (42) divide the (8,1, plane into 3

regions of different dynamic behavior. Here, b = 1, dp =03,

d; =001, 0 =09, t =09,y =0.9.

Numerical simulations of the model system (11)-(13). The parametric
values are chosensothat a) (B,p) = (0.4,0.03) inRegionl
of Figure 2, where the solution trajectory is seen to approach the

washout steady state, which is a saddle point , then gets repulsed.

b) (B.fy) =(0.36,0.5) in Region I, where the nontrivial steady

state S is a stable spiral node, and ¢) (B,f;) = (0.55,0.6) in

Region IlI, where a limit cycle is observed as theoretically predicted.

The time series of the solutions to the model equations (11)-(13) in

the cases a), b), and c) of Figure 3, respectively.

Number of transients or attractors in each of the cases A through J as

indicated in Figure 1.
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