การศึกษาเอนไซม์ Geranylgeraniol-18-Hydroxylase ในกระบวนการชีวสังเคราะห์ของเปลาโนทอลในต้นเปล้าน้อย

วันชัย คีเอกนามกูล ่ พิมพ์พิมล ตันสกุล และอพัชชา วงศ์เจริญสถิตย์

- ่ ภาควิชาเมศัชเวท คณะเภสัชศาสตร์ จุฬาถงกรณ์มหาวิทยาลัย
- ้ ที่อยู่ปัจจุบัน : ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ บหาวิทยาลัยสงขลานครีนทร์
- ที่อยู่ปัจจุบัน: ภาควิชาอุตสาหกรรมเกษตร คณะเทคโนโลยีการเกษตร สถาบันเหคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง

บทคัดย่อ

งานวิจัยนี้ได้กันพบแอกทีวิตีของ geranylgeraniol-18-hydroxylase ซึ่งเป็นเอนไซม์ใหม่ที่ ทำหน้าที่ในการเร่งปฏิกริยา hydroxylation โดยการเติมกลุ่ม OH ที่การ์บอนดำแหน่งที่ 18 ของ geranylgeraniol (GGOH) เกิดเป็น plaunotol แอกทีวิตีของเอนไซม์นี้พบในส่วน microsome ที่ เตรียมจากใบของดันเปล้าน้อย (Croton sublyratus) การศึกษายังพบว่าเอนไซม์นี้เกี่ยวข้องในขั้น ตอนสุดท้ายในวิถีชีวสังเกราะห์ของเปลาโนทอล ซึ่งเป็นสารสำคัญที่มีสรรพคุณแก้โรคกระเพาะใน ดันเปล้าน้อย จากการศึกษาปฏิกริยาที่ถูกเร่งโดยเอนไซม์ พบว่าการเกิด plaunotol ในปฏิกริยาแปร ผันตามเวลาและปริมาณโปรตีนของ microsome นอกจากนี้ปฏิกริยานี้สามารถถูกเร่งโดยการเดิม NADPH และโดยการให้ความร้อนแก่ microsome ก่อนใส่ลงในสารละลายปฏิกริยา pH ที่เหมาะ สมสำหรับการทำงานของเอนไซม์ก็อที่ 5.0 และผลิตภัณฑ์ที่เกิดการปฏิกริยาคือ plaunotol ซึ่งถูก วิเคราะห์โดยใช้เทคนิค TLC, IR และ GC-MS จากการศึกษาโดยใช้กล้องจุลทรรศน์ พบว่า microsome ที่มีแอกทีวิตีของเอนไซม์ GGOH-18-hydroxylase มีลักษณะเป็นก้อน (particle) ซึ่งมี เส้นผ่าสูนย์กลางขนาด 20-40 กm

จากการพัฒนาเทคนิกการตรวจสอบแอกทีวิตีของเอนไซม์ทำให้สามารถได้วิธีการ TLC-densitometry เพื่อตรวจหาปริมาณ plaunotol ในใบของต้นเปล้าน้อย วิธีการนี้พบว่ามีความง่าย รวด เร็ว และแม่นยำในการวิเคราะห์ จากการวิเคราะห์ตัวอย่างใบเปล้าน้อย จำนวน 68 ตัวอย่างที่ได้จาก บริเวณต่างๆ ของประเทศไทย พบว่าปริมาณ plaunotol ในใบเปล้าน้อยมีอยู่ในช่วง 0.14-0.79% ของน้ำหนักแห้ง โดยตัวอย่างใบส่วนใหญ่ (39.7%) จะมีปริมาณ plaunotol อยู่ระหว่าง 0.30-0.40%

STUDY ON THE ENZYME GERANYLGERANIOL-18-HYDROXYLASE IN THE BIOSYNTHESIS OF PLAUNOTOL IN CROTON SUBLYRATUS

Wanchai De-Eknamkul¹, Pimpimon Tansakul^{1,2} and Apacha Vongchareonsathit^{1,3}

- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330
- Present Address: Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkla
- Present Address: Department of Agricultural Industry, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520

ABSTRACT

The activity of geranylgeraniol-18-hydroxylase, a novel enzyme catalysing the C-18 hydroxylation of geranylgeraniol (GGOH) to plaunotol, was discovered in the microsomal fraction prepared from *Croton sublyratus* leaves. This enzyme is involved in the final step of the biosynthetic pathway of plaunotol, an anti-peptic ulcer constituent accumulated in this plant. The enzymatic formation of plaunotol was correlated with both incubation time and the amount of microsomal protein. The enzyme activity could be increased by adding NADPH and by heating the microsomal fraction prior to the incubation. The pH optimum for the enzyme activity was 5.0. The enzymatic product was identified as plaunotol by TLC, IR and GC-MS. Observation of the heated microsomal fraction under electron microscope revealed the presence of particles with the diameter ranging from 20 to 40 nm.

In order to quantitate plaunotol in the leaves of *Croton sublyratus* Kurz., a simple, rapid and accurate method of TLC-densitometry was used. Sixty eight leaf samples from various areas of Thailand were examined for their plaunotol content. The analysis revealed that *C. sublyratus* leaves contained plaunotol in the range 0.14-0.79% dry weight with the majority (39.7%) falling in the range 0.30-0.40%.

INTRODUCTION

Plaunotol (Fig. 1), the active ingredient of a commercial drug named Kelnac[®], is a mucosal protective factor-enhancing antiulcer agent [1]. It was originally found in the leaves of *Croton sublyratus* Kurz. (ดันเปล้าน้อย) (Euphorbiaceae) [2], a tropical plant distributed throughout southeast Asia. Although the structure of plaunotol has been known for almost

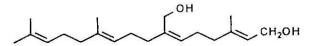


Fig. 1 The structure of plaunotol

twenty years, very little is known about its biosynthetic pathway. Based on its structure, however, the biosynthesis of plaunotol in this plant could be simple since the compound is a 18-hydroxy derivative of geranylgeraniol (GGOH), a common precursor of all natural diterpenoids. It is well documented that GGOH is biosynthesized *via* the terpenoid pathway and its immediate precursor is geranylgeranyl diphosphate (GGPP) [3]. Therefore, it is reasonable to propose that plaunotol is biosynthesized from GGPP by two steps of enzymatic reactions (Fig. 2). First, GGPP is hydrolysed by a phosphatase enzyme to form GGOH. Second, GGOH is then hydroxylated at C-18 position by a specific 18-hydroxylase to form plaunotol. Until now, there has been no report to support this proposed pathway. The reason may be due to the lack of suitable starting material for the study. Attempts have been made to establish *C. sublyratus* callus and cell cultures producing high plaunotol content but have not been successful [4,5].

Fig. 2 Proposed biosynthetic pathway of plaunotol

Due to the availability of *C. sublyratus* plants in Thailand, we decided to use the whole plant as a source for searching the enzyme activity of GGOH-18-hydroxylase. The leaf part was chosen as the material for the study since it accumulates plaunotol and is potentially the site of plaunotol biosynthesis. The present report describes detection of GGOH-18-hydroxylase activity, product identification and some properties of the enzyme.