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With respect to the pattern matching process, hidden Markov models (HMMs)
have proven to be an effective statistical approach to isolated tone recognition [14,15].
However, tone recognition in Thai connected speech using HMMs has never been
attempted. We believe that a simple straightforward extension of an HMM isolated tone
recognition algorithm is likely to produce unsatisfactory results for connected speech tone
classification. This is partly due to the fact that connected speech tone recognition is a
more difficult problem than isolated tone recognition. As illustrated in figure 1.3.2, there
are differences in the Fy realization of tones in an utterance when each individual word is
spoken in isolation (see top panel) and when the whole utterance is naturally spoken in
connected spee_ch {see bottom panel). There appear to be interactions among several
linguistic factors that affect the Fy realization of tones in connected speech: syllable
structure, tonal coarticulation, stress, and intonation.

Analogous to the problem of continuous speech phone recognition in which
contextual variations between contiguous phones (i.e., phone coarticulation) must be
taken into account, continuous speech tone recognition must also incorporate tonal
coarticulation and other linguistic factors into the system. A simple modification of an
HMM isolated tone recognizer to recognize tonmes in continuous speech requires
constructing a maximum of 125 (5 previous X 5 current X 5 following tones in a three-
tone analysis window) tone models in order to account for both perseverative and
anticipatory tonal coarticulation. This model may not conducive to real-time applications
even with a parallel implementation. Also, because of subtle changes in Fo contours due
to coarticulatory effects, the usual acoustic features, Fo and AFg, used in an HMM-based
system may not adequately capture the acoustically discriminatory information among
coarticulation patterns of tones. For these reasons and because tonal coarticulation
appears to be rule-governed, we propose a novel algorithm to classify tones in connected
speech using an analysis-by-synthesis model.

Analysis-by-Synthesis is an abstract model of the speech perception process
proposed by Stevens [39]. The basic assumption of the model is that speech perception
and production are closely tied. The major claim of the theory is that listeners perceive
(analyze) speech by implicitly generating (synthesizing) speech from what they have
heard and then comparing the synthesized speech with the auditory stimulus. According
to the model, the perceptual process begins with an analysis of auditory features of the
speech signal to yield an acoustic description in terms of auditory patterns. A hypothesis

(or hypotheses) concerning the distinctive feature representation of the utterance is (are)
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constructed. This information then becomes the input to a set of generative rules that
synthesize candidate patterns. The candidate patterns are subsequently compared with the
patterns of the original utterance. The results of this matching process are then sent to a
control component that transfers the phonetic description to higher levels of linguistic
analysis. This model represents one of many bottom-up approaches to speech perception.
That is, the model does not incorporate the effects of lexical and other higher-level
knowledge into the speech perception process; they are only considered during later
stages of recognition.

We adopt this model in the development of a Thai connected speech tone
classifier because the model is easily implemented in terms of incorporating linguistic
constraints into the model, although there has been little empirical evidence to support its
validity. As the name suggests, the model contains two major components: the analysis
and the synthesis module. Roughly speaking, the function of the analysis module is to
generate hypothesized tone sequences from the input Fy contour. The synthesis module,
in turn, generates predicted Fy contours according to the hypothesized tone sequences.
These predicted Fy contours are basically reference templates to be used for pattern
matching against the input contour. The synthesis module is based on our extension of
Fujisaki's model for synthesizing Fy contours to tone languages, and linguistic constraints
are represented as synthesis rules in the form of the Fujisaki's model parameters. In this
research, every factors affecting Fy realization of tones in Thai connected speech, i.e.,

continuity effect, stress, tonal coarticulation and declination, have been accounted for.

3.3.2 The proposed tone classification algorithm

In this section, details of the proposed automatic tone classification algorithm
based on the analysis-by-synthesis method are presented. The algorithm takes into
account all factors affecting phonetic realization of Thai tones as previously mentioned.
Also discussed are important considerations for the normalization procedures to achieve
speaker-independence.

The general design of the algorithm involves steps as shown in Fig. 3.3.2. The
first three blocks represent the pre-processing of the speech signal to extract relevant
information or acoustic features for subsequent classification. These are steps necessary

to produce relatively reliable, normalized F contours. The last three blocks represent the
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tone classification step based on the analysis-by-synthesis method. Each component of

the system is described in detail below.
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Fig. 3.3.2 The block diagram of the proposed tone classifier

Feature extraction and smoothing

Two suprasegmental features corresponding to acoustic correlates of prosody
(Fo and intensity) are extracted from the speech input. First, the raw Fy contour is
automatically extracted from the input speech signal using one of several methods to
pitch extraction. Our implementation of the tone classifier relies on a CSL pitch
extraction algorithm which employs a time domain approach to pitch analysis (modified
autocorrelation with center clipping) with nonoverlapping variable frame length. For a
particular speaker, frame length will be determined by his/her pitch range to ensure that
there were at least two complete cycles within a frame. A typical frame length is 20 to 25
ms for male speakers, 15 to 20 ms for female speakers. To eliminate "drop-outs" during
voiced speech segments, spurious pitch values in regions of unvoiced speech segments,
and/or "double pulsing" effect, smoothing techniques, such as median filtering and linear
interpolation, must be employed. In this experiment, the Fy contours were smoothed
using linear interpolation technigue.

Secondly, the energy (intensity) measure will be used in placed of the
amplitude measure of the speech signal since they are closely related. Energy calculation
in decibels (dB) will be performed in a nonoverlapping frame-by-frame, pitch

asynchronous manner using a Multi-speech algorithm that defines energy as the sum of
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the square of absolute amplitude values within a frame. Frame length will be kept
constant at 20 ms for all speakers. The raw energy value will be converted into dB by
computing 20 times the log (base 10) of the square root of the ratio between the energy to
the number of samples in the frame. A smoothing function was applied to the resulting
energy contour.

The energy contours obtained above will be used to crudely identify syllables

with CVS structure (i.e., syllables ending with stop consonant, /p/, /t/,and /k/). This

is important in determining the rhythmic grouping of the input utterance. Since these coda
consonants are glottalized, the syllable ends abruptly and the signal energy decreases very
rapidly at the end of the syllable. This rapid energy drop results mainly from the
articulatory requirement of the final stop consonant. A syllable ending with a stop
consonant will cease abruptly even if the voiced portion preceding the stop consonant has
been prolonged. To parameterize this characteristic, a smoothed short-time energy

profile £ () is obtained for the voiced portion of the syllable using the above-described
procedure. Let j, . denote the frame number in which maximum energy occurs and ¢, be

the time required for the energy to drop from 90% to 10% of E¢(j,... ). We can define an

energy drop rate as the reciprocal of r,. That is, R, = -t-l- It should be noted that the
)

energy drop rate are highly correlated with the syllable duration. The shorter the duration,
the faster the energy drops.

Syllable segmentation

Since tones are properties of syllables, it is logical to segment the smoothed and
normalized Fy contour into syllabic units. Syllable boundary information can be provided
by an automatic syllable segmentation algorithm based on energy contours and spectral
information, or by segmentation information from a phone recognizer unit. In this study,
we have developed an automatic procedure for syllable segmentation. Automatic syllable
segmentation is a crucial component that provides syllable boundary information
necessary for our tone classification system. Traditionally, zero crossing rate and root-
mean-square energy (RMSE) of the speech signal are the two most widely used features
for locating syllable boundary. In this research, we propose a new segmentation
algorithm based on a modified Teager’s energy calculation [40]. We present details of the
algorithm below.
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The most common way of calculating the energy of a speech signal is the root
mean square energy (RMSE), which is the square root of the average of the sum of the
squares of the amplitude of the signal samples. Using a window of width W to segment
the speech signal into frames, the RMSE of frame n, E,, is given by:

1
1 & 502
£~ 5350
where sq(7) denote the i windowed speech sample in frame number £.

On the other hand, in modeling speech production, Teager developed a new
algorithm for computing the energy of a signal. This algorithm has been presented by
Kaiser as Teager’s Energy Algorithm. Given a signal with the motion of an oscillatory
body, its sample is defined as

x, = Acos(Qi+4¢),
where A is the amplitude of the oscillation, Q is the digital frequency, and ¢ is the initial
phase. In Teager’s Algorithm, the instantaneous energy E; of the sample x; is as follows:

2
E, = x-x,x

! I

A% sin’ (£2)
~ A7

It is noted that the output of Teager’s Algorithm is a function of the amplitude of
the signal samples, as well as the oscillation frequency. This new energy measure is
therefore capable of responding rapidly to the changes in both 4 and £2. Thus, it has the
ability to track rapid changes as well as the qualitatively different character of various
signals.

The fact that the Teager energy algorithm reflects both the amplitude and
frequency of a signal suggests that it may be a more suitable measure for different speech
events than the RMSE, which reflects only the amplitude of the signal. From the point of
view of speech production, the amount of energy used to produce noise-like fricatives
should not be an order of magnitude less than that used to produce periodic voiced
sounds. Yet, this is the typical difference we often get when using RMSE measure.
Fricatives and plosives sounds have very low amplitude, but, unlike most vowels, these
sounds have energy distributed in the frequency range above 5 kHz. As a result, Teager’s
energy measure should be more suitable for the calculation of the energy used in

producing those fricatives and plosives.
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To apply Teager’s energy calculation to the problem of speech segmentation, we
observe that the expression for the instantaneous energy can be related to the square of
the samples of the derivative signal. This is equivalent to calculating the RMSE on the
derivative of the speech sample x;. The result is proportional to 4% and £2 as in Teager’s
energy calculation. As a result, we propose a new energy calculation based on a
modification to Teager’s calculation as follows:

1. Calculate the power spectrum of the speech signal;

2. Weight each sample in the power spectrum with the square of the frequency;

3. Take the square root of the sum of the weighted power spectrum.

Based on the above energy calculation, our syllable segmentation algorithm have been
evaluated using the speech materials described in appendix C. To evaluate performance,
we visually compare the estimated locations of syllable boundary using the different
energy measures (both RMSE and Teager’s). Zero crossing rate is also computed and
used to aid our visual inspection of the correct boundaries. The detected boundaries are
compared with those obtained from manual segmentation via audio playback of the
speech signals selected between the detected boundaries.

Preliminary results are encouraging revealing several general properties of this
new energy calculation. First, the new measure confirms a higher energy level for
fricatives and plosives than that obtained form RMSE measure. Secondly, compared to
RMSE, the new measure decreases the energy difference between voiced and voiceless
sounds. Lastly, The new measure suppresses the energy level of background noise during
silence intervals.

In addition to syllable boundary information obtained above, we also extract the
durational patterns of every syllable in the utterance. Rased on our automatic syllable
segmentation algorithm above, syllable duration is computed. Note that syllable duration
for our purpose is defined as the duration D of the voiced portion of a syllable only. This
durational information will be used in discriminating between stress and unstressed
syllables in the input utterance. For the purpose of computing the speaking rate, total
duration marked by the beginning and end of the utterance is also calculated. The total
duration of the target sentence will be measured from the onset of the consonant at the
beginning of the sentence to the cessation of the coda consonant (closed syllable) or
vowel (open syllable) of the last syllable at the end of the sentence. Speaking rate will

then be computed by dividing the total sentence duration by the number of syllables in
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that sentence. The speaking rate will be used in the normalization process, which will be

described next.

Normalization

Normalization of the feature parameters is necessary because it will eliminate
undesirable time and speaker variations of these parameters. In terms of pitch, for a
multiple-speaker system, the normalization process is introduced to neutralize variability
from one Fy contour to the next. Sources of variability include speaker's physiological
differences, the kinetics of vocal fold vibration, consonantal perturbations on Fg, and
speaking rate. The raw Fy contour is first converted into an equivalent-rectangular-
bandwidth-rate (ERB) scale. This ERB normalization has an effect of neutralizing pitch
ranges of different excursion size. To neutralize the declination effect in the Fy contour,
we subtract a time-varying mean Fg value from the input Fy contour. A time-varying mean
Fo value is computed by fitting an exponential curve to the overall contour as already
discussed. Then, z-score normalization is employed to account for pitch range
differences across speakers vased on the precomputed mean and standard deviation from
all utterances in the training set. This method has the effect of making the first- and
second-order moments of the pitch distributions the same.

For the duration-related parameters D and Rp, normalization is needed. The
speaking rate can be affected by emotional, stylistic and environmental factors, which
may change from time to time. For example, the duration of a long syllable can be very
short for fast speaking persons. The normalization factors are the precomputed means

from all utterances in the training set.

Fy contour analysis

This step is necessary to reduce the number of possible reference templates that
have to be generated by the synthesis module, and thus, reduce the amount of time it takes
to match against the input Fo contour. The analysis procedure consists mainly of two
steps. First, using the syllable durational patterns, a rhythm grouping among adjacent
syllables is determined from the rules given in section 3.2.3 and repeated here for
convenient. That is, the relative syllable duration for each type of rhythmic foot can be
abstractly described together with the corresponding rule for matching the acoustic

realization of a rhythmic foot with the abstract description as follows:
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1. For a one-syllable rhythmic foot in an utterance-initial position,
|'s | - 3] - |2

2. For a one-syllable rhythmic foot in an utterance-final position with a non CVS
structure, | S | - [ 3] - | 4]

3. For a two-syllable rhythmic foot in which the salient syllable has a CVS structure,
or the weak syllable is the first element of a compound that does not have a CVS
structure; or both the salient syllable and the weak syllable are function words,

lsw| - | 2:1] - |2:2]

4. For a three-syllable rhythmic foot in which the salient syllable has a CVS structure,
or it is in an utterance-initial position, or it is a function word and the two weak
syllables are two function words or a function word and a linker syllable.

|sww | o VA% 5 |55

Once the rhythmic grouping is determined, the second step involves the peak-and-
valley analysis, i.e., the detection of local extrema of the given smoothed, normalized and
segmented Fy contour for that grouping. Local extrema (peaks and valleys) are detected
by using first and second derivatives. The derivative at any point in the contour, except
for the first two and last two points, is computed by calculating the linear regression
coefficients of a group of five Fo values consisting of the current point, and its preceding
and following two points. _

The locations of these extrema coupled with syllable boundary information and
the energy drop rate are then used to identify all possible tone labels for the salient
syllable in the rhythmic grouping based on some specified rules. For example, between
two syllable boundaries, only the falling tone can occur if a maximum occurs, and only
the rising or the high tone can occur if a minimum occurs. Also, if a maximum occurs at
or in the vicinity of a syllable boundary, the preceding tone can either be a high or a rising
tone. If a minimum occurs at or in the vicinity of a syllable boundary, the preceding tone
can either be a mid or a low tone, or a sequence of two falling tones. For the rest of the
weak or unstressed syllables within the given grouping, only three tonal labels (FH, M,
and LR) are assigned depending on the overall temporal pitch variation. The FH label
indicates an upward trend, the LR a downward tend, and M a level trend. These labels are
derived based on the information obtained from the acoustic experiments described in
chapter 2. They reflect the fact that unstressed syllables suffer tone neutralization, and the

contrastive pattern among tones can be divided into roughly three tonal registers.



-64 -

To deal with syllables with different duration, a time-aligned pitch profile is used
{41]. The voiced portion of the syllable is divided evenly into 16 segments. For each
segment, a pitch value is obtained from the given Fy contours using a linear interpolation
method. Thus, the pitch profile of each syliable has the same dimension of 16. Given a
pitch profile {P(1), P(2),......,P(i),...,P(16)}, the overall temporal pitch variation within

the profile can be measured using a pitching rising index, 7, which is defined as

‘Max}, {P()}- Min %, {P()}
Max !, {P(i)} - Min’%, {P(i)}

Iy

1 argMax)’, {P(i)} > arg Min'’, {P(i)}
where k =
-1 argMax 5, {P()} > arg Min %, {P(i)}
It is noted that the first and the last segment of the pitch profile (P(1) and P(16)) are not
used in order to reduce possible errors in the pitch extraction process. The polarity of 7,
indicates the overall temporal trend of pitch movement within the utterance and the

magnitude of /, represents the degree of such variation.

Fg synthesis

Based on the extension of Fujisaki's model for synthesizing Fo contours to Thai
described in the previous section, the input tone sequences are used to generate predicted
Fo contours. These predicted Fy contours are basically reference templates to be used for

pattern matching against the input contour.

Pattern matching

The classification of input Fy contours into likely sequences of tones is
accomplished in this step by pattern matching against the predicted Fy contours or
reference templates generated by the Fo model. Pattern matching techniques, such as a
simple zero-lag crosscorrelation method or a one-stage dynamic programming search can
be used. In both cases, some measure of goodness of fit must be established in order to
rank the results so that N-best tone sequences can be obtained. For example, for the zero-
lag crosscorrelation method, a correlation coefficient of 0.9 or higher could be used to

indicate a relatively good fit. Thus, we can infer that a strong similarity exists between the
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input and the predicted Fy contours. For a one-stage dynamic programming search, a
distance measure might be more appropriate. In this research, we used the zero-lag

crosscorrelation method.

3.4.3 Performance evaluation

In order to train and evaluate our computer model, we need additional speech
materials. Thirty-five target sentences of 11-15 syllables in length are chosen to closely
represent continuous speech. Each target sentence consists of syllables with varying tone
sequences. Additional requirement is that some of the sentences comprise voiced sounds
throughout in order to increase the level of difficulty in performing the syllable
segmentation procedure in our tone classification algorithm. Appendix C contains a list
of the target sentences described above.

Test stimuli were different from the training stimuli used in training the Fujisaki's
model in section 3.1.3. They were produced by a set of five speakers. Thus, there were a
total of 175 utterances in the test set. '

The classification test was performed on each of the 175 utterances from the test
set to obtain the crosscorrelation coefficients between the input contour and each of the
predicted contours. All in all, the algorithm misclassified 32 of 175 test utterances.
Hence, the classification accuracy for this experiment is approximately 81.7%. In this
experiment, the number of N-best output tone sequences is equal to six, i.e.,, N =6, The
number six was chosen arbitrarily. The reason for outputting N-best tone sequences as
inputs to the word hypothesizer is because it is likely that the correct tone sequence could
be recovered at that stage by using other linguistic constraints, such as tonal restrictions
on the types of syllable structures, etc. The overall performance of the synthesis module
was quite reliable in producing Fy contours. Misclassification mainly occurs with
unstressed syllables, especially linker syllables and function words. There are a total of
2,230 syllables in the test stimuli, and only 1822 were correctly classified. This might be
due to the fact that unstressed syllables suffer not only from tone neutralization but also
from the interaction with adjacent syllables in terms of tonal coarticulation. It is believed
that this problem may worsen in the case of polysyllabic words containing linker
syllables. However, this problem should not be solved at this stage, but at the stage of

word hypothesization where pronunciation dictionary will help rule out ill-formed word.



-66 -

3.4 Summary and Discussion

A mathematical model for generating Fo contours for Thai and other tone
languages was presented. The model is based on an extension of the Fujisaki’s model of
Fo contours. Successfully incorporated into the model are linguistic factors affecting
phonetic realization of Thai tones in continuous speech. They are continuity effect due to
syllable structure, stress, tonal coarticulation, and declination.

Then, the prosody generation aspect of a text-to-speech system was described, and
the above model was applied at the stage of prosody synthesis. The overall performance
cannot be assessed at this time because our laboratory does not have a prototype of a Thai
text-to-speech system available, and it is beyond the scope of this research. We plan to
evaluate our model using the FESTIVAL system developed at Oregon Graduate Institute.

Furthermore, a bottom-up or data-driven approach to automatic classification of
Thai tones in connected speech was described. The algorithm is based on the analysis-by-

_synthesis approach to speech perception, and it is simpler to implement than the left-to-
right HMM-based system. Also, we believe that the computational cost of our model is
much less than the HMM-based system because it uses fewer parameters.

The present ifnplementation of the algorithm is a continuation of the work done by
the principal investigator [17]. Several limitations, such as a lack of automatic
segmentation of syllable boundaries, a need to incorporate stress effects into the synthesis
module, and a small number of test sentences have been rectified. However, we still are
not quite satisfied with the accuracy of the algorithm, yet the results indicate a step in the
right direction toward implementing a connected speech tone recognition system. We
believe that the overall performance of the algorithm can be improved through a better
training of the model, a better pattern matching method, and a more robust Fy contour

analysis method.
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4. INTEGRAING TONE CLASSIFICATION WITH
A THAI PHONE RECOGNIZER

The question of how to design an automatic speech recognition system (ASR) for
That has become increasingly more important as speech technology research in Thailand
is vigorously pursued. Since Thai is a tone language, a simple emulation of an ASR
system for western languages like English, which is not a tone language, is bound to be
unsuccessful. Moreover, even though designers of an ASR system for tone languages like
Chinese have reported experimental evidence suggesting a successful design, there is no
guarantee that those design frameworks will be successfully translated to Thai. This is
because the phonetics and phonology for those tone languages are quite different from the
phonetics and phonology of Thai. For example, phonotactics (strategies for concatenating
sounds) of Chinese is quite different from that of Thai. Mandarin Chinese syllables, for
one thing, are sonorant-ending or live syllables only, whereas Thai permits obstruent-
ending or dead syllables. Thus, the number of Thai syllables is larger than that of
Mandarin Chinese. As far as tones are concerned, Mandarin Chinese has only four tones
while Thai has five tones. In addition, although Thai is commonly thought to be a
monosyllabic language like Chinese, many words are disyllabic and trisyllabic, especially
those borrowed from foreign languages. Thus, it is obvious from the above discussion
that past design frameworks from other languages can only serve as guidelines for a
design of a Thai ASR system.

There are many design issues that need to be specified when designing a That
ASR system. These issues involve many spoken language knowiedge sources.
Knowledge sources commonly used in speech understanding are shown in figure 4.1.
There is good evidence that an implicit ordering among these knowledge sources exists.
This order of precedence among spoken language knowledge sources indicates that one

type of information must be available before it makes sense to progress to the next level.
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Fig. 4.1. The order of precedence among spoken language knowledge sources.

From the above figure, it should be noted that spoken language knowledge
sources can be classified into two groups: low-level and high-level knowledge sources.
Prosodic knowledge source is included in both groups because prosody can help a word
recognizer rule out word candidates with unlikely stress and durational patterns, but it can
also impact syntactic and semantic modules. Therefore, we depict the prosody module as
both a high-level and a low-level knowledge source.

In general, speech recognition is aimed at simply recognizing speech (finding out
what was said), but not understanding it (finding the meaning of what was said). And,
from the above figure, it is clear that speech recognition only involves the use of low-
level knowledge source. Thus, designing an ASR system is usually accomplished by
finding the best acoustic/phonetic model and the prosody model. These two models
should be designed to account for and interpret the acoustic information present in the
speech input to the system. The acoustic model must capture the essence of the segmental
makeup (sequence of consonants and vowels) of the input utterance while the prosodic
model the essence of suprasegmental makeup (tone, stress, rhythm, and intonation).

However, speech recognition performance can be improved through the use of some or all
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of the knowledge sources from the high level, such as lexical, syntactic and prosodic
information, etc. Speech models for other languages now include linguistic modeling to
account for coarticulation and grammatical constraints to reduce the search space for the
correct utterance.

In this research, we are particularly interested in the issue of tone classification as
part of the prosodic model, and how to integrate this feature into the overall design of a
Thai ASR system. This chapter outlines the proposed basic framework for a Thai speech
recognition system and details the necessary steps for achieving a smooth integration of
tone classification with acoustic model. Before describing our proposed system for Thai,
background on phonetics and phonology of Thai is in order. This information is necessary

for subsequent explanation of our chosen design.
4.1 Phonetics and Phonology of Thai

In this section, we present a brief survey of phonetics and phonology of standard
Thai. Standard Thai, the focus of this research, is the dialect spoken in the capital and the
central part of Thailand. It is considered the national language of Thailand and is used in
broadcasting and in conducting official business and legal matters. It is also the medium
of instruction in government schools throughout the country. Since a linguistic analysis
of Standard Thai is not a primary goal of this thesis, this overview is by no means
intended as an exhaustive linguistic description of Standard Thai. A brief description of
the phonetics and phonology is given mainly as a linguistic framework for the subsequent
acoustic investigation of acoustic and prosodic models in a Thai ASR system.

This survey is divided into two parts: the segmental features (consonants and
vowels) and the suprasegmental features (tone, stress, rhythm, and intonation). The
discussion also includes restrictions on the possible combinations of sounds within the

frame of the syllable. These restrictions are referred to as phonotactic constraints.

4.1.1 The segmental phonemes

This section deals mainly with the systematic inventory of Thai consonants and
vowels. It is a well-established body of knowledge although there are minor
disagreements among various linguists. Twenty-one consonants and nine vowels

(occurring as single vowels, geminates, and vocalic clusters) are presented.
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Vowels

It is generally agreed that Thai has nine short or single vowels: /i/, /e/, /e/,
/w/,/e/,/a/,/u/f,/o/,and /o/, and each short vowel has a corresponding long
vowel indicated by double letters: /ii/, /ee/,/cc/, /wmm/, /o8/, /faa/, /wu/, /oo/,
and /09/. All of them are considered monophthongs. In addition, Thai also has three
vocalic clusters or diphthongs: /ia/,/wa/,and /ua/. It is noted that the first

member of diphthongs is always a high vowel, whereas the second member is always an

/a/. Although long vowels are in contrast with their short counterparts, Thai linguists

disagree about how to represent such contrasts phonemically [1,7, 42]. The disagreement
revolves around the issue of whether or not long vowels should be represented as
sequences of two short vowels as advocated by Abramson [1].

An acoustic characteristic that distinguishes among different vowels is the formant
structure. Formant pattern is known to be the major physical correlate of vowel quality.
Formants are resonant frequencies occurring as peaks in the vowel spectrum. They result
from the filtering effect of the vocal tract, which produces amplitude peaks at certain
frequencies by enhancing the harmonics at those frequencies while damping harmonics at
other frequencies. Vowels have several formants, with the first three being the most
important for speech perception. The eighteen Thai monophthongs, classified according
to tongue heights and positions, are shown in Table 4.1.1. Also listed are their typical
average formant frequencies taken from a detailed acoustic study of Thai vowels by
Abramson [1].

Consonants

In Table 4.1.2 are the consonantal phonemes in Thai which are classified
according to the states of the glottis (voiced or voiceless), the manner of articulation
(stop, non-stop), and the place of articulation (bilabial, dental, alveolar, palatal, velar, and
glottal). Voiced and voiceless refer to the state of the glottis during a given articulation.
Aspirated and unaspirated refer to the presence or absence of a period of voicelessness

during and after the release of an articulation.
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Table 4.1.1
Classification of the 18 Thai monophthongs according to tongue heights and
positions along with their typical average formant frequencies.

Tongue Advancement
g’;gﬁf F%I:;l:.m Front Central Back

short | long | short | long | short | long

i ii w mu u uu

Fy 360 300 300 300 360 300

High F, 2100 | 2220 | 1380 | 1380 | 720 660

e ee ) =1 o 00

Mid F) 540 480 540 540 480 480
F, 1980 | 1980 | 1200 | 1260 | 840 840

£ g€ a aa o) 00

bow |k, | 780 | 720 | 720 | 780 | 660 | 660
F, 1800 | 1800 | 1380 | 1380 | 960 960

Table 4.1.2

The 21 consonantal phonemes in Thai classified according to the states of the
glottis and the manner and place of articulation. The phoneme /w/ is entered
under both 'bilabial' and 'velar' column to indicate its labio-velar place of articulation.

Place of Articulation
Manner of Articulation
Bilabial| Dental |Alveolar| Palatal | Velar | Glottal
Voiceless Unaspirated P t c k ?
Stop

Voiceless Aspirated p° th ch K"

Voiced b d

Fricative f s h
Nasal m n D

Non-stop

Lateral 1

Trill r

Glides w J w
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We list 21 consonantal phonemes although this number is not agreed upon by
linguists. The disagreement is centered around the issue of whether or not to include the

glottal stop, /2/, as a phoneme. The argument for its exclusion from the phonological

system can be summarized as follows. First, the occurrences of glottal stop in citation
forms are predictable and phonologically conditioned. Secondly, its occurrence in
connected speech is noticeably conditioned on the stylistic variation of speech. This issue
will not be resolved until more research is conducted. However, we will include the
glottal stop because its presence at the phonemic level enables us to more easily and

systematically describe syllable structure in Thai.

4.1.2 From phoneme to phone

Presented above are the consonantal and vowel phonemes in Thai. They represent
the abstract description or the phonology of all possible sound units in the language.
However, when these sound units are spoken in connected speech, their acoustic
manifestations will differ considerably from when they are uttered in isolation. This is
due to the fact that speakers tend adjust their articulators in such a way that facilitate the
ease of production, resulting in the phenomenon called phone coarticulation. This is
similar to tonal coarticulation previously mentioned. Simply put, phone is the acoustic
manifestation of phoneme, and maybe slightly different when spoken in continuous
speech. Unfortunately for Thai, investigation along this line is scarced, and Thai linguists
have not agreed upon a definite number of phones in Thai. Table 4.1.3 shows one
possible phone enumeration in Thai using the syllable framework [43]. A syllable
consists roughly of three sound units: initial consonant, nucieus or peak, and an optional
coda or final consonant. It is noted that we also include foreign phones from English, as
possible coda in our inventory. This simply reflects the pervasiveness of English in Thai
society. More details on rules of syllabification in Thai will be presented in section 4.1.4.

In addition, regarding vowel length distinction (short vs. long), we have decided
to keep them as separate and distinct phones instead of representing long vowel as a
concatenation of two short vowels of the same category. Although it is notable that some
of the short vowels and their long counterparts have somewhat different vowel qualities,
which suggests that vowel spectrum (formant pattern) may be a cue to signal the length
distinction in addition to relative duration (see Table 4.1.1). In fact, nearly 30 years after

his first experiment, Abramson [44] reported that slight differences in formant pattern are
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observed to be the secondary cue to the length distinction while relative duration is still
the major cue. For all the vowel pairs, the distinction boundary is influenced by spectral

differences with, perhaps, some effect of the timing of the context as well.

Table 4.1.3

Possible Thai phone inventory enumerated in the syllable context.
Phone coarticulation is accounted for as possible Diphone enumeration

Monophone Thai Borrowed | Total
p.t,c,k,2,p?, tP,cR kP, b,d,
single _ - 21
Initial f.s,h,m,n,p,1,r.wj
consonant pr.phr,tr,tr,kr, kbr,pl, br,bl, fr,
cluster 17
pP1,k1, kM1, kw, khw fl,dr

i,ii,e,ee,c,ce,w,mm, 9, 88,
Nucleus | monophthong - 18
a,aa,u,uu,0,00,d,92

or Peak
Diphthong | ia,wa,ua - 3
Coda p.t.k.2,m,n,0,j,w f,1,s,ch 13
Total | 72
Diphone CV VC¢ VG C(Ci Total
Total 912 288 456 912 2,568

4.1.3 The suprasegmental phonemes

This section deals with additional important features of speech sounds called the
suprasegmental features, such as length, tone, intonation, and stress. As the word
suprasegmental suggests, these features are thought of as ‘riding on top of other
segmental features. They may apply either within a single phonetic segment or across

numerous phonetic segments in an utterance.

Length

Speech sounds inherently have unequal duration. For example, voiceless

affricates in Thai have longer duration than voiced stops. One of the most important uses
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of length in Thai is the vowel length distinction used to signal lexical differences.
Variation in length is used contrastively (e.g., /bat/ 'card' vs. /baat/ ‘alms bowl’).

Acoustically, long vowels have an average duration that is about twice as long as short

vowels [45].

Pitch

Pitch is the psychological correlate of fundamental frequency (Fo) which depends .
on the rate of vibration of the vocal cords in phonation. Each opening and closing of the
vocal cords causes a peak of air pressure in the sound wave, and Fp is the number of
repetitions or cycles of variation in air pressure per second. The unit of Fy measurement
is Hertz (Hz). Changes in pitch or the rate of vibration of the vocal cords can be
produced by either stretching and tensing the vocal cords (the tenser the cords the higher
the pitch) or by changing the air pressure below the vocal cords (the higher the subglottal
air pressure the higher the pitch). However, the most important physiological factor that
determines variation in pitch is the tension of the vocal cords. Voiced speech souhds,
particularly vowels, may be produced at different pitch levels.

Many different kinds of information, either linguistic (grammatical information at
the syllable, word, or sentence level) or non-linguistic (age, gender, etc.), can be
conveyed by variations in pitch. Linguistically, Thai uses the variation in pitch called
tone to convey lexical information about the rneariing of a word. In other words,
differences in lexical meanings at the syllable level are signaled by tones. Languages that
make use of such variation in pitch belong to the class of tone languages. Thai also uses
the variation in pitch called infonation to convey syntactic information at the phrase or

sentence level. The intonation patterns are believed to be superimposed on the tones.

Tones, Intonation, and Stress

For the survey of tone, intonation, and stress features in Thai, see chapter 1.

4.1.4 Phonotactics

In every language, there are restrictions on the possible combinations of sound
sequences in different positions in words, particularly at the beginning and end of a word.

These restrictions can be formulated in terms of rules stating which sound sequences are
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possible and which are not. Restrictions on possible combinations of sounds are known
as phonotactic constraints.

Thai, as well as most other languages, employ strategies for concatenating sounds
based on the notion of syllable. Although a syllable is relatively difficult to define, it can
be roughly thought of as a unit comprising an onset (initial consonant sound), nucleus or
peak (vowel sound), and/or a coda or arresting consonant (final consonant sound).
Allowable syllable structures in Thai are relatively easy to enumerate compared to
English. The following are rules pertaining to syllable structure in Thai.

Each of the 21 consonant sounds (see table 4.1.3) can be used as an onset. An
onset is obligatory in Thai. An onset which contains two consonant sounds is called a
consonant cluster. There are 12 possible Thai consonant clusters and 5 foreign consonant
clusters. Note that the first member of a2 Thai consonant cluster is always a stop consonant

(p.p". t, t?, k, k") while the second member canonlyber, 1, w.

Each of the 18 monophthongs and three diphthongs (see table 4.1.1) can be used
as a syllable nucleus or peak. A syllable with a short vowel is called a short syllable; a
syllable with a long vowel a long syllable.

A syllable may or may not contain a coda. A syllable with a coda consonant is
called a closed or checked syllable; otherwise, it is an open syllable. Only nine consonant
sounds can be used as a coda (see table 4.1.3).

Syllables ending with one of the four stops are called obstruent-ending syllables or
dead syllables. Only short syllables can end with / 2/. That is, the glottal stop never

occurs after long vowels or diphthongs. The final glottal stop is always omitted in
unstressed open syllables.

Open syllables and syllables ending with one of the nasals or glides are called
sonorant-ending syllables or live syllables. Phonetically speaking, those syllables ending
with /w/ and /j/ are considered open syllables with a phonetic diphthong or triphthong
as a nucleus because of the vowel-like phonetic behaviors of /w/ and /j/. For /w/, the
phonetic diphthongs or triphthongs have a final [u] sound; for /j/, a final [i] sound. A
phonetic diphthong comprises a short or a long vowel and a final {u] or [i]; a phonetic
triphthong, a vocalic cluster and a final [u] or [i]. However, only certain combinations of
all possible phonetic diphthongs and triphthongs are allowed. The two sets of allowable

combinations of phonetic diphthongs and triphthongs are {iu, iiu, eu, eeu, gu, €eu,
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au, 8su, au, aau,iau] and [ei,eei,ai,aai,ui,uui,oi,ooi,0i,o00i,uai,
wmai]. The following combinations of phonetic diphthongs and triphthongs are
prohibited: [ei,eei,ei,eei, mi,mwi, iai,wu, wwu, ou, oou, ou, oou, mau, uau].

With respect to tones, sonorant-ending syllables have no tonal restrictions. All
five tones (mid, low, falling, high, and rising) occur on a sonorant-ending syllable.
However, only three tones are possible for obstruent-ending syllables. Low and high

tones occur on a short syllable ending with p, t,k, or 2 with an occasional occurrence of

a falling tone. Likewise, low and falling tones occur on a long syllabile ending with
p.t,ork. Occasionally, a high tone appears (mostly in borrowed English words).

From the above rules, 10 syllable structures are possible: CV, CCV, CVN, CCVN,
CVVN, CCVVN, CVS, CCVS, CVVS, and CCVVS, where C represents initial
consonants, CC consonant clusters, V short vowels, VV long vowels or diphthongs, N
nasals, and S stops. Some syllables in Thai, however, are inadmissible due to the co-

occurrence constraints, For example, labialized clusters /kw/, and /k"w/ may not
precede the rounded vowel u, 0,0, uu, oo, 20,ua. Likewise, the palatal /j/ may not
precede the front vowel i,e,€,1i, ee, €, ia. Other co-occurrence constraints include

those aforementioned phonetic diphthongs and triphthongs. In addition, syllables may be
inadmissible due to the tonal restrictions mentioned above. Luksaneeyanawin [24]
reported that out of the remaining admissible syllables, only 5,912 syliables exist in the
lexicon of average adult Thai speakers, although the actual figure may vary from speaker
to speaker. This figure of 5,912 syllables is based on the study of the distribution of all
possible syllables at the morpho-phonological level by examining the vocabulary

repertoire of many educated Thai speakers and by consulting several Thai dictionaries.

4.2 A Conceptual Model of a Thai ASR System

In this section, a conceptual model of a Thai ASR system is presented and
described in detail including advantages and disadvantages of, and the rationale behind
such a design. The model is based on a constraint-based system of integration as outlined
in [46]. Fig. 4.2.1 illustrated our constraint-based system for developing a Thai ASR
system. It is noted that the tone classification is included in the prosody processor, and the

‘lexical decoder’ module highlighted in boldface is the main focus of this research.
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Roughly speaking, the system consists of two parts: low-level and high-level
processing. Low-level processing usually consists of acoustic and prosodic models, which
must be capable of accounting for the segmental and suprasegmental features in the
speech input. High-level processing, on the other hand, involve the utilization of high-
level knowledge source (lexical, syntactic, semantic, and/or pragmatics) at the appropriate
level of linguistic unit, i.e., syllable, word, sentence, to correctly assemble what has been
sent from the low-level processing units into meaningful text. Before we can describe the
overall design of our system and why we chose such a design, a general discussion and

reviews of current and past systems are given first.

A Stream of Phones
Phone ,,

Sgeech Recognizer An\;'lvootféed
Signal Lexical| Graph CDG Hypothesis N
' I Decoder Parser Scoring Ranked
Prosody Sentence

Processor ‘ Hypotheses

Prosodic Features
Fig. 4.2.1 A conceptual model of a Thai ASR system

4.2.1 General design criteria

There are many design considerations that need to be taken into account. Besides
the difference in the phonetics and phonology of the language, a design of a Thai ASR
system should results in a system that can be relatively easy to develop, simple to modify
for scale-up purposes, and computationally tractable. Hence, the question of how to
efficiently integrate every module together is becoming very important as Thai speech
recognition technology matures. Since, a prototype of a Thai ASR system is, to the best of
our knowledge, nonexistent, the answer to such a question will have to rely on past and
current designs of the system for other languages. After all, speech in whatever language
is nothing more than a structured stream of sounds. Similarities are bound to occur.

The level of integration for current and past approaches can be classified into one
of three categories: tightly coupled, loosely coupled, or semi-coupled systems. A tightly

coupled system is one that integrates all of the knowledge sources for speech into a highly
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interdependent set of processes, which cannot be separated. If we apply software-

engineering principles to tightly coupled systems, we observe the followings:

1.
2.

The language and acoustic models are not separable.

It is difficult to evaluate the impact of each of the knowledge sources.

3. For complex domains, the systems tend to be intractable. For example, tightly

integrating acoustic/phonetic processing with syntactic processing can yield a
system that is orders of magnitude slower than real time.

It is difficuit to scale up tightly coupled systems to realistic tasks because the
integration of knowledge sources makes the system much larger and more

difficult to understand.

A loosely coupled system is one that isolates the knowledge sources into relatively

independent modules, which communicate with each other. Again applying software-

engineering principles, we observe the following properties of loosely coupled systems:

1.

W

[=a

They require the system designer to determine the best way for the modules to
communicate. This has proven to be a difficult problem [47, 48, 49].

They use level-appropriate information, which should make them more
tractable. This avoids the combinatorial explosion caused by making acoustic
decisions in the syntactic module, for example.

Since the knowledge sources are independent, they should scale up to larger
problems better than tightly coupled systems.

It is easier to measure the impact of each of the knowledge sources (which is
important given our current level of understanding).
The modularity should make them easier to understand, design, and debug. The
individual modules can also be tested in a stand-alone fashion.

They can easily accommodate more than one task or language by replacing the

individual modules.

Semi-coupled systems fall in between the previous two in that a knowledge source

can be used to guide a lower level search in the system. In this capacity, the removal of

the knowledge source from the system impacts the lower level search, and so the semi-

coupled module is not completely independent. Semi-coupled systems tend to be

intractable when they combine level of information from the low-level and high-level

categories. Table 4.2.1 summarizes this discussion. We will next present a review of the

pasththen detail our approach. We propose a loosely coupled system that

uses a uniform approach to integrate the low-level and high-level knowledge sources.
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Table 4.2.1.

Characteristics of spoken language systems

Tightly-coupled

Semi-coupled

Loosely-coupled

Separability

One integrated model

Some KS’s can be

Each KS is modeled
by a stand-alone

for all KS’s removed but not isolated
module
Inter-module NA Typically a one-way Designer specifies
Communicati communication interaction
on
Easy to scale No No Yes

Usually intractable for

Tractable for small

May be tractable for

Computation | all but very small problems or simple
large problems
examples language models
Acoustic-level CYK LR parser with HMM Constraint-based
Examples parser, Inside-outside phone verification, N- system, Blackboard

algorithm

grams

model as in Hearsay II

4.2.2 Review of related works

In a tightly coupled system, the language and acoustic models are applied
simultaneously. CSELT’s system, based on finite-state language models [50], falls in this
category. It is interesting to note that their finite-state grammar model is applied as a post-
processor in their paper; however, their stated goal is to incorporate it into the hidden
Markov model (HMM). Although easily incorporated into HMM, a finite state grammar
does not sufficiently constrain the utterances in a spoken language [51]. There are two
ways to circumvent this shortcoming and still maintain tight coupling. The first is to
modify the HMM to incorporate more powerful language models. For example, the
inside-outside algorithm [52, 53] is an extension to HMM, which allows recursive
embedding. Whereas a standard HMM can handle only regular grammars, the inside-
outside algorithm can process a context-free grammar. The second is to utilize acoustic
information in a syntactic processor. For instance, a CYK parser can be modified for
acoustic input [54] by exhaustively finding all possible endpoints for every terminal. The
modified CYK parser could be thought of as an extension to dynamic time warping
speech recognition in much the same way that the inside-outside algorithm could be

thought of as an extension to HMM speech recognition.
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Although theoretically appealing, the modified CYK parser and the inside-outside
algorithm are impractical due to their huge computational costs. Both are O(r), where n
is the number of input symbols. If these symbols are acoustic measurements (which are
typically taken every 10 ms), then the system is intractable. Lari and Young [53] require
64 transputers for very small problems. The inside-outside algorithm requires a large
training set in order to train both acoustic and language probabilities.

Tightly coupled systems are hampered by their degree of integration. The best
acoustic models do not allow a detailed language model, and the best language models
are not well suited for the low-level probabilistic pattern matching needed to accurately
classify the acoustic patterns. Systems that work adequately for both acoustic and
language processing are often intractable for all but simple examples.

A semi-coupled approach combined a language model with an acoustic model in
such a way that they cannot be separated procedurally, even though some components can
be removed from the system. In a top-down system, for example, the language model is
invoked first at a pﬁrticular decision point, and then ther acoustic model is used to select
the best of all candidates that are allowed by the language model. In [55, 56, 57, 58], Kita,
Kawabata, and Saito use an LR parser to predict phones, which are then verified by a
phone HMM. The phones that make up a word are specified by rules in the grammar.
They use a stack splitting method to cope with ambiguity. The acoustic and language
components are not entirely separable since the acoustic model receives its focus from the
language model.

By far the most successful approach to integrating a language model with an
acoustic mode! has been to embed an N-gram language model into an HMM [59, 60, 61].
The N-gram model assumes that the probability of the current word is a function of the
previous N-1 words. This model can easily be integrated because of its simplicity and
reduces the perplexity significantly compared to an HMM without a grammar. However,
the approach has several disadvantages. Even for small N (i.e., 2 or 3), millions of words
of text are required to estimate the N-grams for moderate to large vocabularies. Even so,
many of the N-grams are undertrained and extensive smoothing is required. Another
disadvantage of N-grams is their task dependence. Also, they do not provide a parse or a
semantic representation for a sentence, both of which are useful for speech understanding.
We classify this method as a semi-coupled approach since the N-gram model is typically

used to guide lower level search and is not a post-processor. However, for N = 2, it may
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be possible to incorporate the N-gram directly into HMM topology. In this case, the
acoustic and language models are tightly coupled.

In a bottom-up system, the acoustical scores are found first and the language
model is then applied to reduce the number of acoustic candidates. This duo of acoustical
modeling followed by language modeling can be done at each decision point, or just once,
where all acoustical information is extracted prior to utilizing any part of the language
model. In the first case, the two models are semi-coupled; whereas in the second case, the
language model is invoked as a post-processor and is loosely coupled. For a loosely
coupled bottom-up system to work correctly, all relevant acoustic information must be
preserved by the acoustic processor. To be tractable, most superflucus information must
be discarded.

Several modern systems utilize the language model as a post-processing step, and
so these systems are loosely coupled. In Bates [62], the authors first find the N-best [63,
64, 65] sentences with an HMM, and then apply syntactic and semantic rules using a
chart parser. CMU’s Phoenix uses frame-based parsing and semantic phrase grammar
[66] on single sentences. Although individually processing each sentence hypothesis
provided by a speech recognizer simplifies the task of the language model, it is inefficient
because many sentence hypotheses can be generated with a high degree of similarity.
MIT’s voyager uses LR parsing [67] as a post-processing step with N-best input. N-best
input is simple to process, but at the cost of much repeated work. Seneff’s robust parser
[68, 69] operates on the most likely sentences and is a post-processor for the speech
recognizer.

The most dramatic example of the loosely coupled systems is the blackboard
model employed by Hearsay-1I [47, 48, 49]. The blackboard model represents each
knowledge source as an independent process gathering useful information from and
dispensing new information to the blackboard. The blackboard consists of a uniform
multi-level network, permitting generation and linkage between alternative hypotheses at
all levels. Despite the complete modularity of this approach, it has not been as successful
as current approaches that use bigram and trigram models. This is partially because
acoustic processing has improved with the advent of new techniques. One reason this
approach has not come back into favor may be that the blackboard approach is too loosely
couple. When a system is divided into many independent, cooperating processes (as in
parallel processing), it is often more difficult to understand, coordinate, and debug the

complex interactions among the modules.
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4.2.3. Our Approach

In this research, we argue that loose coupling is more appropriate given the
current state-of-the-art computing power and given that it allows one to measure more
precisely which components of the language model are the most important. We have
divided our system into three loosely coupled modules.

The first module consists of two components. The first component corresponds to
the low-level knowledge source consisting of acoustic/phonetic and prosodic models. The
acoustic-processing component consists of a hidden Markov model (HMM), which
outputs likely phone candidates to the next module. At present, HMMs has been proven
to be an effective approach to the problem of statistical pattern matching, especially
phone recognition. Note that we have chosen phone as our unit of recognition because
there are only 72 phones resulting in a construction of 72 phone models to be pattern-
matched against the input model. Next, the prosody-processor consists of tone and stress
classifiers, which capture the prosodic information and pass them on to the next module
as well. It also interacts with the acoustic-processing component to share common and
related information such as duration. Note that a tone recognition process should not be
tightly integrated into the acoustic processor. This is because the unit of recognition for
both phones and tones are quite different. Phone is a segmental feature whereas tone is a
suprasegmental feature of a syllable consisting of several phones. Thus, phone spans
fewer frames of speech and thus, a need for the second component, the lexical decoder. In
light of this difference in length, a conceivable solution is to use syllable as a unit of
speech recognition instead of phone. However, as mentioned in section 4.1.3, there are
5,912 admissible syllables in Thai. This number is considered too large for the
implementation of an HMM given the computational efficiency of today’s computers.
That is, we are required to construct 5,912 template models to be matched against the
input model.

The second component of the first module, and the focus of this research, is a
lexical decoder. Its function is to efficiently and correctly combine together the
information passed from the first stage into a sequence of words. This involves the
process of syllabification, word hypothesization, and the construction of annotated word
graph. A word graph is a directed acyclic graph which provides a very compact and
expressive way of capturing all possible sentence hypotheses given the ambiguity

inherent in the task of recognizing the words in a continuously spoken sentence. Qur goal
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for the speech recognizer is to produce a word graph with as few word nodes as possible
without eliminating the target sentence hypothesis from the word graph. This is similar to
passing a list of N-best sentences to the language model. However, an N-best list of
sentence hypotheses limits the information passed between the acoustic model and the
language model. In contrast, a word graph of word candidates is typically more compact
and more expressive than a list of the most likely sentences. To compare N-best and word
graph representations, Harper, et. al. [70, 71], have constructed word graphs from sets of
sentence hypotheses. The word graphs provided an 83% reduction in storage, and in all
cases they encoded more possible sentence hypotheses than were in the original list of
hypotheses. In some cases, the target sentence did not appear in the N-best list but did
appear in the word graph. Prosodic information can also be stored in the word graph for
higher-level processing.

Clearly, pruning the word graph is important, but in some cases higher-level
knowledge is more accurate at pruning the word graph. The bmning that is done by the
word recognizer can be done based on extremely low acoustic scores (i.e., a poor match
to word candidate), a very simple embedded language model (e.g., N-gram), and word-
level prosodic information. The more pruning that can be done before or during word
graph construction, the less work the language model has to do. Since the language model
typically uses some sort of parsing algorithm, the running time for the algorithm will be at
least O(r), where # is the number of word nodes in the graph.

The second module involves the language modeling aspect of the system,
corresponding to the utilization of high-level knowledge source in ruling out unlikely
sentence hypotheses. The module consists of a constraint-based processing component,
which is based on a extension to Constraint Dependency Grammar (CDG) parsing as
defined by Maruyama [72,73]. This component employs constraint propagation to prune
word graphs. This system is capable of propagating a wide variety of constraints,
including lexical, syntactic, semantic, prosodic, and pragmatic constraints.

Because the overall system is loosely coupled and the language model is based on
a constraint dependency-parsing algorithm, this approach is a very attractive choice for
Thai. The first advantage of this approach is that the parser uses a word graph augmented
with parse-related information. For both written and spoken Thai sentences, a word
graph provides a very compact and less-redundant data structure for simultaneously
parsing multiple sentence hypotheses generated by a word segmentation algorithm. There

is a lack of delimiters (blanks) between a sequence of words in written That and a lexical
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decoder cannot segment speech into words in only one way. Secondly, a dependency
grammar approach to syntactic analysis is better suited for analyzing Thai than Context-
free grammars (CFGs). CFGs are not well suited for parsing Thai sentences because of
the absence of inflectional and derivational affixes in Thai, the inconsistent ordering
relations within and across phrasal categories, and the discontinuities within sentence
constituents.

In terms of power and flexibility, this approach has several advantages, especially
the way the system can overcome many of the problems associated with loosely-coupled
systems. First of all, instead of using production rules as in CFG, the parser rules out
ungrammatical sentences by propagating constraints. Constraint propagation provides a
uniform method for applying high-level knowledge sources to prune the word graph.
This is different from a blackboard approach in that the designer does not need to create a
set of functionally different modules and worry about their interface with other modules.
The use of constraints allows a wide variety of information sources, i.e., lexical, syntactic,
semantic, pragmatic (contextual), prosodic, and acoustic information, to be represented in
a uniform way.

Secondly, the system is more flexible than those that use a CFG parsing approach.
The control over which set of constraints to apply is extremely flexible. As a result,
unlike a CFG parser, which cannot invoke additional production rules to further prune a
set of ambiguous parses for a sentence, the presence of ambiguity in CDG parsing can
trigger the propagation of additional constraints to further refine the parses. Also, tight
coupling of prosodic and semantic rules with CFG syntactic rules typically increases the
size and complexity of the grammar and reduces its understandability. In CDG, syntactic,
semantic, and prosodic constraints can be developed independently; the presence of
semantic and/or prosodic constraints does not affect (increase) the number of syntactic
constraints.

Finally, the set of languages accepted by a CDG grammar is a superset of the set
of languages that can be accepted by CFGs. In fact, Maruyama [72, 73], was able to
construct CDG grammars with two roles (degree = 2) and two variable constraints (arity =
2) which accept the same language as an arbitrary CFG converted to Griebach normal
form. Also, to parse free-order languages like Latin, CFGs require that additional rules
containing the permutations of the right-hand side of a production be explicitly included
in the grammar [74]. A free-order language can easily be handled by a CDG parser

because order between constituents is not a requirement of the grammatical formalism.
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Thus, a CDG parser is capable of efficiently analyzing free-order languages because it
does not have to test for all possible word orders. The features and advantages of CDG
described above make this approach attractive for Thai.

The third module in our system represents our method for merging the influence
of the previous two modules in order to select the best sentence hypothesis. That is, it
constructs and ranks sentence hypotheses from the pruned word graph of the second
module in order to select the best sentence candidates. By annotating the word graph with
likelihood information from the first module and then pruning it with constraints
representing higher level knowledge from the second module, we are using the
appropriate information from both modules to select the best sentence candidates. In the
next section, we describe our novel approach in designing the lexical decoder, which

integrates the phone recognizer with the tone classifier.

4.3 A Novel Three-stage Lexical Decoder

Although a phone recognizer is necessary as a testbed for methods of acoustic
modeling, word recognition is the ultimate goal. In this section, a phone recognizer and a
tone classifier serve as the foundation for a three-stage lexical decoder. The phone
recognizer outputs the most likely sequence of phone candidates found with an HMM
whereas, at the same time, a tone classifier outputs a sequence of tone labels. Figure 4.3.1
shows a phone HMM configuration. It is notable that increasing in popularity is a neural
network phone recognizer. Then, the information is passed on to the lexical decoder
consisting of a three-stage process: syllabification, word hypothesization, and word-graph
construction.

In the first stage, a syllabification process is accomplished through the use of
another HMM, which models each syllable as a concatenation of phone labels. The phone
labels from the first HMM in the phone recognizer serve as the observations in the second

HMM. Figure 4.3.2 shows a syllable HMM with output distributions magnified for the
syllable ‘a1’. Note that the number of states per syllable is set to the number of phones
given in the pronunciation dictionary {(default pronunciation). However, the node is

optional (i.e., it can be bypassed with a null transition). Also, all states have a self-

transition (not depicted) so that many labels can be modeled by a single state. The initial
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output distribution for each state is determined by smoothing the default pronunciation

using the confusion matrix compiled during phone recognition in the phone recognizer.

Initial
Stage

Fig. 4.3.1 A configuration of a phone HMM.
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Fig. 4.3.2 Syllable HMM with output distributions magnified for the syllable ‘&7’
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Next, the syllable and tone information are now ready to be integrated using
dynamic programming to match the hypothesized syllable string with each of the N-best
tone sequences. The algorithm utilizes dips in the energy contours and duration
information in the matching process. This step is crucial because the ability to assign the
right tone to the appropriate syllable require the best alignment of the two types of
information. This misalignment problem is to be expected when phone and tone are
recognized separately and the segmentation of the input utterance into syllables may
become quite different in the two recognizers. The problem gets even worse when
insertion/deletion occurs in one of the recognizers or both.

In the second stage, a word network models each vocabulary word as a
concatenation of tone-assigned syllable labels from the first stage via a lexical access
process. This process is called a word hypothesization process, and, as a result, a word
lattice is constructed. The underlying structure for the hypothesizer network is provided
by the use of another HMM. The most likely word string can be found using a Viterbi-
search. For every possible starting time i and ending time /, the most likely words will be

chosen based on Viterbi probability of the subsequence O,,0,,,,...,0,. The probability of

a word occurring from 7 to j will be approximated as the probability of the word staring at
i multiplied by the probability of the word ending at time j. The output of this
hypothesizer network is a large recognition lattice containing acoustic and grammar
likelihoods for each word node. In addition, a single fone~assigned syllable can generally
appear as a monosyllabic word or as part of a polysyllabic word. Therefore, the resulting
word lattice can be very large and complicated especially when an N-best tone-assigned

syllable sequence is used and N is large. A partially shown sample of a word lattice

constructed from a test sentence “@1sInsegInwu” is illustrated in fig. 4.3.3.

It should be noted that the problem of obtaining a good word lattice is not easily
answered. It is difficult to define a single good measure for word lattices because there is
a tradeoff between the size of the lattice and correctness. Obviously, the smallest possible
lattice that contains the correct path is destred. However, such a lattice can be
prohibitively large. In some cases, a small number of omissions can be tolerated if the

lattice is small enough to work with and it contains the intended meaning.
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Fig. 4.3.3 A partially shown sample of a word lattice, in which

each circle represents a monosyllabic word while each ellipse a polysyllabic word

As previously mentioned, the most successful automatic speech recognition
systems are those that utilize higher-level knowledge source such as syntax and
semantics, in addition to acoustic and léxical knowledge. Hidden Markov modeling has
been one of the most successful strategies for acoustic pattern matching, but this method
is generally difficult to integrate with adequate language models. Approaches that jointly
model the grammar and the acoustic signal have been applied to small problems
successfully. Widespread use of these strategies for larger problems has been limited due
to computational costs, insufficient training data, or an inadequate language model.

By separating the language model from the acoustic model, it is possible to use a
more accurate language model without increasing computational costs or the amount of
training data required. Decoupling these knowledge sources is possible only if the
language model is conditionally independent of the acoustic model given some
intermediate knowledge source. One of the most promising intermediate representations
is a probabilistic word lattice described above. Nevertheless, we have chosen to transform
the word lattice into a word graph, annotated with probabilities that allow the highest
probabilities sentences to be examined in order of decreasing probability. This word
graph representation can accommodate our chosen language model based on constraint
dependency grammar, which is powerful and suitable for describing Thai. Next, we

describe the construction of our word graph from the word lattice obtained above.
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The third stage of our lexical decode involves the construction of a word graph to
be used in interfacing a CDG parser with a lexical decoder in our system. As previously
mentioned, a word graph is a directed acyclic graph representing the possible word paths
through the utterance. Nodes in the word graph represent the words and connecting arcs
represent word transitions. Construction of the word graph is accomplished by post-
processing the hypothesization lattice from the second stage. Since the lattice contains
full alignment information such as start and end times for each word node, it can include
many identical or nearly-identical path that vary only with regard to time alignment. The
language processing component does not need this alignment information and is slowed
by the redundant information. Therefore, word graph generation includes an algorithm to
eliminate identical sub-graphs from the lattice, resulting in graph that represents all
possible word-level paths without eliminating or adding any path possibilities. Note that
each word graph has a distinct starting node and a distinct ending node. Fig. 4.3.4 shows a

sample word graph for four sentence hypotheses obtained from the lattice in fig. 4.3.3.

1 2 3 4 5 6
fan ¥a oy Tnu
M ¥a o | nw
Myins of | ‘nu
msias o | Tnu

Fig. 4.3.4 A sample word graph generated from four sentence hypotheses

obtained from the word lattice in fig. 4.3.3.
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4.4 Summary and Discussion

The lexical decoder, the primary focus of this chapter, has been describes in detail
above. The module consists of a three-stage process, namely, syllabification, word
hypothesization, and word graph construction. In this section, we describe the advantages
and disadvantages of our design of the lexical decoder.

First of all, decoupling the acoustic and language processors adds flexibility. A
variety of language models can be tried with a single acoustic model. In this research, a
constraint-based parser can utilize higher-level knowledge source such as syntax,
semantics, prosody, and pragmatics efficiently using constraint propagation.

Secondly, we have chosen to decouple the acoustic processor from the word
matcher. Separating the phone recognizer from the word recognizer is attractive for
several reasons. For one thing, the phone level pattern matching is essentially shared
across word contexts, resulting in much lower computational requirements. Moreover,
this approach helps facilitate the development of a robust recognizer that is effective
across 2 number of databases (or recording conditions) since the word classifier is
decoupled from the acoustic processor. In addition, new words can be added to the
vocabulary more easily. However, decoupling the phone and word recognizers makes
sense only if most of the relevant acoustic information is passed on by the phone
recognizer. With 25 % phone recognition errors or ‘worse, the word recognizer must
utilize higher-level knowledge source (such as lexical) and model the lower level errors in
order to overcome the poor performance of the acoustic level pattern matcher. This is
exactly what takes place in a standard HMM (i.e., the best performance by far for a phone
recognizer is approximately 72% accuracy). The lexical constraints are enforced by the
topology and the phone errors are modeled by the difference in likelihood.

Thirdly, an HMM word matcher has the advantage of modeling phone errors
probabilistically. However, the disadvantage is due to the imperfection of the lexical
knowledge. There are often many ways to pronounce a single word, and only a few
pronunciations are modeled. With the HMM word matcher approach, detailed lexical
modeling is accomplished by automatically learning pronunciations during training.

Fourthly, we have chosen to model our syllabifier using a separate HMM from the
phone recognizer. There are several advantages of using two successive HMM stages
rather than on large HMM. A frame level acoustic HMM weights all frames equally so

those longer phones have a disproportionately large influence on the Viterbi probability.
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The first HMM is also more sensitive to longer phones, but this does not prevent short
phones from being recognized because all phones are connected in parallel. On the other
hand, the second HMM processes phone labels so that long phones and short phones are
equally weighted. Furthermore, the segmented output of the first HMM provides an easy
way to incorporate prosody. For instance, average pitch can be measured over a phone
segment, and delta pitch can be used as a feature of the second HMM. The final
advantage is that the two-level HMM requires less computation since the frame level
pattern matching is essentially shared across a large number of contexts. Because of its
lower computational requirements, the two-stage HMM is applicable to the problem of
fast matching to reduce the search space of a more detailed pattern matcher.

Finally, the main disadvantage of using two HMM stages is that some acoustic
information is being discarded. The most likely word sequence may contain some very
unlikely phones. Although deletions, insertions, and substitutions can be modeled by the
second HMM, errors may be impossible to overcome if the implicit segmentation
produced by the first HMM is poor. However, most phone errors are substitutions within
a category (e.g. vowels) so that the implicit segmentation is likely to be acceptable.

It should be noted that the above description of our chosen model for a Thai ASR
system and how we integrate the tone classifier with the word recognizer is based on a
preliminary development of the model. The implementation was performed using HTK
Version 3.1 by Entropic [75, 76]. The models are trained using the speech materials used
in the implementation of an automatic tone classification in chapter 3 (see appendix C). A
lack of standard acoustic-phonetic speech databases for Thai and time limitation prevent
us from a full-blown implementation of the system. We estimated at least another year for
the completion of such endeavor. Hence, accuracy testing and performance evaluation
could not be assessed as planned. But, we do hope that we have offered enough insight
into the design of a Thai ASR system so as to provide a stepping stone for further

investigations into the subject for us and for other researchers in the field.
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5. CONCLUSIONS

The goal of this chapter is to put the work described in the previous chapters into
perspective. The summary of the research is first presented. Next, the limitations and
drawback of the approach are given, as well as recommendations for future research.
Finally, a list of outputs and contributions of this study to research in the field of speech

and natural language processing of Thai are discussed.

5.1 Summary

This report has presented research directed toward the development of a Thai ASR
system. The research concentrated mainly on the issues of tone classification and its
impact on the design of a speaker-independent ASR system for Thai. It should be
emphasized that the goal of this research is not to build a prototype of such a system.
Instead, we strive to identify the best possibie design of the system given the current
state-of-the-art of technology in terms of computing power, signal processing methods,
and modeling techniques. Equally important for such a design is the basic knowledge
regarding the linguistic description of continuous Thai speech, both at an abstract level
and at the acoustic-phonetic level. This bulk of knowledge is absolutely essential and
crucial toward a design of this magnitude in order to avoid the trial-and-error method of
selecting a procedure that often leads to ‘hit-or-miss’ results. In other words, we support
the position that an empirical study of the acoustic realization of the event of interest
should be carried out before performing a computer simulation.

The research begins with the conduction of two acoustic experiments to study 1)
the effects of stress on Fy contours of Thai tones in connected speech and 2) to assess and
quantify the interactions between stress and tonal coarticulation affecting the Fy

realization of Thai tones. In particular, we were interested in the acoustic manifestations
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in terms of height and shape of the Fy contours of five Thai tones and the pattern of
contrast among them. The findings with respect to the first experiment indicates that
under the influence of stress alone, Fy contours of stress syllables more closely
approximate the Fo contours of syllables spoken in isolation than that of the unstressed
syllables. Furthermore, the contrasting patterns of Fo contours of unstressed syllables
become less clear as a result of tone neutralization, which is a process by which F,
contour loses its original shape in response to the influence of stress. However, a new
pattern emerges and Fy contours of the five Thai tones can be categorized into three tonal
registers in the tone space, the low, the mid, and the high register. With respect to the
second experiment, the findings seem to suggest that Fy contour of unstressed syllable not
only suffers tone neutralization as in the first experiment, but also absorbs more easily the
lingering effect of perseverative tonal coarticulation from the previous tone. Regarding
the pattern of contrast, Fy contours of the five Thai tones migrate toward the middle of the
tonal space resulting in the narrowing down of the movement of the dynamic tones in
particular. '

Based on findings from the acoustic experiments above, we have successfully
modified our analysis-by-synthesis method of automatic tone classification. Details of the
implementation were presented in chapter three of this report. The highlight of our design
is the ability to incorporate all of the linguistic factors affecting Fy realization of Thai
tones in connected speech into the model. Moreover, we have also demonstrated the
application of our mathematical mode! of Fy contours generation in a Thai text-to-speech
system. This model should help improve the intelligibility and naturalness of synthesized
Thai speech.

In chapter four of the report, we have presented the conceptual model of a Thai
ASR system. We paid particular attention to the design of a lexical decoder modulé of the
system, which is the main focus of this research. The purpose of a lexical decoder is to 1)
combine the process of tone classification with a Thai phone recognizer, 2} identify the
best possible word sequences from the speech input, and 3) present its outputs in a format
or representation that is conducive to further processing by the language processing
component of the system. We have proposed a novel three-stage lexical decoder utilizing
successive HMMs. It is unfortunate that we were unable to fully assess the performance
of our lexical decoder due to many limitations. For one thing, a lack of standard acoustic-
phonetic speech databases prevents us from implementing a better phone recognizer.

Secondly, the model is far more complicated than originally anticipated resulting in huge
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requirements of both time and computing power. Given the allotted time of six months,
we can address certain aspects of the model only. As a result, performance evaluation in

terms of recognition accuracy could not be performed as planned.

5.2 Future Research

The work presented in this report represents only a first step toward achieving the
goal of automatic recognition of Thai connected speech. QOur attempts can only be
classified as a crude design given the amount of resources available at our disposal. Our
design is obviously in desperate needs of major refinements. However, we are quite
certain that we have achieve our goal, at some level or another, of identifying the best
possible design of a Thai ASR system. We hope that our work will inspire other
researchers in the field to come up with a better design. There are many issues that
require further investigation, some of which we discuss next.

With respect to the problem of automatic tone classification, our approach is
classified as a rule-based method. To improve the classification accuracy, new and better
rules that can capture the complex interactions among several linguistic factors must be
devised. On the other hand, a statistical pattern-matching approach, such as HMM or
neural network-based classifier, might offer an answer to this complex problem.
However, this undertaking may require enormous amount of training speech data, which,
at the moment, is few and far in between.

Concerning the best and most efficient design of a Thai ASR system, the solutions
to this difficult task are unlikely to emerge some time in the near future, Nonetheless, we
offer the following suggestions.

First of all, the speech research community is in dire needs of several standard
speech databases to be used for training and testing speech models. This task requires
concerted efforts among researchers in the field.

Secondly, several improvements to the acoustic modeling techniques must be tried
in order to achieve higher recognition accuracy. In general, higher recognition accuracy
can be achieved by any of the following methods. These include 1) determining a set of
acoustic features that better represent the speech signal over short intervals (i.e., frames),
2) improved modeling of the relationship between successive frames, which may depend
considerably on the history and perhaps future of the speech signal, and/or 3) finding

better measures to compare various aspects of the utterance to those of the model. In
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addition, recognition accuracy can also be improved by correctly modeling higher-level
knowledge sources, such as prosody, syntax and semantics, into a mathematically
tractable model.

Finally, higher recognition accuracy should not be the only goal of such a design.
The speech recognition system should be easy to expand or scale up to larger problem as
well. This may require the construction of speech tools to facilitate the implementation of
newly developed modeling techniques. Thus, it is necessary to develop a faster method of
experimentation in terms of parallel processing utilizing a large number of workstations.
Parallel computing should help reduce training time of computationally intensive models

from weeks to several hours.

5.3 List of Qutputs

5.3.1 International publications

1)} Potisuk, S. “Fy Realization of Thai Tones in Connected Speech” Manuscript

under revision and waiting to be submitted to Phonetica.

Note: The manuscript was originally sent to Professor Dr. Jack Gandour, Department of
Audiology and Speech Sciences of Purdue University for initial review. Since the
author’s main expertise is not in theoretical linguistics, Dr. Gandour’s comments and
suggestions has proven to be valuable and should help increase the likelihood of the paper
getting accepted for publication. The followings are key points in the paper suggested for
revision:
a) The entire paper should be split into fwo.
b) Statistical analysis should be redone. Student-Neuman-Kools post-hoc planned
comparison test should be added regarding pattern of contrast.
¢) Relevant discussion and interpretation of results in terms of theoretical
linguistic significance should be added.
Based on the above comments and suggestions, we have revised the entire manuscript by
splitting it into two papers, one for each acoustic experiment. The first one, entitled “The
Effects of Stress on Fy Contours of Thai Tones in Connected Speech,” is included with
this report. The second one, entitled “Acoustic Characteristics of Unstressed Syllables
Under the Influence of Perseverative Tonal coarticulation in Thai,” is being prepared

awaiting results from new statistical analysis.
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2) Potisuk, S. “Automatic Classification of Thai Tones in Continuous Speech”
Manuscript is expected to be submitted for publication in /EEE
Transactions of Speech and Audio Processing or Computer, Speech, and

Language Journal.

5.3.2 National publications

Potisuk, S. “Prosody Generation in a Thai Text-to-speech System” Manuscript
submitted for publication to The Sixth National Computer Science and
Engineering Conference (NCSEC 2002). To be held during 29-31 October
2002 in Pattaya.

5.3.3 Copyrighted materials

5.3.4 Manuscripts in preparation

Potisuk S. “Syllable Segmentaticn of Thai Speech Using a Modified Teager’s
Energy Algorithm”

Potisuk S. “A Novel Method for Integrating Tone Classification with a Thai
Phone Recognizer: A Lexical Decoder Design™

Potisuk, S. “Acoustic Characteristics of Unstressed Syllables Under the

Influence of Perseverative Tonal coarticulation in Thai”
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APPENDIX A
STIMULI FOR EXPERIMENT 1

ez Tdfudndreiuiud sulidomsonus ausuezudeguds

/ k"n # con ca jée jiu léew /

‘If you want to go to dinner with me today, you will have to pay for your own
meal. I'm broke.’

ar £ S - [ ] » Tt

Syvadszmatiusinniuiu hiviulaydnuas auevezudeguda

/ K"oncon ca jée jiu ledw /

‘The government announces a price hike on gasoline. They don’t seem to care
about working people. The poor are suffering tremendously.’

falgesaams 1heseeynadiuny uaveAdnila unalmnnliwidesiia

/ keen # cuiuit mdak paj ndoj nuy /

‘Every dish you made tasted really good. Only the curry was a little bit too bland.’
Wnaemisdmiuanudosddd sndusdiufor unadaunimiseila

/ keegcuiwt mdak paj ndaj nuur /

“The amount of food for the party is about right. But, there is a little bit too

much soup.’

mewnuéa et ldmsveuns mishinesezata

/ taa # ¢"dy maj k"5j ca trop /

‘Grandfather is quite old. Don’t ask him to do any weighing job. Grandfather has
difficulties weighing accurately.’

fuﬁ"rhﬁﬂumjﬁQmﬁauﬁ‘mﬁn?}umnnhﬂnﬁ m¥hisiesoznsa

/ taac"an maj k®5j ca troy /

‘I’ve just found out why lately it seems I have gained a lot of weight. The

scale is not quite accurate.’

Srmiudidausnensensiniios lilfuisunua tleadegdiunden

/ mwarg # rdap juu pen jSom jdom /

‘During the dry season, a lot of people migrate out of town. Deserted areas are
scattered across the town.’

aeulliframaae Suanstudleadhudy Tnua disedreegifhumeen

/ muiagrdang juu pen j3om jdom /

‘When I was vacationing in the West. I saw a lot of ghosttowns. Ghosttowns are
scattered across the land.’
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Wefuruanmin vetaniwiay varlnaluwuandas
/ plaa # ldj paj mot léew 1a?2 /

‘It rained cats and dogs last night. The fish pool overflowed. The fish have all
escaped.’

ﬂuttdiéﬂﬂﬁ‘lﬁﬂmﬂﬁu‘lﬂﬂj wmedarhifetiany vatlvalunuaudas
/ plaaldj paj mot léew 142 /

‘People rush to buy fish at the market. Not many kinds of fish are left. The eels
are all gone.’

deasuRud R I deriizasiuad wdn AednlMdnuas

/ t3stsam maj dajk"waam loaj /

‘I have finished grading that fill-in-the-blank exam Tor was tested on. Tor had
done a poor job completing it.’

= o aiy a9 1 3 - LY
viinhdainhudzvieie q aedulildnnuae
/ t3otaam maj ddjk waam losj /

‘The company we hired to remodel our house was no good. They have done a
poor job with those additions.’

galgssaemis lheseunnediuas udvedadnila Aaimnnlimiendls

/ pat # p"eDOt mAak paj ndoj nury /

‘Every dish you made tasted really good. Only stir-fry was a little bit too hot.’
Uinmemudminanudeiided onduedado fadiainnlmiosis

/ p"atp"elt mdak paj ndoj num /

‘The amount of food for the party is about right. But, there is a little bit too
much spicy stir-fry.’

e o 3 i o
aundasniduglidusiunuds afgaieiig S9eneauornuauds

/ t*dan3dK cuan ca mot léew /

*Our vegetable garden is shaping up very nicely. The last time I checked, almost
all of the beans have sprouted.’

» 1
drgmezlilnaia dindaveadaous H2en0rueznuandy

/ thiansak cuan ca mot 1éew /

‘If you plan to go to the market, pick something up for me. The bean sprouts
are almost all gone.’

Fuillufrmudafin undugeie 4 dnfiduagneglunse
/ satlidg Iiuk juu naj krog /

‘I went to the zoo today. It was really cute the way the animal cared for her young
in the cage.’

Tluswoeygn lideutiuvas Fadideagneglunsa

/ satlidp lduk jiu naj kron /

‘Son, go to bed. Don’t worry. Your pet is in the cage.’
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se Ty Tuoashindwidn uiadandndusalmi ninurandeds 4 oo

/ 1ak l€em dii cip cig lagj /

‘From now on, no thief will dare break in. We’ve just put up new poles and
fences. The poles are quite sharp.’

fuuewsennnninganmaelidd oty 9 ninumaniieds q e

/ 1akl€em dii cig cig laaj /

“You were able to come out of the crisis unscathed only because of your wit. You
are very clever.’

Fuuasdiud @emunsialiGoudeoud ienquegnaudid

/ sufakMum jiu lin kadw?ii /

‘Hurry up and get dressed. I've already ironed your shirt and pants. The shirt is on
the back of the chair.’

pmadeuenmnanauz edfimbudenqu U idenquogniuing

/ sufak™um jiu lin kaw?ii /

‘The weather is really cold outside. Don’t forget to bring your coat. Your coat is
on the back of the chair.’

I T y_ ¥ ve o a W A
wiimissdgn quz Hidesdeanslhihieu galiadumaevnile
/ IWiuk # bit ?an t"aan kPwia murm /
‘Come here, son. Look. If you want hot water, turn the knob on the right.’
asamadhiilsygeentszgaaiu Auven 'l gndiadumaevnile

/ Iukbit ?an t"aap k"wia mur /

‘At the entrance, there are two doors side by side. I forgot to tell you, It’s the knob
on the right.’

sﬁﬂqﬁ'ﬁtm]-i'fuﬁ'uqn’iuff qnnémnmmnTv‘i’z

/ Wiuk # klip tok maa caak tG? /

‘A bad accident happened to our child today. Our child fell off the table.’
18k lonin BiAunsen ganfannnomla

/ hiukklin tok maa cdak t6? /
‘I didn’t mean to put it on the floor. The roller fell off the table.’

Frilgrezien lUdn B hinigua wlideadnenysnid

/ mée # lidp dék sdmbuun dii /

‘I want mother to take care of my kid. Mother does an excellent job of raising
children.’

wuaseunfiiahou lminfeds widsudnanysold

/ méelidn dék sémbuun dii /

‘Have you seen the family that has just moved in? The child’s stepmother is a bit
chubby.’
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18. a)

b)

19. a)

b)
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luvssamgnafides thawfiga thevndduaeus
/ paa # K"daw dii cay leej nd? /

‘Among all the relatives, my aunt is the prettiest. Aunt has a very fair
complexion.’

Fuiihihingugan wethvidae thvnafueme

/ pAak®iaw dii car leej n4? /

‘We went to visit uncle today. Aunt Khao was home, too. Aunt Khao is very
kind.’

& - L o dy oo
Aaude nudnfess tsduTull Helathugagargy
/ <*4an # p*ap bdan k™unlug hdan /

“You wouldn’t believe what happened today. The elephant destroyed Uncle
Hahn'’s house.’

wudhaiaiu b rafatvgogavieg
/ ¢*dapp®ap bdan kMunlug hdan /
‘Do you see that elephant? That female elephant belongs to Uncle Hahn.’

1 hSeennuihdr liies aeuit lildanie Shuvsegluaumnds

/ mda # k®8p juu naj sandam léew /

‘We arrive at the track too late. When we arrived, the horses had already begun
racing.’

suflwd i Tudund Tuauw ua lidals Sudsegluanmds

/ mdak"én juu naj sandam léew /

‘I was supposed to take the racehorses to the field to graze. But to my surprise, the
racehorses were already on the field.’

suazoen lauendnng uglunizldmiss ihdueguuan:

/ ndam # t6m juu bon taw nd? /

‘T’, going to step outside for a moment. Keep an eye on the kitchen, will you? The
water is boiling on the stove.’

- ¥ - .’ PN \
fanademiuewdl i Iudileg ddueguumuz

/ ndamtém juiu bon taw nd? /

‘It’s time for me to take medicine. Please bring me a glass of water. Boiled water
is on the stove.’

wuruainmgneuissaiteds seavendonus diheguussandn

/ ndam # k"day juu bon jsot jaa /

“Your shoes will get wet when walking on the lawn after it has been watered.
Droplets of water still rest on the blades of grass.’

@Wuvurumghasudn q sylaseaiieadlunuy sideeguueseanan

/ ndamk dan jiu bon jsot jia /

‘Be careful when walking on the lawn in the morning. Your shoes will get wet.
The morning dew is still on the blades of grass.”
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20.2) ufhinhAud imeunduaenguary
/ ndam # h¥>m klin dsokkuldap /
‘] want to drink this glass of water. The water has the fragrance of roses.’
b) 14iiauﬁ'lmnﬂu‘}atﬂaaﬁavaw’:’qﬁ"lﬁ?’u vmsunduaangHa
/ naamh3am klin ddokkulaap /
‘She was ecstatic after opening her present. It was the tea rose perfume.’

3 » |q; ¥
21.a) wluemsveuvidaliiuoy nueglignini 4

/ m33 # duu méj tiuk née née /

‘How come his condition has not improved at all? The doctor must surely have
made a misdiagnosis.’

b) fuszhidlusTimuAninnensen mieghignmi q

/ m33duu méj t"iuk née née /
‘It will never happen as predicted. The fortunetelier is definitely wrong.’

22.a) {nuduveeslsaoududianeu undneguuiiven
/ K"&m # K4t jiu bon t"iinoon /
‘Do you know what I found when I lay down? The needle was on the mattress.’
b) Amndermnouniswunlmiesd 1¥idundaus Wundnegusiiuen
/ k*&émkldt jiu bon t}inosn /
‘Please put the insignia on my uniform. Use safety-pins. The safety-pins are on
the bed’

23.2) ‘hifesyeumunsiidsiras nidnteunida
/ k"4a # sdn n3oj kwaa ti say /
‘I don’t like that tailored pants at all. The legs are not as short as I ordered.’
b) Reffisrdanvadasyanta {ines linsy vimanfesndifiis
/ K"3asdn nsoj kwaa i sap /
‘Those clothes we ordered have just arrived. Something is missing. The number of
shorts is less than we ordered.’

24.2) eiintéifedhiiios vosaagiiean
/ k"3ay # K"dan juu i hip K"dw /
‘I’ve just realized it this morning. I left my stuff in his room.’

b) Audhamdenndenuduses Wiennmies vesdeegiitean
/ K*3ank"dan juu i hdy K'dw /
“There was plenty of food left from yesterday. Go get it. The leftovers are in
his room.’
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Suii Whfaaudafin fadssrmalehivias @evndalnd

/ suia # k"¥aw p"it pokati? /

‘I went to the zoo today. I’'m still amazed at the tiger which has unusual white
skin.’

fssuidevin1duds noaudszraialudorutnmyeun dovndadnd

/ suiak"daw p"it pokati? /

‘Police has successfully apprehended notorious Khao. People were amazed when
they saw him. That notorious Khao is deformed.’



b)

b)

b)

b)

b)

-113-

APPENDIX B
STIMULI FOR EXPERIMENT 2

tlesng Ina awlinesniloas

/ k"on maj k"35j maa muan 12aj /

‘The city is too far away. People don’t usually come to the city.’
inaiavey Ina nuluneauiisany

/ k"on mdj k"50j maa muranlasj /

“The city of Loeli is too far away. People don’t usually come to Loei.’

diasliviveg aulsinevegiilovas

/ KPon méj k'50j jiu muwar lasj /

‘The city is not conducive to living. People don’t usually live in the city.’
isvaelirieg aulidesegilovan

/ kPon mdj k"3oj jiu muangloaj /

‘The city of Loei is not conducive to living. People don’t usually live in Loei.’

Tuiilpsduns o auliremduilevan

/ kPon maj k"55j k"aw mwany loaj /

‘It is dangerous to be in the city. People don’t usually come into the city.’
dieaaudunyw avlinesduiieas

/ K"on mdj k"3j k* 8w muwanlos;j /

‘It is dangerous to be in the city of Loei. People don’t usually come into Loei.’

dustesszuauds mibineriaiioaan

/ K"on maj k"50j t"irf muian loaj /

‘Even though the city is hot and dry . People don’t usually abandon the city.’
fuilsaavrzuiwds aulidesiiadiowan

/ K"on m4j k"3oj t"ij muzayloaj /

‘Even though the city of Loei is hot and dry. People don’t usually abandon Loei.’

dineanysnds aulinesmuiiouas

/ KPon mdj kP30j sén mwang l23j /

“The city is quite dirty. People don’t care much about the city.’
Weuasanilsnds alidesmuiioaan

/ k"on m4j k"55j sén muanglaaj /

“The city of Loei is quite dirty. People don’t care much about Loei.’
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aususeiiflyanluSuRmser 1514 mhaueunayy

/ kK"4w wida k"oncon kbsat t"un /

“The poor are quite at a disadvantage when it comes to starting a business. It’s
often said that the poor lack funds.’

favimiiin higAsssuas hnueunanu

/ K'4w waa k"oncon kK"aatt™un /

“The tax rate is really unfair. It’s often said that the poor are at a loss.”

wingninngaiumsisad i ulua s s i mudwnanyu

/ k"w waa kPoncdaj kPdat t"un /

“The workers went on strike because they are afraid of not getting paid. There’s a
rumor that the payer has no money.’

AugnIsIRTtifuReuns NS IR

/ k"dw wia k"oncdaj k"datt"un /

‘A lot of people strike it rich with this week’s lottery. There’s a rumor that the
payer loses.’

nuneededemygassinainanniu nmudanag

/ kPéw wia kPoncdag k"aat tun /

“The construction is suddenly halted. There’s rumor that the contractor runs out of
funds.’ '

nasvmesvanasiuuda guileunangnine 1asls mhaudanangu

/ KPdw wia k"oncdan k"aatt™un /

‘ After the negotiation, it seems that the workers profit from the deal. The
employer is at a loss’

- e L] ' J 1 5
wsygieds hinssidetmas nnudeniagu
/ KPéw waa kPonsufux k™dat t"un /
“The economy is still not recovered. It’s often said that consumers don’t have the
buying power.’
mIfuuvsnuialiinsen nhaudenanu
/ K"aw wia k"onsufw K datt"un /
‘Monopolized business is no good. It’s often said that consumers are at a loss.’

Fulugrvimiavisiug uadvesioms 118 nihmangnangy

/ KP4w wia kPonk"daj k™aat t"un /

‘It seems that the store’s business really picks up. But, it can’t quite expand.
People speculate that the store lacks investment capital.’
Fruemisdraiuilaliud indaunevnanu

/ k"w wiaa k"onk"daj k"aatt®un /

‘The restaurant nextdoor was closed. People say that the owner didn’t make a
profit.’
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TuiFeduil venudrnAuinda

{ bdok léew waa furwn m4j dii /
‘See? You don’t believe me. I told you logs burn really well.’
Niweiuil uenudaWulid

/ b3k léew wia furtun maj dii /
‘See? You don’t believe me. I told you the log is no good.’

e il venudrhoilndd

/ bisk léew wéa t"dan mdj dii /

*See? You don’t believe me. I told you charcoal burns really well.”
Tieruil venudrhawhia

/ bdsk léew wia t"dan m4j dii /

‘See? You don’t believe me. I told you the battery is no good.’

ideduil venu¥rhihalui

/ bok léew wida k"daw m4j dii /

‘See? You don’t believe me. I told you rice burns really well.’
luigeduil venudrhinlua 7

/ biok léew wéa k"daw mdj dii /

‘See? You don’t believe me. I told you the rice is no good.’
iiderui uonudaiNlInda

/ biok léew wida maaj maj dii /

‘See? You don’t believe me. I told you wood burns really well.’
TiFeriudl vesudr1iid

/ bdok léew wia mdaj maj dii /

*‘See? You don’t believe me. I told you it’s a lousy kind of wood.’
Lol venudaimiislnid

{/ biok léew wia ndn madj dii /

‘See? You don’t believe me. I told you cow hide burns really well.’
Wideruil venuFahmidhin

/ bdok léew wia ndp maj dii /

‘See? You don’t believe me. I told you it’s a lousy movie.’
dasanveamuiudni¥n ausemnsevis iy

/ k"on c"55p maa jo3 n3oy nan /
‘Nan’s sister is a cute kid. Everyone loves to praise Nan'’s sister.’

g ¢ o
ﬁaﬂlluulﬂulﬂﬂu'ﬁ ] ﬂuiaﬂ“‘lﬂaﬁaquuu

/ k"on c*3op maa joa ndannan /
‘Nan is a cute kid. Everyone loves to praise Nan.’
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desenavsuuduanivh auveusnuneio iy

/ k"n c"5op maa jée n$ay nan /

‘Nan’s sister is a cute kid. Everyone loves to tease Nan’s sister.’
Hoanudhudnish auweunuudisanuu

/ KPon ¢"55p maa jée nsapnan /
‘Nan is a cute kid. Everyone loves to tease Nan,’

ﬁaamwamumﬁmﬁmiﬁﬂ AN danTounm

/ kPon c"55p maa jidm n3on nan /
‘Nan’s sister is a cute kid. Everyone loves to visit Nan’s sister.’
veunuihudniisn aussumnidnniesnuy

/ KPon c"3op maa jidm n3agnan /
‘Nan is a cute kid. Everyone loves to visit Nan.’

¥ g 1_ar LY
ummwmuumﬁmﬂﬂmsn nusaumé’aumuuu

/ kPon c*32p maa 155> n$an nan /
‘Nan’s sister is a cute kid. Everyone loves to tease Nan’s sister.’
teauihuamirin ausevandeviouniu

/ kPon ¢"5op maa 15> n3agnan /
‘Nan is a cute kid. Everyone loves to tease Nan.’

Yesemussnuithudnui¥n auvsumnanio

/ k"on c*3op maa 16y n$on nan /

“Nan’s sister is a cute kid. Everyone seems crazy about Nan’s sister.’

ﬁmuuuﬁ‘lmﬁmiﬁﬂ AUSIUINHANTBUINY

/ k"on c"Sop maa 161 n$onnan /
‘Nan is a cute kid. Everyone seems crazy about Nan.’

nueissen 1 wuen Reanandy whezldsenueg

/ nda ¢a paj r?» m3Jas duu /

“The doctor has just stepped outside. He’ll be back soon. We should wait for

the doctor.
wuegriseen hiihauen feanindu wecldsenueg

/ nda ¢a paj ras miaduu /

‘The fortuneteller has just stepped outside. He’ll be back soon. We should wait

for the fortuneteller.’

wuedanluldifouns Wezldameg

/ nda éa paj dda m3> duu /

‘The doctor didn’t prescribe high-potent drugs for us. We should let the doctor

know how we feel.’
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b) nueguasnisriind vesldmueg
/ nda ca paj daa m3aduu /
“The fortuneteller is quite deceitful. We should give the fortuneteller a piece of
our minds.’

23.a) Tsaonnamdsnavuednnn e lddanieg
/ néa ¢éa paj cdan mJd> duu /
*Our hospital is still in need of doctors. We should try to hire more doctors.’
b) sAddavumdsiu ezldanueg
/ nda ca paj cdag m3dduu /
“This case is really going nowhere. We should hire a psychic.’

24. a) vueliygyAuiLWINIE NN ~.iwz11h‘a."mnuaq
/ nda ¢a paj lidyg m3d dun /
‘We owe a great deal to the doctor. We should take the doctor out to dinner.’
b) %319 sduiinuegueniasiues 1dam wezld@uinueg
/ nda ¢a paj lidg m3aduu /
“The fortuneteller is right on the money about your job prospect. We should
take the fortuneteller out to celebrate.’

25.2) gnliihieslsinnudy windutinuees wherlvenueq
/ nda ¢a paj k"33 m3s duu /
‘Our child is a lot better now. Let’s take him home. We should ask the doctor.’
b) wawlndezeenuds dilujvzdenver lsinn visshlvenueg
/ néa ¢a paj k™3> m3aduu /
‘It’s about time for the lottery. I still haven’t a clue to what number to play.
We should ask the fortuneteller.’
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APPENDIX C

STIMULI FOR EVALUATING AUTOMATIC TONE
CLASSIFICATION ALGORITHM

¥
1. ufanuesaiiuyaves ilidivemuniveu

/ jip naam jaan nii MEEWINIDI) mﬁj mii maan jdag neenoon /
‘Such a beautiful girl like this is definitely not ignored by the scout.’

2. sthayTraniuaIuasu I IULa?

/ jaa lurum waa weelaa man luay 199j maa jaaw naan leéw /
‘Don’t forget that time has passed for so long.’

- [] n'sv L] L] 3 ] 4' []
3. gudeulnginsveylungeuvidnediunilasuin
/ guulwam jdj luiaj jiu naj jdm jaa jaay nuiaj naaj /
‘A big python is winding tiredly in the grass.’
] ¢ »
4. garnueemgahasulioomsundy
/ lunwaan j25 nda jip waa naam jiy mwa jaam jim jeém /
‘Uncle Wahn praises aunt Ying for her beauty when she smile.’
5. vasunumisasuie Induarimiads hituosy
/ 13on n&r_] m3al93j muta ndon law waa nin jag maj jinjoom /
‘A big python is winding tiredly in the grass.’
6. ot Tnaudisandhidu Inamiloudledamjy 4 og
/ jda winwaj muia paan maj lurun laj mwan muwia jay ném ném jiu /
‘Don’t be discouraged if work doesn’t go your way like when you were young.’

¥ 3 2 ¥
7. mumuaamﬂaﬁﬂwu‘mﬁuﬁm TUIAGIUNY

/ nén limlooy mufa ndsjndanan muwa gaan lidy wan waan /
‘Neng tasted the meat of a sugar apple at yesterday’s party.’

8. mu?;qmﬁaq'q 9 a(jmu'lﬁmamm(i‘iawmu 9
/ naaj jinjoy jay junjuy juu laoj maj laa naan maa jiam laan lann /
“Yingyong is quite busy to take a leave of absence to come visit grandchildren.’

1 4 4 J ' [} gf
9. nissquanlaueuURELANGUAILDE1]

/ n35j gunpon muia naaj non mawmaaj leéw maa lumlaam jdan nif /
‘Nawj is puzzled that the drunken Non is trying to take advantage of her.’
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3 M » f
waiutuduintemuidiieniniumdswau
/ naan nim jwwnjan waa nasy nonnii nam jaandammanluiag maa lén /
‘Nim insists that Nonni is the one playing with the yellow oil.’

- 4 - ] (IR

nyfudedvunuensesinuanehivesay

/ nuujuuj I15olian moojson waa yomnaaj maj n3sj loaj /

*Yuj is making fun of the fortune-teller, Yong, for being quite superstitious.’
;qy g'l .' 1 1 s &

vwiiquiteaduome luuiiduinae

/ jaam nii lugnutay jamjee [30j maj naa mii gan lua /

‘For the moment, uncle Nuang is in trouble and has no money left.’

b4 = ' L] 3 A
ml.m’J'J'Niammmm'lnamamu

/ ndaweew winwoon waa jaa logmdjlogmuru loaj /
‘Aunt Waew is pleading for non-violent means.’

] »
wisuvarnitesdrinfemiiduniieny
/ m3omluag nwiap jém waa ndogmiw jan jaw waj juiu /
‘M.L. Nuang emphasizes that Mew is still quite young.’

¥
veunn ssuarnauuviuaniu ¥ vy

{ ndonmeew mﬁj joom law waa lurum ween won ndn waj naj /
‘Maew refuses to tell where she misplaced that ring.’

¥
Juilvfugey limilouSunustiaumivewas

/ wannii ndn joom maj muwan wanwaan jdan neenson leoj /
‘Today is certainly not the same as yesterday.’

W 1 1 ¥ T ] 3 [ I} 1
umumtmuumsmnmmm'lumuﬂuunuumu

/ ndamdon jée nSopmém waa naa maj muian meenun lagj /
‘Uncle Mong teases Mam for her unresemblance to her mother, Nuun .’

» v ]
R R TR T TGN AT TR TR TR
/ ndopman joan meelidn l23j nii maa nan nigniy /
‘Man was upset at his stepmother and ran from her to sit quietly alone.’
vuai Imyiumileshasinavians
/ ma5 law waa miu man nuiaj jaaj mée weelaa wip j32j3? /
‘The doctor says that corporal Mun gets tired easily even when lightly jogging.”
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¥ » »
nwdlowinide g1 3suiuiuil
/ jaajmidn nam nuiawua maa jaay wéj jam jen wannif /
‘Old Mian grilled beef for making tonight’s salad.’

nangaimyrseslugnanTou B lunqu

/ luanlug nam muujsn naj jaam maa joon w4j naj lum /
‘The old monk threw shredded fried pork into the hole.’

] »
wdudvdeuny BBhuduidedunuil

/ maalin lunum 19om muu widj naj ldw muwa jen waannii /
‘Malin forgot to herd her pigs into the pen yesterday evening.’

= ] A o a 1 o a (d’l,
oo auununauIne lilsuifidesnans

/ c"aan t"ogt'iaw t"ua thin k"wéen deen t"aj paj kdp t"ua Putagluay /
‘Come visit every inch of Thailand with the Royal Orchid Tour.’

Tefi3diossrmaanawldyusunniu
/ 2ajttiiwii mii ruanraaw laaklaaj haj daaj c"om kan ik wan /
‘ITV offers a wide variety of programs for our viewing pleasure everyday.’

. L e e .
NoAUTUTHALYO TRt AITUTILToYIU

/ thikkPon cMurunc”om k"on surwsat cék cen caaj cMuru ctuan /
‘Everyone admires an honest person like Mr, Chuan.’

sy Inssaoihpamu I ndujunan1a

/ 'eempuu samunpraj c™aj bamruy p"om haj kldp nawgaam daaj /
‘Herbal shampoo helps revitalize your hair for soft and silky feel.’

=) o b £ d [ o
YATINAYIN muaﬂmﬂﬁ"umzaﬂﬂszmu'unmﬂty

/ raajkaan liawlagleenaa klaa c3? luik praden k"daw samk®an /
“The program “Glance Back and Look Ahead” dares to probe important issues.’

Fannnfuemisvainsa ldhi udueue

/ Maan wé? maa cMim ?aahaan ldak r6j daaj t"ii rdan simsaamsaaw /

“You’re welcome to sample many delicious dishes at Sam Sao restaurant.’
1 A Y L] (] 3 ] qv ‘.‘v A'I.

(sl et es ITRAsAAs N W B 1N T 5

/ mee twan ndopktdam waa jaa k"énk"iawk"idwfan muta jaam krot /
‘Mother warns Kham not to grind her teeth when angry.’
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fuunduthugalnsaneszndeuundylu18vhe

/ kapkléem baan lunkroy po ¢a? kloomkieem paj daaj baan /
‘Appetizer at Uncle Krong’s house will do.”

Ninassudadulelvinfmgnieufiedunneg
/ maj k™wuan duan titsincaj k"wajk"wda haa k®uuk"roon mula jan dék jiu /
‘Don’t decide to get marry at a young age.’
14 2 o & o ]
950UINDONDIMIDADANIDEBAIBYLNY I

/ Y2on?anoon 235k ?aakaan Puit?it mura 235t 232 paak ctuan /
‘Awn-anong felt uncomfortable when Aut invited her.’

Ly Y o 11 = v ; ﬂ 3
HIIATIANANYAAANAUAIUIATULULAURY

/ ndontan tawdat nuu tithiu waa dosn tuamtiam pen tiw loaj /
‘Tong snaps at Toot-too for walking so slow like a turtle.’

b v
maﬂ15mes:uuﬁamﬁamﬁanauﬂﬂzﬁmumn%'w

/ t%s5 k™uan ?aw p"ra? bon hip maa h3sj p'uia weelaa k"r3? haam jaam rdaj /
“You should take Buddha images from the shelf and wear in case of bad luck.’

anuoe livune anuanesudmunsn

/ K'waamwua jayj maj t"an haj kwaamk"waaj dan k"aw maa seek /
‘No sooner had one bad thing subsides than the occurrence of the other.”



