

บทคัดย่อ

เมื่อเร็วๆนี้มีการใช้ไซยาโนแบคทีเรียหรือสาหร่ายสีน้ำเงินแกรมเดียวเป็นเจ้าบ้านในการสร้างโปรดีนค่างๆ เช่น โปรดีนฆ่าลูกน้ำเงินของ *Bacillus thuringiensis* subsp. *israelensis* และ *Bacillus sphaericus* เพื่อใช้ควบคุมประชากรลูกน้ำเงิน สร้างชอร์โนนเร่งการเจริญเติบโตของปลาแซลมอน (salmon growth hormone) เป็นต้น อย่างไรก็ตามระดับการแสดงออกของยีนเหล่านี้ในไซยาโนแบคทีเรียขึ้นอยู่รับคัดต่ำกว่าใน *E. coli* วิธีหนึ่งที่จะเพิ่มระดับการแสดงออกของยีนก็โดยการใช้ endogenous strong promoter อย่างไรก็ตามความรู้เกี่ยวกับลักษณะของโปรดีโนเมตอร์ของไซยาโนแบคทีเรียมีอยู่น้อยมาก

ในโครงการวิจัยนี้จึงใช้ *Synechococcus* PCC7942 เป็น model system เพื่อที่จะศึกษาคุณลักษณะโปรดีโนเมตอร์ของไซยาโนแบคทีเรีย ได้สร้าง promoter-probe shuttle vector ชื่อ pKG ซึ่งมียีน promoterless β -glucuronidase (GUS) จาก *E. coli* เพื่อใช้เป็นยีนรายงาน (reporter gene) ในการแยกชิ้นดีอีนของโปรดีโนเมตอร์โดย transcriptional gene fusion กับยีน GUS จาก transformant จำนวน 640 clones มี 2.3% และ 3.9% ที่มีระดับ GUS activity สูงและต่ำตามลำดับ มี clone เพียง 10% ที่มี GUS activity ใน *E. coli* ด้วย

ชิ้นดีอีนของโปรดีโนเมตอร์ E3, E4, D13 และ D21 สามารถทำงานได้ทั้งใน *E. coli* และ *Synechococcus* ส่วน E8, E10 และ E14 สามารถทำงานใน *Synechococcus* แต่ไม่ทำงานใน *E. coli* E3 ทำงานในเซลล์ *Synechococcus* ได้ดีกว่าโปรดีโนเมตอร์ λP_R ในขณะที่ E10 และ E14 ทำงานได้ในระดับที่ใกล้เคียงกับโปรดีโนเมตอร์ λP_R ความเข้มของแสงมีผลกระทบต่อการแสดงออกของ E10

ได้วิเคราะห์หาจุดตั้งต้นของ transcript ของ D13, D21, E14 และ E3 พนว่าจุดตั้งต้นของ major transcript ของ D13 ใน *Synechococcus* อยู่ในบริเวณเดียวกันกับใน *E. coli* และพน inferred -10 (TAAAC T) และ -35 (TTGTAG) regions ซึ่งมีลักษณะคล้ายกับ *E. coli* σ^70 promoter จุดตั้งต้นของ major transcript ของ D21 ใน *E. coli* จะแตกต่างจากใน *Synechococcus* และพน inferred -10 (TAAGCT) และ -35 (TTAATG) region ซึ่งมีลักษณะคล้ายกับ *E. coli* σ^70 promoter ส่วนใน *Synechococcus* พน inferred -10 (TACCAA) แต่ไม่พน -35 region กรณีของ E3 ซึ่งเป็นชิ้นดีอีนของโปรดีโนเมตอร์ที่ทำงานได้ดีที่สุดพบว่าจุดตั้งต้นของ major transcript ใน *Synechococcus* อยู่ในบริเวณเดียวกันกับใน *E. coli* บริเวณ upstream เป็นยีน tRNA 70 (GGG) ซึ่งมีส่วนบริเวณที่ strong homology กับ major promoter elements ในยีน eukaryotic tRNA แต่ไม่พบลักษณะโปรดีโนเมตอร์ที่คล้ายกับของ *E. coli* ดังนั้นยีน tRNA 70 สามารถทำหน้าที่เป็นโปรดีโนเมตอร์

งานวิจัยนี้ได้ชิ้นดีอี็นเอ โปร โนมเตอร์ที่แข็งขัน (strong) หลายอันซึ่งจะเป็นประโยชน์ก่อการสร้างโปรตีนต่างๆโดยใช้ *Synechococcus* เป็นเจ้าบ้าน การวิจัยวิเคราะห์ต่อไปจะนำไปสู่ความเข้าใจในลักษณะของ strong promoter ของ *Synechococcus* *Synechococcus* เมื่องจากโปรโนมเตอร์ส่วนใหญ่ที่แยกได้ไม่สามารถ recognized โดย sigma factors ใน σ^70 class หากใช้โปรโนมเตอร์เหล่านี้เป็น DNA templates ก็จะสามารถตรวจหา sigma factors ต่างๆที่ยังไม่มีการศึกษามาก่อน

Abstract

Recently, cyanobacteria or 'blue green algae' have been used as hosts to express several heterologous genes. For example, attempts have been made to express the mosquitocidal protein genes of *Bacillus sphaericus* and *Bacillus thuringiensis* subsp. *israelensis* in order to provide an alternative biological insecticide for control of mosquito populations. They have also been used in the expression of salmon growth hormone gene in order to produce a feed additive for fish. However, the level of heterologous gene expression in cyanobacteria is very low when compared with that in *E. coli*. A possibility to improve the gene expression is to use an endogenous strong promoter. However, little is known about what is the promoter sequence in cyanobacteria.

In order to find out what is the promoter sequence of cyanobacteria, *Synechococcus* PCC7942 was used as a model system in this study. A promoter probe shuttle vector, pKG containing the promoterless β -glucuronidase (GUS) gene from *E. coli* which was used as a reporter gene, was constructed. Promoter-active fragments of *Synechococcus* PCC7942 were isolated by transcriptional gene fusion to the promoterless GUS gene. 2.3% and 3.9% of the 640 *Synechococcus* transformants expressed high and low GUS activity respectively. Only 10% of these clones could also express GUS in *E. coli*. Several of isolated promoters expressed GUS activity comparable with that of the λP_R strong promoter.

Promoter-active fragments E3, E4, D13 and D21 were active in both *Synechococcus* and *E. coli*. E8, E10 and E14 were active only in *Synechococcus* but not active in *E. coli*. In *Synechococcus*, E3 was stronger than the λP_R promoter, whereas E10 and E14 were of similar strength. We also observed that light intensity affected expression of E10.

The transcription initiation sites of D13, D21, E14 and E3, were identified. The major transcription initiation site of D13 in *Synechococcus* were located within a few nucleotides identical to those *E. coli*. The inferred -10 and -35 regions of D13 were TAAACT and TTGTAG respectively which conformed to the *E. coli* σ^{70} promoter. The major transcription initiation site of D21 in *E. coli* was different from that in *Synechococcus*. In *E. coli*, The inferred -10 and -35 regions of D21 were TAAGCT and TTAATG respectively which conformed to the *E. coli* σ^{70} promoter. Whereas, in *Synechococcus*, The inferred -10 region, TACCAA, were found but not the -35 region. Similar results were observed that upstream of transcription initiation site of the E14, the inferred -10 region TAGCAT was found, but not the -35 region. In case of the strongest promoter-active fragment E3, the major transcription initiation site in *Synechococcus* were located within a few nucleotides identical to those *E. coli*. Immediately upstream of the E3-GUS transcription initiation sites was tRNA^{pro} (GGG) gene, which contained two regions exhibiting strong homology to the major promoter elements in eukaryotic tRNA genes but did not contain *E. coli* promoter element. Thus the tRNA^{pro} gene can act as a promoter.

Several isolated strong promoters from this study could be useful for high expression of heterologous genes in *Synechococcus*. Further analysis of these promoters could elucidate the characteristics of strong promoter in *Synechococcus*. The majority of the isolated promoters did not function in *E. coli*, which indicated that the promoters were not recognized by sigma factors of σ^{70} class. These promoters could be used as DNA templates to probe for other uncharacterized sigma factors in *Synechococcus*.