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ABSTRACT

This project concerns the two-dimensional flows of an inviscid and incom-
pressible fluid in domain bounded below by a rigid bottom and above partially
by a free surface. Different types of forcing are considered. We study the effect
of an applied pressure distribution on the free surface. For supercritical solu-
tions, the free surface profiles are found to be symmetric whereas in the case of
subcritical flows the solutions are characterized by a train of nonlinear waves be-
hind the pressure distribution. However the numerical scheme does not converge
as the Froude number 1 1. This is due to the occurence of unexpected periodic
disturbance on the upstream free surface. Free-surface flows past an object with
smooth attachments without gravity is also considered. Our results confirm the
previous conjecture about the existence of solutions as the Froude number — oc.
Furthermore, we consider flows of two immiscible fluids over an obstruction. The
foreing is assumed to be of compact support. Existence of symmetric solutions
are proved and computed numerically. Free-surface flows past a fat-bottomed
object with stagnation points are studied. It is found that splashless solutions
exist for certain values of the Froude number. These two-parameter family of
solutions are subfamily of the more general three-parameter family of solution
which might include breaking solutions.



Chapter 1

Introduction

Efforts to analyze the hydrodynamical characteristics of free-surface flow
with surface-disturbance have been divided primarily between theoretical and
experimental considerations. There are various types of surface-disturbance oc-
curred in nature and some are due to man-made structures. Most of the theo-
retical studies lie mainly in the two-dimensional framework and were based on
global analysis. Results from the laboratory experiments provided, on the other
hand. small scale analysis for both two- and three-dimensional problems.

We devote this report .to the investigations of steady two-dimensional po-
tential How of an inviscid and incompressible fiuid. These 2-D models allow us
to utilize various mathematical tools to solve the problems, for example. the use
of complex analysis particularly conformal transformation. This simplification
will not only provide qualitative behaviors but also give some insights to the real
flow situations to gain more understanding. Though the assumption of steadi-
ness may seem unreal but we can always choose the appropriate moving frame
of reference in such a way that the flow becomes steady.

In this study, we consider fully nonlinear free-surface flow problems with
three different types of surface-disturbance. The fluid domains are of finite depth
with no vertical boundaries in the far flelds. One problem is associated with
pressure distribution applied to a portion of the free surface. Next problem
concerns Hows over a bottom obstruction. Lastly, we investigate the the existence
of particular types of flow due to the motion of ship hull.

Generally. problems in free-surface hydrodynamics under the influence of
gravity are too difficult to solve exactly. Thus appropriate techniques of math-
ematical approximations are usually sought. These can be classified as analytic
approximations and direct numerical calculations. Asymptotic analysis is one of
the classic approaches of analytic approximations and is used here in this study.
We also introduce the integral equation formulation and the method based on
analytic function theory which may prove useful in treating a variety of fluid fiow
problems with free boundaries. Numerical results from these two methods are
obtained after a few Newtonian iterations.

Free-surface flows past an applied pressure distribution in water of infinite
depth was studied long ago. Literatures and discussions on the linear theory of
two-dimensional pressure distribution can be found in {1]. Lamb [1] also provided
the analysis of three-dimensional problem without any calculations. Schwartz [2]
formulated the problem into a system of nonlinear integral equations and solved
numerically. Results were found to be qualitatively similar. That is. in the case
of subcritical flows. both linear and nonlinear theoy predicted the existence of
wave train propagating downstream. When the flow is supercritical. the free
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surface profile was always symmetric indicating the drag-free situation. Vanden-
Broeck and Tuck [3] used perturbation technique to demonstrate the existence
of some families of solutions that do not generate waves. All of these results
are for the fluid domain of infinite depth. In the case of finite depth, Von-
Kerczek and Salvesen [4] performed direct numerical calculations by placing a
network of mesh points over the entire domain and used the Successive Over
Relaxation scheme. They found that the numerical results were restricted to
certain values of the pressure-distribution-length to the depth ratio. Here we
propose the boundary integral formulation which requires the uses of Cauchy
inegral formula and Schwarz reflection principle. Integral equation is derived in
terms of unknown variables on the free surface. After discretization, we obtain
the system of nonlinear algebraic equations to be solved by Newton’s method.
Results are calculated for both supercritical and subecritical flow regimes. Due to
the existence of a nonlinear wave train behind the disturbed free surface, there
are periodic disturbance of small amplitude on the upstream free surface. This
numerical disturbance grows with a given parameter. Discussion of these errors
can be found in chapter 2.

Another type of surface-disturbance in a canal is due to a bottom obstruc-
tion. This part is the continuation of Choi et al [5]. Flow domain of interest
consists of two immiscible fluids of constant but different denstities. The bottom
of the canal is described by a function of compact support. Derivation of the
governing equations is carried out by using a unified asymptotic approach. Ex-
istence of the symmetric solutions is proved and numerical calculations are also
given by using the shooting method.

Next we study the special case of flow past a surface-piercing object with
smooth attachments at the separation points when gravity is excluded. This
is known as the free-streamline problem and is the special case of the problem
considered by Asavanant and Vanden-Broeck [6]. Here we construct an analytic
function representing the complex velocity in the flow domain of interest by
expressing in the form of power series. We determine the unknown coefficients of
the series by requiring the complex velocity to satisfy the dynamic and kinematic
boundary conditions. This approach proves to be more efficient than solving the
Laplace equation directly.

Lastly we investigate free-surface flows past an object for which the sepa-
rations occur at the stagnation points (i.e. points at which the fluid velocity
vanishes}. The object is of flat-bottomed body with two vertical faces. Some of
the previous results can be summarized as follows. Dagan and Tulin [7] solved
the steady flow past a semi-infinite two dimensional flat-bottomed body of draft
H in deep water by perturbation procedure. The expansion in power series of
the Froude number Fy = U/\/gH was of second order. However the algebra
involved in the extension of their approach to higher order in Fy is formidable,
even for computer use. Vanden-Broeck, Schwartz and Tuck [8] derived a non-
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linear singular integro-differential equation which allowed them to continue the
series indefinitely. They showed analytically and numerically that there are no
continuous solutions for bow flows for which stagnation point occurs at the sepa-
ration point and the stream approaches a uniform velocity in the far field. In the
case of stern flows, they found continuous solutions with waves in the far field. A
new family of stern flows for which the flow separates at the corner with smooth
attachment was described analytically and numericaily by Vanden-Broeck [9].
Madurasinghe and Tuck {10] constructed solutions for splashless bow flows past
a semi-infinite object with smooth attachment. A model of bow flows with splash
(or spray) at the leading contact point of the object was proposed by Dias and
Vanden-Broeck {11]. The splash (or spray) was assumed to take on the form of a
jet rising along the bow to a stagnation point and falling down onto the oncoming
stream which was considered to be another Riemann sheet. In the case of flow
past a semi- infinite bow with a flat bottom in water of finite depth, there are
continuous solutions for which the How rises up along the vertical front of the
body and separates at a stagnation point {Vanden-Broeck [12]). Asavanant and
Vanden-Broeck [6] considered the complete nonlinear flow past a curved object
of finite length. Their results confirmed those obtained analytically by Craig
and Sternberg [13]. In this report, we show that there are splashless solutions
of flows past a flat-bottomed with vertical faces. These particular solutions rep-
resent flows for which the separations occur at the stagnation points. We also
generalize the problem to the case of inclined faces.

Discussions of flows with an applied pressure distribution are given in chap-
ter 2. Flows of two tmmiscible fluids over a bottom obstruction is considered
in chapter 3. Free-streamline solutions of flow past a surface-piercing object
are summarized in chapter 4. Chapter 5 concludes the results obtained for the
problem of flows past a two-dimensional ship with stagnation points on the hull.

Finally the author wishes to acknowledge the Thailand Research Fund {TR-
F}. This work could have never been completed without the financial support
from the TRF. Special thanks should be given to the Center for the Mathemari-
cal Sciences at the University of Wisconsin-Madison for allowing the calculations
on the computer. During the past two years, the author collaborated with Pro-
fessor J.-M. Vanden-Broeck at the University of Wisconsin-Madison, USA. and
Associate Professor J.W. Choi at the Korea University, Korea.



Chapter 2

Model equation of flows with free surface pressure distribution

2.1 Introduction

Steady two-dimensional free-surface flow past an applied pressure distribu-
tion on the free surface is considered {see Figure 1). The stream is of finite depth.
The fluid 1s assumed to be inviscid and incompressible and flows irrotationally
with constant horizontal velocity U at infinity. The pressure function is also as-
sumed to be of compact support. This flow configuration can serve as a model of
moving vehicles such as hovercraft in a long canal. We restrict our attention to
flows which approach a uniform depth H as ¢ — —oc. The flow is characterized
by a nondimensional parameter, the Froude number

v (1)
vVoH

where g denotes the acceleration of gravity.

The problem of free surface pressure distributions has been studied quite ex-
tensively in the case of infinite depth for over 150 years. The classical linearized
version of the two-dimensional problem was solved long ago and was discussed
in detail by Lamb [1]. It was shown that for some pressure distributions the
motion 1s drag-free. That is. the free surface is symmetric with respect to the
applied pressure-distribution without a train of sinusoidal waves in the far field.
Schwartz [2] reformulated the problem into a boundary integral equation and
solved numerically. He showed that for some values of the Froude number (de-
fined by using the span length of the pressure distribution as the length scale)
nonlinear theory gave drag-free solution while the linearized theory did not. He
also found nonlinear wave train in the form of narrow crests and broad troughs
which are essentially periodic and propagate downstream. Vanden-Broeck and
Tuck [3] demonstrated, by perturbation procedure, the existence of some families
of free-surface pressure distributions that do not generate waves. Their analysis
includes asymptotic solutions up to terms of second order. In the case of finite
depth, Von-Kerczek and Salvesen [4] placed a network of mesh points over the
entire flow domain and performed finite-difference calculations to obtain nonlin-
ear solutions. Their numerical procedure was restricted to certain values of the
ratio of pressure-distribution-length to the depth of the flow domain.

In this chapter we consider the fluid domain of finite depth. We solve the
problem numerically by the boundary integral equation method for arbitrary
values of the Froude number, magnitude and span length of the pressure dis-
tribution. Qur results show that the free surface profile is always symmetric
(drag free} when the flow is supercritical. For subcritical flow, the solutions are

F =
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characterized by a train of nonlinear waves downstream while the flow satisfies
the radiation condition on the upstream side. Difficulty in the numerical process
occurs when the Froude number is increasing to unity from below because of the
unpredicted numerical disturbances in periodic forms on the upstream free sur-
face. This has sabotaged the convergence of the numerical scheme. However we
conjecture that, for subcritical solutions, the wavelength would approach infinity
as F' T 1 and would extend to the supercritical regime. Also, as F' decreases, the
downstream free surface would approach its limiting configuration in the form of
Stokes’ wave (sharp crest and broad trough).

2.2 Formulation

Let us consider the steady two-dimensional, irrotational flow of an inviscid
incompressible fluid in the region shown in Figure 1. We choose Cartesian coor-
dinates with the z-axis along the free surface at ¢ = —co and the y-axis directed
vertically upwards through the center of the pressure distribution. Gravity is
acting in the negative y-direction. The components of the velocity in the z- and
the y-directions are denoted by u and v respectively. As ¢ —+ —oo, the flow is
assumed to approach a uniform stream with constant velocity U and uniform
depth H.

We introduce the complex potential f = ¢ + i, in which ¢ and ¢ repre-
sent the potential function and the streamfunction respectively. Without loss of
generality, we choose v = 0 on the free surface ABEF. The bottom AF defines
another streamline on which @ = —U H. The nonlinear free surface condition for
this problem can be expressed by

1 ,
;qg + gy + P_ constant on the free surface (:
< P

R

Here g, p and p denote the magnitude of the velocity, the pressure function and
fluid density respectively.

Let us choose [ as the unit velocity and H as the unit length. From this
choice of dimensionless variables, (2) becomes

‘) ~
y+p=1 (3)

q2+F%

where F is the Froude number defined by (1), p = I%% for which p, represents
2

the atmospheric pressure. The kinematic condition on the bottom AF is
w(é. ) =0 on ¥ =—1 (4)

Next we define the complex function £ = u — v — 1 and the flow region
in the f-plane D = {(¢,¢) | —oco < ¢ < co0,—-1 < ¥ < 0}. The function £ is

-
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analytic in the domain D and is real on the boundary % = —1. We satisfy the
kirematic condition (4) on AF by reflecting the flow field in the physical z-plane
about the line y = —H. Let Q and Q denote the fluid domain in the z-plane and
its reflection. By Schwarz reflection principle, the function £ can be extended to
a function = which is analytic in Q U Q and is defined as

=(») = {f(z) ,for z € Q2

.f(_;?)_ , for z € Q0. (

(@3]
p——

Applying the Cauchy integral formula to the function = in the extended region
in the f-plane which is the strip —2 < ¢ < 0, we obtain

— : 1 u(fy—~w(f -1,
:.(f):u—wﬁlzmz—_”—_ A 7 f df’. (6)

Here T is the negatively oriented contour given by

f=09 , ~R<¢o<R
DL f=REW 02y -2
| fEe—2 ;R>¢>-R

f=-R+w ;-2<¢ <0
Letting f approaches the boundary ¥ = 0, we obtain

2(6.0) = u(0,0) ~ i0($.0) = 1 = - ) ur) },if(;ﬂ)_ldf’- (7)

We denote by u{¢) and v(@) the velocity components in the z- and y- directions
on the free surface v = 0. Consequently, (7) becomes
L[ u(d) —iv(a) 1 ™ dle') —i5(e') — 1

-1
; (A —] = — — d L . do!
ulo)—w(o)—1 o pTR— @-{—m. . 5 — & I
(3)

where (@) and ©{¢) represent the horizontal and vertical components of the
velocity on the image ¢ = —2 of the free surface. Using (3), we can relate the
integral over the reflection of the free surface to the integral over the free surface
itself. Finally, after taking the real part, we can rewrite (8) as

‘ 1 [ w(e) |, 1/00 v(¢)(@ — @) +2(u(é’) - 1)
1= it do'. {9
ue) =1 rrf_wasf—ﬂ“w . @ — B + 4 ¢ 19
Using the identity
Oz 0y 1 (10)
0 l@gﬁ Cou -
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the Bernoulli equation (3) can be written in terms of u(¢) and v(¢) as

2(g) + v () + 2 [ o(¢) d¢' +p=1; < o< (11
u (o) T+ v F? ) wi (@) + 02 (d) p=1; —x <o <. )
We consider now that the distribution of pressure be described by function with
compact support and be defined by

i 0 ,for @] > 1
p_—_

eele®=1  for lp| < 1.

The problem becomes that of finding u(é) and v(¢) satisfying (9) and (11). The
shape of the unknown free surface can be determined by integrating numerically
the identity (10).

2.3 Numerical Procedure and Discussion

To obtain nonlinear solutions to (9) and (11), it is necessary to resort to a
numerical method. We solve this system of integral equations by discretizing the
free surface in the f-plane. Thus we introduce the A mesh points

pi=0G-1DE, i=1,2,..,M (12)

where E is the discretization interval. The values of u(¢) and v(@) are computed
at the mid points

@+ Qig1
oy = T

Ll R

Coi=1,9 .M 1.

(&

Equations {9) and (11) are to be satisfled at these mid points. We denote the
values of u and v at the mesh points by u; and v;. The integrals in (9) are trun-
cated downstrearn at the point ¢ar subject to the requirement that the pressure
distribution is applied on the free surface sufficiently far from the end points.
The error due to this truncation can be estimated by comparing the solutions
for different values of W and E.

We approximate the integral in (9) by using the trapezoidal rule with sum-
mation over ¢;. Since the spacing points are symmetric with respect to the pole.
the singularity is subtracted from the Cauchy principal-value integral leaving
nonsingular integrals. The values of u and v at the mid points are related to the
values at the mesh points by linear interpolation. Next we replace (9) by

{(M—-1FE 1 1 (M-1)E ’U,’((ﬁ'r — gﬁi__L') -+ 2(ut - I.)
U, '—l:’]‘-"/ U;[’_f—_“} d@bl‘}"—/ = 2 > dO’.
T Jo o' — T Jo (0 —o; 1) +4

(13)




The radiation condition v — 0 as ¢ — —oc is now appiied at the first mesh point,
le.,

" = 0. (14)

The Bernoulli equation {11) is satisfied at the mid points
2 2 2 . : _
ui_g Fuiiy+ 77 Yi-} +piyp=11= 2,3,... M. (15)

We obtain 2M equations from (13} — (15) for the 2M unknowns u; and v;.
It is convenient to write this system of equations in the form

filmmecomam) =00 =1.2.....2M (16)
where { n; ;’:r__l = {u, }J‘il and {n; }?_"__V{WH = {u 321 We solve {16) by New-
ton’'s method. Thus if nf,-k) 1s an approximation to the solution. the next approx-

. . k+1
imation r;r; +)

is obtained by
n Y =g =AW i =12, oM (17)

. k
where the correction Ag ) are calculated from

M (k)
S ZII NN =8B 19 oM (18)
i=1 3T]j ’ l

The elements g% are determined by exact differentiation of (16).

We use the numerical scheme described earlier to compute solutions for
various values of F?. ¢ and o.. We found that the behavior of the solutions for
different values of @. > 0 is qualitatively similar. We can thus fix value of o,
and calculate solutions for various values of F? and e. The numerical accuracy
is checked by increasing W while keeping E fixed and vice versa.

When F > 1. the flow is supercritical throughtout the fluid domain. It is
found that the free surface is symmetric with repect to the pressure distribution
in both cases.i.e. € > 0 and € < 0. The pressure is applied onto the free surface
when € > 0 and the negative pressure relative to the atmospheric pressure is the
case when € < 0. The stream is undisturbed when ¢ = 0.

When F < 1, the flow is subcritical which characterizes by the train of waves
on the free surface behind the pressure distribution. Our numerical scheme can
only compute solutions for certain values of the Froude number. This is due to
numerical disturbances in periodic form which may cause from the stability of
the numerical sheme. This type of numerical distubances occurs also in the case
of applied pressure distribution on the stream of infinite depth under the influ-
ence of surface tension (Vanden-Broeck, private communication). At the present
stage, there is no remedy to eliminate such disturbances. Other mathematical
approaches should be used to further investigate this problem.
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Chapter 3
Free-streamnline solutions of flows past a surface-piercing object

3.1 Introduction

The classical free-streamline theory introduced in the mid nineteenth cen-
tury by Helmholtz and Kirchhoff based on the use of hodograph plane and of
Schwarz- Christoeffel transformation cannot be used to find exact solutions for
problems with curved boundaries. In this chapter we consider a problem of steady
two-dimensional flows past a parabolic obstacle of finite length in water of finite
depth without gravity. This is the extension of the case considered by Asavanant
and Vanden-Broeck [6] when the Froude number F' —+ oc. The fluid is treated
as inviscid and incompressible and the flow is assumed to be irrotational. The
problem is solved by series truncation technique. Accurate numerical solutions
are obtained by collocation procedure. As we shall see, there is a family of con-
tinuous solutions for which the free surfaces attach tangentially at the separation
points. The solutions are found to depend on two parameters, that is the object
geometry and the location of one of the separation points

Figure 1 (see Appendix A) shows the flow configuration to be considered
here. Far upstream the flow approaches a uniform stream with velocity U and
depth H. Asavanant and Vanden-Broeck [6] solved this problem numerically
by including the effect of gravity. In that case, the nondimensional parameter
Froude number F defined by the ratio of the inertial force to the gravity force
characterizes the flows. They conjectured that there exist continuous solutions
as ' — >¢. We shall use an efficient numerical technique to show that such flows
exist when F' = oc.

Birkhoff and Zarantonello [14], Gurevich [15] gave systematic reports on
high- speed. incompressible hydrodynamics problems. However they considered
only flows around a flat plae in the presence of the wall.

The idea behind the series truncation technique is to seek an analytic com-
plex velocity function satisfying the required boundary conditions and does not
vanish anywhere in the flow domain. The construction of this function 1s based
on the analog of Levi-Civita’s function £2(¢) which is bounded and continuous on
the unit semi-circle |¢t| < 1 and analytic in the interior. Thus we represent Q(t)
in terms of power series. The local behavior of this complex velocity function
at each singularities must be prescribed appropriately. Once its representation
is obtained, the velocity components on the free surfaces and on the object can
then be determined by collocation method.

The main results were published in Advances in Fluid Mechanics (see Ap-
pendix A).

3.2 Formulation



Let us consider the steady two-dimensional irrotational flow of an inviscid
incompresstble fluid past a parabolic object lying on a free surface in water of
finite depth. We introduce Cartestian coordinates with the z-axis on the bot-
tom and the y-axis directed vertically upwards through the vertex of the object.
Gravity is excluded and the object is described by

v =se(x—20)" + o (1)

We define dimensionless variables by choosing U as the unit velocity and H
as the unit length. We denote the potential function by ¢ and the streamfunction
by v. In addition, we introduce the complex potential f = ¢+iw and the complex
velocity ¢ = u+41v = %. Here u and v are the velocity components in the z- and
y- directions respecsively. and z = z +1y. Both f and ( are analytic functions
of z. The function { does not vanish anywhere in the flow domain.

Without loss of generality, we choose ¥ = 0 on the bostom AF and 0 = 0
at the vertex C. It follows fromn the choice of dimensionless variables that v = 1
on the free surfaces AB, EF and the object BE. The flow region in the complex
potential plane is an infinite strip {(¢,¢) | —c0 < d < oo, 0 < ¥ < 1}.

On the free surface, we impose the dynamic boundary condition stating that
the pressure is constant along the free surface by using the Bernoull: equation

u? + v? = constant on the free surfaces. (2)

It is easy to see that the constant can be chosen to be "2, The kinematic
boundary conditions on AF and BE can be described by

dy
99 =1 —b<o<b (4)
on

Here g:i is the normal derivative of @ and +b are the values of ¢ at the separation
points E and B respectively.

This completes the formulation of the problem. We shall seek ¢ as an analytic
function of f in the strip 0 < v < 1 satisfying the conditions (2} - (4).

3.3 Numerical procedure and discussion

We map the flow domain in the complex f-plane conformally and symmet-
rically onto the unit semicircle I' : |¢t| < 1, Im(¢) > 0 in the auxiliary t-plane
by R .

2 +1
= —log(——). (5
f=—log(1—) (3)
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This transformation maps the bottom AF onto the real diameter, and the free
surfaces AB, EF and the object BE onto the circumference. At B and E, where
the separations occur, the behavior of the flow is similar to those of other free-
streamline problems. Therefore the free-streamline theory suggests that ¢ behave
at these separation points like

(~GH+H[f—(kb+i)]? as f - £b+i. (6)

Here b+ : and b -+ 1 denote the values of the complex potential f at E and B
respectively. The constants G and H will be determined as part of the solutions.

We use the notation ¢ = re'” so that the free surfaces and the object are
described by r = L and 0 < ¢ < #. The point t = '# and ¢t = e™*® correspond
to the separation points E and B respectively. The appropriate behaviors of the
flow near E and B can now be described by

S
2

C~G’+H[t2—2tcosﬁ—+—l} ast — e? (7)
(~ G+ H[E? 4 2tcosB+1]7 ast - emi9. (8)

We now define the analytic function {(¢) by
C(t) = e, (9)

From {7), (8) and the symmetry of the problem, we find that 2{¢) has the ex-
pansion

L
2

(ST

Qt) = By [(t* + 1)* — (2t cosd)?]® — By[¢ —4cos’3]? + Z an(t?" = 1). (10)
n=1

The kinematic condition (3) on the bottom AF is satisfied by requiring the coef-
ficients a, in the infinite series expansion {10) and B; to be real. It can be easily
shown that (9) satisfies (7) and (8). Therefore we expect the series in (10) to
converge for |t| < 1. The coefficients a,, and the constant B; must be determined
so that (9) satisfies the free surface condition (2) and the kinematic condition
(4).

It is convenient to eliminate y from (2) and (4). These give
u(g)ug(o) +v(o)vs(0) =0, {11)
¢ d
v{o) = eu(o) f _u 4] do,3 < 8 <
=3

wt+v? do

l\:a_] |

In the numerical procedure we take advantage of the symmetry with respect
to the y-axis of the problem by restricting the collocation points to the circular
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arct=¢e7,0< o < %. The infinite series in (10) is truncated after NV 41 terms.
We introduce the N + 2 collocation points

= L) =1 N2 13
7T 5N 1 2) (1’5)”“ e IV t13)

E4

For simplicity, we assume values of 3 of the form

Fia
0 = ————— .ﬂl/.[ .
g AN +2) (14)

where M is an integer smaller than N + 2. Using (9) we obtain u, v, ugs, vy at
the mesh points o, in terms of the coefficients a, and B;. Substituting these
expressions into (11) and (12), we obtain VN + 2 nonlinear algebraic equations
for the unknowns { a, ;:{_f"ll and By. We solve this system of equations by using
Newton's method.

The numerical scheme described above was used to compute solutions for
various values of 3 and e. It was found that the coefficient a, of the infinite
series decrease rapidly as n increases. Most of the calculations were performed
with V = 180.

As € — 0. the object approaches a flat plate and the flow reduces to a
uniform stream for all values of 5. For 3 = Z, the solutions correspond to a
uniform stream with no object.

We define the amplitude parameter by

_ W
=

o (13)
Here W is the distance. from the bottom AF to the vertex of the object. We
found relation of & — 1 and ¢ for different values of 3. These suggest that our
solutions depend on two parameters 3 and ¢. The computed free surface profiles
were found to be similar to those obtained by Asavanant and Vanden-Broeck [6]
for large values of the Froude number.

Details of the discussion of our numerical results can be found in Appendix
Al
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Chapter 4

Flows of a two-layer fluid over an obstruction

4.1 Introduction

In this chapter we study steady two dimensional waves in a two-layer flu-
id bounded above by a free surface and below by a horizontal rigid boundary
with a small obstruction. Two critical speeds for the waves are obtained . near
either one of which an FKdV for steady flow can be derived and has been stud-
ied extensively in [16] and [17]. Forbes [18], Belward and Forbes [19], Sha and
Vanden-Broeck [20], and Moni and King [21] studied steady flow of a two laver
fluid over a bump or a step bounded by a free of rigid boundary numerically.
An asymptotic approach for the case of a rigid upper boundary was develope-
d without surface tension by Shen [22] on the basis of FKdV theory. and with
surface tension by Choi et.al. [5]. The case of free upper boundary was studied
with surface tension by Chot et.al. [23] asymptotically on the basis of EKdV
theory. Near the smaller critical speed, the derivation of the usual forced KdV
equation (FKdV) fails when the coefficient of the nonlinear term in the FRdV
vanishes. To overcome this difficulty, a new equation called a Steady Modified
KdV equation with forcing term (SFMKdV) governing interfacial wave forms is
derived by a refined asymptotic method. By using SMKdV we find the traveling
soliton-like solutions and symmetric wave solutions for different choices of pa-
rameters, Existence theorems are proved and numerical resuits of this equation
are presented.

In section 4.2. we formulate the problem and develop the asymptotic scheme
to derive the SEMKdV. In section 4.3, existence theorems are proved and numeri-
cal solutions of soliton-like solutions and symmetric wave solutions are presented
for different values of parameters. The parameters are determined along the
density ratios of the two fluids, depth ratio of the two, and the perturbation of
horizontal velocity at far upstream.

This work was published in the Journal of the Science Society of Thailand
(see Appendix B).

4.2. Formulation and Successive Approximate Equations

We consider steady internal gravity waves between two immiscible, inviscid
and incompressible fluids of constant but different densities bounded above by a
free surface and below by a horizontal rigid boundary with a small obstruction
of compact support. The domains of the upper fluid with a constant density
p*T and the lower fluid with a constant density p*~ are denoted by Q*F and
(2*~ respectively {Figure 1 in Appendix B). Assume that the small obstruction is
moving with a constant speed C'. In reference to a coordinate system moving with
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the obstruction, the flow is steady and moving with the speed C far upstream.
The governing equations and boundary conditions are given by the following
Euler equations:

In Q*%,

*i“*'U*:t'—"—' ,

=T xi_l_v*i *:i: __p::t/ *:t

71
y*

wEurE 4 v"iv;i =-—piE/pE oy,
at the free surface, y* = h*T + nf,
x—o—r};z . w:-i— — O,
Pt =0;
at the interface, y* = -r];,
Pt —pT =0,
*in‘;r - *i = 0?

at the rigid bottom, y* = —h*~ + b*(z*),
—bl.u"" =0,

where ©* and v** are horizontal and vertical velocities. p** are pressures. g is
the gravitational acceleration constant. We define the following nondimensional
variables:

e=H/L <<l m=elni/h*" m=etni/h*", p* =p™*/gh™p*
(I,y) — {er‘,y*)/h**. (‘U.i.,’b’:t) — (gh*_)_l/g(u*:t,e_lv*i),

pr =0t/ <l pT=p"/p"T =1 U=C/(gh™)
h=h""/R",b(x) = b (z")(A* )T

where L is the horizontal length scale, H is the vertical length scale, b(z) =
b*(z)(h*™ 3) , h*t and h*~ are the equilibrium depths of the upper and lower
fluids at z* = —oo respectively, and y* = —h*™ + b*(2) is the equation of the
obstruction. In terms of the nondimensional quantities, the above equations
become in 2%,

ui-i—vi:() (1)
Sud potd = pk/pE (2)
E‘iiﬂ%ii —pr/pT —1; (3)
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at y = h + e,

pT =0, (4)
eu+n1x—v+ =0; (8)
at y = enq,
€U Moz —v =10, (6)
euTny —vt =0, (7)
pT—p~ =0; (8)
at y = -1+ e*blr).
T =€ub, . (9)

where b{r) has a compact support.

Next we use a unifled asymptotic method to derive the equations for n(z)
and n2(z). We assume that ut, i, and p* are functions of z,y near the equi-
librium state u¥ = ug, v¥ =0, p* = —pTy+ pthand p~ = —p~y + pTh. where
g is a constant, and possess asymptotic expansions:

(U'ia Ui-,pi) = (uOrO _piy -+ P+h) + E(Ui‘:, Uitapit)
+ ¢ (1‘23U93p9)+5(u3 ,L3,p3)+0(€4). (10)

By inserting (10) into (1) to (4) and {7} to {9) and arranging the resulting
eguations according to the powers of ¢. it follows that {ug.0, ~pTy + pth) are
the solutions of the zeroth order system of equations and the equations of the
order ¢ are as follows:

ulir+u{ty:0 (11)
u‘oulr - pl.r/p (12}
ply =0: {13)

ar y = h,
py +mpg, =0, (14)

at y = 0,
pf — o7 + mlpg, —po,) =0, (15)
ugnay — vy = 0; {16)
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at y = —1
b = 0. (17)
Hereafter for the sake of convenience we shall use p to denote pT and set
p~ equal to 1. From (13), p{ are functions of z only. py = pm by (14) and

p; = pm +n2(1 —p) by (15). We can find vi¥ by using (11), (12), (15), and (17)
so that

vl = y(me/uo) + uonee ,

{18)
vy ={y + L{pnz + (1 = p)n2z)/ue.
uy are also derived from (11)
uil- = '_T?la/uo ’
(19)

uy = {—pm ~ (1 —p)n2)/uo,

where we assume m(z = —o0) = ma{z = —o0) = 0, uli(:n = —o0) = 0.
Similarly. we can find p:,i, vgt, ugz,pét, vgi,uéh in terms of m and 7, without

using the kinematic conditions (5) and (6). ¥rom (3} and(6), and the asymptotic
expanston of u~ and v™, we have

at y = h.

woniz — vy + e(ui Mz — mvy, — vy)

+ 52(“;’71;: +m rflruil-y - ‘U?_yyn% - Thb‘;_y — U;_) + 0(63) = 0, (20)
and at y = 0.

uonzr — vy + e(uy nor — Mavy, — vy )

+ 62(“2_'72.1: + 327?2x“;y - U;yyng - ??ZU:)_y - U:?»_) + 0(63) = 0. (21)

Then we make use of these equations to find the equations of the free surface
m(z) and the interface ny(z). By substituting uo,uf,vf,uf,vf,vf into (20)
and {21) and eliminating r;, we obtain

(ug — per/ug — (1 — p)/uo)mez + e( Enanez + Eanas)
+ E(Finines + Fanpr + FiNoges + Fabs)
+O(53) =0, (22)



where if we let ¢; = (2u2—(1-p))/{p+ud—h), D1 = ug/(p+ul—h). ) = uF{—=).
and R = pc; + 1 — p. then

—(R? + 2Rug)ug” — pDi((hef — R?Jug™* + (2¢f = 2R — 2e1)ug 7).

Fi = —pDyug t((3¢3 — 3T + R?/2)uy® + (3hc§’/° — 3R*/2)ug’
+ 3D1(pu51 + pRuJSJ((SRﬂ +c — cl) +{R*/2 — hcl/‘7)uo )
—3R%u;?/2 - 3R*u;%/2,

Fy = A(=pDyug ) (2 + Rug? — ¢ ~ heyud?) + (1 + Rug?)).

Fy = (—pDiug ) (—c1(ph®/2 + p/3)ug’ — (ufph + (1 - p}/3)ug’
{ph®/3)/uop) + uoh®/2)
—c1(ph? /2 + p/3)ugt — (ugph + (1~ p)/3)ug

F4 = le — Up .

4.3. Steady Forced Modified KdV Equation (SFMKdV)

From the zeroth order term of (22). we obtain
uo — (peyr/uo) — (1 — p)/ug =0,
and by the expression for ¢; in (22}, it follows that
— {1+ h)ug +h(1—py=0, {23)

and

uf = (1+h+ ((1-h)? +4ph)!/%)/2,

We denote the two values of u3 by v, and u?, respectively corresponding to the
plus and minus signs. Without loss of generality we assume ug; and ug2 are both
positive and call them critical speeds, near each of which a nonlinear theory for
the motion of the interface has to be developed.

Next we consider the coefficients of nsmq, in the first order terms of the
equation {22). If E in (“) is not zero, an FKdV can be derived if we assume
b(z) = b*(z*)(h*~€®)™! and z = €!/?2*/h*” in nondimensional varibles and
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similar results as in [16] can be obtained. However, E may vanish. First. let us
simplify the expression of E,

E=—((pcy +1—=p)*/ud) —2((per + 1 — p)/uo)
— pD1[—2({per + 1 = p)/uo) — ((per — p + 1) Jug) + 2(cF [uo) + h(ci/ud)
—2(c1/ug)}/uo
= 3(uop) " Mug + p — h)(p(uh — u§ — ud + 1) — uf + 2ud — 1).
= 3ug(l — ug)(phlug + p— h)) " (ug + (1 — 2R)ug + A* — 1).

where (23) has been used. When ug satisfies the equation (23), it is seen that uj
is neither 1 nor A — p. Hence E = 0 implies u} -+ (1 — 2h)ul + h? — 1 = 0. Let
g = ug] OT uUgy. Lhen

RP—1=1+hp+(2—h)(1—=h)? +4ph)/2,  (24)
h? 25

ugy + (1 — 2h)ug,
ul, ~1=1+hp—(2—h)((1—=h)?+4ph)/2 |

Equation {24) tells us that E does not vanish if we take ug; as a critical speed.
Suppose both sides of (24) vanish. Then real u3, implies & < 5/4 and the right
hand side of {24) i1s greater than zero. This is a contradiction. Thus the only
possible case for E = 0 is that the critical speed 3 is equal to u3,. and it is easy
to show that E = 0 if u? = uZ,, and

1+hp = (2 h)(1—h)*+dph)'/2. (26)
With the conditions (21) and (25), we obtain a Steady FMKdV.

F1?7§772:r: + Fongr + Fanoger + Fib, =0

o~
o
=1

where

Fy = 3ug(4p + 3h — ul).

Fy = M2(1 + h)ug — 4h(1 — p))uy?

Fy = ug ' (h{1 +h) —ug(h® + 1+ 3ph),
Fy = uglh — u).

The coefficients Fy to F, here are the simplified forms of F; to Fy in the
previous section by using (23). The sign of F3F; determines the existence of
solutions of (27). In the following sections, we assume F3Fy > 0 and the case for
F3Fy < 0 is considered in subsequent study [24].
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4.3.1. Symmetric soliton-like waves

We assume U = wp + \e? + O(€*) and consider (27) for Fi/F; > 0 and
F,/F3 < 0. (27) can be rewritten as

Rrrzr = "'Aln227?21'+A277.r +A3br7 (28)

where :-11 = Fl/Fg > 0, Az = —FQ/F3 > 0, Ag = —F.;/Fg ‘Nhen bx = 0, (28)
has soliton solutions whose value is 0 at £ = oo for A; > 0:

no(z) = £(6Aa/4; ) *sech({ A7) %), (29)

For Az < 0. there is no soliton solution. The solutions in (29} are obtained as in
the classical case by taking the limit of elliptic functions in the periodic solutions
of (28) for b, = 0 when the wave length tends to infinity. Next we consider (28)
when b, # 0 but of compact support.

We look for a solution n2(z) such that 4> > 0 and

lim (d/dz) ne(z) =0 j=0.1,2.

lzi— oo
Integrating (28) from —oo to r, it follows that
Ao — e = Amg — Azb(z), —-oc<r<x. (30)

(30) can be converted to the following in tegral equation:

L

nie) = | " K(2. (A2 (€)/3 — Asb(€))de |

—0oQ

where R’ {z.£) = exp(—+v/Az|z — £])/ (2 A2) is a Green function of 4, A(z.£) —
KNozlr. £y =68z f).—oc <1 < 2.
Define

Tins) = / E(2,€)(Aind (6)/3 — Asb(€))de .

-0

]| = [|uflo = sup [n2(z)|,
reER

H={u|ueCR)|exp(vAzle|ull <oc},
By ={u|uveH,|u|<M0<M<oo}.

Then clearly H is a complete metric space and By is a closed ball in H, and the
following theorem can be proved by Contraction Mapping Theorem.
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Theorem 1. (30) has a solution in C*(R) which decays exponentially at |z| = x
if 4 is sufficiently large.

We have shown that (28) has an exponentially decaying solution as z tends
to oo, In the following we use numerical computation to find symmetric soliton-
like solutions of (28) when the obstruction b{z} is given by b(z) = R(1 — z?)!/?
for |z| £ 1 and b(z) =0 for (x| > 1, where R is a given constant.

Let

m(z) = +(6As/4; )  2sech((A2)Y*{z — z0)), (31)

where g is a phase shift. To find a solution in |z| < 1, we need only consider (31)
in —~1 <z <0 subject to (n4(2))? = —A1n3/6 + Aan? at 2 = —1 and ny(z) =0
at z = 0. This problem can be solved numerically by a shooting method and
the phase shift zo is determined by (31) for z = —1. The numerical results are
given in Appendix B. Four typical soliton-like solutions are also given we show
the dependence of soliton-like solution at z = 0 and A. In both numerical results.
we assume R = 1.

4.3.2. Symmetric waves with zero behind and ahead of the obstruc-
tion

Similar to the section 3.1. we consider the equation
Mzrrr = —-Ay ﬁgﬁzx + A?"h:' + Asb; ) (32)

where A, = F1/F; > 0, Ay = —F»/F;3, A; = —F,/F;. lIntegrating {32) from
—20 to r. we obtaln

Nozs = —A1n3 /3 + Aoma + Asb(z), (33)

where b{z) is assumed to have compact support and 72{—occ) = 0.. We assume
n: = 0 in (—oc.z_) where [z_,z4] is the support of the obstruction. We can
show that the solution of (33) exists and is bounded with initial values nz(z_) =
naz{z—) = 0. In the following. we use numerical computation to find symmetric
wave solution of (33) which is zero behind and ahead of the elliptic obstruction.
Similar methods as in section 3.1 is used to find the solutions of this problem.
To find a solution in |z| < 1, we need only consider (33) in —1 < z < 0 subject
to ph(z) = m2(x) = 0 at z = —1 and ne(z) = 0 at z = 0. Same assumption as
in section 4.3.1 has been given for obstruction and the numerical results can be
found in Appendix B. Relationships between symmetric solutions and positive
values of A are also presented. The relations between R, which represents the
hight of the obstruction, and 7;(0) are also given. We note that, for a given R.
symmetric solution is embedded in periodic solutions.
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Chapter 5
Free-surface flow past an object with stagnation points

5.1 Introduction

We consider the steady two-dimensional irrotational flow of an invisecid in-
compressible fluid past a rectangular-shaped object lying on the free surface in
water of finite depth (see Figure 1 in Appendix C). The problem models a barge-
like vessel moving at a constant velocity in a canal without breaking or spiash
at the front of the vessel. Generally the breaking of the incoming stream at
the contact point of the vessel is likely to occur in the real flow situation. It
causes several probiems due to the force generated at the breaking. Therefore
it is of interest to determine whether the solutions without breaking exist. We
restrict out attention to flows which approach a uniform stream with velocity [°
and depth H at far upstream and downstream. As we shall see, the low can be
characterized by the Froude number

F=U/\gH (1)

where g is the acceleration due to gravity.

The problem of free-surface flows past an object has been considered by many
investigators for the past two decades. Analytical and numerical results have been
proposed for different flow configurations. In water of infinite depth, Vanden-
Broeck and Tuck [3], Vanden-Broeck, Schwartz and Tuck [8], and Vanden-Broeck
[9] showed that there are no continuous solutions for flows past a semi-infinite
object such that the flows separate at a stagnation point and approach a uni-
form stream in the far field. In addition, they found that there are solutions
with a train of nonlinear waves at infinity. This is the near-stern flow model.
Madurasinghe and Tuck [10] constructed a near-bow flow model with splashless
and continuous free surface profile at which the free surface attaches tangentially
at the separation point. Diaz and Vanden-Broeck [11] considered solution of flows
past a semi-infinite body by allowing discontinuity on the free surface in the for-
m of breaking jet at the contact point. In water of finite depth, Vanden-Broeck
[12] provided numerical evidence that there are continuous solutions for which
the free surface rises up along the vertical side of the semi-infinite flat-bottomed
object to the stagnation point at which separation occurs. The corresponding
flows approach a uniform stream at infinity. This can be used as a model for
near-bow flows in shallow water. Such flows exist for the values of the Froude
number between 1.22 < F < v/2. Analytical results of Craig and Sternberg [13]
provided the existence of flows past a ship hull for which the free surfaces make
contact with the object with continuous tangent. Asavanant and Vanden-Broeck
6] calculated numerically solutions for flows past a curved object of finite length.
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These flows have smooth tangents at both ends of the object at which separation
occurs. Their numerical calculations showed that there are up to three supercriti-
cal solutions if the object is concave upwards and up to two solutions if the object
1s concave downwards, and there are subcritical solutions with waves behind the
object.

In this chapter, we compute accurate numerical solutions for the fully non-
linear problem of flows past an object for which the free surfaces separate at the
stagnation points. The problem is sotved by series truncation method for arbi-
trary values of the width and the height of the object. The numerical procedure
is similar to the one used by Vanden-Broeck and Keller [25], Vanden-Broeck [12]
and Asavanant and Vanden-Broeck [6]. Our results include those obtained by
Vanden-Broeck [12] as a particular case. We show that there exists a splashless
solution for only some values of the Froude number.

In section 5.2 we formulate the problem for the flow configuration shown
in Figure 1. The numerical procedure and discussion of the results are given in
section 5.3. Generalization of this problem is presented in section 5.4.

Manusecript of this work are submitted to the European Journal of Mechanics
B/Fluids and can be found in Appendix C.

5.2 Formulation of the problem

The steady two-dimensional irrotationai flow of an inviscid incompressible
fluid past a ship hull in water of finite depth is considered (see Figure 1 in
Appendix C). The hull is assumed to have flat-bottomed with two vertical fronts
for which the free surfaces separate at the stagnation points K and N. Here we
choose Cartesian coordinates with the z— axis along the bottom and the y— axis
directed vertically upwards through the middle of the hull. Gravity is acting in
the negative y— direction. The coordinate system moving with the hull is chosen
so that the hull is stationary. As |z| -+ oo, the flow approaches a uniform stream
with constant velocity U and uniform depth H.

It is convenient to define dimensionless variables by taking U" as the unis
velocity and H as the unit length. We denote the velocity potential by ¢(z.y)
and the streamfunction by ¥(z,y). Let the complex potential be f = ¢ + 1y and
the complex velocity be defined by ( = u — v = df/dz. Here u and v are the
velocity components in the z— and y— directions respectively, and z = = 4 iy.
Without loss of generality, we choose ¢ = 0 at the middle of the bottom LM of
the object and ¥ = 1 on the free surfaces IK, NJ and the object KLMN. The
flow domain in the f— plane is an infinite strip. In it we let £a denote the values
of the potential functions at the two separation points K and N. and +b denote
the values of the potential functions at the corner points L and M of the object
on ¥ = 1. On the free surfaces, the constant pressure condition corresponding
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to the Bernoulli equation in dimensionless coordinates takes on the form

<P +2(y —1)/F* =1, on IK and NJ. (2)
Here |{] is the magnitude of the velocity and F is the Froude number defined by
(1).

The kinematic condition on the bottom IJ, and on the object KL, LM, MN
can be expressed as

Im{ =0.v =0on—x <o <o, {

C
—

Re( =0 =1lon—a<o<—-bandb< o <a.

e

Im(=0¢v=1on-b<o<h r

3

o

As lp| = oo, the flow approaches a uniform stream with constant unit
velocity. For I > 1, we expect the approach to be described by exponentially
decaying terms. So the complex velocity { can be expressed by

C~1+DeT™ a5 ¢ - +oo. (6)

Here D is a constant to be determined as part of the solution and A is the smallest
positive root of
TAF? — tanm A = 0. {7

In addition, there are singularities at the corner points K. L, M and N. The
appropriate behaviors of ¢ near these singularities are

C~H(f b= as f — Fb +1 (8)
(~S(fra—i)""as f - Fa+1, (9)

where H and S are constants to be determined as part of the solution. The
problem now becomes that of finding ¢ as an analytic function of f in the strip
0 < ¥ < 1 satisfying equations (2) - (6), (8) and (9).

5.3 Numerical procedure and discussion of the results

Following the method which was used successfully by Vanden-Broeck [12],
Asavanant and Vanden-Broeck [6] and others, we map the flow domain in the
complex f— plane onto the upper half of the unit circle. The appropriate ex-
pression for the complex velocity ¢ is sought as an analytic function inside the
unit circle based upon the above formulation. Numerical calculation is then per-
formed at each collocation points on the circumference of the upper half unit
circle using Newton’s method.
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The transformation from the f— plane onto the upper half of the unit circle
in the t— plane is given by

f=1(2/7) log[(1+2)/(1—1)]. (10)

This maps the bottom LJ onto the real diameter, and the free surfaces IK, NJ and
the object KL, LM, MN onto the circumference. We use the notation t = re'® so
that the free surfaces and the object are described by r = 1 and 0 < o < #. The
points t = e'" and ¢t = —e '™ are the images of the stagnation points N and K.
The points t = ¢¥2 and t = —e~*72 are the images of the corner points M and L
of the object. By using (10}, we find that +; and b, v2 and a are related by

~1 = 2 arctan|[exp(—nb/2)] [
9 = 2 arctan[ezp(—ma/2)]. (12}

We now seek the complex velocity ( as a series representation in terms of
t. Taking into account the local behaviors of the flow in (6), (8), (9) and its
svmmetry, we have the expression for the complex velocity

¢ = [((£3+1)2—4t%cos®y, )/ (4=dcos®y1 )2 [((£241)2 —4t%cos?yq )/ (4—4cos?z )| M2 e O]

(13)
where {2(t) has the expansion
Q) = A1 =)+ > an(t*" - 1). (14)
n=1

The kinematic condition (3) on the bottom L] implies that the expression Q(#)
has real coefficients. The representation (13) factors out the singular behaviors
of the velocity at the corner points and the stagnation points. It can easily
be verified that (13) satisfied (6), (8), and (9). The unknown constants A and
the coefficients a, of the power series must be determined so that the dynamic
boundary condition (2) on the free surface, and the kinematic conditions (4) and
(3) on the object are satisfied. It i1s now convenient to eliminate y from (2) by
differentiating this equation with respect to o. By using the identity

Oz /0¢ + 10y /03¢ = 1/(, (15)
we obtain
Fu(o)ugs{o) + v(o)vg(a)] — (2/msing)[v(c)/{u? (o) + v*(0))] =0.  (16)

We now solve the problem numerically by truncating the infinite series in
{13) after N terms. There are V + 3 unknowns A, A, I and the coefficients a,, to
be determined by collocation. Thus we introduce the N + 2 mesh points

or = (nj[2AN + DI —1/2), I=1,....N +2. (17)

- 30 -



Here we take advantage of the symmetry of the problem. For simplicity. we
consider values of v; and ~y in the form of

1 =aM/[2(N + 2)]
v2 = wMa[[2(N + 2)). (18)

where M, < M, and both are integers smaller than N + 2. We obtain N + 2
equations by satisfying (16) at the mesh points 7 = 1,..., M, (4) at the mesh
points [ = My + 1,...,M,, and (5) at the mesh points [ = M, +1,....N + 2.
The last equation is provided by imposing the relation (7). For given values of
M, and M,. we solve this system of nonlinear algebraic equations by Newton's
method. Once it is solved we obtain the shape of the free surface and the object
by integrating numerically the relations

[3=]

o)/ (v (o) + v*(0))] (19)

dz/do = (—2/7 sino)[u +
()] (u*(e) +v* ()], (20)

(
and dy/do = (=2/x sing)jv(
Numerical scheme described earlier was employed to compute solutions of
the flow configuration in Figure 1 for various values of v; and v corresponding
to the values of MM, and M M; respectively. Here MM, and MM, are given
by
MM, = M /(N +2) and MM, = Mz /(N + 2).

The coefficients a, were found to decrease rapidly. For example. |ajg/ai| =
0.20x 10_1,|a40/a1| = (.36 x 10_2, la200/01| = 0.24 % 10_3,[(1370/(.11] A 0.15x 10—6
for MM, = 1/2 and M M; = 7/10. Most of the calculations were performed with
400 coefficients.

Typical profiles are given in Appendix C. As v — 7/2 and v - 7/2.
the height MN. KL and the bottom width LM of the object reduce to zero and
we recover the case of the steepest solitary wave. It is found that the limiting
configuration with sharp crest and a 120° angle i obtained at F = 1.29. The
value of this critical Froude number is found to be 1s good agreement with the
one obtained by Asavanant and Vanden-Broeck [6], Hunter and Vanden-Broeck
{26], and Lenau [27].

As MM, — MM, the height MN, KL of the object reduce to zero and the
problem becomes that of flows past a flat plate at which the free surfaces separate
at the stagnation point with 120° angle corner. Since the corner point coincides
with the stagnation point, the representation (13) of the complex velocity fails
to converge in the numerical calculations. Thus we replace the singularities at
these separation points to a more appropriate one. The local behavior of this
stagnation points can be expressed by

(~K(f+b—0)1 as f — Fb+4. (21)
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The complex velocity ¢ can be expanded as
¢ = [((t* + 1)* - 4tPcos?~) /(4 — 4(:0527)]1/3eA(l_tz)Z'\‘*'Z:::l an{t?"~1) (22)

The limiting configuration of flow past a flat plate with 120° angle corner is also
caiculated. The results for v+ = 0 corresponds to flow past a semi-infinite flat
plate with F = /2.

We now define the amplitude parameter as

a=W/H, (23)

where W is the distance from the bottom IJ to the bottom LM of the object.
Thus the bottom of the object lies above the undisturbed free surface level when
a —1 > 0 and below when o — 1 < 0. Numerical values of o — 1 versus M M, are
presented in Appendix C for various values of M Ms.

5.4 Flows past an object with inclined fronts

We now consider a more realistic situation of flows past a ship hull problem
.1.e the two fronts of the object are inclined at an angle 3. The solution described
in the previous section are the special case of the present problem for 3 = = /2.

It is not obvious that there are solutions without splash jet for 0 < 3 < #/2
{Dagan and Tulin [7], Vanden-Broeck and Tuck [25], Diaz and Vanden-Broeck
[11]). The formulation can be generalized from the one described in section 3.2.
In the complex potential plane, the images ~b +1, b+ 1,—a + ¢ and a + ¢ again
denote the values of the potential function at the corner points L, M and the
separation points K, N respectively. As before, the points ¢ = €7, —e™i7 ei72
and —e™2 are the images of N, K. M and L in the ¢{— plane respectively.

At the stagnation points K and N. the velocity vanishes which implies that
the complex function ¢ is singular at these stagnation points. According to Dagan
and Tulin [7]. the local behavior of the flow near these points is described by

C~(fxb—iY¥"as f - Fb+1, (24)
where

§=8ifn/3<8<n/2,
Bzgifogﬁgw/& (25)

At the corner point, the singularity is given by
C~(fra—1)"%"as f— Fa+i. (26)
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By using the transformation (10), we seek { as a function of ¢ based upon
the prescribed local behavior at infinity (6) and appropriate singularities {24)
and {26). We represent the complex velocity ¢ by

(= [((t2 -|—1)2 —4t2c08271 )/(4m4c08271 )]e/’r[((t‘2 —}—1)2 —4t2coszfyg )/(4—4(:05272)] "ﬂ/“em”l

(26)
where ©(t) has the expansion
Qt) = AL =P+ > an (8 ~ 1) (27)
n=1

The coefficients must be real in order to satisfy the kinematic boundary condition
{3) on LJ. Furthermore {(£1) = 1.

The unknown constants A, a,, A and the Froude number F must be found
for given values of 41,2 and J so that the Bernoulli equation (16), the kinematic
conditions (4) and

v = u tang on the inclined fronts of the object, (28)

and the relation (7). To determine this we truncate the infinite series in (27)
after a finite number of terms and use the numerical scheme described in section
3.

It was found that the series converges rapidly. Typical profiles for two values
of front inclinations can be found in Appendix C.
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SURFACE OVER AN UNEVEN BOTTOM
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ABSTRACT

In this paper we study steady rwo dimensional waves in a rwo-layer fluid bounded above by a
free surface and below by a horizomal rigid boundary witl a small obstruction. Two critical speeds for
the waves are obtained. Near the smaller crivical speed, the derivation of the usual forced KdV equation
(FKAV) fails when the coefficient of the nonlinear. term in the FKdV vanishes. To avercome this
difficulty, a new equation called a Steady Modified KAV equation with forcing term (SFAMKAV)
governing imterfacial wave forms is obtained by a refined asymprotic methed. By using SFNMIKAV we
find the traveling soliticn-like solutions and symmetric wave solutions for diffzrent choices of parameters.
Existence theorems are proved and wumerical results of this equation are presented.

1. INTRODUCTION

This paper concerns the symmetric wave solutions between two immiscible, inviscid,
and imcompressible fluids of different but constant densities in the presence of small elliptic
obstruction of compact support at the rigid bottom when the effect of gravity is considered
(Fig. 1). We assume that the upper boundary is a free surface and the two dimensicnal
obstruction is moving along the lower rigid boundary at a constant speed. By choosing a
coordinate systemn moving with the object, the fluid motion becomes steady. Two critical
speeds are obtained, near either one of which an FKdV for steady flow can be derived and has
been studied extensively in [1] and [2]. Forbes [3], Belward and Forbes [4], Sha and Vanden-
Broeck [5], and Maai and King [6] studied numerically steady flow of a two layer fluid over
a bump or a step bounded by a free surface and a rigid boundary. An asymptetic appreach
for the case of a rigid upper boundary was developed without surface tension by Shen [7] on
the basis of FKdV theory, and with surface tension by Choi er al. [8]. The case of free upper
boundary was studied with surface tension by Chot er al. [9] asymprotically on the basis of
EKdV thecry. In the case considered here, when the wave speed is near the smaller critical
speed for internal wave, the nonlinear term in the FKdV may vanish and the derivation of
FKdV fails. To overcome this difficulty. & refined asymptotic method is used to derive the
Steady Modified KdV equation with forcing term (SEMKdV) in the foliowing form:

(An*+Bn +Cnq +DF = 0,
2 2x 2xxx X
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where 4 to D are constants depending on several parameters and #(x) is a function with
compact support due to the cbstruction on the rigid lower boundary. We investigate solutions
of the SFMKdV, which represent possible interfacial wave forms.

In section 2, we formulate the problem and develop the asymptotic scheme to derive the
SFMKdV. In secticn 3, existence theorems are proved and numerical solutions of soliton-iike
solutions and symmetric wave solutions are presented for different values of parameters. The
parameters are determined along density ratios of the two fluids, depth ratio of the two fluids,
and perturbation of the horizontal velocity at far upstream.

2. FORMUILATION AND SUCCESSIVE APPROXIMATE EQUATIONS

We consider steady Internal gravity waves between two immiscible, inviscid and
incompressible fluids of constant but different densities bounded above by a free surface and
below tv a horizoatal rigid boundary with a small obstruction of compact support. The
domatns of the upper fluid with a constant density p™* and the lower fluid with a constant
density p" are denoted by Q™" and Q7 respectively (Fig. 1). Assume that the small obstruction
15 moving with a constant speed C. In reference to a coordinate system moving with the
obstruction, the How is steady and moving with the speed C far upstream. The governing
equations and boundary conditions are given by the following Euler equations:

In Q2=

=
|
N
+
s}
=
+
1

‘pr ‘/p
wrELE + 0RO = —plt /pt-g
at the free surface, y" = 0" + 177,

- -~ _
u *'?hx,*-d =g,

cd
*H
fl

P
at the interface, y' =75,
pr-p
n -0
at the rigid bottom, y' = —1™" + b'(x")
v-bu =0
where 17 z2ad v’ 7 are horizontal a';xd vertical velocities, p'= are pressures, g is the gravitational
acceleration constant. We define the following nondimensional variables
=H/L<<1, py=¢elq\/h™, n, = ety /e, pr=pt/glipT,
{x,) = {ex”y") /00, (=) = (gh™) V2 {u',ev's),
Sz pt<l, pr=pT/pt=1, U=Clghna,
=R By = b)),
where L is 122 horizonzal scale, H i1s the vertical scale, biv} = H'{Y eV b~ and 17 are the

[ RSN

equiitbrium cepths of the upper and lower rmd; at v’ = -eo respactively. and v’ = AT+ 0
is the equat:cn of the obstruction. In terms of the nondimensional quantities. the above




| SceSec Thadand, 25 (1997)

upwng g 1 8

< A*Kvu_hﬁ_.*.l.«:: = xZ




4 F.Scr.Se Thacland, 23 ¢1997)

equations become in =,

up+v; =0, (1)
wrup+ vtu; = -pr/pt, (2)
eVl + eVl = —pE/pt-1; {3

at y =h+en,

pt =0 4

gutn, ~vt = 0 (5)
aty = 1],

gy, - v = 0; {6)

Eurn,, — vt = 0; {7)

pr-p = 0 (8)
aty = -1+ gb(x),

v =gub,, 9)

where &(x) has a compact support.

In the following, we use a unified asymptotic method to derive the equations for 7,(x)
and 7,(x). We assume that «*, v=, and p= are functions of x, y near the equilibrium state «*
= u, v: = 0, p* = -p*y + p*n and p = -py + ph, where u, is a constant, and possess
asymptotic expansions: .

(ur, v, p*) = (uy, 0, -p%y + p*h) + eluf, v, pi)
+ e4uf, vi, pi) + (uf, vi, p3) + O(eY). (10)
By inserting {(10) into (1) to (4) and (7) to (9) and arranging the resulting equations

according to the powers of g, it follows that {u,, 0, -p=y + p*/i) are the solutions of the zeroth
order systemn of equations and the equations of the order £ are as follows: . —— -~

W, +vy, = 0, (11)
L kg, = PR/ (12)
‘ pi, = 0 (13)
at y=h,
pimpy, = O (14)
at y =0,
(71~ P +ﬂz(m Po,) = O (15)
Ughay — U = 0 (16}
aty=-
vy = O (17)

Hereafter for the sake of convenience we shall use p to cenote p~ and set p~ equal to 1.
From (13). p=, are functions of x only. =, = pn, by (14} and p, = pn. + 7.{1 - pi by {13}
can find v=. by using (11}, (12}, (13}, and (1/) so that
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v = y(0,/ 1) + UpThyy (18)
vy = (y+ Dpm, + (1 —pImyMuy .

u=  are also derived from (11)

T (19)
o= {‘Prh -Q1- P)ﬂz)/uo,

where we assume 1,{x = —e) = 1),{x = =) = 0, u3(x = —e0) = 0.
Similarly, we can find p=, , v=,, 4=, , p*,, v*;, 4%, in terms of 77, and 1, without using

the kinematic conditions (5) and (6). From (5} and (6), and the asymptotic expansions of u-
and v-, we have

aty=h,
UgTh, — 07 +E(UiNy, — il?1U+1yr - vy
+E(UYT, + MY, — VY, TR~ oy, - 0% + O(8) = 0, (20)
ardaty =0,

HoTlay = U +E(U My, = 07, = V)
Uy, + Tl Uy, — U, 15— Mg, ~ U3) + O(&8) = 0. (21)

Then we make use of these equations to find the equations of the free surface 1 (x) and the
interface n,(x). By substituting u, 4=, v=,, u* , v5, into (20) and (21) and eliminating

V:
1 !
7,, we obtain

2 2

(g — pey/utg = (1 = P}/ ug)Thy, + E(EMNy, + Esily,)
+ E(F M3y, + Fyllyy + Fallyer, + Fib))
, so =0 S @
where if we fet ¢, = (2ud - (1-p))/(p+ud~k), Dy=u/(p+uj-h),
A =uh{-o}, and R = pc; + 1 - p, then
E = —(R?+2Rudjug’ - pD((hcd — R¥)ug? +(2¢] - 2R - 2¢,)up?),

Fi = -pDBugM(3c3 - 3¢} +R*/2)up® + (3hc3/2 - 3R3/ 2y
+ 3D (pug! + pRup((BR/2 + ¢y — cQuyl + (R?/2 — hek/2)uyd)
-3R%Wuy3/2 - 3R%u/2,

F, = AM(=pDuuh(2 + Rug® — ¢, — heyuy?) + (1 + Rup?),

Fy = (pDu)loc(ph?/2 + /3N — (edph + (1= /3y
+{c{ph®/3)/ ugp) + ugh?/2)
—c{ph?/2) + p/3)ujt - (udph + (1 - p)/3)uyl,
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F, = pDy ~uy.

3. STEADY MODIFIED KdV EQUATION WITH FORCING (SFMKdYV)

From the zeroth order term of (22), we obtain

ug = (pe,/ug) ~(1-p)/ug = 0,
and by the expression for ¢, in (22), it follows that

ub—(L+hud +h(l-p) = 0, (23)
and

uf = (1+h£{(1-h)?*+4ph)t/3)/2.

We denote the two values of v} by u}, and u}, respectively corresponding to the plus and
minus signs. Without loss of generality we assume w,, and 1y, are both pesitive and call

them critical speeds, near each of which a nonlinear theory for the motion of the interface
has to be developed.

Next we consider the coefficients of 1,7,, in the first order terms of the equation (22).
If £1in {22) is not zero, an FKdAV can be derived if we assume #{x) = & {x"}(h""e)! and x =
€Y2¢"/h"- in nondimensional variables and similar results as in {1] can be obtained. However,
E may vanish. First, let us simplify the expression of E,

E = —(lpc;+1-p)2/ud)~2({pc; +1~p)/ug)
- pD[-2((pc; + 1= p)/ug) ~ ({pc; — p + 1)/ ud) + 2(c3/ 1)
+ h(cd Ad) = 2cy/ughl/ ug

= Bugpy W + p-Mp(udh —ud —ud + 1) - uy + 243 - 1),

= Bug(l ~ud)(ph(ud + p = W) Huh + (1 - 2hjuj + 2 -1). -

e T —-

where {23) has been used. \fy’heﬁ‘uo satisfies the equation (23), it is seen that u® is neither 1

nor i - p. Hence £ = 0 implies %, + {1 - 2h)) + h* -1 = 0. Let uy = u oruy,. Then
why + (1 =2Rhud, + h2 -1 = 1+ hp + (2 -R)((1 - )2 + 4hp)}/?, (24)
why + (1 =2, + B2 -1 = 1+ hp— (2 - ({1 ~ h)? + 4hp)V/2, (25)

Equation (24} tells us that E does not vanish if we take u, as a critical speed. Suppose both
sides of (24) vanish. Then real 17, imples # < 5/4 and the right hand side of (24) is greater
than zero. This is a contradicticn. Thus the only possible case for £ = 0 is that the critical
speed u is equal to 47, and it is easy to show that £ = 0 if «7) = «4*,, and

l+hp = (2 = B)((1 - h)2 + $hp)i72, (26)
Vith the conditions (21) and (23), we obtain a Steady FMKdV,

F] n%nl" * Flnl‘r + FST]Z:::.X + F-lb =0 27)

X

by
SeC

31

wh
flon
Wh

For
cas

the

Int

(5
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where
F, = 3uy(dp + 3h —ud),
Fy = A2(1 + hud - 4h(1 - p))u?
Fy = upth(l + i) — uf(h® + 1 + 3ph),
F, = ugllt—ud}).

The coefficients F, to F, here are the simplified forms of F, to F, in the previous section
by using (23). The sign of EF, determmes the existence of solut:ons of (27). In the following
sections, we assume F.F, > (} and the case for F.F| < 0 is considered in subsequent study [10].

31 Symmetric solition-like waves
We assume the speed U= of the fluid at x = -e= are the same and given by U = u +
A€ + O(&%) and consider (27) F/F, > 0 and F/F, < 0. (27) can be rewritten as

Marer = ~A M50, + ATy, + Asl (28)

where A, = F/F, > 0, A, = -F,/F, > 0, A, = -F/F, . Here A is a parameter determining the
Elow reg;me eg. 1> 0and A < Qre present the supercntlcal and subcritical cases respectively.
Where #_= 0, (28) has soliton solutions whose value is 0 at x = *e for A, 20 :

My(x) = £(6A,/A;)sech((A,)!/x), (29)

For A, < 0, there is no scliton solution. The solutions in (29) are obtained as in the classical
case by taking the limut of eiliptic functions in the periodic solutions of (28) far & = 0 when
the wave length tends to infinity. Next we consider (28) when b 0 but of compact support.

We look for a soluticn 7,(x) such that 4, > 0 and
irl'r_r&(d/dx)inz(x) =0 ;=012
Integrating (28) from - to x, it follows that
. Aglly = Mgy = ATR/3 - Agh(x), e <x <o, (30
(30) can be converted to the foilowing integral equation:

mxy = STK(x, (A3 - AD(D) dE

where K(x, &) = exp(i\f?T:| x - EN/(2VA)) is a Creen function of AK(x, &) - K (x, &) =
8(x,8), o< x <om,

Define
T(n) = J7K(x, (A1E/3 - Ab(E) 48
whoo= T = sup ()],
aR
H = {ulueCx),texp(Va, Ix hull < o},
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By = (ulieH lullsM, 0<M <l

Then clearly H is a complete metric space and B, is a closed ball inH, and the following
theorem can be proved by Contraction Mapping Theorem/8].

Theorem 1. (30) has a solution in C3(R) which decays exponentially at v | = oo if A, s
sufficiently farge.

We have shown that (28) has an exponentially decaying solution as ¥ tends to ==, In
the foilowing we use numerical computation to find symmetric soliton-like solutions of {28)
when the obstruction 4(x) is given by 4(x) = R(1 - ¥} for l¢{< 1 and blx) =0for el > 1
where R is a given constant. }

Let
M(x) = i(6A2/A1)1fzsegh((A,)‘”(x - X)), (31}

where x is 2 phase shift. To find a solution in k| < 1, we need only consider (30) in
-1 =x < 0 subject to (n,{x))* = -AMY6 + A atx = -1 and M,(x) = 0 at x = 0. This problem
can be solved numerically by a shooting method and the phase shift x; is determined by (31)
for x = -1. There are three parameters involved in this analysis: the depsh redio h, the
perturbation of che hovizonnal velocivy at tar upstream A and the density ratio p. The numerical
results are given in Fig. 2 and Fig. 3. Since solutions for different values of # and p are
qualitatively similar, we choose 4 = 0.98 and r = 0.25 in all calculations. Four typical soliton-
like solutions are shown in Fig. 2. Fig. 3 shows the relation between the value of soliton-like
solution at x = 0 as a function of A. In both numerical results, we assume R = 1.

We remark that the shooting method for two-point boundary value problem is simple.
The ditferential equation is solved as ar: initial value problem in some form over the given
domain for a succession of trial values of n which are adjusted till the boundary conditions at
both ends can be satisfied at once. The simplest way to do is to shoot from one end to the
other, that is to say we choose n_such that rhe lefrend boundary is satistied. The second trial
for shooting is done with the corrected valué of n which is adjusted according to the miss-
distance from the first shooting. We repeat the process until 7 satisfies the right-end boundary
condition.

3.2  SYMMETRIC WAVES WITH ZERO BEHIND AND AHEAD OF THE OBSTRUCTION

Sumilar to section 3.1, we consider the equation

Maree = ~AiTie * Agllye + Ashy . (32)
where A, = F/F, >0, A, = -FJF, > 0, A, = -F /F, Integrating (32) from - to x, we obtain

Ty = —A]n32/3 + Ay, + Ayb(x), {33}

where b{x) is assumed to have compact support and 7,(-e) = 0. We assume 11, = 0 in (-0,
x) where [v, x_] is the support of the obstruction. We can show that the solution of (33)
exists and is bounded with initial values m,(x}) = n.(x) = 0. (8] In the following, we use
numerical computation to find symmetric wave solution of (33) which is zero behind and
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ahead of the elliptic obstruction. Similar methods as in section 3.1 is used to find the solutions
of this problem. To find a solution in k| < 1, we need only consider (35) in
-1 <x <0 subject to N,{x) = M,(x) = 0atx = -1andn, (x) = 0 at x = 0. The same assumptions
as in section 3.1 have been made for the obstruction and the numerical results are shown in
Fig. 4 and 5. Fig. 4 shows the symmetric solutions for positive values of A. The relations
berween R, which represents the height of the obstruction, and A are given in Fig. 5. We note
that, for a given R, symmetric solution is embedded in periodic solutions.

We have shown that there exist two types of symmetric solutions of the interfacial
wave forms both analytically and numerically. First type of solutions depends strongly on the
values of A as shown in section 3.1 and corresponds to symmetric soliton-like solutions. The
other type of solutions is the limiting case of the solutions with waves behind the bump and
zero ahead. These correspond te symmetric wave soiution with one hump.
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family of splashless solutions. A generalization of the problem to the case of
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1. Introduction

We consider the steady two-dimensional irrotational flow of an inviscid incompressible fluid
past a rectangular-shaped object lying on the free surface in water of finite depth (see Figure 1).
When the level of the bottom of the object is below the level of the free surface at infinity, the
problem models a barge-like vessel movinng at a constant velocity in a canal. When it is above
(like in Figure 1) we refer to it as a surfing flow. Observation of real ships and the theoritical
considerations described in the next paragraphs suggest that there is in general a splash at the
bow of the vessel. In this paper we show that there are particular solutions without splashes. We
restrict our attention to supercritical flows, i.e. flows for which the Froude number

F=U/J¢H (1)

is greater than one. Here {/ and H are the velocity and depth in the far field and g is the
acceleration of gravity.

The problem of free-surface flows past two-dimensional objects has been considered by many
previous investigators. Analytical and numerical results have been proposed for different flow
configurations. In water of infinite depth, Vanden-Broeck and Tuck 1], Vanden-Broeck, Schwartz
and Tuck {2}, and Vanden-Broeck [3] showed that there are no continuous solutions for flows past
a semi-infinite two-dimensicnal object with a flat bottomn and a vertical front such that the flow
separate at a stagnation point and approach a uniform stream in the far field. The implication is
that there is either a train of waves on the free surface or a splash. These two situations correspond
respectively to near stern flows and near bow flows. The near stern flows were calculated in [2)-[3]
and the near bow flow was constructed in (4]. Furthermore Madurasinghe and Tuck (5] constructed
a near-bow How without splash by replacing the assumption of a stagnation point with that of a
smooth detachment.

Vanden-Broeck (6] generalized the flow configuration in [1]-[3] (i.e. the flow past a semi-
infinite two-dimensional object with a flat bottom, a vertical front and a stagnation point) to
water of finite depth. He showed that there are spiashless supercritical flows. The corresponding
problem with smooth detachment was considered by Hocking [7]. All the above results are for
semi-infinite objects. Results for objects of finite length were obtained analytically by Craig and
Sternberg (8] and numerically by Asavanant and Vanden-Broeck [9]. These authors assume that
the free surfaces separate smooihly {rom the object.

In the present paper we examine the flow past an object of finite length when there are
stagnation points at the intersection of the free surface with the hull (see Figure 1). The problem
is solved by a series truncation method for arbitrary values of the width and the height of the
object. The numerical procedure is similar to the one used by Vanden-Broeck and Keller [10],
Vanden-Broeck [6] and Asavanant and Vanden-Broeck {11]. Our results include those obtained
by Vanden-Broeck [6] as a particular case. We show that there is a two-parameter family of
splashless solutions.

In section 2 we formulate the problem for the flow configuration shown in Figure 1. The
numerical procedure is described in section 3. In section 4 we discuss the numerical resuits. The
problem is generalized to a geometry with inclined faces in section 5 and concluding remarks are
presented in section 6. .

2. Formulation of the problem

We consider the flow configuration shown in Figure 1. The hull is assumed to have a flat
bottom and two vertical faces from which the free surface separaies at the siagnation points K
and N. We introduce cartesian coordinates with the z-axis along the bottom, the y-axis directed
vertically upwards and the origin in the middle of the bottom of the hull. Gravity is acting in the
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negative y-direction. The coordinate system ts moving with the hull, so that the flow is steady.
We assume that the flow is supercritical in the far field (i.e. F > 1). Therefore there are no
waves on the free surface and the flow approaches a uniform stream with constant velocity I/ and
uniform depth H as |z| — .

It is convenient to define dimensionless variables by taking U as the unit velocity and H as
the unit tength. We introduce the velocity potential ¢(z, y) and the streamfunction ¥(z,y). Next
we define the complex potential f = @ + 7% and the complex velocity by { = u — iv = df/dz.
Here u and v are the velocity components in the » and y directions, and z = z + {y. Without
loss of generality, we choose ¢ = 0 at the point in the middle of the bottom LM of the object and
w = | on the free surfaces IK, NJ and on the object KLMN. It follows that 4 = 0 on the bottom.
The flow domain in the f— plane is an infinite strip {see Figure 2). We denote by +a and +b4 the
values of the potential function at the corner points L and M and at the two separation points K
and N respectively (see Figure 2). On the free surface, the pressure is constant and the Bernoulli
equation in dimensionless form yields

PP +2(y—1)/F?=1, on IK and NJ. (2)

Here F is the Froude number defined by (1).
The kinematic condition on the bottom 1J, and on the object KL. LM, MN can be expressed

as
Im( =0, v =0o0n—2<¢<x, (3}
Re¢=0,0v=1lon—-b<¢p<—aanda<g¢g<h, (4)
Im{ =0,w=1on—a<¢<a. {3)

As jo| = x. the flow approaches a uniform stream with constant unit velocity. It can easily
be shown by linearizing around a uniform stream that the approach is described by exponentially
decaving rerms. i.e.

¢~ 14 DeF™M as 0 = £00. (6)

Here D is a constant to be determined as part of the solution and A is the smallest positive root
of )
TAF? —tanmA = 0. (7

VWe note that there are singularizies at the corner points K, L, M and N corresponding to flows
inside and around corners.. The appropriate bekaviors of ¢ near these singularities are

(~H(f2b=0) " as f—Fb+i (8)
(~Sifra—0)"Yas f 5 Ta+i, (9)

where H and 5 are constants to be determined as part of the solution. The problem now becomes
that of finding ¢ as an analytic function of f in the strip 0 < ¥ < 1 satisfying the equations (2) -
(6). (8) and {9}

3. Numerical procedure

Foliowing Vanden-Broeck [6], Asavanant and Vanden-Broeck [11] and others, we map the flow
domain from the complex f- plane onto the upper half of the unit circle in the complex t-plane.
The transformation is given by

f=(2/m) log{(L +)/{1 - 1)]. {10)
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Its maps the bottom IJ onto the real diameter, and the free surfaces 1K, NJ and the object KL,
LM, MN onto the circumference (see Figure 3). We use the notation ¢ = re’® so that the free
surface and the object are described by r = 1 and 0 < ¢ < 7. The points t = ™ and ¢t = —e~iM
are the images of the stagnation points N and K. The points t = &/ and ¢t = —e~'" are the
images of the corner points M and L of the object. By using {10), we find that v; and ~, are
related to b and a by

71 = 2 arctan[ exp(—wb/2)| (11)
ya = 2 arctan| exp(—wa/2)]. (12)

We now seek the complex velocity ¢ as a function of ¢. Taking into account the local behaviors
of the flow in (6), (8), (9) and the symmetry of the flow about y = 0, we write the complex velocity
as

C=[((7+1)° —4t2cosg71)/{4-4cos:'~f1)]”2[((t2+1)2-4izcoszﬂ,rg)/(4—4c03273)]'”2en“) (13}

where Q(¢) has the expansion
o0
Q) = AL+ an (e - 1). (14)
n=1

The kinematic condition {3) on the bottom [J implies the coefficients A and a, are real. The
representation {13) factors out the singular behaviors of the velocity at the corner points and
the stagnation points. It can easily be verified that (13) satisfied (6), (8), and (9). Therefore
we can expect the expansion in (14) to converge for |{| < 1. The unknown constants 4 and the
coefficients a, of the power series must be determined so that the dynamic boundary condition
{2) on the free surface. and the kinematic conditions (4} and (3) on the object are satisfied. We
first eliminate y from (2) by differentiating this equation with respect to . By using the identity
Ox/d6 +1dy/d¢ = 1/¢, (13)

we obtain
Flulo)us (o) + v(o)vs ()] - 2/(rsino)[v(o)/(w? (o) + v*(0))] = 0. (16)

We now solve the problem numerically by truncating the infinite series in (14) after ¥ terms.
There are ¥ + 3 unknowns A, A, F and the coeflicients a,, to be determined by coilocation. Thus
we introduce the NV - 2 mesh points

cr={(v/2(N+2)H(I-1/2). I=1,...,N+2. (173

Here we take advantage of the svmmetry of the problem by using mesh points only for 0 < ¢ <
=/2. For simplicity, we consider values of 41 and 2 in the form of

o= w MR + 2]
ve = =Maf[2(N +2)]. (18)

where 1y < M. and both are integers smaller than V+2. We obtain V +2 equations by satisfving
(18} at the mesh points [ = 1. .... W, (4) at the mesh points [ = M; + 1,..., Ma, and {3) at the
mesh points [ = 3> + 1....,.¥ + 2. The last equation is provided by imposing the relation (7).
For given values of W/ and M., we solve this system of .V + 3 nonlinear algebraic equations with
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N + 3 unknowns by Newton's method. Once it is solved we obtain the shape of the free surface
and the object by integrating numerically the relations

[X]

dz/do = —2/{r sino)[u(s)/(u
dy/de = —2/(m sina)[v({c)/{u

() +v%{o))] (19}
(o) + ¥ (o))} {20)

(%)

4. Discussion of the results

The numerical scheme described in the previous section was used to compute solutions for
various values of v; and v». Using (18), we specify v; and v» by fixing

§1 = Mi/(N +2) and & = Maf(N +2).

The coefficients a, were found to decrease rapidly. For example, la1o/ar} = 0.29x 107 jaqo/a1| =
0.36 x 10~2, lasgn/a;| = 0.24 x 10‘3,|0370/all 2~ 0.15x 10" ford; = 1/2 and §, = 7/10. Most of
the calculations were performed with 400 coefficients. In all the calculations presented we checked
that the results are independent of ¥ within graphical accuracy.

Tvpical profiles are shown in Figures 1, 4 and 5. In Figure 5, the bottom of the object is
below the level of the free surface at infinty. However the bottom of the object is above this level
in Figures 1 and 4. Therefore Figures 1 and 4 do not model a ship. Following Vanden-Broeck
and Keller (10), we refer to these flows as “surfing flows”. As vy — ©/2 and y» — =/2, the height
MN, KL and the bottom width LM of the object reduce to zero and we recover the case of the
steepest solitary wave. It is found that the limiting configuration with sharp crest and a 120°
angle is obtained at F' = 1.29 (see Figure §). The value of this critical Froude number is found
to be in good agreement with the one obtained by Asavanant and Vanden-Broeck [9] and Hunter
and Vanden-Broeck [12].

In Figure 7. we present the values of the Froude number versus 4, for various values of da.
These results show that there 1s a two-parameter family of splasiess solutions.

As 0y —+ da, the height MN, KL of the object approaches zero and the problem reduces to a
Aow past a flat plate considered by Vanden-Broeck and Keller [10]. It is a configuration with two
stagnation points and 120° angles at the end of the plate. To compute accurately these flows. we
note that (8) should be replaced by a singular behavior corresponding to a fiow inside a 120°, i.e.

C~K(fxb-0Y as fogb+i {21)
The complex velocity ¢ is then expanded as
¢ = [((£2 + 1)7 — 4t2c0s?7)/(4 — deos2y)] 3=t LI, eale? 1), (22)

Here v = v; = %2. A tvpical computed profile is shown in Figure 8 and the values of F versus
d1 are shown in Figure 7 {broken line). The particular value v = 0 corresponds to a semi-infinite
fat plate. It can then be shown analytically that F = /2 (see [10]). QOur numerical value of F
for §; = 0 agrees with this value.

We now define the amplitude parameter as

a=W/H. {23)

where W is the distance from the bottom IJ to the bottom LM of the object. Thus the bottom of
the object lies above the undisturbed free surface level when a~1 > 0 and below when o ~1 < 8.
Numerical values of & — 1 versus 4 are presented in Figure 9 for various values of 4.
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The length of the bottom LM and the depth of the hull KL and MN of the object are shown
in Figures 10 and 11 as functions of 4; and 4.

5. Flows past an object with inclined faces

We now consider a more realistic shape for the hull , i.e the two faces of the object are
inclined at an angle 3 (see Figure 12). The solution described in section 4 is a special case of the
present problem for 3 = #/2.

We show in this section that there are solutions without splashes for 0 < 3 < x/2. The
formulation is very similar to the one described in section 2. Therefore we need only to mention
the differences.

At the stagnatior points K and N, the flow is locally a flow inside a 120° angle when 0 <
3 < #/3. When 7/3 < 3 < n/2, the free surface is horizontal at the stagnation points {see [14]
for details). Therefore

Cn (feb—08"as fo xbh+i (24)

where

=3in/3<B<7/2,
§=n/3if0<3<n/3,. (25)

At the corner point. the singularity is given by
(~(fza—-iP"as fsFati {26)

Following the formulation of section 2 and using {24) and (23) instead of {8) and (9), we
represent the cormplex velocity ¢ by

=+t —4t%cos?1 )/ (4 —4cos® )]gf’[({t2+ 12 -4t2cos:’~/g);’[-1-~Lcosg-;‘g)]_d/’reﬂ"’ {28)

where (¢} has the expansion

D) = A{1 - 1) Z (1 — (27

The coefficients must be real in order to satisfy the kinematic boundary condition {3) on IJ.
Furthermore ¢(=1) = 1.

For given values of v, 77 and J, the unknown .1, a,, A and F must be found such that the
Bernoulli equation (16). the kinematic conditions {4} and

v = u tand on the inclined faces of the object.. (28}

and the relation {7} are satisfied. This is achieved by truncating the infinite sertes in (27) after a
finite number of terms and using the numerical scheme described in section 3.

It was found that the series converges rapidly. Typical profiles for two values of face incli-
nations are shown in Figure 12 and 13.

6. Conclusions
We have presented numerical solutions for the free surface flow past a two-dimensional ship

in water of finite depth. We have assumed that the free surface attaches to the hull at stagnation
points. The results supplement previous studies in which smooth attachment is assumed.
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We have shown that there is a two-parameter family of splashless solutions. Physically we
expect that the flow configuration of Figure 1 depends on three parameters: the width of the ship,
the draft (i.e. the distance between the bottom of the hull and the level of the free surface at
infinity) and the Froude number. Furthermore we expect the members of this three-parameter
family to have a splash at the bow. The findings of the present paper identifies among these
members a sub-family {depending on two parameters) of splashless solutions. Splashless solutions
are of particular interest, since an important concern in ship hydrodynamics is the reduction of
the splash at the bow of a ship.
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List of Figures

Figure 1. Sketch of the flow past an object KLMN . There are stagnation points at
K and N. The free surfaces are IK and NJ. The flow has depth H and velocity U as
|z| — co. The profile shown is a computed solution for v; = ?—E, Y2 = 3?” and F = 1.26.

The ratio of the horizontal scale to the vertical scale is 4.5 1,
Figure 2. Flow configuration in the complex potential plane f = ¢ + 9.
Figure 3. The image of the flow in the complex ¢— plane.

Figure 4. Computed profile for v; = £, v2 = § and F' = 1.27. The broken line indicates
the level of the free surface as |z| = oa.

Figure 5. Computed profile for v, = %, 72 = § and F = 1.23.
Figure 6. Highest solitary wave with F = 1.29 when 51, v2 — 5.

Figure 7. Relationship between the Froude number F and §; for various values of &,.

The broken line corresponds to the computed solution {22).

Figure 8. Computed profile for the flow past a finite flat plate with 120° angle corners

at the separation points for §; = 0.55, é> = 1 and F = 1.41.

~ Figure 9. Values of dimensionless height above or below the level at infinity a—1 = W;J,H
versus &, for various values of §;. The broken line is the computed solution for flows past

a flat plate of finite length with 120° angle corners.

Figure 10. Values of % versus 4 for various values of &;. Here L is the width LM of

the object (see Figure 1}. The broken line corresponds to the computed solution of (22).

Figure 11. Values of A versus 8y for various values of 8. Here h is the dimensionless

height from the bottom LM of the object to the separation points K and N.



Figure 12. Computed profile for & = §, 8, = } 3 = & and F = 1.25. The inclination

angle J is measured counterclockwise from the horizontal plane to the right front of the

object.

Figure 13. Computed profile for 6y = i, dg =33 =172and F =128
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