
รายงานฉบับสมบูรณ์ (1 กันยายน 2538 – 31 สิงหาคม 2541)

การลงเกาะของตัวอ่อนปะการังในอ่าวไทย Recruitment of Scleractinian Corals in the Gulf of Thailand

ดร. ธรรมศักดิ์ ยี่มิน มหาวิทยาลัยรามคำแหง

ทุนพัฒนานักวิจัย RSA 21 / 2538 สำนักงานกองทุนสนับสนุนการวิจัย

กิตติกรรมประกาศ

ผู้วิจัยขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัยเป็นอย่างสูงที่ให้ความสำคัญกับการศึกษาวิจัยชีว วิทยาแนวปะการังซึ่งเป็นข้อมูลพื้นฐานที่สำคัญสำหรับการจัดการทรัพยากรชายฝั่งทะเล ทุนพัฒนานักวิจัยที่ได้รับ ในครั้งนี้เป็นจุดเริ่มต้นที่สำคัญที่สุดของกลุ่มวิจัยความหลากหลายทางชีวภาพในทะเล ภาควิชาชีววิทยา คณะวิทยา ศาสตร์ มหาวิทยาลัยรามคำแหง ซึ่งก่อให้เกิดการทำงานวิจัยอย่างต่อเนื่องเพื่อพัฒนาองค์ความรู้ทางวิชาการ การเผย แพร่ความรู้สู่สังคม และการพัฒนานักวิจัยรุ่นใหม่

นักวิทยาศาสตร์ทางทะเลในประเทศไทยหลายท่านที่ได้ถ่ายทอดความรู้ ประสบการณ์ ตลอดจนข้อเสนอ แนะต่างๆที่เป็นประโยชน์ต่อการดำเนินการวิจัยในครั้งนี้ ผู้วิจัยขอกราบขอบพระคุณ ศาสตราจารย์ ดร. ทวีศักดิ์ ปิยะกาญจน์ ศาสตราจารย์ ดร. เปี่ยมศักดิ์ เมนะเศวต ผู้ช่วยศาสตราจารย์ ดร. สุรพล สุดารา รองศาสตราจารย์ ดร. เผดิมศักดิ์ จารยะพันธ์ ดร. หรรษา จรรย์แสง ดร. พิชัย สนแจ้ง และผู้ทรงคุณวุฒิอีกหลายท่านไว้ ณ โอกาส บี้ด้วย

งานวิจัยนี้ได้รับคำแนะนำจากนักวิทยาศาสตร์ในต่างประเทศหลายท่าน Prof. Dr. Kiyoshi Yamazato, Prof. Dr. M. Tsushiya, Prof. Dr. M. Nishihira, Prof. Dr. T. Uehara, Prof. Dr. R. H. Richmond, Prof. Dr. C. E. Birkeland, Prof. Dr. P. W. Glynn, Prof. Dr. R. W. Grigg, Dr. J. E. N. Veron, Dr. R. Babcock, Dr. T. Done, Prof. Dr. P. J. Doherty, Prof. Dr. B. E. Brown, Dr. L. M. Chou, Dr. P. M. Alino และ Dr. Suharsono ซึ่งผู้วิจัยต้องขอ ขอบพระคุณเป็นอย่างสูง

ผู้วิจัยขอขอบพระกุณ โครงการพัฒนาองค์ความรู้และศึกษานโยบายการจัดการทรัพยากรชีวภาพในประเทศ ไทยที่ได้ให้ทุนสนับสนุนการวิจัยแก่นักศึกษาปริญญาโทของกลุ่มวิจัยความหลากหลายทางชีวภาพในทะเลจำนวน 4 ทุน JSPSให้ทุนวิจัยระยะสั้นในประเทศญี่ปุ่นและเสนอผลงานวิจัยในต่างประเทศ ทบวงมหาวิทยาลัยให้ทุนนำ เสนอผลงานวิจัยในต่างประเทศ สถาบันวิจัยทรัพยากรทางน้ำ และภาควิชาวิทยาศาสตร์ทางทะเล จุฬาลงกรณ์ มหาวิทยาลัย ให้การสนับสนุนข้อมูลด้านสิ่งแวคล้อมในทะเลและอำนวยความสะควกในการทำวิจัย มหาวิทยาลัย บูรพา มหาวิทยาลัยเกษตรศาสตร์ สภาวิจัยแห่งชาติ และกองทัพเรือ เอื้อเพื่อข้อมูลปัจจัยสิ่งแวคล้อมในทะเลที่ สำคัญ

นักศึกษาปริญญาโท สาขาชีววิทยา ในกลุ่มวิจัยความหลากหลายทางชีวภาพในทะเล นายนิสิต เรื่องสว่าง นายสายประทีป อาษา น.ส.วาสนา พรรณเทวี น.ส.ปานหทัย นพชินวงศ์ และ นายจำเริญ บัวเรื่อง ที่ได้ทุ่มเทให้ กับงานวิจัยของกลุ่มวิจัยฯ ตลอคจนนักศึกษาชั้นปีที่ 4 สาขาชีววิทยา และวิทยาศาสตร์สิ่งแวคล้อม ที่มีส่วนช่วยใน โครงการวิจัยนี้ คุณสุรพล ชุณหบัณฑิต ช่วยงานวิจัยในภาคสนามในระยะเริ่มแรกของโครงการวิจัยซึ่งผู้วิจัยค้อง ขอขอบคุณเป็นอย่างสูง

ผู้วิจัยขอขอบพระคุณหัวหน้าภาควิชาชีววิทยา คณบดีคณะวิทยาสาสตร์ และอธิการบดีมหาวิทยาลัยราม กำแหง ที่ได้ให้การสนับสนุนงานวิจัยความหลากหลายทางชีวภาพในทะเลเป็นอย่างดีมาโดยตลอด กระบวนการฟื้นตัวของแนวปะการังขึ้นอยู่กับปัจจัยที่สำคัญ ได้แก่ อัตราการลงเกาะของตัวอ่อนปะการัง อัตราการตายของตัวอ่อนปะการัง มละการสืบ พันธุ์แบบไม่อาศัยเพศโดยวิธีอื่นๆ โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาอัตราการลงเกาะของตัวอ่อนปะการัง และการสืบ และกวามแปรปรวนของอัตราการลงเกาะตามเวลาและสถานที่ โดยการวางแผนการทดลองอย่างมีระบบ ศึกษาชนิด และปริมาณตัวอ่อนปะการังที่ลงเกาะตามกลุ่มทางอนุกรมวิธานโดยใช้ตัวอย่างเปรียบเทียบที่เชื่อถือได้ ศึกษาความ สัมพันธ์ระหว่างองค์ประกอบของตัวอ่อนปะการังกับโครงสร้างของ community ปะการัง วิเคราะห์ปัจจัยสิ่งแวด ล้อมที่สำคัญที่มีผลต่อการลงเกาะของตัวอ่อนปะการัง และเพื่อพัฒนาความรู้เกี่ยวกับชีววิทยาการสืบพันธุ์ของ ปะการัง สถานที่ศึกษาในโครงการวิจัยนี้เน้นบริเวณอ่าวไทยตอนบน โดยเฉพาะที่บริเวณเกาะค้างคาว จ. ชลบุรีโดยใช้วิธี Line transect method, random quadrat, Settlement plate experiment, Permanent quadrat, Caging experiment และการติดเครื่องหมายโคโลนี

จำนวนชนิดและจำนวนโคโลนีของ juvenile colony ของปะการังที่พบมีน้อยเมื่อเปรียบเทียบกับรายงาน การศึกษาจากบริเวณอื่น ๆ ของโลก juvenile colony ของปะการังหลายชนิดที่พบมีจำนวนน้อย ในขณะที่มีจำนวน โทโลนีใหญ่อยู่มาก ปัจจัยสิ่งแวคล้อมที่มีอิทธิพลต่อการแพร่กระจายและอัตราการตายของ juvenile colony ใน บริเวณที่ศึกษาได้แก่ ตำแหน่งของพื้น (substrate) ที่ว่างให้ตัวอ่อนปะการังลงเกาะ มุมเอียงของพื้น ปริมาณการ ตกตะกอน grazing activity ของเม่นทะเล Diadema setosum และอิทธิพลของ territory ของปลา damselfish การลงเกาะของคัวอ่อนปะการังบนแผ่นกระเบื้องจากการทดลองในภาคสนาม (Settlement plate experiment) แสดง อย่างชัดเจนว่าอัตราการลงเกาะของคัวอ่อนปะการังในอ่าวไทยตอนในมีต่ำมากเมื่อเปรียบเทียบกับรายงานการศึกษา จากแนวปะการังต่าง ๆ ทั่วโลก มีเพียงตัวอ่อนของปะการัง Pocillopora damicornis เท่านั้นที่ลงเกาะบนแผ่น กระเบื้องจำนวนมากแต่ตัวอ่อนปะการังชนิดอื่นๆ ที่จัดเป็นชนิดเด่นทั้งในแง่จำนวน juvenile colony และจำนวน colony ใหญ่ในธรรมชาติลงเกาะบนแผ่นกระเบื้องน้อยมาก ปัจจัยจำกัดที่สำคัญคือ การมีจำนวนตัวอ่อนปะการัง (planula larvae) อยู่ในมวลน้ำน้อยเนื่องจากอิทธิพลของทิศทางกระแสน้ำ และจำนวนแหล่งที่มาของตัวอ่อน ปะการังมีน้อย นอกจากนี้ยังพบว่า grazing activity ของเม่นทะเล Diadema setosum และ territory ของปลา damselfish มีบทบาทสำคัญต่อการลงเกาะของตัวอ่อนปะการังในระดับ small scale

การเกิดปรากฏการณ์ปะการังฟอกขาวที่รุนแรงขึ้นเป็นครั้งแรกในอ่าวไทยมีผลกระทบมากต่อ โครงสร้าง ของกลุ่มปะการัง อัตราการลงเกาะและอัตราการตายของตัวอ่อนปะการัง การศึกษาวิจัยอย่างต่อเนื่องเพื่อศึกษา การเปลี่ยนแปลงในระยะยาว (long term) ของกลุ่มปะการังในอ่าวไทยมีความสำคัญมากเพื่อความเข้าใจที่ถูกต้อง เกี่ยวกับปัจจัยทางธรรมชาติและปัจจัยที่เกิดจากการรบกวนของมนุษย์ที่มีผลกระทบต่อ โครงสร้างกลุ่มปะการัง ตลอดจนแนวโน้มของการพัฒนาแนวปะการังในบริเวณอ่าวไทยตอนใน ข้อมูลเกี่ยวกับการลงเกาะของตัวอ่อน ปะการังเป็นข้อมูลพื้นฐานทางวิชาการที่สำคัญมากสำหรับการประเมินผลกระทบสิ่งแวคล้อมที่มีต่อระบบนิเวศแนว

ปะการังได้อย่างถูกต้องและยังใช้เป็นแนวทางในการอนุรักษ์และวางแผนการจัดการแนวปะการังอย่างมีประสิทธิ ภาพ การฟื้นฟูตัวเองจากการถูกรบกวนทั้งโดยธรรมชาติ และกิจกรรมของมนุษย์ของกลุ่มปะการังในอ่าวไทยตอน ในคงต้องใช้เวลานานมากด้วยข้อจำกัดของอัตราการลงเกาะของตัวอ่อนปะการังซึ่งมีอยู่จำนวนน้อยทั้งชนิดและ ปริมาณ

ผลงานวิจัยจากโครงการนี้ได้ตีพิมพ์แล้วจำนวน 4 เรื่อง อยู่ระหว่างการตีพิมพ์จำนวน 2 เรื่อง ส่งต้นฉบับ เพื่อพิจารณาตีพิมพ์จำนวน 3 เรื่อง และผลงานวิจัยที่ยังอยู่ในระหว่างการจัดเตรียมต้นฉบับจำนวน 7 เรื่อง เสนอผล งานในที่ประชุมวิชาการจำนวน 14 เรื่อง และผลงานอื่น ๆ

<u>คำหลัก</u>: ปะการัง ตัวอ่อนปะการัง เม่นทะเล ปลาสลิคหิน การฟอกขาว การลงเกาะของตัวอ่อน การทดแทนประชากร การทดลองในภาคสนาม อ่าวไทย การพื้นฟู

Abstract

Recovery of coral reefs depend on several important factors such as settlement of planula larvae, post-settlement mortality of coral spats, growth and development of juvenile colonies and other means of asexual reproduction. The aims of the project were examining rates of coral recruitment and their spatial and temporal variations by using appropriate experiments, studying numbers and species of coral recruitments based on reliable references, analyzing the relationship between composition of coral recruits and coral community structure, analyzing certain environmental factors influencing coral recruitment and developing knowledge concerning reproductive biology of corals. The study sites were in the Inner Gulf of Thailand, especially at Khang Khao Island, Chon Buri Province. Several methods were applied, i.e., Line transect, random quadrat, settlement plate experiment, permanent quadrat, caging experiment and marking coral colony.

Species richness and density of juvenile colony of corals in the present study were comparatively low. Several coral species were very abundant in terms of number of large colony and percentage of live coral cover but only a few juvenile colonies of them were found in the coral communities. The most important factors controlling distribution pattern and mortality rate of juvenile colonies were position of available substrate, sediment, grazing activity of a sea urchin, Diadema setosum, and territory of damselfish. The data of coral recruitment on settlement plate experiments revealed that rates of coral recruitment in the Inner Gulf of Thailand were very low, compared to other reports from different geographic regions. Most of coral recruits on the plates was only, Pocillopora damicornis. Recruits of other dominant coral species were rarely observed on the experimental plates. The limiting factors of coral recruitment were shortage of planula larva supply due to the effects of direction of oceanographic current and sources of planula larvae. Clearly, grazing activities of D. setosum and territory of damselfish played a significant role on coral recruitment in a small scale.

Severe coral bleaching was clearly observed in the Gulf of Thailand during April-August, 1998. This event has been recognized as an ecological factor influencing coral community structure, coral recruitment rate and mortality rate of juvenile corals. The long -term study on changes of coral communities in the Gulf of Thailand is required in order to analyze the effects of both natural and anthropogenic disturbances on coral communities and the problems of coral reef development in the Inner Gulf of Thailand as well. Data on coral recruitment obtained from the present study are very important basic knowledge for environmental impact assessment in coral reef ecosystem and conservation and appropriate planning and management. Recovery of coral communities in the Inner Gulf of Thailand after disturbances may need long period of time because of low rates of coral recruitment.

Based on the results from the present project, four research titles was published; two titles are in press; three titles were submitted; seven manuscripts are being prepared; fourteen titles were presented in the seminar, and conferences and other related activities.

Key words: coral, planula larva, sea urchin, damselfish, bleaching, settlement, recruitment, filed experiment, Gulf of Thailand, recovery

สารขัญ

	หน้า
กิตติกรรมประกาศ	
บทคัดย่อภาษาไทย	
บทคัดช่อภาษาอังกฤษ	
บทนำ	1
วิธีการทคลอง	. 4
ผลการทดลอง	
โครงสร้างของ community ปะการัง	9
ชนิดและการแพร่กระจายของ juvenile colony	10
การลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องจาก settlement plate experiment	10
การลงเกาะของสิ่งมีชีวิตชนิดอื่นๆบนแผ่นกระเบื้อง	23
Caging experiment	23
ปรากฏการณ์ปะการังฟอกขาวในอ่าวไทย	23
บทวิจารณ์	48
หนังสืออ้า <mark>ง</mark> อิง	51
Output ที่ใค้	60
ภาคผนวก	167
รายงานการเงินพร้อมสำเนาสมุดบัญชีเงินฝาก	172

บทนำ

แนวปะการังเป็นระบบนิเวศที่พบเฉพาะในเขตร้อนเท่านั้น มีความเปราะบาง และมีความสำคัญมากต่อ ระบบนิเวศในทะเลทั้งในแง่ของการเป็นแหล่งอาหาร แหล่งวางไข่ และเพาะฝึกตัวอ่อนของสัตว์ทะเล ตลอดจน ความสำคัญที่เกี่ยวข้องกับวัฏจักรของธาตุต่างๆ ระบบนิเวศแนวปะการังนั้นมีการเปลี่ยนแปลงตลอดเวลา ปัจจัยสิ่ง แวคล้อมตามธรรมชาติที่มีส่วนทำลายปะการัง เช่น พายุ การระบาดของดาวหนาม และศัตรูปะการังชนิดอื่นๆ มนุษย์เองก็มีส่วนอย่างมากต่อการทำลายแนวปะการัง เช่น การระเบิดปลา การจับหอย กุ้งมังกร ปลากะตัก และ สัตว์น้ำสวยงาม การทั้งสมอเรือ การชุดร่องน้ำ การทิ้งของเสียปฏิกูล และตะกอนจากเหมืองแร่ เป็นต้น

กระบวนการฟื้นตัวของแนวปะการังขึ้นอยู่กับหลายปัจจัย ที่สำคัญได้แก่ อัตราการลงเกาะของตัวอ่อน ปะการัง อัตราการตายของตัวอ่อนปะการังภายหลังลงเกาะ อัตราการเจริญเติบ โตของตัวอ่อนปะการัง และการสืบ พันธุ์แบบ ไม่อาศัยเพศ โดยวิธีอื่นๆ ในขณะที่การทำลายแนวปะการังในอ่าวไทยเกิดขึ้นบ่อยครั้ง แต่การศึกษาวิจัยที่ เกี่ยวข้องกับชีววิทยาพื้นฐานของปะการังมีน้อยมาก การศึกษาในแนวปะการังส่วนใหญ่จะมุ่งเน้นที่การสำรวจทำ แผนที่บริเวณที่มีปะการัง และการติดตามการเปลี่ยนแปลงของระบบนิเวศแนวปะการังอย่างคร่าวๆ การศึกษาวิจัย ที่เกี่ยวข้องกับชีววิทยาของปะการังและสิ่งมีชีวิตในแนวปะการังอย่างลึกซึ้งและเป็นระบบนั้นมีจำนวนน้อยมาก ใน ปัจจุบันความรู้เกี่ยวกับชีววิทยาการสืบพันธุ์ของปะการัง อัตราการลงเกาะของตัวอ่อนปะการัง การแข่งขันกัน ระหว่างสิ่งมีชีวิตที่เป็น sessile ชนิดอื่นๆ และกลไกต่างๆในการสร้างและพัฒนาแนวปะการังยังเป็นเพียงแค่แนว ความคิดหนือสมมติฐานเท่านั้น และไม่มีข้อมูลทางวิทยาศาสตร์ที่ถูกต้องอ้างอิงได้เลย

การศึกษาวิจัยการลงเกาะของตัวอ่อนปะการังในอ่าวไทยมีความสำคัญมาก เพราะจะทำให้ทราบข้อมูลพื้น ฐานที่ได้จากการวางแผนที่ถูกต้องในเชิงวิทยาศาสตร์เกี่ยวกับอัตราการลงเกาะของตัวอ่อนปะการังในแต่ละช่วง เวลา ตลอดจนความแตกต่างของอัตราการลงเกาะของตัวอ่อนปะการังในบริเวณที่ต่างกัน นอกจากนี้จะทำให้ทราบ ถึงชนิดของตัวอ่อนปะการังที่ลงเกาะในช่วงเวลาและสถานที่ที่ต่างกันด้วยเพื่อหาความสัมพันธ์ระหว่างองค์ ประกอบของชนิดตัวอ่อนปะการังกับโครงสร้างของ community ปะการังในบริเวณนั้น อีกประการหนึ่งที่มีความ สำคัญมากแต่มีการศึกษาวิจัยน้อยมากคือ การลงเกาะของ sessile ชนิดอื่นๆไปพร้อมๆกับการศึกษาการลงเกาะของ ปะการัง เพื่อวิเคราะห์แนวโน้มของการแก่งแย่งพื้นที่เพื่อการลงเกาะและการเจริญเติบโตของสิ่งมีชีวิตเหล่านั้นใน ระบบนิเวสแนวปะการัง

ข้อมูลพื้นฐานจากการวิจัยเรื่อง การลงเกาะของตัวอ่อนปะการังในอ่าวไทย คังกล่าวข้างต้น มีความสำคัญ มากต่อการวิเคราะห์กลไกที่เกี่ยวข้องกับสร้างและพัฒนาแนวปะการังในอ่าวไทย โดยเฉพาะในบริเวณอ่าวไทยตอน บนซึ่งมีแนวปะการังที่เพิ่งสร้างหรือที่มีอายุยังน้อย ความรู้เกี่ยวกับการลงเกาะของตัวอ่อนปะการังจะช่วยในการ อธิบายถึงกระบวนการคงสภาพ หรือฟื้นฟู community ของปะการังภายหลังจากการถูกรบกวนโดยธรรมชาติ หรือ จากการกระทำของมนุษย์เองก็ตาม นอกจากนี้ยังจะช่วยในการวิเคราะห์หรือสร้างแบบจำลองเกี่ยวกับกระบวนการ สร้างและพัฒนาแนวปะการังในอ่าวไทยให้มีความถูกต้องมากขึ้นด้วย

เมื่อพิจารณาด้านการจัดการแนวปะการังหรือทรัพยากรสิ่งมีชีวิตชายฝั่งทะเล ความรู้เกี่ยวกับการลงเกาะ ของตัวอ่อนปะการังจะช่วยในการพิจารณาการเลือกสถานที่และชนิดของปะการังเพื่อการปลูกย้ายปะการัง การ

ı

วิเคราะห์ผลกระทบจากสิ่งแวดล้อมที่มีต่อระบบนิเวศแนวปะการังและแนวโน้มการฟื้นตัวของแนวปะการัง ตลอด จนการกำหนดมาตราการเพื่อการอนุรักษ์แนวปะการังในอ่าวไทยทั้งในปัจจุบันและในอนาคต

การวิจัยการลงเกาะของตัวอ่อนปะการังในอ่าวไทยจะทำให้เข้าใจวงชีวิตและชีววิทยาของการสืบพันธุ์ของ ปะการังชนิคต่างๆได้ดีขึ้น และยังช่วยให้เข้าใจถึงบทบาทของปะการังชนิคต่างๆเชิงนิเวศวิทยาในแนวปะการังได้ดี ขึ้นด้วย

ผลงานวิจัยที่เกี่ยวข้อง

ปริบาณตัวอ่อนของสัตว์ทะเลและอัตราการลงเกาะของตัวอ่อนเหล่านี้มีบทบาทสำคัญมากต่อการกำหนด โครงสร้างและพลวัตของ community ของสัตว์ทะเลหน้าคืน (Underwood & Denley, 1984; Connell, 1985; Roughgarden et al, 1987; Underwood & Fairweather, 1989; Raimondi, 1990; Sutherland, 1990) สัตว์ทะเลหน้า คินประเภทไม่มีกระดูกสันหลังส่วนมากมีช่วงระยะเวลาใดเวลาหนึ่งที่ดำรงชีพเป็นแบแพลงตอน (Thorson, 1950; Chia, 1974) การที่สัตว์ทะเลมีตัวอ่อนเป็นแพลงตอนนี้ถือได้ว่าเป็นวิธีการที่สำคัญที่จะทำให้พวกที่เป็น sessile สามารถยึดแหล่งที่อยู่ใหม่ได้ หรือช่วยในกระบวนการฟื้นตัวของ community ภายหลังจากการถูกรบกวนจากปัจจัย สิ่งแวคล้อมต่างๆ นอกจากนี้ยังเป็นการแลกเปลี่ยนทางพันธุกรรมระหว่างกลุ่มประชากรต่างๆ ด้วย (Scheltema, 1977, 1986; Jackson, 1986)

ตัวอ่อนปะการัง (planula larva) ส่วนมากจะล่องลอยอยู่ในมวลน้ำช่วงเวลาหนึ่งก่อนการลงเกาะที่พื้น อย่าง ไรก็ตามการแพร่กระจายของตัวอ่อนปะการังนั้นยังมีข้อมูลอยู่ไม่มากนักและยังเป็นเรื่องที่ถกเถียงกันอยู่ ยังมีแนว ความคิดที่สวนทางกันอยู่กล่าวคือ ตัวอ่อนปะการังนั้นยังคงอยู่ใน community เดียวกับพ่อแม่ หรือจะแพร่กระจาย ไปยัง community ของปะการังอื่นๆ (Done, 1982; Harrision et al., 1984; Babcock & Heyward, 1986) แต่โดยทั่ว ไปแล้วรูปแบบของการแพร่กระจายและการลงเกาะของตัวอ่อนปะการังถูกกำหนดโดยช่วงระยะเวลาที่ดำรงชีพ แบบแพลงตอน ปัจจัยทางฟิสิกส์และเคมีของมวลน้ำ ระยะเวลาที่ยาวนานที่สุดที่ตัวอ่อนปะการังจะล่องลอยอยู่ใน มวลน้ำก่อนการลงเกาะ รูปแบบการแพร่กระจายในแนวคิ่งของตัวอ่อนปะการัง การเลือกพื้นที่ลงเกาะ และการ เลือกตำแหน่งหรือบริเวณที่จะลงเกาะของตัวอ่อนปะการัง (Richmond, 1987; Harrison & Wallace, 1990; Yeemin, 1991; Sammarco, 1991; Fisk & Harriott, 1993)

เมื่อพิจารณาตัวอ่อนปะการังจะพบว่ามือยู่ 2 แบบค้วยกัน คือ ตัวอ่อนปะการังที่พัฒนาในตัวแม่ (brooded planula) และตัวอ่อนปะการังที่พัฒนาในมวลน้ำทะเลนอกตัวแม่ (externally developed planula) brooded planula นั้นเมื่อถูกปล่อยจากตัวแม่จะมีรูปร่างที่สมบูรณ์แล้วและอาจลงเกาะภายในไข่กี่ชั่วโบง หรือภายใน 2-3 วัน เท่านั้น (Harrigan, 1972) ในทางตรงข้ามพวก externally developed planula ต้องการเวลาในการพัฒนาตัวอ่อน ดังนั้นจึง ต้องล่องลอยอยู่ในมวลน้ำอย่างน้อยประมาณ 4 วัน ก่อนการลงเกาะ ความแตกต่างของระยะเวลาที่คำรงชีพแบบ แพลงตอนของตัวอ่อนปะการังทั้งสองแบบนี้จะทำให้มีรูปแบบการแพร่กระจายของตัวอ่อนปะการังต่างกัน

การศึกษาวิจัยเรื่องการลงเกาะของตัวอ่อนปะการังนี้ ต้องให้ความหมายของคำว่า "settlement" และ "recruitment" ให้ชัดเจนดังนี้ Settlement หมายถึง ขณะที่ตัวอ่อนเริ่มจับยึดพื้นอย่างถาวร ซึ่งในกรณีของสิ่งมีชีวิตที่เป็น sessile ก็คือเมื่อ ตัวอ่อนที่เป็นแพลงตอนเริ่มตรึงตัวเองติดกับพื้น (Keough & Downes, 1982; Connell, 1985)

Recruitment หมายถึง ตัวอ่อนที่ลงเกาะแล้วและรอดชีวิตมาได้หลังจาก settlement ได้ช่วงระยะเวลาหนึ่ง คังนั้นถ้ายึดตามนิยามข้างต้น ตัวอ่อนปะการังที่พบจากการศึกษาในธรรมชาติหลังจากลงเกาะ (settlement) แล้วเกิน กว่า 24 ชั่วโมง ต้องถือว่าเป็นการศึกษาเรื่อง recruitment ทั้งสิ้น ถ้าต้องการศึกษา settlement ของตัวอ่อนปะการัง บนพื้นแนวปะการังตามธรรมชาติจะต้องใช้กล้องจุลทรรศ์ใต้น้ำเพื่อตรวจสอบตัวอ่อนที่เพิ่งจะลงเกาะและต้อง ศึกษาทุกวันด้วย ซึ่งเป็นสิ่งที่ยากมาก

การศึกษา recruitment ของปะการังในบริเวณต่างๆ ของโลกนั้น โดยทั่วไปแล้วจะใช้วิธีศึกษาและดิดตาม ผลจากวัตถุต่างๆ ที่นำไปวางไว้ใต้น้ำทะเลเพื่อล่อให้ตัวอ่อนปะการังลงเกาะ หรือโดยการดูการลงเกาะของตัวอ่อน ปะการังบนพื้นแนวปะการังตามธรรมชาติโดยตรง สำหรับช่วงระยะเวลาศึกษาติดตามผลอาจเป็นหลายสัปดาห์ หรือหลายเดือน (Birkeland, 1977; Wallace, 1985; Sammacro & Andrews, 1988; Harriott & Fisk, 1987, 1988; Fisk & Harriott, 1990, 1993; Yeemin, 1991; Sammarco, 1991) โดยภาพรวมแล้วการลงเกาะของตัวอ่อนปะการังมี ความแปรปรวนตามเวลา สถานที่ และกลุ่มทางอนุกรมวิธาน นอกจากนี้รุปแบบการลงเกาะของตัวอ่อนปะการังยัง มีบทบาทสำคัญต่อโครงสร้างของ community ปะการังด้วย (Harrison & Wallace, 1990)

การศึกษา recruitment ของปะการังในอ่าวไทยอย่างเป็นระบบและใช้ระยะเวลาติคตามผลที่ยาวนานเพียง พอนั้นยังไม่มีผู้ใครายงาน Yeemin & Sudara (1992) เป็นรายงานแรกที่ชี้ให้เห็นถึงความสำคัญของการศึกษาการลง เกาะของตัวอ่อนปะการังโดยเฉพาะในบริเวณอ่าวไทยตอนบนซึ่งเป็นบริเวณที่มีการรบกวน community ปะการัง บ่อยครั้ง และอาจมีปัญหาเรื่องปริมาณตัวอ่อนปะการัง

การศึกษาเบื้องต้นเกี่ยวกับการแพร่กระจายของตัวอ่อนปะการังที่ลงเกาะตามธรรมชาติ และการทคลองใน ภาคสนามเพื่อศึกษาการลงเกาะของตัวอ่อนปะการังได้จัดทำที่บริเวณเกาะพงัน จังหวัดสุราษฎร์ธานี แต่ก็มีปัญหา เกี่ยวกับงบประมาณและระยะเวลาการติดตามผล (Yeemin et al., 1992; Sudara et al., 1994) การศึกษาดังกล่าวนี้ใช้ วิธีการศึกษาและตัวอ่อนปะการังสำหรับอ้างอิงเพื่อการจำแนกชนิดจาก Yeemin (1988, 1991) อย่างไรก็ตามวิธีการ ศึกษาเหล่านี้ด้องมีการปรับปรุงเพื่อให้เหมาะสมกับสภาพแวดล้อมบริเวณอ่าวไทยตอนบน นอกจากนี้การศึกษา การลงเกาะของตัวอ่อนปะการังและการแก่งแย่งพื้นที่กับ sessile ชนิดอื่นๆ มีการศึกษากันน้อยมาก

โครงการวิจัยนี้มีวัตถประสงค์คังนี้

- 1. เพื่อศึกษาอัตราการลงเกาะของตัวอ่อนปะการัง และความแปรปรวนของอัตราการลงเกาะตาม เวลาและสถานที่ โดยการวางแผนการทดลองอย่างมีระบบ
- 2. เพื่อศึกษาชนิดและปริมาณด้วอ่อนปะการังที่ลงเกาะตามกลุ่มทางอนุกรมวิธาน โดยใช้ตัวอย่าง เปรียบเทียบที่เชื่อถือได้
- 3. เพื่อสึกษาความสัมพันธ์ระหว่างองค์ประกอบของตัวอ่อนปะการังกับโครงสร้างของ community ปะการัง
- 4. เพื่อวิเคราะห์ปัจจัยสิ่งแวคล้อมที่สำคัญที่มีผลต่อการลงเกาะของตัวอ่อนปะการัง

5. เพื่อพัฒนาความรู้เกี่ยวกับชีววิทยาการสืบพันธุ์ของปะการัง

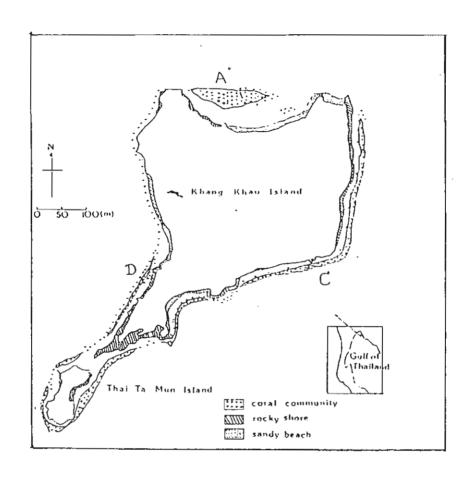
วิธีการทดลอง

การศึกษาโครงสร้างของ community ปะการัง

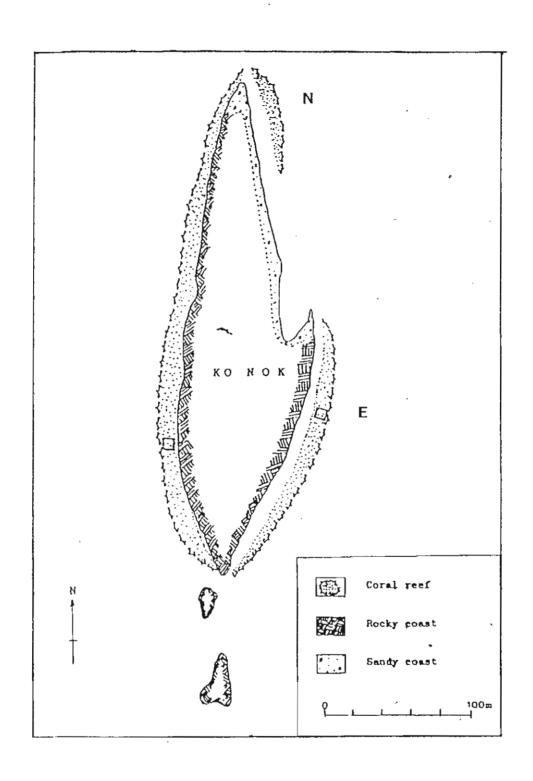
ทำการศึกษาโครงสร้างของ community ปะการังใน 3 บริเวณ คังนี้

- 1. เกาะค้างกาว อยู่ในเขตบริเวณเกาะสีชัง เป็นตัวแทนของ community ปะการังที่ได้รับอิทธิพลจากน้ำจืด มาภที่สุด กำหนดจุดศึกษา 3 สถานี คือ A, C และ D (รูปที่ 1)
- 2. เกาะนก เป็นตัวแทนของ community ปะการังกลุ่มพัทยาซึ่งยังคงได้รับอิทธิพลจากน้ำจืดแต่ไม่มาก เหมือนเกาะถ้างกาว กำหนดจุดศึกษา 2 สถานี คือ E และ N (รูปที่ 2)
- 3. เกาะขาม อยู่ในเขตการดูแลของทหารเรือ เป็นตัวแทนของ community ปะการังกลุ่มสัตหีบซึ่งได้รับ อิทธิพลจากน้ำจืดน้อยมาก กำหนดจุดศึกษา 2 สถานี คือ N และ S (รูปที่ 3)

วิธีการศึกษาที่ใช้คือ Line transect method โดยคัดแปลงจาก Yeemin (1991) จำแนกชนิดปะการังที่ สามารถจำแนกได้ขณะทำการศึกษาใต้น้ำด้วยการคำน้ำแบบ SCUBA และเก็บตัวอย่างปะการังชนิดที่ไม่สามารถ จำแนกได้ทันทีเพื่อศึกษาอนุกรมวิชานในห้องปฏิบัติการโดยใช้เอกสารอ้างอิงส่วนใหญ่ของ Dr. J.E.N. Veron

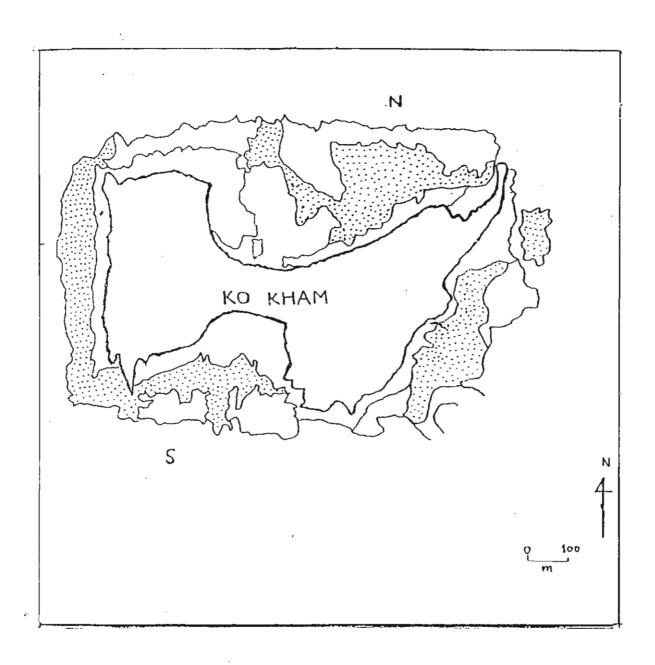

การศึกษาชนิดและการแพร่กระจายของ juvenile colony

ศึกษาชนิดและการแพร่กระจายของ juvenile colony โดยกำหนดจุดศึกษาเหมือนกับการศึกษาโครงสร้าง ของ community ปะการัง ใช้วิธีการศึกษาโดยตรงในภาคสนามโดยการดำน้ำแบบ SCUBA และศึกษาในเชิง ปริมาณโดยใช้ quadrat method ขนาดของ quadrat คือ 0.5X0.5 เมตร วาง quadrat ลงบนพื้นในกลุ่มปะการังตาม แนว line transect แบบสุ่ม บันทึกชนิด และจำนวนของ juvenile colony ที่มีขนาดตั้งแต่มองเห็นด้วยตาเปล่าจนถึง ขนาดเส้นผ่านศูนย์กลางประมาณ 5 ซม. จำแนกชนิด juvenile colony ใต้น้ำ และเก็บ colony ที่ยังจำแนกชนิด ไม่ได้ มาศึกษาต่อไปในห้องปฏิบัติการ


การศึกษาการลงเกาะของตัวอ่อนปะการัง (coral recruits) และสิ่งมีชีวิตชนิคอื่นๆจากการทดลองในภาคสนามโดย Settlement plate experiment

ทำการศึกษาเบื้องต้นเพื่อให้ได้รูปแบบของอุปกรณ์ที่ใช้เพื่อการทคลองในภาคสนามพื่อให้ใช้งานได้เป็น อย่างดีพะเลตลอดช่วงระยะเวลาที่ยาวนาน และได้ออกแบบอุปกรณ์ดังภาพที่ 17 ซึ่งมีกรอบเหล็กเป็นฐานรองรับ แผ่นกระเบื้องขนาด 15x15 ซม วางในแนวราบ แนวดิ่ง และวางทำมุม 45 องศากับพื้นแนวปะการัง

Settlement plate experiment นิ้วางที่เกาะค้างคาว เกาะนก และเกาะขาม โดยกำหนดจุดการศึกษาเช่นเดียว กับการศึกษาโทรงสร้างของ community ปะการัง ในแต่ละสถานีที่ศึกษาจะวางทั้งในที่ลึกและที่ตื้น โดยใช้ 3 replicates และมีจำนวนแผ่นกระเบื้อง 4 แผ่นในแต่ละตำแหน่งของการวางแผ่นกระเบื้อง การศึกษานี้เริ่มต้นเมื่อ



รูปที่ 1. แผนที่แสดงสถานี A, C และ D บริเวณเกาะค้างคาว จ. ชลบุรี

รู<u>ปที่ 2</u>. แผนที่แสดงสถานี E และ W บริเวณเกาะนก จ. ชลบุรี

6

รูปที่ 3. แผนที่แสคงสถานี N และ S บริเวณเกาะขาม อ. สัตห์บ จ. ชลบุรี

เคือนมีนาคม 2539 ถึง เคือนกุมภาพันธ์ 2542 การเก็บตัวอย่างแผ่นกระเบื้องนี้ทำทุกเดือนและยังได้ออกแบบการ ทคลองเพื่อศึกษาการลงเกาะของตัวอ่อนปะการังและสิ่งมีชีวิตอื่นๆแบบ long-term ด้วย

จำแนกชนิดตัวอ่อนปะการัง (coral recruits) ที่ลงเกาะบนแผ่นกระเบื้องในห้องปฏิบัติการโดยใช้กล้อง
จุลทรรศน์ เอกสารอ้างอิงสำหรับการจำแนกชนิดตัวอ่อนปะการังได้จาก Yeemin (1991) ซึ่งเป็นตัวอ่อนที่รวบรวม
จากการศึกษาในญี่ปุ่น และตัวอย่างเปรียบเทียบของ Dr. R. Babcock ซึ่งเป็นตัวอย่างที่รวบรวมจากการศึกษา
ในออสเตรเลีย และฟิลิปปินส์ สำหรับสิ่งมีชีวิตชนิดอื่นๆนั้นจำแนกเป็นกลุ่มใหญ่ๆ การจำแนกชนิดในราย
ละเอียดนั้นยังต้องมีการศึกษาเพิ่มเติมต่อไป

Caging Experiment

เพื่อวิเคราะห์อิทธิพลของเม่นทะเล *Diadema setosum* และปลา damselfish จึงออกแบบการทคลองในภาค สนามโดยใช้กรงครอบอุปกรณ์ที่ใช้วางแผ่นกระเบื้อง (ภาพที่ 18) การศึกษานี้คำเนินการที่เกาะค้างคาวและเกาะนก ในช่วงเดือนมีนาคม 2540 ถึง เดือนมีนาคม2541

ปรากฏการณ์ปะการังฟอกขาวในอ่าวไทย

ในช่วงเดือนเมษายน ถึง เดือนสิงหาคม 2541 เกิดปรากฏการณ์ปะการังฟอกขาวที่รุนแรงเป็นครั้งแรกใน อ่าวไทย ทำการศึกษาติดตามการฟอกขาวของปะการังชนิดต่างๆและอัตราการตายของปะการังภายหลังจากการ ฟอกขาวในพื้นที่จังหวัด ชลบุรี ระยอง ประจวบคิรีขันธ์ ชุมพร และ สุราษฎร์ธานี โดยใช้วิธี Line transect method การติดเครื่องหมาย colony และการวาง permanent quadrat

ศึกษาอัตราการฟอกขาวและอัตราการตายของ juvenile colony ในภาคสนามโดยใช้วิธี random quadrat method และการวาง permanent quadrat ในบริเวณที่ศึกษาการศึกษาที่เริ่มต้นเมื่อเคือนเมษายน 2541 จนถึงปัจจุบัน

ในช่วงที่มีปรากฏการณ์ปะการังฟอกขาวเกิดขึ้นได้ทำการศึกษาเพิ่มเติมเพื่อวิเคราะห์ผลกระทบที่มีต่ออัตรา การลงเกาะของตัวอ่อนปะการังจาก settlement plate experiment และการฟอกขาวของตัวอ่อนปะการังที่ลงเกาะบน แผ่นกระเบื้องแล้วด้วย

<u>การศึกษาปัจจับสิ่งแวคล้อม</u>

ในการออกภาคสนามทุกครั้งได้ทำการเก็บข้อมูลทางกายภาพที่เกาะค้างคาว เกาะนก และเกาะขาม โดยวัด อุณหภูมิน้ำทะเล ความเค็ม ความโปร่งแสงของน้ำ สำหรับข้อมูลปริมาณการตกตะกอน กระแสน้ำและปัจจัยสิ่ง แวดล้อมอื่นๆ สามารถรวบรวมเปรียบเทียบและอ้างอิงจากการศึกษาของจุฬาลงกรณ์มหาวิทยาลัย มหาวิทยาลัย บุรพา กองทัพเรือ และสภาวิจัยแห่งชาติ

การวิเคราะห์ข้อทางสถิติ

ข้อมูลจากการศึกษาในโครงการวิจัยนี้มีมากและซับซ้อนด้องวิเคราะห์ข้อมูลทางสถิติโคยใช้โปรแกรมของ SPSS เป็นส่วนใหญ่และคำเนินการวิเคราะห์ตาม Ludwig & Reynolds (1988), Clarke (1993), Levin (1992) และ Sokal & Rohlf (1995)

ผลการทดลอง

โครงสร้างของ community ปะการัง

เกาะค้างคาว

สภาพกลุ่มปะการังโดยทั่วไปแสดงไว้ในภาพที่ 1-4 และจากการศึกษาในเชิงปริมาณโดยวิธี Line transect method บริเวณสถานี A, C, และ D พบว่า Porites lutea เป็นปะการังชนิดที่เค่นที่สุด โดยปกกลุมพื้นที่ประมาณ 2-25 % (รูปที่ 4-6) ปะการังชนิดอื่นๆที่พบมากได้แก่ Pavona decussata, P. frondifera, Pocillopora damicornis, Leptastrea purpurea, Montipora hispida, Echinopora lamellosa, Platygyra daedalea, P. sinensis, Goniastrea pectinata, Favites flexiosa และ Favai pallida

<u>เกาะนก</u>

สภาพกลุ่มปะการังโดยทั่วไปแสดงไว้ในภาพที่ 5-7 กลุ่มปะการัง Acropora spp. บนพื้นทรายในบริเวณ ขอบแนวปะการังมีมาก จากการศึกษาในเชิงปริมาณโดยวิธี Line transect method บริเวณสถานี E และ N พบว่า Porites lutea ยังคงเป็นปะการังชนิดเด่นที่สุด ปกคลุมพื้นที่ประมาณ 17-23 % (รูปที่ 7-8) ปะการังชนิดเด่นอื่นๆ ได้ แก่ Acropora hyacinthus, A. formosa, A. millepora, A. humilis, Galaxea fascicularis, Pavona decussata, Pocillopora damicornis, Montipora efflorescens, Symphyllia recta, Goniopora lobata และ Leptastrea purpurea นอกจากนี้ยังพบว่าที่เกาะนกมีจำนวนประชากรของเม่นทะเล Diadema setosum อยู่หนาแน่นมาก (ภาพที่ 12)

<u>- เกาะขาม</u>

สภาพกลุ่มปะการังโดยทั่วไปแสดงไว้ในภาพที่ 8-1! การปกคลุมพื้นที่ของดอกไม้ทะเลและการเจริญเติบ โตขึ้นปกคลุมปะการังในบริเวณที่ตื้นของสถานี N มีความชัดเจนมาก จากการศึกษาในเชิงปริมาณ โดยวิธี Line transect method บริเวณสถานี S และ N พบว่า Echinopora lamellosa เป็นปะการังชนิดที่พบมากที่สุดบริเวณ สถานี S และ Porites lutea เป็นปะการังที่พบมากที่สุดบริเวณสถานี N (รูปที่ 9-10) สำหรับปะการังชนิดเด่นอื่นๆ ที่พบคือ Acropora hyacinthus, A. humilis, A. formosa, A. robusta, A. nobilis, Montipora sp., Pocillopora damicornis, Favia pallida, Platygyra siensis และ P. daedalea

ชนิดและการแพร่กระจายของ Juvenile colony

ตัวอย่าง Juvenile colony ที่พบในการศึกษานี้แสคงไว้ในภาพที่ 13-16 จากการศึกษาโดยวิธี random quadrat method ในแต่ละบริเวณที่ศึกษา สรุปผลการศึกษาได้ดังนี้

เกาะค้างคาว

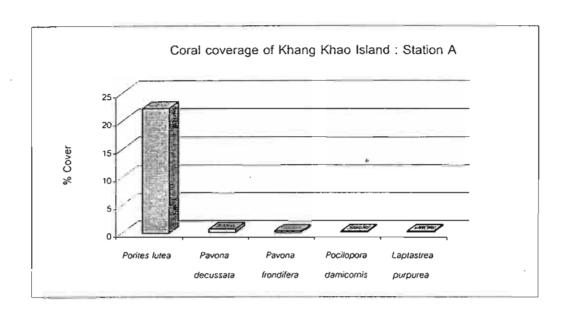
Juvenile colony ของ Porites lutea และ Pocillopora damicornis พบมากที่สุดในแต่ละสถานีที่ศึกษา นอก จากนี้ยังพบว่าที่สถานี D มี juvenile colony ของกลุ่ม Faviid จำนวนมากด้วย (รูปที่ 11-13) สำหรับ juvenile colony ของปะการังชนิดอื่นๆที่พบมากได้แก่ Pavona sp., Goniastrea spp., Stylocoeniella armata, Psammocora contigua, Leptastrea spp., Hydnophora exesa, Favites abdita, Oulastrea crispata, Symphyllia sp. และ Montipora sp. นอกจากนี้ยังพบว่ามี juvenile colony ของพรมทะเล Palythoa spp. เป็นจำนวนมากด้วย

เกาะนก

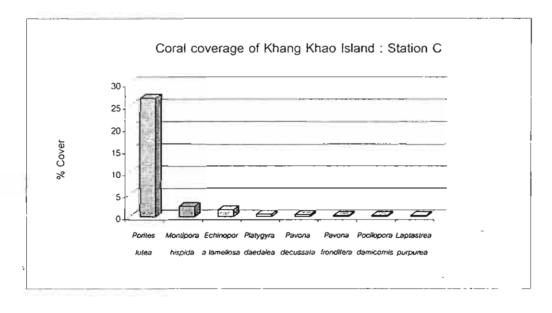
จำนวน juvenile colony ของปะการังที่พบที่เกาะนกมีน้อยกว่า 0.05 colony/m² (รูปที่ 14) โดยชนิคที่พบ ใค้แก่ Pocillopora damicornis และกลุ่ม Faviid

เกาะขาม

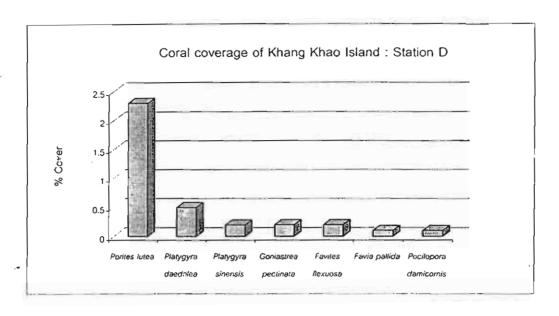
juvenile colony ของปะการังหลายชนิคที่พบที่เกาะขาม ชนิคเค่นได้แก่ Porites lutea, Pocillopora damicornis, Acropora spp., Favia sp., Echinopora lamellosa, Montipora sp. และกลุ่ม Faviid นอกจากนี้ยังพบว่า juvenile colony ของพรมทะเล Palythoa ยังมีจำนวนมากด้วย (รูปที่ 15-16)

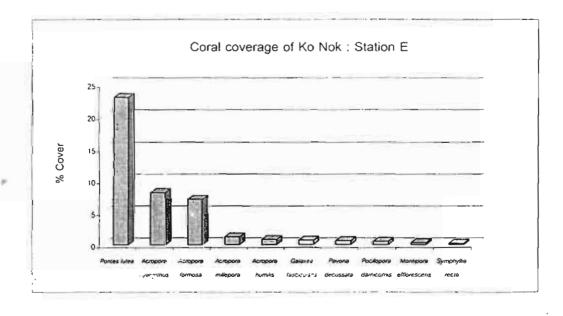

การลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องจาก Settlement plate experiment

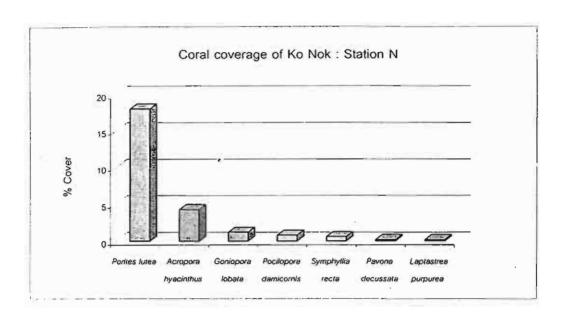
ตัวอย่างตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องแสดงไว้ในภาพที่ 19-23 ตัวอ่อนปะการังส่วนมากเป็น Pocillopora damicornis และมีตัว Unknown ที่พบมากในช่วงที่มีปรากฎการณ์ปะการังฟอกขาว นอกจากนี้ยังพบ ตัวอ่อนของปะการัง Porites sp., Platygyra sp. และ Acropra sp. ลงเกาะแต่มีจำนวนน้อยมาก

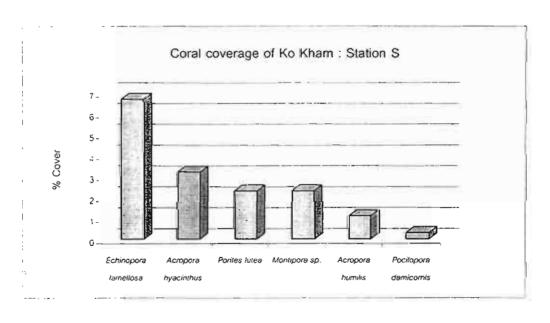

ความแปรปรวนตามเวลา

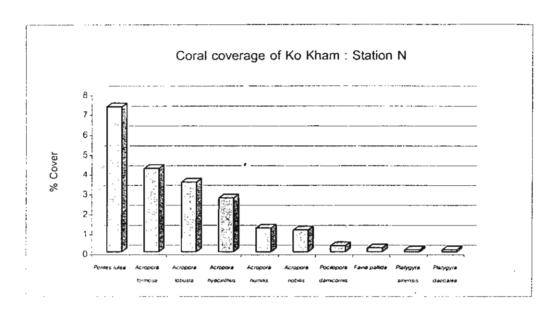
เกาะค้างคาว

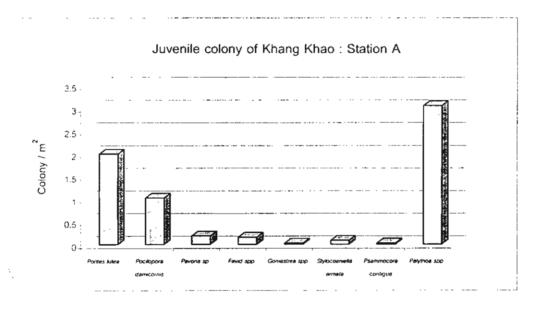

• จากผลการศึกษาการลงเกาะของตัวอ่อนปะการังในช่วงเคือนมีนาคม 2539 ถึง กุมภาพันธ์ 2542 พบว่า อัตราการลงเกาะของตัวอ่อนปะการังมีความแปรปรวนมากตามเวลา โดยมีอัตราการลงเกาะมากที่สุดในช่วงเคือน กุมภาพันธ์ 2540 (รูปที่ 17) และมีอัตราการลงเกาะต่ำมากในช่วงเคือนกันยายน ถึง พฤศจิกายน 2541


รูปที่ 4. เปอร์เซ็นต์การปกคลุมของปะการังบริเวณสถานี A เกาะค้างคาว

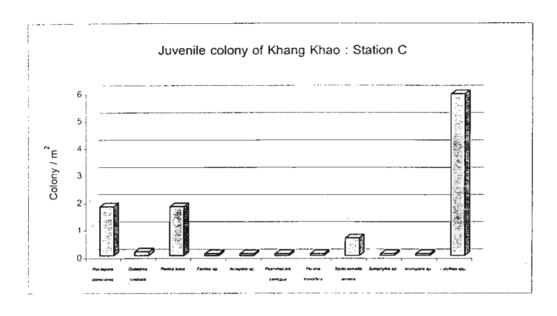

รูปที่ 5. เปอร์เซ็นต์การปกคลุมของปะการังบริเวณสถานี C เกาะค้างคาว


รูปที่ 6. เปอร์เซ็นต์การปกกลุมของปะการังบริเวณสถานี D เกาะค้างคาว

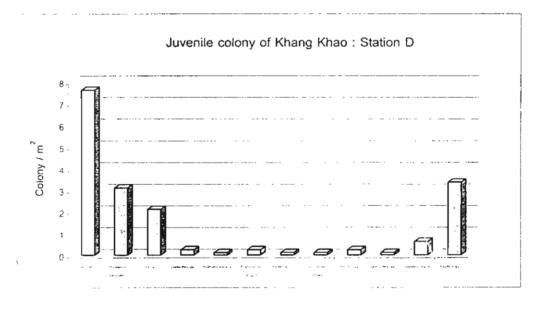

รู<u>ปที่ 7</u>. เปอร์เซ็นต์การปกคลุมของปะการังบริเวณสถานี E เกาะนก


รูปที่ 8. เปอร์เซ็นต์การปกคลุมของปะการังบริเวณสถานี N เกาะนก

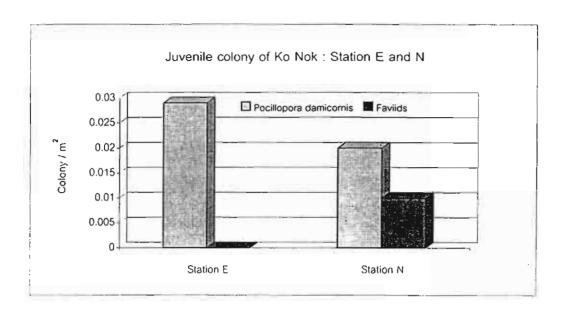
รูปที่ 9. เปอร์เซ็นต์การปกคลุมของปะการังบริเวณสถานี S เกาะขาม

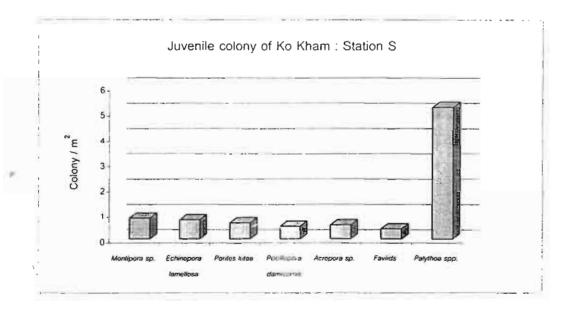


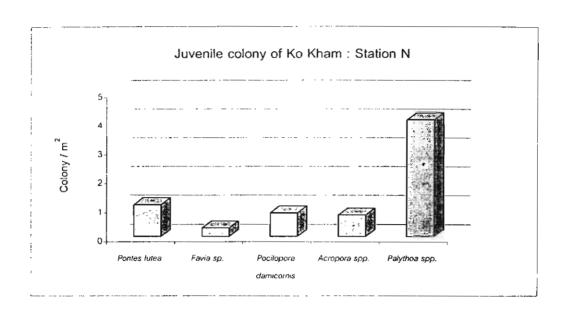
รูปที่ 10. เปอร์เซ็นต์การปกคลุมของปะการังบริเวณสถานี N เกาะขาม

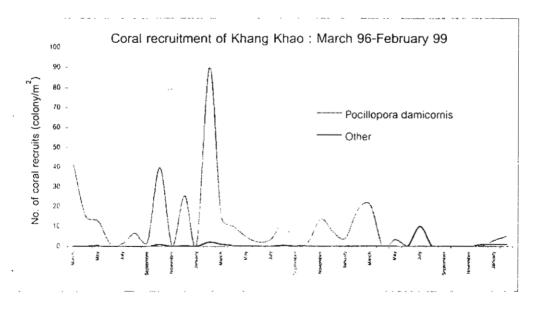


รูปที่ 11. จำนวนโคโลนีของตัวอ่อนปะการังบริเวณสถานี A เกาะค้างคาว


• 14


รูปที่ 12. จำนวนโคโลนีของตัวอ่อนปะการังบริเวณสถานี C เกาะค้างคาว


รูปที่ 13. จำนวนโคโลนีของตัวอ่อนปะการังบริเวณสถานี D เกาะค้างคาว


รูปที่ 14. จำนวนโคโลนีของตัวอ่อนปะการังบริเวณสถานี E และ N เกาะนก

รูปที่ 15. จำนวนโคโลนีของตัวอ่อนปะการังบริเวณสถานี S เกาะขาม

รู<u>ปที่ 16</u>. จำนวนโคโลนีของตัวอ่อนปะการังบริเวณสถานี N เกาะขาม

รูปที่ 17. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องระหว่างเดือนมีนาคม 2539 ถึง กุมภาพันธ์ 2542 บริเวณเกาะค้างคาว

เกาะนก

สำหรับที่บริเวณเกาะนกช่วงเดือนเมษายน 2540 ถึง ธันวาคม 2541 พบว่าอัตราการลงเกาะของตัวอ่อน ปะการังก็มีความแปรปรวนมากตามเวลา โดยมีอัตราการลงเกาะสูงในช่วงเดือนสิงหาคม 2540 และ ธันวาคม 2540 และมีอัตราการลงเกาะต่ำในช่วงเดือนพฤษภาคม 2541 ซึ่งอยู่ในช่วงที่มีปรากฎการณ์ปะการังฟอกขาว (รูปที่ 18)

เกาะขาม

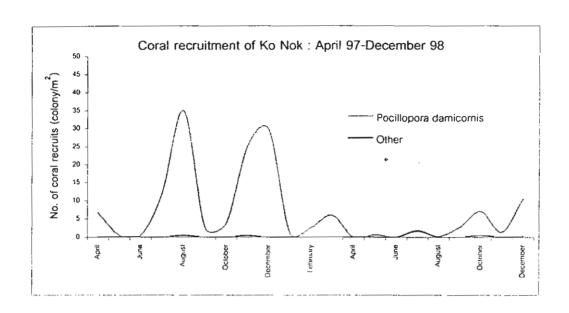
บริเวณเกาะขามในช่วงเคือนเมษายน 2539 ถึง มีนาคม 2540 พบว่าอัตราการลงเกาะของตัวอ่อนปะการังมี สูงมากในช่วงเคือนธันวาคม 2539 และมีความแปรปรวนตามเวลาสูงมากเช่นกัน (รูปที่ 19)

ความแปรปรวนตามสถานที่

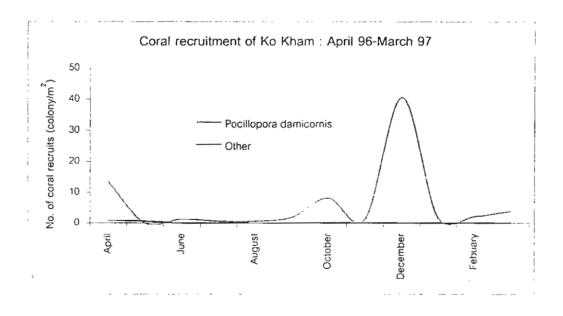
เกาะค้างคาว

จากผลการศึกษาการลงเกาะของตัวอ่อนปะการังในช่วงเคือนมีนาคม 2539 ถึง กุมภาพันธ์ 2542 พบว่าใน บริเวณที่ตื้นของสถานี C มีอัตราการลงเกาะมากที่สุด ในที่ตื้นของสถานี D และ A ก็มีอัตราการลงเกาะของตัวอ่อน ปะการังมาก (รูปที่ 20)

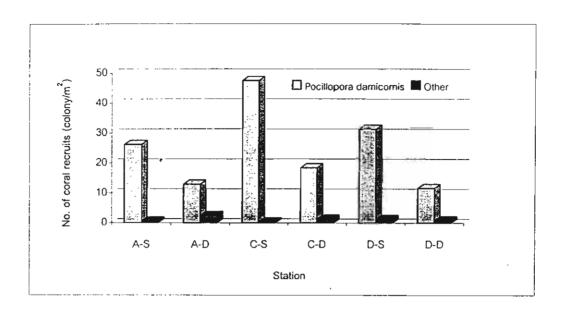
เกาะนก

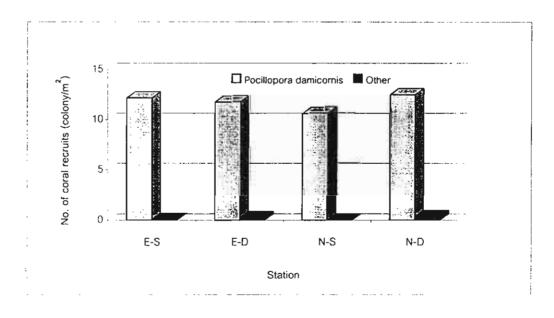

อัตราการถงเกาะขอตัวอ่อนปะการังในแต่ละสถานีที่ศึกษาในช่วงเดือนเมษายน 2540 ถึง ธันวาคม 2541 ทั้ง ในที่ตื้นและที่ลึกไม่มีความแตกต่างกันมาก (รูปที่ 21)

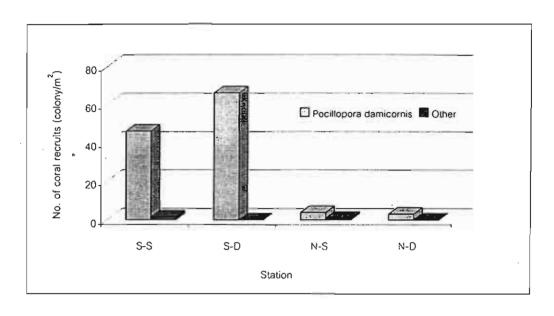
<u>เกาะขาม</u>

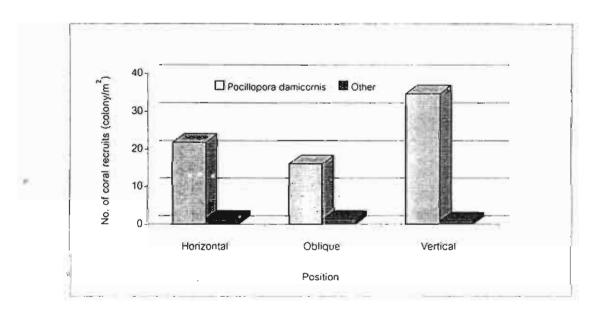

อัตราการลงเกาะของตัวอ่อนปะการังในช่วงเคือนเมษายน 2539 ถึง มีนาคม 2540 มีความแตกต่างกันมาก ในแต่ละสถานีที่ศึกษา โดยพบว่าบริเวณที่ลึกของสถานี S มีอัตราการลงเกาะของตัวอ่อนปะการังมากที่สุด ใน บริเวณที่คื้นของสถานี S ก็มีอัตราการลงเกาะมากเช่นกัน อัตราการลงเกาะของตัวอ่อนปะการังบริเวณสถานี S มีค่า มวกกว่าสถานี N (รูปที่ 22)

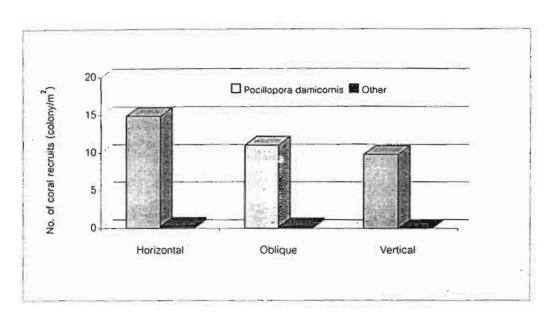
การลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องในตำแหน่งการวางที่แตกต่างกัน


อัตราการลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องในดำแหน่งการวางที่แตกต่างกันจากบริเวณเกาะ ค้างคาวมีความชัคเจนมาก โดยมีแนวโน้มว่าตัวอ่อนปะการังลงเกาะมากที่สุดบนแผ่นกระเบื้องที่วางในแนวคิ่ง รอง ลงมาคือ ในแนวนอน และ แนวเอียง 45 องศา ตามลำคับ (รูปที่ 23) อย่างไรก็ตามจากข้อมูลบริเวณเกาะนกพบว่าตัว อ่อนปะการังลงเกาะมากที่สุดบนแผ่นกระเบื้องที่วางในแนวนอน รองลงมาคือ ในแนวเอียง 45 องศา และ แนวคิ่ง ตามลำคับ (รูปที่24) สำหรับที่บริเวณเกาะขาม พบว่าตัวอ่อนปะการังลงเกาะมากที่สุดบนแผ่นกระเบื้องที่วางใน แนวคิ่งเช่นเดียวกันกับเกาะค้างคาวแต่อัตราการลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องที่วางในแนวนอนและ

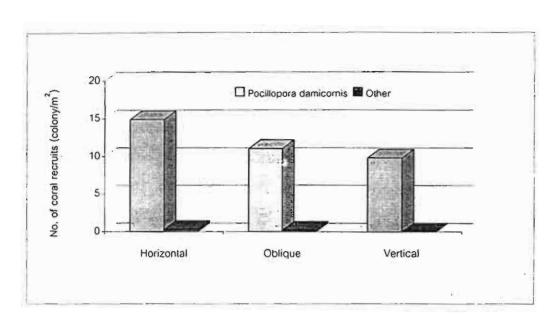

รูปที่ 18. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องระหว่างเคือนเมษายน 2540 ถึง ธันวาคม 2541 บริเวณเกาะนก

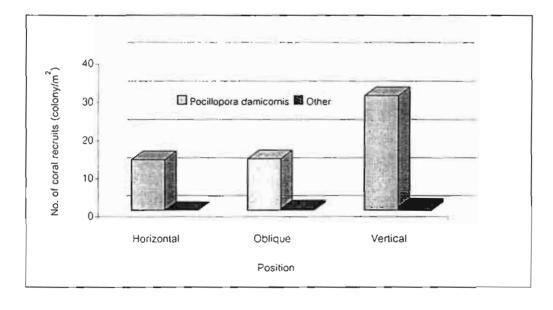

รู<u>ปที่ 19</u>. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องระหว่างเคือนเมษายน 2539 ถึง มีนาคม 2540 บริเวณเกาะขาม


รูปที่ 20. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื่องในสถานีที่แตกต่างกัน บริเวณเกาะค้างคาว


รู<u>ปที่ 21</u>. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในสถานีที่แตกต่างกัน บริเวณเกาะนก


<u>รูปที่ 22</u>. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในสถานีที่แตกต่างกัน บริเวณเกาะขาม


รูปที่ 23. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในตำแหน่งการวางแผ่นกระเบื้องที่แตกต่างกัน บริเวณเกาะก้างกาว


รูปที่ 24. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในตำแหน่งการวางแผ่นกระเบื้องที่แตกต่างกัน บริเวณเกาะนก

รู<u>ปที่ 25</u>. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในตำแหน่งการวางแผ่นกระเบื้องที่แตกต่างกัน บริเวณเกาะขาม

รูปที่ 24. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในตำแหน่งการวางแผ่นกระเบื้องที่แตกต่างกัน บริเวณเกาะนก

รูปที่ 25. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องในตำแหน่งการวางแผ่นกระเบื้องที่แตกต่างกัน บริเวณเกาะขาม

ในแนวเอียง 45 องศา ไม่มีความแตกต่างกัน (รูปที่ 25) เมื่อเปรียบเทียบอัตราการลงเกาะของตัวอ่อนปะการังบน แผ่นกระเบื้องที่วางในแนวนอนและแนวเอียง 45 องศาทั้งด้านบนและด้านของแผ่นกระเบื้อง พบตัวอ่อนปะการังลง เกาะมากที่สุดบนด้านล่างของแผ่นกระเบื้องที่วางในนอนของเกาะด้างคาวและเกาะนก (รูปที่ 26-27) แต่ตัวอ่อน ปะการังลงเกาะมากบนด้านล่างของแผ่นกระเบื้องที่วางในแนวเอียง 45 องศาของเกาะขาม (รูปที่ 28)

การลงเกาะของสิ่งมีชีวิตอื่นๆบนแผ่นกระเบื้อง

สิ่งมีชีวิตที่ลงเกาะบนแผ่นกระเบื้องมากที่สุดคือ สาหร่าย รองลงมาคือ bryozoa นอกจากนั้นยังมี barnacle, polychaete tube, oyster, ฟองน้ำ และ tunicate (ภาพที่ 24-31) บริเวณที่มีการลงเกาะของสาหร่ายมากจะมีการสะสม ของตะกอนมากด้วย

อัตราการลงเกาะของสิ่งมีชีวิตชนิดอื่นๆบนแผ่นกระเบื้องและเปอร์เซ็นต์ของพื้นที่ว่างบนแผ่นกระเบื้องมี ความแปรปรวนตามเวลา สถานที่ และคำแหน่งการวางของแผ่นกระเบื้อง (รูปที่ 29-32)

อัตราการลงเกาะของสิ่งมีชีวิตชนิดอื่นๆบนแผ่นกระเบื้องและเปอร์เซ็นต์ของพื้นที่ว่างบนแผ่นกระเบื้อง จาก long-term experiment (6 เคือน และ 1 ปี) ก็มีความแปรปรวนมากตามเวลา สถานที่ และตำแหน่งการวางของ แผ่นกระเบื้องเช่นกัน (รูปที่ 33-40)

อย่างไรก็ตามจะพบว่ายังมีพื้นที่ว่างบนแผ่นกระเบื้องสำหรับให้ตัวอ่อนปะการังลงเกาะมากในระดับหนึ่ง แม้ว่าจะพบการปกคลุมตัวอ่อนปะการังที่ลงเกาะใหม่โดยสาหร่าย bryozoa และสิ่งมีชีวิคอื่นๆด้วยก็ตาม

Caging Experiment

การทคลองในภาคสนามเพื่อวิเคราะห์อิทธิพลของเม่นทะเล Diadema setosum และปลา damselfish โดย เฉพาะ Hemiglyphidodon plagiometapon ที่มีต่ออัตราการลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องโดยใช้ caging experiments ข้อมูลที่มีความซับซ้อนและแปรปรวนมาก รูปที่ 41 สรุปภาพรวมของการทดลองจากบริเวณ สถานี A ของเกาะค้างคาว โดยพบว่าบริเวณที่มีเฉพาะปลา damselfish จะมีอัตราการลงเกาะของตัวอ่อนปะการัง มากที่สุด

ปรากฏการณ์ปะการังฟอกขาวในอ่าวไทย

จากการที่เกิดปรากฏการณ์ปะการังฟอกขาวที่รุนแรงในอ่าวไทยเป็นครั้งแรก โดยพบการฟอกขาวของ ปะการังตั้งแต่เดือนเมษายน-สิงหาคม 2541 อุณหภูมิน้ำทะเลสูงขึ้นผิดปกติอย่างชัดเจน (รูปที่ 42) การเกิดปะการัง ฟอกขาวนี้มีความแปรปรวนมากตามสถานที่และชนิดของปะการัง นอกจากนี้ยังพบความแปรปรวนของความรุน แรงของการฟอกขาวปะการังในระดับประชากรและภายใน colony เดียวกันด้วย (ภาพที่ 32-51) ปะการังหลายชนิด ที่มีมีบางส่วนของ colony หรือทั้งหมดของ colony ตายในสัดส่วนที่ต่างกัน ภายหลังจากที่ส่วนของเนื้อเยื่อตาย แล้วมีการลงเกาะของสาหร่าย การปกคลุมของตะกอน และขบวนการ succession โดยกลุ่มสิ่งมีชีวิตอื่นๆ อย่างไรก็ ตามปะการังอีกหลายชนิดที่สามารถฟื้นตัวได้ภายหลังปรากฏการณ์ปะการังฟอกขาวและปะการังบางชนิดได้รับผล ในแนวเอียง 45 องศา ไม่มีความแตกต่างกัน (รูปที่ 25) เมื่อเปรียบเทียบอัตราการถงเกาะของตัวอ่อนปะการังบน แผ่นกระเบื้องที่วางในแนวนอนและแนวเอียง 45 องศาทั้งค้านบนและค้านของแผ่นกระเบื้อง พบตัวอ่อนปะการังถง เกาะมากที่สุดบนค้านล่างของแผ่นกระเบื้องที่วางในนอนของเกาะค้างคาวและเกาะนก (รูปที่ 26-27) แต่ตัวอ่อน ปะการังถงเกาะมากบนค้านล่างของแผ่นกระเบื้องที่วางในแนวเอียง 45 องศาของเกาะขาม (รูปที่ 28)

การลงเกาะของสิ่งมีชีวิตอื่นๆบนแผ่นกระเบื้อง

สิ่งมีชีวิตที่ลงเกาะบนแผ่นกระเบื้องมากที่สุดคือ สาหร่าย รองลงมาคือ bryozoa นอกจากนั้นยังมี barnacle, polychaete tube, oyster, ฟองน้ำ และ tunicate (ภาพที่ 24-31) บริเวณที่มีการลงเกาะของสาหร่ายมากจะมีการสะสม ของตะกอนมากด้วย

อัตราการลงเกาะของสิ่งมีชีวิตชนิดอื่นๆบนแผ่นกระเบื้องและเปอร์เซ็นต์ของพื้นที่ว่างบนแผ่นกระเบื้องมี ความแปรปรวนตามเวลา สถานที่ และคำแหน่งการวางของแผ่นกระเบื้อง (รูปที่ 29-32)

อัตราการลงเกาะของสิ่งมีชีวิตชนิคอื่นๆบนแผ่นกระเบื้องและเปอร์เซ็นต์ของพื้นที่ว่างบนแผ่นกระเบื้อง จาก long-term experiment (6 เคือน และ 1 ปี) ก็มีความแปรปรวนมากตามเวลา สถานที่ และตำแหน่งการวางของ แผ่นกระเบื้องเช่นกัน (รูปที่ 33-40)

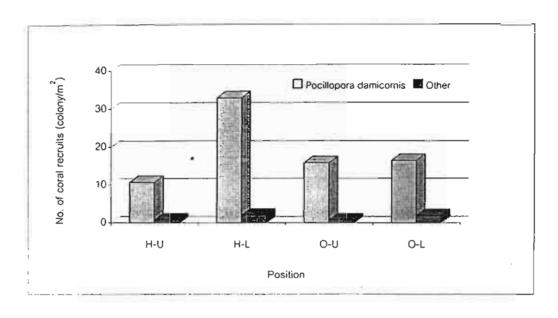
อย่างไรก็ตามจะพบว่ายังมีพื้นที่ว่างบนแผ่นกระเบื้องสำหรับให้ตัวอ่อนปะการังสงเกาะมากในระดับหนึ่ง แม้ว่าจะพบการปกคลุมตัวอ่อนปะการังที่ลงเกาะใหม่โดยสาหร่าย bryozoa และสิ่งมีชีวิตอื่นๆด้วยก็ตาม

Caging Experiment

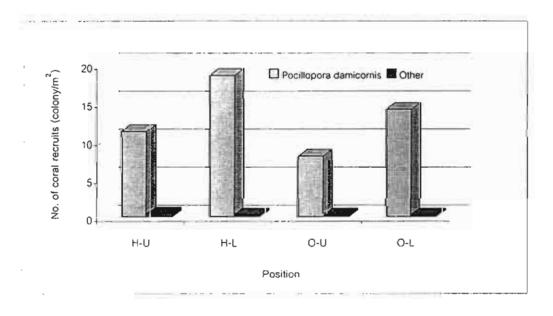
การทคลองในภาคสนามเพื่อวิเคราะห์อิทธิพลของเม่นทะเล Diadema setosum และปลา damselfish โดย เฉพาะ Hemiglyphidodon plagiometapon ที่มีต่ออัตราการลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องโดยใช้ caging experiments ข้อมูลที่มีความซับซ้อนและแปรปรวนมาก รูปที่ 41 สรุปภาพรวมของการทคลองจากบริเวณ สถานี A ของเกาะค้างคาว โดยพบว่าบริเวณที่มีเฉพาะปลา damselfish จะมีอัตราการลงเกาะของตัวอ่อนปะการัง มากที่สุด

ปรากฏการณ์ปะการังฟอกขาวในอ่าวไทย

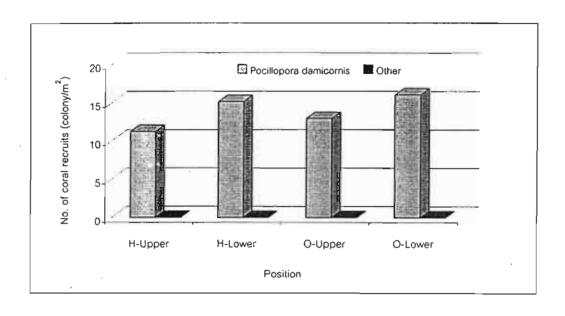
จากการที่เกิดปรากฏการณ์ปะการังฟอกขาวที่รุนแรงในอ่าวไทยเป็นครั้งแรก โดยพบการฟอกขาวของ ปะการังตั้งแต่เดือนเมษายน-สิงหาคม 2541 อุณหภูมิน้ำทะเลสูงขึ้นผิดปกติอย่างชัดเจน (รูปที่ 42) การเกิดปะการัง ฟอกขาวนี้มีความแปรปรวนมากตามสถานที่และชนิดของปะการัง นอกจากนี้ยังพบความแปรปรวนของความรุน แรงของการฟอกขาวปะการังในระดับประชากรและภายใน colony เดียวกันด้วย (ภาพที่ 32-51) ปะการังหลายชนิด ที่มีมีบางส่วนของ colony หรือทั้งหมดของ colony ตายในสัดส่วนที่ต่างกัน ภายหลังจากที่ส่วนของเนื้อเยื่อตาย แล้วมีการลงเกาะของสาหร่าย การปกคลุมของตะกอน และขบวนการ succession โดยกลุ่มสิ่งมีชีวิตอื่นๆ อย่างไรก็ ตามปะการังอีกหลายชนิดที่สามารถฟื้นตัวได้ภายหลังปรากฏการณ์ปะการังฟอกขาวและปะการังบางชนิดได้รับผล กระทบน้อยมากจากปรากฏการณ์นี้ ตารางที่ 1 สรุปผลความทนทานของปะการังชนิดต่างๆต่อปรากฏการณ์ ปะการังฟอกขาวที่เกิดขึ้น

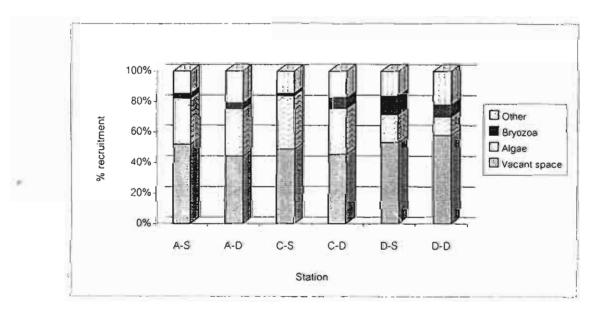

ผลกระทบของปรากฏการณ์ปะการังฟอกขาวต่อ juvenile colony

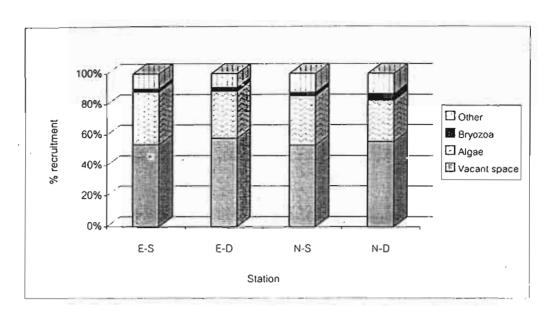
Juvenile colony ของปะการังแต่ละชนิดมีการฟอกชาวในระดับที่แตกต่างกันและมีความแปรปรวนตาม สถานที่ด้วย ชนิดที่มีการฟอกขาวมากได้แก่ Pocillopora damicornis, Acropora sp., Porites lutea, Goniastrea sp., Stylocoeniella armata, Psammocora contigua, Symphyllia sp., Montipora sp., Hydnophora exesa และ Favites abdita (ภาพที่ 52-57, รูปที่ 43-45)

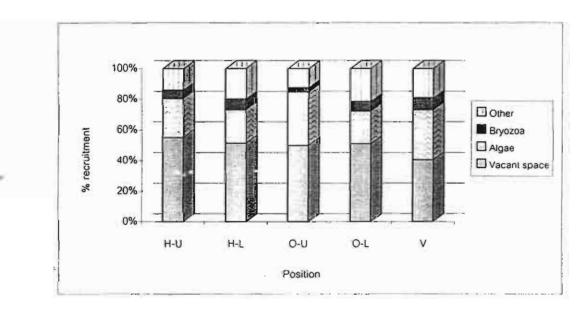

ภายหลังจากการฟอกขาวของ juvenile colony พบว่า juvenile colony เหล่านั้นมีอัตราการตายที่แตกต่างกัน และมีความแปรปรวนมากตามสถานที่ด้วย juvenile colony ชนิคที่อัตราการตายสูงอย่างชัดเจนคือ *Pocillopora* damicornis และ Acropora sp. (รูปที่ 46-48)

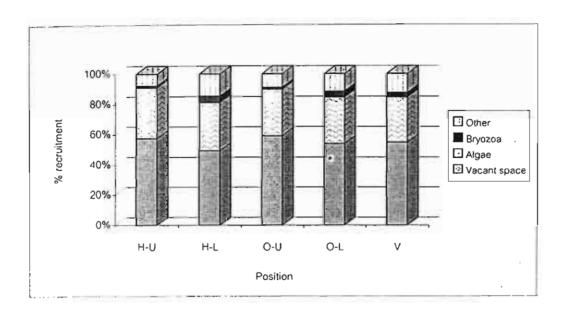
ผลกระทบของปรากฏการณ์ปะการังฟอกขาวต่อตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้อง

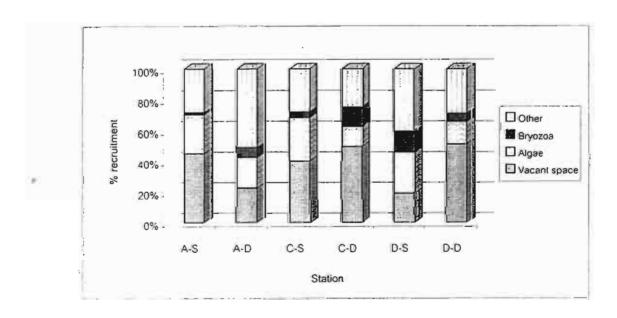

ในช่วงที่มีปรากฏการณ์ปะการังฟอกขาวเกิดขึ้นพบว่าตัวอ่อนปะการังที่ลงเกาะใหม่บนแผ่นกระเบื้องที่ทำ การทดลองในภาคสนาม (settlement plate experiment) ก็มีการฟอกขาวด้วย (ภาพที่ 58) อัตราการฟอกขาวของตัว อ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องมีความแปรปรวรตามช่วงเวลาและสถานที่อย่างชัดเจนและมีอัตราการตาย ภายหลังจากการฟอกขาวในระดับที่แตกต่างกัน (รูปที่ 49-50) นอกจากนี้ยังพบว่าอัตราการลงเกาะของตัวอ่อน ปะการังบนแผ่นกระเบื้องในช่วงที่มีปรากฏการณ์ปะการังฟอกขาวมีน้อยมากแต่พบตัวอ่อนปะการัง unknown species ซึ่งเป็น ahematypic coral ลงเกาะมากขึ้นในช่วงเวลาดังกล่าว (ภาพที่ 59)

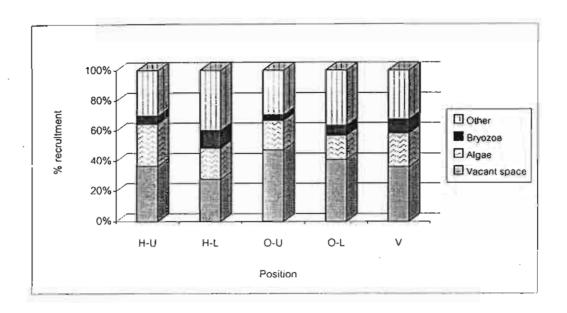

รู<u>ปที่ 26</u>. จำนวนตัวอ่อนปะการังที่ลงเกาะ ด้านบน-ด้านล่าง ของแผ่นกระเบื้อง ในตำแหน่งการวางที่แตกต่างกัน บริเวณเกาะด้างคาว

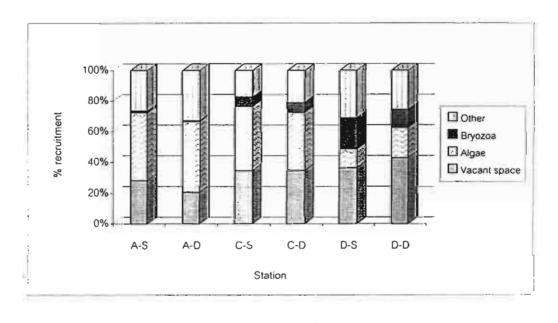

รูปที่ <u>27</u> จำนวนตัวอ่อนปะการังที่ลงเกาะ ด้านบน-ด้านล่าง ของแผ่นกระเบื้อง ในตำแหน่งการวางที่แตกต่างกัน บริเวณเกาะนก

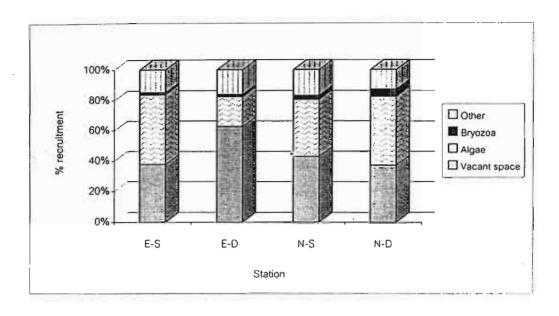

รูปที่ 28. จำนวนตัวอ่อนปะการังที่ลงเกาะ ด้านบน-ด้านล่าง ของแผ่นกระเบื้อง ในตำแหน่งการวางที่แตกต่างกัน บริเวณเกาะขาม

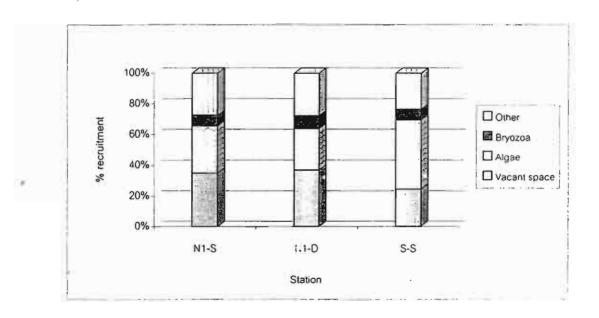

รู<u>ปที่ 29</u>. อัตราการลงเภาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะค้างคาว : เปรียบเทียบในแต่ละสถานี

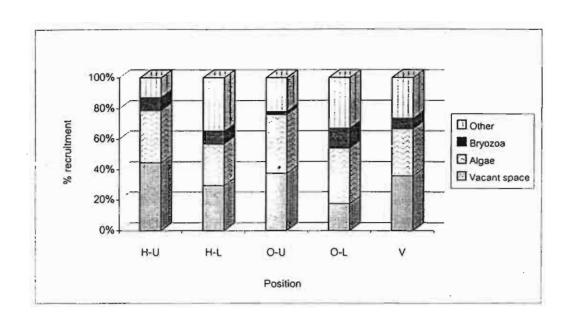

<u>รูปที่ 30</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะนก : เปรียบเทียบในแต่ละสถานี

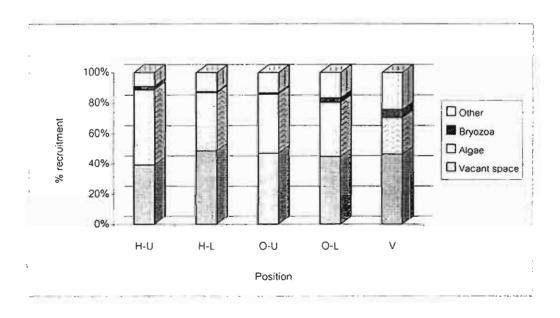

รูปที่ 31. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะก้างกาว : เปรียบเทียบตำแหน่งการวาง แผ่นกระเบื้อง


รู<u>ปที่ 32</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะนก : เปรียบเทียบตำแหน่งการวาง แผ่นกระเบื้อง

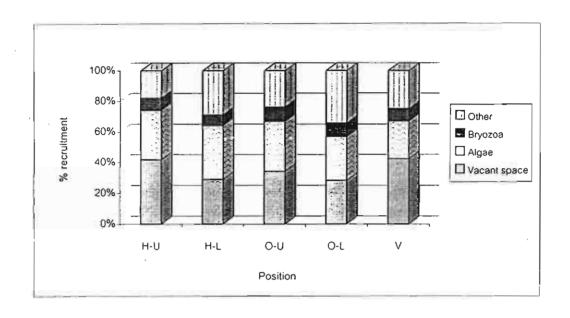

ร<u>ูปที่ 33</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะค้างคาว : เปรียบเทียบในแต่ละสถานี (Long-term 6 เคือน)


รูปที่ 34. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะค้างคาว : เปรียบเทียบดำแหน่งการวาง แผ่นกระเบื้อง (Long-term 6 เดือน)

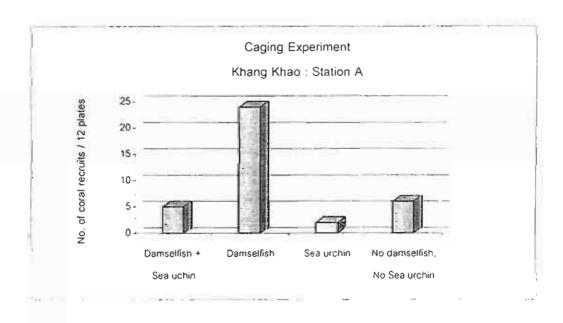

รูปที่ 35. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะค้างคาว : เปรียบเทียบในแต่ละสถานี (Long-term 1 ปี)


ร<u>ูปที่ 36</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะนก : เปรียบเทียบในแต่ละสถานี (Long-term 1 ปี)

ร<u>ูปที่ 37</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะขาม : เปรียบเทียบในแต่ละสถานี (Long-term)

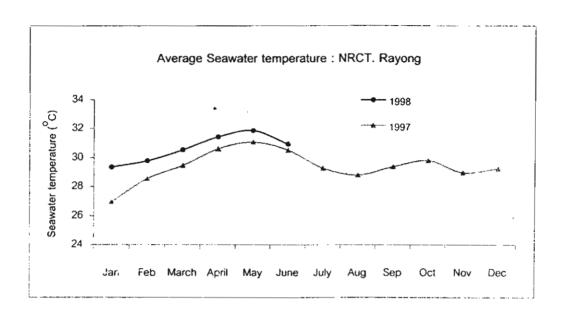


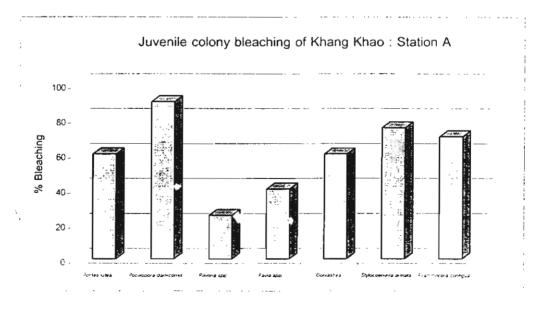
รู<u>ปที่ 38</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะค้างคาว : เปรียบเทียบตำแหน่งการวาง แผ่นกระเบื้อง (Long-term 1 ปี)



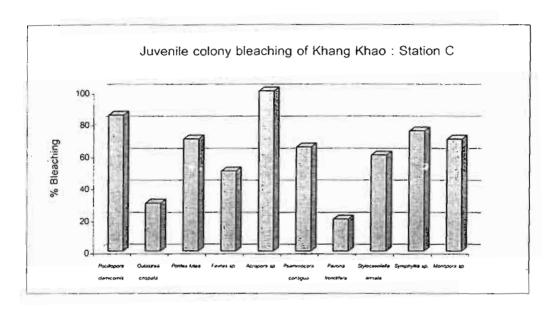
รูปที่ 39. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะนก : เปรียบเทียบตำแหน่งการวาง แผ่นกระเบื้อง (Long-term 1 ปี)

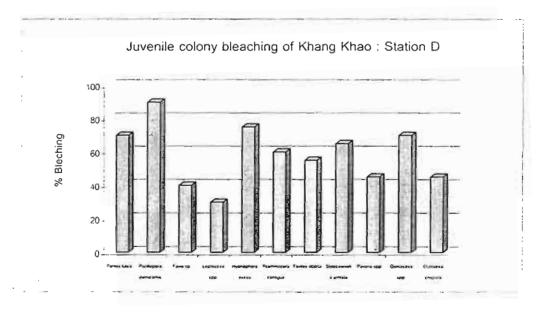
31


ร<u>ูปที่ 40</u>. อัตราการลงเกาะของสิ่งมีชีวิตบนแผ่นกระเบื้องบริเวณเกาะขาม : เปรียบเทียบตำแหน่งการวาง แผ่นกระเบื้อง (Long-term 1 ปี)

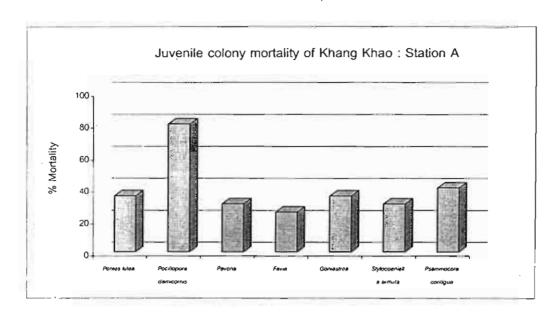

รูปที่ 41. จำนวนตัวอ่อนปะการังที่ลงเกาะบนแผ่นกระเบื้องจากการทคลองโดยวิธี cage experiment

<u>ตารางที่ 1</u>. ระคับความทนทานของปะการังชนิคต่างๆ ที่มีต่อปรากฏการณ์ปะการังฟอกขาว

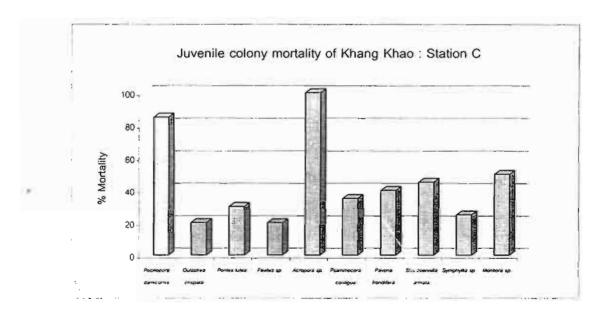

ชนิดที่ฟอกขาวมาก	ชนิดที่พ่อกชาวปานกลาง	ชนิดที่ฟอกขาวน้อย
Pocillopora damicornis	Podapacia crustacea	Goniopora dijiboutiensis
Acropora humilis	Porites lobata	Goniopora djiboutiensis
Acropora digitifera	Porites lutea	Goniopora fruticosa
Acropora formosa	Porites cylindrica	Alveopora allingi
Acropora aspera	Porites rus	
Acropora millepora	Leptoseris scabra	
Acropora hyacinthus	Gardineroseris planulata	
Acropora nasuta	Pachyseris speciosa	
Acropora florida	Pavona varians	
Montipora digitata	P-ivona decussata	,
Montipora verrucosa	Psammocora contigua	
Astreopora myriophthalma	Psammocora digitata	
Astreopora ocellata	Galaxea fascicularis	•
Astreopora listeri	Galaxea astreata	
Fungia fugites	Barabattoia amicorum	
Fungia echinata	Favia facus	
Herpolitha limax	Favia pallida	
Polyphyllia talpina .	Favites abdita	
	Goniastrea retiformis	
	Goniastrea aspera	
	Goniastrea pectinata	
	Platygyra deadalea	
	Platygyra sinensis	
	Leptoria phrygia	
	Hydnophora exesa	
	Dioploastrea heliopora	
	Leptastrea purpurea	
	Cyphastrea serailia	*
	Echinopora lamellosa	
	Symphyllia radians	
	Lobophyllia hemprichii	
	Pectinia lactuca	
	Echinophyllia aspera	
	Turbinaria peltata	
	Euphyllia fimbriata	
	Plerogyra sinuosa	


รูปที่ 42. ค่าเฉลี่ยอุณหภูมิของน้ำทะเลบริเวณจังหวัคระยอง ในช่วงปี 2540 ถึง 2541

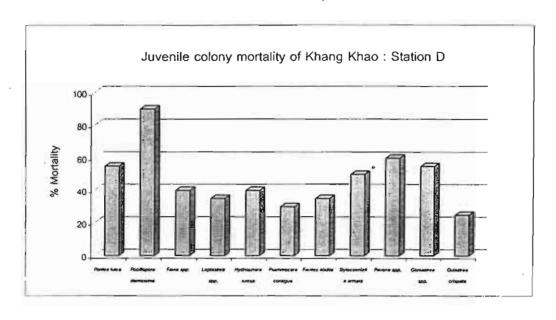
รูปที่ 43. เปอร์เซ็นต์การฟอกขาวของตัวอ่อนปะการังบริเวณเกาะค้างคาว : สถานี A

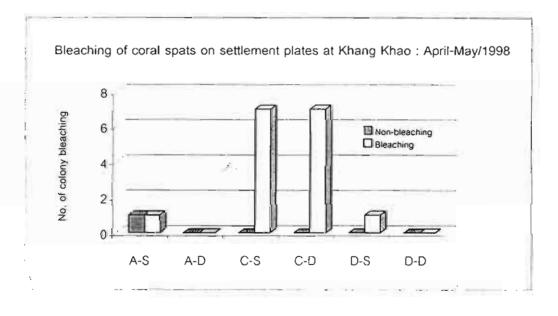


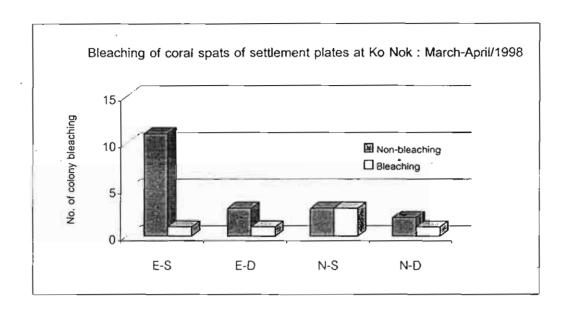
รูปที่ 44. เปอร์เซ็นต์การฟอกขาวของตัวอ่อนปะการังบริเวณเกาะถ้างคาว : สถานี C

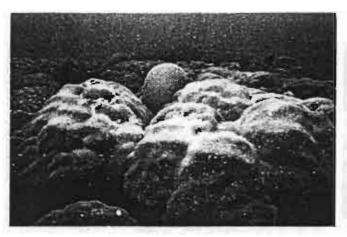


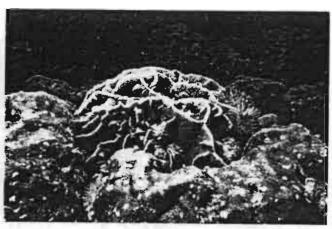
<u>รูปที่ 45</u>. เปอร์เซ็นต์การฟอกขาวของตัวอ่อนปะการังบริเวณเกาะค้างคาว : สถานี D


34


รูปที่ 46. เปอร์เซ็นต์การตายของตัวอ่อนปะการังบริเวณสถานี A เกาะค้างคาว


รู<u>ปที่ 47</u>. เปอร์เซ็นต์การตายของตัวอ่อนปะการังบริเวณสถานี C เกาะค้างคาว


รูปที่ 48. เปอร์เซ็นต์การตายของตัวอ่อนปะการังบริเวณสถานี D เกาะค้างคาว

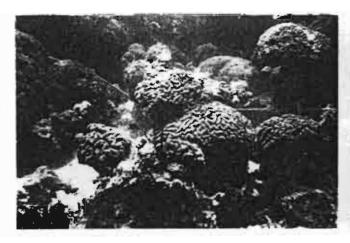

ร<u>ูปที่ 49</u>. จำนวนตัวอ่อนปะการังที่ฟอกขาวบนแผ่นกระเบื้องบริเวณแต่ละสถานี : เกาะก้างคาว (เมษายน-พฤษภาคม 2541)

รู<u>ปที่ 50</u>. จำนวนตัวอ่อนปะการังที่ฟอกชาวบนแผ่นกระเบื้องบริเวณแต่ละสถานี : เกาะนก (มีนาคม-เมษายน 2541)

กาพที่ 1. Porites lutea ปะการังชนิคเค่นบริเวณสถานี A เกาะค้างคาว

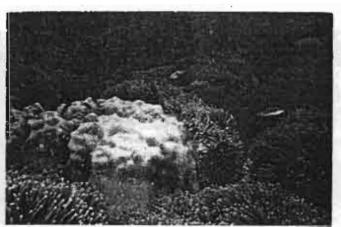
ภาพที่ 2. Porites lutea และ Pavona decussata บริเวณสถานี C เกาะค้างคาวเป็นภาพที่พบได้ทั่วไป

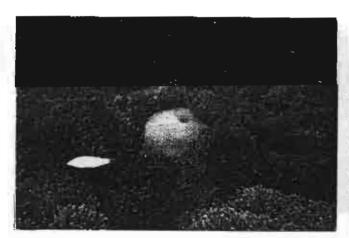
กาพที่ 3. Pavona decussata ปะการังชนิดเค่นอีกชนิดหนึ่ง จากบริเวณสถานี C เกาะค้างคาว

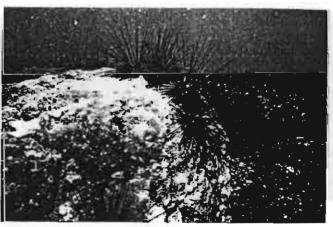

ภาพที่ 4. ปะการังในกลุ่ม faviid พบมากในบริเวณสถานี D
เกาะค้างคาว

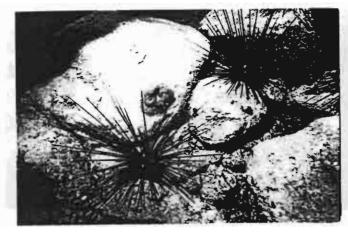
กาพที่ 5. ปะการัง Acropora sp. บนพื้นทราย สถานี E เกาะนก

กาพที่ 6. Symphyllia sp. บริเวณขอบกลุ่มปะการังสถานี E
เกาะนก


<u>ภาพที่ 7</u>. ปะการัง *Symphyllia* sp. หลาย colony บริเวณสถานี N เกาะนก


<u>ภาพที่ 8</u>. Community ของปะการัง Acropora spp. บริเวณสถานี N เกาะขาม


กาพที่ 9. Porites lutea และ Acropora sp. จากบริเวณที่คืน ของสถานี S เกาะขาม

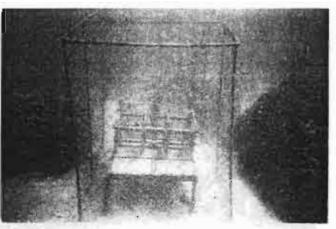

ภาพที่ 10. คอกไม้ทะเลปกคลุม colony ของ Porites lutea บริเวณสถานี N เกาะขาม

กาพที่ 11. คอกไม้ทะเลปกคลุม colony ของ Planggyra sp. บริเวณสถานี N เกาะขาม

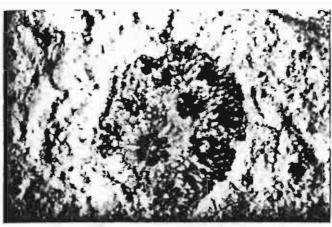
ภาพที่ 12. เม่นทะเล Diadema setosum มีประชากรหนาแน่น ในบริเวณกลุ่มปะการังเกาะค้างคาวและเกาะนก

กาพที่ 13. Juvenile colony ของ Porites lutea

ภาพที่ 14. Juvenile colony ของ Acropora sp.

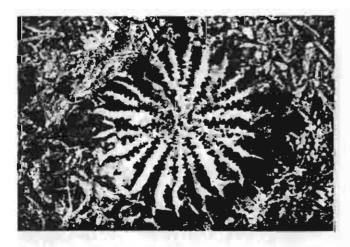

กาพที่ 15. Juvenile colony ของ Symphyllia sp.

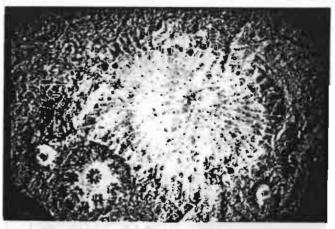
<u>ภาพที่ 16</u>. Juvenile colony ของ Favia sp., Goniastrea sp. และ
Oulastrea crispata


ภาพที่ 17. Settlement plate experiment, ฐานเหล็กรองรับแผ่น กระเบื้องขนาด 15 x 15 ซม. ซึ่งวางในแนวคิ่ง แนวนอน และแนวเฉียง 45 องศา

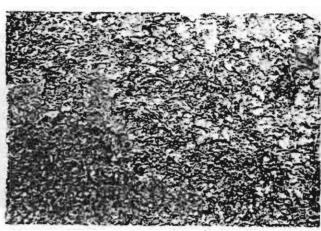
ภาพที่ 18. Caging experiment, กรงเหล็กพร้อมตาข่ายเพื่อป้องกับ ไม่ให้เม่นทะเลและปลา damself fish เข้าไปภายในได้

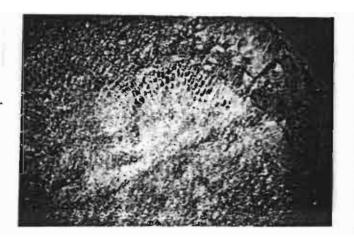

ภาพที่ 19. ตัวอ่อนปะการัง Pocillopora damicornis บนแผ่นกระเบื้อง (x40)

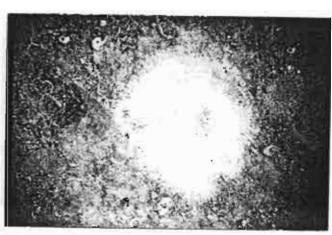

ภาพที่ 20. ตัวอ่อนปะการัง Pocillopora damicomis บนแผ่น กระเบื้องมีการปกคลุมของตะกอน (x40)


<u>ภาพที่ 21</u>. ตัวอ่อนปะการัง *Porites* sp. บนแผ่นกระเบื้อง (x10)

ภาพที่ 22. ตัวอ่อนปะการัง Plangyra sp. บนแผ่นกระเบื้อง (x4)


ภาพที่ 23. Unknown species ที่ถงเกาะบนแผ่นกระเบื้อง (x40)


ภาพที่ 24. Bryozoa และตัวอ่อนปะการัง P. damicornis บนแผ่นกระเบื้อง

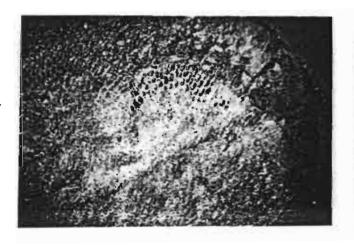

กาพที่ 25. Polychaete tube และตัวอ่อนปะการัง P. damicornis
บนแผ่นกระเบื้อง

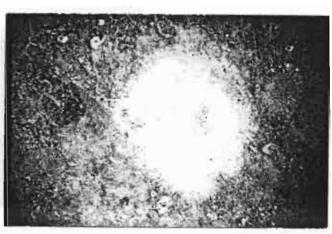
<u>ภาพที่ 26</u>. สาหร่ายและคะกอนบนแผ่นกระเบื้อง

<u>ภาพที่ 27</u>. Bryozoa บนแผ่นกระเบื้อง

ภาพที่ 28. Bryozoa บนแผ่นกระเบื้อง

ภาพที่ 29. Polychaete tube และ Bryozoa บนแผ่นกระเบื้อง


<u>ภาพที่ 30</u>. Bamacle ที่ลงเกาะบนแผ่นกระเบื้อง

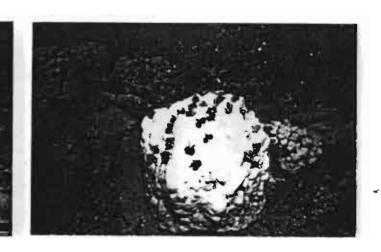

กาพที่ 25. Polychaete tube และด้วอ่อนปะการัง P. damicornis บนแผ่นกระเบื้อง

<u>ภาพที่ 26</u>. สาหร่ายและดะกอนบนแผ่นกระเบื้อง

<u>ภาพที่ 27</u>. Bryozoa บนแผ่นกระเบื้อง

ภาพที่ 28. Bryozoa บนแผ่นกระเบื้อง

กาพที่ 29. Polychaete tube และ Bryozoa บนแผ่นกระเบื้อง


กาพที่ 30. Bamacle ที่ลงเกาะบนแผ่นกระเบื้อง

<u>ภาพที่ 31</u>. หอยสองฝ่าที่ลงเกาะบนแผ่นกระเบื้อง

ภาพที่ 32. การฟอกขาวของปะการัง Porites lutea บาง colony

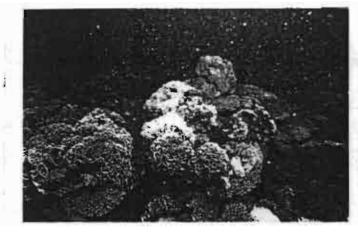
กาพที่ 34. การฟอกขาวทั้ง colony ของปะการัง Porites lutea

แต่หนอนภู่ฉัตรยังคงคำรงชีพอยู่

กาพที่ 33. การฟอกขาวบางส่วนของ colony ปะการัง Porites lutea

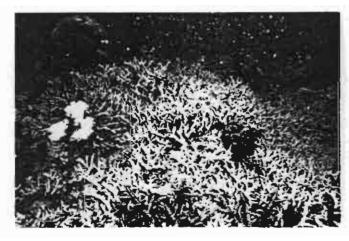
ภาพที่ 36. การฟอกชาวของปะการัง Acropora spp. และบางส่วน เริ่มตาย

กาพที่ 35. การฟอกขาวของปะการัง Acropora sp. เกือบทั้งหมด

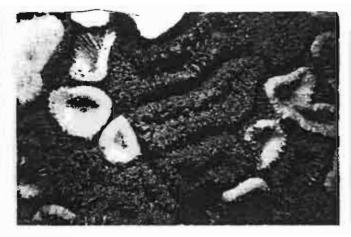


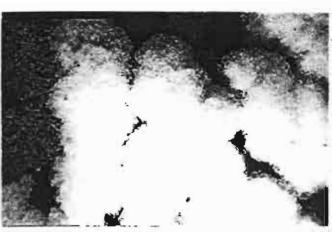
กาพที่ 37. การฟอกขาวของปะการัง Acropora spp.

และบางส่วนเริ่มตาย

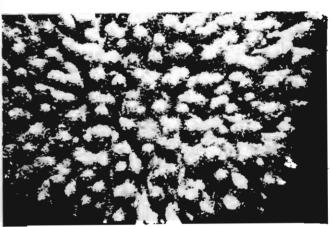

ภาพที่ 38. การพ่อกขาวของ Montipora sp. แค่ยังเห็นเป็นสีชมพู

<u>กาพที่ 39</u>. ปะการังชนิค *Pavona* sp. มิสีซีคลงในช่วงที่ มีการฟอกขาว

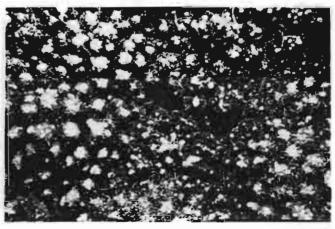

ภาพที่ 40. การฟอกขาวและการตายเป็นบางส่วนของ colony ปะการัง Leptoria phrygia

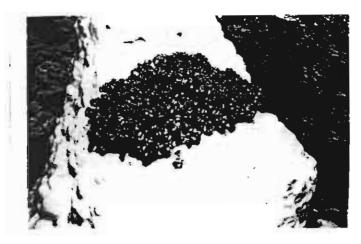

ภาพที่ 41. การฟอกขาวของปะการัง Montipora digitata และบางส่วนเริ่มดาย

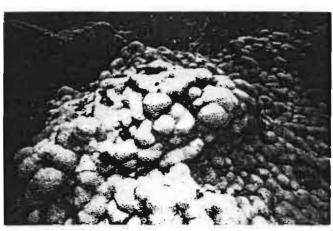
ภาพที่ 42. การฟอกขาวของปะการังเห็ค Fungia spp.


ภาพที่ 43. การฟอกขาวของปะการัง Lobophyllia hemprichii และบางส่วนของ colony ตาย

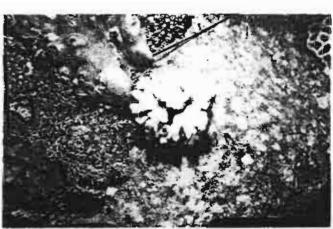
ภาพที่ 44. การฟอกขาวของปะการัง Plerogyra sinuosa


ภาพที่ 45. การฟอกขาวของปะการัง Acropora spp.
และบางส่วนเริ่มตาย

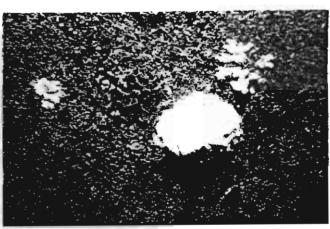

ภาพที่ 46. การตายของปะการัง Acropora sp. ภายหลังจากการ ฟอกขาวมีสาหร่ายและตะกอนปกคลุม

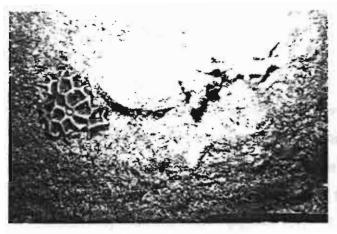

ภาพที่ 47. การตายของปะการัง Acropora sp. ภายหลังจากการ ฟอกขาวมีสาหร่ายและตะกอนปกคลุม

ภาพที่ 48. ปะการัง Acropora sp. ตาย ภายหลังจากการพ่อกขาว มีสาหร่ายและฟองน้ำปกคลุม

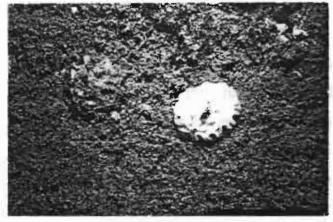

<u>ภาพที่ 49</u>. Colony ของ *Pocillopora damicornis* ตายและมีสาหร่าย ขึ้นปกคลุมอยู่บน colony ของ *Porites lutea* ที่ยังฟอกขาว

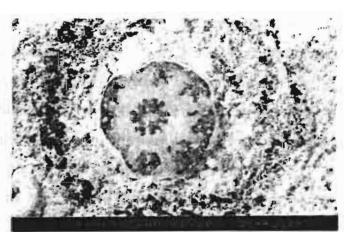
<u>ภาพที่ 50</u>. การฟอกขาวของพรมทะเล


ภาพที่ 51. การฟอกชาวของคอกไม้ทะเล มีสีชมพูตรงบริเวณ ปลายหนวค

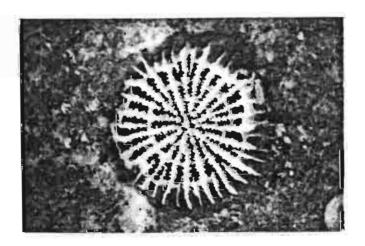

ภาพที่ 52. การพ่อกขาวของ juvenile colony ของ P.damicornis

ภาพที่ 53. การฟอกชาวของ juvenile colony ของ Favia sp.


ภาพที่ 54. การฟอกขาวของ juvenile colony ของ Favia sp. และ ปะการังอ่อน


<u>ภาพที่ 55</u>. การฟอกชาวเป็นบาง colony ของ juvenile colony ของ Favites abdita

กาพที่ 56. การฟอกขาวของ juvenile colony ของ Favites abdita
และการปกคลุมของสาหร่ายและตะกอน



กาพที่ 57. Juvenile colony ของ Favia sp. พ่อกขาว และอีก colony หนึ่งคายมีสาหร่ายและคะกอนปกคลุม

ภาพที่ 58. การฟอกขาวของตัวอ่อนปะการัง Pocillopora

damicornis บนแผ่นกระเบื้อง

ภาพที่ 59. Unknown species บนแผ่นกระเบื้องมีจำนวนมากในช่วงที่มีการฟอกขาวของปะการัง

บทวิจารณ์

บริเวณที่ศึกษาในครั้งนี้ทุกแห่ง (เกาะก้างกาว เกาะนก และเกาะขาม) จัดเป็นกลุ่มปะการัง (coral community) ที่ยังไม่ได้มีการพัฒนาเป็นแนวปะการัง (coral reef) อย่างสมบูรณ์ โดยภาพรวมแล้ว Porites lutea เป็น ปะการังชนิดที่เค่นที่สุด จำนวนชนิดของปะการังที่พบมีจำนวนน้อยเหมือนกับแนวปะการังในบริเวณเส้นรุ้งสูงๆ (Yeemin, 1991; Harriott et al., 1994) แต่จะมีโครงสร้าง community ไม่ซับซ้อนเหมือนกับบริเวณอื่นๆของโลกที่มี รายงานการศึกษามาก่อน (เช่น Bull, 1982; Done, 1982; Pichon & Morrissey, 1981; Rogers et al, 1984) บริเวณที่ศึกษามี มากเมื่อเปรียบเทียบกับระบบนิเวศแนวปะการังโดยทั่วไป การปกกลุมพื้นที่ของพรมทะเลและดอกไม้ทะเลมีมาก และแสดงการแก่งแย่งพื้นที่กับปะการังอย่างชัดเจน ความสัมพันธ์ระหว่างปัจจัยสิ่งแวดล้อมและการเพิ่มของ จำนวนประชากรของพรมทะเลและดอกไม้ทะเล ตลอดจนกวามสัมพันธ์แบบแก่งแย่งกันกับปะการัง และบทบาท ของสิ่งมีชีวิตเหล่านี้ต่อระบบนิเวศแนวปะการังในระยะยาวเป็นหัวข้อการศึกษาวิจัยที่สำคัญในอนาคต

จำนวนชนิดของ juvenile colony ของปะการังที่พบในการศึกษานี้มีน้อยและมีความหนาแน่นของประชา กรต่ำเมื่อเปรียบเทียบกับรายงานการศึกษาจากต่างประเทศ (Bak & Engle, 1979) ซึ่งเป็นข้อมูลพื้นฐานที่สำคัญใน การพิจารณาเกี่ยวกับการจัดการระบบนิเวศแนวปะการังในบริเวณนี้ ถ้าเกิดการเสื่อมโทรมของกลุ่มปะการังด้วย สาเหตุจากการทำลายของมนุษย์หรือจากปัจจัยธรรมชาติเองก็ตามจะทำให้อัตราการพื้นตัวของกลุ่มปะการังบริเวณ นี้ช้า เนื่องจากมีจำนวน juvenile colony ที่จะเจริญเติบโตขึ้นมาแทนที่ประชากรเดิมอยู่จำนวนน้อย

องค์ประกอบของชนิด juvenile colony ของปะการังที่พบมีความสัมพันธ์กับ โครงสร้าง community ปะการังในระดับหนึ่ง แต่ juvenile colony ของปะการังหลายชนิดที่พบมีจำนวนน้อยเมื่อเปรียบเทียบกับจำนวน colony ใหญ่ที่มีอยู่เดิม ปัจจัยสิ่งแวดล้อมที่สำคัญที่ควบคุมการแพร่กระจายและอัตราการตายของ juvenile colony ในบริเวณที่ศึกษาได้แก่ ตำแหน่งของพื้น (substrate) ที่ว่างให้ตัวอ่อนปะการังลงเกาะ มุมเอียงของพื้น ปริมาณการ ตกตะกอน grazing activity ของเม่นทะเล Diadema setosum และอิทธิพลของ territory ของปลา damselfish (เช่น Sammarco, 1980; Sammarco & Carleton, 1981; Sammarco & Williams, 1982; Hay & Taylor, 1985; Andrews, 1993; Hixon & Brostoff, 1996; Miller & Hay, 1996) โดยเฉพาะในกรณีของเกาะนก จำนวน juvenile colony ที่พบ มีน้อยมากซึ่งสัมพันธ์กับจำนวนประชากรของเม่นทะเล D. setosum ที่มีอยู่หนาแน่นมาก (มากกว่า 30 ตัว/ตาราง เมตร)

การลงเกาะของตัวอ่อนปะการังบนแผ่นกระเบื้องจากการทดลองในภาคสนาม Settlement plate experiment แสดงอย่างชัดเจนว่าอัตราการลงเกาะของตัวอ่อนปะการังในอ่าวไทยตอนในมีต่ำมากเมื่อเปรียบเทียบกับรายงาน การศึกษาจากแนวปะการังต่างๆทั่วโลก (Roger et al., 1984; Baggett & Bright, 1985; Fitzhardinge, 1985, 1988; Babcock, 1988; Harriott & Risk, 1988; Sammarco & Andrew, 1988; Fisk & Harriot, 1990; Hodgson, 1990; Sammarco, 1991; Smith, 1992; Maida et al., 1994; Harriott & Bank, 1995; Dustan & Johnson, 1998) มีเพียงตัว อ่อนปะการัง Pocillopora damicornis เท่านั้นที่ลงเกาะบนแผ่นกระเบื้องเป็นจำนวนมาก แต่ตัวอ่อนปะการังชนิด อื่นๆที่จัดเป็นชนิดเด่นทั้งในแง่ของจำนวน juvenile colony และจำนวน colony ใหญ่ในธรรมชาติลงเกาะบนแผ่น

กระเบื้องน้อยมาก ซึ่งอาจมีปัจจัยจำกัด คือ การมีจำนวนตัวอ่อนปะการัง (planula larvae) ที่อยู่ในมวลน้ำมีน้อย เนื่องจากอิทธิพลของทิศทางกระแสน้ำ และจำนวนแหล่งที่มีของตัวอ่อนปะการังมีน้อย ตัวอ่อนปะการังที่ลงเกาะ ส่วนมากจึงเป็น Pocillopora damicornis ซึ่งจัดเป็น brooded species และปล่อยตัวอ่อนที่พร้อมจะลงเกาะได้เลย ปะการังชนิดที่เค่นที่สุด คือ Porites lutea ซึ่งเป็นปะการังทีมี colony แบบเยกเพศ และมีการปฏิสนธิภายในน้ำทะเล นั้น พบว่ามีตัวอ่อนปะการังลงเกาะบนแผ่นกระเบื้องน้อยมาก grazing activity ของเม่นทะเล Diadema setosum และ territory ของปลา damselfish เป็นปัจจัยสำคัญที่มีบทบาทต่อการลงเกาะของตัวอ่อนปะการังในระดับ small scale ซึ่งต้องมีการศึกษาในรายละเอียดเพิ่มเติมอีกมากเพราะความสัมพันธ์เหล่านี้มีความซับซ้อนและมีความแปร ปรวนมากตามเวลาและสถานที่

การเกิดปรากฏการณ์ปะการังฟอกขาวที่รุนแรงขึ้นเป็นครั้งแรกในอ่าวไทยมีผลกระทบมากต่อโครงสร้าง ของ community ปะการังเหมือนกับบริเวณอื่นๆที่มีรายงานมาก่อนหน้านี้ (Brown, 1987,1997a,b; Glynn,1988, 1993; Brown & Suharsono, 1990; Szmant & Gassman, 1990; Buddemeier & Fautin, 1993; Meesters & Bak, 1993; Edmunds, 1994; Gorean & Hayes, 1994; Brown et al., 1996; Dunne & Brown, 1996; Le Tissier & Brown, 1996) นอกจากผลกระทบที่มีต่อ colony ใหญ่แล้วยังมีผลกระทบต่อ juvenile colony และอัตราการลงเกาะของตัว อ่อนปะการังค้วยถ้าปรากฏการณ์ปะการังฟอกขาวเกิดขึ้นบ่อยครั้งและรุนแรงมากขึ้นในอนาคต ผลที่จะตามมา (ในกรณีที่ความสัมพันธ์ระหว่างปะการังกับ zooxanthellae ไม่มีการปรับตัวได้อย่างเพียงพอ) คือ อาจทำให้เกิดการ เปลี่ยนแปลงองค์ประกอบของชนิดปะการังและกลุ่มสิ่งมีชีวิตอื่นๆในระบบนิเวศแนวปะการังในอ่าวไทย อัตราการ พื้นตัวของกลุ่มปะการังในอ่าวไทยภายหลังจากการเกิดการฟอกขาวอาจช้ากว่าที่มีรายงานจากบริเวณอื่นๆของโลก เนื่องจากอัตราการลงเกาะของตัวอ่อนปะการังในอ่าวไทยค่ำกว่าบริเวณอื่นมากนอกจากนี้จำนวนประชากรของเม่น ทะเลคงเพิ่มจำนวนมากขึ้นและส่งผลทำให้อัตราการกร่อนของปะการัง (biocrosion) เพิ่มมากขึ้นด้วย (Glynn et al.,1987; Bak, 1990; Maclanahan & Shafir, 1990)

การศึกษาวิจัยอย่างต่อเนื่องเพื่อศึกษาการเปลี่ยนแปลงในระยะยาว (long term) ของ community ปะการังใน อ่าวไทยมีความสำคัญมาก เพื่อความเข้าใจที่ถูกต้องเกี่ยวกับปัจจัยทางธรรมชาติและปัจจัยที่เกิดจากการรบกวนของ มนุษย์ที่ผลกระทบต่อ โครงสร้าง community ของกลุ่มปะการังตลอดจนแนวโน้มของการพัฒนาแนวปะการัง (coral reef development) ในบริเวณอ่าวไทยตอนใน (Connell, 1978,1985; Pearson, 1981; Porter et al., 1982; Rylarsdam, 1983; Connell & Keough, 1985; Hughes & Jackson,1985; Hughes, 1989; Carpenter,1990; Babcock, 1991; Done et al., 1991; Done,1992; Knowlton, 1992; Dollar & Tribble, 1993; Jokiel et al., 1993; Hunter & Evans, 1995; Connell et al., 1997) ซึ่งวิจัยความหลากหลายทางชีวภาพในทะเลให้ความสนใจและมุ่งเน้นศึกษาในประเด็นเหล่านี้

ผลการศึกษาจากโครงการวิจัยนี้แสคงให้ทราบถึงความสำคัญของข้อมูลเกี่ยวกับการลงเกาะของตัวอ่อน ปะการังซึ่งเป็นข้อมูลพื้นฐานทางวิชาการที่สำคัญมากสำหรับการประเมินผลกระทบของสิ่งแวคล้อมที่มีต่อระบบ นิเวศแนวปะการังได้อย่างถูกต้องและยังใช้เป็นแนวทางในการอนุรักษ์และวางแผนการจัดการแนวปะการังได้อย่าง มีประสิทธิภาพและถูกต้องมากขึ้นอีกด้วย การฟื้นฟูตัวเองจากการถูกรบกวนทั้งโดยธรรมชาติและกิจกรรมของ มนุษย์ของกลุ่มปะการังในอ่าวไทยตอนในคงต้องใช้เวลานานมากด้วยข้อจำกัดของอัตราการลงเกาะของตัวอ่อน ปะการังซึ่งมีอยู่จำนวนน้อยทั้งชนิดและปริมาณ มีเพียงปะการังบางชนิดเช่น Pocillopora damicornis ซึ่งอาจจัด เป็น opportunistic species เท่านั้นที่มีการเปลี่ยนแปลงของโครงสร้างประชากรอย่างชัดเจน แต่ปะการังที่เป็นชนิด เค่นอื่นๆ มีการเปลี่ยนแปลงโครงสร้างประชากรที่ต้องใช้ระยะเวลายาวนาน ข้อมูลการลงเกาะของตัวอ่อนปะการัง จากโครงการวิจัยนี้ยังสามารถนำไปใช้ในการอธิบายชีววิทยาการสืบพันธุ์ของปะการังในบริเวณอ่าวไทยตลอดจน กระบวนการคงสภาพของกลุ่มปะการังในบริเวณนี้

หนังสืออ้างอิง

- Andrew, N. L. 1993. Spatial heterogeneity, sea urchin grazing, and habitat structure of reefs in temperature Australia. Ecology, 74: 292-302.
- Babcock, R. C. and A. J. Heyward. 1986. Larval development of certain gamete-spawning scleractinian corals.

 Coral Reefs, 5: 111-116.
- Babcock, R. C. 1988. Fine-scale spatial and temporal patterns in coral settlement. Proc. 6th Int. Reef Symp. Townsville, Australia, 2: 635-639.
- Babcock, R. C. 1991. Comparative demography of three species of scleracinian coral using age-and sizedependent classifications. Ecol. Monogr., 61: 225-244.
- Baggett, L.S. and T.J. Bright 1985. Coral recruitment at the East Flower Garden Reef (Northwestern Gulf of Mexico). Proc. 5th Int. Coral Reef Congr., Tahiti, 4: 379-384.
- Bak, R.P.M. 1990. Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar. Ecol. Prog. Ser., 66: 267-272.
- Bak, R. P. M. and M. S. Engel. 1979. Distribution, abundance, and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the Parent coral community. Mar. Biol., 54:341-352.
- Birkeland, C. 1977. The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proc. 3rd Int. Coral Reef Symp., Miami, 1:15-21.
- Birkeland, C., D. Rowley and R.H. Randall. 1981. Coral recruitment patterns at Guam. Prog. 4th Int. Coral Reef Symp., Manila, 2: 339-344.
- Black, N. A., R. Voellmy and A. M. Szmant. 1995. Heat shock protein induction in Montastrea faveolata and Aiptasia pallida exposed to elevated temperatures. Biol. Bull., 188: 234-240.
- Brown, B. E. 1987. Worldwide death of corals-natural cyclical events or man-made pollution. Mar. Pollut.

 Bull., 18:9-13.
- Brown, B. E. and Suharsono. 1990. Damage and recovery of coral reefs affected by El Nino related seawater warming in the Thousand Islands, Indonesia. Coral Reefs, 8: 163-170.
- Brown, B. E., R. P. Dunne and H. Chansang. 1996. Coral bleaching relative to elevated seawater temperature in the Andaman Sea (Indian Ocean) over the last 50 years. Coral Reefs, 15:151-152.
- Brown, B. E. 1997a. Adaptations of reef corals to physical environmental stress. Adv. Mar. Biol., 31: 221-299.
- Brown, B. E. 1997b. Coral bleaching: causes and consequences. Coral Reefs, 16, Suppl: S129-S138.
- Buddemeier, R. W. and W. Fautin. 1993. Coral bleaching as an adaptive mechanism-a testable hypothesis. BioSci, 43:320-326.

- Bull, G. D. 1982. Scleractinian coral communities of two inshore high island fringing reefs at Magnetic Island, North Queenland. Mar. Ecol. Prog. Ser. 7: 267-272.
- Caffey, H.M. 1985. Spatial and temporal variations in settlement and recruitment of intertidal barnacles. Ecol. Monogr., 55: 313-332.
- Carlon, D.B. and R.R. Olson. 1993. Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J. Exp. Mar. Biol. Ecol., 173: 247-263.
- Carpenter, R. C. 1990. Mass mortality of *Diadema antillarum*. 1. Long-term effects on sea urchin population dynamics and coral reef algal communities. Mar. Biol., 104: 67-77.
- Chia, F.S. 1974. Classification and adaptive significance of developmental patterns in marine invertebrates.

 Thalassia Jugoslavica, 10: 121-130.
- Clarke, K. R. 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18:117-143.
- Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science, 199: 1302-1310.
- Connell, J.H. 1985. The consequences of variation in initial settlement vs. post-settlement mortality in rocky intertidal communities. J. Exp. Mar. Biol. Ecol., 93: 11-45.
- Connell, J.H. and M.J. Keough. 1985. Disturbance and patch dynamics of subtidal marine animals on hard substrata. In "The ecology of natural disturbance and patch dynamics" eds. by S.T.A. Pickett and P.S. White, pp. 125-151. Academic Press, New York.
- Connell, J. H., T. P. Hughes and C. C. Wallace. 1997. A 30-year study of coral abundance, recruitment, and distribution at several scales in space and time. Ecol. Monogr., 67 (4): 461-488.
- Dollar, S. J. and G. W. Tribble. 1993. Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs, 12: 223-233.
- Done, T.J. 1982. Patterns in the distribution of coral communities across the central Great Barrier Reef.

 Coral Reefs, 1: 95-107.
- Done, T. J., P. K. Dayton, A. E. Dayton and R. Steger. 1991. Regional and local variability in recovery of shallow coral communities: Moorea, French Polynesia and central Great Barrier Reef. Coral Reefs, 9: 183-192.
- Done, T. J. 1992. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia, 247: 121-132.
- Dunne, R. P. and B. E. Brown. 1996. The penetration of solar UV-B radiation in shallow tropical waters and its potential biological effects on coral reefs; results from the central Indian Ocean and Andaman Sea. Mar. Ecol. Prog. Ser., 144: 109-118.

- Dunstan, P. K. and C. R. Johnson. 1998. Spatio-temporal variation in coral recruitment at different scales on Heron Reef, southern Great Barrier Reef. Coral Reefs, 17: 71-81.
- Edmunds, P. J. 1994. Evidence that reef-wide patterns of coral bleaching may be the result of the distribution of bleaching susceptible clones. Mar. Biol., 121: 137-142.
- Fadlallah, Y. H., K. W. Allen and R. A. Estudillo. 1995. Mortality of shallow reef corals in the western Arabian Gulf following aerial exposure in winter. Coral Reefs, 14:99-107.
- Fisk, D. A. and V. J. Harriott. 1990. Spatial and temporal variation in coral recruitment on the Great Barrier Reef: Implications for dispersal hypotheses. Mar. Biol., 107: 485-490.
- Fisk, D.A. and V.J.Harriott. 1993. Are understorey coral communities recruitment limited? Proc. 7th. Int. Coral Reef symp., Guam, 1: 517-520.
- Fitzhardinge, R. 1985. Spatial and temporal variability in coral recruitment in Kaneohe Bay (Oahu, Hawaii).

 Proc. 5th Int. Coral Reef Congr., Tahiti, 4: 373-377.
- Fitzhardinge, R. 1988. Coral recruitment: the importance of interspecific differences in juvenile growth and mortality. Proc. 6th Int. Coral Reef Symp. Townsville, Australia, 2: 673-678.
- Gaines, S. and J. Roughgarden. 1985. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. Nat. Acad. Sci. USA., 82: 3707-3711.
- Gleason, D. F. and G. M. Wellington. 1995. Variation in UVB sensitivity of planula larvae of the coral *Agaricia* agaricites along a depth gradient. Mar. Biol., 123: 693-703.
- Glynn, P.W., G. M. Wellington and C. Birkeland. 1978. Coral reef growth in the Galapagos, limitation by sea urchin. Science, 203: 47-49.
- Glynn, P. W. and M. W. Colgan. 1988. Defense of corals and enhancement of coral diversity by territorial dameselfish. Proc. 6th Int. Coral Reef Congr., Townsville, Australia, 2: 157-164.
- Glynn, P. W. 1988b. El Nino-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annual Review of Ecology and Systematics, 19: 309-345.
- Glynn, P. W. 1993. Coral-reef bleaching-ecological perspectives. Coral Reefs, 12: 1-17.
- Goreau, T. F. and R. L. Hayes. 1994. Coral bleaching and ocean "hot spots". Ambio, 23: 176-180.
- Gotelli, N. J. 1988. Determinants of recruitment, juvenile growth, and spatial distribution of a shallow-water gorgonian. Ecology, 69: 157-166.
- Harrigan, J.F. 1972. The planula larva of *Pocillopora damicornis*: lunar periodicity of swarming and substratum selection behavior. Ph.D. thesis, University of Hawaii, 310 pp.
- Harriott, V. J. 1983. Reproductive seasonality, settlement, and post-settlement mortality of *Pocillopora* damicornis (Linnaeus), at Lizard Island, Great Barrier Reef. Coral Reefs, 2:151-157.

- Harriott, V.J. and D. A. Fisk. 1987. A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. Mar. Ecol. Prog. Ser., 37: 201-208.
- Harriott, V.J. and D. A. Fisk. 1988. Recruitment patterns of scleractinian corals: a study of three reefs. Aust. J. Mar. Freshwater Res., 39: 409-416.
- Harriott, V. J. 1992. Recruitment patterns of scleractinian corals in an isolated sub-tropical reef system.

 Coral Reefs, 11: 215-219.
- Harriott, V. J., S. D. A. Smith and P. L. Harrison. 1994. Patterns of coral community structure of subtropical reefs in the Solitary Islands marine reserve, Eastern Australia. Mar. Ecol. Prog. Ser., 109: 67-76.
- Harriott, V. J. and S. A. Banks. 1995. Recruitment of scleractinian corals in the Solitary Islands Marine Reserve, a high latitude coral-dominated community in Eastern Australia. Mar. Ecol. Prog. Ser., 123: 155-161.
- Harrison, P. L. and C. C. Wallace. 1990. Reproduction, dispersal and recruitment of scleractinian corals. In Ecosystems of the World: Coral Reefs" ed. by Z. Dubinsky, pp. 133-207. Elsevier Amsterdam.
- Hay, M. E. and P. R. Taylor. 1985. Competition between herbivorous fishes and urchin on Caribbean reefs.

 Oecologia, 65: 591-598.
- Highsmith, R. C. 1980. Geographical patterns of coral bioerosion: a productivity hypothesis. J. Exp.M ar. Biol. Ecol., 46: 177-196.
- Hixon, M. A. and W. N. Brostoff. 1996. Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol. Monogr., 66: 67-90.
- Hodgson, G. 1990. Sediment and the settlement of larvae of the reef coral *Pocillopora damicornis*. Coral Reefs, 9:41-43.
- Hughes, T. P. and J. B. C. Jackson. 1985. Population dynamics and life histories of foliaceous coral. Ecol. Monogr., 55: 141-166.
- Hughes, T. P. 1989. Community structure and diversity of coral reefs: the role of history. Ecology, 70: 275-279.
- Hunter, C. L. and C. W. Evans. 1995. Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull. Mar. Sci., 57: 501-515.
- Jackson, J. B. C. 1984. Ecology of cryptic reef communities. III. Abundance and aggregation of encrusting organisms with particular reference to cheilostome bryozoa. J. Exp. Mar. Biol. Ecol., 75: 37-57.
- Jackson, J. B. C. 1986. Modes of dispersal of clonal benthic invertebrates: structure of local populations. Bull. Mar. Sci., 39: 588-606.
- Johnson, C. R., D. G. Muir and A. L. Reysenbach. 1991. Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Mar. Ecol. Prog.

- Ser., 74: 281-294.
- Jokiel, P. L. and S. L. Coles. 1990. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs, 8: 155-162.
- Jokiel, P. L., C. L. Hunter, S. Taguchi and L. Watari. 1993. Ecological impact of a freshwater 'reef kill' in Kaneohe Bay, Oahu, Hawaii. Coral Reefs, 12: 177-184.
- Keough, M. J. and B. J. Downes. 1982. Recruitment of marine invertebrates: the role of active larval choice and early mortality. Oecologia, 54: 348-352.
- Keough, M. J. 1983. Patterns of recruitment of sessile invertebrates in two subtidal habitats. J. Exp. Mar. Biol. Ecol., 66: 213-245.
- Keogh, M. J. 1984. The effects of patch size on the abundance of sessile marine invertebrates. Ecology, 65: 423-437.
- Keogh, M. J. and H. Chernoff. 1987. Dispersal and population variation in the bryozoan Bugula neritina. Ecology, 68: 199-210.
- Knowlton, N. 1992. Thresholds and multiple stable states in coral reef community dynamics. American Zoologist, 32: 674-679.
- Kojis, B. L. 1986. Sexual reproduction in *Acropora* (*Isopora*) species (Coelentarata: Scleractinia). 1. *A.cuneata* and *A. palifera* on Heron Island reef, Great Barrier Reef. Mar. Biol, 91: 291-309.
- Le Tissier, M. D. A., and B. E. Brown. 1996. Dynamics of solar bleaching in the intertidal reef coral *Goniastrea* aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser., 136: 235-244.
- Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology, 73: 1943-1967.
- Littler, M. M., P. R. Taylor and D. S. Littler. 1989. Complex interactions in the control of coral zonation on a Caribbean reef flat. Oecologia, 80: 331-340.
- Ludwig, J. A. and J. F. Reynolds. 1988. Statistical ecology. Wiley, New York, USA.
- MaClanahan, T. R. and S. H. Shafir. 1990. Causes and consequences of sea-urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia, 83: 362-370.
- Maida, M., J. C. Coll and P. W. Sammarco. 1994. Shedding new light on scleractinaian coral recruitment.

 J. Exp. Mar. Biol. Ecol., 180: 189-202.
- Meesters, E. H. and R. P. M. Bak. 1993. Effects of coral bleaching on tissue regeneration potential and colony survival. Mar. Ecol. Prog. Ser., 96: 189-198.
- Meesters, E. H., I. Wesseling and R. P. M. Bak. 1996. Partial mortality in three species of reef-building corals and the relation with colony mortality. Bull. Mar. Sci., 58: 838-852.
- Milicich, M. J. and P. J. Doherty. 1994. Larval supply of coral reef fish populations: magnitude and synchrony

- of replenishment to Lizard Island, Great Barrier Reef. Mar. Ecol. Prog. Ser., 110: 121-134.
- Miller, M. W. and M. E. Hay. 1996. Coral –seaweed-grazer-nutrient interactions on temperate reefs. Ecol. Monogr., 66: 323-344.
- Morse, D. E., N. Hooker, A. N. C. Morse and R. A. Jensan. 1988. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol., 116: 193-217.
- Osman, R. W., R. B. Whitlatch and R. N. Zajac. 1989. Effects of resident species on recruitment into a community: larval settlement versus post-settlement mortality in the oyster *Crassostrea virginica*. Mar. Ecol. Prog. Ser., 54: 61-73.
- Pearson, R. 1981. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser., 4: 105-122.
- Pichon, M., Morrissey, J. 1981. Benthic zonation and community structure of South Island reef, Lizard Island (Great Barrier Reef). Bull. Mar. Sci. 32: 581-593.
- Porter, J. W., J. F. Batty and G. J. Smith. 1982. Perturbation and change in coral communities. Proc. Nat. Acd. Sci., 79: 1678-1681.
- Potts, D. C. and P. K. Swart. 1984. Water temperatures as an indicator of environmental variability on a coral reef. Limnol. Oceanol., 29: 504-516
- Raimondi, P. T. 1990. Patterns, mechanisms, consequences of variability in settlement and recruitment of an intertidal barnacle. Ecol. Monogr., 60: 283-309.
- Richmond, R. H. 1987. Energetics, competency and long-distance dispersal of planula larvae of coral *Pocillopora damicornis*. Mar. Biol., 93: 527-533.
- Richmond, R. H. 1988. Competency and dispersal potential of spawned versus brooded coral planula larvae.

 Proc. 6th Int. Coral Reef Symp., Townsville, 2: 827-831.
- Richmond, R. H. and C. L. Hunter. 1990. Reproduction and recruitment of corals: comparison among the Caribbean, the Tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser., 60: 185-203.
- Rinkevich, B. 1996. Do reproduction and regeneration in damaged corals compete for energy allocation?
 Mar. Ecol. Prog. Ser., 143: 297-302.
- Rogers, C. S., H. C. Fitz, M. Gilnack, J. Beets and J. Hardin. 1984. Sleractinian coral recruitment patterns at Salt River Submarine Canyon, St. Croix, U. S. Virgin Islands. Coral Reefs, 3: 69-76.
- Rogers, C. S. 1990. Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser., 62: 185-202.
- Roughgarden, J., S. D. Gaines and S. W. Pacala. 1987. Supply side ecology: the role of physical transport processes. In "Organization of Communities: Past and Present" eds. by J. H. R. Gee & P. S. Giller, pp. 491-518. Blackwell, Oxford.

- Rylaarsdam, K. M. 1983. Life histories and abundance patterns of colonial corals on Jamaican Reefs. Mar. Ecol. Prog. Ser., 13: 249-260.
- Sammarco, P. W. 1980. *Diadema* and its relationship to coral spat mortality: grazing, competition, and biological disturbance. J. Exp. Mar. Biol. Ecol., 45: 245-272.
- Sammarco, P. W. and J. H. Carleton. 1981. Damselfish territoriality and coral community structure: reduced grazing, coral recruitment, and effects on coral spat. Proc. 4th Int. Coral Reefs Symp., Minila, 2:525-535.
- Sammarco, P. W. and A. H. Willliams. 1982. Damselfish territoriality: influence on *Diadema* distribution and implications for coral community structure. Mar. Ecol. Prog. Ser., 8:53-59.
- Sammarco, P. W. and J. C. Andrews. 1988. Localized dispersal and recruitment in Great Barrier Reef corals: the helix experiment. Science, 239: 1422-1424.
- Sammarco, P. W. 1991. Geographically specific recruitment and post-settlement mortality as influences on coral communities: the cross-shelf transplant experiment. Limnol. Oceanogr., 36: 496-514.
- Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleobiogeography and biostratigraphic implications. In "Concepts and Methods of Biostratigraphy" eds. by E. G. Kauffman & J. E. Hazel, pp. 73-108. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.
- Scheltema, R. S. 1986. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull. Mar. Sci., 39: 290-322.
- Smith, S. R. 1992. Patterns of coral recruitment and post-settlement mortality on Bermuda's reefs: comparisons to Caribbean and Pacific Reefs. Am. Zool., 32: 663-673.
- Sokal, R. R. and F. J. Rohlf. 1995. Biometry. WH Freeman and Company, New York.
- Sousa, W. P. 1984. The role of disturbance in natural communities. Ann.Rev. Ecol. Syst., 15: 353-391.
- Sudara, S., T. Yeemin and S. Amornsakchai 1994. Recruitment of scleractinian corals at Pha-Ngan Island, Gulf of Thailand: an experimental approach. In "ASEAN-Australia Third Symposium on Living Coastal Resources" eds. by Wilkinson, C. R. et al., in press. Chulalongkorn University Press, Thailand.
- Sutherland, J. P. 1990. Recruitment regulates demographic variation in a tropical intertidal barnacle. Ecology, 71: 955-972.
- Szmant, A. M. and N. J. Gassman. 1990. The effects of prolonged 'bleaching' on the tissue biomass and reproduction of the reef coral *Montastrea annularis*. Coral Reefs, 8: 217-224
- Tanner, J. E. 1996. Seasonality and lunar periodicity in the reproduction of Pocilloporid corals. Coral Reefs, 15 : 59-66.
- Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev., 25: 1-45.

- Tomascik, T. 1991. Settlement patterns of Caribbean scleractinian corals on artificial substrata along a eutrophication gradient, Barbados, West Indies. Mar. Ecol. Prog. Ser., 77: 261-269.
- Underwood, A. J. and E. J. Denley. 1984. Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In "Ecological Communities: conceptual issues and the evidence" eds. by D. R. Strong, D. Simberloff, L. G. Abele & A. Thistle, pp. 151-180. Princeton University Press, New Jersey.
- Underwood, A. J. and P. G. Fairweather. 1989. Supply-side ecology and benthic marine assemblages. Trends in Ecology and Evolution, 4: 16-20.
- Veron, J. E. N., Pichon, M. 1976. Scleractinia of Eastern Australia I. Families Thamnasteriidae, Astrocoenniidae, Pocilloporidae. Aust. Inst. Mar. Sci. Monogr. Ser. 1.
- Veron, J. E. N., Pichon, M., Wijsman-Best, M. 1977. Scleractinia of Eastern Australia II. Families Faviidae,
 Trachyphylliidae. Aust. Inst. Mar. Sci. Monogr. Ser. 3
- Veron, J. E. N., Pichon, M. 1980. Scleractinia of Eastern Australia III. Families Agariciidae, Siderastreidae, Fungiidae, Merulinidae, Mussidae, Pectinidae, Caryophylliidae Dendrophylliidae. Aust. Inst. Mar. Sci. Monogr. Ser. 4.
- Veron, J. E. N., Pichon, M. 1982. Scleractinia of Eastern Australia IV. Family Poritidae. Aust. Inst. Mar. Sci. Monogr. Ser. 5.
- Veron, J. E. N., Wallace, C.C. 1984. Scleractinia of Eastern Australia V. Family Acroporidae. Aust. Inst. Mar. Sci. Monogr. Ser. 6.
- Veron, J.E. N. 1993. A biogeographic database of hermatypic corals. Aust. Inst. Mar. Sci. Monogr. Ser. 10.
- Veron, J. E. N. 1995. Corals in space and time: the biogeography and evolution of the scleractinia. University of New South Wales Press, Sydney.
- Wallace, C. C. 1985a. Reproduction, recruitment, and fragmentation in nine sympatric species of the coral genus Acropora. Mar. Biol., 88: 217-233.
- Wallace, C. C. 1985b. Seasonal peaks and annual fluctuations in recruitment of juvenile scleractinian corals.

 Mar. Ecol. Prog. Ser., 21: 289-298.
- Walliams, E. H. Jr. and L. Bunkley-Williams. 1990. The world-wide coral reef bleaching cycle and related sources of coral mortality. Atoll. Res. Bull., 355: 1-72.
- Wiens, J. A. 1989. Scale in ecology. Func. Ecol, 3: 385-397.
- Woesik, R. V. 1998. Lesion healing on massive Porites spp. corals. Mar. Ecol. Prog. Ser., 164: 213-220.
- Yeemin, T. 1988. A comparative study of reproductive biology in four congeneric species of scleractinian corals

- (Montipora) from Okinawa. M. Sc. Thesis, University of the Ryukyus, 108 pp.
- Yeemin, T. 1991. Ecological studies of scleractinian coral communities above the northern limit of coral reef development in the western Pacific. D. Sc. dissertation, Kyushu University, 164 pp.
- Yeemin, T and S. Sudara. 1992. The role of coral recruitment in Problems of coral reef development: a perspective view. Third ASEAN Science and Technology Week Conference Proceedings, Singapore, 6:
- Yeemin, T., S. Sudara and S. Amornsakchai. 1992. Distribution and abundance of juvenile corals at Pha-Ngan Island, Tao Island and Nang-Yuan Island, Gulf of Thailand. Third ASEAN Science and Technology Week Conference Proceedings, Singapore, 6: 63-67.

Output ที่ได้

ผลงานวิจัยที่ตีพิมพ์แล้ว

- Yeemin, T. 1996. Coral recruitment: the proper way for coral reef rehabilitation. Proceedings of
 the JSPS-VCC Joint Seminar on Marine Science: Role of Oceanography in Sustainable
 Utilization of Living and Non-Living Marine Resources, University of Pertanian, Selangor
 Darul Ehsan, Malaysia, 7 pp.
- Sudara, S. and T. Yeemin. 1997. Status of coral reefs in Thailand, In: Grigg RW & Birkeland C, eds. Status of Coral Reefs in the Pacific. University of Hawaii Sea Grant College Program, pp. 135-144.
- Ruengsawang, N. and T. Yeemin. 1998. Long-term changes of distribution and abundance of a sea urchin, *Diadema setosum*, in coral communities of Khang Khao Island, Inner Gulf of Thailand. Proceedings of the 8th JSPS Joint Seminar on Marine Science: Marine Conservation and Resource Rehabilitation, Chiangrai, Thailand. pp. 215-220.
- Yeemin, T., J. Milinthalek, J. Buaruang, S. Torgumpon and S. Pairagsa. 1998. Heavy metal
 concentrations in gonads of a sea urchinm, *Diadema setosum*, from coral communities of Khang
 Khao Island in the Inner Gulf of Thailand. Proceedings of the 8th JSPS Joint Seminar on
 Marine Science: Marine Conservation and Resource Rehabilitation, Chiangrai, Thialand. pp.
 221-226.

ผลงานวิจัยที่อยู่ระหว่างการตีพิมพ์ (in press)

- Ruangsawang, N. and T. Yeemin. 1999. Preliminary study on bioerosion by a sea urchin, Diadem setosum, in coral communities at Khang Khao Island, the Inner Gulf of Thailand. Proceedings of the 9th JSPS Joint Seminar on Marine Science: Advances in Marine and Fisheries Sciences for the 21st Century, Bali, Indonésia. (in press)
- Saiprateep, A., T. Yeemin, N. Ruangsawang and N. Chaitanawisuti. 1999. Ecology of a marine sponge, Halicona cf. coerulescens from coral communities in the Inner Gulf of Thailand.
 Proceedings of the 9th JSPS Joint Seminar on Marine Science: Advances in Marine and Fisheries Sciences for the 21st Century, Bali, Indonesia. (in press)

ผลงานวิจัยที่ส่งต้นฉบับเพื่อพิจารณาตีพิมพ์ (Submitted)

 Yeemin, T. and S. Sudara. Long-term Changes in coral reef communities in the Inner Gulf of Thailand. (Bulletin of Marine Science)

- Chunhabundit, S., N. Teva-arak, T. Yeemin and T. Thapanand. Studies on the coral restoration by transplantation at Kham Island Marine Park, Sattahip Naval Base The Royal Thai Navy, the Upper Gulf of Thailand. (Ambio)
- Janena, N., K. Yamazato, T. Yeemin and P. Aranyakanon. Reproductive biology of the coral *Pocillopora damicornis* at Sichang Island, Chonburi Province, the Gulf of Thailand.
 (Thai Journal of Aquatic Science)

ผลงานวิจัยที่อยู่ในระหว่างการจัดเตรียมต้นฉบับ (Manuscript)

- Yeemin, T. Coral communities along salinity gradient in the Inner Gulf of Thailand. (Bulletin of Marine Science)
- Yeemin, T. Distribution patterns and survival rates of juvenile scleractinian corals in the Gulf of Thailand. (Coral Reefs)
- Yeemin, T., N. Ruengsawang, S. Arsa and S. Sudara. Taxonomic pattern and spatial variation in coral bleaching in the Gulf of Thailand. (Marine Pollution Bulletin)
- Yeemin, T. Spatial and temporal variation in scleractinian coral recruitment in the Gulf of Thailand.
 (Bulletin of Marine Science)
- Yeemin, T. The effects of bleaching on recruitment of scleractinian corals in the Gulf of Thailand.
 (Marine Ecology Progress Series)
- Yeemin, T. Caging experiments on damselfish territory and grazing of sea urchin influencing coral recruitment in the Gulf of Thailand. (Coral Reefs)
- 7. Yeemin, T. and S. Sudara. Rehabilitation of degraded coral communities in Thailand: Lessons from the past and a perspective view. (Environmental Monitoring and Assessment)

การเสนอผลงานในที่ประชุมวิชาการ

- Yeemin T. Distribution patterns of juvenile colonies of scleractinian corals in the Gulf of Thailand.
 International Symposium on Ecology of Coral Reef Communities in the Gulf of Thailand, Sichang Palace Hotel, Chonburi. 1996.
- Sudara S, Yeemin T. Temporal changes in coral communities at Pattaya, Thailand. International Symposium on Ecology of Coral Reef Communities in the Gulf of Thailand, Sichang Palace Hotel, Chonburi. 1996.

- Janena N, Yamazato K, Yeemin T, Aranyakanon P. Reproduction biology of the coral Pocillopora
 damicornis at Sichang Island, the Gulf of Thailand. International Symposium on Ecology of Coral
 Reef Communities in the Gulf of Thailand, Sichang Palace Hotel, Chonburi. 1996.
- 4. Yeemin T. Coral recruitment in the Gulf of Thailand. VIII Pacific Science Inter-Congress, The University of the South Pacific, Suva, Fiji, 1997.
- Yeemin T, Ruengsawang N, Arsa S. Long-term changes of distribution and abundance of subtidal macrobenthic animals in a coral community of Khang Khao Island, the Gulf of Thailand. The 8th JSPS Joint Seminar on Marine Science: Marine Conservation and Resource Rehabilitation, Rimkok Resort Hotel, Chiangrai, 1997.
- Yeemin T, Uehara T. Effect of low salinity and excess nutrient on fertilization and development of sea urchins. The 8th JSPS Joint Seminar on Marine Science: Marine Conservation and Resource Rehabilitation, Rimkok Resort Hotel, Chiangrai, 1997.
- Yeemin T. Rehabilitation of degraded coral communities in Thailand: lesson from the past and a
 perspective view. International Workshop on the Rehabilitation of Degraded Coastal Systems.
 Phuket Marine Biological Center, Phuket, 1998.
- Yeemin T, Chunhabundit S. Re-attachment of coral fragments using special cement in a non-reefal coral community in the Inner Gulf of Thailand. International Workshop on the Rehabilitation of Degraded Coastal Systems. Phuket Marine Biological Center, Phuket, 1998.
- Chunhabundit S, Teva-aruk N, Yeemin T, Thapanand T. Studies on coral restoration by transplantation at Kham Island Marine Park, Sattahip Naval Base, The Royal Thai Navy, Upper Gulf of Thailand. International Workshop on the Rehabilitation of Degraded Coastal Systems. Phuket Marine Biological Center, Phuket, 1998.
- 10. ธรรมศักดิ์ ยีมิน, นิสิต เรื่องสว่าง, สายประทีป อาษา, วาสนา พรรณเทวี, ปานหทัย นพชินวงศ์, จำเริญ บัวเรื่อง. ปะการังฟอกขาวในอ่าวไทย : การรบกวนทางธรรมชาติที่สำคัญยิ่ง. การประชุมวิชา การวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย ครั้งที่ 24, ศูนย์การประชุมแห่งชาติสิริกิติ์, กรุงเทพฯ, 2541.
- 11. ธรรมศักดิ์ ยีมิน, สายประทีป อาษา, นิสิต เรื่องสว่าง, วาสนา พรรณเทวี, ปานหทัย นพชินวงศ์. รูป แบบการแพร่กระจายและความหนาแน่นของประชากรหอยทะเลสองฝา Asaphis cf. deflorata บริเวณเกาะนก ในอ่าวไทยตอนใน. การประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย ครั้งที่ 24, ศูนย์การประชุมแห่งชาติสิริกิติ์, กรุงเทพฯ, 2541.

- 12. สายประทีป อาษา, ธรรมศักดิ์ ชีมิน, นิสิต เรื่องสว่าง, นิลนาจ ชัยธนาวิสุทธิ์. นิเวศวิทยาของฟองน้ำ Oceanapia sagittaria บริเวณแนวปะการังในอ่าวไทย. การประชุมวิชาการวิทยาศาสตร์และ เทคโนโลชีแห่งประเทศไทย ครั้งที่ 24, ศูนย์การประชุมแห่งชาติสิริกิติ์, กรุงเทพฯ, 2541.
- 13. นิสิต เรื่องสว่าง, สายประทีป อาษา, ธรรมศักดิ์ ยีมิน. อัตราการกร่อนทางชีวภาพโดยเม่นทะเลชนิด Diadema setosum บริเวณกลุ่มปะการังเกาะค้างคาว ในฤคูมรสุมตะวันออกเฉียงใต้. การประชุมวิชา การวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทยครั้งที่ 24, ศูนย์การประชุมแห่งชาติสิริกิติ์, กรุงเทพฯ, 2541.
- 14. จำเริญ บัวเรื่อง, สำราญ ทองอำพล, สาหร่าย ไผ่รักษา, จารุทัศน์ มิลินทะเลข, ธรรมศักดิ์ ขีมิน. การ วิเคราะห์หาปริมาณ โลหะหนักบางตัวในเม่นทะเล Diadema setosum จากบริเวณเกาะค้างคาว จ.ชลบุรี. การประชุมวิชาการวิทยาศาสตร์และเทค โน โลยีแห่งประเทศไทย ครั้งที่ 24, ้ศูนย์การประชุมแห่งชาติ สิริกิติ์, กรุงเทพฯ, 2541.

การนำผลงานวิจัยไปใช้ประโยชนในเชิงนโยบาย

ข้อมูลเกี่ยวกับการลงเกาะของตัวอ่อนปะการังในอ่าวไทยตอนใน เป็นข้อมูลพื้นฐานที่สำคัญใน การวางแผนและกำหนคนโยบายการใช้ประโยชน์ในบริเวณแนวปะการังของหน่วยงานที่เกี่ยวข้อง ได้แก่ กรมประมง กรมป่าไม้ กองทัพเรือ สำนักนโยบายและแผนสิ่งแวคล้อม และการท่องเที่ยวแห่งประเทศ ไทย

การสร้างนักวิจัยใหม่

มีนักศึกษาปริญญาโท จำนวน 4 คน อยู่ในระหว่างการทำวิทยานิพนธ์ในโครงการวิจัยนี้ และนัก ศึกษาปริญญาตรี 5 คน เข้าร่วมฝึกงานวิจัย

ผลงานอื่นๆ

- 1. จัดเสวนาและประชุมเชิงปฏิบัติการเรื่อง การฟื้นฟูแนวปะการัง ณ ห้องประชุมอาคารปฏิบัติการวิทยา ศาสตร์ มหาวิทยาลัยรามคำแหง เมื่อวันที่ 17-18 พฤศจิกายน 2541 โดยมีผู้เข้าร่วมประชุม 57 คน จาก 21 หน่วยงาน
- 2. เป็นที่ปรึกษาทางวิชาการและเขียนบทความให้การท่องเที่ยวแห่งประเทศไทยในการจัดทำหนังสือ อัน คามันและอ่าวไทย : ห้วงน้ำและสีสันของโลกใต้ทะเลไทย และ Andaman and beyond : a reflection of the Indian and Pacific Oceans.

JSPS-VCC Joint Seminar on Marine Science: Role of Oceanography in Sustainable Utilization of living and Non-Living Marine Resources University of Pertanian Malaysia, Selangor Darul Ehsan, Malaysia, 5-8 December 1995

CORAL RECRUITMENT: THE PROPER WAY FOR CORAL REEF REHABILITATION

Thamasak Yeemin

Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240 THAILAND

ABSTRACT

In the ASEAN region, coral reefs are very important ecosystems of the coastal environment. We still know very little about details on their operation, maintenance and adaptation. Coral reefs are frequently subject to a variety of anthropogenically related destructive forces and natural disturbances. In order to better understand process of coral reef rehabilitation, it is essential to increase our knowledge on reproduction and recruitment of corals.

Studies of coral recruitment can be divided into two categories, those that have observed the number of young coral colonies appearing on reefs and those that have used artificial substrata (settlement plate experiments) which are examined in microscopic detail.

Recruitment of scleractinian corals is characterized by significant temporal, spatial and taxonomic variability. Consequently, coral recruitment patterns are likely to play a significant role for maintenance are rehabilitation of coral reefs.

Larval availability, regional seeding of coral reefs and post settlement mortality have to be understood before confident plans for coral reef management and coral reef rehabilitation in order to use the living marine resource on a sustainable basis. Patterns of oceanographic currents at the study sites are very important for understanding coral recruitment.

INTRODUCTION

In the ASEAN region, coral reefs are very important ecosystems of the coastal environment. We still know very little about details on their operation, maintenance and adaptation. Coral reef are frequently subject to a variety of anthropogenic and natural disturbances.

Larval supply and recruitment are subjects of renewed interest as the major determinants on structure and dynamics of marine benthic communities (Underwood & Fairweather, 1989). Most of the marine benthic invertebrates have a planktonic larval phase in their life history. Planktonic larvae provide a significant means of dispersal in sessile species, and enable colonization of new habitats, recolonization after disturbances and local extinctions and genetic exchange between populations (Jackson, 1986).

Coral reef play a vital role in the sustenance of fisheries resources. In order to better understand process of coral reef rehabilitation, it is essential to increase our knowledge on reproduction and recruitment of corals. This paper examines recruitment of sclearactinian coral with emphasis on the applications for coral reef rehabilitation.

BACKGROUND AND PROBLEMS

The planula larvae of most scleractinian corals spend sometime in the water column before setting, but the extent of dispersal by planulae is poorly understood, and is the subject of some debates. There are opposing views as to weather planulae are primarily retained on their parental coral community or dispersed between coral communities (Done, 1982; Babcock & Heyward, 1986; Sammarco, 1991). Certainly, coral dispersal and settlement patterns are largely determined by the duration of the planktonic phase, the prevailing hydrological conditions, the competency period of the planulae, their vertical distribution in the water column and their substratum selection and choice of settlement site (Harrison & Wallace, 1990).

It should be noted that there are two types of coral larvae. i.e. brooded planulae and externally developed planulae. Brooded planulae are usually released at advanced developmental stage and may settle quickly within a few hours, or within in a few days after the release from their parental polyps (Harrigan, 1972). In contrast, externally

developed planulae require a minimum planktonic period until settlement results in the different patterns of larval dispersal in brooding versus broadcast spawning corals.

MEASURING CORAL RECRUITMENT

It is important to distinguish between larval settlement and recruitment. Settlement is defined as the point when an individual first takes up permanent residence on the substratum. In sessile species this is when the planktonic larva has cemented itself to the surface (Keough & Downes, 1982). Recruitment is the recently settled juveniles that have survived for a period of time after settlement. Therefore, recruitment combines settlement with any early mortality caused by several factors such as predation that has occurred on the substratum up to the time of the first observation. Defined in this way, any field observation of coral spat of more than 24 hours after their settlement must be considered a study of recruitment. To study coral settlement on natural substratum would require an underwater microscope to detect newly settled spat, and at least daily monitoring. Because of these difficulties, the stages in the life cycle of corals from newly settled polyp to visible coral colony have had little attention.

There have been numerous studies of coral recruitment. Most of them have generally monitored settling artificial objects or patches of cleared natural substrata at long intervals, usually weeks or months apart (Birkeland, 1977; Sakai & Yamazato, 1984; Wallace, 1985; Sammro & Andrews, 1988; Harriott & Fisk, 1987). Studies of coral settlement on settlement plates have frequently been applied as tools to examine certain aspects of the life history of corals.

A variety of settlement substrata have been used for coral recruitment experiments such as cement blocks, coral plates, ceramic tiles, etc. It is now recognized that recruitment of scleractinian larvae is characterized by significant temporal, spatial and taxonomic variability. Consequently, larval recruitment patterns are likely to play an important role in structuring coral communities (Harrison & Wallace, 1990).

However, studies of coral recruitment have been limited in the Indo-Pacific region due to our inability to identify newly settled corals to species level. Juvenile corals (coral spats) have few reliable taxonomic characters, and this is true prior to size of visible recruitment. Therefore, the identification of coral spats on settlement plates are very difficult.

Studies on coral recruitment can provide reliable data for monitoring of trends in larval supply and post-settlement motality. However, there are still many basic problems concerning coral recruitment which have yet to be fully clarified. Particularly in the ASEAN region, there is still little published data available concerning knowledge of reproductive biology and recruitment as well as population biology of scleractinian corals. It should be emphasized that coral recruitment is of central importance to the understanding, maintenance and rehabilitation of coral reefs in the ASEAN region.

• ROLES OF CORAL RECRUITMENT IN PROBLEMS OF CORAL REEF DEVELOPMENT

Recruitment patterns of scleractinian corals along the latitudinal gradients in Japan were studied by both settling plate experiments and field observation on juvenile corals (Yeemin, 1991). The results showed clearly that recruitment rates of scleractinian corals in mainland Japan were much lower than those in typical coral reefs. It is hypothesized that coral populations at the peripheral areas of coral distribution are limited by the supply of larvae. Since most sclearactinian corals in the mainland Japan have low rates of recruitment, recovery of coral communities after some severe disturbances must rely mainly on coral vegetative growth, and would require a long period of time.

CORAL REEF REHABILITATION

Clearly, coral reefs in the ASEAN region are frequently subject to a variety of anthropogenic and natural disturbances. Consequently, coral reef rehabilitation is very essential. Coral transplantation (relocation) is a way for coral reef rehabilitation which is applied in many coral reef areas. However, there are still many problems concerning coral relocation, such as expenses, techniques of coral relocation and genetic pools of corals.

Coral recruitment seem to be the proper way for coral reef rehabilitation. It is very necessary to increase our knowledge on reproduction and recruitment of corals. Causes of coral damage are considerably important prior to planning for coral rehabilitation programs. Given coral communities in the Gulf of Thailand as a case study, coral

67

damage are considerably important prior to planning for coral rehabilitation program. Given coral communities in the Gulf of Thailand as a case study, coral damages are caused by many disturbances: strong wave, typhoons, outbreak of *Acanthaster planci*, heavy sedimentation, excess nutrients and pollutants, fishing activities, coral blasting, boat anchoring, diving, etc.

Recovery of coral communities which are destroyed by typhoons corallivores and human activities can be occurred by processes of recruitment and vegetative growth of corals Availability of substrates for coral settlement is very critical for rehabilitation plans. If natural substrates are not suitable for coral recruitment, it may be necessary to apply other methods for coral reef rehabilitation such as using artificial substrates, coral culture, etc.

ROLES OF HYDROGRAPHIC DATA ON CORAL RECRUITMENT

Hydrographic data have played a vital role in promoting marine science activities, especially for coastal zone management. Current and tide data are used together with other hydrographic parameters to asses the status of fisheries resources, advance predictions of recruitment variability, and species interactions. It is evident that inadequate hydrographic data could lead to misunderstand in interpretation of coral recruitment data as well as resource exploration and exploitation. The ASEAN countries still need more hydrographic data for coastal zone management.

ACKNOWLEDGMENTS

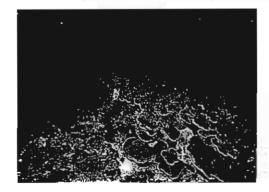
I wish to thank Dr. S. Sudara, Dr. S. Nojima, Dr. T. Kikuchi, and Dr. R. C. Babcock for their suggestions. This work was supported by The Thailand Research Fund.

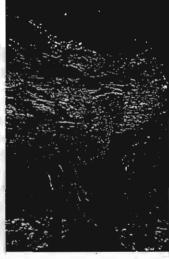
REFERENCES

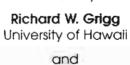
Babcock, R.C. and A.J. Heyward. 1986. Larval development of certain gamete-spawning sclearactinian corals. <u>Coral Reefs</u>, 5:111-116.

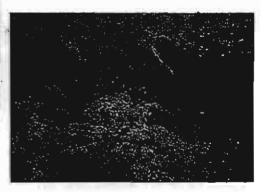
Birkeland, C. 1977. The importance of rate of biomass accumulation in early sucessional stages of benthic communities to the survival of coral recruit. Proc. 3rd Int. Coral Reef Symp., Miami, 1:15-21.

- Done, T.J. 1982. Pattern in the distribution of coral communities across the central Great Barrier Reef. Coral Reef, 1:95-107.
- Harrigan, J.F. 1972. The planula larva of *Pocillopora damicornis*: lunar periodicity of swarming and substratum selection behavior. Ph.D. thesis University of Hawaii, 319 pp.
- Harriott, V.J. and D.A. Fisk. 1987. A comparison of settlement plate types for experiments of sclearactinian corals. Mar. Ecol. Prog. Ser., 37: 201-208.
- Harrison, P.L. and C.C. Wallace. 1990. Reproduction, dispersal and recruitment of scleraction corals. In "Ecosystems of the World: Coral Reefs" ed. by Z. Dubinsky, pp. 133-207. Elsevier, Amsterdam.
- Jackson, J.B.C. 1986. Modes of dispersal of clonal benthic invertebrates: Consequences for species distribution and genetic structure of local populations. <u>Bull. Mar. Sci.</u>, 39: 588-606.
- Keough, M.J. and B.J. Dowed. 1982. Recruitment of marine invertebrates: The role of active larval choices and early mortality. <u>Oecologia</u>, 54:348-352.
- Sakai, K. and K. Yamazato. 1984. Coral recruitment to artificially denuded natural substrates on a Okinawan reef flat. Galaxea, 3:57-69.
- Sammarco, P.W. 1991. Geographically specific recruitment and postsettlement mortality as influences on coral communities: the cross-continental shelf transplant experiment. <u>Limnol.</u>
 <u>Oceanogr.</u>, 36: 496-514.
- Sammarco, P.W. and J.C. Andrews. 1988. Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science, 239: 1422-1424.
- Underwood, A.J. and P.G. Fairweather. 1989. Supply-side ecology and benthic marine assemblages. <u>Trends in Ecology and Evolution</u>, 4:16-20.
- Wallace, C.C. 1985. Seasonal peaks annual fluctuations in recruitment of juvenile scleractinian corals. Mar. Ecol. Prog. Ser., 21: 289-298.


Yeemin, T. 1991. Ecological studies of scleractinian coral communities above the northern limit of coral reef development in the western Pacific. D. Sc. dissertation, Kyushu University, 164 pp.


Status of Coral Reefs in the Pacific





Charles Birkeland University of Guam

Published by the

Sea Grant College Program
School of Ocean and Earth Science and Technology
University of Hawaii

© 1997 University of Hawaii Sea Grant College Program All rights reserved.

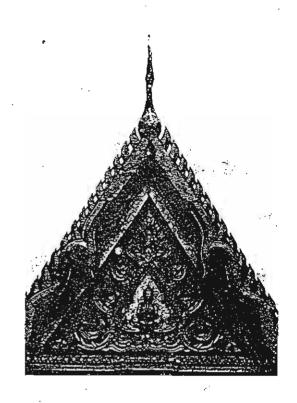
Cover photos: Richard W. Grigg, James E. Maragos and Steve Dollar

Chapter photos: Central Pacific, James E. Maragos All others: Richard-W. Grigg

Status of Coral Reefs in the Pacific

Edited by Richard W. Grigg and Charles Birkeland

This publication is funded by a grant from the National Oceanic and Atmospheric Administration, project #M/PM-2, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA36RG0507 from NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its sub-agencies.


UNIHI-SEAGRANT-CP-98-01.

STATUS OF CORAL REEFS IN THAILAND

Suraphol Sudara and Thammasak Yeemin Department of Marine Science Chulalongkorn University Bankok

¶hailand's coastal waters, located between 6°N and 13°N, offer good conditions for coral reef growth. The total coastline of the country is almost 2,600 kilometers. There are over 300 major reef groups in Thailand, covering an estimated area of 12,000 square kilometers (Figure 1). They could be divided into four distinct areas with different oceanographic conditions, that is, the inner part of the gulf of Thailand (Chonburi), the east coast of the gulf of Thailand (Rayong and Trad), the west coast of the gulf of Thailand (Prachuap Kirikhan, Chumporn and Surathani) and along the coastline on the Andaman Sea (Ranong, Phuket, Pang-Nga, Krabi, Trang and Satun). Since 1984, Thailand has participated in the

Since 1984, Thailand has participated in the Living Coastal Resource (LCR) Project under the ASEAN-Australia Economic Cooperative Programme on Marine Science. Data gathered from the LCR project has enabled us to

describe the present condition of coral reefs in Thailand.

The majority of coral reefs in Thailand are either fringing reefs or coral communities growing on substrata other than limestone, such as boulders and granite. Sudara et al. (1991) described three types of coral communities in the Gulf of Thailand (i.e., coral communities, developing fringing reefs and young fringing reefs).

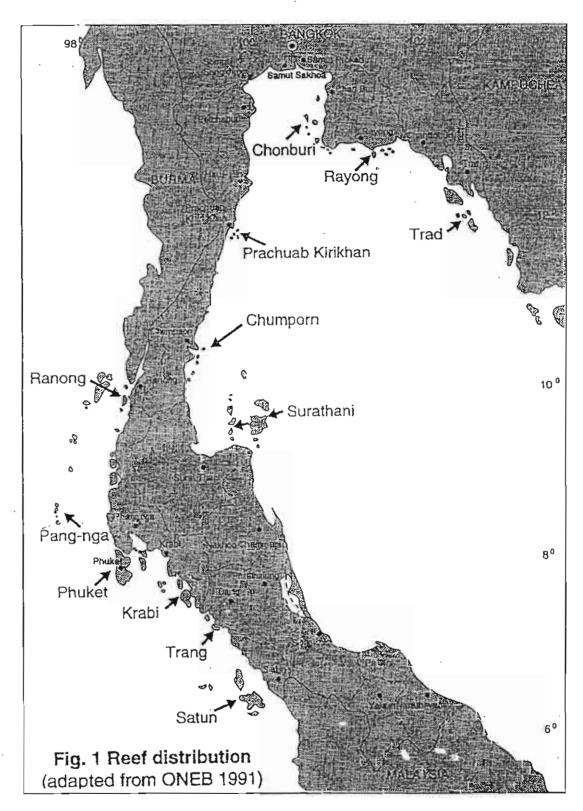


Figure 1. The distribution of the four major coral reef areas in Thailand. The inner part of the gulf near Bangkok has reefs only in Chonburi Province. The east coastline has reefs from Rayong Province to the Cambodian border. The west coastline area stretches south of Bangkok to the Malaysian border. The Andaman Sea contains reefs between the Burmese and Malaysian borders.

GULF OF THAILAND

The Inner Gulf

Since there are four major rivers which open into the inner part of the Gulf of Thailand, most of the coastal areas of the inner part of the gulf are dominated by mangroves. Several islands in the inner part of the gulf have scleractinian corals. The most inner island, Koh Sichang, has most interesting growth of coral. It is in the form of coral community rather than a reef formation. It may be that the terrestrial environment is always extending seaward. Sediment is considered an important factor, among others, that inhibits the growth, or in extreme situations, causes the death, of corals. Various activities of man in coastal areas result in heavy sedimention. The dominant species of coral is the massive form of *Porites lutea*. Sudara et al. (1991) reported that growth rate of *Porites lutea* around Khang Khao Island of Koh Sichang is correlated significantly with the amount of suspended solids.

It is interesting to recognize that among the coral communities in the inner part of the gulf, the long spine black sea urchin, *Diadema setosum*, is found in high numbers. The high abundance of the sea urchins may have caused a lack of seaweeds among the corals. It should be noted that coralline algae, an important component for coral reef development, is rate in this area.

Further down the eastern part of the inner gulf, there are islands along the west coast. After Koh Sichang there is the Pattaya group which consists of several islands. The coral communities on these islands have been damaged by over-use from tourism. Islands closer to shore are most impacted. The dominant species in this area are Pavona sp. and Porites lutea.

South of Pattaya, the area of Sattaheep is restricted by the Navy. The coral communities are in very good condition. On many islands within this area, corals are in perfect condition because the Navy patrols the islands for a turtle conservation project that has been going on for many years.

Farther south, water movement is directed toward the western part of the inner gulf. Along the coast in this section there are mangrove forests. No islands exist in this area of the inner gulf.

The East Coast of the Gulf

This is Rayong Province in the open gulf where many islands exist. At one time, all of these islands had very good coral growth but due to illegal dynamite fishing and increasing tourism, the coral reefs of many islands are now in a poor condition. Some totally lack live coral coverage; for example, Ao Praw and Koh Samet.

Farther along the east coast to Chantabury most of the coastline is mangrove. However, fringing reefs are found along the shore where there is no river runoff and on a few small islands.

From Rayong to Trat, there are many islands with coral reefs. Until recently the coral reefs in this area were in very good condition. Recent destruction has been caused by illegal dynamite fishing. Also, aquarium fish collection and live fish catch for consumption by using toxic chemicals are major causes of degradation. Within the last few years, certain coral reefs, such as Koh Kradad are now totally destroyed.

The West Coast of the Gulf

Coral reefs in the Gulf of Thailand are exposed to cyclonic storms. Approximately 20% of Thailand's major coral reef groups occur at shallow depths in the western Gulf of Thailand. Chumporm and Suratani are the only two provinces in this area with major reef groups.

From Prachuap Kirikhan Province in the north, a few islands exist with newly formed fringing reefs. Because these islands have bird sanctuaries, access is prevented. The coral reefs are also protected. The branching form of *Acropora* spp. is the dominant form.

At Chumporn, coral reefs are best developed on the eastside of islands. Fresh water and sediment from land inhibit reef growth on the west side of these islands. Some coral damage exists from illegal fishing activities. Conservation activities include the use of mooring bouys for boats.

Farther south to Surathani on Samui, Pha-Ngan and Tao, coral coverage is undergoing severe degradation due to tourism. Conservation activities are now beginning, including the use of mooring bouys and public campaigns. Sundra et al. (1991) have proposed a management plan for the coral reefs in this region. Based on the data of reef condition, present uses of the reefs and existing regulations, the coral reefs are classified into three categories: preservation area, common use or conservation area, and private development area.

The Andaman Sea

There are significant climatic and oceanographic differences between the Andaman Sea and the Gulf of Thailand which affect coral reefs. Coral reefs in the Andaman Sea are subject to semidiumal tides and are exposed to predominant Southwest monsoons from May to October. Approximately 55% of Thailand's major coral reefs occur in the Andaman Sea. Within this region, there are significant differences in coral reef species composition and morphology. Reef conditions and coral coverage tend to vary with the degree of exposure to the monsoon, distance from the mainland, current and substrata. Fringing reefs predominate. The coral reefs in the Adang-Rawi group are a classic example. There are also some coral communities where corals grow on rocky shores and vertical granite walls. There is no substantial limestone reef development. This is the case for the Similan Islands and the Mu Ko Phi Phi group. The Surin Islands group (i.e., Pachumpba and Stok Islands) are considered to be the most extensive, pristine and perhaps best developed reefs in Thailand. Other coral reefs of major ecological significance in the Andaman Sea include Ko Kradan and Ko Ngai in Trang Province; and Ko Damhok, Damkwan, and Yong in Krabi Province. From the northern part, Surin and Similan Islands, which are now Marine National Parks, are becoming very famous spots for tourists and divers. Even though these islands can not be visited all year round due to heavy seas from the monsoon, their degradation is evident. Many shallow water reefs have been damaged from tourist activity. Growth of algae is also increasing. Conservation activities are now underway including the installation of mooring bouys and fermulation of management plans for the parks.

Phuket once had good fringing reefs. However, now many coral reefs exist with only a small percentage of living coral cover. Tourism development seems to be the major factor causing the deterioration of coral reefs in this province.

Beautiful islands in Phuket, Pang-Nga, Kravi, Trang and Satun are now caught between the struggle of conservation and rapid tourism development. Many coral reefs are now in very bad condition. Some developers do have a conservation ethic and are trying to protect the coral reefs. However, many others still exploit their coral reefs resulting in rapid degradation.

USES OF CORAL REEFS

The coral reefs in Thailand waters support a variety of activities that can be classified as tourism and recreation; fisheries-related uses; and other uses, including research and education. In the last decade, there has been a marked change in reef use patterns, as small-scale or traditional fisheries have gradually been replaced by tourism activities. Local fishermen have converted their boats into tour boats and paid more attention to shell collections for souvenir trade. This shift in coral reef use is most notable in Trad, Surathani, Pang-Nga and Trang.

Tourism and recreation uses include diving, underwater photography, sightseeing from glass-bottom vessels and sport fishing. Coral reefs close to beach resorts are often used intensively for tourism-related activities. Provinces where tourism and recreation are the most important reef use include Chonburi, Rayong, Phuket and Krabi. Approximately half of all coral reefs located in Surathani and Pang-Nga are also used primarily for tourism-related activities. Coral reefs in several localities have received heavy tourism uses such as Pattaya, Ko Samet, Ko Samui, Patong and Ko Hae. Several coastal provinces, such as Trad, Surathani, Pang-Nga, Phuket and Kravi, are experiencing a rapid and steady growth in tourism, with dramatic increases in coral reef-dependent recreational activities.

Most coral reefs in Thailand are used for fisheries. Coral reefs located in rural areas are used for small-scale fisheries, and shell and ornamental fish collection. In such locations, coral reef fisheries and products are important sources of income and food. Trad, Chumporn, Ranong, Trang and Satun are all provinces where fisheries activities continue to be the dominant coral reef use. Coral reefs also support the fisheries sector by functioning as recruitment and nursery areas for stocks important to offshore fisheries.

Coral reefs in Thai waters are being more frequently used for education programs, especially in Marine National Parks and for Marine Science Institutes. Several Thai universities, including Chulalongkorn, Kasetsart, Burapa and Prince of Songkla, have on-going research programs at selected coral reefs.

Coral Reef Condition

The condition of coral reefs in Thailand ranges from very good to very poor (Figure 2). Over 60% of all major coral reef groups in Thai waters are either in poor or fair condition. Less than 36% are in good or very good condition. The wide spread degradation of coral reefs in Thailand is a recent event associated with the use of explosives and the introduction of bottom-trawlers in the early 1960s, and the expansion of beach resorts in the late 1970s. The provinces that still have significant areas of coral reef in good and very good condition are Trad, Pang-Hga and Trang. The provinces where coral reef deterioration is most severe due to human-related activities are Chonburi, Rayong, Surathani, Phuket and Satun.

The dominant cause of coral reef degradation is shifting in many locations. Coral reef blasting is reported to on the decline in several provinces but coral damage associated with trawling is on the increase (Sudara & Patimanukasem 1991). Sedimentation and wastewater pollution associated with rapid coastal development are recent and increasing problems in many provinces even along remote islands (Sudara et al. 1992).

Besides the impacts related to human activities, coral reefs are exposed to many natural events that bring about significant change in their structure and species composition. The major natural causes of coral reef damage are storms and monsoons which uproot and break coral branches. Sudara et al. (1992b) reported that typhoon Gay hit Southern Thailand in

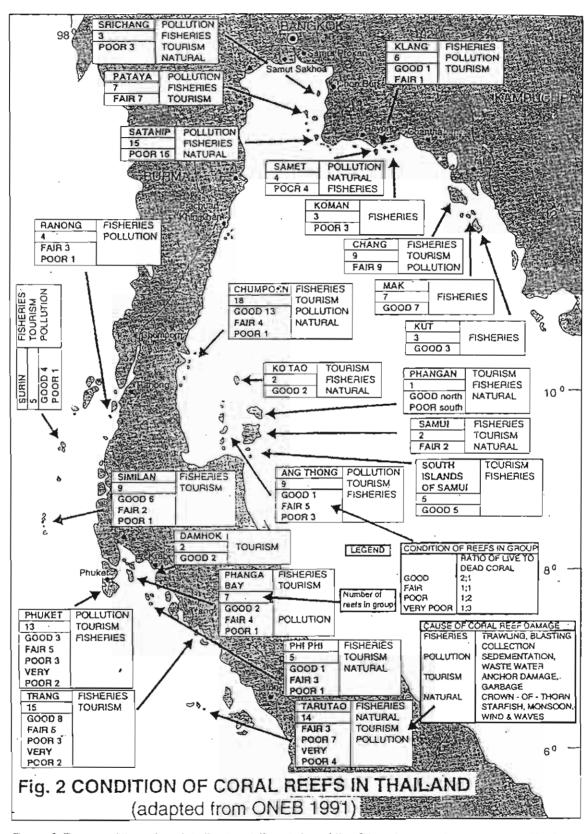


Figure 2. The condition of reefs in Thailand. The status of the 24 reef groups has been classified with the number of reefs divided into four categories: good, fair, poor and very poor. The major impacts are also included in the boxes.

November 1989 and caused significant damage to the terrestrial environment as well as coral reefs.

The crown-of-thorns starfish, Acanthaster planci, feed on live coral and can destroy large areas of the reef: Localized outbreaks of Acanthaster planci have been reported in the Gulf of Thailand and there has been a significant increase in outbreaks in the Andaman Sea since 1982. Extreme low tides and coral bleaching are additional natural phenomena which cause severe damage to coral reefs in Thailand.

Recovery of Coral Reefs

Aside from discriminating the stresses on the coral reefs, research on rate of recovery, growth, reproduction and recruitment of various populations of coral reefs have been very important in providing more insight into coral reef ecology. Growth rates of corals in the Gulf of Thailand have been well documented (Sudara et al. 1991). Species composition and recruitment of corals have also been investigated with settling plate experiments and field observations (Yeemin et al. 1992; Sudara et al. 1994). The most abundant juvenile corals are Acroporidae and Pocilloporidae. Sedimentation and the prevailing hydrological conditions seem to be major determinants of coral recruitment patterns. Differences in coral recruitment patterns among locations determine recovery rates of coral communities after severe environmental disturbances.

Coral Reef Management

Coral reef management in Thailand depends on the enforcement of laws and regulations that apply to all coral reefs, as well as additional measures applicable only to marine protected areas. Recently, central agencies, provincial governments and the private sector have undertaken non-regulatory actions aimed at improving coral reefs through restoration, preventive measures and education (ONEB 1991; Figure 3).

A set of urgent measures for coral reef protection was proposed to the cabinet for approval in 1990: (1) determine proper mooring sites and install mooring buoys on coral reefs that are frequently used by tour boats; (2) increase the effectiveness of measures aimed at reducing coral reef destruction through enhanced enforcement efforts and public education; and (3) direct the Navy and the Harbor Department to support urgent measures for coral reef manage ment and to prevent and control coral reef destruction along coastal waters. (The Ministry of Agriculture will assign authority to Navy and Harbor Department Staff to act as enforcement officers for the Fisheries Act.)

Moreover, ONEB (1993) outlines Thailand coral reef management strategy policies which are as follows: (1) manage coral reefs according to their different ecological and economic values to maintain a balance of uses; (2) reduce degradation of coral reefs by increasing the effectiveness of existing laws and measures; (3) build and maintain strong public support for the management of Thailand', coral reefs; (4) make essential revisions and additions to existing laws, administrative directives, and institutions so that effective management is feasible; (5) monitor and evaluate progress in accomplishing the objectives of the National Coral Reef Strategy; and (6) support management through scientific research.

As stated in Sudara et al. (1991), in order to have a successful management plan, all obstructions have to be identified and awareness needs to be created at all levels. When the plan is implemented, a monitoring program has to be in place in order to provide feedback that will

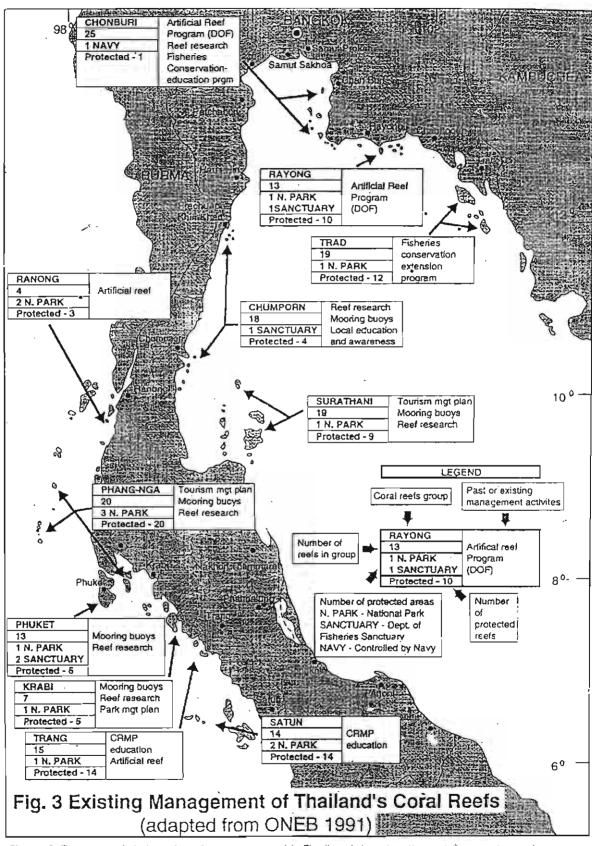


Figure 3. The current status of reef management in Thailand showing the existing parks and sanctuaries and the activities or special features of each managed area.

allow assessment of the effectiveness of the management scheme. A monitoring program will be successful only when local citizens and those in authority are actively involved.

CONCLUSIONS

Coral reef deterioration is widespread in Thailand, however, many pristine reefs still exist. Urgent action is required in order to preserve the remaining good coral reefs. Effective management of Thailand's coral reefs depend on an understanding of reef ecology and an awareness of the impact of human activities. The nationwide baseline data on reef condition from the ASEAN-Australia Living Coastal Resources Project has helped to understand and plan for effective management.

ACKNOWLEDGMENTS

This study was undertaken under the ASEAN-Australia Cooperative Program on Marine Science Project: Living Resources in Coastal Areas funded by AIDAB. The second author was supported by The Thailand Research Fund.

REFERENCES

Office of the National Environmental Board (ONEB). 1991. A National Coral reef strategy for Thailand, Volume 1. Statement of Need. Office of the National Environmental Board, University of Rhode Island, and U.S. Agency for International Development. 33 pp.

Office of the National Environmental Board (ONEB). 1993. A National Coral reef strategy for Thailand, Volume 2. Policies and Action Plan. Office of the National Environmental Board, University of Rhode Island, and U.S. Agency for International Development. 76 pp.

Sudara, S. and O. Patimanukasaem. 1991. Large-scale anchovy fishing in the Gulf of Thailand: a new threat to reef fish communities: *Proc. Regional Symp. on Living Resources in Coastal Areas*, Philippines, pp. 581-583.

Sudara, S. and A. Sanitwongs, T. Yeemin, R. Moordee, S. Panutrakune, P. Suthanaluk and S. Nateekanjanaparp. 1991. Study of the impact of sediment on growth of the coral *Porites lutea* in the Gulf of Thailand. *Proc. Regional Symp. on Living Resources in Coastal Areas*, Philippines, pp. 107-112.

Sudara, S. T. Thamrongnawasawat, S. Nateekanjanalarp, and P. Kuanman. 1991. Coral reef management plan for conservation and tourism development in the Ang Tong, Samui and Pha-Ngan Islands, in the Gulf of Thailand. *Proc. Regional Symp. on Living Resources in Coastal Areas*, Philippines, pp. 573-579.

Sudara, S., T. Thamrongnawasawat, and C. Sookchanuluk. 1991. Artificial classification of coral communities in the Gulf of Thailand. *Proc. Regional Symp. on Living Resources in Coastal Areas*, Philippines, pp. 21-25.

Sudara, S., T. Yeemin, and S. Amornsakchai. 1994. Recruitment of Scleractinian corals at Pha-Ngan Island, Gulf of Thailand: and experimental approach. ASEAN-Autralia Symp. on Living Coastal Resources, Bangkok, (in press).

Sudara, S., T. Yeemin, S. Nateekanjanalarp, S. Satumanatpan, A. Chamapun, and S. Amornsakchai. 1992. The impact of Typhoon Gay on coral communities of Tao Island, Gulf of Thailand. *Third ASEAN Science and Technology Week Conference Proceedings* 6:69-75.

Sudara, S., T. Yeemin, S. Satumanatpun, S. Nateekanjanalarp, and C. Sookchanulak. 1992. Qualitative assessment of impacts from siltation on the coral communities around Koh Saket, Rayong Province. Third ASEAN Science and Technology Week Conference Proceedings 6:95-111.

Yeemin, T. S. Sudara, and S. Amornsakchai. 1992. Distribution and abundance of juvenile corals at Pha-Ngan Island, Tao Island and Nang-Yuan Island. *Third ASEAN Science and Technology Week Conference Proceedings* 6:63-67.

PROCEEDINGS OF THE EIGHTH, JOINT SEMINAR ON MARINE SCIENCE

NRCT/JSPS

"Marine Conservation and Resource Rehabilitation" Chiangrai, Thailand 8-10 December 1997

Organized by
The Japan Soceity of the Promotion of Science
and
National Research Council of Thailand

LONG-TERM CHANGES OF DISTRIBUTION AND ABUNDANCE OF A SEA URCHIN, Diadema setosum, IN CORAL COMMUNITIES OF KHANG KHAO ISLAND, INNER GULF OF THAILAND

Nisit Ruengsawang and Thamasak Yeemin Marine Biodiversity Research Group, Department of Biology, Faculty of science, Ramkhamhaeng University, Huamark, Bangkok, 10240 Thailand

ABSTRACT

The distribution and abundance of a sea urchin, *Diadema setosum*, were resurveyed in coral communities of Khang Khao Island (stations A. B. C and D), inner Gulf of Thailand in November, 1997. The data were compared with the first survey during October to November, 1984 (Tsuchiya *et al.*, 1986). Population densities of *D. setosum* at stations A and C of the two surveys were significantly different (P<0.05, t-test) but there were no statistically different at stations B and D. *Diadema setosum* is a dominant species in the coral communities throughout thirteen years. This sea urchin is suggested to be a significant bioeroders of coral communities in the Gulf of Thailand.

INTRODUCTION

Studies on distribution and abundance of subtidal macrobenthic animals in coral communities are very important aspects of fundamental data of coral community structure (Abele, 1976; Austin et al., 1980; Glynn, 1976). The distribution of subtidal macrobenthic animals excluding corals was surveyed around Khang Khao Island, the Gulf of Thailand during October to November, 1984 (Tsuchiya et al., 1986). The aim of the present study is to resurvey the distribution and abundance of a sea urchin, D. setosum, at four stations (A, B, C and D) of Khang Khao Island in November, 1997 in order to monitor the changes in a period of thirteen years

STUDY AREA AND METHODS

At stations A, B, C and D of Khang Khao Island of the Sichang group in the Gulf of Thailand (Fig.1), a census line was placed at the same site of Tsuchiya *et al.* (1986) in November, 1997. Along both sides of each census line, a Im x Im quadrat was placed and the sea urchin. *Diadema setosium*, were counted. The quadrat was extended from the shore to the subtidal zone. The data obtained from the present study were statistically compared with those of Tsuchiya *et al.* (1986).

RESULTS

Three zones of macrobenthos were clearly recognized as reported by Tsuchiya et al. (1986), i.e., the shallowest zone, the central zone and the deepest zone. The shallowest zone included the lower intertidal. The *Diadema setosum* invaded this zone during high tides. The central zone was coral zone that *Porties lutea* was abundance and provided habitats for many associated animals. D. setosum was also very abundant. The deepest zone was a sandy bottom

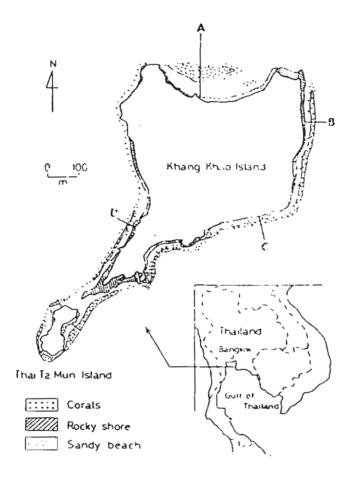


Fig 1. Map of Khang Khao Island, showing the study sites (after Kamura and Choonhabandit 1986).

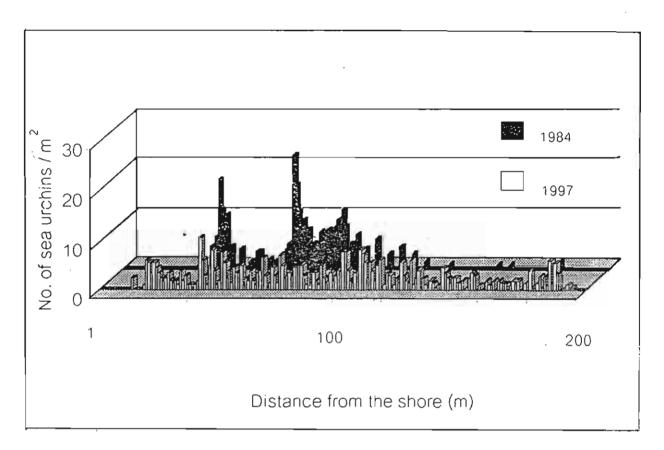


Fig 2. Distribution and abundance of a sea urchin, *Diadema setosum*, at station A of Khang Khao Island in November 1984 and November 1997.

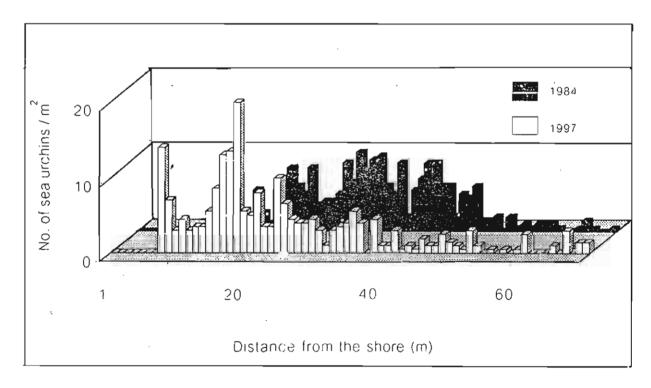


Fig 3. Distribution and abundance of a sea urchin. *Diadema setosium*, at station B of Khang Khao Island in November 1984 and November 1997.

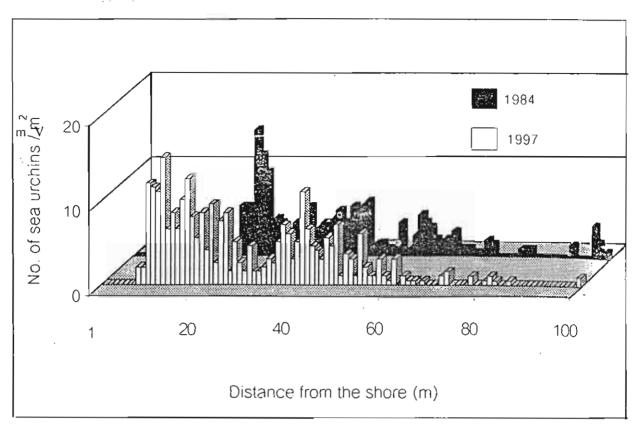


Fig 4. Distribution and abundance of a sea urchin, *Diadema setosum*, at station C of Khang Khao Island in November 1984 and November 1997

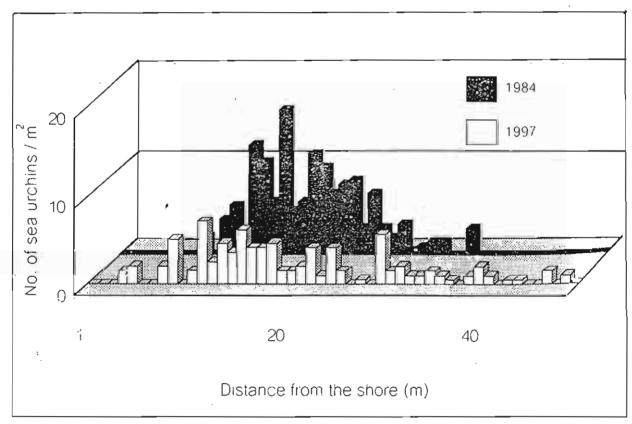


Fig 5. Distribution and abundance of a sea urchin. *Diadema setosum*, at station D of Khang Khao Island in November 1984 and November 1997

where D. setosum was low densities. The long-term changes of distribution and abundance of D setosum at stations A, B, C and D are shown in Figs. 2-5, respectively. Population densities of D. setosum at station A and C of the two surveys were significantly different (P<0.05, t-test) while those at station B and D were not statistically different.

DISCUSSION

Diadema setosum is a dominant species in coral communities at Khang Khao Island throughout thirteen years. The abundance of D. setosum at stations A and C seemed to be increasing. The results from previous studies of biological destruction of reefs clearly show that bioerosion by sea urchin is very important in hard-substrate bioeroders in coral reefs (Hunter, 1977; Glynn et al., 1979; Bak, 1990,1994; Mokady et al., 1996). Therefore, the high density of D. setosum in coral communities at Khang Khao Island can effect benthic community structure and construction and development of reefs by a process of grazing. The research on bioerosion by a sea urchin, D. setosum, in a coral community at Khang Khao Island, inner Gulf of Thailand was also carried out. The data will be published elsewhere.

ACKNOWLEDGEMENTS

We wish to express our sincere thank to the JSPS for funding us to participate the 8th JSPS Joint Seminar on Marine Science: Marine Conservation and Resource Rehabilitation, in Chiangrai, Thailand during 8-10 December 1997. This research was conducted as one of the projects of Marine Biodiversity Research Group of Ramkhamhaeng University under the financial support of The Thailand Research Fund, Biodivesity Research and Training Program, a Joint program supported by The Thailand Research Fund and National Center for Genetic Engineering and Biotechnology, and Ramkhamhaeng University.

REFERENCES

- Abele, L.G. 1976. Comparative species richness in fluctuating and constant environments: coral-associated decapod crustaceans. Science, 192: 461-463.
- Austin, A.D., Austin, S.A. and Sale, P.E. 1980. Community structure of the fauna associated with the coral *Pocillopora damicornis* (L.) on the Great Barrier Reef. Aust. J. Mar. Freshwater Res., 31: 163-174.
- Bak, R. P. M. 1990. Pattern of echinoid bioerosion in two Pacific coral reef lagoons. Mar. Ecol. Prog. Ser. 66: 267-272.
- Bak, R. P. M. 1994. Sea urchin bioerosion on coral reef: place in the carbonate budget and relevant variables. *Coral Reef*, 13: 99-103.
- Glynn, P.W. 1976. Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr., 39: 749-765.
- Glynn, P. W., Wellington, G. M. and Birkeland, C. 1979. Coral Reef growth in the Galapagos limitation by sea urchins. *Science* 203: 47-49.
- Hunter, I. G. 1977. Sediment production of *Diadema antillarum* on a Barbados fringing reef. Proc. 3rd Int. Coral Reef Symp. 2: 105-109.
- Kamura, S. and Choonahabandit, S. 1986. Algal communities within territories of the damselfish *Stegastes apicalis* and the effects of grazing by the sea urchin *Diadema* spp. in the Gulf of Thailand. Galaxea, 5: 175-193.
- Mokady, O., Lazar, B. and Loya, Y. 1996. Echinoid bioerosion as a major structuring force of Red sea coral reef. *Biol. Bull.*, 190: 367-372.
- Sakai, K., Snidvongs, A., Yeemin, T., Nishihira, M. and Yamazato, K. 1986. Distribution and community structure of hermatypic corals in the Sichang Islands, inner part of the Gulf of Thailand. Galaxea, 5: 7-74.
- Tsuchiya, M., Nakasone, Y., Moordee, R. and Manthachitra, V. 1986. Distribution of subtidal macrobenthic animals around the Sichang Islands, the Gulf of Thailand, Galaxea, 5 75-96.

HEAVY METAL CONCENTRATIONS IN GONADS OF A SEA URCHIN, Diadema setosum FROM CORAL COMMUNITIES OF KHANG KHAO ISLAND IN THE INNER GULF OF THAILAND

Thamasak Yeemin¹, Jacuthat Milinthalek², Jamrearn Buaruang¹, Samran Tongumpon² and Sarai Pairagsa²

¹ Marine Biodiversity Research Group, Department of Biology, Faculty of science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

² Division of Environmental Science, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

ABSTRACT

Pollutants from contaminated river water, effluent discharges in to the sea, off shore and near-shore mining and developments on both the lands and the reefs are clearly documented to have affected coral reef ecosystem. Concentrations of Pb. Cu. Zn and Fc were measured in gonads of a sea urchin, *Diadema setosum* from coral communities of Khang Khao Island, in the inner Gulf of Thailand during March-April 1998. The standard methods for extraction and acid digestion were used. All the heavy metals were determined by FAAS. The heavy metal concentrations in gonads of the sea urchin varied significantly between stations and sampling periods and were lower than standard levels of contaminated food. Gonads of *D. setosum* are high potential for consuming. This sea urchin could be a valuable bioindicator for assessing and monitoring heavy metal concentrations in coral communities in the Gulf of Thailand as well

INTRODUCTION

Coral reef ecosystem is highly sensitive to anthropogenic disturbances in coastal areas (Howard and Brown 1984). Although most coral reefs are not exposed to high heavy metal inputs, pollutants from contaminated river water, effluent discharges into the sea, off shore and near-shore mining and developments on both the lands and the reefs are clearly documented to have affected coral reefs in several areas (Brown and Holly 1982; Scott 1990; McConcine and Harriott 1992). Well developed coral assemblages are found at Khang Khao Island, the inner part of the Gulf of Thailand (Sakai et al. 1986) where locates near the mouths of the four main rivers. Choa Phraya, Bang Pakong, Tachin and Maeklong. A sea urchin, Diadema setosum, is a dominant species in the coral communities of Khang Khao Island. Gonads of this sea urchin are taken by local people. The present study aims to quantify heavy metal concentrations (Pb, Cu, Zn and Fe) in goads of the sea urchin. D. setosum from coral communities of Khang Khao Island, the Inner Gulf of Thailand.

MATERIAL AND METHODS

Sea urchin were collected by SCUBA divers in March and April 1998 from stations A. C and D of Khang Khao Island (Fig 1). Gonads were removed and kept below 0° C. After drying at temperature 105° C, gonad samples were homogenized in a porcelain mortar. One gram of dried material was asked at 450° C and digested in HNO₃. The resulting solution was filtered

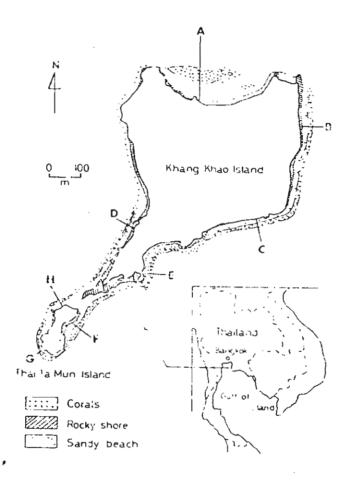


Fig. 1: Map of Khang Khao Island, showing the study sites (after Kamura and Choonhabandit 1986)

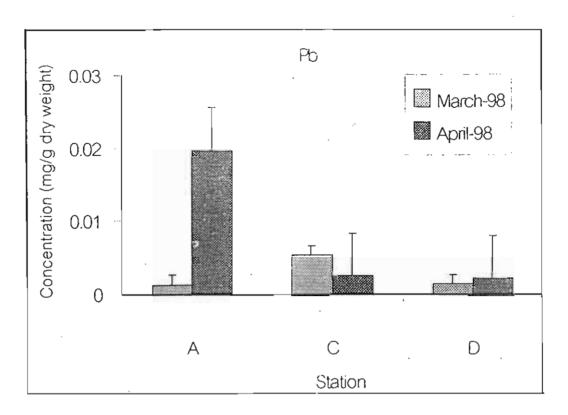


Fig. 2: Pb concentration (mg/g dry weight) in gonads of *Diadema setosum* at Khang Khao Island in March and April 1998.

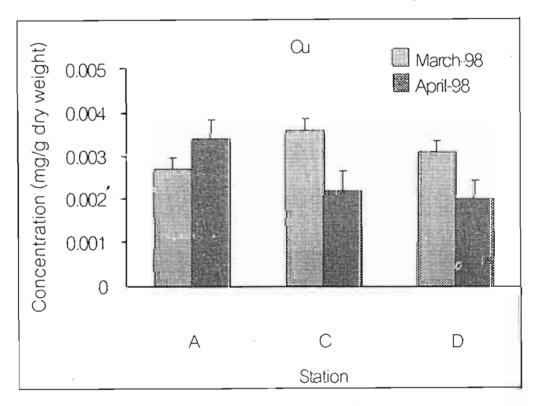


Fig. 3: Cu concentration (mg/g dry weight) in gonads of *D. setosum* at Khang Khao Island in March and April 1998.

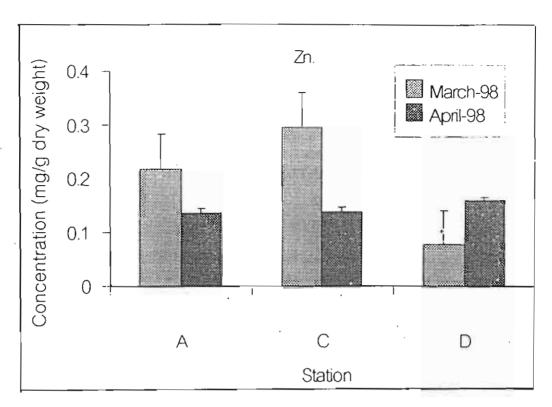


Fig. 4: Zn concentration (mg/g dry weight) in gonads of D. setosum at Khang Khao Island in March and April 1998.

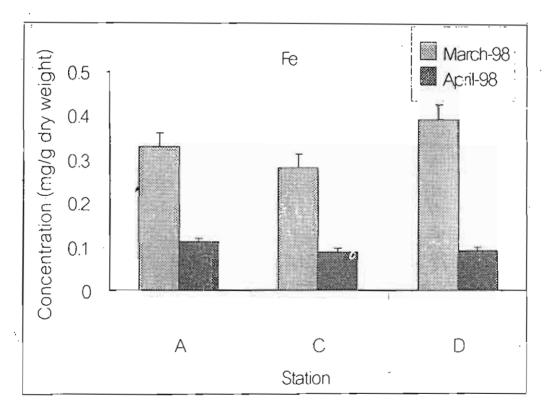


Fig. 5. Fe concentration (mg/g dry weight) in gonads of *D. setosum* at Khang Khao Island in March and April 1998.

and extracted in DHC-APDC-Chloroform. Metal concentrations were measured by flame atomic absorption spectrophotometry (FAAS-Perkin Elmer).

RESULTS

The results of Pb. Cu. Zn and Fe concentrations in gonads of the sea urchin, *Diadema setosum* in March and April 1998 are presented in Figs. 2.3.4 and 5, respectively. The heavy metal concentrations varied greatly between stations and sampling periods studied. Pb concentration at station A in April was the highest. Fe concentration in March were higher in all stations examined.

DISCUSSION

When compared to results of other studies in tropical communities (Brown and Holley 1982; Hungspreugs and Yuangthong 1983; Hungspreugs et al., 1984; McConchie and Harriott 1992; Riget et al., 1997; Bastidas and Garcia 1997; Izquierdo et al., 1997; Amano Filho et al., 1997) all heavy metal levels in gonads of Diadema setosum were lower than the range. Khang Khao Island locates near the river mouths where is expected to be exposed to contaminated river water. However, heavy metal concentrations in gonads of the sea urchin analyzed in the present study are lower than the standard levels of contaminated food according to the Thai Ministry of Public Health. It is suggested that gonads of the sea urchin, Diadema setosum are high potential for consuming. Moreover, Diadema setosum could be a valuable bioindicator for assessing and monitoring heavy metal concentrations in coral communities in the Gulf of Thailand.

ACKNOWLEDGMENTS

The first author would like to express his appreciation to JSPS for funding him to participate in the 8th JSPS Joint Seminar on Marine Science: Marine Conservation and Resource Rehabilitation, in Chiangrai, Thailand during 8-10 December, 1997. This research is supported by The Thailand Research Fund and Ramkhamhaeng University. We also thank the staff of Marine Biodiversity Research Group of Ramkhamhaeng University for their help.

REFERENCES

- Amano Filho GM, Andrade LR, Reis RP, Bastos W, Pfeiffer WC (1997). Heavy metal concentrations in sea weed species from the Abrolhos reef region, Brazil. Proc 8th Int. Coral Reef Sym. 2: 1843-1846.
- Bastidas C. Garcia E (1997). Metal concentrations in the tissue and skeleton of the coral *Montastrea annularis* at a venezuelan reef. Proc 8th Int Coral Reef Sym: 1847-1850
- Brown BE, Holley MC (1982). Metal levels associated with Tin-dredging and smelting and their effect upon intertidal reef flats at Ko Phuket, Thailand, Coral Reefs 1: 131-137.
- Kamura S. Choonhabandit S. (1986). Distribution of benthic marine algae on the coasts of Khang Khao and Thai Ta Mun, Sichang Islands, the Gulf of Thailand, Galaxea 5, 97-114.
- Howard LS, Brown BE (1984). Heavy metals and reef corals. Oceanogr Mar Biol Ann Rev 22:195-210.
- Hunspreugs M, Yuanthong C (1983) The present levels of heavy metals in some molluses of the Upper Gulf of Thailand. J of Water, Air & Soil Pollut 22: 395-402.
- Hungspreugs M, Silpipat S, Tonapong G, Lee RF, Windom HL, Tenore KR (1984). Heavy metals and Polycyclic hydrocarbon compounds in benthic organisms of the Upper Gulf of Thailand. Mar Pollut Bull 15:213-218.
- Izquierdo C. Usero J. Gracia I (1997). Speciation of heavy metals in sediments from salt marshes on the southern Atlantic coast of Spain Mar Pollut Bull 34: 123-128
- McConchie D. Harriott VJ (1992). The partitioning of metals between tissue and skeletal parts of corals: application in pollution monitoring. Proc 7th Int Coral Reef Sym 1:97-103
- Riget F, Johansen P, Asmund G (1997). Baseline levels and natural variability of elements in three seaweed species from West Greenland. Mar Pollut Bull 34: 171-176.
- Sakai K, Yeemin T, Snidvongs A, Yamazato K, Nishihira M (1986). Distribution and community structure of hermatypic corals in the Sichang Islands, inner part of the Gulf of Thailand: Galaxea 5, 27-74
- Scott PJB (1990) Chronic pollution recorded in coral skeletons in Hong Kong. J Exp Mar Biol Ecol 139: 51-64.

The 9th JSPS Joint Seminar on Marine Science Advances in Marine and Fisheries Sciences for the 21st Century Bali, Indonesia, 7-9 December 1998

ECOLOGY OF A MARINE SPONGE, HALICLONA CF. COERULESCENS FROM CORAL COMMUNITIES IN THE GULF OF THAILAND

Saiprateep Asa¹, Thamasak Yeemin¹, Nisit Ruengsawang¹ and Nilnaj Chaitanawisuti²

¹Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand ²Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand

ABSTRACT

Distribution pattern and population density of a marine sponge, Haliclona cf. coerulescens in coral communities of Nok Island and Khang Khao Island in the Inner part of the Gulf of Thailand were studied quantitatively in August, 1998. The results show that Haliclona cf. coerulescens attached mostly on three types of substrate, Porites lutea, Palythoa sp. and rock in the shallow zones (depth 2-5 m.) of coral communities. Mean population densities of the sponge at Nok Island on Porites lutea, Palythoa sp. and rock were 0.30±0.029, 0.10±0.008 and 0.06±0.004 colonies/m², respectively while those at Khang Khao Island were 0.20 ± 0.008 , 0.10 ± 0.005 and 0.06 ± 0.004 colonies/m², respectively. Dispersion patterns of Haliclona cf. coerulescens in all studied locations were clumped. Reproductive biology of Haliclona cf. coerulescens at Nok Island was also examined by sampling monthly on marked colonies for microtechnique analysis of tissue in the laboratory. According to the preliminary study, Haliclona cf. coerulescens was gonochoric and viviparous. By observing parenchymula larvae in brood chambers, gametes and larvae were developed during December 1997 - March 1998. Most asexual reproduction of Haliclona cf. coerulescens was external budding for increasing oscule numbers. Studies on reproductive biology of sponge in details are urgently needed in order to progress several debates concerning taxonomy and life history strategies in marine sponges.

INTRODUCTION

Sponges can be found in all aquatic habitats. Demospongiae have colonized from upper intertidal area to hadal zone. The ecological dominance of Demospongiae is the results of their diversity in form, structure, reproductive capabilities and physiological adaptation (Bergquist 1978). Many important details of taxonomy, physiology, ecology and reproductive biology remain to be clarified. Certain factors which influence the distribution pattern, survival rate and life history stages must be carefully considered when examining sponge ecology.

The relative influence of various physical and biological factors on distribution and abundance of coral reef sponges have been studied in Caribbean, Mediterranean and Great Barrier Reef of Australia (Reiswig 1973; Wilkinson 1989; Uriz et al. 1992; Wulff 1995; Corriero et al. 1996). However, the distribution patterns of coral reef sponges in Southeast Asian countries are poorly known.

Although the importance of reproductive processes as important taxonomic characters of Demospongiae, reproductive biology of only a few sponges has been studied in details (Reiswig 1970, 1983; Fell 1974, 1983, 1993; Fell et al. 1984; Hoppe 1988; Ilan

. .

and Loya 1988; Wulff 1991; Sara 1992; Zea 1993; Gaino and Sara 1994; Fromont, 1994; Uriz et al. 1995; Maldonado and Young 1996; Tsurumi and Reiswig 1997).

The present paper provides data on population density and distribution patterns of *Haliclona* cf. *coerulescens* on different substrates at Nok Island and Khang Khao Island in the Inner Gulf of Thailand. Moreover, we report the preliminary results of the study on reproductive patterns of this coral reef sponge.

MATERIALS AND METHODS

Haliclona cf. coerulescens is a dominant sponge found in coral communities in the Gulf of Thailand (Fig.1). The color life is a rich ultramarine blue, verging slightly toward violet. The color of the endosome is the same as that of the ectosome. The consistency is spongy but easily torn. The surface is typically haliclonid. The pores are $50~\mu$ to $120~\mu$ in diameter and are about $250~\mu$ apart, center to center. The oscules are about 5~mm in diameter and not much more than 1 cm apart, being very abundantly distributed over the entire upper and lateral surfaces of the mass. As might be expected, the ectosome is nonexistent and the endosome is a fibrous-reticulation (de Laubenfels 1954).

Population density and distribution pattern of *Haliclona* cf. coerulescens were studied at Nok Island and Khang khao Island, in the Inner Gulf of Thailand (Fig.2). A quadrat (1x1m²) was placed randomly in coral zones of the two islands. Numbers of colony, colony sizes and types of substrate were recorded by SCUBA divers.

For the study on reproductive biology, from December 1997 to November 1998 the reproductive activity of *Haliclona* cf. *coerulescens* was monitored by repetitive sampling of the marked colonies from the coral zone of Nok Island each month. Pièces of 1-2 oscules were cut from the sponge colonies with a sharp dissection knife. The samples were then fixed in 10% formalin-sea water and transferred to 70% ethanol. The samples were embedded in paraffin, sectioned at 8-10 µm thickness and stained with haematoxylin-eosin. In addition, presence of parenchymula larvae in brood chambers was also examined directly in the field.

RESULTS AND DISCUSSION

Haliclona cf. coerulescens attached mostly on three types of substrate, i.e., a massive coral Porites lutea, a zoanthid Palythoa sp. and rock in the shallow zones (2-5 m in depth) of the coral communities. Mean population densities of the sponge on Porites lutea, Palythoa sp. and rock at Nok Island were 0.30±0.029, 0.10±0.008 and 0.06±0.004 colonies/m², respectively while those at Khang Khao Island were 0.20±0.008, 0.10±0.005 and 0.06±0.004 colonies/m², respectively (Fig. 3) Dispersion patterns of Haliclona cf. coerulescens in all studied locations were clumped (Fig. 4).

According to the initial stage of this study, *Haliclona* cf. coerulescens was gonochoric and viviparous. Active parenchymula larvae were clearly observed (Fig.5 and Fig. 6). By observing the presence of parenchymula larvae in brood chambers of the tagged colonies, gametes and larvae were developed during December 1997- March 1998 (Fig. 7). There was no parenchymula larva observed during April- September 1998. Most asexual reproduction of *Haliclona* cf. coerulescens was external budding for increasing oscule numbers that seemed to be a very important maintenance mechanism of the sponge.

Obviously, most colonies of *Haliclona* cf. coerulescens at both Nok Island and khang Khao Island attached and overgrew on a massive coral, *Porites lutea*, which was the most abundant coral species in the Gulf of Thailand. However, the results of interactions between the sponge and *Palythoa* sp. were not clearly known. It is an interesting theme for future studies. The dispersion patterns of *Haliclona* cf. coerulescens

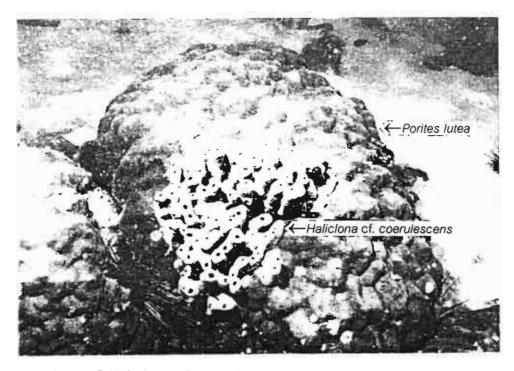


Fig. 1. A colony of *Haliclona* cf. coerulescens grows on a massive coral, *Porites lutea* in a coral community at Nok Island, the Inner Gulf of Thailand.

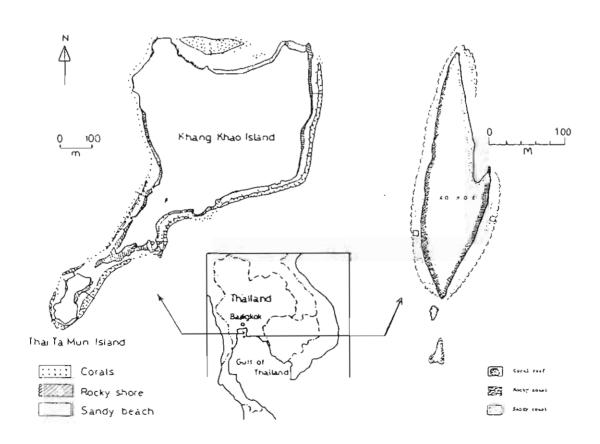


Fig. 2. Map of Khang Khao Island and Nok Island. in the Inner Gulf of Thailand.

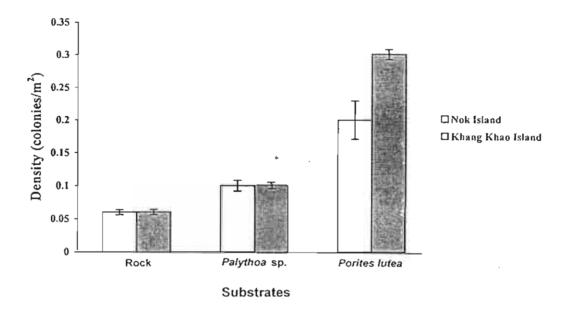


Fig.3. Mean population densities of *Haliclona* cf. coerulescens on different types of substrate at Nok Island and Khang Khao Island.

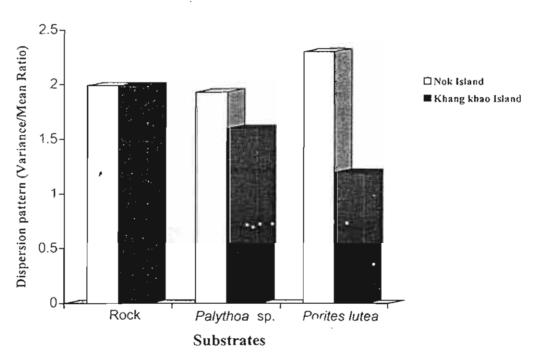


Fig. 4. Dispersion pattern of *Haliclona* cf. coerulescens on different types of substrate at Nok Island and Khang Khao Island.

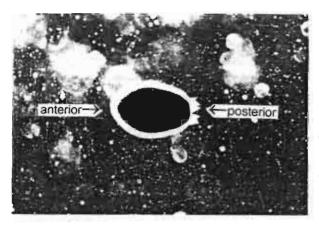
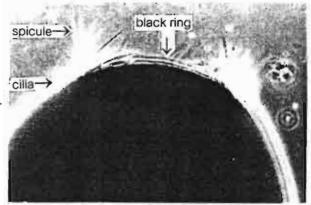



Fig. 5. A parenchymula larva of *Haliclona* cf. *coerulescens*. It can swim by moving cilia and spicule in order to search appropriate substrates for settlement.

Fig. 6. Posterior of a parenchymula larva of *Haliclona* cf. *coerulescens* showing long spicules, black ring and cilia covered the body.

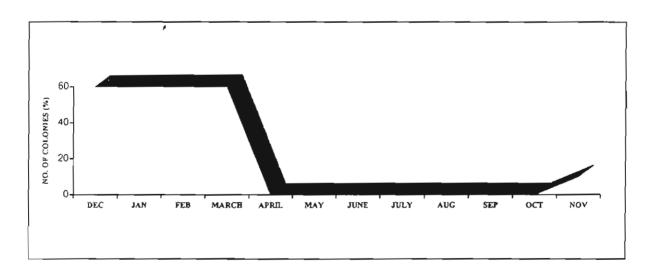


Fig.7. Presence of parenchymula larvae in tagged colonies of *Haliclona* cf. *coerulescens* at Nok Island during December 1997-November 1998.

at the two studied sites were clumped due to the patchy distributions of available substrates.

Haliclona cf. coerulescens was viviparous. Fromont (1994) also reported that three species of the Haplosclerida, i.e., Haliclona amboinensis, Haliclona cymiformis and Niphates nitida, were viviparous. However studies on reproductive biology of sponge in details are urgently needed in order to progress several debates concerning taxonomy and life history strategies in marine sponges.

ACKNOWLEDGEMENTS

This work was supported by Biodiversity Research and Training Program, a joint program supported by the Thailand Research Fund and National Center for Genetic Engineering and Biotechnology, The Thailand Research Fund and Ramkhamhaeng University.

REFERENCES

- Bergquit, P.R., 1978. Sponge ecology. In: Sponges. Bergquist, P.R. (ed.), Hutchinson & Co, London. pp. 181-201.
- Corriero, G., Sara, M. and Vaccaro, P., 1996. Sexual and asexual reproduction in two species of *Tethya* (Porifera: Demospongiae) from a Mediterranean coastal lagoon. Mar. Biol. 126: 175-181.
- de Laubenfels, M.W., 1954. The Sponges of the West-Central Pacific. Oregon State College Press, Corvallis, Oregon. pp. 52-75.
- Fell, P.E., 1974. Porifera. In: Reproduction of marine invertebrates, Vol 1. Giese, A.C., and Pearse, J.S. (eds.), Academic Press, New York. pp. 51-132.
- Fell, P.E., 1983. Porifera. In: Reproductive biology of invertebrates, Vol 1: Oogenesis, oviposition and oosorption. Adiyodi, K.G. and Adiyodi, R.G. (eds.), Wiley, Chichester. pp. 1-29.
- Fell, P.E., Parry, E.H. and Balsamo, A.M., 1984. The life histories of sponges in the Mystic and Thames estuaries (connecticut), with emphasis on larval settlement and postlarval reproduction. J. Exp. Mar. Biol. Ecol. 78: 127-141
- Fell, P.E., 1993. Porifera. In: Reproductive biology of invertebrates, Vol. 6: Asexual, propagation and reproductive strategies, Adiyodi, K.G. and Adiyodi, R.G. (eds.), Oxford and IBH, New Delhi. pp. 1-44.
- Fromont, J., 1994. The Reproductive biology of tropical species of Haplosclerida and Petrosida on the Great Barrier Reef. In: Sponges in time and Space. Van Soest, R.W.M., Van Kempen, T.M.G. and Braekman, J.C.(eds.), Proc. 4th Int. Porifera Congress Amsterdam, Balkema, Rotterdam. pp. 307-311.
- Gaino, E. and Sara, M., 1994. An ultrastructure comparative study of the eggs of two species of *Tethya* (Porifera; Demospongiae). Inv. Reprod. Develop. 26: 99-106.
- Hoppe, W.F., 1988. Reproductive patterns in three species of large coral reef sponges. Coral Reefs. 7: 45-50.
- Ilan, M. and Loya, Y., 1988. Reproduction and settlement of the coral reef sponge *Niphates* sp. (Red sea). Proceedings of the 6thInternational Coral Reef Symposium, Australia. 2: 745-749.
- Maldonado, M. and Young, C.M., 1996. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Mar. Ecol. Prog. Ser. 138: 169-180.
- Reiswig, H.M., 1970. Porifera: Sudden sperm release by tropical Demospongiae. Science. 170: 538-539.

- Reiswig, H.M., 1973. Population dynamics of three Jamaican Demospongiae. Bull. Mar. Sci. 23: 191-226.
- Reiswig, H.M., 1983. Porifera. In: Reproductive biology of invertebrates, Vol 2: Spermatogenesis and sperm function, Adiyodi, G.K. and Adiyodi, R.G. (eds.), Wiley, Chichester. pp. 1-21.
- Sara, M., 1992. Porifera. In: Reproductive biology of invertebrates, Vol. 5: Sexual differentiation and behaviour, Adiyodi, K.G. and Adiyodi, R.G. (eds.), Oxford and IBH, Newdelhi. pp. 1-29.
- Tsurumi, M. and Reiswig, H.M., 1997. Sexual versus asexual reproduction and oviparous rope-form in sponge, *Aplysina cauliformis* (Porifera; Verongida). Inv. Reprod. Develop. 32: 1-9.
- Uriz, M.J., Rosell, D., Martin, D., 1992 The sponge population of the Cabrera archipelago (Balearic Islands): characteristics, distribution and abundance of the most representative species. Mar. Ecol. 113: 101-117.
- Uriz, M.J., Turon, X., Becerro, M.A., Galera, J. and Lozano, J.,1995. Patterns of resource allocation to somatic, defensive, and reproductive functions in the Mediterranean encrusting sponge *Crambe crambe* (Demospongiae; Poecilosclerida). Mar. Ecol. Prog. Ser. 124: 159-170.
- Wilkinson, C.R. and Evans, E., 1989. Sponge distribution across Davies Reef, Great Barrier Reef, relative to location, depth, and water movement. Coral Reefs. 8: 1-7.
- Wulff, J.L., 1991. Asexual fragmentation, genotype success, and population dynamics of erect branching sponges. Exp. Mar. Biol. Ecol. 149: 227-247.
- Wulff, J.L., 1995. Effects of a huricane on survival and orientation of large erect coral reef sponges. Coral Reefs. 14: 55-61.
- Zea, S., 1993. Recruitment of demosponges (Porifera; Demospongiae) in rocky and coral reef habitats of Santa Marta, Colombian Carribbean. Mar. Ecol. 14: 1-21.

The 9th JSPS Joint Seminar on Marine Science Advances in Marine and Fisheries Sciences for the 21st Century Bali, Indonesia, 7-9 December 1998

PRELIMINARY STUDY ON BIOEROSION BY A SEA URCHIN, *DIADEMA SETOSUM*, IN CORAL COMMUNITIES AT KHANG KHAO ISLAND, THE INNER GULF OF THAILAND

Nisit Ruangsawang and Thamasak Yeemin

Marine Biodiversity Research Group, Department of Biology, Faculty of Science Ramkhamhaeng University, Bangkok 10240, Thailand

Abstract

The construction and development of coral reefs are the results of the interactions between reef growth and reef destruction. Reef destruction can be divided into physical, chemical and biological factors. The results from previous studies of biological destruction of reefs clearly show that bioerosion by sea urchins is very important in hard-substrate bioeroders in coral reefs. In the Inner Gulf of Thailand, a sea urchin, *Diadema setosum*, is a common and conspicuous echinoid in coral communities. The present study aims to assess bioerosion rates by *D. setosum* in coral communities at Khang Khao Island due to it is a dominant species throughout thirteen years in this area and can effect benthic community structure and the processes of coral reef development. The finding can be applied for management of living resources in coral communities. The present study has been carried out since September 1997. The bioerosion rate in February was in the range of 0.11 - 1.64 kg CaCO₃ m⁻² y⁻¹.

Introduction

Coral reef is a complex ecosystem and one of the excellent resource for human especially the fisheries. Many of the organisms live in coral reefs can encourage reef growth and destroy reef framework. Therefore, the result of interactions between construction and destruction of coral reefs can decide the fate of reefs (Hutchings, 1986; Bak, 1990, 1994; Glynn, 1997). The agents of coral reef destruction are biological, physical and chemical which are intimately related (Hutchings, 1986). For this study, we concentrate on the effects of organisms which destroy the reef framework in term of bioerosion. As defined by Neumann (1966), the various activities of those reef species that cause coral and coralline algal erosion are collectively termed bioerosion.

Previous studies on bioerosion clearly show that the agents of biological destruction of coral reefs can be divided into grazing, boring and etching (see review in Hutchings, 1986). Bioeroders always encounter in coral reef ecosystems such as sea urchins, fishes, polychaetes, bivalves, sponges etc. which cause different rates of bioerosion (Hunter, 1977; Stern and Scoffin, 1977; Glynn, et al., 1979; Scoffin, et al., 1980; Birkeland, 1988; Risk et al., 1995; Bruggemann et al., 1996). Sea urchins are the major grazer and one of the bioeroder in coral reefs. The hardness of sea urchin's jaw apparatus, Aristotle's lantern, can erode reef surface and coralline algae by grazing activity that cause bioerosion of coral reefs (Sammacro, 1980;

13 ...

Bak, 1990; Glynn, 1990; McClanahan et al., 1990; Mokady et al., 1996; Glynn, 1997). Many authors have used different methods for estimating bioerosion rates such as acidification of total gut contents (weight difference) (Stearn and Scoffin, 1977; Scoffin et al., 1980), ash-free dry weight of total gut contents (Bak, 1990) and acidification of excreted fecal pellets (CO₂ pressure measurement) (Mokady, et al., 1996). Several species of sea urchin have been reported to be major bioeroders e.g. Diadema antillarum, D. setosum, D. savignvi and Echinometra mathaei. For this preliminary study, we adapted the first method for determining bioerosion rates and will improve the method for the accurate data in the future.

In the Inner Gulf of Thailand, a long-spines sea urchin, *Diadema setosum*, is a common and conspicuous echinoid in coral communities. The present study aims to assess bioerosion by *D. setosum* in coral communities at Khang Khao Island due to it is a dominant species throughout thirteen years in this area and can effect benthic community structure and the processes of coral reef development. The finding can be applied for management of living resources in coral communities.

Materials and Methods

This study was carried out at two stations of Khang Khao Island (station A and C) in the Inner Gulf of Thailand (Fig. 1) during the southeast monsoon (February, 1998). At care's station, we divided the coral communities into three zones, i.e. the shallowest zone, coral zone and the deepest zone. Population densities of a sea urchin, *Diadema setosum*, were determined by random quadrats (1x1 m). For measurement of bioerosion rates, *D. sci island* were collected and immediately placed into a plastic bag with formalin (for catch fecal policies) and then samples were transferred to the laboratory. Test without spine and Aristotle's lantern of the sea urchins were measured by venire calipers for determining the size frequency. Samples were dissected to assess the quantity of CaCO₃ in gut content and fecal pellets of urchins by acidification method (adapted from Scoffin *et. al*, 1980).

Results and Discussion

At both stations, population densities and size classes of *D. setosum* were significantly different in each zone. The patterns seemed to be as the following: the shallowest that a coral zone in the deepest zone (Fig. 2). However, the bioerosion rates did not show obtains patterns. At station A, bioerosion rates were higher in the shallowest zone (AI) and leave the coral zone (AII) whereas bioerosion rates at station C decreased from nearshore to seaward (Fig. 3). Compared rates of bioeriosion in coral zone between the two stations changes we that bioerosion rate per year at station C was higher than that of station A beautiful population density were significantly different (Fig. 4).

At each zone, the rate of bioerosion was calculated by multiplying the average CaCO₃ per individual by the population density. Total bioerosion rates (g CaCO₃ m⁻²d⁻¹) at station A contrasted with the results of the average CaCO₃ per individual due to the different of the population density. Evidently, the rate of bioerosion in the study areas were higher the shallowest zone. We concluded that this zone harboured much avialable food resource for the sea urchin, i.e. filamentous algae, which overwhelmed on rock, rubble and dead coral. At the coral zone, the effect of echinoid bioerosion on the reef framework may be increasing due to coral bleaching phenomenon during April – May, 1998. Several species of filamentous algae

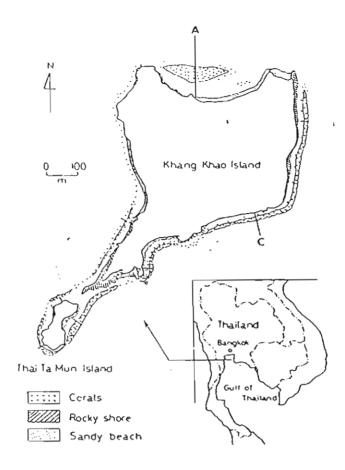


Fig. 1. Map of Khang Khao Island, showing the study sites (after Kamura and Choonhabandit, 1986).

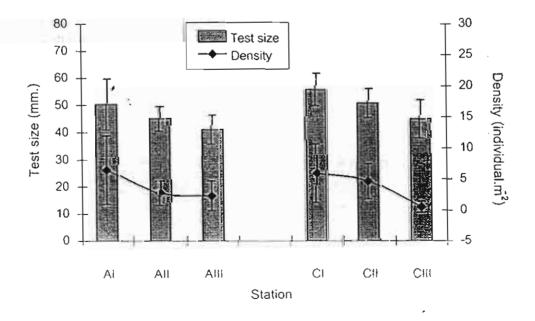


Fig. 2. Density and size class of *Diadema setosum* from different zones at station A and C of Khang Khao Island.

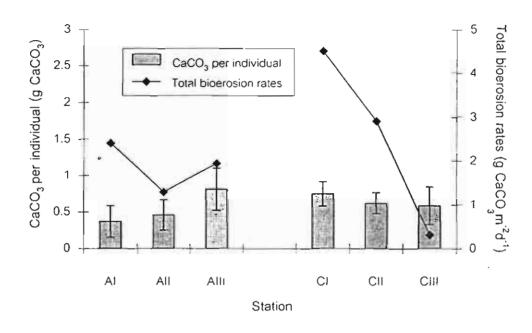


Fig. 3. The amount of CaCO₃ in gut content and fecal pellets of *Diadema setosum* per individual and the total bioerosion rates (g CaCO₃ m⁻²d⁻¹)

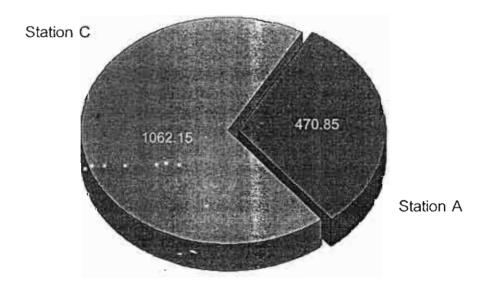


Fig. 4. Comparison of bioerosion rates (g CaCO₃ m⁻²y⁻¹) in the coral zones between station A and C of Khang Khao Island.

4 1.5

were abundant and grew on partial dead coral colonies thus population densities of *D. setosum* may be increasing.

The estimated bioerosion rates in the present study seemed to be lower than that in Barbados, Caribbean Sea (Stearn and Scoffin, 1977; Hunter, 1977), Moorea, French Polynesia (Bak, 1990) and higher than that in Eilat, Red Sea (Mokady, et al., 1996). Finally, the bioerosion rates in the southeast monsoon will be compared with the future study which will be examined throughout the year.

Acknowledgment

This study was supported by the Biodiversity Research and Training Program, a joint program supported by The Thailand Research Fund and National Center for Genetic Engineering and Biotechnology, The Thailand Research Fund and Ramkhamhaeng University.

References

- Bak, R. P. M. 1990. Pattern of echinoid bioerosion in two Pacific coral reef lagoons. Mar. Ecol. Prog. Ser. 66: 267-272.
- Bak, R. P. M. 1994. Sea urchin bioerosion on coral reef: place in the carbonate budget and relevant variables. *Coral Reefs* 13: 99-103.
- Birkeland, C. 1988. The influence of echinoderm on coral-reef communities. *In M. Jangoux* and J.M. Lawrence (eds.), *Echinoderm Studies*. Vol.3, pp 1-79. AA. Balkema, Rotterdam.
- Bruggemann, J.H., van Kessel, A.M., van Rooij, J.M. and Breeman, A.M. 1996. Bioerosion and sediment ingestion by the Caribbean parrotfish *Scarus vetula* and *Sparisoma viride*: implications of fish size, feeding mode and habitat use. *Mar. Ecol. Prog. Ser.* 134: 59-71.
- Glynn, P.W., Wellington, G.M. and Birkeland, C. 1979. Coral reef growth in the Galapagos: limitation by sea urchins. *Science* 203: 47-49.
- Glynn, P.W. 1990. Feeding ecology of selected coral-reef macroconsumers: patterns and effects on coral communities. *In Z. Dubinsky* (ed.), *Ecosystems of the World*, vol 25: Coral Reef. pp. 365-400. Elsevier Science Publishing, New York.
- Glynn, P.W. 1997. Bioerosion and coral-reef growth: a dynamic balance. *In C. Birkeland* (ed.), *Life and Death on Coral Reefs.* pp. 68-95. Chapman & Hall, New York.
- Hunter, I.G. 1977. Sediment production of *Diadema antillarum* on a Barbados fringing reef. *Proc.* 3rd Int. Coral Reef Symp. 2:105-109.
- Hutchings, P.A. 1986. Biological destruction of coral reef: a review. *Coral Reefs* 4: 239-252.
- Kamura, S. and Choonhabandit, S. 1986. Algal communities within territories of the damselfish *Stegastes apicalis* and the effects of grazing by the sea urchin *Diadema* spp. in the Gulf of Thailand. *Galaxea* 5: 175-193.
- McClanahan, T. R. and Shafir, S. H. 1990. Causes and Consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. *Oecologia* 83: 362-370.
- Mokady, O., Lazar, B. and Loya, Y. 1996. Echinoid bioerosion as a major structuring force of Red sea coral reef. *Biol. Bull.* 190: 367-372.
- Risk, M.J., Sammacro, P.W. and Edinger, E.N. 1995. Bioerosion in *Acropora* across the continental shelf of the Great Barrier Reef. *Coral Reefs* 14: 79-86.

- Sammacro, P.W. 1980. *Diadema* and its relationships to coral spat mortality. Grazing competition and biological disturbance. *J. Exp. Mar. Biol. Ecol.* 45: 245-272.
- Scoffin, J. P., Stearn, C. W., Boucher, D., Frydl, P., Hawkins, I. G. and MacGeachy, J. K. 1980. Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part II erosion, sediments and internal structure. *Bull. Mar. Sci.* 30: 475-508.
- Stearn, C.W. and Scoffin, T.P. 1977. Carbonate budget of a fringing reef, Barbados. *Proc.3*rd Int. Coral Reef Symp. 2: 471-476.

Long-term Change in Coral Reef Communities in the Inner Gulf of Thailand

Thamasak Yeemin and Suraphol Sudara

Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240
Thailand.

²Department of Marine Science, Chulalongkortı University, Bangkok 10330 Thailand.

Abstract

Field observation and underwater photographs on permanent quadrats over a 12-yr period revealed a degree of community change of corals on Nok Island, Pattaya, the Inner Gulf of Thailand. Variation in community structure parameters for the study sites indicated that they had their own trends of development, resulting in greater dissimilarity between the study sites. Fluctuations in live coral cover, colony numbers and species diversity were in a dynamic system. The main impacts on these community structure parameters were from sediment, either from rivers and construction activity at Lam Chabang, the grazing activity of a sea urchin, *Diadema setosum*, and other anthropogenic activities. It was recommended that the suitable period between investigations for long-term studies was around 2-3 years so that changes could be realistically analyzed.

Introduction

A disturbance is defined as a discrete, punctuated killing, displacement, or damaging of one or more individuals (or colonies) on a site (Sona, 1994). The process of recovery after disturbance is also a common event in the evolutionary history of coral communities (Connell, 1978, 1997; Pearson, 1981; Portes *et al.*, 1982; Hughes & Jackson, 1985; Dollar and Tribble, 1993, Hunter & Evans, 1995)

Ko Nok is a small island, 341 by 87 meters, located about 11 km. from Pattaya. This island is closest to the mainland at Lam Chabang which is north of Pattaya and was designed to be an industrial zone with a deep-sea port. In order to monitor the impacts which industrials as well as port development might have on the fringing reef around the island, two permanent quadrats were set up in January 1984 and the reef community structure within each was recorded and analyzed. A resurvey was conducted in November 1986, about 3 years afterwards, to determine temporal changes within the community prior to the full scale development of Lam Chabang.

The latest resurvey of the two quadrats was conducted in June 1996, about 10 years after the first resurvey. The industrial zone and the deep-sea port at Lam Chabang had already been constructed and operating for some time.

Site description

Ko Nok is situated North-East of Pattaya and directly across the sea from the Pattaya industrial complex, 13° 1′ 10″N, 100° 49′ 25″ E (Fig. 1). The island is elongated, with the northern, western and southern faces characterized by rocky shores and directly exposed to the southwest monsoon. On the protected eastern side is a small bay with a rubble and sandy beach. The western profile of the intertidal and subtidal zones is steeper than the eastern profile, 3.8° and 1.9° respectively (Fig. 2).

Survey methodology

A broad-scale survey of the coral species present was carried out by divers swimming the length of the reef along the eastern and western shores of Ko Nok and making species records during each survey. Samples of most of the corals were collected for laboratory identification. The coral diversity survey was carried out since the first investigation.

Two permanent quadrats, each 7 by 7 meters in size, were set up by permanently marking corners with steel rods. 2 cm. in diameter, driven into the substratum. Nylon rope, 3 mm. thick, were then stretched across each quadrat to mark the boundary and to divide the quadrat into 1 m² areas. Steel nails, hammered into the substrates beyond the quadrat boundary, were used to secure the ropes in position.

Underwater photographs were taken with an underwater camera mounted on a fixed-distance tetrapodal steel frame, which enabled each exposure to cover an area of 0.25 m². Individual photographs were then cut and glued together to from a composite picture of each quadrat in its entirety. For community structure analysis, a slightly smaller central plot of 42 m² was used in order to eliminate edge effects. Within these plots, colony size was calculated and the colony identified as far as possible to a generic level from the pictures.

• The fish population was observed within 5 m. of each side of a perpendicular-to-shore 100 m. line transect set up near each quadrat. Fish species were identified *in situ* and their numbers recorded. They were divided into two categories, commercial species and those without commercial value. Other reef associated fauna were counted or observed in the field, within each quadrat.

The coral community structure was analyzed for spatial and temporal patterns using Shannon-Wiener's species diversity index, Pielou's evenness index and Jaccard's Similarity index.

110

Result

The coral diversity on the eastern and western sides of the island is listed in Table 1. A total of 51 species belonging to 30 genera, including one octocoral, *Millepora* sp. was found on the reef. The species richness was similar between the east and the west sides of the island, with 45 species on the east and 46 on the west. Forty species were common to both sides, giving a high similarity coefficient of 0.78 using Jaccard's index. In terms of species, the coral community is dominated by the families Acroporidae and Faviidae, each represented by 15 species. The ahermatypic coral *Dendrophyllia* sp. was restricted to the western side of Ko Nok.

The quadrat on the east contained 19 species of coral plus some colonies that could not be identified (Table II). From all three surveys, *Porites lutea* remained the dominant coral in terms of colony numbers and areal cover throughout the 13 year period. After the 3 year period following the initial survey, a second survey revealed that the number of *Porites lutea* colonies was reduced but that its percentage cover was increased. After another 10 year period, both the number of colonies as well as the areal cover increased. *Pocillopora damicornis* had its number of colonies reduced in both surveys. It's areal cover did increase after the first 3 year period but slightly decreased after another 10 year period. *Pavona decussata* was reduced in both the number of colonies and areal cover after the initial 3 year period but slightly increased in both categories after the subsequent 10 year period. The number of colonies of *Acropora* (corymbose), *A. milleora*, *Montipora* (plate) and *Symphyllia* sp. decreased dramatically after the initial 3 year period but remained almost the same after the next 10 years, while their areal cover changed slightly over those two periods. The other corals showed some changes from one survey to the next. The colonies of *Acropora hyacinthus*, *Leptastrea* sp; *Platygyra sinensis* and *Psammocora contigua* failed to survive over the initial 3 year period but all except *Platygyra sinensis* came back after the later 10 year period.

The quadrat on the western side of Ko Nok also contained 19 coral species, with an additional 5 unidentified colonies (Table III). Fourteen of the species in this quadrat were common to the eastern quadrat, with *Porites lutea* again as the dominant species both in the number of colonies and areal cover. Two new colonies were established after the first 3 year period with a slight decrease in areal cover but another four new colonies were added on with some increase in areal cover over the next 10 year period. *Symphyllia* sp. was the next dominant species in terms of areal cover but showed slight decrease in both the number of colonies and areal cover before recovering in both categories over the 10 year period. *Pocillopora damicornis* which was dominant in terms of colony numbers in the 1984 survey, decreased in the number of colonies and increased in areal cover after the 3 year period but then slightly increased in

colony numbers and decreased in areal cover over the next 10 year period. The number of colonies of Favia sp. increased in both the 3 and 10 year observation periods while that of Pavona cactus slightly increased in the 3 year period but decreased in the 10 year period. The rest showed some change from one survey to the next. The colonies of Montipora (plate), M. Monastriata, Favites abdita, Lobopheyllia sp., Galaxea facicularis and Turbinaria frondens to survive over the 3 year observation period, but all except for the last two species recolonized after the later 10 year observation period.

Community structure parameters for both quadrats were compared over time (Table IV). The quadrat on the western side of the island maintained a high percentage cover of live coral, showing an increase of 0.42% and 10.99% within the 3 year and 10 year periods respectively. Live coral cover in the quadrat on the eastern side dropped 2.24% within the 3 year period but increased 3.00% after the subsequent 10 year period. Dead coral cover was higher in the eastern than in the western quadrat, increasing 14.91% compared to 16.91% after the 3 year period but dropping only 3.29% compared to 10.90% after the subsequent 10 year period respectively. The number of colonies or density of live coral declined over time during the 3 year period in both quadrats but increased during the later 10 years period. The mean colony size increased in both quadrats within the period these two investigations. Diversity indices and species richness of both quadrats fell after the first 3 year period but increased over the following 10 year period. Community similarity (using Jaccard's Index) between the 2 quadrats fell from 0.74 in January 1984 to 0.64 in November 1986 and to 0.63 in June 1996.

Diadema setosum, the long spine sea urchin, was commonly found within the two quadrats and boring bivalves were found in abundance embedded within the coral heads. Actual counts indicated that sea urchin density in the eastern quadrat increased during the first 3 year period but decreased during the later 10 year period, while in the western quadrat, decreased over time. The number of boring bivalves in two quadrats decreased in the 3 year period but increased in the 10 year period (Table V).

Discussion

For its size, the coral community at Ko Nok is divers. At the nearby Sichang Islands, Sakai et al. (1986) recorded 85 hermatypic coral species. Although the extent of the reef is grater on the western than on the eastern side, the similarity of the communities on both sides as observed from the earlier areal survey, indicates that they developed as a common population around the island.

The community can be best described as a *Porites lutea* community because of the dominance of the species both in areal cover and number of colonies. Communities dominated by *Porites lutea* are common within the inner part of the Gulf of Thailand, (Sakai *et al.*, 1986). This may be the result of

freshwater influence from the four major rivers discharging into this area of the Gulf and causing high fluctuation of salinity with the seasons.

Variations in community structure parameters for both quadrats indicate that each had its own trend of development, resulting in greater dissimilarity between the two. In general, the community structure parameters of both these quadrats at Ko Nok during the period from 1984 to 1996 did not show and drastic change. Fluctuations in live coral cover, colony numbers and species diversity attest to a dynamic system. The main impacts on these community structure parameters might be from:

- 1. Sediment, either from rivers, runoff or the construction activity at Lam Chabang.
- 2. The grazing activity of sea urchins.
- 3. Anthropogenic activities.

The quadrat on the eastern side of the island showed some what more fluctuation in community structure parameters than the quadrat on the western side, but the difference was not that distinct. The impact from the deep-sea port construction at Lam Chabang might not have been that strong due to the distance and the lack of a direct current between the two places. Therefore, the community structures of both quadrats were more likely to be under the influence of low salinity and increased sediment carried by runoffs.

The impact of the grazing activity of sea urchins on coral community structure has been described (Sammarco. 1980, 1982) and the result here further supports that observation. The eastern quadrat had a lower live coral cover and a higher sea urchin density than the western quadrat.

Broken corals were evident in the general area and these could have resulted from anchor damage and diving activities.

Many studies on inhacted areas compare community structure before and after the event without taking into account the inherent dynamic change of the community being observed. This study could actually provide an insight into the change occurring within the coral community at Ko Nok due to the port development at Lam Chabang, but the 10 year period in between the second and the third investigation was too long. Dynamic changes could be detected, particularly on the eastern quadrat, but it would be difficult to conclude that the changes were a result of port construction. There for, it is recommended that the suitable period in between investigations for such studies be around 2-3 year so that changes could be realistically analyzed.

Acknowledgments

We would like to thank many student field assistants. This stydy was supported by The Thailand Research Fund.

References

- Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science, 199: 1302-1310.
- Connell, J. H. 1997. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr, 67: 461-488.
- Dollar, S. J. and G. W. Tribble. 1993. Recurrent storm disturbance and recovery: a long-term study of coral communities in Hawaii. Coral Reefs, 12: 223-233.
- Hughes, T. P. and J. B. C. Jackson. 1985. Population dynamics and life histories of foliaceous corals.

 Ecol. Monogr, 55: 141-166.
- Hunter, C. L. and C. W. Evans. 1995. Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull. Mar. Sci., 57: 501-515.
- Pearson, R. 1981. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser., 4: 105-122.
- Portes, J. W., J. F. Batty and G. J. Smith. 1982. Perturbation and change in coral communities. Proc. Nat. Acd. Sci., 79: 1678-1681.
- Sakai, K. A., Yeemin, T., Nishihira, M. and Yamazato, K.: 1986, 'Distribution and community structure of hermatypic corals in the Sichang Islands, inner part of the Gulf of Thailand', Galaxea, 5 (1), 27-74.
- Sammarco, P. W.: 1980, 'Diadema and its relationship to coral spat mortality; grazing, competition and biological disturbance' J. Exp. Mar. Biol. Ecol., 45, 245-272.
- Sammarco, P. W: 1982, 'Echinoid grazing as a structuring force in coral communities: whole reef manipulations', *J. Exp. Mar. biol. Ecol.* 61, 31-55.
- Sousa, W. P. 1984. The role of disturbance in natural communities. Ann. Rev. Ecol. Syst., 15: 35.-391.

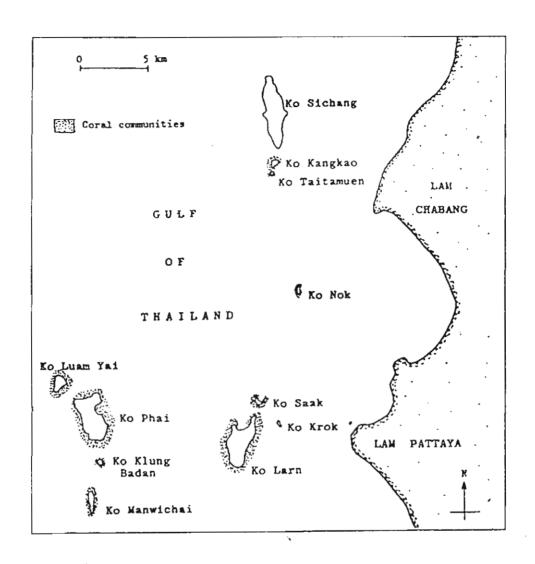


Fig. 1. Location of Ko Nok within Pattaya Bay, Gulf of Thailand.

7.15

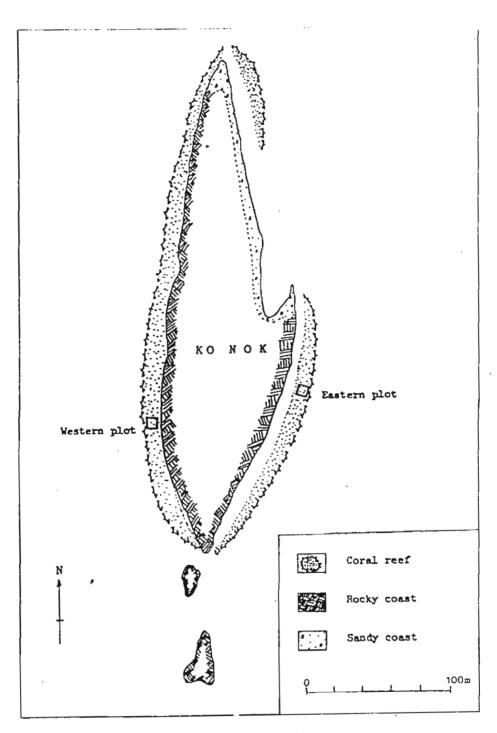


Fig. 2. Map of Ko Nok showing fringing reef, shore types and permanent quadrat locations.

Table I List of hard coral (Scleractinia) and octocoral (Milleporina) from Ko Nok based on the 1984 general survey.

East	West	
*	*	
*	*	
*	*	
*	*	
*	*	
*	-	
*	*	
*	*	
*	*	
*	*	
*	*	
*	*	
*	*	
~	*	
*	*	
**		
*	*	
*	*	
-	*	
*	*	
*	*	
*	*	
-	*	
	* * * * * * * * * * * * * * * * * * *	*

Table I (cont.)

Taxon	East	West
Family FAVIIDAE		
Barabattoia amicorum	-	*
Favia rotumana	*	*
Montastrea curta	*	*
Favites abdita	*	-
F. complanata	*	-
Platygyra sinensis	*	*
P. daedalea	*	*
Diploastrea heliopora	-	*
Leptastrea purpurea	*	*
L. transversa	*	*
Cyphastrea microphthalma	*	*
Echinopora lamellosa	*	*
Oulastrea crispata	*	*
Leptoria phrygia	-	*
Goniastrea retiformis	*	*
Family FUNGIIDAE		
Lithophyllon edwardsi	*	*
Fungia fungites	*	*
Family MERULINIDAE		
Hydnophora exesa	*	*
H. microconos	*	*
Family MUSSIDAE		
Lobophyllia hemprichii	*	*
Symphyllia recta	*	*
S. radians	*	*
Family OCULINIDAE		
Galaxea fascicularis	*	*

Table I (cont.)

Taxon	East	West	·
Family POCILLOPORIDAE	-		
Pocillopora damicornis	*	*	
Family PORITIDAE			
Goniopora Iobata	aje.	-	
Goniopora sp.	*	-	
Porites lutea	*	*	
Family SIDERASTREIDAE			
Psammocora contigua	*	*	
		•	
Class HYDROZOA			
Family MILLEPORIDAE	,		
Millepora sp.	*	*	

(* = present; '-' = absent)

Table II Temporal changes in live coral community within the eastern quadrat at Ko Nok.

Species	No.	No. of colonies	nies	Aver	Average colony size	size	⊳	Arcal cover		%	6 cover		
					(sq. cm)			(sq. cm.)					
	ล	σ	C	E 3	C#	o	ಐ	σ	С	2	ъ	C	
Porites lutea	151	104	132	663.73	1033.28	899.39	100223	107461	118720	23.86	25.59	28.27	
Pocillopora damicornis	72	40	32	101.99	271.90	268.50	7343	10876	8592	1.75	2.59	2.04	
Pavona decussata	14	ພ	4	357.86	600.00	1321.75	5010	1800	5287	1.19	0.43	1.25	
P. cactus	6	4	S	85.00	80.50	76.00	510	322	380	012	0.08	0.09	
Acropora (corymbose)	14	, ⁰⁰	7	334.29	393.38	407.14	4680	3147	2850	1.11	0.75	0.67	
Acropora (plate)	-	13	-	1590.00	774.50	1120.00	1590	1549	1120	0.38	0.37	0.26	
A. hyacinthus	2	•	-	7725.00	•	2320.00	15450		2320	3.68		0.55	
A. millepora	10	ω	v	438.00	1811.67	1346.00	4380	5435	6730	1.04	1.29	1.60	
Montipora (plate)	∞	-	12	408.75	268.00	150.50	3270	268	301	0.78	0.06	0.07	
M. efflorescens	5	4	'n	372.00	1999.50	1583.33	1860	7998	4750	0.44	1.90	1,13	
M. monasteriata	2	=	7	2310.00	102.91	124.42	4620	1132	871	1.10	0.27	0.20	
Montastrea curta	_	-	_	300.00	131.00	240.00	300	131	240	0.07	0.03	0.05	
Leptustrea sp.	7		ı	100.86		20.00	706		20	0.17		0.004	
Platygyra daedalca	4	2	12	109.00	423.00	471.00	436	846	942	010	0.20	0.22	
P. sinensis	-	•	,	136.00	,	,	136	٠	,	0.03	,		
Favites abdita		2	-	390.00	229.50	402.00	390	459	402	0.09	0.11	0.09	
Symphyllia sp.	23	14	19	105.65	149.64	133.68	2430	2095	2540	0.58	0.50	0.60	
Lobophyllia sp.	2	2	4	195.00	256.00	180.25	390	512	721	0.09	0.12	0.17	
Psammocora contigua	_	•	-	76.00		50.00	76	1	50	Ç 102		0.01	
Unidentified spp.	10	=	13	93.00	102.91	96.76	930	1132	1258	0.22	0.27	0.29	

Table III Temporal changes in live coral community within the western quadrat at Ko Nok.

Species	Z O	No. of colonies	nies	Ave	Average colony size	v size	⊳	Areal cover		2	7 0010	
•					G						% COVCI	
					(sq. cm)			(sq. cm.)				
	ຍ	ъ	С	ಬ	ь	O	ຍ	σ,	n	ສ	Ь	c
Porites lutea	122	124	128	1328.44	1291.01	1466.32	162070	160086	187690	38.59	38.12	44.68
Pocillopora damicornis	56	37	47	99.16	189.43	109.36	5553	7009	5140	1.32	1.67	1.22
Pavona decussata	22	13	18	119.95	357.69	178.72	2639	4650	3217	0.63	<u></u>	0.76
P. cactus	ω	4	12	23.00	87.50	418.50	69	350	837	0.02	0.08	0.19
Acropora (corymbose)	ယ		2	891.00	172.00	210.50	2673	172	421	0.64	0.04	0.10
Acropora (plate)	ω	2	4	1942.33	5169.00	6675,00	5827	10338	26700	1.39	2.46	6.35
A. millepora	S	-	ယ	1076.20	571.00	409.33	5381	571	1228	0.28	0.14	0.29
Montipora (plate)	7	,	13	1155.57	ŀ	2610.00	8089	,	5220	1.93	,	1.24
M. efflorescens	4		10	805.50	19257.00	5915.00	3222	19257	11830	0.77	4.58	2.81
M. monasteriata	'n	,	-	194.33	ı	687.00	583	,	687	0.14	,	0.16
Favia sp.	_	ω	6	720.00	192.30	170.16	720	577	1021	0.17	0.14	0.24
Favites abdita	_	•	_	103.00	,	221.00	103		221	0.02	,	0.05
Leptastrea sp.	00	ω	6	128.50	125.00	70.83	1028	375	425	0.24	0.08	0.10
Symphyllia sp.	49	46	53	235.73	228.61	268.86	11551	10516	14250	2.75	2.50	3.39
Lobophyllia sp.	_		2	411.00		240.50	411		481	0,10	•	0.11
Goniopora sp.	w		ယ	80.00	68.00	243.66	240	68	731	0.06	0.02	0.17
Lithophyllon edwardsi	4	- *	2	479.75	1358.00	560.00	1919	1358	1120	0.46	0.33	0.26
Galaxea fascicularis	_		,	1063.00	,		1063	,		0.25		1
Turbinaria frondens	_	٠.	•	377.00	,	,	377			0.09	,	•
Unidentified spp.	5	s	8	65.20	71.20	117.12	326	356	937	0.08	0.08	0.22

(a = January 1984; b = November 1986; c = June 1996; quadrat size = 42 m²)

Table IV Temporal variation in coral community structure parameters of east and west location quadrats at Ko Nok.

Parameter		East			West	
	a	b	С	a	b	С
Live coral cover (%)	36.82	34.56	37.56	50.93	51.35	62.34
Dead coral cover (%)	34.82	49.73	46.44•	17.15	33.56	22.66
No. of live coral colonies	335	212	241	302	242	290
Live coral colony density (no./m²)	7.98	5.05	5.73	7.19	5.76	6.90
Mean live coral colony size (cm ²)	461.88	648.75	655.99	708.09	891.25	903.98
Shannon-Weiner Diversity Index	1.454	1.117	1.382	1.124	1.028	1.102
(based on areal cover)		•	•			
Species richness	19	15	18	19	13	17
Evenness Index (Pielou)	0.49	0.41	0.52	0.38	0.40	0.47

(a = January 1984; b = November; c = June 1996)

Table V Density (no. per m²) of sea-urchins and boring bivalves within the study quadrats at Ko Nok.

-	-	East	t		West	
	a	ь	С	a	b	С
Sea urchins (Diadema setosum)	22.7	25.0	19.2	12.9	10.6	9.8
Bivalves (boring)	13.6	6.6	8.5	15.9	11.5	12.3

(a = January 1984: b = November 1986; c = June 1996)

Studies on the coral restoration by transplantation at Kham Island Marine Park. Sattahip Naval Base. The Royal Thai Navy, the Upper Gulf of Thailand.

Suraphol Chunhabundit¹

Nipat Teva-arak²

Thomasak Yeemin³

Thanitha Thapanand

- 1 Aquatic Resources Research Institute. Chulalongkorn University. Bangkok Thailand, 10330. E-mail address: csuraphol@excite.com
- 2 Naval Special Warfare Unit. Royal Thai Fleets, The Royal Thai Navy, Sattahip Cholburi Thailand. 20180
- 3 Department of Biology, Faculty of Science Ramkhamhaeng University Bangkok Thailand, 1024.
- 4 Department of Fisheries Biology, Faculty of Fisheries Kasetsart University Bangkok Thailand, 10900

Abstract

Kham Island (Lat 13° 14' N : Long 100° 52' F) is one of the 12 islands located in Sattahip Bay, the Upper Gulf of Thailand. This island ever with rich and variety of corais and faunas. At the present, activities of navy training destroyed on this fragile ecosystem is much more when compare to other part of the upper gulf. The transplantation studies in the reef of this island is one of the scientific steps to restore the transplantation studies in the reef of this island is one of the scientific steps to restore the transplantation of hard corals namely <u>Planyavra</u> spp. <u>Vintastrea spp.</u>, <u>Porties lutea</u>, <u>Favia spp.</u>, <u>Symplotica radiants</u>, <u>Galaxea (aslantaria</u>), <u>Mortipora spp.</u>, <u>Favites abdita</u>, <u>Pavora accessata</u>, <u>Diplocation</u> spp.

Aeropora formosa, Acropora horrida, Aeropora nobilis, Aeropora robusta, Aeropora sp. and soft corals Sinularia sp. and Xenia sp. were study during March of 1995 to October of 1997. The techniques were involve for rapid fixation of the fragments of branching corals and the head of coral colonies on the concrete plates as the coral basement use by special cement both at surface and underwater attaching. The 242 of hard coral colonies, 40 coral branches and 3 soft coral colonies representing 13 species were remove by hand from the reef site which degraded by highly sedimentation. The colonies were transport by navy boat 60 minutes from the collection site and transplant into the new reer area. During transportation, the attached coral plates were submerged in seawater container, aeration supply and some water exchanges. After 6 months, overall survivorship of the all transplanted coral colonies was 100 %. Small colonies of *Porites lutea* which by boring organisms did not survive. The growth rate of the surviving colonies was measure by the short diameter at the base of the colonies and heights, generally for spreading upright forms. The branching coral were count specially on living fragments. The assessment of effect of transplantation were study on the percent coverage of living polyps and polyps lost on coral colonies. The percentage surviorship of massive scleractinian corals at 2 years of transplantation are 99.37%, branching corals 100% and alcyonaceans are 100%. The overall survivorship of 2 years transplants corals were 100%.

. .troduction

Coral reefs in Thailand have suffer degradation as a result of both natural (e.g. typhoon, catastrophic low tide) and anthropogenic disturbances (e.g. sea mining, dredging, sewage, dynamite fishing, chemical pollution, oil spills, ship grounding, tourism impacts and sediment, fertilizer and pesticide run-off as a result of changing

land use). These problems have generally documented (e.g. Brown et al 1993, Chansang 1988. Chansang et al 1981. Chansang et al 1985. Chansang et al 1988 and Sudara and Yeemin 1997).

The rate of recovery of natural reefs will depend on the type and extent of damaged, position on a reef where damage has occurred, the species affect, and on the recruitment rate of coral larvae (Pearson, 1981). Loya, 1976 stated that the recovery of natural reefs depend on whether the causes of the damage has cease and whether there are any long term effects. Otherwise, the recruitment of juveniles coral may be inhibit on surface covered by sediment (Johannes, 1975). Recovery of coral communities which are destroyed by typhoons, corallivores and human activities can be occurred by process of recruitment and vegetative growth of corals. Anyhow, the settlement of coral larvae can be vary by availability of substrates. Yeemin, 1995 mentioned that if natural substrates are not suitable for coral recruitment, it might be necessary to apply other methods for coral rehabilitation such as using artificial substrates and coral culture. For the recovery of coral reefs in Thailand it is very essential and coral transplantation should be the way for coral rehabilitation which can be apply. Growth rate of new hard coral recruits are generally slow (Wallace, 1983; Harriott, 1985; and Babcock, 1985). So it is many years before new recruits contribute significantly to an increase in coral cover. In this case there are provide an extensive summary of factors to consider to increase the probability of successful reproduction by transplanted poral (Kolls and Quinn, 1981).

The potential role of coral transplantation in term of coral reef management has been discusses by several authors (Alacaia et al. 1982, Auberson 1982, Banner, 1974, Birkland et al. 1979, Maragos, 1974 and Yap and Gomez, 1984). The application of coral transplantation are vary depend on the reef condition and

socioeconomic significant. Plucer-Rosaria, 1987 and Harriott and Fisk, 1988 stated to the applications for coral transplantation which a reef user or manager might elect are (1) to increase coral over in areas of recreational significance where the coral community has been damaged by a natural physical disturbance. (2) the process of construction of tourist facility on or near reefs may damaged the coral community, (3) where reefs have been damaged by commercial activities and (4) populations of rare species threatened by loss of specific habitats.

The transplantation techniques have been several studied in various procedures. Coral fragments glued to bricks (Maragos, 1974) or tied with iron rod (Kaly, 1995) or tied with bamboo sticks (Alcala et al., 1982), epoxy glues (Yap, T. H. et al., 1990, cementing (Auberson, 1982: Alcala et al., 1982, and Kaly, 1995). Tied with plastic coated wire (Birkland et al., 1979), and metal bedframe (Maragros, 1974). The results of these studies show the risk of suffocate of coral transplanted into the sand. Kaly, 1995 demonstrated the fixation of coral fragments on concrete base use by epoxy cement. She mentioned that although this method was difficulty and more highly cost expense but the transplanted corals were have stable basement and decrease the risk of corals dead. Several studies of coral transplantation have tested the option of seeding large areas of reef with small colony fragments (Hightsmith, 1982). This techniques was not proved because of the extremely high mortality rates of small fragments (Harriott and Fisk, 1988, Birkland et al., 1979). Anyhow, the requirement of transplanted techniques used for recreationally important reefs are that the process is rapid, aesthetically, pleasing and permanent.

In Thailand, Sirirattanachai, 1993 were studied on the suitable transplantation techniques and methodologies. He commenced that the mixture of commercial cement, pasture cement and sand (ratio 1:1:1) can use as a good fixer to attached the

of 96.6% in *Porites lutea*, 83.6% in *Acronora spp.* and 36.3% in *Pocillonora damicornis*.

Kham Island (Lat 13° 14′ N: Long 100° 52′ E) is one of the 12 islands located in Sattahip Bay, the Upper Gulf of Thailand. This area was restricted by Sattahip Naval base, the Royal Thai Navy. There are ever rich and variety of corals and faunas. At the present condition, activities of navy training destroyed on this fragile coral ecosystem is much more when compare to other part of the upper gulf. Chunhabundit, et al. 1995 reported that there are coral without skeleton Zoanthus spp. and Palvthoa spp. more abundant and grow cover on the substratums in the reef flat zone. These living organisms can also growth cover on the living colonies of hard coral both in massive and branching forms. In the early of 1995, the Royal Thai Navy required to restore this coral community by transplantation propose to rehabilitate the corals and other living aquatic resources once a time, since for celebrates on the auspicious occasion of the Golden Jubilee of the king of his reign. In additioning, to save to coral lives from the area propose to dredge for the navigation channel.

This studies was set out on the transplantation techniques that can be apply for recreationally important reefs. Methodological constraints on the rapid fixation, aesthetically, pleasing and permanent. As well as comparative biological performances of different species, in situ mortality, growth rate and response to stress of transplantation will investigates.

Study sites

The site was chosen for collection site is Toa More Island (Lat. 12° 38′ N . Long. 100° 52′ E) in the west of Sattahip Bay. This island is locate adjacent to the warship harbor. The coral communities around this island was severely degrade

caused by heavy sedimentation from land refill between the harbor construction. The coral species which was found living from this phenomenon were *Plarygyra spp.*, *Symphyllia radians*, *Favia spp.*, *Galaxea fascularis*, *Montipora spp.*, *Porites lutea*, *Favites abdita*, *Diploastrea spp.* and *Acropora spp.* After the harbour constructed, the naval base require to dredge the water channel between Toa More Island and Phra Island for available warship navigation. They determine that this activity will be affect to adjacent coral community by heavy sediments. So, the necessary to safe the coral life are require.

Kham Island (Lat. 13° 14' N: Long. 100° 52' E) was chosen transplantation site. The area will transplant the coral is in small bay locate in the north direction of the island. Chunhabundit et al. 1995 stated that the coral zone in this area can divide into two zone (1) reef flat zone (50metres from shore); the dominant corals are massive coral <u>Porites lutea</u> and <u>Porites nigrescens</u>. In additioning, there are <u>Plangura spp. Favia spp. Symphyllia spp. Acropora hyacinthus</u> and solitary coral <u>Fungia fungites</u>. (2) the reef front zone (50-100 metres) the dominant corals are branching coral namely. <u>Acropora formosa</u>, <u>Acropora robusta</u>, <u>Acropora grandis</u>. <u>Acropora nobilis</u>, <u>Acropora aspera</u>, <u>Acropora ilorida</u>, <u>Acropora valida</u>, <u>Acropora valida</u>, <u>Acropora damicornis</u>, <u>Favia speciosa</u>, <u>Platvgvra spp.</u> and <u>Goniastrea sp</u>. The bottom substratums of this zone are dead coral fragments covered by coral without skeleton namely. <u>Zoanthus</u> sp. and <u>Paiythoa</u> sp. The distance from the coral collection site to the transplantation site are about 9 kms (figure 1).

Methods and Materials

The surveying of collecting site and transplanting site were done to know the ecological condition in term of coral distribution and zone, species composition and abundant of sessile organisms. Mapping to show the distribution and coral zonation are prepare. The transplanting coral are collect from 50m² area within the reef flat zone of removal site. Hammer and chisel were used to cut away the coral colonies from the substratum. The steel rod cutting pliers apply to cut the fragments of the branching stem. The massive colonies are selecte depend on size and percent appearance of living polyps on colony. Namely, the massive coral are collect at the size up from 15-25 cm. diameter with the healthy polyps. In term of the branching coral, the fragment will cut off from the half of a whole fragment. To minimized the stress of transplantation the cut colonies and fragments were collect into the plastic baskets and transfer to the boat that anchoring for the base of the operation. The coral heads are flattening of the cutting scars by underwater knife before fix on the cement plates. On the surface fixation, special cement were mix with a few seawater in a small bowl, lightly stirring until soft-hardening and then to make a small cement ball by tea spoon and put onto the cement plates. The number of cement ball use as a fixer on a cement plate depending on the size of a coral colony. If the diameter of the coral colonies are about 15-20 centimeters, number of cement ball were 1 or 2. If the diameter of a coral head is up to 30 centimeters, number of cement ball were 3 or 4. . Only one large cement ball can apply at the center of massive colonies in the case of a large size colonies.

The size of cement plates which use as transplanting plate are about $18.5 \times 39 \times 6.5$ cm. (length x width x height), and the size of concrete plates which use for the barrier of the transplant plates are about $50 \times 50 \times 6.5$ cm. (length x width x height)

with a hole in the center. The size of the centered hole is the same size of the transplanting plate. The position of cement balls prepared on the cement plate before attaching the coral colonies are most important. After the coral head depressed on the plate, the soft-harden cement must not be pool on the trim of coral colony, because it caused the living polyps die and the tuffs algae will growth in this dead zone, it caused to the delaying for the coral polyp's budding and calcium accumulation. By mean the coral colony will spend long time to fuse with the new substrate. This attaching method take approximately 3 minutes for each coral colonies. In term of branching corals, the coral branches are cut by steel-rod cutting pliers from the healthy branches of the branching colony. The size of branches are about 10-15 centimeters long. The cement plates of branching coral are makes a few small holes, diameter about 1-1¹/₂ inches and 1¹/₂ inches in depth. The cement ball are drop in to the hole and depress the acroporid branches on the ball. One plates of acoporid plates will consist of 4 acroporids branches. This technique will operating beyond the water.

For underwater technique, the special cement will put in to small plastic bag tied with the rubber ring. The substrates which suitable for attaching the coral fragments are dead calcium skeleton of the dead coral colonies, flattening with underwater knife and polishing with steel brush until other sessiles and boring organisms disappear. Preparing the cement by puncturing the trim of cement bag, let a few seawater into the bag and lightly squeeze on the bag. The cement will setting in soft-harden condition in 2 minutes the.. tare the trim of the bag and squeezing the cement from the bag onto the substrate. The coral colonies—can attaching with the natural substrate after depressing the colonies on cement paste in 3 minutes. If it much more seawater in the bag, the condition of cement will be liquid and the hardening of cement condition will be delay.

The transplanted coral plates are lay on the sea floor in the adjacent area of the collection site into 2 weeks for acclimation. The transportation of the transplanted plates from the collection site to the transplantation site by the navy barge boat. The attached plates are put in to a big seawater container with aeration and water exchanges during transportation. The attached coral plates were put in the central hole of the barrier plates that flunked in to the seafloor. The diversity of the coral transplants species which rehabilitate in the degraded area ought to relate to the natural coral zones. The acroporids transplanted plates are set in a group of 8-10 plates depend on the degraded space and put on the front zone, tied with the bottom by anchorage steel rod. The 245 of massive transplanted coral plates will flunk into the degraded area of reef flat zone at marine park in 400 squaremeters.

After 6months of transplantation, the size of transplanted colonies are measure the short diameters and heights by stainless steel calipers. The growth of coral colonies are average by maximum short diameters and heights. The acroporids coral are only count on the living transplanted branches. The stress of coral colonies condition that effects cause by transplantation techniques are assess from the percentage coverage of living polyps appeared on the coral colonies (Riegl and Velimirov, 1991). At 2 years of transplantation, the assessment of the transplanted corals condition are also conduct in term of growth and the survival of transplanted colonies by the same methods.

Results and Discussion

Survival

Total of 242 colonies of scleractinian coral are transplanted namely.

133 colonies of <u>Plarvgvra sp.</u>, 42 colonies of <u>Porites lutea</u>, 41 colonies of <u>Favia spp.</u>,

7 colonies of <u>Symphyllia radian</u>, 6 colonies of <u>Montastrea sp.</u>, 4 colonies of <u>Favites</u>

abdita, 4 colonies of Galaxea fasicularis, 2 colonies of Montipora sp., 2 colonies of Pavona deccusata and 1 colony of Diploastrea sp. The 40 fragments of acroporid branching coral namely Acropora horrida, Acropora formosa. Acropora nobilis. Acropora hvacinthus . Acropora robusta, Acropora sp. And 3 colonies of alcyonaceans namely, Sinnularia sp. and Xenia sp. are also transplant. The initial size of transplanted colonies and the percent coverage of living tissues appeared on the colonies are investigate after 6 months of transplantation in October, 1995. The survival transplanted coral colonies and fragments can estimate by counting the living colonies and fragments appeared in the area. The survival of transplant massive coral form at 6 months are 99.37%, branching form 100%, whereas the overall survivorship of transplantation are 99.52%, respectively (table 1). The transplants was the good amenable to transplantation methods used. Survival was high, and growth was consistently positive in all species. Most transplants steadily under deteriorated after attachment to their new substrate. The transplanted portion would then have to expend relatively more energy in repairing the damage (by tissue regeneration, etc.). If the energetic cost of repair is too high, we speculate that the coral would readily succumb to additional physiological or environmental stresses. During the first year of transplantation, two small colonies of Porites lutea and Platvgyra sp. transplants continually experienced mortality and show dying color. After the first year of transplantation, mortality no longer occurred on other colonies. This is suggestive of an initial period characterized by adverse reactions to the stresses associate with transplantation, after which the transplants become well established. This may be related to prevailing temperatures at the time. The survival of massive transplants are 100%, branching coral 100%, and the overall survivorship of transplants are 100%, (table 2). All of transplant corals in massive form, there is a general impression that

smaller colonies grow faster (i.e. calcify more rapidly) than larger ones. All <u>Acropora</u> spp., were the fastest grower, coupled with the fast, but irregularly, growth may be indicative of and r-strategy for this species. The massive transplants in this study namely, <u>Porites lutea. Platygyra spp., Montastrea sp.</u>, which are broadly distribution with respect to both exposure and water depth. Unfortunately, we cannot go to the study site for long monitoring periods, since the Royal Thai Navy has specially naval training with the U.S. Navy, and prohibited the area. Anyhow the results from this study show high growth of transplanted corals both in massive and branching form. The growing evidence for the importance of the fragmentation, a type of asexual reproduction in corals retate life-history characteristics of fragmenting corals can show in table 3. <u>Pavona decussata</u> transplants were observed to grow well (table 2), this is a confirmation of the superiority of the species in terms of growth and survival strategies under the prevailing environmental conditions.

Mortality

At 6months after transplantation, there are only two colonies of *Platveyra spp.*, and two colonies of *Porites lutea* showed the dying condition. Since when we collected the coral colonies for transplantation, there are boring organisms namely, boring bivalves and boring tube worms attached on these colonies. In addition, this collected colonies are very small in size when we transplanting, the health of these colonies probably weak. It might be dead cause by the healthy of the colony condition. Hariott (1985) observed higher mortatity in smaller colonies, possibly due to lower resistance to stresses associated with attack by sessile organisms. Yap, et al. (1992) mention that the stress caused by transplantation as well as the greater susceptibility of smaller colonies to attack by sessile competitors such as algae and sponges, or by predators such as gastropods.

If we determine on the asexual reproduction in corals, coral transplantation is likely fragmentation of a single colony or into 2 or more colonies appears to be the predominant mode of reproduction in certain corals and an important mode in sessile organisms with calcareous skeleton and living in shallow marine environments. Highsmith (1982) defined that fragment as a live portion of a coral colony that has become physically separated, due to the breakage of the skeleton, from the rest colony. He stated the role of fragmentation should be to gain local distribution, colonize substrata (e.g. sand, space occupied by competitors) that larvae cannot, acquire space from competitors, and to spread the risk of mortality overseveral individuals. Thus, reduced allocation of energy to sexual reproduction among fragmentation corals and the occurrence of fragmentation among corals with low mortality rates per colony will be considered evidence favoring the hypothesis that fragmentation has been selected for in those corals. Fragments, by virtue of their large size, tend to remain near the parent where the environmental is more predictable and the mortality rate is consequently lower. Connell (1973) found a clear relationship between colony size and mortality. For corals with surface areas of 1 to 40 cm², 41 to 80 cm², and \leq 81 cm², the percentage mortality per period was approximately 50%. 28%, and 9%, respectively. Thus, coral mortality rates appear to be strongly size dependent. Fortunately, during the two years of transplantation, there are not coral bleaching apparently commence, especially of branching species of Acropora, in Koh Kham Marine park. This could be observed that there are no higher mortality in smaller colonies, possibly due to lower resistance to stresses associated bleaching.

Conclusion

The 15 species of coral and 2 species of alcyonaceans studied are characterized by significantly growth and survival strategies (figure 3). There are reflection of the life strategies of the species, with evidence from one another, and which may be representative of an r-K spectrum, with <u>Acropora spp.</u>, on one end (r) and <u>Porites lutea</u> and <u>Platvgvra spp.</u>, on the other (K). This information should be useful in the context of coral transplantation for the purpose of habitat restoration on a relatively large scale. Knowledge of growth and survival strategies would aid in the selection of species suitable for transplantation. High survival rates are essential, and rapid growth rates a desirable characteristic, for transplantation efforts to succeed in establishing viable coral populations. The practical applications of such endeavors and especially the costs involved, still need to be investigates.

Acknowledgement

We express our hearts to thanks staff members of Naval Special Warfare Unit for their collaboration. Thanks are also to the diver volunteers from various groups; divers for conservation of NSWU's students. divers from the U.S. Embassy, divers from the German Embassy and divers form the private company industries for their helps. This study was supported by grants from The Royal Thai Navy and the donation. T. Yeemin was supported by The Thailand Research Fund.

References

Alcala, A.C.; E.D. Gomez and L.C. Alcala, (1982). Survival and growth of coral transplantation in Central Philippines, Kalikasan, 11(1): 136-147.

Auberson, B., (1982). Coral transplantation: and approach to the re-Stablishment of damaged reets. Kalikasan, 11(1): 158-172.

- Babcock, R.C., (1985). Growth and mortality in juvenile corals (Goniastrea,

 Platvgvra, and Acropora): the first year. Proc 5th Int. Coral

 Reef Congress, Tahiti, 4: 355-360.
- Birkland, C.: R.H. Randall and G. Grimm, (1979). Three methods of coral transplantation for the purpose of re-establishment a coral community in the thermal effluent area of the Tanguisson Power Plant. Univ. of Guam Marine Lab. Tech. Rep. No. 60, 24 pp.
- Cameron, A. M. and R. Endean, (1981). Renewed population outbreakes of a rare and specialized carnivore (the starfish <u>Acanthaster placi</u>) in a complex high-diversity system (the Great Barrier Reef).

 Proc. 4th Int. Coral Reef Symp. Manila 2: 593-596.
- Brown. B.E.; M.D. Le Tissier: R.P. Dume and T.P. Scoffin, (1993). Natural and anthropogenic disturbances on intertidal reefs of S.E.

 Phuket. Thailand. 1979-1992. Proceeding of the colloquin on global aspects of coral reefs: health, hazards and history complied by Robert N. Ginsbury. Univ. of Miami's Rosential School of Marine and Atmosphere Science. 279-285.
- Chansang, H., (1988). Coastal tin mining and marine pollution in Thailand.

 AMBIO 17 (3): 223-288.
- Chansang, H., P. Boonyanate and M. Charuchinda., (1981). Effect of sedimentation from coastal mining on coral reefs on the northwestern coast of Phuket Island, Thailand. Proc. 4th Int. Coral Reef Symp., 1: 129-136.

- Chunhabundit, S.; T. Thapanand and N. Teva-aruk. (1995). Distribution and abundant of macrobenthic animals associated with branching corals at Kham Marine Park, Sattahip Naval Base, Cholburi.

 Fisheries bulletin 48(6) 521-527 (in Thai).
- Connell, J., (1973). Population ecology of reef-building corals. In: Jones, O.A.,
 R. Endean (eds.) Biology and geology of coral reefs Vol. II,
 Biology 1. Academic Press, New York, pp. 205-245.
- Cox. E.F., (1992). Fragmentation in the Hawaiian coral (Montipora verrucosa),

 Proc. 7th Int. Coral Reef Symp. Guam (1): 513-516.
- Fish, D. A. and T.J. Done, (1985). Taxonomic and bathymetric patterns of bleaching in corals, Myrmidon reef (Queenland). Proc. 5th Int. Coral Reef Congress. Tahiti. 6: 149-154.
- Grigg, R.W. and J. E. Maragos, (1974). Recolonization of hermatypic corals on Submerged larva flows in Hawaii. Ecology 55: 387-395.
- Harriott, V.J., (1985). Recruitment patterns of scleractinian corals at Lizard

 Island, Great Barrier Reef. Proc. 5th Int. Coral Reef Congress.

 Tahiti 4: 67-372.
- ______, and D. A. Fisk. (1988). Coral transplantation as a reef
 management option. Proc. 6th Int. Coral Reef Symp. Australia
 2: 375- 378.
- Highsmith, R.C., (1982). Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7: 207-226.
- Kaly, U. L., (1995). Experimental test on the effect of methods of attachment and handling on the rapid transplantation of corals. Coral Research Center/CRC Technical report No. 1. Australia, 28pp.

- Kojis, B.L. and N. J. Quinn. (1981). Factors to conside when transplanting hermatypic corals to accerate regeneration of damaged coral reefs. Conf. On Environ. Engin. 8-10 July. 1981. 183-187.
- Loya, Y., (1976). Recolonization of red sea corals affected by natural castastrophes and man-made pertubations. Ecology. 57 (2): 278-289.
- Maragos, J.E., (1974). Coral transplantation: a method to create, preserve and Manage coral reefs. Sea Grant Advision Report UNI HT-SEAGRANT-AR-74-03, COMMAR-14, 30pp.
- Moran, P.J., (1986). The <u>Acanthaster</u> phenomenon. Oceanogr. Mar. Biol. Ann. Rev. 24: 379-480.
- Newman, H. and C. S. Chuan, (1994). Transplantating a coral reef: A

 Singapore Community Project. Coastal Project. Coastal

 Management in Tropical Asia. No 3. September. 11-14.
- Pearson, R.G. (1981). Recovery and recolonization of coral reef. Mar. Ecol.

 Prog. Ser. 4: 105-122.
- Plucer-Rosaria, G. P. and R.H. Randall, (1987). Preservation of rare coral species by transplantation: an examination of their recruitment and growth. Bull. Mar. Sci. 41 (27): 585-593.
- Riegl, B. and B. Velimirov, (1991). How many damaged corals in Red Sea reef system?. Aquantitative survey. Hydrobiologia. 216/217: 249-256.
- Siriratanachai, S., (1984). Transplantation technique for coral rehabilitation.

 Journal of Aquatic Science 1.1:: 101-106 (in Thai).

- Sudara, S. and T. Yeemin, (1997). Status of coral reefs in Thailand. In Richard
 W. Rigg and Charle Birkeland (eds.). Status of coral reefs in
 Pacific. Seagrant college program school of ocean and earth
 science and technology. University of Hawaii. 135-144.
- Wallace, C.C., (1983). Visible and invisible coral recruitment. In J. T. Baker et al (eds.). Proc. Inaug. Great Barrier Reef Conf., Townsville.J.C.U. Press, Townsville. 259-261.
- Yap, H.T. and E.D. Gomez, (1984). Growth of <u>Acopora pulchra</u>. responses of natural and transplanted colonies to temperature and day length. Mar. Biol. 81: 209-215.
- ______, P.M. Alino and E. D. Gomez. (1992). Trends in growth and mortality of three coral species (Anthozoa: Scleractinia).

 Including effects of transplantation. Mar. Eco. Pro. Ser. 83: 91-101.
- Yeemin, T., (1995). Coral recruitment: The proper way for coral reef re-habilitation. JSPS-VCC Joint Seminar on Marine Science:
 - Role of oceanography in sustainable utilization of living and non-living resources. Univ. of Pertanian Malaysia. 5-8
 December 7pp.

Survival of transplanted corals and alcyonaceans at Kham Island Table 1. Marine Park. Assesses at 6 months after transplantation in October, 1995.

Species	No. of transplants	6 months survival	Average size of Survivors at transplantation (cm) ^b
Platygyra spp.	133	131; 98.50	11.49 x 9.53
Porites lutea	42	40; 95.24	15.16 x 12.30
Montustrea sp.,	6	6: 100	10.00 x 8.63
Favia sp.	41	+1: 100	12.20 x 9.28
Symphyllia radians	7	7; 100	17.38 x 7.50
Favites abdita	+	4: 100	20.00×8.00
Montipora hispida	2	2: 100	25.00 x 21.00
Pavona decussata	2	2: 100	27.00 x 22.50
Galaxea jasicularis	4	4: 100	-
Dipioastrza sp.	ì	1: 100	- '
Acropora spp.	÷0	40: 100	-
Sinnularia sp.	2	2: 100	-
Xenia sp.	1	1: 100	-
Total	245	241	
Survival of massive coral (%)		238: 99.37	
Overali survival(%)		241: 99.52	

⁴ Dying transplants were considered dead.
⁵ Mean short diameters and heights: generally applicable to spreading species.

None measurements the size and not including in total numbers.

Survival of transplanted coral and alcyonacean at Kham Island Marine Park. Assesses at 2 years of transplantation in October, 1997. Table 2.

Species	Number of survived coral after 6 months	2 years survival (no.; %) ^a	Average size of survivor at transplants (cm) ⁵
Platygyra spp.	131	131 x 100	15.04 x 14.84
Porites lutea	40	40×100	18.39 x 17.21
Montastrea sp.	6	6 x 100	14.00×12.27
Favia spp. •	11	41×100	16.48 x 16.46
Symphyllia radians	\vec{i}	7×100	19.33 x 12.50
Favites abdita	1	4 x 100	20.49 x 14.83
Montipora hispida	2	2×100	25.86 x 23.00
Pavona decussata	2	001 z C	27.22×21.05
Gaiaxea fasicularis	1,	4 x 100	16.22 x 16.00
Diploastrea sp.	1	1×100	- •
Acropora spp.	+0**	40×100	~ ,
Sinnularia sp.	2	2 x 100	-
Xema sp.	1	t x 100	-
Total	241	241	
Survival of massive corais (%)		238 x 100	
Overall survival (%)		241 x 100	·

^a Dying transplants were considered dead.
^b Mean short diameters and heights; generally applicate to spreading species.

Not including in total number.

Table 3. Corals to reproduce by fragmentation (applied from Highsmith, 1982).

Species	Family	Growth form
Caribbean		
Acropora palmata	Acroporidae	Branching
Acropora cervicornis	Acroporidae	Branching
Maldracis mirabilis	Pocilloporidae	Branching
Porites furcata	Poritidae	Branching
Montastrea annularis	Faviidae	Massive
Eastern Pacific		
Pocillopora damicornis	Pocilloporidae	Branching
Pavona clavus	Agariciidae	Massive
Indo-West Pacific		
Acropora aspera	Acroporidae	Branching
Acropora acuminata	Acroporidae	Branching
Acropora formosa	Acroporidae	Branching
Acropora hyacinthus	Acroporidae	Branching
Montipora sp.	Acroporidae	Various
Porites compressa	Poritidae	Branching
Porites lobata	Poritidae	Massive
Porites lutea	Poritidae	Massive
Goniopora stokei	Poritidae	Massive
All family members	Fungidae	Solitary

Plangyra spp — Porites Intea — Montastrea sp. ₩ Farna spp Symphyllia radians Lovites abdita Montipora hispida decussida Paronafusicularis Galaxea

Coral species

Centrimeters

<u>.</u>.

0

20

13

30

Figure 2.

Short diameters of transplanted corals at Kham Island Marine Park, Sattahip Naval Base.

the Upper Gulf of Thailand. A - 6 months transplanted, B - 2 years transplanted.

3. . .

Centrimeters 25 20 15 0 S Platygyra spp. Porites lutea Montastrea \mathbf{B} Favia spp. Symphyllia Favites abdita Montipora Pavona

Coral species

hispida

decussata

Galaxea fasicularis

Heights of transplanted corals at Kham Marine Park, Sattahip Naval Base, the Upper Gulf of Thailand. A - 6 months transplanted, B - 2 years transplanted.

Figure 3.

Reproductive biology of the coral *Pocillopora damicornis* at Sichang Islands, Chonburi Province, the Gulf of Thailand

Nongyao Janena¹, Kiyoshi Yamazato², Thamasak Yeemin³ and Phorjum Aranyakanon¹

Sichang Marine Science Research and Training Station, Chulalongkorn University, Sichang island, Chonburi 20120, Thailand and Aquatic Research Resource Institute, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Reproductive biology of the coral *Pocillopora damicornis* was studied at Sichang Marine Science Research and Training Station, Chulalongkorn University on Sichang Island, located at the inner part of the Gulf of Thailand (13° 09′ N, 100° 48′ E). Approximately 95 colerates of *Pocillopora damicornis* were collected from nearby shore during October 1994 until October 1996. Seasonal and period of planulation of *P. damicornis* have been studied. Planulation of this species occurred year-round at all moon phases. Maximum of planulae were released at fell moon. Salinity 24 to 35 ppt, and temperature 26.7-31.7 °C.

Introduction

Cooperative researches on the coral reef communities in the Gulf of Thailand have been conducted by Chulalongkorn University, Thailand and University of the Ryukyus, Japan, mainly in Sichang island in the inner part of the Gulf of Thailand (Yamazato & Menasveta, 1986).

Breeding season of asexual reproduction in the coral, particularly in brooding species which have been studied over a wide latitudinal range. Breeding seasons and period of places release tend to be shorter at higher latitudes, and occur over extended periods or year-round tropical regions nearer the Equator. According to the previous reports *Pocillopora damico* restricted to the warm spring and summer months on high-latitude reefs in southern Western Australia (32 °S), but occurs over extended periods or year-round on the Great Barrier Reef (23 °S to 14 °S) (Harrison and Wallace, 1990). Planula production in this species occurs year-round

² Meio University, Okinawa, Japan

³ Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240,
Thailand

in Hawaii (24 °S), Enewetak (11 °N) and Palau (7 °N). In contrast, *P. damicornis* appears to be non-reproductive on eastern Pacific reefs near Panama (8 °N) (Harrison and Wallace, 1990). In this present study examines when the breeding seasons and periods of the planulation of the coral *Pocillopora damicornis* at Sichang island, inner part of the Gulf of Thailand.

Material and Methods

Site of collecting

The coral of *P. damicornis* were collected 5 colonies per month approximately 95 colonies from October 1994 until October 1996 at Khang Khao island, Sichang island, located in the inner part of the Gulf of Thailand (13° 09′ N, 100° 48′ E) (Figure 1).

Procedure

Each colony of the coral *P. damicornis* was placed in buckets receiving running seawater. From each bucket water was channeled to a plastic collection cups, the side of which was made of plankton net of the mesh size of 100 micron. The planulae were collected by the collecting sups and then transferred to a plastic cups. They were examined under the stereoscopic microscope, and their number were counted and recorded.

Analysis of data

All planulae were collected, counted and recorded. Data were used to estimate the rate of extrusion by period of planulation. Daily the temperature and salinity were monitored. Number of planulae were used to calculate the rate of extrusion, following the method of Atoda, (1974) (Table 3.)

Rate of extrusion = Planulae extruded

No. of time observation

Table 1. Showing the relation between the planulation and the moon'age

Moon	Moon's age	Division
New moon.	28-1	I
The first quarter	2-5	II
The second quarter	6-9	III
The last quarter	10-12	IV
Full moon	13-16	V
The first quarter	17-20	VI
The second quarter	21-23	VII
The last quarter	24-27	VIII

Results

Extrusion time

Five colonies of the coral *Pocillopora damicornis* per month were used to conducted, they were collected from Sichang Island. Each of them was about 10-15 cm diameter. The extrusion of the planula was examined using several number of colonies at one time of the observation. The cofals were alive for a considerably long period in an aquarium so the observation were made for about one month of each colony and then the other fresh materials were brought to examine. As is shown in Table 1, the observation were carried on for twenty-seven month extending from October 1994 to October 1996 and during this period the planulation were found in the following months:

1994: Oct., Nov. and Dec.

1995: Jan., Feb., Mar., Apr., May., Jun., July., Aug., Sep., Oct., Nov. and Dec.

1996: Jan., Feb., Mar., Apr., May., Jun., July., Aug., Sep and Oct.

From the results, it can be concluded that the planulae were extruded every month throughout the year as in the case of *Pocillopora damicornis*. The results of environmental parameters were summarized by each month during the observation in (Figure 2) which showed a

maximum of temperature 32 °C and salinity 35 ppt. and minimum of temperature 25.7 °C and salinity 24 ppt. Monthly rainfall was heavy on September 1995 (Figure 3).

The relation between the planulation and the phases of the moon

The relation between the planulation and the phases of the moon was examined by the same way as used in the case of *Pocillopora damicornis*. The data concerning the planula extrusion were summarized according to the moon's age only and the following results were obtained (Figure 2). From these data, it may be concluded that *P. damicornis* extruded planulae at all moon phases and maximum of planulae were released at full moon.

Discussion

Reproductive biology of the coral *Pocillopora damicornis* were studied from October 1994 to October 1996. The result was shown that the month of the maximum of the number of planulae extrusion was November 1994 and January and November 1995 and the month of the minimum of the number of planulae extrusion was August 1995 and February 1996. Similar results have been reported by (Stimson, 1978) found that reproductive biology of the corals were affected by the environmental for examples: light, salinity, current, temperature and latitude. Environmental conditions seem to be much more constant in the areas near Equator for instance, in Palau (7.5 °N) temp. 27.2-29 °C and Enewetak (12.5 °N) temp. 25.5-30 °C which also of this study so spawning season of the coral *P. damicornis* probably occurs throughout the year.

In Palau (7.5 N) Atoda (1947b) found planulae liberation throughout the whole year in accordance with lunar periodicity, but planulation there started several days before new moon, reached a maximum at new moon and terminated several days later. At full moon, plunulation was not recorded. Contrast from this study, in Thailand found that the planulae were released a maximum at full moon. So, it can be summarized that the opposite of located areas may be shown the planulation occurs different.

Acknowledgments

We thank to the Director and staff of the Sichang Marine Science Research and Training Station for facility of our work. Ours thank are also due to Mr. Sunthron Thapmul for his assistance throughout the field work. T. Yeemin was supported by The Thailand Research Fund.

References

- Atoda, K., 1947. The larva and postlarva development of reef building corals. I. Pocillopora damicornis (Dana). Sci. Rep. Tohoku univ. 18: 24-27.
- Harrigan, J.F., 1972. The planula larva of Pocillopora damicornis: Lunar Periodicity of Swarming and Substratum. Selection Behavior. In: Richmond, R.H., 1987. Energetics, competency, and long distance dispersal of planula Larvae of coral Pocillopora damicornis. Mar. Biol., 93: 527-533.
- Harrison, P.L., and C.C. Wallace, 1990. Reproduction, dispersal and recruitment of Scleractinian corals. In: Ecosystem of the world, 25: Corals Reefs. Editor by Z.Dubinsky. Elsevier, Amsterdam. pp: 133-207. Marshall, S.M. and Stephenson, T.A., 1933. The breeding of reef animals. Part 1. The corals. Sci. Rep. Great Barrier Reef Exped. 1928-29, 3: 219-245.
- Stimson, J.S., 1978. Mode and timing of reproduction in some common hermatypic cotais of Hawaii and Enewetak. *Mar. Biol.*, 48: 173-184.
- Yamazato, K. and Menasveta, P., 1968. Introductory account of the cooperative research on Coral communities of the Gulf of Thailand between University of the Ryukyus, Japan and Chulalongkorn University, Thailand. *Galaxea*, 5:1-6.

Table 2. Planula releasing of the coral, Pocillopora damicornis during October 1996-October 1998.

Year	Month	Moon' age	Division	Planulae extruded (1)	No. of planulae	Year	Month	Moon' age	Division .	Planulae extruded (1)	No. of
				Planulae not extruded (0)	ber wough					Planutae not extruded (0)	pr-
1994	October	17-20	VI	111	237	1995	February	.2-5	11	1111	· 3
		21-23	VII	110			-	.6-9	x ⁱⁱⁱ	1100	
		, 24-27	VIII	0000				.10-12	IV	100	-
		281	. 1	000				13-16	٧	0000	
Ì	November	.2-5	9	0000	6323			17-20	VI	_1000 •	
		.6-9	111	1110			•	21-23	VII :	000	
		.10-12	١٧	110				24-27	VIII -	0000	
		13-16	٧	1111				281	ı	000	
		17-20	VI	1110			March	.2-5	H	1000	€
	•	21-23	MF	000				.6-9	l(I	1110	
		24-27	YIII	0000				10-12	IV .	111	
		281	. 1	000	•	Į		13-16	٧	,1110	
,	December	.2.5	Н.	0000	244			17-20	VI	1110	,
		.ô-9	111	0000				21-23	VII	111	
		.10-12	īV	900		! 	-	24-27	· VIII	110	
,		13-16	. 🗸	100				281	1 ,	000	
		17-20	VI	1100			April	.2-5	· .u .	1000	1
		21-23	MI	000	. •			.6-9	' III .	1111	
	•	24-27	A III	0000				.10-12	, rv .	111	
÷		281	1	000				13-16	٧	111.1	•
1995	January	.2-5 \	a	0000	6350			17-20	VI	1100	
		.6-9	m	1100				21-23	VII	,000	
,		10-12	IV	111				24-27	VIII	0000	
		13-16	٧	1110				281	1 .	000	
		17-20	.VI	1110		,	May	.2.5	n	0000	:
		21-23	. M	100			,	.6-9	, m	0000	
		24-27	. viii	0000				.10-12	. IV .	000	
		281	F	111				i3-16	٧	0000	

(ear	Month	Moon' age	Division	Planulae extruded (1)	No. of planufae	Year	Month	Moon age	Division	Planutae extruded (1)	No. of
				Planulae not extruded (0)	per month .				-	Planulae not extruded (0)	ber
		17-20	VI .	1,100				13-16	V	1111	
		21-23	VII	10				17-20	. И	0.000	
	•	24-27	Wil	1100				21-23	vā.	110	
		281	1	111				24-27	VIII	0000	
995	June	.2-5	и -	1110	243	,		281	1 .	000	
		.8-9	III	1100	,	1995	October	.2-5	IJ	0000	. 1
	•	.10-12	N	111				.3-9	Hf .	0000	
		13-16	v	1100				.10-12	· N	110	
		17-20	٧ı	1111				• 13-16	v	1 111	
		21-23 •	VII	. 000 .				17-20	VI	,11 11	
		24-27	VIII .	0000				21-23	VH	111	
		281	1	000				24-27	VIII	1,110	
	July	.2-5	11	0000.	1545		Į.	281	1	111	
		B-9	Itt	0630			November	2:5	29	1900	6
		.10-12	N	000				6-9	111	1 0 0 0	
		13-16	٧	0000	·			.10-12	. N	1 00	
		17-20	· vi	0000				13-16	٧	, 1100	
		21-23	Vil	000		<u> </u>		17-20	VI	1110	
		24-27	VIII	0000				21-23	V !!	1 11	
		281	t	000				24-27	V !!!	1 110	
	August	.2-5	łI	1100	70	[281	1	000	
٠.	,	.6-9	· NE.	1100			December	.2-5	II.	0000	4
		.10-12	N	0				4,6-9	III -	1111	
		13-16	v ,	0000		. *		.10-12	, N	. 111	
	,	17-20	v i .	0000	٠.			13-16	v	1111,	
	:	21-23	VII	000				17-20	· V I ·	1100	
		24-27	AIII	0000			•	21-23	VII		
		281	1	000			1	24-27	VIII	1-141	
	September	.2-5	u	0000	179			281	. 1	1 110	
		,6-9	ii)	oovõ		1998	January	.2-5	H	1000	5
	-	.10-12	•	000			. :	.6-\$	111	Y 0000	

Year	Moritin•	Moon agé	Division	Planuize extruded (1)	No. of planulae	. Year.	Month	. Moon' age	Division	Planulae extroded (1)	No. of p
				Planulae not extruded (0)	per month					Planufae not extruded (0)	perm
		.10-12	IV	110				.6- 0	#11	1 110	
		13-18	٧	1100				.10-12	ŧV	111	
	`	17-20	٧ı	1111		Ì		13-18	٧	1 110	
		21-23	VII	111			•4	17-20	v	1111	
	•	24-27	VIII.	1111				21-23	. VII	11 °	
		281	1	100				24-27	AIH	1 100	
1998	February	2-5	#	0000	38			281	ı	110	
		.8-9	, Ni	0000		1950	June	.2-5	It	1100	17
		.10-12	, IV	000				.6-9		*1105	
•		13-16	٧	0000				.10-12	, IV	111	
		17-20	М	0000				13-16	٧	1110	
	1	21-23	VII ·	000	•			17-20	VI	1111	
		24-27	Wil •	0000		1		21-23	VII.	111	
		291	!	100		<u>'</u>	·	24 27	VIII	1110	
`	March	.2-5	9	1100	3189			291	1	000	
	,	.8-9	111	1111			July	.2-6	Į)	1100	
		.10-12	IV	110				.8-9	m .	1110	
•	٠.	13-18	ν `	1111.				.10-12	١٧	0.0.0	
		17-20	VI	1 111				13-16	٧,	1000	
		21-23	VII '	1110				17-20	VI	1100	
		24-27	· VIII	1 110				21-23	Μŧ	100	
,		281		110	,			24-27	VIII	1110	
	April	.2-5	, н	0000	2241		,	281	1	110	
		.6-9		1111		\	August	.2-5	ti	1110	
		.10-12	IV	111		, ,		6-9) III	1111	
-	:	13-16	· v	1111	, -			.10-12	iv	110	
	ı	17-20	, M	1 110		ŀ	•	13-16	٧	1110	
		21-23	. · VII	1 10			:	17-20	v1 _	1000	
		24-27	VIII	1 110	•			21-23	ΔH	000	
		281		. 110				24-27	VIII	1100	
	May	2.5	. 11	0000	1138			26-1		100	

	1 do o Ma	Marchan	Districe	Charles and Add	No. of planulae	
rear	Month	Moon' age	Division	Planulae extruded (1) Planulae not extruded (0)	per month	
	September	.2-5	H	1000	1333	
		6-9	Н	1111	. ,	
		.10-12	iV.	100		
		13-16	v	1100	,	
		17-20	VI	1111		
		21-23	VŧΙ	800	••	
		24*27	VIII	1100		
		28-,1	í	111		
1996	October	2-5	B	- 1110	137	
		.6-9	111	1110		
		10-12	N	111		
`	· -	13 16	٧	1111	,	
		17-20	VI	0000	•	
		21-23	VII	100	•	•
		24-27	VIII	11 10		

,

,

Table 3. Planula releasing of Pocillopora damicornis in different phases of the lunar cycle.

Division	Moon' age	Planulae	Planulae	No. of time of	, Rate of
•		extruded	not ext-uded	observation	extrusion
1	.28-1	25	51	76	0.33
11	.2-5	27	74	101	0.27
111	.6-9	51	49	100	0.51
IV	.10-12	42	31	73	0.58
$\mathbf{V} = \mathbf{a}$.13-16	62	38	100	0.62
√ VI	.17-20	58	42	100	0.58
VII	.21-23 •	. 34	44	. 78	0.44
VIII	.24-27	38	. 62	. 100	0.38

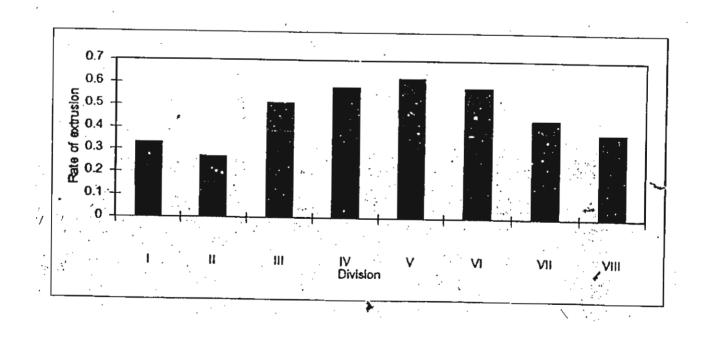
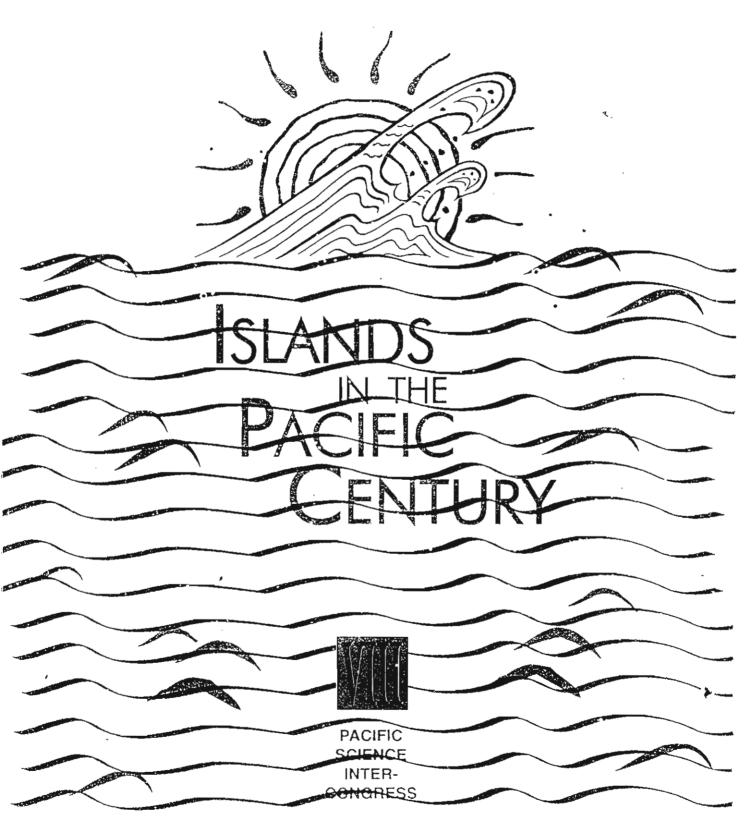



Fig. 1. Relationship between lunar cycle and rates of planula extrusion

Abstracts

13 – 19 JULY 1997 THE UNIVERSITY OF THE SOUTH PACIFIC SUVA, FUI ISLANDS

S8.4.4

POSSIBLE CAUSAL FACTORS FOR PATTERNS OF MACROALGAE DISTIBUTION BETWEEN CHINA CLUB AND LEVETI CREEK IN SUVA HARBOUR, FIJI

Sulu, R.

Biology Department, University of the South Pacific, Suva, Fiji
Pickering,, T
Ocean Resources Management Programme, University of the South Pacific, Suva, Fiji

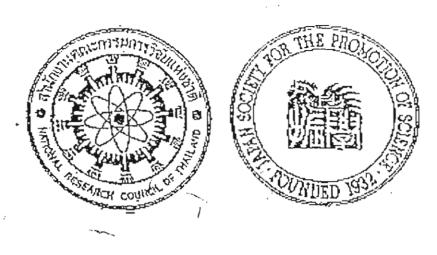
A study was conducted to characterise seaweed community structure between China Club and Leveti Creek in Suva Harbour, Fiji, and to identify environmental factors that may determine that structure. Main seaweed species (with their total sample dry weight in brackets) which compose the seaweed community at Nasese are the corraline algae Amphiroa spp (93.9 grams), Laurencia spp, (13.3 grams) Gracilaria sp. (11.75 grams) Gelidiella acerosa, (11.0 grams) Hypnea pannosa, (10.2 grams) Gracilaria maramae (7.44 grams) and Acanthophora spicifera (7.2 grams). Other species also occuring, however comprising only a small part of the population were; Tolipiocladia glomerulata Padina spp., Cladophora fuiiginosa, Valonia aegagropila. Blue green algae, Boodlea spp, and several species of Enteromorpha.

Macroalgae biomass (g dry weight/m²), g of ash free dry weight m² and diversity, decreased towards the Leveti Creek. Possible factors which could have influenced such distribution are grain size distribution, nutrient gradient, temperature salinity. Grain size distribution is almost certainly a major contributing factor with the extremes of salinity as another very possible contributing factor.

Spot check of *G.maramae* population revealed that the major constituent of the population between October-November 1996 was tetrasporophytic and sterile plants, with cystocarpic and spematangial plants constituting only an insignificant portion of the total population.

S8.4.5

CORAL RECRUITMENT IN THE GULF OF THAILAND


Thamasak Yeemin

Department of Biology, Faculty of Science,

Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

Recruitment patterns of scleractinian corals were investigated by using direct field observations and settlement plate experiments at Khang Khao Island. Nok Island and Kham Island, in the inner part of the Gulf of Thailand. Distribution patterns and abundance of juvenile colonies were very much difference among the three study sites. Density of juvenile coral colonies at Nok Island was the lowest. Juvenile coral colonies were dominated by recruits from *Porties lutea*. Acropora spp., Pocillopora damicornis and faviid corals. The densities of coral recruits on the settling plates were comparatively low Pocillopora damicornis was the most dominant coral recruits on the settlement plates. Possible explanations for the recruitment patterns in the inner part of the Gulf of Thailand include larval supply, competition for space with fouling organisms and grazing of sea urchins

Key words scleractinian coral, recruitment, community, reproduction, Thailand

MCT/1SPS

e 8th JSPS Joint Seminar on Marine Science

arine Conservation and Resource

Rehabitation

ABSTRAGT

EFFECT OF LOW SALINITY AND EXCESS NUTRIENT ON FERTILIZATION AND DEVELOPMENT OF SEA URCHINS

T. Yeemin1 and T. Uehara2

Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

²Department of Biology, University of the Ryukhus, Nishihara-cho, Oginawa 903-01, Japan

Abstract

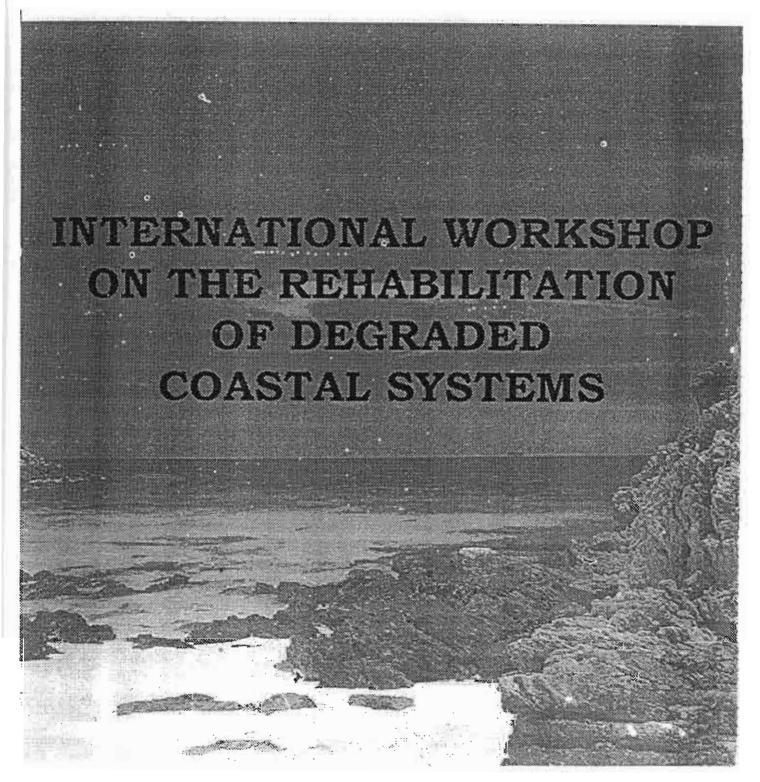
Three species of sea urchins from Okinawa, i.e., Toxopneustes pileolus, Tripneustes gratilla and Pseudoboletil idiana, were used in many laboratory experiment in order to investigate effects of low salinity, phosphate and ammonium enrichment on comparative sensitivity of various stages of the sea urchins, namely, sperm, egg, fertilization, cleavage, blastula, gastrula and pluteus. The sensitivity to those parameters was much variation. Responses observed included low rates of fertilization, slow rates of development and several degree of abnormal development of cleavage, blastula, gastula and pluteus. Adominant species of sea urchin, Diadena setosum, in the Gulf of Thailand is suggested as a good material for marine pollution bioassay.

NUTRIENT DISTRIBUTION IN THE BANGPAKONG ESTUARY.

T. Boonphakdee¹, P. Sawangwong¹ and T. Fujiwara²

Abstract

Distribution of dissolved inorganic nutrients (nitrate, nitrite and phosphate) was investigated monthly at 9 stations along the Bangpakong river estuary from May 1996 to June 1997. The result showed that the values of dissolved inoganic nutrients in the inner part of the river mouth (NO₃ 9.67 \pm 8.927 µg-at N/I, NO₂,3.98 \pm 3.961 µg-at N/I and PO₄1.79 \pm 0.867 µg-at P/I) were higher than the outer part of the river mouth (NO₃ 1.77 \pm 1.988 µg-at N/I, NO₂ 0.34 \pm 0.546 µg-at N/I and PO₄ 0.52 \pm 0.695 µg-at P/I). This suggests that high nutrient concentration found at the inner part of the river mouth may be attributed to riverine input. The low concentrations detected in the outer part of the river mouth may indicate the significance of biological uptake. The results of this study will be formulated into a mathematical model of nutrient flux for the Bangpakong estuary.


¹Department of Aquatic Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand

² Fisheries Environment Oceanography, Graduate School of Agriculture Kyoto University, Kyoto, 606-01, Japan

PHUKET MARINE BIOLOGICAL CENTER, THAILAND 19-24 JANUARY 1998

STUDIES ON CORAL RESTORATION BY TRANSPLANTATION AT KHAM ISLAND MARINE PARK, SATTAHIP NAVAL BASE, THE ROYAL THAI NAVY, UPPER GULF OF THAILAND

Suraphol Chunhabundit¹, Nipat Teva-aruk², Thamasak Yeemin⁵ and Thanitha Thapanand⁴

¹Aquatic Resources Research Institute, Chulalongkorn University, BKK 10330, THAILAND

²Special Warfare Unit, The Royal Thai Fleets, Chonburi, THAILAND

³Biology Dept., Faculty of Sciences, Ramkhamhaeng University, BKK 10240, THAILAND

⁴Fishery Biology Dept., Fisheries Faculty, Kasetsart University, BKK 10900, THAILAND

Kham Island (Lat. 13° 14' N; Long. 100° 52' E) is one of 12 islands in Partallin Bay. Upper Gulf of Thailand. This island is rich in variety of corals and other fauna? However, and a fragile coral reef ecosystem of the island has been heavily impacted as a result of the activities of the Navy, as compared with other parts of the Upper Gulf. Transplantation of corals was samed out on this island as one of the scientific steps taken to restore the damaged coral energy stem. Transplantation of the hard corals: Platygyra spp., Monastrea spp., Porites lutea, Favia spp., Symphyllia radians, Galaxea fasicularis, Montipora spp., Favites abdita, Pavona florida, Diploastrea sp., Acropora spp., and soft corals Sinularia sp.and Xenia sp. was studied during the period from March 1995 to October 1997. A technique was developed for the rapid fixation of coral branches and heads on concrete plates using a special cement, applied in air and underwater. A total of 260 massive coral colonies, 40 coral branches and 3 soft coral colonies representing 13 genera were removed by hand from reef sites degraded by high sedimentation. The coral colonies were transported by navy boats from the collection site to the transplantation site, a new reef area 60 minutes away. During transportation, the corals were submerged in a container containing seawater, and provided aeration and some seawater exchange. At all them this, the overall survival of the coral colonies was 92%. Sman colonies of the coral Porites lutea did not survive. The annual linear growth rates of the surviving colonies were recorded by measuring the maximum widths at the base of the colonies, and heights. Newly generated branches were counted in order to study growth in Acropora spp. In addition, an assessment of the condition of transplant corals was made by studying the percentage cover of living percentage well as polyps lost in coral colonies.

REHABILITATION OF DEGRADED CORAL COMMUNITIES IN THAILAND: LES-SONS FROM THE PAST AND A PERSPECTIVE VIEW

Thamasak Yeemin

Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, THAILAND

This paper provides information of degraded coral communities in Thai waters and possible rehabilitation methods. The data from over two decades of coral studies in Thailand clearly shows that there were several severe natural and anthropogenic disturbances on coral communities, e.g. strong typhoons, heavy sedimentation, nutrient enrichment, dynamite fishing, boat anchoring, boat grounding, diving, etc. Rehabilitation methods of deteriorated coral communities were based on objectives, timescales of recovery and conditions of degraded coral communities. I arval supply, settlement and recruitment of planulae, regeneration of damaged corals, fragmentation and consolidation of substrata were very important factors in the planning of rehabilitation programmes. Methods of coral community rehabilitation included coral transplantation and translocation, reattachment of coral fragments, providing artificial substrata, coral cultivation, prevention measures, and mitigation of damaged coral reefs. Certain methods of coral community rehabilitation are considerably expensive and generally would be applied only in protected areas for eco-tourism.

RE-ATTACHMENT OF CORAL FRAGMENTS USING SPECIAL CEMENT IN A NON-REEFAL CORAL COMMUNITY IN THE INNER GULF OF THAILAND

Thamasak Yeemin¹ and Suraphol Chunabundit²

¹Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, THAILAND

²Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, THAILAND

Fragmentation is a significant process of asexual reproduction in many scleractinian corals, especially branching corals. Fragments of scleractinian corals in a non-reefal coral community at Khang Khao Island, Inner Gulf of Thailand were surveyed. Fragments of branching Acropora and Goniopora, massive Porites lutea and faviid corals were frequently observed. Intensive grazing activities of Diadema setosum and many coral borers accelerated the fragmentation process, and many fragments of massive corals were observed to be partially dead and buried. However, many fragments were also suitable for reattachment. A special underwater cement, "water proof plug", was used for reattaching coral fragments on hard substrata. A pilot study revealed that the type and size of coral fragments, and habitat types were important factors determining the success of reattaching coral fragments. The method used in the present study may be applied in certain areas in order to rehabilitate coral communities and facilitate coral reef development.

. .

THE 9th JSPS JOINT SEMINAR ON MARINE AND FISHERIES SCIENCES

TENTATIVE AGENDA & ABSTRACT

DECEMBER, 7 - 9, 1998 BALI, INDONESIA

Indonesian Institute of Sciences
Research and Development Centre for Oceanology

SPATIAL AND TEMPORAL VARIATIONS IN CORAL RECRUITMENT IN THE INNER GULF OF THAILAND

Thamasak Yeemin

Department of Biology, Faculty of Science Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

ABSTRACT

Recruitment of scleractinian corals was examined by direct field observations of juvenile colonies and settlement plate experiments at Khang Khao Island and Nok Island, in the inner part of the Gulf of Thailand, during March 1996 - September 1998 to quantify spatial and temporal patterns of coral recruitment patterns. The dominant juvenile colonies observed in the study sites were *Pocillopora damicornis*, *Porites lutea*, faviids; *Technical is* sp. and *Fungia* sp. Flowever, only *Pocillopora damicornis* was the dominant one on the settlement plates. *Porites lutea*, faviids and acroporids rarely recruited to the settlement plates, despite their obvious abundance as large colonies in the coral communities. Heavy settlement tation, grazing activity of *Diadema setosum* and damselfish territory were very important factors determining spatio-temporal variation in coral recruitment was also obviously recognized at different scales. A clear picture of coral recruitment patterns is essential for coascivation and management planning.

ECOLOGY OF A MARINE SPONGE, HALICLONA CF. COERULESCENS FROM CORAL COMMUNITIES IN THE GULF OF THAILAND

Saiprateep Asa¹⁾, Thamasak Yeemin¹⁾, Nisit Ruengsawang¹⁾ and Nilnaj Chaitanawisuti²⁾

- Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand.
- ²⁾ Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.

ABSTRACT

Distribution pattern and population density of a marine sponge, Haliclona cf. coerulescens in coral communities of Nok Island and Khang Khao Island in the inner part of the Gulf of Thailand were studied quantitatively in August, 1998. The results show that Haliclona cf. coerulescens attached on three types of substrate, $Porites\ lutea$, Palythoa sp. and rock in the shallow zones (depth 2-5 m) of coral communities. Mean population densities of the sponge at Nok Island on $Porites\ lutea$, Palythoa sp. and rock were 0.3 ± 0.8 , 0.1 ± 0.2 and 0.06 ± 0.1 colonies/ m^2 , respectively. Mean population densities of the sponge at Khang Khao Island on $Porites\ lutea$, Palythoa sp. and rock were 0.2 ± 0.2 , 0.1 ± 0.1 and 0.06 ± 0.1 colonies/ m^2 , respectively. Dispersion patterns of Haliclona cf. coerulescens in all studied locations were clumped. Reproductive biology of Haliclona cf. coerulescens at Nok Island was also examined by sampling monthly on marked colonies for microtechnique analysis of tissue in the laboratory. According to the preliminary study, Haliclona cf. coerulescens may be gonochoric and viviparous. By observing parenchymula larvae in brood chambers, gametes were developed during December - March. Most asexual reproduction of Haliclona cf. coerulescens was external budding for increasing oscule numbers.

Poster Presentation

PRELIMINARY STUDY ON BIOEROSION BY A SEA URCHIN, DIADEMA SETOSUM, IN CORAL COMMUNITIES AT KHANG KHAO ISLAND, INNER GULF OF THAILAND

Nisit Ruengsawang and Thamasak Yeemin

Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand

ABSTRACT

The construction and development of coral reefs are the results of the interaction between reef growth and reef destruction. Reef destruction can be divided into physical and biological factors. The results from previous studies of biological destruction of reefs clearly show that bioerosion by sea urchin is very important in hard-substrate coral reefs. In the inner Gulf of Thailand a sea urchin, *Diadema setosum*, 78 a common and conspicuous echinoid in coral communities. This present study aims to assess bioerosion rates by *D. setosum* of coral communities at Khang Khao Island. *D. setosum* is a dominant species throughout thirteen years in this area and can affect benthic community structure and the processes of coral reef development. The finding can be applied for management of living resources in coral communities. The present study has been carried out since September 1997. The bioerosion rate in February was in the range of 0.11 - 1.68 kg m⁻² d⁻¹

Poster Presentation

<u>ภาคผนวกที่ 1</u>. ชนิดของปะการังที่พบบริเวณเกาะค้างคาว Stylocoeniella armata Pocillopora damicornis Montipora monasteriata Montipora tuberculosa Montipora hoffmeisteri Montipora spongodes Montipora hispida Montipora efflorescens Montipora grisea Montipora informis Montipora aequituberculata Acropora humilis Acropora nobilis Acropora formosa Acropora microphthalma Acropora pulchra Acropora millepora Acropora hyacinthus Acropora nasuta Acropora divaricata Astreopora gracilis Porites australiensis Porites lutea Porites rus Goniopora djiboutiensis Goniopora somaliensis Goniopora tenuidens Goniopora fruticosa Psuedosiderastrea tayamai

Psammocora contigua

Psammocora profundacella

Pavona frondifera Pavona decussata Pavona minuta Coscinaraea columna Fungia fungites Fungia echinata Polyphyllia talpina Sandalolitha robusta Lithophyllon cf. edwardsi Galaxea fascicularis Acanthastrea lordhowensis Symphyllia cf. recta Favia favus Favia pallida Favia speciosa Favia matthaii Favia rotumana Favites chinensis Favites abdita Favites halicora Favites flexuosa Favites complanata Favites pentagona Goniastrea retiformis Goniastrea edwardsi Goniustrea aspera Goniastrea pectinata Goniastrea australiensis Goniastrea palauensis Platygyra daedalea Platygyra lamellina

Pavona cactus

Platygyra sinensis

Leptoria phrygia

Hydnophora exesa

Montastrea curta

Montastrea magnistellata

Oulastrea crispata

Plesiastrea versipora

Leptastrea purpurea

Cyphastrea serailia

Cyphastrea microphthalma

Echinopora lamellosa

Heterocyathus aequicostatus

Turbinaria peltata

Turbinaria frondens

Heteropsammia cochlea

<u>ภาคผนวกที่ 2</u>. ชนิดของปะการังที่พบบริเวณเกาะนก Acropora nobilis Acropora formosa Acropora florida Acropora hyacinthus Acropora millepora Acropora secale Acropora cerealis Acropora samoaensis Acropora digitifera Astreopora myriophthalma Montipora tuberculosa Montipora efflorescens Montipora peltiformis Montipora australiensis Montipora monastriata Pavona decussata Pavona cactus Pavona varians Pavona explanulata Styllocoeniella armata Turbinaria frondens * Dendrophyllia sp. Barabattoia amicorum Favia rotumana Montastrea curta Favites abdita

Favites complanata

Platygyra sinensis

Platygyra daedalea

Diploastrea heliopora

Leptastrea purpurea

Leptastrea transversa

Cyphastrea microphthalma

Echinopora lamellosa

Oulastrea crispata

Leptoria phrygia

Goniastrea retiformis

Lithophyllon edwardsi

Fungia fungites

Hydnophora exesa

Hydnophora microconos

Lobophyllia hemprichii

Symphyllia recta

 $Symphyllia\ radians$

Galaxea fascicularis

Pocillopora damicornis

Goniopora lobata

Goniopora sp.

Porites lutea

Psammocora contigua

Millepora sp.

สัญญาเลขที่ ...RSA..../...21..../...2538... รายงานการเงินในรอบ 1 ปี

	การลงเกาะของตัวอ่อนปะการังใน	
	าร คร. ธรรมศักดิ์ ขีมิน	
รายงานในช่วงวัน	•	31 สิงหาคม 2541

รายจ่ายประจำงวคปัจจุบัน

หมวด (ตามเอกสารแนบโครงการ)	รายจ่ายจากรายงานครั้งก่อน	รายจ่ายคราวนี้	รวมสะสม
1. ค่าจ้าง	42,000 บาท	20,000 บาท	62,000 บาท
2. ค่าตอบแทนเมชีวิจัย	90,000 บาท	-	90,000 บาท
3. ค่าตอบแทน (อื่น)	4,000 บาท	-	4,000 บาท
4. ค่าใช้สอย	35,000 บาท	-	35,000 บาท
5. ค่าวัสคุ	23,000 บาท	-	23,000 บาท
6. ค่าคุรุภัณฑ์	59,990 บาท	-	59,990 บาท
7.			
8.			
รวม	253.990 บาท	20,000 บาท	273,990 บาท

จำนวนเงินที่ได้รับและเงินคงเหลือ

งวดที่ <u>1</u>	ไค้รับจาก สกว.	360,000	บาท
	ได้รับจากมหาวิทยาลัย	-	บาท
	อื่นๆ (เช่นคอกเบี้ย)	3,749.82	บาท
	รวม	363,749.82	บาท
•	รายจ่าย	359,950	บาท
	เหลือ	3,799.82	บาท
<u>งวคที่ 2</u>	ไค้รับจาก สกว.	360,000	บาท
	ได้รับจากมหาวิทยาลัย	-	บาท
	อื่นๆ (เช่น ยกมาจากงวคก่อน หรือคอกเบี้ย)	10,401.39	บาท
	รวม	370,401.39	บาท
	รายจ่าย	370,200	บาท
	เหลือ	201.39	บาท
<u>งวคที่ 3</u>	ไค้รับจาก สกว.	270,000	บาท
	ได้รับจากมหาวิทยาลัย	*	บาท
	อื่นๆ (เช่น ยกมาจากงวดก่อน หรือดอกเบี้ย)	3,721.24	บาท
	รวม	273,721.24	บาท
	รายจ่าย	273,990	บาท
	้ เหลือ	-268.76	บาท
งวดที่ 4	ได้รับจาก สกว.		บาท
	ไค้รับจากมหาวิทยาลัย		บาท
	อื่นๆ (เช่น ยกมาจากงวดก่อน หรือดอกเบี้ย)		บาท
*.	รวม	**************************************	บาท
	รายจ่าย		บาท
	เหลือ		บาท
		and the state of t	

ระเบียบการบัญชีเงินฝากออมทรัพย์

- า. การเปิดบัญชีครั้งแรก ผู้ฝากจะต้องฝากเงินไม่ต่ำกว่า 100 บาท
- 2. ในวันเปิดบัญชี ผู้ฝากจะต้องยิ่นคำขอเปิดบัญชีตามแบบของธนาการ
- การสั่งจ่ายหรือถอนเงินทุกครั้ง ผู้ฝากจะต้องลงลายมือชื่อและประทับตราให้ตรงตามตัวอย่างที่ให้ไว้กับธนาคาร
- 4. การฝากเงินหรือถอนเงิน ต้องใช้แบบฝากหรือถอนของธนาคาร และต้องนำสมุดคู่ฝากนี้ให้ธนาคารลงรายการกำกับทุกครั้ง
- 5. ธนาการจะจำยดอกเบี้ยเงินผ่ากประเภทนี้ในอัตราดามประกาศของชนาการ โดยกำนวณและเข้าบัญชีให้ในวันสิ้นงวดบัญชีทุกงวด
- การเปลี่ยนชื่อ, นามสกุล, ที่อยู่ ผู้ฝากด้องแจ้งให้ชนาดารทราบทันที
- 7. ผู้ฝากจะแก้ไขเปลี่ยนแปลงหรือเพิ่มเดิมข้อความและตัวเลขใดๆ ลงในสมุดคู่ฝาก หรือโอนเปลี่ยนมือ หรือนึกแผ่นหนึ่งแผ่นใดมิได้
- 8. เช็ค คราฟท์ หรือดราสารอื่นๆ ที่นำฝากเข้าบัญชีนั้น ธนาคารจะรับไว้เพื่อการเรียกเก็บเท่านั้น ผู้ฝากจะถอนเงินที่นำฝากตามตรา สารดังกล่าวก็ต่อเมื่อธนาคารได้เรียกเก็บเงินเรียบร้อยแล้ว
- บัญชีเงินฝากที่มีขอดเงินคงเหลือด่ำกว่า 100 บาท และไม่มีการเคลื่อนไหวเป็นเวลา 1 ปี ธนาคารจะเก็บ คำรักษาบัญชีในอัดรา 25 บาทต่องวดการบัญชี (ทุกสิ้นเดือนมิถุนายนและธันวาคม) โดยหักจากเงินฝากในบัญชี
- 10. ระเบียบการบัญซีเงินฝากออมทรัพย์นี้ ธนาคารสงวนสิทธิ์ที่จะเปลี่ยนแปลงแก้ไขเมื่อใคก็ได้

THAI MILITARY BANK PUBLIC COMPANY LIMITED
สาขาหวาหมาก

เมธิวิจัย สกว	ธรรมศักดิ์	
3.22A 2012A		Α.
LIMB I LIME IND IL	าลทร หวน	มาก บางกะปี กพม.
	Tool	
ผู้รับมอบอำนาจลงนา	มแทนธนาคาร	* * * * * * * * * * * * * * * * * * * *
	ผู้รับมอบอำนาจลงนา	ผู้รับมอบอำนาจลงนามแทนธนาคาว Authorized Signature

	รายการ	· neu	ฝาก	กงเหลือ	หมายเล่น	้าเลา
Date	Trans, Code	Withdrawal	Deposit	Balance	T.I/D	Authorized
2370879	5 CSF		*******100.00	*******100.00	0533A	4
	S Mi		****350,000.0		0433	1
22/07/9	E 05	*****20,000.00		****340,100.00	0547	3/4
³30/10/9	5 CSH	*****20,000 . 00		****320,100.00	0287A	COL
4 23/11/9	5 05	*#4*4:4,000.00		****316,100.00	02884	7
5	5	100.00		Letter Art Committee		1
6 04/12/9	'5 CSŁ	*****5,000.00	•	****295,100.00	02894	1
7	- II			A REPORT OF THE		142
1 • 22 til/2	5 IN		Franks, , 735.07	% +&h255,047.83	00:54	
904-10/9	1 001	ar **.0,000.00	1	****248,849 S2	0000A	2
1001/02/9	6 CSF	*****50,000.00		****198,849.82	02884	
23/02/9	76 DSF	*****20,000.00		****178,849.82	0288À	
12 13 08/03/9	6 CS:	 *****45,000.00		 ****133.849.92	05474	
14 22/03/9	os:	*****10,000.00		****123,849.82	05474	
15 18 29/34/	9\$ CZ#	*******95_\$@&_##		**************************************	8470A	A
23/04/	9\$ CSH	******50,000.00		*********	6472A	182
18 83/35/	98 (35	******* 15,000.00		4727223,849.82	6472A	1
19 _ / 25/	ni iki	·	1 * * * * * * * * * * * * * * * * * * *	্ত্রসমাধ্যার ৪১,১১	0006A	100
17/18/	38 CSH	********5,000.00		*********	5472A	X.
21 20/12/ 02/61/	9¢ IN:		**************************************			1
22			330,000.0	307,302.7	371.73	Will.
23 23/81/	97 CSH	*******50 000.00		********* 251 282.4	5 50RIA	7 7,1
24 27/81/	ļ	****** <u>*50</u> 000.00		******251.082.45	/	10011

คำเดือน <u>กรณีถอนเงินด่างสำนักงาน</u> โปรดแสดงบัตรประจำตัวต่อเจ้าหน้าที่ และถ้าเป็น การมอบฉันทะ โปรดแสดงบัตรประจำตัวทั้งของผู้มอบฉันทะและผู้รู้บุ๋มอบุ๋ฉันหะ กรณีถอนเงินข้ามจังหวั<u>ด</u> ไม่อนุญาดให้มีการมอบฉันทะ

· 70,

_						· · · · ·	٠,٠,٠
	วันที่	รายการ	กอน	ฝาก	คั้งเหลือ์	หมายเลข	- ผู้อนุเกิด
	Date	Trans Code	Withdrawał	Deposit	Balance	T.I/O	Authorized
1	29/01/97	CSH	******50,000.00		******211,082.45	6470A	3
2	10/02/97		*******39 CGB.BB		444444181.382.45		S
3	14/03/57	154	*******30.500.00		******151.082.41	5472A	
4	21/03/97	CSH	************************		******131 #82.45	6474A	Visit.
5	2011	-			executor name		(0)
6		: , -	* *** :: : : : : : : : : : : : : : : :	į	17.777781 182.4	5474A	<i>3</i>
7	28/04/97	CSH	*******20,000.00	į	******51,087.45	6474A	
8	-0705/P [~]	158	*************************		********* GAC. \$*	JAORA	(6)
9	20/06/97	INT		********3,359.39	******44.451.84	0000A	
10	27/86/97	CZH	*******20,000.00		*******24,451.8	6475A	
11	01/08/97	CSH	*******20,000.00		********4,451.84	5470Ã	3
12			1701.00	ļ	er er er er ge	3474	
	,			į	,		The Bar
13			ļ				
14	J., (0, ⊴	5,43		1 1 1 2 Europe (14)			
15	03/10/9	: :5d	- ********** BAB.98		**** *200 451.8	4 6472A	
	17/10/91	658	****************	-	12:14:250 451.8	6473A	Ø.)
16	3171 93	: :23			******235,451.8		(U .
17	03/:1/5	100	- ********* 0.4.0)		******23 451.8	4 5472A	B
8	:5/::/57	ะ เรย	*******50 000.01		******170 451.8	4 5472A	(T)
19	21/11/9	r ∈sh*	*******10,000.00		*****160,451.8	6 6472A	Ø
20	01/12/97	нгэ	*******20,000.30		*****140,451.8	5472A	0
21	12/12/2	:			314, A.	1	
22			* * * * * * * * * * * * * * * * * * * *	-	112 20		3. X
3	09/01/98	CSH	*******10,000.00		******102,783.17	I	(5.
4	30/01/59	LSH	******30,000.00		******72,783.17	1.	

คำเตือน กรณีถอนเงินต่างสำนักงาน โปรคแสดงบัตรประจำตัวต่อเจ้าหน้าที่ และถ้าเป็น การมอบฉันทะ โปรคแสดงบัตรประจำตัวทั้งของผู้มอบฉันทะและผู้รับน้อยเฉ้นทะ กรณีถอนเงินข้ามจังหวัด ไม่อนุญาตให้มีการมอบฉันทะ

176

1						
	วันที่ Date	TIENTT	กอน Withdrawal *	ฝาก Deposit	ที่งแหล็อ Balance	หมายเลง - รู้เองเมติ T.I/D Autoized
1 2 3 4 5 6 7 8 9	13/02/98 06/03/98 20/03/98 03/04/9 10/04/9 19/06/9	CSH CSH CSH B CSH B CSH	*******10,000.00 ********12,000.00 ********10,000.00 ********10,000.00 ********10,000.00	********1.188.52	********50,783.1 ********20,783.1 *******10,783.1	6470 7 1168A 7 6468A 7 6475A 7 6459A 9 0000A
10 11 12						
14 15 15 17 18						
19 20 21 22 23		•				