รายงานฉบับสมบูรณ์

โครงการวิจัยทุนพัฒนานักวิจัย รุ่นที่ 2 ประจำปี 2538

เรื่อง

การวิเคราะห์ความหลากหลายทางพันธุกรรมและการปรับปรุงสายพันธุ์ของ เชื้อกรดน้ำสัมที่ทนอุณหภูมิสูง ด้วยวิธีทางพันธุวิศวกรรม (Analysis of genetic variations and strain improvement of thermotolerant acetic acid bacteria by genetic engineering)

โดย

ผศ. ดร. กัญจนา ธีระกุล ภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

การสนับสนุนของสำนักงานกองทุนสนับสนุนการวิจัย และ

บันวิจัยและพัฒนาแห่งมหาวิทยาลัยเกษตรศาสตร์

(1 กันยายน 2538- 31 สิงหาคม 2541)

กิติกรรมประกาศ

ผู้วิจัยขอกราบขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และสถาบันวิจัยและ พัฒนาแห่งมหาวิทยาลัยเกษตรศาสตร์ (สวพ.) ที่ให้ทุนสนับสนุนการวิจัยและทุบสนับสนุนสมทบ ที่ ปรึกษาโครงการ (ศาสตราจารย์ นภา โล่ห์ทอง) และคณะกรรมการผู้ทรงคุณวุฒิทุกท่านที่กรุณาเสนอ แนะแนวทางการทำวิจัยเพื่อให้ได้ผลงานบรรลุวัตถุประสงค์ และขอขอบพระคุณภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ที่อนุเคราะห์สถานที่ทำวิจัยรวมทั้งสารเคมีพื้นฐานบาง ส่วนที่จำเป็นต่องานวิจัย

งานบางส่วนของโครงการนี้ได้รับทุนแลกเปลี่ยนนักวิจัยจากรัฐบาลญี่ปุ่น ภายใต้โปรแกรม Monbusho International Scientific Research Program: Kasetsart University-Yamaguchi University โดยได้รับความอนุเคราะห์และคำปรึกษาจาก Professor Dr. Osao Adachi, Professor Dr. Kazunobu Matsushita, Dr. Hirohide Toyama และ Mr. Akihiko Saeki จากมหาวิทยาลัยยามากูชิ เมืองยามากูชิ ประเทศญี่ปุ่น ซึ่งผู้วิจัยขอกราบขอบพระคุณในความอนุเคราะห์และช่วยเหลือไว้ ณ โอกาสนี้

สุดท้ายนี้ขอขอบคุณนิสิตทุกคนที่มีส่วนร่วมในการทำให้งานวิจัยนี้สำเร็จลุล่วงไปได้ด้วยดี

ผศ. ดร. กัญจนา ธีระกุล เมธีวิจัย สกว. รุ่นที่ 2 มีนาคม 2542

บทคัดย่อ

เชื้อกรดน้ำสัม หรือ acetic acid bacteria เป็นเชื้อที่มีบทบาทในอุตสาหกรรมการผลิตกรดน้ำสัม เนื่องจากสามารถออกซิไดซ์เอทานอลให้เป็นกรดน้ำสัม โดยอาศัยเอนไซม์ 2 ชนิดที่เยื่อหุ้มเซลล์ คือ alcohol dehydrogenase (ADH) และ aldehyde dehydrogenase (ALDH) นอกจากนี้ยังมีบทบาทใน การผลิต biopolymer เช่น เซลลูโลส จากการศึกษาสมบัติทางสรีรวิทยาและพันธุศาสตร์ของเชื้อกรดน้ำ สัมที่แยกได้ในประเทศไทยจำนวน 129 ไอโซเลต เปรียบเทียบกับสายพันธุ์มาตรฐานของญี่ปุ่น (IFO strains) จำนวน 15 สายพันธุ์ พบว่ามีเชื้อสายพันธุ์ไทยที่เจริญได้ที่อุณหภูมิ 40°C จำนวน 51 ไอโซเลต และสายพันธุ์ญี่ปุ่นที่เจริญได้ที่อุณหภูมิเดียวกัน 8 สายพันธุ์ จากการคัดเลือกเชื้อโดยอาศัยสมบัติทางสรี รวิทยาและความสามารถในการผลิตกรดที่อุณหภูมิต่างๆ พบว่าเชื้อกรดน้ำส้มที่แยกได้จากสับปะรดและ องุ่น คือ KU108 และ KU112 เป็นสายพันธุ์ที่ผลิตกรดน้ำส้มได้ดีที่อุณหภูมิสูงและทนต่อความเข้มข้น เริ่มต้นของกรดน้ำส้ม (3%) และเอทานอล (8%) ได้ดีที่สุด ซึ่งจากการจำแนกเชื้อโดยอาศัยสมบัติทางชีว เคมี พบว่า KU108 และ KU112 เป็นสายพันธุ์ Acetobacter pasteurianus

การศึกษาความหลากหลายทางพันธุกรรม พบว่าเชื้อส่วนใหญ่ทั้งสายพันธุ์ของไทยและญี่ปุ่น มีพลาสมิดที่มีขนาดเล็กอยู่เป็นจำนวนมาก ระหว่าง 1->10 พลาสมิด ส่วนการศึกษาการกระจายของ insertion sequence, IS1380 ซึ่งเป็นชิ้น DNA ที่แทรกเข้าไปตรงยืน alcohol dehydrogenase (adh gene) ในเชื้อกรดน้ำส้ม ปรากฏว่าตรวจพบ IS1380 ทั้งในเชื้อของไทยและญี่ปุ่นที่โครโมโชมและพลาส มิดขนาดใหญ่ แทบไม่พบสัญญานไฮบริไดซ์กับพลาสมิดขนาดเล็กที่มีอยู่หลายชนิด ซึ่งในจำนวนนี้มีสาย พันธุ์ที่พบสัญญานไฮบริไดซ์ที่ชัดเจนจำนวน 17 ไอโชเลต (ประมาณ 13% ของเชื้อทั้งหมด) ส่วนสาย พันธุ์ของญี่ปุ่นจำนวน 15 สายพันธุ์ ดรวจพบสัญญานไฮบริไดซ์ที่ชัดเจนใน 6 สายพันธุ์ (ประมาณ 40% ของเชื้อทั้งหมด) โดยการที่ตรวจพบสัญญานไฮบริไดซ์ที่ชัดเจนนี้ แสดงว่าเชื้อดังกล่าวมี IS1380 หรือมี DNA ที่มีลำดับนิวคลีโอไทด์คล้ายคลึงกับ IS1380 จำนวนหลายชุด (multicopies) โดยสายพันธุ์ที่พบว่า มี IS1380 หลายชุดนั้น แสดงว่ายืน adh ถูก inactivated และไม่สามารถเจริญในอาหารเลี้ยงเชื้อที่มีเอ ทานอลความเข้มขันสูง (8%) ที่อุณหภูมิ 37°C และไม่สามารถเจริญในอาหารเลี้ยงเชื้อที่มีกรดความเข้มขันสูง (3%) ทั้งที่อุณหภูมิ 30 และ 37°C

จากการศึกษาบทบาทของพลาสมิดในเชื้อกรดน้ำสัม A. pasteurianus KU108 โดยการทำ plasmid curing ด้วยสาร sodium dodecyl sulfate (SDS) ความเข้มขัน 2.5 มิลลิกรัมต่อมิลลิลิตร และ acridine orange ความเข้มขัน 10.0 ไมโครกรัมต่อมิลลิลิตร ในอาหารเลี้ยงเชื้อ potato medium พบว่า สามารถแยก curant ที่แทบไม่มีพลาสมิดเลยได้ทั้งสิ้น 3 โคโลนี โดย curant ทั้ง 3 โคโลนีที่แยกได้มี สมบัติต่างๆคล้ายกับ parent strain เช่น การทำให้เกิด overoxidation การเจริญที่อุณหภูมิ 40°C การ เจริญในอาหารเลี้ยงเชื้อที่มี เอทานอลผสมอยู่ 8% ที่อุณหภูมิ 37°C การเจริญในอาหารเลี้ยงเชื้อที่มีกรด น้ำส้มผสมอยู่ 3% ที่อุณหภูมิ 30°C และลักษณะของเซลล์ภายใด้กล้องจุลทรรศน์อิเลคตรอน การสร้าง กรดในอาหารเหลวที่มีเอทานอลผสมอยู่ 4% และ 8% ที่อุณหภูมิ 30, 37 และ 40°C

กิจกรรมของเอนไซม์ ADH และ ALDH ที่เตรียมจาก membrane fraction ของเชื้อที่เลี้ยงใน static culture สูงกว่า shaking culture และการทำ heme staining ของเอนไซม์ ADH (subunit II หรือ cytochrome c complex) ก็ให้ผลสอดคล้องกันคือ ในปริมาณโปรตีนที่เท่ากัน แถบของเอนไซม์ที่แยก จาก static culture มีความเข้มซัดกว่าจาก shaking culture และกิจกรรมของเอนไซม์ทั้งสองในอาหาร เลี้ยงเชื้อที่มีเอทานอลผสมอยู่จะสูงกว่าในอาหารเลี้ยงเชื้อที่ไม่มีเอทานอลหรือในอาหารเลี้ยงเชื้อที่มีกรด น้ำสัมผสมอยู่ แต่เมื่อทำ heme staining ของเอนไซม์ในสภาวะดังกล่าว ปรากฏว่าความเข้มของแถบ โปรตีนใกล้เคียงกันมาก แสดงว่าปริมาณของเอนไซม์ที่ membrane fraction ของเชื้อดังกล่าวใกล้เคียง แต่ต่างกันที่กิจกรรมของเอนไซม์ซึ่งอธิบายได้ว่าในสภาวะที่ไม่มีเอทานอลหรือในสภาวะที่มีกรดน้ำ ส้ม (low pH) จะพบเอนไซม์ ADH ในรูปของ inactive form ในอัตราส่วนที่สูงกว่าในสภาวะที่มีเอทานอล และจากการเปรียบเทียบกิจกรรมของเอนไซม์ทั้งสองในเชื้อกรดน้ำส้ม 10 ไอโซเลต พบว่าเอนไซม์ที่ แยกจาก A. pasteurianus KU108 มีกิจกรรมของเอนไซม์สูงสุด ซึ่งจากการศึกษาความสามารถในการ ทนอุณหภูมิสูงของเอนไซม์ทั้งสองจาก 10 ไอโซเลดข้างต้น โดยการ treat ที่อุณหภูมิที่อุณหภูมิต่างๆ คือ 30, 40, 50, 60 และ 70°C นาน 10 นาที พบว่าที่ 70°C ตรวจพบ residual activity ของเอนไซม์ ADH (3~4%) เฉพาะจากเอนไซม์ที่แยกจาก A. pasteurianus KU108 เท่านั้น ส่วนที่สภาวะเดียวกัน สำหรับเอนไซม์ ALDH พบ residual activity (3~4%) ใน A. pasteurianus KU108 ไอโซเลต KU111 KU112 และ saeki

จากการวิเคราะห์ Random Amplified Polymorphic DNA (RAPD) ด้วยปฏิกิริยาลูกโซ่โพลีเมอ เรส (Polymerase Chain Reaction, PCR) เปรียบเทียบระหว่างสายพันธุ์ที่ทนและสายพันธุ์ที่ไวต่อ อุณหภูมิสูง โดยใช้ random primers ทั้งสิ้น 51 primers พบว่ามีเพียง primer เดียว คือ AD01 (5'-CAAAGGGCGG-3') ที่สามารถสุ่มขยายได้ชิ้น DNA ที่เป็นลักษณะเฉพาะของกลุ่มที่ทนอุณหภูมิสูงและ ไม่พบในกลุ่มที่ไวต่ออุณหภูมิ คือ ชิ้น DNA ขนาด 1.0 และ 1.3 กิโลเบส ซึ่งชิ้น DNA ทั้งสองนี้อาจใช้ เป็น DNA marker ของการทนอุณหภูมิสูง ผู้วิจัยได้ subclone ชิ้น DNA ทั้งสองเข้าสู่ pGEM®-T Easy vector เพื่อหาลำดับนิวคลีโอไทด์ของชิ้น DNA ทั้งสองต่อไป

ABSTRACT

Acetic acid bacteria plays a role in vinegar industry because of its ability to oxidize ethanol to acetic acid by two membrane bound enzymes; alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Moreover, it also involve in biopolymer production such as cellulose. Studies on physiological and genetic characteristics of 129 isolates from various fruits in Thailand and 15 IFO strains from Japan showed that 51 isolates and 8 strains from Thailand and Japan, respectively can grow at 40°C. Two isolates designated as KU108 and KU112 isolated from pineapple and grape were selected due to their abilities to produce acetic acid at high temperature and their high toleration to acetic acid (3%) and ethanol (8%). According to classification based on biochemical characteristics these two isolates are identified as *Acetobacter pasteurianus*.

Analysis of genetic diversity showed that most of the new isolates and IFO strains harbor many small plasmids inside the cells ranging from 1 to >10 plasmids. Studies on distribution of insertion sequence, IS1380, inserted into alcohol dehydrogenase gene indicated that IS1380 was found on chromosome and large plasmid but not on small plasmid. Strong hybridization signals were detected in 17 Thai isolates (13% of total isolates) and 6 IFO strains (40% of total strains). This strong hybridization signals implicated that these bacteria harbor IS1380 or DNA containing multicopies of IS1380 homologs resulted in an inactivation of adh gene. So these isolates could not grow in a medium containing 8% ethanol at 37°C and in a medium containing 3% acetic acid both at 30 and 37°C.

In order to study a role of plasmid in *A. pasteurianus* KU108, plasmid curing was done by sodium dodecyl sulfate (SDS) and acridine orange treatments in potato medium. Three curants possess no plasmid were obtained and all of them showed similar growth characteristics to the parent strain such as overoxidation, growth at 40°C, growth in a medium containing 8%ethanol at 37°C, growth in a medium containing 3% acetic acid at 30°C, electron microscopic appearance and acetic acid production at 30, 37 and 40°C.

Enzyme activities of ADH and ALDH prepared from membrane fraction of a culture grown in static culture was higher than the one obtained from shaking culture. Moreover, heme staining of subunit II or cytochrome c subunit of ADH also showed that with the same amount of protein, a heme staining band of ADH from static culture was darker that the one from shaking culture. Enzyme activities of ADH and ALDH from culture grown in a medium containing ethanol was also higher than that from a culture grown in a medium with no ethanol or containing acetic acid. However, a heme staining band of ADH from membrane fraction of both cultures showed a same intensity. One reason for this phenomenon may be due to an

inactivation of ADH protein from active to inactive form in the cultures grown in an ethanol free medium or in medium containing acetic acid (low pH). Comparison of enzyme activities from 10 thermotolerant isolates from Thailand indicated that the highest activities of both ADH and ALDH were obtained from *A. pasteurianus* KU108. Studies on stability of these enzymes at 30, 40, 50, 60 and 70°C for 10 minutes showed that at 70°C, 3-4% residual activity of ADH was obtained only in membrane fraction of *A. pasteurianus* KU108. At the same condition, 3-4% residual activity of ALDH were obtained from membrane fractions of KU108, KU111, KU112 and saeki.

Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to investigate the genetic variations between thermotolerant and thermosensitive strains. Among 51 random primers only one primer known as AD01 (5'-CAAAGGGCGG-3') could random amplify two specific DNA bands of 1.0 and 1.3 kb only with DNA isolated from thermotolerant strains. These two DNA bands may be a DNA marker of thermotolerance. Subcloning of these two DNA fragments into pGEM[®]-T Easy and nucleotide sequencing is in progress.

แผนดำเนินงานตลอดโครงการ 3 ปี

→ = แผนงานที่เสนอจะทำ = แผนงานที่ทำเสร็จแล้ว

	การดำเนินงาน	ปีที	1	ปีที	2	ปีที่ 3	
		เดือนที่	เดือนที่	เดือนที่	เดือนที่	เดือนที่	เดือนที่
		1-6	7-12	1-6	7-12	1-6	7-12
	1. การศึกษา plasmid profile						
	1.1 คัดเลือกและจัดกลุ่มสายพันธุ์ที่มีอยู่เป็น						
	กลุ่มทนและไม่ทนอุณหภูมิสูง						
	1.2 แยกสกัดและวิเคราะห์ดีเอนเอจากสาย						
	พันธุ์ข้างต้น						ĺ
	2. การทำ RAPD ของ total DNA						ĺ
	2.1 ออกแบบและเตรียม DNA primer						
	2.2 ทำปฏิกิริยา PCR และวิเคราะห์ผล		_				
	เปรียบเทียบระหว่างกลุ่มที่ทนและไม่			*			ĺ
	ทนอุณหภูมิสูง						
	3. การตรวจหา Insertion sequence	ĺ	:				
	3.1 แยกสกัดดีเอนเอและเตรียม DNA	}					
	probe						
	3.2 ทั่ว Southern hybridization และ		}			}	ľ
	วิเคราะห์ผล						
The second second	4. การทำ plasmid curing						
100.00	4.1 เลือกใช้สารที่เหมาะสม						
- 1425.4°	4.2 วิเคราะห์สมบัติของ curant ที่ได้	,		} :			
CALL AND AND AND A STATE OF	5. การปรับปรุงสายพันธุ์ด้วยวิธีทางพันธุ						ĺ
Mary Carlot	วิศวกรรม						
	5.1 ศึกษาการสร้างกรดที่สภาวะต่าง ๆของ					<u> </u>	
	สายพันธุ์ที่ทนอุณหภูมิสูง						
TAPE AT	5.2 ศึกษาสมบัติของเอนไซม์ alcohol						
į	dehydrogenase (adh)						
- Make (-)	5.3 การโคลนยืน <i>adh</i>					<u> </u>	
1			J		<u> </u>		

สารบัญ

สารบัญ	หน้า
รายงานประจำปีปีที่ 1	1
	•
รายงานประจำปีปีที่ 2	22
รายงานประจำปีปีที่ 3	50
รายงานการเงิน	61
output ที่ได้	66

- Saeki, A., G. Theeragool, K. Matsushita, H. Toyama, N. Lotong and O. Adachi. 1997.
 Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosc. Biotech. Biochem. 61:138-145.
- Saeki, A., M. Taniguchi, K. Matsushita, H. Toyama, G. Theeragool, N. Lotong and O. Adachi. 1997. Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosc. Biotech. Biochem. 61:317-323.
- Theeragool, G, W. Jaiwisuthunsa, N. Lotong, H. Toyama, K. Matsushita and O. Adachi.
 1999. Plasmid Profile and distribution of IS1380 in thermotolerant acetic acid bacteria isolated in Thailand. Biosc. Biotech. Biochem (submitted)

Executive Summary

จากการศึกษาสมบัติทางสรีรวิทยาและพันธุกรรมของเชื้อกรดน้ำสัมที่แยกได้ในประเทศไทย จำนวน 129 ไอโซเลท เปรียบเทียบกับสายพันธุ์มาตรฐานของญี่ปุ่น (IFO strains) จำนวน 15 สาย พันธุ์ ปรากฏว่า พบเชื้อสายพันธุ์ไทยที่เจริญได้ที่อุณหภูมิ 40°C จำนวน 51 ไอโซเลท แล๊ะสายพันธุ์ ญี่ปุ่นที่เจริญได้ 8 สายพันธุ์ ซึ่งในจำนวนนี้ส่วนใหญ่เป็นเชื้อที่มีลักษณะโคโลนีขรุขระ (rough colony, Ro) หรือโคโลนีเรียบที่มีเมือก อันเนื่องมาจากการสร้างสารโพลีแชคคาไรด์ ทำให้ได้ข้อสังเกตุว่าเชื้อ กรดน้ำส้มที่สร้างสารโพลีแชคคาไรด์ ส่วนเชื้อ ที่ทนทั้งอุณหภูมิสูงและความเข้มขันเริ่มต้นของกรดน้ำส้ม 3% ได้ มีจำนวนทั้งสิ้น 11 ไอโซเลท คือ KU92, KU102, KU105, KU108, KU110, KU112, KU113, KU114, KU115, KU116 และ KU117 ส่วนเชื้อสายพันธุ์ของญี่ปุ่นมีเพียงสายพันธุ์เดียวคือ IFO12467 ที่สามารถทนทั้งอุณหภูมิสูง และความเข้มขันเริ่มต้นของกรดน้ำส้ม 3% ได้ ส่วนการเจริญในอาหารเลี้ยงเชื้อที่มีเอทธานอลความเข้มขันเริ่มต้น 8% นั้น พบว่าส่วนใหญ่มีเฉพาะสายพันธุ์ที่แยกได้ในประเทศไทยเท่านั้นที่เจริญได้ในสภาวะ ดังกล่าว จากการคัดเลือกเชื้อโดยอาศัยสมบัติทางสรีรวิทยาดังกล่าวข้างต้นและผลการศึกษาความ สามารถในการผลิตกรดที่อุณหภูมิต่างๆ พบว่าเชื้อกรดน้ำส้ม A. lovaniensis KU108 และ KU112 เป็น สายพันธุ์ที่ทนอุณหภูมิสูงและทนต่อความเข้มขันเริ่มต้นของกรดน้ำส้ม (3%) และเอทธานอล (8%) ได้ ดีที่สุด

การศึกษาความหลากหลายทางพันธุกรรมของเชื้อดังกล่าวทั้งหมดข้างต้น โดยการแยกสกัดดี เอนเอทั้งหมดภายในเซลล์ (โครโมโซมและพลาสมิด) แล้ววิเคราะห์ในอะกาโรสเจลอิเลตโตรโฟเรซีส ปรากฏว่าเชื้อส่วนใหญ่ทั้งสายพันธุ์ของไทยและญี่ปุ่น มีพลาสมิดอยู่เป็นจำนวนมาก ซึ่งส่วนใหญ่เป็นพลา สมิดที่มีขนาดเล็ก และพลาสมิดเหล่านี้อาจเป็นสาเหตุที่ทำให้เกิดความผันแปรทางพันธุกรรมในเชื้อกลุ่ม นี้ นอกจากนี้พลาสมิตดังกล่าวอาจนำมาใช้เป็น cloning vector ในเชื้อกลุ่มนี้ได้อีกด้วย จากการศึกษา การกระจายของ **is 1380** ในเชื้อกรดน้ำส้ม ปรากฏว่าตรวจพบ IS1380 ในเชื้อกรดน้ำส้มสายพันธุ์ไทย ทั้งสิ้น 36 ไอโซเลท (ประมาณ 27.90% ของเชื้อทั้งหมด) โดยสัญญานไฮบริไดช์ส่วนใหญ่ที่ตรวจพบ ทั้งในเชื้อของไทยและญี่ปุ่นจะพบที่โครโมโชมและพลาสมิดขนาดใหญ่ แทบไม่พบสัญญานไฮบริไดช์กับ พลาสมิดขนาดเล็กที่พบว่ามีอยู่มากมายหลายชนิด ซึ่งในจำนวนนี้มีสายพันธุ์ที่พบสัญญานไฮบริไดซ์ที่ ชัดเจนจำนวน 17 ไอโซเลท คือ KU11, KU13, KU44, KU48, KU55, KU556, KU62, KU79, KU84, KU85, KU94, KU95, KU96, KU97, KU100 และ KU101 ส่วนสายพันธุ์ของญี่ปุ่นจำนวน 15 สายพันธุ์ ตรวจพบสัญญานไฮบริไดซ์ที่ชัดเจนใน 6 สายพันธุ์ และเชื้อที่พบสัญญานไฮบริไดซ์ที่ ชัดเจนมักจะไม่สามารถเจริญในอาหารเลี้ยงเชื้อที่มีเอทธานอล ความเข้มขันสูง(8%) ที่อุณหภูมิ 37°C และไม่สามารถเจริญในอาหารเลี้ยงเชื้อที่มีกรดน้ำสัมความเข้มขันสูง(3%) ทั้งที่อุณหภูมิ 30[°]C และ 37°C

แผนดำเนินงานตลอดโครงการ 3 ปี

การดำเนินงาน	ปีร์	1 1	ปีร	ที่ 2	ปีที่ 3		
	เดือนที่1-6	เดือนที่ 7-12	เดือนที่ 1-6	เดือนที่7-12	เดือนที่ 1 - 6	เดือนที่7-12	
1. การศึกษา plasmid profile							
1.1 คัดเลือกและจัดกลุ่มสาย	←					ļ.,	
พันธุ์ที่มีอยู่เป็นกลุ่มทน							
และไม่ทนอุณหภูมิสูง							
1.2 แยกสกัดดีเอนเอจาก							
ลายพันธุ์ข้างดัน วิ	2-25 A 1 1 1 1 1 1 2 1 1 1	and the second		ļ	}		
เคราะห์ในอะกาโรสเจล							
อิเลคโดรฟอเรซีสและ							
เปรียบเทียบผลที่ได้							
2. การทำ RAPD ของ							
DNAจากเชื้อกรดน้ำสัม							
2.1 การออกแบบและ				\ <u></u>			
เครียม DNA primer							
2.2 การทำปฏิกิริยา PCR							
	◀						
เทียบระหว่างกลุ่มที่ทน							
และไม่ทนอุณหภูมิสูง						}	
3. การตรวจหา Insertion							
sequence							
3.1 แยกสกัดดีเอนเอและ					1		
เดรียม DNA probe		OFFICE CONT.			ļ		
3.2 ทำ Southern		` `					
hybridization และ			-				
วิเคราะห์ผล			THE RUNCHES	THE DEPOSIT OF THE PARTY.			
4. การทำพลาสมิดคิวริ่ง							
(plasmid curing)							
4.1 การเลือกใช้สารที่				ĺ			
เหมาะสมในการทำ							
plasmid curing			ĺ				
4.2 การวิเคราะห์คุณสมบัติ				_			
ของ curant ที่ได้							
5. การปรับปรุงลายพันธุ์ด้วย							
วิธีทางพันธุวิศวกรรม				ĺ	-	-	
1						L	

<code-block></code>

= แผนงานที่ทำเสร็จแล้ว

ผลงานวิจัยที่ทำในรอบปี

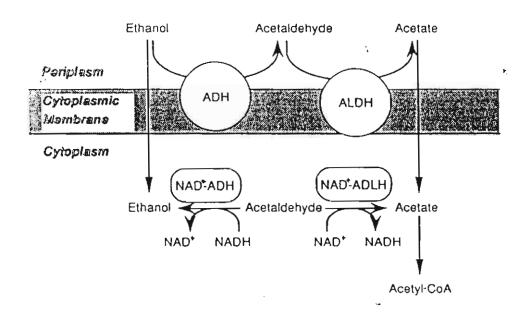
(1) วัตถุประสงค์

1.1 เพื่อศึกษาสมบัติทางสรีรวิทยาเบื้องตันที่สำคัญของเชื้อกรดน้ำสัมที่แยกได้ในประเทศไทย เปรียบเทียบกับสายพันธุ์ของญี่ปุ่นที่ผ่านการคัดเลือกและจำแนกสายพันธุ์แล้ว เช่น

การเจริญที่อุณหภูมิ 40°C เพื่อคัดเลือกสายพันธุ์ที่ทนอุณหภูมิสูง หรือ thermotolerant strains การทนต่อความเข้มขันเริ่มต้นของกรดน้ำส้ม 3% เพื่อคัดเลือกสายพันธุ์ที่ทนความเข้มขันเริ่มต้น ของกรดน้ำส้มได้สูง

การทนต่อความเข้มข้นเริ่มต้นของเอทธานอล 8% เพื่อคัดเลือกสายพันธุ์ที่ทนความเข้มขันเริ่ม ต้นของเอทธานอลได้สูง

การเกิด overoxidation เพื่อคัดเลือกสายพันธุ์ที่ไม่เกิด overoxidation ซึ่งเป็นการออกซิไดซ์กรด น้ำสัมที่สร้างขึ้นไปเป็น คาร์บอนไดออกไซด์และน้ำ ทำให้ได้เปอร์เซนต์ของกรดน้ำสัมต่ำลง


ลักษณะการเจริญแบบ static growth ในอาหารเหลว เพื่อตรวจสอบการสร้างสารโพลีแชคคาไรด์ หรือเซลลูโลส

- 1.2 เพื่อศึกษาความหลากหลายทางพันธุกรรมของเชื้อที่แยกได้ข้างต้น โดยวิเคราะห์ plasmid profiles ของเชื้อแต่ละไอโซเลท
- 1.3. เพื่อศึกษาการกระจายของ Insertion Sequence, IS1380 ซึ่งเป็นดีเอนเอที่เคลื่อนที่ได้ และเป็นสาเหตุสำคัญที่ทำให้เชื้อกรดน้ำส้มสูญเสียสมบัติในการออกชิไดช์เอทธานอลให้เป็นกรดน้ำส้ม

(2) การดำเนินงานในรอบปีที่ผ่านมา

2.1 การศึกษาสมบัติเบื้องต้นทางสรีรวิทยาที่สำคัญของเชื้อกรดน้ำส้ม

เชื้อกรดน้ำสัม เป็นเชื้อที่มีบทบาทในอุ๊ตสาหกรรมการผลิตกรดน้ำสัม หรือน้ำสัมสายซู เนื่องจาก สามารถออกซิไดซ์เอทธานอล ให้เป็นกรดน้ำสัม โดยอาศัยเอนไซม์สองชนิดคือ alcohol dehydrogenase และ aldehyde dehydrogenase (Ameyama and Adachi, 1982a,b) ดังแสดงในภาพที่ 1 โดยทั่วไป เชื้อกรดน้ำสัมจะเจริญได้ดีที่อุณหภูมิประมาณ 30°C การที่อุณหภูมิเพิ่มขึ้นเพียงเล็กน้อย จะมีผลทำให้ อัตราการเจริญและประสิทธิภาพในการออกซิไดซ์เอทธานอลด่ำลง และถือว่า เชื้อกรดน้ำสัมที่เจริญได้ดี ที่อุณหภูมิ 37°C หรือสูงกว่า เป็นเชื้อที่ทนอุณหภูมิสูง (thermotolerant หรือ thermophilic strains) การศึกษาสมบัติการทนอุณหภูมิสูง ทนต่อความเข้มขันของอัลกอฮอล์ และกรดน้ำส้ม จึงเป็นผมบัติ เบื้องต้นทางสรีรวิทยาที่สำคัญและนำมาใช้ในการจัดจำแนกเชื้อในกลุ่มนี้

ภาพที่ 1 ระบบการออกชิไดซ์เอทธานอลในเชื้อกรดน้ำส้ม โดยเอนไซม์ alcohol dehydrogenase (ADH) และ aldehyde dehydrogenase(ALDH) ที่เป็น quinoprotein จะฝังดัวอยู่ในชั้น outer membrane ในขณะที่เอนไซม์ alcohol dehydrogenase(NAD[†]-ADH) และ aldehyde dehydrogenase (NAD[†]-ALDH) ที่เป็น NAD[†]-dependent จะอยู่ใน cytoplasm

ที่มา : Matsushita et al., Adv. Microb. Physiol. 36 : 247-301.

ในงานวิจัยนี้ได้ศึกษาสมบัติเบื้องด้นทางสรีรวิทยาที่สำคัญของเชื้อกรดน้ำส้ม 129 ไอโซเลท ซึ่ง ส่วนใหญ่แยกจากผลไม้ต่างๆจำนวน 13 ชนิด คือ กล้วย(banana) ฝรั่ง(guava) มะไฟ(rambeh) สับปะรด(pineappie, pineapp) ส้ม(orange) เชอรี่(cherry) ลิ้นจี่(lychee) มังคุด(mangosteen, mangost) ชมพู่(roseapple, roseapp) องุ่น(grape) แตงโม(watermelon, waterme) กระท้อน(santol) และลองกอง(longkon) เปรียบเทียบกับเชื้อกรดน้ำส้มสายพันธุ์ของญี่ปุ่น 15 สายพันธุ์ โดยสมบัติ เบื้องต้นทางสรีรวิทยาที่สำคัญที่ทำการศึกษา คือ

- 1. การศึกษาลักษณะโคโลนีและการเกิด overoxidation หรือ acetate oxidation โดยดูจากการ เปลี่ยนสีโคโลนีบนอาหาร seed culture (ที่มีเอทธานอล 1% และ bromcresol purple 0.003%) จากสี เหลืองเป็นสีม่วง ซึ่งแสดงว่ามีการออกซิไดซ์กรดน้ำสัมที่สร้างขึ้นต่อไป ทำให้ความเป็นกรดลดลง bromcresol purple จึงเปลี่ยนจากสีเหลืองเป็นสีม่วง
- 2. การศึกษาลักษณะการเจริญแบบ static growth ในอาหารเหลว เพื่อตรวจสอบการสร้างสาร โพลีแชคคาไรด์ หรือเซลลูโลส โดยดูการเจริญในอาหารเหลว potato extract หลังจากการบ่มที่อุณหภูมิ ^{30°}C เป็นเวลา 3 วัน โดยไม่มีการเขย่า

- 3. การศึกษาการเจริญที่อุณหภูมิ 40°C โดยดูการเจริญในอาหารเหลว potato extract (0.5% glucose, 1.0% yeast extract, 1.0% polypeptone and 15% potato extract) หลังจากการบ่มที่ อุณหภูมิ 40°C เป็นเวลา 3 วัน ในเครื่องเขย่าที่ความเร็วรอบ 220 รอบ/นาที
- 4. การศึกษาการทนต่อความเข้มข้นเริ่มต้นของกรดน้ำส้ม 3% ที่อุณหภูมิ 30°C และ 37°C โดยดูการเจริญบนอาหาร seed culture (0.5% glucose, 0.5% yeast extract, 0.5% polypeptone, 0.5% glycerol and 1.5% agar) ที่ใส่กรดน้ำส้มลงไปให้มีความเข้มข้นเริ่มต้น 3% หลังจากการบ่มที่ อุณหภูมิ 30°C และ 37°C เป็นเวลา 3 วัน
- 5. การศึกษาการทนต่อความเข้มข้นเริ่มต้นของเอทธานอล 8 % ที่อุณหภูมิ 30°C และ 37°C โดยดูการเจริญบนอาหาร seed culture ที่ใส่เอทธานอลลงไปให้มีความเข้มข้นเริ่มต้น 8% หลังจากการ บ่มที่อุณหภูมิ 30°C และ 37°C เป็นเวลา 3 วัน

2.2 การวิเคราะห์ความหลากหลายทางพันธุกรรมของเชื้อกรดน้ำส้ม

จากรายงานความไม่เสถียรทางพันธุกรรมของเชื้อกรดน้ำสัม(Ohmori et al., 1982; Okumura et al., 1985) การพบความหลากหลายของพลาสมิด(Fukaya et al., 1985; Mariette et al., 1991) รวมทั้งการพบดีเอนเอซึ่งเคลื่อนที่ได้(mobile DNA) ที่เรียกว่า insertion sequence เช่น IS1031 ใน เชื้อ A. xylinum ซึ่งเป็นสาเหตุให้เชื้อสูญเสียความสามารถในการสร้างเซลลูโลส(Coucheron, 1991) และ IS1380 ในเชื้อ A. pasteurianus ซึ่งเป็นสาเหตุให้เชื้อสูญเสียความสามารถในการออกซิไดช์ เอทธานอลให้เป็นกรดน้ำสัม(Takemura et al., 1991) ผู้วิจัยจึงคึกษาความหลากหลายของพลาสมิดใน เชื้อกรดน้ำสัมที่แยกได้ในประเทศไทย หรือที่เรียกว่า plasmid profile analysis ซึ่งสามารถใช้เป็น ลักษณะทางพันธุกรรมในการกำกับสายพันธุ์ต่างๆ และเป็นพื้นฐานในการศึกษาความสัมพันธ์ระหว่าง ลักษณะทางสรีรวิทยาและสารพันธุกรรมที่มีอยู่ในเซลล์ รวมทั้งการศึกษาบทบาทของพลาสมิดที่อยู่ภาย ในเซลล์

การแยกสกัดดีเอนเอทั้งหมด

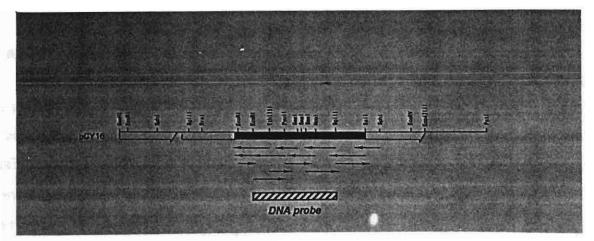
ทำการแยกสกัดดีเอนเอทั้งหมดจากเชื้อกรดน้ำส้มที่แยกได้ในประเทศไทย จำนวน 129 ไอ โซเลท และสายพันธุ์มาดรฐานของญี่ปุ่น (IFO strains) จำนวน 15 สายพันธุ์ โดยวิธี Alkaline hydrolysis ดังขั้นตอนต่อไปนี้

เลี้ยงเชื้อกรดน้ำส้มในอาหารเลี้ยงเชื้อ potato extract medium โดยการเขย่าที่ 30°C นาน 24 ชั่วโมง เทน้ำเลี้ยงเชื้อใส่ลงในหลอภปั่นขนาด 1.5 มิลลิลิตร ปั่นที่ 10,000 รอบ/นาที นาน 5 นาที เพื่อ เก็บตะกอนเซลล์ นำตะกอนเซลล์มา resuspend ใน solution I (50 mM Tris-Cl pH 8.0 และ 10 mM EDTA pH 8.0) ผสมให้ suspension เป็นเนื่อเดียวกัน เติม 40 ไมโครลิตร ของ lysozyme solution (10 มิลลิกรัม/มิลลิลิตร ของผงไลโซไซม์ใน solution I) เขย่าให้เข้ากันดี บ่มที่ 37°C นาน 30 นาที เติม 200 ไมโครลิตร ของ solution II (0.2N NaOH และ 1% SDS) เขย่าเบาๆให้เข้ากัน แล้วแช่ในน้ำ

แข็งนาน 5 นาที เติม 150 ไมโครลิตร ของ solution III (5.0M potassium acetate 60 มิลลิลิตร glacial acetic acid 11.5 มิลลิลิตร และ distilled water 28.5 มิลลิลิตร) เขย่าให้เข้ากัน แล้วแช่ในน้ำ แข็งนาน 5 นาที ปั่นที่ 10,000 รอบ/นาที นาน 10 นาที เพื่อแยกเศษเซลล์ สารโพลีแซคคาไรด์และ ดูดเฉพาะสารละลายใสส่วนบนใส่หลอดใหม่ ดะกอนสิ่งปนเปื้อนออกจากสารละลาย ไมโครลิตร ของสารละลายผสม phenol : chloroform (1:1) เขย่าให้เข้ากัน แล้วแช่ในน้ำแข็งนาน 5 นาที ปั่นที่ 10,000 รอบ/นาที นาน 10 นาที เพื่อแยกตะกอนสิ่งปนเปื้อนออกจากสารละลาย ดูดเฉพาะ สารละลายใสส่วนบนใส่หลอดใหม่ (ถ้าสารละลายส่วนบนมีลักษณะขุ่นขาว ควรเติม 10% ctab in 0.7M Naci ลงไป 1 ใน 10 ของปริมาตรรวม เขย่าให้เข้ากัน อุ่นที่ 65°c นาน 10 นาที แล้ว สกัดด้วย phenol : chloroform ซ้ำ) เดิม absolute ethanol ลงไป 2 เท่าของปริมาตรรวม ผสมให้เข้า กัน แช่ไว้ที่ -80°C ประมาณ 30 นาที ปั่นที่ 12,000 รอบ∕นาที นาน 20-30 นาที เก็บตะกอนของ กรดนิวคลีอิค ล้างด้วย 70% ethanol ปั่นตกตะกอนซ้ำ ปล่อยให้ตะกอนแห้งพอประมาณ ละลายตะกอน ใน 100 ไมโครลิตร ของ TE buffer+RNase (20 ไมโครกรัม/มิลลิสิตร) บุ่มที่ 37°C นาน 60 นาที เดิม 20% polyetylene glycol 6000 in 2.5 M NaCl ลงไป 60 ไมโครลิตร เขย่าให้เข้ากัน แช่น้ำแข็ง นาน 60 นาที ปั่นที่ 12,000 รอบ/นาที นาน 20-30 นาที เก็บตะกอนดีเอนเอ ปล่อยให้ตะกอนแห้ง พอประมาณ แล้วละลายใน 100 ไมโครลิตรของ 0.3 M sodium acetate pH 5.2 เดิม absolute ethano! ที่แช่เย็นจัดลงไป 400 ไมโครลิตร ผสมให้เข้ากัน แช่ไว้ที่ -80°C ประมาณ 30 นาที ปั่นที่ 12,000 รอบ/นาที นาน 20-30 นาที เก็บตะกอนดีเอนเอ ล้างด้วย 70% ethanol ปั่นตกตะกอนช้ำ ปล่อยให้ตะกอนแห้งพอประมาณ แล้วละลายใน 40 ไมโครลิตรของ TE buffer เก็บสารละลายดีเอนเอไว้ ที่ -20°C

การวิเคราะห์ดีเอนเอโดยอะกาโรสเจลอิเลคุโตรโฟเรซีส

เตรียมอะกาโรสเจลใน 1x TAE buffer (Tris-acetate buffer)ให้มีความเข้มข้น 0.9 % ผสม ตัวอย่างดีเอนเอกับ get loading buffer (bromophenol blue 0.25% and glycerol 30%) หยอดลงใน หลุมของเจลอะกาโรสที่เตรียมไว้ นำพิมพ์เจลวางในเครื่องอิเลคโตรโฟเรซีสที่มี 1x TAE buffer อยู่พอให้ ท่วมเจล แยกดีเอนเอด้วยกระแสไฟฟ้าแรงเคลื่อน 50 หรือ 100 โวลต์ เป็นเวลาประมาณ 60 หรือ 30 นาที นำเจลไปย้อมสีในสารละลาย ethidium bromide ประมาณ 5-10 นาที ล้างด้วยน้ำสะอาด ส่องดู ภายใต้แลง UV


2.3 การศึกษาการกระจายของ Insertion Sequence, IS 1380 โดยวิธี Southern hybridization การเตรียมดีเอนเอติดตาม (DNA probe)

ชิ้นดีเอนเอที่นำมาใช้เป็นดีเอนเอติดตาม เป็นชิ้นดีเอนเอขนาดประมาณ 1.3 กิโลเบส มีสมบัติ เป็น Mobile DNA หรือ Insertion Sequence เรียกว่า IS*1380* ซึ่งเป็น insertion sequence ชนิดใหม่ที่ พ[ี]บในเชื้อกรดน้ำสัมที่เป็น thermophilic strain (*Acetobacter pasteurianus* NCI1380) และเป็น insertion sequence ที่แทรกเข้าไปอยู่ตรงกลุ่มยืน adh (alcohol dehydrogenase) ในส่วนของ cytochrome c subunit (กลุ่มยืน adh ของ A. pasteurianus ประกอบด้วย 2 subunits คือ dehydrogenase กับ cytochrome c subunits) ทำให้เมื่อเลี้ยงเชื้อนี้ไปนานๆจะทำให้เกิด spontaneous mutation ทำให้ได้ mutant ที่ไม่สามารถออกซิไดซ์เอทธานอลให้เป็นกรดน้ำส้มได้ โดย IS1380 จะ แทรกเข้าไปตรงบริเวณที่มีลำดับนิวคลีโอไทด์เป็น TCGA อย่างค่อนข้างจำเพาะเจาะจง

เอนไซม์ alcohol dehydrogenase และ aldehyde dehydrogenase เป็นเอนไซม์ที่สำคัญมาก ของเชื้อกรดน้ำสัม ถ้าเอนไซม์ดัวใดตัวหนึ่งถูก inactivated จะมีผลทำให้เชื้อนี้สูญเสียสมบัติที่สำคัญไป ดังนั้นจึงควรตรวจหาการกระจายของ IS 1380 ซึ่งเป็นสาเหตุที่ทำให้เอนไซม์ถูก inactivated ในเชื้อกรด น้ำสัมก่อนที่จะมีการนำไปใช้ในระดับอุตสาหกรรม

การแยกบริสุทธิ์ชิ้นดีเอนเอที่มี IS1380 ทำได้โดยการตัดพลาสมิด pUCIS1380 (พลาสมิด pUC19 ที่มีชิ้นดีเอนเอ IS1380 ขนาดประมาณ 1.3 กิโลเบสแทรกอยู่ตรง Smal site ของ polycioning site) ด้วยเอนไซม์ดัดจำเพาะ EcoRI และ HindIII ดังแสดงในภาพที่ 2 แยกบริสุทธิ์ชิ้นดีเอนเอขนาด ประมาณ 1.3 กิโลเบส ออกจากเจลอะกาโรสโดยใช้กระดาษ DE81 นำชิ้นดีเอนเอที่แยกบริสุทธิ์ใต้มาติด ฉลากด้วย HRP (horseradish peroxidase) โดยวิธี ECL direct system ของ Amersham ดังนี้

ปิเปดสารละลายดีเอนเอ 10 ไมโครลิตร (ประมาณ 500 นาโนกรัม) ใส่ในหลอดปั่นขนาดเล็ก ด้มสารละลายดีเอนเอในน้ำเดือด นาน 5 นาที แล้วแช่น้ำแข็งทันที ทิ้งไว้ 5 นาที ปั่นแบบ briefly spin 2-3 วินาที เดิมสารละลาย DNA Labelling solution ลงไป 10 ไมโครลิตร ผสมให้เข้ากัน แล้วปั่นแบบ briefly spin 2-3 วินาที เติมสารละลาย glutaraldehyde ลงไป 10 ไมโครลิตร ผสมให้เข้ากัน แล้วปั่น แบบ briefly spin 2-3 วินาที บ่มที่ 37°C นาน 10 นาที แล้วนำมาใช้ทันที หรืออาจเก็บไว้ในน้ำแข็งได้ ประมาณ 10-15 นาที

ภาพที่ 2 แผนที่เอนไซม์ตัดจำเพาะ (restriction map) ของ insertion sequence, IS1380, ที่แทรกเข้า ไปใน cytochrome c ซึ่งเป็น subunit หนึ่งของเอนไซม์ alcohol dehydrogenase ในเชื้อ A. Pasteurianus NCI1380 โดย hatch box แสดงชิ้นดีเอนเอที่ใช้เป็น DNA probe และ ลูกศร แสดง sequencing strategy

ที่มา : Takemura et al., J. Bacteriol. 173 : 7070-7076.

การทำ Southern hybridization

ทำการ transfer ดีเอนเอทั้งหมดของเชื้อกรดน้ำส้ม จากเจลอะกาโรสเข้าสู่แผ่น nylon membrane โดยวิธี Southern transfer ดังขั้นตอนต่อไปนี้

แช่แผ่นเจลอะกาโรสในสารละลาย 0.25 N HCI นาน 15 นาที เพื่อไฮโดรไลซ์ดีเอนเอที่มีขนาด ใหญ่ เทสารละลาย 0.25 N HCl ทิ้ง ล้างเจลด้วยน้ำกลั่น นำแผ่นเจลอะกาโรสมาแช่ใน denaturing solution นาน 15 นาที เพื่อทำให้ดีเอนเอสายคู่คลายเกลียวเป็นสายเดี๋ยว เท denaturing solution ทิ้ง ล้างเจลด้วยน้ำกลั่น นำแผ่นเจลอะกาโรสมาแช่ใน neutralyzing solution นาน 15 นาที แล้วนำมาวาง บนถาดเจลที่วางคว่ำอยู่ในอ่างที่มีสารละลาย 10xSSC(0.15M Na-citrate and 1.5M NaCl pH 7.0) เพื่อทำการ transfer ดีเอนเอเข้าสู่แผ่น nylon membrane N๋ นำแผ่น nylon membrane ที่ผ่านการทำ Southern transfer มา fix ด้วยแสง UV เพื่อให้ดีเอนเอถูกตรึงอยู่ในแผ่น nylon membrane นำแผ่น nylon membrane มาใส่ในถุงพลาสติก (hybridization bag) prehybridize แผ่น nylon membrane ใน hybridizing solution(ECI hybridization buffer containing 0.5M NaCI and 5.0% blocking agent) ที่ 42°C อย่างน้อย 1 ชั่วโมง เท hybridizing solution เก่าทิ้งไป ใส่ hybridizing solution ที่มี DNA probe ผสมอยู่ลงไป ทำ hybridization ที่ 42°C หนึ่งคืน ล้างแผ่น nylon membrane ด้วย primary washing buffer(0.1xSSC, 0.4% SDS and 6.0M urea) สองครั้งๆละ 10 นาที ที่อุณหภูมิ 55°C ล้างแผ่น nylon membrane ซ้ำด้วย secondary washing buffer(2xSSC) สองครั้งๆละ 5 นาที ที่อุณหภูมิห้อง ปล่อยให้แห้งตรวจสัญญานไฮบริไดซ์ (hybridization signal) โดยใช้สารละลายผสมระหว่าง detection reagent 1 และ 2 ราดลงบนแผ่น nylon membrane ปิดทับด้วยพลาสดิกใส วางแผ่นฟิล์ม X-ray ทาบ ลงไป ทำ autoradiograph หนึ่งคืน

(3) ผลที่ได้รับ

3.1 สมบัติเบื้องต้นทางสรีรวิทยาที่สำคัญข้องเชื้อกรดน้ำส้ม

สมบัติเบื้องต้นทางสรีรวิทยาของเชื้อกรดน้ำส้มที่แยกได้ในประเทศไทย จำนวน 129 ไอโซเลท และสายพันธุ์ของญี่ปุ่นจำนวน 15 สายพันธุ์ ที่ทำการศึกษาในครั้งนี้คือ 1) ลักษณะของโคโลนีและการ เกิด acetate oxidation 2) ลักษณะการเจริญแบบ static growth ในอาหารเหลว 3) ความสามารถใน การเจริญที่ 40°C ในอาหารเลี้ยงเชื้อที่มีมีเอทธานอลและกรดน้ำส้ม 4) การเจริญในอาหารเลี้ยงเชื้อที่มีมีกรดน้ำส้มความเข้มขันเริ่มตัน 3% ที่อุณหภูมิ 30 และ 37°C 5) การเจริญในอาหารเลี้ยงเชื้อที่มีเอทธานอลความเข้มขันเริ่มตัน 8% ที่อุณหภูมิ 30 และ 37°C ดังรวบรวมผลไว้ในตารางที่ 1 ปรากฏ ว่ามีเชื้อสายพันธุ์ไทยที่สามารถเจริญได้ดีที่อุณหภูมิ 40°C จำนวน 51 ไอโซเลท ซึ่งในจำนวนนี้ส่วนใหญ่เป็นเชื้อที่มีลักษณะโคโลนีขรุขระ (rough colony, Ro) หรือโคโลนีเรียบที่มีเมือก อันเนื่องมาจากการสร้างสารโพลีแชคคาไรด์ ทำให้ได้ข้อสังเกตุว่าเชื้อกรดน้ำส้มที่สร้างสารโพลีแชคคาไรด์จะทน ผูณหภูมิสูงได้ดีกว่าเชื้อที่ไม่สร้างสารโพลีแชคคาไรด์ แต่เป็นที่น่าสังเกตว่าเชื้อที่ทนอุณหภูมิสูงส่วนใหญ่ มีสามารถทนต่อความเข้มขันเริ่มตันของกรดน้ำส้ม 3%ได้ ยกเว้นกลุ่มของเชื้อเดิม (KU102-KU115)

ที่ผ่านการคัดเลือกและจำแนกสายพันธุ์แล้ว โดยมีเชื้อที่ทนทั้งอุณหภูมิสูงและความเข้มขันเริ่มต้นของ กรดน้ำส้ม 3% ได้จำนวนทั้งสิ้น 11 ไอโชเลท คือ KU92, KU102, KU105, KU108, KU110, KU112, KU113, KU114, KU115, KU116 และ KU117 ส่วนเชื้อสายพันธุ์ของญี่ปุ่นมีเพียงสาย พันธุ์เดียวคือ IFO12467 ที่สามารถทนทั้งอุณหภูมิสูงและความเข้มขันเริ่มต้นของกรดน้ำส้ม 3% ได้ ในขณะที่เชื้อที่ไม่เจริญที่ 40°C หลายไอโชเลท สามารถเจริญในอาหารเลี้ยงเชื้อที่มีกรดน้ำส้มความเข้มขันเริ่มต้น 3% ได้ ส่วนการเจริญในอาหารเลี้ยงเชื้อที่มีเอทธานอลความเข้มขันเริ่มต้น 8% นั้น พบว่า ส่วนใหญ่มีเฉพาะสายพันธุ์ที่แยกได้ในประเทศไทยเท่านั้นที่เจริญได้ในสภาวะดังกล่าว

จากการคัดเลือกเชื้อโดยอาศัยสมบัติทางสรีรวิทยาดังกล่าวข้างต้นและผลการศึกษาความ สามารถในการผลิตกรดที่อุณหภูมิต่างๆ (ไม่ได้แสดงผลในรายงานนี้) รวมทั้งผลการวิจัยร่วมกับกลุ่ม ของ Professor Osao Adachi พบว่าเชื้อกรดน้ำส้ม A. lovaniensis KU108 และ KU112 เป็นสายพันธุ์ ที่ทนอุณหภูมิสูงและผลิตกรดได้ดีที่สุด (Saeki et al., 1996;submitted) จึงคัดเลือกเชื้อนี้มาใช้ในการ ศึกษาต่อไป รวมทั้งเป็นเชื้อที่มีประสิทธิภาพในการนำไปใช้ในระดับอุตสาหกรรมสูงมาก

3.2 ความหลากหลายทางพันธุกรรมของเชื้อกรดน้ำส้ม

จากการวิเคราะห์ plasmid profile ของเชื้อกรดน้ำสัมที่แยกได้ในประเทศไทย จำนวน 129 ใอ โซเลท เปรียบเทียบกับสายพันธุ์มาตรฐานของญี่ปุ่น จำนวน 15 สายพันธุ์ ปรากฏว่าเชื้อส่วนใหญ่ทั้ง สายพันธุ์ของไทยและญี่ปุ่น มีพลาสมิดอยู่เป็นจำนวนมาก ซึ่งส่วนใหญ่เป็นพลาสมิดที่มีขนาดเล็ก ดัง แสดงในภาพที่ 3 ผลการทดลองที่ได้สอดคล้องกับผลการทดลองของ Fukaya และคณะ(Fukaya et al., 1985) ซึ่งศึกษาการกระจายและสมบัติของพลาสมิดในเชื้อกรดน้ำส้มสายพันธุ์ของญี่ปุ่นและอเมริกา และ พบว่า เชื้อกรดน้ำส้มส่วนใหญ่จะมีพลาสมิดมากกว่า 1 ชนิด และพลาสมิดเหล่านี้อาจเป็นสาเหตุที่ ทำให้เกิดความผันแปรทางพันธุกรรมในเชื้อกลุ่มนี้ นอกจากนี้พลาสมิดดังกล่าวอาจนำมาใช้เป็น cloning vector ในเชื้อกลุ่มนี้ได้อีกด้วย และสอดคล้องกับผลการทดลองของ Mariette และคณะ(Mariette et al., 1991) ที่ศึกษา plasmid profile ของเชื้อกรดน้ำส้มที่แยกจาก wine, spirit และ cider acetator

แด่อย่างไรก็ตาม ผู้วิจัยยังไม่สามารถสรุปบทบาทของพลาสมิดเหล่านี้ได้ในขั้นตอนนี้ ต้องมีการ ทำ plasmid curing และนำ curant ที่ได้มาวิเคราะห์ต่อไป

Table 1. Lists of acetic acid bacteria isolated in Thailand and their characteristics compared to IFO strains.

Code	Sources	Isolated conditions		Colony/ Overox	Static growth	Growth at 40°C	Growth acetic ac		Growth i ethanol/I	
		°C,days	Ace/Eth		72 hr	72 hr	30°C 72 hr	37°C 72 hr	30°C 24 hr	37°C 24 hr
KUI	banana	37,3d	2%/0%	Sm/+	S	-	+	+	-/-	-/-
KU2	banana	37,7d	2%/0%	Ro/-	C	++	•	-	+/-	+/-
KU3	banana	30,7d	2%/0%	Sm/-	S	-	+	+	-/-	-/-
KU4	banana	37,3d	2%/0%	Ro/-	WC	++	-	-	+/+	-/-
KU5	banana	30,5d	2%/0%	Ro/-	WC	++	-	-	+/+	-/-
KU6	banana	30,7d	2%/0%	Ro/-	WC	++	-	-	+/+	-/-
KU7	banana	37,7d	2%/0%	Sm/-	S	-	++	++	++/++	-/-
KU8	banana	37,5d	2%/0%	Sm/-	S	+	++	++	++/+	++/++
KU9	banana	30,5d	2%/0%	Sm/-	S	_	++	++	++/++	-/-
KU10	banana	37,3d	4%/0%	Ro/-	WC	++	-	_	-/-	-/-
KU11	banana	37,3d	0%/6%	Ro/-	WC	-		-	+/++	-/-
KU12	banana	37,7d	0%/6%	Ro/-	WC	++	_		+/++	-/-
KU13	banana	37,3d	0%/6%	Sm/+	WS	_	_	-	+/++	-/-
KU14	banana	37,3d	0%/0%	Ro/+	WS	++	+	+	++/++	-/-
KU15	guava	30,3d	2%/0%	Sm/+	S	-	++	++	++/++	-/-
KU16	guava	30,5d	2%/0%	Sm/+	S	-	++	++	++/++	-/-
KU17	guava	30,3d	2%/0%	Sm/+	S	_	++	++	+/++	-/-
KU18	guava	30,7d	2%/0%	Sm/+	WS	_	+	+	++/++	-/-
KU19	guava	37,5d	2%/0%	Sm/+	ws	_	· +	+	++/++	-/-
KU20	guava	37,7d	2%/0%	Sm/+	WS	_	+ ~	+	++/++	-/-
KU21	guava	30,5d	4%/0%	Sm/+	WS	_	+	+	++/++	+/+
KU22	guava	30,5d	4%/0%	Sm/+	ws	_	+	+	++/++	-/-
KU23	guava	30,7d	4%/0%	Ro/+	WC	++	+	+	+/+	+/+
KU24	guava	30,7d	4%/0%	Ro/+	WC	-		-	++/++	-/-
KU25	guava	30,7d	0%/4%	Sm/+	S	-	++	++	-/-	-/-
KU26	_	30,7d	0%/4%	Ro/+	WC	++	• •	-	-/-	-/- -/-
KU27	guava	30,7d 30,5d	0%/4%	Sm/-	S	-	-	-	++/++	+/+
KU28	guava	30,5d			S			-		+/+
KU29	guava		0%/4%	Sm/- Sm/-	S	-	-	-	++/++ -/-	+/+ -/-
KU30	guava	30,7d	0%/4%	Ro/-	WS	+	+	+		
	guava	37,7d	0%/4%				+		++/+	-/-
KU31	guava	37,7d	0%/4%	Sm/+	WC	-	-	-	-/-	-/-
KU32	guava	37,3d	0%/6%	Sm/+	WC	++	-	-	-/-	-/-
KU33 KU34	guava	37,3d	0%/6%	Sm/-	S	+	+	+	++/++	++/++
	guava	37,5d	()%/()%	Ro/+	WC	++	-	-	+/++	+/+
KU35	rambeh	37,3d	2%/0%	Ro/+ *	ws	++	-	-	-/-	-/-
KU36	rambeh	30,5d	2%/0%	Sm/-	С	+	+	+	++/++	-/-
KU37	rambeh	37,3d	4%/0%	Sm/-	C	+	+	+	++/++	-/-
KU38	rambeh	30,3d	4%/0%	Sm/+	WS	++	+	+	+/+	+/-
KU39	rambeh	37,7d	0%/4%	Sm/+	WS	++	-	-	-/-	-/-
KU40	rambeh	37,3d	0%/4%	Sm/-	S	+	+	+	-/-	-/-
KU41	rambeh	37,7d	0%/4%	Sm/+	WC	-	-	-	+/+	+/-
KU42	pineapp	30,5d	2%/0%	Sm/+	WS	-	+	+	++/++	+/+
KU43	pineapp	30,7d	2%/0%	Sm/-	S	-	++	++	++/++	+/++
KU44	pincapp	37,5d	2%/0%	Ro/+	S	+	-	-	-/-	-/-
KU45	pineapp	30,3d	4%/0%	Sm/-	S	-	++	++	+/+	+/++
KU46	pineapp	30,3d	4%/0%	Sm/-	S	-	++	++	-/-	-/-
KU47	pineapp	30,3d	4%/0%	Ro/-	WC	-	-	-	+/++	+/+
KU48	pineapp	37,5d	4%/0%	Ro/+	WS	++	-	-	+/+	-/-
KU49	pineapp	30,7d	4%/0%	Ro/-	WC	++		-	+/+	+/-
KU50	pineapp	37,5d	0%/4%	Sm/+	WS	+	-	-	++/++	++/++

Table 1. (continued)

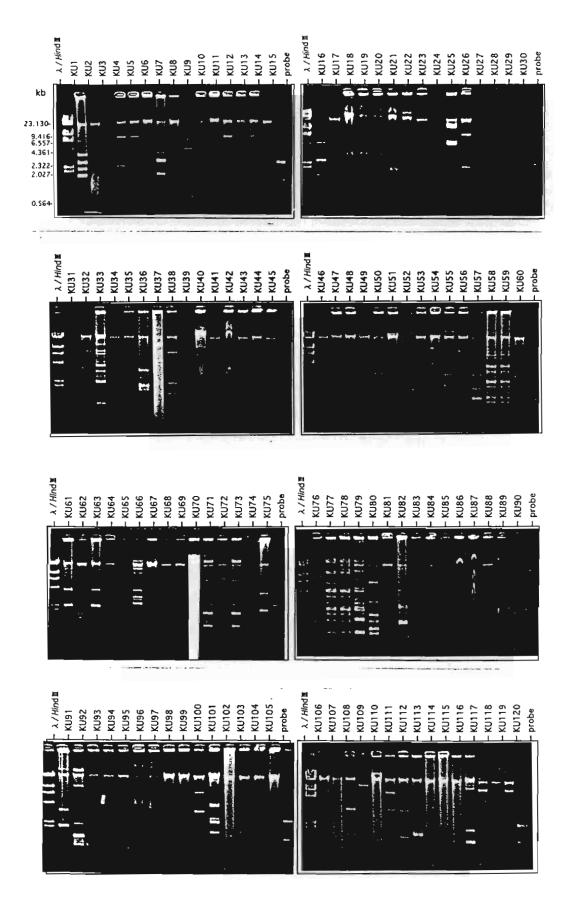
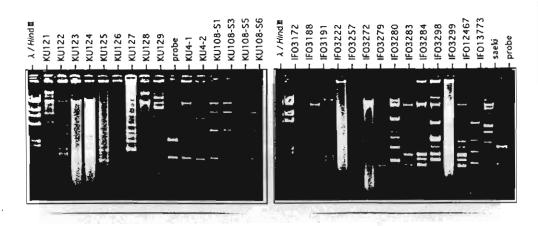
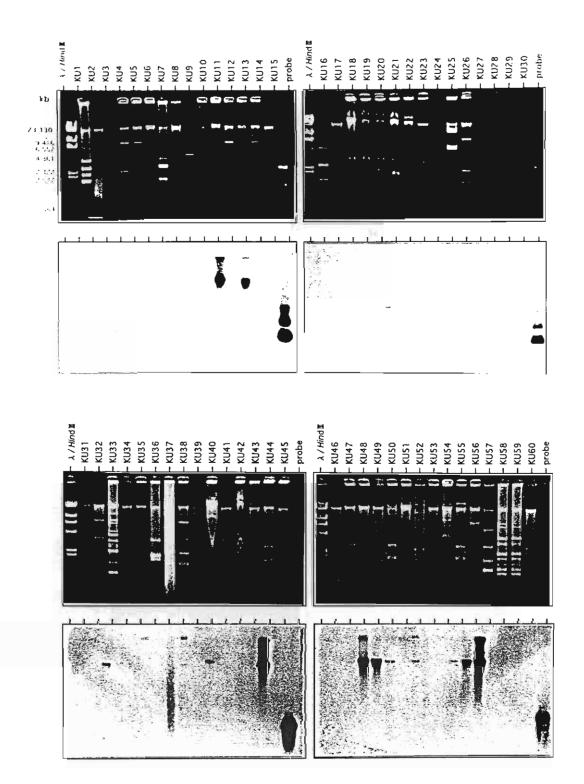

Code	Sources	Isolated condition	18	Colony/ Overox	Static growth	Growth at 40°C	Growth acetic ac		Growth i	
		°C,days	Ace/Eth		72hr	72hr	30°C 72hr	37°C 72hr	30°C 24hr	37°C 24hr
KUSI	pineapp	37,3d	0%/4%	Ro/+	WC	++		-	++/++	++/++
KU52	pineapp	30,5d	0%/4%	Sm/+	S	+	+	+	+/++	+/++
KU53	pineapp	37,7d	0%/4%	Ro/+	WC	++	-	-	++/++	++/++
KU54	pineapp	30,5d	0%/4%	Sm/-	WS	+	-		++/++	+/++
KU55	pineapp	37,7d	0%/6%	Sm/+	WC	++	-	_	++/++	+/++
KU56	pineapp	37,5d	0%/0%	Sm/+	WC	++	-	-	++/++	+/++
KU57	pineapp	37,5d	0%/0%	Sm/-	WS	-	-	-	++/+	+/+
KU58	orange	37,3d	0%/0%	Sm/+	S	-	++	++	++/++	+/+
KU59	orange	37,5d	0%/0%	Sm/+	WS	-	++	++	-/-	-/-
KU60	rambeh	37,3d	2%/0%	Sm/+	S	-	++	++	-/-	+/-
KU61	banana	30,3d	0%/4%	Sm/+	S	_	++	++	/-	-/-
KU62	banana	30,3d	0%/4%	Sm/+	S	-	-	-	-/-	-/-
KU63	banana	30,3d	0%/4%	Sm/+	S	-	++	++	++/++	-/-
KU64	banana	30,7d	0%/4%	Sm/+	WS	-	_		-/-	-/-
KU65	banana	30,7d	0%/4%	Sm/+	WS	_			-/-	-/-
KU66	banana	37,3d	0%/4%	Sm/+	S	-	_	_	-/-	-/-
KU67	cherry	30,3d	0%/4%	Sm/+	WS	-		_	+/+	-/-
KU68	cherry	37,3d	0%/4%	Sm/+	S	++	_	_	-/-	-/-
KU69	cherry	37,3d	0%/4%	Sm/+	WS	++		_	-/-	-/-
KU70	guava	30,3d	0%/4%	Ro/-	WC	++	+ -	+	++/-	++/-
KU71	guava	30,3d	0%/4%	Sm/-	S	-	++	++	-/-	-/-
KU72	guava	30,7व	0%/4%	Ro/+	WS	++	-		+/++	+/+
KU73	guava	30,7d	0%/4%	Sm/-	S	_	++	i - t	-/-	-/-
KU74	guava	37,7d	0%/4%	Sm/-	S		_	_	-/-	-/-
KU75	lychee	30,3d	0%/4%	Sm/-	S	+	++	++	-/-	-/-
KU76	lychee	37,3d	0%/4%	Sm/-	S	_	_	_	-/-	-/-
KU77	mangost	30,7d	0%/4%	Sm/-	S	+	++	++	-/-	-/-
KU78	mangost	30,9d	0%/4%	Sm/-	S	+	++	++	-/-	-/-
KU79	orange	30,3d	0%/4%	Sm/-	S	+	++	++	-/-	-/-
KU80	orange	30,3d	0%/4%	Sm/-	S	_	++	++	++/++	-/-
KU81	orange	30,3d	0%/4%	Ro/+	WS	++	_	-	++/++	+/+
KU82	orange	37,3d	0%/4%	Sm/+	S	-	++	++	++/++	-/-
KU83	orange	37,3d	0%/4%	Sm/-	C	_		-	++/++	-/-
KU84	orange	37,7d	0%/4%	Sm/+	WS	++	_	-	++/++	+/+
KU85	orange	37,7d	0%/4%	Sm/+ *	WS	++	-	-	+/+	+/+
KU86	pineapp	30,3d	0%/4%	Ro/+	WS	++	+	+		
KU87	pineapp	30,3d	0%/4%	Sm/+	WS	++	+	+	++/++	+/+
KU88	pineapp	30,3d	0%/4%	Sm/+	S	77	+		++/ ++ +/-	+/+
KU89	pineapp	30,3d 30,7d			S	-	+	+	+/-	-/-
KU90			0%/4%	Sm/+		-		+		-/-
KU91	pineapp	30,7d	0%/4%	Sm/+	S S	-	+	+	++/+	-/-
KU92	pineapp	37,7d	0%/4%	Sm/-	S	-	++	++	++/++	-/-
KU93	papaya	30,9d	0%/4%	Sm/-		++	++	++	++/++	-/-
KU94	roscapp	30,3d	0%/4%	Ro/-	WS	++	-	-	++/++	-/-
KU95	roscapp	30,7d	0%/4%	Sm/-	S	-	-	-	++/++	-/-
KU96	roseapp	30,7d	0%/4%	Sm/-	S S	-	-	•	++/++	-/-
KU90 KU97	roseapp	30,7d	0%/4%	Sm/-	S	-		-	++/++	-/-
KU97	roseapp	30,7d	0%/4%	Sm/+			+	+	++/++	-/-
KU98	roscapp	30,7d	0%/4%	Ro/+	WS	++	-	-	++/++	-/-
KU100	roseapp	30,7d	0%/4%	Ro/+	WS	++	•	-	++/++	-/-
1001	roseapp	37,3d	0%/4%	Ro/+	WS	++	-	-	++/++	-/-

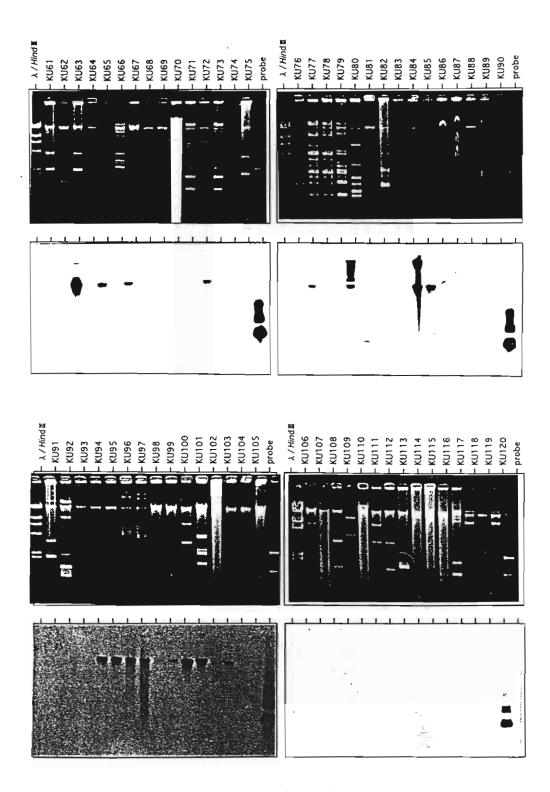
Table 1. (continued)


Code	Sources	Isolated condotions		Colony/ Overox	Static growth	Growth at 40°C	Growth acetic ac		Growth in 8% ethanol/Halos	
		°C,days	Ace/Eth		72hr	72lu	30°C 72hr	37°C 72hr	30°C 24hr	37°C 24hr
KU101	roscapp	37,7d	0%/4%	Sm/-	WS	++	-	-	+/-	-/-
KU102		A. ascen		Sm/-	WS	++	++	++	++/++	-/-
KU103		A. ascen	dens	Sm/-	S	+	+	+	++/++	-/-
KU104		A ascend	lens	Sm/-	S	++	+	+	++/++	-/-
KU105	grape	A. lovan	iensis	Sm/-	S	++	++	++	++/++	-/-
KU106	grape	A. lovan		Sm/-	WS	+-+	+	+	++/+	-/-
KU107	pineapp	A. rance.	ns	Sm/-	S	+	++	\leftrightarrow	+/+	+/+
KU108	pineapp	A. lovan	iensis	Sm/-	S	++	++	++	++/++	++/++
KU109	guava	A aceti		Sm/-	S	nd	++	++	++/++	++/++
KU110		A. xylim	ım	Sm/-	S	++	++	++	+/+	++/+
KUIII	grape	A. lovan	iensis	Sm/+	S	++	+	+	++/++	++/++
KU112	grape	A. lovan	iensis	Sm/-	WC	++	++	++	++/++	++/++
KUI13	grape	A. rance.	11.5	Sm/+	S	++	++	++	++/++	++/++
KU!14	apple	A. lovan	iensis	Sm/+	S	++	++	++	++/++	-/-
KU115	papaya	A. lovan	iensis	Sm/+	S	++	++	++	++/++	+/+
KU116	waterme	30,7d	0%/4%	Sm/+	S	++	++	++	++/++	+/+
KU117	waterme	30,9d	0%/4%	Sm/-	S	++	++	++	++/++	++/++
KU118	santol	30,3d	0%/4%	Sm/-	S	+			++/++	++/++
KU119	santol	30,7d	0%/4%	Sm/-	S	+			++/++	++/++
KU120	santol	37,7d	0%/4%	Sm/-	S	+	-	_	++/++	++/++
KU121	santol	37,7d	0%/4%	Sm/-	S	-	+	+	++/++	++/++
KU122	longkon	30,3d	0%/4%	Sm/+	S	-	-	_	++/++	+/+
KU123	longkon	37,3d	0%/4%	Sm/-	WC	++	_	_	-/-	++/-
KU124	longkon	37,7d	0%/4%	Ro/-	WC	++	-	_	-/-	++/-
KU125	guava	37,7d	0%/4%	Sm/+	S	-	-	_	+/+	-/-
KU126	lychee	37,3d	0%/4%	Sm/+	S	-	-	-	++/++	-/-
KU127	orange	30,3d	0%/4%	Sm/-	WS	++	+	+	++/++	+/+
KU128	longkon	30,3d	0%/4%	Sm/-	S	+	-	_	++/++	+/-
KU129	santo!	30,3d	0%/4%	Sm/-	S		-		+/+	+/-
IFO strai	ns									
IFO3172		G. subo.	xvdans	Sm/-	C	++	+	+	-/-	-/-
IFO3188		A. acend	-	Sm/-	WC	++	+	+	-/-	-/-
IFO3191		A. rance		Sm/-	WC	++	+	+	+/++	-/-
IFO3222		A. kutzin		Sm/-	S	_	+	+	-/-	-/-
IFO3257		G. subox		Sm/-	S	++	_		-/-	-/-
IFO3272			icetonicus	Sm/-	S	++		•	+/-	-/-
IFO3279		A. acetig		Sm/-	S	++	_		-/-	-/-
IFO3280		A. acetm		Sm/-	WC		+	+	-/-	-/-
IFO3283		A. aceti	111.3	Sm/+	C	+	+	+	-/- -/-	-/- -/-
IFO3284		A aceti		Sm/-	WS	++	+	+	-/- -/-	-/- -/-
IFO3298		A aceu A rance		Sm/-	S	++	++	++	-/- -/-	-/-
IFO3299		A acend		Sin/-	S	+	++	++	-/- -/-	
IFO12467				Sm/-	S		++		-/- -/-	-/
IFO13773		G. sphae		Sm/-	C	++	++	++	-/- -/-	-/-
saeki		A. xylim				+		+		-/-
Sacki		A. xylinu	m	Sm/+	WC	+	+	+	++/++	+/+

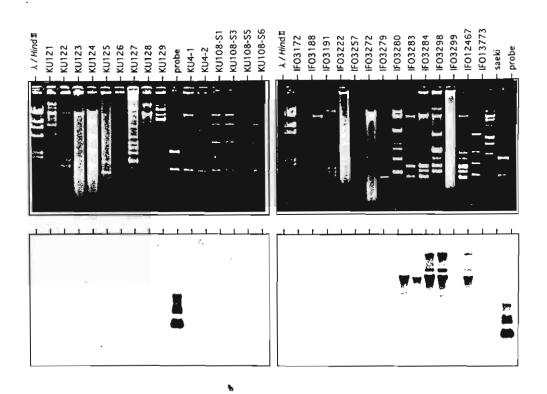
Notes: 1) Sm = Smooth, Ro = Rough, S = Sediment, C = Colloid, WS = White film + Sediment, WC = White film + Colloid

²⁾ growth at 40°C was observed from shaking culture in potato medium


ภาพที่ 3 แสดง plasmid profile ของเชื้อกรดน้ำส้มที่แยกได้ในประเทศไทย จำนวน 129 ไอโชเลท ^{เปรี}ยบเทียบกับสายพันธุ์ของญี่ปุ่นจำนวน 15 สายพันธุ์


ภาพที่ 3 (ต่อ) แสดง plasmid profile ของเชื้อกรดน้ำสัมที่แยกได้ในประเทศไทย จำนวน 129 ไอโซ เลท เปรียบเทียบกับสายพันธุ์ของญี่ปุ่นจำนวน 15 ลายพันธุ์

3.3.การกระจายของ Insertion Sequence, IS1380 ในเชื้อกรดน้ำส้ม


จากการศึกษาการกระจายของ IS 1380 ในเชื้อกรดน้ำล้ม พบว่าตรวจพบ IS 1380 ในเชื้อ กรดน้ำล้มสายพันธุ์ไทยทั้งสิ้น 36 ไอโซเลท (ประมาณ 27.90% ของเชื้อทั้งหมด) ดังแสดงในภาพที่ 4 เป็นที่น่าสังเกดว่า สัญญานไฮบริไดซ์ส่วนใหญ่ที่ตรวจพบทั้งในเชื้อของไทยและญี่ปุ่นจะพบที่โครโมโซม และพลาสมิดขนาดใหญ่ แทบไม่พบสัญญานไฮบริไดซ์ที่ขัดเจนจำนวน 17 ไอโซเลท (ประมาณ 13.18% ของเชื้อทั้งหมด) คือ KU11, KU13, KU44, KU48, KU55, KU556, KU62, KU79, KU84, KU85, KU94, KU95, KU96, KU97, KU100 และ KU101 ส่วนสายพันธุ์ของญี่ปุ่นจำนวน 15 สายพันธุ์ ตรวจพบสัญญานไฮบริไดซ์ที่ซัดเจนใน 6 ลายพันธุ์ คิดเป็นประมาณ 40 % ของเชื้อที่นำ มาตรวจสอบ ดังรวบรวมไว้ในตารางที่ 2 โดยการที่ตรวจพบสัญญานไฮบริไดซ์ที่ซัดเจนนี้แสดงให้เห็นว่า ในเชื้อดังกล่าวข้างดันมี IS 1380 หรือมีดีเอนี้แอที่มีลำดับนิวคลีโอไทด์คล้ายคลึงกับ IS 1380 จำนวน หลายชุด (multicopies) นอกจากนี้ สายพันธุ์ที่ตรวจพบว่ามี IS 1380 หลายชุดนั้น มักจะไม่สามารถ เจริญในอาหารเลี้ยงเชื้อที่มีกรดน้ำส้มความเข้มขันสูง(8%) ที่อุณหภูมิ 37°C และไม่สามารถเจริญใน อาหารเลี้ยงเชื้อที่มีกรดน้ำส้มความเข้มขันสูง(3%) ทั้งที่อุณหภูมิ 30°C และ 37°C

ภาพที่ 4 แสดงการกระจายของ IS*1380* ในเชื้อกรดน้ำส้ม โดยคึกษาจากการทำ Southern hybridization ที่อุณหภูมิ 42⁰C ระหว่าง total DNA ที่แยกสกัดจากเชื้อกรดน้ำส้ม กับ DNA probe, IS*1380* ที่ติดฉลากด้วยสาร peroxidase ตามวิธีของ ECL direct system ของ Amersham

ภาพที่ 4 (ต่อ) แสดงการกระจายของ IS*1380* ในเชื้อกรดน้ำสัม โดยศึกษาจากการทำ Southern hybridization ที่อุณหภูมิ 42°C ระหว่าง total DNA ที่แยกสกัดจากเชื้อกรดน้ำสัม กับ DNA probe, IS1380 ที่ติดฉลากด้วยสาร peroxidase ดามวิธีของ ECL direct system ของ Amersham

ภาพที่ 4 (ด่อ) แสดงการกระจายของ IS*1380* ในเชื้อกรดน้ำส้ม โดยศึกษาจากการทำ Southern hybridization ที่อุณหภูมิ 42°C ระหว่าง total DNA ที่แยกสกัดจากเชื้อกรดน้ำส้ม กับ DNA probe. IS*1380* ที่ดิดฉลากด้วยสาร peroxidase ดามวิธีของ ECL direct system ของ Amersham

Table 2. Lists of acetic acid bacteria containing insertion sequence, IS1380

Code .	Sources	Isolated conditions		Colony/ Overox	Static growth	Growth at 40°C	Growth acetic ac		Growth in 8% ethanol/Halos	
		°C,days	Ace/Eth		72 hr	72 hr	30°C 72 hr	37°C 72 hr	30°C 24 hr	37°C 24 hr
KUII	banana	37,3d	0%/6%	Ro/-	WC	- 111	-	- 72 10	+/++	-/-
KU13	banana	37,3d	0%/6%	Sm/+	ws	_	-	-	+/++	-/- -/-
KU32	guava	37,3d	0%/6%	Sm/+	WC	++	-	-	-/-	-/- -/-
KU33	guava	37,3d	0%/6%	Sm/-	S	+	+	+	++/++	++/++
KU34	guava	37,5d	0%/0%	Ro/+	WC	++	· -		+/++	+/+
KU35	rambeh	37,3d	2%/0%	Ro/+	ws	++		-	-/-	-/-
KU37	rambeh	37,3d	4%/0%	Sm/-	C	+	+	+	++/++	-/-
KU38	rambeh	30,3d	4%/0%	Sm/+	ws	++	+	+	+/+	+/-
KU40	rambeh	37,3d	0%/4%	Sm/-	S	+	+	+	-/-	-/-
KU44	pineapp	37,5d	2%/0%	Ro/+	S	+		-	-/-	-/-
KU47	pineapp	30,3d	4%/0%	Ro/-	wc	_		-	-/- +/++	-/- +/+
KU48	pineapp	37,5d	4%/0%	Ro/+	WS	++	_	_	+/+	-/-
KU49	pineapp	30,7d	4%/0%	Ro/-	WC	++	-	-	+/+	+/-
KU51	pineapp	37,3d	0%/4%	Ro/+	WC	++		-	++/++	++/++
KU54	pineapp	30,5d	0%/4%	Sm/-	ws	+	•	-	++/++	+/++
KU55	pineapp	37,7d	0%/6%	Sm/+	WC	++		-	++/++	+/++
KU56	pineapp	37,5d	0%/0%	Sm/+	wc	++		-	++/++	+/++
KU62	banana	30,3d	0%/4%	Sm/+	S	-	-	-	 /-	+/ + + -/-
KU64	banana	30,7d	0%/4%	Sm/+	ws	-	-	-	/- /-	-/- -/-
KU66	banana	37,3d	0%/4%	Sm/+	S	_		-	-/- -/-	-/- -/-
KU72	guava	30,7d	0%/4%	Ro/+	ws	++	-	-	+/++	-/- +/+
KU76	lychee	37,3d	0%/4%	Sm/-	S	-	_	-	-/-	-/-
KU79	orange	30,3d	0%/4%	Sm/-	S	+	++	++	-/-	-/- -/-
KU82	orange	37,3d	0%/4%	Sm/+	S		++	++	++/++	-/-
KU84	orange	37,7d	0%/4%	Sm/+	ws	++	-	-	++/++	+/+
KU85	orange	37,7d	0%/4%	Sm/+	WS	++	_	-	+/+	+/+
KU94	roseapp	30,7d	0%/4%	Sm/-	S	-		_	++/++	-/-
KU95	roseapp	30,7d	0%/4%	Sm/-	S	_	-	-	++/++	-/-
KU96	roseapp	30,7d	0%/4%	Sm/-	S	-		_	++/++	-/-
KU97	roscapp	30,7d	0%/4%	Sm/+	S	_	+	+	++/++	-/- -/-
KU99		30,7d 30,7d	0%/4%	Ro/+	WS	- ++			++/++	-/- -/-
KU100	roscapp	30,7d 37,3d	0%/4%	Ro/+	WS	++	-	-	++/++	-/- -/-
KU101	roseapp roseapp	37,3d 37,7d	0%/4%	Sm/-	WS	++	-	-	+/-	-/- -/-
KU102	roscapp	A. ascendo		Sm/-	WS	++	++	- ++	++/++	-/- -/-
KU103		A. ascende		Sm/- %	S	+	+	+	++/++	-/- -/-
KU119	santol	30,7d	ens 0%/4%	Sm/-	S	+	-	-	++/++	-/- ++/++
IFO3191		A. rancen.	s	Sm/-	WC	i t	+	+	+/++	-/-
IFO3280		A. acetinu		Sm/-	WC	+	+	+	-/-	-/-
IFO3283		A. aceti	-	Sm/+	c	+	+	+	-/-	-/-
IFO3284		A. aceti		Sin/-	ws	++	+	+	-/-	-/-
IFO3298		A. rancen.	•	Sm/-	S	+	++	++	-/-	-/-
FO12467		G. sphaer		Sm/-	S	++	++	++	-/-	-/-
- 0.2707		G. sprider	10.43	OH#-	U		• •	1.1	-,-	-/-

Notes: 1) Sm = Smooth, Ro = Rough, S = Sediment, C = Colloid, WS = White film + Sediment, WC = White film + Colloid

²⁾ growth at 40°C was observed from shaking culture in potato medium

เอกสารอ้างอิง

Ameyama M, Adachi O. Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. Methods Enzymol. 1982a; 89: 450-457.

Ameyama M, Adachi O. Aldehyde dehydrogenase from acetic acid bacteria, membrane-bound. Methods Enzymol. 1982b; 89: 491-497.

Fukaya M, Iwata T, Entani E, Masai H, Uozumi T, Beppu T. Distribution and characterization of plasmids in acetic acid bacteria. Agric. Biol. Chem. 1985; 49: 1349-1355.

Mariette I, Schwarz E, Vogel R.F, Hammes W.P. Characterization by plasmid profile analysis of acetic acid bacteria from wine, spirit and cider acetators for industrial vinegar production. J. Appl. Bacteriol. 1991; 71: 134-138.

Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv. Microb. Physiol. 1994; 36: 247-301.

Ohmori S, Uozumi T, Beppu T. Loss of acetic acid resistance and ethanol oxidizing ability in an *Acetobactor* strain. Agric. Biol. Chem. 1982; 46: 381-389.

Okumura H, Uozumi T, Beppu T. Biochemical characteristics of spontaneous mutants of Acetobacter aceti deficient in ethanol oxidation. Agric. Biol. Chem. 1985; 49: 2485-2487.

Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosc. Biotech. Biochem. 1996 (submitted).

Saeki A, Taniguchi M, Matsushita K, Toyama H, Theeragool G, Lotong N Adachi O. Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosc. Biotech. Biochem. 1996 (submitted).

Takemura H, Horinouchi S, Beppu T. Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J. Bacteriol. 1991; 173: 7070-7076.

(4) งานที่จะทำต่อในอนาคต

- 4.1 ศึกษาและเปรียบเทียบผลการทำ Random Amplified DNA Polymorphism (RAPD) ของเชื้อกลุ่ม ที่ทนและไม่ทนอุณหภูมิสูง
- 4.2 ทำ plasmid curing และศึกษาสมบัติของ curant ที่ได้ โดยใช้เชื้อ A. lovaniensis KU108 หรือ
 KU112 เป็น model รวมทั้งการคัดเลือก temperature-sensitive mutant ของสายพันธุ์ทั้งสอง
 โดยการทำ mutation
- 4.3 การปรับปรุงสายพันธุ์โดยวิธีทางพันธุวิศวกรรม โดยการนำ curant ของเชื้อ A. lovaniensis KU108 หรือ KU112 เป็นเซลล์เจ้าบ้านสำหรับการโคลนยืนที่เกี่ยวข้องกับการสร้างกรดน้ำสัม

กิจกรรมอื่น ๆที่เกี่ยวข้อง

(1) ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- 1.1 Saeki A, **Theeragool G**, Matsushita K, Toyama H, Lotong N, Adachi O. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures.

 Biosc. Biotech. Biochem. 1996 (submitted).
- 1.2 Saeki A, Taniguchi M, Matsushita K, Toyama H, Theeragool G, Lotong N Adachi O. Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosc. Biotech. Biochem. 1996 (submitted).

(2) ผลงานวิจัยอื่น ๆ

2.1 Theeragool G, Lotong N, Adachi O, Saeki A Matsushita K. Characterization of thermotolerant acetic acid bacteria isolated in Thailand and IFO (Institute for Fermentation, Osaka) strains. A report submitted to Monbusho International Scientific Research Program: Kasetsart University-Yamaguchi University. 1996: 23 pp.

(3) จำนวนและรายละเอียดการได้รับเชิญไปเป็นวิทยากร

เป็นวิทยากรเสนอผลงานวิจัยเรื่อง Characterization of thermotolerant acetic acid bacteria isolated in Thailand and IFO strains. ณ มหาวิทยาลัยยามากูชิ ประเทศญี่ปุ่น วันที่ 26 กุมภาพันธ์ 2539

(4) การเชื่อมโยงทางวิชาการกับนักวิชาการือื่น ๆ ทั้งในและต่างประเทศ

- 4.1 การเชื่อมโยงทางวิชาการกับ Professor Osao Adachi และ Professor Kazunobu
 Matsushita ภาควิชาชีวเคมี คณะเกษตร มหาวิทยาลัยยามากูชี ประเทศญี่ปุ่น และ Mr. Akihiko Saeki
 ภาควิชาชีวอุตสาหกรรม สถาบันเทคโนโลยีอุตสาหกรรม เมืองยามากูชี ประเทศญี่ปุ่น ในฐานะนักวิจัย
 ร่วม ภายใต้โครงการ Monbusho International Scientific Joint-Research Program : Kasetsart
 University-Yamaguchi University และเป็นผู้อนุเคราะห์สายพันธุ์ของเชื้อกรดน้ำสัมของญี่ปุ่น (IFO strains)
- 4.2 การเชื่อมโยงทางวิชาการกับ นางวันเชิญ โพธาเจริญ สถาบันวิจัยวิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย ในฐานะกรรมการสาขาวิชาเอกของนิสิตปริญญาโทที่อยู่ในโครงการนี้ และ เป็นที่ปรึกษาในส่วนของการจำแนกสายพันธุ์

(5) การเชื่อมโยงกับนักวิชาการภายในสถาบันเดียวกัน

5.1 การเชื่อมโยงทางวิชาการกับ ศาสตราจารย์นภา โล่ห์ทอง ภาควิชาจุลชีววิทยา คณะ วิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ในฐานะที่ปรึกษาและหัวหน้าโครงการวิจัยร่วมระหว่าง มหาวิทยาลัยเกษตรศาสตร์กับมหาวิทยาลัยยามากูชิ รวมทั้งเป็นผู้อนุเคราะห์สายพันธุ์ของเชื้อกรดน้ำส้ม (KU102-KU115)

ปัญหาและอุปสรรค

ความเห็นและข้อเสนอแนะ

Executive Summary

สรุปผลงานของปีที่ 1 (1 กันยายน 2538-31 สิงหาคม 2539)

เชื้อกรดน้ำสัม หรือ acetic acid bacteria เป็นเชื้อที่มีบทบาทในอุดสาหกรรมการผลิตกรดน้ำสัม เนื่องจากสามารถออกซิไดซ์เอทานอลให้เป็นกรดน้ำส้ม โดยอาศัยเอนไซม์ 2 dehydrogenase และ aldehyde dehydrogenase นอกจากนี้ยังมีบทบาทในการผลิตเมือกเซลลูโลส จาก การศึกษาสมบัติทางสรีรวิทยาและพันธุศาสตร์ของเชื้อกรดน้ำสัมที่แยกได้ในประเทศไทยจำนวน 129 ไอ โซเลต เปรียบเทียบกับสายพันธุ์มาตรฐานของญี่ปุ่น (IFO strains) จำนวน 15 สายพันธุ์ พบว่า มีเชื้อ สายพันธุ์ไทยที่เจริญได้ที่อุณหภูมิ 40°C จำนวน 51 ไอโซเลด และสายพันธุ์ญี่ปุ่นที่เจริญได้ที่อุณหภูมิ เดียวกัน 8 สายพันธุ์ ซึ่งในจำนวนนี้ส่วนใหญ่เป็นเชื้อที่มีลักษณะโคโลนีขรุขระ (rough colony, Ro) หรือ โคโลนีเรียบที่มีเมือก อันเนื่องมาจากการสร้างสารโพลีแซคคาไรด์ ทำให้ได้ข้อสังเกตุว่าเชื้อกรดน้ำสัมที่ สร้างสารโพลีแชคคาไรด์จะทนอุณหภูมิสูงได้ดีกว่าเชื้อที่ไม่สร้างสารดังกล่าว ส่วนเชื้อที่ทนทั้งอุณหภูมิสูง และความเข้มขันเริ่มต้นของกรดน้ำสัม 3% ได้ มีจำนวนทั้งสิ้น 11 ไอโชเลต คือ KU 92, KU102, KU105, KU108, KU110, KU112, KU113, KU114, KU115, KU116 และ KU117 ส่วนเชื้อสายพันธ์ ของญี่ปุ่นมีเพียงสายพันธุ์เดียวคือ IFO12467 ที่สามารถทนทั้งอุณห[ั]ภูมิสูงและความเข้มข้นเริ่มดันของ กรดน้ำสัม 3% ได้ ส่วนการเจริญในอาหารเลี้ยงเชื้อที่มีเอทานอลความเข้มข้นเริ่มดัน 8% นั้น พบว่าส่วน ใหญ่มีเฉพาะสายพันธุ์ที่แยกได้ในประเทศไทยเท่านั้นที่เจริญได้ในสภาวะดังกล่าว จากการคัดเลือกเชื้อ โดยอาศัยสมบัติทางสรีรวิทยาดังกล่าวข้างดันและผลการศึกษาความสามารถในการผลิตกรดที่อุณหภูมิ ต่างๆ พบว่าเชื้อกรดน้ำสัมที่แยกได้จากสับปะรดและองุ่น คือ KU108 (SKU108) และ KU112 (SKU112) ดามลำดับ เป็นสายพันธุ์ที่ทนอุณหภูมิสูงและทนด่อความเข้มขันเริ่มดันของกรดน้ำสัม (3%) และเอทานอล (8%) ได้ดีที่สุด ซึ่งจากการจำแนกเชื้อโดยอาศัยสมบัติทางชีวเคมี พบว่า KU108 และ KU112 เป็นสายพันธุ์ Acetobacter pasteurianus

การศึกษาความหลากหลายทางพันธุกรรมของเชื้อดังกล่าวข้างตัน โดยการแยกสกัดDNAทั้ง หมดภายในเชลล์ (โครโมโชมและพลาสมิด) แล้ววิเคราะห์ในอะกาโรสเจลอิเลคโดรโฟเรซีส พบว่าเชื้อ ส่วนใหญ่ทั้งสายพันธุ์ของไทยและญี่ปุ่น มีพลาสมิดอยู่เป็นจำนวนมาก ซึ่งส่วนใหญ่เป็นพลาสมิดที่มี ขนาดเล็ก และพลาสมิดเหล่านี้อาจเป็นสาเหตุที่ทำให้เกิดความผันแปรทางพันธุกรรมในเชื้อกลุ่มนี้ สาเหตุอีกประการหนึ่งของความผันแปรทางพันธุกรรมของเชื้อกลุ่มนี้ คือการมี mobile DNA หรือ insertion sequence จากการศึกษาการกระจายของ insertion sequence, IS1380 ซึ่งเป็นซิ้นDNAที่ แทรกเข้าไปตรงยืน alcohol dehydrogenase (adh gene) ในเชื้อกรดน้ำส้ม ปรากฏว่าตรวจพบ IS1380 ในเชื้อกรดน้ำส้มสายพันธุ์ไทยทั้งสิ้น 36 ไอโซเลต (ประมาณ 28% ของเชื้อทั้งหมด) โดยสัญญาณไอบริ ใดช์ส่วนใหญ่ที่ตรวจพบทั้งในเชื้อของไทยและญี่ปุ่นจะพบที่โครโมโซมและพลาสมิดขนาดใหญ่ แทบไม่ พบสัญญานไฮบริไดซ์ที่ชัดเจนจำนวน 17 ไอโซเลต (ประมาณ 13% ของเชื้อทั้งหมด) ส่วนสายพันธุ์ที่ พบสัญญานไฮบริไดซ์ที่ชัดเจนใน 6 สายพันธุ์ (ประมาณ 40% ของเชื้อ ทั้งหมด) โดยการที่ตรวจพบสัญญานไฮบริไดซ์ที่ชัดเจนนี้ แสดงว่าเชื้อดังกล่าวมี IS1380 หรือมี DNA ที่

มีลำดับนิวคลีโอไทด์คล้ายคลึงกับ *IS1380* จำนวนหลายชุด (multicopies) โดยสายพันธุ์ที่พบว่ามี *IS1380* หลายชุดนั้น แสดงว่ายืน alcohol dehydrogenase ถูก inactivated และมักจะไม่สามารถเจริญ ในอาหารเลี้ยงเชื้อที่มีเอทานอลความเข้มขันสูง (8%) ที่อุณหภูมิ 37°C และไม่สามารถเจริญในอาหาร เลี้ยงเชื้อที่มีกรดความเข้มขันสูง (3%) ทั้งที่อุณหภูมิ 30 และ 37°C

สรุปผลงานของปีที่ 2 (1 กันยายน 2539-31 สิงหาคม 2540)

จากการที่ตรวจพบพลาสมิดจำนวนมากในเชื้อกรดน้ำสัมส่วนใหญ่ จึงได้ศึกษาบทบาทของ พลาสมิดในเชื้อกรดน้ำสัม A. pasteurianus KU108 โดยการทำ plasmid curing ด้วยสาร sodium dodecyl sulfate (SDS) ความเข้มข้น 2.5 มิลลิกรัมต่อมิลลิลิตร และ acridine orange ความเข้มข้น 10.0 ไมโครกรัมต่อมิลลิลิตร ในอาหารเลี้ยงเชื้อ potato medium พบว่าสามารถแยก curant ที่แทบไม่ มีพลาสมิดเลยได้ทั้งสิ้น 3 โคโลนี โดย curant ทั้ง 3 โคโลนีที่แยกได้มีสมบัติด่างๆคล้ายกับ parent strain เช่น การทำให้เกิด overoxidation การเจริญที่อุณหภูมิ 40°C การเจริญในอาหารเลี้ยงเชื้อที่มี เอทานอลผสมอยู่ 8% ที่อุณหภูมิ 37°C การเจริญในอาหารเลี้ยงเชื้อที่มี เอทานอลผสมอยู่ 8% ที่อุณหภูมิ 37°C การเจริญในอาหารเลี้ยงเชื้อที่มี เอทานอลผสมอยู่ 4% และ 8% ที่อุณหภูมิ 30, 37 และ 40°C

การปรับปรุงสายพันธุ์ของ A. pasteurianus KU108 โดยวิธีทางพันธุวิศวกรรม เริ่มจากการ ์ ศึกษาความสัมพันธ์ระหว่างการเจริญและการสร้างกรดน้ำส้มที่อุณหภูมิด่างๆ (30, 37 และ40°C) ของ static และ shaking cultures ซึ่งพบว่าการเจริญและการสร้างกรดน้ำส้มที่อุณหภูมิ40°C ซ้ากว่าที่ อุณหภูมิ 37 และ 30°C และโดยเฉลี่ยการสร้างกรดใน static culture เร็วกว่าใน shaking culture เมื่อ ศึกษากิจกรรมของเอนไซม์ alcohol dehydrogenase และ aldehyde dehydrogenase ที่อยู่ใน membrane fraction พบว่ากิจกรรมของเอนไซม์ทั้งสองที่แยกจาก static culture สูงกว่า shaking culture และการทำ heme staining ของเอนไซม์ alcohol dehydrogenase (subunit II หรือ cytochrome c complex) ก็ให้ผลสอดคล้องกันคือ ในปริมาณโปรดีนที่เท่ากัน แถบของเอนไซม์ที่แยก จาก static culture มีความเข้มชัดกว่าจาก shaking culture และกิจกรรมของเอนไซม์ทั้งสองในอาหาร เลี้ยงเชื้อที่มีเอทานอลผสมอยู่จะสูงกว่าในอาหารเลี้ยงเชื้อที่ไม่มีเอทานอลหรือในอาหารเลี้ยงเชื้อที่มีกรด น้ำสัมผสมอยู่ แด่เมื่อทำ heme staining ของเอนไซม์ในสภาวะดังกล่าว ปรากฏว่าความเข้มของแถบ โปรดีนใกล้เคียงกันมาก แสดงว่าปริมาณของเอนไซม์ที่ membrane fraction ของเชื้อดังกล่าวใกล้เคียง โน. แต่ต่างกันที่กิจกรรมของเอนไซม์ซึ่งอธิบายได้ว่าในสภาวะที่ไม่มีเอทานอลหรือในสภาวะที่มีกรดน้ำ ทีม(low pH) จะพบเอนไซม์ aicohol dehydrogenase ในรูปของ inactive form ในอัตราส่วนที่สูงกว่าใน จิภาวะที่มีเอทานอล และจากการเปรียบเทียบกิจกรรมของเอนไซม์ทั้งสองในเชื้อกรดน้ำสัม 10 ไอโซเลด ขบว่าเอนไซม์ที่แยกจาก A. pasteurianus KU108 มีกิจกรรมของเอนไซม์สูงสุด ซึ่งจากการศึกษาความ ามารถในการทนอุณหภูมิสูงของเอนไซม์ทั้งสองจาก 10 ไอโซเลดข้างดัน โดยการ treat ที่อุณหภูมิที่ ณหภูมิต่างๆ คือ 30, 40, 50, 60 และ 70°C นาน 10 นาที พบว่าที่ 70°C ตรวจพบเฉพาะกิจกรรม

ของเอนไซม์ alcohol dehydrogenase (3~4% residual activity) จากเอนไซม์ที่แยกจาก A. pasteurianus KU108 เท่านั้น ส่วนที่สภาวะเดียวกันสำหรับเอนไซม์ aldehyde dehydrogenase พบกิจ กรรมของเอนไซม์ (3~4% residual activity) ใน A. pasteurianus KU108, ไอโซเลด KU111, KU112 และ saeki

แผนดำเนินงานตลอดโครงการ 3 ปี

→ = แผนงานที่เสนอจะทำ — = แผนงานที่ทำเสร็จแล้ว

การดำเนินงาน	ปีร์	i 1	ปีที	2	ปีที่ 3	
	เดือนที่	เดือนที่	เดือนที่	เดือนที่	เดือนที่	เดือนที่
	1-6	7-12	1-6	7-12	1-6	7-12
1. การศึกษา plasmid profile						
1.1 คัดเลือกและจัดกลุ่มสายพันธุ์ที่มีอยู่เป็น						
กลุ่มทนและไม่ทนอุณหภูมิสูง			_			
1.2 แยกสกัดและวิเคราะห์ดีเอนเอจากสาย	4					
พันธุ์ข้างต้น	1					
2. การทำ RAPD ของ total DNA						
2.1 ออกแบบและเตรียม DNA primer	<u></u>		į			
2.2 ทำปฏิกิริยา PCR และวิเคราะห์ผล		-				
เปรียบเทียบระหว่างกลุ่มที่ทนและไม่						
ทนอุณหภูมิสูง						}
3. การตรวจหา Insertion sequence	1					
3.1 แยกสกัดดีเอนเอและเตรียม DNA		<u> </u>				[
probe						}
3.2 ทำ Southern hybridization และ						
วิเคราะห์ผล	}					
4. การทำ plasmid curing						
4.1 เลือกใช้สารที่เหมาะสม	}		<u></u>			
4.2 วิเคราะห์สมบัติของ curant ที่ได้					 →	
5. การปรับปรุงสายพันธุ์ด้วยวิธีทางพันธุ				ĺ		
วิศวกรรม			·			
5.1 ศึกษาการสร้างกรดที่สภาวะต่าง ๆของ	}				<u> </u>	
สายพันธุ์ที่ทนอุณหภูมิสูง						
5.2 ศึกษาสมบัติของเอนไซม์ alcohol					<u> </u>	
dehydrogenase (adh)				į		
5.3 การโคลนยืน <i>adh</i>					•	

ผลงานวิจัยที่ทำในรอบปี

(1) วัดถุประสงค์

- 1.1 เพื่อศึกษาบทบาทของพลาสมิดที่มีอยู่ในเชื้อ A. pasteurianus KU108 ว่ามีบทบาทเกี่ยวกับ ความสามารถในการผลิตกรด การทนอุณหภูมิสูง การทนต่อความเข้มขันของกรดน้ำสัมและเอทานอล หรือไม่
- 1.2 เพื่อศึกษาการสร้างกรดในอาหารเหลวของเชื้อ *A. pasteurianu*s KU108 ที่อุณหภูมิต่าง ๆ (30, 37 และ 40°C) ทั้งในสภาวะที่เป็น static และ shaking culture
- 1.3 เพื่อศึกษาสมบัติบางประการของเอนไซม์ alcohol dehydrogenase และ aldehyde dehydrogenase ที่แยกจากเชื้อ *A. pasteurianus* KU108

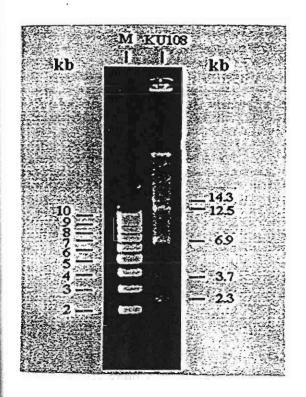
(2) การดำเนินงานในรอบปีที่ผ่านมา

2.1 การศึกษาบทบาทของพลาสมิดโดยการทำพลาสมิดคิวริ่ง

พลาสมิดเป็นดีเอนเอที่อยู่นอกโครโมโซม มีโครงสร้างเป็นวงแหวนเกลียวคู่สามารถจำลองตัว เองได้อย่างอิสระ พบในแบคทีเรียหลายชนิด ความสำคัญของพลาสมิดคือ มีลักษณะทางพันธุกรรมบาง ลักษณะถูกกำหนดโดยยืนในพลาสมิด เช่น ลักษณะที่เกี่ยวข้องกับความต้านทาน (resistance) สมบัติ เมแทบอลิซึม (metabolism) การเกิดโรค (pathogenicity) คอนจูเกชัน (conjugation) และลักษณะที่ เกี่ยวข้องกับการจำลองตัวเอง (Day, 1982 และ Trevors, 1986) พลาสมิดบางชนิดมีความเสถียร และ สามารถถ่ายทอดไปสู่เซลล์ใหม่ในระหว่างการแบ่งเซลล์ได้

ในเชื้อกรดน้ำสัม มีรายงานการศึกษาการกระจาย (distribution) ของพลาสมิด พบว่าเชื้อกรด น้ำสัมส่วนใหญ่ มีพลาสมิดขนาดเล็กจำนวนมาก (Fukaya และคณะ, 1985a; Marictte และคณะ, 1991) ซึ่งได้มีการนำเอาพลาสมิดขนาดเล็กเหล่านี้มาสร้างเป็นพลาสมิดพาหะ (plasmid vector) เพื่อโคลนยืน เข้าสู่ Escherichia coli และ Acetobacter aceti No 1023 (Okumura และคณะ, 1985; Fukaya และคณะ, 1985b) รวมทั้งมีรายงานของ Fukaya และคณะ (1985c) พัฒนาวิธีการทำทรานสฟอร์เมชันเข้าสู่ A. aceti No 1023 โดยการเดิมสารโพลีเอทธิลีนไกลคอล (polyethylene glycol) หรือ ไดเมทธิลซัลฟอก ไซด์ (dimethyl sulfoxide) สำหรับใน A. pasteurianus มีรายงานการสร้างพลาสมิดลูกผสมจากพลาสมิด PAC1 ของ A. pasteurianus กับ pUC4 ของ E. coli (Grones และคณะ, 1989, 1991 และ 1993) ส่วน การถ่ายโอนพลาสมิดเหล่านี้เข้าสู่เชลล์ของเชื้อกรดน้ำสัมมีวิธีการด่างๆ เช่น conjugation (Inoue และคณะ, 1985; Valla และคณะ, 1986) transformation (Fukaya และคณะ, 1985c) และ electroporation (Hall และคณะ, 1992)

การสูญเสียพลาสมิด (plasmid curing) ในแบคทีเรียสามารถทำได้โดยการเลี้ยงเชื้อที่อุณหภูมิสูง (elevated growth temperature) หรือการใช้สารเคมี เช่น acridine dye, ethidium bromide, mitomycin C ซึ่งตัวอย่างของสารเคมีและกลไกที่ทำให้เกิดพลาสมิดคิวริ่ง ดังแสดงในตารางที่ 1


ตารางที่ 1 ตัวอย่างสารเคมีและกลไกที่ทำให้เกิดพลาสมิดคิวริ่ง

Mode of action
Intercalating dyes; preferential inhibition of plasmid
replication
Inhibit DNA gyrase-dependent supercoiling of plasmid
Matabalia activation fallowed by avalantilia attention
Metabolic activation followed by nucleophilic attack on
purine bases
Inhibits RNA polymerase
Plasmid-containing cells are possibly more sensitive to
SDS bacause of plasmid-specified pili on cell surface
Plasmidless segregants arise during replication or
partitioning to daughter cells
Complete or partial deletions
Used only with thymine-requiring auxotroph
May cause loss of certain plasmids
-
Plasmid incompatibility in the same cell

ที่มา : Trevores (1986)

การทำพลาสมิดคิวริ่งในแบคทีเรียโดยใช้สารเคมี มีรายงานที่ประสบความสำเร็จ เช่น การใช้ SDS (0.002%) ใส่ลงในอาหารเลี้ยงเชื้อ Staphylococcus aureus สามารถทำให้พลาสมิดที่ควบคุมการ สร้างเอนไชม์ penicillinase สูญเสียไป (Stephen และคณะ, 1972) การใช้ mitomycin C ทำพลาสมิด คิวริ่งในเชื้อ Gluconobacter oxydans ATCC 9337 ซึ่งทำให้ระบบ glucose oxidation สูญเสียไป (Qazi และคณะ, 1989) การใช้ novobiocin เพื่อทำคิวริ่งพลาสมิดใน Lactobacillus pantarum (Ruiz-Barba และคณะ, 1991) การใช้ acridine orange ทำให้เกิดการสูญหายของพลาสมิดใน Bacillus cereus BIS-59 ซึ่งมีผลให้เชื้อสูญเสียความสามารถในการผลิตสารพิษที่เป็น non-haemolytic (Kamat และ Nair, 1992) และทำให้เกิดการสูญหายของพลาสมิดใน Pseudomonas (Pileggi และคณะ, 1994)

ในการศึกษาครั้งนี้ จะศึกษาบทบาทของพลาสมิดที่พบใน A. pasteurianus KU108 ซึ่งเป็นเชื้อ กรดน้ำสัมที่แยกได้จากสับปะรดในประเทศไทย เป็นสายพันธุ์ที่ผลิตกรดได้ดีที่อุณหภูมิสูง ทนต่อความ เข้มขันของกรดน้ำสัมและเอทานอลได้สูง จากการแยกดีเอนเอทั้งหมดของเชื้อนี้มาวิเคราะห์ในอะกาโรส เจลอิเลคโตรโฟเรซีส พบว่ามีพลาสมิดอย่างน้อย 5 ชนิด มีขนาด 2.3, 3.7, 6.9, 12.5 และ 14.3 กิโลเบส ตามลำดับ (ภาพที่ 1) นำเอาเชื้อดังกล่าวมาเลี้ยงในอาหารเลี้ยงเชื้อที่ผสม sodium dodecyl sulfate (0.5-8.0 มิลลิกรัมต่อมิลลิลิตร) และ acridine orange (10 ไมโครกรัมต่อมิลลิลิตร) คัดเลือกหา curants และวิเคราะห์สมบัติของ curants ที่แยกได้เปรียบเทียบกับ parent strain

ภาพที่ 1 แสดงแถบของพลาสมิตดีเอนเอของเชื้อ

A. pasteurianus KU 108 เปรียบเทียบ
ขนาดกับดีเอนเอมาดรฐาน

2.1.1 การทำพลาสมิดคิวริ่ง

นำเชื้อกรดน้ำส้ม A. pasteurianus KU108 มาเลี้ยงในอาหารเหลว potato medium (0.5% glucose, 1.0% yeast extract, 1% polypeptone, 2% glycerol และ 15% potato extract ประมาณ 3.3 กรัม) ปริมาตร 2 มิลลิลิตร บ่มด้วยการเขย่าที่อุณหภูมิ 30°C ด้วยความเร็วรอบ 200 รอบต่อนาที นาน 24 ชั่วโมง ถ่ายซัสเพนชั่นของเชื้อ 20 ไมโครลิตรลงในอาหาร 2 มิลลิลิตร ที่ผสม SDS ความเข้มขัน 0.5-8.0 มิลลิกรัมต่อมิลลิลิตรบ่มที่ 30°C ด้วยการเขย่านาน 24 ชั่วโมง ใช้ปีเปตดูดชัสเพนชันของเชื้อ 0.1 มิลลิลิตรเกลี่ยลงบนอาหารแข็ง potato medium ที่ผสมเอทธานอล 4% และ bromcresol purple หรือ CaCO₃ (อินดิเคเดอร์แสดงการสร้างกรด) บ่มที่ 30°C นาน 2-5 วัน สุ่มคัดเลือกโคโลนีที่มีขนาด หรือสีโคโลนีต่างๆ มาสกัดแยกพลาสมิตเปรียบเทียบกับ parent strain

นำคิวแรนท์ที่ผ่านการทำพลาสมิดคิวริ่งครั้งที่ 1 ด้วย SDS ที่ความเข้มข้น 2.5 มิลลิกรัมด่อ มิลลิลิตร ซึ่งเป็นความเข้มข้นที่ทำให้พลาสมิดบางแถบหายไปมาทำพลาสมิดคิวริ่งด่อโดยเลี้ยงเชื้อใน พภาวะเดิม และใช้ความเข้มข้นของ SDS 2.5 มิลลิกรัมด่อมิลลิลิตร ใช้ปิเปตดูดซัสเพนซันเชื้อที่ผ่านการ ทำพลาสมิดคิวริ่ง ครั้งที่ 5, 6, 7, 8, 9 และ 10 มา 0.1 มิลลิลิตร เกลี่ยลงบนจานอาหาร สุ่มคัดเลือก คิวแรนท์มาสกัดแยกพลาสมิด และเนื่องจากคิวแรนท์ที่สุ่มคัดเลือกมาส่วนใหญ่ยังมีแถบพลาสมิดอยู่ จึง นำคิวแรนท์ที่มีแถบของพลาสมิดเหลืออยู่น้อยที่สุดมาทำคิวริ่งต่อโดยใช้ acridine orange ความเข้มข้น 10 ไมโครกรัมต่อมิลลิลิตร ทำการถ่ายชัสเพนชันของเชื้อลงในอาหารใหม่ทุก 24 ชั่วโมง จนครบ 10 ครั้ง ใช้ปีเปตดูดชัสเพนชันของเชื้อที่ผ่านการทำพลาสมิดคิวริ่งครั้งที่ 10 มาทำ dilution และใช้ชัสเพนชันของ เชื้อ 0.1 มิลลิลิตร เกลี่ยลงบนอาหารแข็ง สุ่มคัดเลือกคิวแรนท์มาสกัดแยกพลาสมิด

2.1.2 การตรวจสอบสมบัติของคิวแรนท์

นำคิวแรนท์ที่ได้จากการทำ พลาสมิดคิวริ่งด้วย SDS ความเข้มข้น 2.5 มิลลิกรัมต่อมิลลิลิดร และ acridine orange ความเข้มข้น 10 ไมโครกรัมต่อมิลลิลิตร มาทดสอบสมบัติต่างๆ เปรียบเทียบกับ parent strain ดังนี้

- 1. ทดสอบสมบัติการทนอุณหภูมิสูง (40°C) โดยดูจากการเจริญบนอาหารแข็ง potato medium บ่มที่ 40°C นาน 2-5 วัน
- กดสอบสมบัติการทนต่อความเข้มข้นเริ่มต้นของกรดน้ำส้มและเอทานอลที่อุณหภูมิ 30 และ 37°C โดยดูการเจริญของเชื้อบนอาหารแข็ง potato medium ที่ผสมกรดน้ำส้ม 1-5% หรือ เอทานอล 1-10% บ่มที่ 30 หรือ 37°C นาน 2-5 วัน
- 3. ดรวจสอบขนาดเซลล์ของคิวแรนท์ด้วยกล้องจุลทรรศ์อิเลคตรอนโดยใช้เซลล์ที่เลี้ยงในอาหาร เหลว potato medium ที่ 30[°]C นาน 18-24 ชั่วโมง
- 4. ทดสอบการสร้างกรดน้ำส้มที่อุณหภูมิ 30, 37 และ 40°C โดยเลี้ยงเชื้อในอาหารเหลว seed culture medium (0.5% glucose, 0.5% yeast extract, 0.5% polypeptone และ 0.5% glycerol) ที่ผสม เอทานอล 4 และ 8% โดยถ่ายเชื้อที่เลี้ยงใน potato medium ที่ 30°C นาน 24 ชั่วโมง ปริมาตร 10 มิลลิลิตร ใส่ลงใน seed culture medium ปริมาตร 90 มิลลิลิตรในฟลาสก์ขนาต 500 มิลลิลิตร บ่มใน สภาวะที่ไม่เขย่า (static culture) เป็นเวลา 10 วัน เก็บตัวอย่างเชื้อทุกวันๆ ละประมาณ 2.5 มิลลิลิตร เพื่อนำมาวัดดูความขุ่นของเชื้อด้วยเครื่องสเปคโตรโฟโตมิเตอร์ที่ความยาวคลื่น 540 นาโนเมตร และ วิเคราะห์ปริมาณกรดโดยนำมาไดเดรทกับสารละลายโชเดียมไฮดรอกไซด์ (NaOH)

2.2 การศึกษาการสร้างกรดในอาหารเหลวของเชื้อ A. pasteurianus KU108

การผลิตกรดน้ำส้มในระดับอุตสาหกรรม อาคัยปฏิกิริยาการออกชิไดช์เอทานอลให้เป็นกรดน้ำ ส้ม ซึ่งจะมีการปล่อยพลังงานหรือความร้อนออกมา ทำให้อุณหภูมิระหว่างการหมักสูงขึ้น โดยธรรมชาติ แล้ว เชื้อกรดน้ำส้มเป็นเชื้อที่ไวต่อการเปลี่ยนแปลงของอุณหภูมิ เจริญได้ดีที่อุณหภูมิระหว่าง 25-30°C ขึ้งนั้นถ้าอุณหภูมิระหว่างการหมักสูงขึ้น จะทำให้อัตราเร็วของการหมักและประสิทธิภาพการสร้างกรด น้ำส้มลดลง ทำให้มีความจำเป็นต้องคัดเลือกสายพันธุ์ที่ทนอุณหภูมิสูง ทนต่อความเข้มข้นของเอทานอล โละกรดน้ำส้มสูง (Ohmori และคณะ, 1980; Saeki และคณะ, 1997) หรือพัฒนาขบวนการหมัก Lotong และคณะ, 1989) ให้เหมาะสมขึ้น ในการทดลองนี้ได้ศึกษาการสร้างกรดของเชื้อ *A. pasteurianus* KU108 ในอาหารเหลว seed culture ที่ผสมเอทานอล 4 % ปริมาตร 100 มิลลิลิตรในฟลาสก์มีแขน (side-arm flask) ขนาด 500 มิลลิลิตร นำมาบ่มแบบไม่เขย่า (static culture) และเขย่า (shaking culture) ที่ความเร็วรอบ 220 รอบ ต่อนาที เก็บตัวอย่างน้ำเลี้ยงเชื้อทุกๆ 24 ชั่วโมง นำมาวิเคราะห์หาค่าต่าง ๆดังนี้

- 1. วัดความขุ่นของเชลล์ โดยเครื่อง Klett Sumerson
- 2. วัด pH
- 3. ไตเตรตหาปริมาณกรดโดยใช้ NaOH ความเข้มข้น 0.08 N และใช้ phenolphthalein เป็นอิน ดิเคเตอร์ โดยใช้ micropipette ดูดน้ำเลี้ยงเชื้อมา 100 ไมโครลิตร ใส่ลงในหลอดแก้ว เติมน้ำกลั่นลงไป 900 ไมโครลิตร (ทำให้ตัวอย่างเจือจาง 10 เท่า) ใส่ phenolphthalein ลงไป 5 ไมโครลิตร (0.01 กรัมใน 25 มิลลิลิตร ของ 70% เอทานอล) นำมาไตเตรตกับ NaOH ความเข้มขัน 0.08 N วัดปริมาณ NaOH ที่ ใช้ในการไดเตรต แล้วนำมาคำนวณหาปริมาณกรด
- 4. หาปริมาณเอทานอลโดยวิธี ferricyanide reductase activity (dupanol method) ด้วยการทำ ปฏิกิริยากับเอนไซม์ alcohol dehydrogenase โดยนำเอนไซม์ที่แยกบริสุทธิ์จาก A. aceti (ได้รับความ อนุเคราะห์จาก Professor Dr. Kazunobu Matsushita มหาวิทยาลัยชามากูซิ ประเทศญี่ปุ่น) มาเจือจาง ประมาณ 200-400 เท่าด้วย 50 mM potassium phosphate buffer (KPB) pH 6.5

การเดรียม 10 mM เอทานอล ใช้เอทานอล 2.3 กรัมผสมกับน้ำกลั่นให้มีปริมาตรสุดท้าย 50 มิลลิลิตร ความเข้มขัน 4 M เวลาจะใช้นำมา 1 มิลลิลิตร เจือจางให้เป็น 100 มิลลิลิตร

การทำปฏิกิริยาเพื่อทำ standard curve หาปริมาณเอทานอล

4-7						
Reaction mixture			ปริมาดร (ไม	โครลิตร)		
1. 10 mM Ethanol	0	5	10	15	20	25
2. distilled water	100	95	90	85	80	75
3. ADH solution	100	100	100	100	100	100
4. 10 mM KAB pH6.0	600	600	600	600	600	600

นำ reaction mixtures ข้างดันมาบ่มที่ 25°C 5 นาที เดิม potassium ferricyanide ความเข้มข้น 100 มิลลิโมลาร์ลงไป 200 ไมโครลิตร บ่มที่ 25°C นาน 5 นาที หยุดปฏิกิริยาโดยการเดิม dupanol ลง ไป 500 ไมโครลิตร บ่มต่อที่ 25°C นาน 20 นาที เดิมน้ำกลั่นลงไป 3.5 มิลลิลิตร นำมาวัด O.D ที่ ความยาวคลื่น 660 นาโนเมตร

การวิเคราะห์ปริมาณเอทานอลในน้ำเลี้ยงเชื้อ ถ้ามีปริมาณเอทานอลประมาณ 4 % จะต้องเจือ จางดัวอย่างประมาณ 3,000 เท่า (1,000-2,000 เท่า สำหรับปริมาณเอทานอล 2 %) นำเอาตัวอย่างที่ เจือจางแล้วมาทำปฏิกิริยากับเอนไซม์ ADH แล้ววัด่า O.D₆₆₀ เปรียบเทียบกับกราฟมาตรฐานเพื่อหา ปริมาณของเอทานอล

2.3 การศึกษาสมบัติบางประการของเอนไซม์ alcohol dehydrogenase และ aldehyde dehydrogenase ที่แยกจากเชื้อ A. pasteurianus KU108

การออกซิไดซ์เอทานอลให้เป็นกรดน้ำส้ม อาศัยปฏิกิริยา 2 ขั้นตอน คือ ขั้นตอนแรก เป็น ปฏิกิริยาออกซิไดซ์เอทานอลให้เป็นอัลดีไฮด์ โดยเอนไซม์อัลกอฮอล์ดีไฮโดรจีเนส Dehydrogenase, ADH) ขั้นตอนที่สองเป็นปฏิกิริยาออกซิไดซ์อัลดีไฮด์ที่ได้ ให้เป็นกรดน้ำส้ม โดย เอนไซม์อัลดีไฮด์ดีไฮโดรจีเนส (Aldehyde Dehydrogenase, ALDH) เอนไซม์ทั้งสองชนิดนี้อยู่ในชั้นเยื่อ หุ้มเซลล์ (membrane-bound enzymes) (Adachi และคณะ, 1978a และ 1978b; Ameyama และ Adachi,1982a และ 1982b) มีรายงานว่า เอนไซม์อัลดีไฮด์ดีไฮโดรจีเนส มีความเสถียรที่อุณหภูมิสง มากกว่าเอนไซม์อัลกอฮอล์ดีไฮโดรจีเนส (Adachi และคณะ, 1988) โดยทั่วไปเอนไซม์อัลกอฮอล์ดี ไฮโดรจีเนสจากเชื้อกรดน้ำส้มประกอบด้วย subunit ย่อย 3 subunits คือ subunit I. II และ III (Matsushita และคณะ, 1987, 1992a, 1992b, 1992c และ 1994; Takemura และคณะ, 1993) ยกเว้น เอนไซม์จาก A. polyoxogenase ซึ่งประกอบด้วย subunit ย่อยเพียง 2 subunits คือ subunit ! และ ม (Tayama และคณะ, 1989) มีรายงานการโคลนและหาลำดับนิวคลีโอไทด์ของยืน adh จาก A. pasteurianus subunits ! และ II (Takemura และคณะ, 1993) และ subunit III (Kondo และคณะ, 1995) และ A. polyoxogenase subunits ! และ II (Tayama และคณะ, 1989) หน้าที่ของแต่ละ subunit คือ subunit I เป็น dehydrogenase subunit มีน้ำหนักโมเลกุลประมาณ 72-80 กิโลดาลดัน ประกอบ ด้วย pyrroloquinoline, PQQ และ cytochrome c 1 mole (Matsushita และคณะ, 1996) และสามารถ เปลี่ยนจาก active เป็น inactive form ได้ (Matsushita และคณะ, 1995) subunit II เป็น cytochrome c subunit (ประกอบด้วย cytochrome c 3 mole) มีน้ำหนักโมเลกุลประมาณ 44-54 กิโลดาลตัน และ subunit !!! ซึ่งอาจมีบทบาทในการรักษาความเสถียรของการจับกันระหว่าง subunit ! กับ subunit !! (Kondo และคณะ, 1995)

ในการทดลองนี้ได้แยกเอนไซม์ ADH และ ALDH จากเยื่อหุ้มเซลล์ของ A. pasteurianus KU108 แล้วนำมาศึกษากิจกรรมของเอนไซม์ที่สภาวะของการเลี้ยงเชื้อต่างๆ กัน และวิเคราะห์ปริมาณ ของ subunit II (cytochrome C) โดยวิธี heme staining ซึ่งแต่ละการทดลองมีวิธีการทำดังนี้

2.3.1 การแยกเอนไซม์ ADH และ ALDH จากเยื่อหุ้มเซลล์ของ A. pasteurianus KU108

นำเอาเซลล์ที่เลี้ยงที่สภาวะต่างๆ มาปั่นเพื่อเก็บตะกอนเซลล์ด้วยความเร็วรอบ 10,000 รอบต่อ นาที นาน 10 นาที ล้างตะกอนเซลล์ 2 ครั้ง ด้วย 50 mM potassium phosphate buffer (KPB) pH 6.0 ทำชัสเพนชันของตะกอนเซลล์ที่ล้างแล้วด้วย 50 mM KPB pH 6.0 โดยใช้ปริมาตร 5 มิลลิลิตรต่อเซลล์ 1 กรัม (น้ำหนักเปียก หรือ wet weight) นำซัสเพนชันของเชื้อมาผ่าน French pressure cell press ที่ ความดัน 16,000 psi 2 ครั้ง นำไปปั่นที่ความเร็วรอบ 10,000 รอบต่อนาที นาน 10 นาที เพื่อแยกเอา ตะกอนเซลล์ปกติออกไป นำเอา supernatant มาแยก membrane fraction ออกจาก soluble fraction โดยการขั้นด้วยเครื่อง ultracentrifuge ความเร็วรอบ 40,000 รอบต่อนาที นาน 90 นาที ดูดน้ำใส (soluble fraction) ออกจากหลอดให้หมด ละลายตะกอน (membrane fraction) ใน 50 mM KPB pH 6.0 โดยใช้ homogenizer จนได้สารละลายเนื้อเดียวกัน

2.3.2 การวิเคราะห์กิจกรรมของเอนไซม์

ใช้วิธี ferricyanide reductase activity หรือ Dupanol method โดยกิจกรรมของเอนไซม์ ADH และ ALDH จะวิเคราะห์จากความสามารถในการรีดิวซ์ potassium ferricyanide ควบคู่กับ dehydrogenation ของซับสเตรท โดย reaction mixture ประกอบด้วย

- 0.1 มิลลิลิตร enzyme solution
- 0.6 มิลลิลิตร McIlvaine buffer pH 5.0 (mixture of 75 mM Na $_2$ HPO $_4$ และ 38 mM citrate)
- 0.1 มิลลิลิตร 1 M substrate (ethanol for ADH, acetaldehyde for ALDH)

บ่มที่ 25°C นาน 5 นาที เดิม 0.2 มิลลิลิตรของ 0.1 M potassium ferricyanide บ่มต่อที่ 25°C 5 นาทีหยุดปฏิกิริยาโดยการเดิม 0.5 มิลลิลิตรของ ferric sulfate-Dupanol reagent(0.3% Fe₂ (SO₄)₃, 8.7% phosphoric acid และ 0.3% SDS) ทิ้งไว้ที่ 25°C นาน 20 นาที เดิม 3.5 มิลลิลิตรของน้ำกลั่น นำ ไปวัด $O.D_{660}$

One unit of the enzyme activity was expressed as 1 µlmol of substrate oxidized per minute, which is equivalent to 4.0 absorbance units.

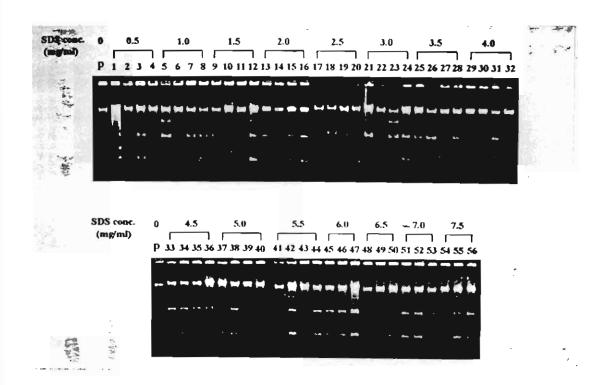
2.3.3 การหาความเข้มข้นของโปรตีน

ใช้วิธีของ Lowery โดยใช้ Bovine Serum Albumin (BSA) เป็น standard โดยการนำตัวอย่าง มา 0.4 มิลลิลิตร เดิม 0.2 มิลลิลิตรของสารละลายผสม solutionA : solutionB = 50:1 (solution A = 2% Na₂CO₃ in 0.1 N NaOH containing 0.5% SDS, solution B = 0.5% CuSO₄.5H₂O in 1% potassium sodium tartate) บ่มที่ 35°C นาน 10 นาที เติม 0.2 มิลลิลิตรของsolution C (phenol reagent) ผสมให้ เข้ากันอย่างเร็ว บ่มที่ 35°C นาน 30 นาที นำไปวัด O.D₇₅₀

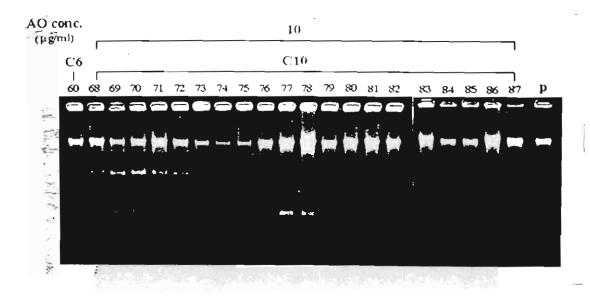
2.3.4 การทำ heme staining ของ ADH protein ใน membrane fraction

มีขั้นดอนการทำดังนี้ นำเอา membrane fraction ความเข้มขัน 50 ไมโครกรัมมาผสมกับ sample buffer และต้มที่ 60 °C 30 นาที หยอดตัวอย่างลงในหลุมของ 12.5% SDS-PAGE ทำอิเลค โตรโฟเรซีสโดยใช้กระแสไฟฟ้า 5 มิลลิแอมป์ ในช่วงของ stacking gel และ 10 มิลลิแอมป์ ในช่วงของ separating gel ใช้ protein size marker ของบริษัท Biorad ซึ่งประกอบด้วย phosphorylase B (101,000 ดาลตัน) bovine serum albumin (83,000 ดาลตัน) ovalbumin (50,600 ดาลตัน) carbonic anhydrase (35,500) soybean trypsin inhibitor (29,100 ดาลตัน) และ lysozyme (20,900 ดาลตัน) นำเจลมาย้อมใน staining buffer (6 มิลลิลิตร ของ 9 มิลลิกรัม 3,3', 5,5'-tetramethibengidine, TMBZ ในเมทานอล และ 14 มิลลิลิตร ของ 0.25 M acetate buffer pH 5.0) โดยการเขย่าเบาๆ ที่อุณหภูมิห้อง นาน 1-2 ชั่วโมง เดิม 60 ไมโครลิตรของ hydrogen peroxide ลงใน staining buffer ทิ้งไว้ 30 นาที จะ เห็นแถบโปรดีนสีน้ำเงิน หยุดปฏิกิริยาโดยการเท staining buffer ทิ้ง แล้วแช่เจลไว้ในสารผสมของ 3 มิลลิลิตร isopropanol และ 7 มิลลิลิตร ของ 0.25 M acetate buffer pH 5.0

2.3.5 ความเสถียรของเอนไซม์ ADH และ ALDH ที่อุณหภูมิสูง


นำ membrane fraction ของเชื้อกรดน้ำสัม 10 ไอโซเลด คือ KU8, KU58, KU61, KU84, KU102, KU108, KU111, KU112, IFO3284 และ saeki มาวิเคราะห์กิจกรรมของเอนไซม์ ADH และ ALDH จากนั้นนำมาศึกษาความเสถียรของเอนไซม์ที่อุณหภูมิสูง โดยการนำเอา membrane fraction มา treat ที่อุณหภูมิ 30, 40, 50, 60 และ 70°C นาน 10 นาที แล้ววิเคราะห์หา residual activity

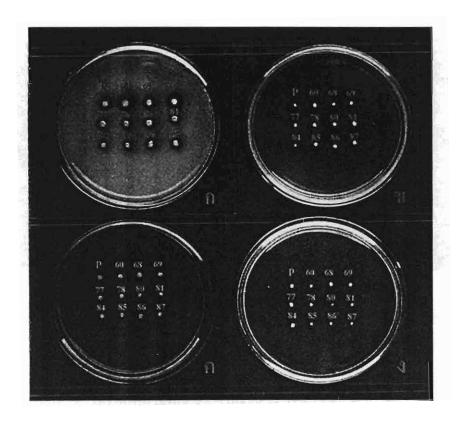
(3) ผลที่ได้รับ


3.1 คิวแรนท์ที่ได้จากการทำพลาสมิดคิวริ่งและสมบัติของคิวแรนท์

จากการนำเชื้อกรดน้ำส้ม A. pasteurianus KU108 มาทำพลาสมิดคิวริ่งโดยใช้ SDS ความเข้ม ข้น 0.5-8.0 มิลลิกรัมด่อมิลลิลิตร พบว่าที่ความเข้มขันของ SDS เท่ากับ 0.5-5.0 มิลลิกรัมด่อมิลลิลิตร มี เชื้อที่สามารถเจริญได้ความเข้มข้นละประมาณ 200-300 โคโลนี และที่ความเข้มข้น 5.5-7.5 มิลลิกรัมต่อ มิลลิลิตร มีเชื้อที่สามารถเจริญได้ความเข้มข้นละประมาณ 100-150 โคโลนี ซึ่งทุกโคโลนีสามารถสร้าง กรดโดยเปลี่ยนสือาหารเลี้ยงเชื้อจากสีม่วงเป็นสีเหลือง ส่วนที่ความเข้มข้นของ SDS เท่ากับ 8.0 มิลลิกรัมต่อมิลลิลิตร ไม่พบเชื้อที่เจริญได้อาจเนื่องจากความเข้มขันดังกล่าวสูงเกินไป สุ่มคัดเลือกโคโลนี ของคิวแรนท์มาความเข้มข้นละ 30-40 โคโลนี เพื่อแยกสกัดพลาสมิดและวิเคราะห์ในอะกาโรสเจลอิเลค โตรโฟเรซีส เปรียบเทียบกับ parent strain ดังแสดงในภาพที่ 2 ซึ่งพบว่าการใช้ SDS ไม่สามารถ เหนี่ยวนำให้เกิดการสูญหายของพลาสมิดของเชื้อ A. pasteurianus KU 108 ได้อย่างสมบูรณ์ ทั้งนี้อาจ เป็นเพราะว่าพลาสมิดของเชื้อนี้มีความเสถียรสูง ซึ่งสอดคล้องกับการทดลองของ Sievers และ Teuber (1995) ที่ได้ศึกษา plasmid profile ของเชื้อน้ำส้มสายชูที่แยกได้จากกระบวนการหมักน้ำส้มสายชูใน ประเทศเยอรมันและสวิตเซอร์แลนด์โดยถ่ายเชื้อทุกสัปดาห์ลงในอาหารใหม่เป็นเวลา 18 เดือน และทุก 3 เดือน สกัดแยกพลาสมิด พบว่าทุกสายพันธุ์มีพลาสมิดที่เสถียร ดังนั้นจึงทำพลาสมิดคิวริ่งต่อโดย เปลี่ยนมาใช้ acridine orange (AO) โดยนำคิวแรนท์หมายเลข 60 ที่ผ่านการทำพลาสมิดคิวริ่งครั้งที่ 6 ซึ่งมีแถบของพลาสมิดเหลือน้อยที่สุดมาเลี้ยงในอาหารเหลว potato medium บ่มโดยการเขย่าด้วย ความเร็วรอบและอุณหภูมิเท่าเดิมนาน 24 ชั่วโมง ถ่ายชัสเพนชันเชื้อปริมาตร 20 ไมโครลิตร ใส่ใน หลอดอาหาร potato medium ที่ผสม acridine orange เข้มขัน 10 ไมโครกรัมต่อมิลลิลิตร ปริมาตร 2 ้มิลลิลิตร ทุกๆ 24 ชั่วโมง เขย่าด้วยความเร็วรอบและอุณหภูมิเท่าเดิมจนครบ 10 ครั้ง จากนั้นนำชัสเพน ชั้นเชื้อที่ผ่านการทำพลาสมิดคิวริ่งครั้งที่ 10 มาเจือจางด้วยน้ำเกลือ 0.85 เปอร์เซ็นต์ เพื่อให้ได้ปริมาณ เซลล์ที่เหมาะสม (30-300 โคโลนี) เนื่องจากเชื้อเจริญได้ดีสังเกดจากน้ำเลี้ยงเชื้อที่มีความขุ่นมาก นำซัส เพนชั้นเชื้อที่เจือจางมา 0.1 มิลลิลิตร เกลี่ยบนอาหารแข็ง potato medium ที่ผสม bromcresol purple และเอทานอล 4 % บ่มที่อุณหภูมิและเวลาเท่าเดิม พบว่าที่ความเจือจาง 1/10⁶ มีโคโลนีเจริญบนอาหาร เลี้ยงเชื้อ 52 โคโลนี และทุกโคโลนีสามารถสร้างกรดโดยสังเกตุจากการเปลี่ยนสีอาหารเลี้ยงเชื้อจากสี เพื่อสกัดแยกพลาสมิดเปรียบเทียบกับเชื้อ ม่วงเป็นสีเหลือง จึงสมคัดเลือกมา 20 โคโลนี Pasteurianus KU 108 (P) ที่ไม่ได้ผ่านการทำพลาสมิดคิวริ่ง **ดังแสดงผลในภาพที่ 3** พบว่าคิวแรนท์ หมายเลข 85,86 และ 87 เกิดการสูญหายของพลาสมิดเกือบสมบูรณ์ ซึ่งจากการทำพลาสมิดคิวริ่งโดย ใช้ SDS กับเชื้อ *A. pasteurianu*s KU 108 พบว่าพลาสมิดที่มีขนาดใหญ่กว่า 2.3 กิโลเบส ถูกเหนี่ยวนำ ให้เกิดการสูญหายของพลาสมิดได้สูงกว่าพลาสมิดที่มีขนาดเล็ก ซึ่งสอดคล้องกับการทดลองของ Ruiz-Barba และคณะ (1991) ที่ศึกษาพลาสมิดคิวริ่งในเชื้อ *Lactobacillus pantarum* โดยใช้สาร novobiocin

เหนียวนำให้เกิดการสูญหายของพลาสมิดพบว่าทุกสายพันธุ์เกิดการสูญหายของพลาสมิดที่มีน้ำหนัก โมเลกุลสูงขณะที่พลาสมิดที่มีน้ำหนักโมเลกุลดำเกิดการสูญหายของพลาสมิดด้วยความถี่ที่คำกว่า ดัง นั้นการใช้ SDS ร่วมกับ acridine orange จะมีประสิทธิภาพในการเหนียวนำให้เกิดการสูญหายของ พลาสมิดขนาดเล็กของเชื้อ A. pasteurianus KU 108 ได้ดีกว่าการใช้ SDS เพียงชนิดเดียว

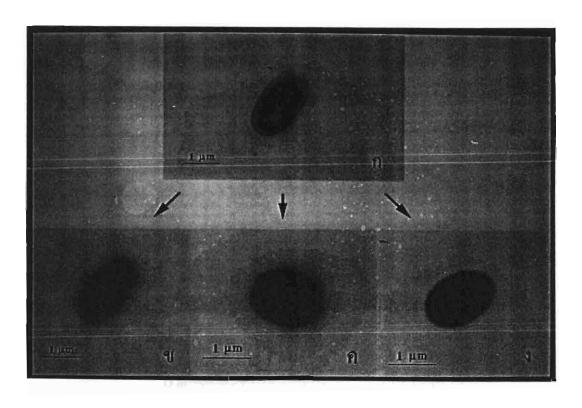
ภาพที่ 2 แสดงแถบพลาสมิดของคิวแรนท์ของ A. pasteurianus KU 108 ที่ผ่านการทำพลาสมิดคิวริ่ง โดยใช้ SDS ความเข้มข้น 0.5-7.5 มิลลิกรัมต่อมิลลิลิตร เปรียบเทียบกับ parent strain (p)

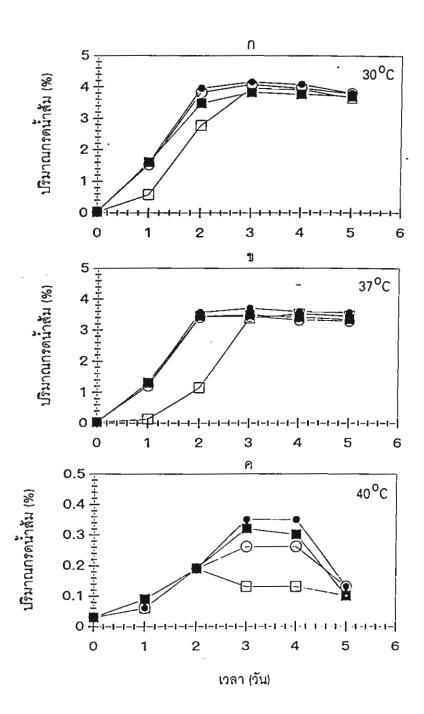


เลนที่ 1= curant หมายเลข 60 ที่ทำพลาสมิดคิวริ่งของ KU108 ด้วย SDS 2.5 mg/ml ครั้งที่ 6
2-21= curant หมายเลข 68-87 ที่ได้จากการทำพลาสมิดคิวริ่งของ curant 60 ด้วย AO 10 µg/ml ครั้งที่ 10
22= พลาสมิดของ A. pasteurianus KU 108 ที่ไม่ได้ผ่านการทำพลาสมิดคิวริ่ง (p)

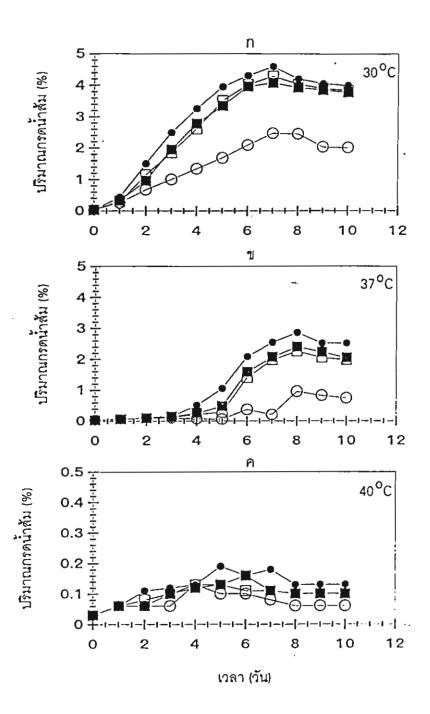
กาพที่ 3 แสดงแถบพลาสมิดของคิวแรนท์ของ A. pasteurianus KU 108 ที่ผ่านการทำพลาสมิดคิวริ่ง ครั้งที่ 6 โดยใช้ SDS ความเข้มข้น 2.5 มิลลิกรัมต่อมิลลิลิตร และครั้งที่ 10 โดยใช้ acridine orange (AO) ความเข้มข้น 10 ไมโครกรัมต่อมิลลิลิตร เปรียบเทียบกับ parent strain (p)

การตรวจสอบสมบัติต่างๆ ของคิวแรนท์หมายเลข 60 ที่ผ่านการทำพลาสมิดคิวริ่งที่ความเข้ม ขัน SDS 2.5 มิลลิกรัมต่อมิลลิลิตร และคิวแรนท์หมายเลข 68, 77, 78, 80, 81, 84, 85, 86 และ 87 ที่ ผ่านการทำพลาสมิดคิวริ่งที่ความเข้มขัน acridine orange (AO) 10 ไมโครกรัมต่อมิลลิลิตร เปรียบเทียบ กับเชื้อ A. pasteurianus KU 108 (P) ที่ไม่ได้ผ่านการทำพลาสมิดคิวริ่ง ดังแสดงผลในภาพที่ 4 พบว่า ทุกคิวแรนท์ทำให้เกิด overoxidation สร้างกรดน้ำสัมบนอาหารแข็ง potato medium ที่ผสม calcium carbonate และเอทานอล 4 % เจริญได้ที่อุณหภูมิ 40°C ทนต่อความเข้มขันสูงสุดของกรดน้ำสัม 3 % ที่อุณหภูมิ 30°C และทนต่อความเข้มขันสูงสุดของเอทานอล 8 % ที่อุณหภูมิ 37°C ซึ่งสมบัติเหล่านี้ไม่แดกต่างกับ parent strain สำหรับ การตรวจสอบขนาดเซลล์ของคิวแรนท์หมายเลข 85, 86 และ 87 เปรียบเทียบกับ parent strain ตัง แสดงผลในภาพที่ 5 พบว่าเซลล์ของคิวแรนท์และ parent strain ไม่มีความแดกต่างกันและจากการ ทัดสอบการผลิตกรดน้ำสัมของเชื้อ A. pasteurianus KU 108 และ คิวแรนท์หมายเลข 85. 86 และ 87 ในอาหาร seed culture ที่ผลมเอทานอล 4 และ 8 % ตามลำดับ ที่อุณหภูมิ 30, 37 และ 40°C ใน ผิภาวะแบบไม่เขย่า (static culture) พบว่าการผลิตกรดของ parent strain และคิวแรนท์หมายเลข 85.


86 และ 87 ในอาหาร seed culture ที่ผสมแอลกอฮอล์ 4 % ไม่มีความแตกต่างกัน ดังแสดงผลในภาพ ที่ 6 แต่ในอาหาร seed culture ที่ผสมแอลกอฮอล์ 8 % พบว่า parent strain ผลิตกรดได้สูงกว่าคิว แรนท์หมายเลข 85,86 และ 87 ดังแสดงผลในภาพที่ 7 อาจสรุปได้ว่ายืนที่ควบคุมลักษณะต่างๆ ของ เชื้อน้ำสัมสายชู A. pasteurianus KU 108 เช่นยืนที่ควบคุมลักษณะการทนอุณหภูมิสูง การทนต่อความ เข้มข้นเริ่มต้นของกรดน้ำสัมและแอลกอฮอล์อยู่บนโครโมโซม ส่วนความสามารถหรือประสิทธิภาพใน การผลิตกรดอาจต้องการปัจจัยบางอย่างที่เกี่ยวข้องกับพลาสมิด จึงทำให้คิวแรนท์ที่ได้ผลิตกรดได้ต่ำ กว่าเชื้อที่ยังคงมีพลาสมิดอยู่ และเคยมีรายงานจากการทดลองของ Qazi และคณะ (1989) ว่ายืนมีควบ คุมการสร้างกรดกลูโคนิคและอนุพันธุ์คีโดของเชื้อ G. oxydans อยู่บนพลาสมิด

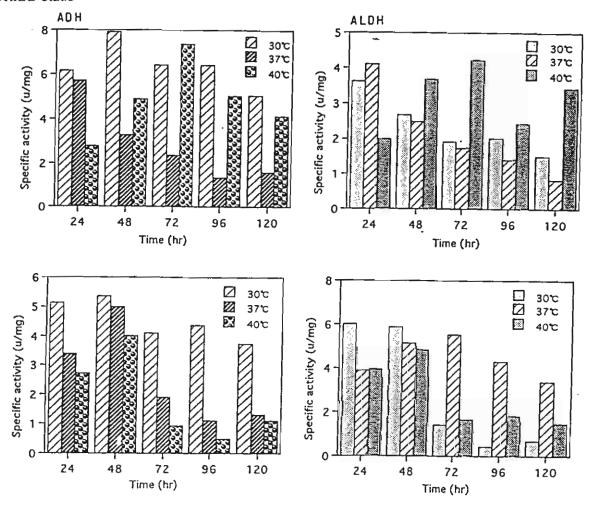

กาพที่ 4 แสดงการดรวจสอบสมบัติต่างๆ ของคิวแรนท์ของเชื้อ A. pasteurianus KU 108 หมายเลข 60, 68, 69, 77, 78, 80, 81, 84, 85, 86 และ 87 ตามลำดับเปรียบเทียบกับ parent strain ภาพ ก แสดงการสร้างกรดน้ำสัมบนอาหารแข็ง potato ที่ผสม calcium carbonate และเอทา นอล 4 % บ่มที่อุณหภูมิ 30°C นาน์ 3 วัน

ภาพ ข การเจริญบนอาหารแข็ง potato บ่มที่อุณภูมิ 40°C นาน 2-5 วัน ภาพ ค การเจริญบนอาหาร SCM ที่มีความเข้มขันเริ่มต้นของเอทานอล 8 % บ่มที่อุณหภูมิ 37 °C นาน 2-5 วัน


ภาพ ง การเจริญบนอาหาร SCM ที่มีความเข้มข้นเริ่มต้นของกรดน้ำส้ม 3 % บ่มที่อุณหภูมิ 30 °C นาน 2-5 วัน

ภาพที่ 5 แสดงขนาดเซลล์ของคิวแรนท์ของเซื้อ A. pasteurianus KU 108 หมายเลข 85, 86 และ 87 เปรียบเทียบกับ parent strain
ภาพ ก เซลล์ของเชื้อ A. pasteurianus KU 108 (parent strain) กำลังขยาย 15,652 เท่า
ภาพ ข เซลล์ของคิวแรนท์หมายเลข 85 กำลังขยาย 17,744 เท่า
ภาพ ค เซลล์ของคิวแรนท์หมายเลข 86 กำลังขยาย 16,666 เท่า
ภาพ ง เซลล์ของคิวแรนท์หมายเลข 87 กำลังขยาย 17,647 เท่า

ภาพที่ 6 การผลิตกรดน้ำสัมของเชื้อ A. pasteurianus KU 108 (parent strain) (●) คิวแรนท์หมายเลข 85 (○) คิวแรนท์หมายเลข 86 (□) และคิวแรนท์หมายเลข 87 (■) ในอาหาร seed culture ที่ผสมเอทานอล 4 % ในสภาวะแบบไม่เขย่าที่อุณหภูมิ 30°C (ก) 37°C (ข) และ 40°C (ค)

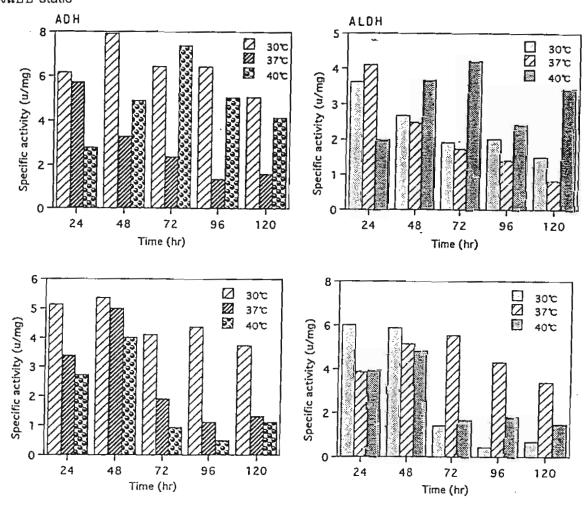


ภาพที่ 7 การผลิตกรดน้ำสัมของเชื้อ A. pasteurianus KU 108 (parent strain) (●) คิวแรนท์หมายเลข 85 (○) คิวแรนท์หมายเลข 86 (□) และคิวแรนท์หมายเลข 87 (■) ในอาหาร seed culture ที่ผสมเอทานอล 8 % ในสภาวะแบบไม่เขย่าที่อุณหภูมิ 30°C (ก) 37°C (ข) และ 40°C (ค)

3.3 สมบัติบางประการของเอนไซม์ alcohol dehydrogenase และ aldehyde dehydrogenase ที่ แยกจากเชื้อ A. pasteurianus KU108

3.3.1 กิจกรรมของเอนไซม์ ADH และ ALDH ของเชื้อที่เลี้ยงแบบ static และ shaking

จากการแยก ADH และ ALDH ในเยื่อหุ้มเซลล์ (membrane fraction) ของ A. pasteurianus KU108 ที่เลี้ยงในสภาวะ static และ shaking cultures มาวิเคราะห์กิจกรรมของเอนไซม์ พบว่ากิจกรรมของเอนไซม์ MDH ของเชื้อที่เลี้ยงที่อุณหภูมิ 30°C ทั้งในสภาวะ static และ shaking cultures จะมีค่า สูงสุด โดยมี specific activity ประมาณ 8 และ 5.5 u/mg protein ตามลำดับ ดังแสดงในภาพที่ 9 ส่วน กิจกรรมของเอนไซม์ ALDH จากเชื้อที่เลี้ยงที่ 30°C ในสภาวะ static และ shaking cultures จะมีค่าสูง สุดประมาณ 4 และ 6 u/mg protein ตามลำดับ นอกจากนี้ จะพบว่ากิจกรรมของเอนไซม์ ADH ของเชื้อ ที่เลี้ยงในสภาพ static จะสูงกว่าของเชื้อที่เลี้ยงแบบ shaking ในขณะที่กิจกรรมของเอนไซม์ ALDH จะ ให้ผลตรงกันข้าม กล่าวคือกิจกรรมของเอนไซม์ ALDH ของเชื้อที่ เลี้ยงแบบ static

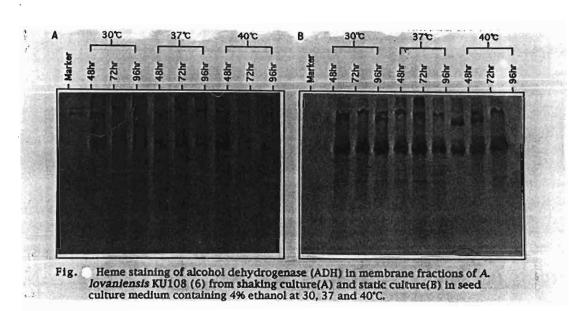

ภาพที่ 9 การเปรียบเทียบกิจกรรมของเอนไซม์ ADH และ ALDH ใน membrane fraction ของเชื้อ A.

pasteurianus KU108 ที่เลี้ยงแบบ static และ shaking cultures ในอาหาร seed culture ที่
ผสมเอทานอล 4 % ที่อุณหภูมิ 30, 37 และ 40°C

3.3 สมบัติบางประการของเอนไซม์ alcohol dehydrogenase และ aldehyde dehydrogenase ที่ แยกจากเชื้อ A. pasteurianus KU108

3.3.1 กิจกรรมของเอนไซม์ ADH และ ALDH ของเชื้อที่เลี้ยงแบบ static และ shaking

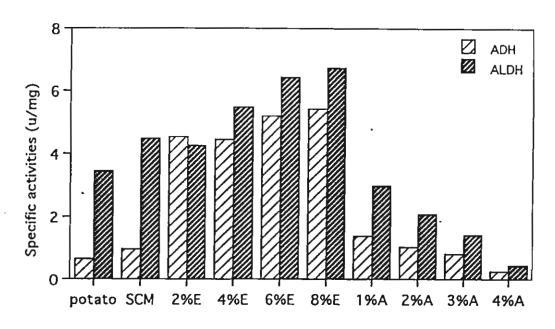
จากการแยก ADH และ ALDH ในเยื่อหุ้มเซลล์ (membrane fraction) ของ A. pasteurianus KU108 ที่เลี้ยงในสภาวะ static และ shaking cultures มาวิเคราะห์กิจกรรมของเอนไซม์ พบว่ากิจกรรมของเอนไซม์ ADH ของเชื้อที่เลี้ยงที่อุณหภูมิ 30°C ทั้งในสภาวะ static และ shaking cultures จะมีค่า สูงสุด โดยมี specific activity ประมาณ 8 และ 5.5 u/mg protein ตามลำดับ ดังแสดงในภาพที่ 9 ส่วน กิจกรรมของเอนไซม์ ALDH จากเชื้อที่เลี้ยงที่ 30°C ในสภาวะ static และ shaking cultures จะมีค่าสูง สุดประมาณ 4 และ 6 u/mg protein ตามลำดับ นอกจากนี้ จะพบว่ากิจกรรมของเอนไซม์ ADH ของเชื้อ ที่เลี้ยงในสภาพ static จะสูงกว่าของเชื้อที่เลี้ยงแบบ shaking ในขณะที่กิจกรรมของเอนไซม์ ALDH จะ ให้ผลตรงกันข้าม กล่าวคือกิจกรรมของเอนไซม์ ALDH ของเชื้อที่ เลี้ยงแบบ static



ภาพที่ 9 การเปรียบเทียบกิจกรรมของเอนไชม์ ADH และ ALDH ใน membrane fraction ของเชื้อ A.

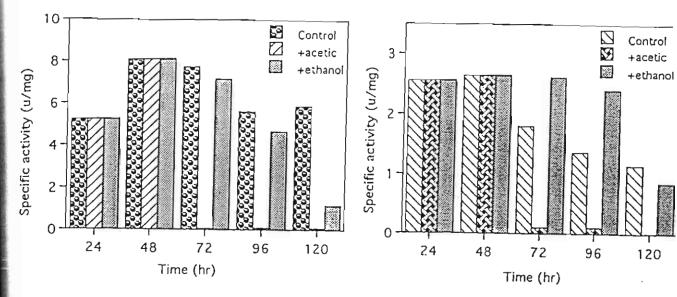
pasteurianus KU108 ที่เลี้ยงแบบ static และ shaking cultures ในอาหาร seed culture ที่

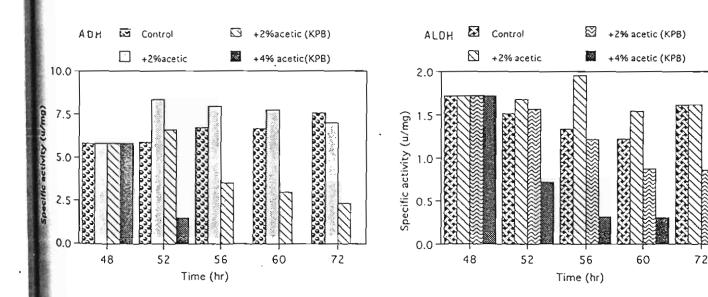
ผสมเอทานอล 4 % ที่อุณหภูมิ 30, 37 และ 40°C


จากการนำเอาเอนไซม์ ADH ที่มีปริมาณโปรตีนเท่ากันที่แยกจากเชื้อที่เลี้ยงแบบ static และ shaking มาทำ heme staining พบว่าแถบของ subunit II (cytochrome c) ของ ADH จากเชื้อที่เลี้ยง แบบ static หรือ shaking ที่อุณหภูมิต่างๆ จะมีความเข้มของแถบโปรดีนใกล้เคียงกัน แม้ว่ากิจกรรม ของเอนไซม์จะมีค่าต่างกันมาก ดังแสดงในภาพที่ 10 จึงอาจสรุปได้ว่า ในสภาวะที่อุณหภูมิสูง เช่น ที่ อุณหภูมิ 37 และ 40°C เอนไซม์ ADH บางส่วนอยู่ในรูป inactive form (สภาพที่ไม่มีกิจกรรม) จึงทำให้ กิจกรรมของเอนไซม์ต่ำกว่าเอนไซม์จากเชื้อที่เลี้ยงที่ 30°C แม้ว่าปริมาณโปรดีน ADH ที่วิเคราะห์ได้จะ มีค่าใกล้เคียงกัน

ภาพที่ 10 Heme staining ของเอนไซม์ ADH ใน membrane fraction ของเชื้อ *A. pasteurianus* KU108 ที่เลี้ยงแบบ static และ shaking cultures ในอาหาร seed culture ที่ผสมเอทานอล 4 % ที่อุณหภูมิ 30, 37 และ 40°C

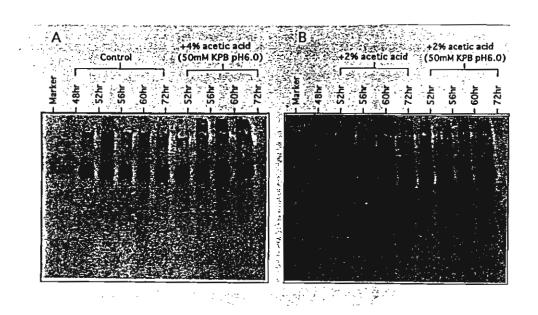
3.3.2 ผลของเอทานอลและกรดน้ำส้มต่อเอนไขม์ ADH และ ALDH


จากการศึกษากิจกรรมของเอนไซม์ ADH และ ALDH ที่แยกจากเชื้อที่เลี้ยงในสภาวะที่มีและไม่ มีเอทานอลหรือกรดน้ำสัมที่อุณหภูมิ 30°C นาน 48 ชั่วโมง พบว่ากิจกรรมของเอนไซม์ ADH และ ALDH มีค่าสูงสุด ประมาณ 7 และ 5 u/mg protein ตามลำดับ เมื่อเลี้ยงเชื้อในอาหารเลี้ยงเชื้อที่มีเอทา นอล 8 % ซึ่งสูงกว่ากิจกรรมของเอนไซม์ ADH และ ALDH ในสภาวะที่ในอาหารเลี้ยงเชื้อไม่มีเอทานอล ประมาณ 5 และ 2 เท่าดามลำดับ ดังแสดงในภาพที่ 11 ในขณะที่กิจกรรมของเอนไซม์ ADH และ ALDH จากเชื้อที่เลี้ยงในอาหารที่มีกรดน้ำสัมผสมอยู่ดั้งแด่เริ่มเลี้ยงเชื้อ มีค่าต่ำมาก


ภาพที่ 11 การเปรียบเทียบกิจกรรมของเอนไซม์ ADH และ ALDH ใน membrane fraction ของเชื้อ A.

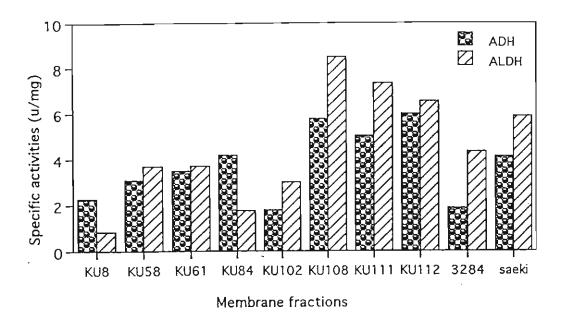
pasteurianus KU108 ที่เลี้ยงแบบ shaking culture ในอาหาร seed culture ที่ผสมเอทานอล
หรือกรดน้ำสัมความเข้มข้นด่างๆ ที่อุณหภูมิ 30°C นาน 48 ชั่วโมง

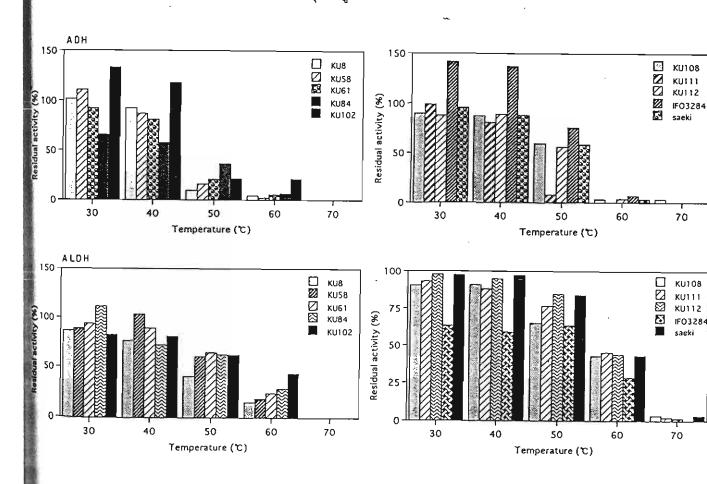
จากการศึกษาผลของเอทานอล และกรดน้ำสัมต่อกิจกรรมของเอนไซม์ ADH และ ALDH ของ เชื้อที่เลี้ยงในอาหารเลี้ยงเชื้อที่มีเอทานอล 4 % ที่อุณหภูมิ 30°C นาน 48 ชั่วโมง ซึ่งเป็นช่วงที่พบว่ากิจ กรรมของเอนไซม์ทั้งสองมีค่าสูงสุด จากนั้นเดิมเอทานอลหรือกรดน้ำสัม 4 % ลงในอาหารเลี้ยงเชื้อ พบ ว่ากิจกรรมของเอนไซม์จากเชื้อที่เลี้ยงในอาหารที่เดิมเอทานอลลงไปอีก 4 % มีค่าลดลงเล็กน้อยในขณะ ที่ในอาหารที่เดิมกรดน้ำสัมลงไป กิจกรรมของเอนไซม์ทั้งสองลดลงอย่างรวดเร็วจนแทบวิเคราะห์หาค่า ไม่ได้ ดังแสดงในภาพที่ 12 ซึ่งเมื่อศึกษาผลของกรดน้ำสัม โดยการเลี้ยงเชื้อตามสภาวะดังกล่าวข้าง คัน นาน 48 ชั่วโมง แล้วเดิมกรดน้ำสัม 2 หรือ 4 % ลงในอาหารเลี้ยงเชื้อที่เตรียมโดยใช้น้ำกลั่น และ KPB pH 6.0 ปรากฏว่ากิจกรรมของเอนไซม์ ADH ของเชื้อที่เลี้ยงในอาหารที่เดิมกรดลงไปอีก 4 % มีค่าลดลงจนเกือบไม่มี activity เหลืออยู่เหมือนกับการทดลองข้างดัน แม้ว่าในครั้งนี้จะใช้ 50 mM KPB pH 6.0 สำหรับเดรียมอาหารเลี้ยงเชื้อ ส่วนกิจกรรมของเอนไซม์ ALDH นั้น ดรวจพบ remaining activity ประมาณ 10-50 % ดังแสดงในภาพที่ 13



ภาพที่ 12 ผลของเอทานอลหรือกรดน้ำส้มต่อกิจกรรมของเอนไซม์ ADH และ ALDH ใน membrane fraction ของเชื้อ A. pasteurianus KU108 ที่เลี้ยงแบบ static culture ในอาหาร seed culture ที่ผสมเอทานอล 4% ที่อุณหภูมิ 30°C นาน 48 ชั่วโบงแล้วเดิมเอทานอลหรือกรดน้ำส้ม 4% ลงในอาหารเลี้ยงเชื้อ

ภาพที่ 13 ผลของกรดน้ำสัมด่อกิจกรรมของเอนไซม์ ADH และ ALDH ใน membrane fraction ของเชื้อ
A. pasteurianus KU108 ที่เลี้ยงแบบ static culture ใหอาหาร seed culture ที่ผสมเอทานอล
4% ที่อุณหภูมิ 30°C นาน 48 ชั่วโมงแล้วเดิมกรดน้ำสัม 2 หรือ 4% ลงในอาหารเลี้ยงเชื้อ


เมื่อนำเอนไซม์จากภาพที่ 13 heme staining จะพบว่าเอนไซม์ของเชื้อที่เลี้ยงในสภาวะต่างกัน และมีกิจกรรมของเอนไซม์ต่างกัน มีความเข้มของแถบโปรดีน cytochrome C ใกล้เคียงกัน ดังแสดงใน ภาพที่ 14 แสดงว่าในสภาวะที่ดรวจไม่พบกิจกรรมของเอนไซม์ เช่น สภาวะที่เดิมกรดน้ำส้มลงไปนั้น ปริมาณของเอนไซม์ไม่มีการเปลี่ยนแปลง แต่อาจมีการเปลี่ยนสภาพจาก active form เป็น inactive form ซึ่งเป็นสภาพของเอนไซม์ที่ไม่มีกิจกรรม


ภาพที่ 14 Heme staining ของเอนไซม์ ADH ใน membrane fraction ของเชื้อ *A. pasteurianus* KU108 ที่เลี้ยงแบบ static culture ในอาหาร seed culture ที่ผสมเอทานอล 4% ที่อุณหภูมิ 30°C นาน 48 ชั่วโมงแล้วเดิมกรดน้ำสัม 2 หรือ 4% ลงในอาหารเลี้ยงเชื้อ

3.3.3 ความเสถียรของเอนไซม์ ADH และ ALDH ที่อุณหภูมิสูง

จากการเปรียบเทียบกิจกรรมของเอนไซม์ ADH และ ALDH จาก membrane fraction ของเชื้อ ทั้ง 10 ไอโซเลต คือ KU8, KU58, KU61, KU84, KU102, KU108, KU111, KU112, IFO3284 และ saeki พบว่า A. pasteurianus KU108 และ KU112 มี ADH และ ALDH ที่มี specific activity สูงกว่า เอนไซม์จากเชื้ออื่นๆ ดังแสดงในภาพที่ 15 และเมื่อศึกษาความเสถียรของเอนไซม์ที่อุณหภูมิ 30, 40, 50, 60 และ 70°C พบว่าเอนไซม์ ALDH มีความเสถียรที่อุณหภูมิสูงมากกว่า ADH ดังแสดงในภาพที่ 16 สอดคล้องกับรายงานของ Adachi และคณะ (1988) และเอนไซม์ของเชื้อที่มีความเสถียรมากที่สุดใน กลุ่มที่เลือกมาศึกษา คือ เอนไซม์จาก A. pasteurianus KU108 ซึ่งเมื่อ treat ที่อุณหภูมิ 70°C นาน 10 นาที จะพบว่าทั้ง ADH และ ALDH มี residual activity ประมาณ 3-4 % ในขณะที่สภาวะเดียวกันนี้ เอนไซม์จากเชื้ออื่นๆไม่มี residual activity เหลืออยู่เลย

ภาพที่ 15 การเปรียบเทียบกิจกรรมของเอนไซม์ ADH และ ALDH ใน membrane fraction ของเชื้อกรด น้ำสัมสายพันธุ์ด่างๆ กับ *A. pasteurianu*s KU108 ที่เลี้ยงแบบ shaking culture ในอาหาร seed culture ที่ผสมเอทานอล 4% ที่อุณหภูมิ 30°C นาน 48 ชั่วโมง

กาพที่ 16 การเปรียบเทียบ residual activity ของเอนไซม์ ADH และ ALDH ใน membrane fraction ของเชื้อกรดน้ำสัมสายพันธุ์ด่างๆ จากภาพที่ 15 ที่ผ่านการ treat ที่อุณหภูมิ 30, 40, 50, 60 และ 70°C นาน 10 นาที

เอกสารอ้างอิง

- Adachi, O., Tayama, K., Shinagawa, E., Matsushita, K.and Ameyama, M. (1978a). Purification and characterization of particulate alcohol dehydrogenase from *Gluconobacter suboxidans*. Agric. Biol. Chem. 42:2045-2056.
- Adachi, O., Miyagawa, E., Shinagawa, E., Matsushita, K.and Ameyama, M. (1978b). Purification and properties of particulate alcohol dehydrogenase from *Acetobacter aceti*. Agric. Biol. Chem. 42:2331-2340.
- Adachi, O., Shinagawa, E., Matsushita, K.and Ameyama, M. (1988). Preparation of cells and cytoplasmic membrane of acetic acid bacteria which exclusively contain quinoprotein aldehyde dehydrogenase. Agric. Biol. Chem. 52:2083-2084.
- Ameyama, M. and Adachi, O. (1982a). Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. Methods Enzymol.89.450-457.
- Ameyama, M. and Adachi, O. (1982b). Aldehyde dehydrogenase from acetic acid bacteria, membrane-bound. Methods Enzymol.89.491-497.
- Day, M.J. (1982). Plasmid. Edward Arnold., London. 50p.
- Fukaya, M., Iwata, T., Entani, E., Masai, H., Uozumi, T. and Beppu, T. (1985a). Distribution and characterization of plasmids in acetic acid bacteria. Agric. Biol. chem. 49:1349-1355.
- Fukaya, M., Okumura, H., Masai, H., Uozumi, T. and Beppu, Ţ. (1985b). Construction of new shuttle vectors for *Acetobacter*. Agric. Biol. Chem.49:2083-2090.
- Fukaya, M., Tayama, K., Okumura, H., Masai, H., Uozumi, T.and Beppu, T. (1985c). Improved transformation method for *Acetobacter* with plasmid DNA. Agri. Biol. Chem.49:2091-2097.
- Grones, J., Skerenova, M., Bederkova, K. and Turna, J. (1989). Isolation and characterization of plasmid pAC1 from *Acetobacter pasteurianus* 3612. Biologia. 44:1191-1196.
- Grones, J., Skerenova, M. and Turna, J. (1991). Preparation of recombinant plasmids with kanamycin resistance in plasmid pAC1 from *Acetobacter pasteurianus*. Biologia. 46:673-678.
- Grones, J., Kralova, A. and Turna, J. (1993). Characterization of the replicon from plasmid pAC1 for *Acetobacter pasteurianus*. Biochem. Biophys. Res. Commun. 191:26-31.
- Hall, P.E., Anderson, S.M., Johnston, D.M. and Cannon, R.E. (1992). Transformation of *Acetobacter xylinum* with plasmid DNA by electroporation. Plasmid. 28:194-200.
- Inoue, T., Fukuda, M. and Yano, K. (1985). Efficient introduction of vector plasmids into acetic acid bacteria. J. Ferment. Technol.63:1-4.
- Kamat, A.S. and Nair, C.K.K. (1992). Evidence for plasmid-mediated toxin production in *Bacillus cereus* BIS-59. World. J. Microbiol. Biotech. 8:210-211.
- Kondo, K., Beppu, T. and Horinouchi, S. (1995). Cloning, Sequencing, and Characterization of the Gene Encoding the Smallest Subunit of the Three-Component Membrane-Bound Alcohol Dehydrogenase from *Acetobacter pasteurianus*. J. Bacteriol. 177: 5048-5055.
- Lotong, N., Malapan, W., Boongorsrang, A. and Yongmanitchai, W. (1989). Production of vinegar by *Acetobacter* cells fixed on a rotating disc reactor. Appl. Microbiol. Biotech. 32:27-31.
- Matsushita, K., Shinagawa, E., Adachi, O. and Ameyama, M. (1987). Purification, characterization and reconstitution of cytochrome o-type oxidase from *Gluconobacter suboxidans*. Biochim. Biophys. Acta. 894:304-312.

- Matsushita, K., Takaki, Y., Shinagawa, E., Adachi, O. and Ameyama, M. (1992a). Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenase purified from *Acetobacter aceti* and *Gluconobacter suboxidans*. Biosci. Biotech. Biochem., 56:304-310.
- Matsushita, K., Takahashi, K., Shinagawa, E., Ameyama, M. and Adachi, O. (1992b). Methanol and ethanol oxidase respiratory chains of the methulotrophic acetic acid bacterium, *Acetobacter methanolicus*. J. Biochem., 111:739-747.
- Matsushita, K., Ebisuya, H., Ameyama, M. and Adachi, O. (1992c). Change of the terminal oxidase from cytochrome *a1* in shaking cultures to cytochrome *o* in static cultures of *Acetobacter aceti*. J. Bacteriol. 174:122-129.
- Matsushita, K., H. Toyama and O. Adachi. 1994. Respiratory chains and bioenergetics of acetic acid bacteria. Advanced in microbial physiology (A. H. Rose and D. W. Tempest, eds.), vol. 36, p. 247-301. Academic Press, London.
- Matsushita, K., Yakushi, T., Takaki, Y., Toyama, H. and Adachi, O. (1995). Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in *Gluconobacter suboxidans*. J. Bacteriol. 177:6552-6559.
- Matsushita, K., Yakushi, T., Toyama, H., Shinagawa, E. and Adachi, O. (1996). Function of multiple heme c moieties in intramolecular electron transport and ubiquinone
- reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J. Biol. Chem. 271:4850-4857.
- Marictte, I., Schwarz, E., vogel, R.F. and Hammes, W.P. (1991). Characterization by plasmid profile analysis of acetic acid bacteria from wine, spirit and cider acetators for industrial vinegar production. J. Appl. Bacteriol. 71:134-138.
- Ohmori, S., Masai, H., Arima, K. and Beppu, T. (1980). Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agric. Biol. Chem. 44:2901-2906.
- Okumura, H., Uozumi, T. and Beppu, T. (1985). Biochemical characteristics of spontaneous mutants of *Acetobacter aceti* deficient in ethanol oxidation. Agric. Biol. chem. 49:2485-2487.
- Pileggi, S.A.V., Pileggi, M. and Azevedo, J.L.D. (1994). Bacteriocin production in drugresistant strain of hospitolar *Pseudomonas*. Aquiv. Biolog. Techno. 37:629-636.
- Qazi, G.N., Vemaa, V., Parshad, R. and Chopra, C.L. Chopra. (1989). Plasmid-mediated direct-glucose oxidation in *Gluconobacter oxydans*. J. Biotechnol. 10:85-88.
- Ruiz-Barba, J.L., Piard, J.C. and Jimenez-Diaz, R. (1991). Plasmid profiles and curing of plasmids in *Lactobacillus plantarum* strains isolated from green olive fermentations. J. Appl. Bacteriol. 71:417-421.
- Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lotong, N. and Adachi, O. (1997a). Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosc. Biotech. Biochem. 61:138-145.
- Sievers, M., Ludwig, W. and Teuber, M. (1994). Phylogenetic positioning of *Acetobacter*. *Gluconobacter*, *Rhodophila* and *Acidophilium* species as a branch of acidophilic bacteria in the α-subclass of Proteobacteria based on 16S ribosomal DNA sequence. Syst. Appl. Microbiol. 17:189-196.
- Stephen, A. S. and Baldwin., J.N. (1972). Loss of the penicillinase plasmid after treatment of Staphylococcus aureus with sodium doecyl sulfate. J. Bacteriol. 109:262-265.

- Takemura, H., Kondo, K., Horinouchi, A. and Beppu, T. (1993). Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus. J. Bacteriol. 175:6857-6866.
- Tayama, K., Fukaya, H., Okumura, H., Kawamura, Y. and Beppu, T. (1989). Purification and characterization of membrane-bound alcohol dehydrogenase from *Acetobacter polyoxogenes*. Appl. Microbiol. Biotechnol. 32:181-185.
- Trevors, J.T. (1986). Plasmid curing in bacteria. FEMS Microbiol. Rev. 32:149-157.
- Valla, S., Coucheron, D.H.and Kjosbakken, J. (1986). Conjugative transfer of the naturally occuring plasmids of *Acetobacter xylinum* by IncP-Plasmid-Mediated Mobilization. J. Bacteriol. 165:336-339.

กิจกรรมอื่น ๆที่เกี่ยวข้อง

(1) ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

- Theeragool, G, N. Lotong, K. Matsushita and O. Adachi. Plasmid Profile and Distribution of IS1380 in Thermotolerant Acetic Acid Bacteria Isolated in Thailand (in preparation)
- Theeragool, G, N. Lotong, A. Saeki, K. Matsushita and O_r Adachi. Acetic Acid Production and Characterization of Thermostable Alcohol Dehydrogenase from Thermotolerant Acetic Acid Bacteria. (in preparation)
- Saeki, A., G. Theeragool, K. Matsushita, H. Toyama, N. Lotong and O. Adachi. 1997.
 Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosc. Biotech. Biochem. 61:138-145.
- Saeki, A., M. Taniguchi, K. Matsushita, H. Toyama, G. Theeragool, N. Lotong and O. Adachi. 1997. Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosc. Biotech. Biochem. 61:317-323.

ผลงานวิจัยที่เสนอในที่ประชมนานาชาติ

- Theeragool, G., N. Lotong, A. Saeki, K. Matsushita and O. Adachi. 1997. Characterization
 of Thermostable Alcohol Dehydrogenase from Thermotoleraut Acetic Acid Bacteria.
 Abstracts in The 2nd JSPS-NRCT-DOST-LIPI-VCC Seminar on Biotechnology: An Essential
 Tool for Future Developments, Nakorn Ratchasima, Thailand p.62.
- Theeragool, G., N. Lotong, A. Saeki, K. Matsushita and O. Adachi. 1997. Genetical and Physiological Analysis of Thermotolerant Acetic Acid Bacteria Isolated in Thailand. 8th European Congress on Biotechnology, 17-21 August 1997, Budapest, Hungary

(2) ผลงานวิจัยอื่น ๆ

2.1 Theeragool, G., Lotong, N., Adachi, O., Saeki, A. and Matsushita, K.

Characterization of thermotolerant acetic acid bacteria isolated in Thailand and IFO (Institute for Fermentation, Osaka) strains. A report submitted to Monbusho International Scientific Research Program: Kasetsart University-Yamaguchi University. 1996: 23 pp.

(3) จำนวนและรายละเอียดการได้รับเชิญไปเป็นวิทยากร

เป็นวิทยากรเสนอผลงานวิจัยเรื่อง Characterization of thermotolerant acetic acid bacteria isolated in Thailand and IFO strains. ณ มหาวิทยาลัยยามากูชิ ประเทศญี่ปุ่น วันที่ 26 กุมภาพันธ์ 2539

(4) งานที่จะทำต่อในอนาคต

- 4.1 การทำ Random Amplified Polymorphic DNA (RAPD) โดยใช้ random primer ทำ ปฏิกิริยาลูกโซโพลีเมอเรสกับดีเอนเอที่แยกสกัดจาก เชื้อกลุ่มที่ทนและไม่ทนอุณหภูมิสูง
- 4.2 การโคลนยีน alcohol dehydrogenase จาก *A. pasteurianu*s KU108 เพื่อศึกษาสมบัติของ ยีนและปรับปรุงสายพันธุ์

(5) การเชื่อมโยงทางวิชาการกับนักวิชาการอื่น ๆ ทั้งในและต่างประเทศ

- 5.1 การเชื่อมโยงทางวิชาการกับ Professor Osao Adachi และ Professor Kazunobu Matsushita ภาควิชาชีวเคมี คณะเกษตร มหาวิทยาลัยยามากูชิ ประเทศญี่ปุ่น ภายใต้โครงการ Monbusho International Scientific Research Program:Kasetsart University-Yamaguchi University ระหว่างปี 1993-1995 (3 ปี) และภายใต้โครงการ JSPS-NRCT Core University Program: Kasetsart University-Yamaguchi University ในหัวข้อ Development of Thermotolerant Microbial Resources and Their Applications in Thailand and Japan ระหว่างปี 1998-2007 (10 ปี) โดยผู้วิจัยเป็น Vice-Coordinator ของโปรแกร์มและเป็น Project leader ของ subproject I ในหัวข้อ "Development of Thermotolerant Acetic Acid Bacteria and Their Applications to New Biotechnology in Oxidative Fermentation"
- 5.2 การเชื่อมโยงทางวิชาการกับ Mr. Akihiko Saeki ภาควิชาชีวอุดสาหกรรม สถาบัน เทคโนโลยีอุตสาหกรรม เมืองยามากูชิ ประเทศญี่ปุ่น
- 5.3 การเชื่อมโยงทางวิชาการกับ นางวันเชิญ โพธาเจริญ ศุนย์พันธุวิศวกรรมและเทคโนโลยีชีว ภาพแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ

(6) การเชื่อมโยงกับนักวิชาการภายในสถาบันเดียวกัน

6.1 การเชื่อมโยงทางวิชาการกับ ศาสตราจารย์นภา โล่ห์ทอง ภาควิชาจุลชีววิทยา คณะวิทยา ศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

ผลงานวิจัยที่ทำในรอบปี

(1) วัตถุประสงค์

- 1.1 เพื่อคัดเลือก random primers และศึกษาสภาวะที่เหมาะสมในการสุ่มขยายชิ้น DNA โดยใช้ ปฏิกิริยาลูกโซโพลีเมอเรส (Polymerase Chain Reaction, PCR)
- 1.2 เพื่อเปรียบเทียบ Random Amplified Polymorphic DNA (RAPD) ระหว่างเชื้อกลุ่มที่ทน และไม่ทนอุณหภูมิสูง
 - 1.3 เพื่อวิเคราะห์หา DNA marker ของการทนอุณหภูมิสูง

(2) การดำเนินงานในรอบปีที่ผ่านมา

2.1 การคัดเลือกเชื้อกรดน้ำส้มกลุ่มที่ทนและไม่ทนอุณหภูมิสูง

จากเชื้อกรดน้ำสัมที่แยกได้ในประเทศไทยทั้งสิ้น 129 ไอโซเลตและเชื้อของญี่ปุ่น 15 สายพันธุ์ ผู้วิจัยได้สุ่มคัดเลือกเชื้อที่ทนและไม่ทนอุณหภูมิสูงมากลุ่มละ 13 ตัวอย่าง โดยดูจากการเจริญที่อุณหภูมิ 40°C ดังแสดงในดารางที่ 1

ตารางที่ 1 รายชื่อเชื้อกรดน้ำสัมที่ทนและไม่ทนอุณหภูมิสูงที่ใช้ในการศึกษา RAPD-PCR

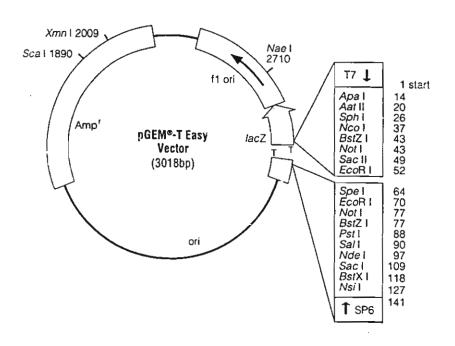
Code	Growth at 40°C(72 hr)	Code	Growth at 40°C(72 hr)
KU5	+++	KU18	•
KU8	++	KU43	-
KU10	+++	KU45	•
KU14	+++	KU47	-
KU15	++	KU50	-
KU16	++	KU52	-
KU23	+++	KU78	-
KU27	+++	KU104	-
KU28	+++	IFO3191	-
KU30	+++	IFO3280	•
KU85	+++	IFO3284	_
KU108	+++	IFO3298	-
F03279	+++	IFO12467	*
		saeki	-

2.2 การคัดเลือก random primers และศึกษาสภาวะที่เหมาะสมในการสุ่มขยายขึ้น DNA โดยใช้ ปฏิกิริยาลูกโซ่โพลีเมอเรส (Polymerase Chain Reaction, PCR)

การทำ Random Amplified Polymorphic DNA โดยอาศัยปฏิกิริยาลูกโซโพลีเมอเรส (RAPD-pCR) เป็นปฏิกิริยาที่เกี่ยวข้องกับการใช้ random primers ชิ้นเล็กๆสุ่มขยายชิ้น DNA จาก DNA template โดยการเข้าไปจับ (anneal) กับ DNA template (McClelland, 1990; Williams et al., 1990) ขึ้น DNA primer แต่ละชิ้นจะเข้าไป anneal กับ genomic DNA ตรงที่มี complementary sequence แบบสุ่ม ซึ่งถ้าบริเวณที่ primers สองชิ้นเข้าไปจับอยู่ใกลักันพอสมควร ก็จะมีการสุ่มขยายชิ้น DNA ที่อยู่ ระหว่างบริเวณที่ primers ทั้งสองชิ้นเข้าไปจับ โดยวิธีการนี้จะทำให้ได้ชิ้น DNA ขนาดต่างๆ ขึ้นอยู่กับ ความจำเพาะของการจับของ primer วิธีการนี้เป็นการทำ RAPD fingerprint ซึ่งเป็นวิธีการที่มีความไว และจำเพาะเจาะจงสำหรับสิ่งมีชีวิตแต่ละชนิด วิธีการนี้มีการนำมาใช้ศึกษาคุณสมบัติของแบคทีเรีย ทลายชนิด เช่น Aeromonas spp. (Oakey et al., 1996) และ Salmonella spp. (Hilton et al., 1997)

ในงานวิจัยนี้ได้นำเทคนิค RAPD-PCR มาศึกษาความแตกต่างของ DNA profile ของเชื้อกรด น้ำส้มกลุ่มที่ทนและไม่ทนอุณหภูมิสูง เพื่อหา DNA marker ของการทนอุณหภูมิสูง โดยเริ่มจากการ ศึกษาสภาวะที่เหมาะสมในการสุ่มขยายชิ้น DNA โดยใช้ primers ทั้งสิ้น 51 primers ซึ่งเป็น primers ของบริษัท Operon 2 ชุด คือ Kit A (OPA-01 ถึง OPA-20) Kit B (OPB-01 ถึง OPB-20) และ primers ผสมอีก 11 primers (ดังแสดงในตารางที่ 2) โดยเริ่มจากการคัดเลือก primers ที่สามารถสุ่มขยายชิ้น DNA ของ A pasteurianus KU108 จากนั้นได้เปรียบเทียบชิ้น DNA ที่สุ่มขยายได้ระหว่างกลุ่มที่ทนและ ไม่ทนอุณหภูมิสูง และ subcione ชิ้น DNA ที่สุ่มขยายได้เฉพาะในกลุ่มที่ทนอุณหภูมิสูงเพื่อหาลำดับนิว กลีโอไทด์ต่อไป

ศารางที่ 2 ลำดับนิวคลีโอไทด์ของ primers ที่ใช้ในการคัดเลือก primers ที่เหมาะสมในการทำ RAPD-PCR


Primer	Nucleotide sequences	Primer	Nucleotide sequences
0PA-01	CAGGCCCTTC	OPB-01	GTTTCGCTCC
OPA-02	TGCCGAGCTG	OPB-02	TGATCCCTGG
OPA-03	AGTCAGCCAC	OPB-03	CATCCCCCTG
OPA-04	AATCGGGCTG	OPB-04	GGACTGGAGT
OPA-05	AGGGGTCTTG	OPB-05	TGCGCCCTTC
OPA-06	GGTCCCTGAC	OPB-06	TGCTCTGCCC
OPA-07	GAAACGGGTG	OPB-07	GGTGACGCAG
OPA-08	GTGACGTAGG	OPB-08	GTCCACACGG
OPA-09	GGGTAACGCC	OPB-09	TGGGGGACTC
OPA-10	GTGATCGCAG	OPB-10	GTCCACACGG
OPA-11	CAATCGCCGT	OPB-11	GTAGACCCGT
OPA-12	TCGGCGATAG	OPB-12	CCTTGACGCA
OPA-13	CAGCACCCAC	OPB-13	TTCCCCCGCT
OPA-14	TCTGTGCTGG	OPB-14	тссвстствв
OPA-15	TTCCGAACCC	OPB-15	GGAGGGTGTT
OPA-16	AGCCAGCGAA	OPB-16	TTTGCCCGGA
OPA-17	GACCGCTTGT	OPB-17	AGGGAACGAG
OPA-18	AGGTGACCGT	OPB-18	CCACAGCAGT
OPA-19	CAAACGTCGG	OPB-19	ACCCCGAAG
OPA-20	GTTGCGATCC	OP8-20	GGACCCTTAC
0PAA-02	GAGACCAGAC	OPAB-07	GTAAACCGCC
OPAA-03	TTAGCGCCCC	OPAB-15	сстссттстс
OPAA-09	AGATGGGCAG	OPAC-19	AGTCCGCCTG
OPAA-11	ACCCGACCTG	OPAD-01	CAAAGGGCGG
OPAA-14	AACGGGCCAA	OPAD-04	CTAGGCCTCA
OPAA-09 OPAA-11 OPAA-14 OPAD-11	CAATCGGGTC		

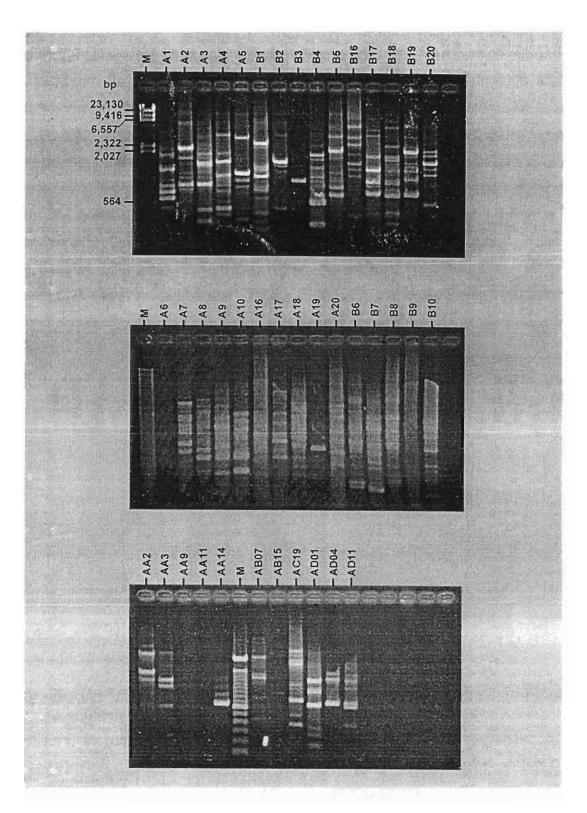
2.3 การเปรียบเที่ยบ Random Amplified Polymorphic DNA ระหว่างเชื้อกลุ่มที่ทนและไม่ทน อุณหภูมิสูง

สุมขยายชิ้น DNA ของเชื้อกรดน้ำสัมที่ทนและไม่ทนอุณหภูมิสูงกลุ่มละ 13 ไอโซเลต ด้วย ปฏิกิริยาลูกโซ่โพลึเมอเรส โดยใช้ total DNA ที่แยกจากเชื้อดังกล่าวเป็น template และใช้ primers ของ บริษัท Operon ที่ผ่านการคัดเลือกว่าให้แถบ DNA ที่ชัดเจนจำนวน 14 primers นำชิ้น DNA ที่สุ่มขยาย ได้มาวิเคราะห์ใน 1% อะกาโรสเจลอิเลคโตรโฟเรซีส เปรียบเทียบชิ้น DNA ที่สุ่มขยายได้จากการใช้ random primers เพื่อวิเคราะห์ว่า primer ใดที่สุ่มขยายชิ้น DNA ของสองกลุ่มนี้แล้วให้ผลที่แตกต่างกัน อย่างเห็นได้ชัด

2.4 การ subclone ชิ้น DNA ที่สุ่มขยายได้เพื่อหาลำลับนิวคลีโอไทด์

จากการเปรียบเทียบชิ้น DNA ที่สุ่มขยายได้ระหว่างเชื้อกลุ่มที่ทนและไม่ทนอุณหภูมิสูง พบว่า มีชิ้น DNA อย่างน้อยสองชิ้นขนาด 1.0 และ 1.3 กิโลเบสที่เห็นได้ชัดเจนเฉพาะในกลุ่มของเชื้อที่ทน อุณหภูมิสูง จึงได้ subclone ชิ้น DNA ทั้งสองชิ้นนี้เข้าสู่ pGEM®-T Easy ดังมีโครงสร้างตามที่แสดงใน ภาพที่ 1) ตรวจสอบผลการ subclone ชิ้น DNA ทั้งสอง โดยการตัดดัวยเอนไซม์ *Eco*RI แล้ววิเคราะห์ ใน 1% กะกาโรสเจลอิเลคโตรโฟเรซ็ส

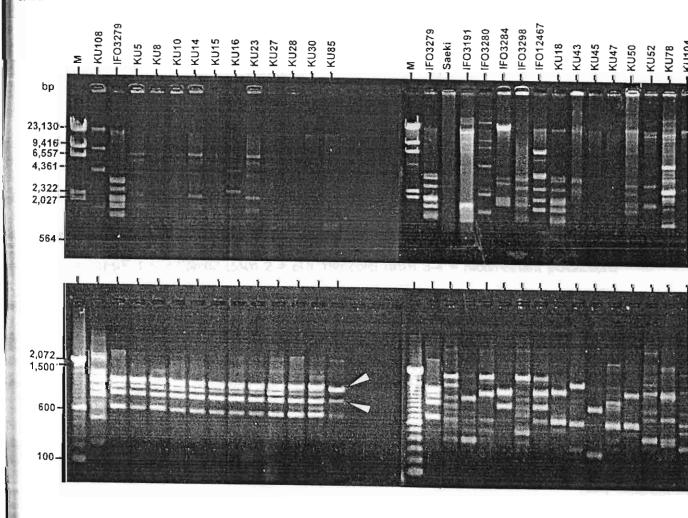
ภาพที่ 1 โครงสร้างและ restriction map ของ pGEM[®]-T Easy ที่ใช้ในการ subcione ชิ้น DNA ที่สุ่ม ขยายได้จากปฏิกิริยาลูกโซ่โพลีเมอเรส


(3) ผลที่ได้รับ

3.1 สภาวะที่เหมาะสมในการทำปฏิกิริยาลูกโซ่โพลีเมอเรส และ primers ที่ใช้

จากการศึกษาพบว่าสภาวะที่เหมาะสมในการสุ่มขยายชิ้น DNA โดยปฏิกิริยาลูกโซ่โพลีเมอเรส คือ การใช้ DNA template ความเข้มขันสุดท้าย 14 ng primer 1 pmol และ MgCl₂ 4.0 mM และสภาวะ การสุ่มขยายที่เหมาะสมคือ preincubation ที่ 95°C นาน 12 นาที 1 รอบ (สำหรับเอนไซม์ Amplitaq Gold) denature ที่ 94°C นาน 1 นาที annealing ที่ 36°C นาน 2 นาที extension ที่ 72°C นาน 3 นาที (ทำทั้ง 3 step นี้ จำนวน 45 รอบ) และ final step ที่ 72°C นาน 10 นาที ซึ่งสามารถสุ่มขยายชิ้น DNA ของ A. pasteurianus KU108 ได้กับ primers ที่ใช้ส่วนใหญ่ให้ผลการสุ่มขยายชิ้น DNA ของ A. pasteurianus KU108 ได้ชัดเจน ดังแสดงในภาพที่ 2 และในจำนวน 51 primers ที่ใช้ ได้คัดเลือก primers สุ่มขยายชิ้น DNA ได้ชัดเจนและมีแถบของชิ้น DNA ที่น่าสนใจเพื่อนำมาศึกษาต่อ 14 primers ดังแสดงในตารางที่ 3

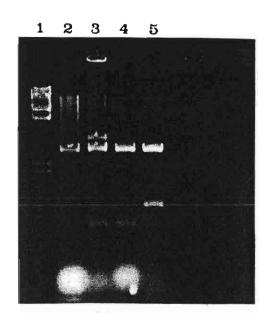
ตารางที่ 3 ลำดับนิวคลีโอไทต์ของ primers ทั้ง 14 primers ที่คัดเลือกมาสุ่มขยายชิ้น DNA ของเชื้อกลุ่ม ที่ทนและไม่ทนอุณหภูมิสูง


Primer	Nucleotide sequences	Primer	Nucleotide sequences
OPA-01	CAGGCCCTTC	OPB-03	CATCCCCCTG
0PA-02	TGCCGAGCTG	OPB-11	GTAGACCCGT
OPA-03	AGTCAGCCAC	OPB-19	ACCCCGAAG
OPA-04	AATCGGGCTG	OPB-20	GGACCCTTAC
OPA-07	GAAACGGGTG	OPAA-14	AACGGGCCAA
OPA-09	GGGTAACGCC	OPAD-01	CAAAGGGCGG
0PA-11	CAATCGCCGT	OPAD-04	CTAGGCCTCA

ภาพที่ 2 RAPD profiles ของ DNA ที่แยกสกัดจาก *A pasteurianus* KU108 โดยปฏิกิริยาลูกโซโพลีเมอ เรส กับ random primers 51 primers

3.2 การเปรียบเทียบ Random Amplified Polymorphic DNA ระหว่างเชื้อกลุ่มที่ทนและไม่ทน อุณหภูมิสูง

จากการใช้ primers ทั้ง 14 primers ที่คัดเลือกมาสุ่มขยายชิ้น DNA ของเชื้อกลุ่มที่ทนอุณหภูมิ สูงจำนวน 13 ตัวอย่าง คือ KU108, IFO3279, KU5, KU8, KU10, KU14, KU15, KU16, KU23, KU27, KU28, KU30 และ KU85 เปรียบเทียบกับกลุ่มที่ไม่ทนอุณหภูมิสูงจำนวน 14 ตัวอย่าง คือ saeki, IFO3191, IFO3280, IFO3284, IFO3298, IFO12467, KU18, KU43, KU45, KU47, KU50, KU52, KU78 และ KU104 ซึ่งแต่ละตัวอย่างที่เลือกมามีความหลากหลายของสารพันธุกรรม โดยดูจากลักษณะ ของ plasmid profile ที่ต่างกัน ดังแสดงในภาพที่ 3 (ภาพบน) ปรากฏว่า primer OPAD-01 ซึ่งมีลำดับ นิวคลีโอไทด์ 5'-CAAAGGGCGG-3' เป็น primer ที่สุ่มขยายชิ้นดีเอนเอขนาด 1.0 และ 1.3 กิโลเบส ได้ อย่างชัดเจนเฉพาะกับ DNA ที่แยกจากเชื้อกลุ่มที่ทนอุณหภูมิสูงทั้ง 13 ตัวอย่าง ดังแสดงในภาพที่ 3 (ภาพถ่าง) ดังนั้นชิ้น DNA ทั้งสองชิ้นนี้อาจใช้เป็น DNA marker ของการทนอุณหภูมิสูง ผู้วิจัยจึงได้ subclone ชิ้น DNA ทั้งสองชิ้นนี้อาจใช้เป็น DNA marker ของการทนอุณหภูมิสูง ผู้วิจัยจึงได้ subclone ชิ้น DNA ทั้งสองชิ้นนี้อาจใช้เป็น DNA สามารถอ่านลำดับนิวคลีโอไทด์ ได้อย่างชัดเจน


Thermotolerant

Thermosensitive

ภาพที่ 3 Plasmid profiles และ RAPD profiles ของ DNA ที่แยกสกัดจากเชื้อกลุ่มที่ทนและไม่ทน อุณหภูมิสูงโดยใช้ primer OPAD-01 (CAAAGGGCGG)

3.3 การ subcione ชิ้น DNA ที่สุ่มขยายได้เพื่อหาลำดับนิวคลีโอไทด์

จากการ subclone ซิ้น DNA ที่สุ่มขยายได้จาก primer OPAD-01 (5'-CAAAGGGCGG-3') เข้า สู่ pGEM[®]-T Easy โดยการทำ ligation ระหว่างชิ้น DNA ที่สุ่มขยายได้กับ pGEM[®]-T Easy แล้วทำ transformation เข้าสู่ Escherichia coli JM109 ปรากฏว่าในขณะนี้สามารถ subclone ชิ้น DNA ขนาด 0.6 และ 1.0 กิโลเบสได้ (ดังแสดงในภาพที่ 4) ยังขาดชิ้น DNA ขนาด 1.3 กิโลเบส

ภาพที่ 4 แสดงขนาดของชิ้น DNA ที่ถูกตัดด้วยเอนไซม์ตัดจำเพาะเปรียบเทียบกับ DNA size marker โดย เลนที่ 1 = λ/HindIII เลนที่ 2 = pUC18/EcoRI เลนที่ 3-4 = recombinant pUC/EcoRI (ชิ้น DNA ขนาด 0.6 กิโลเบส) เลนที่ 5 = recombinant pUC/EcoRI (ชิ้น DNA ขนาด 1.0 กิโลเบส)

สรุปผลการทดลอง

จากการวิเคราะห์ Random Amplified Polymorphic DNA (RAPD) ด้วยปฏิกิริยาลูกโซโพลีเมอ รส (Polymerase Chain Reaction, PCR) เปรียบเทียบระหว่างสายพันธุ์ที่ทนและสายพันธุ์ที่ไวต่อ กุณหภูมิสูง โดยสภาวะที่เหมาะสมในการทำ PCR คือ การใช้ DNA template ความเข้มขันสุดท้าย 14 ng primer 1 pmol และ MgCl₂ 4.0 mM และสภาวะการสุ่มขยายที่เหมาะสมคือ preincubation ที่ 95°C เาน 12 นาที 1 รอบ (สำหรับเอนไซม์ Amplitaq Gold) denature ที่ 94°C นาน 1 นาที annealing ที่ 8°C นาน 2 นาที extension ที่ 72°C นาน 3 นาที (ทำทั้ง 3 step นี้ จำนวน 45 รอบ) และ final step 72°C นาน 10 นาที ซึ่งจากการคัดเลือก random primers ทั้งสิ้น 51 primers พบว่ามีเพียง primer ดียว คือ ADO1 (5'-CAAAGGGCGG-3') ที่สามารถสุ่มขยายได้ชิ้น DNA ที่เป็นลักษณะเฉพาะของกลุ่ม กันอุณหภูมิสูงและไม่พบในกลุ่มที่ไวต่ออุณหภูมิ คือ ชิ้น DNA ขนาด 1.0 และ 1.3 กิโลเบส ซึ่งชิ้น DNA ทั้งสองนี้อาจใช้เป็น DNA marker ของการทนอุณหภูมิสูง ผู้วิจัยได้ subclone ชิ้น DNA ขนาด 0.6 โละ 1.0 กิโลเบส เข้าสู่ pGEM®-T Easy vector ได้สำเร็จยังขาดชิ้น DNA ขนาด 1.3 กิโลเบส ในขณะนี้ อยู่ในระหว่างการวิเคราะห์หาลำดับนิวคลีโอไทด์ของชิ้น DNA ขนาด 1.0 กิโลเบส และ subclone ชิ้น DNA ขนาด 1.3 กิโลเบส

- Bimboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acods Res. 7: 1513.
- Hilton, A. C., Banks, J. G., and C. W. Penn. 1997. Optimization of RAPD for fingerprinting Salmonella. Lett. In Appl. Microbiol. 24: 243-248.
- Oakey, H. J., Ellis, J. T. and L. F. Gibson. 1996. Differentiation of *Aeromonas* genome species using random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). J. Appl. Bacteriol. 80: 402-410.
- Welsh, J. and M. McClelland. 1990. Fingerprinting genome using PCR with arbitary primers.

 Nucleic acids Res. 18: 7213-7218.
- Miliams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitary primer are useful as genetic markers. Nucleic acids Res. 18: 6531-6535.

จกรรมอื่น ๆที่เกี่ยวข้อง

_{4) ผลงานวิจัยที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ}

- Saeki, A., G. Theeragool, K. Matsushita, H. Toyama, N. Lotong and O. Adachi. 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosc. Biotech. Biochem. 61:138-145.
- Saeki, A., M. Taniguchi, K. Matsushita, H. Toyama, G. Theeragool, N. Lotong and O. Adachi. 1997. Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosc. Biotech. Biochem. 61:317-323.
- Theeragool, G, W. Jaiwisuthunsa, N. Lotong, H. Toyama, K. Matsushita and O. Adachi. 1999. Plasmid Profile and distribution of IS1380 in thermotolerant acetic acid bacteria isolated in Thailand. Biosc. Biotech. Biochem (submitted)
- Theeragool, G, N. Lotong, A. Saeki, K. Matsushita and O. Adachi. Acetic Acid Production and Characterization of Thermostable Alcohol Dehydrogenase from Thermotolerant Acetic Acid Bacteria. (in preparation)

เลงานวิจัยที่เสนอในที่ประชุมนานาชาติ

- Theeragool, G., N. Lotong, A. Saeki, K. Matsushita and O. Adachi. 1997. Characterization of Thermostable Alcohol Dehydrogenase from Thermotoleraut Acetic Acid Bacteria. Abstracts in The 2nd JSPS-NRCT-DOST-LIPI-VCC Seminar on Biotechnology: An Essential Tool for Future Developments, Nakorn Ratchasima, Thailand p.62.
- Theeragool, G., N. Lotong, A. Saeki, K. Matsushita and O. Adachi. 1997. Genetical and Physiological Analysis of Thermotolerant Acetic Acid Bacteria Isolated in Thailand. 8th European Congress on Biotechnology, 17-21 August 1997, Budapest, Hungary

2) ผลงานวิจัยอื่น ๆ

2.1 Theeragool, G., Lotong, N., Adachi, O., Saeki, A. and Matsushita, K.

haracterization of thermotolerant acetic acid bacteria isolated in Thailand and IFO (Institute for ermentation, Osaka) strains. A report submitted to Monbusho International Scientific Research rogram: Kasetsart University-Yamaguchi University. 1996: 23 pp.

3) จำนวนและรายละเอียดการได้รับเชิญไปเป็นวิทยากร

เป็นวิทยากรเสนอผลงานวิจัยเรื่อง Characterization of thermotolerant acetic acid bacteria colated in Thailand and IFO strains. ณ มหาวิทยาลัยยามากูซิ ประเทศญี่ปุ่น วันที่ 26 กุมภาพันธ์ 539

(4) งานที่จะทำต่อในอนาคต

- 4.1 การหาลำดับนิวคลีโอไทด์ของขึ้น DNA ขนาด 1.0 และ 1.3 กิโลเบส ที่สุ่มขยายได้จากการ ทำ RAPD ของ DNA เฉพาะที่แยกจากเชื้อที่ทนอุณหภูมิสูง
- 4.2 การโคลนยีน alcohol dehydrogenase จาก A. pasteurianus KU108 เพื่อศึกษาสมบัติของ ยืนและปรับปรุงสายพันธุ์

(5) การเชื่อมโยงทางวิชาการกับนักวิชาการอื่น ๆ ทั้งในและต่างประเทศ

5.1 การเชื่อมโยงทางวิชาการกับ Professor Osao Adachi, Professor Kazunobu Matsushita และ Dr. Hidehiko Toyama ภาควิชาชีวเคมี คณะเกษตร มหาวิทยาลัยยามากูชิ ประเทศญี่ปุ่น ภายใต้ โครงการ Monbusho International Scientific Research Program:Kasetsart University-Yamaguchi University ระหว่างปี 1993-1995 (3 ปี) และภายใต้โครงการ JSPS-NRCT Core University Program: Kasetsart University-Yamaguchi University ในหัวข้อ Development of Thermotolerant Microbial Resources and Their Applications in Thailand and Japan ระหว่างปี 1998-2007 (10 ปี) โดยผู้วิจัย เป็น Vice-Coordinator ของโปรแกรมและเป็น Project leader ของ subproject ! ในหัวข้อ "Development of Thermotolerant Acetic Acid Bacteria and Their Applications to New Biotechnology in Oxidative Fermentation"

(6) การเชื่อมโยงกับนักวิชาการภายในสถาบันเดียวกัน

6.1 การเชื่อมโยงทางวิชาการกับ ผศ. ดร. พัฒนา ศรีฟ้า ภาควิชาพันธุศาสตร์ คณะวิทยาศาสตร์ ซึ่งอนุเคราะห์ random primers ที่ใช้ตอนทำ primer screening และ ดร. สาวิตร ตระกูลน่าเลื่อมใส ภาค วิชาจุลชีววิทยา คณะวิทยาศาสตร์ ช่วยอนุเคราะห์การติดต่อหาลำดับนิวคลีโอไทด์รวมทั้งการสังเคราะห์ primers บางชนิดที่สุ่มเลือกลำดับนิวคลีโอไทด์มา

สัญญาเลขที่ RSA/17/2538 รายงานการเงิน ในรอบ 6 เดือน

ชื่อโครงการ "การวิเคราะห์ความหลากหลายทางพันธุกรรมและการปรับปรุงสายพันธุ์ของเชื้อกรดน้ำสัม ที่ทนอุณหภูมิ สูง ด้วยวิธีทางพันธุวิศวกรรม"

ชื่อหัวหน้าโครงการ ผศ. ดร. กัญจนา ธีระกุล

รายงานในช่วงวันที่ 1 มีนาคม 2541

ถึงวันที่ 31 สิงหาคม 2541

<u>รายจ่ายประจำงวดปัจจุบัน</u>

หมวด (ตามเอกสารโครงการ)	รายจ่ายจากรายงานครั้	งก่อน	รายจ่ายคราว	นี้	รวมสะสม	
1. ค่าจ้างเหมานิสิตช่วยทำวิจัย	0.00	บาท	0.00	บาท	0.00	บาท
2. ค่าตอบแทนเมธีวิจัย	90,000.00	บาท	0.00	บาท	90,000.00	บาท
3. ค่าตอบแทน (อื่นๆ)	0.00	บาท	0.00	บาท	0.00	บาท
4. ค่าใช้สอย	7,068.00	บาท	21,816.50	บาท	28,884.50	บาท
5. ค่าวัสดุ	90,354.10	บาท	210,765.50	บาท	301,119.60	บาท
6. ค่ากรุภัณฑ์	0.00	บาท	0.00	บาท	0.00	บาท
รวม	187,422.10	บาท	232,582.00	บาท	420,004.10	บาท

<u>จำนวนเงินที่ได้รับและเงินคงเหลือ</u>

ปีที่ 1 (1 กันยา	ยน 2538 ถึง 31 สิงหาคม 2539)		
<u>งวดที่ 1/1</u>	ได้รับจาก สกว.	360,000.00	บาท
	ได้รับจากมหาวิทยาลัย	140,000.00	บาท
	อื่นๆ (เช่นดอกเบี้ย)	3,188.55	บาท
	ราม	503,188.55	บาท
	รายจ่าย	140,313.38	บาท
,	เหลือ	362,875.17	บาท
<u>งวดที่ 1/2</u>	ได้รับจาก สกว.	0.00	บาท
	ได้รับจากมหาวิทยาลัย	0.00	บาท
	อื่นๆ ยอดยกมาจากงวดก่อน	362,875.17	บาท
	ดอกเบี๊ย	4,232.64	บาท
	รวม	367,107.81	บาท
	รายจ่าย	367,317.11	บาท
	ไม่มีเงินเหลือ	(-209.30)	บาท
ปีที่ 2 (1 กันยา	ยน 2539 ถึง 31 สิงหาคม 2540)		
<u>งวดที่ 2/1</u>	ได้รับจากสกว.	360,000.00	บาท
	ได้รับจากมหาวิทยาลัย	200,000.00	บาท
	อื่นๆ (ดอกเบี้ย)	1,637.14	บาท
	รวม	561,637.14	บาท
	รายจ่าย	173,932.25	บาท
	เหลือ	387,704.89	บาท
<u>งว</u> ดที่ 2/2	ได้รับจาก สกว.	0.00	บาท
	ได้รับจากมหาวิทยาลัย	0.00	บาท
	อื่นๆ ยกมาจากงวดก่อน	387,704.89	บาท
	ดอกเบี้ย	4,096.09	บาท
	รวม	391,800.98	บาท
	รายจ่าย	391,804.75	บาท
	เหลือ	(-3.77)	บาท

ปีที่ 3 (1 กันยายน 2540 ถึง 31 สิงหาคม 2541)

<u>งวดที่ 3/1</u>	ได้รับจาก สกว.	270,000.00	บาท
	ได้รับจากมหาวิทยาลัย	0.00	บาท
	อื่นๆ (เช่นดอกเบี้ย)	0.00	บาท
	รวม	270,000.00	บาท
	รายจ่าย -	187,422.10	บาท
	เหลือ	82,577.90	บาท
งวดที่ 3/2	ได้รับจาก สกว.	0.00	บาท
	ได้รับจากมหาวิทยาลัย	150,000.00	บาท
	อื่นๆ ยอดยกมาจากงวดก่อน	82,577.90	บาท
	ดอกเบี้ย	0.00	บาท
	รวม	232,577.90	บาท
	รายจ่าย	232,582.00	บาท
	ไม่มีเงินเหลือ	(-4.10)	บาท

ระเบียบการบัญชีเงินฝากออมทรัพย์

การเปลี่ยนชื่อ, นามสกุล, ที่อยู่ ผู้ฝากล้องแจ้งให้ขนาดาวทราบทันที ธนาหารจะจ่ายผลกเบี้ยเงินฝากประเภทนี้ในอัตราตามประกาศของธนาดาร โดยทำนวณและเข้าบัญชีให้ในวันลิ้นจาดบัญชีทุกจาด การฝากเงินหรือถอนเงิน ต้องใช้แบบฝากหรือถอนของชนาคาร และต้องน่าสมุดคู่ฝากนี้ให้ชนาคารลงรายการกำกับทุกครั้ง การหังจ่ายหรือถอนเงินทุกครั้ง ผู้ฝากจะต้องลงลายมือชื่อและประทับสราให้สรงสามตัวอย่างที่ให้ไว้กับชนาการ การเปิดบัญชิดรังแรก ผู้ฝากจะต้องฝากเงินไม่ต่ำกว่า 100 บาท

สารดังกล่าวก็ต่อเมือธนาคารได้เรียกเก็บเงินเรียบร้อยแล้ว เช็ด คริกฟท์ หรือคราศารอื่นๆ ที่น่าฝากเข้าบัญชินั้น ชนาดารจะรับไว้เพื่อการเรียกเกียเท่านั้น ผู้ฝากจะถอนเงินที่นำฝากตามตรา ผู้ฝากจะแก้ไบเปลี่ยนแปลงหรือเพิ่มเดิมข้อความและตัวเลขโดๆ ลงในสมุลภู่ฝาก หรือโอนเปลี่ยนมือ หรือฉีกแผ่นหนึ่งแผ่นโดมิโค้

 ระเบียบการบัญชีเงินฝากออมทรัพย์นี้ ธนาดารสงวนสิทธิ์ที่จะเปลี่ยนแปลงแก้ไขเมื่อใดก็ได้ ก่าวักษาบัญชีในอัศรา 25 บาทต่องวดการบัญชี (ทุกสินเดือนบิถุนายนและชันวาคม) โดยหักจากเงินฝากให้บัญชี บัญชีเงินฝากที่มียอดเงินคงเหลือดำกว่า 100 บาท และไม่มีกานคลื่อนไหวเป็นเวลา 1 ปี ธนาคารจะเก็บ

า ธนาคารทหารไทย จำกัก (มหาชน) THAI MILITARY BANK PUBLIC COMPANY LIMITED

390 เผมะนาสสบาลังเกาะเนกเลเม

.	1	t	1		
ชื่อบัญชื	เลงเกา	ป สกากผูงนา บระกล	Uz tu	Ð	
Account Name	1	•	•	•	
ที่อยู่ ภาคา	ภาควัชาจุลชาวทยา	า คนะวิทยา	กาสุทร	คนะวิทยากาสตร ม.เกษตรศาสตร	· mm.
Address					Ì

ผู้รับผอบอานาจลงนามแทนธนาคาร Authorized Signature

		: -	:	,	ı		-
	5006A	**************** 500GA		******** 700.00	HSJ /	10:/08/9	24
-6	5006A	*******5,754.42		*******20,000.00	7 CSH	08/07/97	: 2
	0000A	9 *******25,754.42	444444444,096.09		INI	20/06/9	22
0	5008A	******21,658.33		******50,000.00	CSH	19/06/9	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5005A	******71,558.33		*******50,000.00	CSH	19/05/97	
Ď	5006A	*****121,658.38		*******30,000.00	CSH	17/04/91	3 :
	2006A	0.0000151,658,38		******** 080.00	CSB	25/33/9	
	5007A	******171,658.33		******30,000.00	CSH	20/02/97	
	800GA	44444781,558.33	`\	Z 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C3.8.	: 37/03/57	.
~	5005A	******271,658.31	\	*******30,000.00	HSU	25/12/98	.
7	DOOUA	* ******301,658.38	*******1,637.1		INI	20/12/98	7
Z	5005A	******300,021.19		*******60,000.00	CSH	27/11/96	:
. ' \						1	·
Y ST	5011A	******360,921,19	******360,000.00		NCE	20/11/96	12
	5007A	***************************************		*******22,500.00	H23	19/08/50	=
·	5006A	*******22,521.13		*******30,000.00	CSH	31/07/90	10
-	AOOOO	*******52,521.19	********,232.6		INI	21/06/90	9
T	500GA	*******48,288.55		*******20,000.00	CSH	28/05/9	60
J.	175005	************************		W.896'95xrrr***	CSH	18/04/3	7
3	5007A	******118,288.55		******50,000.00	CSH	01/04/9	6
9	15527	****168,288.55		TRF****100,000.00	泵	v5/v3/96	UI
1	AOOOO	*****2.188.55****268.288.55	******3.188.55		INT	23/12/95	4
	12194	****265,100.00		CSH*****95,000.00	CSH	02/10/95	<u>.</u>
ar.	0455A	****360,000.00****360,100.00	00.000,095***		Š	27/09/95	2
	12156	*******100.00******100.00	00.001******		CSH	29/08/95	
Authon.	מעוד		Deposit	Withdrawal	Trans Code	Date	
÷ E	เลาเลา	งคิงเหลือ	ผ่าก	นอย	รายการ	האנ	

การมอบฉันกะ โปรดแสดงบัตรประจำตัวทั้งของผู้มอบฉันกะและผู้รับพอบฉันทุ้ง กรณีก่อนเงินต่างสำนักงาน ไปรดูแสดงบัตรประจำตัวต่อเจ้าหน้านี้ และผ้าเป็น กรณีกอนเงินช้ามจังหวัด ไม่อนุญาตให้มีการมอบฉันทะ

ุ่ คำเดือน

1							
		วันที่	ברחשרנ	มอน	ฝาก	คงเหลือ หมาบเลขา เลยหมด	STATE OF
ı		Date	Trans, Code	Withdrawal	Deposit	'	Authorized
	_	19/12/8	INI		17.88*******	A0000 - 18.75144444444	
	N	19/05/99	18.		***********	*********141.30 UODDA	_
	ω	25/86/91	NCL		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	******270,141.33 5011A	
	•	30/06/98	CSH	******180,000,00		*******90,141.30 5005A	2
	ū	30/37/198	G	149 14 14 138 222 23		201018858,141, 0 5338A	
	6	06/08/98	CSH	******60,000.00		*********141.30 5007A	Š
	7						1
	•						
	•			•			
	3					-	
	=						
	Ŕ				*14	-	
_							
	ដ	-					
	=						
-	15				-		
	91						
	17						
	18						
-	9						
	20						
	21						
	22						
	23		_				
	2						
		ท่าเตือน	กรณ์เ	ายนเงินต่างสำนักงาน โป	กรณีถอนเงินต่างสำนักงาน โปรคนสดงบัตรประจำตัวต่อเจ้าหนักสุ่ และทั่วเป็น	าหลักสา และสักเนีย	:
			מנרח	การมอบฉันทะ โปรดแสดงบัตร	งบัครประจำตัวกั้งของผู้มอบฉันกะ ไม่อนุญาดให้มีการมอบฉันกะ	ะและผู้รับหลบฉันกร	2
			WSE.		Sales Sales		

evelopment of Thermotolerant Acetic Acid Bacteria Useful for Vinegar Fermentation Higher Temperatures[†]

kihiko Saeki, Gunjana Theeragool,* Kazunobu Matsushita,** Hirohide Тоуама,** spha Lotong,* and Osao Adachi**^{,††}

partment of Bioindustry, Industrial Technology Institute, Yamaguchi Prefectural Government, Yamaguchi 753, Japan Separtment of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand Separtment of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753, Japan Seived July 29, 1996

Thermotolerant acetic acid bacteria that can grow at 37 to 40°C were collected from places all over Thailand. They were divided into several groups according to their taxonomic and physiological properties, such as rapid ethanol oxidation, rapid acetate oxidation, cellulosic biopolymer formation, growth at 40°C, growth in 3% acetic acid, growth in 8% ethanol, formation of thermotolerant alcohol, and aldehyde dehydrogenases, etc. Though the complete taxonomic analysis has not been completed with all the strains, the majority of the acetic acid bacteria isolated have been confirmed to be classified as Acetobacter rancens subsp. pasteurianus, A. lovaniensis subsp. lovaniensis, A. aceti subsp. liquefaciens, and A. xylinum subsp. xylinum. They produced acetic acid at high temperatures such as 38 to 40°C. Even when acetic acid was initially added to 4%, they still oxidized ethanol to accumulate acetic acid, while 2% of the initial acetic acid was the upper limit for mesophilic strains*1 at higher temperatures. They oxidized higher concentrations of ethanol up to 9% without any appreciable lag time, while alcohol oxidation with mesophilic strains was delayed or became almost impossible under such conditions. Fermentation efficiency in vinegar production with the thermotolerant strains at 38 to 40°C was almost the same as that of mesophilic strains at 30°C. However, the thermotolerant strains worked rapidly with a higher fermentation rate at higher temperatures, which the mesophilic strains were unable to do. Vinegar fermentation at higher temperatures was successful in submerged culture as well as static culture. The fermentation rate as well as fermentation efficiency in continuous vinegar fermentation at higher temperatures by the thermotolerant strains in a jar fermentor was also more than 2 to 3 times that with mesophilic strains at 30°C. Thus, thermotolerant acetic acid bacteria are useful for vinegar fermentation at higher temperatures, which may reduce cooling water expenses.

Key words: acetic acid bacteria; *Acetobacter lovaniensis*; thermotolerant acetic acid bacteria; vinegar fermentation at higher temperatures

Vinegar (acetic acid) fermentation has been known for nturies by natural fermentation of ethanol-containing utions without understanding of the nature of the cess. The first description of vinegar fermentation was de by Pasteur in 1862. He recognized that mother of gar was a mass of living organisms that caused acetic 🕯 fermentation. Only less than 100 years ago the reentative strains of acetic acid bacteria, Acetobacter and Gluconobacter suboxydans, were discovered by erinck in 1898 and by Kluyver and de Leeuw in 1924, Pectively. Nevertheless, it was believed that acetic acid produced by the actions of cytosolic NAD(P)-dedent dehydrogenases. It was only in early 1960s when tayama suggested that the enzymes involved in the gar fermentation were associated with cytochrome ponents or were cytochrome components them-Thereafter, it has been fixed that acetic acid

bacteria produce acetic acid from ethanol by two sequential oxidation reactions of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Such oxidation reactions are termed "oxidative fermentation," since they involve incomplete oxidation of alcohol accompanied by accumulation of the corresponding oxidation product in huge amounts in the growth medium. In spite of the long history of vinegar, disclosure of the nature of ADH and ALDH was actually started in the early 1980s after PQQ, a novel quinone prosthetic group, or a related quinone cofactor was indicated in the function of such enzymes, besides the cytochrome components.^{3,4)}

Concerning the alcohol oxidizing system of acetic acid bacteria, ADH and ALDH have been extensively investigated and well characterized.⁵⁻⁸⁾ The two enzymes are bound to the outer surface of the periplasmic membrane and catalyze oxidation reactions by localizing to the

To whom correspondence should be addressed. Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1

Abbreviations: acetyl-CoA, acetyl coenzyme A; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; PQQ, pyrroloquinoline quinone; Institute for Fermentation, Osaka; SKU, Faculty of Science, Kasetsart University.

To characterize the thermotolerant properties of acetic acid bacteria from Thailand, the term, mesophilic, is tentatively used for the strains lFO, though all strains dealt with in this paper are typical mesophiles.

A part of this work was presented at the 70th Annual Meeting of the Japan Society for Bioscience, Biotechnology, and Agrochemistry, Kyoto, 30-April 2, 1996; the abstract paper appears in Nippon Nōgeikagaku Kaishi (in Japanese), 70, 115 (1996).

eriplasmic space. Understanding has much progressed on he role of the heme c moieties in the intramolecular electron ransport during alcohol oxidation. On the basis of recent esults, it is suggested that the heme c in subunit I of ADH and two of the three heme c moieties in subunit II of ADH re involved in the intramolecular electron transport of DH to ubiquinone, from which the electron is mediated wivo to the terminal oxidase. Furthermore, an inactive DH convertible in vivo to the active form is formed in fluconobacter suboxydans and the generation mechanism and physiological function are under investigation. 10)

Hot summer in these couple of years has brought indoor emperature increases beyond 30°C even in night time in nany countries. That is a serious challenge to not only inegar fermentation but also other fermentation industries, ince they need a huge amount of cooling water to maintain he optimum fermentation temperature. In the usual cases, omestic vinegar production by acetic acid bacteria is erformed at 30°C and a strict temperature control is ssential irrespective to static culture or submerged culture. temperature increase by 2-3°C causes a serious failure in oth fermentation rate and fermentation efficiency. In ubmerged cultures, a large amount of heat is generated uring fermentation and thus cooling costs become rather xpensive. It can be readily suggested that if favorable trains of acetic acid bacteria that can work optimally at 7-40°C were available, the cooling expenses would be educed very much. However, little has so far been reported bout vinegar fermentation by thermotolerant acetic acid acteria. 11,12) Isolation, identification, and characterization f thermotolerant acetic acid bacteria were set in progress o develop new microbial resources for oxidative fermentaion. The course of vinegar fermentation at higher temeratures with the isolated strains was investigated and ompared to those with mesophilic strains. In this paper, everal cultural properties in vinegar fermentation at higher emperatures with the thermotolerant acetic acid bacteria re described. A preliminary examination of enzymes conerned in vinegar fermentation was also briefly conducted.

Materials and Methods

Chemicals. Yeast extract was kindly supplied from Oriental Yeast Co. Tokyo, Japan). All other chemicals used were guaranteed grade from ommercial sources.

Bacterial strains, culture media, and cultivation. Reference strains of nesophilic acetic acid bacteria used in this study were generously supplied tom the Institute for Fermentation, Osaka (IFO). Several kinds of culture nedia were used in this study according to the purpose of individual speriments. Potato medium (1 g of yeast extract, 1 g of Polypepton, 2 g f glycerol, 0.5 g of glucose, and 20 ml of potato extract, 131 filled up to 00ml with tap water) was used for general cultivation and for stock ultures. Seed culture medium (0.5 g of yeast extract, 0.5 g of Polypepton, 5g of glycerol, and 0.5g of glucose per 100ml tap water, and 1.5g of gar for agar plates) was used for studying acetic acid and ethanol plerances, the course of bacterial growth, and enzyme activity mearements. Sake mash medium containing 10% sake mash extract 100 g of sake mash in 400 ml of water) and 5% of ethanol was used for reliminary study for actual vinegar production. In a seed culture, ethanol nd acetic acid were added aseptically to 2% and 1%, respectively. Seed Ultures were cultivated aerobically by shaking on a rotary shaker at 00 rpm or a reciprocal shaker at 120 strokes.

The main culture medium was prepared by reducing the contents of test extract and Polypepton in the seed culture medium to 0.2 g per 0 ml and increasing the concentration of ethanol to 4%. Temperature d culturing period were varied and indicated in the legends of individual

experiments. To the main culture medium in a jar fermentor (1 liter of medium in 2-liter capacity) or 1 liter medium in a 3-liter side-arme Erlenmeyer flask, 10% of the seed culture was transferred aseptically Bacterial growth was monitored by measuring turbidity at 660 nm by photometer or by a Klett-Summerson photoelectric colorimeter with red filter. In most cases of vinegar fermentation, cultivation was done in a jar fermentor (Mituwa Bio Systems, KMJ-2-3, Kudamatsu, Japan) with a gitation rate at 1000 rpm and aeration was controlled to be 0.2 vvm.

In case of continuous culture, the culture medium was composed of 3 of glucose, 0.5 g of yeast extract, 0.2 g of Polypepton, 7.3 ml of ethanol and 0.7 g of acetic acid per-100 ml of tap water. This medium was almost the same as that used by Fukaya et al. 14) During the cultivation, the ethanol concentration in the medium was always kept at the level of 1-2% by controlling the feeding rate.

Isolation of thermotolerant acetic acid bacteria. Thermotolerant aceti acid bacteria were isolated from various fruits in Thailand under differen conditions. About 20 g of individual ripened fruits was cut into small piece and placed in a sterile bottle covered with a sterile white gauze to preven insect contaminantion. For each bottle, 40 ml of either sterile distille water containing 2 or 4% acetic acid, or 4 or 6% ethanol or sterile coconu juice was added to submerge the fruit sample. The sample bottles wer statically incubated at 30°C or 37°C. After 3, 5, and 7 days of incubation several loopfuls of the samples were streaked onto a YPG agar plate (0.5 of yeast extract, 0.5 g of Polypepton, 1.0 g of glycerol, 0.5 g of CaCO; and 1.5g of agar) supplemented with 4% of ethanol, or a coconut juic agar plate containing 4% of ethanol and 3 mg of bromcresol purple pe 100 ml. The colonies that showed halos on YPG agar plate or yellow colonies on the coconut juice agar plate, both of which indicated acid production, were collected. The cultures were also maintained on the potatagar slant. Alternatively, the cultures were mixed with an equal volum of sterile glycerol to make 50% final concentration and stored in a dee freezer at ~80°C.

Growth of acetic acid bacteria. Static growth was examined from th cultures growing in the potato medium at 30°C for 3 days. Growth a 40°C was also examined in the same medium. Acetate oxidation (syn onymous to acetate overoxidation or acetate peroxidation) wa checked with the isolated strains from the blue colonies on the plate of the seed culture medium containing 1% ethanol and 3 mg of bromcreso purple per 100 ml. Alternatively, the growth was examined in the mediur for studying acetate oxidation containing 0.2g of Polypepton, 0.3g of yeast extract, 1% acetic acid, and 0.5% ethanol. The static and shakin growth (220 rpm) were done in 100 ml of the seed culture mediun containing 4% ethanol in a 500-ml side-armed Erlenmeyer flask at 30, 37 and 40°C. Effects of ethanol and acetic acid addition on ADH and ALDI activities were studied from the cells grown in the seed culture medium Acetic acid and ethanol tolerances were tested in an agar plate of th seed culture medium containing either 3% acetic acid or 8% ethanol. Th cultures were incubated at 30°C and 37°C. The acetic acid tolerant strain were observed from the growth after 3 days incubation while the ethano tolerant strains were observed from 1-day cultures.

Preparation of crude enzyme solution. All operations were done at $4^{\circ}C$ unless otherwise stated. Cells were harvested by centrifugation at $9000 \times 10^{\circ}$ for 10 min, and washed twice with cooled 0.1 m Tris—HCl, pH 8.0. Th washed cells were resuspended at about 1 g of wet cells per 2 ml in th same buffer and passed through a French pressure cell press (Americal Instruments Co., Silver Spring, MD, U.S.A.) at $16,000 \, \text{lb/cm}^2$. Afte centrifugation at $9000 \times g$ for 10 min to remove intact cells, the supernatant crude cell-free extract, was further centrifuged at $68,000 \times g$ for 90 min to separate the cytoplasmic membrane from the cytosolic fraction. For th routine assay of ethanol in the culture medium, the membrane fraction was used as the enzyme source of ADH.

Analyses. Acetic acid and glucose contents in the culture medium were measured by a high pressure liquid chromatograph (HPLC, Hitachi L-6000) using a Shodex sugar column SH1011 (8 × 300 mm) with 0.01 s H₂SO₄ as a mobile phase at a flow rate of 1 ml min. ¹⁵ A refractometer (Hitachi, L-3300) was attached to the HPLC as a detector. Acidity of the culture media was measured by titration with 0.5 s NaOH using phenolphthalein as a pH indicator. Ethanol in culture medium was measured enzymatically¹⁶ using the cytoplasmic membrane as ADH.

Enzyme assays. ADH (EC 1.1.99.8) and ALDH (EC 1.2.99.3) were

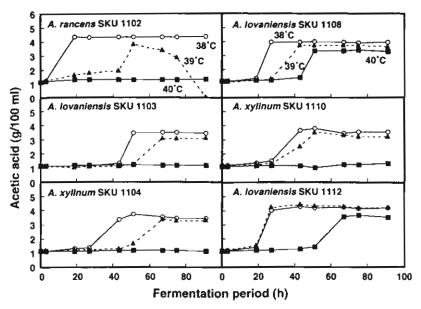
asured by the method of Ameyama¹⁶⁾ using cytoplasmic membranes. all reactions measured, one unit of enzyme activity was defined as the ount of enzyme catalyzing formation or consumption of one micromole freaction product or substrate per min. All enzyme assays were done at C unless otherwise stated. Protein was measured by a modification of method of Lowry et al.¹⁷⁾ with bovine serum albumin as a standard.

lesults and Discussion

blation and characterization of thermotolerant acetic acid

From various kinds of fruits in Thailand, tremendous umbers of colonies were screened and 129 isolates of acetic id bacteria were finally obtained. Physiological and nonomic studies were done to identify them. Most of them ere classified as A. rancens subsp. pasteurianus, A. lovaiensis subsp. lovaniensis, A. aceti subsp. liquefaciens, ad A. xylinum subsp. xylinum according to Bergey's fanual of Systematic Bacteriology. 18-20) The following ems were examined: (i) colony type and ability for acetate ridation, (ii) observations of static growth in liquid culture, ii) growth on the potato agar plate containing ethanol and zetic acid at 40°C for 72 h, (iv) shaking culture at 30°C ad 37°C for 72 h in the presence of 3% of acetic acid, and halo formation in the presence of 8% ethanol grown at o°C and 37°C for 24h. A clear difference was seen in thanol oxidation in the presence of high ethanol conentrations. It was clear that thermotolerant growth in he presence of acetic acid and high ethanol concentration ras the outstanding characteristic of the strains from hailand. Most of the selected strains grew well in the seed alture medium containing 8% of ethanol while all mesophilic strains did not grow. However, about 50% of

the isolates grew in the seed culture medium containing 3% of acetic acid, at which only three strains from IFO, A rancens IFO 3298, A. aceti IFO 3299, and G. sphaericu IFO 12467 showed a growth. It is consistent with the fac that most IFO strains are useful for vinegar fermentatio at 30°C without any noticeable acetate oxidation. Abou 50% of the total isolates showed a growth at 40°C. Stati growth of those isolates varied from sediment growth wit and without a white film (a typical growth of acetic aci bacteria) and colloidal growth (a sign of polysaccharid production) with and without a white film. Acetate oxida tion, which causes the loss of acetic acid in the medium was observed in many isolates. Fourteen strains of th isolates indicating strong ethanol oxidation were chosen fo further study to develop useful themotolerant acetic acid bacteria for vinegar fermentation at higher temperatures The results of a preliminary study of such strains and comparison to the mesophilic reference strains from IF(are listed in Table I.


Course of vinegar fermentation with thermotolerant aceti acid bacteria

Six strains of the thermotolerant strains from Table were further selected and their profiles in vinega fermentation under different temperatures were examined as shown in Fig. 1. In the culture medium, 4% ethanol and 1% acetic acid were initially added, thus allowing the final acetic acid concentration to be about 5%. However, the final concentrations of acetic acid accumulated were less than expected and settled to about 4% as indicated. On reason came from evaporation of acetic acid and also

Table I. Growth Characteristic of Acetic Acid Bacteria Used

		Calami	Static	Growth	Growth	n in 3%	Growth	in 8%
C:		Colony/	growth	at	acetic	e acid	ethano	l/halos
Strain		Overox	30°C	40°C	30°C	37°C	30°C	37°C
.			72 h	72 h	72 h	72 h	24 h	24 h
A. rancens	SKU 1102	Sm/-	ws	++	++	++	++/++	-/-
A. lovanienis	SKU 1103	Sm/-	S	+	+	+	++/++	-/-
A. xylinum	SKU 1104	Sm/-	S	+ +	+	+	++/++	-/-
A. rancens	SKU 1105	Sm/—	S	++	++	++	++/++	-/-
A. rancens	SKU 1106	Sm/-	WS	++	+	+	++/+	-/-
A. lovaniensis	SKU 1107	Sm/-	S	+	++	+ +	+/+	+/+
A. lovaniensis	SKU 1108	Sm,'-	S	++	+	+	++/++	+/-
A. aceti	SKU 1109	Sm/-	S	nd	+ +	++	++/++	++/++
A. xylinum	SKU 1110	Sm/ —	S	+ +	+ +	++	+/+	++/+
A. rancens	SKU 1111	Sm,' +	S	+ +	+	+	++/++	++/++
A. lovaniensis	SKU 1112	Sm/—	WC	+ +	+	+	++/++	++/++
A. rancens	SKU 1113	Sm/+	S	+ +	++	+ +	++/++	++/++
A. rancens	SKU III4	Sm/+	S	+ +	++	+ +	++/++	-/-
A. rancens	SKU 1115	Sm/+	S	++ ,	++	++	++/++	+/+
A. pasteurianus	IFO 3188	Sm,'-	WC	+ +	+	+	-/-	-/-
A. pasteurianus	IFO 3191	Sm′-	WC	+ +	+	+	+/++	-/-
A. pasteurianus	IFO 3222	Sm/-	S	-	+	+	- '	-/ -
A. pasteurianus	IFO 3279	Sm '-	S	+ +	_	-	-,-	-/
A. pasteurianus	IFO 3280	Sm, -	WC	+	÷	+	-/-	-/-
A. aceti	IFO 3283	Sm´+	C	+	+	+	-,'-	-/-
	IFO 3284	Sm/-	WS	+ +	+	+	-/-	-/-
A. rancens	IFO 3298	Sm_i' —	S	+	+ +	+ +	-,'-	-/-
A. aceti	IFO 3299	Sm	S	+	+ +	+ +	-/-	-/-
G. sphaericus	IFO 12467	Sm, -	S	+ +	+ +	+ +	-/-	-/-
A. xvlinum	IFO 13773	Sm	C	+	+	+	-,'-	-/-

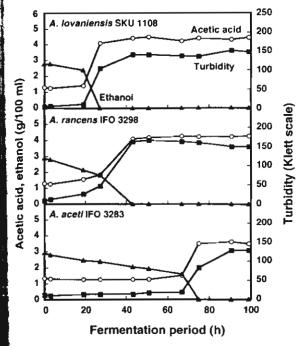
Notes: Sm. smooth; S, sediment; C, colloid; WS, white film + sediment; WC, white film + colloid; Overox, overoxidation.

. Effects of Temperature on Vinegar Fementation among Thermotolerant Strains.

adidate strains as thermotolerant acetic acid bacteria were cultured in the main culture medium in the presence of initially added 1% acetic acid and 4%. The cultivation was done in 1 liter of the medium in a 2-liter jar fermentor. The fermentation temperatures were varied from 38°C to 40°C and incubations were the period indicated. Only acetic acid accumulation during the incubation is shown here.

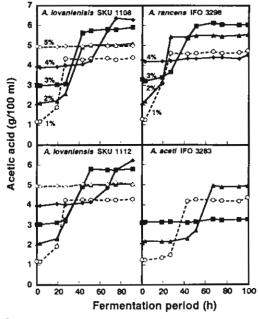
nol during the fermentation at higher temperatures, though the exhausted air was passed through a cooler. cases, vinegar fermentation was done in a jar fermentor acetic acid accumulation was measured as described in rials and Methods. When examined at 38°C and 39°C, trains showed normal growth though the length of lag d varied from strain to strain. In the usual cases, nol was exhausted completely within 20 to 40 h. Acetate ation was observed only with A. rancens SKU 1102 examined at 39°C and acetic acid was completely nimed. Four strains, A. rancens SKU 1102, A. lovaniensis 1103, A. xylinum SKU 1104, and A. xylinum SKU did not grow at 40°C under these conditions and no mulation of acetic acid was observed. Two strains of maniensis SKU 1108 and SKU 1112 grew at 40°C and al accumulation of acetic acid was observed.

megar fermentation with A. lovaniensis SKU 1108 was in the main culture medium at 37°C in a jar fermen-The course of fermentation and efficiency in vinegar tection by the thermotolerant strain were compared those of A. rancens IFO 3298 and A. aceti IFO 3283, Mus mesophilic vinegar producers, as shown in Fig. 2. bation was done for the period indicated. Ethanol was y consumed by A. lovaniensis SKU 1108 and the biometric amounts of acetic acid accumulated in the re medium. A delayed ethanol oxidation was observed A rancens IFO 3298 and more than 10 h were further ed until the acetic acid concentration reached the mal level. In the case of A. aceti IFO 3283, the bacterial that 37°C appeared to be almost impossible and onsumption was delayed very much. As judged the results in Table I, such delay or incomplete vinegar atation by the mesophilic strains can be observed antly in submerged culture at higher temperatures. It perally said that acetic acid bacteria show more Ostability when grown under static cultures than riged cultures. In most cases, there is some lag time


in fermentation. The lag time was prolonged when fermentation temperatures were elevated. Though exceptions have not been ruled out, under such serious conditions of higher temperatures and lower pHs, there is the least possibility that the cells that grow are contaminants or spontaneous mutants.

Effects of initial acetic acid concentrations on vinegar fermentation

The effects of initial acetic acid concentrations on vinegar fermentation were compared with four diffrent strains as shown in Fig. 3. The examinations were done in 1 liter of main culture medium in a jar fermentaor and temperature was controlled at 35°C throughout. The two mesophilic strains grew under the same conditions that enabled us to compare the fermentation profile each other. The initial acetic acid concentrations were increased from 1 to 5% as indicated and ethanol was added initially to 4% to all cultures. Both strains of A. lovaniensis SKU 1108 and SKU 1112 still oxidized ethanol, and acetic acid was accmulated increasingly in the culture medium, when the initial concentrations of acetic acid were less than 4%. However, further accumulation of acetic acid no longer occurred when acetic acid had been initially added to 5% in the culture medium. On the other hand, the upper limit of the initial acetic acid concentrations was found at 3% and 2% with A. rancens IFO 3298 and A. aceti IFO 3283, respectively. In case of A. aceti IFO 3283, some prolonged lag time was marked before ethanol oxidation took place under these conditions even in the pesence of 1% of initial acetic acid. These results indicate that some acetic acid tolerance is found in the thermotolerant strains from Thailand.


Effects of initial ethanol concentrations on vinegar fermentation

It is important to check the effects of the initial ethanol concentrations on the vinegar fermentation. The same four

2. Comparison of Fermentation Efficiency of a Thermotolerant m with Mesophilic Strains at 37°C.

philic vinegar producers, A. rancers IFO 3298 and A. acett IFO 3283. To the culture medium, 1% of acetic acid and 4% of ethanol were initially added and ementation was done at 37°C for the period indicated. Incubation was done in fermentor as described in Fig. 1.

 Effects of Initial Acetic Acid Concentration of Vinegar lation between Thermotolerant Strains and Mesophilic Strains.

main culture medium, various concentrations of acetic acid were added initially ated. Vinegar fermentation was started by the addition of 4% ethanol and livations were done in a jar fermentor for the period indicated. Temperature atrolled at 35°C throughout. Only acetic acid accumulation is shown here.

as used in the preceding experiment were used and inations were done at 35°C in a jar fermentor under ar conditions, except that various concentrations of ol were added to the medium where aceitc acid had initially added at 1%. The culture conditions also led the mesophilic strains to grow on the medium. The

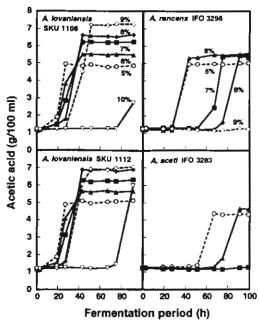


Fig. 4. Effects of Initial Ethanol Concentrations on Vinegar Fermentation between Thermotolerant Strains and Mesophilic Strains.

To the main culture medium (1 liter in a 2-liter jar fermentor), 1% acetic acid was initially added. Ethanol was added at various concentrations as indicated. The cultivation was done at 35°C for the period as indicated and acetic acid accumulated in the culture medium is shown.

Table II. Effects of Acetic Acid and Ethanol on Vinegar Fermentation

Chamila.		Acet	ic acid	(%)	Ethanol (%)		
Strain		35°C	37°C	39°C	35°C	37°C	39°C
A. lovaniensis	SKU 1108	4	3	2	9	8	5
A. lovaniensis	SKU 1112	4	3	2	9	8	5
A. rancens	IFO 3298	3	2	_	8	6	
A. aceti	IFO 3283	2	1	_	6	5	

results are shown in Fig. 4. Ethanol was oxidized to accumulate acetic acid by the two strains of A. lovaniensis SKU 1108 and SKU 1112, and no appreciable lag period was observed when ethanol was initially added to less than 9%. When ethanol was fed to 10%, a fairly long lag time was observed. This means that the organisms have acquired ethanol tolerance and adapted themselves to such high concentrations of ethanol. Alternatively, ethanol concentrations in the culture medium might be lowered by evaporation after a long lag period, making the organisms free to oxidize ethanol. On the other hand, A. rancens IFO 3298 and A. aceti IFO 3283 showed a poor tolerance to higher ethanol concentrations under these conditions. Prolonged lag time giving a delay in ethanol oxidation was also a predominant feature with the mesophilic strains. Thus, it is reasonable to say that the thermotolerant acetic acid bacteria have a marked ethanol tolerance.

In Table II, the upper limit concentrations of acetic acid and ethanol in vinegar fermentation which can be initially acceptable are summarized. An apparent contrast can be seen in acetic acid tolerance between the thermotolerant strains and mesophilic strains. Ethanol tolerance of the mesophilic strains can be comparable to those of thermotolerant ones at lower temperatures. However, they did

now at 39°C in the medium which contained more 3% ethanol besides 1% acetic acid. The biochemical ace supporting acetic acid tolerance, ethanol tolerance, thermotolerance of acetic acid bacteria has not been this is a primary important subject in future study.

inuous vinegar fermentation at higher temperatures is worth examining vinegar fermentation under huous culture to see whether such thermotolerant acid bacteria can be used in this system. A continuous is one of the typical methods in fermentation tries and it has been actually used for vinegar ction. In this study, continuous vinegar fermentation her temperatures was tested with A. lovaniensis SKU under various conditions as indicated in Table III. dilution rate decreased nearly by 10% as the erature increased from 37°C to 40°C. However, with to acetic acid productivity, the results obtained here, to 4.42 g/(liter · h), are more than 2 to 3 times higher those with mesophilic strains. According to the results kaya et al., 14) acetic acid productivity with A. aceti 1002 was recorded to be 1.06 g/(liter h) under conus vinegar fermentation in a jar fermentor. In another ole of continuous vinegar fermentation, it was reported 1.7 g/(liter · h) under similar culture conditions.²¹⁾ there is some difficulty in doing the same experiments mesophilic strains, several sets of data from the ture with mesophilic strains were cited for comm. Though the viability of cells during the continuous ar fermentation was not checked thoroughly, it is scing that both the fermentation efficiency and ntation rate in the continuous system were superior ose with mesophilic strains. Improvement of the nto make it more suitable for thermotolerant strains under inverstigation.

ar fermentation under static culture

egar fermentation under static culture, the most classic on but still having an important meaning, was need at higher temperatures. Acetic acid and ethanol added to 1% and 5%, respectively, to the main culture m, allowing the acetic acid accumulation to nearly When examined with A. lovaniensis SKU 1108, several were found in this system. The most outstanding was need by its fast fermentation rate composing of smooth of oxidation and acetic acid accumulation as shown 5.5. As has been indicated in Table I, static vinegar meation at higher temperatures was almost impossible sophilic strains under the conditions in which more acid was allowed to accumulate. Sake mash medium thing 5% ethanol was used as a medium for pre-

Continuous Vinegar Fermentation with A. lovaniensis SKU

mp.	Acetic acid (g liter)	Dilution rate (h)	Acetic acid productivity (g/(l·h))
ħ	58	101.0	5.06
9	59	0.087	4.46
70	57	0.089	4.42

liminary experiment for industrial vinegar production using A. lovaniensis SKU 1108. The course of growth, changes in pH of the culture medium, acetic acid accumulation, and enzyme activities of ADH and ALDH were examined as shown in Fig. 6. The organism grew spreading over the surface of the medium forming a thin film. The highest specific activities of ADH and ALDH were observed after 4 days of cultivation. It can be readily expected that ADH and ALDH activities go down and lose their physiological roles when ethanol is consumed from the culture medium. Alternatively, the decrease in specific activities of ADH and ALDH in the prolonged culture would reflect the predominated increase of ADH deficient mutants as reported by Takemura et al. 22) They found a novel insertion sequence, IS 1380, which causes a genetic instability that produces spontaneous ADH deficient

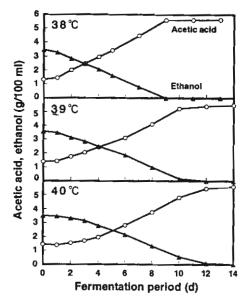


Fig. 5. Vinegar Fermentation at Higher Temperatures under Static Conditions by A. lovaniensis SKU 1108.

The main culture medium (1 liter in a 3-liter flask) was made initially with 1% acetic acid and 5% ethanol as indicated. The fermentation temperature was varied from 38 C to 40°C as indicated. The fermentation was done under static conditions for the period indicated.

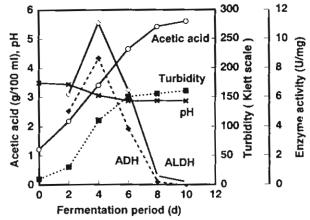


Fig. 6. Course of Vinegar Fermentation in Sake Mash Medium by A. lovaniensis SKU 1108.

To 1 liter of sake mash medium containing 1% acetic acid, ethanol was added to 5% and vinegar fermentation was done at 30°C for the period as indicated under static conditions. Every two days, acetic acid accumulated (\bigcirc) , bacterial growth (\blacksquare) , pH (\times) , and enzyme activities of ADH (\spadesuit) and ALDH (\diamondsuit) were measured as described in Materials and Methods.

mants. However, so far as examined, no hybridizawith IS 1380 was observed with the strains used in this dy, A. lovaniensis SKU 1108 and SKU 1112 (G. eragool et al. unpublished observations). It is interesting ge that inactive ADH is formed in G. suboxydans when organism is grown under vigorous aeration in acidic 10) It is said that a similar phenomenon also occurs in genus Acetobacter. The highest concentration of acetic (about 5.5%) was detected after 10 days of incubation in the pH of the culture medium dropped from 3.5 to Ethanol in the culture medium (not shown in the figure) almost consumed at that time, which is consistent with results obtained above. Though it is difficult to compare data for thermotolerant strains directly with mesophilic s, the usefulness of the thermotolerant strains for all s of vinegar fermentation can be emphasized by the a presented here.

The appearance, taste, fragrance, etc. of vinegar produced thermotolerant acetic acid bacteria seemed similar to se produced by mesophilic strains, though many points ain to be checked. Masai¹¹⁾ reported that there were no ifficant differences in taste and fragrance, when vinegar pared at 30°C and 37°C were subjected to sensory test well as chemical analyses.

In these experiments so far described, the growth of acetic abacteria was followed by reading turbidity of the culture dium as the reference for cell numbers. It cannot be upted that the turbidity means the total viable cells. As the reported by Takemura et al., 221 it must be noted the majority of the cells began to die in the stationary use after ethanol was exhausted and acetic acid umulated to the maximal level.

rmostability of ADH and ALDH from thermotolerant retic acid bacteria

The thermostability of the enzymes involved in vinegar mentation was examined. As illustrated in Fig. 7, it is testing to see that almost the same thermal denaturation files of the enzymes appeared among the strains spective to thermotolerant or mesophilic strains, aligh ALDH was shown to be more thermostable inst heating than ADH as reported previously.²³⁾ Thus, were no essential differences in thermostability of the mes among the strains. Some differences in thermobility observed with ALDH among the strains by 20 to (Fig. 7) was insignificant to evaluate the thermoblity of the enzyme from thermotolerant strains under conditions examined. It is important to check whether thermostability is ascribed to the intrinsic properties he individual enzymes or is an endowment of the acetic bacteria themselves. What kinds of enzymes or which of mechanisms enable the acetic acid bacteria to be mostable should be investigated from the properties of dures and functions of cellular membranes as well as stoplasmic components. As mentioned above, it would wite probable to disclose the mechanisms by translating observations into biochemical terms that the growing asting cells of thermotolerant strains really oxidize ol to acetic acid at higher termperatures but not the Philic ones. As the purification methods for both ADH ALDH become available, 24,25) it would be possible to hich subunit of the individual enzymes really carries

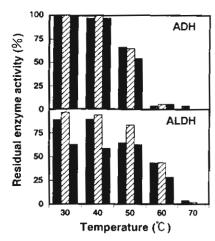


Fig. 7. Thermostability of ADH and ALDH.

Thermostability of ADH and ALDH was measured with the membrane fraction prepared from the cells of A. lovaniensis SKU 1108 (). A. lovaniensis SKU 1112 (). and A. aceti IFO 3284 () grown on the seed culture medium containing 1% acetic acid and 2% ethanol. After incubating the membrane fraction for 10 min under various temperatures, the heated membrane was chilled in ice-cold water. The enzyme activities were measured under the standard assay conditions at 25°C.

the nature of thermostability. Apart from what is discussed above, how much cooling expenses can be saved by using thermotolerant acetic acid bacteria will be developed in our future study.

Acknowledgments. The authors wish to express their sincere thanks to Minoru Ameyama, Professor Emeritus, Yamaguchi University, for his continuous encouragement throughout this work. Technical contributions provided by Mariko Taniguchi and Katesaphong Natasiri in a part of this work should be remarked. The authors are indebted to Sueharu Horinouchi, the University of Tokyo, for providing the insertion sequence, IS 1380, from A. pasteurianus NCI 1380. A part of this work was done in the Yamaguchi University-to-Kasetsart University cooperative joint research program supported by a Grant-in-Aid for International Scientific Research Program (No. 05045039) from the Ministry of Education, Science, and Culture of Japan and by a grant for R&D Program from Yamaguchi Prefectural Government. We are grateful for the technical reading of the manuscript by Jitka Frebortova.

References

- T. Nakayama, J. Biochem., 49, 158–163 (1961).
- 2) T. Nakayama, J. Biochem., 49, 240-251 (1961).
- O. Adachi, K. Tayama, E. Shinagawa, K. Matsushita, and M. Ameyama, Agric. Biol. Chem., 42, 2045–2056 (1978).
- O. Adachi, E. Miyagawa, E. Shinagawa, K. Matsushita, and M. Ameyama, Agric. Biol. Chem., 42, 2331-2340 (1978).
- K. Matsushita, Y. Takaki, E. Shinagawa, M. Ameyama, and O. Adachi, Biosci. Biotech. Biochem., 56, 304-310 (1992).
- K. Matsushita and O. Adachi, in "Applications and Principles of Quinoproteins," ed. by V. L. Davidson, Marcel Dekker, Inc., New York, 1993, pp. 47-63.
- K. Matsushita and O. Adachi, in "Applications and Principles of Quinoproteins," ed. by V. L. Davidson, Marcel Dekker, Inc., New York, 1993. pp. 65-71.
- K. Matsushita, H. Toyama, and O. Adachi, in "Advances in Microbial Physiology," Vol. 36, ed. by A. H. Rose and D. W. Tempest, Academic Press, Inc., London, 1994, pp. 247–301.
- K. Matsushita, T. Yakushi, H. Toyama, E. Shinagawa, and O. Adachi, J. Biol. Chem., 271, 4850–4857 (1996).
- K. Matsushita, T. Yakushi, Y. Takaki, H. Toyama, and O. Adachi, J. Bacteriol., 177, 6552-6559 (1995).
- 11) H. Masai, Nippon Jozo Kyokaishi (in Japanese), 74, 798-804 (1979).
- S. Ohmori, H. Masai, K. Arima, and T. Beppu, Agric. Biol. Chem. 44, 2901–2906 (1980).
- M. Ameyama, E. Shinagawa, K. Matsushita, and O. Adachi, J. Bacteriol., 145, 814–823 (1981).

- M. Fukaya, H. Tagami, K. Tayama, H. Okumura, Y. Kawamura, and T. Beppu, Agric. Biol. Chem., 53, 2435-2440 (1989).

 A. Saeki, J. Ferment. Bioeng., 75, 232-234 (1993).

 M. Ameyama, in "Methods in Enzymology," Vol. 89, ed. by W. A. Wood, Academic Press, Inc., New York, 1982, pp. 20-29.

 J. R. Dulley and P. A. Grieve, Anal. Biochem., 64, 136-141 (1975).

 J. De. Ley, M. Gillis, and J. Swings, in "Bergey's Manual of Systematic Bacteriology," Vol. 1, ed. by N. R. Krieg and J. G. Holt, Williams & Wilkins, Baltimore/London, 1984, pp. 268-278.
- J. Swings, J. De Ley, and M. Gillis, in "Bergey's Manual of Systematic Bacteriology," Vol. 1, ed. by N. R. Krieg and J. G. Holt, Williams & Wilkins, Baltimore/London, 1984, pp. 210-213.
- N. J. Palleroni, in "Bergey's Manual of Systematic Bacteriology," Vol. 1, ed. by N. R. Krieg and J. G. Holt, Williams & Wilkins,

- Baltimore/London, 1984, pp. 140-199.
- H. Masai, Nihon Shokuhin Kogyogakkaishi (in Japanese), 25, 104-121 (1978).
- H. Takemura, S. Horinouchi, and T. Beppu, J. Bacteriol., 173, 7070-7076 (1991).
- O. Adachi, E. Shinagawa, K. Matsushita, and M. Ameyama, *Agric. Biol. Chem.*, 52, 2083-2084 (1988).
- 24) M. Ameyama and O. Adachi, in "Methods in Enzymology," Vol. 89, ed. by W. A. Wood, Academic Press, Inc., New York, 1982, pp. 450-457.
- M. Ameyama and O. Adachi, in "Methods in Enzymology," Vol. 89, ed. by W. A. Wood, Academic Press, Inc., New York, 1982, pp. 491-497.

icrobiological Aspects of Acetate Oxidation by Acetic Acid Bacteria, Unfavorable the investment of the companies of the compa

ihiko Saeki, Mariko Taniguchi,* Kazunobu Matsushita,* Hirohide Тоуама,* injana Theeragool,** Napha Lotong,** and Osao Adachi*.††

partment of Bioindustry, Industrial Technology Institute, Yamaguchi Prefectural Government, Yamaguchi 753, Japan Separtment of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753, Japan Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand Seived July 29, 1996

Several strains of acetic acid bacteria belonging to the genus Acetobacter, showing strong acetate oxidation, were screened and their microbiological aspects in acetate oxidation were investigated. When all available carbon and energy sources were exhausted and only acetic acid remained in the late stationary phase, the bacteria started to consume the acetic acid that had been accumulated in the culture medium for vinegar fermentation. They grew rapidly, showing the second stationary phase and a typical biphasic growth curve was observed. The cells from the first growth phase were acid tolerant, while the cells from the second growth phase turned over to become acid sensitive. However, no distinct acetate oxidation took place when oxidizable ethanol and other available carbon sources still remained in the culture medium. Moreover, no apparent acetate oxidation was observed in vinegar mash in which more than 4.5% of acetic acid was allowed to accumulate. There was a threshold in acetate concentration since the most selected strains oxidized acetate when the final concentration of acetic acid accumulated was less than 3.7%. When only acetic acid was administrated as the sole carbon and energy sources, the organisms finally used acetic acid after a long lag time. The lag time was shortened by the addition of a small amount of readily usable energy source, such as ethanol. From enzymatic analysis, only acetyl-CoA synthetase increased much among the enzymes concerning acetyl-CoA formation from acetate, while the enzyme activities of acetate kinase and phosphotransacetylase were not changed significantly. The enzyme activities of isocitrate lyase and malate synthase also increased significantly in the cells when acetate was consumed. These results indicate that acetic acid is converted to acetyl-CoA by acetyl-CoA synthetase to put acetate into the TCA cycle as well as to the glyoxylate cycle allowing the bacteria to grow rapidly on acetic acid after ethanol exhaustion. Taking together with growth experiments and enzymatic data accumulated, it was strongly suggested that cells different in physiological characteristics from the first growth phase emerged in the second growth phase.

Key words: acetate oxidation; acetic acid bacteria; Acetobacter aceti; acetyl coenzyme A synthetase; vinegar fermentation

Acetic acid bacteria belonging to the genus Acetobacter used for vinegar production, while Gluconobacter ains are strong in ketogenesis and thus favorable for conic acid and ketogluconic acids production, L-sorbose mentation for vitamin C production, and other oxidative mentations.1) Recently, several specified strains of the aus Acetobacter have been one of the current topics as cellulose producers.2) Mankind has obtained vinegar methanol-containing solutions by natural fermentation centuries without understanding the nature of the proc-The first description of microbial vinegar fermentation made by Pasteur in 1862.3) He recognized that mother inegar was a mass of living organisms that caused acetic fermentation. Scientific approaches had never been about vinegar fermentation as well as other oxidative mentations in which acetic acid bacteria are involved, Nakayama indicated two novel cytochromes in acetic

acid bacteria in the early 1960s, which catalyzed oxidation of alcohol and aldehyde, respectively.^{4,5)} Nevertheless, vinegar fermentation had been believed to occur by the action of cytosolic NAD(P)-dependent enzymes. It was in the late 1970s when a membrane-bound alcohol dehydrogenase was isolated from acetic acid bacteria in which a quinoprotein dehydrogenase involving PQQ as the primary cofactor besides cytochrome components had the primary function in vinegar fermentation.^{6,7)}

According to the latest issue of Bergey's Manual of Systematic Bacteriology, 8) all strains belonging to the genus Acetobacter oxidize acetic acid into carbon dioxide and water. "Over-oxidation of acetate" or "acetate peroxidation" has been used synonymously with acetate oxidation designating the phenomena of aerobic acetate anabolism by acetic acid bacteria. An intensive consumption of acetic acid is always accompanied by a corresponding increase in

A part of this work was presented to the 69th Annual Meeting of the Japan Society for Bioscience, Biotechnology, and Agrochemistry, Sapporo, ^{1st} 1-3, 1995; the abstract paper appears in *Nippon Nögeikagaku Kaishi* (in Japanese), 69, 315 (1995).

To whom correspondence should be addressed.

Abbreviations: Acetyl-CoA, acetyl coenzyme A; ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; PQQ, pyrroloquinoline quinone; ADP, ATP, adenosine 5'-mono-, di-, triphosphate; TCA cycle, tricarboxylic acid cycle; IFO, Institute for Fermentation, Osaka; SKU, Faculty lence, Kasetsart University.

118 A. Saeki et al.

cell mass of the organisms. In the southeast Asian countries and also other tropical areas, coconut juice is used as the st popular source for home-made vinegar, yielding a ower acetic acid content than rice vinegar produced from ake or sake lees. A serious problem frequently happens with such coconut vinegar, that acetic acid is readily oxidized further by many acetic acid bacteria. Acetate exidation is also seen even in the temperate countries. experiences accumulated for centuries have allowed us to terminate vinegar fermentation when a small amount of ethanol still remains in the vinegar mash, that has been thought to be the safest way to avoid acetate oxidation. Vinegar fermentation allowing acetic acid accumulation to be more than 4% has become an alternative way to overcome acetate oxidation. In usual commercial vinegar production, the final concentration of acetic acid is controlled at 4 to 5%. Selected microorganisms which show the least acetate oxidation have been currently used for lyinegar fermentation, though a prolonged incubation after ethanol exhaustion sometimes causes acetate oxidation more or less. Therefore, it is important to clarify the microbiological aspects of acetate oxidation by acetic acid bacteria, because few microbiological and biochemical investigations on acetate oxidation have been reported, 9) in spite of its basic and practical significance. In this report, several aspects of acetate oxidation by acetic acid bacteria are described. A preliminary enzymatic investigation on acetate oxidation is also conducted briefly.

Materials and Methods

Chemicals. Yeast extract, ATP, ADP, AMP, hexokinase (EC 2.7.1.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), malate dehydrogenase (EC 1.1.1.37) were kindly supplied by Oriental Yeast Co. (Tokyo, Japan). Acetyl-CoA, isocitric acid, citrate synthase (EC 4.1.3.7), and malate synthase (EC 4.1.3.2) were products from Sigma (St. Louis, MO., U.S.A.). All other chemicals used were guaranteed grade from commercial sources.

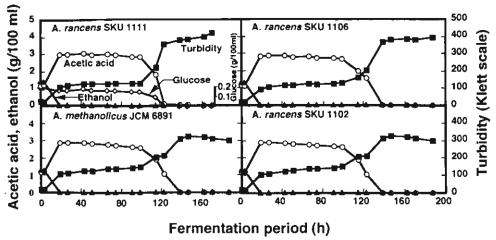
Bacterial strains, culture media, and growth conditions. Mesophilic acetic acid bacteria* used in this study were generously supplied by the Institute for Fermentation, Osaka (IFO). Acetobacter methanolicus JCM 6891, a methylotrophic acetic acid bacterium, was from the Japan Collection of Microorganisms (JCM). Thermotolerant acetic acid bacteria belonging to A. rancens subsp. pasteurianus, A. lovaniensis subsp. lovaniensis, A. aceti subsp. liquefaciens, and A. xylinum subsp. xylinum were from Kasetsart University, Thailand. All acetic acid bacteria were maintained on agar slants, which were prepared by adding 15 g of agar and 5 g of CaCO₃ to the potato medium consisting of 5 g of glucose, 20 g of glycerol, 10 g of yeast extract, 10 g of Polypepton, and 150 ml of potato extract¹⁰³ per liter of tap water.

Basal medium for seed culture contained 5 g each per liter of glucose, glycerol, yeast extract, and Polypepton in tap water and was sterilized by autoclaving at 120°C for 30 min. In a seed culture, ethanol and acetic acid were added aseptically to 2% (v/v) and 1% (w/v), respectively. The main culture medium was prepared by reducing the contents of yeast extract and Polypepton to 2g per liter while ethanol was increased to 4%. Seed culture was made under shaking on a rotary shaker at 200 rpm or a reciprocal shaker at 120 strokes/min. Temperature and culturing period are indicated in the legends of individual experiments. To the main culture medium in a jar fermentor (Mituwa Bio System, Kudamatsu, Japan) or 1 liter medium in a 3-liter side-armed Erlenmeyer flask, 10% of the seed culture was inoculated by aseptic transfer. Bacterial growth was followed by measuring turbidity at 660 nm by a photometer or measured by a Klett-Summerson photoelectric colorimeter with a red filter. In case of culture in a jar fermentor, agitation speed was set at 1000 rpm and aeration was controlled to be 0.2 vvm.

Selection of acetic acid bacteria capable of oxidizing acetate. The tested strains were inoculated into 1 ml of the potato extract medium in a 10-ml test tube. The medium was supplemented by adding either 2 or 4% of acetic acid, or 4 or 6% of ethanol or sterile coconut juice. The cultures were statically incubated at 30°C or 37°C. After 3, 5, and 7 days of incubation, several loopfuls of the cultures were streaked onto the YPG agar plate (0.5 g of yeast extract, 0.5 g of Polypepton, 1.0 g of glycerol, 0.5 g of CaCO₃, and 1.5 g of agar per 100 ml of medium) containing 3% ethanol or a coconut juice agar plate containing 3% ethanol and 3 mg of bromocresol purple per 100 ml of medium. The colonies that appeared to show halos on the YPG agar plate or yellow color on the coconut juice agar plate, both indicating acid production, were isolated. After prolonged incubation on a coconut juice agar slant for over 100 h, color changes of bromocresol purple by alkaline reaction appeared along the clonies among the tested strains indicating a potent acetate oxidation.

Preparation of crude enzyme solution. All operations were done at 4° C unless otherwise stated. Cells were harvested by centrifugation at $9000 \times g$ for 10 min, and washed twice with ice-cold 0.1 m Tris-HCl, pH 8.0. The washed cells were resuspended at about 1 g of wet cells per 2 ml in the same buffer and passed through a French pressure cell press (American Instruments Co., Silver Spring, MD., U.S.A.) at $16,000 \text{ Lb/in}^2$. After central engation at $9000 \times g$ for 10 min to remove intact cells, the supernatal engation, crude cell-free extract, was centrifuged at $68,000 \times g$ for 90 min to separate the cytosolic fraction from the cytoplasmic membrane.

Analyses. Acetic acid and glucose in the culture medium were measured by a high pressure liquid chromatograph (HPLC, Hitachi, L-6000) using a Shodex sugar column SH 1011 (8 × 300 mm) with 0.01 N H₂SO₄ as a mobile phase at a flow rate of 1 ml/min as described previously. ¹¹ A refractometer (Hitachi, L-3300) was attached to the HPLC as a detector. Acidity of the culture media was measured by titration with 0.5 N NaOH using phenolphthalein as pH indicator. Ethanol ¹² and glycerol ¹³ in the culture medium were measured enzymatically.


Enzyme assays. Acetate kinase (EC 2.7.2.1) was measured by the reverse reaction using acetylphosphate as the primary substrate in the presence of ADP and inorganic phosphate as described by Nishimura and Griffith. 14) The ATP generated was measured by the coupling reaction with hexokinase and glucose-6-phosphate dehydrogenase. Acetyl-CoA synthetase (EC 6.2.1.1) was similarly measured by the reverse reaction using acetyl-CoA as the primary substrate in the presence of AMP and pyrophosphate under similar conditions as in the assay of acetate kinase. The forward reaction of acetyl-CoA synthetase was measured by a published method of Frenkel and Kitchens. 15) Phosphotransacetylase (EC 2.3.1.8) was measured by the reverse reaction using acetylphosphate as the substrate under essentially the same conditions as described by Klotzsch. 161 Isocitrate lyase (EC 4.1.3.1) was measured by the method described by Yoshida et al. 173 Malate synthase (EC 4.1.3.2) was measured stepwise by two enzyme reactions. After malate was formed by reacting glyoxylate with acetyl-CoA as described by Weitzman, 18) an aliquot of the reaction mixture (0.1 ml) was taken as the substrate for malate dehydrogenase (EC 1.1.1.37) at pH 10.0 in the presence of NAD and the initial rate of NADH formation was measured at 340 nm by a photometer. Alcohol dehydrogenase (ADH) (EC 1.1.99.8) and aldehyde dehydrogenase (ALDH) (EC 1.2.99.3) were measured by the method described by Ameyama¹²⁾ using cytoplasmic membranes. In all enzyme assays used in this study except for malate synthase, one unit of enzyme activity was defined as the amount of enzyme catalyzing formation or consumption of one µmol of reaction product or substrate per min. All enzyme assays were done at 25°C unless otherwise stated. Protein content was measured by a modified method of Lowry et al19) with bovine serum albumin as a standard.

Results and Discussion

Selection of acetic acid bacteria having potent acetate oxidation

Acetate oxidation, which causes the loss of acetic acid in the medium, was observed with many strains. A. methanolicus was selected from the strains of mesophilic acetic acid

^{*1} To differentiate from the thermotolerant acetic acid bacteria from Thailand, the term, mesophilic, is tentatively used for the strains from IFC and A. methanolicus, though all strains dealt with in this paper are typical mesophiles.

1. Course of the Growth of Acetic Acid Bacteria and Acetate Oxidation.

bacterial strains A. rancens SKU 1111, A. rancens SKU 1106, A. rancens SKU 1102, and A. methanolicus were cultured on a medium containing 2% ethanol and 1% ic acid. Incubation was done in a jar fermentor at 30°C for the period indicated. Closed triangles and open squares show ethanol and glucose in the culture medium. In circles indicate acetic acid in the culture medium. The bacterial growth was expressed by measuring turbidity (closed squares).

cteria. Among the thermotolerant acetic acid bacteria m Thailand, 35 of 129 strains showed potent acetate idation. Three strains of A. rancens subsp. pasteurianus U 1102, SKU 1106, and SKU 1111 were selected for ther experiments. The course of acetate oxidation was amined with the selected strains during the growth on a dium containing 2% ethanol and 1% acetic acid which owed the final acetic acid accumulation to be 3%. They re compared with mesophilic strains from IFO under the me conditions. It was clear that acetate oxidation was matically observed with A. methanolicus and the three mins of A. rancens subsp. pasteurianus (Fig. 1), while no preciable acetate oxidation was observed with the strains om IFO, such as A. aceti IFO 3283 and IFO 3284, and rancens IFO 3298, all of which are well known in actual negar fermentation (Fig. 2). When examined in the culture edium, allowing them to accumulate 3% acetic acid at stationary phase, A. methanolicus and the three strains A. rancens subsp. pasteurianus came to the first stationary hase after ethanol exhaustion at about 20 to 40 h of divation. The first stationary phase lasted subsequently more than 60 h. After 100 h of cultivation, the concenation of acetic acid in the medium rapidly decreased eiprocally to the increase in turbidity of culture medium, owing the second stationary phase of the growth caused 7a complete exhaustion of acetic acid accompanied with me pH shift, such as from pH 2.8 to 3.5 (data not shown). hey showed a typical biphasic growth. The course of acose consumption observed with A. rancens subsp. gleurianus SKU 1111 was plotted in Fig. 1. A peak of cose disappeared from the chart paper of HPLC when cked with the culture medium at the beginning of the and stationary phase. Glycerol dehydrogenase activity s not c' tected with the same culture medium (data not Nown). Glucose and glycerol in other cultures were also rduced to have been exhausted before the second growth me to the early stationary phase.

Contrary, as can be seen in Fig. 2, a single phase of owth was extensively observed with the strains from IFO thout significant acetate oxidation, even though the livation was prolonged for more than 170 h. Acetic acid cumulated in the culture medium was maintained at a

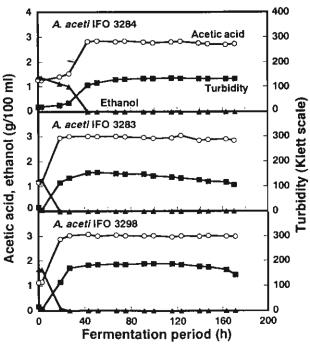


Fig. 2. Course of Mesophilic Strains of Acetobacter in Vinegar Fermentation.

The composition of the culture medium and culture conditions were essentially the same as the case in Fig. 1. A. aceti IFO 3284, A. aceti IFO 3283, and A. rancers IFO 3298 were used for the experiment as indicated. Closed triangles and open circles indicate ethanol remained and acetic acid accumulated, respectively. Closed squares indicate the bacterial growth.

constant level throughout the experiment. Glycerol is a better carbon source for the bacterial growth than glucose in genus Acetobacter, ⁸⁾ since the EMP pathway and the TCA cycle have a normal function in Acetobacter, ¹⁾ unlike the genus Gluconobacter in which the TCA cycle functions incompletely. Other available carbon sources that might come from yeast extract and Polypepton must have been consumed similarly. The second bacterial growth seems to take place by consuming acetic acid exclusively. The latest issue of Bergey's Manual of Systematic Bacteriology⁸⁾ indicates that all strains belonging to the genus Acetobacter use acetic acid as a carbon source. Acetyl-CoA synthetase and also isocitrate lyase, which are enzymes directly related

A. Saeki et al.

to acetate use, might be regulated by the balance of carbon sources available, as discussed later. Anyway, it is interesting to check what kinds of expressional regulation in acetate oxidation are valid in the genus Acetobacter.

Effects of initial ethanol concentration on acetate oxidation It is important to check the effects of initial ethanol concentration on acetate oxidation. Growth curves of A. rancens subsp. pasteurianus SKU 1111 and A. methanolicus were measured in the presence of different initial concentrations of ethanol as shown in Fig. 3. In the figure, the course of acetic acid fermentation is followed only by growth curves of individual organisms. However, it was confirmed that the initially added ethanol had already been converted to acetic acid by the end of the first exponential phase (20 to 40 h of incubation) as deduced from the data shown above. It is very interesting to see that the growth curves became biphasic when the initial ethanol concentration was limited below 3%. This means that acetate oxidation must take place if the amounts of acetic acid accumulated is controlled to be less than 3.7%, though the length of the first stationary phase depends on the initial ethanol concentration. Thus, beginning of the second growth was delayed more with 3% ethanol than with 1% or 2% of initial ethanol concentration. Growth curves observed with 4% and 5% of ethanol showed no second stationary phase, though A. rancens subsp. pasteurianus SKU 1111 is a typical acetate oxidizer (Fig. 3A). If vinegar mash allows to accumulate the final acetic acid concentration to more than 4.5%, any serious acetate oxidation would no longer occur, even if it is incubated with a potent acetate oxidizer. Similar results were also observed with A. methanolicus as shown in Fig. 3B. Similarly to the case of

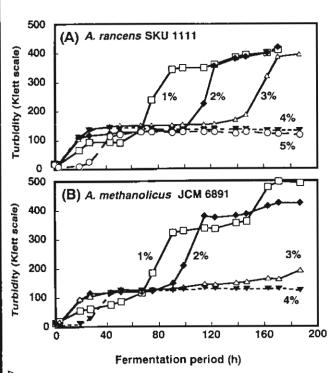
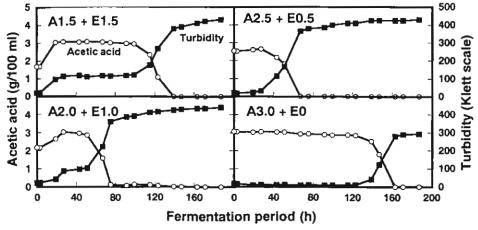
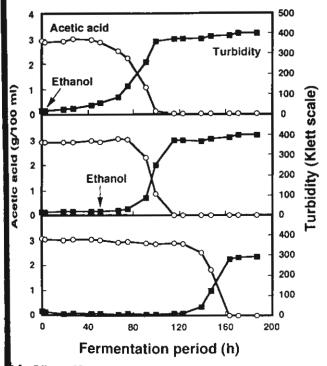


Fig. 3. Effects of Initial Ethanol Concentrations on Acetate Oxidation.


A. rancens SKU 1111 was incubated under various initial concentrations of ethanol indicated. Incubation was done in 1 liter medium in a jar fermentor at 30°C for the period indicated. A. methanolicus was incubated under the similar conditions as A. rancens SKU 1111.

A. rancens subsp. pasteurianus SKU 1111, A. methanolica showed acetate oxidation when incubated with 1% and 29 ethanol in the presence of initially added 1% acetic aci The growth curve observed with 3% initial ethanol concertration showed a single phase of growth, which means the final concentration of acetic acid came to nearly 4%, eve though the turbidity went up gradually after prolonge incubation, over 160 h. The growth curve obtained with 4' ethanol gave a single phase throughout the experimen Judging from the combined data, these results strong support the conclusion that the critical point for aceta oxidation exists between 3.7% and 4.5% of acetic ac accumulated. At the moment, it is unclear what kinds regulation occur in the presence of more than 4.5% acet acid. One speculation can be proposed, that the accumlated acetic acid in the culture medium can exist as tw forms, dissociated and undissociated. If the undissocia ed form of acetic acid increases, it can be out of the med ated transport system and diffuse through the bacteri membrane, causing inhibitory to bacterial respiration.

Effects of initial concentrations of acetic acid and ethanol acetate oxidation


A question arose whether acetate oxidation is controlled by the initial ethanol concentration. Different combination of acetic acid and ethanol allowing 3% for the final acet acid accumulation were added at the initial stage of grow of A. rancens subsp. pasteurianus SKU 1111. As can l seen from Fig. 4, the initial ethanol concentration gave significant effect to the length of the first lag phase. Who ethanol was added to 1.5% and acetic acid to 1.5%, the length of the first stationary phase lasted for nearly 100 and when the initial ethanol concentration gradual decreased to 1 to 0.5%, the length of the first stationar phase also became shorter. The first stationary phase almo disappeared when tested with the combination of 2.59 acetic acid and 0.5% ethanol. On the other hand, who 3% acetic acid was administrated as available carbon ar energy sources, exhaustion of acetic acid appeared after 120 h of incubation. These results indicate that a small amount of readily usable energy source, ethanol in th case, has an important role in the initiation of aceta oxidation. To check the role of ethanol in acetate oxidatio an additional experiment was done as shown in Fig. 5. T the medium containing acetic acid, ethanol was added 0.2% during the course of acetate use. It was shown clear that the addition of a small amount of energy sour increased acetate usage allowing the bacteria to grow of the medium. It can be suggested that ethanol plays a important role as oxidizable substrate generating energi that supported the initial part of microbial growth in stage where the TCA cycle and NADH dehydrogena system are not predominant.20-23)

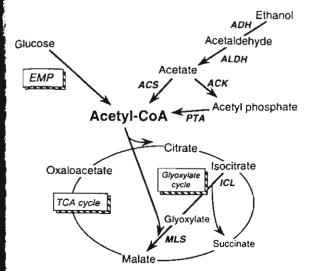
In all experiments so far described in this paper, bacteric growth was followed by reading the turbidity of the cultumedium as a reference to cell number. As has been reported by Takemura et al.,²⁴ it must be noted that the turbidity does not mean the total viable cells. Different from those used by Takemura et al.,²⁴ the acetic acid bacteria used this study were always exposed to acidic conditions, at least in the presence of 1% acetic acid. The viable cell coursexperiments during the culture showed a good accordance.

4. Effects of Initial Concentrations of Acetic Acid and Ethanol on Acetate Oxidation.

mincens SKU 1111 was incubated with various combinations of acetic acid and ethanol as indicated. A2.0 + E1.0 means that acetic acid and ethanol were initially added 20% and 1.0%, respectively. The fate of acetic acid (open circles) and changes in bacterial growth measured by the turbidity (closed squares) were followed for the rod as indicated. Incubation was done in a jar fermentor in 1 liter of the main culture medium in which the concentrations of acetic acid and ethanol varied as indicated.

 Effects of Readily Usable Energy Source as a Starter for Acetate Mation.

tancens SKU 1111 was incubated in a medium containing 3% acetic acid as on and energy sources. To the culture medium, 0.2% ethanol was added wealty as indicated. Incubation was done in a jar fermentor in 1 liter of the main are medium. In this figure, acetate concentrations (open circles) and bacterial the sturbidity (closed squares) are shown. Ethanol concentrations are not a. Top frame, ethanol was added when incubation was started. Middle frame, ol was added after 51 h incubation. Bottom frame, control (ethanol was not dithroughout the incubation).


the course of turbidity (data not shown). The majority the cells in the first stationary phase showed acid tolerand grew on a plate containing 3% of acetic acid, the he acid tolerance decreased very much with the cells in the second stationary phase. The physiological operties of acetic acid bacteria might have been much open yielding two different cell types in the two growth ses (M. Taniguchi et al., unpublished observations). In previous data, a change of the culture conditions, from the two shaking or vice versa, results in a change of the

cell type, which is related to the change in the terminal oxidase from cytochrome a_1 to cytochrome o in A. aceti. ²⁵⁾ The cell types from the two different stationary phases have to be differentiated to identify the cells.

Enzyme activities in acetate oxidation

Since many isolated strains showed acetate oxidation extensively, it was important to see what kind of enzyme activity is increased in acetate oxidation. In addition to acetyl-CoA formation via pyruvate dehydrogenase complex through catabolism of carbon sources, acetyl-CoA is formed by two different ways from acetate. One route is a direct acetylation of CoA catalyzed by acetyl-CoA synthetase as shown in Fig. 6. Acetyl-CoA formation by a coupling reaction of acetate kinase and phosphotransacetylase is an alternative route. Acetyl-CoA thus formed is then combined with oxaloacetate to form citric acid and incorporated spontaneously into the TCA cycle. Another route of acetyl-CoA assimilation is seen in malate formation by combining with glyoxylate from isocitrate by the action of isocitrate lyase.

The enzyme activities concerning acetate oxidation were assayed with the enzyme solutions prepared from "young cells" and "aged cells" of A. rancens subsp. pasteurianus SKU 1111 as shown in Table. The young cells were harvested from the main culture medium after 60h of incubation that corresponded to the early stage of the first stationary phase. On the other hand, the aged cells came from 180h of incubation corresponding to the second stationary phase. It was very interesting to see that there were no significant increases in enzyme activities of acetate kinase and phosphotransacetylase between the two types of cells, while the enzyme activities of acetyl-CoA synthetase and isocitrate lyase were significantly increased in the aged cells. Thus, acetic acid accumulated outside the cells might have been used directly as a substrate for acetyl-CoA synthetase followed by incorporation of resulted acetyl-CoA into the TCA cycle and glyoxylate cycle. Malate synthase also became clearly detectable in the cell-free extract from the aged cells, though the enzyme assay was rather qualitative in this study. As can be readily guessed from the growth curves in Fig. 2, no significant data

6. Metabolic Pathways of Oxidative Assimilation of Acetate into TCA Cycle and Glyoxylate Cycle via Acetyl-CoA.

enzymes concerning in acetate oxidation are abbreviated in the figure. ACK, tate kinase; PTA, phosphotransacetylase; ACS, acetyl-CoA synthetase; ICL, citrate lyase; MLS, malate synthase.

Me Enzyme Activities in Acetate Oxidation

Cell-free extracts were prepared from two different growth phases of rancens subsp. pasteurianus SKU 1111 grown on the main culture dium. The "young cells" were harvested after 60 h incubation of hich turbidity was 163 in Klett units. The growth phase of the cells responded to the early stationary phase in which ethanol in the culture dium was consumed completely. The "aged cells" were from 180 h of subation with 410 Klett units, which corresponded to the stage in which etic acid in the culture medium was almost all consumed.

Enzymes	Young cells (U/mg)	Aged cells (U/mg)
Acetate kinase	0.03	0.03
Phosphotransacetylase	0.02	0.03
Acetyl-CoA synthetase	nd	0.01
Isocitrate lyase	nd	0.01
Malate synthetase	nd	+
ADH	2.30	0.87
ALDH	1.45	0.86

nd, not detected.

Malate synthetase in the aged cells is expressed as +, because the ection was done stepwise as mentioned in Materials and Methods.

adicating acetate oxidation was obtained with A. aceti IFO 1284 (data not shown). Smith and Gonsalus²⁶⁾ suggested arlier that isocitrate lyase was induced in A. aceti when it as grown on acetate as the sole carbon source but not a glycerol. Many other examples indicate that, in the action of a grown on acetate, the enzyme levels of actyl-CoA synthetase and also isocitrate lyase are much acceased. 27 - 29)

Different from other bacteria that cannot oxidize ethanol acetic acid directly, several interesting points in acetate midation by acetic acid bacteria can be indicated. Enzyme tivities of ADH and ALDH were also compared between two different cells. Enzyme activities of ADH and ALDH from the young cells were much higher than those the aged cells (Table). It can be readily expected that thanol was already consumed from the culture medium then the aged cells were harvested and thus ADH and

ALDH would have no physiological roles in the cells any longer. Alternatively, the decrease in specific activity of ADH and ALDH in the aged cells would reflect the increase of ADH-deficient mutants in the prolonged cultures as reported by Takemura et al. 24) They found a novel insertion sequence, IS1380, causing genetic instability that produced spontaneous mutants at high frequency that were deficient in ethanol oxidation because of the loss of ADH activity. To check the possibility of occurrence of such as IS element, the total DNA was extracted with the acetic acid bacteria from Thailand and analyzed by hybridization with IS1380 DNA fragment to investigate the distribution of the insertion sequence. Among the 129 isolates, 36 isolates showed the hybridization signals with the IS1380 DNA probe both on the chromosomal and plasmid bands. However, no hybridization with IS 1380 was observed with the strains used in this study, A. rancens subsp. pasteurianus SKU 1102, SKU 1106, and SKU 1111 (G. Theeragool et al., unpublished observations). Recently, Matsushita et al.30) reported the formation of inactive ADH when G. suboxydans was grown in acidic and high-aeration conditions. It is interesting to see that a similar phenomenon can be observed in A. aceti.

From the observations in this study, another interesting question came up, whether the metabolic activities and physiological characteristics are identical between the young cells and the aged cells. It is also exciting to check why there is such a strict change in cellular characteristics, for examples, the young cells are ethanol tolerant as well as acetic acid tolerant while the aged cells are rather sensitive to ethanol and acetic acid (K. Matsushita et al., unpublished observations). This is strongly related to the facts that ethanol oxidizing cells are predominant in earlier growth phase and acetate assimilating cells are abundant in the second stationary phase. Since acetic acid bacteria are well known to be readily mutated during cultivation by extrachromosomal elements such as insertion sequences, 24) it really sounds like this might lead us to outstanding findings in microbial physiology by pursuing this interesting phenomenon.

The acetate oxidation by many strains of Acetobacter shows many exciting aspects in biochemistry of carbohydrate as well as in energy metabolism in aerobic bacteria, because ethanol is the primary substrate and acetic acid is the direct oxidation product by the organisms. Enzymes involved in the acetate oxidation are not strengthened while ethanol remains in the culture medium and the oxidative fermentation yielding acetic acid becomes predominant. However, once ethanol is gone from the culture medium, the enzymes related to acetate oxidation including the enzymes in the TCA cycle become predominant, and oxidize acetate to carbon dioxide and water, which brings the cells to the phase of acetate anabolism. Thus, it is obvious that ethanol is the key substrate for metabolic transduction from oxidative fermentation to respiration. What has been discussed about the results obtained in this study is completely different from the methanol oxidase system in methylotrophic bacteria,31) in which formaldehyde is directly fixed to either serine or hexulose-phosphate.

With respect to acetate oxidation, further screening to isolate a thermotolerant strain which shows no serious acetate oxidation like some mesophilic strains has to be It would be helpful to stabilize the coconut vinegar lation without any loss of acetate. On the other hand, get enzymes activated in acetate oxidation must be med to be acetyl-CoA synthetase and isocitrate lyase. Soint would require comparison by means of mRNA for the enzymes, when the organism is growing at the towth phase and in the second phase.

wiedgments. The authors wish to express their sincere thanks to Ameyama, Professor Emeritus, Yamaguchi University for his ous encouragement throughout this work. Technical contributions of by Hiromi Uda and Katesaphong Natasiri in a part of this work be remarked. The authors are indebted to Sueharu Horinouchi, itersity of Tokyo, for providing the insertion sequence, IS 1380, pasteuriunus NCI 1380. A part of this work was done in the which University-to-Kasetsart University Cooperative Joint Reprogram supported by a Grant-in-Aid for International Scientific in Program, Ministry of Education, Science, and Culture of No. 05045039) and by a grant for R&D Program from Yamaguchi all Government. A research grant from the Nakano Foundation G. T. to work together with us in Yamaguchi University from 14, 1995, to February 29, 1996. Technical reading of the manuflor Frebort is gratefully acknowledged.

rences

Asai, in "Acetic Acid Bacteria. Classification and Biochemical rivities," ed. by T. Asai, University Tokyo Press, Tokyo and Univ. rk Press, Baltimore, 1968, pp. 103–327.

Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. pchi, and S. Mitsuhashi, J. Mater. Sci., 25, 2997–3001 (1990); H. byosaki, T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. fshinaga, Biosci. Biotech. Biochem., 59, 1498–1502 (1995).

I.L. Pasteur, Rend. Sean. Acad. Sci., 54, 265-270 (1862).

Nakayama, J. Biochem., 49, 158-163 (1961).

Nakayama, *J. Biochem.*, **49**, 240–251 (1961).

Adachi, K. Tayama, E. Shinagawa, K. Matsushita, and M. meyama, Agric. Biol. Chem., 42, 2045-2056 (1978).

Adachi, E. Miyagawa, E. Shinagawa, K. Matsushita, and M. Meyama, Agric. Biol. Chem., 42, 2331-2340 (1978).

De Ley, M. Gillis, and J. Swings, in "Bergey's Manual of Systema-Bacteriology," Vol. 1, ed. by N. R. Krieg and J. G. Holt, Williams Wilkins, Baltimore London, 1984, pp. 268–278.

Yamaguchi and H. Masai, Agric. Biol. Chem., 39, 1907–1911 [975].

- M. Ameyama, E. Shinagawa, K. Matsushita, and O. Adachi, J. Bacteriol., 145, 814-823 (1981).
- 11) A. Saeki, J. Ferment. Bioeng., 75, 232-234 (1993).
- M. Ameyama, in "Methods in Enzymology," Vol. 89, ed. by W. A. Wood, Academic Press, Inc., New York, 1982, pp. 20-29.
- 13) M. Ameyama, E. Shinagawa, K. Matsushita, and O. Adachi, in "Methods in Carbohydrate Chemistry," Vol. 10, ed. by J. N. BeMiller, John Wiley & Sons, Inc., Chichester, 1994, pp. 53-57.
- 14) J. S. Nishimura and M. J. Griffith, in "Methods in Enzymology," Vol. 71, ed. by J. M. Lowenstein, Academic Press, Inc., New York, 1981, pp. 311-316.
- E. P. Frenkel and R. L. Kitchens, in "Methods in Enzymology," Vol. 71, ed. by J. M. Lowenstein, Academic Press, Inc., New York, 1981, pp. 317-324.
- H. R. Klotzsch, in "Methods in Enzymology," Vol. 13, ed. by J. M. Lowenstein, Academic Press, Inc., New York, 1969, pp. 381–386.
- T. Yoshida, Y. Tanaka, T. Hagishita, T. Mitsunaga, and Y. Izumi, FEMS Microbiol. Lett., 126, 221-226 (1995).
- P. D. J. Weitzman, in "Methods in Enzymology," Vol. 13, ed. by L. Grossman and K. Moldave, Academic Press, Inc., New York, 1969, pp. 365-368.
- 19) J. R. Dulley and P. A. Grieve, Anal. Biochem., 64, 136-141 (1975).
- K. Matsushita, Nippon Nõgeikagaku Kaishi (in Japanese), 66, 1653–1656 (1992).
- O. Adachi, Nippon Nögeikagaku Kaishi (in Japanese), 66, 1665–1669 (1992).
- K. Matsushita and O. Adachi, in "Applications and Principles of Quinoproteins," ed. by V. L. Davidson, Marcel Dekker, Inc., New York, 1993, pp. 355-364.
- K. Matsushita, H. Toyama, and O. Adachi, in "Advances in Microbial Physiology," Vol. 36, ed. by A. H. Rose and D. W. Tempest, Academic Press, Inc., London, 1994, pp. 247-301.
- H. Takemura, S. Horinouchi, and T. Beppu, J. Bacteriol., 173, 7070-7076 (1991).
- K. Matsushita, H. Ebisuya, M. Ameyama, and O. Adachi, J. Bacteriol., 174, 122-129 (1992).
- 26) R. A. Smith and I. C. Gunsalus, Nature, 175, 774-775 (1995).
- S. R. Maloy, M. Bohlander, and W. D. Nunn, J. Bacteriol., 143, 720–725 (1980).
- S. Kumari, R. Tishel, M. Eisenbach, and A. J. Wolfe, J. Bacteriol., 177, 2878-2886 (1995).
- 29) F. Ampe and N. D. Lindley, J. Bacteriol., 177, 5826-5833 (1995).
- K. Matsushita, T. Yakushi, Y. Takaki, H. Toyama, and O. Adachi, J. Bacteriol., 177, 6552-6559 (1995).
- C. Anthony, in "The Biochemistry of Methylotrophs," ed. by C. Anthony, Academic Press, Inc., London, 1982, pp. 60-136.

JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY (NIPPON NŌGEIKAGAKU KAI)

(Formerly THE AGRICULTURAL CHEMICAL SOCIETY OF JAPAN)

JAPAN ACADEMIC SOCIETIES CENTER BLDG., 2-4-16, YAYOI, BUNKYO-KU, TOKYO 113, JAPAN

Date: January 11, 1999

Manuscript No. 9-009

Dr. Gunjana THEERAGOOL
Department of Microbiology
Faculty of Science
Kasetsart University
50 Phaholyothin
Jatujak
Bangkok 10900
Thailand

Dear Dr. Theeragool:

The Editor of <u>Bioscience</u>, <u>Biotechnology</u>, <u>and Biochemistry</u> acknowledges receipt of the following manuscript:

"Plasmid Profiles and Distribution of Insertion Sequence, IS $\underline{1380}$ in Thermotolerant Acetic Acid Bacteria Isolated in Thailand"

(Regular Paper/Preliminary Communication/Note/Review)

Information concerning the publication of this article will be sent to you as soon as possible.

Thank you.

Sincerely yours,

Editorial Secretary

Running title: Plasmid profile and insertion sequence in acetic acid bacteria

Plasmid profiles and distribution of insertion sequence, IS1380 in thermotolerant acetic acid bacteria isolated in Thailand

Gunjana THEERAGOOL*, Watchara JAIWISUTHUNSA*, Napha LOTONG, Hirohide TOYAMA**, Kazunobu MATSUSHITA**and Osao ADACHI**

Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand, *Department of Biology, Faculty of Science, Mahasarakarm University, Mahasarakarm, Thailand and **Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan

* All communications concerning this manuscript should be addressed to:

Gunjana Theeragool

Department of Microbiology,

Faculty of Science,

Kasetsart University,

50 Phaholyothin, Jatujak, Bangkok 10900, Thailand

Tel: +66-2-5792351, Fax: +66-2-5792081, E-mail: fscignt@ku.ac.th

Abbreviation	าต

IS1380, insertion sequence 1380; CTAB, cetyltrimethyl ammonium bromide; IFO, Institute for Fermentation, Osaka; SKU, Faculty of Science, Kasetsart University;

A part of this work was presented at the 8th European Congress on Biotechnology, Budapest, Hungary, 17-21 August 1997.

Key words:

thermotolerant acetic acid bacteria;

ethanol oxidation;

plasmid profile;

curant;

insertion sequence

In this study, 129 isolates of acetic acid bacteria from various fruits in Thailand and 14 IFO strains from Japan were characterized for some important physiological and genetic properties. Thermotolerant strains were selected from the isolates grown in potato medium at 40°C with vigorous shaking and 51 of 129 isolates were classified as thermotolerant strains. The toleration to ethanol and acetic acid was analyzed in the medium containing either 8% ethanol or 3% acetic acid at 30 and 37°C. Only 14 isolates from Thailand could grow in the medium containing 8% ethanol at 37°C whereas none of IFO strains could grow under the same condition. Analysis of plasmid profiles showed that most of the new isolates harbor many small plasmids inside the cells ranging from 1 to >10 plasmids. Distribution of insertion sequence, IS1380, inserted into subunit II of quinoprotein alcohol dehydrogenase was analyzed from Southern hybridization of the total DNA with peroxidase-labeling DNA fragment containing IS1380. The results showed that among 129 isolates and 14 IFO strains, 19 isolates and 5 IFO strains, respectively, showed strong hybridization signals with the IS1380 DNA probe both on the chromosomal and plasmid bands. Plasmid curing of the selected isolate, identified as Acetobacter pasteurianus SKU108, was done and the obtained three curants show similar growth characteristic to the parent strain except slightly low productivity of acetic acid.

Acetic acid bacteria are classified into 4 genera, Acetobacter, Acidomonas, Frateuria and Gluconobacter, according to their slight differences in some physiological characteristics. (1,2) Acetobacter is extensively used as a strong acetic acid producer for vinegar fermentation for a long time due to its ability to oxidize ethanol to acetaldehyde and further oxidize acetaldehyde to acetic acid.^{3,4)} Industrial acetic acid production by a continuous submerged culture of Acetobacter requires precise control of fermentation temperature and a slight increase in the temperature causes a remarkable decrease in fermentation rate and yield of acetic acid. To minimize the cost of cooling system for maintenance the optimum temperature (normally 30°C) as well as to maximize the yield of acetic acid production, the thermotolerant strains with high resistances to ethanol and acetic acid are of interest.5-7) Another serious problem frequently occurred in vinegar fermentation is an acetate oxidation converting acetate to CO₂ and H₂O.8) However, very little is known about the physiological and genetic background of thermotolerance and resistance to both ethanol and acetic acid.

Loss of acetic acid resistance and ethanol oxidizing ability were found in *Acetobacter*.^{9,10)} Later, it was reported that the ethanol oxidizing ability in *A. pasteurianus* was lost due to the insertion of insertion sequence, IS1380, into the cytochrome c subunit of quinoprotein alcohol dehydrogenase.¹¹⁾ Moreover, this insertion sequence was detected at high copy numbers in several strains of acetic acid bacteria. It was suggested that this sequence may be associated with genetic instability in some strains. A family of IS1031 elements including IS1032 was

reported to be involved in inactivation of cellulose and exopolysaccharide production in A. xylinum. 12-14) Recently, two new insertion sequences designated as IS1452 and IS12528 from A. pasteurianus and G. suboxydans were found to be associated with inactivation of the quinoprotein alcohol dehydrogenase by insertion in the adhS and adhA encoding subunit III and subunit I, respectively. 15,16)

Many attempts have been done to clarify the genetic systems of acetic acid bacteria. Distribution of plasmids was studied in several strains isolated in Japan¹⁷⁾ and German¹⁸⁾ and several cloning vectors have been constructed.¹⁹⁻²⁴⁾ Gene transfer techniques such as conjugation,^{25,26)} transformation²⁷⁾ and electroporation²⁸⁾ have been developed. In order to study the role of plasmid found in bacteria, several plasmid curing experiments using elevated growth temperature and certain chemicals have been reported.²⁹⁾ Addition of sodium dodecyl sulfate (SDS) into the culture medium of *Staphylococcus aureus* caused a loss of plasmid carrying penicillinase activity.³⁰⁾ Glucose oxidation system in *G. oxydans* ATCC9337 was inactivated due to the loss of plasmid by mitomycin C.³¹⁾ Moreover, novobiocin and acridine orange were used successfully for plasmid curing in *Lactobacillus pantarum*,³²⁾ and *Bacillus cereus* BIS59.³³⁾

In an attempt to study growth characteristic and clarify the genetic variation including a role of plasmids found in thermotolerant acetic acid bacteria, growth at various conditions, plasmid profile, distribution of insertion sequence, IS1380 and plasmid curing of the selected isolate were investigated.

The obtained curants were characterized for their growth characteristic and cell morphology compared to a parent strain.

Materials and Methods

Chemicals, buffers, and enzymes. All chemicals used in this study were analytical grade obtained from the commercial sources. A Southern hybridization kit was ECL direct nucleic acid labeling and detection systems of Amersham Life Science. An N⁺ nylon membrane was also a product of Amersham Life Science. Restriction enzymes were obtained from Takara Shuzo Co., Ltd. SDS and acridine orange were obtained from Wako Pure Chemical Industries, Ltd.

Media and bacterial strains. Several kinds of the media were used in this study according to the purposes of each experiments. Potato medium (1% yeast extract, 1% polypeptone, 2% glycerol, 0.5% glucose and 15 ml of potato extract) was used for general cultivation and stock cultures. Seed culture medium (0.5% yeast extract, 0.5% polypeptone, 0.5% glycerol, 0.5% glucose and 1.5% agar for agar plate) was used for studying on toleration to acetic acid and ethanol. YPA medium (0.2% polypeptone, 0.3% yeast extract, 1% acetic acid and 0.5% ethanol) was used for studying overoxidation of acetic acid.

Acetic acid bacteria used in this study were isolated from various fruits in Thailand and obtained from the Institute for Fermentation, Osaka (IFO). The cultures were maintained both on potato agar slant and in 50% glycerol.

Growth of acetic acid bacteria. A preliminary characterization of 129 isolates from Thailand and 14 strains from IFO were done as the following items: (i) colony type and ability for acetate oxidation, (ii) growth at 40°C, (iii) growth in medium containing 3% acetic acid, and (iv) growth and halo formation in medium containing 8% ethanol. Growth at 40°C was observed in potato medium incubated at 40°C with vigorous shaking for 3 days. Overoxidation of acetic acid by the isolated strains were observed both from blue colonies grown on seed culture medium containing 1% ethanol and 0.003% bromcresol purple and the growth in the YPA medium. Toleration to acetic acid and ethanol were done in seed culture agar containing either 3 % acetic acid or 8% ethanol, respectively. The cultures were incubated at 30 and 37°C, for 3 days in the case of acetic acid toleration and 1 day for ethanol toleration. In addition, CaCO₃ was added into the medium containing 8% ethanol for detection of ethanol oxidizing ability to acetic acid yielding halo around colony.

Isolation of plasmid DNA. Plasmid DNA was isolated from the cells grown in potato medium at 30°C for 24 hr by the method of Birmborn³⁴⁾ with some modifications. The cell suspension was treated with lysozyme prior to alkaline hydrolysis and finally the nucleic acid precipitate was treated with RNaseA followed by precipitation with polyethylene glycol 6000 and ethanol, respectively. CTAB (cetyltrimethyl ammonium bromide) was added to the sample containing polysaccharides before phenol extraction. The plasmid DNA

solutions were analyzed in 0.9% agarose gel electrophoresis. The gel was stained in 500 ml of 1xTAE buffer containing a few drops of ethidium bromide for 10 min and destained in water for a few minutes. The DNA bands were detected under UV light at the wavelength of 256 nm. The photographs were taken from a polaroid camera. After photography, the gel was destained again in water to remove ethidium bromide as much as possible before performing the Southern transfer.

Detection of insertion sequence, IS1380. The total DNA was transfered from agarose gel to a nylon membrane N+via Southern transfer in 20xSSC and hybridized with peroxidase labeling IS1380 DNA probe. A structure of 1.1 kb DNA fragment carrying IS1380 was shown in Fig. 1. The hybridization reaction was carried out at 42°C overnight by gentle shaking in hybridization buffer containing 0.5 N NaCl and 5% blocking reagent. After hybridization, the nylon membrane was washed in primary wash buffer (0.1xSSC and 1%SDS) at 55°C for 2x10 min. Discard the primary wash buffer and place the membrane in a fresh container and wash with secondary wash buffer at room temperature for 2x5 min. The membrane was dried and the signal was detected by covering with detection buffer and autoradiographed with an X-ray film.

< Fig. 1

Plasmid curing and characterization of curants. A plasmid curing was carried out in A. pasteurianus SKU108 harboring at least 5 plasmids of 2.3, 3.7,

6.9, 12.5 and 14.3 kb (unpublished data). This isolate was selected for further study due to its high productivity of acetic acid at high temperature.⁷⁾ A preliminary experiment for determination of the suitable concentration of SDS, the bacterial cell was grown in potato medium containing 0.5-8.0 mg/ml of SDS. Twenty µl of overnight culture was inoculated into 2.0 ml of potato medium. The culture was incubated at 30°C with vigorous shaking for 24 hr followed by spreading 0.1 ml of culture broth onto potato agar plate containing 0.5% CaCO₃ and 4% ethanol. Plasmid DNA was extracted from selected colonies grown in various concentrations of SDS. The plasmid patterns obtained from those colonies indicated that 2.5 mg/ml SDS caused a loss in some plasmids. One of the colonies lacking some plasmids was further cultivated in the same medium containing 2.5 mg/ml SDS for 10 passages by transfering bacterial culture to new medium everyday for 10 days. Several curants with few plasmids were obtained and one of those curants was further cultivated in potato medium containing 10 µg/ml of acridine orange for another 10 passages similar to SDS treatment. Finally, three curants causing a complete loss of plasmid were obtained. All of them were examined for the following items: (i) growth on potato agar containing 4% ethanol at 30°C, (ii) growth on potato agar at 40°C, (iii) growth on seed culture agar containing 8% ethanol at 37°C, (iv) growth on seed culture agar containing 3% acetic acid at 30°C, (v) electron microscopic appearance, and (vi) time course of acetic acid production at 30, 37, and 40°C.

Results

Characteristics of newly isolated acetic acid bacteria

From various kinds of fruits in Thailand, 129 isolates of acetic acid bacteria were obtained. Preliminary study of those strains and the IFO strains were done as illustrated in the Materials and Methods. A list of the newly isolated strains and their characteristics were shown in Table 1. Most of the new isolates (100 from 129) grew as smooth colony and acetate oxidation which caused a loss of acetic acid in the medium were observed in many isolates. Usually, smooth colony is a typical colony type of acetic acid bacteria whereas rough colony indicates ability of polysaccharide or cellulose production. Almost all of the rough colonies could not grow in the medium containing 3% acetic acid both at 30 or 37°C indicating low ability in acetic acid resistance which is a characteristic of cellulose producing strain (A. xylinum). A clear difference of thermotolerant growth was observed in the medium containing 8% ethanol and 0.5% CaCO₃ since many isolates from Thailand could grow and produce halo (ability of ethanol oxidation to acetic acid) at which none of IFO strains could grow under these conditions. Fifty-one of 129 isolates and 8 of 14 IFO strains could grow at 40°C. However, only 2 isolates identified as A. pasteurianus SKU108 and SKU112 could grow at 40°C and showed normal accumulation of acetic acid in the medium. Moreover, about 50% of the new isolates could grow in the medium containing 3% acetic acid, at which only three IFO strains, A.

rancens IFO3298, A. aceti IFO3299 and G. sphaericus IFO12467 showed a growth under these conditions.

< Table 1

Plasmid profiles and distribution of IS1380 sequence

Plasmid profiles of all isolates were investigated from plasmid DNA analyzed in 0.9% agarose gel electrophoresis. The plasmid profiles of all isolates and the distribution of IS1380 were shown in Fig. 2. The results showed that 110 of 129 new isolates and 11 of 14 IFO strains contained multiple species of small plasmids varying from 1 to more than 10 plasmids inside the cells. The size was varied from less than 1 kb to more than 40 kb (unpublished data). Distribution of IS1380 investigated by Southern hybridization of total DNA with IS1380 showed that 19 new isolates and 5 IFO strains possessed the strong positive hybridization bands both on chromosome and plasmids as summarized in Table 2. Most of the clear hybridization signal was observed at the chromosome. The results implicated that IS1380 is distributed with relative high frequencies among the acetic acid bacteria both isolated from Thailand and Japan. However, no hybridization signal with IS1380 was observed with A. pasteurianus SKU108 and other thermotolerant isolates suitable for vinegar fermentation at high temperatures.

> < Fig. 2 < Table 2

Plasmid curing and growth characteristic of curants

A preliminary experiment on plasmid curing by addition of SDS in the culture medium indicated that the suitable concentration of SDS for plasmid curing in A. pasteurianus SKU108 was 2.5 mg/ml. However, the curants harboring no plasmid could not be isolated from SDS treatment for 10 passages. The colonies lacking some plasmids were obtained and one of them was further cultured in the potato medium containing 10 µg/ml of acridine orange for another 10 passages. At this time 3 curants designated as no. 85, 86 and 87 harboring none of those 5 plasmids were obtained (Fig. 3). All of these curants showed similar growth characteristic to the parent strain under the following conditions: (i) growth on potato agar containing 4% ethanol at 30°C (Fig. 4A), (ii) thermotolerant growth on potato agar at 40°C (Fig. 4B), (iii) growth on seed culture agar containing 8% ethanol at 37°C (Fig. 4C) and (iv) growth on seed culture agar containing 3% acetic acid at 30°C (Fig. 4D). Electron microscopic appearance of the parent strain and curants shown in Fig. 5 indicated no significant difference in cell shape and size. Both curants and parent strain appeared as coccobacilli or short rod with no flagella. However, time course of acetic acid production at 30, 37 and 40°C shown in Fig. 6 implicated a slightly low productivity of acetic acid by curant no. 86. At 30 and 37°C, a maximum level of acetic acid was obtained at 2 days incubation while at 40°C, 3 days cultivation was required for maximum acetic acid production. However, after 4 days of incubation at 40°C, the level of acetic acid accumulated in the culture

medium was decreased due to the evaporation of acid at high temperature which can be easily noticed by the acidic smell inside an incubator.

(Fig.4

Discussion

Fig.6

Thermotolerant acetic acid bacteria play an important role in vinegar fermentation because of its ability to grow and produce acetic acid at high temperature at which production by mesophilic strains will be dramatically decreased. 6.7) The results of the preliminary study of thermotolerant strains isolated from Thailand compared to the mesophilic strains from IFO listed in Table 1, indicated the difference in growth characteristic. It was clear that thermotolerant growth in the presence of high acetic acid and ethanol concentration was the outstanding characteristic of the strains isolated from Thailand. The upper limit of the initial acetic acid concentration was found at 3%(unpublished data) and at least 35 new isolates could grow under these conditions both at 30 and 37°C. In most case, acetic acid was added to 1% to the culture medium for vinegar fermentation so the strain with high toleration to acetic acid will be favorable choice for industrial vinegar fermentation. Investigation for toleration to initial ethanol concentration was also one of important criteria for selection of industrial vinegar producing strains. Observation of colony morphology indicated that several isolates grown as irregular type or rough colonies showed high potential of polysaccharide or

cellulose biosynthesis. However, almost all of these isolates possessed low toleration to acetic acid similar to A. xylinum.

In addition to different growth characteristic of the new isolates compared to IFO strains, analysis of plasmid profiles and distribution of insertion sequence, IS1380 in those strains also indicated a variation in genetic background of the tested strains (Fig. 2). Most of multiple species of plasmids found in those isolates appeared as clear bands in agarose gel electrophoresis, which might implicate that those plasmids are multicopies plasmids. These plasmids may be involved in the genetic instability in acetic acid bacteria according from their incorrect partitioning and conjugative transfer as has been previously reported in A. xylinum. 26) However, several small plasmids appeared as clear bands and possessed high stability such as a 2.3 kb plasmid found in A. pasteurianus SKU108, may be most suitable for further construction and usage as a cloning vector in acetic acid bacteria. In addition to the instability of plasmids, distribution of insertion sequence, IS1380, in the tested strains was believed to be one of the factors causing genetic instability in acetic acid bacteria. As it has been previously reported that insertion of IS1380 into cytochromeC subunit (subunit II) of quinoprotein alcohol dehydrogenase was involved in the loss of ethanol oxidizing ability. 11) The results from this study also indicated that IS 1380 was clearly detected in at least 19 new isolates and 5 IFO strains. It was clearly showed that all of the strains from IFO harboring IS1380 could not grow on a medium containing 8% ethanol at which some of the new isolates harboring

IS1380 could grow under the same condition. On the other hand, the new isolates carrying IS1380 could not grow in the medium containing 3% acetic acid at which some IFO strains could grow (Table 2). The difference in growth characteristic of the strains carrying IS1380 might due to the different insertion sites into the chromosome or plasmids. Moreover, the occurrence of several insertion sequences previously reported in A. xylinum, ¹²⁻¹⁴ G. suboxydans, ¹⁶ and A. pasteurianus¹⁵ might implicate a possibility of a new insertion sequence carrying IS1380 homologous in certain new isolates showing different growth characteristic.

It appears that at least five plasmids found in *A. pasteurianus* SKU108 were not directly involved in growth characteristic under the studied conditions. This conclusion was derived from the results obtained from a plasmid curing experiment using SDS and acridine orange as curing agents. The obtained curants from *A. pasteurianus* showing the same growth and acetic acid production characteristics are of interested strains for quinoprotein alcohol dehydrogenase gene cloning to increase productivity of acetic acid fermentation at high temperature. However, one curant (no. 86) showed a slightly low acetic acid production at 30, 37 and 40°C. This might be an evidence of some unknown effects of SDS and/or acridine orange not only on plasmids DNA but also on chromosomal DNA. Another possibility may be an induced mutation occurred in this isolate caused by chemical mutagens used for plasmid curing.²⁹⁾ Further

studies are required for elucidating the differences in genetic background of the three curants.

Acknowledgments

This work was financial supported by a grant-in-aid for Outstanding Research Scholarship from Thailand Research Fund (TRF) and Kasetsart University Research Development Insitute (KURDI). A part of this work was done in the Yamaguchi University-Kasetsart University cooperative joint research program supported by a grant-in-aid for International Scientific Research Program from the Ministry of Education, Science and Culture, Japan (No. 05045039). The authors are indebted to Sueharu Horinouchi, University of Tokyo, for providing the insertion sequence, *IS1380*, from *A. pasteurianus* NCI1380.

References

- Deley, J., Swings, J., and Gossle, F., Key to the genera of the family
 Acetobacteraceae. In "Bergey's Manual of Systematic Bacteriology", ed.
 Krieg, N. R., and Holt, J. G. Vol. 1, The Williams & Wilking Co.,
 Baltimore. pp. 267-278 (1984).
- 2) Holt, G. J., Krieg, N. R., Sneath, P. H. A., Staley J. T., and Williams, T. S., In "Bergey's Manual of Systematic Bacteriology", ninth edition. The Williams & Wilking Co., Baltimore. pp. (1994).

- Ameyama, M. and Adachi, O., Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. In "Methods in Enzymology"., ed. Wood, W. A., Vol. 89, Academic Press Inc., New York, pp. 450-457 (1982).
- 4) Ameyama, M. and Adachi, O., Aldehyde dehydrogenase from acetic acid bacteria, membrane-bound. In "Methods in Enzymology"., ed. Wood, W. A., Vol. 89, Academic Press Inc., New York, pp. 491-497 (1982).
- 5) Ohmori, S., Masai, H., Arima, K., and Beppu, T., Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. *Agri. Biol. Chem.*, 44, 2901-2906 (1980).
- 6) Lotong, N., Malapan, W., Boongorsrang, A., and Yongmanitchai, W., Production of vinegar by *Acetobacter* cells fixed on a rotating disc reactor. *Appl. Microbiol. Biotech.*, 32, 27-31 (1989).
- 7) Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lotong N., and Adachi, O., Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at high temperatures. *Biosci. Biotech. Biochem.*, 61, 138-145 (1997).
- 8) Saeki, A., Taniguchi, M., Matsushita, K., Toyama, H., Theeragool, G., Lotong N., and Adachi, O., Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. *Biosci. Biotech. Biochem.*, 61, 317-323 (1997).

- Okumura, H., Uozumi, T., and Beppu, T., Biochemical characteristics of spontaneous mutants of *Acetobacter aceti* deficient in ethanol oxidation.
 Agric. Biol. Chem., 49, 2485-2487 (1985).
- 10) Ohmori, S., Uozumi, T., and Beppu, T., Loss of acetic acid resistance and ethanol oxidizing ability in an Acetobacter strains. Agric. Biol. Chem., 46, 381-389 (1982).
- 11) Takemura, H., Horinouchi, S., and Beppu, T., Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol oxidizing ability. J. Bacteriol., 173, 7070-7076 (1991).
- 12) Coucheron, D. H., An *Acetobacter xylinum* insertion sequence element associated with inactivation of cellulose production. *J. Bacteriol.*, **173**, 5723-5731 (1991).
- 13) Coucheron, D. H., A family of IS1031 elements in the genome of Acetobacter xylinum: nucleotide sequences and strain distribution. Mol. Microbiol., 9, 211-218 (1993).
- 14) Iversen, T.-G., Standal, R., Pedersen T., and Coucheron, D. H., IS1032 from Acetobacter xylinum, a new mobile insertion sequence. Plasmid, 32, 46-54 (1994).
- 15) Kondo, K. and Horinouchi, S., A new insertion sequence IS *1452* from *Acetobacter pasteurianus. Microbiol.*, **143**, 539-546 (1997).

- 16) Kondo, K. and Horinouchi, S., Characterization of an Insertion Sequence IS12528 from Gluconobacter suboxydans. Appl. Environ. Microbiol., 63, 1139-1142 (1997).
- 17) Fukaya, M., Iwata, T., Entani, E., Masai, H., Uozumi T., and Beppu, T., Distribution and characterization of plasmids in acetic acid bacteria. Agri. Biol. Chem., 49, 1349-1355 (1985).
- 18) Marictte, I., Schwarz, E., Vogel R. F., and Hammes, W. P., Characterization by plasmid profile analysis of acetic acid bacteria from wine, spirit and cider acetators for industrial vinegar production. *J. Appl. Bacteriol.*, 71, 134-138 (1991).
- 19) Chang, A. C. Y. and Cohen, S. N., Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol., 134, 1141-1156 (1978).
- 20) Okumura, H., Uozumi, T., and Beppu, T., Construction of plasmid vectors and a genetic transformation system for Acetobacter aceti. Agric. Biol. Chem., 49, 1011-1017 (1985).
- 21) Fukaya, M., Okumura, H., Masai, H., Uozumi T., and Beppu, T.,
 Construction of new shuttle vectors for Acetobacter. Agric. Biol. Chem.,
 49, 2083-2090 (1985).
- 22) Grones, J., Kralova A., and Turna, J., Characterization of the replicon from plasmid pAC1 for Acetobacter pasteurianus. Biochem. Biophys. Res. Commun., 191, 26-31 (1993).

- 23) Grons, J., Skerenova M., and Turna, J., Preparation of recombinant plasmids with kanamycin resistance in plasmid pAC1 from Acetobacter pasteurianus. Biologia., 46, 673-678 (1991).
- 24) Okumura, H., Tagami, H., Fukaya, M., Masai, H., Kawamura, Y., Horinouchi S., and Beppu, T., Cloning of the β-Isopropylmalate dehydrogenase gene from *Acetobacter aceti* and its used for construction of a new host-vector system for *Acetobacter Agric. Biol. Chem.*, 52, 3125-3129 (1988).
- 25) Inoue, T., Fukuda M., and Yano, K., Efficient introduction of vector plasmids into acetic acid bacteria. *J. Ferment. Technol.*, **63**, 1-4 (1985).
- 26) Vall, S., Coucheron, D. H., and Kjosbakken, J., Conjugative transfer of the naturally occurring plasmids of *Acetobacter xylinum* by IncP-Plasmid-Mediated Mobilization. *J. Bacteriol.*, 165, 336-339 (1986).
- 27) Fukaya, M., Tayama, K., Okumura, H., Masai, H., Uozumi T., and Beppu, T., Improved transformation method for *Acetobacter* with plasmid DNA. *Agric. Biol. Chem.*, 49, 2091-2097 (1985).
- 28) Hall, P. E., Anderson, S. M., Johnston D. M., and Cannon, R. E., Transformation of *Acetobacter xylinum* with plasmid DNA by electroporation. *Plasmid.*, **28**, 194-200 (1992).
- 29) Trevors, J. T., Plasmid curing in bacteria. FEMS Microbiol. Rev., 32, 149-157 (1986).

- 30) Stephen, A. S. and Baldwin, J. N., Loss of the penicillinase plasmid after treatment of *Staphylococcus aureus* with sodium dodecyl sulfate. *J. Bacteriol.*, 109, 262-265 (1972).
- 31) Qazi, G. N., Vemaa, V., Parshad R., and Chopra, C. L., Plasmid-mediated direct-glucose oxidation in *Gluconobacter oxydans*. *J. Biotechnol.*, **10**, 85-88 (1989).
- 32) Ruiz-Barba, J. L., Piard J. C., and Jimenez-Diaz, R., Plasmid profiles and curing of plasmids in *Lactobacillus plantarum* strains isolated from green olive fermentation. *J. Appl. Bacteriol.*, **71**, 417-421 (1991).
- 33) Kamat, A. S. and Nair, C. K. K., Evidence for plasmid-mediated toxin production in *Bacillus cereus* BIS59. World J. Microbiol. Biotech., 8, 210-211 (1992).
- 34) Birnboim, H. C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res.*, 7, 1513-1523 (1979).

Table 1. Growth characteristic of acetic acid bacteria isolated in Thailand and IFO strains.

Code	Sources	Colony/	Growth at 40°C	Growth in 3% acetic acid			
		Over-		30°C 37°C		30°C 37°C	
		oxidation	(72 hr)	(72 hr)	(72 hr)	(24 hr)	(24 hr)
SKU1	banana	Sm/+	-	+	+	-/-	-/-
SKU2	banana	Ro/-	++	-	-	+/-	+/-
SKU3	banana	Sm/-	-	+	+	-/-	-/-
SKU4	banana	Ro/-	++	_	-	+/+	-/-
SKU5	banana	Ro/-	++	-	-	+/+	-/-
SKU6	banana	Ro/-	++	-	_	+/+	-/-
SKU7	banana	Sm/-	-	++	++	++/++	-/-
SKU8	banana	Sm/-	+	++	++	++/+	++/++
SKU9	banana	Sm/-	-	++	++	++/++	-/-
SKU10	banana	Ro/-	++	-	_	-/-	-/-
SKU11	banana	Ro/-	_	-	_	+/++	-/-
SKU12	banana	Ro/-	++	-	_	+/++	-/-
SKU13	banana	Sm/+	-	_		+/++	-/-
SKU14	banana	Ro/+	++	+	+	++/++	, -/-
SKU15	guava	Sm/+	-	++	++	++/++	-/-
SKU16	guava	Sm/+		++	++	++/++	-/-
SKU17	guava	Sm/+	_	++	++	+/++	-/-
SKU18	guava	Sm/+	_	+	+	++/++	-/-
SKU19	guava	Sm/+		+	+	++/++	, -/-
SKU20	guava	Sm/+		+	· +	++/++	-/-
SKU21	guava	Sm/+		+	+	++/++	+/+
SKU22	guava	Sm/+	-	+	+	++/++	-/-
SKU23	guava	Ro/+	++	+	+	+/+	+/+
SKU24	guava	Ro/+		-	-	++/++	-/-
SKU25	guava	Sm/+	-	++	++	-/-	-/-
SKU26	guava	Ro/+	++	-	-	-/-	-/-
SKU27	guava	Sm/-	-	_	_	 ++/++	+/+
SKU28	guava	Sm/-	-	_	-	++/++	+/+
SKU29	guava	Sm/-		-	_	-/-	-/-
SKU30	guava	Ro/-	+	+	+	++/+	-/- -/-
SKU31	-	Sm/+		-	-	-/-	-/-
SKU31	guava	Sm/+	++	-	-	-/- -/-	-/- -/-
SKU33	guava	Sm/-	+		+	++/++	++/++
SKU34	guava	Ro/+	++	+	-	+/++	+/+
	guava			-	•		
SKU35 SKU36	rambeh rambeh	Ro/+ Sm/-	++	Т	-	-/- ++/++	-/- -/-
SKU37	rambeh	Sm/-	+	+	+	++/++	-/- -/-
SKU37	rambeh			+	+	+++++++++++++++++++++++++++++++++++++++	-/- +/-
		Sm/+	++	+	+	+/+ -/-	+/- -/-
SKU39	rambeh	Sm/+	++	-	-	-/- -/-	-/- -/-
SKU40	rambeh	Sm/-	+	+	+	-/- +/+	
SKU41	rambeh	Sm/+	•	-	-		+/-
SKU42	pineapple	Sm/+	-	+	+	++/++	+/+
SKU43	pineapple	Sm/-		++	++	++/++	+/++
SKU44	pineapple	Ro/+	+	-	-	-/-	-/-
SKU45	pineapple	Sm/-	-	++	++	+/+	+/++
SKU46	pineapple	Sm/-	-	++	++	-/-	-/-
SKU47	pineapple	Ro/-	-	-		+/++	+/+
SKU48	pineapple	Ro/+	++	-	-	+/+	-/-
SKU49	pineapple	Ro/-	++	-	-	+/+	+/-
SKU50	pineapple	Sm/+	+	-	-	++/++	++/++

Notes: Sm, smooth colony; Ro, rough colony.

Table 1. (continued)

Code	Sources	Colony/	Growth at 40°C (72 hr)	Growth in 3% acetic acid			
		Over-		30°C 37°C		30°C 37°C	
		oxidation		72hr	72hr	24hr	24hr
SKU51	pineapple	Ro/+	++		-	++/++	++/++
SKU52	pineapple	Sm/+	+	+	+	+/++	+/++
SKU53	pineapple	Ro/+	++	-	-	++/++	++/++
SKU54	pineapple	Sm/-	+	-	-	++/++	+/++
SKU55	pineapple	Sm/+	++	_	_	++/++	+/++
SKU56	pineapple	Sm/+	++	-	_	++/++	+/++
SKU57	pineapple	Sm/-	-	-	-	++/+	+/+
SKU58	orange	Sm/+	_	++	++	++/++	+/+
SKU59	orange	Sm/+	_	++	++	-/-	-/-
SKU60	rambeh	Sm/+	_	++	++	-/-	+/-
SKU61	banana	Sm/+	_	++	++	-/-	-/-
SKU62	banana	Sm/+	_	_	•	-/-	-/-
SKU63	banana	Sm/+	-	++	++	++/++	-/-
SKU64	banana	Sm/+	-	-	-	-/-	-/-
SKU65	banana	Sm/+	_	_	_	-/-	-/-
SKU66	banana	Sm/+	-	_	-	-/-	-/-
SKU67	cherry	Sm/+	_	_	~	+/+	-/-
SKU68	cherry	Sm/+	++	_	-	-/-	-/-
SKU69	cherry	Sm/+	++	_	_	-/-	-/-
SKU70	guava	Ro/-	++	+	+	++/-	++/-
SKU71	guava	Sm/-	-	++	++	-/-	-/-
SKU72	guava	Ro/+	++	-	-	+/++	+/+
SKU72	guava	Sm/-	-	++	++	-/-	-/-
SKU74	•	Sm/-	-	-	-	-/-	-/-
SKU75	guava lychee	Sm/-	+	++	++	-/- -/-	-/- -/-
SKU75	lychee	Sm/-	-	-	-	-/- -/-	-/-
SKU77	mangosteen	Sm/-	+	++	++	-/-	-/-
SKU78	_	Sm/-	+	++	++	-/-	-/- -/-
SKU79	mangosteen orange	Sm/-	+	++	++	-/- -/-	-/-
SKU80	orange	Sm/-	-	++	++	++/++	-/-
SKU80		Ro/+		- -	TT	++/++	+/+
	orange	Sm/+	++	-	-	++/++	-/-
SKU82	orange	Sm/-	-	++	++	++/++	-/-
SKU83	orange			-	-		÷/+
SKU84 SKU85	orange	Sm/+ Sm/+	++	-	-	++/++ +/+	+/+
	orange		++	-	-		+/+
SKU86	pineapple	Ro/+	++	+	+	++/++ ++/++	+/+
SKU87	pineapple	Sm/+	++	+	+		+/+ -/-
SKU88	pineapple	Sm/+	-	+	+	+/-	
SKU89	pineapple	Sm/+	-	+	+	+/-	-/-
SKU90	pineapple	Sm/+	-	+	+	++/+	-/-
SKU91	pineapple	Sm/-	-	++	++	++/++	-/-
SKU92	papaya	Sm/-	++	++	++	++/++	- /-
SKU93	roseapple	Ro/-	++	-	-	++/++	-/-
SKU94	roseapple	Sm/-	-	-	-	++/++	-/-
SKU95	roseapple	Sm/-	-	-	-	++/++	-/-
SKU96	roseapple	Sm/-	-	-	-	++/++	-/-
SKU97	roseapple	Sm/+	-	+	+ .	++/++	-/-
SKU98	roseapple	Ro/+	++	-	-	++/++	-/-
SKU99	roseapple	Ro/+	++	-	-	++/++	-/-
SKU100	roseapple	Ro/+	++	-	-	++/++	-/-

Notes: Sm, smooth colony; Ro, rough colony.

Table 1. (continued)

		Colony/	Growth	Growth in 3	3% acetic acid	Growth in 8% e	thanol/Halo
Code	Sources	Over-	at 40°C	30°C	37°C	30°C	37°C
		oxidation	72hr	72hr	72hr	24hr	24hr
SKU101	roseapple	Sm/-	++	-	-	+/-	-/-
SKU102	unknown	Sm/-	++	++	++	++/++	-/-
SKU103	unknown	Sm/-	+	+	+	÷+/++	-/-
SKU104	unknown	Sm/-	++	+	+	++/++	-/-
SKU105	grape	Sm/-	++	++	++	++/++	-/-
SKU106	grape	Sm/-	++	+	+	++/+	-/-
SKU107	pineapple	Sm/-	+	++	++	+/+	+/+
SKU108	pineapple	Sm/-	++	+	+	++/++	+/-
SKU109	guava	Sm/-	nd	++	++	++/++	++/++
SKU110	unknown	Sm/-	++	++	++	+/+	++/+
SKU111	grape	Sm/+	++	+	+	++/++	++/++
SKU112	grape	Sm/-	++	+	+	++/++	++/++
SKU113	grape	Sm/+	++	++	++	++/++	++/++
SKU114	apple	Sm/+	++	++	++	++/++	-/-
SKU115	papaya	Sm/+	++	++	++	++/++	, +/+
SKU116	watermelon	Sm/+	++	++	++	++/++	+/+
SKU117	watermelon	Sm/-	++	++	+74	++/++	++/++
SKU118	santol	Sm/-	+	-	-	++/++	++/++
SKU119	santol	Sm/-	+	_	-	++/++	++/++
SKU120	santol	Sm/-	+	-	-	++/++	++/++
SKU121	santol	Sm/-	-	+	+	++/++	++/++
SKU122	longkon	Sm/+	-	-	-	++/++	+/+
SKU123	longkon	Sm/-	++	_		-/-	++/-
SKU124	longkon	Ro/-	++	_	_	-/-	++/-
SKU125	guava	Sm/+	-		-	+/+	-/ -
SKU126	lychee	Sm/+	-	_	_	++/++	-/-
SKU127	orange	Sm/-	++	+	+	++/++	+/+
SKU128	longkon	Sm/-	+	_	-	++/++	+/-
SKU129	santol	Sm/-	-			+/+	+/-
0110117							
IFO strain	15						
IFO3172	G. suboxydans	Sm/-	++	+	+	-/-	-/-
IFO3188	A. acendens	Sm/-	++	+	+	-/-	-/-
IFO3191	A. rancens	Sm/-	++	+	+	+/++	-/-
IFO3222	A. kutzingianum	Sm/-	-	+	+	-/-	-/-
IFO3257	G. suboxydans	Sm/-	++	_	_	-/-	-/-
IFO3272	G.dioxyacetonicus	Sm/-	++	-	_	+/-	-/-
IFO3279	A. acetigenus	Sm/-	++	-	-	-/-	-/-
IFO3280	A. acetinus	Sm/-	+	+	+	-/-	-/-
IFO3283	A. aceti	Sm/+	+	+	+	-/-	-/-
IFO3284	A. aceti	Sm/-	++	+	+	-/-	-/-
IFO3298	A. rancens	Sm/-	+	++	++	-/-	-/-
IFO3299	A. acendens	Sm/-	+	++	++	-/-	-/-
	G. sphaericus	Sm/-	++	++	++	-/-	-/-
	A. xylinum	Sm/-	+	+	+	-/-	-/-
11 0 10 1 1 3		~	,	-	-	-	•

Notes: Sm, smooth colony; Ro, rough colony.

Table 2. Lists of acetic acid bacteria harboring insertion sequence, IS1380

	Sources	Colony/ Over- oxidation	Growth at 40°C 72 hr	Growth in 3% acetic acid		Growth in 8% ethanol/Halo	
Code				30°C 72 hr	37°C 72 hr	30°C 24 hr	37°C
							24 hr
SKUII	banana	Ro/-	-	-	-	+/++	-/-
SKU13	banana	Sm/+	-	-	-	+/++	-/-
SKU44	pineapple	Ro/+	+	-	-	-/-	-/-
SKU47	pineapple	Ro/-	-	-	-	+/++	+/+
SKU48	pineapple	Ro/+	++	-	-	+/+	-/-
SKU55	pineapple	Sm/+	++	-	-	++/++	+/++
SKU56	pineapple	Sm/+	++	-	-	++/++	+/++
SKU62	banana	Sm/+	-	-	-	-/ -	-/-
SKU64	banana	Sm/+	-	-	-	-/-	-/-
SKU66	banana	Sm/+			-	-/-	-/-
SKU79	orange	Sm/-	+	++	++	-/-	-/-
SKU84	orange	Sm/+	++	-	-	++/++	+/+
SKU85	orange	Sm/+	++	-	-	+/+	+/+
SKU94	roseapple	Sm/-	-	-	-	++/++	-/-
SKU95	roseapple	Sm/-	-	-	-	++/++	-/-
SKU96	roseapple	Sm/-	-	-	-	++/++	-/-
SKU97	roseapple	Sm/+	-	+	+	++/++	-/-
SKU100	roseapple	Ro/+	++	-	-	++/++	-/-
SKU101	roseapple	Sm/-	++	-	-	+/-	-/-
IFO Strain	ns						
IFO3280	A. acetinus	Sm/-	+	+	+	-/-	-/-
IFO3283	A. aceti	Sm/+	+	+	+	-/-	-/-
IFO3284	A. aceti	Sm/-	++	+	+	-/-	-/-
IFO3298	A. rancens	Sm/-	+	++	++	-/-	-/-
IFO12467	G. sphaericus	Sm/-	++	++	++	-/-	-/-

Legends to Figures

Fig. 1 Restriction map of the insertion sequence, *IS1380*, inserted into cytochrome C subunit gene of *A. pasteurianus* NCI1380.

A 1.1 kb *Eco*RI-*BgI*II DNA fragment used as a DNA probe is shown in a hatch box. Arrows indicate the sequencing strategy (From Takemura *et al.*, *J. Bacteriol.* 173, 7070-7076 (1991)).

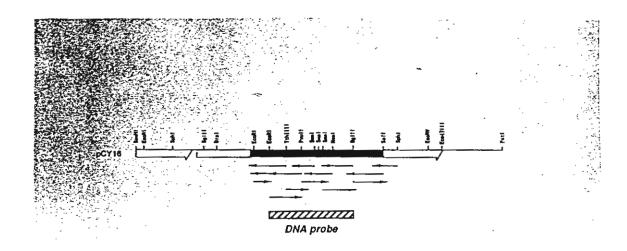
Fig. 2 Plasmid profiles and distribution of *IS1380* in 129 isolates of acetic acid bacteria from Thailand and 14 IFO strains.

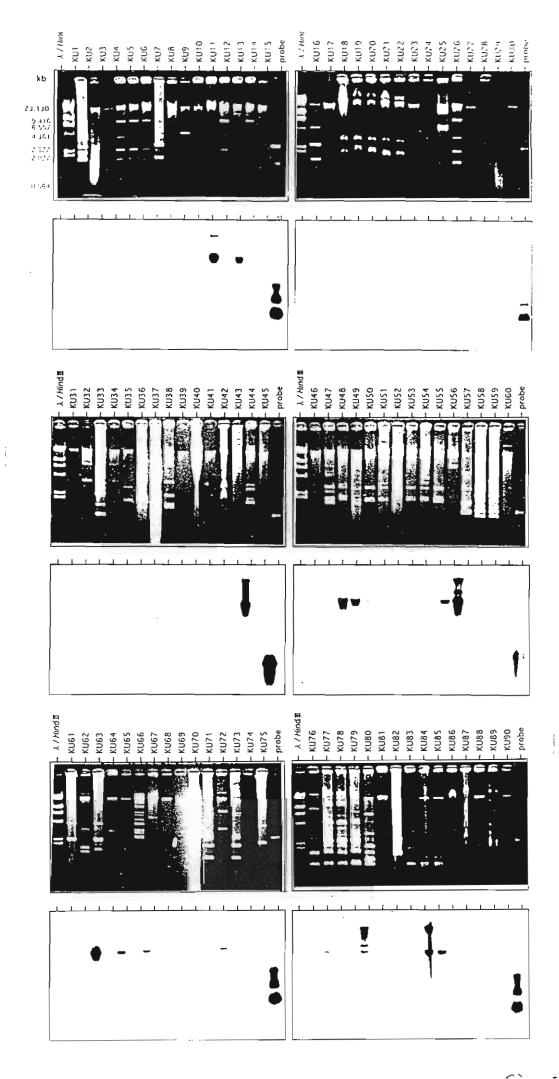
The total DNA isolated from those strains were transferred from agarose gel to a nylon membrane and hybridized with the peroxidase-labeling 1.1 kb *Eco*RI-*Bgl*II DNA probe at 42°C overnight. The membrane was washed twice in each primary and secondary washing buffers, respectively. The hybridization signals were detected with detection buffer and autoradiographed with an x-ray film.

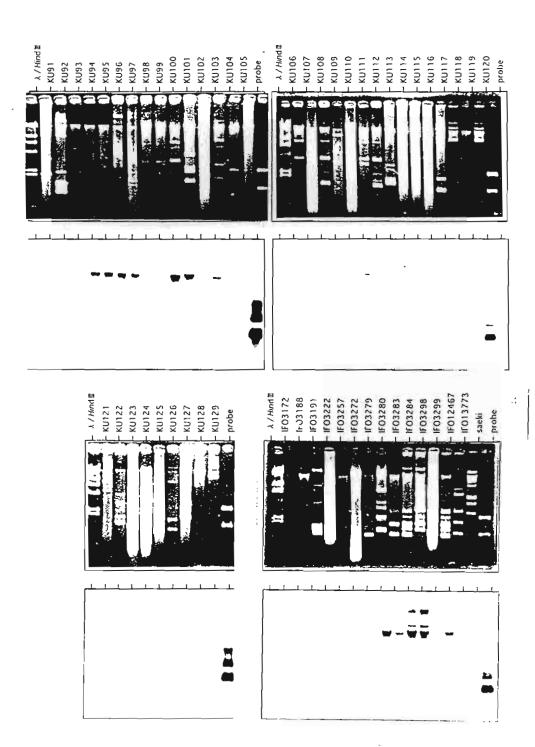
Fig. 3 Plasmid profile of a parent strain, *A. pasteurianus* SKU108 and the curants obtained from SDS and acridine orange treatment.

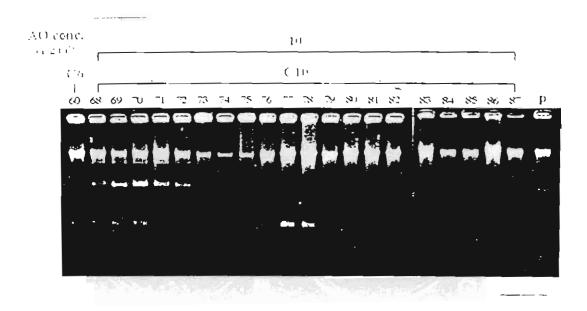
The total DNA isolated from a parent strain and curants were analyzed in 0.8% agarose gel. A number indicating on the top of each lane represented a number of each curant and (p) indicated a parent strain.

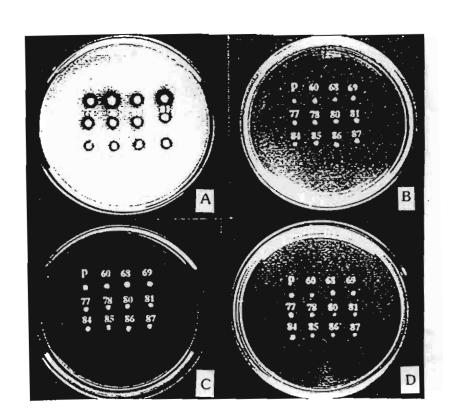
Fig. 4 Growth characteristic of a parent strain, *A. pasteurianus* SKU108 and some selected curants.


Comparison of growth characteristic in a parent strain and some selected curants were observed in the following media; (A) potato agar containing 4% ethanol at 30°C for 3 days, (B) potato agar at 40°C for 2-5 days, (C) seed culture agar containing 8% ethanol at 37°C for 2-5 days and (D) seed culture agar containing 3% acetic acid at 30°C for 2-5 days.


Fig. 5 Electron micrograph of a parent strain, A. pasteurianus SKU108 and three curants.


An overnight culture of a parent strain and three curants (no. 85, 86 and 87) in potato medium were used for observation under the transmission electron microscope. Comparison of cell shape and size of a parent strain and three curants are shown as followings; (A) a parent strain, A. pasteurianus SKU108 with magnification of 15,652x, (B) curant no. 85 with magnification of 17,774x, (C) curant no. 86 with magnification of 16,666x and (D) curant no. 87 with magnification of 17,647x.


Fig. 6 Time course of acetic acid fermentation by a parent strain, A. pasteurianus SKU108 (■), curants no. 85 (♦), no. 86 (●) and no. 87 (Δ).


Time course of growth and acetic acid fermentation was studied in 100 ml of seed culture medium containing 4% ethanol at 30, 37 and 40°C. Two to five ml of the culture were taken out everyday for determination of turbidity by measuring OD_{540nm} and total acid accumulated in the culture by titration with 0.8 N NaOH.

