บทคัดย่อ

เมื่อเก็บเชื้อ Plasmodium falciparum จากจังหวัดกาญจนบุรีมา 18 สายพันธุ์ พบว่าสายพันธุ์ KT1 และ KT3 ซึ่งจากการทดสอบพบว่าเชื้อทั้งสองสายพันธุ์นี้ดื้อต่อยา chloroquine, pyrimethamine และ cycloguanii สามารถผลิตระยะมีเพศได้ดีในหลอดทดลอง จึงนำมาเลี้ยงและสามารถกำจัดระยะไม่มีเพศที่ ปะปนอยู่ออกไปได้โดยเติม 5% sorbitol 5 นาทีและล้างออกในวันที่ 9, 10 และ 11 ของการเลี้ยงเชื้อ ซึ่ง สามารถกำจัดระยะไม่มีเพศได้สูงถึง 99 %ขณะที่สารนี้ไม่มีผลกับระยะมีเพศเลยและเจริญเติบโตต่อไปจน กระทั่งถึงระยะ mature stage ได้ นอกจากนี้ยังถูกกระตุ้นให้เกิด exflagellation ได้ในหลอดทดลอง และ cocyst ได้ในกระเพาะยุง หลังจากนั้นได้ทำการพัฒนาวิธีเลี้ยงเชื้อให้ได้จำนวนมากและพบว่าวิธีที่ให้เชื้อ จำนวนมากที่สุดคือการเริ่มเลี้ยงเชื้อที่ 2% parasitemia และ 2% erythrocyte suspension ซึ่งจะได้เชื้อ ประมาณ 35 ล้านตัวต่อ 100 มิลลิลิตรของ erythrocyte suspension ในวันที่ 12 ของการเลี้ยงเชื้อเมื่อทดสอบ ระยะมีเพศ (pure gametocytes)กับสารที่เป็น DNA polymerase และ DNA topoisomerase II inhibitors พบว่ายา pyronaridine มีฤทธิ์ฆ่าระยะมีเพศสูงที่สุด (average IC₅₀= 13 nM) และมีฤทธิ์สูงกว่า primaquine (average IC₅₀= 1.5 µM) ซึ่งเป็นยาที่ใช้กำจัดระยะมีเพศของผู้ป่วยในปัจจุบันนี้

นอกจากนี้ได้ทำการเลี้ยงเชื้อ Plasmodium falciparum สายพันธุ์ K1เพื่อให้ได้เชื้อประมาณ 16.8 มิลลิลิตร โดยได้ทำการแยกส่วนของ nucleus, cytosol และ mitochondriaของเชื้อให้ออกจากกันโดยวิธี differential centrifugation และพบว่า mitochondria มี specific activity ของ cytochrome c reductase ซึ่ง เป็น mitochondrial marker enzyme สูงที่สุด หลังจากนั้นได้ทำเอนไซม์ DNA polymerase และ DNA topoisomerase II ให้บริสุทธิ์โดยผ่าน column และใช้เครื่อง FPLC ซึ่งพบว่า mitochondrial DNA polymerase ของเชื้อ P. falciparum มีคุณสมบัติต่อ inhibitors คล้ายคลึงกับเอนไซม์ใน eukayotes อื่นๆยก เว้นว่าดื้อต่อ ddTTP(IC50>400 mM), (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl] adenine diphosphate (HPMPApp) และ 9-[2-(phosphonylmethoxy) ethyl] adenine diphosphate(PMEApp)(IC₅₀s>1mM) ข้อแตกต่างนี้แสดงให้เห็นว่ามีความเป็นไปได้ที่ mitochondrial DNA polymerase จะเป็นเป้าหมายใหม่ตัวหนึ่งในการต้านเชื้อมาลาเรียได้ในอนาคต ส่วนการศึกษาฤทธิ์ของ eukaryotic DNA topoisomerase II inhibitors เช่น VP-16, m-AMSA และ prokaryotic DNA topoisomerase II inhibitors ซึ่งได้แก่ norfloxacin, ciprofloxacin และ ofloxacin ต่อ decatenation activity ของ mitochondrial DNA topoisomerase II พบว่ายาทั้งหมดนี้มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ได้ในระ ดับมิลลิโมลาร์ ซึ่งแสดงให้เห็นว่าเอนไซม์นี้อาจจะไม่ใช่เป้าหมายของยา fluoroquinolones แต่เป้าหมายของ ยาเหล่านี้อาจจะได้แก่ DNA topoisomerase II ของ plastid organelle ซึ่งเป็นอีกแหล่งหนึ่งนอกเหนือจาก mitochondria ที่มี extrachromosomal DNA (35kb circular DNA)บรรจุอยู่

ABSTRACT

Pure gametocyte culture of *Plasmodium falciparum*, isolates KT1 and KT3, from Kanchanaburi Province, Thailand, was successfully established by 5% sorbitol treatment on day 9, 10 and 11 following initiation of culture. There was 99% reduction in the numbers of asexual parasites in the culture but the numbers of gametocytes were not affected. Furthermore, the gametocytes could undergo their usual morphological development with retention of function as demonstrated by the appearance of exflagellating microgametocytes and oocyst formation in midgut of infected mosquito.

A large scale technique for pure gametocyte cultures of *Plasmodium falciparum* was also established in culture flasks. This method resulted in approximately 97% reduction of asexual parasites and provided pure gametocytes in culture. The highest numbers of gametocytes were obtained from cultures starting with 2% parasitemia and 2% erythrocyte suspension. On day 12 of cultivation, approximately 35 x 10⁸ gametocytes per 100 ml of cell suspension could be harvested. After testing pure gametocytes with inhibitors directed against DNA polymerase and DNA topoisomerase II, pyronaridine showed the higest gametocytocidal activity.

Mitochondrial DNA polymerase and mitochondrial DNA topoisomerase II from Plasmodium falciparum were patially purified by using FPLC. Approximately, 16.8 ml of packed parasites was obtained from a large scale cultivation of Plasmodium falciparum, strain K1. The mitochondria of P. falciparum was isolated from mature trophozoite stage by differential centrifugation. mitochondrial enzymes were partially purified and characterized by using various specific inhibitors. Aphidicolin-resistant and N-ethylmaleimide-sensitive DNA polymerase activity was detected from purified mitochondria of P. falciparum. The characteristics of mitochondrial DNA polymerase was similar to those of other eukaryotic DNA polymerse γ except for its high resistance to ddTTP(IC50>400 mM). In addition, mitochondrial DNA polymerase γ was also resistant to nucleotide analogues such as (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl] adenine diphosphate (HPMPApp) and 9-[2-(phosphonylmethoxy)ethyl] adenine diphosphate (PMEApp)(IC50s> 1 mM) whereas γ-like DNA polymerase of P. falciparum cellular extract was previously reported as HPMPApp-sensitive enzyme(IC₅₀=1mM). The different sensitivity of these inhibitors of mitochondrial DNA polymerase from P. falciparum and other eukaryotic DNA polymerases indicated that mitochondrial DNA polymerase γ can possibly act as a novel target for chemotherapy of malaria in the future. Decaenation activity of partially purified mitochondrial DNA topoisomerase II could be inhibited by both eukaryotic DNA topoisomerase II inhibitors such as etoposide(VP-16)and amsacrine(m-AMSA) and prokaryotic DNA topoisomerase II inhibitors including norfloxacin, ciprofloxacin and ofloxacin at the mM level. It is suggest that mitochondrial DNA topoisomerase II of P. falciparum may not be the good target of prokaryotic DNA topoisomerase II or fljuoroquinolones but the possible target could be DNA topoisomerase II of a plastid which is the cellular compartment containing 35 kb circular DNA.