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Let G be a simple connected graph on 2n vertices with a perfect matching.
For a positive integer k, 1 <k <n - 1, G is k-extendable if for every matching M of
size k in G, there is a perfect matching in G containing all the edges of M. For an
integer k, 0 < k < n - 2, G is strongly k-extendable or simply k*-extendable if
G - {u, v} is k-extendable for every pair of vertices u and v of G. The problem that
arises is that of characterizing k-extendable graphs and k*-extendable graphs. The
first of these problems has been considered by several authors while the latter has
been investigated only for the case k = 0. In this paper, we focus on the problem of
characterizing k*-extendable graphs for any k. We present a number of properties of
k*-extendable graphs including a relationship between k-extendable and
k*-extendable graphs and some necessary and sufficient conditions for k*-extendable
graphs. We also determine the set of realizable values for minimum degree of
k*-extendable graphs. A complete characterization of k*-extendable graphs on 2n
vertices for k = n — 2 and n — 3 is also established. Further, we investigate the
independence number of G[S] when S is a minimum cutset of a k*-extendable graph
G. An upper bound on a number of components of G — 8 is also given.
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1. Introduction

All graphs considered in this paper are finite, connected, loopless and have no
multiple edges. For the most part our notation and terminology follows that of Bondy
and Murty [6]. Thus G is a graph with vertex set V(G), edge set E(G), v(G) vertices,
£(G) edges, minimum degree 8(G), connectivity x(G) and independence number o{G).
For V' ¢ V(G), G[V'] denotes the subgraph induced by V'. Similarly G[E'] denotes
the subgraph induced by the edge set E’ of G. Ng(u) denotes the neighbour set of u in
G and Ng(u) the non-neighbours of u. Note that Ng(u) = V(G) \ (Ng(u) v {u}). The
Join G v H of disjoint graphs G and H is the graph obtained from G W H by joining
each vertex of G to each vertex of H.

A matching M in G is a subset of E(G) in which no two edges have a vertex in
common. M is a maximum matching if | M | 2 | M’ | for any other matching M’ in G.
A vertex v is saturated by M if some edge of M is incident to v; otherwise, v is said to
be unsaturated. A matching M is perfect if it saturates every vertex of the graph. For
simplicity we let V(M) denote the vertex set of the subgraph G[M] induced by M.

Let G be a simple connected graph on 2n vertices with a perfect matching. For
a given positive integer k, 1 <k <n -1, G is k-extendable if for every matching M of
size k in G, there exists a perfect matching in G containing all the edges of M. For
convenience, a graph with a perfect matching is said to be 0-extendable. For an
integer k, 0 £k < n - 2, we say that G is strongly k-extendable or simply k*-extendable
if for every pair of vertices u and v of G, G - {u, v} is k-extendable. A graph G is
bicritical it G - {u, v} has a perfect matching for every pair of vertices u and v.
Clearly, 0*-extendable graphs are bicritical and a concept of k*-extendable graphs is
a generalization of bicritical graphs.

Observe that the complete graph Ky, of order 2n is k*-extendable for all k, 0 <
k € n - 2 while the complete bipartite graph K;, with bipartition (X, Y) is
k-extendable, 0 < k < n - 2, but not k*-extendable since a deletion of any two distinct
vertices of X results in a graph K, ., , which clearly has no perfect matching. In fact,
k*-extendable graphs are not bipartite. Further, since a bipartite graph on 2n vertices

1
with minimum degree at least -2—(n + k) is k-extendable (see Ananchuen and Caccetta

[5]), it follows that the classes of k*-extendable graphs and k-extendable graphs do
not coincide. Moreover, there exists a k-extendable non-bipartite graph on 2n
vertices, 0 < k < n - 2, which is not k*-extendable. Such a graph is G = G' v G”,
where G' =P;3 U (n - k - 2)K», P; is a path on 3 vertices, and G"' = Kui + 1 ( see Figure
1.1). Note that in our diagrams a “double line” denotes the join. It is not difficult to



G'=P3U(n'k-2)Kz G”=K2k+]
Figure 1.1

show that G is k-extendable. Let u be the vertex of P; having degree 2 and v any
vertex of G'’. Consider G; =G - {u, v}. Clearly, G"'- v contains a matching M of size
k which cannot extend to a perfect matching in G, since G; - V(M) = 2K; U
(n-k-2}K,.

A number of authors have studied k-extendable graphs. Excellent surveys are
the papers of Plummer {13, 14]. Lovasz [7], Lovasz and Plummer [8, 9] and
Plummer [10] have studied k*-extendable graphs for k = 0 (bicritical graphs) while
k*-extendable graphs for k > 1 have not been previously investigated. In this paper,
we focus on the problem of characterizing these graphs. We present a number of
properties of k*-extendable graphs including a relationship between k-extendable and
k*-extendable graphs and some necessary and sufficient conditions for k*-extendable
graphs. We also determine the set of realizable values for minimum degree of
k*-extendable graphs. A complete characterization of k*-extendable graphs on 2n
vertices for k = n ~ 2 and n - 3 is also established. Further, we investigate the
independence number of G[S] when S is a minimum cutset of a k*-extendable graph
G. An upper bound on a number of components of G — S is also given.

Section 2 contains some preliminary results that we make use of in
establishing our results. In Section 3, we establish a number of results on properties
of k*-extendable graphs. Some sufficient conditions for k*-extendable graphs are
given in Section 4. In Section 5, we establish a necessary condition, in terms of
minimum degree, for k*-extendable graphs. Further, we determine the set of
realizable values for minimum degree of k*-extendable graphs. A complete
characterization of k*-extendable graphs on 2n vertices fork =n-2and n -~ 3 is
given in Section 6. In Section 7, we establish the independence number of G[S] when
S is a minimum cutset of a k*-extendable graph G. Section 8 contains some results
concerning an upper bound on a number of components of G — S.

2. Preliminaries

In this section we state a number of results which we make use of in our work.
We begin with some fundamental results of k-extendable graphs proved by Plummer
[10}:



Theorem 2.1: Let G be a k-extendable graph on 2n vertices, 1 <k <n-1. Then
(1) G 1s (k - 1)-extendable;
(i)  Gis(k+ 1)-connected. W]

Theorem 2,2: Let G be a graph on 2n verticesand 1 £k <n - 1. If 8(G) = n + K, then
G is k-extendable. Q

Denoting the number of odd components in a graph H by o(H) we can now
state Tutte’s theorem which gives a necessary and sufficient condition of the existence
of a perfect matching in a graph.

Theorem 2.3: Tutte’s Theorem (see Bondy and Murty [6] p. 76)
A graph G has a perfect matching if and only if
o(G-8)< |S| for all S < V(G). a

Our next result concerns a sufficient condition for a graph to be hamiltonian
(see Bondy and Murty (6] p. 54).

1
Theorem 2.4: If G is a simple graph with v(G) = 3 and &(G) 2 -2—\;((3), then G is

hamiltonian. aQ

Ananchuen and Caccetta [1, 2, 3] established the following three results, two
of them are a characterization of k-extendable graphs on 2n vertices fork =n -1 and
n-2.

Lemma 2.5: Let G be a connected graph on 2n vertices with 8(G) 2 n - 1 having a
maximum matching M of size n - 1. Then for M-unsaturated vertices u and v of G,
Ng(u) = Ng(v). Furthermore, no two vertices of Ng(u) are joined by an edge of M,
and the vertices of V(G) \ Ng(u) form an independent set. a

Theorem 2.6: Let G be a graph on 2n > 4 vertices. Then G is (n - 1)-extendable if
and only if G is Ky, or Kj, g Q3

Theorem 2.7: Let G be a graph on 2n 2 10 vertices with a perfect matching. Then G
is (n - 2)-extendable if and only if G:

@A) is Ky n or Kap, or

(ii)  is a bipartite graph with minimum degree n- 1, or

(iii)  has minimum degree 2n - 3 and a(G) < 2, or

(iv)  has minimum degree 2n - 2. (W

We conclude this section by stating a result proved by Plummer {11].



Theorem 2.8: Let G be k-connected, k > 1, let S be a minimum cutset in G, and let C
be any component of G — S. Then given any subset 8' < S, S’ # & and |S'| < |V(C)|,
there exists a complete matching of S8’ into V(C). a

3. Basic properties of k*-extendable graphs
Our first result concerns a necessary condition of k*-extendable graphs.

Lemma 3.1 : If G is a k*-extendable graph on 2n vertices; 1 <k < n - 2, then G is
(k - 1)*-extendable.

Proof: Let u, v be vertices of G and G* = G - {u, v}. Then G* is k-extendable, by
Theorem 2.1, and so (k - 1)-extendable. Thus G is (k - 1)*-extendable as required.
0

A consequence of Lemma 3.1 is the following corollary:

Corollary 3.2: If G is a k*-extendable graph on 2n vertices; | £k <n-2,thenfor0 <
t <k, G is t*-extendable. Q

The next result establishes a relationship between k*-extendable and
k-extendable graphs.

Lemma 3.3 : If G is a k*-extendable graph on 2n vertices; 0 <k < n - 2, then G is
(k + 1)-extendable.

Proof: Let M be a matching of size k + 1 in G and uv an edge of M. Since G is
k*-extendable, G - {u, v} has a perfect matching F containing M - {uv}. Thus
F U {uv} is a perfect matching containing M. This proves our result. (]

Theorem 2.1 and Lemma 3.3 imply the following corollary.

Corollary 3.4: If G is a k*-extendable graph on 2n vertices; 0 <k <n - 2, then G is
t-extendable for 0 <t <k + 1. Q

Note that the converse of Lemma 3.3 is not true. The graphs G, and G, in
Figure 3.1 are both (k + 1)-extendable (see Ananchuen and Caccetta [1]) but not
k*-extendable since if we delete vertices u and v which are in diagonally opposite
Ki+1’ s (Kx and Kys2) in the graph G; (G:), then the resulting graph is not
k-extendable.
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Figure 3.1

We have observed that if G is k*-extendable, then G is not bipartite. The
following lemma establishes that G - V(M) is also a non-bipartite graph for every
matching M in G of size at most k.

Lemma 3.5: Let G be a k*-extendable graph on 2n vertices, 0 <k <n-2. If Misa
matching of size t <k in G, then G - V(M) is not a bipartite graph.

Proof : Suppose G' =G - V(M) is a bipartite graph for some matching M of size t <k
in G. Let (V), V,) be bipartition of G’. Since G is k*-extendable, by Corollary 3.4, G’
has a perfect matching. Thus |V1 , = ng f =n-t2n-k2>2. Let x and y be ven;ces
of Viand G’ =G - {x, yf. Since G - V(M) is a bipartite graph with bipartitioning
set_s of order [Vy| - 2 and [V, | (= IVI l), G” - V(M) has no perfect matching. Hence
G is not t*-extendable. This contradicts Coroliary 3.2 and completes the proof of ou;
lemma. o

Our next two theorems vyield a necessary and sufficient condition for
k*-extendable graphs.

Theorem 3.6: Let G be a graph on 2n vertices. For0 <k <n - 2, G is k*-extendable
if and only if for every matching M in G of size t, 0 < t < k, G - VIM) is
(k - D -extendable. '

Proof : Suppose G is k*-extendable. For a matching M, in G, of sizet, 0 € t <k, let
G' =G - V(M). Further, let a, b € V(G') and consider G"" = G' - {a, b}. Fora
matching M", in G, of size k - t, M w M" is a matching, in G - {a, b}, of size t +
(k - t) = k. Since G is k*-extendable, there exists a perfect matching F in G - {a, b}
containing M W M"”. Thus F\ M is a perfect matching, in G, containing M"’. Hence,
G - V(M) is (k - t)*-extendable.

Conversely, let x, y be a pair of vertices of G and M; a matching of size k in
G - {x, y}. By our hypothesis, G - V(M,) is O*-extendable. Then G - (V(M;) U
{x, ¥}) contains a perfect matching F,. Consequently, F; \ M, is a perfect matching

5



in G - {x, y} containing M;. Hence, G is k*-extendable. This completes the proof of
our theorem. Q

Denoting a maximum matching in G[S] by M(S) for any S < V(G) we can
now establish another theorem giving a necessary and sufficient condition for
k*-extendable graphs.

Theorem 3.7: Let G be a graph on 2n vertices. For 0 £k <n -2, G is k*-extendable
if and only if for all S < V(G)
|S|-2t, for |5|<2k+!
o(G-8)<
S| -2t-2,for |§| 22k +2

where t = min { | M(S)|, kJ.

Proof: Suppose G is k*-extendable. Let S ¢ V(G) and t = min { | M(S) l , k}.
If|S] <2k + 1, IMS)| <k Thust= |M(S)|. Since G is k*-extendable, by
Corollary 3.4, G - V(M(S)) has a perfect matching. By Theorem 2.3,

o(G - 8) = o((G - VM(S))) - S\ VIM(S)) < | s\ vmsy | = [s] - 21,
as required.

Next we consider the case |S| = 2k + 2. For this case we distinguish two
subcases according to | M(S) |

Case I: |M(S)| <k. Thent=|M(S)|. Letx,y € S\ V(M(S)) and put
G'=G- (VM) U {x,y})
and
8" =S\ (VIMS) v {x,y}).
Since G is k*-extendable, Corollary 3.2 implies that G’ has a perfect matching. By
Theorem 2.3,
oG -8 < |s].
Thus o(G-8)=0o(G -8 < |s'| =8| -2t-2.

Case2: [M(S)| 2k +1. Then t=k. Let M’ be a subset of M(S) with | M| =k and
X,y € S\ V(M'). Put

G'=G- (VM) U {x,y})
and

S§”" =S\ (VIM)u {x, y}).
By the same argument as in the proof of Case 1, we have

o(G-8)=o(G"-S< |s"| =|s|-2k-2=s] -2t-2.
This proves sufficiency.

Conversely, suppose that for all S c V(G)
S| -2t, for |s|< 2k +1

o(G - 8) <
IS| -2t -2, for [§|> 2k +2

6



where t = min { IM(S) | , k}. Let x, y be vertices of G and M a matching of size k in
G- {x,y}. Put
G =G-(VIM) v {x,y}).
Let 8'c V(G')and S= 8" U (VIM) U {x,y}). Clearly,
- Isl=|s|+2k+222k+2
and
o(G' - S§)y=0o(G - 8S).
By our hypothesis, o(G - S) < |S] -2k -2 = |$’'|. Thus o(G' - $) < |§’|. By
Theorem 2.3, G’ has a perfect matching. This proves that G is k*-extendable and
completes the proof of our theorem. Q

Theorem 3.7 implies a following corollary which was also proved by Lovasz

[7}.

Corollary 3.8: Let G be a graph on 2n vertices. Then G is bicritical if and only if for
every S < V(G), |S| 22, G-Shasatmost |S| -2 odd components. a

4. Some sufficient conditions for k*-extendable graphs

In this section we establish a number of sufficient conditions for a graph to be
k*-extendable. We start with a following result:

Lemma 4.1: Let G be a graph on 2n verticessand 0 £k <n-2. If 8(G)2n+k +1,
then G is k*-extendable. Further, the bound is sharp.

Proof: Let u and v be vertices of Gand G’ = G - {u, v}. Since 6(G) Zn+k + 1, 8(G')
2n+k+1)-2=(n-1)+k By Theorem 2.2, G’ is k-extendable. Hence, G is
k*-extendable as required.

To see that the bound is sharp, let G| = Kn+x, G2 = K, and G = G; v G,.
Clearly, 8(G) =n + k. Let x and y be vertices of G; and M a matching of size k in
Gy - {x, y}. But then M does not extend to a perfect matching in G - {x, y} since
G-(VIM)u {x,¥}) =Kn.x.2v K_,. Thus G is not k*-extendable. 0

Remark 4.1: There exists a graph on 2n vertices with minimum degreen+k+ 1,0 <
k<n-2. Suchagraphis Ky vKy+k+1 v Kn.k.2 which is k*-extendable by Lemma
4.1.

As a corollary we have:

Corollary 4.2: Let G be a graph on 2n > 4 vertices. If 8(G) =z n + 1, then G is
bicritical. Qa

Theorem 4.3: Let G be a (k + 1)-extendable non-bipartite graph on 2n vertices; 0 < k
<n-2 withdG) =n+k Ifn-k-1iseven or k(G) = 2k + 3, then G 1s
k*-extendable.



Proof: The case k = n - 2 follows directly from Theorem 2.6. So we only need to
prove the remaining case 0 <k <n - 3.

Let u, v be vertices of G and M a matching of size k in G - {u, v}. Put G' =
G - ({u, v} U V(M)). We need to show that G’ contains a perfect matching. First we
assume that ¥(G) > 2k + 3. Then G' is connected. Suppose G' has no perfect
matching. Clearly uv ¢ E(G). Further, since v(G') = 2n - 2k - 2 it follows from
Theorem 2.4 that (G')=n-k - 2.

Let M’ be a maximum matching in G’. Then IM’ ] €n-k-2. If 'M’ ] <n-k
- 3, then M cannot extend to a perfect matching in G since G - V(M) contains at least
2 independent vertices, a contradiction. Thus IM'| =n-k-2. Letx and y be the
M'-unsaturated vertices of G'. Since v(G") =2n -2k -2 and 3(G')=n -k - 2, it
follows from Lemma 2.5 that N.(x) = N (y). Further, no two vertices of N, (x)
are joined by an edge of M' and A =V(G') \ N, (x) is an independent set.
Consequently, I Ng (x) | =n-k-2and IAI =n-k.

Let X' € Ng(x). If ux’ € E(G), then M; = M U {ux'} i1s a matching of size
k + 1 in G which does not extend to a perfect matching since G - V(M) contains A as
an independent set of order n - k and v(G - V(M,)) = 2n - 2k - 2. Hence, ux’ ¢ E(G)
for all x' € N (x). Similarly, vx' ¢ E(G) for all X' € N,.(x).

Suppose 1 <k <n - 3. Since 6(G) =n +k, , there exists an edge ab of M such
that va, vb € E(G). But then M; = (M \ {ab}) U {ua, vb} is a matching of size k + ]
which does not extend to a perfect matching in G since G - V(Mz) = G, a
contradiction. Hence, k = 0. If N (x) is an independent set , then G is a bipartite
graph with bipartitioning sets A and N (x) v {u, v}, contradicting the hypothesis of
our theorem. Thus there exists an edge xyx2 of G with xy, x; € N,.(x). But then
{x1x2} does not extend to a perfect matching in G - {x;, x5} since G - {x;, X2}
contains A as an independent set of order n - k = n and WG - {x), x3}) = 2n - 2,
contradicting the extendability of G. This proves that G’ has a perfect matching.

Next we suppose that n - k - 1 is even. If G’ is connected, then by applying a
similar argument as above, G’ has a perfect matching. Hence we may assume that G
is disconnected. Since v(G") = 2n - 2k - 2 and &G’) = n - k - 2, G' contains exactly 2
components, H; and H; say. Further, v((H;) = v((H2) =n -k - 1. Then H, and H, are
complete. Consequently, G’ has a perfect matching since n - k - 1 is even. This
completes the proof of our theorem. 0

Theorem 4.3 is best possible in the sense that there exists a (k + 1)-extendable
non-bipartite graph G on 2n vertices with 8(G) = n + k and «(G) =2k +2 but G is not
k*-extendable whenn -k - 1 isodd. Let G= (K¢ v Ky+2) v 2K, .« . (see Figure
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Figure 4.1

4.1.) Forn =2k + 3 it is not difficult to verify that G is (k + 1)-extendable with &§(G)
=n+k and «(G) =2k + 2. But G is not k*-extendable whenn - k - 1 is odd, since G -
(V(Ki) W V(K +2)) = 2K, .k - 1 has no perfect matching where G[V(K) U V(K +2)]
contains a pair of vertices u and v and a matching M of size k for which V(M) v
fu, v} = (V(Kp) v V(Ky.2)

Theorem 4.4: Let G be a graph on 2n vertices with 8(G) =n+k; 0 <k <n-2. If
n-k-1isevenand a(G)<n-k- 1, then G is k*-extendable.

Proof: Let u and v be vertices of G and M a matching of size k in G - {u, v}. PutG' =
G - ({u, v} U V(M)). Suppose G’ is disconnected. Since 6(G') > n +k - (2k +2) =
n-k-2and W(G)=2n-2k -2, G =2K, .k -.1. Clearly, G’ contains a perfect
matching since n - k - 1 is even. Next we suppose that G’ is connected and has no
perfect matching. Let M’ be a maximum matching in G’. By a similar argument as
that in the proof of Theorem 4.3, there are exactly two M’ - unsaturated vertices of G,
x and y say. Further, V(G') \ N,.(x) is an independent set of order n - k. This
contradicts the hypothesis that a(G) <n - k - 1. Thus G’ has a perfect matching. This
proves that G is k*-extendable and completes the proof of our theorem. Q

The condition in Theorem 4.4 is best possible in the sense that there exists a
graph G on 2n vertices with minimum degree n + k; 0 < k < n -2, which is not
k*-extendable when n - k - 1 is odd or a(G) 2 n - k. Such graphs are Ky + 2 v
2Kn.k-1and Kog v (Kp.x v Ka.1). Clearly, Ko+ 2 v 2Ky .k -1 is not k*-extendable if
n - k - 1 is odd since deleting vertices u and v of Ky + ; and a matching of size k in
Kak+2 - {u, v} results in the graph 2K, .\ .|. Further, the graph K v (Kqn.x v Ka.x)
which contains an independent set of vertices of order n - k is not k*-extendable since
deleting vertices x and y of one of K,.\’s and a matching of size k in Ky results in a
graph Kn-k-2 v Kn-k-

We need the following lemmas in establishing our main result in this section.



Lemma 4.5: Suppose G is a (k + 1)-extendable graph on 2n vertices; 0 <k <n-2 and
M is a matching of size t < k in G. For every non-empty even set A < V(G) \ V(M)
with [A] < 2(n - k) there exists an edge e joining a vertex of A to a vertex of
VIO\N(VIM) U A).

Proof: Suppose to the contrary that there exists a non-empty even set A <
V{G)\ V(M) with [a] < 2(n - k) which vertices of A and B = V(G) \ (V(M) U A) are
not adjacent. Since G is (k + 1)-extendable, by Theorem 2.1, G is (k + 2)-connected.
So there are at least k + 2 vertices of V(M) which are adjacent to vertices of A.
Similarly, there are at least k + 2 vertices of V(M) which are adjacent to vertices of B.
Since IV(M) | = 2t < 2k, there must be an edge of M, x;y, say, such that xx;, yy, €
E(G) withx € Aand y € B. Then (M \ {x1y:}) v {xx1, yy1} is a matching of size t + 1
<k + 1 in G which does not extend to a perfect matching in G since A \ {x} becomes
an isolated odd component in G - (VM) U {x, y}). This contradicts the (k + 1)-
extendability of G and completes the proof of our lemma. Q

Lemma 4.6: Suppose G is a (k + 1)-extendable graph on 2n vertices; 0 <k <n - 2.
Let u and v be vertices of G and M a matching of size k in G - {u, v}. If S ¢ V(G)
where Gy = G - (VM) v {u, v}) with o(G; - S) > Is| + 2, then G[VIM) v S v
{u, v}] contains a maximum matching of size exactly k. Further, S U {u, v} is an
independent set.

Proof: Clearly, G; = G[V(M) U S U {u, v}] contains M as a matching of size k.
Suppose M; is a matching of size k + 1 in G,. Let
81 = V(G2) \ V(M)).

Then 81} =1V(Gy)l - [vMyl
=ﬁ2kl+ Is| +2)-@k+2)
= |s

Since o((G - VIMD)) - S1) = o(G; - S) = |S| +2 > |S;], M; does not extend to a
perfect matching in G, contradicting the (k + 1) - extendablity of G. Thus G[V(M) v
S v {u, v}] contains a maximum matching of size exactly k and hence S u {u, v} is
an independent set, completing the proof of our lemma. a

Lemma 4.7: Let G be a (k + 2)-extendable graph on 2n vertices; 0 < k < n - 3.
Suppose G; =G - (V(M) v {u, v}) has no perfect matching for some vertices u and v
of G and a matching M of size k in G - {u, v}. Then there exists a set S < V(G) such

that
(1) o(G)-8)= |S| +2and G, - S has no even components, and
(ii}  each odd component of G, - S is a singleton set.

Proof: Since G; has no perfect matching, there exists, by Theorem 2.3, a set S ¢
V(Gy) such that o(G; - S) > |s | . Because v(G; ) is even, o(G) - S) and | S| have the
same parity. So o(G; - S) = |S| + 2. Since o((G - VM) - (Sw {u, v}))=0(G; - S),
ifo(Gy - S)> |S| +2=[S v {u, v}/, then G - V(M) has no perfect matching. This
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implies that M does not extend to a perfect matching in G, contradicting the (k + 2) -
extendability of G. Hence, o(Gy - S)= |S| +2.

Next we will show that G; - S has no even components. Suppose to the
contrary that H is an even component of G; - S. Further, let S' = V(G) \ (VM) v
V(H)). By Lemma 4.5, there exists an edge e = xy of G joining a vertex x of Hto a
vertex y of S'. Theny € S U {u, v}. But then M U {e} does not extend to a perfect
matching in G since the odd components of Gy - S together with H - x form at least
|S] + 3 odd components of (G - (VM) U {x, y})) - (S v {u, v}) \ {y}) and
(S U fu, v)\ §y}] = |S| + 1. This contradicts the fact that G is (k + 2) -
extendable. Hence, Gy - S has no even components. This proves (i).

Now we establish (ii). Suppose to the contrary that G; - S contains Hy as an
odd component with v(Hp) = 3. Consider E, = {ab € E(G) [a e S U {u, v}; b e
V(Ho}}.

Suppose e, and e; are independent edges of E;. Then My =M U {e}, €3} is a
matching of size k + 2. But then M, does not extend to a perfect matching in G since
v(Hp) 2 3 and

8] +2=0(Gi-8)= T((IG - V(M) - (S V {u, v})\ V(M2)))
> |S
=[S U vh\vimy) |
This contradicts the fact that G is (k + 2) - extendable. Hence, G; = G[E;] = K, ; for
some integer s 1.

Let (Vy, V) be bipartition of K;, s where V; = {w}. Then w € V(Hp) or w €
S v {u, v}.

Suppose w € V(Hy). Figure 4.2 illustrates the situation with the edges of M
drawn in solid lines.

Sy fu, v} M

odd compon‘é;s of Gj-S
Figure 4.2

Since v(Hp) 2 3, there exists a vertex w' of Hg such that ww’ € E(G). LetMs=Mu
{ww'}. Clearly, | M3 | =k + 1 and Hy - V(M3) becomes an isolated odd component in
G - V(M3;). Thus M; does not extend to a perfect matching in G, a contradiction to the
(k + 2) - extendability of G. Hence, w ¢ V(Hp). Consequently, w € S U {u, v}.
Figure 4.3 illustrates the situation.

11



odd componénts of G;-S

Figure 4.3

We will show that w is not adjacent to any vertex of V(G) \ (V(M) v V(Hy)).
Suppose there exists a vertex w; € V(G) \ (V(M) U V(Hy)) such that ww, e E(G).
Let Mg =M U {ww;}. Clearly, IM4| =k + 1. Since there is no edge joining a vertex
of (S v {u, v}) \ {w} to a vertex of V(Hy) and v(Hy) is odd, My does not extend to a
perfect matching in G, a contradiction. Hence, w is not adjacent to any vertex of
VGV (VM) v V(Hp)). Let

A =V(Hp) v {w}
and

B =V(G)\ (VM) U A).
Figure 4.4 depicts the situation.

odd compo;fe?ts of G;—-8
Figure 4.4

Clearly, A < V(G) \ V(M) which | A| is even and there is no edge joining a vertex of
A to a vertex of B, contradicting Lemma 4.5. This proves (ii) and completes the proof
of our lemma. (]

Now we are ready to prove our main result.

Theorem 4.8: If G is a (k + 2)-extendable non-bipartite graph on 2n vertices; 0 <k <
n - 3, then G is k*-extendable.

Proof: Suppose to the contrary that there exist vertices u and v of G and a matching M
of size k in G - {u, v} which does not extend to a perfect matching in G - {u, v}. Let
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G =G - (VM) u {u, v}). Since G, has no perfect matching, by Lemma 4.7, there
exists a set S < V(G,) such that G, - S contains exactly | S | + 2 odd components, all
of them are singletons. Let C be a set of vertices of these components. Clearly, C is
an independent set and |C| = |S| + 2. Further, V(G) = V(M) U {u, v} U S U C.
Note that, by Lemma 4.6, G[V(M) u S U {u, v}] contains a maximum matching of
size exactly k and S u {u, v} is independent. This implies:

Claim 1: For every vertex w of S U {u, v}, if wx € E(G) where xy is an edge of M,
then zy ¢ E(G) forevery z € (S U {u, v})\ {w}.

We now establish a number of further claims.

Claim 2: G[V(M) w C] contains a maximum matching of size exactly k. This claim
follows immediately from the fact that V(G)= VM) U {u, v} WS U C, S U {u, v}
and C are independent and lc|=|s!+2.

Claim 3 : Every vertex w of S U {u, v} is adjacent to at most one end vertex of an
edge e of M.
Suppose to the contrary that there exist a vertex x’ of S U {u, v} and an edge e = xy of
M such that x'x, X'y € E(G). By Claim 1, xy’, yy’ ¢ E(G) forall y' € (S v {u, v})\
{x'}. LetM;=(M\ {xy}) v {x'x}. Since Gis (k + 2) - extendable, there is a perfect
matching F containing the edges of M;. Let yz € F. Clearly, z is a vertex of C.
Similarly, there exists a perfect matching F, containing the edges of (M \ {xy}) v
{x’y} and xz; € F| where z| € C. Then z = z,; otherwise, (M \ {xy}) v {xz), yz}
becomes a matching of size k + 1 in G[V(M) v C], a contradiction to Claim 2. By
Claim 2, xc, yc ¢ E(G) for all c € C\ {z}. Further, by similar argument to the one
used in the proof of Lemma 4.6, G[V(M,) w C] contains a maximum matching of size
exactly k. Thus x'c ¢ E(G) forallc e C\ {z}.

Let A={xy,z,x'}
and Bi=VO)\V(VIM\ {xy}D) w A
By Lemma 4.5, there is an edge e = wb joining a vertex w of A to a vertex b of B).
This implies that w = z. Then y becomes an isolated vertex of G - V(M \ {xy})} v
{zb, xx'}) since yy’ ¢ E(G) forally € (Sw {u, v})\ {x'} and yc ¢ E(G) forallc e
C \ {z}). This implies that (M \ {xy})} v {zb, xx’} does not extend to a perfect
matching in G, contradicting the (k + 2) - extendability of G. This proves Claim 3.

The above argument can be used to prove:
Claim 4: Every vertex ¢ of C is adjacent to at most one end vertex of an edge € of M.

Claim 5 : If wx e E(G) for some w € S U {u, v} and xy € M, then xc ¢ E(G) for all
ceC.

Suppose to the contrary that there exist vertices w; € S {u, v}, ¢; € C and edge x1y)
€ M such that wix,, x,¢; € E(G). Let F; be a perfect matching containing the edges
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of M\ {xyy1}) v {wixi}. Theny,z € F,. Since G[V(M) U S U {u, v}] contains a
maximum matching of size exactly k,z ¢ (S U {u, v} \ {w;}. Thenz e C. Since x/¢,
€ E(G) and c; is adjacent to at most one end vertex of an edge of M, z # c,.
Consequently, (M\ {x1y1}) W {xi¢1, y1z} is a matching of size k + 1 in G[V(M) U C],
contradicting Claim 2. This proves Claim 5.

Claim 6 : For every edge xy € M, if xw ¢ E(G) for all w € S U {u, v}, then yc ¢
E(G) forallc e C.

Suppose to the contrary that there exist edge x,y; € M and a vertex ¢, € C such that
x;w ¢ E(G) for all w € S U {u, v} but y;c; € E(G). Consider M; = (M \ {xay2}) U
{yac2}. Clearly, Ile = k. Since xaw ¢ E(G) forall w e S U {u, v}, the set S W
{u, v, x2} is independent. Because G - V(M,) contains S U {u, v, X3} and C - {ca} as
independent sets of order | S| + 3 and IS +1 respectively, G - V(M) does not have
a perfect matching. Thus M does not extend to a perfect matching in G. This
contradicts the (k + 2)-extendability of G and completes the proof of Claim 6.

Now let M = {x1y1, X2¥32, ... , Xxyx}. Consider x;y;. If x;w ¢ E(G) forall w €
S U {u, v}, then, by Claim 6, y,c ¢ E(G) forallc e C. Put

X1=8u {u,viu{x}
and Y, =Cu {y}.

If x;w; € E(G) for some w; € S U {u, v}, then, by Claim 5, x;c g E(G) for all

¢ € C. Further, by Lemma 4.6 and Claim 3, yyw ¢ E(G) for all w e S {u, v}. Put
Xi1=8w {u,v}uw{y}
and Yl =Cu {Xl}.
For each edge xjyi € M; 2 <1 £k, we can construct sets X; and Y; in a similar
fashion as we do with the edge x;y;. Until the step k, we have
Xxk=Svu{yviu{a,ay,..,a}
and
Yi=CuU {by, by, .., by}
where a; and b; (1 <1 < k) are end vertices of edge ab; = x;y; of M. Clearly IXk| =
| Yk | = l S l + k + 2. Further, by our construction, there is no edge joining a vertex of
S v {u, v} to a vertex of {aj, az, ... , ak} and a vertex of C to a vertex of {b;, bs, ...,
bi}-

Since S U {u, v} and C are independent sets, to show that (Xi, Yy) is a
bipartition of G it is sufficient to prove that {aj, a, ... , ax} and {by, b,, ... , by} are
independent sets. Suppose to the contrary that {a;, ay, ... , ax} is not independent.
Without any loss of generality, we may assume that aja; € E(G). If byjw, € E(G) for
some w; € S u {u, v}, then M3 = {aja;, byw;} U {a;b; | 3 <1 £k} is a matching of
size (k - 2) + 2 = k in G which does not extend to a perfect matching in G since
G - V(M;) contains (S v {u, v}) \ {w;} and C U {b,} as independent sets of order
|S| + 1 and |S| + 3 respectively. Thus byw & E(G) for all w € S U {u, v}.
Similarly, byw ¢ E(G) forall w € S {u, v}.

Let Az = {bj, by}
and

B:=CuSu {u v}
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Figure 4.5 depicts the situation with the edges of M drawn in solid lines.

S {u, v} . A —
B2 * & @
< R T S

C b, b, by

Figure 4.5

Let My=(M Y {albl, azbz}) (W) {alaz} . Clearly, |M4 I =k - 1. Notice that A, < V(G
V(My) and B; = V(G) \ (V(M4) U A,). By lemma 4.5, there is an edge e joining a
vertex of A; to a vertex of B, which is impossible since b; and b; are not adjacent to
any vertex of C W § v {u, v}. This contradiction proves that {a, 2, ... , a} is an
independent set. Similarly, {b;, bz, ... , bx} is an independent set. Hence, G is a
bipartite graph with bipartition (Xx, Yx). This contradicts the hypothesis of our
theorem and completes the proof. a

An immediate consequence of Theorem 4.8 is the following result of Plummer
{101 ‘

Corollary 4.9; If G is a 2-extendable non-bipartite graph on 2n > 6 vertices, then G is
bicritical. Q

A converse of Theorem 4.8 is not true. Forintegersn, k; 0 <k<n-3,letG, =
Ko+k+1, G2 = Ky_k.1. Clearly, G = G, v G; is a graph on 2n vertices with minimum
degree n + k + 1. By Lemma 4.1, G is k*-extendable. Let M be a matching of size
k+2inG;. Then G- V(M) =K, .x.3 v Ku.k-1 has no perfect matching. Thus G is

not (k + 2)-extendable.

For 1 <k <n-1,let §(2n, k) denote the class of k-extendable non-bipartite

graphs on 2n vertices. Further, for 0 <k <n - 2, let § (2n, k*) denote the class of

k*-extendable graphs on 2n vertices. Then Lemma 3.3, Theorems 2.1 and 4.8 imply
that these classes are “nested” as follows :

G2, 1) ¢'(2n,0*) D §(2n,2)> ¢ (2n, 1*) 5.5 §2n,n-2) >
¢'@n, (n-3)*)> ¢@2n,n- 1),
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5. Minimum Degree of k*-Extendable Graphs

In this section we establish a necessary condition, in terms of the minimum
degree, for k*-extendable graphs. We start with a following lemma:

Lemma 5.1: Let G be a k*-extendable graph on 2n vertices; 1 <k <n-2. Then G is
{k + 3)-connected.

Proof: Since G — {u, v} is k-extendable for every pair of vertices u and v of G,
G - {u, v} is (k + 1)-connected by Theorem 2.1. Thus G is (k + 3)-connected. a

Remark 5.1: Note that for any positive integer r, a graph K> v 2K, is 0*-extendable
which is 2-connected. Thus the bound on k in Lemma 5.1 is sharp. However, if G is
(**-extendable, then 6(G) = 3 by the definition of 0*-extendable graphs. This fact
together with Lemma 5.1 assures that if G is a k*-extendable graph on 2n vertices,
0<k<n-2,thend(G)=k +3.

Our next result concerns the size of a maximum matching in an induced
subgraph of a neighbour set of a vertex in a k*-extendable graph.

Lemma 5.2: Let G be a k*-extendable graph on 2n vertices; 0 <k <n-2,andua
vertex of degree k +t; 3 <t <k + 2, of G. Then G[Ng(u)] has a matching of size at
most t - 3.

Proof: Suppose not. Then there exists a vertex u of G of degree k +t; 3 <t <k +2
such that G[Ng(u)] has a maximum matching of size at least t - 2.

Let M be a maximum matching in G[Ng(u)] of size s 2t - 2. Since G is
k*-extendable and dg(u) < 2k + 2, s < k. Further, |Ng(u) \ V(M)| = 3. Suppose
|Ng(u)| = 1. Then dgu) = [Ng(u)| = 2n - 2. Since dg(u) < 2k + 2 and the
assumptiononk, k=n-2. Letu' € ﬁc(u). Because G is k*-extendable, G - {u, u'}
= G{Ng(u)] contains a perfect matching. Thusn -1 = IM| =s<k=n-2a
contradiction. Hence, ﬁg(u)l > 2. Let x and y be vertices of Ng(u) and G* =
G - {x, y}. Clearly G* is k-extendable. Further, Ng(u) = N.(u) and G[Ng(u)} =
G*[Ng. (w].

Let F be a perfect matching in G* containing M. Then there exists a vertex v
of Ng(u) \ V(M) such that uv € F. Put

Fi={abeF | ae Ngw)\(VIM)u {v}),b e Ngu) }.
Since | N\ VM)| 23, |F1] =k+1t-2s-122. Let wz e F; where w € Ng(u) \
(VM) U {v}) and z € Ng(u). Consider Fa=Mu (F\ {wz}). Sinces>t-2,

|Fp| =s+(k+t-2s-1)-1=k+t-s-2<k
But then F» does not extend to a perfect matching in G - {v, w} as u becomes an
isolated vertex in G - ({v, w} w V(F3)). This contradicts k*-extendability of G and
completes the proof of our lemma. Q
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We now prove the main result in this section.

Theorem 5.3: If G is a k*-extendable graph on 2n vertices; 0 <k <n-2,thenk + 3 <
3(G)<n-2ord(G)=2k + 3.

Proof: The assertion is true for k = 0 by Remark 5.1. Suppose to the contrary that G
is a k*-extendable graph on 2n vertices, 1 Sk <n-2,withn-1<8(G) <2k +2. Let
u be a vertex of G with dg(u) = 8(G) = r and M a maximum matching in G[Ng(u)]. By
Lemma 5.2, IM| <r-k-3<k-1land [Ng\VM)| 2r-2(r-k-3)=2k-r+62>
4,
By applying similar argument as in the proof of Lemma 5.2, | Ng(u) | >2. Let

%,y € Nou) and G| =G - {x, y}. Since |Ng(u)\ V(M) | > 4, there is a vertex v €
Ng(u) \ V(M). Because G is k*-extendable and M U {uv} is a matching in G of size
at most k, there is a perfect matching F in G, containing M U {uv}. Let

Fi={abeF lae N\ (VM) U {v}), b e N\ {x,v}}
and

F;={abeF | a,be Ng)\ {x,y}}.
Clearly, |Fi|=r-2|M]-1

and
1
[Fo| =50@n-r-3)- (r-2IM| - 1)
=n-r+ [M] -1
Suppose G[Ng(u)] contains M’ as a matching of size n - r + IM! <n-k-3<k
Since INg\VOM) | =@n-r-1)-2-r+ [M])
=r-2/M] -1
2r-2(r-k-3)-1
=2k-r+5
=3,

there exist vertices x', ¥ € Ng(u) \ V(M’). But then M’ does not extend to a perfect
matching in G, = G - {x, ¥'} since G,[Ng(u) \ V(M)] = G[Ng(u) \ V(M)] is an
independent set of orderr - 2 M| and
IN@\(VM) U,y D] =@n-r- - 2@-r+ M|y +2]
=r-2|M]-3.
Hence, a size of maximum matching in GINg(w)]isn-r+ (M| -1.

Now let w, z be vertices of Ng(u) \ (VM) U {v}) and G, = G - {w, z}.
Clearly, M U {uv} is a matching of size at most k in G;. Since Ng(u) \ (VM) U
{v, w, z}) is an independent set of order r - 2|M| - 3 and Ng(u) has a maximum
matching of sizen -r + |M| - 1, if M U {uv} extended to a perfect matching F' in
G;, then F' would have to map the r - 2 |M| - 3 vertices of Ng(u) V (VM) w {v, w,
z}yonto @n-r-1)-2n-r+ M| - 1)=r-2|M[ + 1 vertices of N . (w) \ V(M")
where M'' is a maximum matching in G[Ng(u)], which is impossible. This
contradicts the k*-extendability of G and completes the proof of our theorem. a
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Corollary 5.4: Let G be a k*-extendable graph on 2n vertices; 0 Sk <n-2. Then G
is complete orn = k + 3.

Proof: Suppose n <k +2. By Theorem 5.3, 8(G) = 2k + 3. This implies that v(G) =
2k + 4. Consequently, G is complete. ' a

Corollary 5.5: Let G be a k*-extendable graph on 2n vertices with §(G) < 2k + 2.
Then 2n > 4k + 8.

Proof: By Theorem 5.3, it follows that 2k + 2 < n— 2. Thus 2n > 4k + 8 as required.
a
Next we consider the realizability problem associated with Theorem 5.3. We

start with the following lemma.

Lemma 5.6: For any non-negative integers n, k, r with 2k + 3 <r £ 2n - 1, there exists
a k*-extendable graph on 2n vertices with minimum degree r.

Proof: Let G; =K, G =K;and G3 = Kan-;-1. Then G =G v G2 v Gj is a graph on

2n vertices with minimum degree r. Figure 5.1 depicts the graph G. Note that in our
diagrams a “double line” denotes the join.

G .
re—

Figure 5.1

Let u and v be any pair of vertices of G and M a matching of size k in G - {u, v}. Put
A={uv}uVM).

If V(Gy) < A, then G - A = K, - 5 . 2 has a perfect matching. Next we suppose that

VG)NA=@. Lets=|AnV(@G)|. ThenG-A=K;vK . ivKamss.r z.a

Clearly, 0 <s<2k+2<rand2k+2-s<2n-r-1. Thusr-s=2land2n+s-r-2k

-3 2 0. Consequently, G - A contains a perfect matching. Hence, G is k*-extendable

as required. Q

Lemma 5.7: For any positive integers n, k, rwithk+3 <r<2k+2 and 2n =4k + 2s
+ 8 for some integer s 2 0, there exists a k*-extendable graph on 2n vertices with
minimum degree r.

Proof: For integers sand t with3 <t<k+2ands>0,let G, =Ky, G = K,.3,G3 =

Ki:+3and Gs =Kax .+ 20 +7. Then G = Gy v (G2 v G3) v Gy is a graph of order
4k + 2s + 8 with minimum degree k + t. Figure 5.2 illustrates our notation.
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G

Figure 5.2

Observe that G, v Gs; contains a maximum matching of size t - 3 <k - 1. We will
show that G is k*-extendable. Let u, v € V(G) and M a matching of size k in
G - {u, v}. To complete the proof of our lemma we need to show that G' =
G - (V(M) v {u, v}) contains a perfect matching. Let

A= VM) u {u v}

a = |[V@G)nal

a = |V(G)nAl
a3 = |V(Gs)NA|
and a = |V(GynAl.

Notice thata; +az + a3z + a3 = l A | =2k +2and 0 <a <£1. We distinguish two cases
according to a;.

Casel:a; = 1.
Then G' = (Kl—3—az V Kiaa,) V Kiogus
G'[(V(Gy) U V(G3)) \ A]. Then
ﬁMl‘ = min {t-3 -a k+3-a;3}.
Consider B = (V(G2) U V(G3)) \ (A w V(M))). Clearly,
IBl = (k+1t)- (@ +a3+2[My)

Let M; be a maximum matching in

t+ap+a;

B k—t+a2—a3+6,for‘M,|=t—3—a2
- {t—k-a2+a3—6, for|M1’=k+3—a3.
Sincet<k+2,
|V(G)V\A| - |B] =k +2s+6-t+ay+a3- |B|
_ | 2s+2a; 20, for IMt|=t—3—a2
_{Zk—2t+25+2a2+1228, for [M,|=k+3-a,
and then there is a matching M, which maps each vertex of B to a vertex of V(Gg) \ A.
Clearly,
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K » f M, [=t-3-

G'[VGH VAU V(My))] =72 or M| 2,
Kopk-2025020 4125 for IMI’ =k+3-a,

contains a perfect matching Ms. Hence, M; U M; U Mj3 forms a perfect matching in

G.

Case 2:a,=0.

IfV(G3)\A =, then M| 2(k+3)-2=k+ 1, acontradiction. Thus V(G3)\ A #
&. Let xy € E(G) where x € V(G;) and y € V(G3) \ A. Clearly, G' - {x, y} =
(K., VK, ) VK By similar argument as in the proof of Case 1,

- {x, y} contains F as a perfect matching in G’ - {x, y}. Hence, F U {xy} forms a
perfect matching in G'. This completes the proof of our lemma. Q

k+2s+5-t+ay+a, "

Let G be a k*-extendable graph on 2n vertices, 0 < k < n - 2, with minimum
degree 1. By Theorem 5.3 and Corollary 5.5, notice that

[k +3, 2n-1], for n22k+4
(5.1)

[2k +3, 2n—1], for n<2k+3.

Corollary 5.5 and Lemmas 5.6 and 5.7 yield the following theorem:

Theorem 5.8: For any integers n, k and r with 0 < k < n - 2, there exists a
k*-extendable graph on 2n vertices with minimum degree r if r satisfies (5.1). Q

6. A Characterization of (n - 2)*-Extendable and (n - 3)*-
Extendable Graphs

We now turn our attention to a characterization of k*-extendable graphs on 2n
vertices fork=n -2 and n - 3. We begin with (n - 2)*-extendable graphs.

Theorem 6.1: G is an (n - 2)*-extendable graph on 2n > 4 vertices if and only if G is
Kzn.

Proof: It follows directly from Corollary 5.4 and the fact that K5, is k*-extendable for
0<k<n-2. Q

Our next result concerns an independence number of k*-extendable graphs
which is useful for establishing a characterization of (n - 3)*-extendable graphs.

Lemma 6.2: Let G be a k*-extendable graph on 2n vertices; 0 £ k <n - 2. Then a(G)
<n-k-1.

Proof: The case k = n - 2 is obvious since the only (n - 2)*-extendable graph is K.
So we need to consider the case 0 £ k < n - 3. Suppose to the contrary that a(G) =
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n - k. Let S be an independent set of vertices of G of order n - k. Further letu e S
and v € Ng(u). Since G is k*-extendable, there is a perfect matching F containing the
edgeuv. LetF,={xyeF | x e S}. Then |[F\F;|=k. Next let z, w be vertices of G
such that zz’, ww' € Fiand z, w € S. Then G' =G - (V(F\F;) u {z, w}) contains S
as an independent set of order n - k. Since W(G’) = 2n - 2k - 2, G’ has no perfect
matching. This implies that F \ F; cannot extend to a perfect matching in G - {z, w}, a
contradiction to the extendability of G. Hence, o{G) < n - k - 1, completing the proof
of our lemma. a

Lemma 6.2 is best possible since tl_1ere exists a k*-extendable graph G with
a(G)=n-k-1. Suchagraphis Kac+2v (Kn.k-1V Kn-k-1).

We now characterize (n - 3)*-extendable graphs on 2n vertices.

Theorem 6.3: Let G be a graph on 2n = 6 vertices. Then G is (n - 3)*-extendable if
and only if G:

(i) is Kz, or

(i1) has minimum degree 2n - 2, or

(i)  has minimum degree 2n - 3 and a(G) < 2.

Proof: The necessity follows directly from Theorem 5.3 and Lemma 6.2. Now we
prove the sufficiency. Clearly, Kz, is (n - 3)*-extendable. If 8(G) = 2n - 2, then, by
Lemma 4.1, G is (n - 3)*-extendable. The last case follows directly from Theorem
4.4, This completes the proof of our theorem. a

Remark 6.%: There exist (n - 3)*-extendable graphs for each type specified in
Theorem 6.3. Clearly, 2K, v K3, ., satisfies type (i) and 2K, v Kj, -4 is of type (iii).

A consequence of Theorems 2.7 and 6.3 is the following theorem:

Theorem 6.4: Let G be a graph on 2n 2 10 vertices. Then G is (n - 3)*-extendable if
and only if G is (n - 2)-extendable non-bipartite . (W

Let ({2n, k) and ¢*(2n, k*) denote the classes of k-extendable non-bipartite
graphs and k*-extendable graphs on 2n vertices, respectively. Theorem 6.4 assures
that for 2n > 10

d2n,n - 2) = G*(2n, (n - 3)*).
The bound on the number of vertices of a graph in Theorem 6.4 is best possible since
there exist (n - 2)-extendable non-bipartite graphs on 2n = 6 and 2n = 8 vertices which
are not (n - 3)*-extendable. Such graphs are displayed in Figure 6.1
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Figure 6.1

For 2n > 6, Lemma 3.3 implies that ¢¥*(2n, (n - 3)*) € {{2n, n - 2). The graphs
in Figure 6.1 ensure that ¢*(2n, (n - 3)*) is the proper subclass of ({2n, n - 2). By

take advantage of a characterization of (n - 2)-extendable graphs on 2n > 6 vertices,
proved by Ananchuen and Caccetta [3, 4], we can now state the foliowing corollary.

Corollary 6.5: For 2n > 6, | d2n,n-2)\ (*@2n, (n - 3)*)| = 11. Such graphs are
displayed in Figure 6.2.

Figure 6.2 |

7. The independence number of a minimum cutset

In this section, we investigate the independence number of a minimum cutset
of strongly k-extendable graphs. By Theorem 6.1, the only (n — 2)*-extendable graph
on 2n vertices is K, which is clearly (2n — 1)-connected. Hence, in the rest of this
paper, we will restrict our attention to k*-extendable graphs on 2n vertices for 0 <k <
n — 3. It follows directly from the definition of bicritical graphs (0*-extendable) that
such graphs are 2-connected. A graph K; v 2Ky, for any positive integer r is an
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example of a bicritical graph which is 2-connected. For 1 <k <n - 3, it follows from
Lemma 5.1 that k*-extendable graphs on 2n vertices are (k + 3)-connected. Our first
result establishes the independence number of a minimum cutset of k*-extendable

graphs.

Theorem 7.1: Let G be a k*-extendable graph on 2n vertices with 2 <k <n - 3 and
suppose S ¢ V(G) is a minimum cutset of G with |S| =k + t for t > 3, then a(G[S]) =
k+6—-tor a(G[S])<2.

Proof: Suppose to the contrary that there is a minimum cutset S of G with |S} =k + 1,
t>3and 3 <a(G[S])<k+5-t. Thenk=zt-2and 2MS)|2k+t)-(k+5-1t)=
2t — 5. Thus |S]= 2t -2 and [M(S)| =t — 2. Let M be a matching of size t — 2 in G[S)
and let u and v be vertices of S\ V(M). Such vertices exist since |S| > 2t - 2. Put
S1 =S\ (VM) v {u, v}).

Then [S)| =k + ) -2t -2)-2=k-t+220. Let §; = {X5, X2, ... , Xx 1+ 2}-
Further, let Cy, C,, ..., C, be components of G — S. We claim that [V(C))] sk -t + 1
forall i, I <i <r. Suppose to the contrary that there exists a component C; with
[V(C)i 2k~ t +2. By Theorem 2.8, there is a matching M, which matches vertices of
Sy into V(C;). Let My = {x1y1, Xa¥2, --- » Xk-t+2Y¥k—1+2}. Clearly, M UM, is a
matching of size (t — 2) + (k -t + 2) = k. Since G — {u, v} has a perfect matching
containing all the edges of M U M;, C;\ (V(M))) is an even component of G — (S v
V(M1)).

Now x; must be adjacent to some vertex w; € V(C;) for some i # j since Sisa
minimum cutset. Then My = (M u M; U {x3w1}) \ {x11} is a matching of size k
which does not extend to a perfect matching in G — {u, v} since M; covers S\ {u, v}
and G — (S v V(My)) contains Cj \ V(M) as an isolated odd component, a
contradiction. Hence, [V(Cj)|<k—-t+1foralli, 1 <i<r.

Next we let V(Cy) = {wy, Wa, ... , W} where m = [V(C;)|. By Theorem 2.8,
there is a matching M3 which matches vertices of V(C;) into S;. Let this matching be
{Xiw, XaWa, ... , XmWm}. Clearly, |S;\ V(My)] =k -t+ 2 —m > 1. Suppose

Uvec)

>k —t+2—-m. Then, in view of Theorem 2.8, there is a matching My of

r
size k — t + 3 — m which matches vertices of {Xn, Xm+1, ... , Xk+2} into U V(C,) . Let
i=2

XmZ € My where z € | JV(C;) . Now Ms =(M U (M3 \ {XnWm}) W My) is a matching
i=2

of size(t—2)+(m—-1)+(k-t+3 -~m)=kin G~ {u, v} which does not extend to a

perfect matching in G —~ {u, v} since M5 covers S\ {u, v} and G - (S v V(Ms))

contains Wi, as an isolated vertex. Thus || JV(C;)| £k-t+2—m. Butthen

i=2

2n = w(G) = [S| + <k+t+m+(k-t+2-m)=2k+2<2n-4,

_LiJ‘V(Ci)

a contradiction. This completes the proof of our theorem. Q
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Corollary 7.2: Let G be a k*-extendable graph on 2n vertices with 2 <k <n -3 and
suppose S < V(G) is a minimum cutset of G with |S| =k +tfor 3 <t <k + 2, then
M(S) <t-3.

Proof: It follows directly from the proof of Theorem 7.1. a

As a consequence of Lemma 5.1 and Corollary 7.2, we have the following
corollary:

Corollary 7.3: Let G be a k*-extendable graph on 2n vertices; 2 <k <n-3. If S ¢
V(Q) is a cutset of G with |S] =k + 3, then S is independent. |

Remark 7.1: For n > 3, a graph K 3 v 2K, is 1*-extendable which contains K; 3 as a
cutset of order 4. Clearly, oK 3) = 3. Hence, the lower bound on k in Theorem 7.1
and Corollaries 7.2 and 7.3 is best possible.

Theorem 4.8 together with Theorem 7.1 yields the following corollary:

Corollary 7.4: Let G be a k-extendable graph on 2n vertices with 4 <k <n -1 and
suppose S < V(G) is a minimum cutset of G with [S{=k + t - 2 for t > 3, then a(G[S])
2k+4-toraG[S]) <2. a

We conclude this section by establishing a necessary condition, in terms of
connectivity, for k*-extendable graphs which are locally connected. A graph G is said
to be locally connected if for every vertex u of G, the induced subgraph G[Ng(u)] is
connected.

Theorem 7.5: Let G be a k*-extendable graph on 2n vertices with2 <k <n-3. IfG
is locally connected, then G is (k+4)-connected.

Proof: Suppose to the contrary that G is not (k + 4)- connected. By Lemma 5.1, x(G)
=k + 3. Let S be a cutset of order k + 3 of G. Then S is independent by Corollary
7.3. But then G[Ng(u)] is disconnected for any vertex u e §, contradicting the locally
connected of G. Hence, G is (k + 4)-connected as required. |

Remark 7.2: (1) Foranoddintegern=5,G; =K; v2K;_jand Gy =Ks v (Kn_1
 Kq - 3) are k*-extendable for k = 0 and 1, respectively. Clearly, G; and G are
locally connected but x(G;) = 2 < 4 and ¥(G;) = 4 <5. Hence, the lower bound on k
in Theorem 7.5 is best possible.

(2)  Theorem 7.5 is best possible in the sense that there exists a

graph G on 2n vertices which is k*-extendable, locally connected and x(G) = k + 4.
Such graph is (Ki v K, ;) v (Kax U Kyra).
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8. Results on a number of components

In this section, we establish some results concerning an upper bound on a
number of components of G — S when S is a minimum cutset of a k*-extendable graph
G. We begin with a minimum cutset of order at most 2k + 1,

Theorem 8.1: Let G be a k*-extendable graph on 2n vertices with 2 <k <n — 3 and

let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If |§| <
2k + 1, then 2 < (G- S) <|S| - M(S)| -k - 1.

Proof: Clearly, since S is a cutset, ®(G — S) = 2. Now we suppose to the contrary that
(G - 8) 2 S| - M(S)| - k. Since G is k*-extendable and S is a minimum cutset, by
Corollary 7.2, IM(S)| £ S| - k-3 <£(2k+ 1) -k — 3 =k — 2. Thus, {S| - 2]M(S)| =
k-M@®S) +3. Letx,y € V(G)\ S, Since S \ V(M(S)) is independent and G is
k*-extendable, v(G — (S U {x, ¥}) =[S\ VM(S))| = IS - 2IM(S)|. Thus W(G - S) = |§|
- 2IM(S)| + 2. Now let Cy, C,, ..., C; be components of G~ S. Clearly, r > |S| - [M(S)|

~k 2 3. We claim that there is a subset of | JV(C,)of cardinality k - [M(S)| 2 2 with
i=l

deleting this set from G — S results in a graph with at least [S} - [M(S)] -k -1 22 odd
components. Suppose there is no such subset. Among subsets of UV(C.-) with
i=1

cardinality k - |[M(S)|, let A be a subset of UV(Ci)With |A] = k - |M(S)| and
i=]

o(G — (S v A)) is as large as possible. Notice that v(G - (S A)) = S| - 2IM(S)| + 2 -
(k - IM(S)) = |S| - IM(S)| - k + 2. Suppose (G — (S w A)) = 1. This implies that
G - (S v A) is connected and then there exists a component of G - S, C, say, which
VICH)\A=Dand V(C) A= V(C); 2<i<r. Since v(G~ (S A)) =S| - M(S)| -
k+ 2, |V(C1) \ Al 2 ISI - IM(S)I -k+2. Let X X2y oo s Xi81-M(8)| - k-1 € V(C|) \ A and
yie VIC)N A, 2<i<|S]-M(S)| - k. Put
A=A {x), X3, oo, X M-k -1 ) VY2, Y3, o0 Visp- ey -k

Clearly, |A;| = |A| and G — (S U A)) contains at least [S| - [M(S)| -k - 12 2 odd
components. This contradicts the choice of A. Hence, ®(G - (S« A)) =22. Now we
suppose that G — (S W A) contains only odd components. Since o{G — (S A)) <|S|-
IM(S)| - k — 2, there are at least 2 components of G — S, Cj and Cj say, which V(Ci) N
A =V(C) fori=],j. Further, there exists an odd component of G — (S \ A}, H; say,
which v(H;) 2 3. Leta;, a; € V(H,), by € V(C;) and by € V(Cj). Put A= (AU {a,
a}) \ {by, by}. Clearly, |Az] = |Aland o(G - (S U A)) =o(G-(SW A) +2,a
contradiction. Thus G — (8§ «w A) contains at least one even component. Suppose
there is a component of G — S, Cj- say, which V(Cj) n A = V(Cy). Let w € V(Cj)
and z € V(H;) for some an even component H; of G — (S A). Then A3 = (A v {z})\
{w} has the same cardinality with A and o(G - (S U A3))=o(G-(SU A)) + 2,2
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contradiction. Hence, V(Cj))\A = @ forall j, 1 <j <r. Consequently, o(G — (S U A))
=o(G - S)=rand G — (S U A) contains at least 2 even components.

Let Wy, W, ..., W be odd components of G ~ (S U A) and Wy, Wy, ...,
W, be even components of G — (S U A) where t < [S| - [IM(S)| - k — 2. Without any
loss of generality, we may assume that V(W;) = V(C)\ A; 1 <i <r. Suppose V(Cy)
NAzD. Letw € V(Cui)nAand 2’ € V(Wua). Put Ay=(A v {ZH) \ {w}. Then
|A4] = |Al and o(G - (S v Ayg)) = o(G - (S U A)) + 2, contradicting the choice of A.
Thus, V(Cin1) n A =, Similarly, VIC) " A=, t+ 2 <i <r. This implies that
VW =V(C); t+1<1i<r Now we will show that [V(C) n A< 1,1 i<t
Suppose there is an odd component Wj, 1 <j <t, which [V(Cj} n A|=2. Let w),w; €
V(C) N A, z) € V(Wu), 22 € V(Wug). Then As = (A U {z), z2}) \ {w), w2} has the
same cardinality with A and o(G - (S W As)) = o(G — (S U A)) + 2, a contradiction.

t
Hence, [V(C) N A]<1,1<i<t Nowk- M) =|Al= YIV(C)NA| <t<[§|-
i=1

IM(S)| - k - 2. Thus |S| > 2k + 2. This contradicts our assumption on |S| and proves
our claim. -
Now let B be a subset of | V(C;) with |B| =k - [M(S)| and o(G - (S v B)) >

i1
IS} - IM(S)| - k— 1. Since [S] - 2]M(S)| = k - [IM(S)| + 3, in view of Theorem 2.8, there
is a complete matching F of size k - [M(S)| joining vertices of B to vertices of S’ ¢
S\ V(M(S)). Clearly, |S|- (ZIM(S)| +|S’) = 3. Letcy,c2 € SV(VIM(S)) v ). Then
F U M(S) is a matching of size k - |[M(S)| + [IM(S)| = k which does not extend to a
perfect matching in G — {c;, c3} since 3" = S\ (VIM(S)) v S' v {c1, c2}) ©
V(G — (V(M(S) U F) U {ey, ¢2}) of order [S] - (2IM(S)] + k - [M(S)| + 2) = [S] - [M(S)] -
k-2and G - (VM(S) v F} U {c, ¢z} v §") = G - (S v B) contains at least
S| - IM(S)| - k — 1 odd components. This contradicts the k*-extendablity of G and
completes the proof of our theorem. [

Corollary 8.2: Let G be a k*-extendable graph on 2n vertices with 2 <k <n-3. Let
S be a minimum cutset of order at most 2k + 1 which S is independent. Then
|S|— k-2, forkiseven
o(G-8) <
|S|- k-1, forkisodd.

Proof: By Theorem 8.1, o(G - S) £ o(G -S) <|8] - k — 1. Thus we only need to prove
the case k is even. Suppose k is even and

o(G-S)=§|-k-1.
Since v(G) is even, [S| and S| - k — 1 must have the same parity. This implies that
k + 1 is even and hence k is odd, a contradiction. This completes the proof of our

corollary. a

Remark 8.1: Let s and k be positive integers with k + 3 £ s <2k + 1. Let G =
Ks v(s—k-DK,,,, for an odd k = 3 and G, = K v(K,, u(s-k-2)K,,,,) for an
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even k = 2. It is not difficult to show that G| and G, are both k*-extendable. Clearly,

V(Es) isacutset of G, i = 1, 2 and G; - S and G; — S contain exactly s —k — 1 and
s —k -2 odd components, respectively. Thus Corollary 8.2 is best possible.

The next corollary follows immediately from Theorem 8.1, Corollaries 7.3 and
8.2.

Corollary 8.3: Let G be a k*-extendable graph on 2n vertices with 2 <k < n — 3.
Suppose S is a cutset of G with |S] = k + 3. Then G — S contains exactly 2
components. Further,

(i) If k is odd, then both components of G — S are odd or even.

(i)  If k is even, then one of components of G — S is odd and the other is
even. 0

We make an observation here that k + 3 is the smallest order of a cutset of
k*-extendable graphs for 1 £ k < n — 3. Corollary 8.3 presents the number of
components of G — S when S is a cutset of order k + 3 of a k*-extendable graph G for
2 £k £n-3. Our next lemma concerns a similar result for k = 0 and 1. Note that
0*-extendable graphs are 2 connected and 1*-extendable graphs are 4-connected.

Lemma 8.4: Let G be a 0*-extendable graph on 2n = 4 vertices. Suppose S is a cutset
of G with |S| = 2. Then G — S contains at least 2 even components and no odd
components.

Proof: It follows directly from the definition of 0*-extendable graphs and the fact that
IS| is even. O

Lemma 8.5: Let G be a 1*-extendable graph on 2n > 6 vertices. Suppose S is a cutset
of G with |S| = 4.

(i) If G[S] contains an edge, then G — S contains at least 2 even
components but no odd components.

(ii) If S is an independent set, then G — S contains exactly 2 odd
components and no even components or at least 2 even components but no odd
components.

Proof: Let S = {a, b, ¢, d} be a cutset of G. Without any loss of generality, we may
assume that ab € E(G). If G - S contains an odd component, then the edge ab does
not extend to a perfect matching in G — {c, d}. This contradicts 1*-extendability of G.
Hence, G - S has no odd components. Since S is a cutset of G, G — S contains at least
2 even components but no odd components. This proves (i).

Now we suppose that S is independent and G — S contains an odd component
(and hence, by parity, at least 2 odd components). Further, we suppose that G — S
contains Hy as an even component, Since [S| = 4, by Lemma 5.1, S is a minimum
cutset. Thus there exists an edge e = xy joining a vertex x of S to a vertex y of Hy.
Without any loss of generality, we may assume that x = a. Then the edge ay does not
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extend to a perfect matching in G — {b, ¢} since the odd components of G - S together
with Hy \ y form at least 3 odd components of (G — (S u {y}) and [S\ {a, b, c}| =|{d}|
=1, a contradiction. Hence, G — S contains only odd components. It follows from
Theorem 3.7 that G — S contains exactly 2 odd components and no even components.
If G - S has no odd components, then G — S contains at least 2 even components as S
is a cutset. This completes the proof of our lemma. Q

Remark 8.2: (1) For n = 3, a graph K3 v (n — 1) K; is 0*-extendable which
satisfies Lemma 8.4.

(2) For n > 4 a graph K4 v (n - 2)K» is 1*-extendable which
satisfies Lemma 8.5 (i) and for 2n > 12 graphs K, v (K, U Kz,-5) and ¥, v (n-2)K;
are both 1*-extendable which satisfy Lemma 8.5 (i1).

Theorem 4.8 together with Theorem 8.1 yields the following corollary:

Corollary 8.6: Let G be a k-extendable graph on 2n vertices with4 <k <n -1 and let
S be a minimum cutset of G and M(S) a maximum matching in G[S]. If |S| < 2k - 3,
then 2 <o{(G~-8) < S| - M(S)| -k + 1. a

Theorem 8.1 gives an upper bound on a number of components of G — S when
S is a minimum cutset of order at most 2k + 1 of a k*-extendable graph G. One might
expect a similar result for [S| = 2k + 2 but this is not the case. For non-negative

integers s and t, a graph G| = (K¢ EHZ) v (s +t+ 2)Kyy 44 for tis even and a graph
Gy = (Kax v Kuz) v [{s +t + 1)Kok +4 W Kaks 3] for t is odd are k*-extendable with a

minimum cutset S = V(Ky U Ku2). Clearly, o(Gi—S)=s+t+22>2fori=1,2.
However, if a number of odd components of G — S is sufficiently large, then an upper
bound on a number of even components of G — S can be given with some restriction
on the size of M(S). Our next result establishes this.

Theorem 8.7: Let G be a k*-extendable graph on 2n vertices with 1 <k <n -3 and
let S be a minimum cutset of G with [S| = 2k + 2 and M(S) a maximum matching in
G[S]. Suppose o(G ~ S) = |§| - 2]M(S)| - 2 - r for some non-negative integer r. If
2|M(S)| + r < 2k — 2, then the number of even components of G — S is at most [M(S)| +

i
2
Proof: Let (G — S) be a number of even components of G — S. Suppose to the
contrary that n(G — S) = [M(S5)| + [%J + 1=t Let Hy, Hy, ... , H; be even

components of G ~ S. Choose x; € V(Hj), 1 <i<t. Since 2MS)|+r<2k-2,t=
IM(S)| + B—J +1<kand|S|22k+22t+2. Lety, y2, ..., ¥, Yir1, Yiu2 € S. In view

of Theorem 2.8, there is a matching M’ of size t joining vertices of {x;, X2, ... , Xt} to
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vertices of {y1, y2, ..., yiJ. Clearly, G —(V(M’) U S} contains [S| - 2]M(S)| -2 —r +t
=S| - IM(S)| - B—] - 1 odd components. Furtber [S\ (V(M") U {Yi1, yua})I = |S| - (t +

2) =S| - IM(S)| - B—J - 3. If M’ extended to a perfect matching in G — {yin, Y2},

then each odd component of G — (V(M’) w S) would be joined to at least one vertex of
SV (VIM") U {yw1, yi+2}). But this is impossible since o(G - (VM) U 8)) = [§| -

IM(S)| - B-] - 1 while [S\ (VM) U {31, ye2})| = [S] - IM(S)| - BJ - 3. Hence,

n(G-8) < M(8)| + [%J as required. a

Our next result concerns an upper bound on a number of odd components of
G — S when S is an independent cutset of a k*-extendable graph G with |S] = 2k + 2.

Corollary 8.8: Let G be a k*-extendable graph on 2n vertices with 2 <k <n -3 and
let S be a minimum cutset of G with [S| = 2k + 2. If S is independent, then o(G - S) <
IS| - 4. Further, ifk 2 3 and |S| - 5 < o(G - 8), then G - S has no even components.

Proof: Suppose to the contrary that o(G ~ S) 2 |S[ - 3. It follows from Theorem 8.7
that G — S has no even components. Let C;, C,, ... , C; be odd components of G — §.
If [V(C)l = 1; 1 £1i <t then G is bipartite which is impossible since G is
k*-extendable. Hence, there is a compoﬁent of G - §, C, say, with |[V(C))] =2 3. Let
X, ye V(C))anda,b,c,d € S. In view of Theorem 2.8, there is a matching M of size
2 joining vertices of {x, y} to vertices of {a, b}. But then M does not extend to a
perfect matching in G — {c, d} since G ~ (S U {x, y}) contains at least |S| - 3 odd
components while |S\ {a, b, ¢, d}| =S| - 4. This contradicts the k*-extendability of G
and proves that o(G - 5) <|S| - 4.

Further, we assume that k > 3 and |S| - 5 < o(G — S). Since v(Q) is even, |S]
and o(G — S) have the same parity. This implies that o(G — S) = |S| - 4. By Theorem
8.7, G — S has at most one even component.

Suppose H is an even component of G — S. We will show that v(H) = 2.
Suppose to the contrary that v(H) = 4. Let zy, z3, z3 € V(H) and wy, wa, w3, wa, ws €
S. By Theorem 2.8, there is a matching M, of size 3 joining vertices of {zi, z3, 23} to
vertices of {w;, wa, w3}. By applying a similar argument used as above, M; does not
extend to a perfect matching in G — {ws, Ws}, a contradiction. Hence, v(H) = 2.
Since G has a perfect matching and S is independent, v(G - S) = |S|. Because v(H) =2
and o(G — S) =S| - 4, there is an odd component of G — S, C say, with v(C) = 3. Now
letaj, a; € V(C)and b € V(H). Then, in view of Theorem 2.8, there is a matching M;
of size 3 joining vertices of {a,, a;, b} to vertices of {w), wy, w3}. Again, M, does not
extend to a perfect matching in G — {wy, ws}, a contradiction. This proves that G - S
has no even components and completes the proof of our corollary. W
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Remark 8.3: For a positive integer s > 4, a graph G, = Ks v (s = 2)Kosr1 is
1*-extendable containing V(f(—s) as a minimum cutset. Clearly, G; - V( Es) contains
s — 2 odd components. Further, for a positive integer s > 5, a graph G; = Ks v
[(s — Ky U Ky] is 2*-extendable which V(Es) is a minimum cutset and

Gz - V(K ) contains s — 4 odd components and an even component. Thus the bound
on k in Corollary 8.8 is best possible.

Our next result concerns a minimum cutset of a k*-extendable graph which its
induced subgraph has a small independence number. We begin with the following
lemma.

Lemma 8.9: Let G be a simple graph with a(G) < 2 and M a maximum matching in

G. Then M| = D=1 £or v(G) is odd and [M] 2 "(26)

- 1 for v(G) is even.

v(G)-3

Proof: Let v(G) be odd. Suppose M| < and G —

v(GZ)—-l . Clearly, M} <

V(M) is independent since M is a maximum matching. Then G — V(M) contains at
least v(G) — 2|M| 2 3 independent vertices, contradicting the fact that a(G) < 2

Hence, M| = vG)- v(zG) - 1 for v(G) is

! . By applying a similar argument, |M| 2

even. Q

Theorem 8.10: Let G be a k*-extendable graph on 2n vertices with 0 <k £n -3 and
let S ¢ V(G) be a minimum cutset of G. Suppose o(G[S]) <2. Then [S| 2 2k + 2 and
o{G-S)<[S|-2k~2.

Proof: By Theorem 3.7 and the fact that 0*-extendable graphs are 2-connected, our
theorem follows immediately for k = 0. So we only need to consider the case k > 1.
Since G is (k + 3)-connected, |[S| 2k +3 =2 4. Suppose [S|<2k+ 1. Let Mbea
maximum matching in G[S]. We will show that G — S contains only even
components. Suppose to the contrary that G — S contains an odd component. Assume
that G — S contains exactly one odd component. Then |S} is odd by the fact that v(G)
is even. Further, since S is a cutset, G — S contains an even component, H say. By

Lemma 8.9, M| = |S| ——=<k Letx e S\VIM) and y € V(H). Then M does not

extend to a perfect matchmg in G - {x, y} since G — (V(M) v {x, y}) contains
o(G - S) + 1 =2 isolated odd components, a contradiction. Hence, G — S contains at
least 2 odd components. Clearly, |S| is odd otherwise G is not k*-extendable since
'i' 1 <M| <k and [S\ V(M)|= 0 or 2. Consequently, G — S contains at least 3 odd

components. Let C; be an odd component of G — S and let z € V(C;). By Lemma
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8.9, M| =

IS|=t SL_I <k and there is a vertex x € S\ V(M). Now M does not extend to a

perfect matching in G —~ {x, z} since G — (V(M) v {x, z}) contains o(G - S)-122
isolated odd components, again a contradiction. This proves that G — S contains only
even components. Consequently, |S| is even and |S| < 2k. Furthcr, G — S contains at

least two even components, H; and H; say. By Lemma 8.9, l -1=M|<k. Letae

V(H,) and b € V(Hy). If M| = 'Sl

in G — {a, b} since G- (VM) U {a, b}) contains H; — a and H, — b as isolated odd
_ ISI

< k, then M does not extend to a perfect matching

components. This contradicts the fact that G is k*-extendable. Thus M| = -1z

1 since [S| >4 . Let ajb; € M, a; and b, belong to S\ V(M). Since S is a minimum
cutset, in view of Theorem 2.8, there is a matching M; = {a;x), bixz | x; € V(H;) and

x2 € V(H3)}. Then My = (M w M)\ {a;b;} is a matching of size (% -D+2-1=

l—-S—I < k. Clearly M; does not extend to a perfect matching in G —{a,, by} since
G - (V(M3) v {az, ba}) contains H; — x; and Ha — x; as isolated odd components.
This contradiction proves that |S| 2 2k + 2. It follows immediately from Theorem 3.7
that o(G — S) £ |S| - 2k — 2. This completes the proof of our theorem. Q

Remark 8.4: Theorem 8.10 is best possible in the sense that there is a k*-extendable
graph G with a cutset S satisfies conditions of the theorem and G — S contains a
number of odd components up to |S] - 2k — 2.

Let Gy = Kaksz+r — {an edge}, G2 = UK2a . and Gy = Ubi where 1, q, m,

i=]
aj, bj are non-negative integers,q +t m2 2, q<randq=r (mod 2). PuuG=Gy v
(G2 w G3). Figure 8.1 depicts the graph G. It is not too difficult to show that G is

G: // \\
D) -

q componemts m componemts

G G

2 3

Figure 8.1
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k*-extendable containing V(G)) as a cutset of order 2k + 2 + r. Notice that the
number of components of G — V(G;) can be any integer which is at least 2.

Theorem 4.8 together with Theorem 8.10 yields the following corollary:

Corollary 8.11: Let G be a k-extendable graph on 2n vertices with2 <k <n—1 and
let S be a minimum cutset of G. Suppose a(G[S]) <2. Then [S| 2 2k - 2 and o(G - 8)
<ISP-2k+ 2. Q

We conclude our paper by establishing a lower bound on an order of
k*-extendable graphs in terms of an order of a minimum cutset.

Theorem 8.12: Let G be a k*-extendable graph on 2n vertices with 0 <k <n -~ 3 and
let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If

(i) S| €2k + 2, or

(i) [S]z2k+3 and M(S)|<k
then 2n > 2|S] + 2k - 2|M(S)| + 2.

Proof: Clearly, by the assumption on |S| and Corollary 7.2, [S| - 2[M(S)| = 3. Let x and
y be vertices of S\ V(M(8). Since G is k*-extendable, there is a perfect matching F in
G — {x, y} containing all the edges of M(S). Put

Fi={abe F|lae S\(VIM(S)) v {x,¥}),b & S}

and

Fy={abeF|a,be S}
Then

[Fy[ =S| - 2M(S)|-2 =1
and

1
[Fal = 2 [2n- 18] - | Ful

= %[zn - IS - (S - 2IM(S)| - 2)]

=n-|S|+ M(S)| + 1.
If [F5| = 0, then M(S) does not extend to a perfect matching in G since G — V(M(S))
contains S \ V(M(S)) as an independent set of order S| - 2{M(S)| and v(G — V(M(8)))
= IS - 2IM(S)] + (S| - 2IM(S)| - 2) = 2|S| - 4M(S)] - 2, contradicting the
k*-extendability of G. Thus |Fs] = 1. Let zw € F,. Suppose [F2) <k + 1. Then
F; \ {zw} does not extend to a perfect matching in G — {z, w} since G - V(F2)
contains S \ V(M(S)) as an independent set of order S| - 2IM(S)| and w(G — (S v
V(F2)) = [F1] = |S| - 2]M(S)} - 2, again a contradiction. Hence, n - |S| + [M(S)| + 1 = |F3|
>k + 2. Thus 2n > 2IS| + 2k - 2|M(S)| + 2 as required. This completes the proof of
our theorem. Q

As a corollary we have:
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Corollary 8.13: Let G be a k-extendable graph on 2n vertices with 2 <k £n -1 and
let S be a minimum cutset of G and M(S) a maximum matching in G[S]. If

(1) IS|<£2k-2,0r

(i) |S{=2k-1and M(S)|<k-2
then 2n 2= 2|S| + 2k — 2|M(S)| - 2. Q

Remark 8.5: Theorems 8.1 and 8.12 are best possible in the sense that for k > 2 there
is a k*-extendable graph G on 2n > 2|§| + 2k — 2|M(S)| + 2 vertices containing a
minimum cutset S of order at most 2k + 1 with 2 < (G - S) <{S} - M(S)| -k - 1. For
non-negative integers k, s, t, g, r, m with

(i) k+3<s<2k+1

(ii) 0<t<s-k-3

(i) 0<2q+r<s—t-k-3,
let G = (Ko Ks-20) v [Kiag W Kakraaramom © (29)K; W rK;). Figure 8.2 illustrates
the graph G. It is not too difficult to show that G is k*-extendable. Clearly, S =
V(Kzw Ks-2:) is a cutset of order s, v(G)=2s + 2k -2t + 2+ 2Zmand 2 € (G - S) =

2q+r+2<s-t—-k-1

||
OO Y

Figure 8.2
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