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Modelling effects of high product and substrate inhibition on
oscillatory behavior in continuous bioreactors
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Abstract

In this study we consider a model for continuous bioreactors which incorporates the effects of high product and
substrate inhibition on the kinetics as well as biomass and product yields. We theoretically investigate the possibility
of various dynamic behaviors in the bioreactor over different ranges of operating parameters to determine the
delineating process conditions which may lead to oscillatory behavior. Application of the singular perturbation
technique allows us to derive explicit conditions on the system parameters which specifically ascertain the existence
of limit cycles composed of concatenations of catastrophic transitions occurring at different speeds. We discover
further that the interactions between the limiting substrate and the growing microorganisms can give rise to high
frequency oscillations which can arise during the transients toward the attractor or during the low-frequency cycle.
Such a study not only can describe more fully the kinetics in a fermentor but also assist in formulating optimum
fermentor operating conditions and in developing conlrol strategy for maintaining optimum productivity. © 1999
Elsevier Science Treland Ltd. All rights rescerved.

’
Keywords: Continuous bioreactors; Product inhibition; Substrate inhibition: Singular perturbation; Oscillation

1. Introduction have been proposed and theoretically studied in

diverse ways since the model due to Monod

The growth of microorganisms is an unusually (1942}, fashioned after Michaelis—Menten kinetics
complicated phenomenon. Viewing the behavior for single enzyme-gubstra[e reactions.

of microbial cultures within the framework of In cthanol fermentation, instantaneous biomass

fumped kinctic models, a multitude of models yield of the yeast Saccharomyces cerevisiac was

B found by Thatipamala et al. (1992) to decrease
* Correspending author, E-mail: scylbg@mahidol.ac.th with the increase in ethanol concentration (P),

0303-2647/99/% - see frent matter © 1999 Elsevier Science Ircland Ltd. Al rights reserved.
PIIS0303-2647(98)00082-3
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indicating a definite relationship between biomass
yield and product inhibition. Thatipamala ct al.
{1992} also found that substrate inhibition occurs
when substrate concentration (5) is above 150 g/l
Fig. 1 shows expermmental data taken from the
work of Thatipamala et al. (1992) indicating the
effect of substrate inhibition on the specific
growth rate at low ethanol concentrations. Fig. 2,
on the other hand, shows the effect of product
inhibition on the specific growth rate, with data
taken from the same source (Thatipamala et al.,
1992).

A number of simple kinetic expressions have
been suggested in the literature for specilic growth
rate g incorporating product andjor substrate in-
hibition {Aiba and Shoeda, 1969; Andrews, 1968;
Bazua and Wilke. 1977). Mainly, four types of
inhibition correlations have been suggested based
on experimental observations: linear, exponential,
hyperbolic, and parabolic. Yano and Koga (1969)
made a theoretical study of the behavior of a
single-vessel continuous fermentation subject to 4
growth inhibition at high concentration of the
rate limiting substrate S. They used the following
expression for their continuous fermentation
system:

tﬂ'l
}l=4—4——— (1)

(KSS)+1+ 3 (S/KY
y=1

where 4, and the K’s are positive constants and »
is a positive integer. Other workers {Agrawal et
al., 1982, Lenbury ct al, 1994) have adopted
simpler specific growth rate functions involving
fewer control parameters, but exhibiting similar
characteristics as the usual substrate inhibition
model, for example the one hump substrate inhi-
bition function

p=kSe "% (2)

where & and K, are positive constants,

Later, Yano and Koga (1973) discussed the
nature of the chemostat in which the specific
growth rate depends on the concentrations of
both a substrate and an inhibitory product of a
microorganism. They assumed a specific growth
rate equation as follows;

— 0.4
i
K o
3
O.2W
0o EXPERIMENTAL
— BEST FIT
0.0 — —
100 300
S (g/L)

Fig. 1. Effcet of substrate inhibition on specific growth rate at
low ethanel concentration. (Data peints taken from reference
Aiba and Shoda (1969)).
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They showed, with the analog computer, that
when the product formation was negatively
growth-associated, in which the rate of product
formation decrcases with the increase in the cells
concentration, diverging as well as damped oscil-
lations appeared. No oscillations could be ob-

0 4] ;
T eee EXPERIMENTAL
£ BEST FIT
e |

02

0o — S

20 60 100
P /L)

Fig 2. Effect of preduct nhibition on specific growth rate.
(Data points taken from reference Aiba and Shoda (1969)).
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served, on the other hand, when the product
formation was either completely growth-associ-
ated, or partially growth-associated. Oscillation
phenomena are, however, not unusual in continu-
ous cultures (Aprawal et al., 1982). Since a ten-
dency for periodicity 1s undesirable from the point
of view of process control, it is necessary to
identify the safe operating regions in which com-
piexed dynamic behavior may be avoided.

In one of their earlier efforts, Ramkrishna et al.
{1967) presented a chemostat mode!l which as-
sumed that viable cells (X) inieract with a sub-
strate (S) so as to produce new viable cells and a
cell-killing product (P). This product interacts
with viable cells to form dead cells, in the process
of which the cell-killing product may be released.

In the work of Lenbury et al. (1994}, the dy-
namic behavior of a chemostat subject to product
inhibition was analyzed and classified in terms of
multiplicity and stability of steady states and limit
cycles. The substrate was assumed to be in suflfi-
cient supply so that the model was reduced to a
system of two nonlinear differential equations in-
volving only the cells and product concentrations.

In this paper, we consider the full three-variable
product inhibition model consisting of the follow-
ing nonlincar differential equations:

X _ X— DX (4
ar = i 2 )
a8 Jt

— =D -5 —-=X 5
4 (5 ) y (3)
dp

4 noptX + i P — DP (6)

where X(r) denotcs the cells concentration at time
1; 8(r) the substrate concentration at time 1; P(1)
the product concentration at time /; S the con-
centration of the feed substrate, while D is the
dilution rate at which the feed substrate is being
fed into the reactor and the content of the bio-re-
actor is being removed, and #, is the constant for
praduct formation. The term #, P in equation (6}
takes into account the release of the cell-killing
product during the product’s mteraction with vi-
able cells to form dead cells, foliowing the sugges-
tion of Ramkrishna et al. (1967) in their earlier
mentioned paper . Here, we assume that the pro-

duction rate is directly proportional to the
amount of the product present, with s, < D being
the positive constant of variation.
We also adopt the following expression for the
specific growth rate function:
Y
kSe "5
H= L i3 (7
KI"
to take into account the inhibitory effects of both
the substrate and the product increase in the
chemostat.
Further, the cells to substrate yield ¥ defined as

¥ amount of cells produced

amount of substrale consumed

Is assumed to vary linearly with the substrate level
at any time r, allowing for the positively-growth
associated situation; namely

Y=4+ 88 (8)

Such substrate dependent yield has been used
previously by several other workers in this field
(Agrawal et al., 1982; Lenbury et al., 1994).

The analysis of the model is done through a
singular perturbation argument, assuming that the
substrate concentration exhibits fast dynamics.
The time responses of the different components in
the system are assumed to decrease dynamically
from top to bottom. The structure of the corre-
sponding attractors and the nature of the tran-
sients are then analyzed. It is shown that the
model system can exhibit low-frequency cycles in
which periodic bursts of high-frequency oscilla-
tions may develop giving rise to more complexed
dynamical behavior for specified ranges of the
system parameters.

2. System model

In order to analyze the model system of Egs.
(4)Y—(6), together with Eqs. (7) and (8) through the
singular perturbation technique, we assume that
the substrate has fast dynamics, while the cells
and product have intermediate and slow dynamics
respectively, and scale the time responses of the
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three hierarchical components of the system by
means of two small dimensionless positive
parameters ¢ and J; namely, we let

S P D
X=— =X, o= { =D, A
' Sy ! K, @ ="

! b kSy. T k
¢ —, W= p=— = i
: &0 EJK], 4 f5e) A S];
A
and f = .
nd Bs.

We are led to the following system of differen-
tial equations:

d./\'i ] X e u.\'y L B
E—Q,l(i ,\) (_x+ﬁ)(1+{}:);j(J\3}‘H) (9)
dy xe” M

— =g ————d, |=eg(x, v, I
dr Ul: 1+ &z ﬂ”j| AR (10)
L L P S ST
d Y Ty e el b

Thus, with ¢ and & small, the equation of the
substrate concentration represents the fast system,
while that of the cells and product concentrations
represent the intermediate and the slow systems,
respectively. Under suitable regularity assump-
tions, the singular perturbation method allows us
to approximate the solution of the system (Egs.
{9)-(11Y) with a sequence of simple dynamic tran-
sitions along the various equilibrium manifolds of
the system and occurring at different speeds. The
resulting path, composed of all such transients,
approximates the solution of the system in the
sense that the real trajectory is contained in a tube
around thesc transients, and that the radius of the
tube goes to zero with ¢ and é. The formal proof
of this 1s not given because it is long and trivial
and has already been discussed and cxtensively
used in the literature (Hoppensteadt, 1974; Mura-
tori and Rinaldi, 1989; Muratori, 1991; Muratori
and Rinaldi, 1992).

2.1, Two-dimensional dynamics

By means of singular perturbation analysis, the
solution of the system of Eqs. (9)-(11) can be
approximately found for small values of £ and 4.
First, the slow (z) and intermediate (y) variables
are frozen at their initial values z{0) and y(0), and

the evolution of the fast component of the system
is determined by solving the ‘fast system” consist-
g of Eq. (9) with z set equal to z(0). If, for
simplicity of the following analysis, we assume
that the starting value of z 13 comparatively smali,
since ¢ is small, the value of z remains small
during the initial phase. The evolution of the
system components can then be approximately
determined by first setting ¢ =0 and z =0 in the
Egs. (9)—(11). Thus, we are led to the following
system:

dx ,‘)'\, c - H\']',

el —xy - 12
a MUY (1)
%:Ey[(ux e dy) (13)

which 15 a fast-slow second-order system for
which the dynamical behavior can be analyzed
and existence of limit cycles detected through the
singular perturbation principle. The results are
summarized in Fig. 3, where two cases of interest
can be identified. The conditions on the parame-
ters identifying the two cases are as follows.

2.1.1. Case 1
The system (Eq. (12)) has an equilibrium mani-
fold where & =0 is given by

r7AN
e

y=(1—x)}x+pf)r—=p) (14)

yx
which intersects the x-axis at the point x =1 as
shown in Fig. 3. The slope of the curve in Eq. (14)
is given by

dy ec.'.\' ]—-( )
CA, - F{x} =
dx px?

eh‘.\'

[—ax®+{a—af — 12 +afix—f)

(15)
Letting x = 1/3 in Eq. (15) leads to the following
inequality
2a—3
27 — ba

which ensures that the curve y = ¢(x) has positive
slope con some interval containing the point x = 1/
3. On such an interval, the fast manifold /= 0t will
be unstable. This corresponds to the portion BC
in Fig. 3. Since f< 0 to the left of BCand />0 to

&)
Ay <

b <

(16)
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x ¥

CASE 1

CASE 2

Fig. 3. Two possible cases of trajectory development for the two dimensiona) fast-slow system (Egs. {12) and {13)). Trajectories go
toward a limit cycle ABDC in Case |, and toward a stable equilibrium point R in Case 2.

its right, a solution trajectory starting from a
point to the left of this portion BC of the curve
will develop away from the curve, while a trajec-
tory starting from a point to the right of BC will
tend away [rom this unstable branch of the curve
also.

Similar arguments will show that the other
branches of the manifold /= 0 on which we find
the portions 4B and CD are stable. The stability
of different parts of other manifolds can be deter-
mined In a similar manner by considering the
signs of the lunctions f, g and &

The equilibrium manifold of the mtermediate
system (Eq. (13)) consists of 2 parts, the trivial
manifold y =0 and the nontrivial manifold given
by the equation

dy

xe " (17)

43}

In the case 1, the curve (Eq. (17)) intersects the
graph of (Eq. (14)) at the point R in the Fig. 3
where x = X for which

F(x)>0 (18)

which means that the pomt R is located on the
unstable branch of the manifold f=0. This is
easily accomplished by letting

f=-—20 (19}

for a sufficiently small 4, then simply set

d, - 1
==z e“=(§~())e‘”3‘”’ 20)

o

Thus, Case 1 is identified by the inequality Eqs.
(18)—(20).

2.1.2. Case 2

This case is then identified by the opposite
inequality to Eq. (18), namely
F(xy<0 2nh
However, since the nontrivial intermediate mani-
fold is given by Eq. (17),
__d

X >»>—
[42]

We see that Eq. (21) will be satisfied if &,/ is
sufficiently large as well as satisfying

. (22)

ﬁ <1 (23
€
to allow for % to be located to the left of the point
x =1 where the fast manifold crosses the x-axis.
Thus, in Fig. 3 where transitions of low, inter-
medtate, and high speeds are indicated by one,
two, and three arrows, respectively, if we start
from the point marked by the number 1 above the
curve X =0, then x < 0 here and a fast transition
develops toward the point 2 on the stable mani-
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fold (section AB), while y still remains frozen at
the initial vatue p(0). (If we starl from the point |
below the curve % =0, then x>0 here and so a
fast transition will develop toward point 3 on
section CD of the manifold). Since the manifold is
stable here, a transition of intermediate speed 1s
made along the curve as the intermediate system
becomes active. From point 2, the transition de-
velops along the direction of decreasing y since
¥ < 0 on the left of the curve g = 0. Once the point
B is reached, the manifold loses its stability and a
fast transition is made towards the point D on the
stable section CD of the manifold. Transition of
intermediate speed upwards along this curve ends
if either a stable equibibrium R, where /=g =10, is
reached in the case 2 (Fig. 3b), or a quick jump
brings the trajectory back to the section 4B com-
pleting a closed cycle ABDC in the case 1 which
corresponds to Fig. 3a.

2.2, Three-dimensional dynamics

As z increases, the slow system (Eg. (11)) be-
comes active. We now show that, for suitable
values of the parameters and for ¢ and J suffi-
ciently small, the system (Egs. (9)-(11)) has a
unigue attractor that is either a stable equilibrium
or a4 low-frequency limit cycle which may exhibit
high-frequency oscillations during a finite interval
of time.

To do this, we observe that the manifold

S,y 2) =0 (24)

intersects the nontrivial intermediate manifold
along the curve

S=g=0 (25)
given by the equation

xe N d,

2
1+ 0] (26)
which defines a surface z = ¢(x). We observe that
at x=l/a

Thus, to ensure that the point P(z,, y,. z,} In
Fig. 4 1s located on the stable part of the manifold
JS=0 at the point where x, = l/a < 1, we require

F(!) <0 (27)
7

or equivalently,

t 1

f=>1—-——— (28)
a a

and

o > 1 (29)

Combining the Eq. (16) and Eq. (28), we arrive
at the requirement that

a3 ot (30)
27 — 6u a )

I2
Now, the curve (Eq. (253)) i1s given by the equation

{
y:‘{—z(] —x)x+f)
%)

which reaches a maximum at the point
M2, Ywe Znq) Where

L=p
Y=

Finally, the curve f= g = () intersects the (x, 2)-
plane at the point Of{xg. ¥p. 25) where x,=1
and, from (Eq. (26)),

B ﬁl w ; Gh
AV Y .

We therefore require that

w
e’ < — {32)
sy
to ensurc that Ip > 0.
We now analyze each of the two cases
separately.

2.2.1. Case 1

We observe that in this case the point R is
located on the unstable part of the manifold /=0
and the curve /=g =0 remains on the unstable
part, as shown in Fig. 4, until the point M is
reached. The curve then stretches along the stable
part of the manifold = 0 until either the point §
is reached in the cases 1{a) and I(b) (Fig. 4a, b),
respectively), or the point P is reached first in the
cases 1{c) and 1{d) (Fig. 4c, d), respectively).
Thus, four subcases can be identified as follows.
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2.2.1.1. Case I{a). This case is identified by the
incquality

<1 (33)

so that the turning point P is below the (x, 2}
plane corresponding to Fig. 4a in this case. Thus,
starting from an initial point 4 in Fig. 4a, a fast
transient takes us to the point B on the stable part
of the fast manifold f = 0. Transition of interme-
drate speed is then made aleng this manifold in
the direction of increasing y until the point C is
reached where stability is lost. A fast jump is
made to the point D on the other stable branch of
the manifold /=0 from which point a transition
of intermediate speed develops downward until
stability is lost again at the point G. A quick jump
back 1o A almost closes up the cycle. However, z
has been slowly increasing in the meantime so
that the same cyching transitions are repeated in
the direction of increasing z, densely covering the
surface /=0, until the point M is reached. The
transient now follows the curve f=g =0 unul the
point S is reached in the case 1(a). In this case, the
point § where x =y =2 =0 is on the stable part
of the manifold /= g = 0 and thus the transitions
end at this stable equilibrium point, as shown in
Fig. 4a.

2.2.1.2. Cuse (b). This is the case identified by the
inequaliry

a1 (34)

so that the point P is located on /=0 above the
{x, 7)}-plane as shown in Fig. 4b. This case is also
identified by the fact that the point §, where
f=g="Hh=20,is located on the stable part of the
curve f=g =0 This situation is guarantecd by
requiring that

SN (35)

where N(xy, Yy Zy) 18 the point on the curve
f=h=0with xy = l/a. From equating / and / to
zero, we find that

1
;V_’Eﬁ(l——l)(~+—ﬁ) (36)
wely aj\a

while, from Eq. (26), we have

11

1/ w
=~ -— 37
P s(a()dj l) &7

Therefore, so that S is located on the stable part
of =g =0, we require

el 131
R it SR | R I (38)
ey Vely aj\a

which guarantees that Eq. (35) holds.

[n this case 1(b) then, the transition in Fig. 4b
also reaches the point S first and ends there since
it is a stable equilibrium point where ¥ =y =23 =
0. Moreover, along the curve f=#f =0 wc have

_nd,

T ydy

when x = 0. Therefore we must also require that
dif 1

nd.f - (39)
ydy e

to ensure that the curve /= /=0 intersects the
curve /=g =10 only once.

2.2.1.3. Case I{c). This case is identified by Eqg.
{34) and the opposite inequality to Eq. (38), that
is

Lcae orch l—l 1-ﬁ-ﬂ +1 (40
dy v, aj\d

which guarantees that the point P is reached first
during the transition from the point M in Fig. 4c.
At the point P, there is a loss of stability and a
quick jump to [ takes place. A slow transition
develops now along this manifold where x =1
until a point is reached where stability is again
lost at some point F. A transition of intermediate
speed will develop along the fast manifold /=0
back to the point L then the same path to P is
followed which completes the limit cycle in the
case 1{c).

2.2.1.4. Case 1{d). In order that the transition
goes back inte high-frequency oscillations in each
low-frequency cycle, we need to require that z,, <
=a» Which is equivalent to

c"’<1;/fe afl )2 (41)
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Thus, starting from the point 4 in Fig. 4d, a
fast transition takes us, as explained earlier, to the
point B on f=0. An intermediate transition de-
velops on this manifold untit C is reached where
the stability of the equilibrium fast manifold is
lost. A fast transition then takes the system to the
stable equilibrium point D. An mtermediate speed
transition is then made along this branch of man-
ifold until & is reached where the stability is again
lost and a quick jump brings us to the stable point
H. This almost closes up the cycle but just misses
the point B. The slow system has becomes active
and z has been slowly increasing since Z > 0 here.
Transitions then develop following the same pat-
tern but with slowly varying z as seen in Fig. 4d
until M is reached, at which point the trajectory
develops into a slow cycle which goes back into
the fast cycles since Eq. (41) guarantees that z,, <

Z

222 Case 2

We observe that in this case the point R is
located on the stable part of the fast mamfold
f=0 as shown in Fig. 5. Mainly three subcases
can therefore be identified here.

2221 Cuase 2a). If Eq. (21) as well as Eq. (33)
held then starting from the point 4 in Fig. 5a, a
fast transition develops to the point B, followed
by a transient of intermediate speed to C, from
which point a slow transient takes us to the stable
equilibrium point S where the transition ends.

2222 Case 2(h). If Eq. (21) holds as well as Eq.
(38) then, similarly to Case 2(a), transients in Fig.
5b develop Loward the stable equilibrium point S
where x = y = 2= 0 and the transition ends.

2.2.2.3 Case 2{c). Finally, if Eq. (21) holds as well
as Eq. (40) then, [rom the point C in Fig. 5¢, the
pownt P is reached first where the stability is lost.
A quick jump to E, followed by a transition at
slow speed from E 1o F, then at intermediate
speed back to L, closes the trajectory up into a
low-frequency limit cycle for this case 2(c).

The above analysis can be summarized by the
following theorem.

2.2.3. Theorem

If £ and & are sufficiently small, and if Egs. (16},
(30) and (32) and Eq. (39) hold, then the system
Egs. (9)-(11) has a global attractor which is a
stable equilibrium if Eq. {18) and Eq. (33} hold,
or Egs. (18} and (34) and Eq. (38) hold, or if Eq.
(21) and Eq. (33) or Eq. (38) hold. On the other
hand, the attractor will be a low-frequency limit
cycle if Eq. (21) and Eq. (40) hold, or if Egs. (18)
and (34) and Eq. (40) hold. Moreover, the low-
frequency limit cycle will contain a period of high
frequency oscillations il inequalities Eqs. (18), (34)
and (40) and Eq. (41) hold as well.

3. Numerical results and discussion

Fig. 6a shows a numerical simulation of the
model Egs. (9)-(11) with parametric values cho-
sen to satisfy inequalities Egs. {18), (30}, (32), (34)
and (39) and Eq. {(40). This is therefore the case
I(c) and the solution trajectory develops into a
low-frequency limit cycle as predicted. The corre-
sponding time courses of the three variables are
shown in Fig. 7a. Fig. 6b shows a numerical
simulation of the model Egs. (9)—(11) with para-
metric values chosen to satisfy inequalities Eqs.
(18), (30), (32), (34), (39) and (40) as well as Eq.
(41). This is therefore the case 1(d). The solution
trajectory develops into a low-frequency limit cy-
cle which contains high frequency oscillations as
predicted in the above theorem. The correspond-
ing time courses of the three variables are shown
in Fig. 7b. Such underlying high frequency cycles
during a low frequency cycle in the biomass con-
centration profile have frequently been observed
by a number of investigators (Chen and McDon-
ald, 1990a,b). In Chen and McDonald, 1990b, the
total budding cells count in their bioreactor data
shows oscillatory behavior closely resembling our
result of case 1(d) shown in Fig. 7b. Experiment-
ing with different values for the system parame-
ters such as f, d;, g, and so on, shows that the
frequencies and amplitude of oscillations can be
appropriately adjusted to fit different chemostat
conditions.

We observe that the constant ¢ plays an impor-
tant role in the kinetics of the chemostal under
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study. Considering the model in Eq. (7), ¢ 13 in
fact an indicator of how late or how soon the
substrate inhibition sets . In Fig. 1, substrate
inhibition seems to set in approximately half way
to the maximum substrate level, suggesting that a
should by around 2. Thus, the numerical results
presented in Fig. 6a, b can be considered as
corresponding to the case where substrate inhibi-
tion is late in setting in (@ < 2). In Fig. 6c, we
present a numerical simulation of Eqs. (9)—(11) in
which a = 2.5, thus corresponding to the situation
where the inhibition sets in rather early (> 2).
With this value of a, Eq. (32) is violated and
zo < 0. Therefore, the transition develops from
the point E (in Fig. 4c or Fig. 5c¢) all the way to
the point (1, 0, 0) on the x-axis which is a stable
washout steady state of the system. Fig. 7c shows
the corresponding time courses of the state vari-
ables in this case, where both the cells and
product levels are seen to decrease toward zero,
while the substrate level tends toward the maxi-
mum level (S=5:).

Also, it is numerically found that solution tra-
jectories can still develop as theorctically pre-
dicted even though the values of ¢ and & are not
so small, and the assumption that the three com-
ponents of the system carry highly diversified
dynamics can be relaxed to a certain extent,

4. Conclusion

The appearance of sustained oscillations in
hioreactor variables in continuous cultures indi-
cates the complex nature of microbial systems,
and the difficultics which may arise in bioprocess
control and optimization.

Fig. 6. Numerical simulation of the model equations (Eqgs.
(9 {11)}. Here, ¢=0.1, 6 =00}, v =20, y=10.0, w =30,
d, =025, d, =025, and o, = 0.1, In 6(a), the parametric val-
ugs satisfy the inegualities of Case 1(¢), with f =08, a =1.5.
and the solution trajectory tends toward a low-frequency limit
cycle as theoretically predicted. In 6(b), the parametric values
satisly the inequalities of Case 1(d}, with # =02, a = 1.5, and
the solution trajectory tends toward a low-frequency limit
cycle which contains a period of high-frequency oscillations, In
6(c). =02, and ¢ = 2.5 which corresponds to the situation
where substrate inhibition is carly in setting in.
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In this paper, the dynamic behavior of a contin-
uous bioreactor described by Egs. (9)-(11) has
been investigated, incorporating the inhibitory ef-
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Fig. 7. The time courses of the state variables v(7). y(s} and
z(ry are shown here corresponding to the three respective cases
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fect at high levels of product and substrate con-
cenirations. Assuming that the time responses of
the thrce components are highly diversified, in-
creasing from bottom to top, we were able to use
standard singular perturbation analysis to de-
scribe the nature of the transients and the attrac-
tors of the system.

Complex oscillatory behavior is extremely un-
desirable not only for gencral control and design
problems, but also because of the possible poten-
tial for dangerous situations which may arise
where toxic compounds are involved, such as in
the operation of toxic waste treatment processes,
Insights that can be gained from this type of
analysis described above should prove most valu-
able in the light of such considerations.
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Appendix A. Nomenclature

X concentration of cells in bioreactor, g/l
S concentration of substrate in bioreactor, g/
]

concentration of substrate in the feeding
solution, g/l

concentration of product in biorector, g/l
time (h) ,

positive constants, g/l

dilution rate (h Y

yield coefficient, g cell/g substrate

u  specific growth rate (h™ ')

4, maximum specific growth rate (h™")

1
ks

~ T w Y
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PREDATOR-PREY INTERACTION COUPLED BY PARASITIC
INFECTION : LIMIT CYCLES AND CHAOTIC BEHAVIOR
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Mahildol University, Bangkok, Thailand
email : scylb@mucc.mahidol.ac.th

Abstract—-Several extensive studies have been carried out to document the ability of
parasites to alter the behavior of infected hosts [1]-[3]. In this paper, we discuss the
population dynamic consequences of parasite-induced changes in the behavior of the two
interacting species in a predator-prey system, by means of the development and analysis
of mathematical models. First, in order to investigate the dynamic consequences of the
parasite-induced changes in the foraging ability of the predator population, a model is
proposed for the predator-prey system in which only the predator population is invaded
by a parasite. Thus, the predator population can be divided into two groups, namely
the susceptible members and the infected ones. Analysis of the model is accomplished
through a singular perturbation argument, whereby explicit conditions are derived which
differentiate various dynamic behaviors and show the existence of limit cycles, explaining
the oscillatory patterns often ohserved in field data. Parasite-induced changes in the prey's
susceptibility to predation can also be modelled by a system of nonlinear differential equa-
tions [4] in which the prey population is divided into 2 classes; the susceptible members
and the infectives, while the entire predator population is assumed to be infected with the
parasite. Finally, a numerical investigation is carried out on the full 4-dimensional model
in which both the prey and predator populations are divided each into an infected group
and a susceptible one. Bifurcation diagram is constructed in order to identify the ranges
of the system parametric values for which chaotic behavior can be expected.

Keywords—Parasitic mnfection, Predator-prey systems, Limit cycles, €haotic behavior.

NOMENCLATURE

Natural birth rate of infected prey

Natural birth rate of susceptible prey

Removal rate of susceptible prey

Removal rate of infected prey

Removal rate of susceptible predator

Removal rate of infected predator

Surplus death rate of susceptible prey due to competition
Surplus death rate of infected prey due to competition
Transmission rate of prey



g Transmission rate of predators

01 Predator recovery rate

o' Maximum predation rate of susceptible predators on susceptible prey

¥ Maximum predation rate of infected predators on susceptible prey

o Predation rate of susceptible predators on infected prey

o4 Maximum predator rate of infected predators on infected prey

£, k, k' Half saturation constants

€q Rate of susceptible predator reproduction per unit of infected prey consumed
2 Rate of susceptible predator reproduction per unit of susceptible prey consumed
o Rate of infected predator reproduction per unit of susceptible prey consumed
C3 Rate of infected predator reproduction per unit of infected prey consumed

z Susceptible prey population density

u Infected prey population density

Y Susceptible predator population density

z Infected predator population density

INTRODUCTION

Many previous studies typically considered predation and competition to be the im-
portant factors which influence both the individual and social behavior of different animal
species [3]. An accumulating body of evidence has suggested, however, that parasites
(braodly defined to include viruses, bacteria, protozoans, helminths and arthropods) also
play an important part in determining both the density and long-term population dynamics
of many animal populations [5]-[7].

Several researchers have discovered evidence that infected hosts behave in a fashion
similar to that of uninfected hosts that have either recently engaged in exhausting acrobic
physical activity or have been nutritionally stressed [3]. A study by Crowden and Broom {8]
of Dace infected with the parasite eye-fluke Diplostomum spathaceum, reports that infected
fish develops reduced visual acuity which diminishes their ability to locate and capture
their food. Other authors of several studies [9]-{10] discovercd that parasitized individuals
become noticeably more sluggish in their behavior as well as less gregarious and often leave
the groups that afford them protection. A study of Milinski [11] also reports changes in the
foraging behavior of hosts concomitantly parasitized by Schistocephalus solidus and Glugea
anomale. In isopods infected with Acanthocephalus dirus and A. {ucii, the parasite has been
found to impair the ability of the host to usc its chromatophores as an effective camouflage
mechanism [12]. Thus, while uninfected hosts remain relatively inconspicuous when feeding
on a similarly coloured substrate, the infected hosts are more visible which not only results
in less success in thier foraging for food but also renders them more susceptible to predation
and thereby increase their mortality rate.

In all cases where it has been checked for, the parasites have a negative effect on host
survival, while 70 percent of the parasites were reported to reduce host fecundity [3].

To investigate the dynamic consequences of such parasite-induced changes in the preda-
tor in a predator-prey system, we analyze a mathematical model consisting of three nonlin-
ear differential equations in which the predator population is divided into two classes, the

3



susceptible members and the infectives. The prey is assumed to have very fast dynamics,
while the predator population has a relatively slower one. This assumption is valid in many
ecological systems in which predator-prey interactions typically involve species from differ-
ent trophic levels, such as the beetle Trifoleurn confusum Duv. which is prey to chickens,
or the sticklebacks which are susceptible to predation by birds. The susceptible predator
is also assumed to have a much faster dynamics than the infectives which has deminished
reproductive rate owing to their defective ability to capture their prey. Thus, the system
is assumed to be characterized by highly diversified time responses, and the analysis can
then be carried out using a singular perturbation approach.

A model consisting of three nonlinear differential equations has previously been pro-
posed in [4] to study the dynamical behavior of a predator-prey system in which the entire
predator population is infected with a parasite, while the prey population is divided into
two classes, the susceptible members and the infectives. To model the difference in the two
classes’ susceptibilities to predation, different functions are used for the predator functional
responses of the susceptible and infected prey populations.

It is found that invasion of a predator-prey system by a strain of parasite could cause
destabilization in the form of an appearance of limit cycles. On the other hand, instability
in the sense of extinction could also result if parasitic infection is removed from the system.

Finally, a full four dimensional model will be investigated, where both the predator
and the prey populations are infected. Chaotic behavior is found to be possible for spe-
cific ranges of the system parameters, suggesting significant biological implications that
the presence of chaotic dynamics may have for general predator-prey systems which are
invaded by a strain of parasite.

MODELLING PARASITE-INDUCED CHANGE IN THE PREDATOR HOST

We consider the following system of ordinary differential equations as a model of a
predator-prey system, where the predator population is divided into two groups,

dr _ oS ~I !

o~ B —rP) = Dr = 5mm - gl (1)
dS caSP

i — - T —

It Py D53+p1 3851 (2)
dl cay P

g = 1S Dt )

where P(t), S(t), and I(t}, ¢t > 0, are the prey, susceptible predator, and infected predator
population densities, respectively. B is the natural birth rate of the prey population which
is assumed to be logistic, while Dp, Dg, and Dy are the removal rates of prey, susceptible
predator, and infected predator, respectively. Due to the action of the parasites, the infected
predator population is assumed to have a higher mortality rate such that

Dy > Dy (4)



A conceptual model of this system is shown in Figure 1 where the prey population P
is fed upon by both the susceptible predator S and the infected predator I. Thus, S and
I exert negative effect on P.

We assume that contacts between individuals in a population occur completely ran-
domly and therefore the rate of infection varies directly as the product of the numbers of
susceptible and infected predators at any time. Hence, the infection process within the
predator population can be decribed by the term ST in equations (2) and (3), with p; as
the recovery rate.

The predator functional responses of the prey population are assumed to be of the
Holling type, namely, taking the form

mP
P+ K
for some positive constants m and K. Owing to the action of the parasites, the infected

predator’s ability to locate and capture their prey is impaired, and we therefore assume
that

V< (5)

and
£ < k. (6)

In what follows, we shall consider the very frequent case of interactions between very
fast and very slow (or very small and very big) components of an ecosystem. The size
and the time needed for reproduction and growth of the predator population is very much
greater than that of the prey population. Also, the action of the parasite can reduce
host fecundity and the ability to capture its prey. The infectives therefore have a slower
dynamics as compared to the susceptible members. When this hierarchical order is taken
to the limit of highly diversified dynamics, the analysis of the system of equations (1)-(3)
can be performed through a singular perturbation technique. This method of analysis is
based on purely geometric arguments which is an extension of a known method used to
study relaxation oscillations in second order systems [13]. Examples where the method was
described and applied can be found in the works of Muratori and Rinaldi [14]-{15] and more
recently in the work on bursting activities in the pancreatic f-cells by Lenbury et al. [16].

Thus, we scale the dynamics of the three components by means of two small dimension-
less positive parameters € and ¢, namely; welet 2 = P,y =S, 2 =1, D, = Dp, a = &

e ?

Dy=2s p=20 4 =85 =L D =2 and b=2% We are led to the following

system of differential equations :

dx oy vz

dy ayr B —

- = e{m i, Dyy + pz — Boyz] = eg(z,y, 2) (8)
dz byz , _

o = by = Dot ] = edhlz,y,2) (9)

Thus, x is the fast component, while y and 2z are the intermediate and slow ones, respec-
tively.



SINGULAR PERTURBATION ANALYSIS AND LIMIT CYCLES

We now show that, for suitable values of the system parameters, the geometry of the
equilibrium manifolds f(z,y,z} = 0, g(z,y,2) = 0 and h{z,y,2) = 0 of the system of
equations (7)-(8) are as shown in Figure 2.

Manifold f =0
We first observe that the manifold f(z,y, z) = 0 consists of 2 parts; the trivial manifold
z = 0 and the nontrivial manifold given by the equation

oy vz
B{l - — —~ — =
(1-rz)-D, 7 T 0 (10)

Equation (10) defines a surface y = ((z, z) given by

_ _z+¥ Yz
v=Clo) = B - ) - D - ] (1)

which intersects the zy-plane along the parabolic curve
1
y = ~[—Brz*+ (B — D, - Bér)x + (B — D;){] (12}
o

If we let z; be the value of z for which % = 0 along the above curve in the zry -plane, then

B - D, - Bér
x 13
e 2Br (13)

Moreover, the curve reaches the positive z-axis at the point where

B-D
=9 = m 14
I W i) Br ( )
and intersect the y-axis at the point where
’
14
Y=t = ‘_(B*Dz) (15)
o
We observe that x5 and y; will be positive if
B>D,. (16)

Finally, the manifold intersects the z-axis at the point where z = y = 0 and

k(B — D,)
Y

i

< = Zy
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We now show that, for suitable values of the system parameters, the geometry of the
equilibrium manifolds f(z,y,2) = 0, g{z,y,2} = 0 and h(z,y,z) = 0 of the system of
equations (7)-(8) are as shown in Figure 2.

Manifold f =0
We first observe that the manifold f(z,y, z) = 0 consists of 2 parts; the trivial manifold
z = 0 and the nontrivial manifold given by the equation

oy vz
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Equation {10) defines a surface y = ((z, z) given by
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and intersect the y-axis at the point where
¢
We observe that zo and y; will be positive if
B>D,. (16)

Finally, the manifold intersects the z-axis at the point where z = 3 = 0 and

B

Z = 2p =



Manifold g =0
The manifold g(z,y, 2) = 0 is given by the equation

azy
T+ £

Dyy + pz — foyz =0 (17)
which defines a surface z = v(y, z) given by

z = vy, z) = (Dyy — pz + Bayz)t (18)
‘ T ay — Dyy + pz — Poyz

Letting z = 0 in (18), we find that this surface intersects the zy-plane (see Figure 2} along
the line

D¢
T =23= a ~yDy (19)
Putting = 0 in (10) and (17), and letting
6 = apk + €yD, — k(B — D,) (20)

we lind that the curve f(z,vy,2) = g(z,y, z) = 0 intersects the yz-plane at the point where

=0+ /02 + 4yC2kD, By (B — D) o)
Z =21 = 2')/€ﬁ‘2

which will be positive if, again, inequality (16) holds.

Manifold h =0
We observe that the manifold h(z,y,z) = 0 consists of 2 parts; the trivial manifold
z = 0 and the nontrivial manifold given by the equation

1 byz
y= —(D, -
v ,BL( z+k

which is parallel to the z-axis (see Figure 2).
The value of x4 in Figure 2 is found by setting ¥ = 0 in equation (22) and solving for
x, which leads to

) , (22)

D,k
= 23
v by — D, (23)
which will be positive provided that
by > D, (24)
Also, the manifold in (22) intersects the yz-plane along the line
D,
Y=1 = — 25
=g (25)



Letting z = 0 and y = y» in (10) we find that the curve f(z,y, z) = h(z,y, z) = 0 intersects
the yz-plane at the point where

all,
€6

Finally, by putting = z4 and ¥y = 0 in (10) we find that the curve f(x,y,2) =
g{z,y, z) = 0 intersects the zz-planc at the point where

bk BrD.k
- _(B—-p, - ="
b’y—Dz( v bfyﬁDz)

=*mB_p,_
Z = Ay = ’Y(B -Dn: ) (26)

z=123 = (27)

We now identify and analyze each of the five possible cases 1 through 5 which corre-
spond to the five subfigures 2a through 2e of Figure 2, respectively, differentiated according
to the relative positions of the points z; through x4, y1, ¥2 and z; through z; previously
defined. In Figure 2a, the point z; is above z3 on the positive z-axis, while the point z,
is located between the points x5 and z3. In Figure 2b, the point z; is below z3 on the
positive z-axis so that the transitions will develop along a different path. In Figure 2c,
on the other hand, the value of z,, given by (13), is negative while x3, given by (19), is
still positive. Figure 1d corresponds to the case in which the value of z4, given by (23), is
larger than both z, and z3, and at the same time z3, given by (27), is now negative. The
last case of Figure 2d is identified by the condition that the value of 4, given by (15), is
extremely small so that the point 3, is a lot closer to the origin than the point ¥, on the
positive y-axis. The following 5 cases can then be identified.

Case 1 (Figure 2a) This case is identified by the inequalities

z >0 (28)

1 > Iy (29)

Ty > g > g > 0 (30)
Y1 > Y2 (31)

z3 >0 ) (32)

20 > 21 > 29,21 > 0 (33)

which ensure that the manifolds are shaped as in Figure 2a, where transitions of slow,
intermediate and high speeds are indicated by one, two, and three arrows, respectively.

For small values of ¢ and &, the slow (z) and intermediate (y) variables are frozen at
their initial values z(0) and ¢(0), and the evolution of the fast component of the system is
determined by solving the 'fast system’

a(t) = f(z(t), y{0), 2(0)) (34)

Thus, =(t) tends asymptotically to one of the stable equilibria of the fast system (in general,
characterized by gﬁ < 0).

Therefore, starting from a generic point, say point A, above the nontrivial manifold
f = 0, a trajectory develops at constant y and z and reaches a point B on the stable
branch of the fast manifold f(z,y, z) = 0 at high speed.
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Once the state of the system has reached the fast manifold f = 0, the intermediate
system has now become active and is governed by

y(t) = g(z((0), y(2), 2(0)), y(t), 2(0)) (35}

where z(x(0), y(t), 2(0)) is a stable equilibrium of the fast system with y(0) substituted by
Y.

Then, keeping z still frozen at z(0), transition develops at intermediate speed along the
manifold f = 0 in the direction of increasing y since g > 0 here, toward the point C where
the stability of the manifold is lost and a quick transition is made to the point D on the
yz-plane which is stable. Since the segment DE (in Figure 2a} is below the manifold g = 0
so that ¢ < 0 here, a transition at intermediate speed will be made in the direction of
decreasing ¢ from D toward E.

At the point E, the stability of the trivial manifold z = 0 will be lost and a quick jurup
is made toward the point F which almost closes the cycle. However, since z has been slowly
increasing during the transitions, F just misses the path BC. The same cycling process is
now repeated with slowly increasing z, densely filling out the space until the point G is
reached. Since g > 0 here, a transition slowly develops along GH towards the point H,
where a saddle-node bifurcation occurs., A catastrophic transition from H to K then takes
place followed by a slow transition from K towards L, since the point K is in front of the
manifold h{z,y,2) = 0 so that A < 0 and z is decreasing along this portion of the line
KL. Once the point L is reached a quick jump back to G closes up the transition GHKL,
resulting in a limit cycle composed of the concatenation of transtions occurring at two
different speeds; namely, 2 fast and 2 slow ones.

The existence and locations of the points E and L have been discussed and proved by
Schecter [17] and Osipove et al. [18!. Transients of varying speeds along these manifolds
will form a path, which results in a closed cycle in this case. Such a path approximates
the exact solution to the model system equations (7)-(9) in the sense that the solution
trajectory will be contained in a tube around that path and the radius of the tube goes to
zero along with € and 4.

Case 2 (Figure 2b) Here, the inequality (29) is violated so that this case is identified by
the inequalities (28}, (30)-(33), and
z1 < T3 (36)

The positions of the manifolds are as shown in Figure 2b where the intersection point S
of the 3 manifolds f = 0, g = 0, and A = 0, namely the steady state, is located on the
stable portion of the nontrivial manifold f = 0. When the transitions reach the point R
on the line of intersection between the manifolds f = 0 and g = 0, a slow motion develops
along this line in the direction of increasing z and the transition ends once the point S in
Figure 2b is reached. Thus, the solution trajectory in this case is expected to approach this
stable equilibrium point S, in which situation persistence of all three populations is attained.

Case 3 (Figure 2¢) In this case, inequalities (28) and (29) are violated and we instead have

z; <0< 2y (37)



while (30)-(33) still hold. The manifolds are positioned in this case as in Figure 2c where
the line segment RS is in the region where A > 0. This means that, once the state of system
reaches the point R, a transition of slow speed will develop in the direction of increasing z
toward the point S. We therefore have, in this case, persistence of all three populations, also.

Case 4 (Figure 2d) In this case, inequalities (30) and (32) are violated and we instead have

0 < a0 <33 <24 (38)
z3 < (39)

while (28),(29),(31) and (33) still hold. The positions of the manifolds are as in Figure 2d,
in which the line segment from the point T to the point (zs,0,0) is in the region where
h < 0. Transitions then develop toward the point (z2,0,0) where the predator population
becomes extinct while the prey tends to a constant level x,.

Case 5 (Figure 2e) In this last case, inequality (31) is now violated and we have

Y1 < Y2 (40)

and
g << 1 (41)

while (28)-(30), and (32) still hold. The manifolds are positioned as shown in Figure 2e.
Here, along OQ we have & < 0, and once the state of the system reaches the point Q, a
transition at intermediate speed will develop in the direction of decreasing z from the point
Q towards the point O. Thus, in this case we have extinction of all three populations in
the system:.

The above analysis can be summerized as in the following theorem.

Theorem 1 If € and § are sufficiently small, the system of equations (7)-{9) possesses a
positive attractor which s a stable nonwashout equilibrium state provided that inegualities
(28),(30)-(33) and (36) hold, or if inequalities (30)-(33) and {37) hold. However, if in-
equalities (28)-(93) hold then the attractor will be a limit cycle composed of a concatenation
of transitions occurring at 2 different speeds.

Figure 3 shows a computer simulation of equations (7)-(9) with parametric values chosen
to satisfy the inequalities in each specific cases 1 through 5 identified above correspond-
ing to Figures 2a to 2e, respectively. The solution trajectories are here projected onto the
(7, z)-plane. The time courses of the state variable y(t) in the five cases are correspondingly
presented in Figure 4.
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DYNAMIC CONSEQUENCES OF INFECTION OF BOTH SPECIES

We now investigate the global dynamical behavior of the predator-prey system in which
both species are infected by parasites. By letting

z = susceptible prey population density

y = susceptible predator population density

z = infected predator population density

u = infected prey population density ‘
a conceptual model of such a system is presented in Figure 5 where the susceptible prey =
and the infected prey u are fed upon by both the susceptible and infected predators. Thus,
z and u exert positive effects on y and z, while both y and z have negative effects on z and
u.

We therefore consider as our model the following system

% = afB(l-ra) - - 2L - T p, (42)
%:% = —fyz + cpa'uy + C;f? - Dyy + mz (43)
o e, w
% = ulA(l - su) — o'y - % — D, + f'z (45)

where the prey is logistic, with 4, B, r and s being positive constants. ' is the prey
transmission rate, J the predator transmission rate, Dy, D, D, and D, the removal rates
of susceptible prey, infected prey, susceptible predator and infected predator, respectively.

Following the work of Lenbury [4], the predator functional response of the infected prey
is given by the term «’uy in equations (43) and (44), while the other predator functional
responses are all of the Holling type, with o', ', k', o, 7, k, ¢g, ¢1, ¢2, and ¢3 being positive
constants. Thus, the infected prey has an increasingly higher functional response than the
uninfected prey, while p; is the predator recovery rate.

In order to carry out our numerical investigation to determine the ranges of parametric
values where chaotic dynamics were likely, our choice of parameters was guided by two
factors. First, we still concentrate on ecological systems which are characterized by highly
diversified dynamics. Accordingly, we chose parameters so that the time response of the
system of equations (42)-(45)} decreases from top to bottom. Second, to take into account
the parasite- induced changes in the infected members, we chose

B> A

k> £

and
o>y

Furthermore, as has been noted by previous researchers [19], one may be able to generate
chaos in a nonlinear system which already exhibits limit cycle behavior. We therefore chose
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parametric values that would lead to cycling in the z, ¥ and z components, with u missing,
guided by our work in the previous section and in [4].

Our investigation involves letting the system run for 60,000 time steps, and examining
only the last 40,000 time steps to eliminate transient behavior. We used values of -y between
0.3 and 0.6, changing ~y in steps of 0.001. The relative maximum values ¥mq. of ¥, collected
during the last 40,000 time steps, are plotted as a function of v as shown in Figure 6.

We discover in this bifurcation diagram the appearance of a period doubling route to
chaos, similar to those exhibited by one-dimensional difference equations such as the logistic
model. Evidently, the system of equations (42)-(45) exhibits chaotic dynamics for values
of v between 0.38 and 0.43.

Finally, Figure 7 shows the solution trajectory of the model system (42)-(45) and the
corresponding time series of y(t) for v = 0.43 in the chaotic range identified in the bifurca-
tion diagram.

ECOLOGICAL IMPLICATIONS

Our analysis of the model where only the predator population is invaded by a parasite
has shown that as many as 5 qualitatively different phase portraits are possible for various
suitably chosen values of the system parameters.

We observe that in Case 1, the action of parasite renders £ small as commpared to a. The
value of x3 given by (19) is therefore smaller than z;, a condition which destabilizes the
system and allows the limit cycles to appear.

Moreover, Case 4 is characterized by inequality (38) which is satisfied if £ is small enough
and k is sufficiently high. The value of x3 given by (19), is then smaller than z4, given by
{23). Also, infection induces very high mortality rate D, in the infected members of the
predator population which renders z3, given by (27), smaller than zero satisfying inequality
(39). This is thus the case where the action of parasitic infection is severe so that the
predators become extinct while the prey persists.

In Case 5, on the other hand, the predators cannot survive, even with a low rate of
parasitic infection (4, being very small). Without the benefit of parasitic infection, the
predator’s ability to capture its prey will be little impaired and —i— is accordingly very small.
This case is thus characterized by inequalities (40)-{41) in which ¥, < y» and y, is very
small. Predation can therefore drastically reduce the number of prey in the system, since
the bencficiary effect of the parasite is absent. Therefore, the prey population can become
extinct. The lack of prey then leads to the eventual extinction of the predators. Thus, in
this case we have extinction of both species.

Our study clearly indicates that the presence of parasites is important for the coex-
istence of both species in a predator-prey system. If the infection rate is too low or too
high, the system can be destabilized and extinction of one or both species may be possi-
ble. However, volumenous information exists, such as on protozoa-bacteria systems, where
parasitic infection is completely absent, which tells us that these predators and prey can
coexist. Specifically, the predators do not eliminate their prey even when they were free of
parasitic infections. Studies also showed that a predator can climinate its prey in certain
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situations, for example in the case where an alternative prey is available to the predator
and the primary prey is not growing to compensate its loss due to predation.

Therefore, in order that a more conclusive evidence can be obtained in support of our
hypothesis about the crucial role of parasitic infections to predator-prey coexistence, the
effects of parasites need to be incorporated into a model based upon all the other factors
that contribute to the coexistence of predator and prey species. It is hoped that the present
study may serve as a building block for more intensive investigations in the future to test
such an important hypothesis concerning the role of parasitic infection on coexistence.

Furthermore, we have adopted, in this paper, the simplifying assumption that a parasite
can infect the entire population at any given time. In reality, an infected prey or predator
may be the same as an uninfected species and infection might not manifest itself until a
certain period of time. Appropriate delay terms could be added to the model equations in
order to incorporate such effects.

However, our study has shown that chaos is possible even for a relatively simple predator-
prey model when coupled by parasitic infection. It appears that chaotic behavior may be
much more common in natural systems than what previous studies seem to have suggested.
The invasion of the parasites acts as a coupling factor which links two predator-prey sub-
systems, operating at markedly different time scales. One of the subsystems may oscillate
at one frequency of oscillation while the other subsystem also oscillates at other frequen-
cies, giving rise to a very complex situation. Such chaotic dynamics are characterized by
a sentivity to initial conditions and a small change in the initial condition may result in
a completely different solution trajectory. Thus, even a slight perturbation in the species
population density, as could occur naturally, may readily lead to unpredictable outcome
through time.

CONCLUSION

In this paper, the dynamic consequences of behavioural changes in the host predator
in a predator-prey system is modelled by a system of three nonlinear ordinary differential
equations. Singular perturbation arguments have been used to detect limit cycle behavior
as well as describe other dynamical situations which may be observed in the predator-prey
interaction mediated by the action of a parasite.

The analysis of our 3-dimensional model indicates that the presence of a parasite can
cause destabilization and the appearance of limit cycles (Case 1). In the near absence of
the parasites (§ << 1) active foraging by the predator can wipe out the prey population
which leads to eventual extinction of both species in the system (Case 5). Thus, our
model illustrates how parasitic infection can play a most important role in determining the
density and long-term population dynamics of many animal populations. In fact, a simple
predator-prey system can exhibit quite a complex dynamical behavior when mediated by
the action of a parasite as our investigation of the full four dimensional model where both
species are infected illustrates.
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It is evident from this work that further intensive studies of the influence of parasites
on their hosts’ behavior, the costs and long-term evolutionary benefits of changing the
influence of the parasites, as well as the mechanisms involved, should yield most valuable
insights into how subtle manipulations of the host’s physiology and population dynamics
could be accomplished. Such discovery would have very far-reaching ecological implications
indeed.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.
Figure 5.

Figure 6.

Figure 7.

FIGURE CAPTIONS

Conceptual model of the predator-prey system in which only the predator popu-
lation is infected.
Five possible cases of trajectory development on the equilibrium manifolds for
the system (7)-(9), where transitions of slow, intermediate, and high speeds are
indicated by one, two, and three arrows, respectively.
Computer simulation of the model system (7)-(9). The solution trajectories in
subfigures 3a through 3e, corresponding to the cases 1 through 5 identified in the
text, are shown projected onto the (z,x)-plane. Here, p = 0.07, r = 1, ) = 1.0,
By =0.1,¢e =46 =01, whilea) B=30,a=10,b6=40, D, =06, D, = 0.03,
D, =08 k=06£¢=04 a=08 v=07b) B=30,a =025 0=20,
D, =06, D, =007,D,=08k=065/f=06 a=09 v=07c) B=30,
a=10b0=40 D, =06, D, =0.07, D, =08, k=085 ¢ =081, a =08,
vy=08d)B=10,ea=012,b=21,D,=01,D,=009 D, =089, k=07,
=05, a=05 v=05¢) B=14a=10,b=25, D, =095 D, =0.09,
D,=0095k=03,£=001, =09, v=09
The time courses of y(t) in the b cases corresponding to Figures 3a through 3e in
Figure 3.
Conceptual model of the predator-prey system in which both the predators and
prey are infected.
Bifurcation diagram for the model system (42)-{45) where A = 0.003, B = 3,
g =100 =001,r =10, s =50 a =08, ¢ = 00001, v = 0.1, ¢ = 0.07,
o= 0125, ¢ = 0.052, ¢3 = 0.7, p; = 0.7, k = 03, ¥ = 0.6, £ = 0.185,
D, =0.001, D, = 0.001, D, = 0.08, and D, = 0.007. The plot is of the relative
maximum values of y vs .
Chaotic dynamics for the model system (42)-(45) for the parametric values of
Figure 6 with v = 0.43.
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CHAOS AND CONTROL ACTION
IN A KOLMOGOROYV TYPE MODEL FOR FOOD WEBS
WITH HARVESTING OR REPLENISHMENT

Abstract

In this paper, we apply the feedback decoupling technique to a Kolmogorov type
model for three species food webs with harvesting or replenishment. A feedback control
law is derived to decouple the effect of the predators from the prey dynamics. 1t is found
that the necessary and sufficient conditions for the existence of the decoupling control law
rely on the persistence of the prey population and the fact that the specific growth rate of
prey depends explicitly on the superpredator population density at any moment in time. It
is shown that, without any control action of regulated replenishment or harvesting,
irregular or chaotic behavior is possible in such a process for certain ranges of the system
parameters. This is illustrated by the construction of a bifurcation diagram for a model of a
three-species food web with response functions of the Holling type. To make the system
output or variables less sensitive to irregular disturbances, the fe;:dback control technique

is applied which produces the desirable effect of stabilizing the system.

1. Introduction

It is possible to classify ecological models as either strategic or tactical, as
identified by Holling (1966). The tactical models are relatively more complex. They
usually rely on a great amount of supporting data, and are used for making specific
predictions. Strategic models, on the other hand, can provide broader insights into possible

behaviors of the system based on simple assumptions ( McLean and Kirkwood, 1990),



such as the model considered by Hadeler and Freedman (1989) for predator-prey
populations with parasitic infection, or the model of continuous bioreactor analyzed by
Lenbury and Orankitjaroen (1995).

As Mosetti (1992) has observed, the control of ecological systems for management
purposes is a difficult task due to the amount of supporting data needed as well as the
conficting management goals. In this respect, a simple reduced strategic model which
requires fewer data for calibration can be quite a useful tool when used as a building block
for the study of real problems in order to give a decision-maker some preliminary results.

The Kolmogorov model of population growth is, mathematically, probably the
most general model of the types considered to date. It incorporates the principle that the
growth rate of species is proportional to the number of interacting species present. The
classical ecological models of interacting populations typically have focussed on two
species. The first Kolmogorov model, developed in 1936, was expanded on by serveral
researchers, including May (1972) and Albrecht ef al. (1974). Such models have been
applied to plant and animal dynamics both in aquatic and terrestrial environments
(Hastings and Powell, 1991). However, mathematical developments reveal that
community models mvolving only two species as the building blocks may miss quite a
great deal of important ecological behavior. In fact, it is now recognized that in
community studies the essence of the behavior of a complex system may only be
understood when attempts are made to incorporate the interactions among a larger
number of species.

Researchers of the last decade or so have turned their attention to the theoretical
study of food webs as the "building blocks" of ecological communities and have been
faced with the problem of how to couple the large number of interacting species. Behavior
of the entire community is then assumed to arise from the coupling of strongly interacting
pairs. The approach is attractive by its virtue of being tractable to theoretical analysis
( Hastings and Powell, 1991 ). Yet, many researchers have demonstrated that very
complex dynamics can arise in model systems with three species { Gilpin, 1979; Rai and

Sreenivasan, 1993 ). For example, an investigation by Hastings and Powell (1991) showed



that a continuous time model of a food chain incorporating nonlinear functional (and
numerical) responses can exhibit chaotic dynamics in long-term behavior when reasonable
parametric values are chosen. The key feature observed in chaotic dynamics is the
sensitive dependence on initial conditions.

In this paper, we first study the possibility of making the ecosystem output or
variables less sensitive to irregular disturbances by applying the feedback control technique
in order to stabilize the system. A feedback control law is derived to decouple the effect of
the predators from the prey dynamics in a three-species food web of Kolmogorov type. It
is found that the necessary and sufficient conditions for the existence of the decoupling
control law rely on the persistence of the prey population and the fact that the specific
growth rate of prey depends explicitly on the superpredator population density at any
moment in time,

We demonstrate by the construction of a bifurcation diagram for a model with
response functions of the Holling type that, without any control action, chaotic behavior
may result through period doubling bifurcations. Once, the feedback decoupling control
action is in place, the system can be stabilized and in this context we obtain a process

which is more easily controllable.

2.  The Kolmogorov Type Model and the Static Decoupling Problem

We consider a general Kolmogorov type model of n-species food webs, which

may be written as follow

X =X +U i=12, .1 (1)

where X, 1s the i-th species population density, {/, is the input/removal

(replenishment/harvesting) rate of the i-#4 species, and



E=FEX,Xo... X)), i=12..n

Such a system (1) can be used to model population dynamics of plant or animal
interactions in an aquatic or terrestorial environment such as in the work of Lenbury and
Siengsanan (1993), where an activated sludge process was analyzed using a 3-species
Kolmogorov type model. Also, in the study by Lenbury and Likasiri (1994) the dynamic
behavior of a model for a food web was investigated through the application of the
singular purterbation technique.

To formulate the static feedback decoupling problem, we let

X=(Xi Xo ... Xp)!

F=(Hh kK . F)

U= Uy ... Up)!

and
0 0 --- 0
0 0 0 '
G(X) = .
0 0 0 1
60 0 0

an (n-1)xn matrix. Then, the system of equations (1) with u, = 0 can be rewritten as

X = X;F; +[GU] i=1,2,..n (2)

() 3
i k4



The output of equation (2) is then assumed to be
Y=(X, X5 ... Xpn)' =H(X) )

The static feedback decoupling problem, as stated in the work by Mosetti (1992)
and explained in greater detail by Isidori (1985), can be defined as follows. "Given
equations (2) and (3), we need to find a feedback law a(.X) and a state-dependent change
of coordinates S(X) in the input space R” such that the closed-loop system formed by

the combination of (2) and (3) with the control law
U=a(X)+ X)WV

has the i-th output dependent only on the /-th component of the new input }J7".

In order to accomplish this, we introduce the following notation. Letting

t
vo(x 2 x, % . x @
oX, 82X, oX

n
then the operator V- is defined as

Vel = FV'H,
We then understand that

ViH, = Va(VEH,)

while VOH, = H,.



Further, the characteristic number g associated with the output ¥ can be defined

as the largest integer such that forall £ < p
grad(VEH)G, =0, j=12,.,n-1

where G; is the j-th column of the matrix G .
Accordingly, the decoupling matrix A(X) associated with equations (2) and (3) is

the n x » matrix

Ay =(ay)
where

o, = grad(Vﬁfﬁ)Gj

The static state-feedback decoupling theory ( Mosetti, 1992) then states that
a(X)y=—-A"1 XV

and
AX)=A(X)

where

J= (VM L, VR, Ve Y

provided that the decoupling matrix A(X) is nonsingular.



3. Application to Three Species Food Webs

3.1 THE CONTROL LAW

We now derive the control law for the Kolmogorov type model for a three species

food web which can be written as

¥=xf(x,y,2)+u (4)
y=ygxy,z)+m (5)
=z h(x,y,z) (6)

where z 1s the prey population density, y and x are the predator and superpredator,

respectively, while # and u, are the corresponding input rates. Then,

X=(x y z)!
= g h
U= u)
1 0
G(X)=|0 1
0 0

and the output is

Y=H(X)=(z ) (7)



The main result of the static state-feedback decoupling theory can be stated as follows.

Theorem A necessary and sufficient condition for the existence of («,f) which
solves the decoupling problem for equations (4)-(6) is that the prey population persists
and the specific growth rate of prey # depends explicitly on the superpredator population

density. If this is the case, then a possible decoupling control is given by :

; t
a(X) = L—Xf —hﬁ(zhz +h) *ng

X

1
MX)=|zh, h,
0 1
and
h 1 h
u = —xf —E(zhz +h)+E;w1 —ivz (8)
UZ — _yg +V2 (9)

]

Proof From its definition, we can show that g =1 and p, =0. We then find that

vVH = (0 0 z)f

sothat VLH) = zh, and V9H, = y. Therefore, we obtain
h /7
A(X):{ZO’C zl}’] (10)

Thus, A(X) is nonsingular if and only if det 4 # 0, namely



zh, #0 (11)
This leads to the requirement that prey persists, in which case z >0, and that A =0 or,
equivalently, # depends explicitly on x.

If we now let

573’5 (12)

then, since Z==zh, we have

dg_ Azh) . Azh)  Azh) .
dt 173 %% b

=zh, (xf +uy)+zh,(yg +uy) +(zh. +h) =v

by applying the law in equations (8} and (9). Also, using (9), we find

dy
=Yg+l =V
i Yg +iy 2

Theretore, in the new coordinate system (&, v, z) we have

d
d—fzvl (13)
d

v, (14)
= _; (15)



which clearly shows the decoupled structure, namely, each of the control variables acts
only on one state variable. In fact, to keep the system decoupled, one approach is to set
v; = 0. Then, £ now remains constant, say at &(#).

Integrating (15), we obtain

z(1) = &(hy)t + 2(ly)

Thus, if &) =0 at a given initial time ¢ =4, whenb the control is activated, then

2(1) = 2(t)

for all subsequent time ¢, whatever the fluctuation of v,. This means that the prey
population will not depend upon vartations in the predator or superpredator. This is the
essential feature of this technique, whereby the variations in the predator and

superpredators are decoupled from the prey dynamics.

3.2 PERSISTENCE CONDITIONS
The question of persistence has been dealt with in various literature in all its
¥
versions : weak persistence; strong persistence ; and uniform persistence ( Huaping and

Zhien, 1991). We shall give, in the following Lemma, the persistence conditions for the

standard food web consisting of equations (4)-(6) with

Flxwz) =32 v 2 d) (16)
g(x,y,Z)=(bffz—%—d] (17)

z ay asx
hx, p2y=r(l—— B A

(18)



1

where d is the specific removal rate, and the terms

and

are the population response functions of the Holling type in which @ is the maximum
predation rate and & 1is the so-called half-saturation constant. The construction and
analysis of the model in the cae that % = #, = 0 may be found in the work of Lenbury and
Likasiri (1994).

A standard food web given by equations (4)-(6) with (16)~(18) generally posesses
only one positive equilibrium E =(0,9,%Z) and possibly only one positive limit cycle
I= (0,9(0),2(r)) for its subsystem (5)-(6) with x set equal to zero. Under this

assumption, we are led to the following Lemma.

Lemma The food web given by equations (4)-(6) with (16)-(18) is persistent if x is

positive for small x in the vicinity of £ and T, thatisif

W 4 ¥ d (19)

and ( in the case that [ exists );

oy(t) | cE()
h (bﬁy(f) Byt (r))d”d 29)

where 7 is the period of the limit cycle f, provided that 2 and 1w, are identically

zero. Otherwise, the population persists if

(0,5,2)>0 (21)
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-~

and ( in the case that " exists )

LT s s
7 J 3@, 2@ de >0 (22)

Proof Since the superpredator x of a food web goes extinct if one of the other
populations does so, persistence depends on the bahavior of (4)-(6) in the vicinity of the
nonwashout equilibria {z>0) and limit cycles of the prey-predator subsystem (5)-(6)
with x =0. Therefore, the population persists if the injection of a small number of
superpredator gives rise to an invasion of the positive actant (X > 0) from such equilibria
or limit cycles lying on the (v, z) face.

To be precise, using equation (4) with 1 = 1p =0, ¥ will be positive for small x in

the vicinity of E and T if

fl.o >0 (23)

and ( in the case that I exists)
L7 0,9(0),2(¢)) di 0 24
=l roswzoya > 24)

T being the period of the limit cycle I.

On substituting in (23) and (24) for f from equation (16), we arrive at the
persistence conditions (19) and (20) in the case that # and i are identically zero. If,
on the other hand, @ and 1w are not identically zero, persistence is then assured if

conditions (21) and (22) hold, assuming that all functions involved are continuous.



Consequently, on substituting (16)-(18) into (8) and (9), one obtains the following

decoupling feedback law.

N B S
by+y by+z

+z(b3 +z) [r(l z. ay @ azx J[r(l—zz-)— amby  azhyx

K btz bytz k™ (by+z) (by+2)f

v — v 25
asz ! az(bl+2) 2 ( )
C'IZ azx
Y L RN LAY 26
“ y[bl+z bz +y j 2 ( )

Figure 1 shows the time courses of the three state variables and the discharge rates

u; and u, under normal conditions. We then chose to start our control action at the time
t = &, shown in the Figure where 7= £(f) = 0. Thus, the effect of the control action is
scen in Figure 2 when the new input v, is set equal to zero and v, is taken to be of

the form ,

vy = Ae 7 sin o

which corresponds to a damped sinusoidal input. The prey population density z becomes
constant after the time ¢,, while the predator and superpredator vary in a sinusoidal
fashion with damping amplitude. As time passes, the new input rate v,  becomes
negligently small and the corresponding population densities of all three species are

maintained at constant levels as a result.
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4. Control Action on a Chaotic System

In the work by Lenbury and Likasiri (1994), the model of a food web given by
equations (4)-(6) with (16)-(18) and # =u, = 0 have been analyzed using the singular
perturbation method. Explicit conditions were derived which separate the various dynamic
structures and identify the limit cycles composed of alternately slow and fast transitions. In
particular, it was found that the system will have a unique global attractor in the first
octant which is a low-frequency limit cycle with a period of high-frequency oscillation if

the following conditions hold on the system parameters.

dabybyeik . r(b; —by )[Cl(k —by)—d(b, +k)]

27

(b +&)° 2b3+k —by @7
k{e,—d)>bylc, +d) (28)
by(cik—byd —dk)  biby(ay +r)e(k—by)-d(28, +k —by)] 299

ay(by+ k) (aybs —aghyd)(2by + k —by) +asbici(k - by)

and % (i=1,2,3) are sufficiently hugh.

’

We now carry out a numerical investigation to determine the ranges of parametric
values where chaotic dynamics were likely. Our choice of parameters was guided by two
factors. First, we follow the example of the work by Lenbury and Likasiri (1994) and
assume that the ecological system under study may be characterized by highly diversified
dynamics. Accordingly, we chose parametric values so that the time response of the
system equations (4)-(6) increases from top to bottom. The prey is assumed to have very
fast dynamics, while the predator and superpredator have intermediate and slow dynamics,
respectively. Phytoplankton - zooplankion - fish is a typical example of an ecosystem
where time response increases with the trophic levels. In fact, most food chains observed

in nature have time responses increasing along the chain from top to bottom.



15

Second, as has been noted by many previous workers (Haétings and Powell, 1991;
Rai and Sreenivasan, 1993), one may be able to generate chaos in a nonlinear system
which already exhibits limit cycle behavior. We therefore chose parametric values to
satisfy the conditions (27)-(29) found by Lenbury and Likasiri (1994) to lead to a solution
trajectory on a low frequency limit cycle with bursts of high frequency osciliations.

Our investigation involves letting the system run for 100,000 time steps and
examing only the last 80,000 time steps to eliminate transient behavior. We use values of
b, between 4.0 and 4.5, changing &, instepsof 0.01. The relative maximum values
Xnmae Of X | collected during the last 80,000 time steps, are plotted as a function of 5, as
shown in Figure 3.

We discover in this bifurcation diagram the appearance of a period doubling route
to chaos, similar to those exhibited by one-dimensional difference equations such as the
logistic population model. Apparently, the system of equations (4)-(6) with (16)-(18)
exhibits chaotic dynamics for values of &; between 4.22 and 4.32 . Windows in
the bifurcation diagram are observed for & in the range 4.26<b, <4.32 and
4.34 < b < 4.40, for example, where periodicity is re-established.

Figure 4 shows the solution trajectory of the model system (4)-(6) with (16)-(18)
using b = 4.3 in the chaotic range identified in the bifurcation diagram. The strange
attractor is projected onto the (y,z)-plane in Figure 4, and the co'rresponding chaotic time
courses of x, ¥y and =z in uncontrolled conditions are shown in Figure 5 with the
discharge rates u; and .

Figure 6 shows the time courses of z starting from two different initial conditions.
The difference in the two starting values of z is merely 0.01. We observe that, while the
two plots follow nondistinguishable paths during the initial short period, they begin to
diverge and follow noticeably different paths eventually. This demonstrates clearly the
sensitivity to initial conditions which is the essential characteristic of chaotic behavior.

Figure 7 then shows the effect of the control action on the chaotic system of
Figure 4 with v, set equal to zero and v, chaotic. Here, the control is initiated at the point

where Z(4) = 0 and Z(#) < 0. Once the control action is in place, prey is maintained at a
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constant high level, while the variations in predator, superpredator, and the discharge rates
wand u, are irregular.

On applying the mode] to an activated sludge process, the state variables can be
nutrient-bacteria-protozoa, for example, and the objective of the control action is perhaps
to regulate the inputs in order to obtain satisfactory water quality. In such a case, it is
desirable to start the control action when the variable z falls to its first lowest point (Z(4)

=0 and Z(#)>0). We will then be able to maintain z at a constant low level.

5. Conclusion

It has been demonstrated that while some inherent properties of a nonlinear model
permit the emergence of chaotic dynamics, they also allow the existence of a feedback
decoupling control mechanism. Since the behavior of the entire commumty is believed to
arise from the coupling of these strongly interacting species, the detection and possibility
of control of a chaotic system is of critical importance. If a generalization from a food
web model depends cricially upon behavior after a long time, then the role of chaos may
be extremely relevant. ’

On a cautious note, the question of whether or not deterministic chaos actually
occurs in a real ecosystem is still open to discussions. As has been observed by Sabin and
Summers (1993), "... there is still no generally accepted example of a chaotic ecosystem in
nature. Moreover, some traditional ecologists believe that irregular oscillations in natural
populations are attributed to random perturbations or noise in the environment rather than
being the result of the intrinsic nonlinear dynamics of the system."

Perhaps the first concrete example of occurrence of chaos in nature is due to
Sugihara and May (1990) who showed that there underlies a three-dimensional chaotic
attractor in the dynamics of marine planktonic diatoms. Despite of the fact that the
corresponding time series is very noisy, they have been able to extract the information

which allows them to describe some of the dynamics as deterministic chaos.



Such irregular behavior is not desirable when one is interested in managing a
system, since chaos allows only short-term predictions. Thus, a feedback control
mechanism such as the one we have been discussing provides an attractive and useful tool
to regulate the process since it can stabilize the system and make it less sensitive to the
exogeneous disturbances or noise input. The present study has potential to be a spring
board for a generalization to more complex models in the hope of obtaining a more

manageable system.
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FIGURE CAPTION

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Time evolution of superpredator x ( —— ), predator y (- --- - ), and

pery z{(—--——), and constant discharge rates # and u, withno

control action. Here, a; = 0.05, a5 = 0.5, a5 = 0.5, 4 =4.0, b, = 8.0,
=80, q=150, =15, =15, d=10, k=100, r=10.0,

1, =0.005, and 1w =0.005.

Time evolution of superpredator x , predator y, and pery z,and
discharge rates # and wu, under control operations starting at 7 =4,
with 11 =0 and v = 100e""*sin3m, and the system parameters as in
Figure 1.

Bifurcation diagram for the model system (4)-(6) with (16)-(18), using the
value of & from 4.0to 4.5, and other parametric values as in Figure 1.
Plots are of the relative maximum values of x vs. 5.

Projection onto the (y,z)-plane of the strange attractor obtained on
simulating the model system (4)-(6) with (16)-(18) using & = 4.3 in the
chaotic range identified in the bifurcation diagram, and other parametric
values as in Figure 1. '

Time courses of the three state variables exhibiting chaotic behavior when
there is no control action, and parametric values are as in Figure 4.

Divergence of trajectories when the system exhibits chaotic dynamics. Prey

trajectories are plotted for two different initial conditions (

differing only by 0.01 in z
Time evolution of the three state variables, using parametric values of
Figure 5. The chaotic system becomes stabilized when the control action is

initiated at 7 =/, with v =0 and w irregular.
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