(12)

ol

as seen in Figure 2.

Since
of 1 1
=—lta=bv)-x]-= 13
it (o 2 (13)

it is clear that % <0 on the surface given by the equation [11], and thus the

nontrivial fast manifold is always stable.

The Intermediate Manifold

This manifold is given by the equation g=0 which defines a surface

z=p(x,y) (14)
It intersects the nontrivial fast manifold along the curve

. (do + aa)y - ozby2
(B + ﬂay) — whyy

z=p(a—-by,y) (15)

We observe that this curve intersects the (x,y)-plane (z = () at the points where

y=0
a d
and =240 16
b b (16)

Thus, the curve { =g =0 reaches the (y,z)-plane in the first octant if
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dp>0 (17)

Now, differentiating (15) with respect to y, we find that the numerator of g_z_
y

along the curve f=g=0is

Num{?;J = (dO +ao )(B + nact) — 2ba(p + may )y + nbzayyz (18)
f=g=0

Therefore the curve f=g=0 has a stationary point when the left hand side of

(18) vanishes. However, we find that the two roots of (18) are

_ 2ba(B+may)+ A a

y == +2baftA (19)
b2 2mbary b
1
where A= 2b[([5 +may )0 2B - nowdg )]2 (20)
Thus, for y; 5 to be real, we require that

o
a
Moreover, for at least one root to be less than P we need

1
2ba[3—2b[([3+nay)(a2[3—nocyd0)]2 <0 (22)

Squaring and rearranging (22) lead to the requirement that

S naydy

2
act —d, (23)
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provided
ao—dg >0 (24)

At this point, we note that since

naydg S wydg
aa—-dg o

25)

the conditions (21) and (23) are quaranteed by the requirement that (23) and (24)
hold.

The Slow Manifold
This is the surface h =0 which defines a surface

z=¢(x,y) | (26)
that intersects the fast manifold f = 0 along the curve given by

aoy — bocy2

S Crey

27

for which z=0 when y=0 and y =% (see Figure 2).

Thus, we can identify essentially 5 cases of different dynamical behavior

as follows.

Case 1

This case is identified by the inequalities (23) and (24). The shape of the
fast manifold is therefore as shown in Figure 2(a) and the curve f =g=0 has a
stationary point P above the (y, z)-plane and intersects the (v, z)-plane at the point

H in the first octant.



Now, to also guarantee that the point S where f =g=h=0 is below the

point P we need that at y =y, we have

aoly, — bo&y% N (dg+ao}y, — aby%
(dj+ay)-byyy = (d) +may)-nbyy,

(28)

using (15) and (27).

Inequality (28) means that the part of the curve f=g=0 from C to P lies
"above" the surface h=0 while the line DG lies "below" the surface h=0.
Looking at the sign of h, we see that h > 0 along CP and h < 0 along DG which
determines the directions of the transients along these curves as shownin Figure
2(a). Moreover, for the curve f =g =0 and f = h =0 to be located with respect to
each other as shown in Figure 2{a) we require that at y =0, the slope along the
curve f=g=0 should be less than that along the curve f =h=0. That is, we

need

dz
dy

dz
< J—
dy

f=g=0 f=h=0

which leads to the inequality

dg +aa _aa
B+may d;+ay

or B> (do +a0L)(d1 +ay) _ nay

aa

(29)

Starting from some initial point, say A (see Figure 2(a)}), if A is above the
nontrivial fast manifold, f <0 here and a high speed transition will develop in the
direction of decreasing x towards the stable fast manifold (point B). As B is

approached, the intermediate system has become active and, since g < 0 here, a

i3



transition of intermediate speed will develop along the fast manifold towards
point C on the curve f=g=0. As mentioned above, along this portion of the
curve, h > 0 and so a slow transition develops 1n the direction of increasing z until
the point P is reached, at which point the stability of the manifold is lost. A
transition at a very high speed then takes place which brings us to the point D on

the trivial manifold x = 0. Since we are now in the region where h < (, transition

develops slowly along the line y = b until a point E is reached where the stability
a .

is again lost. The existence of such a point E in a similar system has been shown
in a previous work by Osipov et al. [18]. For the point E to be to the right of G as
in Figure 2(a), we further require that the second coordinate yg of this point is

positive, namely
yg>0 (30)

However, considering (16), this is easily accomplished if b is made sufficiently
small.

A quick jump from E will then take us back to the point F on the curve
f = g = 0 which completes the closed cycle FPDEEF in this case.

Thus, this is the case where the attractor is a limit cycle composed of a
concatenation of catastrophic transitions occurring at different speeds,
corresponding to the situation where persistence in the toxicant levels and the
population density is observed exhibiting sustained oscillations in all three state

variables.

14



Case 2
This case is shown in Figure 2(b), identified by the inequalities (24), (29)

and the one opposite to (23), namely
maydg

s (31)

This last inequality means that, in this case, the stationary point of the curve
f =g =0 is below the (y, z)-plane and the position of the manifolds are as shown
in Figure 2(b).

Starting at an initial point A, transitions will develop as described before
until C is reached, from which point a slow transition brings us to a stop at the
stable equilibrium point S where f =g=h=90.

This therefore corresponds to the case where population density and both

toxicant levels attain stable equilibrium values as time passes.

Case 3
This case is identified by inequalities (23), (24) and the one opposite to

inequality (29), namely

< (dg +ao)(d; +ay)
aol

p ay (32)

Thus , in this case, once we are at the point B on the fast manifold ( see the
Figure 2(c) ), h <o here and a slow transition will develop along the curve
f=g=20 in the direction of decreasing z instead. This takes us to a stop on the x-
axis (y=z=0)

This is therefore the case where toxicants eventually get depleted and the

population re-establishes itself as time passes.



Case 4
This case is identified by the inequalities (23), (24), (29), and the opposite
to inequality (28), namely |

aoy, — bay% (dg+aa)— ocby%
<
(d; +ay)-byy, ~ (d; +may)—nbyy,

(33)

This last inequality means that the point 8§ is above P on the curve f =g=0 as
seen in Figure 2(d).

Again the transitions develop from A to B then to C as before. However, a
slow transtion from C will stop at the point S since here f =g =h = 0. This is also
the case where each state variable attains an equilibrium value as time progresses.
Case 5

This last case is identified by (23), (24), (29), and

yg <0 (34)
However, considering (16), condition (34) can be satisfied if b is made
sufficiently large.

The manifolds are then positioned as shown in Figure 2(e). The
transitions, once P is reached, will make a quick jump to the point D on the (y, z)-
plane. Since the trivial manifold is stable troughout the line DG in this case, the
slow transition from D will continue until G is reached where g < 0. Transition is
then made toward the origin. This then corresponds to the case where the
population becomes extinct and the toxicant in the population of course gets
depleted as a result, while the toxicant level in the environment reaches a high
level then slowly depletes itself as time passes.

By the above analysis, we have proved the following theorem.

Theorem If e and § are sufficiently small and inequalities (21) and (24) hold,
then the system (4)-(6) has a unique global attractor in the first octant. The
attractor will be a stable equilibrium point if (23), (29) and (33) hold or (29), and
(31) hold, while it will be a limit cycle if inequalities (23), (28), (29) and (30)
hold.

16



Numerical simulations of the system (4) - (6) when the parametric values
are chosen to satisfy the requirements in each of the 5 cases are shown in

Figure 3.

CONCLUSION

In this paper, we have analyzed a model for the effects of a toxin
introduced into the environment of a single-species system. The population
growth is logistic, while the time responses of the different state variables are
assumed to increase from bottom to top. We have been able to identify five
separate cases in which different dynamic behavior can be observed. "

It has been shown that if the rate § at which the toxicant in the population
re-enters the environment is higher than the levels given by inequilities (21) and
(23) then toxicant will not get depleted to allow the population to recover its
former level. If this is further compounded by the condition where the effect of
toxicant on the birth-rate is too high (b >>1) then we can expect extinction of the
species which is case 5 identified above.

Thus, the model has proved to be quite versatile and fits well with field
observations, yielding greater insights into this perplexing problem of interactions
among the population and the toxicants in the environment which is of great

concern to us all.
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FIGURE CAPTION

Figure 1:

Figure 2:

Figure 3:

A fast (f = 0), intermediate (g = 0), and slow (h = 0) equilibrium
manifolds, with the fast (triple arrow), intermediate {(double arrow)

and slow (single arrow) transients.

The solution trajectories of the system (4)-(6) in the five cases
identified in the text. The attractor is a limit cycle in Case 1, and an
equilibrium in Case2, or 4. The population recovers itself in Case3,

but becomes extinct in Case 5.

Numerical simulations of the system (4)-(6) for each of the ﬁ\;e
cases identified in the text. Here, € =8 = k=1; Casel: a=0.5,
b=01,a =09, =09 y=09, n =09, dg= 0.3,
dy = 0.01; Case2: a=09,b=01,a=05,=09,y =09,
n =09,dg=04,d;=001; Case3: a = 0.5,b = 0.1, « = 0.9,
B=05vy=09,7n=01,dy=03,d; =0.01;Case4: a =0.9,
b=0.1,a

0.5,8=1097y=09 n=09dy=01,d; =05;
Case5:a=05,b=0.1,a=09,p=09, y= 09,7 = 09,
do = 0.001, d; = 0.01.
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DYNAMICAL MODELLING OF THE EFFECT OF
TOXICANTS ON A SINGLE-SPECIES ECOSYSTEM

ABSTRACT

We consider a mathematical model of the effect of toxicants on single-species
in a closed homogeneous environment. The population birth-rate as well as the
carrying capacity are assumed to be directly effected by the level of toxicant in the
environment as it is absorbed by the population. The toxicant level in the population
can be depleted at a constant specific rate, a part of which amount may return to the
environment even in the absence of any living organisms. A Hopf bifurcafion analysis
is carried out yielding boundary conditions which divide the parametric plane into
regions of different dynamical behavior. It is found that when the natural birth rate of
the population is too low, no non-trivial equilibrium state exists in the system. At a
fixed sufficiently high natural birth rate, the system can settle back to its former stable
equilibrium state after the initial dumping of toxicant into the environment, provided
that the rate at which the toxicant in the population returns to the environment is not
too high. Sustained oscillation in the population and toxicant levels is exhibited for
suitable ranges of parametric values. However, if the per capita decay rate or birth rate
is too low, the system no longer admits a stable non-trivial equilibrium state if the

return rate is too high, and population may become extinct.

Keywords:  toxicants, modelling, single species, bifurcation.



INTRODUCTION

The question of effects of pollutants and toxicants on ecological communities
has become of grave concern to scientists, en;fironmental agencies and authorities on a
global scale, especially in the past decade or so. Toxic substances are persistent and
bioaccumulate, and therefore contaminate air, water, and most living organisms,
including humans. Accidental intoxication by these substances can result in chronic
effects and the possible toxicological consequences can no longer be disregarded. In
one of their papers, Xober and Papke [1] reports the incidents where concentrations of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDDs and PCDFs) in
human tissues can be detected 36 years after accidental dioxin exposure.

Several efforts have been made to qualitatively describe and study the effects
of toxicants and pollutants on various ecosystems. In a series of papers by Hallam and
his coworkers [2-5], analytical study was caried out utilizing various r'riathematicaI
models. Shukla er al. [6] later studied a mathematical model for the degradation and
subsequent regeneration of forestry resource. More recently, in papers by Carrier et al.
[7-8] , attempts were made to model the toxicokinetics of PCDDs and PCDFs in
mammalians, including humans.

Realistically, a great number of sociologtcal and physiological factors play a
part in the dynamics of toxicological pathways in nature. The resulting mathematical
model can be quite complexed, handled mainly by powerful computers, and requires a
great number of field data for its validation.

A relatively less complicated model involving only a few mathematical
equations is often preferred for its capability to give a deep understanding and a great
deal to new valuable insights to the system under study, while requiring fewer data for
its verification. It can moreover give policy makers the much needed preliminary
information to justify their decision or choice of actions concerning important
environmental issues.

In [9], Freedman and Shukla proposed a model for the effect of toxicant in
single species systems and one for predator-prey polluted systems. The interactions of
the population level (X) and toxicants in the population (U) and in the environment
(T) are modelled by means of ordinary differential equations in terms of their
concentrations with respect to mass or volume of the total environment in which the

population lives.



In their model for a single-species system, the amount of toxicant in the
population is depleted due to their death, some of which re-entering the environment
in proportion to the population biomass. Such a model was found to exhibit no
oscillatory behavior in the case that there is no more dumping of toxicants after the
initial instantaneous introduction. It was shown that provided that the pollutant
concentration was not sufficient to kill all the population, eventually the toxicant
would be removed and the population would recover to its former level. However,
cases have often been found in nature in which this is not so, and persistence of
toxicant levels in the population and the environment have often been observed such
as in the earlier mentioned paper by Xober and Papke [1].

In this paper, we therefore consider single-species in a closed homogeneous
environment, in which the carrying capacity and the population birth-rate are both
affected by the exogeneous introduction of toxicant. By meodifying the model
proposed by Freedman and Shukla [9], we allow the toxicant in the population to re-
enter the environment, a part of which amount varies directly as the toxicant level in
the population alone. This will account for the portion of toxicant in the population
carcasses which may keep re-entering the closed environment even in the dwindling
presence (x = () of the living organism.

We are interested in determining the different dynamics that may result from
the effects of toxicants on such a closed ecosystem. Application of the Hopf
bifurcation analysis allows us to derive boundary conditions which delineate the
parametric plane into regions of different dynamic behavior. It is shown that, after an
initial dumping of toxicant into the environment, if the toxicant level in the population
and the environment keep decaying at a constant per capita degradation rate, the
system can settle back to its former stable equilibrium state provided that the rate at
which toxicant in the population re-enters the environment is not too high. However,
if the natural birth rate is too low, the non-trivial equilibrium state no longer exists.
Moreover, even for high natural birth rate, the equilibrium state can become unstable,
and sustained oscillation in the population and toxicant levels is observed if the return

rate is high enough.



THE SYSTEM MODEL

Following Freedman and Shukla {9}, we let

concentration of the population biomass

X(t) = X T
® mass (or volume) of the total environment where the population lives
Tt - concentration of the toxicant in the environment
mass (or volume) of the total environment where the population lives
uct) concentration of the toxicant in the total population

mass (or volume) of the total environment where the population lives

It shall be assumed that the population growth is logistic, while the absorbtion
of the toxicant in the environment by the population causes the birth-rate (R ) of X to

diminish. We therefore assume that R depends explicitly on T with the following

properties:
R(O) =15 > 0 (1)
R(T) < 0 forT >0 (2)
and R(T) = 0 for some T. (3)

The carrying capacity K(T) of the environment is also effected by the level of

toxicant in the environment and has the following general properties

K(T) = K¢y > 0 @)

and K(T) < 0 for T 2 0. (5)



The toxicant levels in the environment, and in the population, have natural
depletion (or decaying) rates of &; and &;, respectively. The toxicant in the
environment is also depleted at a per capita rate o,y due to its intake by the population.
On the other hand, the toxicant in the population is depleted at a per capita rate of y

due to death or removal, a fraction of which amount re-enters the environment. We

therefore arrive at the following system of ordinary differential equations.

dX _ I'0X2

a - DX - K(T) ©6)
dT

i -8gT— o XT+£(X,U) (7
i _ 5, U+a XT—vy. XU

dt - - 1 al YI (8)

where the last term f(X,U) of equation (7) accounts for the fraction of toxicant in the
population which returns to the environment. Since this return rate must increase with
the increase in X or U, while in the absence of living organisms ( X = 0} toxicant can
still keep re-entering the environment at a positive rate which necessarily depends on
the Ievel of toxicant in the population (U) ét that moment in time. The function f{X,U)

is thus assumed to have the form

£(X,U) = ny;XU+pU (9)

where UNPE and P are positive constants.



STEADY STATES AND THEIR STABILITY

For the following analysis, we shall assume that the population natural birth-

rate has the form

R(T) = 15-nT , 15 > 0,1y > O. (10)

which satisfies the properties (1)-( 3) with r;, > and T = i—o We will also carry
1

out the analysis for the case where the effect of toxicant on the carrying capacity K is
negligible and therefore K = constant.
In order to carry out the stability analysis, we introduce the following change

' g X
of variables and system parameters : x = _(I)—(_’ y=T,z=U,a=1,b=r,
Ka K
dg = 8p.a = 1,y= Yl,andd1=5
Iy I‘O

The model equations (6)-(8) with (9) can then be written as

dx _ 2
a (a-by)x -x (1
dy
It = -dgy—axy+nyxz+fz (12)
dz

= ~djz+oxy-yxz (13)

dt



The system of equations (11)-(13) thus admits three steady states, namely

i) the washout steady state: (x,y,z) = (0,0,0)
ii) washout of toxicant only : (x,y,z) = (a,0,0)

iii) the nonwashout steady state(s), (X,¥,Z) satisfying

(a-by)-% = 0 (14)
—doy - oXy+nyXz+ Bz =0 (15)
—d(Z+0XY — yXZ =0 (16)

Solving equations (14)-(16) for X, we find

5+ 52 ~4(1—n)aydod,

¥l2 = 2(1-m)ay a7
where
& = af-dgy—dja
Then
_ a-xX
7=
_ oxy aX(a—X)
and Z = - = —
d; +9% dy +yx
We note that if
dny +dqa
B < L (18)



then 8 < 0 and both X; and X, are negative and have no physical meaning in our

system. Moreover, for values of B such that

8% < 4(1-m)oyd,d

the term under the square root sign in (17) is negative. The system therefore admits

only the washout steady states until [ crosses the critical value

1
Be = - [2/(1-moydd; + doy + dio] (19)

at which point the system undergoes a saddle node bifurcation and two more steady
states appear which move further apart as B increases. As B increases even further,
one of the roots given in (17) becomes negative as shown in Figure 1, and the bigger

B gets the roots can become either negative or bigger than a, in which case

a-x
y = o < 0, leaving us with only the two washout steady states, as shown in the

bifurcation diagram presented in Figure 1.

The Jacobian matrix evaluated at the trivial steady state (0,0,0) is

|_a 0 0
Jo =10 —dp+B O (20)
0 0 —81

one of whose eigenvalues is always positive (-namely a ), and one is always negative
( =8 ). This means that the washout steady state (0,0,0) is a saddle point for all

positive values of the system parameters and thus the dashed line along the pP-axis

signifying that the trivial steady state X= 0 is unstable.



The Jacobian matrix of the system (11-(13) evaluated at the steady state (a,0,0)

is

-a —ab 0
Ja =|0 —dg—aa nyat+P
0 ca —d;—va

and the corresponding eigenvalues are -a and

A &% ~4](dg +0a)(d; + ya) ~aa(rya + B)]
2

@1)

where

A= -dg-d;—aa-ya.

Expanding Az, we find that the term under the square root sign in (21) is

always positive. Moreover, the term will be less than AZ if

_ (do+ua)d; +72)
aa

B ya = B (22)

in which case the steady state (a,0,0) will be a stable node since A < (. On the other
hand if

2

B> (23)

then the point will be an unstable saddle point since one of the eigenvalues will be

positive.
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The Jacobian matrix evaluated at the nontrivial steady state (X,¥,z), whenever

it exists, is

J=|-ay+nyz —dg—oaX m/x-!-B (24)

X -bx ]
] |
%]

ay —yz oX -dy —yX

when X, y, and Z satisfy equations (14) through (16). The corresponding

characteristic equation is

A +a,02 +ajh+ag = 0. (25)
where
ag = bx|(nyz - aF)(d; +1%) +(ny% + B)eF - v2)] (26)
ay =%[dg +d; +(o+7)%] + bX(nyZ ~ o) 27
ay =dg +dy +(1+a+7)xX (28)
If we let
1 1,
q=321- 523 (29)
1 1
r=g(a1a2—3a0)~—§a2 (30)
11
_ 3.,.:2y213
S; =[r+(q” +r7)?] 31)

11
= [r-(@3 +r2)2 3 (32)
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In region II, however, ag > 0 while aja; > ag and the real parts of all 3
eigenvalues are negative. The non-trivial steady state is therefore a stable spiral node
in this case. As time passes, all trajectories starting from its neighborhood will spiral
toward the equilibrium point where X = X,.

In region III, ay > 0 and aja; < a( and limit cycle behavior can be observed
resulting from a Hopf bifurcation from the steady state solution which has now
become unstable. It is found numerically that the bifurcated limit cycle is stable
throughout this region.

Schematic diagram of different dynamic behavior and transients which may be
observed in each of the 10 ranges of parametric value P; namely, A through J, are
shown in Figure 1. Here, solid lines indicate stability, dashed ones indicate
unstability, while closed dots represent stable limit cycles resulting from supercritical
bifurcation and increasing in amplitude as f increases. The numbers of possible
transients or attractors in each of the 10 ranges, A through J, are given in Table 1.

In fact, substituting (26)-(28) into (40} and (42), we find that Hopf bifurcation

occurs for values of B for which aja; < ag or equivalently,

" 32X2(91 +92)+(a2 —61)[ny22 —0(?2)}3?2 .

B>P = 7 - Z TYX7 (43)
b%, (0¥, —¥2)
as well as ay > 0 which is equivalent to
v _ (MyZ—oyy)6
> = - - - TyX 44
B> B2 P ¥ (44)
where
. a- iz
Y2 = b
- 0X2¥2
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with

9] = do +OL)_{2
0y =dy +71X;

Thus, Hopf bifurcation occurs for values of P such that

B > max(B],B5) (45)

In Figure 1, four different possibilities in region III are schemetically shown

according to the value of ' relative to the values P, B); and B;.

Finally, numerical simulations of the model system (11)-(13) in the different
cases discussed above are shown in Figure 3, in which parametric values for Figures
3(a), 3(b), and 3(c) are chosen to be in region I, II, and III of Figure 2, respectively.
The corresponding time series of the various cases are shown in Figure 4, where
sustained oscillation is observed when the paremetric values fall inside the region [II
where periodic solution has been predicted. In region II, on the other hand, the
trajectory is seen to first approach the origin, which is a saddle point, then gets
repulsed as the population recovers itself and returns to its equilibrium value at the
stable steady state (a, 0, 0). However, if in this region we have a very low degradation
rate and birth rate and very high return rate, the population level x is capable of
dropping all the way to zero. The toxicant level reaches a high level so fast that the
population does not have time to recover itself, in which case the population can

become extinct.
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CONCLUSION

We have considered a mathematical model of the effect of toxicants on a
single species system in a closed homogeneous environment. Application of the Hopf
bifurcation analysis led us to the conclusion that if the return rate 5, namely the rate at
which the toxicant in the population re-enters thee environment is sufficiently low, a
stable non-trivial equilibruim state exists in which case the population persists while
the toxicant level may degenerate to zero or tend toward an acceptable level.

However, for a fixed value of the self degradation rate dy and birth rate ry, if B

increases beyond the critical values BT and B; given in the paper, the system becomes
unstable and the toxicant level can rise to an undesirably high level. Through our
analysis, we found that the system can exhibit up to 10 different types of phase space,
and a possibility of up to 5 transients or attractors.

This study of the various dynamic behavior which is possible in such an
important process should serve as a useful tool for trying to understand and efficiently

control such interesting but complexed ecosystems.
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limit cycle

Total
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FIGURE CAPTION

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

TABLE 1.

Schemetic diagrams to present X as a function of B , showing five
different cases which are possible, in the region Il of Figure 2, for
various values of the parameter pr. The dashed lines indicate unstable
steady states, the solid lines indicate stable ones, while the closed dots
indicate stable limit cycles. The dashed vertical line is the line g = p,
whose relative position gives rise to 10 possible types of phase

space; A through J.

The graphs of equations (40) and (42) divide the (8,1, plane into 3

regions of different dynamic behavior. Here, b = 1, dp =03,

d; =001, 0 =09, t =09,y =0.9.

Numerical simulations of the model system (11)-(13). The parametric
values are chosensothat a) (B,p) = (0.4,0.03) inRegionl
of Figure 2, where the solution trajectory is seen to approach the

washout steady state, which is a saddle point , then gets repulsed.

b) (B.fy) =(0.36,0.5) in Region I, where the nontrivial steady

state S is a stable spiral node, and ¢) (B,f;) = (0.55,0.6) in

Region IlI, where a limit cycle is observed as theoretically predicted.

The time series of the solutions to the model equations (11)-(13) in

the cases a), b), and c) of Figure 3, respectively.

Number of transients or attractors in each of the cases A through J as

indicated in Figure 1.
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