รายงานฉบับสมบูรณ์

(I มันวาทม 2537 - 30 พฤศจิกายน 2540)

การผลิตในในโคลนอล แอนดิบอดี ต่อ CD4 และ CD8 โปรดีน และการพัฒนาวิธีตรวจเพื่อ ช่วยพยากรณ์ความรุนแรงของโรกและใช้เป็นแนวทางการรักษาผู้ติดเชื้อเอดส์

Production of anti CD4 and CD8 monoclonal antibodies and development of techniques for prognosis of HIV infection and monitoring of therapy

วัชระ กลิณฤกษ์

ภาควิชาภูมิลุ้มกันวิทยาคลินิก กณะเทคบิลการแพทย์ มหาวิทยาลัยเชียงใหม่

รายงานฉบับสมบูรณ์

(1 ธันวาคม 2537 - 30 พฤศจิกายน 2540)

การผลิตโมโนโคลนอล แอนติบอดี ต่อ CD4 และ CD8 โปรตีน และการพัฒนาวิธีตรวจเพื่อ ช่วยพยากรณ์ความรุนแรงของโรคและใช้เป็นแนวทางการรักษาผู้ติดเชื้อเอดส์

Production of anti CD4 and CD8 monoclonal antibodies and development of techniques for prognosis of HIV infection and monitoring of therapy

วัชระ กสิณฤกษ์

ภาุกวิชาภูมิกุ้มกันวิทยาคลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยเชียงใหม่

สำ**นักงานถองทุบสนับสนุนการวิลัย (สถา.)** ชั้น 14 ฮาการ เกสเอี้ย ทาวเวอร์ เอาท์ 979 17-21 กายเขทกโฮธิกายขวงสามเสมใน --กุลไลการุมหพร 10400

r.298-0455 Trigit it 298-0476 frome page: http://www.trf.or.th E-mail:: trf-info/a/trf.or.th

สารบัญ

	หน้า
บทคัดข่อ	1
ABSTRACT	3
บทนำ	5
วัตถุประสงค์	6
การคำเนินงาน	7
ผลที่ได้รับจากการคำเนินงาน	10
กิจกรรมอื่นๆ ที่เกี่ยวข้อง	20
Reprints และ Manuscripts ที่ได้จากโครงการวิจัย	23

บทคัดย่อ

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อผลิตแอนติบอดี ต่อ CD4 และ CD8 โปรตีน แล้ว นำแอนติบอดีที่ผลิตได้มาพัฒนาเป็นวิธีและนำ้ยาเพื่อตรวจนับจำนวน CD4+ cells

จากการศึกษาใน 3 ปี (ธันวาคม 2537-พฤศจิกายน 2540) ผู้วิจัยได้ทำการศึกษาโดยมี รายละเอียดและผลการศึกษาดังนี้คือ

- 1. ผู้วิจัยสามารถแยก hybridomas ที่ผลิตโมโนโคลนอล แอนติบอดี ต่อ CD4 และ CD8 proteins ได้อย่างละ I โคลน ให้ชื่อว่า MT4 และ MT8 ตามลำดับ จากการศึกษาความจำเพาะ ของโมโนโคลนอล แอนติบอดี ที่ผลิตได้ พบว่า MT4 และ MT8 monoclonal antibody (mAb) สามารถทำปฏิกิริยาได้กับทั้ง native และ recombinant CD4 และ CD8 proteins ตามลำดับ MT4 และ MT8 mAb สามารถ inhibit ปฏิกิริยาของ standard CD4 (Leu3a) และ CD8 (Leu2) mAb ได้ และสามารถนำไปใช้ตรวจนับจำนวน CD4+ และ CD8+ cells ใน peripheral blood ได้เท่าๆ กับ การใช้ standard CD4 และ CD8 mAb ผลการศึกษายืนยันได้ว่า MT4 และ MT8 mAb ทำปฏิกิริยาจำเพาะกับ CD4 และ CD8 proteins ตามลำดับ
- 2. ผู้วิจัยได้นำวิธี DNA immunization มาประยุกต์ใช้ในการผลิตแอนติบอดีต่อ CD4 proteins ในหนูและในกระต่าย โดยพบว่าวิธี DNA immunization นี้สามารถกระคุ้นให้สัตว์ทดลอง สร้างแอนติบอดีต่อ CD4 proteins ได้หลังการถึด cDNA encoding CD4 protein (CD4-DNA) 1-3 ครั้ง จากการศึกษาในหนู พบว่า 4 ใน 5 ของหนูที่ถืด CD4-DNA สร้าง anti-CD4 antibodies ขณะที่ 3 ใน 3 ของกระค่ายสร้าง anti-CD4 antibodies จากการศึกษาความจำเพาะ ของ CD4 polyclonal antibodies ที่ผลิตได้ พบว่าแอนติบอดีที่ผลิตได้นี้ทำปฏิกิริยาจำเพาะได้ กับทั้ง native CD4 และ recombinant CD4 proteins
- 3. ผู้วิจัยได้พัฒนาวิธี Manual rosetting ขึ้นมาเพื่อตรวจนับจำนวน CD4+ cells และเมื่อนำวิธี ที่พัฒนาขึ้นมานี้มาตรวจนับจำนวน CD4+ cells ในเลือดผู้ป่วยเอดส์และคนปกติจำนวน 40 คนเปรียบเทียบกับวิธีมาตรฐาน flow cytometry ผลการทดลองพบว่าวิธีทั้งสองให้ผลไม่แตก ต่างกัน โดยมีค่าสัมประสิทธิ์สหสัมพันธ์เท่ากับ 0.95 แต่เมื่อผู้วิจัยพัฒนาวิธี Manual rosetting ให้มีวิธีการทำที่ง่ายยิ่งขึ้น โดยการนำ MT4 monoclonal antibody ไปเกลือบบนเม็ดเลือดแดง แกะ และ tosyl-activated beads โดยตรง แล้วนำมาตรวจนับจำนวน CD4+ cells ในเลือดโดย วิธี Direct manual rosetting ผลการทดลองพบว่าจำนวน CD4+ cells ที่ได้โดยวิธี Direct manual rosetting มีให้ค่าต่ำกว่าวิธีมาตรฐาน flow cytometry อย่างมีนัยสำคัญ
- 4. ผู้วิจัยได้นำ MT4 mAb และแอนติบอดีต่อ CD4 โปรตีนที่ผลิตจากวิธี DNA immunization มาพัฒนาเป็นวิธี Sandwich ELISA เพื่อใช้ตรวจหา soluble CD4 proteins และเมื่อนำวิธีที่ พัฒนาขึ้นมานี้มาหาปริมาณ soluble CD4 proteins ในเลือดผู้ติดเชื้อ HIV จำนวน 59 คน และ คนปกติจำนวน 56 คน ผลการทดลองพบว่า ปริมาณ soluble CD4 proteins ในเลือดไม่มีความ

สัมพันธ์กับจำนวน absolute CD4+ cells โดยมีค่าสัมประสิทธิ์สหสัมพันธ์เท่ากับ 0.187 และ เมื่อเปรียบเทียบปริมาณ soluble CD4 proteins ในเลือดผู้คิดเชื้อ HIV กับคนปกติ พบว่าก่าที่ ได้จากกลุ่มตัวอย่างทั้งสองไม่แตกต่างกัน

5. ผู้วิจัยได้นำ MT4 mAb มาผลิตเป็นน้ำยาตรวจนับจำนวน CD4+ cells เพื่อใช้กับเครื่อง flow cytometer ขึ้นมาใช้เอง โดยนำ purified MT4 mAb มาติคฉลากกับสาร fluorescein isothiocyanate (FITC) แล้วนำไปใช้ตรวจนับจำนวน CD4+ cells โดยวิธี flow cytometry และ เมื่อนำ FITC labeled MT4 มาตรวจนับจำนวน CD4+ cells ในเลือดผู้ติดเชื้อเอคส์และคนปกติ จำนวนอย่างละ 60 ราย เปรียบเทียบกับชุดน้ำยามาตรฐาน Simultest™ ของบริษัท Becton Dickinson ผลการศึกษาพบว่าเปอร์เซนต์และค่า absolute CD4+ cell counts ที่ได้จากน้ำยาทั้ง สองชนิดใกล้เคียงกันมาก โดยมีค่าสัมประสิทธิ์สหสัมพันธ์ เท่ากับ 0.995 และ 0.996 สำหรับ เปอร์เซนต์และค่า absolute CD4+ lymphocyte counts ตามลำดับ ผลการศึกษาในครั้งนี้ชี้ให้ เห็นว่า น้ำยา FITC labeled MT4 ที่เตรียมขึ้นมาใช้เองนี้น่าจะเป็นน้ำยาอีกชนิดหนึ่งที่สามารถ นำมาใช้ตรวจวักระดับ CD4+ cells ในเลือดโดยวิธี flow cytometry ได้

ABSTRACT

The aims of this research are to generate antibodies against CD4 and CD8 proteins and use the generated antibodies to develop methods and reagents for CD4+ cell determination.

On completion of 3 years' work (December 1994-November 1997), the out puts from this study are as follows:

- 1. Two hybridomas that produced antibotlies against CD4 and CD8 proteins, named MT4 and MT8 respectively, were generated. MT4 and MT8 monoclonal antibodies (mAb) were proved to be specific to CD4 and CD8 proteins as they reacted to native and recombinant CD4 and CD8, respectively. The MT4 and MT8 mAb could inhibit the reactivity of standard CD4 (Leu3a) and CD8 (Leu2) mAb. Furthermore, they could be used to enumerate CD4+ and CD8+ colls in blood samples as well as using standard CD4 and CD8 mAb. These results, therefore, demonstrate that generated MT4 and MT8 mAb are specific to CD4 and CD8 proteins, respectively.
- 2. DNA immunization was also used to produce polyclonal antibodies to CD4 proteins in mice and rabbits. By using this technique, anti-CD4 antibodies were induced in tested animals after 1-3 inoculations of cDNA encoding CD4 protein (CD4-DNA). In the mouse system, 4 out of 5 mice produced anti-CD4 antibodies after CD4-DNA immunization. In rabbits, 3 of 3 rabbits produced anti-CD4 antibodies after DNA immunization. These antibodies reacted with either native or recombinant CD4 molecules.
- 3. The manual rosetting method was developed for enumerating CD4+ cells. To evaluate this method, CD4+ cells in normal and HIV infected individuals were determined by using both manual rosetting and standard flow cytometry, simultaneously. The absolute CD4+ cell counts obtained from both methods were very similar with the correlation coefficient of 0.95. The manual rosetting technique was developed further for a simple procedure. MT4 mAb was directly coated on sheep red blood cells or tosyl-activated beads. These coated particles were then used to enumerated CD4+ cells in blood samples by direct manual rosetting technique. The CD4+ cell counts obtained from this direct manual rosetting, however, was significantly lower than those obtained by using standard flow cytometry.
- 4. Sandwich ELISA for quantifying soluble CD4 proteins was established by using generated MT4 mAb and rabbit anti-CD4 antibodies, which were obtained from DNA immunization. The sandwich ELISA was used to determine soluble CD4 proteins in blood

of 59 HIV infected and 56 healthy individuals. The study has shown that the levels of soluble CD4 proteins in tested blood were not correlated to the absolute number of CD4+ cells with the correlation coefficient of 0.187. When the levels of soluble CD4 proteins in HIV infected and healthy individuals were compared, no significant difference in soluble CD4 levels in both studied groups was observed.

5. To develop a home made reagent for CD4+ cell determination by flow cytometry, fluorescein isothiocyanate (FITC) was conjugated to affinity purified MT4 mAb. To evaluate this developed reagent, 30 HIV infected and 30 healthy individuals were determined for CD4+ cells by using both the commercial Simultest reagent kit (Becton Dickinson) and the home made FITC labeled MT4 mAb, simultaneously. The study has shown that both percentages and absolute CD4+ cell counts obtained from both reagents were equivalent. The correlation coefficient for regression analysis were 0.995 and 0.996 for percentages and absolute CD4+ cell counts, respectively. The results suggest that the home made FITC labeled MT4 mAb reagent is an acceptable alternative reagent for monitoring CD4+ cells in blood samples by flow cytometry.

บทนำ

เป็นที่ทราบกันคือยู่แล้วว่าการแพร่กระจายของผู้ติดเชื้อไวรัสเอดส์ (human immunodeficiency virus; HIV) เป็นไปอย่างรวดเร็ว ปัจจุบันกาคว่าประเทศไทยมีผู้ติดเชื้อ เอดส์แล้วเป็นจำนวนกว่าหนึ่งล้านคนและน่าจะยังมีผู้ติดเชื้อที่ยังไม่ได้รับการวินิจฉัยอยู่อีก เป็นจำนวนมาก มีการคาดการณ์ว่าในปี พ.ศ. 2543 จะมีคนไทยติดเชื้อเอดส์มากถึง 2-6 ล้าน คน การแพร่ระบาดของโรคเอดส์อย่างรวดเร็วนี้ ทำให้เกิดผลกระทบอย่างรุนแรงต่อระบบ สาธารณสุข สังคมและเศรษฐกิจของประเทศ

เมื่อเชื้อไวรัส HIV เข้าสู่ร่างกาย ผู้ติดเชื้ออาจไม่มีอาการหรือมีเพียงอาการของการคิด เชื้อไวรัส (กล้ายไข้หวัด) เนื่องจากเชื้อ HIV เข้าสู่เซลล์ที่มี CD4 protein อยู่บนผิวเซลล์ (CD4+ cells) และทำให้เซลล์เม็ดเลือดขาวชนิด CD4+ cells ลดจำนวนลง การลดลงของเซลล์ ดังกล่าวจะก่อยเป็นค่อยไป จนกระทั่งจำนวน CD4+ cells ลดลงน้อยกว่า 500 cells/mm³ ผู้ ป่วยจะเริ่มมีการติดเชื้อฉวยโอกาศ (opportunistic infection) การติดเชื้อจะรุนแรงขึ้นและผู้ ป่วยอาจเป็นมะเร็งบางชนิดเมื่อจำนวน CD4+ cells ลดลงเหลือ 200 cells/mm³ และผู้ป่วย ส่วนใหญ่จะตายเมื่อจำนวน CD4+ cells ลดลงเหลือน้อยกว่า 50 cells/mm³

คังนั้นการตรวจนับจำนวน CD4+ cells ในผู้ติดเชื้อจึงสามารถนำมาใช้พยากรณ์ความ รุนแรงของโรคและเป็นดัชนีบ่งซี้การให้การรักษาผู้ป่วยได้ National Institute of Health แห่งประเทศสหรัฐอเมริกาได้ให้ข้อแนะนำเกี่ยวกับการรักษาผู้ติดเชื้อ HIV ว่าถ้าจำนวน CD4+ cells ในผู้ป่วยมีมากกว่า 500 cells/mm³ ยังไม่จำเป็นต้องให้ antiretrovirus treatment แต่ต้องตรวจนับจำนวน CD4+ cells อยู่อย่างสม่ำเสมอ และเมื่อจำนวน CD4+ cells ลดลง เหลือน้อยกว่า 500 cells/mm³ จะต้องให้ยา antiretrovirus ในผู้ป่วยที่มี CD4+ cells น้อยกว่า 200 cells/mm³ กวรได้รับยาป้องกันการติดเชื้อฉวยโอกาสเพิ่มเติมจากการให้ antiretroviral therapy. Public Health Service (PHS) ได้ให้ข้อแนะนำว่าผู้ติดเชื้อ HIV ทุกคนควรได้รับการ ตรวจนับจำนวน CD4+ cells ทุก 3-6 เดือน

การตรวจนับจำนวน CD4 cells ปัจจุบันนิยมใช้วิธี flow cytometry ซึ่งเป็นวิธีที่ให้ผล ที่น่าเชื่อถือ แต่วิธีนี้ต้องการน้ำยาหรือ แอนติบอดีที่มีราคาสูงมาก ดังนั้นในการวิจัยนี้ ผู้วิจัยจึง มีความสนใจที่จะหาวิธีการใหม่หรือเตรียมน้ำยาสำหรับนำมาใช้ในการตรวจนับจำนวน CD4+ cells หรือ CD4 proteins ขึ้นมาใช้เอง โดยงานวิจัยนี้จะเริ่มตั้งแต่ การเตรียม recombinant CD4 และ CD8 proteins การผลิตแอนติบอดี ต่อ CD4 และ CD8 proteins แล้ว นำ แอนติบอดีที่ได้ไปใช้ในการพัฒนาเป็นวิธีและน้ำยาตรวจนับจำนวน CD4+ cells

วัตถุประสงค์ของโครงการวิจัย

- 1. ผลิตแอนติบอดี ต่อ CD4 และ CD8 โปรตีนขึ้นมาใช้เอง
- 2. นำแอนติบอดีที่ผลิตได้ไปพัฒนาเป็นวิธีการและน้ำยาเพื่อตรวจนับจำนวน CD4+ cells
- 3. เปรียบเทียบวิธีที่พัฒนาขึ้นกับวิธี flow cytometry

การดำเนินงาน

1. การผลิตแอนติบอดีต่อ CD4 และ CD8 โปรตีน

เพื่อแอนติบอดีต่อ CD4 และ CD8 โปรดีน ในการศึกษานี้ได้นำวิธีการ 2 วิธีมาศึกษา กือ วิธี Hybridoma และวิธี DNA immunization โดยทำการศึกษาดังนี้

1.1 การผลิตโมโนโคลนอล แอนติบอดีต่อ CD4 และ CD8 โปรตีน มีวิธีการทำคือ

ทำการ immunize หนู Balb/C ด้วย CD4+ cell line หรือ CD8+ cell line จากนั้นน้ำ splenic cells ของ immunized mice มาเชื่อมกับ mycloma cells โดยมีวิธีการทำคังนี้ นำ 5 x 10⁷ spleen cells มาผสมกับ mycloma cells (P3-X63-Ag8) 1 x 10⁷ cells (ratio 5:1) ปั่นที่ 700 g นาน 5 นาที คูด medium ทั้งแล้วนำไปอุ่นที่ 37°C ประมาณ 10 นาที เดิม 50% PEG solution 2 ml โดยค่อยๆ เดิมในเวลา 30 วินาที เขย่าค่ออีก 30 วินาที จากนั้นเดิม Iscove's modified Dulbecco's medium (IMDM) 5 ml ในเวลา 1 นาที แล้วเดิม IMDM อีก 5 ml ปั่นที่ 700g 5 นาที แล้ว resuspend cells ใน 10%FCS-HAT selective medium 60 ml นำ 100 µl ของ cell suspension ไปเดิมลงใน 96 well-plate ที่มี feeder cells อยู่ (เตรียม spleen feeder cells 100 µl/well ก่อน 1 กีน) นำ plate ไป incubate ที่ 37°C 5%CO₂ incubator ประมาณ 2-3 สัปดาห์ จากนั้นเก็บ culture supernatant มา screen หา clone ที่สร้างแอนดิบอดีต่อแอนติเจนที่สนใจ โดยวิธี indirect immunofluorescent โดยใช้ CD4+ และ CD8+ cell line เป็นแอนติเจน จาก นั้นตรวจยืนยัน supernatant ที่ให้ผลบวกอีกครั้งโดยใช้ CD4 และ CD8 transfected COS cells เป็นแอนติเจน

จากหลุมที่ให้ผลบวกจากscreening method น้ำ hybrid cells มาทำ single cell cloning โดยวิธี Limitting dilution จำนวน 3 รอบ จากนั้น expand hybrids ที่ได้ โดยส่วนหนึ่งนำไป เก็บใน liquid nitrogen อีกส่วนหนึ่งนำไปสร้างแอนติบอดีในหลอดทดลองหรือในช่องท้อง หนู

1.2 การผลิตโพลีโกลนอล แอนติบอดีโดยวิธี DNA immunization มีวิธีการทำคือ

เริ่มต้นค้วยการเตรียม cDNA ที่กำหนดการสร้าง CD4 โปรตีนที่ insert อยู่ใน eukaryotic expression vector pπH3M โดยวิธี Cesium chloride-ethidium bromide gradient ultracentrifugation จากน้ำมหำการถึดหนู Balb/C หรือ กระต่ายด้วย plasmid DNA ที่เตรียมได้ เข้าทาง intramuscular ทุกสัปดาห์ เจาะเถือดสัตว์ทดลองก่อนฉีดทุกครั้ง ตรวจหาระดับ แอนติบอดีในซีรัมโดยนำไปทำปฏิกิริยากับ COS cells ที่ถูก transfect แล้วด้วย CD4-DNA โดยวิธี indirect immunofluorescent เมื่อแอนติบอดีมีระดับสูง ทำการเจาะเก็บซีรัมเพื่อนำไป ศึกษาต่อไป

2. การศึกษา specificity ของแอนติบอดีที่เตรียมได้ โดยทำการศึกษาดังนี้

2.1 ศึกษาโดยให้ทำปฏิกิริยากับเซลล์ที่มีแอนติเจนที่สนใจอยู่บนผิวเซลล์

นำเซลล์ CD4+ cell lines, CD8+ cell lines และ CD4- cell line, CD8- cell lines มาทำ ปฏิกิริยากับแอนติบอดีที่เครียมได้โดยวิธี indirect immunofluorescent แล้วตรวจสอบ ปฏิกิริยาด้วยกล้อง fluorescent หรือ flow cytometer

2.2 ศึกษาโดย immunoabsorption technique

นำแอนติบอดีที่ต้องการศึกษามา incubate กับ COS cells ที่ transfect แล้วด้วย CD4-DNA หรือ vector control ที่ 4°C นาน 30 นาที ปั่นเก็บ absorbed antibody นำ absorbed antibody และ pre-absorbed antibody มาทำปฏิกิริยากับเซลล์ที่มี CD4 protein บนผิวเซลล์ ตรวจหาปฏิกิริยาด้วยกล้อง fluorescent หรือ flow cytometer และเปรียบเทียบผลของปฏิกิริยา ระหว่าง absorbed antibody และ pre-absorbed antibody

2.3 การศึกษาโดยการยับยั้งปฏิกิริยาของ specific antibody

นำ CD4+ cell line หรือ CD8+ cell line หรือ PBML มา incubate กับแอนติบอคีที่ ค้องการทคสอบที่ 4°C 30 นาที ครบเวลา เดิม standard CD4 mAb-PE หรือ standard CD8 mAb-PE (ชื้อจากบริษัท Becton Dickinson) แล้ว incubate ที่ 4°C 30 นาทีล้างเซลล์ 3 ครั้งค้วย 1%BSA-PBS 0.02% azide แล้วตรวจวิเคราะห์ค้วย flow cytometer คำนวนหา % inhibition ของ mean fluorescent intensity (MFI)

2.4 การศึกษาโดยการตรวจนับจำนวน CD4+ cells หรือ CD8+ cells ในเฉือดโดยใช้ แอนติบอดีที่เตรียมได้เปรียบเทียบกับ standard CD4 mAb หรือ standard CD8 mAb

เก็บเลือดใน heparin แล้วแยก peripheral blood mononuclear cells (PBMC) โดยวิธี Ficoll-Hypaque centrifugation น้ำ PBMC มาทำปฏิกิริยากับแอนติบอดีที่เตรียมได้หรือ standard monoclonal antibodies โดยวิธี indirect immunofluorescent ตรวจวิเคราะห์ด้วย flow cytomter และเปรียบ %CD4+ cells และ %CD8+ cells ที่ได้ระหว่างแอนติบอดีที่เตรียมได้กับ standard monoclonal antibodies

3. การพัฒนาวิธีและน้ำยาสำหรับตรวจนับจำนวน CD4+ cells

3.1 การตรวจนับ CD4+ cells โดยวิธี Manual Rosetting

เก็บเลือดโดยใช้ K₃-EDTA เป็นสารกันเลือดแข็ง นำ 1 ml ของเลือดผสมกับน้ำยา แตกเม็ดเลือดแคง FACS lysing solution (Becton Dickinson) 5 ml incubate ที่อุณหภูมิห้อง . 10 นาที ถ้างเซลล์ 2 ครั้งด้วย 1%BSA-PBS Azide แล้ว resuspend cells ด้วย 1%BSA-PBS Azide 250 µl แล้วเติม AB serum ลงไป 25 µl แล้วนำไป incubate ในน้ำแข็ง 30 นาที คูด เซลล์ 25 µl ใส่ใน microcentrifuge เติม 10 µl anti-CD4 monoclonal antibody แล้ว incubate ในน้ำแข็ง 30 นาที ครบเวลา ปั่นล้าง 2 ครั้งค้วย 1%BSA-PBS Azide แล้ว resuspend ด้วย 1%BSA-PBS Azide 40 µl เติม 10 µl ของ anti-mouse immunoglobulins coated beads (Dynal) แล้วนำไป rotate 1 ชั่วโมง ครบเวลานำเซลล์ 10 µl ไปผสมกับน้ำยา Turk's solution 10 µl แล้วนับ % rosettes ใน hemacytometer ด้วยกล้องจุลทรรศน์ธรรมดา โดยนับ rosettes ในเม็ดเลือดขาวอย่างน้อย 200 เซลล์

3.2 การตรวจหาปริมาณ soluble CD4 protein ในเลือดโดยวิธี Sandwich ELISA

ทำการเคลือบ anti-CD4 monoclonal antibody ใน ELISA 96 well plate เติม serum หรือ plasma แล้ว incubate ที่ 37°C 1 ชั่วโมง ล้างเพลต 3 ครั้ง แล้วเติม rabbit anti-CD4 antibody (ที่ได้โดยวิธี DNA immunization) incubate ที่ 37°C 1 ชั่วโมง ล้างเพลต 3 ครั้ง แล้ว เติม anti-rabbit immunoglobulin-peroxidase แล้ว incubate ที่ 37°C 1 ชั่วโมง ล้างเพลต 3 ครั้ง เติม TMB substrate แล้ววัคค่า OD ที่ความขาวคลื่น 450 nm.

3.3 การเตรียมน้ำยา FITC labeled anti-CD4 mAb เพื่อตรวจนับจำนวน CD4+ cells

การเตรียมน้ำยานี้เริ่มที่การเตรียม anti-CD4 monoclonal antibody (MT4) ในรูป ascites จากนั้นเตรียมแอนติบอดีให้บริสุทธิ์โดยวิธี Affinity chromatography น้ำ purified anti-CD4 mAb ที่ได้มาติดฉลากด้วย fluorescein isothiocyanate (FITC) โดยวิธี Alkaline reaction ทำการแยก unbound FITC ออกจาก FITC labeled anti-CD4 mAb โดยวิธี Ultrafiltration (Amicon)

ทำการพูสิตน์ประสิทธิภาพของน้ำขา FITC labeled MT4 mAb ที่ได้โดยการนำไป ตรวจนับจำนวน CD4+ cells ในเลือดคนปกติและผู้ป่วยเอดส์โดยวิธี Direct immunofluorescent แล้วตรวจหาปริมาณ CD4+ cells ด้วย flow cytometer เปรียบเทียบผลที่ได้กับ วิธีมาตรฐาน flow cytometry โดยใช้ชุดน้ำขา Simultest (Becton Dickinson)

ผลที่ได้รับจากการดำเนินงาน

- 1. การผลิตแอนติบอดีต่อ CD4 และ CD8 โปรตีน
- 1.1 การผลิตโมโนโคลนอล แอนติบอดีโดยวิธี Hybridoma

จากการศึกษาโดยนำ CD4+ และ CD8+ cell line มาเป็นแอนดิเจนในการฉีดหนูเพื่อ ผลิตโมโนโคลนอล แอนติบอดี หลังการ fusion ทำการ screen hybrids ที่ได้โดยนำ supernatant มาทำปฏิกิริยากับ CD4+ และ CD8+ cells (โดยวิธี indirect immunofluorescent) จากนั้นจึงนำ supernatants ที่ให้ผลบวกมาทดสอบกับ CD4-DNA transfected COS cells และ CD8-DNA transfected COS cells จากการศึกษาครั้งนี้ผู้วิจัยสามารถแยก hybridomas ที่ ผลิตโมโนโคลนอล แอนติบอดี ต่อ CD4 และ CD8 protein ได้อย่างละ 1 โคลน ให้ชื่อว่า MT4 และ MT8 ตามลำดับ ทั้ง MT4 และ MT8 มี isotype เป็นชนิด IgM

จากการศึกษาความจำเพาะของแอนติบอดีทั้งสองพบว่า

- 1. MT4 monoclonal antibody (mAb) ทำปฏิกิริยาได้กับ CD4-DNA transfected COS cells แต่ ไม่ทำปฏิกิริยา CD8-DNA transfected COS cells ทางตรงข้าม MT8 mAb ทำปฏิกิริยาได้กับ CD8-DNA transfected COS cells แต่ ไม่ทำปฏิกิริยา CD4-DNA transfected COS cells
- 2. MT4 และ MT8 mAb ทำปฏิกิริยาจำเพาะกับ cell line expressing CD4 และ CD8 protein ตามลำคับ แต่ไม่ทำปฏิกิริยากับ CD4- หรือ CD8- cell lines
- 3. MT4 และ MT8 mAb สามารถ inhibit standard anti-CD4 mAb (Leu3) และ standard anti-CD8 mAb (Leu2) ในการจับกับแอนติเจนจำเพาะ
- 4. เมื่อนำ MT4 และ MT8 mAb มาใช้ตรวจนับจำนวน CD4+ และ CD8+ cells ในเลือดพบว่า ให้ค่าใกล้เกียงกับการใช้ standard anti-CD4 mAb และ standard anti-CD8 mAb

้ คังนั้นจึงยืนยันได้ว่า MT4 และ MT8 เป็นโมโนโกลนอล แอนติบอดี ต่อ CD4 และ CD8 โปรตีนตามลำคับ

คูรายละเอียดของผลการทดลองใน manuscript: Kasinrerk W, Tokrasinwit N, Naveewongpanit P. Production of CD4 monoclonal antibody and development of home made reagent for CD4+ lymphocyte determination. J Med Ass Thai (submitted, 1997) ซึ่ง ได้แนวเมาด้วยแล้ว

1.2 การผลิตโพลีโกลนอล แอนติบอดีโดยวิธี DNA immunization

ในช่วง 5-6 ปีที่ผ่านมา ได้มีการศึกษาการกระตุ้นระบบภูมิกุ้มกันต่อไวรัสและ โปรตีนหลายชนิคโดยการถีค DNA ที่กำหนคการสร้างโปรตีนนั้นเข้าไปในสัตว์ทคลองแทน การถีดค้วยโปรตีนแอนติเจน เรียกวิธีดังกล่าวว่า DNA immunization หรือ DNA vaccination ในการศึกษานี้ผู้วิจัยได้นำเอาวิธี DNA immunization มาใช้ในการผลิตแอนติบอดีต่อ CD4 โปรตีน การศึกษานี้เริ่มค้นค้วยการฉีค DNA encoding CD4 protein (CD4-DNA) เข้าทาง intraquadriceps muscle ของขาหลังของหนู Balb/C 100 µg/dose ทุกสัปคาห์ เก็บเลือคหนู ทาง retro-orbital plexus ก่อนการฉีคทุกครั้ง แล้วนำซีรัมมาทคสอบหา anti-CD4 antibody activity โดยวิธี indirect immunofluorescent โดยใช้ CD4-DNA transfeted COS cells และ CD8-DNA transfected COS cells เป็นแอนติเจน ผลการทคลองพบว่า 4 ใน 5 ของหนูที่ฉีค ด้วย CD4-DNA สร้างแอนติบอดีค่อ CD4 โปรตีน โดยมี antibody titer 1:40 ถึง 1:160

นอกจากนี้ ยังได้ศึกษาการสร้างแอนติบอดีต่อ CD4 โปรตีนโดยวิธี DNA immunization ในกระต่าย โดยในการศึกษานี้ผู้วิจัยได้ศึกษาในกระต่าย 3 ตัว คือ ตัวที่ 1 ฉีด sucrose ก่อน 20 นาที แล้วฉีด CD4-DNA ตัวที่ 2 ฉีด sucrose ก่อน 20 นาที แล้วฉีด CD4-DNA ผสมกับ chloroquine ตัวที่ 3 ฉีดยา bupivacaine ก่อน 24 ชั่วโมง แล้วฉีด CD4-DNA จากนั้นเก็บซีรัมทุกสัปดาห์แล้วนำซีรัมมาทดสอบหา anti-CD4 antibody activity โดยวิธี indirect immunofluorescent โดยใช้ CD4-DNA transfeted COS cells และ CD8-DNA transfected COS cells เป็นแอนติเจน ผลการทดลองพบว่า กระต่ายทั้ง 3 ตัวสามารถสร้าง แอนติบอดีต่อ CD4 proteins โดยที่กระต่ายตัวที่ 2 ซึ่งฉีดด้วย sucrose และ CD4-DNA + chloroquine ให้ผลดีที่สุด โดยสามารถกระตุ้นให้กระต่ายสร้างแอนติบอดีหลังการฉีด CD4-DNA เพียง 7 วัน (1 dose) ระดับของแอนติบะดีของกระต่ายทั้ง 3 ตัวเพิ่มขึ้นเมื่อฉีด CD4-DNA กรั้งต่อๆ ไป และมี antibody titer ถึง 1:500 หลังการฉีด CD4-DNA 6 ครั้ง

จากการศึกษาความจำเพาะของแอนติบอดีที่ผลิตได้ทั้งในหนูและกระต่าย พบว่า

1. แอนติบอดีที่ผลิตได้สามารถทำปฏิกิริยาได้กับ CD4-DNA transfected COS cells แต่ไม่ทำ
ปฏิกิริยากับ mock transfected COS cells

- 2. แอนติบอดีที่ผลิตได้ทำปฏิกิริยาจำเพาะกับ CD4+ cell lines แต่ไม่ทำปฏิกิริยากับ CD4- cell lines
- 3. แอนติบอคีที่ผลิตได้สามารถ inhibit standard anti-CD4 mAb (Leu3a) ในการจับกับ CD4 proteins บน CD4+ cells
- 4. แอนติบอดีที่ผลิตได้สามารถนำมาใช้ตรวจนับจำนวน CD4+ cells ในเลือดกนปกติและผู้ ป่วยเอดส์ โดยให้ค่าใกล้เคียงกับการใช้ standard anti-CD4 mAb (Lcu3a)

ผลการศึกษานี้แสดงให้เห็นว่า วิธี DNA immunization สามารถนำมาใช้ผลิต แอนติบอดีต่อ leukocyte surface protein ได้

คูรายละเอียคของผลการทคลองใน reprints 2 เรื่อง: Kasinrerk W, Tokrasinwit N, Piluk Y. Production of mouse anti-CD4 antibodies by DNA-based immunization. Asian Pac J Aller Immunol 1996 และ Kasinrerk W, Tokrasinwit N, Changtamroung K. Production of

anti-CD4 antibodies in rabbits by DNA immunization. Asia Pac J Mol Biol Biotech. 1997 ซึ่งได้แนวมาด้วยแล้ว

3. การพัฒนาวิธีและน้ำยาสำหรับตรวจนับจำนวน CD4+ cells

3.1 การตรวจนับ CD4+ cells โดยวิธี Manual Rosetting

วัตถุประสงค์หนึ่งของงานวิจัยนี่คือการพัฒนาวิธีการตรวจนับจำนวน CD4+ cells ในเลือด ขึ้นมาใช้แทนวิธี flow cytometry โดยได้พัฒนาวิธี Manual rosetting ขึ้นมาโดยอาศัยหลักการคือ นำ whole blood มาแตกเม็ดเลือดแดงออกก่อนด้วย red blood cell lysing buffer (Becton Dickinson) จากนั้นนำเซลล์ที่ได้ (lysed whole blood) มาทำปฏิกิริยากับ anti-CD4 mAb และ anti-mouse immunoglobulin coated beads ตามลำดับ แล้วตรวจนับจำนวน CD4 rosette ด้วยกล้องจุลทรรศน์

จากการศึกษาในคนปกติจำนวน 16 รายและผู้ป่วยเอดส์จำนวน 24 ราย โดยนำ lysed whole blood มาตรวจหา %CD4+ cells โดยวิธี Manual rosetting และคำนวนเป็นจำนวน absolute CD4+ cells/µl. (โดยอาศัยค่า white blood cell count) เปรียบเทียบกับวิธีมาตรฐาน Simulset (flow cytometric analysis) ผลการทดลองพบว่า %CD4 positive cells ในเม็ดเลือด ขาวที่ได้จากทั้ง 2 วิธีไม่แตกต่างกัน โดยมีค่าสัมประสิทธิ์สหสัมพันธ์ (correlation coefficient) เท่า กับ 0.93 ค่าเฉลี่ยของ % CD4+ cells โดยวิธี Manual rosetting และ flow cytometry เท่ากับ 6.35 และ 6.32 ตามลำดับ ค่าที่ได้จากทั้ง 2 วิธีไม่มีความแตกต่างอย่างมีนัยสำคัญ (paired t test; p>0.05) เมื่อเปลี่ยน %CD4+ cells เป็น absolute number (cells/µl) พบว่าค่าที่ได้จากทั้ง 2 วิธี ไม่แตกต่างกัน โดยมีค่าสัมประสิทธิ์สหสัมพันธ์ (correlation coefficient) เท่ากับ 0.95 ค่าเฉลี่ย absolute CD4+ cell count ของวิธี Manual rosetting และ flow cytometry เท่ากับ 529.04 และ 515.75 cells/µl ตามลำดับ โดยไม่มีความแตกต่างอย่างมีนัยสำคัญ (paired t test; p>0.05) วิธี Manual rosetting นี้ไม่ให้ผลบวกกับ monocytes และ granulocytes ในเลือดเลย

คูรายละเอียดผลการทดลองใน manuscript: Kasinrerk W, Tokrasinwit N, Intharasut S, Naveewongpanit P. Manual rosetting method for enumerating CD4 positive cell. J Med Lab Sci (in press, 1997) ซึ่งได้แนบมาด้วยแล้ว

จากนั้นผู้วิจัยได้ศึกษาถึงการพัฒนาวิธี Manaul rosetting ให้มีวิธีการทำที่ง่ายยิ่งขึ้น โดย การเคลือบ MT4 mAb กับเม็ดเลือดแดงแกะ และ tosyl-activated beads แล้วนำมาตรวจนับ จำนวน CD4+ cells โดยตรง โดยมีผลการศึกษาดังนี้คือ

1. น้ำ MT4 mAb ascites ไปเกาะบนเม็ดเลือดแดงแกะ โดยใช้ glutaraldehyde แล้วน้ำ MT4 coated SRBC ไปตรวจนับจำนวน CD4+ cells โดยการศึกษานี้ได้นำ CD4+ cell line Sup

- T1 มาใช้ในการศึกษา ผลการทคลองพบว่า Sup T1 form rosette กับ MT4 coated SRBC เพียง 5% ทั้งๆที่มากว่า 90% ของ Sup T1 express CD4 proteins บนผิวเซลล์ ผลการทคลองนี้แสคงให้เห็นว่า การใช้ MT4 ascites ไปเคลือบ SRBC มีความไวไม่คีพอ
- 2. นำ MT4 mAb ไปเกาะกับ tosyl-activated magnetic beads (Dynal) โดยการศึกษานี้เริ่มต้น ด้วยการ purified MT4 mAb จาก ascites โดยวิธี affinity chromatography แล้วนำ purifed MT4 mAb ที่ได้ไป coat กับ tosyl-activated magnetic beads จากนั้นจึงนำ MT4 coated beads ไปตรวจนับจำนวน CD4+ cells โดยการศึกษานี้เริ่มต้นด้วยการนำ CD4+ cell line Sup T1 และ Molt4 มาใช้ในการศึกษา ผลการทดลองพบว่าทั้ง Sup T1 และ Molt4 สามารถ form rosette กับ MT4 coated beads ได้มากกว่า 90% ซึ่งแสดงให้เห็นว่า MT4 coated beads สามารถ form rosette กับ CD4+ cells ได้ จากนั้นจึงนำ MT4 coated beads ไปตรวจนับจำนวน CD4+ cells ในเลือดคนปกติจำนวน 5 รายเปรียบกับวิธี flow cytometer ผลการทดลองพบว่า ค่าที่ได้โดยวิธี rosetting ให้ผลด่ำกว่าวิธีมาตรฐาน flow cytometer (ตารางที่ 1) ซึ่งแสดงให้เห็นว่าวิธีนี้มีความไวไม่พอที่จะตรวจนับ human CD4+ cells ซึ่งมีโมเลกุลของ CD4 บนผิวเซลล์น้อยกว่า CD4+ cell lines

3.2 การตรวจหาปริมาณ soluble CD4 protein ในเลือดโดยวิธี Sandwich ELISA

เพื่อนำการตรวจหาปริมาณ soluble CD4 ในเลือดมาเป็นคัชนีบ่งชี้จำนวน CD4+ cells จึงทำการ set up วิธี sandwich ELISA เพื่อตรวจหาปริมาณ soluble CD4 ในเลือด โดยอาศัย หลักการคือใช้ MT4 mAb เกลือบเพลต เติมตัวอย่างตรวจ แล้วเติม rabbit anti-CD4 antibody (polyclonal antibody จากวิธี DNA immunization) และ anti-rabbit immunoglobulin-HRP และ TMB substrate โดยการศึกษานี้เริ่มที่การไตเตรทหาปริมาณที่เหมาะสมของแอนติบอดี และ conjugate ที่ใช้ โดยใช้ recombinant CD4 protein ที่ได้จาก CD4-DNA transfectd COS cells เป็น positive control และ recombinant CD1a protein ที่ได้จาก CD1-DNA transfectd COS cells เป็น negative control ในการ set up sandwich ELISA เมื่อได้ conditions ที่เหมาะ สมแล้วจึงนำมาตรวจหาปริมาณ soluble CD4 ในเลือดผู้ติดเชื้อ HIV จำนวน 59 ถน และคน ปกติจำนวน 56 ถน จากการเปรียบเทียบค่า OD ที่ได้กับจำนวน absolute CD4+ cell count ที่ ทำควบคู่ไปด้วย ผลการทดลองพบว่า ปริมาณ soluble CD4 protein ที่ได้ไม่มีความสัมพันธ์ กับ absolute CD4+ cell count เลย (ตารางที่ 2 และรูปที่ 1) โดยมีค่าสัมประสิทธิ์สหสัมพันธ์ เท่ากับ 0.187

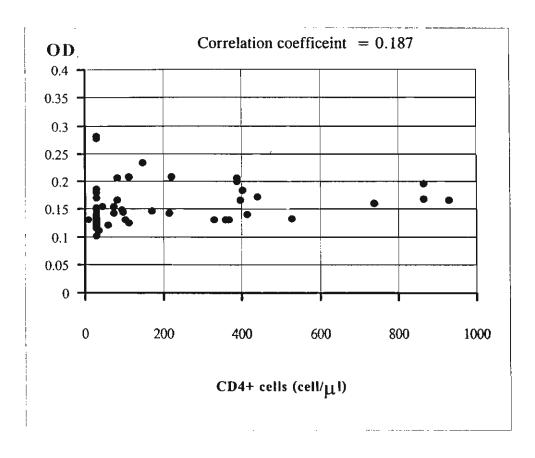
เมื่อเปรียบเทียบปริมาณ soluble CD4 proteins ในเถือดผู้ติดเชื้อ HIV กับคนปกติ พบ ว่าค่าที่ได้จากกลุ่มตัวอย่างทั้งสองไม่แตกต่างกัน (ตารางที่ 3 และรูปที่ 2)

ทารางที่ 1 แสคง %CD4+ cells และ absolute CD4+ cells ในเลือด โดยวิธี direct manual rosetting และ วิธี flow cytometry

Sample No.	%CD4+ cells		Absolute (CD4 count*
	Rosette**	Flow cyto.***	Rosette	Flow cyto.
1	8.4	12.5	730	1086
2	9.1	15.8	646	1122
3	8.3	16.0	672	1296
4	8.5	16.4	650	1255
5	13.7	22.0	863	1386

^{*} cell/µl

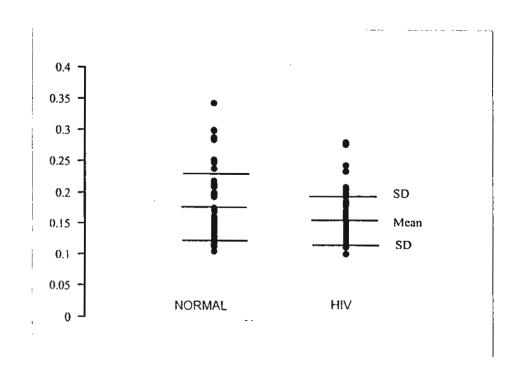
^{**} Direct manual rosetting technique


^{***} Flow cytometry

ทารางที่ 2 แสคงค่า CD4+ cells และปริมาณ soluble CD4 proteins ในผู้ติดเชื้อ HIV

Sample No.	CD4+ cell (cells/µl)	OD
.1	10	0.132
2	220	0.208
3	30	0.128
4	30	0.281
5	83	0.206
6	30	0.148
7	30 c	0.152
8	30	0.101
9	30	0.134
′10	30	0.115
11	81	0.166
12	30	0.127
13	528	0.133
14	213	0.143
15	367	0.131
16	59	0.120
17	403	0.185
18	147	0.234
. 19	395	0.167
20	, 865	0.195
21	36	0.112
22	30	0.127
23	110	0.124
24	931	0.166
25	30	0.171
26	73	0.143
27	30	0.130
28	30	0.150
29	73	0.153
30	30	0.124

Sample	CD4+ cell	OD
No.	(cells/µl)	
31	30	0.123
32	30	0.179
33	864	0.169
34	440	0.172
35	30	0.119
36	388	0.199
37	30	0.180
38	359	0.131
39	30	0.278
40	30	0.131
41	169	0.147
42	30	0.141
43	30	0:000
44	414	0.141
45	104	0.131
46	97	0.144
47	110	0.207
48	30	0.129
49	740	0.161
50	329	0.131
51	30	0.117
52	44	0.154
53	388	0.205
54	30	0.132
55	30	0.132
56	30	0.181
57	30	0.123
58	95	0.149
59	30	0.186



รูปที่ 1 แสดงความสัมพันธ์ระหว่างจำนวน CD4+ cells และ ปริมาณ soluble CD4 protein ใน ผู้ติดเชื้อ HIV จำนวน 59 ราย

ขารางที่ 3 แสคงปริมาณ soluble CD4 proteins ในเลือคถนปกติและผู้ติดเชื้อ HIV

Sample No.	Normal	HIV
1	0.342	0.243
2	0.219	0.132
3	0.128	0.208
4	0.161	0.128
5	0.122	0.281
6	0.238	0.206
7	0.149	ິ0.148
8	0.135	0.152
. 9	0.115	0.101
10	0.122	0.134
11	0.152	0.115
12	0.113	0.166
13	0.125	0.127
14	0.248	0.133
15	0.135	0.143
16	0.158	0.131
17	0.158	0.120
18	0.172	0.185
19	0.129	0.234
20	0.116	0.167
21	0.213	0.195
22	0.141	0.112
23	0.168	0.127
24	0.175	0.124
25	0:142	0.166
26	0.211	0.171
27	0.147	0.143
28	0.208	0.130
29	0.287	0.150
30	0.299	0.153

Sample No.	Normal	HIV
31	0.152	0.124
32	0.148	0.123
33	0.261	0.179
34	0.157	0.169
35	0.199	0.172
36	0.127	0.119
37	0.139	0.199
38	0.199	0.180
39	0.160	0.131
40	0.193	0.278
41	0.155	0.131
42	0.159	0.147
43	0.144	0.141
44	0.195	0.141
45	0.140	0.131
46	0.214	0.144
47	0.115	0.207
48	0.161	0.129
49	0.252	0.161
50	0.199	0.131
51	0.120	0.117
52	0.104	0.154
53	0.247	0.205
54	0.249	0.132
55	0.193	0.132
56	0.285	0.181
57		0.123
58		0.149
59		0.186

รูปที่ 2 แสคงปริมาณ soluble CD4 proteins ในคนปกติและผู้ติดเชื้อ HIV

3.3 การเตรียมน้ำยา FITC labeled MT4 mAb เพื่อตรวจนับจำนวน CD4+ cells

เนื่องจากปัจจุบันวิธีมาตรฐานที่ใช้ในการตรวจนับจำนวน CD4+ cells ในเลือดคือวิธี flow cytometry แต่พบว่าน้ำยา (แอนติบอดี) ที่ใช้ในวิธีดังกล่าวนี้มีราคาแพงมาก ทำให้วิธีนี้ ไม่เหมาะกับประเทศไทยที่มึงบประมาณน้อยแค่มีการระบาคของโรคเอคส์สูง ไม่เหมาะกับ การนำมาใช้ตรวจ absolute CD4 count ในผู้คิดเชื้อที่ยังไม่แสดงอาการ และเนื่องจากการ ศึกษาที่ผ่านมา ผู้วิจัยสามารถผลิตโมโนโคลนอล แอนติบอดีต่อ CD4 โปรตีน (MT4) ได้ จึง ได้นำ MT4 mAb มาผถิตเป็นน้ำยาตรวจนับ CD4+ cells สำหรับใช้กับเครื่อง flow cytometer ขึ้นมาใช้เอง โคยการศึกษาเริ่มต้นด้วยการ purify MT4 mAb ด้วยวิธี affinity chromatography แล้วน้ำ purified MT4 มาติคุณลากกับสาร fluorescein isothiocyanate (FITC) โดยวิธี alkaline reaction แล้วนำไปใช้ตรวจนับจำนวน CD4+ cells ด้วยเครื่อง flow cytometer เพื่อประเมิน ประสิทธิภาพของน้ำยาที่เตรียมขึ้นมา จึงได้ทำการตรวจนับจำนวน CD4+ lymphocytes ใน เลือดผู้ติดเชื้อเอคส์และถนปกติจำนวน 60 ราย โดยทำการเปรียบเทียบระหว่างน้ำยา FITC labeled MT4 ที่เครียมขึ้นกับชุดน้ำยามาตรฐาน SimultestTM ของบริษัท Becton Dickinson ผล การศึกษาพบว่าเปอร์เซนต์และค่า absolute CD4+ cell counts ที่ได้จากน้ำยาทั้งสองชนิดใกล้ เคียงกันมาก โดยมีค่าสัมประสิทธิ์ สหสัมพันธ์ เท่ากับ 0.995 และ 0.996 สำหรับเปอร์เซนต์ และค่า absolute CD4+ lymphocyte counts ตามลำคับ ผลการศึกษาในครั้งนี้ชี้ให้เห็นว่า น้ำขา FITC labeled MT4 ที่เครียมขึ้นมาใช้เองนี้น่าจะเป็นน้ำขาอีกชนิคหนึ่งที่สามารถนำมาใช้ตรวจ วัคระคับ CD4+ cells ในเถือคโดยวิธี flow cytometry ได้

คูรายละเอียคผลการทคลองใน manuscript เรื่อง Kasinrerk W, Tokrasinwit N, Naveewongpanit P. Production of CD4 monoclonal antibody and development of home made reagent for CD4+ lymphocyte determination. J Med Ass Thai (submitted, 1997) ซึ่ง ได้แนบมาด้วยแล้ว

กิจกรรมอื่นๆ ที่เกี่ยวข้อง

1. ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- Kasinrerk W, Tokrasinwit N, Piluk Y. Production of mouse anti-CD4 antibodies by DNA-based immunization. Asian Pac J Allergy Immunol 1996; 14: 99-105.
- (2) Kasinrerk W, Tokrasinwit N, Changtumroung K. Production of anti-CD4 antibodies in rabbits by DNA immunization. Asia Pacific J Mol Biol Biotechnol 1997; 5: 123-129.
- (3) Kasinrerk W, Tokrasinwit N, Intharasut S, Naveewongpanit P. Manual rosetting method for enumerating CD4 positive cell. J Med Lab Sci (in press, 1997).
- (4) Kasinrerk W, Tokrasinwit N, Naveewongpanit P. Production of CD4 monoclonal antibody and development of home made reagent for CD4+ lymphocyte determination. J Med Ass Thai (submitted, 1997).

2. การเสนอผลงานในที่ประชุมวิชาการ

- (1) วัชระ กสิณฤกษ์, ขุวดี ใจเพี่ชรดี. การตรวจนับจำนวน CD4 lymphocytes โดย non-flow cytometric method. การประชุมวิชาการทางเทคนิกการแพทย์ ครั้ง ที่ 19. เอกสารประกอบการประชุม. โรงแรมเจริญโฮเด็ล อุดรธานี 2538: 163.
- (2) วัชระ กสิณฤกษ์, นิรมล โตกระสินธุ์วิตร์. Enumeration of CD4 positive cells in peripheral blood by rosetting method. การประชุมวิชาการวิทยาศาสตร์ สุขภาพ ครั้งที่ 14. เอกสารประกอบการประชุม. สถาบันวิจัยวิทยาศาสตร์ สุขภาพ มหาวิทยาลัยเชียงใหม่ เชียงใหม่ 2539.
- (3) วัชระ กสิณฤกษ์. Production of anti-CD4 antibodies by DNA-based immunization and development of techniques for enumeration of CD4 positive cells การประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีแห่งประเทศ ไทย ครั้งที่ 22. เอกสารประกอบการประชุม. เซ็นทรัลพลาซา ลาดพร้าว กรุงเทพ 2539: 76.
- (4) Kasinrerk W, Tokrasinwit N. Production of anti-CD4 antibodies by DNAbased immunization. The Federation of Immunological Societies of Asia-

Ocenia, Abstract, Adelaide Convention Centre, Adelaide, Australia 1996: 114.

3. จำนวนและรายละเอียดการได้รับเชิญไปเป็นวิทยากร

- (1) เป็นวิทยากรบรรยาย เรื่อง DNA vaccine ในการประชุม Mid-Year Scientific Meeting of the Allergy and Immunology Society of Thailand โรงแรมโชลทวิน ทาวเวอร์ กรุงเทพฯ วันที่ 29 พฤศจิกายน 2539
- (2) เป็นวิทยากรบรรยาย เรื่อง Antibody production in molecular biology era ในการประชุมวิชาการเทคนิคการแพทย์ ครั้งที่ 21 โรงแรมเซ็นทรัลพลาซ่า กรุงเทพ วันที่ 14-16 พฤษภาคม 2540
- (3) เป็นวิทยากรบรรยาย เรื่อง Antibodies to surface receptors ในการประชุม ACGT/IRF Scientific Retreat. University of Western Australia, Perth, Australia. วันที่ 20-22 มิถุนายน 2540

4. การเชื่อมโยงทางวิชาการกับนักวิชาการอื่นๆ ทั้งในและต่างประเทศ

- 1. มีการติดต่อและแลกเปลี่ยนความรู้และผลงานวิจัยกับ Dr. Hannes Stockinger จาก Institute of Immunology, University of Vienna ประเทศออสเตรีย อยู่เสมอ
- มีการติดต่อและแลกเปลี่ยนความรู้กับ นายแพทย์ปรีคา มาลาสิทธิ์ ศูนย์อนูชีว-วิทยาทางการแพทย์ คณะแพทยศาสตร์ ศิริราชพยาบาล มหาวิทยาลัยมหิดล อยู่เสมอ

5. การเชื่อมโยงทางวิชาการกับนักวิชาการในสถาบันเดียวกัน

มีการคิดต่อ แลกเปลี่ยนความคิด และสารเคมีเสมอกับ ผศ. คร. ปรัชญา คงทวีเลิศ และ รศ. นพ. นพพร สิทธิสมบัติ และคณาจารย์ในภาควิชา อยู่เสมอ

Reprints และ Manuscripts ที่ได้จากโครงการวิจัยนี้ ได้แนบ Reprints และ Manuscripts มาเพื่อประกอบการพิจารณา ดังนี้

- (1) Kasinrerk W, Tokrasinwit N, Piluk Y. Production of mouse anti-CD4 antibodies by DNA-based immunization. Asian Pac J Allergy Immunol 1996; 14: 99-105.
- (2) Kasinrerk W, Tokrasinwit N, Changtumroung K. Production of anti-CD4 antibodies in rabbits by DNA immunization. Asia Pacific J Mol Biol Biotechnol 1997; 5: 123-129.
- (3) Kasinrerk W, Tokrasinwit N, Intharasut S, Naveewongpanit P. Manual rosetting method for enumerating CD4 positive cell. J Med Lab Sci (in press, 1997).
- (4) Kasinrerk W, Tokrasinwit N, Navcewongpanit P. Production of CD4 monoclonal antibody and development of home made reagent for CD4+ lymphocyte determination. J Med Ass Thai (submitted, 1997).

Production of Mouse Anti-CD4 Antibodies by DNA-Based Immunization

Watchara Kasinrerk, Niramon Tokrasinwit and Yaivarat Piluk

The feasibility of directly injecting purified closed-circular plasmid DNA that encodes antigenic protein for producing both antibodies and cell mediated immune responses has recently been demonstrated.1,2 This strategy can be defined as the physical delivery of an antigen encoding expression vector in vivo for the induction of antigen expression and the elicitation of specific immune responses. The DNA-based immunization technique has several advantages over conventional protein antigen immunization. DNA is simple to produce and purify than protein antigens and is highly stable.

Leukocyte surface antigens are molecules which are of critical importance for the function of human leukocytes. Antibodies raised against surface molecules have become a major tool in immunophenotyping and characterizing the structure of these surface molecules. Highly pure

SUMMARY The intramuscular injection of plasmid DNA encoding an antigenic protein has been developed recently as a tool for immunization. DNA-based immunization was shown to generate immune responses against the encoded antigen in diverse animal species. In this report, we present the use of DNAbased immunization for the production of antibodies to CD4, a human leukocyte surface molecule. Mice were injected intramuscularly with eukaryotic expression vector containing cDNA encoding CD4 protein, termed CD4-DNA, and were subsequently assayed for anti-CD4 antibody production by indirect immunofluorescence. Sera collected from 2 of 3 inoculated mice reacted with CD4 expressing transfected COS cells and Sup-T1 cells. Anti-CD4 antibody activity was abolished by adsorption with CD4 molecule exppressing cells. CD4 cell depleted lymphocytes were also used to confirm the specificity of the anti-CD4 antibodies present in immune serum. CD4-DNA immune serum reacted with approximately 1/3 of freshly isolated lymphocytes but to very few cells in the CD4*cells-depleted preparation. CD4-DNA immunized sera was used to enumerate CD4*cells in the peripheral blocd of a healthy donors and a AIDS patients. The number of CD4* cells estimated by DNA immunized sera was very similar to estimates using standard anti-CD4 monocional antibody Leuga. DNA-based immunization is therefore capable of raising antibodies to human leukocyte surface antigens. This technology may be useful for producing antibodies to other cell surface antigens in mice or other animals.

polyclonal antibodies against a leukocyte surface molecule. DNAbased immunization therefore has the potential to be a novel alternative to From the Department of Clinical immunology. standard antigen immunization. We report here an investigation into the

antigen is required to produce production of antibodies to leukocyte surface antigens by DNA-based immunization. We found that injec-

> Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. Correspondence: W. Kasınrerk

tion of plasmid DNA encoding human CD4 protein into mouse quadriceps muscle is capable of eliciting anti-CD4 antibodies. These antibodies reacted with either recombinant CD4 or native CD4 molecules. The DNA immunization technique is simple and rapid and produces antibodies capable of immunophenotyping leukocyte surface molecules.

MATERIALS AND METHODS

Cells and cell lines

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood of healthy donors or AIDS patients by Ficoll-Hypaque density centrifugation. Sup T-1 cells, a human T cell line expressing high levels of surface CD4 protein, were cultured in RPMI 1640 supplemented with 15% fetal calf serum (FCS; Gibco, Grant Island, NY), 40 µg/ml gentamycin and 2.5 µg/ml amphotericin B in a fully humidified atmosphere of 5% CO, at 37°C. COs cells were grown in Minimum Essential Medium (MEM; Gibco) containing 5% FCS and antibiotics at 37°C in a 5% CO. atmosphere.

Plasmid DNA for immunization

cDNA encoding CD4 protein was inserted into an eukaryotic expression vector π H3M (designated CD4-DNA), which was a kind gift from Dr. H Stockinger, University of Vienna, Vienna, Austria. π H3M is a high-efficiency eukaryotic expression vector containing a simian virus 40 (SV40) origin of replication and synthetic transcription units. The

transcription units consist of a chimeric promotor composed of human cytomegalovirus AD169 immediate early enhancer sequences fused to the human immunodeficiency virus (HIV) long terminal repeat (LTR) sequences. A polylinker containing two BstXI sites is inserted immediately downstream from the LTR sequence. The SV40 small tumor(t) antigen splice and early region polyadenylylation signals, which derived from pSV2, are placed downstream from the polylinker.⁶

Plasmid DNA preparations

Plasmid DNA was transformed into competent E. coli MC1061/p3 and the transformed bacteria were grown with vigorous shaking in 250 ml Terrific Broth per 1 liter flask. After overnight cultivation, cells were harvested and lysed by an alkaline lysis procedure. DNA was then purified by cesium chloride-ethidium bromide density gradient ultracentrifugation. The resulting DNA was phenol/ chloroform-extracted, ethanol precipitated and resuspended in TE (10 mM Tris, 1 mM EDTA) pH 8.0 for transfection or immunization into mice. The concentration and purity of each DNA preparation was determined by OD260/280 reading.

DNA immunization

Isolated plasmid DNA was injected weekly into the quadriceps muscle of both hind legs (100 µg per leg) of 4-8 week-old Balb/C female mice. Blood samples were collected from the retro-orbital venous plexus of ether-induced anesthetized mice prior to each DNA inoculation.

Serum samples were then separated and stored at -20 °C.

DEAE-Dextran transfection of COS cells

Plasmid DNA encoding CD4 or CD8 proteins were transfected into COS cells using the DEAE-Dextran transfection method.8 Briefly, 1x106 COS cells were transfered to 6 cm tissue culture dishes (NUNC, Ros kilde, Denmark) on the day before transfection. Cells were transfected in 2 ml of MEM containing 250 µg/ml DEAE-Dextran, 400 µM chloroquine diphosphate and 2 µg DNA. After 3 hours at 37 °C, the transfection mixture was removed and the cells were treated with 10% DMSO in PBS for 2 minutes at room temperature. Cells were cultured in MEM containing 5% FCS overnight, washed once, and recultured with the same medium for another 2 days to allow expression of CD4 or CD8 proteins.

Immunofluorescence analysis

The specificity of anti-CD4 protein antibodies was assessed by indirect immunofluorescence using FITC-conjugated sheep anti-mouse immunoglobulin antibodies (Dakopatts, Glostrup, Denmark). To block non-specific Fc receptor mediated antibody binding, transected COS cells, Sup T-1 cells or PBMC were incubated for 30 minutes at 4°C with 10% human AB serum before staining. Blocked cells were then incubated for 30 minutes at 4 °C with various dilutions of tested antisera or anti-CD4 monoclonal antibody (MAb) (Leu 3a; Becton Dickinson, Sunnyvale, Ca) or anti-CD8 MAb (Leu 2a; Becton Dickinson). After washing, cells were incubated with the FITC-conjugate for another 30 minutes. Membrane fluorescence was analyzed under a fluorescence microscope or flow cytometer (FACSCAN, Becton Dickinson). For flow cytometric analysis, individual populations of blood cells were gated according to their forward and side scatter characteristics.

Detection of anti-CD4 antibody activity and immunoadsorption

Serum samples from immunized mice were tested for anti-CD4 antibody activity by indirect immunofluorescence using either transfected COS cells or the Sup-T1 cell line. Stained cells were analyzed by fluorescent microscopy or FACSCAN. Immunoadsorption of anti-CD4 antibody from immunized serum was performed to confirm the specificity of anti-CD4 antibodies. Briefly, CD4-DNA immunized serum was incubated with 1x10 Sup-T1 cells or CD4 or CD8 expressing transfected COS cells for 60 minutes at 4 C. After incubation, the cells were removed by centrifugation. Anti-CD4 antibody activity was then re-analyzed by using CD4 or CD8 expressing transfected COS cells or Sup-T1 cells by indirect immunofluorescence.

CD4+ cell depletion

PBMC were treated with anti-CD4 MAb Leu3a (Becton Dickinson) at 4 °C for 30 minutes. The treated cells were then mixed with sheep anti-mouse IgG-coated Dynabeads (M450; Dynal, Oslo, Norway). Cells that bound the iron conjugate

were separated with a magnet in accordance with the recommended protocol (Dynal).

Enumeration of the percentage of CD4⁺ cells in clinical specimens

PBMC were isolated from heparinized blood of healthy donors or AIDS patients by the standard Ficoll-Hypaque density centrifugation methed. Isolated PBMC were stained with CD4-DNA immunized serum, non-immunized serum or anti-CD4 MAb Leu3a by indirect immunofluorescence. Membrane fluorescence was analyzed on a FACSCAN.

RESULTS

Large-scale preparation of CD4-DNA and expression of recombinant CD4 protein in COS cells

CD4-DNA was amplified in E. coli MC 1061/p3, and the plasmid DNA were isolated from transformed bacteria using the alkaline lysis procedure, and then purified by CsCl-EtBr gradients. The DNA yields were determined by OD 260/280 reading after completion of all the purification steps. In 3 lots of DNA preparations, the OD 260/280 ratios were between 1.8-2.0 The yields of purified plasmid DNA were approximately 3 mg/litre of bacteria.

The isolated plasmid DNA were then transfected into COS cells and analyzed for CD4 protein expression by indirect immunofluorescence. The CD4-DNA transfected COS cells showed strong positive reaction with anti-CD4 MAb Leu3a, but did not react with anti-CD8 MAb leu2a. These results indicated that the

isolated CD4-DNA encodes CD4 protein and the encoded protein can be expressed on eukaryotic COS cells.

Production of anti-CD4 antibodies by CD4-DNA immunization

Three Balb/C mice were immunized with CD4-DNA at one-week intervals. For negative controls, mice were immunized with M6-DNA, which encodes a human leukocyte surface molecule,8 or with #H3M vector lacking any expressible gene insert. The anti-CD4 antibody activity in sera was evaluated by indirect immunofluorescence using CD4-DNA and CD8-DNA transfected COS cells as antigens. Serum anti-CD4 antibody activity was detected in 2 of the 3 immunized mice injected with CD4-DNA (Table 1). Neither preimmune sera from the same mice nor control sera was reactive (Table 1.)

The reactivity of anti-CD4 antibodies was also investigated using Sup-T1 cell line. This cell line was positive with CD4-DNA immunized sera, but negative with preimmune sera (Fig.1). Anti-CD4 titers were 1:160 and 1:40.

Anti-CD4 antibody specificity

CD4-DNA immunized serum was adsorbed with either Sup-T1 cells, CD4-DNA transfected COS cells or CD8-DNA transfected COS cells. The anti-CD4 antibody activity of adsorbed sera was then re-analyzed with CD4-DNA transfected COS cells, CD8-DNA transfected COS cells and Sup-T1 cells. As shown in Table 2, the activity of anti-CD4 antibodies was eliminated after adsorption with Sup-T1 or CD4-DNA transfected

Table 1. Anti-CD4 antibody activity in sera before and after DNA immunization

			Immunofluore	escent reactivi
Mouse No.	Immunization	Serum	CD4-COS ^a	CD8 -COS
1	CD4-DNA	Pre-immunization	-	-
		Dose 1	-	-
		Dose 2	-	-
		Dose 3	•	-
		Dose 4	•	-
		Dose 5	•	-
		Dose 6	+	-
		Dose 7	•	-
		Dose a	•	-
2	CD4-DNA	Pre-immunization	-	-
		Dose 6	•	-
		Dose 7	•	-
		Dose 8	•	-
3	CD4-DNA	Pre-immunization	-	-
		Dose t	-	-
	•	Dose 2	-	-
		Dose 3	-	-
		Dose 4	-	-
		Dose 5	-	-
		Dose 6	-	-
		Dose 7	-	_
		Dose 8	-	-
4	Vector-DNA ^c	Pre-immunization	-	-
		Dose 6	-	-
		Dose 7	-	-
		Dose 8	-	-
5	$Me\text{-}DNA^\mathbf{d}$	Pre-immunization	~	-
		Dose 6	-	-
		Dose 7	-	-
		Dose 8	-	-

COS cells transfected with CD4-DNA were strongly positive with anti-CD4 MAb Leu3a.

COS cells. In contrast, anti-CD₄ activity was still detected in serum after adsorption with CD8-DNA transfected COS cells.

Peripheral lymphocytes before and after CD4 cell depletion were used to confirm the specificity of anti-CD4 antibodies. As shown in Table 3, CD4-DNA immunized serum stained approximately 30% of cells in freshly isolated lymphocytes, but only about 4% in a CD4 cell depleted population. As a control, anti-CD4 MAb Leu3a was used, and a similar reaction pattern was found (Table 3.) Preimmune serum did not react with either the depleted or non-depleted population.

Enumeration of the percentage of CD4⁺celis in peripheral blood samples using CD4-DNA immunized serum

To further characterize the anti-CD4 antibody activity in CD4-DNA immunized serum, we used this serum for the enumeration of CD4 cells in peripheral blood. PBMC from 6 healthy subjects and 2 AIDS patients were stained with CD4-DNA immunized serum and anti-CD4 MAb Leu3a side by side. The stained cells were analyzed by flow cytometry. Both methods gave similar results (Table 4.) Non-immunized normal mouse serum was included in all experiments and gave no reaction (Table 4.).

DISCUSSION

Several investigators have demonstrated that the immunization of mice with a plasmid DNA vector

COS cells transfected with CD8-DNA were strongly positive with anti-CD8 MAb Leu2a.

Vector lacking any expressible gene insert.

Plasmid DNA encoding Me protein.8

Table 2. Immunoadsorption of anti-CD4 antibody activity generated by CD4-DNA immunization.

Serum	Adsorbed	Immuno	fluorescent reactivi	ly*
dilution	cells	CD4-COS b	CD8-COS¢	Sup-Ti
1:40	None	•	-	•
	Sup-Tt	-	-	-
	CD4-COS b	-	-	-
	CD8-COS ^c	•	-	•
1:80	None	+	-	•
	Sup-Ti	-	-	-
	CD4-COS ^b	-	-	-
	CD8-COS ^c	•	-	•

a Immunofluorescent reactivity was analyzed by fluorescent microscopy

Table 3. Percentage of CD4* cells in peripheral blood lymphocytes before and after CD4* cell depletion determined by staining with CD4-DNA immunized serum and anti-CD4 MAb Leu3a

Donor	Anti-CD Leus			mmunized erum ^a	Pre-immune	e serum
No.	Before ^b	After	Before	After	Before	After
1	33 ^d	4	31	4	1	t
2	25	2	28	2	0.7	0.3

a Serum obtained from CD4-DNA immunized mouse.

containing genes results in the induction of immune responses to the encoded proteins. The use of DNA-based vectors as an alternative to antigen immunization is a novel strategy, now under development and evaluation. Plasmid vectors containing several genetic elements are required to drive the intracellular expression of the foreign gene insert. These genetic elements include (i) a transcriptional promotor, (ii) an optional enhancer element to augment gene expression, (iii) the foreign gene encoding an antigenic gene product, and (iv) RNA-processing elements, primarily a polyadenylation signal and an optional intron elements.2 In addition, the plasmids should contain two bacterium-specific genetic sequences to allow large scale production of DNA, i.e. an antibiotic selectable marker to permit the identification and isolation of bacterial cells successfully transduced with the gene of interest, and a bacterial origin of replication to facilitate large scale amplification of the plasmid DNA within this host cell. Once the DNA enter the mammalian cells, the encoded proteins are expressed through normal cellular transcription and translation mechanisms. Immunization with DNA-based plasmids has been attempted successfully in various species including mice, chicken, ferrets, cattle, and non-human primates by various routes of administrations.9-15 Most experiments, however, have been conducted with DNA.

cDNA encoding CD4 protein constructed in the eukaryotic expression vector π H3M was used to produce antibodies to leukocyte

^b CD4-DNA transfected COS cells.

^c CDs-DNA transfected COS cells.

^bBefore CD4* cell depletion

^c After CD4* cells depletion.

^d Percentage of CD4* cells was determined by flow cytometric analysis.

Table 4. Determination of the percentage of CD4⁺ lymphocytes using anti - CD4 MAb Leu3a and CD4-DNA immunized serum

Subject	% Posi	7. Positive cells in lymphocytes		
No.	Anti-CD4 MAb Leu3a	DNA immunized serum ^a	Non-immunized serum	
	39.1	39.7	0.9	
2	33.5	33.1	1.0	
3	29.2	30.4	2.0	
4	31.5	31.4	0.9	
5	26.6	32.5	1.9	
6	37.5	39.1	1.2	
7 ^b	5.0	5.4	0.5	
8 b	0.5	0.5	1.1	

a Serum obtained from CD4-DNA immunized mouse.

Subject Nos. 7 and 8 were AIDS pateints and by standard Simutest flow cytometry the percentage of CD4⁺ lymphocytes were 7 and 2, respectively.

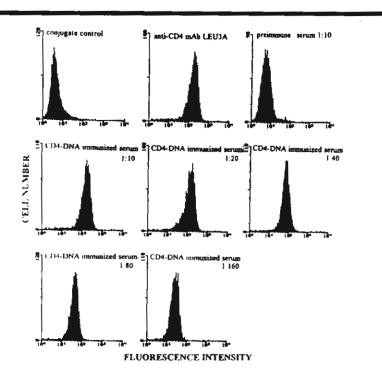


Fig. 1. Immunofluorescent analysis of the reactivity of anti-CD₄ antibodies with the Sup-T1 cell line. Sup-T1 cells were stained with either anti-CD⁴ MAb Leu3a, pre-immune serum or CD⁴-DNA immunized serum. The intensity of fluorescence was measured by FACSCAN with logarithmic amplification.

surface antigens. The transcription units presented in the π H3M vector meet the criteria for plasmid vectors used in DNA-based immunization. This study demonstrates that mice inoculated with πH3M containing encoding CD4 protein induces anti-CD4 antibody; 2 of 3 inoculated mice generated anti-CD4 antibodies detectable by immunofluorescence. Anti-CD4 antibodies bound either recombinant CD4 proteins which were expressed on transfected COS cells, or native CD4 proteins on lymphocytes and Sup-T1 cells. Direct intramuscular injection of plasmid DNA has been widely used to induce antibody production, due to its simplicity and effectiveness. However, a large quantity of DNA is required (approximately 100-300 μ g/inoculation). $^{12,13,16-16}$ Alternatively, delivery of DNA-coated gold beads into epidermis by a biolistic device has been shown to generate immune responses. This biolistic transfection required less DNA than intramuscular inoculations.

CD4-DNA immunized serum was used to count CD4⁺ cells in peripheral blood and gave comparable results to standard methods in 6 healthy PBMC and 2 AIDS patients. A reduction in circulating CD4⁺cells is characteristic of AIDS patients, and was found in our 2 patiens using both CD4-DNA immunized serum and anti-CD4 MAb Leu3a.

The direct introduction of genes into mouse muscle and its expression in vivo may allow the processing of gene products and lead to the presentation of an effective target antigen. This DNA-based immunization strategy is simple and rapid. To our

knowledge, production of antibody to the human leukocyte surface antigen using DNA immunization technology has not been previously reported. Anti-CD4 antibodies, as we demonstrated here, can be used to determine cell surface molecules, and have many other potential applications.

ACKNOWLEDGEMENTS

We wish to express our thanks to Pramote Naveewongpanit, Nakornping Hospital and Jiraprapa Wipasa, Research Institute for Health Sciences, Chaing Mai University, Chiang Mai, Thailand, for assistance with flow cytometry. We also thank Dr Sanit Makonkawkeyoon for proofing the manuscript.

This work was financially supported by The Thailand Research Fund (Grant No. RSA/23/2537).

REFERENCES

- Donnelly JJ, Ulmer JB, Luio MA. Immunization with DNA. J Immunol Methods 1994; 176: 146-52.
- Vogel FR, Sarver N. Nucleic acid vaccipes. Clin Microb Rev 1995; 8: 406-10.
- Knapp W, Dorken B, Gilks EP, Rieber EP, Schmidt RE, Stein H, von dem Born AEGKr. Leucocyte typing IV. White cell diferentiation antigens. Oxford: Oxford University Press, 1989.
- 4. Boyum A. Isolation of leukocytes from

- human blood and bone marrow. Scand J Clin Invest 1968;21:77-89.
- Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE. Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 1984; 44:5657-60.
- Aruffo A, Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Sci USA 1987;84:8573-7.
- Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current protocols in molecular biology. New York: John Weliy & Sons, 1990.
- Kasinrerk K, Fiebiger E, Stefanova I, Brumruker T, Knapp W, Stockinger H. Human leukocyte surface antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol 1992; 149: 847-54
- Cox GJM, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol 1993;87: 5664-7.
- Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal, and genegun inoculations. Proc Natl Acad Sci USA 1993;90: 11478-82.
- 11. Robinson HL, Hunt LA. Webster RG. Protection against a lethal influenza virus challenge by immunization with a hemagglutinin-expressing plasmid DNA. Vaccine 1993; 11: 957-60.
- Wang B, Ugen KE, Srikantan V, et al. Gene inoculation generates immune response against human immunodeficiency virus type
 Proc Natl Acad Sci USA 1993; 90: 4156-60.
- Wang B, Boyer J, Srikantan V, et al. DNA inoculation induces neutralizing

- immune responses against human immunodeficiency virus type 1 in mice and nonhumanprimates. DNA Cell Biol 1993; 12:799-805.
- 14. Irwin MJ, Laube LS, Lee V, et al. Direct injection of a recombinante retroviral vector induces human immunodeficiency virus-specific immune responses in mice and nonhuman primates. J Virol 1994; 68:5036-44.
- 15. Webster RG, Fynan EF, Santoro JC, Robinson H. Protection of ferrets against influenza challenge with a DNA vaccine to the haemagglutinin. Vaccine 1994; 12:1495-8.
- 16. Conry RM, LoBuglio AF, Kantor J, et al. Immune response to a carcinoembryonic antigen polynucleotide vaccine. Cancer Res 1994;54:1164-8.
- 17. Montgomery DL, Shiver JW, Leander KR, et al. Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol 1993; 12:777-83.
- 18. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 258:1745-9.
- 19. Eisenbraun MD, Fuller DH, Haynes JR. Examination of parameters affecting the elicitation of humoral immune responses by particle bombardment-mediated genetic immunization. DNA Cell Biol 1993; 12:791-7.
- 20. Tang DC, Devit M, Johnton SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992; 356:152-4.
- 21. Fisch MA. An introduction to the clinical spectrum of AIDS. In:Border S, Merigen TC, Bolognesi D Jr, eds, Texbook of AIDS medicine. Maryland: William & Wilkins, 1994:149-59.

Production Of Anti-CD4 Antibodies In Rabbits By DNA Immunization

WATCHARA KASINRERK, NIRAMON TOKRASINWIT and KASEMSAN CHANGTUMROUNG

Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

(Received 6 June 1997 / Accepted 14 July 1997)

Abstract. DNA immunization is a new methodology, where antigen encoding DNA plasmids are injected directly into muscle or skin with the purpose of eliciting an immune response to the gene product. In this report, DNA encoding human CD4 protein were immunized into rabbits for the production of anti-CD4 antibodies. Rabbits were immunized intramuscularly with CD4-DNA in three different procedures. Anti-CD4 antibodies were induced in all immunized rabbits. The rabbit that was pre-treated with sucrose solution, followed by injection of CD4-DNA containing chloroquine, produced anti-CD4 antibodies after only one DNA inoculation. This was faster than those receiving the same pre-treatment, but followed by injection of DNA without chloroquine or pre-treatment with Bupivacain. The generated antibodies bound either recombinant or native CD4 proteins. The CD4-DNA immunized serum could inhibit the binding of standard CD4 mAb Leu3a to CD4 proteins. This result, therefore, confirmed the specificity of rabbit anti-CD4 antibodies generated by DNA immunization. Rabbit anti-CD4 antiserum was used to enumerate CD4⁺ cells in the peripheral blood of 5 donors. The percentage of CD4⁺ cells obtained by DNA immunized serum was very similar to those obtained using the standard CD4 monoclonal antibody, Leu3a. These studies, thus, demonstrate that DNA immunization is an effective method for the production of hyperimmune globulin products in rabbits.

INTRODUCTION

DNA immunization refers to the induction of an immune response to a protein expressed in vivo, subsequent to the introduction of its encoding DNA. In contrast to classical protein immunization, administered, antigens are DNA immunization involves the administering of genetic material encoding the antigen. The antigen is, therefore, produced within the cells of the immunized individual and induces the immune responses. The possibility of using direct transfer of plasmid DNA to induce an immune response to the expressed protein was first indicated by Acsadi et Subsequently, several investigators have demonstrated the feasibility of using direct injection of plasmid DNA for the induction of protective immunity against various pathogens^{2,9} and the production of hyperimmune globulin products. 10,11

Immunization with DNA-based plasmid has been successfully attempted in several tissues by various routes of administering. The intramuscular injection has been demonstrated as the most efficient route to transfer an aqueous solution of plasmid DNA. This method, however, still results in a low efficiency of gene transfer and considerable

variability in gene expression. ^{13,14} Davis et al. have demonstrated that the variability of gene transfer by intramuscular injection was reduced by pretreatment of a hypertonic sucrose solution. ¹⁴ Some investigators demonstrated that the efficiency of gene transfer by using pure DNA in regenerating muscle was better than in normal muscle. ¹⁵⁻¹⁷ The administration of toxic agents tending to cause muscle necrosis and repair, either prior to or concurrently with injection of DNA, has been used to increase the expression of encoded protein and enhance the immune responses. ^{2-4,18}

In the present study, the production of anti-CD4 antibodies by immunizing cDNA encoding CD4 protein, CD4-DNA, into rabbits was studied. It was found that the immunization of CD4-DNA could induce anti-CD4 antibody production. Pre-

*Corresponding author. Mailing address: Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. Telephone No. (..6653) 945080, 945081. Fax No.: (..6653) 221890. E-mail: watchara@chiangmai.ac.th

treatment of rabbit, with hypertonic sucrose solution and followed by injection of plasmid CD4-DNA containing chloroquine, was able to induce anti-CD4 antibody production after only one DNA inoculation.

MATERIALS AND METHODS

Plasmid DNA and antibodies. cDNA encoding CD4 protein was inserted into an eukaryotic expression vector π H3M (designated CD4-DNA)¹¹. which was kindly donated by Dr. H. Stockinger, University of Vienna, Vienna, Austria. πH3M is a high - efficiency eukaryotic expression vector contining a simian virus 40 (SV40) origin of replication and synthetic transcription units. transcription units consisting of a chimeric promotor composed of human cytomegalovirus AD169 immediate early enhancer sequences fused to the human immunodeficiency virus (HIV) long terminal repeat (LTR) sequences. The SV40 small (t) antigen splice and early region polyadenylation signals, which derived from pSV2. are placed downstrem from the polylinker. 19 CD4 monoclonal antibody (mAb) Leu 3a, PE-labeled Leu3a and CD8 mAb Leu 2a were purchased from Becton Dickinson (Sunnyvale, CA). FITCconjugated sheep F(ab')2 anti-mouse immunoglobulins antibodies were purchased from Dakopatts (Glostrup, Denmark).

Cells and cell lines. Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood of healthy donors by Ficoll-Hypaque density centrifugation. Sup T-1 and Molt4, human T cell lines which expressed high levels of surface CD4 proteins constitutively, were cultured in RPMI 1640 supplemented with 15% fetal calf serum (FCS; Gibco, Grant Island, NY), 40 μg/ml gentamycin and 2.5 μg/ml amphotericin B in a fully humidified atmosphere of 5% CO₂ at 37°C. K562, a human erythro-myeloid cell line lacking in CD4 expression, were cultured in the same medium. COS cells were grown in Minimum Essential Medium (MEM; Gibco) containing 5% FCS and antibiotics at 37°C in a 5% CO₂ atmosphere.

DNA preparations. For large scale preparation, the plasmid DNA were transformed into competent E. coli MC1061/p3 and the resulting bacteria were grown with vigorous shaking in 250-ml Terrific Broth per 1-liter flask. After overnight cultivation, cells were harvested and lysed by the alkaline lysis procedure. DNA were then purified by cesium chloride-ethidium bromide density gradient ultracentrifugation. It was subsequently resuspended in phosphate buffer saline (PBS) pH 7.2. The concentration and purity of DNA

preparation was determined by OD260/281 reading. 19

DNA immunization. Three rabbits were injected intramuscularly with isolated plasmid DNA in three different ways. Rabbit number 1 was injected with 250 µl of hypertonic 25% sucrose solution 20 minutes prior to the administering of 500 µg of isolated CD4-DNA. In rabbit number 2, a preinjection of 25% sucrose solution was also performed prior to the administering of plasmid DNA. However, 500 µg of CD4-DNA containing 200 µM chloroquine diphosphate was used as an immunizing agent. In rabbit number 3, 100 µl of 0.5% Bupivacain hydrochloride solution (Marcaine; Astra, Sodertalje, Sweden) was administered 24 hours before injecting with 500 µg CD4-DNA. The same procedure of DNA immunization was performed in each rabbit at one-week intervals. Blood samples were collected from immunized rabbits prior to each DNA inoculation. Serum samples were then separated and stored at -20°C. DEAE-Dextran transfection of COS cells. Plasmid DNA encoding CD4 or CD8 proteins were transfected into COS cells using the DEAE-Dextran transfection method.20 Briefly, 1x106 COS cells were transferred to 6 cm tissue culture dishes (NUNC, Roskilde, Denmark) on the day before transfection. Cells were transfected in 2 ml of MEM containing 250 µg/ml DEAE-Dextran, 400 µM chloroquine diphosphate and 2 µg DNA. After 3 hours at 37°C, the transfection mixture was removed and the cells were treated with 10% DMSO in PBS for 2 minutes at room temperature. Cells were then cultured overnight in MEM

DMSO in PBS for 2 minutes at room temperature. Cells were then cultured overnight in MEM containing 5% FCS, washed once, and re-cultured with the same medium for another 2 days to allow expression of encoded proteins.

Immunofluorescence analysis. The production of

antibodies against CD4 proteins was assessed by indirect immunofluorescence FITCusing conjugated sheep anti-mouse immunoglobulins antibodies. To block the non-specific Fc receptor mediated binding of the antibodies, cells were incubated for 30 minutes at 4°C with 10% human AB serum before staining. Cells were then incubated for 30 minutes at 4°C with various dilutions of tested antisera, CD4 or CD8 mAb. After washing, cells were incubated with the FITCconjugate for another 30 minutes. Membrane fluorescence was analyzed under a fluorescent microscope or flow cytometer (FACSCalibur, Becton Dickinson). For flow cytometric analysis, individual populations of leukocytes were gated according to their forward and side scatter characteristics.

Inhibition of standard CD4 mAb binding by rabbit anti - CD4 antibodies. CD4⁺ cells were

pre-incubated with CD4-DNA immunized serum or pre-immune resum for 30 minutes on ice. The PE-labelled CD4 mAb Leu3a (Becton Dickinson) was then added to the pre-stained cells, which were incubated for another 30 minutes. Membrane fluorescence was analyzed by a flow cytometer. The percentage of inhibition of fluorescence intensity was calculated from the mean fluorescence intensity of the sample in the presence and absence of rabbit serum.

Enumeration of the percentage of CD4⁺ cells in blood samples. PBMC were isolated from heparinized blood by the standard Ficoll-Hypaque density centrifugation method. Isolated PBMC were stained with rabbit CD4-DNA immunized serum or CD4 mAb Leu3a by indirect immunofluorescence. Membrane fluorescence was analyzed on a flow cytometer.

RESULTS

Preparation of plasmid DNA encoding CD4 protein. Plasmid DNA encoding CD4 protein, CD4-DNA, were transformed into E. coli MC 1061/p3. The plasmid DNA were, then, isolated from the transformed bacteria by CsCl-EtBr gradients and the DNA yields were determined by the OD 260/280 reading after completion of all the purification steps. The OD 260/280 ratios of isolated plasmid DNA were between 1.8-2.0. The yields of isolated CD4-DNA were approximately 3 mg/liter of bacteria.

To verify whether the isolated plasmid DNA can be expressed to the encoded protein in eukaryotic cells, the isolated DNA were transfected into COS cells and analyzed for CD4 protein expression by indirect immunofluorescence. COS cells, which were transfected with all isolated CD4-DNA, showed strong positive reaction with CD4 mAb Leu3a, but negative with CD8 mAb Leu2a. Production of rabbit anti-CD4 antibodies by CD4-DNA immunization. Three rabbits were immunized with CD4-DNA at one-week intervals as described in materials and methods. The sera were collected 7 days after each DNA immunization. The anti-CD4 antibody activity in sera was evaluated by indirect immunofluorescence using CD4-DNA and CD8-DNA transfected COS cells as antigens. The anti-CD4 antibodies was induced in all immunized rabbits (Table 1). The antibodies were detected after four, one and two DNA immunizations for rabbits number 1, 2 and 3, respectively. The anti-

The specificity of generated anti-CD4 antibodies was confirmed by using CD4⁺ cell lines, Sup-T1 and Molt4, and CD4⁻ cell line K562 as

CD4 antibody titer of 1:500 was present in all

immunized rabbits after six DNA immunizations.

antigens. Sup T1 and Molt4 were positive with CD4-DNA immunized sera, but negative with preimmune sera (Fig. 1). K562, in contrast, was negative with both immune and preimmune sera (Fig. 1).

Inhibition of standard CD4 mAb binding by CD4-DNA immunized serum. The specificity of anti-CD4 antibody presence in the CD4-DNA immunized serum was analyzed by the inhibition test. CD4-DNA immunized and preimmune serum were used to inhibit the binding of standard CD4 mAb Leu3a to CD4 proteins on Molt4 cells. As shown in Fig. 2, 81% of mean fluorescence intensity (MFI) obtained from the binding of PE-labelled Leu3a was inhibited by CD4-DNA immunized serum, whereas, only 3% inhibition was observed by preimmune serum.

Enumeration of the percentage of CD4⁺ cells in peripheral blood lymphocytes using CD4-DNA immunized serum. To further characterize the anti-CD4 antibody activity in CD4-DNA immunized serum, this serum was used for the enumeration of CD4⁺ cells in peripheral blood lymphocytes. PBMC from 5 subjects were stained with CD4-DNA immunized serum and CD4 mAb Leu3a, side by side. The percentage of CD4⁺ cells in the lymphocyte population was analyzed by a flow cytometer and a comparison made between using CD4-DNA immunized serum and standard CD4 mAb. As shown in Table 2, the percentage of CD4⁺ cells obtained by using both antibodies was very similar.

DISCUSSION

Over the past five years, the principle of DNA immunization has been demonstrated in several different animal models. The expression vectors used have encoded antigens from several viruses, bacteria and parasite antigens as well as leukocyte surface proteins.²⁻¹¹ Currently, it is clear that the induction of both humoral and cellular immunity is possible with the DNA immunization strategy. Several studies showed that the DNA immunization technique has several advantages over classical protein immunization. Large scale production is easier and less expensive produce and maintain quality control for DNA than for protein antigens. DNA, in addition, is highly stable material. DNA immunization, therefore, promises to be an attractive alternative to the classical vaccines and an immunizing agent for the preparation of hyperimmune serum.

Several DNA delivery methods have been used to introduce plasmid DNA into animals. ¹² The most efficient route to transfer pure plasmid DNA is intramuscularly, when it is injected as an aqueous

Table 1. Anti-CD4 antibody activity in sera before and after DNA immunization

Rabbit No.	Serum ^c	Im	munofluore	escent reactiv	ity
		CD4-		CD8	-COSb
1	Pre-immunization	-	_	_	_
_	Dose 1	-	_	-	-
	Dose 2	-	-	-	-
	Dose 3	-	-	-	-
	Dose 4	1+6	w+	-	-
	Dose 5	3+	2+	· -	-
	Dose 6	3+	3+	-	-
2	Pre-immunization		_	-	
	Dose 1	1+	w+	-	-
	Dose 2	2+	1+	-	-
	Dose 3	3+	3+	-	-
	Dose 4	4+	4+	-	-
	Dose 5	4+	4+	-	-
	Dose 6	4+	4+	-	-
3	Pre-immunization	_	•	-	_
	Dose 1	-	-	-	_
	Dose 2	1+	w+	_	-
	Dose 3	3+	2+	-	-
	Dose 4	4+	4+	-	-
	Dose 5	4+	4+	-	-
	Dose 6	4+	4+	-	-

^a COS cells transfected with CD4-DNA were strongly positive with CD4 mAb Leu3a.

^b COS cells transfected with CD8-DNA were strongly positive with CD8 mAb Leu2a.

^c Sera were collected seven days after the indicated dose of immunization and tested for the presence of anti-CD4 antibodies by indirect immunofluorescence.

^dSerum dilutions.

Positive reactivity: w+; weakly positive, 1+ to 4+; degree of fluorescent intensity.

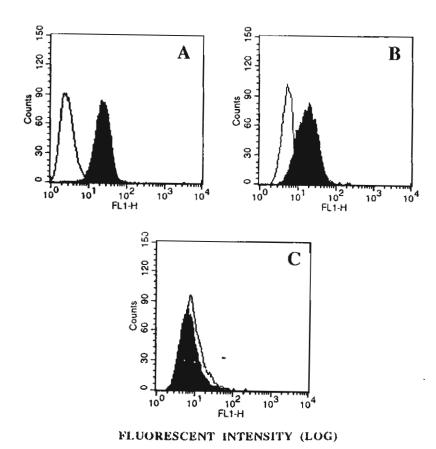


Figure 1. Immunofluorescence analysis of the reactivity of anti-CD4 antibodies with Sup-T1, Molt4 and K562 cell lines. Sup-T1 (A), Molt4 (B) and K562 (C) were stained with either preimmune serum or CD4-DNA immunized serum. Shaded peaks and unshaded peaks represent the immunofluorescence profiles of cells stained with CD4-DNA immunized and preimmune sera, respectively.



Figure 2. Inhibition of standard CD4 mAb binding by CD4-DNA immunized serum. Preimmune serum (A) or CD4-DNA immunized serum (B) was used to inhibit the binding of PE-labelled Leu3a. Solid lines represent the immunofluorescence profiles of cells stained with PE-labelled Leu3a. Dashed lines represent the immunofluorescence profiles of cells pre-incubated with preimmune sera or CD4-DNA immunized. The percentage of mean fluorescence intensity inhibition was indicated in each figure.

Table 2. Determination of the percentage of CD4⁺ lymphocytes using CD4 mAb Leu3a and CD4-DNA immunized serum

Subject	% Positive cells in lymphocytes			
No.	CD4 mAb Leu3a	CD4-DNA immunized serum		
	24			
2	36	36		
3	27	30		
4	46	48		
5	31	33		

solution (12). This route, however, still results in a low efficiency of gene transfer and a considerable variability of gene expression. It is likely that this situation is due largely to the limitation of diffusion by physical factors such as the organization of the connective tissue, and extent of the extracellular matrix (13,14). The diffusion barrier can be overcome by pretreating mature muscle with a hypertonic solution of sucrose, which presumably forces the myofiber apart, thus, opening channels in the connective tissue. Intramuscular injection of hypertonic sucrose solution 20 minutes prior to the administering of DNA into mice, gave an increase in reporter gene expression (14).

The efficiency of gene transfer, using pure DNA in skeletal muscle, is at least ten times more effective in regenerating muscle than in normal mature muscle. ¹⁵⁻¹⁷ Administration of toxic agents tended to cause muscle necrosis and repair. Therefore, several toxic agents have been used to pre-treat muscle for induction of regenerating muscle (2-4,18). Injection of the local anesthetic, Bupivacain, 24 hours prior to injection of DNA has been used to increase the expression of HIV gp 160 constructs and enhance immune responses (3,4).

In an attempt to produce a large amount of antibodies to the human CD4 protein, this study carried out the introduction of DNA encoding CD4 protein into rabbits. DNA encoding CD4 protein were injected into 3 rabbits in different ways. The first rabbit was pre-treated with sucrose solution, followed by CD4-DNA injection. The second rabbit was also pre-treated with sucrose solution, but this was followed by injection of mixed CD4-DNA and chloroquine. The third rabbit was pre-treated with local anesthetic, Bupivacain. Inoculation with CD4-DNA induced anti-CD4 antibody production in all tested rabbits. The rabbit that was pre-treated with sucrose solution, followed by injection of CD4-DNA containing chloroquine, however, produced anti-CD4 antibodies faster than the others. By this

method, the antibodies could be detected only 7 days after the first DNA inoculation. This observation is probably due to the effect of sucrose pre-treatment and chloroquine, which was added into the DNA solution. Chloroquine is a weak base that can diffuse readily across phospholipid membrane, thus, raising the pH in the lysosome or endosome and reducing the activity of lysosomal enzymes (21). In the presence of chloroquine, the degradation of injected DNA within host cells was, therefore, decreased. Finally, the expression of encoded protein was increased and enhanced the induction of the immune responses.

In the previous study in mice, where CD4-DNA were directly immunized in the absence of any reagent, the anti CD4-antibodies were induced in 2 of 3 immunized mice (11). The antibodies were detected in immunized mice after more than 3 weeks of DNA administrations (11). In the present study, in contrast, all immunized rabbits produced anti-CD4 antibodies and the rapid induction of anti CD4 antibodies production was observed. The high efficiency and rapid induction of antibody production was observed. The high efficiency and rapid induction of antibody production may due to the effect of pre-treatment of rabbits and the reagent added in the CD4-DNA solution. However, to indeed verify the effect of these reagents for enhancing the immune response by immunization, more experiments are required.

The titer of anti-CD4 antibodies generated by the DNA immunization was high. Generated anti-CD4 antibodies bound either recombinant CD4 proteins which were expressed on transfected COS cells, or native CD4 proteins on human lymphocytes and T cell lines. These rabbit anti-CD4 antibodies could inhibit the binding of standard CD4 mAb Leu3a to CD4 proteins. These results, therefore, confirm the specificity of rabbit anti-CD4 antibodies generated by DNA immunization. Rabbit anti-CD4 antiserum was used for determining CD4⁺

cells in peripheral blood. The percentage of CD4⁺ cells in 5 healthy lymphocytes gave comparable results to standard CD4 mAb Leu3a.

DNA immunization has been demonstrated to induce antibody response against several encoded antigens in various animals. The present report conveys the experiment performed in rabbits, which demonstrated that CD4-DNA injection induces anti-CD4 antibody production. The pre-treatment of rabbit, with hypertonic sucrose solution and injection of plasmid DNA in the presence of chloroquine, induced the antibody production after only one DNA inoculation.

Acknowledgements. This work was financially supported by The Thailand Research Fund (Grant No. RSA/23/2537) and The National Science and Technology Development Agency.

REFERENCES

- Acsadi, G., Dickson, G., Love, D.R., et al. 1991. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352: 815-818.
- Davis, H.L., Michel, M.L., Whalen, R.G. 1993. DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum. Mol. Genet. 2: 1847-1851.
- Wang, B., Ugen, K.E., Srikantan, V., et al. 1993. Gene inoculation generates immune response against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 90: 4156-4160.
- Wang, B., Boyer, J., Srikantan, V., et al. 1993. DNA inoculation induces neutralizing immune responses against human immunodeficiency virus type 1 in mice and nonhuman primates. DNA Cell Biol. 12: 799-805.
- Ulmar, J.B., Donnelly, J.J., Parker, S.E., et al. 1993. Heterologous protection against Influenza by injection of DNA encoding a viral protein. Science 259: 1745-1749.
- Lowrie, D.B., Tascon, R.E., Colston, M.J., Silva, C.L. 1994. Towards a DNA vaccine against tuberculosis. Vaccine 12: 1537-1540.
- Sedegah, M., Hedstrom, R., Hobart, P., Hoffman, S.L. 1994. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc. Natl. Acad. Sci. USA 91: 9866-9870.
- 8. Xu, D., Liew, F.Y. 1994. Genetic vaccination agianst leishmaniasis. Vaccine 12: 1534-1536.
- 9. Xiang, Z.Q., Spitalnik, S., Tran, M., et al. 1994: Vaccincation with a plasmid vector carrying the rabies virus glycoprotein gene

- induces protective immunity against rabies virus. Virology 199: 132-140.
- Robinson, W.H., Prohaska, S.S., Santoro, J.C., et al. 1995. Identification of a mouse protein homologous to the human CD6 T cell surface protein and sequence of the corresponding cDNA. J. Immunol. 155: 4739-4748.
- Kasinrerk, W., Tokrasinwit, N., Piluk, Y. 1996. Production of mouse anti-CD4 antibodies by DNA-based immunization. Asian Pacific J. Allerg. Immunol. 14: 101-107.
- Davis, H.L. and Whalen, R.G. DNA-based immunization. *In:* Molecular and cell biology of human gene therapeutics (Dickson, G., ed.), Chapman and Hall, London, pp. 368-387, 1995.
- Jiao, S., Williams, P., Berg, R.K., et al. 1992.
 Direct gene transfer into nonhuman primate myofibers in vivo. Human Gene Ther. 3: 21-33.
- Davis, H.L., Whalen, R.G., Demeneix, B.A. 1993. Direct gene transfer into skeletal muscle in vivo: factor affecting efficiency of transfer and stability of expression. Human Gene Ther. 4: 151-159.
- Davis, H.L., Demeneix, B.A., Quantin, B., et al. 1993. Plasmid DNA is superior to viral vectors for direct gene transfer in adult mouse skeletal muscle. Human Gene Ther. 4: 733-740.
- Danko, I., Frizt, J.D., Jiao, S., et al. 1994. Pharmacological enhancement of in vivo foreign gene expression in muscle. Gene Ther. 1: 114-121.
- 17. Vitadello, M., Schiaffino, M.V., Picard, A., et al. 1994. Gene transfer in regenerating muscle. Human Gene Ther. 5: 11-15.
- Whalen, R.G., Harris, J.B., Butler-Browne, G.S., Sesodia, S. 1990. Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Devel. Biol. 141: 24-40.
- Ausubel, F.M., Brent, R., Kingston, R.E., et al. Current protocols in molecular biology. New York: John Weliy & Sons, 1990.
- Kasinrerk, K., Fiebiger, E., Stefanova, I., et al. 1992. Human leukocyte surface antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J. Immunol. 149: 847-854.
- Albert, B., Bray, D., Lewis, J., et al. The molecular organization of cell. In: Molecular biology of the cell. (Albert, B., Bray, D., Lewis, J., et al. eds.) Garland Publishing, New York, pp. 367, 1983.

Manual rosetting method for enumerating CD4 positive cells

W. Kasinrerk, * N. Tokrasinwit, * S. Intharasut, * & P. Naveewongpanit

Short title: Manual rosetting method for CD4 count

^{*}Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.

[†]Clinical Immunology Section, Department of Clinical Pathology, Nakomping Hospital, Maerim, Chiang Mai, Thailand.

ABSTRACT

The measurement of CD4 positive cell levels is clinically useful in monitoring immune status and is used to guide the therapy of human immunodeficiency virus infection. The standard method for determination of the number of CD4 positive cells is carried out by flow cytometric analysis. This technique, however, requires expensive, complex instrumentation as well as trained technologists. The rapid growth of HIV infection in developing countries has increased the need for a simple and costeffective method for CD4 positive cell monitoring. Therefore, the purpose of this study was to establish a non flow cytometric method, named the manual rosetting method, for quantifying CD4 positive cell numbers. In this investigation, 24 HIV infected and 16 healthy individuals were enumerated for CD4 positive cells by using both standard flow cytometry and the manual rosetting method simultaneously. The mean percentage of CD4 positive cells in the total of white blood cells from samples performed by the manual rosetting method was 6.31%, while the standard method yielded a mean of 6.48%. The correlation coefficient for regression analysis was 0.93. The mean of absolute CD4 positive cells obtained from both methods were 529.04 and 515.75 cells/µl, respectively. The correlation coefficient for regression analysis was 0.95. The interference of granulocytes and monocytes with the manual rosetting method was evaluated. Very few CD4 rosetting cells were detected in granulocyte and monocyte populations. It was concluded that the manual rosetting method appears to have the potential to quantify CD4 positive cells in the limited laboratory facilities of developing countries and have a strong correlation with standard flow cytometric technology.

Keywords: CD4 count, CD4 percentage, flow cytometry, manual rosetting method

W. Kasinrerk, Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University. Chiang Mai 50200, Thailand.

CD4 positive cell enumeration is an important immunodianostic measurement used in evaluating patients infected with human immunodeficiency virus (HIV). The progressive depletion of CD4 positive cells is associated with the likelihood of clinical complications and the development of AIDS [1,2]. The United States Centers for Disease Control and Prevention proposed that a CD4 positive cell count less than 200 cells/µl be used as one of the criteria for AIDS in the case definition[3]. CD4 positive cell counts are also used for monitoring HIV seropositive individuals into various treatment protocols [4-7].

In most laboratories, the standard method for CD4 positive cell enumeration involves the use of a flow cytometric method [8]. By this method, CD4 positive cells in whole blood specimens are identified by immunophenotyping and analyzing the results by using a flow cytometer. The results obtained in this manner are a proportion of lymphocytes that are CD4 positive cells or a percentage of CD4 positive cells. These results must be combined with a hematology determination, which provides the absolute number of circulating lymphocytes and calculated to the absolute CD4 positive cell count. This standard flow cytometric method requires expensive instruments and reagents as well as trained technologists, thus limiting the availability of CD4 positive cells quantified in developing countries.

Recently, several methods that do not require flow cytometer were developed for enumerating CD4 cells [9-13]. However, the reagents used are still expensive. Some methods still require special and expensive equipment [9,11-13]. In this study, another non-flow cytometric method, named the manual rosetting method, was developed for enumerating CD4 positive cells. By this method, lysed whole blood samples were stained with CD4 mAb and the stained cells were then incubated with sheep anti-mouse immunoglobulin coated beads. The rosettes, which were CD4 positive cells, were then counted by a light microscope. This technique is simpler and less expensive than the flow cytometric method. The clinical utility of this assay is very attractive in developing countries where HIV prevalence is high and funds for flow cytometry and service are limited.

MATERIALS AND METHODS

Subjects

EDTA anticoagulated whole blood was obtained from HIV infected and normal individuals for evaluation of CD4 positive cell counts by flow cytometry and the manual rosetting method. HIV infection diagnosis was made on the basis of positive testing for the presence of anti-HIV antibodies by both GPA (Gel particle agglutination; Serodia HIV, Fujirebio, Japan) and ELISA (3rd generation Abbott anti-HIV1/HIV2, Abbott laboratory, USA).

Enumeration of CD4 positive cells by flow cytometry

100 μl of blood was incubated at room temperature with 20 μl of each Simultest reagent panel (Becton Dickinson, Moutain View, CA) in separate tubes. The Simultest reagent panel was composed of two-color reagent pairs of leukoGATE (CD45-FITC/CD14-PE), control IgG1-FITC/IgG2-PE, CD3-FITC/CD4-PE, and CD3-FITC/CD8-PE. After 15-30 min incubation, red cells were lysed by the addition of FACS lysing buffer (Becton Dickinson) to the tubes. Samples were subsequently fixed with 1.0% paraformadehyde and analyzed using a FACScan flow cytometer with Simulset software (Becton Dickinson). The results obtained in this manner were the percentages of CD4 positive cells in the lymphocyte population. The absolute CD4 positive cell counts were then calculated as the product of the total white blood cell count, percentage of lymphocytes, and the percentage of CD4 positive cells.

Enumeration of CD4 positive cells by the manaul rosetting technique

For the manual rosetting technique, 1 ml of whole blood was incubated with 5 ml of FACS lysing buffer (Becton Dickinson) at room temperature for 10 min. The resulting lysed whole blood (LWB) was then washed twice with phosphate buffered saline containing 1% bovine serum albumin and 0.02% sodium azide (1% BSA-PBS-Azide), and resuspended with 250 µl of the same solution. To block the Fc receptors, the cell suspension was added with 25 µl of human AB serum and incubated for at least 30 min on ice. Aliquots (50 µl) of LWB were added into a 1.5 ml microtube followed by 10 µl of anti-CD4 mAb (Leu3a, Becton Dickinson), and placed on ice for