ABSTRACT

Tuberculosis (TB) has been a serious health problem in our country. The rising of its incidence rate is believed to be accompanied with the acquired immunodeficiency syndrome (AIDS) epidemic. Moreover, the high occurrence of drug resistant *Mycobacterium tuberculosis*, the causing agent, contributes considerably to an ineffective treatment of tuberculosis and therefore compromises the Tuberculosis Control Program.

Rifampicin is one of the first-line drugs used for TB therapy. Initial resistance to rifampicin in Thailand was reported to be a total of 8.7% in 1996 by the Bangkok Chest Clinic. Resistance to rifampicin creates clinical problems as it prolongs the treatment and renders a poor outcome for the patients. Rifampicin susceptibility testing in Thailand has largely relied on the conventional culturing method which usually takes 4- 6 weeks in addition to a 4 week growing period. This time consuming method augments chances of spreading drug resistant organisms. Rifampicin has a site of action at the β subunit of RNA polymerase. It acts by interfering with transcription and RNA elongation. Rifampicin resistance in M.tuberculosis is largely associated with point mutations located in a hot spot region covering 23 amino acids of the rpoB gene which encodes for the RNA polymerase β subunit. With this known molecular mechanism of rifampicin in relation to its resistance genotype, we are now trying to introduce rapid technologies to substitute for both conventional identification and drug testing techniques. Although there are a number of rifampicin resistant mycobacteria in Thailand, the rifampicin resistant genotype has never been studied. We have begun to search for mutations at the hot spot region of the rpoB gene in 68 isolates (29 from the Central Chest Hospital and 39 from the Bangkok Chest Clinic) and have found that 85.3% contained mutations in this region. Codon 531 was mostly found mutated (41.2%). change was detected in 10 sensitive isolates nor in isoniazid, ethambutol, or streptomycin resistant isolates. Exploring for mutations in the entire open reading frame of the rpoB gene (3534 bp) in the rest of 14.7% revealed that DNA sequences of sensitive and resistant isolates were identical which might suggest an alternative mechanism of rifampicin resistance or uncertainty of the rifampicin susceptibility test. However, a new variant of the rpoB gene of mycobacteria isolated from Thai patients has unexpectedly been found. Five positions of base sequences in this gene were distinct from those recorded by the GenBank. The altered positions included codons 638, 644, 966, 967 and 1173. The new nucleotide sequences resulted in 9 amino acid changes and one amino acid insertion.

The PCR based methods of density gradient gel electrophoresis (DGGE) and mutation detection enhancement gel electrophoresis (MDEE), or heterodulplex formation, were used for development of rapid detection of point mutations in the rpoB gene. Results showed that MDEE or heteroduplex formation was a more suitable method as it was simpler and required no special equipment. The heteroduplex formation technique can be used to distinguish 10 different types of point mutation by showing different DNA patterns after gel electrophoresis. DNA from all 10 resistant isolates showed more than one band with different migrations whereas DNA from sensitive isolates always showed only one band with the same migration. This technique has been extended for detection of mutations in sputum samples collected from 10 walk-in patients at the Central Chest Only 3 samples showed corresponding results and 7 disagreed. We also checked the identity of M.tuberculosis by BsaAl cut and the result excluded the possibility of analysing the rpoB gene from 9 other kinds of mycobacteria. However, this could not exclude both M. africanum and M. bovisBCG.

We also analysed DNA fragments of the *rpoB* gene of Thai mycobacteria as compared to other mycobacteria and other bacteria occasionally found in the human respiratory tract. *M. tuberculosis* could be distinquished from the other 10 bacteria by using PCR-RFLP generated from 5' non-coding region and the hot spot region and the presence or absence of PCR products of 5' coding region II. 5'non-coding region was able to be used to distinquish between *M.tuberculosis* and *M.microti* and *M. bovis* BCG but not *M.africanum*. 5' coding region could differentiate between *M.tuberculosis* and other 11 types of mycobacteria except *M.africanum*. 10 different mycobacteria but not *M.africanum* and *M.bovis*BCG could also be distinquished from *M.tuberculosis* using the hot spot region. Moreover, RFLP pattern of 3' non-coding region containing one of the new DNA sequences at codons 966-967 could be used to confirm nucleotide variation in all Thai isolates of mycobacteria.

Genomic DNA typing of 42 isolates of both rifampicin and multidrug resistant mycobacteria collected from 5 different parts of Thailand was performed using IS6110 as a probe. The included isolates which harbored various types of mutations and isolates with undetectable mutation in the rpoB gene. Results indicated that the majority of both rifampicin and multidrug resistant mycobacteria belonged to the Beijing group (48 %). were classified as the Nonthaburi group and the Single banded group respectively. 17% was unable to be classified therefore pooled into the Heterogeneous group. Copy numbers of IS6110 seemed to vary between 0-15. Only 7% showed no IS6110 DNA sequence. Analysis of M.tuberculosis DNA sequence by using RFLP of the spacer between 16S-23S rDNA in all samples containing no IS6110 DNA confirmed their characters of M.tuberculosis complex. Isolates from both detectable mutation and undetectable mutation groups were found in all classes of genotypes.

บทคัดย่อ

วัณโรคยังคงเป็นปัญหาใหญ่ทางด้านสาธารณสุขของประเทศไทย ในปัจจุบันพบว่า อุบัติการณ์ของวัณโรคเพิ่มสูงขึ้นพร้อมกับการระบาดของโรคเอดส์ นอกจากนี้การดื้อยาของ เชื้อ Mycobacterium tubercculosis ซึ่งเป็นสาเหตุของโรคยังส่งผลให้การควบคุมการระบาดของ วัณโรคมีปัญหา และไม่ประสบความสำเร็จเท่าที่ควร

ยา Rifampicin เป็นยาหลักตัวหนึ่งที่ใช้รักษาวัณโรค ซึ่งมีอัตราการดี้อยาค่อนข้างสูง ถึง 8.7% ในปี 2539 (กองวัณโรค) การดี้อยา Rifampicin ของเชื้อวัณโรคมีผลเสียต่อการรักษา เพราะทำให้ใช้เวลานานกว่าปกติ อันเป็นผลเสียต่อคนไข้ การตรวจหาการดี้อยา Rifampicin ของเชื้อวัณโรคในประเทศไทยยังใช้วิธีดูผลในอาหารเลี้ยงเชื้อที่มียาเป็นหลัก ซึ่งจะใช้เวลา นานประมาณ 4-6 อาทิตย์ หลังจากที่เชื้อเจริญเติบโตแล้ว จึงเป็นเทคนิคที่ใช้เวลานานและ เพิ่มโอกาสของการแพร่เชื้อ ยานี้ออกฤทธิ์โดยจับกับ β-subunit ของ เอ็นไซม์ RNA polymerase และรบกวนการถอดรหัสของ mRNA การดี้อยา Rifampicin มีความสัมพันธ์กับ การผ่าเหล่าของยืน rpoB ซึ่งเป็นยืนที่สร้าง β-subunit ของเอ็นไซม์ RNA polymerase พบว่า ตำแหน่งการผ่าเหล่านั้นเกิดขึ้นในบริเวณกรดอะมิโน 23 ตัว ในตอนกลางของยืน rpoB ด้วย ความรู้ในระดับโมเลกุลของการดี้อยานี้ ทำให้เราสามารถนำเทคนิคที่มีความไวสูง มาช่วย พัฒนาการตรวจวิเคราะห์เชื้อวัณโรค และตรวจหาการดี้อยา Rifampicin ได้ แม้ว่าในประเทศ ไทย จะพบเชื้อวัณโรคที่ด้อต่อยา Rifampicin เป็นจำนวนมาก แต่ยังไม่เคยมีการศึกษาการ

เปลี่ยนแปลงของยืน rpoB ในเชื้อวัณโรคมาก่อน เราจึงทำการศึกษาหาความผิดปกติของยืน rpoB ในช่วงดังกล่าว ในเชื้อวัณโรคจำนวน 68 ตัวอย่างแยกได้ในประเทศไทย และพบการผ่า เหล่าจำนวน 85.3 % โดยที่กรดอะมิโน ที่ 531 พบการผ่าเหล่าจำนวนสูงสุดถึง 41.2% ทั้งนี้ไม่ พบการผ่าเหล่าในเชื้อวัณโรคที่ไวต่อยา10 ตัวอย่าง หรือในเชื้อที่ดื้อต่อยา isoniazid, ethambutol และ streptomycin เลย การสำรวจหาการผ่าเหล่าใน open reading frame ของยืน rpoB จำนวน 3534 เบส ในเชื้อที่ไม่พบการผ่าเหล่าจำนวน 14.7 % นั้นพบว่ามีลำดับเบสที่ไม่ แตกต่างกันระหว่างเชื้อที่ไวต่อยาและเชื้อที่ดื้อต่อยา จึงทำให้สันนิษฐานว่ามีกลไกการดื้อยา Rifampicin มากกว่าหนึ่งแบบ หรือมีความไม่แน่นอนของผลการวิเคราะห์การดื้อยา อย่างไรก็ ตามเราได้พบความแตกต่างของลำดับเบสในยืน rpoB ระหว่างเชื้อวัณโรคที่แยกได้ในประเทศ ไทย กับที่รายงานไว้ใน GenBank จำนวน 5 ตำแหน่ง คือตำแหน่งกรดอะมิโนที่ 638, 644, 966, 967 และ 1173 ส่งผลให้มีการเปลี่ยนแปลงของกรดอะมิโน 9 ตัว และมีกรดอะมิโนเพิ่มขึ้น 1 ตัว

เราได้พัฒนาใช้เทคนิคการตรวจหาความผิดปกติของยืนในผลผลิต PCR ที่เรียกว่า Density Gradient Gel Electrophoresis (DGGE) และ Mutation Detection Enhancement Gel Electrophoresis (MDEE) หรือ Heteroduplex Formation ตรวจหาความผิดปกติในยืน rpoB และ พบว่า เทคนิค Heteroduplex Formation เป็นเทคนิคที่เหมาะสมเนื่องจากทำได้สะดวกและไม่ ต้องการเครื่องมือพิเศษ เทคนิคนี้สามารถตรวจหาความผิดปกติ และแยกความแตกต่างของ การผ่าเหล่าทั้ง 10 ชนิดที่ใช้ในการทดสอบ โดยอาศัยความแตกต่างของการเคลื่อนที่ของดีเอ็น เอในวุ้น เมื่อได้นำเทคนิคนี้มาลองใช้ทดสอบกับเสมหะผู้ป่วยโรงพยาบาลโรคทรวงอก 10 ตัวอย่าง พบว่ามีผลการดื้อยาสอดคล้องกันเพียง 3 ตัวอย่าง และมีผลแตกต่าง 7 ตัวอย่าง ซึ่ง เมื่อทำการตรวจสอบลักษณะของยืนด้วยการย่อยด้วย BsaAl สามารถกำจัดความเป็นไปได้ ของการวิเคราะห์ rpoB จาก mycobacteria อื่น 9 ชนิด ยกเว้นไม่สามารถแยกออกจาก M.africanum และ M.bovis BCG ได้

ในขณะเดียวกันเราได้ทำการวิเคราะห์ชิ้นส่วน ดีเอ็นเอ ของยืน rpoB ในเชื้อวัณโรค เปรียบเทียบกับเชื้อ mycobacteria ชนิดอื่นรวมทั้ง แบคทีเรียต่าง ๆที่พบได้ในระบบทางเดิน หายใจ 10 ชนิด พบว่าเชื้อวัณโรคสามารถแยกออกจากแบคทีเรียอื่น ๆโดยการใช้เทคนิค PCR-RFLP ที่ได้จากช่วงปลาย 5 ของยืน rpoB (non-coding region) และช่วงกรดอะมิโน 23 ตัว หรือ การทดสอบการเกิดผลผลิต PCR ในช่วงปลาย 5 ของยืน rpoB (coding region) ช่วงปลาย 5 ของยืน (non-coding region) สามารถใช้แยกความแตกต่างระหว่างเชื้อวัณโรคและ M.microti.และ M.bovis BCG แต่ไม่สามารถแยกออกจาก M.africanum ได้ ช่วงปลาย 5 ของยืน (coding region) สามารถแยกความแตกต่างของเชื้อวัณโรคออกจาก mycobacteria อื่น ๆ 11 ชนิดยกเว้น M.africanum ส่วนช่วงกรดอะมิโน 23 ตัวนั้น สามารถแยกเชื้อวัณโรคออกจาก M.africanum และ M.bovis BCG ได้เช่นกัน ยิ่งไปกว่านั้น RFLP pattern ของส่วนปลาย 3 ของ

ยืนที่พบว่ามีลำดับเบสแตกต่างจากที่เคยรายงานไว้ (กรดจะมิโนที่ 966-967) ยังสามารถใช้ยืน ยันลำดับเบสดังกล่าวในเชื้อวัณโรคที่แยกได้จากประเทศไทย

การวิเคราะห์รูปแบบของดีเอ็นเอ ในเชื้อวัณโรค 42 ตัวอย่าง ที่ดื้อต่อยา rifampicin อย่างเดียว และดื้อต่อยาหลายอย่างร่วมกันที่รวบรวมได้จาก 5 ภาคในประเทศไทย โดยการใช้ IS6110 เป็นตัวดิดตาม ตัวอย่างนี้มีทั้งเชื้อที่พบการผ่าเหล่า และไม่พบการผ่าเหล่าในยืน rpoB ผลปรากฏว่าส่วนใหญ่ของเชื้อวัณโรคที่ดื้อยา rifampicin อย่างเดียว และดื้อยาหลายอย่างร่วม กันจัดอยู่ในกลุ่ม Beijing 48 % นอกนั้นอยู่ในกลุ่ม Nonthaburi 12 % กลุ่ม Single band 17% และกลุ่ม Heterogeneous 17 % ทั้งนี้พบว่าจำนวนชุดของ ดีเอ็นเอ IS 6110 อยู่ระหว่าง 0-15 ชุด ส่วนเชื้อที่ไม่พบชิ้นส่วนดีเอ็นเอ IS6110 มีจำนวน 7% ซึ่งเมื่อเราทำการทดสอบเพื่อ ยืนยันความเป็น mycobacteria ในกลุ่ม M.tuberculosis complex ด้วยการใช้เทคนิค RFLP ของ DNA spacer บริเวณระหว่าง 16Sและ23S rDNA ผลปรากฏว่าเชื้อทุกตัวที่ไม่มี IS6110 นั้นอยู่ ในกลุ่ม M.tuberculosis complex และทั้งเชื้อที่พบและไม่พบความผิดปกติของยืน อยู่กระจาย ในทุกกลุ่มของ Genotype ที่พบได้ในเชื้อวัณโรคโดยไม่พบความแตกต่างอย่างชัดเจน