บทคัดย่อ

รหัสโครงการ : RSA40-8-0016

ชื่อโครงการ: การศึกษาปัจจัยที่ช่วยเพิ่มประสิทธิภาพการกระดุ้นการสร้างแอนดิบอดีโดยวิธี DNA

immunization

ชื่อนักวิจัย: รศ. ดร. วัชระ กสิณฤกษ์

E-mail address: watchara@chiangmai.ac.th

ระยะเวลาโครงการ: 1 ธันวาคม 2540-1 ธันวาคม 2543

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาถึงปัจจัยต่างๆ ที่เกี่ยวข้องกับการกระตุ้นการสร้าง แอนดิบอดี โดยวิธี DNA immunization จากการศึกษาวิจัยตามระยะเวลาโครงการ ได้ผลการศึกษา โดยมีรายละเอียดและผลการทดลองดังนี้

การศึกษานี้เริ่มดันด้วยการศึกษาวิธีการแยก plasmid DNA ที่เหมาะสมเพื่อนำมาใช้ในวิธี DNA immunization และพบว่าการแยก plasmid DNA โดยวิธี Qiagen plasmid mega kit กระดุ้นการ สร้างแอนดิบอดีจำเพาะได้ดีกว่าวิธี Cesium chloride-ethidium bromide gradient ultracentrifugation และเมื่อศึกษาเปรียบเทียบ plasmid DNA ที่กำหนดการสร้างโปรตีนชนิด membrane protein และ secreted protein ในการกระดุ้นการสร้างแอนติบอดีโดยวิธี DNA immunization ผู้วิจัยพบว่า plasmid DNA ที่กำหนดการสร้าง protein ชนิด membrane และ secreted protein กระดุ้นการสร้างแอนดิบอดี จำเพาะได้ไม่แตกต่างกัน เพื่อศึกษาถึงการนำวิธี DNA immunization มาผลิต polyclonal antibody ต่อโปรดีนชนิดต่างๆ ผู้วิจัยได้นำ plasmid DNA ที่กำหนดการสร้าง leukocyte surface proteins ชนิด ด่างๆ รวมทั้ง plasmid DNA ที่กำหนดการสร้าง HBs antigen ฉีดหนูทางกล้ามเนื้อ พบว่าหนูสร้าง แอนดิบอดีจำเพาะต่อ encoded protein ได้เกือบทุกชนิด ผลการศึกษานี้แสดงให้เห็นว่าวิธี DNA immunization สามารถนำมาใช้ผลิตแอนติบอดีต่อโปรดีนที่สนใจได้ อย่างไรก็ตามผู้วิจัยพบว่าการ กระตุ้นการสร้างแอนติบอดีจำเป็นต้องฉีด plasmid DNA 3-5 ครั้ง โดยพบว่าแอนติบอดีที่ผลิตได้โดย วิธี DNA immunization นี้เป็นชนิด IgG ไม่สามารถตรวจพบแอนติบอดีชนิด IgM เลย เนื่องจากวิธี DNA immunization จำเป็นต้อง insert DNA เข้าไปใน eukaryotic expression vector ผู้วิจัยจึงทำการ ศึกษาถึง eukaryotic expression vector ที่สามารถใช้ในงาน DNA immunization ได้จากการศึกษานี้ พบว่า eukaryotic expression vectors หลายชนิดสามารถนำมาใช้ได้ เพื่อศึกษาถึงสารที่ช่วยเพิ่ม ประสิทธิ์การกระตุ้นการสร้างแอนดิบอดีโดยวิธี DNA immunization ผู้วิจัยได้นำสาร DEAE Dextran, chloroqiune และ PHA มาศึกษา และพบว่าการฉีด plasmid DNA ร่วมกับ DEAE Dextran, chloroqiune และ PHA ไม่ได้ช่วยให้การสร้างแอนดิบอดีเพิ่มขึ้น นอกจากนี้ DEAE Dextran และ chlorogiune กลับกดการสร้างแอนติบอดี

เนื่องจากการกระตุ้นการสร้างแอนดิบอดีโดยการฉีด plasmid DNA ทางกล้ามเนื้อนั้นต้องมี การฉีด plasmid DNA 3-5 ครั้งจึงกระตุ้นการสร้างแอนติบอดีได้ ผู้วิจัยจึงได้นำวิธี intrasplenic immunization (คือฉีด plasmid DNA เข้าไปในม้านโดยตรง) มาใช้ และผลการทดลองพบว่าวิธี intrasplenic immunization สามารถกระตุ้นการสร้างแอนดิบอดีได้ด้วยการฉีด plasmid DNA เพียง ครั้งเดียว

นอกจากในหนู ผู้วิจัยยังพบว่าวิธี DNA immunization สามารถนำมาผลิตแอนติบอดีได้ใน กระต่าย ผู้วิจัยได้ทำการฉีด cDNA ที่กำหนดการสร้าง CD4 protein เข้าไปในกระต่าย 3 ตัวทางกล้าม เนื้อ และพบว่ากระต่ายทุกตัวสามารถสร้าง polyclonal antibodies ที่จำเพาะต่อ CD4 protein ในระดับ ที่สูง เมื่อนำ anti-CD4 antibodies ที่ผลิตได้มาศึกษาหน้าที่ของ CD4 protein พบว่าแอนติบอดีนี้ สามารถยับยั้ง PHA induced cell proliferation ได้

จากนั้นผู้วิจัยได้นำวิธี DNA immunization มาประยุกต์ใช้ในการผลิต monoclonal antibody โดยนำ cDNA ที่กำหนดการสร้าง CD54 และ insert อยู่ใน pCDM8 vector ฉีดหนูทาง intrasplenic จากนั้นนำ spleen cells ของหนูมา fuse กับ myeloma cells และผลิต monoclonal antibody โดย hybridoma technique ผลการทดลองพบว่าสามารถผลิต anti-CD54 monoclonal antibody ได้ ผล การทดลองนี้ชี้ให้เห็นว่าวิธี DNA immunization สามารถนำมาผลิตโมโนโคลนอล แอนติบอดีได้ ซึ่งมี ประโยชน์อย่างมากในการนำวิธีนี้ไปผลิตแอนติบอดีต่อโปรตีนที่สนใจโดยที่ไม่จำเป็นต้องมี protein antigen

นอกจากนี้ผู้วิจัยยังศึกษาถึงการผลิต monoclonal antibody โดยใช้ COS cell expression system มาใช้ในการเตรียม immunizing antigen ในการศึกษานี้ผู้วิจัยนำ cDNA ที่กำหนดการสร้าง CD14 และ CD99 ที่ insert ใน eukaryotic expression vector ไป transfect เข้าไปใน COS cells จากนั้นนำ transfected COS cells ฉีดหนู นำ spleen cells ของหนูมา fuse กับ myeloma cells และ ผลิต monoclonal antibody ตามวิธี hybridoma technique ผลการทดลองพบว่า โดยวิธีนี้ผู้วิจัย สามารถผลิต anti-CD14 monoclonal antibodies ได้ทั้งหมด 5 clones และ anti-CD99 monoclonal antibodies ได้ทั้งหมด 3 clones แอนดิบอดีที่ผลิตได้สามารถใช้ศึกษา cellular distribution, คุณสมบัติ ทางชีวเคมีและหน้าที่ของโปรดีนจำเพาะได้

ผลงานที่ได้จากการศึกษาตามโครงการวิจัยนี้ ได้รับการตีพิมพ์ในวารสารนานาซาติแล้ว จำนวน 4 เรื่อง

คำหลัก : DNA immunization, eukaryotic expression vector, polyclonal antibody, monoclonal antibodies, leukocyte surface molecule

Abstract

Project Code: RSA40-8-0016

Project Title: Study of factors affecting the enhancement of antibody production by DNA

immunization

Investigator: Associate Professor Dr. Watchara Kasinrerk

E-mail Address: watchara@chiangmai.ac.th

Project Period: 1 December 1997- 1 December 2000

The objectives of this study are to study factors that involved in antibody production by using DNA immunization strategy. The outputs of this study are summarized as follows:

In our study, the plasmid DNA isolation methods were firstly evaluated. We found that plasmid DNA isolated by Qiagen plasmid mega kit induced antibody responses better than those isolated by cesium chloride-ethidium bromide gradient ultracentrifugation method. For induction of antibody responses, plasmid DNA encoding membrane protein and secreted protein were compared. Both type of plasmid DNA could induced antibody response in the same level. In order to study the use of DNA immunization for production of polyclonal antibody to various proteins, mice were intramuscular immunized with DNA encoding various leukocyte surface molecules and HBs antigen. We found that by this strategy, specific antibodies could be induced in mice sera. These results indicate that DNA immunization can be used to produce polyclonal antibodies against several type of proteins. However, to induce antibody responses, 3-5 plasmid DNA inoculations were required and the antibodies induced by DNA immunization were IgG isotype. As eukaryotic expression vector is always needed in DNA immunization technique, we therefore evaluated several eukaryotic expression vectors for induction of antibody production. It was found that several eukaryotic expression vectors can be used for this purpose. In order to enhance antibody production, several reagents including DEAE Dextran, chloroquine and phytohemeagglutinin (PHA) were mix with plasmid DNA before mouse immunization. All reagents used, however, have no enhancing effect on antibody production. In contrast, DEAE Dextran and chloroquine suppressed antibody production.

As we found that 3-5 plasmid DNA intramuscular immunizations were needed for induction of antibody response, intrasplenic immunization was then studies for using as inoculation route. In contrast to intramuscular immunization, only a single DNA intrasplenic injection resulted in the production of serum antibodies.

5

In addition to the production of antibody in mice, we also found that DNA immunization could be used to produce antibody in rabbits. cDNA encoding CD4 protein were immunized into 3 rabbits and high titer of anti-CD4 antibodies were generated in all immunized rabbits. The generated CD4 antibodies could be used for functional characterization of CD4 protein, i.e., it strongly suppressed PHA induced cell proliferation.

The DNA immunization was then applied for monoclonal antibody production. In our studies, CD54-DNA in pCDM8 vector were intrasplenic immunized into Balb/c mouse. The spleen cells of the immunized mouse were fused with myeloma cells using conventional hybridoma technique. A hybridoma producing anti-CD54 monoclonal antibody was generated. This study indicates that DNA immunization technique can be applied for the production of monoclonal antibody. This finding is very useful for production of antibodies to molecules where the protein antigen is not available or difficult to prepare, but cDNA encoding the corresponding protein is available.

Furthermore, we study the production of monoclonal antibody by using COS cell expression system to produce immunizing antigen. In this study, cDNA encoding CD14 and CD99 inserted in eukaryotic expression vector were transfected into COS cells. The transfected COS cells were then immunized into mice and the spleen cells were fused with myeloma cells using conventional hybridoma technique. By this technique, 5 clones of anti-CD14 monoclonal antibodies and 3 clones of anti-CD99 monoclonal antibodies were produced. The generated antibodies could be used for cellular distribution analysis, biochemical characterization and functional study of the corresponding proteins.

Taken together, from this research project, 4 papers were published.

Keywords: DNA immunization, eukaryotic expression vector, polyclonal antibody, monoclonal antibody, leukocyte surface molecule