บทคัดย่อ

การใหลสองสถานะเป็นปรากฏการณ์จริงที่เกิดขึ้นในกระบวนการต่างๆทั้งในธรรมชาติและ ในอุตสาหกรรมโดยเฉพาะอย่างยิ่ง การใหลร่วมกันของก๊าซและของเหลวซึ่งถือว่าเป็นการใหลสอง สถานะที่มีปรากฏการณ์ซับซ้อนที่สุดในจำนวนการใหลสองสถานะประเภทต่างๆ (ของเหลว-ก๊าซ ของแข็ง-ก๊าซ, ของเหลว-ของเหลว, ของเหลว-ของแข็ง) ทั้งนี้เนื่องจากก๊าซเป็นของใหลที่อัดตัวได้ ทำให้เกิดความซับซ้อนที่ผิวที่สัมผัสกันระหว่างของใหลทั้งสองสถานะ อันเป็นผลทำให้เกิดรูปแบบ การใหลต่างๆ ได้มีการศึกษาเกี่ยวกับการใหลสองสถานะกันอย่างกว้างขวางทั้งจากการทดลองและ การคำนวณ อย่างไรก็ตามยังคงมีแง่มุมที่ได้รับความสนใจน้อยหรือบางอย่างก็ยังไม่เคยมีใครทำมาก่อน และเป็นประเด็นที่ สังคมวิจัยยังคงต้องการคำตอบโดยจะมุ่งเน้นศึกษาทั้งในเชิงทฤษฎีและการทดลอง

ในเชิงทฤษฏีได้สร้างแบบจำลองทางคณิตศาสตร์โดยอาศัยหลักการพื้นฐานทางการอนุรักษ์ มวล พลังงาน และ โมเมนตัม เพื่อศึกษาการใหลของสารทำความเย็นที่ใหลในท่อคาปิลลารีซึ่งเป็น อุปกรณ์สำคัญในระบบปรับอากาศและอุปกรณ์ทางความเย็น แบบจำลองที่ได้สามารถนำไปใช้ใน การออกแบบหาขนาดที่เหมาะสมของท่อคาปิลลารี ได้อย่างไม่มีขีดจำกัด โดยเฉพาะอย่างยิ่งกับการ ออกแบบระบบที่ใช้สารทำความเย็นชนิดใหม่ที่ไม่ทำลายสิ่งแวดล้อมเพียงแต่ป้อนค่าคุณสมบัติทาง กายภาพและทางเทอร์โมไดนามิกส์ที่ถูกต้องเท่านั้น ในเชิงการทดลองได้สร้างอุปกรณ์การทดลองที่ ทันสมัยมาก เพื่อใช้ในการศึกษารูปแบบการไหล สมประสิทธิ์การถ่ายเทความร้อน และการลดลง ของความดัน ขณะที่สารทำความเย็นไหลงำนวนมากได้ถูกนำมาสร้างสหสัมพันธ์เพื่อสะดวกในการนำไปใช้ในการออกแบบระบบท่อที่ใช้ในระบบปรับอากาศและระบบทำความเย็น อุปกรณ์ทดลองที่พัฒนา ขึ้นนี้ยังสามารถนำไปใช้ทดลองเพื่อศึกษาถึงลักษณะการถ่ายเทความร้อน และลักษณะการไหลภาย ในท่อประเภทอื่น ๆและสารทำความเย็นชนิดต่าง ๆได้อีกมากมาย ผลงานบางส่วนจากงานวิจัยนี้ได้ ถูกตีพิมพ์ลงในวารสารวิชาการระดับนานาชาติที่มีการตรวจทานเต็มรูปแบบ อันเป็นหลักประกันว่า สิ่งที่ได้ทำมีคุณค่าทางวิชาการและเป็นสิ่งที่สัมคมวิจัยในสาขานี้ยอมรับ

Abstract

Two-phase gas-liquid flow in horizontal pipe lines has become of greater concern in a wide variety of engineering equipments and processes. This type of flow has been encountered extensively in an increasing number of important situations for example in gas-oil pipelines, flow of steam in boilers, chemical and nuclear reactors, flow of refrigerant during phase change etc. Among four types of two-phase flow (gas-liquid, gas-solid, liquid-liquid and liquid-solid) the gas-liquid flows are the most complex one. Because the gas-liquid interface is deformable, a infinite number of flow patterns may be encountered. Many studies have been carried out both experimentally and analytically on two-phase flow. However, there are still some topics which has received comparatively little attention in literature.

This research provides the results of simulations using an adiabatic capillary tube model which is developed to study the flow characteristics in adiabatic capillary tubes used as a refrigerant control device in refrigerating systems. The developed model can be considered as an effective tool of capillary tubes' design and optimization for systems using newer alternative refrigerants. Moreover, in the present study, a modern experimental apparatus was designed and constructed to study the two-phase flow pattern, the two-phase heat transfer coefficient characteristics and pressure drop of an alternative refrigerant evaporating under forced flow conditions inside a smooth horizontal tube. New correlations for the convection heat transfer coefficient and pressure drop are proposed for practical applications. The results of this study are of technological importance for the efficient design when systems are assigned to utilize various alternative refrigerants. In addition, some part of this research was published in the international journals. This shows that the results from the present study are valuable and needed for the research society in this field.

,