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Figure 1. Computer simulation of model equations {10)—(14) with @ = 1.1, 8 = 1.5,
p=1ll,1=6,6 =0241, M = 2, w = 1256, z5 = 0.2, xg = 0.5, ys = 1.5, and
zg = 0.05. The solution trajectory approaches and eventually lies on a 2-torus, seen
here projected onto the coordinate planes.

and finally, A3 = —1 < 0. Thus, all requirements for Hopf bifurcation are met. For 8§ in some
open interval (6c,d0c + €), the system of equations (10)-(12) with w = 0 will have a periodic
solution bifurcating from its steady state (zs,ys, zs). For the system of equations (10)—(14) with
w # 0, this means that if conditions (26) and (27} are satisfied, a Hopf bifurcation occurs on top
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Figure 1. {cont.)

of the existing periodic solution, due to the eigenvalues + iw, giving rise to solution trajectories
on a 2-torus in the five-dimensional phase space.

Now, with the above choice of parametric values, Hopf bifurcation occurs at a nonwashout
steady state (zs,ys, zg5), namely ys = 3 > 0, and from (20),

zg =20 +(p - Brxs) >0,

while z5 > 0 by (27). In fact, the solution trajectory of the model equations (10)}-(12} remains
in the first octant (z > 0, y > 0, z > 0) of the (z,y, z) space since, on substituting z = 0 into
equation (12), we find

j—; = Zg > 0, (28)
here. Also, on the (z,z) plane y = 0 so that
dy
9T 8 >0,
and on the plane z = 0, we have
d—r =0
dT !

so that the solution trajectory does not cross the coordinate planes.

In Figure 1, we present a computer simulation of the model equations (10)-(14) with w # 0
and parametric values chosen to satisfy the bifurcation requirements (26) and {27), that is, n = 6,
8=15=ys, 5 = 0.5, and p = 11. Then, from (25), we find

bo = 0.125.

Thus, we chose § = 0.241 > §¢, which gives z5 = 0.05, M = 2, while w = 1.256, a = 1.1, and
zg = 0.2, The solution trajectory is observed to approach the closed curve on the surface of a
2-torus surrounding the steady state (s, ys, 25, us, vs) = (0.5,1.5,0.05,0, 0) in the 5-dimensional
phase space, seen here projected onto the coordinate planes.
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4. FORCE FIELD INTENSITY AND BIFURCATION DIAGRAM

We now investigate the influence of the force field intensity a on the dynamic behavior of the
model system (10)-(14) by first showing that the smaller the force field intensity «, the closer to
the plane y = B will the solution trajectory on the 2-torus lie.

Letting
. 12(1)
GiT)=s ———
(T) H{T) + AL (29)
we see by (28) that G(T') > 0 for all T. Thus, equation (12} can be written as
dly — 8
WD)~ w6y - 5) - abu. (30)
Using the Leibnitz’ formula, we then find
fr(—ou-G('r.))dr T I (cau-Glu)du,
y(Ty -3 =elo / e Jo (—afu)dr +C . (31)
0
Letting
T
WT) = [ G, (32)
0
it is easily seen that A(T") is an increasing function, and therefore, we have
T
y(T) - B = e~ouD=HD) {c —ap [ emOy) df} ,
0
where e ™7T) s 0 as T — 0.
Since eM™) < MT} 0 < 7 < T, we have
T T
e'““(r)“"(ﬂ/ U Ty (1) dr| < em @V TI-A(TI AT) / e My(rydr| =1.
0 0
Therefore,
W(T) -8l <ad,  asT - oo, (33)

which means that for small &, the time course of y{T') tends to a value close to 3 as time passes.
In fact, if @ = 0, then we have
y(T) — 8. as T — oo,

and the bifurcating solution trajectory eventually lies on the plane y = 8. The expression (33),
in fact, gives us a bound for the extent to which y will be perturbed from the value 3.

Now, we have shown that the critical point (xs,ys, z5) of the system of equations (10)-(12)
with w = 0 loses its stability and a Hopf bifurcation occurs when the two complex conjugate
eigenvalues A; and Ag cross the imaginary axis. In other words, at the value ¢ of our bifurcation
parameter &, the two eigenvalues A; and A; have a vanishing real part. Figure 2 shows the stability
region in the (s, 6) plane for a continuous stirred tank reactor modelled by equations (10)-(14)
under the conditions # = 1.5, p = 11, and 5 = 6. The region is the union of two sets $; and Sy,
where

Sy={(zs.8)|0<zs <pf~!,0<b<bc},
52 = {{z5.8) | o0~ < z5}.
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Figure 2. Stability diagram in the (z5,6) plane for the model system (10)-{14).

In §) U 85, solution trajectories near the steady state solution (z.y,z) = (zs,ys, 25} remain close
to that point as time passes.
On the other hand, in the instability region given by

So = {(xs.8) |0 < x5 < p37 1 6c < 6 < o0},

the reactor can exhibit bifurcation or chaotic behavior. The set is thus to be avoided from a
control point of view. The transition from periodic orbits to chaos is known to occur after a
cascade of period doubling, followed by the appearance of chaos windows. Following the work
presented by Schaffer {14] on how nonlinear dynamics can elucidate mechanisms in ecology and
epidemiology, we create a bifurcation diagram, shown in Figure 3, in the following manner. For
each value of the force field intensity a, the simulation of the model equations (10)-{14), for
parametric values in the region Sp, is allowed to run for a sufficiently long period of time, then
40 data points z(f,), n = 1,2,...,40, are collected every interval of 2n/w, the period of the
external force field. That is,

2nw
Th=To+ 0, n=1,2,....40,
[#3)

where Ty = 100 in Figure 3. The values £, = logz(T,), n = 1,2,...,40, are then plotted
against a which ranges from 0 to 3. All other parametric values are the same in all computer
simulations which generate the points in this figure. Yve see here that the solution is periodic for
small cr; all 40 data points for each value of a apparently fall on the same spot in the (a, £) plane.
Windows of chaos are observed for o in the approximate ranges 1.2 < e < 1.9 and 2.1 < & < 3,
although the chaotic scatter of data points is more pronounced in the second range. The data
points for each value of & no longer fall on the same spot, a characteristic which is markedly
different from the behavior in the range where a is small.
In Figure 4, we investigate the behavior in the range 2.1 < a < 3 more closely. Here, we plot

angn_ﬂfu;rﬂ, n=1,2,....,40,
where
A‘[u = maX&n, Mg = minEn,
n n

against . We observe that at o = 2.1, approximately, the 40 data points apparently fall on
the same spot. As ¢ increases, however, they bifurcate into two groups, one of which bifurcates
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Figure 3. Bifurcation diagram of the model system (10)-(14) with parametric values
in the region Sp. A =15, p=11.n=6, 6 = 0241, M = 2, w = 1.256, zg = 0.2,
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Figure 4. Bifurcation diagram of the CSTR modelled by equations {10)—(14) in the
range 2 < a < 3 with parametric values of Figure 3: plot of H, versus a.

further into four. For a around 2.45, the solution is apparently no longer periodic. We do not
obtain the same value of 2(T) every interval of 2x/w. A similar chaos window can be observed
for a between the values 1.2 and 1.9, approximately, although not so marked. Periodicity is
recaptured, however, at a around 2.1 and 3.0 (points A and B, respectively).

Finally, Figure 5 shows the time course of z(T) for parametric values of Figure 3, but with

= 1.5, inside the range of a chaos window (point C). The solution is no longer periodic, as
is born out by the bifurcation diagram in Figure 3. Similar dynamic behavior of this type has
previously been observed in a model for the spread of measles reported in [14], where an increase
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Figure 5. The time course of the simulated substrate concentration z with @ = 1.5
and other parametric values as in Figure 3.

in the amplitude of an external factor can drive the system into behaving in such an unpredictable
manner.

5. CONCLUSIONS

We have investigated the dynamic behavior of a continuous stirred tank reactor modelled by
cells and substrate balance equations which have been extended to incorporate the effect of
external forces, such as the earth’s magnetic field, on the cell membrane permeability. From con-
siderations of the relationship between the anisotropy of the liquid crystals and the permeability
of the cytoplasmic membrane, it is deduced that the membrane permeability varies with time in a
sinusoidal fashion. The equation for the dynamics of variation in the permeability is then derived,
taking into account also the increase in the apparent permeability due to the newly-formed cells.

The balance equation for the nutrient uptake rate is also adjusted to take into account the
direct relationship between the membrane permeability and the number of active transport sites.

Bifurcation analysis done on the resulting model equations shows that, for suitable ranges of
parametric values, the model system admits oscillatory behavior as a result of a Hopf bifurcation
on top of the existing periodic solution due to the sinusoidal variation in the membrane perme-
ability. Consequently, if parametric values satisfy the conditions put down in the theorem, the
model system will have a solution whose phase space trajectory eventually lies on the surface of
a 2-torus.

Particular attention is then devoted to the identification of the operating zones in which it is
possible to carry out the continuous process while avoiding undesirable complex dynamic behav-
ior. Owing to the importance of the process and the hazardous nature of the compounds which
might be involved, we have attempted to identify the ranges of control parameters (6 and g,
specifically) to be avoided since they correspond to the region where complex dynamic behavior
is possible. The appearance of chaos windows for ranges of the external force field intensity
identified in the bifurcation diagrams is not only undesirable for control and design problems,
it can also give rise to potentially dangerous situations in the case where toxic compounds are
involved, such as in the operation of wastewater treatment processes. Clearly, further theoret-
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ical studies must be carried out to shed more light onto this complicated, but most frequently
observed dynamic behavior.
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MODEL FOR CONTINUOS BIO-REACTORS

Y. LENBURY Department of Mathematics, Faculty of Science, Mahido! University,
Bangkok, Thailand.

N. TUMRASVIN Department of Mathematics, Faculty of Science, Mahidol University,
Bangkok, Thailand.

ABSTRACT

A model of a continuous bio-reactor subject to product inhibition is considered where a one
hump substrate-limited specific growth rate is used. Analysis of the model is carried out
through singular perturbation arguments which allow us to derive explicit conditions on the
parameters that identify different dynamic behavior of the system, and specifically ascertain
the existence of a limit cycle composed of a concatenation of catastrophic transitions occurring
at different speeds. Moreover, the interactions between the limiting substrate and the growing
microorganisms can give rise to high-frequency oscillations, which can arise during the
transients toward the attractor or during the low-frequency cycle. This periodic burst of high-
frequency oscillations develops as a result of the effective product inhibitory mechanisms. The
analysis helps us in identifying the safe operating region in which undesirable complexed
dynamic behavior may be avoided.



1 INTRODUCTION

Viewing the behavior of microbial cultures within the framework of lumped kinetic models, a
multitude of models have been proposed and theoretically studied in diverse ways since the
model due to Monod [1] fashioned after Michaelis-Menten Kkinetics for single enzyme-
substrate reactions.

In [2], Yano and Koga made a theoretical study on the behavior of a single-vessel
continuous fermentation subject to a growth inhibition at high concentration of the rate
limiting substrate S. They used the following expression for their continuous fermentation
system :

;‘l': an (])
(K,/8)+1+ > (S/K,)

=1

where | and the K's are positive constants and n is a positive integer. Other workers [3-5]
have adopted simpler specific growth rate functions involving less control parameters but
exhibiting similar necessary characteristics as the usual substrate inhibition model, for example
the one hump substrate inhibition function

p=kSe™* )

where k and K are positive constants.

Later, Yano and Koga discussed in [6] the nature of the chemostat in which the specific
growth rate depends on the concentrations of both a substrate and an inhibitory product of a
microorganism. They assumed the specific growth rate equation as follows ;

pe )

P n
(K, +8) 1+[E;J

They showed, with the analog computer, that when the product formation was negatively
growth-associated, diverging as well as damped oscillations appeared. No oscillations could be
observed, on the other hand, when the product formation was either completely growth-
associated, or partially growth-assoctated. Oscillation phenomena are, however, not unusual in
continuous cultures {3]. Since such penchant for periodicity is undesirable from the point of
view of process control, it is necessary to identify the safe operating regions in which
complexed dynamic behavior may be avoided.

In [4], the dynamic behavior of a chemostat subject to product inhibition was analyzed
and classified in terms of multiplicity and stability of steady states and limit cycles. The
substrate was assumed to be in sufficient supply so that the model was reduced to a system of
two nonlinear differential equations involving only the cells and product concentrations.

In this paper, we consider the full three-variable product inhibition model consisting of
the following nonlinear differential equations ( described in more detail in [6] ):




ds m '

2 oD(S, ~S)-=X 4
" (S¢ ~8) v 4)
dX

— =uX-DX 5)
m H (

dp

— = uX-DP 6
3 - Mot (6)

where X(t) denotes the cells concentration at time t ; S(t) the substrate concentration at time t
; P(t) the produet concentration at time t; S the concentration of the feed substrate; VY the
cells to substrate yield; D the dilution rate; and 1, the constant for product formation.
Equations (4) and (5) are based on the well known Monod's model for cells and substrate
interaction, described in more detail in reference [1]. To take into account the inhibitory effects
of the substrate as well as the product increase in the chemostat, however, we adopt the
following expression for the specific growth rate function :

s

ll{Se_K_S
Ho= p (7)
1+ -
K

P

Further, the cells to substrate yield Y is assumed to vary linearly with the substrate level
at any time t, allowing for the positively-growth associated situation ; namely

y::AS+B (8)

Such substrate dependent yield has been used previously by several other workers in this field
[3-5].

Equation (6) describes the change in the product concentration as X and S change. The
first term on the right of this equation is the contribution to the rate of change in P, which is
assumed to vary directly as the rate at which X increases, g being the positive constant of
variation. The cells X, substrate S, and product P are extracted from the chemostat at a constant
dilution rate D, and hence the terms -DS, -DX, and -DP in the three model equations (4)
through (6).

The analysis of the model is done through a singular perturbation argument, assuming
that the substrate concentration exhibits fast dynamics. The time responses of the different
components in the system are assumed to decrease dynamically from top to bottom. The
structure of the corresponding attractors and the nature of the transients are then analyzed. It is
shown that the model system can exhibit low-frequency cycles in which periodic bursts of
high-frequency oscillations may develop giving rise to more complexed dynamical behavior
for specified ranges of the system parameters.



2  SYSTEM MODEL

In order to analyze the model system of equations (4), (5) and (6), together with (7) and (8)
through the singular perturbation technique, we-scale the dynamics of the three hierarchical
components of the system by means of two small dimensionless positive parameters € and &;

_S __ P _D _D _ kS
namely,weletx—S—F,y—X, Z= K, , dy —D,dz—g , d3—§ . (D——;,
_Me® _ k _ B _Sp
=k, TASs cPTas M eTg
We are led to the following system of differential equations ;
B g -n- LY _fxy.z) )
FT (x+P)(i+ez) '
dy _ _mxe*“"_d =£g(X,y,Z) (10)
at | 1vez 2 BV '
dz _nxe"”‘
— =g6 y-d,z |=edh(x,y,z) (11)
dt | I+ez

Thus, with £ and & small, the equation of the substrate concentration represents the fast
system, while that of the cells and product concentrations represent the intermediate and the
slow systems respectively. Under suitable regularity assumptions, the singular perturbation
method allows us to approximate the solution of the system (9)-(11) with a sequence of simple
dynamic transitons along the various equilibrium manifolds of the system and occurring at
different speeds. The resulting path, composed of all such transitions, approximates the
solution of the system in the sense that the real trajectory is contained in a tube around these
transients, and that the radius of the tube goes to zero with € and & . The formal proof of this is
not given because it is long and trivial and has already been discussed and extensively used in
the literature [7-10].

3 EXISTENCE OF LIMIT CYCLE

We now show that if € and & are sufficiently small and

a>1 (12)

prl-—— (13)

e“<2<ae[m{lwl)(l+ﬁ)+l} (14)
d, vd, a ja



ndp_ 1 (15)
yd, ae

then a limit cycle exists for the model system (9)-¢11).

and

We first prove that inequalities (12)-(15) guarantee that the geometry of the manifolds
f=0,g=0 and h=0isasinFig. 1.

Manifold f=0

We observe that this manifold is given by the equation
ax
y=SL-x00cr B +e2) (16)
which defines a surface y = ¢(x,z) which intersects the (x,y) plane along the curve
_dig e ,.
Y—Y(l X (x+B) = (17)

From equation (16), it is seen that the manifold intersects the (x,z) plane along the line
x =1 as shown in Fig. 1.
The slope of the curve in (17) is given by

d d; edX d; eax "
%=TIFXTF(X)E7‘%—[—)(3+(a—a[3—1)x2+a[3x—l3] (18)

which may vanish for some values of x <1.

Figure 1 Equilibrium manifolds of the model system (9)-(11). In this case, transitions of
different speeds develop into a closed cycle, where one, two and three arrows indicate
transitions at low-, intermediate-, and high-speed, respectively.



Manifold g =0

This manifold consists of 2 parts; the trivial manifold y = 0 and the nontrivial manifold given
by the equation

xe™ =d_2 (19)
l+ez o

1
which defines a surface z = y(x). We observe that at x = —
‘ , a

dz _,
dx

and so inequality (12) ensures that the point P(X,,yp,Z,) in Fig. ! is located on the manifold

f'= 0 at the point where x, = 1 <l

a -
We also need the point P to be located on the stable part of the manifold f = 0. This is
guaranteed by requiring that
1
F[—] <0 (20)
a

which is equivalent to.inequality (13)
The manifolds f = 0 and g = 0 intersect along the curve given by

d
y_l_(D

= G -0)(x+B)

reaching a maximum at the point M(x,,,¥y,Zy) Where

Finally, the curve f = g = 0 intersects the (x,z) plane at the point O(x,,y,,2,) where

Xo =1 and, from (19),
1{ ®
Zg=— -1 21
o) E[dzea J ( )

We see, therefore, that the left side of inequality (14) guarantees that z, > 0.

Thus, the manifold f= g = 0 is shaped as shown in Fig. 1. We note that the point R may
be located on the unstable part of the manifold f = 0. However, the transients also develop into
a limit cycle in the case that inequalities (12)-(15) are satisfied.




Manifold h =0
This manifold is given by the equation

z:ﬂ (22)
d,(1+¢z)

which defines a surface z = p(x, y). This intersects the manifold = 0 along the curve
2= (x4 B) (23)
yd,

using equation (16). Thus, z reaches a maximum along this curve at the point Q(x,¥q.2q)
where X, = %(1 —B) =xy

Also, the curve f = h = 0 intersects the (x,z) plane at the point (1,0,0) as seen in Fig. 1.
If we let N(Xy,¥n,2Zy) be the point on the curve f=h = 0 with x, =§ , then from equation

(23) we find that

2, =Il$[1_l](l+BJ (24)
vd, aa
while, from equation (19), we find that
z,,=1[ @ —1} (25)
e aed,

Therefore, so that the equilibrium point S where the curves f = g = 0 and f = g = 0 intersect
should be located on the unstable part of the manifold f = g = 0, we require

Zp < Zy

which 1s exactly the right side of inequality (14).
Finally, along this curve f = h = 0 given by equation (23),

when x =0, and therefore inequality (15) guarantees that the curve f=h = 0 crosses the curve
f=g =0 only once at the point S.

Now, starting from a point A = (x(0),y(0),z(0)) (see Fig. 1 where low-, intermediate-,
and high-speed trajectories are indicated, respectively, with one, two, and three arrows) at first
a high-speed transition develops at constant y and z while only the fast system



% = £(x(1),y(0),2(0))

15 active and the intermediate (y ) and slow (z) variables are frozen at their initial values

y(0) and z(0). The high speed transition brings the system to the point B on the stable part of
the fast manifold f = 0, at which point the intermediate system has now become active. A
second intermediate-speed transition takes place on the manifold at constant X (segment AB
in Fig. 1) until the point C isreached. A slow transition is then made along the curve
f =g = 0 until the point P is reached where the stability of the equilibrium manifold g = 0 is
lost and a quick transition then takes the state of the system to the equilibrium point E on the
stable trivial manifold y = 0. A slow transition then develops along this manifold until a point
is reached where the stability is again lost at some point F beyond O (see Fig. 1). The proof of
the existence and location of such a point F is lengthy and can be found in Schecter and
Osipove er al. [11,12]. At this point a quick jump again takes us back to the point D on the
stable manifold f= g = 0, resulting in a closed cycle DPEF lying on the equilibrium manifold
f=0.

Fig. 2 shows numerical simulation of the model equations (9)-(11) with parametric
values chosen to satisfy inequalities (12)-(15). The trajectory is seen here to develop into a
low-frequency limit cycle as theoretically predicted. The time courses of the three variables in
this case are shown in Fig. 3. ]
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Figure 2 Numerical simulation of the model equations {(9)-(11) where the parametric values
have been chosen to satisty inequalities (12)-(15), so that the solution trajectory tends toward a

low-frequency limit cycle as theoretically predicted. Here, e =0.1,86=0.01,B=0.8 , vy =2.0,
N=10.0,w=30,a=15,d,=0.25d,=03,d,=01, x(0)=0.5, y(0) =0.2, and z(0) =0.4.
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Figure 3 The time courses of the three variables x(t), y(t), and z(t) are shown here

corresponding to the case seen in Fig. 2. Here, e =0.1,6=0.01 ,$=0.8,y=2.0,n=10.0,
w=30.a=15,d,=025d,=03,d,=0.1, x(0)=0.5, y(0)=0.2, and z(0) = 0.4.

4 BURSTS OF HIGH-FREQUENCY OSCILLATIONS
For the occurrence of periodic burst of high-frequency oscillations during each low-frequency
cycle, we further require that the manifold f = 0 has an unstable portion. This i1s equivalent to

requiring that the slope given by equation (18) is positive at some value of x <1, say x =~

-

2
Letting x = % in (18) leads to the following inequality
B < 3a—4 (26)
27 —-6a

which ensures that the curve y = ¢(x,0) has positive slope on some interval containing the

point X =

o | —



Combining inequalities (13) and (26) leads to the requirement that

1 1 3a—4
I_E-a_2<ﬁ<—_27-6a .. 27)

It is also necessary to have

F(x)>0 (28)

so that the point R should be located now on the unstable branch of the manifold f = 0.
This is easily accomplished by letting

X =z~ (29)

LI s

for a sufficiently small @, then simply set

gl=ie"—‘=(

= —B)e~(1/3-6) ) (30)

(eI

Finally, in order that the transition goes back into high-frequency oscillations in each
low-frequency cycle, we require z, < z,,, which is equivalent to

e < I;B o-a(1-P)2 G1)

Figure 4 Equilibrium manifolds of the model system (9)-(11). In this case, transitions of
different speeds develop into a low-frequency cycle with a period of high-frequency oscillation
as identified in the text.



With all the above inequalities being satisfied, the equilibrium manifolds are shaped as
shown in Fig. 4. Starting from the point A, a fast transition takes us, as explained earlier, to the
point B on f = 0. An intermediate transition develops on this manifold until C is reached where
the stability of the equilibrium fast manifold is lost. A fast transition then takes the system to
the stable equilibrium point D. An intermediate speed transition is then made along this branch
of manifold unti! G is reached where the stability is again lost and a quick jump brings us to
the stable point H. This almost closes up the cycle but just misses the point B. The slow system
has become active and z has been slowly increasing since z > 0 here. Transitions then develop
following the same pattern but with slowly varying z as seen in Fig. 4 until M is reached, at
which point the trajectory develops into a slow cycle which goes back into the fast cycles since
inequality (31) guarantees that z; < z,,.

Thus, we have proved, by the above discussions, the following theorem

THEOREM If inequalities (12), (14), (15), (27), (30) and (31) hold then the system of
equations (9)-(11) has a periodic solution which will be a low-frequency limit cycle containing
high-frequency oscillations if €, 8, and 0 are sufficiently small.

Fig. 5 shows numerical simulation of the model equations (9)-(11) with parametric
values chosen to satisfy all inequalities mentioned in the above theorem. The corresponding
time courses of the three variables are shown in Fig. 6, where the burst of high frequency
oscillations is observed in each low-frequency cycle.

Figure 5 Numerical simulation of the model equations (9)-(11) where the parametric values
have been chosen to satisfy all the inequalities set out in the Theorem. The solution trajectory
is a low-frequency limit cycle which contains a period of high-frequency oscillations. Here,
€=0.1,58=001,p=002,y=20,n=100, 0=3.0, a=15, d, =025, d,=0.5,

d; =01, x(0)=0.5, y(0)=0.2 , and z(0)=0.2.
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Figure 6 The time courses of the three varibles x(t) , y(t) , and z(t} corresponding to the case
seen in Fig. 4 are shown here, where periodic bursts of high-frequency oscillations are clearly

observed. Here, €=0.1,8=0.01,B=0.02 ,y=2.0,1=100,0=3.0,a=15,d, =025,
d, =0.5,d, =01, x(0)=0.5, y(0)=0.2 , and z(0) = 0.2.

5 CONCLUSION

The dynamic behavior of a continuous bio-reactor described by equations (9)-(11) has been
investigated in this paper. Assuming that the time responses of the three components are highly
diversified, increasing from bottom to top, we were able to use standard singular perturbation
analysis to describe the nature of the transients and the attractors of the system.

Complexed oscillatory behavior is extremely undesirable not only for control and design
problems, but also for its potential for dangerous situations which may result in the case where
toxic compounds are involved, such as in the operation of toxic waste treatment processes.
Insights that can be gained from this type of analysis described above should prove most
valuable in the light of such considerations.
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MODELLING EFFECTS OF HIGH PRODUCT
AND SUBSTRATE INHIBITION ON OSCILLATORY BEHAVIOR
IN CONTINUOUS BIOREACTORS

ABSTRACT

In this study we consider a model for continuos bioreactors which
incorporates the effects of high product and substrate inhibition on the kinetics
and biomass and product yields. We theoretically investigate the possibility of
various dynamic behavior in the bioreactor over different ranges of operating
parameters to determine the delineating process conditions which may lead to
oscillatory behavior. Application of the singular perturbation technique allows us
to derive explicit conditions on the system parameters which specifically
ascertain the existence of limit cycles composed of concatenation of catastrophic
transitions occurring at different speeds. We discover further that the interactions
between the limiting substrate and the growing microorganisms can give rise to
high frequency oscillations which can arise during the transients toward the
attractor or during the low-frequency cycle. Such study can not only more fully
describe the kinetics in a fermentor but also assist in formulating optimum
fermentor bperating conditions and in developing control strategy for

maintaining optimum productivity.

Key words:  continuous bioreactors, product inhibition, substrate inhibition,

singular perturbation, oscillation.



NOMENCLATURE

X concentration of cells in bioreactor, g/£

S concentration of substrate in bioreactor, g/{

Sg concentration of substrate in the feeding solution, g/ é’
P concentration of product in biorector, g/¢

T time, h '

Ks, Kp positive constants, g/{

D dilution rate, h-!

Y yield coefficient, g cell/g substrate
7} specific growth rate, h-!

P maximum specific growth rate, h-!
INTRODUCTION

The growth of microorganisms is an unusually complicated phenomenon.
Viewing the behavior of microbial cultures within the framework of lumped
kinetic models, a multitude of models have been proposed and theoretically
studied in diverse ways since the model due to Monod [9] fashioned after
Michaelis-Menten kinetics for single enzyme-substrate reactions.

In ethanol fermentation, instantaneous biomass yield of the yeast
Saccharomyces cerevisiae was found by Thatipamala et al. in [15] to decrease
with the increase in ethanol concentration (P}, indicating a definite relationship
between biomass yield and product inhibition. It was also found in [15] that
substrate inhibition occurs when substrate concentration (S) is above 150 g/¢ .
Figure 1 shows experimental data taken from the work of Thatipamala et al. [15]
indicating the effect of substrate inhibition on the specific growth rate at low
ethanol concentrations. Figure 2, on the other hand, shows the effect of product

inhibition on the specific growth rate, with data taken from the same source [15].



A number of simple kinetic expressions have been suggested ih the
literature for specific growth rate p incorporating product and/or substrate
inhibition [2-4,16). Mainly, four types of inhibition correlations have been
suggested based on experimental observations: linear, exponential, hyperbolic,
and parabolic. In [16], Yano and Koga made a theoretical study on the behavior of
a single-vessel continuous fermentation subject to a growth inhibition at high
concentration of the rate limiting substrate S. They used the following expression

for their continuous fermentation system :

Pm
p= = : (1)
(Ks/S)+1+ Z',(S/Kj)J
=1

where p, and the K's are positive constants and n is a positive integer. Other

LI

workers [1,8] have adopted simpler specific growth rate functions involving less

control parameters but exhibiting similar necessary characteristics as the usual

substrate inhibition model, for example the one hump substrate inhibition function
M= kSe™S/Ks (2)

where k and K are positive constants

Later, Yano and Koga discussed in {17] the nature of the chemostat in
which the specific growth rate depends on.the concentrations of both a substrate
and an inhibitory product of a microorganism. They assumed the specific growth
rate equation as follows ;

| S |
= - 3)

KSan
(s+)+i§




They showed, with the analog computer, that when the product formatioﬁ was
negatively growth-associated, in which the rate of product formation decreases
with the increase in the cells concentration, diverging as well as damped
oscillations appeared. No oscillations could be observed, on the other hand, when
the product formation was either completely growth-associated, or partially
growth-associated. Oscillation phenomena are, however, not unusual in
continuous cﬁltures [1]. Since such peﬁchant for periodicity is undesirable from
the point of view of process control, it is necessary to identify the safe operating
regions in which complexed dynamic behavior may be avoided.

In [14], Ramkrishna et al. presented a chemostat model which assumed
that viable cells { X ) interact with a substrate ( S ) so as to produce the new viable
cells and a cell-killing product ( P ). This product interacts with viable cells to
form dead cells, in the process of which the cell-killing product may be released.

In [8], the dynamic behavior of a chemostat subject to product inhibition
was analyzed and classified in terms of multiplicity and stability of steady states
and limit cycles. The substrate was assumed to be in sufficient supply so that the
model was reduced to a system of two nonlinear differential equations involving
only the cells and product concentrations.

In this paper, we consider the full three-variable product inhibition model

consisting of the following nonlinear differential equations :

ax
— =X-DX @)
dIS—D(s 5)-Ex 5
o - DBF Y (3)
d
dF  nouX+mP-DP ©

dt



where X(t) denotes the cells concentration at time t; S(t) the suBstrate
concentration at time t; P(t) the product.concentration at time t; Sp the
concentration of the feed substrate, while D is the dilution rate at which the feed
substrate is being fed into the reactor and the content of the bio-reactor is being
removed, and mj is the constant for product formation. The term 1P in equation
(6) takes into account the release of the cell-killing product during the product's
interaction with viable cells to form dead cells, following the suggestion of
Ramkrishna et al. in their earlier mentioned paper [14]. Here, we assume that the
production rate is directly proportional to the amount of the product present, with
1M1 < D being the positive constant of variation.

We also adopt the following expression for the specific growth rate

function :

h=""p— (7)

where a and k are positive constants, to take into account the inhibitory effects
of both the substrate and the product increase in the chemostat.
Further, the cells to substrate yield Y defined as

v amount of cells produced

amount of substrate consumed

is assumed to vary linearly with the substrate level at any time t, allowing for the

positively-growth associated situation ; namely

Y =A+BS (8)

Such substrate dependent yield has been used previously by several other workers

in this field 1, 8].



The analysis of the model is done through -a singular perturﬁation
argument, assuming that the substrate concentration exhibits fast dynamics. The
time responses of the different components in the system are assumed to decrease
dynamically from top to bottom. The structure of the corresponding attractors and
the nature of the transients are then analyzed. It is shown that the model system
can exhibit low-frequency cycles in which periodic bursts of high-frequency
oscillations méy develop giving rise to more complexed dynamical behavior for

specified ranges of the system parameters.
SYSTEM MODEL

In order to analyze the model system of equations (4), (5) and (6), together
with (7) and (8) through the singular perturbation technique, we assume that the
substrate has fast dynamics, while the cells and product have intermediate and
slow dynamics respectively, and scale the time responses of the three hierarchical

components of the system by means of two small dimensionless positive

parameters € and & ; namely, we let x=-—-S—, y=X, z=—P—— d; =D,

Sp SKp ’
_D , _D-m __kSg _mew __ k _ A
dz—a > 43 = £0 ’m—st’n_ ea,y-—ASF,andB—BSF.Weare
led to the following system of differential equations :
dx 1xe™ Py
—=d{(1-x)- = f(x,y, 9
Pl e e il 2
dy [ oxe™ 4 ( ) 0
-- =& - = sy
it YL Trep C2|=C8XY,2Z (10)

dz nxe”

—dsz [ =ebdh |
m 1+SZY 32} edbh(x,y,z) (an



Thus, with € and & small, the equation of the substrate concentrétion
represents the fast system, while that of the cells and product concentrations
represent the intermediate and the slow systems, respectively. Under suitable
regularity assumptions, the singular perturbation method allows us to
approximate the solution of the system (9)-(11) with a sequence of simple
dynamic transitions along the various equilibrium manifolds of the system and
occurring at different speeds. The resulting path, composed of all such transients,
approximates the solution of the system in the sense that the real trajectory is
contained in a tube around these transients, and that the radius of the tube goes to
zero with € and 8. The formal proof of this is not given because it is long and
trivial and has already been discussed and extensively used in the literature

[7,10-12].
Two-dimensional dynamics

By means of singular perturbation analysis, the solution of the system of

equations (9)-(11) can be approximately found for small values of € and 3.
First, the slow (z) and intermediate (y) variables are frozen at their initial values
z(0) and y(0), and the evolution of the fast component of the system is
determined by solving the 'fast system' consisting of equation (9) with z set equal
to z(0). If, for simplicity of the following analysis, we assume that the starting
value of z is comparatively small, since § is small, the value of z remains small
during the initigl phase. The evolution of the system components can then be
approximately determined by first setting 8 =0 and z = 0 in the equations

(9)-(11). Thus, we are led to the following system :



—ax

dx_ _yxe Ty

3 =0T (12)
dy - —ax A
i sy[mxe —~d2] (13)

which is a fast-slow second-order system for which the dynamical behavior can
be analyzed and existence of limit cycles detected through the singular
perturbation principle. The results are summarized in Figure 3, where two cases
of interest can be identified. The conditions on the parameters identifying the

two cases are as follows.

Case !

The system (12) has an equilibrium manifold where x =0 given by

ax

y=(1—x)(x+ﬂ)3x—scp(x) (14)

which intersects the x-axis at the point x =1 as shown in Figure 3. The slope of

the curve in (14) is given by
dy &* e
l:TF(X)E—Z[—X3+(a—a|3—1)x2+a[3x—[3] (15)
X X X

B<57—%a (16)

which ensures that the curve y =@(x) has positive slope on some interval

1
containing the point x = 3



The equilibrium manifold of the intermediate system (13) consists of 2

parts, the trivial manifold y = 0 and the nontrivial manifold given by the equation

d;

(V)

xe ¥ =

(17)

In Case 1, the curve (17) intersects the graph of (14) at the point R in the

Figure 3 where x =X for which

F(X)>0 (18)
which means that the point'R is located on the unstable branch of the manifold
f= 0. This is easily accomplished by letting

1
R=——0 19
X 3 ( )

for a sufficiently small 6, then simply set

d -1 '
2 _ze X =(=-0)e(1/3-0) (20)
w 3 .

Thus, Case 1 is identified by the inequality (18) with (19) and (20).

Case 2

This case is then identified by the opposite inequality to (18), namely
F(x) <0 21)
However, since the nontrivial intermediate manifold is given by (17),

x> = (22)



d )
We see that (21) will be satisfied if 2 s sufficiently large as well as satisfying
©

2«1 (23)

to allow for X to be located to the left of the point x = 1 where the fast manifold
crosses the x-axis.

Thus, in Figure 3 where transitions of low, intermediate, and high speeds
are indicated by one, two, and three arrows, respectively, if we start from the
point marked by the number 1 above the curve x =0, then X < 0 here and a fast
transition develops toward the point 2 on the stable manifold (section AB), while
y still remains frozen at the initial value y(0). (If we start from the point 1 below
the curve x = 0, then % > 0 here and so a fast transition will develop toward point
3 on section CD of the manifold). Since the manifold is stable here, a transition
of intermediate speed is made along the curve as the intermediate system
becomes active. From point 2, the transition develops along the direction of
decreasing y since y <0 on the left of the curve g = 0. Once the point B is
reached, the manifold loses its stability and a fast transition is made towards the
point D on the stable section CD of the manifold. Transition of intermediate
speed upwards along this curve ends if either a stable equilibrium R is reached
in Case 2, or a quick jump brings the trajectory back to the section AB

completing a closed cycle ABDC in Case 1.
Three-dimensional dynamics
As z increases, the slow system (11) becomes active. We now show that,

for suitable values of the parameters and for € and & sufficiently small, the

system (9)-(11) has a unique attractor that is either a stable equilibrium or a low-

10
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frequency limit cycle which may exhibit high-frequency oscillations during a
finite interval of time.
To do this, we observe that the manifold
f(x,y,z) = 0 (24)

intersects the nontrivial intermediate manifold along the curve

f=g=0 (25)

given by the equation

xe ¥ d .
=2 (26)

l+ez o

1
which defines a surface z = y(x). We observe that at x = —
a

Thus, to ensure that the point P(xp,yp,zp) in Fig. 4 is located on the stable part

1
of the manifold f= 0 at the point where xp = — < 1, we require
a

F[l) <0 Q7

a

or equivalently,

11
prl-—-— (28)

and

a>1 (29)



Combining the inequalities (16) and (28), we arrive at the requirement that

>prxl-——— (30)
Now, the curve (25) is given by the equation
d;
y=—-x){(x+p)
@
which reaches a maximum at the point M (X, ¥ ,2Zp ) Where

1-p
™M=y

Finally, the curve f = g = 0 intersects the (x,z)-plane at the point

O(%y,¥0:2Z0 ) where Xo = 1 and, from (26),

1{ ® : 31
Z, =— -
0 € dzea ( )

We therefore require that

e < — (32)

to ensure that z, > 0.

We now analyze each of the two cases separately.



Casel

We observe that in this case the point R is located on the unstable part of
the manifold f = 0 and the curve f = g = 0 remains on the unstable part, as shown in
Figure 4, until the point M is reached. The curve then stretches along the stable part
of the manifold f= 0 until either the point S is reached in the cases 1(a) and 1(b),
or the point P is reached first in the cases 1(c) and 1(d). Thus, four subcases can be

identified as follows.
Casel(a) This case is identified by the inequality
a<l (33)

so that the turning point P is below the (x,z)-plane. Thus, starting from an initial
point A in Figure 4, a fast transient takes us to the point B on the stable part of the
fast manifolci f = 0. Transition of intermediate speed is then made along this
manifold in the direction of increasing y until the point C is reached where stability
is lost. A fast jump is made to the point D on the other stable branch of the
manifold f= 0 from which point a transition of intermediate speed develops until
stability is lost again at the point G. A quick jump back to H almost closes up the
cycle. However, z hasl been slowly increasihg in the meantime so that the same
cycling transitions are ‘repeated in the direction of increasing z, densely covering
the surface f= 0, until the point M is reached. The transient now follows the curve f
= g = 0 until the point S is reached in the case 1(a). In this case, the point S where
X =y = z=0 is on the stable part of the manifold f = g = 0 and thus the transitions

end at this stable equilibrium point.
Case 1(b This is the case identified by the inequality

a>1 (34)

13
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so that the point P is located on f = 0 above the (x,z)-plane as shown in Figure 4
(b). This case is also identified by the fact that the point S, where f =g = h, is
located on the stable part of the curve f = g = 0. This situation is guaranteed by
requiring that

Zp >IN 3 5)

. . : 1
where N(xyn,¥N,2ZN) is the point on the curve f = h = 0 with x) =—. From
a

equating f and h to zero, we find that

_ndf 1yl
i)

while, from equation (26), we have

e 37
Zp = — -
P™e aed, 37

Therefore, so that S is located on the stable part of f=g =0, we require

O s ae M L)L 1 38
% ae Y5 "3 a+ﬁ + (38)

which guarantees that (35) holds.

In this case 1(b) then, the transition also reaches the point S first and ends
there since it is a stable equilibrium point where X = y = z = 0. Moreover, along

The curve f=h = 0 we have

nd,
z=—o0
yds3

when x = 0. Therefore we must also require that
ndp 1
—>

— 39
'Yd3 ae ( )

to ensure that the curve f=h = 0 intersects the curve f=g=0 only once.



Case 1(c) This case is identified by inequality (34) and the opposite
inequality to (38), that is

2 end; 1—l [l+ ]+1 40)
A YUY O ‘

which guarantees that the point P is reached first during the transition from the
point M in Figure 4(c). At the point P, there is a loss of stability and a quick jurmnp
to E takes place. A slow transition develops now along this manifold where x = 1
until a point is reached where stability ia again lost at some point F. A transition
of intermediate speed will develop along the fast manifold £ = 0 back to the point

L which completes the limit cycle in the case 1(c).

Case 1(d) In order that the transition goes back into high-frequency

oscillations in each low-frequency cycle, we need to require that z, < z,,, which
is equivalent to

o 1B —ag-pyr2

2 (4D

Thus, starting from the point A in Figure 4(d), a fast transition takes us, as
explained earlier, to the point B on f = 0. An intermediate transition develops on
this manifold until C is reached where the stability of the equilibrium fast
manifold is lost. A fast transition then takes the system to the stable equilibrium
point D. An intermediate speed transition is then made along this branch of
manifold until G is reached where the stability is again lost and a quick jump
brings us to the stable point H. This almost closes up the cycle but just misses the
point B. The slow system has becomes active and z has been slowly increasing
since Z>0 here. Transitions then develop following the same pattern but with
slowly varying z as seen in Figure 4(d) until M is reached, at which point the
trajectory develops into a slow cycle which goes back into the fast cycles since

inequality (41) guarantees that z, < zy,.



Case 2
We observe that in this case the point R is located on the stable part of the
fast manifold f = 0 as shown in Figure 5. Mainly 3 subcases can therefore be

identified here.

Case 2(a) If (21) as well as (33) hold then starting from the point A in Figure
5(a), a fast transition develops to the point B, followed by a transient of
intermediate speed to C, from which point a slow transient takes us to the stable

equilibrium point S where the transition ends.

Case 2(b) If (21) holds as well as (38) then, similarly to Case 2(a), transients
develop toward the stable equilibrium point S where X=y=2z=0 and the

transition ends.

Case 2(¢) Finally, if (21) holds as well as (40) then, from the point C in
Figure 5(c), the point P is reached first where the stability is lost. A quick jump to
E, followed by a transition at slow speed from E to F, then at intermediate speed

back to D, closes the trajectory up into a low-frequency limit cycle for this case

2(c).
The above analysis can be summarized by the following theorem.

Theorem If € and & are sufficiently small, and if (16), (30), (32), and (39)
hold, then system (9)-(11) has a global attractor which is a stable equilibrium if
(18) and (33) hold, or (18), (34) and (38) hold, or if (21) and (33) or (38) hold. It is
a low-frequency limit cycle if (21) and (40) hold, or if (18), (34) and (40) hold.
Moreover, if (18), (34) and (40) as well as (41) hold, then the attractor is a low-

frequency limit cycle which contains a period of high frequency oscillations.
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NUMERICAL RESULTS AND DISCUSSION

Figure 6(a) shows a numerical simulation of the model equations (9)-(11)
with parametric values chosen to satisfy inequalities (18), (30), (32), (34), (39)
and (40). This is therefore the case 1(c) and the solution trajectory develops into a
low-frequency limit cycle as predicted. The corresponding time courses of the
three variables are shown in Figure 7(a).

Figure 6(b) shows a numerical simulations of the model equations (9)-(11)
with parametric values chosen to satisfy inequalities (18), (30), (32), (34), (39),
(40) as well as (41). This is therefore Case 1(d). The solution trajectory develops
into a low-frequency limit cycle which contains high frequency oscillations as
predicted in the above theorem. The corresponding time courses of the three
variables are shown in Figure 7(b). Such underlying high frequency cycles in the
biomass concentration profile have frequently been observed by a number of
investigators [16-18]. In [16], the total budding cells count in their bioreactor data
shows oscillatory behavior closely resembling our resuit of case 1(d) shown in
Figure 7(b). Experimenting with different values for the system parameters such
as [,ds, &, and so on, shows that the frequencies and amplitude of oscillations can
be appropriately adjusted to fit different chemostat conditions.

We observe that the constant a plays an important role in the kinetics of
the chemostat under study. Considering the model in equation (7), a is in fact an
indicator of how late or how soon the substrate inhibition sets in. In Figure 1,
substrate inhibition seems to set in approximately half way to the maximum
substrate level, éuggesting that a should by around 2. Thus, the numerical results
presented in Figures 6(a) and 6(b) can be considered as corresponding to the case
where substrate inhibition is late in setting in (@ <2 ). In Figure 6(c), we present a
numerical simulation of equations (9)-(11) in which a = 2.5, thus corresponding to
the situation where the inhibition sets in rather early { a > 2 ). With this value of a,

inequality (32) is violated and z, < (. Therefore, the transition develops from the
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point E (in Figure 4(c) or 5(c)) all the way to the point (1, 0, 0) on the x-axis
which is a stable washout steady state of the system. Figure 7(c) shows the
corresponding time courses of the state variables in this case, where both the cells
and product levels are seen to decrease toward zero, while the substrate level tends
toward the maximum level (S = Sg).

Also, it is numerically found that solution trajectories can still develop as
theoretically pfedicted even though the values of € and § are not so small, and the
assumption that the three components of the system carry highly diversified

dynamics can be relaxed to a certain extent.

CONCLUSION

The appearance of sustained oscillations in bioreactor variables in
continuous cultures indicates the complex nature of microbial systems, and the
difficulties which may arise in bioprocess control and optimization.

In this paper, the dynamic behavior of a continuous bioreactor described
by equations (9)-(11) has been investigated, incorporating the inhibitory effect at
high levels of product and substrate concentrations. Assuming that the time
responses of the three components are highly diversified, increasing from bottom
to top, we were able to use standard singular perturbation analysis to describe the
nature of the transients and the attractors of the system. |

Complexed oscillatory behavior is extremely undesirable not only for
control and design problems, but also for its potential for dangerous situations
which may result in the case where toxic compounds are involved, such as in the
operation of toxic waste treatment processes. Insights that can be gained from this
type of analysis described above should prove most valuable in the light of such

congsiderations.
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FIGURE CAPTIONS

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

Effect of substrate inhibition on specific growth rate at low ethanol
concentration. (Data points taken from reference [15]).

Effect of product inhibition on specific growth rate. (Data points taken
from reference [15]).

Two possible cases of trajectory development for the two dimensional
fast-slow system (12), (13). Trajectories go toward a limit cycle
ABDC in Case 1, and toward a stable equilibrium point R in Case 2.

Trajectories of the model system (9)-(11} in Case 1 exhibiting four
possible subcases 1(a), 1(b), and 1(c) identified in the text.

Trajectories of the model system (9)-(11) in Case 2 exhibiting three
possible subcases 2(a), 2(b), and 2(c) identified in the text.

Numerical simulation of the model equations (9)-(11). Here, € = 0.1,
6=001, y=2.0, n=10.0, ® =3.0, d; =0.25, d; =0.25, and
d; = 0.1. In 6(a), the parametric values satisfy the inequalities of Case
1(c), with p = 0.8, a = 1.5, and the solution trajectory tends toward a
low-frequency limit cycle as theoretically predicted. In 6(b), the
parametric values satisfy the inequalities of Case 1(d), with § = 0.2,
a = 1.5, and the solution trajectory tends toward a low-frequency limit
cycle which contains a period of high-frequency oscillations. In 6(c),
B =0.2, and a = 2.5 which corresponds to the situation where
substrate inhibition is early in setting in. '

The time courses of the state variables x(t), y(t) and z(t) are shown
here corresponding to the three respective cases seen in Figure 6.

— represents X(1) + 2.2 in 7(a), x(t} + 0.4 in 7(b), and x(t) in 7(c).
0—o0 represents y(t).

x — x represents z(t) + 0.3 in 7(a), and z(t) in 7(b) and 7(c).
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