
3.3.2 การศึกษา CoMFA ของอนุพันธ์ของที่ใบ

ในการศึกษา CoMFA ของตัวยับยั้งของอนุพันธ์ของที่โบกับเอนไซม์การถ่ายแบบเอช ไอ วี-1 ได้ดำเนินการเช่นเดียวกับการศึกษากับอนุพันธ์ของเนวิราพีน ผลจากการศึกษาซนิดของ probe atom แบบต่าง ๆ และผลของการสร้างแบบจำลอง CoMFA พบว่า probe atom ซนิด sp³C (+1) และค่า grid spacing 2 Å ได้แสดงไว้ในตารางที่ 3.3.6 และ 3.3.7 จากการศึกษาพบ ว่าแบบจำลอง CoMFA (model 8) ที่ดีที่สุดมีค่า r² = 0.771 และค่าทางสถิติอื่น ๆ ได้แก่ s-press มีค่า 0.612 และ noc = 3 จากการวิเคราะห์อันตรกิริยาจากแบบจำลองพบว่าอันตรกิริยาแบบส เตอริกและอิเล็กโตรสแตติกมีส่วนร่วมในการยับยั้งเอนไซม์การถ่ายแบบเอช ไอ วี-1 ซนิด mutant type เป็น 81.8% และ 18.2% ตามลำดับ เมื่อได้สร้างแบบจำลองแบบดั้งเดิม ทำให้ได้ r² = 0.941 ค่า standard error of estimate = 0.312 ค่า F = 195.028 ค่าการทำนายกัมมันตภาพในการ ยับยั้ง ฯ ที่ได้จากแบบจำลอง CoMFA (model 8) ได้แสดงในภาพที่ 3.3.5

ค่าการทำนายกัมมันตภาพในการยับยั้ง ฯ ที่ได้จากแบบจำลอง CoMFA (model 8) สำหรับอนุพันธ์ของที่ใบสำหรับกลุ่ม test set จำนวน 23 โครงสร้างได้แสดงไว้ในตารางที่ 3.3.3 และแบบจำลอง CoMFA ดังกล่าวให้ผลการทำนายกัมมันตภาพสำหรับโมเลกุลได้เป็นอย่างดี

การเสนออันตรกิริยาระหว่างตัวยับยั้งที่มีต่อเอนไซม์สองแบบคือ อันตรกิริยาแบบสเตอริก และแบบอิเล็กโตรสแตติก โดยจากแบบจำลอง CoMFA ที่ดีที่สุดนั้นแสดงได้ในทำนองเดียวกับ การศึกษากับอนุพันธ์ของเนวิราพีน กล่าวคือแสดงในรูปของแผนภาพคอนทัวร์ ดังแสดงในภาพที่ 3.3.6 และ 3.3.7 และยังได้พิจารณาโครงสร้างของกรดอะมิในที่อยู่ภายใน hydrophobic cavity ที่ เกิดการจับ ซึ่งจะมีส่วนช่วยในการทำนายค่ากัมมันตภาพของสารตัวใหม่ที่มีประสิทธิภาพสูง

ภาพที่ 3.3.5 กราฟแสดงค่ากัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบ เอช ไอ วี-1 ของ อนุพันธ์ของที่ใบ ที่ได้จากการทดลองและการทำนายโดยแบบจำลอง CoMFA (model 11)

ตารางที่ 3.3.6 สรุปแบบจำลอง CoMFA สำหรับกัมมันตภาพในการยับยั้งการถ่ายแบบเอช ไอ วี-1 ของอนุพันธ์ของที่โบ โดยศึกษาการปรับเปลี่ยนชนิดของ probe atom

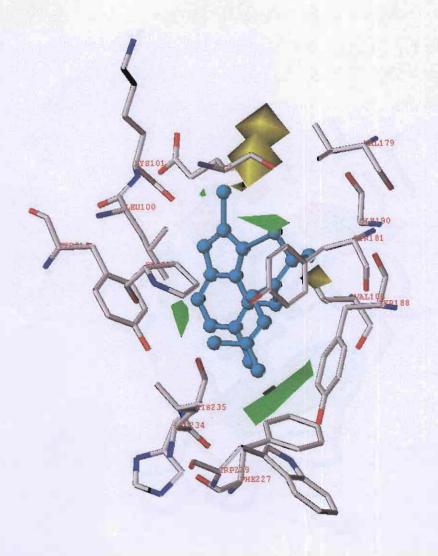
Model	Probe atom	Field type	noc	I v	s-press	m	S	Ŧ	Outhers(residual)	Steric contb
	sp C(+1)	both	ω	0.570	0.854	0.847	0.510	77.590	cpd.39(-1.197)	79.3
		St	ω	0.541	0.883	0.822	0.549	64 863		
		<u>e</u>	2	0.369	1.023	0.731	0.668	58.468		
2	sp ³ O(-1)	both	ω	0.594	0.831	0.860	0.487	86.247	cpd.33(-1.005)	79.6
		ts	ω	0.579	0.846	0.832	0.535	69.179		
		Θ.	2	0.369	1.023	0.731	0.668	58.468		
ယ	H(+1)	both	ယ	0.544	0.880	0.850	0.505	79.079	cpd.28(1.05)	74.7
		St	ω	0.541	0.883	0.822	0.549	64.863		
		el	2	0.369	1.023	0.731	0.668	58.468		
4:	sp ³ O(-1.0)	both	ω	0.629	0.796	0.877	0.459	97.07	cpd.46(0.908)	79.5
		st	ω	0.603	0.822	0.847	0.519	72.74		
		е	ω	0.475	0.958	0.880	0.458	73.344		
ຫຼ	sp ³ O(-1.0)	both	ယ	0.657	0.756	0.887	0.434	104.743	cpd.39(1.01)	79.7
		st	ω	0.629	0.786	0.853	0.494	77.669		
		el	4	0.533	0.894	0.900	0.412	88.238		

าารางที่ 3.3.6 (ต่อ)

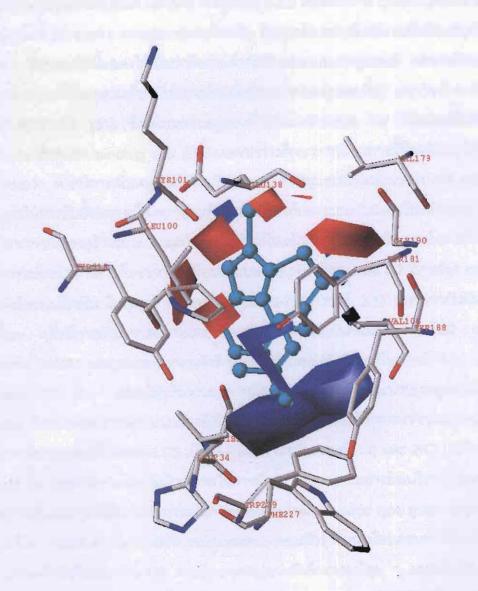
		69.785	0.586	0.785	0.905	0.487	2	el		
		141.242	0.363	0.920	0.644	0.741	2	st		
81.8	cpd.21(0.662)	195.028	0.312	0.941	0.612	0.771	ω	both	Sp ³ O(-1.0)	œį
		82.425	0.414	0.899	0.951	0.469	4	el		
		110.53	0.413	0.897	0.705	0.700	ω	st		
81.5	cpd.40(0.901)	143.049	0.367	0.919	0.680	0.721	ω	both	sp ³ O(-1.0)	7.
		76.565	0.430	0.890	0.941	0.471	4	е.		
		86.547	0.462	0.869	0.744	0.660	ω	st		
80.2	cpd.15(0.996)	118.543	0.402	0.901	0.712	0.689	ω	both	sp ³ O(-1.0)	ග
Steric contb	Outliers (residual) Steric contb	ħ	ß	I 24	s-press	۳. _د ا	noc	Field type	Probe atom	Model

the training set), eliminations of compds N.33, 46, 39 15 and 40, (remaining 41 compds in the training set). in the training set), elimination of compds N.33, 46 and 39, (remaining 43 compds in the training set), eliminations of compds N.33, 46, 39 and 15, (remaining 42 compds in conventional r. steric contribution in %, elimination of compd. N.33, (remaining 45 compds in the training set), elimination of compds N. 33 and 46, (remaining 44 compds

grid spacing แบบ 1 Å และ 2 Å **ตารางที่ 3.3.7 สรุปแบบจำลอง CoMFA สำหรับกัมมันตภาพในการยับยังการถ่ายแบบเอซ ไอ วี-1 ของอนุพันธ์ของทีโบ โดยศึกษาการปรับเปลี่ยนชนิดของ lactice**


79.6	86.247	0.487	0.860	0.831	0.594	ω	2	
77.6	182.805	0.273	0.958	0.868	0.585	တ	خبر	sp ³ O(-1.0)
Steric contb ^b	į į	ಜ	I 2n	s-press	r _{cv}	Noc	Grid (Å)	Probe atom

conventional r steric contribution in %


ตารางที่ 3.3.8 โครงสร้างของโมเลกุลอนุพันธ์ที่โบที่ใช้ในการทดสอบความสามารถในการ ทำนายและแสดงคำกัมมันตภาพในการยับยั้งที่ได้จากการทดลองและการคำนวณโดยแบบ จำลอง CoMFA (model 8)

Cpds.	R	X	Y	Z	Expt.log(1/C)	Calc.log(1/C)	Residual
1.1	Н	0	Н	DMA	4.900	5.663	-0.763
T2	н	0	Н	2-MA	4.330	4.405	-0.075
T3	H	0	Н	CH2CH2CH3	4.050	4.037	0.013
T 4	Н	0	н	CH2C(C2H5)=CH2	4.430	4.423	0.003
T5	5-CH3 (S)	s	Н	DMA	7.355	7.248	0.107
T6	5-CH3 (S)	0	н	CH2CH=CH2	4.154	4.796	-0.642
17	5-CH3 (S)	0	н	CH2CH2CH2CH3	3.999	4.029	-0 030
T8	5-CH3 (S)	s	8-F	DMA	8.235	7.613	0.622
T9	5-CH3 (S)	0	8-Br	DMA	7.324	7.501	-0.177
Tto	5-CH3 (S)	S	8-Br	DMA	8.521	8.273	0.248
T 11	5-CH3 (S)	S	8-CH3	DMA	7.865	7.338	0.527
T12	5-CH3 (S)	S	8-O-CH3	DMA	7.468	7.256	0.212
T13	5-CH3 (S)	S	9,10-di C1	DMA	7.592	6.938	0.654
T14	5-CH3(S)	O	8-CN	DMA	5.940	6.051	-0.111
T15	5-CH3(S)	S	8-CN	DMA	7.250	6.630	0.620
T16	CH3(S)	0	8-CH3	DMA	6.000	6.730	-0.730
T17	5-CH3(S)	S	10-OCH3	DMA	5.330	6.352	-1.022
T18	5-CH3(S)	О	10-OCH3	DMA	5.180	5.906	-0.726
T19	5-CH3(S)	S	10-Br	DMA	5.970	6.850	-0.880
T20	5-CH3(S)	S	8-CHO	DMA	6.730	6.548	0.182
T21	5-CH3(S)	O	8-I	DMA	7.060	7.020	0.040
T22	5-CH3(S)	s	8-I	DMA	7.320	7.120	0.200
T23	5-CH3(S)	0	8-C=CH	DMA	6.360	6.293	0.067

^a Calculated by CoMFA model 8

ภาพที่ 3.3.6 แผนภาพคอนทัวร์จากการศึกษา CoMFA (model 8) สำหรับการยับยั้งเอนไซม์ถ่ายแบบเอช ไอ วี-1
ของอนุพันธ์ของทีโบ คอนทัวร์สีเขียวแสดงถึงมีอันตรกิริยาแบบสเตอริกสูง คอนทัวร์สีเหลืองแสดง
ถึงมีอันตรกิริยาแบบสเตอริกต่ำ และแสดงโครงสร้างของโมเลกุลทีโบ โมเลกุลที่ 36
ซึ่งมีกัมมันตภาพ ในการยับยั้งสูงสุด

ภาพที่ 3.3.7 แผนภาพคอนทัวร์จากการศึกษา CoMFA (model 8) สำหรับการยับยั้ง เอนไซมีการถ่ายแบบ เอช ไอ วี-1 ของอนุพันธ์ของที่โบ คอนทัวร์สีแดงแสดงถึงมีอันตรกิริยาแบบอิเล็กโตรสแตตกสูง และ คอนทัวร์สีน้ำเงินแสดงถึงมีอันตรกิริยาแบบอิเล็กโครสแตติกต่ำ และแสดงโครงสร้างของโมเลกุล ที่โบ โมเลกุลที่ 36 ซึ่งมีกัมมันตภาพในการยับยั้งสูงสุด

3.4 อันตรกิริยาระหว่างตัวยับยั้งและเอนไซม์ เอซ ไอ วี-1

จากแผนภาพ CoMFA คอนทัวร์ที่ศึกษาระหว่างเนวิราพีนและเอนไซม์แบบ wide type และ เอนไซม์แบบ mutant type สามารถชี้ให้เห็นถึงความแตกต่างระหว่างอันตรกิริยาของตัวยับยั้งที่มีต่อ การยับยั้งเอนไซม์ทั้งสองชนิด กล่าวคือ จากภาพที่ 3.3.2 ได้แสดงภาพ CoMFA คอนทัวร์สีเหลืองรอบ ๆ หมู่แทนที่ R2 ของวง tricyclic ของเนวิราพีน โดยเฉพาะอย่างยิ่งบริเวณซึ่งซ้อนทับกับกรดอะมิใน Tyr181 ซึ่งคอนทัวร์นี้แสดงให้เห็นว่ามีความจำกัดด้านขนาดของหมู่แทนที่ ผลการศึกษานี้ได้ตรงกับ ผลการทดลองที่ได้รายงานเกี่ยวกับโครงสร้างเชิงซ้อนระหว่างของเอนไซม์ เอซ ไอ วี-1 กับตัวยับยั้ง 4 ชนิดที่แตกต่างกัน [31] ซึ่งได้เสนอว่าหมู่แทนที่ที่บริเวณตำแหน่ง C2 เป็นส่วนที่มีอันตรกิริยากับ residues ที่บริเวณ binding site ดังนั้นผลจากการศึกษาจากโครงการนี้จึงสนับสนุนข้อมูลดังกล่าว และเสนอว่า หากมีการเพิ่มหมู่เกะกะในบริเวณรอบ ๆ หมู่แทนที่ของตำแหน่ง C2 จะมีผลให้ความ สามารถในการยับยั้งลดลงเนื่องจากสูญเสียอันตรกิริยาทีเหมาะสมกับวงอะโรมาติกของ Tyr181 เมื่อ พิจารณาจากโครงสร้างของสารอนุพันธ์ของเนวิราพีนแล้วพบว่ามีโครงสร้างบางโครงสร้างที่สอดคล้อง กับผลการศึกษานี้ กล่าวคือจากการเปรียบเทียบสารอนุพันธ์ที่ตำแหน่ง C2 (2 alkyl derivative) ใน อนุพันธ์ของเนวิราพีน โมเลกุลที่ 4 และโมเลกุลที่ 6-7 (ตารางที่ 2.1) พบว่าค่ากัมมันตภาพในการ ้ยับยั้งลดลงเมื่อมีการเพิ่มขนาดความเกะกะของหมู่แทนที่แบบอัลคิลที่ตำแหน่ง C2 นอกจากนี้แล้ว แผนภาพ CoMFA electrostatic คอนทัวร์ ซึ่งแสดงโดยคอนทัวร์สีแดงในภาพที่ 3.3.2 บริเวณรอบ ๆ ตำแหน่ง C2 นั้น แสดงให้เห็นว่านอกจากมีความจำกัดในด้านขนาดของหมู่แทนที่แล้ว ยังควร พิจารณาถึงการเพิ่มความหนาแน่นของอิเล็กตรอนด้วย และเมื่อได้พิจารณาจากผลการทดลองจะพบ ว่า การเพิ่มหมู่แทนที่ที่ตำแหน่ง C2 เป็น 2-F (เนวิราพีนโมเลกุลที่ 10) และ 2-Cl (เนวิราพีนโมเลกุลที่ 11-13) นั้น ช่วยให้มีการเพิ่มกัมมันตภาพในการยับยั้ง โดยเฉพาะอย่างยิ่งเนวิราพีนโมเลกุลที่ 12 นั้น จัดได้ว่าเป็นโมเลกุลที่มีความสามารถในการยับยั้งเอนไซม์ชนิด wide type สูงสุด (experimental log (1/C) มีค่า 7.999) สำหรับ CoMFA electrostatice คอนทัวร์ ที่แสดงโดยคอนทัวร์สีน้ำเงิน ได้ชี้ให้เห็น ว่า บริเวณใกล้เคียงกับ Glu138 ควรมีความหนาแน่นอิเล็กตรอนน้อย ๆ และควรเพิ่มหมู่เกะกะของ โครงสร้างของตัวยับยั้งที่บริเวณนี้ด้วย ซึ่งจะเห็นได้จากแผนภาพคอนทัวร์สีเขียวที่แสดงไว้ ผลจากการ ศึกษานี้ได้สนับสนุนผลการทดลองที่พบว่าเมื่อเปลี่ยนเป็นหมู่แอริลที่ตำแหน่ง C2 ทำให้กัมมันตภาพ ในการยับยั้งสูงขึ้น (เนวิราพีนโมเลกุลที่ 30-33 ในตารางที่ 2.1)

ลำหรับการพิจารณาอันตรกิริยาระหว่างตัวยับยั้งกับเอนไซม์ที่มีการกลายพันธุ์จากแผนภาพ CoMFA คอนทัวร์ (ภาพที่ 3.3.4) นั้นพบว่าหมู่แทนที่ที่ตำแหน่ง C2 นั้นควรมีการเพิ่มความเกะกะมาก ขึ้นเพื่อเพิ่มกัมมันตภาพในการยับยั้ง แต่ขนาดของหมู่แทนที่ถูกจำกัดโดยคอนทัวร์สีเหลือง โดยเมื่อ พิจารณาจากข้อมูลโครงสร้างของตัวยับยั้งแล้วจะเห็นว่า เมื่อเพิ่มขนาดของหมู่แทนที่ที่ตำแหน่ง C2 ในโมเลกุลของเนวิราพีนโมเลกุลที่ 1, 2, 4 และ 10-13 ทำให้เพิ่มค่ากัมมันตภาพในการยับยั้ง แต่ถ้า ขนาดของหมู่แทนที่ดังกล่าวใหญ่เกินไป เช่นในโมเลกุลของเนวิราพีนโมเลกุลที่ 17-20 กลับทำให้ลด ค่ากัมมันตภาพ นอกจากนี้แล้วแผนภาพของ electrostatic คอนทัวร์ที่บริเวณหมู่แทนที่ R1 และใกล้ กับหมู่อะมิโน Glu138 นั้นแสดงให้เห็นว่าควรเพิ่มความเป็นประจุบวกในบริเวณนี้ ทั้งนี้เมื่อพิจารณา โครงสร้างของโมเลกุลเนวิราพีนที่ 30-33 ซึ่งมีหมู่แทนที่เป็นหมู่แอริลที่ตำแหน่งนี้ จะเห็นได้ว่าหมู่แอริล ไม่เพียงแต่เพิ่มความเกะกะมากขึ้นแต่ยังเป็นส่วนที่รองรับประจุบวกได้เป็นอย่างดีและสามารถเพิ่มกัม มันตภาพในการยับยั้งเอนไซม์ชนิด mutant type เมื่อเปรียบเทียบในส่วนของแผนภาพ electrostatic คอนทัวร์ สำหรับเอนไซม์ชนิด wide type กับ mutant type แล้วพบว่า มีความคล้ายคลึงกัน ซึ่งเป็น เหตุผลสำคัญที่สนับสนุนว่าเนวิราพีนโมเลกุลที่ 30-33 มีกัมมันตภาพในการยับยั้งที่มีต่อเอนไซม์ทั้ง นอกจากนี้แล้วการเพิ่มความเกะกะในบริเวณที่ใกล้เคียงกับหมู่แทนที่ใน สกงแบบได้เป็นกร่างดี ตำแหน่งที่ C5 และเป็นหมู่ที่อยู่ใกล้กับกรดอะมิใน Tyr188 และ Trp229 โดยจะเห็นได้จากผลการ ทดลองที่แสดงในตารางที่ 2.1 ที่แสดงหมู่แทนที่ที่เป็นหมู่ CH₃ ที่ตำแหน่ง C5 จะเพิ่มคำกัมมันตภาพ ลูงขึ้นเมื่อเปรียบเทียบกับที่ไม่มีหมู่แทนที่ (R3 = H) จากผลการศึกษาอาจสรุปได้ว่าอันตรกิริยา ระหว่างตัวยับยั้งกับเอนไซม์ชนิด mutant type นั้น มีอันตรกิริยาทั้งแบบสเตอริกและอิเล็กโตรสแตติก โดยที่อันตรกิริยาแบบสแตติกเป็นส่วนช่วยในการทำให้เกิดการจับกับเอนไซม์ (binding) ที่แข็งแรง และรวมทั้งช่วยในการจัดทิศทางของโมเลกุลที่เหมาะสม โดยที่ความจำเพาะในการยับยั้งนั้นเป็นส่วน ที่เกิดเนื่องจากอันตรกีริยาแบบสเตอริกกับหมู่อะมิในในบริเวณ hydrophobic cavity ของเอนไซม์

3.5 การออกแบบโมเลกุลสารใหม่ที่มีประสิทธิภาพสูง

ผลจากการศึกษาที่ได้จาก QSAR และ CoMFA เป็นพื้นฐานสำคัญที่ได้ช่วยในการออกแบบ โครงสร้างโมเลกุลใหม่ที่มีประสิทธิภาพสูง โดยเฉพาะอย่างยิ่งการปรับเปลี่ยนโครงสร้างนั้นจะ พิจารณาจากแผนภาพ CoMFA คอนทัวร์ และใช้แบบจำลอง CoMFA ที่ดีที่สุดของแต่ละอนุพันธ์ ทำนายค่ากัมมันตภาพ และมีโมเลกุลที่มีค่ากัมมันตภาพการยับยั้งเอนไซม์เอซฺ ไอ วี-1 สูงสุดเป็น โมเลกุลเปรียบเทียบ ผลการทำนายโมเลกุลใหม่ที่มีประสิทธิภาพสูงของอนุพันธ์เนวิราพีนและที่โบได้ แสดงไว้ในตารางที่ 3.3.9 – 3.3.10 ตามลำดับ

3.5.1 การเสนอแนะโครงสร้างของอนุพันธ์ของเนวิราพีนใหม่ที่มีกัมมันตภาพสูง

เริ่มจากการพิจารณาเนวิราพีนโมเลกุลที่ 32 หรือ โมเลกุล A ในตารางที่ 3.3.9 ซึ่งมีค่ากัมมันต ภาพการยับยั้งเอนไซม์ชนิด mutant type สูงสุด (log (1/C) = 7.397) จึงนำเอาโมเลกุลนี้เป็นโมเลกุล เปรียบเทียบค่ากัมมันตภาพกับโมเลกุลใหม่ โดยจากการคำนวณด้วย CoMFA model 11 จะให้ค่า การทำนายกัมมันตภาพของโมเลกุลนี้เป็น log (1/C) = 7.279 และจะใช้เป็นค่าเปรียบเทียบต่อไป

จะเห็นได้ว่าเมื่อทำการปรับเปลี่ยนหมู่แทนที่ R1 ให้เป็นอะตอม H (โมเลกุลที่ 1-10) หรือ หมู่ อัลคิลอื่น ๆ เช่น โมเลกุลที่ 11-24 ดังแสดงในตารางที่ 3.3.9 ค่ากัมมันตภาพจะต่ำกว่าค่ากัมมันตภาพ ของโมเลกุลที่ใช้เป็นตัวเปรียบเทียบ แต่เมื่อลองเปลี่ยนหมู่แทนที่ R1 ให้เป็นหมู่ pyrrolyl หรือ หมู่ pyrrazolyl (โมเลกุลที่ 25-29) แล้วพบว่า สามารถพัฒนาค่ากัมมันตภาพขึ้นได้โดยเฉพาะอย่างยิ่งหมู่ 4-pyrrazolyl ที่มีค่าการทำนายกัมมันตภาพสูงกว่าโมเลกุลเปรียบเทียบคือ มีค่า log (1/C) = 7.308

การปรับเปลี่ยนโครงสร้างของโมเลกุลเนวิราพีนจึงพิจารณา หมู่ R2 R3 และ R4 ต่อไป ซึ่งพบ ว่าหมู่ R4 มีข้อจำกัดในส่วนของขนาดและความยาวของสายโซ่ ดังนั้นเมื่อพิจารณาโครงสร้างของ โมเลกุลที่ปรับเปลี่ยนใหม่ ได้แก่ โมเลกุลที่ 30-43 พบว่าการปรับเปลี่ยนหมู่ R2 เป็น NO $_2$ ในโมเลกุลที่ 43 จะให้ค่าทำนายกัมมันตภาพสูงขึ้นเป็น log (1/C) = 7.595 ทั้งนี้ ได้สอดคล้องกับ CoMFA คอนทัวร์ ที่เสนอแนะว่าหมู่ R2 ควรจะมีการเพิ่ม electrostatic interaction ด้วย

เมื่อพิจารณาการปรับเปลี่ยนหมู่แทนที่ในต่ำแหน่ง R1 เป็นหมู่ pyrrolyl และ pyrrazolyl ที่มี การแทนที่ภายในวงดังกล่าว เช่น ในโมเลกุลของ 44-64 พบว่า ให้ค่าการทำนายกัมมันตภาพอยู่ใน ช่วง 7.127-7.361 โดยมีโมเลกุล 64 ที่มีหมู่แทนที่ที่เป็น 5-Cl-3-pyrrolyl ให้ค่าการทำนายกัมมันตภาพ ดีที่สุด เมื่อพิจารณาการปรับเปลี่ยนโครงสร้างในโมเลกุลที่ 65-84 พบว่า โมเลกุลที่ 72 75 81 และ 84 ซึ่งมีหมู่ R1 เป็น 3-substituted-4-pyrrazolyl และหมู่ R2 เป็น F และ NO_2 โดยมี R3 และ R4 เป็น หมู่ CH_3 และ $CHCH_2CH_2$ ตามลำดับ ให้ค่าทำนายกัมมันตภาพการยับยั้งที่ดีที่สุดกล่าวคือมีค่าอยู่ใน ช่วง 7.609-7.626 และเป็นช่วงกัมมันตภาพที่สูงกว่าโมเลกุลเปรียบเทียบเป็นอย่างมาก

โครงสร้างของโมเลกุลที่มีค่าการทำนายกัมมันตภาพที่ดีเหล่านี้ จะได้นำไปพิจารณาเพื่อทำ การลังเคราะห์และทดสอบกัมมันตภาพต่อไป และอาจมีส่วนช่วยในการพัฒนาตัวยับยั้งเอนไซม์การ ถ่ายแบบเลข ไล วี-1 ที่ดีต่อไปได้ในอนาคต

ตารางที่ 3.3.9 แสดงโครงสร้างของโมเลกุลใหม่ที่มีประสิทธิภาพสูงของอนุพันธ์ของเนวิราพีน ที่ มีผลต่อเอนไซม์การถ่ายแบบเอซ ไอ วี-1 ซนิด mutant type และทำนายค่ากัมมันตภาพโดยแบบ จำลอง CoMFA ที่ดีที่สุด (model 11)

Cpds.	RI	R2	R3	R4	Calcd log (1/C)
Α	3-pyrrolyl	н	СНЗ	СН2СН3	7.279
1	Н	Н	Н	Н	5.834
2	Н	Н	H	СНЗ	5.981
3	Н	Н	Н	CH2CH3	6,240
4	H	Н	Н	CHCH2CH	6.150
5	Н	Н	Н	CH(CH3)2	6.123
6	Н	Н	Н	CH2C6H5	5,666
7	Н	Н	Н	CH2CH2CH3	5.372
8	Н	CH3	CH3	CH2CH3	6.013
9	H	Н	CH3	CH2CH3	6.343
10	Н	CH3	Н	CH2CH3	6.091
11	CH3	Н	CH3	CH2CH3	6.382
12	CH2CH3	Н	CH3	CH2CH3	6.031
13	CH2CH2CH3	· H	CH3	CH2CH3	6.194
14	CH(CH3)2	Н	CH3	CH2CH3	5.953
15	F	Н	CH3	CH2CH3	6.937
16	Cl	Н	CH3	CH2CH3	6,614
17	Br	H	CH3	CH2CH3	6.625
18	NH2	Н	CH3	CH2CH3	6.504
19	NHCH2CH3	H	CH3	CH2CH3	6.459
20	N(CH3)2	H	CH3	CH2CH3	5.774
21	N(CH3)CH2CH2OH	Н	CH3	CH2CH3	6.658
22	OH	H	CH3	CH2CH3	6.402
23	OCH3	H	CH3	CH2CH3	6.481
24	SCH3	Н	CH3	CH2CH3	6,252
25	2-furanyl	Н	CH3	CH2CH3	6.820
26	3-furanyl	H	CH3	CH2CH3	6.953
27	2-pyrrolył	H	CH3	CH2CH3	6.990
28	3-pyrrazolyl	Н	CH3	CH2CH3	7.139
29	4-pyrrazolyl	Н	CH3	CHCH2CH2	7,308
30	3-pyrrolyl	Cl	CH3	CH2CH3	7.279
31	3-pyrrolył	Br	CH3	CH2CH3	7.282
32	3-pyrrolyl	F	CH3	CH2CH3	7.273
33	3-pyrrolył	CH3	CH3	CH2CH3	7.411
34	3-pyrrolyl	OH	CH3	CH2CH3	7.312
35	3-pyrrolyl	OCH3	CH3	CH2CH3	7.391
36	3-pyrrolyl	NO2	CH3	CH2CH3	7.453
37	4-pyrrazolyl	Cl	CH3	CHCH2CH2	7.385
38	4-pyrrazolyl	Br	CH3	CHCH2CH2	7,397
39	4-pyrrazolyl	F	CH3	CHCH2CH2	7.375
40	4-pyrrazolyl	CH3	CH3	CHCH2CH2	7.492

ตารางที่ 3.3.9 (ต่อ)

Cpds.	R1	R2	R3	R4	Calcd.
					log (1/C)
		11.1			108 (2, 0)
41	4-pyrrazolyl	ОН	CH3	CHCH2CH2	7.377
42	4-pyrrazolyl	OCH3	CH3	CHCH2CH2	7.483
43	4-pyrrazolył	NO2	CH3	CHCH2CH2	7.595
44	5-CH3-3-pyrrolyl	Н	CH3	CH2CH3	7.237
45	5-OCH3-3-pyrrolyl	H	CH3	CH2CH3	7.191
46	2-Cl-3-pyrrolyl	Н	CH3	CHCH2CH2	7.269
47	2-Br-3-pyrrolyl	H	CH3	CH2CH3	7.223
48	2-F-3-pyrrolyl	Н	CH3	CH2CH3	7.194
49	2-CH3-3-pyrrolyl	H	CH3	CH2CH3	7.155
50	2-OCH3-3-pyrrolyl	Н	CH3	CH2CH3	7.127
51	2-OH-3-pyrrazolyl	H	CH3	CH2CH3	7.207
52	3-Cl-4-pyrrazolyl	H	CH3	CHCH2CH2	7.256
53	3-Br-4-pyrrazolyl	Н	CH3	CHCH2CH2	7.259
54	3-F-4-pyrrazolyl	H	CH3	CHCH2CH2	7,243
55	3-OH-4-pyrrazolyl	H	CH3	CHCH2CH2	7.154
56	3-CH3-4-pyrrazolyl	H	CH3	CHCH2CH2	7.196
57	5-Cl-4-pyrrazolyl	H	CH3	CHCH2CH2	7.229
58	5-Br-4-pyrrazolyl	H	CH3	CHCH2CH2	7.244
59	5-F-4-pyrrazolyl	H	CH3	CHCH2CH2	7.256
60	5-CH3-4-pyrrazolyl	H	CH3	CHCH2CH2	7.133
61	5-OH-4-pyrrazolyl	Н	CH3	CHCH2CH2	7.187
62	5-OCH3-4-pyrrazolyl	H	CH3	CHCH2CH2	7.153
63	5-Cl-3- pyrrolyl	Cl	CH3	CH2CH3	7.361
64	5-Cl-3- pyrrolyl	Br	CH3	CH2CH3	7.364
65	5-Cl-3- pyrrolyl	F.	CH3	CH2CH3	7.357
66	5-Cl-3- pyrrolyl	CH3	CH3	CH2CH3	7.486
67	5-Cl-3- pyrrolyl	OCH3	CH3	CH2CH3	7.502
68	5-Cl-3- pyrrolyl	OH	CH3	CH2CH3	7.545
69	5-Cl-3- pyrrolyl	NO2	CH3	CH2CH3	7.522
70	3-Cl-4-pyrrazolyl	Cl	CH3	CHCH2CH2	7.406
71	3-Cl-4-pyrrazolyl	Br	CH3	CHCH2CH2	7.423
72	3-Cl-4-pyrrazolył	F	CH3	CHCH2CH2	7.622
73	3-Cl-4-pyrrazolyl	CH3	CH3	CHCH2CH2	7.524
74	3-Cl-4-pyrrazolyl	OH	CH3	CHCH2CH2	7.527
75	3-Cl-4-pyrrazolyl	NO2	CH3	CHCH2CH2	7.616
76	3-Br-4-pyrrazolyl	Cl	CH3	CHCH2CH2	7.408
77	3-Br-4-pyrrazolyl	Br	CH3	CHCH2CH2	7.427
78	3-Br-4-pyrrazolyl	F	CH3	CHCH2CH2	7.395
79	3-Br-4-pyrrazolyl	CH3	CH3	CHCH2CH2	7.530
80	3-Br-4-pyrrazolyl	OH	CH3	CHCH2CH2	7.573
81	3-Br-4-pyrrazolyl	NO2	CH3	CHCH2CH2	7.617
82	3-F-4-pyrrazolyl	CH3	CH3	CHCH2CH2	7.562
83	3-F-4-pyrrazolyl	OH	CH3	CHCH2CH2	7.568
84	3-F-4-pyrrazolyl	NO2	СНЗ	CHCH2CH2	7.609
	V · T PITTUEOUTI	1102	C115	CHUILCHE	7.007

3.5.2 การเสนอแนะโครงสร้างใหม่ของอนุพันธ์ของที่โบที่มีกัมมันตภาพสูง

การออกแบบโมเลกุลตัวยับยั้งในกลุ่มอนุพันธ์ของที่โบนั้น ได้พิจารณาการปรับเปลี่ยนโครง สร้างของโมเลกุลที่ใช้เป็นตัวเปรียบเทียบ ในที่นี้คือโมเลกุลที่ 36 ในตารางที่ 2.3 หรือโมเลกุล B ในตารางที่ 3.3.10 โดยอาศัยแผนภาพ CoMFA คอนทัวร์ และทำนายค่ากัมมันตภาพโดยใช้แบบจำลอง CoMFA model 8 ทั้งนี้การคำนวณค่ากัมมันตภาพของโมเลกุลเปรียบเทียบมีค่าเป็น log (1/C) = 8.293 ซึ่งให้ค่าใกล้เคียงกับค่ากัมมันตภาพจากการทดลองมาก

จากแผนภาพ Comfa คอนทัวร์ (ภาพที่ 3.3.6 และ 3.3.7) พบว่าหมู่แทนที่บริเวณ C2 หรือ X นั้นมีความจำเพาะและจำกัดอยู่เพียงอะตอม S หรือ O สำหรับหมู่แทนที่ Z นั้นมีความจำกัดในด้าน ขนาดและความยาวของสายโช่ ในการพิจารณาขั้นแรกจึงทำการปรับเปลี่ยนเฉพาะหมู่แทนที่ R ของ โมเลกุลที่ใบ เป็นหมู่อัลคิลต่าง ๆ ดังแสดงในโมเลกุลที่ 1-20 จะเห็นได้ว่าโมเลกุลต่าง ๆ เหล่านี้มีค่า การทำนายกัมมันตภาพที่ต่ำกว่าโมเลกุลเปรียบเทียบ โดยโมเลกุลที่ 1 ที่มีหมู่ R = 5-CH₃(S) และมีค่า log (1/C) = 7.770 เมื่อนำโมเลกุลที่ 1 นี้มาพิจารณาปรับเปลี่ยนหมู่ Z เป็นสายโช่ที่มีความยาวต่าง ๆ กันในโมเลกุลที่ 21-34 พบว่ามีบางโครงสร้างที่สามารถให้ค่าการทำนายกัมมันตภาพสูงกว่าโมเลกุล เปรียบเทียบ กล่าวคือโมเลกุลที่ 33 และ 34 ที่มีหมู่ Z เป็น CH₂CCI=CCH₂BrCH₂CI และ CH₂CCI=CCH₂CI ให้ค่ากัมมันตภาพเป็น log (1/C) = 8.310 และ 8.308 ตามลำดับ

เมื่อพิจารณาโครงสร้างของโมเลกุลโดยการปรับเปลี่ยนหมู่แทนที่ Y ที่ตำแหน่ง C8 และ C9 ของโมเลกุลทีโบ (โมเลกุลที่ 35-45) สามารถให้ค่ากัมมันตภาพที่สูงขึ้นเป็นอย่างมาก โดยเฉพาะอย่าง ยิ่งที่มีหมู่แทนที่เป็น 8-Cl และ/หรือ 9-Cl ทั้งนี้ค่าทำนายกัมมันตภาพของโมเลกุลเหล่านี้มีค่าอยู่ใน ช่วงระหว่าง 8.173-8.835 และโมเลกุลที่ 35 ที่มีหมู่แทนที่เป็น 8-Cl ให้ค่าทำนายกัมมันตภาพสูงที่สุด เมื่อลองปรับเปลี่ยนหมู่ X เป็นอะตอมออกซิเจนในโมเลกุลที่ 46-48 ไม่สามารถพัฒนาค่าทำนายกัม มันตภาพให้สูงขึ้นไปกว่านี้ได้

โครงสร้างของโมเลกุลที่มีค่าการทำนายกัมมันตภาพที่ดีทั้งของอนุพันธ์ของเนวิราพีน และ อนุพันธ์ของที่โบที่ถูกเสนอนี้ จะได้นำไปพิจารณาเพื่อทำการสังเคราะห์และทดสอบกัมมันตภาพการ ยับยั้งเอนไซม์การถ่ายแบบเอช ไอ วี-1 ต่อไป และอาจมีส่วนช่วยในการพัฒนาตัวยับยั้งเอนไซม์การ ถ่ายแบบเอช ไอ วี-1 ที่ดีต่อไปได้ในอนาคต

ตารางที่ 3.3.10 แสดงโครงสร้างของโมเลกุลใหม่ที่มีประสิทธิภาพสูงของอนุพันธ์ของทีโบ ที่มีผล ต่อเอนไซม์การถ่ายแบบเอซ ไอ วี-1 และทำนายค่ากัมมันตภาพโดยแบบจำลอง CoMFA ที่ดีที่สุด (model 8)

Cpds.	R	Χ	Υ	Z.	Expt.	Calcd.
				<u>-</u>	log(1/C)	log(1/C) ^a
В	5-CH3(S)	S	8-C1	CH2CH=C(CH3)2	8.300	8.293
l	5-CH3(S)	S	Н	CH2CH=C(CH3)2		7.770
2	5-CH3(R)	S	Н	CH2CH=C(CH3)2		7.421
3	5-CH2CH3(S)	S	Н	CH2CH=C(CH3)2		7.621
4	5-CH2CH3(R)	S	H	CH2CH=C(CH3)2		7.442
5	5- CH2CH2CH3(S)	S	H	CH2CH=C(CH3)2		7.571
6	5- CH2CH2CH3(R)	S	Ħ	CH2CH=C(CH3)2		7.416
7	5-i-Pr(S)	S	Н	CH2CH=C(CH3)2		7,331
8	5-i-Pr(R)	S	Н	CH2CH=C(CH3)2		7.431
9	5-CH=CH2(S)	S	Н	CH2CH=C(CH3)2		6.532
10	5-CH=CH2(R)	S	Н	CH2CH=C(CH3)2		6.003
11	4-CH3(S)	S	Н	CH2CH=C(CH3)2		7.281
12	4-CH3(R)	S	Н	CH2CH=C(CH3)2		7.542
13	4-CH2CH3(S)	S	Н	CH2CH=C(CH3)2		7.270
14	4-CH2CH3(R)	S	Н	CH2CH=C(CH3)2		7.348
15	4-CH2-CH2CH3(S)		Н	CH2CH=C(CH3)2		7.000
16	4-CH2-CH2CH3(R)		Н	CH2CH=C(CH3)2		7,169
17	4-i-Pr(S)	S	Н	CH2CH=C(CH3)2		7.113
18	4-i-Pr(R)	S	Н	CH2CH=C(CH3)2		7.040
19	4-CH=CH2(S)	S	H	CH2CH=C(CH3)2		6.199
20	4-CH=CH2(R)	S	Н	CH2CH=C(CH3)2		6.117
21	5-CH3(S)	S	Н	CH2CH=CHCH3		6.766
22	5-CH3(S)	S	H	CH2CH2CH3		6.041
23	5-CH3(S)	S	Н	CH2CH2CH2CH3		6.286
24	5-CH3(S)	Š	H	CH2CH=CH2		3.408
25	5-CH3(S)	S	Н	CH2CH2CH=CH2		3.469
26	5-CH3(S)	S	Н	CH2CCI=C(CH3)2		8.011
27	5-CH3(S)	S	Н	CH2CBr=C(CH3)2		7.998
28	5-CH3(S)	S	Н	CH2CH=CCH3CH2Cl		7,994
29	5-CH3(S)	Š	Н	CH2CH=CCH3CH2Br		7.996
30	5-CH3(S)	S	Н	CH2CH=CCH2CICH2CI		8.065
31	5-CH3(S)	S	H	CH2CH=CCH2BrCH2Br		8.072
32	5-CH3(S)	Š	H	CH2CH=CCH2ClCH2Br		8.068
33	5-CH3(S)	Š	H	CH2CCI=CCH2BrCH2CI		8.310
34	5-CH3(S)	S	H	CH2CCI=CCH2CICH2CI		8.308
35	5-CH3(S)	S	8-C1	CH2CCI=CCH2BrCH2CI		8.835
36	5-CH3(S)	S	9-Cl	CH2CCI=CCH2BrCH2CI		8.328
37	5-CH3(S)	S	8-Br	CH2CCI=CCH2BrCH2CI		8.780
38	5-CH3(S)	Š	- 9-Br	CH2CCI=CCH2BrCH2CI		8.313
39	5-CH3(S)	S	9-F	CH2CCI=CCH2BrCH2CI		8.320
40	5-CH3(S)	S	8-CH3	CH2CCI=CCH2BrCH2CI		8.747

ตารางที่ 3.3.10 (ต่อ)

Cpds.	R	X	Υ	Z	Expt.	Calcd.
					log(1/C)	log(1/C) ^a
41	5-CH3(S)	S	9-CH3	CH2CCI=CCH2BrCH2CI		8.414
42	5-CH3(S)	S	8,9-C1,C1	CH2CCI=CCH2BrCH2CI		8.774
43	5-CH3(S)	S.	8.9-Cl.Br	CH2CCI=CCH2BrCH2CI		8.723
44	5-CH3(S)	S	8.9-Br.Cl	CH2CCl=CCH2BrCH2Cl		8.729
45	5-CH3(S)	S	8.9-Br.Br	CH2CCI=CCH2BrCH2Ci		8.173
46	5-CH3(S)	0	8-C1	CH2CCI=CCH2BrCH2CI		8.017
47	5-CH3(S)	0	8-Br	CH2CCI=CCH2BrCH2CI		7.936
48	5-CH3(S)	0	8-CH3	CH2CCI=CCH2BrCH2CI		7.899

^{*} calculated by CoMFA model 8

บทที่ 4

ิสรุปและวิจารณ์ผล

โครงการวิจัยนี้ได้ทำการศึกษาความสัมพันธ์ระหว่างโครงสร้างกับกัมมันตภาพของตัวยับยั้ง เอนไขม์การถ่ายแบบเอช ไอ วี-1 ของสารกลุ่ม nonnucleoside reverse transcriptase inhibitor สอง อนุพันธ์คือ dipyridodiazepinone หรือ เนวิราพีน และอนุพันธ์ของที่โบ โดยมีจำนวนโครงสร้าง โมเลกุลในอนุพันธ์ของเนวิราพีนจำนวน 75 โมเลกุล และโครงสร้างของที่โบจำนวน 69 โมเลกุล ทั้งนี้ได้ นำโครงสร้างเริ่มต้นของโครงสร้างหลักคือเนวิราพีนและที่โบจากผลการทดลองโดยวิธีผลึกเอกซ์เรย์ จากนั้นได้ศึกษาโครงสร้างคอนฟอร์เมซันของตัวยับยั้งเนวิราพีนโดยระเบียบวิธีทางเคมีควอนตัมสอง ระเบียบวิธีคือ เซมิเอมพิริคัล (AM1 PM3 และ MNDO) และแอบอินิซิโอ (HF/STO-3G และ HF/3-21G) จากผลการศึกษาพบว่าการคำนวณทั้งสองระเบียบวิธีให้ผลที่สอดคล้องกัน กล่าวคือค่าพลังงาน ของโมเลกุลมีคอนฟอร์เมซันที่เสถียรที่สุดเพียง 1 local minimum ที่มุมไดฮีดรอลของวงไซโคลโพรพิล เท่ากับ 208.5 และได้คำนวณ full optimization ของคอนฟอร์เมซันนี้ด้วยวิธี HF/6-31G ด้วย จากนั้น ได้ทำการเปรียบเทียบพารามิเตอร์ของโครงสร้าง ได้แก่ ค่าความยาวพันธะ และค่ามุมพันธะ กับผล จากการทดลองคือ วิธีผลึกเอกซ์เรย์ นอกจากนี้แล้วยังได้ทำการคำนวณสมบัติทางสบ โคโตรสโคปีโดย ใช้โครงสร้างที่ได้จากการคำนวณด้วยวิธี HF/6-31G เพื่อคำนวณค่า chemical shift ของ ¹H-NMR (B3LYP/6-311**G(2d,p)) ด้วยวิธีเดนฑิตีฟังก์ชันแนล ผลการคำนวณพบว่าสามารถทำนาย chemical shift ของ ¹H-NMR ได้สอดคล้องกับค่าที่ได้จากการทดลอง ดังนั้นระเบียบวิธีที่ใช้ในการ คำนวณโครงสร้างจึงเป็นระเบียบวิธีที่เชื่อถือได้ และโครงสร้างของตัวยับยั้งที่ได้จากการคำนวณนี้ได้ นำไปใช้ในการจำลองโมเลกุลและสร้างโครงสร้างของสารอนุพันธ์ของเนวิราพีนและที่โบ

ในงานวิจัยต่อมาได้ทำการสร้างโครงสร้างของตัวยับยั้งโดยวิธีโมเลคิวลาร์โมเดลลิ่ง ได้แก่สาร อนุพันธ์ของเนวิราพีนจำนวน 75 โครงสร้างและสารอนุพันธ์ของที่โบจำนวน 69 โครงสร้าง จากนั้นได้ นำไปศึกษาความสัมพันธ์ระหว่างโครงสร้างกับกัมมันตภาพในการยับยั้งเอนไซม์การถ่ายแบบเอข ไอ วี-1 โดยวิธี QSAR โดยคำนวณสมบัติทางอิเล็กทรอนิกส์ได้แก่ค่าการกระจายของอิเล็กตรอนและ สมบัติทางโครงสร้างได้แก่ค่า partition coefficient ค่า molecular refractivity ค่า molecular surface area และค่า polarizability เพื่อนำมาใช้เป็นตัวอธิบายโครงสร้างของโมเลกุลตัวยับยั้ง ทั้งนี้ ค่าความ สามารถในการยับยั้งเอนไซม์การถ่ายแบบเอซ ไอ วี-1 กับตัวยับยั้งในกลุ่มอนุพันธ์ของเนวิราพีนนั้นมี สองชนิดคือ ชนิด wide type และ mutant type สำหรับอนุพันธ์ของที่โบนั้นศึกษาเฉพาะกัมมันตภาพ

ที่มีต่อเอนไซม์ชนิด wide type ผลการศึกษาพบว่าแบบจำลอง QSAR สำหรับกลุ่มอนุพันธ์ของเนวิรา พีนให้ค่าความน่าเชื่อถือทางสถิติค่อนข้างต่ำ โดยแบบจำลองที่ดีที่สุดนั้นมีค่า multiple correlation coefficient, r, เท่ากับ 0.568 เท่านั้น ในขณะที่ แบบจำลอง QSAR ของอนุพันธ์ที่โบ ให้ค่า r เท่ากับ 0.869 ซึ่งนับว่าเป็นแบบจำลองที่สามารถอธิบายความสัมพันธ์ระหว่างตัวอธิบายโครงสร้างกับกัมมันต ภาพได้เป็นอย่างดี และยังเป็นแบบจำลองที่มีความสามารถในการทำนายที่ดีด้วย กล่าวคือมีค่า Q² เท่ากับ 0.677 ซึ่งเป็นค่าที่ยอมรับได้ ดังนั้น สำหรับกลุ่มอนุพันธ์ของเนวิราพีนจึงยังต้องมีการพัฒนาตัว อธิบายโครงสร้างของของโมเลกุลในกลุ่มต่อไป

นอกจากนี้แล้วโครงการวิจัยได้นำระเบียบวิธีวิเคราะห์เชิงเปรียบเทียบสนามโมเลกุล (Comparative Molecular Field Analysis, CoMFA) มาศึกษาในโครงการนี้ด้วย เพื่ออธิบายสมบัติ ของโครงสร้างที่สำคัญในการแสดงกัมมันตภาพยับยั้งเอนไซม์การถ่ายแบบเอช ไอ วี-1 ซนิดที่ไม่มี การกลายพันธ์ (wild type RT) ในเอนไซม์ สำหรับอนุพันธ์ของเนวิราพีนได้ศึกษากับเอนไซม์ชนิดที่มี การกลายพันธุ์ (Y181C RT) ด้วย โครงสร้างของโมเลกุลทั้งหมดที่ได้คำนวณไว้แล้วจากการศึกษาโดย วิธี QSAR จะถูกนำไปวางทับกับโมเลกุลหลัก (alignment) ซึ่งได้แก่โครงสร้างที่มีกัมมันตภาพสูงสุด ของแต่ละอนุพันธ์ เพื่อคำนวณอันตรกิริยาแบบ steric และ electrostatic ระหว่างโมเลกุล ซึ่งจะต้อง ทำการปรับเปลี่ยนชนิดของ probe atom ด้วย ผลการศึกษาโดยวิธีวิเคราะห์เชิงเปรียบเทียบสนาม ์ โมเลกุลสามารถสร้างแบบจำลอง CoMFA ได้เป็นอย่างดี โดยระเบียบวิธี Partial Least Squares และ cross-validation ซึ่งต้องมีการทดสอบความสามารถในการทำนายกัมมันตภาพทั้งในส่วนของ training set และ test set โดยทำการทำนายกัมมันตภาพของสารยับยั้งนอกเหนือจากที่ใช้ในการ สร้างความสัมพันธ์ สำหรับอนุพันธ์เนวิราพีนมี test set จำนวน 22 โครงสร้าง และอนุพันธ์ของที่โบ จำนวน 23 โครงสร้าง ซึ่งโมเลกุลเหล่านี้มีค่าการยับยั้งเอนไซม์จากการทดลองแล้ว ผลจากการศึกษา พบว่าแบบจำลอง CoMFA ให้ผลการทำนายกัมมันตภาพที่สอดคล้องกับค่าที่ได้จากการทดลอง เมื่อ นำแผนภาพ steric คอนทัวร์และ electrostatic คอนทัวร์ ที่ได้จากการศึกษา มาพิจารณร่วมกับตัว อธิบายโมเลกุลจากวิธี QSAR รวมทั้งโครงสร้างของ hydrophobic cavity ซึ่งเป็นส่วนที่เกิดอันตร กิริยาระหว่างตัวยังยั้งกับเอนไซม์ ทำให้สามารถอธิบายความสำคัญของอันตร์กิริยาแบบสเตอริกใน โครงสร้างของตัวยับยั้งกับ hydrophobic cavity ของเอนไซม์ซึ่งประกอบด้วย amino acid residues โดยเฉพาะอย่างยิ่ง Tyrocine 181 ได้เป็นอย่างดี และเมื่อกรด amino ในตำแหน่งดังกล่าวเกิดการก ลายพันธุ์จาก tyrocine เป็น cystaine จึงทำให้ขาดอันตรกิริยาสเตอริกระหว่างตัวยับยั้งกับเอนไซม์ใน บริเวณนี้ และคาจทำให้ตัวยับยั้งไม่สามารถแสดงกัมมันตภาพที่ดีได้ ซึ่งผลการศึกษานี้นับเป็นการค้น พบที่สำคัญที่สามารถอธิบายอันตรกิริยาที่แตกต่างกันของตัวยับยั้งที่มีต่อเอนไซม์การถ่ายแบบเอช ไอ วี-1 ที่ไม่มีการกลายพันธ์และมีการกลายพันธ์ได้โดยระเบียบวิธีโมเลคิวลาร์โมเดลลิ่ง

ผลการศึกษาที่ได้เสนอมาทั้งหมดนี้ได้ใช้เป็นแนวทางในการพิจารณาปรับเปลี่ยนโครงสร้าง โมเลกุลที่คาดว่ามีกัมมันตภาพในการยับยั้งเอนไซม์สูงสำหรับอนุพันธ์ของเนวิราพีนและอนุพันธ์ของที่ โบ โดยได้เสนอโครงสร้างของโมเลกุลใหม่ที่มีประสิทธิภาพสูง ซึ่งจะได้พิจารณาสังเคราะห์โมเลกุล เหล่านี้และทดสอบค่ากัมมันตภาพที่แท้จริง และอาจทำให้มีการพัฒนาตัวยับยั้งเอนไซม์การถ่ายแบบ เอซ ไอ วี-1 ที่ดีต่อไป

หนังสืออ้างอิง

- [1] Larder, B.A., and Kemp, S.D., Science, 246, 1155-1158 (1989).
- [2] Huang, P., Farquhar, D., Plunkett, W., J. Biol. Chem., 265, 11914 (1990).
- [3] Tan, C.-K., Civil, R., Mian, A.M., So, A.G., Downey, K.M., *Biochemistry*, 30, 4831 (1991).
- [4] Balzarini, J., Karlsson, A., and De Clereq, E., Mol. Pharmacol., 44, 694-701 (1993).
- [5] De Clercq, E., J.Med.Chem., 38, 2491-2517 (1995).
- [6] Joao, H.C., De Vreese, K., Pauwels, R., De Clercq, E., Henson, G.W., and Bridger, G.J., J.Med.Chem., 38, 3865-3873 (1995).
- [7] Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Nitta, I., Baba, M., Shigeta, S., Walker, R.T., De Clercq, E., and Miyasaka, T., *J.Med.Chem.*, 35, 337-345 (1992).
- [8] Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Nitta, I., Baba, M., Shigeta, S., Walker, R.T., De Clercq, E., and Miyasaka, T., J.Med.Chem., 35, 4713-4719 (1992).
- [9] Debyser, Z., Pauwels, R., Andreies, K., Desmyter, J., Kukla, M., Janssen, P.A.J., De Clercq, E., *Proc.Natl.Acad.Sci. U.S.A.*, 88, 1451 (1991).
- [10] Pauwels, R., Andries, K., Desmyter, J., Schols, D., Kukla, M.J., Breslin, H.J., Raeymaeckers, A., Van Gelder, J., Woesten-borghs, R., Heykants, J., Schellekens, H., Janssen, M.A.C., De Clercq, E., Janssen, P.A.J., *Nature*, 343, 470 (1990).
- [11] Baba, M., Tanaka, H., De Clercq, E., Pauwels, R., Balzarini, J., Schols, D., Nakashima, H., Perno, C.-F., Walker, R.T., Miyasaka, T., Biochem.Biophys.Res.Commun., 165, 1375 (1989).
- [12] Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R.T., Balzarini, J., De Clercq, E., J.Med.Chem., 32, 2507 (1989).
- [13] Merluzzi, V.J., Hargrave, K.D., Labadia, M., Grozinger, K., Skoog, M., Wu, J.C., Shih, C.-K., Eckner, K., Hattox, S., Adams, J., Rosenthal, A.S., Faanes, R., Eckner, R.J., Koup, R.A., Sullivan, J.L., Science, 250, 1411 (1990).

- [14] Hargrave, K.D., Proudfoot, J.R., Grozinger, K.G., Cullen, E., Kapadia, S.R., Patel, U.R., Fuchs, V.U., Mauldin, S.C., Vious, J. Behnek, M.L., Klunder, J.M., Pal, K., Skiles, J.W., McNeil, D.W., Rose, J.M., Chow, G.C., Skoog, M.T., Wu, J.C., Schmidt, G., Engel, W.W., Eberlein, W.G., Saboe, T.D., Campbell, S.J., Rosenthal, A.S., and Adams, J., *J.Med.Chem.*, 1991, 34, 2231-2241 (1991).
- [15] De Clercq, E., Med.Res.Rev., 13, 229 (1993).
- [16] De Clercq, E., Exp. Opin. Invest. Drugs, 3, 253 (1994).
- [17] Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A., and Steitz, T.A., *Science*, 256, 1783 (1992).
- [18] Jacobo-Molina, A., Ding, J., Nanni, R.G., Clark, A.D., Lu, X., Tantillo, C., Williams, R.L., Kamer, G., Ferris, A.L., Clark, R., Hizi, A., Hughes, S.H., and Arnold, E., *Proc.Natl.Acad.Sci. U.S.A.*, 90, 6320 (1993).
- [19] Velazquez, S., Alvarez, R., San-Felix, A., Jimeno, M.L., De Clercq, E., Balzarini, J., and Camarasa, M.J., *J.Med.Chem.*, 38, 1641-1649 (1995).
- [20] Spence, R.A., Kati, W.M., Anderson, D.S., and Johnson, K.A., *Science*, 267, 988-993 (1995).
- [21] Hannongbua, S., Lawtrakul, L, and Limtrakul, J., *J.Comp.-Aided.Mol.Des.*, 10, 145-152 (1996).
- [22] Hannongbua, S., Lawtrakul, L, Sotriffer, C.A., and Rode, B.M., Quant.Struct.-Act.Relatsh., 15, 1-6 (1996).
- [23] (a) Proudfoot, J.R., Hargrave, K.D., Kapadia, S.R., Patel, U.R., Grozinger, K.G., McNeil, D.W., Cullen, E., Cardozo, M., Tong, L., Kelly, T.A., Mauldin, S.C., Fuchs,V.U., Vitous, J., West, M., Klunder, J., Raghavan, P., Skiles, J.W., Mui, P., Rose, J., David, E., Richmond, D., Suklivan, J. L., Farina, V., Shih, C.K., Grob and Adams, J. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase.
- 2-substituted dipyridodiazepinones as potent inhibitors of both wild type and cysteine-...
 181 reverse transcriptase enzyme, J.Med.Chem., 1995, 38, 4830.
- (b) Kelly, T.A., Proudfoot, J. R., McNeil, D.W., Patel R.U.P, David, E, Hargrave, K.P., Peter M., Cardozo, M., Agarwal, A. and Adams, J. Novel non-nucleoside inhibitors of human

immunodeficiency virus type 1 reverse transcriptase. 5. 4-substituted and 2,4-disubstituted analogs of nevirapine J.Med.Chem., 1995, 38, 4839.

- (c) Kelly, T.A., McNeil, D.W., Rose, J.M., David, E., Shih, C.K. and Grob, P.M. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. 6. 2-Indol-3-yl- and 2-azaindol-3-yl-dipyridodiazepinones. J.Med. Chem. 1997, 40,2430.
- [24] ALCHEMY2000, Tripos Associates Inc., St. Louis, MO, 1998.
- [25] Bodor, N., Gabanyi, Z., and Wong, C., J.Am.Chem.Soc., 1989, 111, 3783.
- [26] (a) Ghose, A.K., and Crippen, G.M., J. Chem. Inf. Comput. Sci., 1987, 27, 21.
- (b) Viswanadhan, V.N., Ghose, A.K., Revankar, G.N., and Robind, R.K., J. Chem.Inf.Comput.Sci., 1989, 29, 163.
- [27] Miller, K.J., J.Am.Chem.Soc., 1990, 112, 8533.
- [28] ChemPlus 1.0, Hypercube Inc., Waterloo, ON, 1993.
- [29] Cramer, R.D., III, Patterson, D.E., and Bunce, J.D., J. Am. Chem. Soc., 1988, 110, 5959.
- [30] Hargrave, K.D., Proudfoot, J.R., and Grozinger, K.G., J. Med. Chem. 1991, 34, 2231.
- [31] Ren, J., Esnouf, R., Garman, E., Somers, D., Ross, C., Kirby, I., Keeling, J., Darby, G., Jones, Y., Stuart, D., and Stammers, D., Nat. Struct. Biol., 1995, 2, 293.

Output ที่ได้รับจากโครงการ

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

- Hannongbua, S*., Pungpo, P., Limtrakul, J. and Wolschann, P., Quantitative Structure-Activity Relationships and Comparative Molecular Field Analysis of TIBO Derivatived HIV-1 Reverse Transcriptase Inhibitors, J. Comp.-Aided Mol. Des., 1999, 13, 563-577.
- Pungpo, P and Hannongbua, S*., Three Dimensional Quantitative Structure-Activity
 Relationship Study on HIV-1 Reverse Transcriptase Inhibitors in the Class of
 Dipyridodiazepinone Derivatives, Using Comparative Molecular Field Analysis. submitted
 for publication.
- Hannongbua, S*., Prasithichokekul, S., and Pungpo, P., Molecular Calculations on the Conformational Analysis of HIV-1 Reverse Transcriptase Inhibitors of Nevirapine, to be submitted.

การเสนอผลงานในที่ประชุมวิชาการ

- Hannongbua, S.*, Pungpo, P., Limtrakul, J., and Wolschann, P., 3D-QSAR Analysis and Molecular Design of HIV-1 Reverse Transtriptase Inhibitor of TIBO Derivatives. In Proceedings of 2nd Annual National Symposuim on Computational Science and Engineering, National Science and Technology Development Agency, Bangkok, March 26th -27th, 1998, p. 37-54.
- Pungpo, P. and Hannongbua, S., Comparative Molecular Field Analysis of HIV-1 Reverse Transcriptase in the Class of Dipyridodiazepinone DerivativesL Comparison of Different Alignment Rules. In The Proceedings of the 3rd Annual National Symposium on Computational Scinece, organized by NSTDA/GREC/CSEP on March 24th-26th, 1999, Chulalongkom University, Bangkok, 216-234.
- Hannongbua, S., Prasithichokekul, S, and Pungpo, P., Computer-Aided Molecular Modelling of Nonnucleoside Reverse Transcriptase Inhibitors, Based on QSAR and 3D-QSAR methods. To be presented in the 13th European Symposium on Quantitative

Structure-Activity Relationships, Heinrich Heine Universitaet Duesseldorf, Germany, Aug 27^{th} – Sep 1^{st} , 2000.

ภาคผนวก

Quantitative structure-activity relationships and comparative molecular field analysis of TIBO derivatised HIV-1 reverse transcriptase inhibitors

Supa Hannongbua^{a,*}, Pornpan Pungpo^a, Jumras Limtrakul^a & Peter Wolschann^b
Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; bInstitut für
Theoretische Chemie und Strahlenchemie der Universität Wien, Währinger Strasse 17. A-1090 Wien, Austria

Received 11 September 1998; Accepted 8 March 1999

Key words: HIV-1, molecular modeling, NNRTIs, QSAR, quantum chemical calculations, TIBO derivatives, 3D-OSAR

Summary

Quantitative structure-activity relationships (QSAR) and Comparative Molecular Field Analysis (CoMFA) have been applied in order to explain the structural requirements of HIV-1 reverse transcriptase (HIV-1 RT) inhibitory activity of TIBO derivatives on the MT-4 cells. The best QSAR model is satisfactory in both statistical significance and predictive ability. The derived structural descriptors indicate the importance of electronic contributions toward the HIV-1 RT inhibition of this class of compounds. However, it could not reveal any hydrophobic influence because of high collinearity between C2 and log P variables. In order to cope with steric interaction in the correlation, P 3D-QSAR was performed using CoMFA. The obtained CoMFA model shows high predictive ability, P 20.771, and clearly demonstrates its potential in the steric feature of the molecules through contour maps, explaining a majority (81.8%) of the variance in the data. Consequently, these results can be useful in identifying the structural requirements of TIBO derivatives and helpful for better understanding the HIV-1 RT inhibition. Eventually, they provide a beneficial basis to design new and more potent inhibitors of HIV-1 RT.

Introduction

TIBO or tetrahydroimidazo-[4, 5, 1-jk][1, 4]-benzodiazepinone (Figure 1), one of the most specific and potent nonnucleoside reverse transcriptase inhibitors (NNRTI) of human immunodeficiency virus type 1 (HIV-1) replication, and its derivatives were developed by Pauwels et al. [1]. The available kinetic [2–4] and structural [5–7] studies make it clear that NNRTIs inhibit the enzyme noncompetitively and they all bind at a common allosteric site in HIV-1 RT. However, the effectivity is reduced by the very rapid development of drug-resistance mutations [8]. This causes a limitation to the potential utilization of this inhibitor. Numerous experimental investigations on complex structures of HIV-1 RT with TIBO and other NNRTIs [9, 10] have been performed, however the mechanism of action of

this inhibitor as well as of drug resistance has still not been clarified. During complexation of HIV-1 RT with NNRTIs, the side chain and backbone of residues surrounding the pocket adjust to each bound drug in a common fashion. These results reveal that this protein is able to accommodate inhibitors of different chemical structures. The flexibility of the HIV-1 RT binding pocket implies that it may be not feasible to generate a generic NNRT binding site that could be used to model RT in the search for more potent drugs.

Our previous studies on HIV-1 RT inhibitors indicated that electronic and molecular properties of the inhibitors obtained from quantum calculations can be used as the structural descriptors [11, 12]. By considering the common features observed with these chemically divergent NNRTI, we have attempted to investigate the functional roles of particular groups. In order to get a closer insight into the structural requirements for a powerful inhibitor, we have extended our studies to include a series of compounds that show

To whom correspondence should be addressed. E-mail: fs-sph@ku.ac.th: Tel. 066-2-9428034; Fax. 066-2-5793955.

Figure 1. General structure of tetrahydroimidazo [4,5,1-jk][1, 4] benzodiazepinone.

widely different potencies. The compounds studied belong to the TIBO chemical series (Table 1).

In an attempt to cope with such problems, it is required to have a precise and detailed understanding of the important structure-activity relationships. Therefore, a quantitative structure-activity relationship (QSAR) study [13] was performed. In this procedure, atomic net charges obtained from molecular orbital calculations were used as the electronic descriptor. In addition, lipophilicity (log P), molar refractivity (MR) and molar polarizability (POL), were used as molecular properties. In order to use a more general approach to deal with steric interaction, Comparative Molecular Field Analysis (CoMFA), developed by Cramer et al. [14], was employed. This analysis aims to establish a relationship between HIV-1 RT inhibition of TIBO analogues and steric and electrostatic fields around them.

In the present work, QSAR and CoMFA have been performed for the first line with aims of (a) determining quantitative structure-activity relationship and structural requirements of HIV-1 NNRTI in the class of TIBO derivatives, (b) obtaining information about the structural characteristics underlying the inhibition of this class of compounds.

Methods of calculation

Biological data

The chemical structures of 46 TIBO derivatives are illustrated in Table 1, together with their biological activities, expressed as $\log(1/C)$, where C is the effective concentration of a compound required to achieve 50% (IC₅₀) protection of MT-4 cell against the cytopathic effect of HIV-1. The $\log(1/C)$ value was used as the

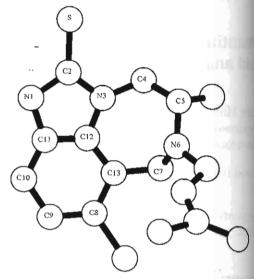


Figure 2. Structure of TIBO, obtained from complexed structure between TIBO and HIV-1 reverse transcriptase [9]; the atom numbering as used in this study is indicated.

dependent variable in SAR analysis. In CoMFA, these 46 TIBO derivatives are used as training set. Addition of 24 compounds (compounds T1-T24) was done in order to test the validation of the model (test set see Table 8). The activity data of these inhibitors was taken from References 15, 28 and 30.

Calculations of structural properties for QSAR analysis

The starting geometry of TIBO (Figure 2) is obtained from a crystallographic structure of the enzyme inhibitor complex [9]. Modification of substituents of all TIBO derivatives was done by ALCHEMY III [16] Full geometry optimization of all structures was carried out with the AM1 semiempirical molecular orbin method [17], implemented in the GAUSSIAN 94 program [18] on a DEC AlphaStation model 250/4 266 Consequently, partial atomic charges were derived Based on optimized geometry, molecular properties were calculated by the Chemplus 1.0 program [19] Molecular polarizability (POL) can be expressed the sum of atomic polarizabilities, plus correctionsdpending on the types of bonds present. These have been presented as approximate sums of bond polarizabilities [20]. The other investigated molecular descriptors, MR and log P, were determined by the same procedure as described in the previous stud-[11]. The multiple linear regression (MLR) in SPSS for Windows Release 6.0 [21] was used to develop

Table 1. Structure of TIBO derivatives^a, experimental and calculated log (1/C) HIV-1 RT inhibitory affinities

Compd.	R	X	Y	Z	log(1/C)		Residual
No					Experimental	Calculated ⁶	
1	Н	S	8-CI	DMA ^c	7.340	8.006	-0.666
2	Н	S	9-CI	DMA	6.790	7.167	-0.377
3	5-CH2CH3	О	_	2-MA ^d	4.300	4.958	-0.658
4	5-CH(CH3) ₂	O	_	2-MA	5.000	5.051	-0.051
5	5-CH(CH3) ₂	O	_	DMA	5.000	5.044	-0.044
6	5.5-di-CH3	O	_	2-MA	4.640	4.994	-0.354
7	4-CH3	O	_	2-MA	4.490	4.521	-0.031
8	4-CH3(S)	S	9-C)	2-M.A	6.170	6.578	-0.408
9	4-CH3	S	9-C)	CH2CH(CH2)2	5.660	6.416	-0.756
10	4-CH(CH3)2	O	_	CH2CH2CH3	4.130	4.433	-0.303
11	4-CH(CH3) ₂	O	_	2-MA	4.900	4.419	0.481
12	4-CH2CH2CH3	O	_	CH2CH2CH3	3.740	3.598	0.142
13	4-CH2CH2CH3	О		2-MA	4.320	4.469	-0.149
14	7-CH3	0	-	CH2CH2CH3	4.080	5.021	-0.941
15	7-CH3	O	-	DMA	4.920	5.016	-0.096
16	7-CH3	0	8-CJ	DMA	6.840	6.671	0.169
17	7-CH3	O	9-C1	DMA	6.790	5.787	1.003
18	7-CH3	S		CH2CH2CH3	5.610	6.260	-0.650
19	7-CH3	S	_	DMA	7.110	6.266	0.845
20	7-CH3	S	8-CI	DMA	7.920	7.932	-0.012
21	7-CH3	S	9-CI	DMA	7.640	7.115	0.525
22	4.5-di-CH3(cis)	O	_	DMA	4.250	4.346	-0.096
23	4,5-di-CH3(cis)	S	_	DMA	5.650	5.727	-0.077
24	4,5-di-CH3(trans)	S	_	CH2CH(CH2) ₂	4.870	4.725	0.145
25	4,5-di-CH3(trans)	S	_	DMA	4.840	5.753	-0.913
26	4-keto-5-CH3	S	9-Cl	CH2CH2CH3	4.300	3.959	0.341
27	4.5-benzo	S	_	CH2CH(CH2) ₂	5.000	4.944	0.056
28	5.7-di-CH3(trans)	\$	_	DMA	7.380	6.193	1.187
29	5.7-di-CH3(ris)	\$	_	DMA	5.940	6.265	-0.325
30	5.7-di-CH3(R,R: trans)	0	9-CI	DMA	6.640	5.771	0.869
31	5.7-di-CH3 (R,R; trans)	S	9-CI	DMA	6.320	7.012	-0.692
32	5.7-di-CH3 (S.S; trans)	0	9-CI	DMA	5.300	5.127	0.173
33	4.7-di-CH3(trans)	S	- -				
				DMA	4.590	4.423	0.167
34	5,6-CH2C(=CHCH3)CH2(S)	S	9-Cl	_	5.420	6.126	-0.706
35	6,7-(CH2)4	S S	9-CI	-	5.700	6.934	-1.234
36	5-CH3(S)		8-CI	DMA	8.300	7.880	0.420
37	5-CH3(S)	0	9-CI	DMA	6.740	5.840	0.900
38	5-CH3(S)	S	9-CI	DMA	7.370	7.066	0.304
39	5-CH3(S)	S	9-CI	CH2CH(CH2) ₂	7.470	7.079	0.391
40	5-CH3(\$)	S	-	CH2CH(CH2) ₂	7.220	6.261	0.959
41	5-CH3	0	-	CH2CH2CH3	4.220	5.127	-0.907
42	5-CH3	S	-	CH2CH2CH3	5.780	6.285	-0.505
43	5-CH3	0	-	2-MA	4.460	5.071	-0.611
44	5-CH3	S	-	DMA	7.010	6.281	0.729
45	5-CH3(\$)	0	. –	DMA	5.480	5.054	0.426
46	5-CH3(S)	S	_	2-MA	7.580	6.237	1.344

^aSee Figure 1. ^b Calculated by Equation 5. ^cDMA = 3.3-dimethylallyl. ^d2-MA = 2-methylallyl.

QSAR model. The validity of the model was proven by multiple correlation coefficients (r), standard deviation (s) and F-test value. The reliability of the model was indicated in terms of predictive $r^2(Q^2)$.

Alignment rule and CoMFA analysis

The alignment rule, i.e., the positioning of a molecular model within a fixed lattice, is the most important input variable in CoMFA. In this study, all TIBO structures were fully optimized by ab initio calculations with the HF/3-21G basis set. The availability of crystallographic data for the HIV-1 RT/TIBO complex structure offered a possibility for alignment rule, i.e., minimization within the active site. To reduce the computational complexity, a substructure sphere of 12 Å radius centered on the ligand of the inhibitor/enzyme complex was defined as active site. The rigid fragments common to investigated compounds were superimposed to the equivalent atoms in a TIBO template molecule. Backbone atoms of the selected active site were kept rigid during minimization. Side chain atoms and ligand atoms were allowed to relax. After minimization, these ligands were extracted from the active site. For the active site, partial atomic charges were loaded from the SYBYL Biopolymer dictionary (Kollman all atom method). Partial atomic charges required for calculations of electrostatic interaction were computed by the MOPAC program [22] in SYBYL 6.4 [23], using the semiempirical method AM1.

A CoMFA cubic lattice, with 2 Å grid spacing, was generated around these molecules based on the molecular volume of the structures. These dimensions ensured that the grid extended beyond the molecular dimensions by 4.0 Å in all directions. In this investigation, three different atoms, sp3 carbon atom with +1 charge (default probe atom in SYBYL), sp³ oxygen atom with -1 charge and H atom with +1 charge, served as probe atoms. The probe atom was placed at each lattice point and the interactions of the steric and electrostatic fields with each atom in the molecule were all calculated with CoMFA standard scaling and then put in a CoMFA QSAR table. In order to speed up the analysis and reduce the amount of noise, the minimum signar value was set to 2.0 kcal/mol and energy cutoff values of 30 kcal/mol were selected for both electrostatic and steric fields.

For the CoMFA model, partial least-squares (PLS) methodology was employed to perform the correlation between the steric and electrostatic properties

and inhibitory activity. The orthogonal latent variables were extracted by the NIPALS algorithm [24] and subjected to full cross-validation (leave-one-out method). The analyses were carried out with a maximum of ten components, and subsequently, using the number of component (noc) at which the difference in the $r_{\rm cv}^2$ value to the next one was less than 0.02 [25]. Following the cross-validated analysis, a non cross-validated analysis was performed using the optimal number of components previously identified and was then employed to analyze the CoMFA results.

Predictive ability

The overall predictive ability of the analysis was expressed in terms of Q^2 or r_{cv}^2 , in QSAR and CoMFA respectively, which is defined as

$$Q^2$$
 or $r_{cv}^2 = (SSY - PRESS)/SSY$,

where SSY represents the variance of the biological activities of molecules around the mean value and PRESS is the prediction error sum of squares derived from the leave-one-out method. The uncertainty of the prediction is defined as

$$S_{PRESS} = [PRESS/(n-k-1)]^{1/2},$$

where k is the number of variables in the model and n is the number of compounds used in the study.

Results

QSAR analysis

The following atomic net charges of various atoms in tricyclic rings. N1, C2, N3, C4, C5, N6, C7, C8, C9, C10, C11, C12 and C13, illustrated in Figure I, were considered as electronic variables. In order to account for molecular properties of molecules, partition coefficients (log P), molecular refractivity (MR) and molecular polarizability (POL) were employed. All investigated variables are presented in Table 2.

All possible combinations of parameters were considered to develop the QSAR model. A large number of satisfactory statistical models was obtained. The quality of models, judged by r. s. F, Q² and Spress, was statistically tested. Consequently, Equations 1-9 were consecutively evaluated. Based on statistics for the coefficients of variables of Equations 7-9 (Table 3) and possible chance correlations [26] (Table 4), the use of more than six independent variables was not

2. Atomic net charge and molecular properties for compounds in Table 1, used in the QSAR study

log P	MR	POL	NI	C2	N3	C4	C5	N6	C7	C8	C9	C10	C11	C12	C13
3.630	56.453	34.436	-0.4068	0.0720	-0.2911	-0.1451	-0.1446	-0.3371	-0.0977	-0.0777	-0.1650	-0.1795	0.0234	0.0272	-0.0790
3.630	56.453	34.436	-0.4074	0.0745	-0.2939	-0.1421	-0.1445	-0.3383	-0.0911	-0.1722	-0.0701	-0.1745	0.0318	0.0225	~0.0917
4.854	48.804	31.183	-().4628	0.4604	-0.3211	-0.1358	-0.0440	-0.3452	-0.0881	-0.1871	-0.1775	-0.1932	0.0374	0.0107	-0.0965
5.257	53.276	33.018	-0.4390	0.4508	-0.3274	-0.1318	-0.0362	-0.3470	-0.0854	-0.1824	-0.1812	-0.1862	0.0203	0.0162	-0.0991
5.571	57.884	34.853	-0.4324	0.4514	-0.3373	-0.1226	-0.0257	-0.3429	-0.0858	-0.1812	~0.1837	-0.1841	0.0137	0.0302	-0.1032
4.464	48.917	31.183	-0.4342	0.4546	~0.3406	-0.1216	0.0488	-0.3349	-0.0892	-0.1826	-0.1830	-0.1848	0.0159	0.0289	-0.1020
4.386	44.280	29.348	-0.4457	0.4457	-0.3010	-0.0599	-0.1125	-0.3684	-0.0781	-0.1867	-0.1785	-0.1893	0.0253	0.0086	-0.0971
3.730	56.263	34.436	-0.4074	0.0661	-0.2728	-0.0605	-0.1119	-0.3731	-0.0771	-0.1740	-0.0690	-0.1765	0.0316	0.0127	-0.0866
3.211	61.899	33.854	-0.4073	0.0749	-0.2876	-0.0437	-0.1292	-0.3487	-0.0850	-0.1779	-0.0675	-0.1777	0.0318	0.0246	-0.0892
4.840	56.242	31.375	-0.4388	0.4470	-0.3056	-0.0430	-0.0924	-0.3924	-0.0487	-0.1864	-0.1797	-0.1869	0.0174	0.0126	-0.0994
5.257	53.276	33.018	-0.4358	0.4495	-0.3140	-0.0397	-0.1055	-0.3823	-0.0706	-0.1851	-0.1810	-0.1859	0.0149	0.0176	-0.0997
4.834	56.372	31.375	-0.4428	0.4443	-0.3058	-0.0500	-0.1019	-0.3928	-0.0610	-0.1888	-0.3058	-0.1895	0.0223	0.0136	-0.0968
5.251	53.405	33.018	-0.4413	0.4454	-0.3001	-0.0556	-0.1138	-0.3677	-0.0777	-0.1857	-0.1787	-0.1885	0.0218	0.0041	-0.0939
3.969	47.246	27.705	-0.4446	0.4485	-0.3154	-0.1444	-0.1422	-0.3385	0.0051	-0.1865	-0.1789	-0.1883	0.0245	0.0149	-0.0938
4.700	48.888	31.183	-0.4409	0.4475	-0.3175	-0.1444	-0.1378	-0.3421	0.0033	-0.1847	-0.1797	-0.1878	0.0217	0.0135	-0.0910
5.328	53.382	33.111	-0.4372	0.4465	-0.3081	-0.1509	-0.1372	-0.3430	-0.0017	-0.0778	-0.1664	-0.1829	0.0236	0.0171	-0.0694
5.328	53.382	33.111	-0.4517	0.4541	-0.3153	-0.1456	-0.1380	-0.3429	0.0038	-0.1735	-0.0698	-0.1804	0.0395	0.0128	-0.0818
2.685	54.735	30.865	-0.4077	0.0743	-0.2916	-0.1424	-0.1427	-0.3408	0.0048	-0.1857	-0.1779	-0.1857	0.0213	0.0226	-0.0930
3.419	56.377	34.343	-0.4080	0.0731	-0.2891	-0.1435	-0.1424	-0.3354	0.0031	-0.1859	-0.1778	-0.1859	0.0215	0.0208	-0.0927
4.044	60.871	36.271	-0.4079	0.0671	-0.2827	0.1489	-0.1430	-0.3340	-0.0029	-0.0790	-0.1645	-0.1809	0.0238	0.0240	-0.0712
4.044	60.871	36.271	-0.4075	0.0616	-0.2761	-0.1557	-0.1318	-0.3513	0.0084	-0.1706	-0.0707	-0.1756	0.0314	0.0027	-0.0751
5.113	53.306	33.018	-0.4483	0.4499	-0.3043	-0.0399	-0.0424	-0.3357	-0.0908	-0.1890	-0.1769	-0.1913	0.0271	0.0102	-0.0968
3.829	60.795	36.178	-0.4077	0.0667	-0.2728	-0.0536	-0.0164	-0.3790	-0.0694	-0.1860	-0.1770	-0.1871	0.0211	0.0095	-0.0944
2.996	61.823	33.761	-0.4097	0.0766	-0.2798	-0.0028	-0.0449	-0.3356	-0.0874	-0.1907	-0.1771	-0.1885	0.0206	0.0271	-0.0490
3.829	60.795	36.178	-0.4074	0.0638	-0.2652	-0.0553	-0.0159	-0.3704	-0.0719	-0.1861	-0.1772	-0.1868	0.0205	0.0104	-0.0950
5.062	56.463	32.879	-0.4185	0.0679	-0.3371	0.3413	-0.0431	-0.3492	-0.0883	-0.1786	-0.0615	-0.1833	0.0525	0.0219	-0.0891
3.844	47.138	36.081	-0.4068	0.0871	-0.2571	0.0668	0.0508	-0.3603	-0.0615	-0.1845	-0.1758	-0.1850	0.0235	0.0247	-0.0974
3.829	60.795	36.178	-0.4069	0.0792	-0.3000	-0.1342	-0.0478	-0.3418	0.0048	-0.1842	-0.1788	-0.1858	0.0198	0.0257	-0.0916
3.829	60.795	36.178	-0.4072	0.0659	-0.2806	-0.1482	-0.0387	-0.3498	0.0112	-0.1824	-0.1793	-0.1856	0.0204	0.0050	-0.0843
5.741	57.801	34.946	-0.4476	0.4548	-0.3222	-0.1375	-0.0474	-0.3407	0.0066	-0.1724	-0.0712	-0.1789	0.0359	0.0179	-0.0841
4.457	65.298	38.106	-0.4067	0.0774	-0.2996	-0.1352	-0.0476	-0.3425	0.0054	-0.1718	-0.0709	-0.1754	0.0297	0.0270	-0.0835
5.741	57.801	34.946	-0.4369	0.4423	-0.2954	-0.1536	-0.0284	-0.3546	0.0106	-0.1722	-0.0776	0.0315	-0.0033	-0.0033	-0.0757
3.829	60.795	36.178	-0.4072	0.0640	-0.2679	-0.0624	-0.1092	-0.3718	0.0171	-0.1865	-0.1865	-0.1876	0.0201	0.0111	0.0111
3.216	54.391	33.662	-0.407 I	0.0883	-0.3119	-0.0777	-0.0737	-0.3252	-0.0890	-0.1767	-0.0713	-0.1740	0.0271	0.0542	-0.0516
2.881	57.351	32.019	-0.4077	0.0682	-0.2844	-0.1523	-0.1251	-0.3626	0.0168	-0.1745	-0.0713	-0.1761	0.0306	0.0116	-0.0694
4.044	60.871	36.271	-0.4055	0.0790	-0.3014	-0.1348	-0.0438	-0.3433	-0.0954	-0.0774	-0.166)	-0.1799	0.0209	0.0344	-0.0763
5.328	53.382	33.111	-0.4454	0.4553	-0.3423	-0.1360	-0.0420	-0.3423	-0.0883	-0.1714	-0.0714	-0.1779	0.0349	0.0174	-0.0895
4.044	60.871	36.271	-0.4064	0.0782	-0.2986	-0.1349	-0.0437	-0.3430	-0.0898	-0.1716	-0.0706	-0.1752	0.0301	0.0247	-0.0879
3.211	61.899	33.854	-0.4074	0.0753	-0.2893	-0.1414	-0.0290	-0.3686	-0.0726	-0.1754	-0.0702	-0.1759	0.0304	0.0222	-0.0897
2.583	57.405	31.926	-0.4075	0.0771	-0.2900	-0.1404	-0.0288	-0.3679	-0.0728	-0.1878	-0.1782	-0.1863	0.0204	0.0209	-0.0978
3,969	47.246	27.705	-0.4263	0.4465	-0.3215	-0.1380	-0.0488	-0.3421	-0.0871	-0.1830	-0.1813	-0.1839	0.0149	0.0174	-0.1017
1.685	54.735	30.865	-0.4071	0.0809	-0.3022	-0.1333	-0.0496	-0.3434	-0.0875	-0.1843	-0.1784	-0.1848	0.0212	0.0252	-0.0999
4.386	44.280	29.348	-0.4390	0.4517	-0.3284	-0.1345	-0.0494	-0.3409	-0.0877	-0.1826	-0.1809	-0.1861	0.0208	0.0174	-0.0997
3.415	56.377	34.343	-0.4068	0.0816	-0.3036	-0.1328	-0.0488	-0.3434	-0.0878	-0.1830	-0.1787	-0.1850	0.0205	0.0247	-0.0984
4.70	48.888	31.183	-0.4375	0.4498	-0.3249	-0.1350	-0.0418	-0.3416	-0.0885	-0.1832	-0.1809	-0.1863	0.0193	0.0172	-0.0982
3,101	51.768	32.508	-0.4069	0.0806	-0.2997	-0.1336	-0.0444	-0.3410	-0.0914	-0.1844	-0.1785	-0.1857	0.0207	0.0237	-0.0959
-									_						

$$\log(1/C) = 16.743(\pm 7.022)\mathbf{C8} - 3.320(\pm 1.175)\mathbf{C2}$$
$$-6.506(\pm 2.489)\mathbf{C4} + 6.473(\pm 3.866)\mathbf{C9}$$
$$-12.312(\pm 11.227)\mathbf{C13} + 8.697(\pm 1.474).$$
$$(n = 46, r = 0.869, s = 0.662, F = 24.579,$$
$$Q^2 = 0.677. S_{PRESS} = 0.724),$$
 (5)

$$\log(1/C) = 13.604(\pm 7.149)\text{C8} - 5.415(\pm 2.085)\text{C2}$$

$$-7.867(\pm 2.618)\text{C4} + 5.054(\pm 3.848)\text{C9}$$

$$-13.552(\pm 10.671)\text{C13}$$

$$+0.491(\pm 0.413)\log P$$

$$+6.148(\pm 2.610),$$

$$(n = 46, r = 0.887, s = 0.626, F = 23.887, Q^2 = 0.712, S_{\text{PRESS}} = 0.726).$$
(6)

In the above correlation, n is the number of compounds used to derive the model, F is overall F-statistics for the addition of each successive term, and values in parentheses are the 95% confidence limit of each coefficient. The statistics for the coefficients are summarized in Table 3. The correlation matrix for the variables is given in Table 4. In order to examine the predictive power of the model, a cross-validation test was performed on the data set.

CoMFA analysis

Initially, a critical step in the construction of the CoMFA model was the attainment of an alignment rule. All TIBO compounds were fully optimized using ab initio calculations with the HF/3-21G basis set and the corresponding minimum energy conformers were aligned as described before. The effect of the probe atom was investigated for the reason that CoMFA depends on the interaction energy between probe atoms and molecules. All obtained analyses included both field types, i.e. steric and electrostatic fields. In addition, separated analysis of only steric or electrostatic field types was also performed. CoMFA with a default setting probe (sp³C) yielded a model with r_{cv}^2 of 0.570 (model 1) as shown in Table 5. Regarding the other probe atom, sp³O (-1), produced better r_{cv}^2 (model 2, $r_{\rm cv}^2=0.594$) than those obtained from sp³C and H (+1) (model 3, $r_{\rm cv}^2=0.544$). It is important to note that steric field type models indicate higher predictive ability than that obtained from electrostatic field type models as shown in models 1-3.

The atomic charge of the sp³O probe atom was thus selected for the next investigation on the effect

of lattice spacing. The results of grid-CoMFA tests are summarized in Table 6. The $r_{\rm cv}^2$ indicated that the grid spacing set to 2 Å was suitable. A decrease in grid spacing leads to increasing the number of interaction energy values; however, it also increases the noise in PLS analysis.

Discussion

QSAR model

According to the QSAR models listed above, it was found that all equations show statistical significance The decrease of F-value on addition of more parameters into Equations 2 and 3, producing Equation 4. indicates that the suitable equation would be either Equation 2 or 3. However, the predictive ability (Q^2) was not acceptable as the Q^2 value should be greater than 0.6 [27]. Therefore, only three models, Equations 4, 5, and 6 were considered to be reasonable predictive models. A comparison of these three models shows that the predictive ability of Equation 6 (0^2) is the highest (0.712). This equation contains C2 and log P variables which show high collinearity (0.7%) see Table 4). In order to evaluate the reliability of both variables in the equation, C2 or log P were excluded from Equation 6. After taking out log P, the result is identical to Equation 5. By this procedure, omitting C2 produced Equation 10.

$$\log(1/C) = 20.296(\pm 8.597) \text{C8}$$

$$+9.036(\pm 4.550) \text{C9}$$

$$-4.928(\pm 3.044) \text{C4}$$

$$-0.417(\pm 0.28) \log P$$

$$-7.398(\pm 13.414) \text{C13}$$

$$+11.2315(\pm 2.126)$$

$$(n = 46, r = 0.797, s = 0.807, F = 13.903, Q^2 = 0.536, S_{\text{PRESS}} = 0.910)$$
(10)

It is observed that the statistical criteria of Equation 10 were lower than that of Equation 5. In addition, such a model contained one insignificant coefficient of Cl3 as expressed by the confidence interval and *F*-statistics (Table 3).

In comparing the quality of models, Equation 5 and Equation 4, it is evident that Equation 5 shows higher predictive ability (0.677). Consequently, Equation 5 was considered to be the best QSAR model in the

Table 5. Summary of CoMFA models with 46 TIBO compounds at different probe atoms

Model	Probe atom	Field type	Noc	$r_{\rm cv}^2$	s-press	r. ² a	S	F	Outliers (residual)	Steric contb ^l
ı	sp ^{.3} C(+1)	hoth	3	0.570	0.854	0.847	0.510	77.590	cpd.39(-1.197)	79.3
		st	3	0.541	0.883	0.822	0.549	64.863		
		el	2	0.369	1.023	0.731	0 668	58.468		
2	$sp^{3}O(-1)$	both	3	0.594	0.831	0.860	0.487	86.247	cpd.33(-1.005)	79.6
		st	3	0.579	0.846	0.832	0.535	69.179		
		el	2	0.369	1.023	0.731	0.668	58.468		
3	H(+1)	both	3	0.544	0.880	0.850	0.505	79.079	cpd.28(1.05)	74.7
		st	3	0.541	0.883	0.822	0.549	64.863		
		el	2	0.369	1.023	0.731	0.668	58.468		
4 ^c	$sp^{3}O(-1.0)$	both	3	0.629	0.796	0.877	0.459	97.07	cpd.46(0.908)	79.5
		st	3	0.603	0.822	0.847	0.519	72.74		
		el	3	0.475	0.958	0.880	0.458	73.344		
5 ^d	$sp^{3}O(-1.0)$	both	3	0.657	0.756	0.887	0.434	104.743	cpd.39(1.01)	79.7
		st	3	0.629	0.786	0.853	0.494	77.669		
		cł	4	0.533	0.894	0.900	0.412	88.238		
6 ^e	$sp^{3}O(-1.0)$	both	3	0.689	0.712	0.901	0.402	118.543	cpd.15(0.996)	80.2
		st	3	0.660	0.744	0.869	0.462	86.547		
		el	4	0.471	0.941	0.890	0.430	76.565		
7 ^f	$sp^3O(-1.0)$	both	3	0.721	0.680	0.919	0.367	143.049	Cpd.40(0.901)	81.5
		st	3	0.700	0.705	0.897	0.413	110.53		
		el	4	0.469	0.951	0.899	0.414	82.425		
8g	$sp^{3}O(-1.0)$	hoth	3	0.771	0.612	0.941	0.312	195.028	Cpd.21(0.662)	81.8
		st	2	0.741	0.644	0.920	0.363	141.242		
		el	2	0.487	0.905	0.785	0.586	69.785		

^aConventional r^2 .

present study, both in statistical significance and predictive ability. The variables used in this equation have no mutual correlation as shown in Table 4. The multiple correlation coefficient of this equation is 0.869 and it accounts for 75.5% of the variation in the biological data. The experimental versus the calculated affinities obtained from Equation 5 are reported in Table 1 and plotted in Figure 3.

Inspection of the best QSAR model (Equation 5) apparently indicates the importance of electronic characteristic contribution to the HIV-1 RT inhibition of TIBO analogues. Among the atomic charge variables, five indicators, C8, C2, C4, C9 and C13 were found to be the main parameters of influence in the correlation. It can be seen from all QSAR equations (Equations 1-10) that atomic charge at the C8-position seems to

be the major contributor to the affinity. The positive value of the coefficient for this term suggests that low electron density on the C8-position correlates with increased pharmacological activity. Therefore, the presence of a strong electron-withdrawing substituent at this position is required. This is also in agreement with the empirical observation that compounds substituted by 8-Cl and/or 9-Cl atoms in the benzene ring are more active than those without it [28]. Consequently, the influence of the C9 parameter on biological activity could be explained in the same manner. In contrast, the coefficient of C2 showing a negative sign suggests that the lower positive charge at such positions leads to a higher affinity. Substitution of a sulfur atom for an oxygen atom at the C2-position lowers the positive charge on the site. This was consistently found by

bSteric contribution in 1/6.

^cElimination of compd. N. 33 (remaining 45 compds in the training set).

dElimination of compds N. 33 and 46 (remaining 44 compds in the training set).

^eElimination of compds N. 33, 46 and 39 (remaining 43 compds in the training set).

¹Elimination of compds N. 33, 46, 39 and 15 (remaining 42 compds in the training set).

Elimination of compds N. 33, 46, 39 15 and 40 (remaining 41 compds in the training set).

Table 6. The statistic results with lattice grid space by 1 Å and 2 Å

Probe atom	Grid (Å)	Noc	/2v	s-press	r ² a	-s 	F	Steric contb ^b
sp ³ O(-1.0)	1	5	0.585	0.868	0.958	0.273	182.805	77.6
	2	3	0.594	0.831	0.860	0.487	86.247	79.6

^aConventional r^2 .

bSteric contribution in %.

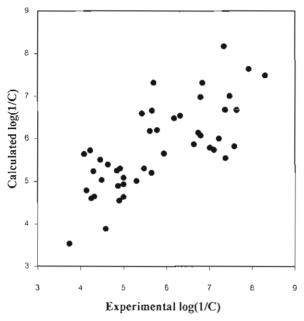


Figure 3. Comparison of experimental with calculated HIV-1 affinities (log(1/C)) obtained from conventional QSAR (Equation 5).

Kukla et al. [29] who reported that the replacement of urea (one) with a thiourea (thione) at this position always yielded much more potent derivatives. It may be assumed that both sulfur and oxygen may be involved in some charge transfer interactions with the receptor. Considering the presence of the C4 atomic variable in the correlation, it indicates the importance of partial atomic charge on the carbon attached to the *R*-substituent. Its negative coefficients bring the desirable optimum electron density at this position. Due to there being a ring juncture between the benzene and diazepine rings of C13, the changes of substitution at several positions in cyclic rings also affect the variations of electron densities at each position, resulting in pharmacological activity.

Regarding the molecular parameters employed in the QSAR study, addition of a lipophilicity term, represented by $\log P$ to Equation 5, as presented in

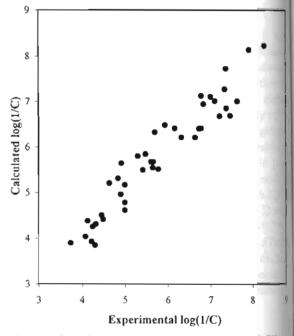


Figure 4. Plot of calculated versus experimental HIV-1 RT inhibitory affinities (log(1/C)) obtained from non-cross-validation of CoMFA model 8 for training set compounds.

Equation 6, produced better statistical results. However, a high intercorrelation between log *P* and C2 (0.776, listed in Table 4) was encountered. Therefore, this model was found to be unreliable. It is also observed that other molecular properties, i.e. MR. a measure of substituent bulk, and POL were not accounted for in the obtained QSAR model. It could be explained by the high collinearity between both variables to each other and to C2.

It is interesting to note that atomic net charge of TIBO analogues, carried out by ab initio geometrical optimization with HF/3-21G basis sets, were also used as parameters in QSAR analysis. Nevertheless, we have consistently found that the quality of the QSAR models, obtained by ab initio (on the HF/3-21G level charges, could not be improved, both in statistical

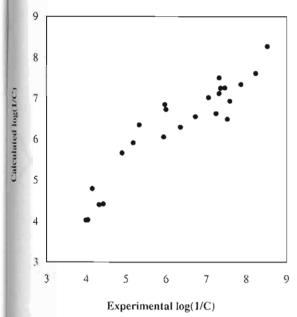


Figure 5. Plot of calculated versus experimental HIV-1 RT inlibitory affinities (log(1/C)) obtained from non-cross-validation of CoMFA model 8 for test set compounds.

significance and predictive ability, compared to those obtained from AMI charges*.

CoMFA model

Model 2 expresses a higher level of internal consistency compared to the standard method (model 1), but one compound (compound 33) is significantly out of line as shown in Table 7. Inspection of outliers btained from other CoMFA models was done and the maximum residual value is shown in Table 5. As compound 33 was found to be a maximum outlier, therefore, elimination of this compound from the CoMFA analysis produced model 4. However, a residual is still in the same range as obtained by compound 33. The consecutive outliers, compounds 46, 39. 15 and 40, were then removed, resulting in models 5.6, 7 and 8, respectively. The final model, model 8, satisfied both predictive ability ($r_{cv}^2 = 0.771$) and maximum outlier. The differences seen in connection with these outliers cannot be explained by the model. However, it was observed that the 4,7-dimethyl subtituents (trans) of compound 33 are different from other di-substituents in these analogues. Compounds 19 and 40 seem very identical to each other, except that the difference occurs in Y-substituent (9-Cl). Both are

Table 7. Experimental and calculated log (1/C) HIV-1 RT inhibitory affinities of training TiBO compounds, based on CoMFA analysis

Compd	•		Residual						
No.	log(1/C)	$\log(1/C)^a$							
1	7.340	7.305	0.035						
2	6.790	7.197	-0.407						
3	4.300	3.806	0.494						
4	5.000	4.603	0.397						
5	5.000	5.089	-0.089						
6	4.640	5.078	-0.438						
7	4.490	4.661	-0.171						
8	6.170	6.182	-0.012						
9	5.660	5.576	0.084						
10	4.130	4.300	-0.170						
11	4.900	4.945	-0.045						
12	3.740	4.073	-0.333						
13	4.320	4.190	0.130						
14	4.080	3.754	0.326						
15	4.920	5.772	-0.852						
16	6.840	7.065	-0.225						
17	6.790	6.477	0.313						
18	5.610	5.349	0.261						
19	7.110	7.130	-0.020						
20	7.920	8.266	-0.346						
21	7.640	7.000	0.640						
22	4.250	4.115	0.135						
23	5.650	5.613	0.037						
24	4.870	5.519	-0.649						
25	4.840	5.061	-0.221						
26	4.300	5.039	-0.739						
27	5.000	4.724	0.276						
28	7.380	6.495	0.885						
29	5.940	6.449	-0.509						
30	6.640	6.070	0.570						
31	6.320	6.070	0.250						
32	5.300	5.689	-0.389						
33	4.590	5.595	-1.005						
34	5.420	5.703	-0.283						
35	5.700	6.321	-0.621						
36	8.300	8.296	0.004						
37	6.740	6.463	0.277						
38	7.370	7.630	-0.260						
39	7.470	6.469	1.001						
40	7.220	6.520	0.700						
41	4.220	3.791	0.429						
42	5.780	5.410	0.370						
43	4.460	4.762	-0.302						
44	7.010	6.997	0.013						
45	5.480	5.977	-0.497						
46	7.580	6.605	0.975						

^a Calculated by CoMFA model 2.

^{*}Unpublished data.

Table 8. Structure and predicted log (1/C) HIV-1 RT inhibitory affinities of the tested T1BO compounds

Cpds	R	X	Y	Z	Expt. log(1/C)	Calc. log(1/C) ^a	Residual
b _{T1}	Н	0	H	DMA	4.900	5.663	-0.763
bT2	H	О	Н	2-MA	4.330	4.405	-0.075
рТ3	Н	O	Н	CH2CH2CH3	4.050	4.037	0.013
^h T4	Н	O	H	CH2C(C2H5)=CH2	4.430	4.423	0.003
cT5	5-CH3 (S)	S	Н	DMA	7.355	7.248	0.107
^b T6	5-CH3 (S)	O	Н	CH2CH=CH2	4.154	4.796	-0.642
bT7	5-CH3 (\$)	O	Н	CH2CH2CH2CH3	3.999	4.029	-0.030
°Т8	5-CH3 (S)	5	8-F	DMA	8.235	7.613	0.622
¢Т9	5-CH3 (S)	O	8-Br	DMA	7.324	7.501	-0.177
01T ³	5-CH3 (S)	S	8-Br	DMA	8.521	8.273	0.248
ΠT°	5-CH3 (S)	S	8-CH3	DMA	7.865	7.338	0.527
°T12	5-CH3 (S)	S	8-O-CH3	DMA	7.468	7.256	0.212
°T13	5-CH3 (S)	S	9.10-di Cl	DMA	7.592	6.938	0.654
^c T14	5-CH3(S)	O	8-CN	DMA	5.940	6.051	-0.111
^e T15	5-CH3(\$)	S	8-CN	DMA	7.250	6.630	0.620
°T16	CH3(S)	O	8-CH3	DMA	6.000	6.730	-0.730
°T17	5-CH3(S)	S	10-OCH3	DMA	5.330	6.352	-1.022
°T18	5-CH3(S)	O	10-OCH3	DMA	5.180	5.906	-0.726
°T19	5-CH3(S)	S	10-Br	DMA	5.970	6.850	-0.880
^c T20	5-CH3(S)	S	8-CHO	DMA	6.730	6.548	0.182
cT22	15-CH3(S)	O	8-1	DMA	7.060	7.020	0.040
cT22	5-CH3(S)	S	1-8	DMA	7.320	7.120	0.200
^c T23	5-CH3(S)	O	8-C=CH	DMA	6.360	6.293	0.067
^c T24	5-CH3(S)	S	8-C=CH	DMA	7.530	6.489	1.041

^aCalculated by CoMFA model 8.

similar to compound 38. The similarity of compound 46 is also involved by the 5-CH3(S) substitution as shown in compound 45. Finally, CoMFA cannot distinguish the structural similarity of compounds 15 and 14. Steric and electrostatic contributions of model 8 are 81.8% and 18.2%, respectively, with $r_{\rm cv}^2 = 0.771$, $S_{\rm PRESS} = 0.612$, noc = 3. Other statistical results obtained are that the conventional r^2 is 0.941, standard error of estimate is 0.312, F is 195.028 and probability (P) of obtaining this value of F if r^2 were actually zero (prob. of $r^2 = 0$) is lower than 0.001. The non-cross-validated analysis of model 8 is plotted in Figure 4.

Prediction for compounds in the test set

The obtained CoMFA model (model 8) was used to predict the inhibitory activity of compounds in the test set. The observed and predicted inhibitory activities of 24 compounds (T1-T24) are listed in Table 8. The residual values indicated that our CoMFA model can

predict the activity of TIBO derivatives not included in the training set. The model accurately predicted the activities for compounds T2, T3, T4, T7, T21 and T23 and generally predicted for T5, T6, T8-T15, T20 and T22. Comparison of predicted and experimental activities of the test set is plotted in Figure 5.

Steric and electrostatic contributions

The CoMFA steric and electrostatic fields for all 46 TIBO compounds are summarized as contour maps in Figures 6 and 7. Steric and electrostatic interactions between enzyme-inhibitor are also considered therefore, amino acid residues surrounding the TIBO compound in the complex structure were merged into both figures. In Figure 6, the green and yellow contour maps represent regions of space whose occupancy by ligand, respectively, increases or decreases the receptor binding affinity. There are favorable steric regions corresponding to the location around the N6 side chain in the diazepine ring. Furthermore, there is a slightly

^bReference 30.

^cReference 28.

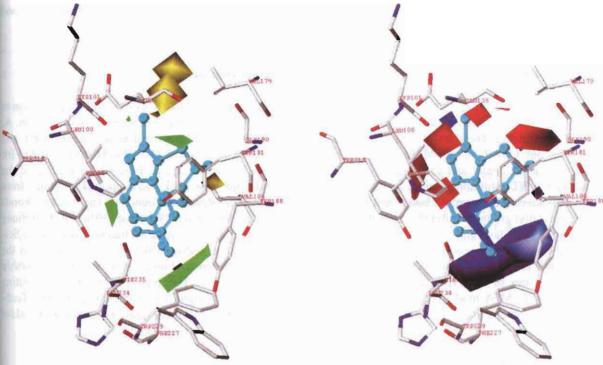


Figure 6. CoMFA steric STDEV*COEFF contour plot from the analysis based on the 3D-QSAR model 8 with no cross-validation. Sterically favored areas are represented by green regions. Sterically unfavored areas are represented by yellow regions. Compound 36 is displayed inside the fields as a ball and stick representation.

Figure 7. CoMFA electrostatic STDEV*COEFF contour plot from the analysis based on the 3D-QSAR model 8 with no cross-validation. Negative charge favored areas are represented by red regions. Negative charge unfavored areas are represented by blue regions. Compound 36 is displayed inside the fields as a ball and stick representation.

green contour located at the substituent attached to the C8-position. It is indicated that an additional bulky atom at this site would increase the activity but the dimension of this substituent should not be too large. This suggestion agrees with the trend observed experimentally that the dimethylallyl group is the optimal group of N6-substitution for inhibitory activity [30]. One of the positive steric regions, the green contour region near the position of Tyr181, one of the important amino acid residues in the binding site, may suggest that there are steric interactions between the aromatic ring of Tyr181 and N6 side chain, i.e. dimethylallyl group, and CH3 attached to the C5 position. That means losing favorable interactions between the aromatic ring of Tyr181 and the TIBO compound may decrease the affinity of this inhibitor. This is also in agreement with the experimental results [9]. The mutation of Tyr181 -> Cys apparently eliminates favorable contacts of the aromatic ring of the tyrosine and the bound inhibitor, reducing the NNRTI binding. These results can reveal the importance of the steric feature of molecules contributing to affinity through

contour maps. It should be mentioned here that the contribution of the C5 parameter can not be estimated in QSAR analysis. Therefore, CoMFA results provide an opportunity to serve with this factor.

The electrostatic contribution contour map is depicted in Figure 7. The positive electrostatic contours are shown in blue and the negative contours are shown in red. A blue electrostatic contour region located at the substituent attached to the C2 position and the larger blue regions located at C8 and C9 substitute positions produce the favorable positive charges. These results complement the obtained QSAR model, particularly the relationship between the net atomic charge and the nature of the substituent on the atom. The low positive charges of the C2 atom in all compounds and a negative coefficient of this variable in Equation 5 indicate that the lower the positive charge, the higher the inhibitory activity. Red electrostatic contour regions, close to the benzene ring and close to the imidazole moiety, suggest that high negative charges in these areas enhance affinity.

Three-Dimensional Quantitative Structure-Activity Relationship Study on HIV-1 Reverse Transcriptase inhibiors in the Class of Dipyridodiazepinone Derivatives, Using Comparative Molecular Field Analysis

Pornpan Pungpo and Supa Hannongbua*

Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, THAILAND

Abstract

Three-Dimensional Quantitative Structure-Activity Relationship (3D QSAR) using Comparative Molecular Field Analysis (CoMFA) was applied to a set of dipyridodiazepinone derivatives against wild-type (WT) and mutant type (Y181C) reverse transcriptase. Starting geometry of dipyridodiazepinone was obtained from x-ray crystallographical data. All 75 derivatives, divided into a training set of 53 compounds and a test set of 22 molecules, were then constructed and fully geometry optimization were performed, based on semiempirical molecular molecular orbital calculations (AM1). CoMFA was used to discriminate structural requirements between WT and Y181C inhibitory activities of these inhibitors. The obtained CoMFA models yield satisfied predictive ability regarding WT and Y181C inhibitions, $r_{ev}^2 =$ 0.624 and 0.726, respectively. CoMFA contour maps reveal that steric and electrostatic interactions corresponding to WT inhibition are 58.5% and 41.5%, respectively, while steric and electrostatic effects have approximately equal contributions towards explaining Y181C inhibitory activities. The contour maps highlight different characteristics for different types of wild type and mutant type HIV-1 RT. In addition, these contour maps agree with all experimental data for binding topology. Consequently, the obtained results provide beneficial information for better understanding the inhibitor-receptor interactions. These results can be helpful basis for design new compounds with increasing of the therapeutic potential in respect to WT and Y181C inhibitions of dipyridodiazepinone analogues.

Keywords: HIV-1 RT, Nevirapine, NNRTI, CoMFA, 3D-QSAR, quantum chemical calculations, Molecular Modelling

correspondance author, Tel. 066-2-9428900, Fax: 066-2-5793955, e-mail: fscisph@ku.ac.th

Introduction

11-Cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one or nevirapine (Figure 1), developed by Merluzzi et al.[1] represents the first member of nonnucleoside reverse transcriptase inhibitors (NNRTIs) to receive approval for the treatment of human immunodeficiency virus (HIV) infections. This drug binds to an allosteric region on the protein and induces conformational changes thereby inactivating the enzyme [2-5]. Like other NNRTIs, however, nevirapine causes drug resistant variants of HIV-1, both in cell culture and in patients. The primary cause of viral resistance to nevirapine is the mutation which substitues cysteine for tyrosine 181 in RT (Y181C RT) [6-8] associated to most reported NNRTIs [9]. This Y181C RT is less sensitive to nevirapine than the wild type enzyme. Most of these mutations act by directly changing the shape of the pocket contacted by the inhibitor. Common feature among these are mutations of Tyr181, which confer some degree of resistance to all of the nonnucleoside compounds [10-14], and Tyr188, which also has significant effects on the binding of a variety of nonnucleoside drugs [15]. The most commonly occuring spontaneous mutation of Tyr181 is a replacement with cysteine [16-18]. Any small variation induced by a single point mutation can bring a significant impact on the sensitivity of virus to members of NNRTIs, and high-level resistance can develop correspondently [19]. Therefore, some aspects of the structural basis for the mechanisms of resistance for HIV-1 inhibitor have largely remained problems to be solved.

In our previous works, quantitative structure-activity relationships (QSAR) for NNRTIs have been studied in an effort to find common structural features among NNRTIs [20-22]. These studies have provided valuable information in terms of electronic descriptors that effect inhibitor binding to reverse transcriptase. Further, HIV-1 RT inhibitors in the class of 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine (HEPT) and benzodiazepinone analogues (TIBO) derivatives were investigated by means of three dimentional quantitative structure-activity relationships (3D-QSAR) using comparative molecular field analysis (CoMFA) [22-23]. The results are successful in establishing the relationship between steric and electrostatic fields around molecules with their biological activities through contour maps. The structure of HEPT in the complex was also analysed, based on molecular orbital calculations [24-25], to study the intermolecular interactions between the inhibitor and the surrounding protein which determine the geometry of the inhibition complex.

In the present study, CoMFA was applied to a class of dipyridodiazepinone derivatives with the aims of determining QSAR and discriminating structural requirements of these inhibitors between WT and Y181C inhibitory activities.

Methods of Calculations

Biological data

The chemical structures of dipyridodiazepinone derivatives and their inhibitory activities against both wild type (WT RT) and mutant type (Y181C) are reported in references 16-18. The potency has been defined as log (1/C), where C is the effective inhibitory concentration of compound required to achieve 50% (IC50) protection of MT-4 cell against the cytopathic effect of HIV-1. In the analysis, the structures of the 53 dipyridodiazepinone compounds serve as training set (Table 1). 22 additional inhibitors were used as test set to evaluate the predictive ability of the resulting models (Table 2).

Molecular modelling and quantum chemical calculations

Starting geometry of dipyridodiazepinone is obtained from crystallographic structure the Modification of enzyme inhibitor complex [10]. of substituents dipyridodiazepinones was performed by ALCHEMY 2000 program [26]. The lowest energy conformer was examined using the systematic search technique available in Sybyl6.4 program [27]. Subsequently, full geometry optimization of all structures was carried out, based on AMI semiempirical molecular orbital method which implemented in the GAUSSIAN 94 program [28] on the DEC Alphastation (model 250-4266). Therefore, partial atomic charges required for calculations of electrostatic interactions were obtained. In addition, in order to evaluate electronic contribution of inhibitors, electrostatic potential of molecules were calculated, using ab-initio (HF/3-21G) calculations by Gaussian 94. Electron distributions were visualized by MOLDEN program [29].

Alignment rules and CoMFA analysis

The alignment rule, i.e., the positioning of a molecular model within a fixed lattice, is the most crucial element of the analysis. In the present study, field fit procedure in Sybyl6.5 [30] was adopted. The resemblance of a molecule to the template is considered in terms of both electrostatic and steric fields. Thus, the selected conformation is oriented so as to minimize the difference between its field values at the lattice points and those of the template field. An underlying assumption in QSAR analysis is that all molecules in the data set showing high activity bind to their receptor in a similar way. For these reasons, compounds 12 and 32 were retained as the template structure of the alignment rule for wild type and mutant HIV-1 RT inhibitors, respectively. The electrostatic and steric fields were computed using Tripos Force Field.

A three dimensional cubic lattice, with 2 Å grid spacing, was generated automatically around these molecules and ensured that the grid extended beyond the molecular dimensions

by 4.0 Å in all directions. In this study, three different atoms, sp³ carbon atom with +1 charge (default probe atom in Sybyl), sp³ oxygen atom with -1 charge and H atom with +1 charge served as probe atoms. The probe atom was placed at each lattice point and its steric and electrostatic interactions with each atom in the molecule were all computed with CoMFA standard scaling and then compiled in a CoMFA QSAR table. The minimum-sigma value was set to 2.0 kcal/mol in order to speed up the analysis and reduce the amount of noise. The energy cutoff values of 30 kcal/mol were selected for both electrostatic and steric field. Then, partial least squares technique (PLS) was employed to derive a 3D-QSAR model expressing the correlation between the steric and electrostatic properties and inhibitory activities. The orthogonal latent variables were extracted by the NIPALS-algorithm [31] and subjected to full cross-validation (leave-one-out method). The analyses were carried out with a maximum of ten components, and subsequently, using the number of component (noc) at which the difference in the r²_{cv} value to the next one was less than 0.05 [32]. Consequently, a non cross-validated analysis was performed using the optimal number of components previously identified and was then employed to analyze the CoMFA results.

Predictive ability

 Q^2 or r^2_{cv} were used to evaluate the overall predictive ability of the model, illustrated as the following

$$r^2_{cv} = (SSY - PRESS)/SSY$$

where SSY represents the variance of the biological activities of molecule around the mean value and PRESS is the prediction error sum of squares derived from the leave-one-out method. The uncertainty of the prediction is defined as

$$S_{PRESS} = [PRESS/(n-k-1)]^{1/2},$$

where k is the number of variables in the model and n is the number of compounds used in the study.

Results and Discussion

CoMFA results

CoMFA models for WT-RT inhibition

At first, the effect of the probe atoms was investigated since CoMFA results depend on the interaction energy between probe atoms and molecules. All obtained analysis included steric and electrostatic fields. In addition, separated analysis of only steric or electrostatic field was also considered. The statistical results of correlation models are summarized in Tables 3-6. CoMFA with default setting probe atom, sp³C(+1), produced a model with a low predictive ability, r²_{cv}= 0.029 (model 1), as shown in Table 3. While other types of probe atoms, i.e.,

sp³O (-1) and H (+1) yielded better r^2_{ev} (model 2, r^2_{ev} = 0.148 and model 3, r^2_{ev} = 0.207, respectively). However, the predictive power is rather low and some compounds are significantly out of line. Inspection of outliers derived from CoMFA model was performed and the maximum residual value is presented in Table 3. As compounds 47 was found to be a maximum outlier, consequently, elimination of this compound from CoMFA analysis yielded model 4. Interestingly, the predictive ability of model is drastically increased (r^2_{ev} = 0.547). However, a residual is still in the same range as produced by compound 47. Consecutively outlier, compound 4, was removed resulting in model 5. Therefore, the final model is satisfied both predictived ability (r^2_{ev} = 0.624) and maximum outlier. The reason for the difference appeared in connection with these outliers cannot be explained by the model. However, it was observed that structures of compounds 45, 46 and 47 seem very equivalent to each other, i.e., the difference occurred in substitutions on the phenyl ring. Furthermore, CoMFA model cannot distinguish the structural similarity of compounds 4 and 2.

Based on above results, the H probe atom was chosen for further studies on the effect of lattice spacing. The results of grid-CoMFA analysis, summarized in Table 4, indicated that 2 Å grid spacing was a good choice for this set of molecule. A decrease in grid spacing increases the number of probe atoms in a region. However, it generates more noise in PLS analysis and leads to a worse r_{cv}^2 value in this case.

Apparently, model 5, obtained from including both steric and electrostatic fields in the analysis, shows the best predictive ability QSAR model with $r_{ev}^2 = 0.624$, s-press = 0.354 and noc = 10. Steric and electrostatic contributions of this model are 58.5% and 41.5%, respectively. Using only steric or electrostatic interaction energy provided worse value of predictive ability, $r_{ev}^2 = 0.528$ and 0.233, respectively (Table 3). Eventhough, steric interaction explaines a majority of variance in the data, both steric and electrostatic interactions play an important role in WT HIV-1 RT inhibition. Other statistical characteristics obtained are that the conventional r^2 is 0.989, standard error of estimate is 0.062, F is 348.133 and probability (P) of obtaining this value of F if r^2 were actually zero (prob. of $r^2 = 0$) is lower than 0.001. The experimental and calculated affinities of model derived from non-cross-validated analysis of model 5 is plotted in Figure 2.

CoMFA models for Y181C inhibition

For further analysis, the CoMFA results with respective to Y181C inhibition were investigated. The statistics of the CoMFA models developed under different probe atoms were summarized in Table 5. For the default CoMFA setting, a r_{cv}^2 of 0.587 could be derived (model 6). With regard to other probe atoms, sp³ O(-1) and H(+1), yielded worse predictive

models than those obtained from $sp^3C(+1)$ (model 7, $r^2_{cv}=0.506$ and model 8, $r^2_{cv}=0.500$, respectively). Model 6 expresses a higher level of internal consistency compare to other models. Inspections of outliers obtained from CoMFA models was done and the maximum residual value is also presented in Table 5. Due to a maximum outlier of compound 36, elimination of this compound yielded a better model (model 9). Nevertheless, a residual is still in the same range as derived from compound 36. Consequently, the consecutive outliers, compounds 38 and 43 were removed, resulting in model 10 and 11, respectively. Interestingly, as compound 43 was removed from CoMFA analysis, the quality of model was increased in a high extent (model 10, $r^2_{cv}=0.662$ and model 11, $r^2_{cv}=0.726$). Finally, model 11 is satisfied both predictive ability and maximum outlier. The reason observed in the connection with these outliers depends on the structural similarity. Compounds 36 and 37 are very similar to each other, except that the difference appears at R1 substituent (C_2H_5 and C_3H_5) and at R2 position (3-pyrazolyl and 4-pyrazolyl). Compounds 43 and 44 are different on R1 (C_2H_5 and C_3H_5) and R2 substitutions (2-pyridyl and 3-pyridyl). Unsubstituted phenyl ring at C2 position of compound 38 is particular different from others in the same series.

The effect of grid spacing on CoMFA results was also studied. The r_{cv}^2 indicated that grid spacing set to 2 Å was suitable for this data set as reported in Table 6. The reason could be explained in the same manner of WT-inhibition.

Inspection of the best QSAR model (model 11) in the series of Y181C RT inhibition, revealed that this model has 46.8% contribution from steric field and 53.2% contribution from electrostatic field, with the $r^2_{ev} = 0.726$ and s-press = 0.262 and noc = 9. Both steric and electrostatic effects have approximately equal contributions to explaining Y181C inhibitory activity. These strongly supported by predictive power of CoMFA results obtained from separated field. Eventhough, a model derived by electrostatic field shows a slightly higher than that of steric field, using only steric or electrostatic interaction energy provides worse value of predictive ability. Regarding other statistical results, the conventional r^2 obtained by PLS for the final model is 0.989, standard error of estimate is 0.262, F is 316.470 and probability (p) of obtaining this value of F if r^2 were actually zero (prob. of $r^2 = 0$) is < 0.001. The experimental and calculated affinities of model derived from model 11 is depicted in Figure 3.

Prediction for compounds in the test set

As the the CoMFA models 5 and 11 show the highest predictive power for WT and Y181C RT inhibition, respectively. Both models were used to predict the inhibitory activities of compounds in the test set. The comparison of observed and predicted inhibitory activities

of 22 compounds by models 5 and 11 are given in Table 2. These clearly show the usefulness of the models on dipyridodiazepinone derivatives not included in Training set. This is indicated that the derived CoMFA models can well predict for activities of compounds in the test set. However, it seems that model 11 are more external predictive ability than model 5. Model 11 can accurately predicted for compounds T1, T2, T5, T9, T10, T17 and T18, whereas, model 5 can well predict only for 3 compounds; T1, T9 and T19.

Steric and electrostatic contributions

The steric and electrostatic contributions for all dipyridodiazepinone compounds are summarized in Figure 4 and Figure 5 derived from WT and Y181C inhibition CoMFA models, respectively. In order to get better understanding of steric and electrostatic inhibitors, amino acid interactions between enzyme and residues dipyridodiazepinone compound in binding pocket were merged into both figures. The green contour maps indicate favorable steric effects in this regions, i.e., incorporation of bulkier groups will enhance the inhibitory activity. On the other hand, yellow contour maps represent that bulkier groups in those regions are detrimental the receptor binding affinity. Concerning CoMFA electrostatic fields, a lower electron density within the inhibitors near blue and red contours, increase or decrease the affinity, respectively.

Steric and electrostatic contributions for WT-RT inhibition

With respect to CoMFA contour maps obtained from WT RT inhibition, Figure 4 presents yellow contours around R2 substitution on the tricyclic ring, espectially a yellow one overlaping with Tyr181 residue. These contours reveal a limitation to the size of substitutent tolerated at this position. The observation which reported high resolution structures of HIV-1 RT complexed to four differnt NNIs [10] indicated that C2 position and substituent attached to C2 of dipyridodiazepinone derivatives make significant interactions with residues in the binding site. That means the increase in steric bulk of side chain leads to steric conflict and lossing favorable interactions to the aromatic ring of Tyr181. This steric constrain is apparent in comparing 2 alkyl derivative (compound 4) and compounds 6-7, listed in Table 1, where there is a decrease in potency with the larger substituent. Additionally, a large red electrostatic contour region closed to R2 position, overlapping yellow contour, indicates that high negative charges in this area enhance the affinity. It could be suggested that unfavorable bulky group and high negative charges are required in this area. This suggestion is supported by experimental data, reported in Table 1, that 2-F derivative (compounds 10) and 2-Cl derivative (compounds 11-13) yielded high potency. In particular, compound 12 shows the

highest potency for WT inhibition in this data set. In order to get better elucidation on electron distributions of inhibitors, effecting to binding affinity, the electrostatic potential of molecules were evaluated and presented in Figure 6(a). It could be strongly confirmed that compound 12 places its Cl atom, indicating significantly negative charged parts, into the region where is favorable for more negative charge. Blue contour, close to Glu138 residue, suggests that low electron density in this area will have a positive effect on biological activity. The steric contour map also shows green contour in the vicinity of Glu138. This reveals that substitutent at C2 position should have bulky substituent in this region as well as it should contain atom providing positive charge toward Glu138. This suggestion agrees with the trend observed experimentally that 2-aryl substitutions yield effective inhibitors (compounds 30-33, Table 1). Steric and electrostatic contributions for Y181C -RT inhibition

Figure 5 shows the contributions of the steric and electrostatic fields to Y181C RT inhibition. A large green contour corresponds the location of the group attached to C2 position on tricyclic ring systems. However, the tolerated steric requirements of this region are highlighted by yellow contours located on each side of favorable steric region. It is indicated that steric occupancy with bulky groups would increase affinity but the dimension of the substituents should be not too large. These suggestions are supported by observed compounds in the training set. Effective inhibitors against WT RT possessing less bulky substituents at C2 position such as compounds 1, 2, 4 and 10-13 have greatly diminished activities against Y181C RT (see Table 1). Compounds 17-20 occupying C2 position with too large substitutents display a significantly reduced potency against Y181C RT as well. In addition, a predominantly feature of the electrostatic contour plot in this analysis is the presence of a large blue contour in the vicinity of R1 substitutent close to Glu138 residue in binding pocket. This contour indicates that more positive charges in this region are favorable for binding affinity. As additional examples of compounds 30-33, the aryl substitution for R1 substituents, are given. These substituents not only orient their pyrrolyl moieties into the green contour area, but also place these groups into the region indicated to be favorable to accommodate positive charges, yielding highly potent activity for Y181C RT. It can be observed by comparison of compounds 17-20 and compounds 30-33. Especially, compound 32 expresses the highest activity against Y181C RT. The electrostatic potential of compound 32 (Figure 6(b)), showing positive charge part (pink color) located on N atom in pyrrolyl ring, can confirm this suggestion. A proton attached to this N atom may involve the H-bonding interactions with amino acid residues. As a blue contour is also presented in CoMFA contour map obtained from WT inhibition in the approximately similar region, this may be a reason why compounds 30-33 show excellent inhibition of both WT and Y181C RT. In addition, there are favorable steric regions near substituent attached to C5 position which close to Tyr188 and Trp229. This is also in agreement with the experimental results, Table 1, that the substitution with CH₃ at this position confers better activity than that of H atom. Based on the obtained results, it could be suggested that not only steric interactions contribute to the Y181C inhibitory activity, but also electrostatic interactions are important to the explain the variance in the data. This is consistently found by Ren et. al. [10] which stated that electrostatic interactions (charge and hydrogen bond) contribute to the final strength of binding and may assist in the orientation of the compound but specificity comes from the interactions with bulky hydrophobic residues.

As crystal structures of nevirapine and its derivatives complexed with HIV-1 RT were presented [3,10], it strongly indicates that there are favorable contacts of aromatic ring of Tyr181 and the bound inhibitor. Significant interactions between Glu138 and the NO₂ group attached to C2 position of tricyclic ring are presented. In addition, the favorable interactions between Try188 and Trp229 and the bound inhibitor are also indicated. Concerning WT inhibition, a substituent posessing unfavorable bulky group and high negative charges should be occupied in C2 position. Otherwise steric conflict could be introduced, yielding worse binding affinity. With regard to Y181C RT inhibition, substitution of Tyr181 by cysteine residue replaces the large aromatic side chain with a thiol group. It is clear that favorable interactions of aromatic ring of Tyr181 and the bound inhibitor was eliminated. This mutaion causes not only a decrease in the steric bulk of side chains but also the distributions of charges are changed. For these reasons, the affinity of inhibitors could be significantly reduced. Based on our finding, it could be suggested that pyrrolyl group is the optimal group of C2 substitution for the lacking aromatic amino acid at position 181. A loss of aromaticity could be compensated by the presence of pyrrolyl group, which may drive binding of inhibitor and receptor. In addition, the charge distributions of this group arc favorable for strength binding. These results show close agreement with our CoMFA models which highlight the different structural requirements for WT and Y181C inhibitions of dipyriodiazepinone derivatives.

Conclusions

3D QSAR model using the CoMFA methodology of dipyridodiazepinone derivatives for inhibition of both wild-type and Y181C RT were derived. CoMFA shows to be helpful method to discriminate structural requirements between WT and Y181C inhibitory activities of these inhibitors. In this study, the obtained QSAR models are reasonable based on both statistical significance and predictive ability. The CoMFA contour maps reveal that steric

interactions play more significantly role with respect to WT inhibition, while steric and electrostatic effects have approximately equal contributions towards explaining Y181C inhibitory activities. These contour maps show good consistent with inhibitor-receptor complexation derived by experimental data. Accordingly, these results lead to a better understanding of important drug-receptor interactions and structural requirements in the class of dipyridodiazepinone compounds. Finally, 3D-QSAR information provides a helpful guideline to design and predict the affinity of novel compounds with enhance wild-type and Y181C RT inhibitory activities prior to synthesis.

Acknowledgements

The authors would like to thank Prof. P. Wolschann for valuable suggestions and discussion, Dr. Surapoj Wongyai for providing of SYBYL6.4. The grants providing by the Thailand Research Funds (RSA4080022), the Golden Jubilee Ph.D. project (3.C.KU/41/B.1) and KURDI are gratefully acknowledged. Appreciations are due to the computing center of University of Vienna for providing of calculations in the cluster computer and to the high performance computing center of the National Electronics and Computer Technology of Thailand (NECTEC) for providing of SYBYL 6.5 calculations on SGI.

References

- Merluzzi, V.J., Hargrave, K.D., Labadia, M.J., Qrozinger, K., Skoog, M., Wu, J.C., Shinh, C., Shinh, C.-K., Eckner, K., Hattooy S. and Sllivan, L.L. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. *Science*. 1990, 250, 1411-1413.
- Kohlsatedt, L.A., Wang, J., Friedman, J.M., Ricc, P.A. and Steitz, T. A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. *Science*. 1992, 256, 1783-1790.
- Smerdon, S.J., Jager, J., Wang, J., Kohlstaedt, L.A., Friedman, J.M., Rice, P.A. and Steitz, T.A. Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. *Proc. Natl. Acad. Sci. U.S.A.* 1994, 91, 3911-3915.
- Wu, J.C., Warren, T.C., Adams, J., Proudfoot, J., Skiles, J., Raghavan, P., Perry, C., Potocki, I., Farina, P.R. and Grob, P.M. A novel dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site. *Biochemistry*. 1991, 30, 2022-2026.
- 5. Cohen, K.A., Hopkins, J., Ingraham, R.H., Pargellis, C., Wu, J.C., Palladino, D.E., Kinkade, P., Warren, T.C., Rogers, S. and Adams, J. Characterization of the binding site

- for nevirapine (BI-RG-587), a nonnucleoside inhibitor of human immunodeficiency virus type-1 reverse transcriptase. *J. Biol. Chem.* 1991, **266**, 14670-14674.
- Richman, D., Shih, C.K., Lowy, I., Rose, J., Prodanovich, P., Goff, S. and Griffin, J. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. *Proc. Natl. Acad. Sci. U.S.A.* 1991, 88, 11241-11245.
- 7. Mager, P.P., A Check on Rational Drug Design: Molecular Simulation of the Allosteric Inhibition of HIV-1 Reverse Transcriptase. *Med. Res. Rev.* 1997, 17, 235-237.
- Balzarini, J., Karlsson, A., Sardana, V.V., Emini, E.A., Camarasa. M.J. and De Clercq, E. Human immunodeficiency virus 1 (HIV-1)-specific reverse transcriptase (RT) inhibitors may suppress the replication of specific drug-resistant (E138K) RT HIV-1 mutants or select for highly resistant (Y181C-->C181I)RT HIV-1 mutants. *Proc. Natl. Acad. Sci. U.S.A.* 1994, 91, 6599-6603.
- De Clercq, E. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of human immunodeficiency virus type 1 (HIV-1) infections: strategies to overcome drug resistance development. Med. Res. Rev. 1996, 16, 125-157.
- Ren, J., Esnouf, R., Garman, E., Somers, D., Ross, C., Kirby, I., Keeling, J., Darby, G., Jones, Y., Stuart, D. and Stammers, D. High resolution structures of HIV-1 RT from four RT-inhibitor complexes. *Nat. Struct. Biol.* 1995, 2, 293-302.
- 11. Ding, J., Das, K., Moereels, H., Koymans, L., Andries, K., Janssen, P.A., Hughes, S.H. and Arnold, E. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. *Nat. Struct. Biol.* 1995, 2, 407-415.
- 12. Das, K., Ding, J., Hsiou, Y., Clark, A.D. Jr., Moereels, H., Koymans, L., Andries, K., Pauwels, R., Janssen, P.A., Boyer, P.L., Clark, P., Smith, R.H. Jr., Kroeger, Smith M.B., Michejda, C.J., Hughes, S.H. and Arnold, E. Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J.Mol.Biol. 1996, 264, 1085-1100.
- 13. Tantillo, C., Ding, J., Jacobo-Molina, A., Nanni, RG, Boyer, P.L., Hughes, S.H., Pauwels, R., Andries, K., Janssen, P.A. and Arnold, E. Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse

- transcriptase. Implications for mechanisms of drug inhibition and resistance. J. Mol. Biol. 1994, 243, 369-387.
- 14. Ding, J., Das, K., Tantillo, C., Zhang, W., Clark, A.D. Jr., Jessen, S., Lu, X., Hsiou, Y., Jacobo-Molina, A. and Andries, K. Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor alpha-APA R 95845 at 2.8 A resolution. Structure. 1995. 3, 365-379.
- 15. Hsiou, Y., Das K., Ding, J., Clark Jr., A.D., Kleim, J., roesner, M., Winkler, I., Riess, G., Hughes, S.H., and Arnold, E. The structure of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097:inhibitor flexibility is a useful design feature for reducing drug resistance. *J.Mol.Biol.* 1998, 284, 313-323.
- 16. Proudfoot, J.R., Hargrave, K.D., Kapadia, S.R., Patel, U.R., Grozinger, K.G., McNeil, D.W., Cullen, E., Cardozo, M., Tong, L., Kelly, T.A., Mauldin, S.C., Fuchs, V.U., Vitous, J., West, M., Klunder, J., Raghavan, P., Skiles, J.W., Mui, P., Rose, J., David, E., Richmond, D., Suklivan, J. L., Farina, V., Shih, C.K., Grob and Adams, J. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. 4. 2-substituted dipyridodiazepinones as potent inhibitors of both wild type and cysteine-181 reverse transcriptase enzyme. J. Med. Chem. 1995, 38, 4830-4838.
- 17. Kelly, T.A., Proudfoot, J. R., McNeil, D.W., Patel R.U.P, David, E, Hargrave, K.P., Peter M., Cardozo, M., Agarwal, A. and Adams, J. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. 5. 4-substituted and 2,4-disubstituted analogs of nevirapine J.Med.Chem. 1995, 38, 4839-4847.
- 18. Kelly, T.A., McNeil, D.W., Rose, J.M., David, E., Shih, C.K. and Grob, P.M. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. 6. 2-Indol-3-yl- and 2-azaindol-3-yl-dipyridodiazepinones. *J.Med. Chem.* 1997, 40, 2430-2433.
- 19. Hoegberg, M., Sahlberg, C., Engelhardt, P., Noreen, R., Kangasmetsae, J., Johansson, N.G., Oeberg, B., Vrang, L., Zhang, H., Sahlberg, B., Unge, T., Loevgren, S., Fridborg, K., and Baeckbro, K. Urea-PETT compounds as a new class of HIV-1 reverse transcriptase inhibitors. 3. Synthesis and further structure-activity relationships studies of PETT analogues. J.Med.Chem. 1999, 42, 4150-4160.
- Hannongbua, S., Lawtrakul, L., and Limtrakul, J., Structure-activity correlation study of HIV-1 inhibitors: Electronic and molecular parameter, J.Comp. Aided Mol.Des. 1996, 10, 145-152.

- 21. Lawtrakul, L., Hannongbua, S. Quantitative structure-activity relationships of HIV-1 RT inhibitors in the class of 1-[(2-Hydroxyethoxy)methyl]-5,6-substituted thymine [HEPT] analogues. Sci. Pharm. 1999, 67, 43-56.
- 22. Hannongbua, S., Pungpo, P., Limtrakul, J. and Wolschann P. Quantitative structure-activity relationships and comparative molecular field analysis of the HIV-1 reverse transcriptase inhibitor of TIBO derivatives. *J.Comp. Aided Mol. Des.* 1999, 13, 563-577.
- 23. Hannongbua, S., Lawtrakul, L., Sotriffer, C.A., and Rode, B.M. Comparative molecular field analysis of the HIV-1 reverse transcriptase inhibitors in the Class of 1[(2-Hydroxyethoxy) -methyl]-6-(phenylthio)thymine. *Quant.Struct.-Act. Relat.* 1996, 15, 389-394.
- 24. Lawtrakul, L., Hannongbua, S., Beyer, A., Wolschann, P. Conformational study of the HIV-1 reverse transcriptase inhibitor 1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT). J.Biol. Chem. 1999, 380, 265-267.
- 25. Lawtrakul, L., Hannongbua, S., Beyer, A., Wolschann, P. Molecuar calculations on the conformation of the HIV-1 reverse transcriptase inhibitor 1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT). *Monatsch. Chem.* 1999, inpress.
- 26. Alchemy 2000, Tripos Associates Inc., St. Louis MO, 1998.
- SYBYL 6.4, Tripos Associates Inc., 1699 South Hanley Road, Suite 303, St. Louis, Missouri, 63144, USA.
- 28. GAUSSIAN 94, Carnegie Office Park, Building 6, Pittsburgh, PA 15106, USA.
- 29. Molden 3.6, Centre for Molecular and Biomolecular Informatics, University of Nijmegen, Toernooiveld 1, 6525 EDNIJMEGEN, The Netherlands.
- SYBYL 6.5, Tripos Associates Inc., 1699 South Hanley Road, Suite 303, St. Louis, Missouri, 63144, USA.
- 31. Wold, S., Johansson, E., Cocchi, M., and Kubinyi, H., 3D QSAR in Design: Theory, Methods and Applications, Leiden, ESCOM 1993, pp. 523-549.
- 32. SYBYL Molecular Modelling Software, version 6.3, SYBYL Ligand Base Design, Tripos Associates, Inc., St.Louis, MO 63144, USA, 1996, p. 229.

14
ble 1 Structure of dipyridodiazepinone derivatives and experimental biological activities against both RT and Y181C RT.

ds. No.	R1	R2	R3	R4	Experimen	ital log(1/C)
					WT RT	Y181C RT
1	Н	CH ₃	Н	C ₃ H ₅	7.096	5.584
2	H	CH ₃	Н	C_2H_5	7.397	5.744
3	H	H	CH ₃	C_2H_5	6.885	5.657
4	CH ₃	CH_3	Н	C_2H_5	7.698	5.999
5	CH₂CH₃	H	CH ₃	C_2H_5	6.920	5.920
6	$CH(CH_3)_2$	CH_3	H	C_2H_5	5.999	5.999
7	$C(CH_3)_3$	CH_3	H	C_2H_5	5.999	5.999
8	C=CHCOOCH ₃	H	CH ₃	C_2H_5	6.744	6.173
9	C=CHCONH ₂	H	CH_3	C_2H_5	6.601	5.619
10	F	CH_3	H	C_2H_5	7.698	6.069
11	Cl	CH_3	H	C_3H_5	7.698	6.107
12	Cl	Cī I ₃	H	C_2H_5	7,999	6.096
13	Cl	H	CH_3	C_3H_5	7.044	6.035
14	NH_2	H	CH ₃	C_2H_5	5.999	5.999
15	NH CH ₃	H	CH ₃	C_2H_5	6.720	6.148
16	NH C ₂ H ₅	H	CH ₃	C_2H_5	6.637	5.885
17	NHCH2CH2CH2OH	CH_3	Н	C_2H_5	7.044	5.999
18	$N(CH_3)_2$	Н	CH ₃	C_2H_5	7.154	6.112
19	N(CH ₃)CH ₂ CH ₂ OH	CH ₃	Н	C_2H_5	7.999	5.999
20	N-3.4-didehydropyrrolidinyl	H	CH ₃	C_2H_5	7.522	6.193
21	N-piperidinyl	H	CH_3	C_2H_5	6.522	5.999
22	N-morpholinyl	H	CH ₃	C_2H_5	6.397	5.999
23	N-thiomorpholinyl	CH ₃	Н	C_2H_5	6.823.	5.999
24	N-pyrrolyl	H	CH ₃	C_2H_5	7.044	6.677
25	OH	H	CH ₃	C_2H_5	6.327	5.999
26	OCH ₃	H	CH_3	C_2H_5	7.397	6.221
27	OCH₃	H	CH_3	C_3H_5	6.920	5.958
28	SCH ₃	CH_3	H	C_2H_5	7.698	5.999
29	2-furanyl	H	CH ₃	C_2H_5	6.957	6.795
30	3-furanyl	H	CH ₃	C_2H_5	7.397	6.957
31	2-pyrrolyl	H	CH ₃	C_2H_5	7.154	7.154
32	3-pyrrolyl	H	CH_3	C_2H_5	7.522	7.397
33	3-ругтоІуІ	H	CH_3	C_3H_5	7.300	7.221
34	2-thienyl	H	CH ₃	C_2H_5	6.853	6.376
35	5-imidazolyl	H	CH ₃	C_2H_5	6.885	6.720
36	3-pyrazolyl	H	CH ₃	C_2H_5	6.408	6.536
37	4-pyrazolyl	H	CH ₃	C_3H_5	7.221	7.300
38	phenyl	H	CH ₃	C_2H_5	6.637	5.853
39	3-OCH₃-phenyl	H	CH ₃	C_2H_5	6.823	6.677
40	3-NH ₂ -phenyl	Н	CH ₃	C_2H_5	7.154	6.251
41	4-OCH ₃ phenyl	Н	CH ₃	C_2H_5	5,853	5.494
42	4-OH-phenyl	Н	CH ₃	C_2H_5	7.154	6.567
		_ _				0.007

ble 1 (Continued)

R1	R2	R3	R4	Experimen	ntal log(1/C)
				WT RT	Y181C RT
2-pyridyl	H	CH ₃	C_2H_5	6.744	5.795
3-pyridyl	· H	CH_3	C_3H_5	6.744	6.355
3-(6-OCH₃pyri dyl)	H	CH_3	C_2H_5	5.920	5.522
3-(6-OH-pyri dyl)	Н	CH_3	C_2H_5	5.958	5.999
3-(6-NH ₂ -pyridyl)	H	CH_3	C_2H_5	7.300	6.584
4-pyridyl	H	CH_3	C_3H_5	6.823	6.494
H	CH ₂ NHPh	H	C_3H_5	7.221	5.862
H	$CH_2O(Ph-p-NH_2)$	H	C_3H_5	6.999	5.995
H	CH ₂ O(Ph-p-NHEt)	H	C_3H_5	7.096	6.365
H	CH ₂ (Ph-o-OH)	H	C_3H_5	6.720	5.950
OH	CH2OCH₂Ph	Н	C_2H_5	6.957	5.970
	2-pyridyl 3-pyridyl 3-(6-OCH ₃ pyri dyl) 3-(6-OH-pyri dyl) 3-(6-NH ₂ -pyridyl) 4-pyridyl H H H	2-pyridyl H 3-pyridyl H 3-(6-OCH ₃ pyri dyl) H 3-(6-OH-pyri dyl) H 3-(6-NH ₂ -pyridyl) H 4-pyridyl H CH ₂ NHPh H CH ₂ O(Ph-p-NH ₂) CH ₂ O(Ph-p-NHEt) H CH ₂ (Ph-o-OH)	2-pyridyl H CH ₃ 3-pyridyl H CH ₃ 3-(6-OCH ₃ pyri dyl) H CH ₃ 3-(6-OH-pyri dyl) H CH ₃ 3-(6-NH ₂ -pyridyl) H CH ₃ 4-pyridyl H CH ₃ H CH ₂ NHPh H CH ₂ O(Ph-p-NH ₂) H CH ₂ O(Ph-p-NHEt) H CH ₂ O(Ph-o-OH) H	2-pyridyl H CH ₃ C ₂ H ₅ 3-pyridyl H CH ₃ C ₃ H ₅ 3-(6-OCH ₃ pyri dyl) H CH ₃ C ₂ H ₅ 3-(6-OH-pyri dyl) H CH ₃ C ₂ H ₅ 3-(6-NH ₂ -pyridyl) H CH ₃ C ₂ H ₅ 4-pyridyl H CH ₃ C ₃ H ₅ H CH ₂ NHPh H C ₃ H ₅ H CH ₂ O(Ph-p-NH ₂) H C ₃ H ₅ H CH ₂ O(Ph-p-NHEt) H C ₃ H ₅ H CH ₂ O(Ph-o-OH) H C ₃ H ₅	WT RT

Table 2. Structure and predicted log (1/C) WT and Y181C HIV-1 RT inhibitory affinities of the tested dipyridodiazepinone compounds.

						_																	
°T21	°T20	eT19	%T18	$^{d}T17$	^d T16	. dT15	°T14	°T13	°T12	°T11	°T10	$6L_{2}$	81°	°T7	9T°	ST°	°T4	°T3	°T2	LL ₅	No	Cpds.	
	z ,	MeO		Ph-m-OMe	HO	H	4-NH ₂ -phenyl	3-OH-phenyl	2-OCH ₃ -phen/l	4-pyrazolyl	2-imidazolyl	3-thienyl	N-pyrazolyl	NHCH2CH2CH2OH	NHCH2CH2OH	Br	Ω	C_2H	CH ₃	CH ₃		R1	
щ	ж	Н	H	CHO	CH_2Ph	$\mathrm{CH_2OPh}$	Н	H	Н	H	Н	H	H	CH_3	CH_3	Н	H	Н	Н	CH ₃		R2	
CH_3	СН3	СН3	CH ₃	Η	H	H	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	CH_3	H	Η	CH_3	CH_3	CH_3	CH_3	Н	,	25	
C_2H_5	C ₂ H ₃	C_2H_5	C ₂ H ₅	C_2H_5	C_2H_5	C_3H_5	C_2H_5	C_2H_3	C_2H_5	C_2H_5	C_2H_5	C_2H_5	C_2H_5	C_2H_5	C_2H_5	C_3H_5	C_2H_5	C_2H_5	C_2H_5	C_3H_5		R4	
7.355	6.150	6.698	7.552	6.480	6.467	6,920	7.397	6,999	6.085	7.698	5,431	6.999	6.507	7.044	7.044	7.522	7.096	6.853	7.044	7.154	Experimental $\log (1/C)$		
6.668	6.623	6.667	6.838	7.249	7.316	6.606	7.245	7.254	5.940	6.927	6.341	6.988	6.805	7.611	7.289	6.892	6.923	6.335	6.858	7.102	Calcalculated log (1/C) ^a	WTRT	
0.687	-0.473	0.031	0.714	-0.769	-0.849	0.314	0.152	-0.255	0.145	0.771	-0.910	0.011	-0.298	-0.567	-0.245	0.630	0.173	0.518	0.186	0.052	Residual		
7.008	6.251	6.637	7.552	6.376	5.885	5.587	6.920	6.744	5.601	7.221	6.130	6.522	6.251	5.999	5.999	5.677	6.677	6.376	5.769	5.920	Experimental log (1/C)		
6.688	5.978	6.324	, 7.501	6.442	6.010	5.940	6.576	6.072	5.407	6.770	6.141	6.484	6.545	5.819	5.672	5.775	5.926	6.248	5.701	5.910	Calcalculated log (1/C) b	Y181C RT	
0.320	0.273	0.313	0.051	-0.066	-0.125	-0.353	0.344	0.672	0.194	0.451	-0.011	0.038	-0.294	0.180	0.327	-0.098	0.751	0.128	0.068	0.010	Residual		

°T22	No.	Cpds. R1	Table 2. (Continued)
Н		R2	
СН3		R3	
CH_3 C_2H_5		R4	
6.677	Experimental log (1/C)		
6.447	Calcalculated log (1/C) ^a	WT RT	
6.447 0.230	Residual		
6.698	Residual Experimental log (1/C)		
6.923	Calcalculated Residual log (1/C) b	Y181C RT	
6.923 -0.225	Residual		

^a Calculated by CoMFA model 5, ^b Calculated by CoMFA model 11 ^c Reference 16, ^d Reference 17, ^c Reference 18

atoms. Table 5. Summary of CoMFA models for Y181C HIV-1 RT inhibition with 53 dipyridodiazepinone compounds at different probe

										,
		47.280	0.207	0 808	0.359	0.436	4	e!		
		36.605	0.254	0.705	0.385	0.322	ω	st		
46.8	compd. no.32 (0.120)	316.470	0.059	0.989	0.262	0.726	9	both	$sp^{3}C(+1.0)$	11°
-		43.253	0.216	0.790	0.369	0.388	4	<u>e</u>	. ,	
		33.074	0.264	0.679	0.394	0.287	ω	st		
45.3	compd. no. 43 (0.109)	245.70	0.979	0.071	0.287	0.662	∞	both	$sp^{3}C(+1.0)$	10 d
		44,013	0.215	0.789	0.366	0.392	4	<u>e</u>	•	
		33.268	0.264	0.675	0.406	0.292	ယ	st		
46.7	compd. no. 38 (-0.151)	216.705	0.076	0.976	0.298	0.631	∞	both	$sp^{3}C(+1.0)$	9¢
		45.458	0.213	0.791	0.359	0.407	4	el	1	
		49.942	0.212	0.793	0.370	0.371	4	st		
47.5	compd. no. 42 (0.356)	93.298	0.158	0.886	0.330	0.500	4	both	H(+1)	∞
		45.458	0.213	0.791	0.359	0.407	4	<u>e</u>		
		34.759	0.229	0.759	0.385	0.319	4	st		
50.4	compd. no. 24 (0.256)	99,462	0.128	0.928	0.332	0.506	S	both	$sp^{3}O(-1)$	7
		45.458	0.213	0.791	0.359	0.407	4	<u>e</u> 1		
		68,131	0.120	0.942	0.386	0.301	ω	st		
45.4	compd. no. 36 (0.151)	167.287	0.087	0.968	0.313	0.587	∞	both	$sp^{3}C(+1)$	6
contb								type		
Steric	Outliers(residual)	Ή	S	r^{2a}	s-press	r ² cv	noc	Field	Probe atom	Model

^aConventional r². ^bSteric contribution in %.

^e Elimination of compd. no. 36 (remaining 52 compounds in the training set).
^d Elimination of compds. no. 36 and 38 (remaining 51 compounds in the training set).
^e Elimination of compds. no. 36, 38 and 43 (remaining 50 compounds in the training set).

Table 6. The statistic results within lattice grid space by 1 Å and 2 Å for Y181C HIV-1 RT inhibition.

				•	ition in %	iontribu	r ² bSteric c	² Conventional r ² ^b Steric contribution in %
45.2	316.470	0.059	0.989	0.262	0.726	9	2	
49.6	474.071	0.048	0.991	0.293	0.658	9		$sp^{3}C(+1.0)$
contb								
Steric	Ŧ	S	τ ^{2a}	s-press	r^2_{cv}	noc	Grid (Å)	Probe atom

Figure Captions

(pink-red).

- Figure 1 Structure of 11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'-e] [1,4]diazepin-6-one and the atomic numbering as used in this study is indicated.
- Figure 2 Plot of calculated versus experimental WT HIV-1 RT inhibitory affinities obtained from non-cross-validation of CoMFA model 5 for training set compounds.
- Figure 3 Plot of calculated versus experimental Y181C HIV-1 RT inhibitory affinities obtained from non-cross-validation of CoMFA model 11 for training set compounds.
- Figure 4 CoMFA steric and electrostatic STDEV*COEFF contour plots from the analysis of the 3D-QSAR model 5 with non-cross-validation based on WT HIV-1 RT inhibition. Green contours refer to sterically favored regions; yellow contours indicate disfavored area. Blue contours refer to positive charge favoring areas; red contours indicate negative charge favoring areas. Compound 12 is displayed inside the fields as ball and stick presentation.
- Figure 5 CoMFA steric and electrostatic STDEV*COEFF contour plots from the analysis of the 3D-QSAR model 11 with non-cross-validation based on Y181C HIV-1 RT inhibition. Green contours refer to sterically favored regions; yellow contours indicate disfavored area. Blue contours refer to positive charge favoring areas; red contours indicate negative charge favoring areas. Compound 32 is displayed inside the fields as ball and stick presentation. Figure 6 Electrostatic potential of compounds 12 (a) and 32 (b), the highest active molecule for WT and Y181C inhibition, respectively. The cold colors (blue-violet) indicate negatively charges parts of molecules. Positively charges parts are displayed in warm colors

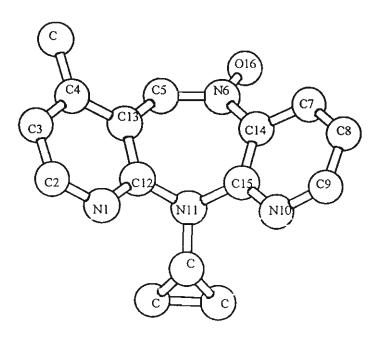


Figure 1

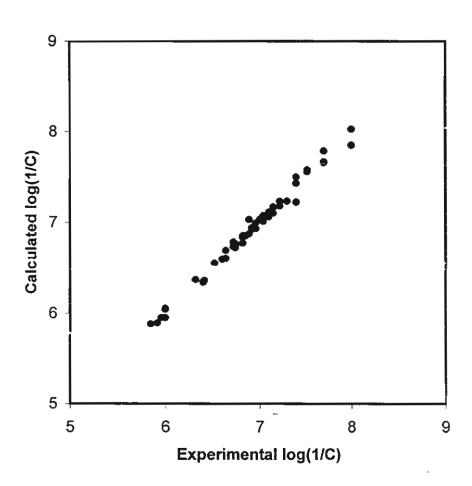


Figure 2

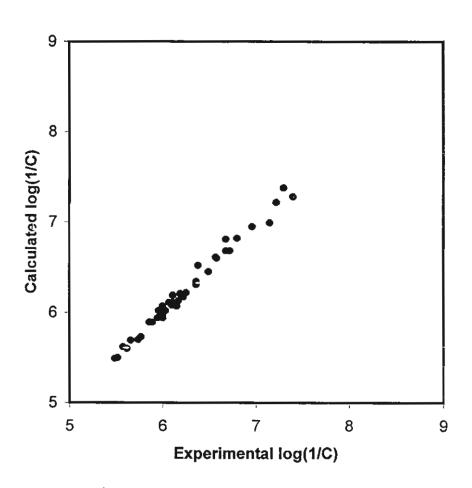


Figure 3

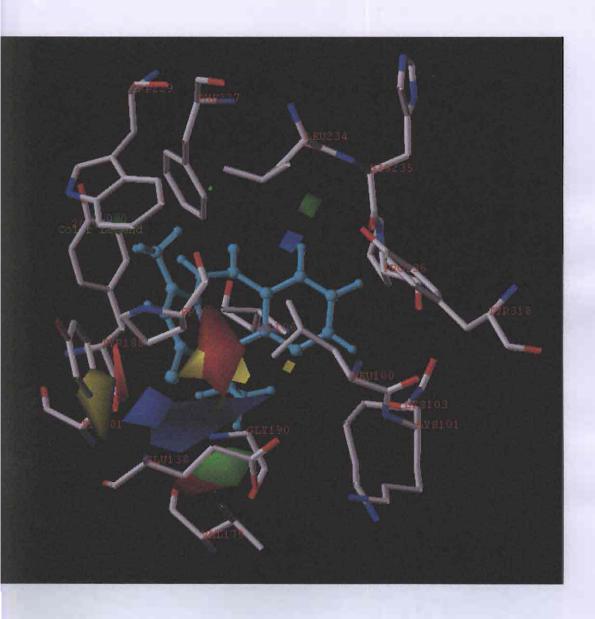


Figure 6

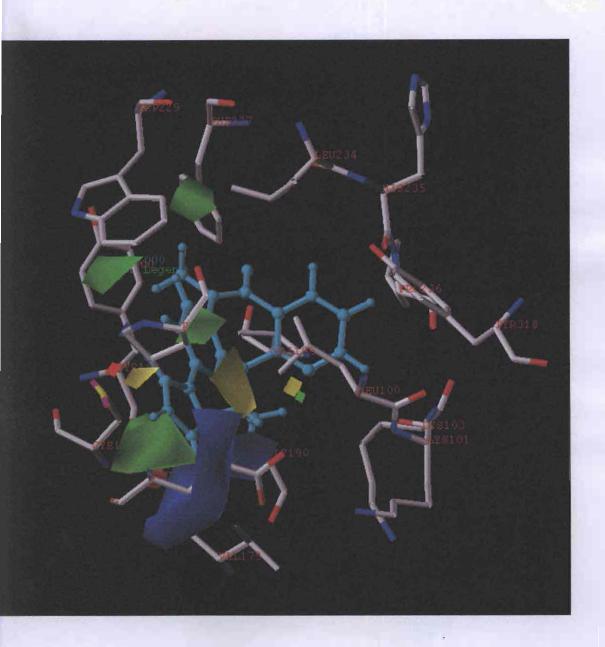
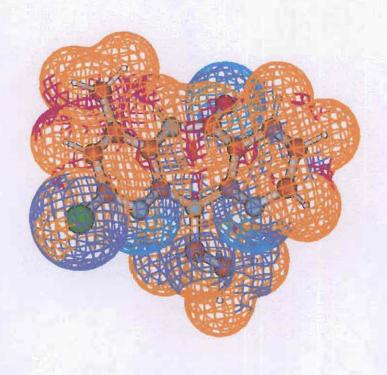
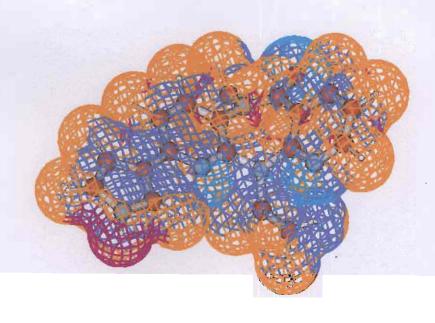




Figure 7

ESP of compound 12

ESP of compound 32

Figure 8