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Abstract

The research investigates numerical performances of various Finite-Difference
Time-Domain(FDTD) schemes. Specifically, numerical solutions of Maxwell's equations
in both two and three dimensions are obtained by these schemes. The problem of
electromagnetic fields from mobiles telephones which interact with a human head are
investigated in details. An important parameter such as the Specific Absorbtion Ratio
(SAR) are calculated at various tissue types in the head model. The research also
introduces new improved m:athods for an efficient solution of Maxwell's equations.
Numerical schemes which are higher-order accurate and the one related to Spline
interpolation are introduced and formulated for improving the performance of the

standard FDTD scheme.
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1. Background

The finite-difference time-domain (FDTD) scheme is now widely used in
various applications such as an analysis of antenna pattern in two and three
dimensions, various fields pattern in wave guide, interaction of electromagnetic field
with biological tissues, etc. The main advantages of FDTD-based techniques for
solving the Maxwell’'s equations are simplicity and the ability to handle complex
geometry. Derivation from Maxwell's equations is based on a method of
approxlimating derivatives by finite difference and approximating line integrals,
surface integrals, and volume integrals by summations. it uses basic arithmetic
operations-addition, subtraction, multiplication, and division. Material properties are
specified at each grid point. At the interface points of different materials, FDTD can
model material through parameter averaging. The field at each grid point is calculated
explicitly using only adjacent field's values at previous time. The disadvantages of the
FDTD include the requirement of a high-speed computer and farge amount of memory
when the linear dimension of the object is large compared to the wa\}elength because
of the dispersion introduced by the algerithm. Most of FDTD schemes are the second-
order accurate. The scheme can be extended into a fourth order accurate-compact
scheme. In fourth order scheme, the approximated spatial derivative can represented
by explicit or implicit method. In implicit method, the method requires the inversion of
a tridiagonal matrix to find all»spatial derivatives and all grid points must be uniform.
Both methods are the extension of the standard Yee's scheme to higher-order
accuracy. Thus, the scheme is at least a fourth order in space but second order in
time. This is a reasonable opticn since the temporal accuracy can be improved by
choosing a smaller time step. This increases the work only linearly and does not
increase the storage. This higher order scheme in space enables one to choose a
coarser mesh, This decreases the work in each space dimension and also decreases

the storage.



1.1 Maxwell's equations

In a region of space that has no electric or magnetic current sources, but may have
materials that absorb electremagnetic energy, the time-dependent Maxwell's equations are

given in differential form by

Faraday's Law: %@ = VxE- Jdm {1
Ampere's Law: Z—D =VxH- ja (2)
Gauss's Law: V.D=0 {3)
Gauss’s Law V.B=0 {4)

— — — -

In linear, isotropic nondispersive materials, one can relate B to H and D to E

using simple proportions:
B= uH NG
ek (6)

]|

Il &

E=The electrig field vector in Volts per meter

i e

D=The electric flux density vector in Coulombs per square meter

=

H=The magnetic field vector in Amperes per meter

| =

o

The magnetic flux density vector in Weber per square meter

i

je-:The electric conduction current density in Ampere per square meter

_ A
J,,=The equivalent magnetic conduction current density in Volts per square

meter

A
H=The magnetic permeability in Henrys per meter

A
£=The electric permittivity in Farad per meter



The possibility of electric and magnetic losses that can dissipate electromagnetic
fields in materials via conversion to heat energy, jm can be related to H using a linear

relation:

J,=pH (7

And J, to account for the electric loss mechanism:

(8)

-
I
Q

Here p' is an equivalent magnetic resistively in Ohms per meter and o is the electric
conductivity in Siemens per meter. Combining the assumptions of (5) through (8) and

substituting into Maxwell's curl equations (1) and (2), one obtain

OH _ lysp-Pp ()
a  p H

% 19 q-%p (10)
o ¢ £

Writing out the vector compopents of the curl operator in {9) and (10} vields the system of
six coupled scalar equations equivalent to Maxwell’s curl equations in three dimensional
rectangutar coordinate system (x, vy, z):

oH, 1{0E, OE
ot

& |




ot
ok, 1{oH, ©oH
L= - —E2 - p'E, 15
ot &‘[ 0z ax p }J =
oH
aﬂ:l y_a_H_x_p'Eﬂw (16)
o el ox oy .

These six coupled partial differential equations of {(11) through (16) forms the basis
of FDTD numerical algorithm for electromagnetic wave interactions with generai three-
dimensicna!l cbjects. The FDTD algorithm need not explicitly enforce the Gauss's law
felations. This is because these relations are theoretically a direct consequence of the curl
equations. However, the FOTD space grid and the numerical space derivative operations

must be resulted in the enforcement of the Gauss’s law implicitly .

1.2. Finite Difference Scheme

To simplify the notation, only the two-dimensional case with p'=c=0 is
considered. The only sources for the problem are incident waves, The extension of the
method to three space dimensjons sources and variable coefficients is straightforward. The

TM system is consider and the time is normalized with the speed of light, ¢. let T = ¢t, and

Z= 1’% , where z is a wave impedance. The TM wave equations then becomes:

oH
a£=Z » _OH, (17)
ot Ox oy
OH, = _l@?_ (18)



o, 1 0F,
or Z ox

Then, Yee's difference equations are presented in the form that will enable one to

generalize them easily,

n 1
LY = _Eéy E:

"

5,1 o (20)

i x

i-1/2,j z 5—12,1
SE[" =25, H "~ 1| (@2
2l AT Tl
Where
SU!, = (Ul.’i%, ; —U,."_%,J. )/ Ax (23)
sk =y -ul )i 24)

The second order accuracy of Yee algorithms can be extended to higher crder as

shown in Table 1.

Order of | Order of | Approximation at x=0
Derivativ | accuracy | x-coordinates at nodes:
»
e
-7/2 -5i2 -3/2 -1/2 112 372 5/2 72
1 2 -1 1
4 A c 9 il
24 8 8 24
6 e - R R A
640 384 64 64 384 640
8 3 49 245 —1225 1225 245 49 5
7168 5120 3072 1024 1024 3072 5120 7168

Table 1. Coefficients for centered finite difference approximations at a “half-way” point [6].



Any function U of space and time are evaluated at a discrete point in the grid and at
a discreet point in time as

U/, =Ul(iAx, jAy,nAt) (25)

Where Af is the time increment, and Ax,Ay are space increment in x and vy direction
respectively. The disadvantage of a high-order scheme is that it is not compact scheme. In
particular, field components over a wider stencil are required. This is very troublesome
when dealing with material discontinuities. A compromise {o use a high-order difference
scheme at location space cells away from any discontinuities, and to apply the basic

second-order Yee algorithm at field component location near the discontinuities.

1.3. Absorbing Boundary

Recently, a technique for truncation of the computational domains in finite difference
methods was proposed . In this method, which is called by the author's transparent
absorbing boundary {TAB), a physical problem to be solved is transformed into a problem
for auxiliary fields. These fields are equal to zero at the closed boundary. Since the
relationship between the physical fields and their auxiliary counterparts is explicitly known
and the former can be found from the latter within the computational domain.

In the TAB boundary formulation, the auxiliary vectors E and H are introduced,

which are related to the physical fields Eﬂ and H, by
E(t,ry= F(r)E,(t,r) (26)
H(t,ry=F(rH,(t,r) (27)
For r <r,when r, defines the closed truncation boundary.

F(r) is a scalar function and F(r,) = 0 while the physical fields (Eo,ﬁa) are

described by Maxwell's equations, governing equations for the auxiliary field (E,F[) are



obtained by substituting E, and H, of (26) and (27} into Maxwell's equations. These

equations are expressed in the form of

@z———l—[VxE—lVFXEJ—&g (28)
ot M F M
oL _ l[Vxﬁ—IVFxFIJ—ﬁ-E (29
ot £ F £
Vi VFE (30)
F
_ 1 _ '
V.H=—VFH (31)
F
With the boundary conditions of
E=F(r)E, =0 (32)
H=F(r,)H,=0 (33)

Consider TM wave in {17) through (19), the field attenuation in the auxiliary system is

prescribed by the function

Fx,y)=f(x)g(y) (34)

The governing equations for the auxiliary field (E,H) are expressed in the form of

aH l; [
E:Z —”—LHJ,+£HI—6£ (35)
or o f g ay



oH :_lFiE_:_ﬁ_EZ} (36)

or Zl oy g
aHy_l 6Ez_f' 2 (37)
ot Z|\ oy f
Where
f'=gf~ and g'za—g
ox oy
2. Objective

The research objective is to investigate a numerical performance of various
FDTD schemes. Specifically, numerical solutions of Maxwell's equations in both two and
three dimensions will be obtained by these schemes. The problem of electromagnetic
field from mobile telephone interaction with a human head will be investigated in details.
An important parameter such as the Specific Absorbtion Ratio(SAR) will be calculated
at various tissue types in the head model. The research will introduced a new improved
method for an efficient solution of Maxwell's equations. A few schemes which are
related a high-order accurate and the Spline interpolation will be introduced and

’

formulated for improving the performance of the standard FDTD scheme.

3. Research Methodology

Begin with Maxwell's equations in two-dimensions, the FDTD scheme is used
to obtained the EM field distribution in the bounded domain. The absorbing boundary
condition is implemented at area near the boundary of the computational doemain. Next
step is to implement the FDTD scheme for the three-dimension problem. The
formulation of the Maxwell's equations in the fotal field and the scattered field will be

implemented in the numerical simulation. The chosen problem is the interaction of the



EM field from a mobiie telephone with the human head. The human head is modeled as
three-dimensional grid points which each grid point is represenied by a diglectric
constant value of various tissue types, such as bone, brain, blood, skin, etc. The
applied electromagnetic field will be modelled by both a plane wave and a dipole . All

calculations in this research is implemented using MATLAB.

4. Conclusion

Research results during the period of three years can be summarized as the
extension of standard FDTD schemes and having the improvement in two areas. First,
we investigated the application of the higher-order accuracy scheme with the
transparency boundary condition to the EM field interaction. Second, the Spline and the
B-Spline method is introduced as an alternative scheme for solving the Maxwell's

equations.
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Abstract

Personal computers (PC) are playing an increasingly important role in a wide range of
engineering computations. Students from all disciplines benefit from using PCs in solving
engineering problems. Within various schools of engineering, the electrical engineering department
currently teaches clectromagnetic courses. The basic equations for electromagnetic theory are
Maxwell’s equations. It is rare for the electromagnetic problems to fall into a class that can be solved
by analytical methods. There are many sifuations when the analytic methods are fail: the solution
demain is complex; the medium is inhomogeneous and/or anisotropy, the equations have
discontinuous coefficients and/or time varying; the boundary conditions are complicated. Whenever
a problem with such complexity arises, numerical solutions must be employed. This paper presents a
numerical method called the finite different time domain (FDTD) as a tool for analyzing the
electromagnetic problems encountered in various electromagnetic courses. This FDTD scheme can be

implemented using a low-cost PC.

INTRODUCTION

Maxwell’s partial differential equations represent a fundamental unification of electric and
magnetic fields predicting electr;magnetic wave phenomena. The solution of Maxwell’s equations
has been found to be remarkably robust, providing accurate modeling predictions for a wide variety
of free-space and guided wave electromagnetic interaction problems. There is frequency-domain and
time—domain technique for solving Maxwell’s equations. Frequency-domain techniques are based on
the Fourier analysis while the time-domain technique employs finite element or finite difference
methods. The disadvantage of the frequency~domain technique is its inability to handle the nonlinear
problems arising from the inhomogeneourity of the computational domain. The decomposition of the
computational domain into finite element has been introduced and used to solve different
electromagnetic problems. The disadvantage is its computational cost and its complexity of computer

program. Also it can not handle the unbounded domain.



The finite difference techniques are based upon approximations, which permit replacing
differential equations by finite difference equations. These finite differential equations relate the
value of the dependent variable at a point In the computational domain to the value at some
neighboring points.

The unique solution of finite difference equations is obtained using the prescribed boundary
condition and/or initial conditions. There are many finite difference schemes for partial differential
equation. The choice of the finite difference schemes is dictated by the nature of the problem being
solved, the computational domains, and the boundary conditions.

The well-known finite-difference-time-domain (FDTD) for the electromagnetic fields
problems was first introduced by Yee[1] in 1966 and later developed by Lubber, Taflove and others

{2]-[8]. This FDTD scheme is a direct solution of Maxwell’s curl equations.

FINITE DIFFERENCE TIME DOMAIN (FDTD)} ALGORITH

In an isotropic medium, Maxwell’s equation can be written as

oH
VxE=—p— 1
,Uat (1a)

VxH=0E+£%—f (1b)

The vector Eq.(1) represents a system of six scalar equations, which can be expressed in

rectangular coordinate system (x,y,z) as:
]

H OFE
oH , _1fes, OF, (22)
ot u\ 0z oy
oH
y _1[0E, 6Exj (2b)
o u\ ox oz
oH, 1(6E, ©E, (20)
= - C

ot ul oy 0Oz



oH
I o
&

ot oy oz
oF
o Ljor, o, (2¢)
o el oz o d
oH
GEZ — }_ Y _%_JEZ (Zf)
ot el oOx oy

Following Yee’s notation, a grid point is defined as
(i,j,k) = (Ax, jAy, iAz) (3
And any function of space and fime as
F"(, j, k)= F(iAx,iAy, kAz, nAt)

Where Ax, Ay, Az are the space increments and Atis the time increment, while 1, j, k and n are
integers.
Using the central finite difference approximations with an second-order accurate, the space

and time derivative can be approximated

OF" (i, j,k)y F"(i+ ), ], k)-F"(i-)4,j,k)

o 5 +O(Ax") (4)

OF" (i, j, k) _ F"'%(i,j.k)— F"™% (i, j,k)
or At

+O(AL) (5)

In order to apply Eq.(4)&(5) for this algorithm, Yee used an electric field (E) grid which
was offset both spatially and temporally from a magnetic field (H) grid to obtain update equations
that yield the present fields throughout the computational domain interms of the past fields. A Yee’s
unit cell is shown in Fig.1. Thus the explicit finite difference approximation of Eq.(2c) can be

obtained as:



Hf*%(i,]'+%,k+%)=H;"%(i,j+%,k+%)+
Af
ErGj+ L k+D)-El(j++.0)-E (G jk+3H)-E(,j+Lk+!
T L DB G Rk D= BN+ £ 0= Bk + D = BG4 Lk )

(6)

The update expression for other field components is obtained in similar fashions.

} IE:_ E,

n

P
!
i
'-——---
[}
t
-
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Figure 1. A unit cell of Yee’s lattice.

This Yee scheme is second order accurate both in time and space. In order to improve the
accuracy of this scheme, the difference operator in Eq. (4) is replaced by the following fourth-

order accurate scheme: ’

OF" (i, j, k 1 . : . . . . : .
;xj . A A [Fn(i—%,J,k)—27F"(f-%,J’,k)+27F"(f+%,J,k)—F"(l+%,J,k)] (1)
Thereafter Eq.(4) is called the Yee scheme and Eq. (7) the explicit (2,4) scheme. At the first and
last points of bounded spatial domain, the fourth-order accurate one side approximation to the
derivative is used. This is used only in order to globally approximate the derivative. These one-sided

approximations are as follows:

OF(3,/,8)
Ox 2

2270, 0+ 1TF( R+ 9F 2, R =SFG, 1,0+ F(4, 5, )]



M - [22F(N, j,k)—1TF(N =1, j,k)=9F(N -2, j,k)+ 5F(N =3, j, k)~ F(N -4, j, k)]
x 24Ax ’
(8)
The only difference between the Yee scheme and the explicit (2,4) is the replacement of Eq. (4) by
Eq. (7). The fourth order scheme in space enables one to choose a coarser mesh. This decreases the

work in each space dimension and also decreases the storage.
COMPUTATIONAL RESULTS

In this section the standard Yee and the explicit (2,4) are compared. All schemes are

advanced in time by the leapfrog method. To simplify the notation, the two dimensional transverse

Magnetic (TM) case is considered. Letting, == and Z = \/% ,

NP

8t | & oy

OE, Z[GH y aHx]

OH, 18k,
ar Z 8y
oH _ 10K,
or 7 &x
' (9)

For the rest of this paper, let E=}1=1. The exact solution as a basis for comparison in the
box [0.1]x[0,1]x[0,1] is used in this simulation. The walls are perfect conductors. The following
boundary and initial conditions are obtained:

E,(x,»,0)=0
H,(x, y,iﬂ‘zi) = é cos{wg %) sin mx cos ay

Hy(x,p,9)=- -v}—icos(wo £ cos 7 sin zy

Ez(oyy)t) = Ez(l:y!t) = 0



E (x0,0)= E_(x],0)=0

A test case is a TM,,, mode with the following exact solution:
E, =sin @ sin zx sin gy
1 .
= —=CO08 Wp! SIN /X COS
2 0 g

Hx
H ., =—-L coswqt cos zx sin
¥ NG 0 s

where wg =+27. So that f=-Land A=+2. Assume £ (i, J) is a solution obtained from the
1] J2 z

FDTD scheme. Define the error as:

NxNy ~
Z Z‘Ez(i!j)_Ez(i»j)

i=) j=1

EITor =

NN,

where N,and N, are the number of grid points in the x and y directions respectively. Figure 2-5
shows the logarithmic errors as a function of time. Tables 1-2 compare the performance of both

schemes over the time interval [0,5]. The maximum error for each mesh size is shown in Table 1.

W

h=lambda/20 1

4ol ~h=lambda/4¢
; -h=lambda/60
12 L—J. _t - S T
0 1 2 3 4 5

Figure 2. logq (error)for the Yee scheme
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-h=lambda/60
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Figure 3. log, (error) for the explicit (2,4)
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Figure 5. log;q (error) for the Yee with h = A/60 and the Explicit (2,4) withh = A/13

Table 1.The maximum errors for each mesh size

Scheme H, cAt/Ax Max(log(error)) —T

0<t<5

Yee As20 0.4 -1.51

Yee As40 0.4 -2.30

Yee As60 0.4 -2.61
Explicit(2,4) As20 0.4 -3.00
Explicit (2,4) Ar40 0.4 -3.23
Explicit (2,4) As60 0.4 -3.50
Yee hr40 0.2 -1.90

Yee A740 0.6 -3.09
Explicit(2,4) As40 0.2 -6.80
Explicit(2,4) As40 0.6 | -2.26

As shown in Fig.5, these mesh sizes are chosen in order to get the same error. The
comparison is shown in Table 2. The programs were written in MATLAB and run on Pentium II
Personal Computer. The CPU time needed to achieve the same accuracy in Yee’s case is more than

27 times larger than is required for the explicit(2,4) scheme.



Table 2. CPU time using explicit (2,4) and the Yee scheme

Scheme H cAt7Ax Max (log(error)) CPU-time

Yee 1/60 0.2 -2.31 531.86 sec

Explicit(2,4) 1/13 0.2 -2.23 19.75 sec
CONCLUSION

Two FDTD techniques presented here offer a simple mathematical model for the analysis of
the electromagnetic problems. The results demonstrate that a coarser mesh can be used with the
fourth order scheme and still get the same accuracy as with the Yee scheme. The explicit (2,4) is
easier to modify an existing code based on the Yee schemes and make it a fourth order accurate.
From numerical examples, the CPU time needed to achieve the same accuracy in Yee’s case is more

than 27 times larger than is required for the explicit (2,4) scheme.
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