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Project summary

Robotics undoubtedly has an important application in industry.  The robot in
the future must be adaptable to be able to perform many novel tasks.  Robot learning
is the key issue in providing that adaptability.  This research project aim to understand
how a robot can perform many tasks in the real world.  The aim of this research is to
develop methods to generate robust solutions for the problems in robot learning.  The
technique that we concentrate on is genetic programming.  The problem of robot
learning is how to make robots to do tasks without explicitly programming them.  It
has been intensively studied for the last decade.  We view robot learning as a special
case of the general problem of "machine learning".  Machine learning is a sub-field of
artificial intelligence (AI), whose ultimate goal is to replace explicit programming by
"teaching".  Genetic programming is a unsupervised learning method.  It is a general-
purpose search algorithm that uses principles inspired by population genetics to
evolve solutions to problems.  Most of the work in genetic programming research use
the simulated world to perform learning and there is problems of transferring the
result from the simulated world to the real world.  The solution is brittle,  i.e. the
condition for the actual run of a robot program in the real world must be exactly the
same as in the simulation, even a small deviation can lead to failure.  We attack the
problem of how to use genetic programming to generate robust solutions for robot
learning from two  perspectives :  on-line learning and introducing perturbation into
simulation. The previous works mostly rely on accurate world model, disallow
uncertainty.  Our work is different that the system learn the world model and allow
uncertainty in the system.  An appropriate application of robot learning concept can
yield a higher performance in automation which might prove to be very cost effective
for many applications in industries.

Keywords :  robotics, robot learning, genetic programming, evolution computing,
robust solution.



โครงการ
ผลเฉลยที่ทนทานโดยการโปรแกรมพันธุกรรมสําหรับการเรียนรูของหุนยนต

โครงการโดยสรุป
ศาสตรของหุนยนตมีการประยุกตในอุตสาหกรรม  หุนยนตในอนาคตตองสามารถปรับ

ตัวเองไดเพื่อที่จะทํางานแบบใหม ๆ   การเรียนรูของหุนยนตเปนหัวใจในการอํานวยใหเกิดการ
ปรับตัวนั้น  โครงการวิจัยนี้เปนงานตอเนื่องจากความพยามที่จะเขาใจวาหุนยนตจะทํางานหลาย
ๆ อยางในโลกจริงไดอยางไร วัตถุประสงคของการวิจัยนี้คือการพัฒนาวิธีการสังเคราะหผลเฉลยที่
ทนทานของปญหาเกี่ยวกับการเรียนรูของหุนยนต

วิธีการที่เราสนใจโดยเฉพาะคือการโปรแกรมพันธุกรรม ปญหาของการเรียนรูของ
หุนยนตคือจะทําใหหุนยนตทํางานไดอยางไรโดยไมใชการโปรแกรม ปญหานี้มีการศึกษาอยาง
ละเอียดในทศวรรษที่ผานมา เรามองการเรียนรูของหุนยนตวาเปนกรณีเฉพาะของปญหาทั่วไปของ
การเรียนรูของแมชชีน การเรียนรูของแมชชีนเปนศาสตรยอยของศาสตรปญญาประดิษฐซึ่งมี
เปาหมายสูงสุดคือ การแทนที่การโปรแกรมโดยการสอนการ  โปรแกรมพันธุกรรมเปนวิธีการเรียนรู
โดยไมมีครู เปนขั้นตอนวิธีการคนหาเอนกประสงคที่ใชหลักการของพันธุกรรมประชากร เพื่อที่จะ
วิวัฒนผลเฉลยของปญหา งานวิจัยสวนใหญในการโปรแกรมพันธุกรรมใชโลกจําลองในการเรียนรู
มีปญหาในการนําเอาผลลัพธที่ไดจากโลกจําลองนี้ไปใชในโลกจริง กลาวคือผลเฉลยมักจะ “เปราะ
บาง”  นั่นคือ สภาวะเงื่อนไขในการทํางานในโลกจริง ตองเหมือนในโลกจําลองอยางเครงครัด
แมแตความคลาดเคลื่อนเล็กนอยก็จะนําไปสูความลมเหลวได เราศึกษาปญหานี้จาก 2 มุมมอง :
การเรียนแบบออนไลน และการใสสัญญาณรบกวนไปในการจําลองแบบงงานกอน ๆ ตองพึ่งพา
แบบจําลองของโลกที่แนนอน และหามมีความไมแนนอน งานวิจัยมีความแตกตางจากงานอื่น ๆ
ตรงที่วาระบบจะเรียนแบบจําลองของโลกเอง และยินยอมใหมีความไม      แนนอนได การ
ประยุกตวิธีการเรียนรูของหุนยนตอยางเหมาะสมสามารถทําใหเกิดประสิทธิภาพสูงในระบบ
อัตโนมัติ  ซึ่งอาจมีผลตอบแทนที่สูงในการใชงานอุตสาหกรรม

คําหลัก: ศาสตรหุนยนต  การโปรแกรมพันธุกรรม  การคํานวณเชิงวิวัฒนาการ  ผลเฉลยที่ทนทาน
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Robust Solutions by Genetic Programming for Robot Learning

Project investigator

Prabhas Chongstitvatana

1. Motivation

Robotics undoubtedly has an important application in industry.  The robot in the
future must be adaptable to be able to perform many novel tasks.  Robot learning is the key
issue in providing that adaptability.  This research project is a continuing work in which we
aim to understand how a robot can perform many tasks in the real world.  Our previous work
focused on robot programming (Chongstitvatana, 1992; 1994), we expanded the work to
study robot learning (Chongstitvatana and Polvichai, 1996).  We applied the genetic
programming method as it is a very suitable technique to automatically generate robot
programs.  We came up with the conclusion that robustness is an important issue if genetic
programming is to be used successfully to let a robot learn to perform its task in the real
world.  We propose to study this issue.  We expect to gain knowledge how to improve this
learning technique so that the generated solution is more tolerant to perturbation.  The
success of this project will promote a  more active research in this area.

2. Research goal
The aim of this research is to develop methods to generate robust solutions for the

problems  in robot learning.  The technique that we concentrate on is genetic programming.

Keywords :  robotics, robot learning, genetic programming, evolution computing, robust
solution.

3. Research problems
This section will review previous work and explain some basic concept in our

research.  The aim is to put genetic programming into a perspective regarding robot learning.
Robot learning is a large field by itself therefore it is important to define what kind of robot
learning we propose to do.   The following sections describe four major formulations in
robot learning and  the genetic programming method which is the  main technique used in
this research.  We define “robustness” at the end of this section.

3.1 Robot learning
The problem of robot learning is how to make robots to do tasks without explicitly

programming them.  The problem of robot learning has been intensively studied for the last
decade.  There are several text books and articles which give excellent reviews on robot
learning including Connell and Mahadevan (1993), Franklin et al (1996).  We will examine
four major formulations of the robot learning problem : inductive concept learning,
explanation-based learning, reinforcement learning, and evolutionary learning.
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We view robot learning as a special case of the general problem of "machine
learning".  Machine learning is a subfield of artificial intelligence (AI), whose ultimate goal
is to replace explicit programming by "teaching".  Machine learning research has studied
many different types of learning.  A recent text book by Mitchell (1997) provides a
comprehensive introduction to the field.  There are two types of learning in general :
supervised and unsupervised.  In supervised learning, the teacher carefully selects examples
for the learner, whereas in unsupervised learning, the learner is given little or no feedback in
the learning task.

We can distinguish three types of useful knowledge for robots to learn.
• control: learn a sequence of action to achieve a given goal.  Learn which action to

perform in a given situation.
• environment : learn the model of environment which can be dynamic.
• sensor-effector : learn to model its sensors and effectors.

We will characterise the problem of robot learning as one of learning a "policy"
function Π from some set of sensory states S to some set of actions A, this characterisation is
similar to Nehmzov and Mitchell (1990). The "policy" can be "stationary", that is the
mapping is a time-invariant function or it can be "non-stationary".

Inductive concept learning

This is the most classical method in machine learning.  The robot knows that the
policy Π it is learning comes from some space of hypotheses H.  The robot is provided with
a set of training examples E of the target policy.  These are drawn from some space of
instances I according to some unknown but fixed probability distribution P.

Given
1. A space of hypotheses H, each of which describes a policy function Π : S → A

over some set of states S and actions A.
2. A set of training examples E of the target policy Π *, sampled using a (fixed but

unknown) probability distribution P on the underlying instance space I.

Determine
A policy Π  ∈ H that minimises the expected error with respect to the target policy,
measured over I using distribution P.

Two of the most well-known algorithms for solving the inductive concept learning are
decision trees (Quinlain, 1986) and neural network (McClelland and Rumelhart, 1986).
There are many examples of inductive learning applied to robot learning (Pomerleau, 1990;
Littman et al, 1992; Connell and Mahadevan, 1993; Dorigo, 1996; Franklin et al, 1996).  The
principal weakness of the inductive learning method is that it requires an experienced
teacher, who can supply a diverse enough set of training examples.
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Explanation-based learning

This method studies how domain knowledge about the function being learned can be used to
speed up learning (Dejong and Mooney, 1986; Mitchell et al, 1986; O’Sullivan et al, 1995).

Given
1. A space of hypotheses H, each of which describes a policy function Π : S → A

over some set of states S and actions A.
2. A domain theory D describing the target function Π.
3. An "operationality criterion", which constraints the representation of the learned

policy.
4. A set of training examples E of the target policy Π *, sampled using a

probability distribution P on the underlying instance space I.

Determine
A policy Π  ∈ H  whose description satisfies the operationality criterion, and is
consistent with D   and minimises the expected error with respect to the target
policy Π *.

Dejong (1995) described an algorithm which learns to control a simulated robot arm.  The
primary advantage of EBL in robot learning problem is that it provides a way to incorporate
previous domain knowledge to speed up the learning process.  However the robot needs to
be given some domain knowledge.

Reinforcement learning

Reinforcement learning (RL) studies the problem of inducing by trial and error a policy that
maximizes a fixed performance measure (Sutton, 1990; Kaelbling, 1993; Franklin et al,
1996).  RL is an unsupervised method, examples are not carefully selected by a teacher.
Instead, the distribution of examples is influenced by the robot's actions, since the states and
rewards experienced by the robot depends on the action it takes.

Given
1. A space of hypotheses H, each of which describes a policy function Π : S → A

over some set of states S and actions A.
2. A reward function   r : S × A → R.
3. An optimality criterion O that maps any policy Π and reward function r to a

value function Vr
Π : S →  R.

Determine
An optimal policy Π * that results in a maximal value function V* over all other
policies.

RL has several nice properties.  It does not require supplying the robot with a theory of its
domain.  It can be used for on-line learning, thus the robot is continually improving its
performance as it learns.  Mahadevan and Connell (1992) conducted a study of using RL to
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train a real robot to do a box-pushing task that performed better than a hand-coded program.
A well-known model free RL algorithm is Q-learning (Watkins, 1989).  RL method does not
require supplying the robot with either trainning examples or any background knowledge
beyond a scalar rewarding function.  However, learning can be very slow.  RL also assumes
that the environment can be modeled as a Markov decision process (MDP) (Puterman,
1994).  This "memoryless" is clearly false.  Many works are extending RL to partially
observable MDP (Littman et al, 1992; Russel and Parr, 1995; Koenig and Simmons, 1996).

Evolutionary learning

Evolutionary learning is unsupervised learning method.  Majority of evolutionary learning
represented by genetic algorithms (Holland, 1975) and genetic programming (Koza, 1992).
Evolutionary starts with a population of policies and combines them to produce better
policies until an optimal policy is found.  The combination is achieved through genetic
operators, such as recombination and mutation.  Genetic algorithm encoded each policy as
bit string whereas genetic programming encoded as a higher level representation, a tree.  The
fitness function is a measure of the goodness of a given policy.

Given
1. A space of hypotheses H, each of which describes a policy function Π : S → A

over some set of states S and actions A.
2. A fitness function  f : Π  → R.
3. An encoding E mapping policies Π  to a representation.
4. A set of genetic operators O : H → H that transform policies Π.

Determine
An optimal policy Π * that maximises the fitness function f.

Dorigo (1995), Grefenstette and Schultz (1994) used a classifier system (based on genetic
algorithms) to train robots.  These systems have been used to train mobile robots to avoid
obstacles, to navigate around the rooms, and learn goal-seeking behaviours.  Davidor (1991)
reported the use of genetic algorithms to plan trajectories of a robot arm.  Morowitz and
Singer (1995) edited a proceeding that reflected a recent thinking about an adaptive systems
(including evolutionary systems).

3.2 Genetic programming
Genetic Programming (GP) is a machine learning method derives from genetic

algorithms (GA).  Genetic algorithms, originated by Holland (1975), are general-purpose
search algorithm that use principles inspired by population genetics to evolve solutions to
problems.  In Genetic programming, genetically breed populations of computer programs are
used to solve problems.  The individuals in population are compositions of functions and
terminals which are suitable for the intended problem domain.  An evolutionary process is
driven by the measure of fitness of each individual computer program in handling the
problem environment.

We will illustrate how GP can be applied to robot learning problems by describing an
example from our previous work (Chongstitvatana and Polvichai, 1996).  The problem
statement is to learn to visually guide a robot hand to reach a target while avoiding
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obstacles.  The robot system consisted of a 3 degrees of freedom planar arm and a vision
system capable of locating the arm, the obstacles and the target in the scene (figure 1).  GP is
applied to solve this problem by evolving robot programs that can perform the task.  A robot
program has terminal set composed of commands to move each joint and sensing
commands.  A set of functions is { IF-AND, IF-OR, IF-NOT}, figure 2 shows an example of
a robot program.  Steps of GP process are as following :

1. Create an initial population consisted of robot programs that randomly mixed the
functions and terminals.

2. Run each program until it terminates.
3. Evaluate each program, the fitness is measured based on how well it performs the task.
4. Select good programs and do genetic operations (recombination and mutation) on them

to generate the next generation population.
These steps are repeated until satisfactory solutions are found.

Figure 1.  A visual reaching task

Figure 2.  An example of a robot program

It is shown in Chongstitvatana and Polvichai (1996)  that
• the robot system can learn to solve the problem in various settings satisfactorily.
• There are improvement of the fitness in the population, in other words, the learning took

place during genetic programming process.
• There are improvement in the quality of solutions (the path which the arm traversed was

shorter).

GP has becoming increasingly popular in recent year as a method for solving
complex search problems in a large number of disciplines : classify protein segment (Koza
and Andre, 1996), image processing (Daida et al, 1996), cellular automata (Andre, 1996),
electronic commerce (Hinchleffe et al, 1996), information filtering (Zhang et al, 1996) and
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chemistry (Handley, 1996).  The applications of GA and GP to robot problems are numerous
(Khoogar et al, 1989; Koza and Rice, 1992; Chan and Zalzala, 1993; Cliffe et al, 1993;
Floreano and Mondada, 1994; Thompson, 1995; Koza et al, 1996).  Although most of the
work in GA and GP use the simulated world to perform learning, the problem of transferring
the result from the simulated world to the real world has been widely recognised (Brooks,
1994; Doringo, 1995; Ito et al 1995).  This is called the problem of robustness of the
solutions.  Chongstitvatana and Polvichai (1996) reported that the solution is satisfactory but
not robust.  The initial condition for the actual run of a robot program in the real world must
be exactly the same as in the simulation, even a small deviation can lead to failure to reach
the target.

3.3 Robust solutions
The solutions that are generated by genetic programming method oftenly will fail

when there are changes in the operational environment (such as robots working in the real
world) even when the change is small.  An example can be drawn from our previous work
(Chongstitvatana and Polvichai, 1996), in a visual reaching task, genetic programming is
used to generate robot programs that control an arm to reach a target avoiding the obstacles,
if there are small changes such as an obstacle is moved from its position, or the control of a
real robot miss the step (due to random noise), the solution generated from genetic
programming will fail to work. This is because genetic programming procedure relies on a
simulated world to evaluate and to "evolve" the solution.  The accuracy of the world model
is an important factor for the success.

We characterise the uncertainty (changes in the operational environment) that occurs
in the domain of robotics as following :
• uncertainty in control :  when issuing a command to the end-effector, sometime it  fails

to act properly.
• uncertainty in sensing : the data acquired from sensors are almost always noisy and

therefore has a high degree of uncertainty.  Measuring distance of an object gives
fluctuated reading even when the object is stationary.

• uncertainty in world model : the reconstruction of the model of the world inside the robot
and the theory about the action and change are hardly complete.  Theory can not predict
the consequence of some action reliably.  The world can also change, such as some
object moved from its previous position.

• uncertainty from interaction : the robot can interact with other object.  Pushing a box will
change its position, bumping into other mobile robot will definitely change “other” robot
behaviour.  The problem also arises when there are more than one active robot.   An
example, for a problem of generating programs for one mobile robot to search for a
target, the solution will be different for one robot and many robots.  In the latter case, a
mobile robot must avoided collision with other mobile robots.

  The solution which can tolerate these uncertainties is said to be robust.
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4. Research methods and scopes

We attack the problem of how to use genetic programming to generate robust
solutions for robot learning from two  perspectives :  on-line learning and introducing
perturbation into simulation.  The robot learning problems that we study are
• learn visual reaching task
• learning finite state automata
• learn to evolve robot programs in the real world

These are the problems that have been extensively studied and have some well known
solutions (Cliff et al, 1993; Floreano and Mondada, 1994; O’Sullivan et al, 1995; Brooks’
COG project at MIT, 1996).  Our  work is different in term of solving these problems with
different constraints.  The previous works mostly rely on accurate world model, disallow
uncertainty.  Our work learns the world model and allow uncertainty in the system, in fact
our objective is for the system to be able to tolerate the uncertainties.

4.1 On-line learning
To cope with uncertainty many researchers suggest the use of physical robots to learn

in the actual environment of the tasks (Dorigo, 1995; Floreano and Mondada, 1995).  The
robot will learn by trial and error.  This approach is suitable for many learning tasks such as
learning the association between sensing-effectors.  However, none of the previous work
attempt to use genetic programming as the learning method for this approach because it is
very likely that it will take too long.  The speed limit of a physical robot prohibits the use of
learning by trial and error.  Chongstitvatana and Polvichai (1996)  showed that for a visual-
reaching task, it will take 2,000 hours with their equipments to learn the task.  We propose to
use "memoization", i.e. memorise partial trial and error which has been learned, to speed up
the learning processs.  The problem of this technique is that it will require the interpolation
of the current state (of the system) to a nearest known "learned" state.  This interpolation is
not linear.  We propose the use of searching for an intermediate state combined with a
forward prediction to move the present state of the system closer to a known "learned" state.
This will be a recursive method.  In summary, the "heart" of on-line learning is the use of
physical robots to learn in the actual environment of the tasks without excessive number of
trial and error.  We propose to achieve this by memorise the past experience.

4.2 Introducing perturbation into simulation
 Another approach to cope with uncertainty is to subject the "evolved" system to
perturbation expecting that the resulting solution will be more tolerant.  There are both report
of success and failure using this approach.  Ito et al (1995) reported success, they arranged
the simulation so that at the end of every generation they introduced some perturbation (such
as moving the obstacles slightly).  However, they limit their claim to one kind of problem,
i.e. a mobile robot searching for a target.  They also claim that their choice of function set is
important for the success (we will discuss this later).  Reynolds (1994) reported failure, the
author tried to improve the robustness by introducing noise into simulation at every step.
The result was that there was no solution found for this corridor-following problem (a
mobile robot moving in a connected corridors environment).   The author suggested that a
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larger number of population may be required or to use a simpler system (reduce the number
of function and terminal).  Experience from our previous work, we notice that we can
introduce limited perturbation "in between" generation and still find solutions (i.e. during a
generation, we kept everything constant).  Another observation was that we can take a
successful individual and continue to "evolve" it for a new environment which is changed
only slightly from the previous one.  This way  we can find the new solution faster than
starting from initial random population.  We conjecture that solutions from genetic
programming can "memorise" the past experience.  Therefore, by controlling the amount of
perturbation to be introduced into the simulation, we can achieve a more robust solution.

These two approach seem to be in the opposite extreme.  There is a possibility to
create a "hybrid" system in which use the advantage from both approaches.  One can
"evolve" solutions quickly under simulation (because there is no severe speed limit of
physical devices) then use those solutions as initial population to do on-line learning.  This is
totally new area which we find no other work to refer to presently.

Another interesting observation is that in applying genetic programming method to a
particular problem, the choice of function and terminal set is an important factor for success.
For example, in robotics the terminal set will be primitive commands for the robot to act and
sense, therefore the terminal set will be restricted by physical robots.  The only variable left
is the choice of function set, it should be an important factor for success.  As we mentioned
earlier, Ito et al (1995) claimed that his success depended on the choice of the function set.
We will investigate his claim in a more general  domain, i.e. our learning task will be more
general than the one he reported.  In our previous work (Chongstitvatana and Polvichai,
1996; Polvichai, 1996), the function set is {IF-AND, IF-OR, IF-NOT} which is most basic
but complete.  There are many other possibilities, even the use of index memory as a
function (Teller, 1994) has been reported.

5. Impact of the research to Thailand development

The impact of this project will be mostly the establishment of research activities in
the area of evolution computing in Thailand.  The genetic programming technique itself has
a very wide range of applications.  The most attractive application is in the field of image
processing (including pattern recognition such as OCR).  In robotics, an appropriate
application of robot learning concept can yield a higher performance in automation which
might prove to be very cost effective for many applications in industries.
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 Progress report year 1998

Using perturbation to improve robustness of solutions generated
by genetic programming for robot learning

Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Phyathai Rd., Bangkok 10330, THAILAND

Tel (662) 218 6956,  Fax (662) 218 6955
prabhas@chula.ac.th

• Propose a method to improve robustness of the robot programs generated by genetic

programming.

• Main idea is to perturb the simulated environment during evolution of the solutions.

• Test this idea using the problem of navigating a mobile robot in an unknown cluttered

environment.

Definition

Robustness    continue to perform well under change in environment.

Fragility

• Simulation vs Real-world

• Initial condition

• Accuracy of the simulation model

Example

A visual reaching task, GP is used to generate robot programs that control an arm to reach a

target.

1. Approach to improve robustness

• Learn in the actual environment (take a lot of time)

• Make simulation more accurate (sample the real-world)

• Use perturbation in the simulation

The resulting robot programs are more robust because they have been evolved to

tolerate the changes in their environment.
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2. Experiments

The terminal set is { move, left, right, isnearer? }.

The function set is { if-and, if-or, if-not }

The fitness measure
f = kd + m

d = Euclidean distance

k = 10,000

m = the number of moves

The parameters for GP run

population size : 960

maximum number of generation : 200

Selection :  Elitism  best 30

Crossover : all possible pairing of the parents 900

Mutation :  30
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3. Using Perturbation
Experiment 1

Vary the number of training

E’ = E + perturbation

the percent of disturbance ( e ).

e = 20 %

n = 1, 5, 10, 15, 20.

Experiment 2

Vary the magnitude of perturbation during the training.

e = ( 10, 20, 30, 40, 50 ).

The number of training environment is 10.

Robustness measurement

• Selecting the best individual from the maximum generation and evaluate it under 1000

new environments that are variant of the original.

• Robustness is the number of success of that individual under these new environments.

• The disturbance during the measurement of robustness is 10, 40 and 100%.

Analysis
• The dynamic execution of the program can be represented by the sequence of the robot

commands (cn).  This sequence (s), which will be called "trace", is the result of

evaluating the robot program, i.e. running it in the simulation.

• The set of all traces (S) is the collection of robot behaviour.

• S represents the interaction of the robot program to the environment, the response of the

robot to the different situation.

obstaclesofnumbertotal
obstaclesmovedofnumbere

___
___

=

∑= nff
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s = ( c1, c2, c3, . . . ) (3)

S = { s1, s2, s3, . . . } (4)

• L is the set of all S in all training environments.  L represents a collection of "learned"

behaviours.

L = S1 ∪ S2 ∪ . . . Sn  (5)

• By training in many environments, the robot program encodes "learned" behaviours and

hence is able to act properly in a perturbed environment to achieve its goal.

• Figure 3 shows that | L | is increased with the number of training environment (T).

• We measured the similarity (V) of a trace A to L by

V represents how much the behaviour of a robot program is similar to the "learned"

behaviours.

• Figure 4 shows that robustness varies with V.

4. Conclusion
We have showed that robustness can be increased by increasing the number of training

environment and by increasing the magnitude of disturbance during training.   A solution is

robust because it encodes the learned behaviour from the training hence it can act effectively

in many environments. The results of the experiments demonstrate clearly the effectiveness

of the proposed scheme.
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Figure 5  Robustness varies with disturbance during training

Figure 6  Learned behaviours increased with dt
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Progress Report year 1999

Learning the environment

Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
prabhas@chula.ac.th

Abstract

This year work is concentrated on the on-line learning.  We attack the problem of modeling
the environment that is, assuming a robot can sense and act in the world, we would like to
model the world such that we can predict the consequence of the robot’s action.  This
problem can be abstracted as the learning automata problem.  We conduct experiments
centred on generating Finite State Machine from the observed sensing/action sequences.
The result shows that the correctness of the generated circuits depends on the length of the
observed sequence.  The correctness can be improved using multiple sequences.

1. Introduction

Learning deterministic finite automata can be viewed as a type of learning from the
environment.  The task of the learner is to construct a model of the environment to predict
the consequences of its actions.  An environment E can be defined as a Moore machine.  A
model M of the environment E is defined as (B, Z, S, φ , t), where :
• B is a set of basic actions
• Z is a set of percepts, (the robot’s sensor reading)
• S is a set of model states
• φ  is a function from S x B to S, and is the transition function of M
• t is the current model state of M.  When a basic action b is applied to M, t is updated to

be φ(t, b).

We learn M by Genetic Algorithm (GA).  We regard learning M as mimicking a sequential
circuit by observing its input/output sequence. GA searches for circuits that represent the
desired state transition function.  The target of our synthesis is a type of Programmable
Array Logic which is commercially available as GAL. We are able to synthesize various
types of synchronous sequential logic circuit such as counter, serial adder, frequency divider,
modulo-5 detector and parity checker.

2 Related work

The conventional method to synthesize a sequential logic circuit requires knowledge of the
circuit’s behaviour in the form of a state diagram.  A sequential network is a common
starting point for sequential synthesis system such as Berkeley Synthesis System SIS [1]. In
our case, circuit specifications are in the form of partial input/output sequences which are not

mailto:prabhas@chula.ac.th
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suitable to synthesize a circuit by the conventional method. Genetic Algorithm (GA) [2,3] is
used to search for circuits that represent the desired state transition function. Additional
combination circuits that map states to the corresponding outputs are synthesized by
conventional methods. The simulated evolution has been used to synthesis finite state
machine (FSM) in [4,5] where the resulting FSM can predict the output symbol based on the
sequence of input symbols observed.  In contrast to representing circuits as FSMs [6]
proposes the automated hardware design at the Hardware Description Language level  using
GA.  [7] describes the evolution of hardware at function-level based on reconfigurable logic
devices.  [8,9] evolved circuits at the lowest level, in the actual logic devices, using real-time
input/output.  Our work is similar to [2,3] in the use of FSM but we use FSM as the model of
the desired circuit behaviour.  We aim to evolve the circuit at the logic device level similar to
[9].  The following sections describe our synthesis method, the experiment in synthesizing
various simple sequential circuits and the analysis of the result.

3 Synthesizer

We use Programmable Logic Device (PLD) as our target structure. For simplicity, we used
GAL structure which is composed of rows of two-level sum-of-product Programmable Array
Logic (PAL) connected to D flip-flops. The implemented model has four logic terms per one
flip-flop, and has a total of four flip-flops as shown in Fig. 1.  A circuit is specified by a
linear bit-string representing all connection points, which is entirely 256 bits in length.

 The outline of the synthesizer’s steps is as follows:
1 sample a partial input/output sequence from the target circuit
2 use the sequence as inputs of the synthesizer program
3 verify the resulting circuit if the run yields a solution within 50,000   generations

(because GA is a probabilistic algorithm, not all runs are successful in yielding a
solution by the specific generation)

The above steps are repeated 50 times for each sampling instance. In this experiment, we
used at least 3 different sampling instances for each problem. All of the results are collected
and will be used in the analysis.

Fig. 1. GAL structure used in the experiment

3.1   Genetic Operations

Each individual is represented by a 256-bit bit-string. We defined genetic operators as
follows:
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1 Reproduction: Ten new offsprings survive in the next generation by selecting the first
10 fittest individuals ordered by combined rank method [10] (calculated from each
individual’s fitness rank and its diversity rank).

2 Crossover: More individuals being added to the population are produced by uniform
crossover [11]. All possible pairs among 10 already selected individuals are used to
produce new offsprings. That is, we will have 90 new individuals.

3 Mutation: Last 10 individuals being added are mutated version of the first 10 selected
individuals. The mutation process is controlled so that it changes exactly 5 bits of each
individual.

By using the described operators, we can compare our evolving process to Simple Genetic
Algorithm (SGA) [3] with these parameters.

population size = 110
crossover rate = 90/110 = 0.8182
mutation rate = 5/256 = 0.0195

We also add some more constraints. First, we avoid creating a product term which always be
“0”. Second, connection points to unused input signals are left unwired. This reduces the
search space of the problem and lets the program concentrate on the connection points that
do affect the function of the circuit.

3.2   Fitness Evaluation

An individual is evaluated by the following steps:
1 feed one input to the circuit and clock the circuit
2 next state of the circuit would be mapped with the corresponding output, record the

number of times the state has been mapped to both output “0” and “1”
3 repeat steps 1 and 2 until the end of the sequence

After the sequence is completed, the fitness value of the individual, F, is computed by:
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where
fi is the fitness value of state i
pi is the number of times in which state i has to be mapped with output “0”
qi is the number of times in which state i has to be mapped with output “1”
S is the number of states, equal to 16 for the GAL structure

3.3   Size of Input/Output Sequences

A partial input/output sequence, which is used as a circuit’s specification, is attained by
generating a sequence of inputs, feeding each one to the target machine and then recording
the corresponding output that the machine gives.  To be a general approach and yield a
simple analysis, the input sequence is created at random with uniform distribution (i.e. at any
time, the probability that the input bit be “0” is as high as of “1”).

The input sequence should be long enough to exercise all aspects of the circuit’s function. In
other words, it should be able to test all paths of the state diagram of the circuit. As
mentioned earlier in this paper, we use the GAL structure which can be programmed as a 16-
state state machine, larger than the desired circuit’s need. Therefore, the input sequence
should also be long enough to exercise all paths of any 16-state circuit. If the sequence is too
short, it may cause an ambiguity in describing the desired circuit.  In this paper, we will call
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the length of the input sequence which is long enough to describe only the desired circuit as
lowerbound length and call the length of the input sequence which is long enough to exercise
any 16-state circuit as upperbound length.  We can find the proper size of the input sequence
by making an analogy to a dice rolling problem. Consider rolling a dice, how many times do
we have to roll it, until all of its faces come out? This problem is called waiting times in
sampling [12], in which we can find the expected value of the number of times by the
following formula.
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Consider a circuit that has i bit inputs, giving possible I = 2i patterns, and has S states. We
assume that at any time, the probability that the circuit be in any state is equal. So, from the
starting state, we expect the number of state transitions to be E(S,S) to traverse through all
states of the state diagram. And at any state, we expect the number of input patterns to be E
(I,I) to traverse through all paths from that state. Therefore, we would expect the number of
input patterns to be E(S,S)×E(I,I) to traverse through all paths of the state diagram starting
from any state.

Table 1.  Description of circuits in the experiment

Circuit
# of input
bits

# of  states lower bound
length

upper bound
length

Moore Mealy Moore Mealy
Frequency Divider 0 8 8 22 22 55
Odd Parity Detector 1 2 2 9 9 163
Modulo-5 Detector 1 6 5 45 35 163
Serial Adder 2 4 2 70 25 451

The experiment was done with many input/output sequences of different lengths for each
problem. The selected lengths are 10, 100, 1000, lowerbound and upperbound. For each
length, at least 3 different random sequences of input/output are used. And the synthesizer
was repeatedly run 50 times on each sequence. Thus, we had at least 3×50, equal to 150,
independent runs for each length of the sequence for one problem. Table 1. shows the details
of desired circuits and the calculated lengths of each problem.

4   Experiment and the Results

Fig. 2 shows the evolution of a serial adder. The circuit that performs accordingly to the
input/output sequence appears in the 53rd generation. We know it is a correct serial adder
after we verified it. We could observe many redundant states in the resulting circuit because
the given space (16-state machine) is larger than the solution.
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Fig. 3.  Correctness and size of input sequence (Serial Adder, Mealy's model)

We define the correctness percentage as

Correctness Percentage =
number of runs yielding correct solutions

number of runs yielding solutions
 . (4)

Fig. 3 shows the relation of the size of input sequence to the percentage of correct results of
synthesis from the sequence of that size. We used five random input sequences for each
point and run each input sequence for 100 times to make the average correctness. The longer
input sequence increases the correctness. However, the correctness percentage becomes
saturated at the large size of input sequence.

Table 2.  The summary of computational effort

Circuit Effort
Moore Mealy

Frequency Divider 770 440
Odd Parity Detector 1,210 1,760
Modulo-5 Detector 87,967,440 7,018,000
Serial Adder 3,035,120 26,730

5   Conclusion

This report described synthesis of synchronous sequential logic circuit from a partial
input/output sequence. GA was applied to synthesize a circuit that based on Moore and
Mealy’s model on the GAL structure. We can approximate the suitable size of the input
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sequence to yield high correctness and low effort.  This work can be extended in many ways.
One major aspect is the enhancement of the evolutionary process in both effort and time. We
are working on an implementation of this work in real hardware to realize an on-line
evolware [14,15].
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Abstract

This work presents an automatic method to synthesis robot control programs. The proposed
method is based on Evolutionary Computation. The problem of biped robot walking is
chosen to test the proposed method.  Walking motion is divided into six stages and the
evolution of control programs is carried out stage-by-stage. The locomotion is restricted to
forward walking on the flat and smooth surface with static balance. The synthesis process
consists of both simulation and the experiment with a real robot. The result of the
experiment shows that the biped walking is achievable and stable.

Keywords: Evolutionary computation, biped robot walking, static balance walking.

1. INTRODUCTION

Automatic programming for a robot to achieve a task has been a long-term goal of robotic
research community. Programming a robot by human is difficult and error prone. Modern
robots are very complex, some robot has sophisticated mechanisms that enable it to perform
human tasks such as the humanoid robot P2 by Honda (Hirai, et al, 1998). The limitation of
using these robots is the difficulty in programming them to achieve a desired task.

Evolutionary Computation is a family of algorithms, some of which can produce solutions in
the form of “programs”. It is applicable to robot problems. Many works have been
demonstrated, for example, (Koza and Rice, 1992; Davidor, 1990; Chongstitvatana and
Polvichai, 1996). Evolutionary Computation can be regarded as a weak search method. It is
effective for a wide range of problems such as symbolic regression, job scheduling, robot
control and so on.

Evolutionary Computation is a search method based on population. A number of candidate
solutions are evolved generation by generation to converge to a final solution. The search is
guided by the measure of goodness of candidate solutions, called “fitness function” which is
defined for a particular problem to be solved.

Many problems in robot program synthesis that have been attempted using evolutionary
computation are the problems that have low number of degree of freedom and mostly are the
work in simulation. This is because of the high cost of computation and the huge number of
candidate solutions to be evaluated. It is well known that transferring the solution from
simulation to the real world is not very successful (Brooks, 1991a). Many aspects of the real
world can not be sufficiently simulated. To improve the success rate, the real world should

mailto:prabhas@chula.ac.th
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be engineered such that the simulation can predict the effect in the real world with high
degree of accuracy. This is difficult if not impossible in many tasks which robots are
intended to be used.

This work proposes to synthesis programs for a biped static walker.  This task is chosen
because it contains high degree of freedom. A walking robot is interesting because it can
travel in many terrains that are not accessible to a typical wheel-based mobile robot. A biped
robot is also more appropriate in the area that is constructed for human, such as in a car, in a
tunnel, on an elevator etc. A biped is deemed to be more difficult to control than a multi-
legged robot as it has to perform balancing with minimum degree of redundancy. Genetic
Algorithm is used to synthesis programs. The walking task is divided into stages and the
program is synthesized stage-by-stage. In each stage, the solutions from simulation are
validated using the experiment in the real world. These validated solutions become the initial
state of the next stage of the synthesis. This is the key to improve the transferring of
solutions form simulation to the real world. The subsequent sections explain the proposed
method in more details.

2. RELATED WORKS

There are many works on generating robot programs. Genetic Algorithms (GA) and Genetic
Programming (GP) two of the most popular methods in Evolutionary Computation are
widely used. Hirai, et al, (1998) developed a humanoid robot that has full body, head arms,
and legs. It could walk perfectly like human, it could walk up and down the staircase, turn
left and right, and walk on any surface. This robot, however, used manual programming.
Chongstitvatana and Polvichai (1996) demonstrated the automatic generating of robot
programs by using Genetic Programming (GP). The robot is 3-joint arm moving in two
dimensions. Experiments were performed in simulation, and the results were validated in a
real robot.

There are many works on generating robot program to control biped locomotion. Zheng, et
al, (1988) developed biped walking from a level surface to sloping surfaces with positive
gradients. Inaba, et al, (1995) constructed an ape-like biped that can walk with static balance.
Kun and Miller (1997) applied neural network to perform adaptive static balance of biped
walking.

Regarding works that apply GA to solve the biped walking problem. Cheng and Lin (1995)
developed a walking robot with dynamic balance. In his work, GA is applied to search for
control gains and nominal trajectory for a 5-link biped locomotion. The aim is to walk in
different constraints, such as, walking on an incline surface, walking at a high speed, and
walking with a specified step size. The biped is experimented in simulation. Rodrigues, et al,
(1996) used GA to find the minimum torque that is necessary for walking. The fitness
function is defined as similarity between the ideal posture and the actual posture. The
experiment is also performed in simulation. Arakawa and Fukuda (1996, 1997) focused on
using GA to produce a natural motion trajectory and optimize walking energy. The learning
system was performed in simulation and the result was confirmed by the real robot.

Most researches experimented only in the simulation. In this work, there are both simulation
and real world included in the experiment.
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4. EXPERIMENT

The objective is to synthesis the biped robot control program automatically. This work
restricts the walking task to the biped that can walk forward on the flat and smooth surface
with a static balance.

The experimental biped is 25 centimeter high, and the area of the sole is 4.5 × 5.0 cm2. It has
two hips, two knees, and two ankles, rotated in sagittal plane (Fig. 3). The biped does not
have a torso, but it has a tail moving in frontal plane. The reason for using a tail instead of a
torso is that the tail will lower the biped’s center of gravity (C.G.), so the biped can keep its
balance easier.

An individual contains two fields: a length, and a sequence of walking commands.

Length a sequence of walking commands

The sequence of walking commands has the form:

m: r

where ‘m’ is motor command {0+, 0-, 1+, 1-, …, 6+, 6-}.  The biped has 7 motors numbered
0-6. The signs ‘+’ and ‘-’ mean increasing or decreasing angle of the motor by ‘r’,  0 ≤  r  ≤
150.

Walking motion of one step is divided in to six stages (Fig. 4). GA is used to synthesize
control program for each stage step-by-step, called “stage evolution” (Brooks, 1991b). With
this approach, the fitness function can be set appropriately with the subgoal of each stage.
Thus, the final solution can be achieved more rapidly.

The initial biped posture is standing on two feet. In the first stage, the robot shifts its weight
to the right foot. In the second stage, it lifts the left leg. The third stage, it lays down the left
leg. The fourth stage, the robot shifts its weight to the left foot. The fifth and sixth stage it
lifts the right leg and lays it down. After the final stage, the posture is adjusted to be similar
to the initial posture. The sequence of control can be repeated to create a continuous walk.

There are two types of fitness function: general fitness function, and particular fitness
function. Both fitness functions are minimized function.  The general fitness function
consists of three variables:

Fig. 3. Biped construction

0

1

2

3

4

5

6



28

Fit  =  k1F + k2R / k3 T

where F  = 1 when the robot falls otherwise 0, R = 1 when the robot turns otherwise 0, T is
the duration that the robot can achieve stable walk, k1, k2, k3 are appropriate constants. The
general fitness function promotes the behavior that is stable and walk straight without
turning.

The particular fitness function for each stage is shown in Table.  1.

F1 = ∆SR
∆SR =

)()( 22
zzxx prcgprcg −+−

F2  = k∆z + ∆y
∆z = ) step_size  - (prpl zz +

∆y =  - groundply
F3 = ∆y +
penalty

∆y =  - groundply

F4 = ∆SL
∆SL =

)()( 22
zzxx plcgplcg −+−

F5 = k∆z + ∆y
∆z = zz - prpl

∆y =  - groundpry

F6 = k∆y + ∆z
∆z = zz - prpl

∆y =  - groundpry

Table. 1. Particular fitness function for each

where
cgx , cgz is the position of C.G. by X and Z axis
plx, ply , plz is the position of center of the left sole by X, Y, and Z axis
prx, pry , prz is the position of center of the right sole by X, Y, and Z axis

step_size is the length of stride (2.5 cm. in the experiment)
penalty is the penalty value if the robot shifts its weight from the right foot.
ground is the position of ground level (Y axis)
k is constant

The motivation for each particular fitness function is as follows.  For the first stage, the robot
must shifts its C.G. to the right foot.  The function F1 measures the distance between C.G.
and the center of the right foot (∆SR). In the second stage, the robot lifts the left leg and
moves it forward.  The function F2 measures the distance of the left foot in front of the right
foot (∆z). The variable ∆y controls the height of the left foot from the ground. The step_size
is used to limit the length of stride to prevent the subsequent difficulty in transferring the
weight to the right foot in the fourth stage.  In the third stage, the left foot is laid down to the
ground.  The function F3  measures the height of the left foot from the ground (∆y).  The
penalty value is used to prevent the robot from shifting its weight to the left foot.  If this
happens the robot will sway its body to the left side.   In the fourth stage, the robot moves its
C.G. from the right foot to the left foot. F4  is similar to F1  but alternate left and right.  The
fifth stage is similar to the second stage but alternate left and right.   The right foot is not
placed forward, the step_size is zero.  The robot lays down the right foot in the sixth stage.
The variable ∆z is used to prevent the right leg to move backward or forward.
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Evolving the control programs in the simulation is necessary.  The experiment with an actual
robot takes a very long time as the number of candidates to be evaluated is up to 100,000.
However, the solution from simulation alone does not yield programs that works in the real
world. The experiment with the real robot is combined in the simulation to increase the
success rate. At the end of each stage of evolution, the experiment with the real robot is
performed to validate the solutions.

GA is run in each stage of evolution in the simulation (Fig. 5).  GA generates the solutions
with some variations.  As the simulation ignores many aspects of the real world, many
solutions from the simulation simply fail.  However, some solution has a chance of success.
The experiment with the real robot is performed to select only the solutions that work in the
real world to be further evolved to the next stage. Each validated result becomes an initial
state of the next walking stage. After six stages, the complete solutions will emerge. The
number of different solutions from each stage is retained to the next stage hence there are
many different complete solutions at the end.  This method combines the advantage of
simulation (speed) with the advantage of the experiment with the real robot (validity).

For the experiment with the real robot, the human observation is used to score the behavior
of the robot. There are 2 types of criteria in observing the real behavior: general criteria
used in every stages, and   particular criteria used in each stage. The general criteria judges
the stability and the direction of the walk.  The observer asks the questions  “Does the robot
fall?” and “Does the robot turn?”. The particular criteria are set differently for each subgoal
of each stage, as shown in Table 2.

Stag particular criteria
1 Is C.G. shifted to the right foot?
2 Is the left leg lift forward?
3 Is the left foot on the ground?
4 Is C.G. shifted to the left foot?
5 Is the right leg move forward?
6 Is the right foot on the ground?
Table 2. Particular criteria for each

The GA parameters are shown in Table 3.

Population size 500
Generation 200
Crossover
probability

1.0

Mutation
probability

0.001

Table. 3. GA parameters

Because an individual can contain redundant motions, such as moving a joint back and forth
or repeating the same joint motion, edit operations are performed after its fitness evaluation.
The edit operations are 1) eliminate redundant motions and 2) simplify repeating joint
motions. These operations help to maintain the compactness of the representation.
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5. RESULT

The robot can walk continuously more than 15 steps, with the speed 40 second per step.
Figure 6 shows an example of a full step. It can be seen that the stability of biped locomotion
is marginal, especially in the stage 2 - 4.

At the end of each stage in the simulation, 20 individuals are selected to be validated with
the real robot. An average number of successful individual in the experiment with the real
robot of each stage is 7. We found that even without the general fitness function, the final
solution could still be achieved.

The fourth stage is the most difficult stage to evolve. The robot must transfer its weight to
another foot. It becomes more difficult when the length of stride is large. The length of stride
is determined by the fitness function in the second stage. Sometimes, the unexpected
behavior emerges in the fourth stage such as moving the leg backward before the weight
transfer.

6. CONCLUSION

In this work, we investigate a method to automatically generate control programs for a
walking biped. Walking motion is divided into six stages. GA is used to synthesize the robot
control program stage-by-stage. The fitness function is set differently and appropriately in
each stage. This work uses simulation combined with the experiment in a real robot. The
results show that the real robot can achieve a stable and continuous walk.

The experiment in the real world is used to select and validate the result from the simulation.
The cooperation between simulation and real world experiment is the key to achieve a
solution that works in the real world.
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Fig. 4. Six stages of walking motion.
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Figure   (this page)  The experimental setup for visual reaching task, a 3-DOF planar
robotic arm.  (previous page)  The biped robot used in the experiment for evolving robot
programs to control a robot to walk.  These two experiments are the experiments on
evolving robot programs in the real world.
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