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ABSTRACT
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In this study, an analysis method for cracking localization in quasi-brittle materials such as
concrete is proposed. The proposed analysis method is an incremental analysis method and
can be decomposed into two parts. The first part involves locating bifurcation points. This
is done by investigating stability of equilibrium paths. For this analysis part, two specially
treated smeared crack models are proposed in this study. In the two proposed smeared
crack models, new discrete irreversible variables are introduced into the conventional
smeared crack model in order to allow consideration of stability and bifurcation of
equilibrated solutions to be done easily. The second part of the proposed analysis method
involves tracing the actual equilibrium path from any bifurcation point. This is done by
searching for the stable crack pattern with the minimum total potential energy. To this end,
two algorithms that are the exhaustive search and genetic algorithms are used. The
exhaustive search algorithm, which compares all possible solutions in order to obtain the
solution with the minimum energy, can be used for problems that are not very large. For
larger problems, the genetic algorithm will be more appropriate. Finally, the proposed
analysis method is used to solve some cracking localization problems and the obtained
results are discussed.
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Cracking localization, Concrete, Smeared crack models, Finite element analysis,
Genetic algorithms.
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1. INTRODUCTION

Tensile failure of quasi-brittle materials such as concrete is commonly known to start from
formation of cracks, and propagation of the newly formed cracks or existing defects. After
that, these cracks will localize themselves into one or a few major cracks that will
subsequently lead to the final failure. This cracking localization prior to the failure plays a
very important role in the fracture behavior of this kind of material. In order to capture the
ultimate capacity of these materials in structures, consideration of cracking localization
cannot generally be neglected. Nevertheless, consideration of cracking localization needs
very expensive computations because solution methods for solving localization problems
involve checking stability of many equilibrium paths. Consequently, many researchers
avoid consideration of cracking localization by either allowing many cracks to grow
without consideration of localization (Rots and de Borst 1987, Rots 1989, Dvorkin and
Assanelli 1991, Jirasek and Zimmermann 1998, Shirai 1994) or by assuming the number of
localized cracks and their positions (Shirai 1994, Carpinteri 1989). The first approach,
though simple, is not realistic and can generally lead to very inaccurate results. When
compared with having one or a few localized cracks, having many cracks without
localization allows an incorrect amount of energy to dissipate from the domain. Thus, the
obtained results will also be inaccurate. However, in some cases where the gradient of
stress is very high and a stress criterion for crack initiation is used, the localized solution
may be obtained from this approach (Rots and de Borst 1987, Rots 1989, Jirasek and
Zimmermann 1998). Due to the large difference in magnitudes of stress between different
locations, it is probable that some cracks, once initiated, will rapidly cause neighboring
cracks to elastically unload. As a result, these cracks will prevail and become the localized
cracks. In the analysis of localization problems in plasticity, similar behavior is also
observed (Zienkiewicz, Huang and Pastor 1995). Even if the localization of cracks is
obtained in this kind of problem, the localized-crack patterns may not be correct. This is
because, in many cases, these patterns, which are in fact obtained without consideration of
localization, are known to be sensitive to the finite element meshes employed (Jirasek and
Zimmermann 1998, Zienkiewicz, Huang and Pastor 1995). The second approach, which
assumes the number of localized cracks and their positions prior to the analysis, may yield
reasonable results in some cases. These include cases where the number of localized cracks
and their assumed positions are reasonably or undoubtedly correct, such as bending
problems of concrete with long notches (Carpinteri 1989). In fact, the number of localized
cracks varies during loading. In an early loading stage, it is possible to have a few localized
cracks. The number of these main cracks will gradually decrease and finally only one crack
will usually prevail. The speed of localization depends on the problems being solved. For
very brittle problems, the localization into one crack can occur at a very early stage of
loading. For ductile problems, the localization into one crack can occur at a much later
loading stage. As a result, in ductile problems, a few cracks, not only one, may govern
most part of the response, especially during the peak load. When the number of localized
cracks is assumed prior to the analysis, in most cases, only one localized crack will be
assumed from the beginning. Consequently, there is a tendency that less accurate results
will be observed if the assumption of having one major crack is used in ductile problems.
Another cases where the second approach may yield reasonable results are those where
only one localized crack -governs the response and the required solutions, such as the
ultimate load, are not much sensitive to the position of the localized crack. Nevertheless,
this second approach is, overall, not appropriate for general cases since the number and
locations of localized cracks may not be easily predicted or may have great effect on the
required solutions.



In the analysis of cracking localization, consideration of stability and bifurcation of
equilibrium states is one of the tasks to be done. Many researchers have considered the
stability and bifurcation of the equilibrium states by investigating the definiteness of the
stiffness matrices (Hessian matrices of energy functions) (Riks 1979, de Borst 1987,
Valente 1992). When the stiffness matrix is positive-definite, the stable equilibrium is
assumed. The same theory can be applied to the analysis of cracking localization.
However, cracking is an irreversible process. To consider stability and bifurcation of
irreversible processes, the stationary condition of the energy of the system with respect to
irreversible parameters has to be examined (Nguyen 1987, Horii and Okui 1995, Brocca
1997). For this reason, the expression of the energy in terms of the irreversible parameters
is required. For crack problems, the irreversible parameters can be the crack opening
displacement variables in the discrete crack approach or the crack strain variables in the
smeared crack approach. In the discrete crack approach, the crack opening displacement
variables are usually discretized along crack paths and treated as the degrees of freedom in
the analysis. The energy of the system is expressed in terms of these degrees of freedom.
Constructing the Hessian matrix of the energy with respect to the crack opening
displacement degrees of freedom, which are discrete, can be done easily. On the contrary,
if the smeared crack approach is employed, the energy of the system will be expressed in
terms of the irreversible crack strain variables, which are not discretized variables. As a
result, determination of the Hessian matrix with respect to these crack strain functions is
not obvious.

The aforementioned facts imply that the discrete crack approach in the finite
element method may be more suitable for the analysis of cracking localization than the
smeared crack approach. Nevertheless, the discrete crack approach may not perform best
when there are many cracks. Usually, in the analysis of cracking localization, there will be
many cracks occurring in the domain. As the number of cracks increases, the mesh
topology may have to be changed to cope with new crack patterns and this leads to more
degrees of freedom. On the other hand, the smeared crack approach, which is more suitable
for problems with many cracks, does not provide any discrete irreversible parameters for
construction of the Hessian matrices. Another disadvantage of the smeared crack approach
is that, with this approach, it is necessary to define the crack-band width or the crack
characteristic length. For fairly regular meshes, the characteristic length is frequently
determined in an intuitive way, which is difficult to generalize in a formal manner for
irregular meshes and arbitrary crack directions. However, for two-dimensional domains,
this problem can be overcome. Oliver (1989) proposed a general approach for calculation
of the characteristic length. In his study, a crack is modeled as a limiting case of two
singular lines that coincide with the boundary of the elements covering the crack path. The
expression for the characteristic length is obtained by analyzing the energy dissipated from
the band bounded by these two singular lines.

If the definiteness of a stiffness matrix obtained by the conventional smeared crack
models is considered (de Borst 1987), a wrong conclusion on the stability of the crack
pattern may be obtained. For example, negative eigenvalues of a stiffness matrix may
simply mean that the solution has already passed the critical point (Riks 1979). It must be
noted that the stiffness matrix from the conventional smeared crack model is the Hessian
matrix of the total potertial energy of the system computed with respect to the
displacement degrees of -freedom and the displacements are not purely irreversible
parameters.

Investigating definiteness of Hessian matrices provides information on stability of
equilibrium paths. Consequently, bifurcation points can be located. Nevertheless, tracing
the actual equilibrium path from a bifurcation point needs some more efforts. Employing



Gibb’s statement of the second law of thermodynamics, Nemat-Nasser (1979) pointed out
that the equilibrium path that makes the total potential energy an absolute minimum will
also render the elastic energy an absolute minimum and this path will also be the actual
equilibrium path (Bazant and Cedolin 1991). Employing the same concept, Brocca (1997)
traced the actual equilibrium path from a bifurcation point by using the Simplex method to
find the path with the minimum total potential energy. In his work, Hessian matrices
constructed with respect to irreversible crack opening displacement degrees of freedom are
used to investigate stability and bifurcation of crack patterns.

In this study, an analysis method for cracking localization is proposed. The
proposed analysis method can be categorized into two parts. The first part involves
locating bifurcation points. This is done by investigating the stability of equilibrium paths.
As mentioned earlier, both discrete and smeared crack approaches have drawbacks when
they are used to check the stability of equilibrium paths of crack problems. To avoid the
drawbacks of both approaches, in this study, two specially treated smeared crack models
are proposed. In the first model, discrete nodal crack displacements are introduced to the
conventional smeared crack finite element model. Crack displacements, obtained from the
nodal crack displacements by interpolation, are defined in such a way that their derivatives
with respect to the coordinates represent the crack strains. These new discrete irreversible
crack variables will allow the consideration of stability and bifurcation of equilibrated
solutions to be done easily by considering the Hessian matrix of the energy with respect to
these proposed discrete variables. In the second proposed model, a mixed formulation of
the finite element method that includes the discretization of the displacement and crack
strain fields is developed. In this model, the energy of the system is written in terms of the
discretized displacements as well as discretized crack strains. Consequently, the stability of
crack patterns with respect to the discretized irreversible crack strains can be easily
evaluated, and the cracking localization can be discussed.

The second part of the proposed analysis method involves tracing the actual
equilibrium path from any bifurcation point. This is done by searching for the stable crack
pattern with the minimum total potential energy. To this end, two algorithms that are the
exhaustive search and genetic algorithms are used. The exhaustive search algorithm, which
compares all possible solutions in order to obtain the solution with the minimum energy,
can be used for problems that are not very large. For larger problems, the genetic algorithm
will be more appropriate. Finally, the proposed analysis method is used to solve some
cracking localization problems and the obtained results are discussed.



2. THE SMEARED CRACK CONCEPT

In the smeared crack concept, a cracked solid is modeled as a continuum with additional
strains called crack strains. These crack strains represent the existence of cracks. The
advantage of this approach is that it allows the description of cracks in terms of strains
without need for special interface or cracked elements. This is at the same time the source
of disadvantages as the underlying assumption of continuity conflicts with the reality of
discontinuity.

The fundamental concept of the smeared crack model can be written in the
incremental form as

Ag = Ag’ + Ag” (1)

where Ag denotes a total strain increment which is decomposed into strain increments of

an intact elastic solid part Ag” and a cracked part Ae” (Rots and de Borst 1987).

The strain increment vectors in the above equation are written in the global
coordinate system. It will be helpful to consider the strain increments also in a local
coordinate system that aligns with the crack being considered. In two-dimensional cases,

the local crack strain increment A& can be defined as

asr =fazr ape]’ 2)

nn

where AZ0 and Ay are the normal and shear crack strain increments, respectively. The

relationship between the global crack strain increment vector Ag” and the local crack
strain increment vector Ag“" is expressed as

Ag” =TAE” (3)

where T is the transformation matrix defined as

cos® @ —sinfcosd
T=| sin’@ sin @ cos & (4)
2sin@cosf cos’ G —sin’ 8

where & is the angle between the vector normal to the crack and the global x-axis as
shown in Fig. 1. Similar to the local crack strain increment, in the local coordinate system,

the Jocal traction increment At” across the crack is written as

b =[aie ase]” (5)

I

where A7 and A§‘ are normal and shear crack traction increments, respectively. This
local traction increment is related to the local crack strain increment as

ALY = D7 AE” (6)



Fig. 1 Global and local coordinates

where D¢ is the crack constitutive matrix incorporating mixed-mode properties of the

crack expressed as
-, |D" 0
DY = o p'l (7)

Here, D’ and D" represent the mode I and mode II crack modulus, respectively. The local
traction increment At is related to the global stress increment Ac as

At =T AG. (8)

To complete the material definition, the constitutive law for the intact solid part
. must also be specified, i.e.,

Ao =D’Ag’ )

where D? is the constitutive matrix for the intact solid.
Using Eqgs (1) and (3) in Eq. (9) yields

Ae =D°Ag —DTAE" . (10)
Employing Eqgs. (1) and (9) in Eq. (8) yields
AbT =TT D (e - A (1)
which, by using Eq. (3), subsequently yields |
AET = T7D (A - TAE" ). (12)

Substituting Eq. (12) into Eq. (6) gives the relationship between the local crack
strain increment A€ and the total strain increment Ag, i.e.,

A& =" + T D°T] T D Ae (13)



By substituting Eq. (13) into Eq. (10), the overall stress-strain relationship for the
smeared crack material is obtained as

Ac =[D’ - D”T(ﬁ" + TTD"T)_]TTD"]AS =D A (14)

which is the constitutive law for the cracked material in the smeared c¢rack model. Here,

D" is the constitutive matrix of the cracked material.



3. STABILITY AND BIFURCATION OF EQUILIBRIUM PATHS IN
IRREVERSIBLE PROCESSES

Cracking can be thought of as an irreversible inelastic process. During cracking, the
material is damaged and some of the energy is dissipated from the domain. Following
Nguyen (1987) and Brocca (1997), we consider a system of a deformable body with cracks
where the energy is dissipated. The total potential energy of the body can be defined as

H(ui’aj): HM(“k’at)"'HD(am) (15)

where T (uk,a,) is the mechanical potential energy and the T1°(e,, ) is the dissipated

m

energy. Here, u,’s (i=1,2,...,N) represent reversible variables and «;’s (j=1,2,...,K)

represent irreversible variables. Furthermore, N and K are the number of the reversible
variables and the number of the irreversible variables, respectively. In general, the
irreversible variables characterize the inelastic behavior of the material. The mechanical
potential energy is the sum of the strain energy and the external potential energy. The
dissipated energy is the mechanical energy that is transformed into the thermal energy or
other forms of energy through the irreversible process and is as a result dissipated from the
system.

The fundamental solution, obtained by applying the stationary condition to Eq.
(15), is written as

6_1—1:0, (i=1,2,---sN)

ou, (16)
o (=12 K)

da;

By employing the equilibrated solution of Eq. (16), the reversible variables can be
expressed in terms of the irreversible variables, i.e., 4, =u,(«;). Consequently, the total

potential energy of the system in Eq. (15) can be expressed as a function of only the
irreversible variables, i.e.,

M'(e,)=11" (a)) +1"(a,) (17)

where 1" () = IT(, (@, ), ;) and TI"" (@) = 11" (u, (a,),@,)

2 *

The signs of the eigenvalues of the Hessian matrix [ } can be used to check

Jdada,
the stability of the fundamental solution obtained from Eq. (16). If all the eigenvalues are
positive, the fundamental solution is stable. Otherwise, the fundamental solution is
unstable and the bifurcation occurs.

To apply the above concept to the numerical analysis of cracking localization, it is
therefore advisable to express the total potential energy of the system being considered in
terms of discrete irreversible variables so as to easily obtain the Hessian matrix.



4. GENETIC ALGORITHMS

4.1 General

In the analysis of cracking localization, after a bifurcation point is located, the actual
equilibrium path must be identified. In the proposed analysis method, the identification of
the actual equilibrium path is done by searching for the equilibrium path with the minimum
total potential energy. Since the analysis will be performed incrementally, the equilibrium
path with the minimum total potential energy increment will be the desired solution. When
the size of the problem being solved is not very large, it is possible to perform an
exhaustive search on all possible solutions, meaning that the total potential energy
increments of all possible solutions will be evaluated and compared. This exhaustive
search technique may not be appropriate for large problems where many possible solutions
are available. In this case, an optimization technique can be employed. In this study,
genetic algorithms (GAs) are selected as the optimization tool to be used for minimizing
the total potential energy increment. The reason for selecting GAs is that this optimization
technique is suitable for problems with discrete variables. Variables in the minimization
problem of the total potential energy increment are discrete statuses of cracks that can be
either opening or unloading. In addition, since GAs do not require the evaluation of the
gradient of the function being minimized or maximized, the evaluation of the total
potential energy increment is enough for the minimization process.

GAs are global probabilistic search algorithms inspired by Darwin’s survival-of-
the-fittest theory (Goldberg 1989). They have received considerable attention because of
their versatile applications in several fields (Deb 1995, Marcelin, Trompette, and
Dornberger 1995, Marcelin 1999, Goldberg 1989, Grefenstette 1986, Dawid 1999). GAs
start their search from many points in search space at the same time. These starting search
points are usually selected randomly. Through the consideration of fitness values of these
search points, which are given based on their merit, and the randomized information
exchange among the points, a new set of search points with higher merit is created. The
process is then repeated until a satisfactory result is obtained. Since the technique utilizes
information from many search points at the same time, there is less chance for the search to
be trapped in any of the local optimal points. Another distinguishing characteristic of GAs
is that the algorithms work with coding of the parameter set, not the parameters
themselves. Generally, the binary code is used. Because of the discrete nature of coding,
the algorithms are the perfect choice for those problems with discrete variables.

Since GAs are directly applicable only to unconstrained optimization, many
researchers have proposed solutions that can eliminate this limitation. Constraints are
mostly handled by using penalty functions, which penalize infeasible solutions by reducing
their fitness values in proportion to their degrees of constraint violation. In all available
penalty schemes, the degree of penalty can be further controlled by means of setting values
of various coefficients in penalty functions (Deb 1995, Templeman 1988, Goldberg 1989,
Michalewicz 1996). Most of these coefficients are treated as constants during the
calculation and their values have to be specified at the beginning of the calculation (Rajeev
and Krishnamoorthy 1992, Jenkins 1997, Camp, Pezeshk and Cao 1998). These
coefficients usually have no clear physical meanings. Thus, it is nearly impossible to know
appropriate values of the coéfficients even by experience. This is because it is very hard to
understand the correlation between the values of the coefficients and the characteristics of
the problems being solved without physical meanings of the coefficients. Consequently,
for all problems with either similar or different natures, appropriate values of the
coefficients are generally obtained by trial and error. Many researchers, however, have
tried to suggest different ranges of appropriate values for these coefficients, for various



types of problem. Most of these suggestions are obviously doubtful. The reason is simply
that appropriate values are usually given without any reference to the units used in the
problems although the coefficients may have units and appropriate values should vary with
the units used. Another important concern is that these conventional penalty schemes do
not adjust the strength of the penalty during the calculation, as the coefficients used are
always kept constant. As a result, too weak or too strong a penalty during different phases
of the evolution may occur. This will lead to inaccurate solutions. Actually, there are some
penalty schemes that vary the values of the coefficients to adjust the strength of the penalty
during the calculation (Rajan 1995, Ratiq and Southcombe 1998, Adeli and Cheng 1993).
However, these schemes require the varying values of these coefficients to be manually
specified. It therefore becomes even more difficult to judiciously select appropriate values
for different phases of the calculation.

Several different ideas that are more sophisticated have been propesed to improve
penalty function methods for handling constrained optimization problems (Michalewicz
1995). Powell and Skolnick (1993) re-mapped fitness values of both feasible and infeasible
individuals in such a way that all feasible solutions have higher fitness than any infeasible
solutions. The key concept of this approach is the assumption of the superiority of feasible
solutions over infeasible ones. Unfortunately, this assumption rarely holds during the
evolution since it always happens that some infeasible individuals process very good genes
that can be very valuable for later generations. As a result, these infeasible individuals are
more preferable during the evolution than many low fitness feasible individuals. For this
reason, it is necessary to allow some infeasible individuals to have higher fitness than some
feasible individuals. Le Riche, Knopf-Lenoir and Haftka (1995) proposed a segregated GA
that uses two values of penalty parameters for each constraint instead of one. The
population is split into two coexisting and cooperating groups, where individuals in each
group are evaluated using either one of the two penalty parameters. During the evolution,
the two groups interbreed. Since the two penalty parameters are different, the two groups
converge in the design space along two different trajectories, which helps locate the
optimal region faster. If a large value is selected for one of the penalty parameters and a
small value for the other parameter, simultaneous convergence from both feasible and
infeasible sides can be achieved. However, although the approach provides a new overall
penalty scheme, the problem with this approach is still the way of choosing the penalty for
each of the two groups.

Rasheed (1998) proposed a penalty scheme with an adaptive penalty coefficient.
The scheme considers two key individuals of the population, i.e., the point that has the
least sum of constraint violations and the point that has the best fitness value. These two
points are compared at every certain number of generations. If both points are the same
then the penalty coefficient is assumed adequate; otherwise, the penalty coefficient is
increased to make the two points have equal fitness values. In addition, the penalty
coefficient is reduced if at some stage the population contains no infeasible points. The
inconveniences of this technique are how to choose the initial value for the penalty
coefficient and how to appropriately update it. In addition, the size of the generation gap
for updating the penalty coefficient must reasonably be selected. Coello (2000) proposed a
technique based on the concept of co-evolution to create two populations that interact with
each other in such a way that one population evolves the penalty factors to be used by the
fitness function of the main population, which is responsible for optimizing the objective
function. This technique is inconvenient because the approach requires evolution of two
parallel populations instead of one. Therefore, it is computationally more expensive.

Since it seems that the existing penalty techniques still endure many problems, in
this study, a new adaptive penalty scheme will be proposed (see more details in



Meesomklin 2000, Nanakorn and Meesomklin 2001). The penalty function used in the
scheme will be able to adjust itself automatically during the evolution in such a way that
the desired degree of penalty is always obtained. The coefficient used in the proposed
scheme will have a clear physical meaning that directly represents the degree of penalty
employed. Therefore, for each particular problem, the appropriate value of the coefficient
can be reckoned based on the appropriate degree of penalty for the problem. In addition,
the coefficient in the proposed scheme will have no units. For each particular problem, if
the same value of the coefficient is used, similar results can always be expected even when
different units are employed in the problem. Since it is expected that similar structural
optimization problems require similar degrees of penalty, with the proposed scheme, it is
therefore possible to set the value of the coefficient by using experience. It must be noted
that the main objective of this work is to obtain an adaptive penalty scheme that is robust
and can still reproduce the same quality of results as ones obtained from GAs found in the
literature, whose penalty parameters are carefully obtained for each specific problem by
trial and error. In brief, the proposed scheme will be a scheme that can efficiently be used
in different problems without a lot of guesswork.

4.2 Genetic Algorithms for Constrained Optimization
An optimization problem using GAs can be generally expressed as

Maximize F(x)=F[f(x)], x=(x,,%,,...,x,)eR” (18)
under constraints defined as

g.(x)<0, i=1..K

(19)
h(x)=0, i=L...,P
For structural design optimization, x is an N-dimensional vector called the design
vector, representing design variables of N structural components to be optimized, and
f(x) 1s the objective function. In addition, g,(x) and h,(x) are inequality and equality
constraints, respectively. They represent constraints, which the design must satisfy, such as
stress and displacement limits. Moreover, F{ f(x)] is the fitness function that is defined as
a figure of merit.
It is not possible to directly utilize GAs to solve the above problem due to the
presence of constraints. In GAs, constraints are usually handled by using the concept of
penalty functions, which penalize infeasible solutions, i.e.,

F*(x)= F(x) ifxeF
Fex)= F(x)- P(x) otherwise

(20)

where F denotes the feasible search space. Here, P(x) is a penalty function whose value

is greater than zero. In addition, F°(x) represents an augmented fitness function after the

penalty. Several forms of penalty functions have been proposed in the literature (Deb 1995,
Marcelin, Trompette and Dornberger 1995, Goldberg 1989, Michalewicz 1996).
Nevertheless, most of them can be written in the following general form, i.e.,

10



K

P(x) = 3 (46),[G, 0V + X (4, ), 1H ,(x) 21)

Jj=1
where

G,(x) = max[0,g,(x)]

(22)
H (x)= abs[h}.(x)].

Here, G,(x) and H (x) represent the degrees of inequality and equality constraint
violations, respectively. In addition, (4, )j, (1) ; and f are constants. In most cases, the
same value is used for all (4, )}. s and (4, )j ’s. As for 2, itis usually set to be 1 or 2. The
degree of penalty can be controlled by adjusting the values of the coefficients (A )j ’s and

(iLH )j’s. These coefficients do not have physical meanings. Clearly, it is impossible to

judiciously select appropriate values for them. Even though in common practice, one value
is used for all (4 )j’s and (4, )j’s, which significantly simplifies the situation, the

appropriate value of this one coefficient is still not obvious.

In the first operator in GAs, the reproduction operator, a mating pool is created by
letting individuals with higher fitness values have higher chance to be selected into the
mating pool. Many reasonable selection algorithms are possible. However, the most widely
used technique is proportional selection. In this technique, the probability of the i
individual to be selected into the mating pool is

Fe(x,
P(Xi):#

2Fx)

(23)

where X, represents the i"™ individual in the population and n is the population size.
Clearly, in the above equation, it is essential that all fitness values be positive. Therefore,
the obtained fitness function after the penalty F“(x) may not be directly usable as its

values may be negative. Moreover, the difference between the fitness values of the best
individuals and average individuals varies generation by generation. In early generations,
the difference can be very large and the best individuals become relatively too strong. As a
result, premature convergence may be obtained. In later generations, the difference can be
very small and average individuals become almost as strong as the best individuals. As a
result, the search may become a random walk. To prevent all of these problems, an
augmented fitness function is usually scaled into a specified positive range. Many fitness
scaling schemes have been proposed in the literature (Kallassy and Marcelin 1997,
Goldberg 1989, Grefenstette 1986, Michalewicz 1996, Rasheed 1998).

4.3 Adaptive Penalty Function

It can be easily seen that penalty schemes used in GAs play a very important role in the
performance of GAs. This role becomes even more important when the optimal solution
lies on or close to the boundary between the feasible and infeasible search spaces, which is
very usual for structural design optimization. In this study, a new penalty scheme that is

11
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Fig. 2 Bilinear fitness scaling

free from the disadvantages of existing schemes discussed earlier is proposed. To make the
scheme simple, a simple form of the penalized fitness function is employed, i.e.,

Fé=F°(x,)= F(x,)~ P(x,) = F(x,)— A()E(X,) (24)

where F° represents the fitness function of the ;" individual after the penalty. Here, A(f)
is a factor of an error term E(x,). The factor A(t) varies with generation, and the

generation number is denoted by ¢. In this study, the error term E(x,) is defined as
K P
E(x,)=YG,(x,)+ > H,(x;) (25)
j=1 j=1

where G,(x;) and H ;(x;) have already been defined in Eq. (22). Now, the question is

what the magnitude of the factor A(¢) should be. It is not difficult to imagine that if the

factor is too small, infeasible individuals with high original fitness values may have
penalized fitness values higher than the fitness value of the feasible optimal individual. If
this happens, the population in subsequent generations will move toward false peaks that
appear in the infeasible region. On the contrary, if the factor is too large, good
characteristics in some infeasible individuals will have no chance to survive and will
disappear rapidly. This may lead to premature convergence and the obtained solution can
be quite wrong. :

To avoid the above problems, the degree of penalty must be enough to make the
feasible optimal solution have the maximum fitness value, compared with all individuals
(feasible and infeasible) after the penalty. However, the penalty must not be made much
stronger than that. To this end, the following condition is introduced, i.e.,

Fox,) <o) FoF for Vx, e U (26)

avg

in which U represents the infeasible search space. Here, F “F denotes the average fitness

avg

value of all feasible individuals in the generation and ¢(¢) is a factor of F, «F

avg
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The above condition sets the maximum fitness value of infeasible individuals in the
generation ¢ to be equal to ¢(z) F*'. At this moment, it is not useful to consider the

avg
physical meaning of the coefficient @#(7) yet because the penalized fitness function will
have to be scaled afterwards. Therefore, it is enough to simply say that the coefficient @(z)

is used to adjust the strength of the penalty in the generation. A way to obtain the value of
this coefficient will be explained shortly.

The condition in Eq. (26) is satisfied by employing an appropriate value of the
factor A(#) in Eq. (24). For each infeasible individual, the factor A(r) that makes the

penalized fitness value of that infeasible individual exactly equal to #(¢) F{;’Jf is computed.

After that, values of the factor A(¢) obtained from all infeasible individuals are compared
and the maximum one is selected as the real A(z). If the maximum value is negative, zero
is used instead. In short, A(#) can be expressed as

A(t) = max) 0, max
Vx, el

(27

F(x,)-g(t) F2F
E(x,)

Eq. (27) insures that Eq. (26) is satisfied.

In this study, a modified bilinear scaling technique as shown in Fig. 2 is employed
for fitness scaling. The minimum scaled fitness is set to be 0 to avoid negative fitness
values while the scaled fitness of the average fitness of all feasible individuals is set to be
1. Furthermore, the maximum scaled fitness that is to be obtained from the best feasible
members is set to be C. Thus, the chance of the best members being selected into the
mating pool is equal to C times that of the average feasible members. All together, the
scaled fitness can be written as

Cc-1 aF _ a,F _
FFrX)=———— FOx) + — % if Fe(x)= F*F,
aF aF aF aF avg
max _Favg Fmax _Favg
(28)
; 1 a Fin o o
F (X)=TF (X)'!"—a—ﬂj if F (X)SFGV"E
avg  * min min £ avg

where F°(x) denotes the scaled fitness function. In addition, F? denotes the minimum

fitness value after the penalty while an;f denotes the fitness value of the best feasible

members. This scaled fitness function F°(x) will be used in Eq. (23) instead of F“(x).

For all generations, the chance of the best infeasible members being selected into
the mating pool is set to be equal to ¢ times that of the average feasible members, i.e.,

F'(x))<(p FF =) for Vx, el (29)

avg

where F*F is the scaled vdlue of the average fitness of all feasible individuals, which is

avg

equal to 1. Note that ¢ is constant for all generations. From the above condition, ¢(z) in
Eq. (26) is expressed in terms of ¢ as

13
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CFF + Fef(p-1) - FT

) = " forp=1

(C- l)Favg

paf (30a, b)
(1) = i “:gF — 9 F forp<l.

avg

In real calculations, the coefficient ¢ will be set at the beginning of the calculation.
This coefficient has a very clear physical meaning, i.e., the chance to be selected into the
mating pool of the best infeasible members compared with that of the average feasible
members. This physical meaning is directly related to the degree of penalty. In addition,
the coefficient does not have any units. Due to these reasons, it is possible to set this
coefficient by using experience. After ¢ is set, ¢#(¢) and, subsequently, A(¢) can be

computed. In case of @ =21, ¢(¢) can be obtained from Eq. (30a) directly because all

parameters in the equation are readily available. In this case, the parameters F*F and F°F F

avg
can be obtained directly from original fitness values of feasible individuals without any
penalty consideration. On the contrary, if ¢ <1, ¢(¢) cannot be obtained without iteration

since one of the parameters, i.e., F_

min *

is not readily available. Note that F is the
minimum fitness in the generation after the penalty and it is most likely that FZ%  will

min

belong to infeasible members. This F,, can be obtained from Eq. (24) which, in turn,
requires the value of ¢(¢) [see Eq. (27)]. Nevertheless, the iteration is very simple and
takes almost no time to perform. To this end, the individual x. . that gives the minimum

augmented fitness value is considered. Here, Eq. (24) yields
Fn?m =Fﬂ( Famm) F(xFamin)_A(I)E(xFamin)‘ (31)

Also, consider the individual x, that gives the value of A(¢) in Eq. (27), 1.e.,

(32)

- aF _ aF
/“L(r)=max[0, gna%|:F(Xi) ¢(t) Favg ]Jz F(Xl) ¢(t) Favg .

E(x;) E(x;)

Using Eq. (32) in Eq. (31) gives
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F(x,)- p@FF
E(x,)

anin = F(XFamin)_[ }E(XFamin)‘ (33)

Substituting Eq. (33) into Eq. (30b) yields

(@~ DEX pyin JF(X,) + E&DIF (X gy i) + OF LT = 0F (X g i)}
FEFIEX) + (0 - DEX gy )]

(1) = (34)

A problem is that the individuals x, and x,,,,, are not known from the beginning

and iteration is required. In the first step of the iteration, it is assumed that F' = F af By

min avg
using Eq. (30b), the intermediate value of ¢(¢) for this step of the iteration is obtained, i.e.,
@(ry=1. After that, the intermediate value of A(r) is obtained from Eq. (27) and at the
same time the individual x, can be identified. With the obtained A(f), the individual

X can be subsequently identified from Eq. (24). Consequently, the value of #(r) for

the next step of the iteration is computed from Eq. (34). The process is repeated until the
value of ¢(¢) becomes unchanging.

To be able to understand the proposed scheme better, let us consider an
optimization problem of a uniaxial bar shown in Fig. 3. A uniaxial force of 10 Ib is applied
at the free end of the bar. Allowable stress is assumed to be 2 psi. Our task is to find the
optimal area of the bar that yields minimum volume. For illustrative purpose, it is assumed
that the area of the bar is a continuous variable and, as a result, the optimal solution is
simply equal to 5 in”. Suppose that GAs are used to obtain the solution and the fitness
function is defined as

Famin

. infeasible
0.07 |
) !
0.06 feasible |
a3
'?‘:u' 0.05
-
w0041 e |
L
= : |
i 0.03 . i
| 0.02 | .
5 z * e
0.01 - B
Faf/‘ .."‘.Oo
0 : e
avg -~
0 . 5 10 15 20
Area (inz)

Fig. 4 Original fitness value—uniaxial problem
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Fig. 6 Fitness value after the scaling—uniaxial problem

1 1

F(Area)= — = — .
1+ Volume (in”) 1+ Area (in”) x Length (in.)

(35)

From this fitness function, it is obvious that the smaller the area is, the larger the
fitness value will be (see Fig. 4). Nevertheless, the area cannot be smaller than 5 in2;
otherwise, the bar will violate the stress constraint. Therefore, fitness values of those
individuals that violate the constraint have to be reduced. In this example, 19 individuals
with different areas ranging from 1 to 19 in” are assumed (see Fig. 4). In the proposed

penalty scheme, the average fitness of all feasible members F, oF

avg

18 calculated. If there are
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any individuals that have their fitness values exactly equal to F a.F they are the average

avg ?

feasible members. Nevertheless, in real calculations, it does not matter whether there are
any of them or not in the population since only the value of their fitness F7F is to be used.

avg
In the proposed scheme, infeasible members are penalized in such a way that the best
infeasible members have scaled fitness values equal to ¢ times that of the average feasible

members. Fig. 6 illustratively shows scaled fitness values after the penalty and scaling
when ¢ =1.0 and 1.5 while Fig. 5 shows fitness values just after the penalty but before the

scaling. Note that, in this example, the maximum fitness is scaled to be 2.0 while the
average fitness of feasible members is scaled to be 1.0. In addition, the minimum fitness is
scaled to be 0. By adjusting the value of ¢, the degree of penalty can be efficiently
adjusted.

In fact, the purpose of the proposed scheme is to fix, throughout the calculation, the
relative chance of the best infeasible members being selected into the mating pool
compared with that of the average feasible members. This means that the penalty is always
adjusted so that the aforementioned purpose is achieved in all generations. This guarantees
that the desired degree of penalty is obtained throughout the evolution process.
Consequently, the problem of too weak or too strong a penalty during different phases of
the evolution is removed. Note that the relative scaled fitness values of the best feasible
members and the average feasible members are set via fitness scaling (see Fig. 2). As a
result, the relative chance of the best feasible members being selected into the mating pool
compared with that of the best infeasible members can also be controlled. For example,
when ¢ is set to be 1.0 in the current example, the chance of the best feasible members to
be selected becomes two times that of the best infeasible members since, from the fitness
scaling, the chance of the best feasible members is set to be two times that of the average
feasible members.

In this study, since the fitness scaling in Fig. 2 is employed, acceptable values of ¢
therefore lie between 0 and C. Note that C is the scaled fitness of the best feasible
individuals. Using only positive values for ¢ is obviously necessary because only positive
scaled fitness values are acceptable. Setting ¢ exactly equal to zero is actually equivalent
to using the death penalty scheme, which simply rejects infeasible solutions from the
population. Using ¢ that is greater than C is in fact possible but it will mean that the best
infeasible individuals will have a better chance to be selected into the mating pool than the
best feasible ones. This is obviously too harsh a penalty. For this reason, the value of ¢
should not exceed C. For any value of ¢ between O and C, the best feasible individuals
always have the maximum fitness value among all other individuals in the generation.
Nevertheless, depending on the magnitude of ¢, some . infeasible members may have
higher fitness than a certain number of feasible ones (see Fig. 6).

Actually, the key point in the development of the proposed scheme is that the user-
specified penalty parameter ¢ is defined based on the relationship between two fitness
values that are already scaled. Since scaled fitness values are directly used in the selection
for the mating pool without further modification, the physical meaning of the proposed
penalty parameter can be preserved. If penalty parameters are defined before the fitness
scaling is performed, the-fitness scaling will probably destroy the desired physical
meanings of the parameters.
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Fig. 7 Bilinear fitness scaling for the case when no feasible individual is available

Since the proposed penalty scheme requires the average fitness value over all
feasible individuals, it is necessary to have at least one feasible individual in the
population. In the case that there is none, the fitness values of infeasible individuals will be
given based on the magnitudes of error they have. The idea is to strongly encourage the
population to move toward the feasible region. Here, a bilinear scaling scheme as shown in
Fig. 7 is used. Fitness is scaled in such a way that scaled fitness values of individuals with
the highest error are equal to 0 and scaled fitness values of individuals with average error
are equal to 1. In addition, scaled fitness values of individuals with the smallest error are
set to be Z. Thus, the chance of the individuals with the smallest error being selected into
the mating pool is equal to Z times that of the individuals with average error. In summary,
the scaled fitness is expressed as

Z_l Emin _ZEav .
Fix)=—"——E(x)+ =" if E(x)<E,,
Emin _Eavg Emin _Euvg
. £ (36)
Frx)=—FE(x)+ —™=— if E(X)>E__ .
( ) Eavg _Emax ( ) Emax —Eavg ( ) e

4.4 Results

To investigate the validity and efficiency of the proposed penalty scheme, the scheme is
used in design optimization of three different two-dimensional structures, i.e., a six-bar
truss, a ten-bar truss, and a one-bay eight-story frame. To be able to see clearly the
advantages of the proposed scheme over conventional schemes, particularly in terms of
robustness, obtained results are compared with those from a selected conventional scheme.
Since most conventional schemes are based on the same concept with slightly different
details, comparison with one selected conventional scheme is sufficient to show
advantages of the proposed scheme over conventional schemes. As already mentioned, the
main objective of this study is to develop an adaptive penalty scheme that is robust and still
able to reproduce the same quality of results as ones obtained from GAs found in the
literature. To show this comparison of the proposed method, results are also compared with
existing results in the literature.

4.4.1 Six-Bar Truss

The first problem to be considered is the six-bar truss as shown in Fig. 8. Here, only sizing
optimization is considered. Thus, design variables are six sectional areas of the six
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Fig. 8 Six-bar truss

members of the truss. The cross-sectional area of each member is taken from the following
32 discrete values, i.e., 1.62, 1.80, 2.38, 2.62, 2.88, 3.09, 3.13, 3.38, 3.63, 3.84, 3.87, 4.18,
4.49, 480, 4.97,5.12,574, 722,797, 11.5, 13,5, 13.9, 142, 15.5, 16.0, 18.8, 19.9, 22.0,
22.9, 26.5, 30.0, and 33.5 in%. Therefore, a five-bit string is required for each design
variable. There are two types of constraint in this problem, i.e., stress and displacement
constraints. Design parameters used in the problem are shown in Table 1.

For comparison, the most popular conventional penalty form is selected, i.e.,

F'=F°(x,)= F(x,)- P(x,)= F(x,) - AE(X,) (37)

where the coefficient A is constant and the error term E(X,) is the same as that defined in
Eq. (25). In both proposed and conventional schemes, the fitness function F(x,) is defined
as

1
Fx)=——
() 1+ Weight(x,) 38)

where two different units of weight, i.e., pound (Ib} and newton (N) are used. Two units
are used in order to investigate the effect of unit on the results from both schemes.

Since it is impossible to judiciously estimate an appropriate value of the coefficient
A in the conventional scheme, a wide range of values will be used. All GA parameters
used in this problem can be found in Table 1. To start the calculation, an initial population
is generated at random. The type of crossover operator used here is the one-point crossover
(Goldberg 1989).

Fig. 9 shows results obtained from the proposed and conventional schemes. Each
point in the graph represents an average weight of the best feasible designs obtained from
200 different runs. The results obtained by using newtons in Eq. (38) are converted into
pounds for comparison. In the conventional scheme, the coefficient A is varied
exponentially from 0.000001 to 100 while in the proposed scheme the coefficient ¢ is

varied from 0.25 to 1.75. Note that the value of ¢ should be varied between 0 to 2.0 since

the maximum scaled fitness value C is set to be 2.0 (see Table 1). It can be clearly seen
from the results that the proposed scheme is more robust than the conventional scheme, In

the proposed scheme, changing @wmﬁmhﬁ%ﬁﬁm1ﬁﬁtmnmults while: in the’ ”
conventional scheme the effect 1$uquqhﬂmma lﬁﬁmqahl? Moreover, in the propos d
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Fig. 9 Average weight of the best feasible designs obtained from 200 runs—six-bar
truss

scheme, it is easier to notice a trend in the results when ¢ is varied. It can be reasonably
said that good results are obtained with values of ¢ around 0.75 to 1.0. On the contrary, it
is much more difficult to observe this kind of trend in the results of the conventional
scheme as they are very much scattered and exhibit no recognizable pattern. Although the
trend in the results of the proposed scheme can be observed, it is also important to note
that, when ¢ is varied, the results of the proposed scheme actually vary to a much lesser
degree than the results of the conventional scheme do when A is varied. Even though it
may be argued that, in this study, A is exponentially changed while ¢ is linearly changed,
the same difference in the way that the parameters are varied and tried is expected in the
real practice. This is because, in the real practice, it will also be impossible to estimate
appropriate values of the coefficient 4 in the conventional scheme, so a very wide range
of values must be tested. With the proposed scheme, lesser sensitivity of results to the
magnitude of the parameter ensures that even when the appropriate value of ¢ is not
clearly known, a range of values of ¢ may be used and reasonable results can still be
obtained. This fact really confirms the robustness of the proposed scheme.

Table 1 Design and GA parameters for the six-bar truss problem

Design parameters GA parameters
Item Value Item Value
Modulus of elasticity 10" psi Maximum number of 100
Weight density 0.1 Ib/in’ generations
Allowable tensile stress 25,000 psi | Population size 70
Allowable compressive 25,000 psi | Crossover probability 0.8
stress Mutation probability 0.001
Maximum y-displacement | 2 in. @ 0.25-1.75
A 0.000001-100
C 2.0
Z 5.0

To ensure that the proposed scheme is capable of giving results of the same quality
as those GAs found in the literature, the best result obtained from the proposed scheme is
also compared with the best result reported by Rajan (1995). They are exactly the same.
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The details of the results are shown in Table 2. It must be noted that in this study, except
for the new penalty algorithm, the rest of the algorithms are standard. This is not the case
for the work by Rajan (1995), which employs more complicated GAs.

Table 2 Comparison of the results for the six-bar truss problem

Member Size of member (in°)
Proposed Rajan (1995)
1 30.0 30.0
2 19.9 19.9
3 15.5 15.5
4 7.22 7.22
5 22.0 22.0
6 22.0 22.0
Total weight (Ib) 4962.1 4962.1

4.4.2 Ten-Bar Truss
The next problem to be considered is the ten-bar truss as shown in Fig. 10. This problem is
one of the benchmark problems used to test optimization methods. Also in this problem,
only sizing optimization is considered. Therefore, design variables are ten sectional areas.
Cross-sectional areas of members 1, 3, 4, 7, 8 and 9 are taken from the following 32
discrete values, i.e., 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0,
22.9, 26.5, 30.0, and 33.5 in’. For the rest of the members, the cross-sectional areas are
taken from the following 32 discrete values, i.e., 1.62, 1.80, 1.99, 2,13, 2.38, 2.62, 2.63,
2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80,
4.97,5.12,5.74, 7.22,7.97,11.5,13.5, 13.9, and 14.2 in. Similar to the previous problem,
a five-bit string is required for each design variable. Design parameters and genetic
parameters are shown in Table 3.

Results obtained from the proposed and conventional schemes are shown in Fig.
11. Similar to the previous problem, each point in the graph represents an average weight
of the best feasible designs obtained from 200 different runs. The robustness of the
proposed scheme is again obvious. The effect of the unit used on the results from the
proposed scheme is noticeably less than that on the results from the conventional scheme.
Moreover, the results from the proposed scheme also exhibit a rather clear tendency with
respect to the value of the coefficient used while those from the conventional scheme do

360 in. 360 in.

360 in.

100 kip 100 kip
Fig. 10 Ten-bar truss
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not, and are quite scattered. In the proposed scheme, it can be reasonably said that good
results are obtained with values of ¢ around 0.5 to 0.75. Similar to the previous problem,

even though the trend in the results of the proposed scheme can be observed, the results are
not that much sensitive to the magnitude of the penalty parameter when compared with the
conventional scheme. Consequently, a range of values of ¢ may be used when the
appropriate value is not known. The best result obtained from the proposed scheme is also
compared with the best results reported by Rajeev and Krishnamoorthy (1992), Camp et al.
(1998) and Galante (1996) in Table 4. It can be seen that the result obtained from the
proposed penalty scheme is relatively good although Rajeev and Krishnamoorthy (1992),
Camp et al. (1998), and Galante (1996) employ more complicated GAs.

Table 3 Design and GA parameters for the ten-bar truss problem

Design parameters GA parameters
Item Value Item Value
Modulus of elasticity 107 psi Maximum number of 100
Weight density 0.1 1b/in’ generations
Allowable tensile stress 25,000 psi Population size 40
Allowable compressive stress | 25,000 psi Crossover probability 0.8
Maximum x, y-displacements | 2 in. Mutation probability 0.001
@ 0.25-1.75
A 0.000001-100
C 2.0
Z 5.0

fn the previous six-bar truss probfem, the appropriate vafue of ¢ 1s around (.75 to

1.0, which is similar to the value obtained for the ten-bar truss problem. Since the two
problems are quite similar, similar values of the coefficient from the two problems are
expected. In this aspect, the proposed scheme evidently outperforms the conventional
scheme, which does not exhibit any obvious similarity between these two problems.
Having similar appropriate values of the coefficient for similar problems allows the
coefficient to be set by experience. Since the coefficient in the proposed scheme has a
physical meaning, which directly corresponds to the understandable degree of penalty, the
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Fig. 11 Average weight of the best feasible designs obtained from 200 runs—ten-bar
truss
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characteristics of the problems being solved can be directly related to the appropriate
degree of penalty. This kind of advantage may not be found in existing conventional
schemes.

Table 4 Comparison of the results for the ten-bar truss problem

Member Size of member (in”)
Proposed Rajeev and Camp et al. Galante (1996)
Krishnamoorthy (1998)
(1992)
1 335 335 30.0 335
2 1.62 1.62 1.62 1.62
3 229 22.0 26.5 22.0
4 15.5 15.5 13.5 14.2
5 1.62 1.62 1.62 1.62
6 1.62 1.62 1.62 1.62
7 7.22 14.2 7.22 7.97
8 22.9 19.9 229 22.9
9 22.0 19.9 22.0 22.0
10 1.62 2.62 1.62 1.62
Total weight (Ib) 5499.3 5613.8 5556.9 5458.3

4.4.3 One-Bay Eight-Story Frame

The last problem to be considered is the one-bay eight-story frame as shown in Fig. 12
Similar to the previous two problems, only sizing optimization is considered. The 24
members of the structure are categorized into eight groups (as indicated in Fig. 12). In this
problem, 256 sections are selected from a list of 268 W-sections from the American
Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications given
in Burns (1995) by discarding the 12 biggest sections from the list. Thus, an eight-bit string
is required for each design variable. There is only a displacement constraint in the problem
that is the maximum x-displacement at the top of the structure. Design and genetic
parameters are shown in Table 5.

Fig. 13 shows results obtained from the proposed and conventional schemes. In the
figure, each point in the graph also represents an average weight of the best feasible
designs obtained from 200 different runs. Once again, the robustness of the proposed
scheme is confirmed. The effect of the unit on the results obtained from the proposed
scheme is almost negligible. This conclusion is not true for the case of the conventional
scheme, which exhibits large differences between the results from the two different units.
In this problem, the insensitivity of the results to the value of the parameter is very
apparent for the proposed scheme. On the contrary, the results from the conventional
scheme show very high variation when the parameter is varied. This confirms the higher
robustness of the proposed scheme over the conventional one. Although some of the
averages of the best results from the conventional scheme shown in Fig. 13 may seem to be
better than those from the proposed scheme, a comparison of the best result obtained from
the proposed technique and_results reported by Camp et al. (1998) in Table 6 shows that
the proposed method is actually acceptable. In their paper, Camp et al. (1998) provide both
results from their own GAs, which are not the standard GAs, and from the optimality
criteria method (Khot, Venkayya, and Berke 1976).
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Fig. 12 One-bay eight-story frame

Table 5 Design and GA parameters for the one-bay eight-story frame problem

Design parameters

GA parameters

Item Value Item Value
Modulus of elasticity 29x10° ksi Maximum number of 100
Weight density 2.83x10*kip/in® | generations
Maximum x- 2in. Population size 50
displacement at the top of Crossover probability 0.85
the structure Mutation probability 0.05
@ 0.25-1.75
A 0.000001-100
C 2.0
zZ 5.0

Table 6 Comparison of the results for the one-bay eight-story frame problem

Group Number Proposed GAs Optimality criteria
(Camp et al. 1998) (Camp et al. 1998)
1 W 12x45 W18 x 46 W14 x 34
2 W 14 x 34 W 16 x 31 W 10x 39
3 W 12 x35 W16 x 26 W 10 x 33
4 W1i0x 19 W12x 16 W8x 18
5 W 18 x 35 W 18 x 35 W21 x 68
6 "W 18x40 W 18 x 35 W24 x55
7 W16 x 36 W 18x 35 W21x50
8 W16 x 26 W16x26 W12 x40
Total weight (kip) 7.47 7.38 9.22
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5. OPTIMIZATION OF MATRIX STORAGES IN THE FINITE ELEMENT
ANALYSIS BY NODE RENUMBERING

The analysis method for cracking localization proposed in this study will involve finding a
crack pattern that has the minimum total potential energy. As a result, many system
stiffness equations for solutions with different crack patterns have to be formed and
analyzed. Moreover, for accurate results, the finite element meshes employed will have to
be rather fine in order to allow as many cracks as possible to occur. For this reason, the
obtained stiffness equations will be large. This will result in both great computing memory
requirement as well as long computational time. Any technique that helps lessen this
problem will therefore be much helpful.

In most structural analysis problems, system stiffness matrices are generally weakly
populated. This is because each row or equilibrium equation for a particular degree of
freedom is only influenced by degrees of freedom associated with the often-small number
of elements connecting to that degree of freedom. All other degrees of freedom for
remaining unattached elements have no effect on this equilibrium equation and hence have
zero or void stiffness coefficients in that row. Therefore, a sparse or profile matrix is
usually used to store a system stiffness matrix. It is indicated by clustering of the nonzero
stiffness coefficients about the main diagonal of the matrix (see Fig. 14). The opportunity
to gain the efficiency in solving the matrix equation can be realized if all elements outside
the sparseness that always retain zero value are noted. Hence, the performance of
calculation can be improved by modifications that avoid the storage and manipulation of
the useless zeros outside the clustering.

Element stiffness matrices are assembled to form a system stiffness matrix
according to the degrees of freedom of the elements, which are commonly assigned by the
node numbers. Actually, the numbering sequence of the nodes has no influence on the
result, but it influences the computational time and the requirement of storage space of the
system stiffness matrix. If the nodes are numbered in an appropriate sequence, the
coefficients in the system stiffness matrix are arranged close to the diagonal of the matrix.
Thereafter, the profile matrix can store fewer components and certainly use lower
computational time. In this section, a method to optimize the storage of system stiffness
matrices by node renumbering is proposed (see more details in Thitawat 2001). The
objective of the method is to find a node numbering sequence that requires the minimum
storage area by having most of the coefficients of the system stiffness matrix close to the
diagonal of the matrix. The optimization technique employed is the genetic algorithm
(GA). The genetic algorithm is selected because of its ability to perform global searches
and its suitability for problems with discrete variables.

One of the famous optimization problems that have been solved by GAs is the
traveling salesman problem. The goal of this problem is-to find the shortest route that
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Fig. 14 Storage of a profile symmetric matrix
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Fig. 15 Analogy between the node numbering and traveling salesman problems

passes all prescribed cities for a salesman to visit. In other words, the goal is to find the
best sequence of cities to visit. The usual constraint of the problem is that the salesman can
visit each city only once. In the optimization of the stiffness matrix storage, numbering of
nodes is considered. Since each node number cannot be repeated in a finite element mesh,
different numbering sequences of nodes can be considered as different sequences of cities
in the traveling salesman problem. If each node number is thought of as a city name, then
the problem can be considered as the traveling salesman problem. In order to illustrate this
idea, consider a finite element mesh shown in Fig. 15. Assume that the name of the first
city that the salesman visits is placed in the A box and the second city is in the B box and
so on. The different node numbering sequences S1 and S2 indicate the different order of
cities to visit (see Fig. 15b). In S1, the sequence of cities is 1, 2, 3, 4, 5, and 6 while, in S2,
the sequence is 1, 3, 5, 2, 4, and 6. These two sequences will lead to different storages of
the matrix.

From the above similarity, the minimization of the stiffness matrix storage in this
study will be based on GAs for the traveling salesman problem. Here, the simple genetic
algorithm will be used. The details of the method are described as follows.

5.1 Coding and GA operators

5.1.1 Coding

In usuval coding for GAs, binary strings are often used. Nevertheless, for the traveling
salesman problem, strings of city names can be directly used. For example, consider two
meshes for a one-dimensional bar shown in Fig. 16. The genotypes that represent the two
different numbering sequences in the figure are simply the strings of the node sequences.
Coding node numbering sequences this way is to make certain that it is possible to find
appropriate crossover and mutation operators that will not result in repeated node numbers
in the mesh.
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node numbers

1 2 5 4 3
OO0 L2543
S1 Genotype 1
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*—0—0—0—90 3141152

Genotype 2

Fig. 16 Coding for different node numbering sequences

5.1.2 Crossover operator

The function of the crossover operator is to create new genotypes (children strings) by
exchanging the data (bits) between the existing genotypes (parent strings). The traditional
crossover algorithm, which is a crossover of binary-coded strings, cannot be applied to
integer-coded strings used in this problem because it might cause repetition or loss of some
node numbers. Thus, a different type of crossover algorithm must be used to avoid such
problems.

Usually, the crossover operator needs two parent strings and returns two children
strings as the outputs. The crossover operator used here also needs two parent strings and
gives two children strings. Nevertheless, this algorithm is divided into two parts, i.e., the
first part for the first children string and the second one for the second children string. It
begins with random selection of the crossing site (see Fig. 17a). Next, the node numbers in
the parent string P2 that appear on the left side of the crossing site in the parent string P1
are removed from P2 (see Fig. 17b). Then, the remaining bits in P2 are moved to the right
by keeping the order of the node numbers (see Fig. 17¢c). Finally, all bits on the right side
of the crossing site in P1 are replaced by all remaining bits on the right side of the crossing
site in P2 (see Fig. 17d) and the children string C1 is obtained. In order to create the second
children string C2, the same procedure can be perfomed. The difference is only that, at the

& Crossing site

Pt [1]2]5]4]3] (1]2Ds]413]
P2 (3]41]5]2] [3]4[X]5
(a) (b)
[1]2]5]4]3] c1 [1]2]3]4]5]
L.l [3]4]5] L[ [5[4]3]
Em—
(c) (d)

Fig. 17 Schematic diagram of the crossover operator
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Mutation pair

[1[2]5[4]3] == [1[3]5]4]2]

Fig. 18 Schematic diagram of the mutation operator

beginning, bits on the left side of P2 instead of P1 are kept unchanged.

5.1.3 Mutation operator

The mutation operator is another operator to create new genotypes. The difference from the
crossover operator is that the crossover operator needs another genotype to exchange the
data while the mutation operator manipulates the data within itself. Certainly, the
traditional mutation operator cannot be used for this problem since repetition of node
numbers will definitely result. The new algorithm begins by selecting two exchange bits at
random and subsequently swapping the node numbers of the two bits (see Fig. 18).

5.2 Results
In order to illustrate the advantages of the proposed method in the optimization of the
stiffness matrix storage, the following example problems are considered, i.e.,

5.2.1 Example problem 1
In this example, a finite element mesh consisting of 8 eight-noded elements and 37 nodes
shown in Fig. 19 is considered (Gajewski and Lompies 1996). The total number of all
possible numbering sequences is 371=1.376x10". The mesh’s original numbering
sequence is shown also in Fig. 19 (Gajewski and Lompies 1996). The system stiffness
matrix of the original mesh is shown Fig. 20. Since the matrix is symmetric, only
components in the shaded area will have to be stored. The original numbering sequence
requires storage of 449 coefficients.

The objective function in this optimization problem is the number of the
coefficients that have to be stored in the profile matrix. The fitness function F(x) is

defined as

F(x) :m (39)

P *—9—o—9o——0—9
24 314 30g 294 2
By o— > o—o o!!

32 34 36 28
® 24" @25 ® 25 ®27 ®10

*—o—0—0—0—0 00—
1 2 3 4 5 6 7 8 9

Fig. 19 Example problem 1—configuration
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Fig. 20 Stiffness matrix of the original mesh

where x represents the genotype while N(x) denotes the objective function, which is the

number of the coefficients to be stored. In the GA calculation, the maximum number of
generation is set to 5,000. The population size is set to 100. The algorithm is executed with
the probability of crossover p, and the probability of mutation p, equal to 0.8 and 0.05,
respectively. The population of the first generation is selected at random.

Fig. 21 is a plot between the average value of the required storage size in each
generation and the generation number. Note that the average storage size of each
generation 1§ calculated from the storage sizes of all individuals in the generation. In
addition, the storage size is the number of the coefficients that have to be stored. It can be
seen from the graph that the convergence is actually obtained very quickly and 5,000
generations are actually not necessary.

200 - _ I
600 -
500 1
400
300 -
200 - 1

Average storage size

1004 \

0 1000 2000 3000 4000 5000

Generations

Fig. 21 Convergence of the average storage size
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Fig. 22(a) The best solutions obtained up to different numbers of generations

Fig. 22 shows the best solutions obtained up to different numbers of generations.
Note that the best solution obtained up to a certain generation is the best solution obtained
so far and it may or may not be the best solution of the last generation. From Fig. 22, it can
be seen that the required storage size drops dramatically in the early generations.
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Moreover, from the profiles of the matrix in different generations, it is clear that in the
carly generations the matrix still stores many zeros. After many generations, non-zero
coefficients are moved closer to the diagonal of the matrix which results in less required
storage.

Fig. 23 compares the profile of the stiffness matrix obtained by the proposed
method with the one obtained by Gajewski and Lompies (1996). The profile from the
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Fig. 23 Results of the example problem 1 from the proposed method (lower
triangular) and Gajewski and Lompies (1996) (upper triangular)
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Fig. 24 Example problem 2

proposed method is shown In the lower triangular part of the matrix while the one from
Gajewski and Lompies (1996) is shown in the upper triangular part. Gajewski and Lompies
proposed object-oriented implernentation of bandwidth, profile and wavefront reduction
algorithms based on an algorithm published by Sloan (1986). Their work yields a matrix
with storage requirement of 270 coefficients while the proposed method yields a matrix
with storage requirement of 271 coefficients. These two solutions are comparable. It must
be noted that Sloan’s concept is complicated and its implementation is more difficult than
the implementation of the proposed method based on GAs.

5.2.2 Example problem 2
The second problem is a finite element mesh of a space truss shown in Fig. 24 (Collins
1973). The mesh consists of 85 two-noded line elements and 45 nodes. The total number of
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Fig. 25 Results of the example problem 2 from the proposed method (lower
triangular) and Collins (1973) (upper triangular)
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Fig. 26 Example problem 3—configuration

all possible numbering sequences is 45'=1.196x10°. Fig. 24 also shows the mesh’s
original numbering sequence and its corresponding stiffness matrix (Collins 1973). The
original numbering sequence requires storage of 620 coefficients.

The GA parameters used in this problem are the same as those of the previous
problem. Fig. 25 compares the profile of the stiffness matrix obtained by the proposed
method with the one obtained by Collins (1973). The profile from the proposed method is
shown in the lower triangular part of the matrix while the result from Collins is shown in
the upper triangular part. Both methods yield a matrix with storage requirement of 249
coefficients. However, the profiles from both methods are different.

5.2.3 Example problem 3

This example represents finite element meshes shown in Fig. 26. They are meshes
prepared for a mesh-convergence test for the analysis of a four-point bending beam. The
cracking localization analysis of the four-point bending test will be performed in this study.
Here, there are four meshes with 672, 1140, 2288 and 3826 nodes and the numbers of all
possible numbering sequences are 9.101x10'¢% 5.051x10%%',  7.054x10%* and
1.452x10"*%*® respectively. All meshes use only the four-noded quadrilateral elements. It
is clear that the difficulty in optimizing the matrix storage requirement is directly
proportional to the size of the problem.

Since various sizes of search space are being considered, different GA parameters
are used for different meshes as shown in Table 7. These parameters are heuristically set. It
18 obvious that the problem with the largest search space is the most difficult one (Mesh 4).
As a result, for Mesh 4, the population size is set to be larger than the other meshes and
higher probability of mutation is also used. This is to allow higher degree of exploration

Table 7 GA parameters for the example problem 3

Item . Value
Mesh 1 Mesh 2 Mesh 3 Mesh 4
Maximum number of generations 10,000 10,000 10,000 10,000

Population size 100 100 100 300
Crossover probability 0.85 0.85 0.85 0.85
Mutation probability 0.05 0.05 0.05 0.1
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Table 8 Comparison between storage requirements with and without optimization

Mesh Storage size Reduction (%)
Original numbering Optimized numbering
1 24,831 14,962 39.7%
2 63,561 47,020 26.0%
3 186,878 144,891 22.5%
4 370,249 309,950 16.3%

into the search space since the search space is very large.

When the four meshes are first created, the numbering sequences obtained during
the creation of the meshes are designated as the original numbering sequences and the
results of the optimization will be compared with these original numbering sequences. In
this problem, the initial population is first created at random. After that, two members in
the population are randomly selected and then replaced by the original numbering
sequence and the reverse sequence of the original sequence. This additional procedure has
to be added because the search space is very large and the randomized initial population
may be much worse than the original numbering sequence. Therefore, it is logical to add
the original sequence and its reverse sequence to the initial population to possibly improve
the quality of the genes in the initial population.

Table 8 shows the storage sizes of the obtained results compared with the storage
sizes of the original numbering sequences. It can be seen that the required storage sizes
decrease significantly after the optimization especially when the size of the problem is
small. For larger problems, the optimization naturally becomes more difficult and less
reduction in the storage size is observed.
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6. SMEARED CRACK MODELS FOR ANALYSIS OF CRACKING
LOCALIZATION

6.1 A Smeared Crack Model with Crack Displacement Degrees of Freedom

In order to discuss the cracking localization, the concept of stability and bifurcation of
equilibrium paths explained previously is followed. To begin with, the total potential
energy increment for the domain of interest V is considered, i.e., (see more details in
Petcherdchoo 1999)

AIT = B jAa“TAch - jAuTAde _ JAuTAtdS} + B JA&"TAE“’dV} (40)
v 12 S Vv

where the first and second pairs of the brackets represent the mechanical potential energy
increment and the dissipated energy increment, respectively. Here, At and Af denote the
surface traction increment vector and the body force increment vector, respectively. In
addition, Au denotes the total displacement increment vector.

The expression of the total potential energy increment in Eq. (40) is actually the
same as the conventional expression used for the conventional smeared crack finite
element analysis, which is written as

ALT :-;- IAsrﬁ”AwV _ _[AuTAde _ IAuTAth . (41)
v v v

To show that Eqs. (40) and (41) are in fact the same, Eqs. (6) and (9) are substituted
into Eq. (40) to obtain

ATT = ATT" + AT

. 42
L JAE“TD"AS” dv — jAuTAde— J'AuTAtdS +1 jAé”TD”Aé”’dV . (42)
2' 1’4 v S 2 v
By substituting Eq. (1) into Eq. (42), the equation becomes
A= L [JAETD”AM’V - jAaTD”Aa"dV - jAs"” D°AedV
2 v v Vv
+ jAa”" DA dV + jAé””l’)"’Aé"dv} (43)
vV v
- jAuTAde — IAuTAth.
A v

Transforming the global crack strain increment Ae™ to the local crack strain
increment A£” by applying Eq. (3) to Eq. (43), we get
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AIl = % “ASTD“AW [ae’ D TAE"aV - jA‘" T'D°AedV
¥ _[A"" (b + TTD"T)Aé"dV} (44)
- jAuTAde - [Au’Afdv.
5 7
Applying Eq. (13) to Eq. (44) yields
Im= % Vj 2" (D7 =D T(D” +T7DT) 17D Jpea - SjAuTAde - vf AuTAtAV.  (45)

From Egq. (14), the total potential energy increment expressed above becomes

_1 jAsTﬁfandv - jAuTAde - jAuTAth

2y (46)
HENA [ae” Agav - jAuTAfds jAu’"Ath
2 1
which is the same equation as Eq. (41). Therefore, Eq. (40) is the same as Eq. (41).
From Eqgs. (1}, (6), (9) and (40) and the inverse relationship of Eg. (3), i.e.,
AR =TAe” (47)
where
cos’ @ —2sinfcosd
T=| sin’@ 2sinfcosf | , (48)
sinfcos@ cos’ @ —sin’ @
we obtain
]- crnT o cr T T
ATl = [5 [(ag-Ae) D° (Mg - A&") dV- [Au AfdV - jAu AtdS
(49)
+ [l J‘AE"’TD‘*As"dV}
2 \'d
where
- DY =T"DT. (50)

At this point, we introduce an intact-solid displacement increment vector Au® and
a crack displacement increment vector Au” defined as
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Au = Au’ + Au” 5D

where the strain increments computed from Au, Au’ and Au” are Ag, Ag” and Ag”,
respectively.

Consider the /" element in the finite element analysis. The element is assumed to be
a cracked element. The three displacement increments above can be interpolated from
nodal quantities, i.e.,

Aa = NA'U,
Au’ = NAU?, (52)
Aiurr — NAiUcr

in which AU, AU’ and A'U“ are the nodal quantities of Au, Au’ and Au“,
respectively and AU = AU° +A'U“. Here, N is the shape function matrix. Note that the
superscript i for the i element is used in the equations because the nodal crack
displacement increments of the same node for different elements can be different. This is
natural because, in the smeared crack approach, cracking in each clement is completely
independent of each other. Therefore, the continuity of the crack displacement increment
between elements is not required and must not be enforced. On the contrary, the total
displacement increment Au must be continuous across elements. Therefore, the
superscript i representing the element number is not actually necessary for the nodal values
of the total displacement increment. Similar to the crack displacement increment, the
displacement increment related to the strain increment of the uncracked solid A'u® is not
continuous across elements’ boundaries; therefore, the superscript i is required.
Computing strains from Eq. (52), we obtain Eq. (1), i.e.,

Ng=ANg” +A'g” (53)
where
Ag = BAU,
Ag’ = BAU, (54)
Ar'gcr — BAiUcr.

Substituting Eq. (54) into Eq. (49) for the i element gives

ATT = %A"UT [B'D*BavAU —%A"UT [B'D"BavA'U~
19 1%
_%AiUch J.BTDOBdVAiU_'_%AiUch JBTDOBdVAiucr (55)
\% v

. %A"U“’T J‘BTD”BdVA"U" _AUT jNTAde AU jNTAtdS.
Vv 1 Y
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Next, we apply the stationary condition & (AH) =0, and assume that both D and

D are symmetric. Since S(AU") and S(A’ U"’T) are arbitrary, the element stiffness
equation for the i™ element is obtained as

IBTDOB"V IB D°Bdv [N atav + INTAtdS
{A,Uw} (56)

jBTD°de IBTD”BdV+ J'BTD“’BdV Y 0

After assembling all elements and applying prescribed displacements and forces,
the system stiffness equation 1s obtained as

K, K, || AU AR,
= . (57)
K, K, |AU” AR,
The static condensation is then used to remove the nodal total displacement

increment from the obtained system matrix equation. Consequently, the equation can be
written in the following form, i.e.,

K“AU” = AR” (58)
where K and AR are defined as

K" = K, _K21K1—11K12’

(59)
AR = AR, - K, K['AR,.

In consideration of the stability of equilibrium paths, the eigenvalue analysis of
K can be performed. However, it must be noted that Eq. (58) is a singular equation

because AU contains rigid-body crack displacement increments. For example, for two-
dimensional cases, they are two rigid translations and one rigid rotation. These rigid-body
crack displacement increments will result in zero eigenvalues of the stiffness K. When
the numerical eigenvalue analysis is performed on the stiffness matrix, we may not obtain
zero eigenvalues for these rigid-body crack displacements but very small numbers, instead.
Therefore, the results will be indistinguishable from those modes with real small non-zero
eigenvalues. To avoid this confusion, constraints to remove these rigid-body modes from
all elements must be applied to the equation. In this study, the following constraints are
employed for two-dimensional problems at the center of each element without loss of
generality, i.e.,

Au(E=0,n=0)=

AVT(E=0,n=0)=0 (60)
VE=0m=0) _
Ox
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where the global x—y and natural £ —# coordinate systems are used in the equation.

Here, Au” and Av“ are the incremental crack displacements in x- and y-directions,
respectively.

Constraining the rigid-body crack displacement increments can be done in this
fashion because the magnitudes of the crack displacement increments are not important.
The important things are the crack strain increments. As long as the values of the crack
strain increments are not constrained, the generality is not lost.

Eq. (58), after applying the constraints, can be expressed as

K“AU“ = AR (61)

The stability condition is obtained by checking the eigenvalues of K . If all the
eigenvalues are positive, the equilibrium path is stable with respect to the current crack
pattern and there is no bifurcation. On the contrary, if some of the eigenvalues are
negative, the equilibrium path is not stable with respect to the current crack pattern. This
means that bifurcation has occurred and the actual equilibrium path must be found. Note
that this proposed scheme is only used for stability analysis of crack patterns, not for
obtaining the displacement solution. The displacement solution will be obtained from the
original smeared crack model where the basic unknowns are the nodal displacement
increments.

6.2 A Smeared Crack Model with A Mixed Formulation

The technique of introducing the new crack displacement increment variable into the
smeared crack finite element analysis shown in the previous section provides a way (o
obtain the Hessian matrix of the total potential energy increment in Eq. (49) with respect to
the irreversible parameter. Nevertheless, the procedure still leaves some room for further
development. For example, the crack displacement increment used does not have a very
clear physical meaning. Moreover, constraints have to be introduced to prevent the rigid-
body crack displacements in all crack elements. The implementation of these constraints
can be troublesome in some cases.

Introduction of discrete irreversible parameters into the smeared crack model can
be done in another different way by using a mixed finite element formulation that
discretizes not only the displacement field but also the crack strain field (see more details
in Soparat 2000 and Thitawat 2001). To begin with, consider the i element in the finite
element analysis. The displacement increment Au and the local crack strain increment

Ag” are discretized as

Au=NA'U, - (62)
AE" =N“A'E” (63)

where N and N represent the shape function matrices for the displacement increment

and the local crack strain increment, respectively. In addition, A'U and AR represent
the nodal displacement increment and the nodal local crack strain increment, respectively.
Note that the local crack sfrain increments are not continuous across elements and the
nodal local crack strain increments of the same node for different elements can be
different. One example is a problem with one cracked element surrounded by uncracked
elements (see Fig. 27). In the cracked element including its boundary, non-zero crack strain
increments can be expected. However, in the surrounding uncracked elements, the crack
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Fig. 27 A problem with one cracked element surrounded by intact elastic elements

strain increments are expected to be zero because there is no crack in those elements. On
the contrary, the total displacement increments must be continuous across all the elements.

From Egs. (3), (62) and (63), the total strain increment and the global crack strain
increment are expressed as

As=BA'U, (64)
Ag” =TNA'E" . (65)

From Egs. (43), (62), (63), (64) and (65), the total potential energy increment can
be expressed as

AT = % jA“UTBTDOBA"UdV —% [A"UTBTD“TN"A"E"dv
' v
—% IA‘E“TN"TTTD”BA"UdV +% jAfE"TN“TTTD”TN"A"E“dv (66)
v v
+% [A*‘E“TNC’H‘)“NC’A"E%V - jA"UTNTAde - J-A"UTNTAtdS.
v v 5

Applying the stationary condition §{AIT)= 0, the element stiffness equation for the

i™ element is obtained as
k, k, i Ar
uo e JAUL (67)
k 21 k 22 AIEH 0

k, = [B'D'Bav,
14

where

k,, = - [B"D"IN"dV,
v
k,, = - [N" T'D’BaV,
7
Ky = [N (D7 + T DTIN"av,
v

Ar = jNTAfdv + jNTAtdS.
\'s 5
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After assembling all element stiffness equations and applying prescribed
displacements and forces, the system stiffness equation is arranged as

K, K,][AU] [AR, )
K, K, ||AE"[ |AR,

where AU and AE” are the nodal displacement increment and the nodal local crack strain
increment of the system, respectively.

The static condensation is then used to remove the nodal displacement increment
from the obtained system matrix equation. Consequently, the equation can be written in the
following form, i.e.,

K“AE" = ARY (69)

where K and AR are defined as
K* =K22 _K21K1_11K12’ (70)
AR = AR, - KZIKI‘IIAR] . (71

In the consideration of stability of crack patterns, the eigenvalue analysis of K is
performed. If all the eigenvalues are positive, then it means that the stationary solution in
Eq. (69) is stable with respect to the current crack pattern. Otherwise, the stationary
solution is unstable and bifurcation occurs. Similar to the case of the previous scheme, this
proposed scheme is only used for stability analysis of crack patterns, not for obtaining the
displacement solution. The displacement solution will be obtained from the original
smeared crack model where the basic unknowns are the nodal displacement increments.
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7. THE EQUILIBRIUM PATH WITH THE MINIMUM TOTAL POTENTIAL
ENERGY

When the equilibrium path reaches a bifurcation point, a fan of many possible equilibrium
paths emanates from the bifurcation point. In fact, if instability occurs in the real system,
the actual equilibrium path is the path that contains the minimum total potential energy
{Bazant and Cedolin 1991} or the minimum elastic strain energy (Nemat-Nasser 1979).
These two conditions are actually the same (Nemat-Nasser 1979), given that one defines
the total potential energy in the usual way. In this study, the minimum total potential
energy criterion is employed. However, since the analysis is performed incrementally, and
the total potential energy is written in the incremental form [see Eq. (40)], the stable path
with the minimum total potential energy increment is the desired solution path.

In order to obtain the solution path with the minimum total potential energy
increment, energy increments of all possible equilibrium paths, which depend on their
crack patterns, can be compared. This approach of comparing all possible solutions is
essentially an exhaustive search. The algorithm for this search approach is simple and
straightforward. Nevertheless, it is obvious that the technique is expensive and suitable
only for small problems where the complete search is still possible. In the case of larger
problems where many cracks occur in the domain and, as a result, many crack patterns are
possible, the exhaustive search may not be practical and it is advisable to employ an
appropriate optimization technique to find the minimum energy path. In this study, the GA
(Goldberg 1989) is used for this purpose because this optimization technique is suitable for
problems with discrete variables. Variables in the minimization problem of the total
potential energy increment are discrete statuses of cracks that can be either opening or
unloading. Since GAs do not require the evaluation of the gradient of the function being
minimized or maximized, the evaluation of the total potential energy increment is enough
for the minimization process.

7.1 Minimization of The Total Potential Energy Increment

The analysis of cracking localization in this study is in the form of piecewise-linear
incremental steps. Each step is ended when a new cracked element is initiated by the stress
criterion or when the incremental crack constitutive law of one of the existing cracked
elements needs to be updated. The incremental constitutive law of a crack needs to be
updated when the slope of its tension-softening curve changes or when the crack switches
from loading to unloading or vice versa. During each incremental step, the behavior of the
system is actually linear. As an example, Fig. 28 schematically illustrates a four-point
bending test and its load-deformation curve. At the end of the first incremental step (point
a), cracks are initiated. Because of the initiated cracks, the stiffness of the beam is changed
(path ab). If the equilibrium path ab is stable, the analysis is continued with the second
incremental step along the path ab. As mentioned earlier, the path ab ends at point & either
because, at the point b, a new cracked element is initiated or the incremental crack
constitutive law of one of the existing cracks needs to be updated. Assume that the analysis
is continued until point ¢ where the current crack pattern yields an unstable equilibrium
path (path cd’ in Fig. 28). This means that the point ¢ is a bifurcation point and the actual
equilibrium must be found. For better understanding, it is further assumed that there are
five possible equilibrium paths at the bifurcation point ¢ (see Fig. 28). The total potential
energy increments of all possible paths are then compared in order to obtain the path with
the minimum total potential energy increment, which is the actual equilibrium path. In
order to compare the energy of the paths, all paths must be executed under the same
controlled parameter. For this problem, the controlled displacement increment A can be
used as the controlled parameter. For small problems, the exhaustive search algorithm can
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Fig. 28 Four-point bending test and its load-deformation curve

be used but, for larger problems, the GA will be more sujtable. Since the optimization
problem being solved in this study is the minimization of the total potential energy
increment, the objective function f(x)} for the GA is the total potential energy increment

itself, i.e.,
f(x) = All(x) (72)
where x is the variable representing crack pattems.

7.2 Coding and Fitness

In general, GAs do not directly work with the parameters themselves. The algorithms start
with coding of the parameter set. For coding, binary strings are most popular and
convenient. Each point in search space, often called “individual” in the GA terminology, is
represented by a single string of number ('s and 1's. The optimization problem of this
study is to minimize the fotal potential energy increment. The total potential energy
Increment to be minimized is a function of crack patterns. Therefore, each crack pattern
will be coded as a binary string. The idea of the coding is to have each bit in a binary string
represent the status of one particular crack. If the value of the bit is one (1), it indicates that
its corresponding crack is opening. If the value of the bit is zero (0), the corresponding
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Fig. 29 Examples of coding of crack patterns

crack is unloading. Fig. 29 shows examples of the coding of two different crack patterns.
The number of bits used in the string is equal to the number of the existing crack paths.

In GAs, the reproduction operator defines a process in which individuals are
selected for mating based on their fitness values relative to that of the population. Fitness is
defined as a figure of merit. Individuals with higher fitness values have higher probabilities
of being selected for mating and subsequent genetic actions. Consequently, highly fit
individuals live and reproduce, and less fit individuals die. In this study, a crack pattern
that results in a smaller total potential energy increment will be given a higher fitness
value. To this end, the following equation for the fitness F(x) is employed, i.e.,

1

F(x)=——
1+ kATI(x)

(73)

where k is a user-defined constant. In this study, & equal to ﬁ is used in all problems.

7.3 GA Operators

In this study, the simple GA is employed. As mentioned earlier, the algorithm is composed
of three different operators, i.e., reproduction, crossover and mutation operators. In the first
operator in GAs, the reproduction operator, a mating pool is created by letting individuals
with higher fitness values have higher chance to be selected into the mating pool. In this
study, the proportional selection algorithm [see Eq. (23}] is employed. In the crossover
operator, new strings are created by exchanging information among strings. Many
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Fig. 30 One-point crossover
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crossover operators exist in the literature (Goldberg 1989). Generally, two strings are
selected at random as a crossover pair and some portions of the two strings are exchanged.
The two strings participating in the crossover are known as parent strings and the resulting
strings are known as children strings. In this study, three types of crossover operator are
employed, i.e., one-point, two-point and uniform crossover operators.

Fig. 30 shows an example of the one-point crossover. In this study, the one-point
crossover is performed by randomly selecting a crossing site along the parent strings and
by exchanging all bits on the right side of the selected crossing site. In the case of the two-
point crossover, two crossing sites are randomly selected and all the bits between the two
crossing sites of the two parent strings are exchanged as shown in Fig. 31. For the uniform
crossover, the number of bits to be crossed over and their positions are randomly
determined. Fig. 32 shows an example of this type of crossover in this study. It is clear that
the crossover operator may yield better or worse children strings. To be able to adjust the
degree of the uncertainty of the crossover phase, it is not necessary to use all individuals in
the mating pool in the operator. This is done by adjusting the probability that a crossover is
performed (crossover probability).

The last genetic algorithm operator is the mutation operator. Fig. 33 shows an
example of the mutation operator employed in this study. The mutation operator changes 1
to 0 and vice versa at a randomly chosen bit. The operator is used sparingly with a small
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Fig. 32 Uniform crossover
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probability (mutation probability).
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8. RESULTS

In the analysis procedure proposed in this study, the specimen under consideration
is analyzed by using the conventional smeared crack model. A crack is initiated when the
maximum principal tensile stress reaches the tensile sirength of the material. The
orientation of the initiated crack is specified by the direction of the maximum principal
tensile stress. Thereafter the crack follows the tension-softening curve, which is treated as
one of the material properties. The tension-softening curve is the relationship between the
tensile stress transferred across the crack surfaces and the crack opening displacement.
Note that, in this study, shear retention of cracks is assumed negligible. As mentioned
earlier, the analysis is done incrementaily. In each step, the stability of the obtained crack

pattern will be investigated by performing eigenvalue analysis of the matrix K or K
obtained from one of the proposed smeared crack finite element formulations. If the crack
pattern is found to be stable, the analysis is continued to the next step. However, if the
crack pattern is unstable, the search for the crack pattern with the minimum total potential
energy increment must be performed. Here, if the number of possible crack patterns is not
very large, the exhaustive search can be employed; otherwise, the GA may be used,
instead. It must be noted that, if the GA or another optimization technique is used, the
obtained crack pattern may have a near-minimum total potential energy increment, not the
true minimum one for the finite element discretization currently being used. In order to
compare total potential energy increments of different crack patterns, the energy for cases
with different crack patterns must be evaluated under the same controlled parameter. In all
examples in this study, the controlled displacement is used. After the crack pattern with the
minimum or near-minimum total potential energy increment is obtained, the analysis is
carried on to the next step. The same process is then repeated and the actual equilibrium
path can be traced.

Here, three problems will be solved. The proposed smeared crack model with crack
displacement degrees of freedom will be used in the first example probiem cnly while the
smeared crack model with a mixed finite element formulation will be used in all example
problems. This is because the second proposed model is actually more efficient than the
first proposed model. More example problems can be found in Petcherdchoo (1999),
Soparat (2000) and Thitawat (2001).

8.1 Uniaxial Bar Problem: Stability and Bifurcation Analysis

In order to illustrate the advantage of the proposed smeared crack finite element
models in the analysis of cracking localization, a simple one-dimensional uniaxial problem
shown in Fig. 34 is considered. As shown in Fig. 34, the bar has one fixed support at one
end. At the other end, the controlled displacement # 1is applied. The length of the bar is 2L
and the area is A. The material is assumed elastic with Young’s modulus equal to E. The
bar is discretized into two elements, each of which has the length of L. Each element can
accommodate one crack. The characteristic length or crack-band width of each crack, in
this case, is equal to the length of the element. The conventional linear shape function is
used for the displacement interpolation. Note that, in this example, only stability and
bifurcation analysis will be performed.

It is assumed that there is no crack at the beginning. The controlled displacement is
then increased until the stress of the bar reaches the tensile strength f,. By the strength

criterion, both elements are cracked. The cracks follow the constitutive law for cracks. For
opening cracks, a linear relationship between the transmitted tensile stress and the crack

opening displacement (COD) with the slope

equal to H is assumed. For unloading
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Fig. 34 Uniaxial problem using two 1-I bar elements

cracks, a vertical unloading path with a constant COD equal to the existing COD is applied
(see Fig. 34).

The proposed smeared crack model with crack displacement degrees of freedom is
employed first. Consider an incremental step after the initiation of the cracks. Assembling
all element stiffness equations given by Eq. (56), we can write the sytem stiffness equation.
After applying the prescribed boundary conditions, we obtain

[2E E -E ~E E Ay, A |

E E+H -(E+H) 0 0 ||Aur 0
A_E (e+l) E+H 0 0 RAUS _41 g (74)
Hoe o o 0 E+H —(E+H) ||AUZ L e

E 0 0  ~(E+H) E+H ||KUY] EA |
Ao

HL = HL. Here, L represents the characteristic length of the crack

where H = =
<or

Ae
and is equal to L. In addition, AU, represents the nodal displacement increment of the
node i. Moreover, AU represents the nodal crack displacement increment of the node j

and, at the same time, of the element i,
Using the static condensation to remove AU, yields.

| E+28  E+2d E E EAR
2 —~ 2~ 2 2 AIUCF B 2
_E+28  E+2A E E Ui EAG
A 2 2 2 2 AU _A] 2
~ WAl 2 L (g5

L E _E E+2H  E+2H ||AUF| L _ EAu
2 2 2 2 || awe 2

E E  E+2H E+28 i EAu
L2 2 2 2] L2

49



The above equation is singular due to the rigid-body crack displacement increments
in the two elements. For one-dimensional problems, the crack displacement increment at
the center of each element is set to zero, i.e.,

Au(E=0)= %(A‘Uf’ +AUTY =0,

0 (76)
A7 (E=0)= —2—(A2U2” + AU =0,

which leads to

A|2E+2H)  2E AU | A|-EAR 7
Ll 2E AE+2H) ||AUF| L|-EAr]

Note that, in applying the constraints to Eq. (75), not only the row but also the column
operations must be performed to the stiffness matrix so as to obtain the symmetric matrix
in Eq. (77). Actually, the constraints may be directly applied to each element before
assembling the element stiffness equations.

4AH AACE + H)

and . Both

The eigenvalues of the obtained stiffness matrix are

eigenvalues are positive only when H >0. This means that the crack pattern having two
cracks opening at the same time is unstable unless hardening behavior occurs at the cracks.

In reality, cracks will exhibit softening behavior. As a result, the two cracks cannot
continue to open at the same time.

If we assume that the crack in the element 2 undergoes the elastic unloading, this
crack will follow the vertical unloading path shown in Fig. 34. Note from the figure that
the unloading path for the crack in the element 2 has the COD equal to zero. This is
because, at the current state, the cracks in both elements are just initiated and the CODs are
still exactly equal to zero. Note also that an incremental step after the initiation of the
cracks is being considered. With the crack in the element 2 unloading, the system stiffness
equation will contain only one cracked element. Employing the same process of applying
the prescribed boundary conditions and using the static condensation for this case, we
obtain

~ A
%[2(5 v2ifaue = = Bl (78)
The eigenvalue of the stiffness matrix is %ﬂ which is positive when H > —%.

Assuming that the crack in the element 1 undergoes the elastic unloading will yield the
same conclusion.

In summary, immediately after the two elements are cracked due to the strength
criterion employed, the equilibrium path with two opening cracks is unstable and

bifurcation occurs unless both cracks exhibit hardening behavior, i.e, when H>0. In

reality, cracks will exhibit softening behavior. Therefore, the two cracks cannot continue to
open at the same time. If one of the cracks undergoes the elastic unloading, the stable
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Fig. 35 Responses of the uniaxial problem using two 1-D bar elements

. -~ E ~
equilibrium path can be observed as long as H > —5 In the case of H < —g, even the

equilibrium path with one opening crack is not stable. Fig. 35 shows the responses for all
possible cases. For this uniaxial problem, the responses obtained from the finite element
analysis are exact since the linear shape function used in each element can exactly
represent the exact displacement solutions. Note that the exact solutions mean the solutions
that are obtained exactly from the equilibrium although they may not be stable. From Fig.

. . ) = y) .
35, it can be seen that, when there is one opening crack and H <—E, the obtained

responses are the responses with snapback behavior. Under displacement-controlled
loading, the snapback responses are always unstable.

Next, the second proposed smeared crack model, which is the model derived with a
mixed finite element formulation, will be used to solve the same problem. The
conventional linear shape function is used for both the displacement and local crack strain
interpolations. Again, consider an incremental step after the initiation of the cracks.
Assembling all element stiffness equations given by Eq. (67), we write the system stiffness
equation as

E _E 0 E £ 0 0
L L 2 2
_E 28 B _E _E E E _
L L L 2 2 2 2 AU, AR,
0 _E £ 0 0 _E _E AU, AR,
L L _ _ 2 2 AU AR
A g —g 0 (E+3H)L (E+6H)L 0 0 Alél;‘,,=1 03,(79)
E _E o (e+f) [E+A) o ||BET| |0
2 2 -6 3 _ L ||XEy 0
o E _E o (E+AR ([E+ARL||wpe] | o
2 2 3 6
., E _E o (e+Ak (ed
i 2 2 6 3
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Here, AU, and AR, represent the nodal displacement increment and the nodal force

increment of the node i, respectively. Moreover, A’ IE’;” represents the nodal local crack
strain increment of the node j and, at the same time, of the element /.
Since AU,, AU, and AR, are prescribed, the equation can be reduced into

2E E _£ E E ]
L 2 2 2 2 A
E+H|L [E+H]|L . s
2 3 6 A Eer 0
E (E+H)L (E+H]L o
A-= 0 0 HAET =AE{ 0 L (80)
2 6 3 —~ — AZE:” 1 .A_u.
E (E+H)L (E+HL||" > 2
— 0 0 NES Au
2 3~ 6~ g 7
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Using the static condensation to remove AU, yields
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The eigenvalues of the obtained stiffness matrix are A;IL , ACE _; L ,
L ~ 3
f‘—(E—;PL and ﬂELZH—E All eigenvalues will be positive only when H > 0. This

means that the crack pattern having two cracks opening at the same time is unstable unless

hardening behavior occurs at the cracks (I;’ > (). This result is the same as the one
obtained from the smeared crack model with crack displacement degrees of freedom.
Again, if we assume that the crack in the element 2 undergoes the elastic unloading, the
system stiffness equation will contain only one crack element, i.e.,
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Employing the same process of applying the prescribed boundary conditions and
using the static condensation, we obtain

AL[(SE +8H) (E+4H)HA Ef’}_A{EM}_ (83)

24| (E+4fl) (SE+8H) |NE7| 4 |[Eaw

The eigenvalues of the stiffness matrix are AE;—HE and A E+42H . Both will

o . =~ E . .
be positive at the same time only when H > e Assuming that the crack in the element 1

undergoes the elastic unloading will yield the same result. Once again, the same conclusion
as the one obtained from the smeared crack model with crack displacement degrees of
freedom is obtained.

It can be seen from the results that both proposed modified smeared crack models
allow the consideration of cracking localization to be done even when the smeared crack
approach is used. Note that there is no intention to use the stiffness equations obtained
from the proposed methods in the analysis to obtain the unknown displacements. For that
purpose, the original smeared crack approach is much more appropriate and will be used.
The proposed schemes are used only for the investigation of stability of crack patterns. It
can be also seen from the results of both proposed smeared crack models that the second
model that uses a mixed finite element formulation may be considered as a more efficient
model than the first proposed model that uses crack displacement degrees of freedom. This
is because the second model is simpler, more straightforward and does not need any
implementation of constraint equations for rigid-body modes. Therefore, for subsequent
examples, the second proposed model will be employed.

8.2 A Four-Point Bending Problem of Plain Concrete Using Four-Noded
Quadrilateral Elements

Here, the classical four-point bending test of a plain concrete beam shown in Fig. 36 is
investigated. This problem is selected because, under the test configuration, the axial stress
at the bottom fiber of the beam in the middle span will be rather uniform. This will
subsequently result in many cracks distributed uniformly along the bottom of the beam in
the middle span. These cracks will, at the beginning, grow but finally only major cracks
will continue to grow while the others stop growing and start to unload. Having many
cracks before localization makes the localization analysis rather difficult.

The dimensions of the specimen are 300x100x100 mm. Controlled displacements
are applied at the top of the beam, 100 mm from both ends. Young’s modulus and
Poisson’s ratio used are 27.5 GPa and 0.2, respectively. Unit weight of the material is
2,300 ke/m’. The tension-softening curve used is shown in Fig. 36b. In the analysis, four-
noded quadrilateral elements are employed. The conventional bilinear shape function is
used for the displacement and local crack strain interpolations. The finite element mesh
used in this analysis consists of 2,232 elements and 2,288 nodes (see Fig. 37). Note that
each element can accommodate one crack.

Initiation of a crack and determination of its angle in each element are based on the
value of the maximum principal tensile stress and its direction. When a crack grows across
elements, it develops its path. For this problem, it can be reasonably assumed that all crack
paths are straight. To simplify the problem, cracks will be allowed to occur only on pre-
specified paths. The problem is solved both with and without the specimen’s self-weight.
When the self-weight is neglected, the problem is solved with various numbers of
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Fig. 36 Four-point bending problem of a plain concrete beam

Fig. 37 Finite element mesh for the four-point bending problem

allowable crack paths as shown in Fig. 38, and, in all of these cases with different
allowable crack paths, the equilibrium path with the minimum total potential energy
increment is traced by employing the exhaustive search. In addition, only for the case with
31 allowable crack paths, the GA is also employed for the search. When the self-weight is
considered, the analysis is done only for the case with 31 allowable crack paths, and the
equilibrium path with the minimum total potential energy increment is traced by
employing both exhaustive search and GA. GA parameters used in the analysis are shown
in Table 9. Note that, in those cases where the GA is used for the search, the GA will be
used only when there are more than 10 cracks occurring in the specimen since the
advantages of the GA are not significant if the search space is not large.

Fig. 39a shows load-controlled displacement responses for all of the calculations
mentioned above. Moreover, it also includes the case with 31 allowable crack paths when
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(c) 13 allowable cracks (d) 31 allowable cracks
Fig. 38 Allowable crack paths for the four-point bending test of a plain concrete beam

Table 9 GA parameters

Population size 40
Number of generations 40
Crossover probability 0.80
Mutation probability 0.05

the cracking localization is not considered. This additional case is performed without the
self-weight and it will allow the importance of the localization analysis to be observed. Fig.
39b shows crack patterns obtained from these different cases at the loading points
indicated by black circular markers on every response curve. At these loading points, the
main cracks in all cases reach the length of 90 percent of the beam depth. For the case with
31 allowable crack paths with the localization consideration (the cases D and E), it can be
seen that the results obtained from the exhaustive search and the GA are exactly the same.
Therefore, it is shown that GAs can be used instead of the exhaustive search. It must be
noted that the time used by the exhaustive search is very much longer than that used by the
GA.

For the cases B, C, and D where no self-weight is assumed, it can be seen that the
obtained results, both crack patterns and response curves, are not much different.
Therefore, for this problem, having only five allowable crack paths that are distributed
properly is actually sufficient for obtaining the converged solution. Since it can be
observed from the crack patterns of the cases B, C, and D that there are actually two long
cracks in the beam, it may be understood that the response is actually governed by the two
main localized cracks which are not localized into one crack until at a much later Joading
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Fig. 39 Load-controlled displacement responses and crack patterns

stage. Also from the respomse curves, it is seen that the results of the case A, which
assumes one localized crack at the center of the span from the beginning, and the case F,
which does not consider the localization, are very much different from those of the cases
B, C, and D which properly consider the localization.

Finally, from a comparison of the results of the cases D (without self-weight) and E

56



Load (N)
16000 1

14000 -
12000
10000
8000 -
6000 -
4000 -

2000 -

0

—— opening crack
-——-unloading crack

....... #.,._.,.,._4....

0.04 006 0.08

without self-weight

0.1

----------------

NETE
] ]

(D1)

(D2)

(D3)

(D5)

oo 1
S PP T 0 OO S —

0.12 Q.14

0.16

— with self-weight

124

(mm)
0.18

RTINS N N Y L Y

(ED)

(E2)

(E3)

ertefsr i
S PPOPRR P NPT B PO SOt

i

i

(

Fooy
Voaertend f

= Laveatn] KRR

Fig. 40 Crack patterns of the specimen with 31 allowable crack paths

(with self-weight), it can be seen that the load-displacement responses of both cases are
very similar. Therefore, for this particular problem, neglecting the self-weight does not
have a significant effect. Nevertheless, it can also be observed from the obtained crack
patterns that the two main cracks are closer to each other when the self-weight is
considered. This is to be expected since the self-weight makes the stress higher at locations
closer to the center of the span. Fig. 40 shows the crack patterns of the cases D and E at
different loading stages. The figure clearly shows the process of localization. At the
beginning there are many cracks initiated along the bottom surface of the beam. These
cracks initially grow but are gradually localized into a few cracks later.
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Fig. 41 Four-point bending problem of a steel-fiber-reinforced concrete beam

8.3 A Four-Point Bending Problem of Steel-Fiber-Reinforced Concrete Using Four-
Noded Quadrilateral Elements

The test in this problem is the same as the previous one but the material used is changed
from plain concrete to steel-fiber-reinforced concrete (SFRC). Different responses from
those responses of the previous example are to be expected because steel-fiber-reinforced
concrete has much larger fracture energy than plain concrete due to the presence of its steel
fibers. The steel fibers in steel-fiber-reinforced concrete help transmit the bridging stresses
across cracks in addition to the stress transmission by aggregates. The fibers will make the
stress transmission possible even when the crack opening displacement becomes large.
This fact is automatically incorporated into the calculation by means of the tension-
softening curve. The tension-softening curve of steel-fiber-reinforced concrete will have a
longer tail and larger area under the curve than the curve for plain concrete. The area under
a tension-softening curve represents the fracture energy of the material.

The dimensions of the specimen and its boundary conditions are the same as those
of the previous example. Young’s modulus and Poisson’s ratio used are 36.3 GPa and 0.2,
respectively. Unit weight of the material is 2,500 kg/m3 . The tension-softening curve used
is shown in Fig. 41b. The finite element mesh in Fig. 37 is also used in this problem. For
this problem, it is still assumed that all crack paths are straight and cracks are allowed to
occur only on pre-specified paths. The allowable paths are shown in Fig. 42. When the
case with one allowable crack path is considered, it implies that the cracking localization 1s
not properly considered. For the case with 31 allowable crack paths, the equilibrium path
with the minimum total potential energy increment is traced by employing both the
exhaustive search and GA. Note that, similar to the previous problem, the genetic
algorithm will be used only when there are more than 10 cracks occurring in the specimen.
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Fig. 42 Allowable crack paths for the four-point bending test of an SFRC beam

GA parameters used in the analysis are shown in Table 9. For both cases, the problem is
solved with the specimen’s self-weight

Fig. 43a shows load-controlled displacement responses of the two cases in Fig. 42.
In Fig. 43, the case A represents the case when one crack is assumed from the beginning
(see Fig. 42a). In addition, the case B represents the case when 31 crack paths are allowed
(see Fig. 42b). Crack patterns obtained from both cases are shown in Fig. 43b. The
corresponding loading points are indicated by black circular markers on the response
curves. At these loading points, the lengths of the main cracks in both cases reach 80
percent of the beam depth. In this problem, the analyses of the two cases are stopped early
when the compressive stresses in the ligaments become high and the nonlinear material
behavior in compression can no longer be neglected. Since the nonlinear material behavior
in compression is not inctuded in this study, the analyses have to be discontinued.

From the obtained response curves, it can be seen that the post-peak response
obtained with proper localization consideration is quite different from the one with pre-
assumed crack at the center of the span. Assuming one crack from the beginning results in
more brittle behavior. This 1s natural since having one crack from the beginning implies
that the cracks are forced to localize themselves into one crack from the beginning. From
the crack patterns, it is clear that there are two major cracks in the case with the
consideration of cracking localization. These two cracks are expected to be localized into
one crack if the loading continues. Therefore, if only one crack is assumed from the
beginning, it is obvious that the analysis done in such a fashion will not be able to capture
this behavior.
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9. CONCLUSIONS AND DISCUSSION

In this study, an analysis method for cracking localization in quasi-brittle materials such as
concrete is presented. The proposed analysis method is an incremental analysis method and
it is composed of two key processes. The first key process involves locating bifurcation
points and the second one involves tracing the actual equilibrium path at any bifurcation
point. For the first process, two specially treated smeared crack finite element models are
proposed. In the first model, nodal crack displacement degrees of freedom are introduced
into the conventional smeared crack finite element model in order to allow the stability and
bifurcation analysis of crack patterns to be performed easily. The newly introduced nodal
crack displacement degrees of freedom will serve as discrete irreversible variables in the
stability analysis of crack patterns. The second model also employs the same basic idea of
introducing discrete irreversible variables into the original smeared crack finite element
model. Nevertheless, the implementation of the idea is rather different from the first model.
In the second model, the smeared crack model is formulated by using a mixed finite
element formulation, which discretizes not only the displacement field but also the crack
strain field. This results in a smeared crack finite element model with local crack strain
degrees of freedom. These local crack strain degrees of freedom serve as discrete
irreversible variables that are essential to the stability analysis of crack patterns. The reason
why the smeared crack model is selected as a base model for the development of these two
proposed model is that the smeared crack approach is suitable for problems with many
cracks, compared with the discrete crack approach. However, the stability analysis of crack
patterns cannot be performed easily with the conventional smeared crack finite element
analysis since the irreversible parameter in the model-—the crack strain—is not discrete,
but continuous. The two proposed treatments of the smeared crack finite element model
overcome this drawback. By comparing both proposed models, it s found that the second
model is more efficient than the first model. This is because the second model is simpler,
more straightforward and does not require difficult implementation. By using the stability
analysis of crack patterns, it is then possible to identify when the current crack pattern
becomes unstable. When that happens, it means that a bifurcation point is reached. At the
bifurcation point, a fan of many equilibrium paths can be observed. Each equilibrium path
represents an equilibrium path for each different crack pattern.

The second key process traces the actual equilibrium path from a bifurcation point
incrementally by finding the path with the minimum total potential energy increment. The
search for the minimum total potential energy increment is done by employing both the
exhaustive and GA search algorithms, depending on the size of the problem being solved.
If the size of the problem is small, the exhaustive search, which directly compares the total
potential energy increments of all possible crack patterns, is possible. In this case, the
crack pattern with the minimum total potential energy increment obtained from the search
is numerically exact with respect to the discretization being used. However, when the size
of the problem becomes large and there are subsequently many possible crack patterns to
be investigated, performing the exhaustive search becomes impossible and the GA is
employed instead. From the obtained results in this study, it is found that GAs can be
efficiently used for this search.

The major problems used to validate the proposed analysis method in this study
include the uniaxial problent of plain concrete as well as the four-point bending problems
of plain concrete and steel-fiber-reinforced concrete. The results obtained from the uniaxial
problem clearly illustrate the importance of the analysis of cracking localization. The
results actually explain why only one localized crack, not many cracks, should appear in
the uniaxial test of a homogeneous material. It is seen from the results that the solution
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with multiple opening cracks is actually unstable and, therefore, cannot be the actual
solution. The results obtained from the four-point bending problem of plain concrete show
that the true localized solution is very much different from the solution obtained by
assuming one localized crack at the center of the span. Furthermore, the true localized
solution is also very much different from the solution obtained without the localization
consideration. It is also found that there are two major localized cracks that are not
localized into one crack until at a much later loading stage. The behavior of the beam is
therefore governed by these two cracks. This clearly illustrates that assuming only one
localized crack from the beginning will lead to erroneous results. Finally, it is found that,
for the four-point bending test of plain concrete, neglecting the self-weight does not have
significant effect on the obtained results. With self-weight or without self-weight, there are
two main localized cracks. Although these two cracks are slightly closer when the self-
weight is considered, the difference between the obtained responses from both cases are
negligible. The results for the steel-fiber-reinforced concrete beam also exhibit rather large
difference between the solution with the localization consideration and the solution that
assumes one localized crack at the center of the span from the beginning. Similar to the
case of plain concrete, it is also found that there are two major localized cracks. These two
cracks are expected to finally localize themselves into one crack at a later loading stage.
However, since the nonlinear behavior of the material in compression is not considered in
this study, the analysis has to be stopped before the localization into one crack happens.

One of the difficulties that can be expected during the analysis of cracking
localization using the smeared crack finite element model is how to maintain the continuity
of crack paths in the case of very curved cracks. In the concept of the smeared crack finite
element analysis, cracks are allowed to occur in all elements independently. In fact, the
path of any crack is not rigorously defined since there is no predefined link between cracks
in different elements even when these elements are adjacent to each other. In this aspect,
the discrete crack finite element analysis is considered superior since it is possible and
actually common, in the discrete crack finite element analysis, to enforce the continuity of
crack paths via the continuity of crack opening displacement degrees of freedom.
However, as mentioned earlier, the discrete crack approach may not perform best when
there are many cracks. One of the possibilities to avoid these problems is to use a new class
of methods called meshless methods. These methods use a concept of interpolation that is
different from the finite element method. The interpolation is no longer performed within
an element enclosing the point of interest but it is done rather within a pre-specified space
around the point. As a result, there is no element necessary and only nodes are required. If
the meshless methods are used in the analysis of crack problems, it may be possible to
easily maintain the continuity of crack paths even when the smeared crack concept is
employed. Since there is no element in the meshless methods, it should be possible to
implement the smeared crack model in such a way that a band of a smeared crack can
continuously propagate virtually everywhere in the domain. Consequently, the continuity
of crack paths can be maintained.
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Abstract

In genetic algorithms, constraints are mostly handled by using the concept of penalty functions, which penalize
infeasible sclutions by reducing their fitness values in proportion to the degrees of constraint viclation. In most penalty
schemes, some coeflicients or coanstants have to be specified at the beginning of the calculation. Since these coefficients
usually have no clear physical meanings, it is nearly impossible to estimate appropriate values of these coefficients even
by experience. Moreover, most schemes employ constant ceefficients throughout the entire caleulation. This may result
in too weak or too strong a penalty during different phases of the evolution. In this study, a new penalty scheme that is
free from the aforementioned disadvantages is developed. The proposed penalty funciion will be able to adjust itself
during the evolution in such a way that the desired degree of penalty is always obtained. The coefficient used in the
proposed scheme will have a clear physical meaning. Thus, it will not be difficult to set the value of the coefficient by
using experience. © 2001 Elsevier Science Ltd. All rights reserved.

Kepwords: Genetic algorithms; Optimization; Structural design; Adaptive penalty function; Constrained optimization; Truss and frame

structures

1. Introduction

When designing structures, engineers have to con-
sider not only the load-carrying capacity of the struc-
tures but also the cost to construct them. Material cost 1s
one of the major costs in construction. Designs that use
a smaller amount of materials are therefore preferable,
given that the construction methods do not become too
expensive or impractical. To achieve this goal. optimi-
zation technigues have been employed in structural de-
sign [1-5). There are many conventional optimization
methods [6.7), each of which may work well for some
specific problems. To select appropriate optimization
methods for structural design, it 1s necessary to under-
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stand characteristics of this kind of optimization prob-
lem. The first important characteristic of structural
design optimization is that, in structural design optimi-
zation, the solution sought is the global optimal solu-
tion. Moreover, in structural design, design variables are
generally discrete variables. Finally, structural design
optimization always contains constraints. These three

" major characteristics suggest that genetic algorithms

(GAs) can be the choice. This i1s simply because this
optimization technique is generally suitable for prob-
lems with discrete variables. Moreover, 1t searches for
the global optimal pomnt. Though GAs cannot be di-
rectly appled to problems with constraints, smail mod:-
fication can be used to incorporate constraints. Due to
these facts, the technique is gaining popularity ameng
researchers in the field of structural design optimization
{8-14].

GAs are global probabilistic search algorithms in-
spired by Darwin’s survival-of-the-fittest theory [15].

. All rights reserved.
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They have received considerable attention because of
their versatile applications in several fields [6,8,14-17].
GAs start their search from many points in scarch space
at the same time. These starting scarch points are usually
selected randomly. Through the consideration of fitness
values of these search points, which are given based on
their merit, and the randomized information exchange
among the points, a new set of search points with higher
merit is created. The process is then repeated untit a
satisfactory result is obtained. Since the technigue uti-
lizes information fronmt many search points at the same
time, there s less chance for the search to be trapped in
any of the local optimal points. Another distinguishing
characteristic of GAs is that the algorithms work with
coding of the parameter sct, not the parameters them-
selves. Generally, the binary code 15 used. Because of the
discrete nature of coding, the algorithms are the perfect
choice for those problems with discrete variables.

Since GAs are directly applicable only o uncon-
strained optimization, many researchers have proposed
solutions that can eliminate this limitation. Constraints
are mostly handled by using penalty functions, which
penalize infeasible solutions by reducing their fitness
values in proportion to their degrees of constraint vio-
lation. In all available penalty schemes, the degree of
penalty can be further controlled by means of setting
values of various coeflicients in penalty functions [6,8,
15,18)]. Most of these coefficients are treated as constants
during the calculation and their values have to be
specified at the beginning of the calculation [19-21].
These coefficients usually have no clear physical mean-
ings. Thus, it is nearly impossible to know appropriate
values of the coefficients even by experience. This is
because it 15 very hard to understand the correla-
tion between: the values of the coefficients and the
characteristics of the problems being solved without
physical meanings of the coeflicients. Consequently, {or
all problems with either similar or different natures,
appropriate values of the coefficients are generally ob-
tained by trial and error. Many researchers, however,
have tried to suggest different ranges of appropnate
values for these coeflicients, for various types of prob-
lem. Most of these suggestions are obviously deubiful.
The reason s simply that appropriate values are usually
given without any reference to the units used in the
problems although the coeflicients may have umis and
appropriate values should vary with the units used.
Another important concern is that these conventional
penalty schemes do not adjust the strength of the penaity
during the caiculation. as the coellicients used are always
kept constant, As a result, too weak or too strong u
penalty during different phases of the evolution may
occur. This will lead to inaccurate solutions. Actually,
there are some penalty schemes that vary the values of
the coefficients to adjust the strength of the penalty
during the calculation [9.12,22]. However, these schemes

require the varying values of these coeflicients to be
manually specified. It therefore becomes even more
difficult to judiciously select appropriate values for dif-
ferent phases of the calculation.

Several different 1deas that are more sophisticated
have been proposed to improve penalty function meth-
ods for handling constrained optimization problems
[23]. Powell and Skolnick [24] re-mapped fitness values
of both feasible and infeasible individuals in such & way
that all feasible solutions have higher fitness than any
infeasible solutions. The key concept of this approach
1s the assumption of the superiority of feasible solu-
tions over infeasible ones. Unfortunately, this assump-
tion rarely holds during the evolution since it always
happens that some infeasible individuals process very
good genes that can be very valuable for later genera-
tions. As a result, these mfeasible individuals are more
preferable during the evolution than many low fitness
feasible individuals. For this reason, it is necessary 1o
allow some infeasitle individuals to have higher fitness
than some feasible individuals. Le Riche et al. [25]
proposed a segregated GA that uses two values of
penalty parameters for each constraint instcad of one,
The population is split into two coexisting and cooper-
ating groups, where individuals in each group are eval-
uated using ecither one of the two penalty parameters.
During the evolution. the two groups interbreed. Since
the two penalty parameters are different, the two groups
converge in the design space along two different trajec-
tories, which helps locate the optimal region faster. If a
large value is selected for one of the penalty parameters
and a small value for the other parameter, simultaneous
convergence from both feasible and infeasible sides can
be achieved. However, although the approach provides
a new overall penalty scheme. the problem with this
approach is still the way of choosing the penalty for each
of the two groups.

Rasheed [26] proposed a penalty scheme with an
adaptive penalty coefticient. The scheme considers two
key individuals of the population, t.e., the point that has
the least sum of constraint violations and the point that
has the best iness value. These two points are compared
at every certain number of generations, If both points are
the same then the penalty coefficient is assumed ade-
quate: otherwise. the penalty coefficient is increased to
make the two points have equal fitness values. In addi-
tion. the penalty coeflicient is reduced if at some stage the
population contains no infeasible points. The inconve-
niences of tus technique are how 1o choose the initial
value for the penalty coefiicient and how to appropriately
updalte it. In addition. the size of the generation gap for
updating the penalty coeflicient must reasonably be se-
lected. Coello [27] proposed a technique based on the
concept of co-evolution to create two populations that
interact with each other in such a way that one popula-
tion evolves the penalty factors to be used by the fitness
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function of the main population, which is responsible for
optimizing the objeclive function. This technique is in-
convenient because the approach requires evolution of
two parallel populations instead of one. Therefore, it is
computationally more expensive.

In this study, a new adaptive penalty scheme is pro-
posed. The penalty function used in the scheme will be
able to adjust itself automatically during the evolution in
such a way that the desired degree of penalty is always
obtained. The coeflicient used in the proposed scheme
will have a clear physical meaning that directly repre-
sents the degree of penalty employed. Therefore, for
each particular problem, the appropriate value of the
cocfficient can be reckoned based on the appropriate
dearee of penalty for the problem. In addition, the co-
efficient in the proposed scheme will have no units. For
each particular problem, if the same value of the coef-
ficient is used, stmilar results can always be expected
even when different units are employed in the problem.
Since it is expected that similar structural optimization
problems require similar degrees of penalty, with the
proposed scheme, it is therefore possible to set the value
of the coefficient by using experience. It must be noted
that the main objective of this work is to obtain an
adaptive penalty scheme that is robust and can still re-
produce the same quality of results as ones obtained
from GAs found in the literature, whose penalty pa-
rameters are carefully obtained for each specific problem
by trial and error. In brief, the proposed scheme will be a
scheme that can efficiently be used in different problems
without a lot of guesswork.

2. Genetic algorithms for constrained optimization

An optimization problem using GAs can be generally
expressed as

Maximize
F(x)=F[f{x)l, x=(x,xs,....0 vw) e R, (1)

under constraints defined as
(2)

For structural design optimization, x is an N-
dimensional vecior called the design vector. representing
design vartables of A structural components to be op-
timized, and f{x} is the objective {unction. In addition,
£:(x) and A;(x) are inequality and equality constrainls,
respectively. They represent constraints, which the de-
sign must satisfy, such as stress and displacement limits.
Moreover, £[f(x)] is the fitness function that is defined
as a figure of merit. -

It is not possible to directly utilize GAs 1o solve the
above problem: due to the presence of constraints. In
GAs, constraints are usually handled by using the con-
cepl of penalty functions, which penalize infeasible so-
lutions, 1.c.,

FYx) = F(x) if xeF, 3)
F*{x) = F(x) — P{x) otherwise,

where F denotes the feasible search space. Here, P(x) s
a penalty function whose value is greater than zero. In
addition, F*(x) represents an augmented fitness function
after the penalty. Several forms of penalty functions
have been proposed in the literature {6,8,15,18]. Never-
theless, most of them can be written n the following
general form, i.c..

£

P(x) = Ga) G0 + > (), [, ()", (4)

i=1

where
G, (%) = max(0. g(x )L
Hi(x) = abs{h;(x}].

4

(5}

Here, G,(x) and H;(x} represent the degrees of inequality
and equality constraint violations, respectively. In ad-
dition. (4g),, (Z#), and § arc constants. In most cases,
the same value is used for all {4g},’s and (Zy)’s. As for
B, it is usually set to be | or 2. The degree of penalty can
be controlled by adjusting the values of the coeflicients
(46),’s and {4)'s. These coeflicients do not have physi-
cal meanings. Clearly, it is impossible to judiciously
select appropriate values for them. Even thouwgh in
common practice. one value is used for all (2¢),’s and
(an),’s, which significantly simplifies the situation, the
appropriate value of this one coeflicient is still not ob-
vious. )

In the first operator in GAs. the reproduction oper-
ator, a mating pool is created by letting individuals with
higher fitness values have higher chance to be selected
into the mating pool. Many reasonable selection algo-
rithms are possible. Howcever, the most widely used
technique is proportional selection. ln this technique,
the probability of the ith individual to be selected into
the mating pool is
(x Fx)
pix) = W

2.

(6)

where x, represents the dth individeal in the population
and n 15 the population size. Clearly, in the above
equation, 1t is essential that all fitness values be positive.
Therefore, the obtained fitness function after the penalty
F*(x) may not be directly usable as its values may be
negative. Moreover, the difference between the fitness
values of the best individuals and average individuals
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varies generalion by generation. In early generations,
the difference can be very large and the best individuals
become relatively too strong. As a result, prematurc
convergence may be obtained. In later generations, the
difference can be very small and average mdividuals
become almost as strong as the best individuals. As a
result, the search may become a random walk. To pre-
vent all of these problems, an augmented fitness function
is usually scaled into a specified positive range. Many
fitness scaling schemes have been proposed in the litera-
ture [11,15,16,18,28).

3. Adaptive penalty function

It can be easily secen that penalty schemes used in
GAs play a very important role in the performance of
GAs. This role becomes even more important when the
optimal solution lics on or close to the boundary be-
tween the feasible and infeasible search spaces, which is
very usual for structural design optimization. In this
study, a new penalty scheme that is free from the dis-
advantages of existing schemes discussed earlier is pro-
posed. To make the scheme simple, a simple form of the
penalized fitness function is employed, i.e.,

F=F(x,) = F(x) = P(x)) = F(x) = 2(0E(x),  (7)

where F* represents the fitness function of the Jith indi-
vidual after the penalty. Here, A(¢) is a factor of an error
term E(x,). The factor A(r) varies with generation, and
the generation number is denoted by ¢. In this study, the
error term E(x;) is defined as

X

P
E(x) =D Gix) + ) Hy(x.), )
=1 =1
where G;(x,) and H,(x,) have already been defined in Eq.
(5).

Now, the question 18 what the magnitude of the
factor A{r) should be. It 1s not difficult to imagine that if
the factor is too small, infeasible individuals with high
original fitness values may have penalized fitness values
higher than the fitness value of the feasible optimal in-
dividual. If this happens. the population in subsequent
generations will move toward false peaks that appear in
the infeasible region. On the contrary, if the factor is too
large, good characteristics in some infeasible individuals
will have no chance to survive and will disappear rap-
idly. This mayv lead 10 premature convergence and the
obtained solution can be quite wrong.

To avoid the above probtems, the degree of penalty
must be encugh to make the feasible optimal solution
have the maximum fitness value, compared with all in-
dividuals (feasible and infeasible) after the penalty.
However, the penalty must not be made much stronger
than that. T'o this end, the following condition is intro-
duced, i.e., -

FU) < pOFsY forvx e U (9)
in which U represents the infeasible search space. Here,
F2¥ denotes the average fitness value of all feasible in-
dividuals in the generation and @{1) is a factor of F;"VSF.

The above condition sets the maximum fitness value
of infeasible individuals in the generation ¢ to be equal to
@(HF*E. At this moment, it is not useful to consider the
physical meaning of the coefficient ¢(1) yet because the
penalized fitness function will have to be scaled after-
wards. Therefore, it is enough to simply say that the
coeflicient ¢{r) is used to adjust the strength of the
penalty in the generation. A way to obtain the value of
this coefficient will be explained shortly.

The condition in Eq. (9} is satisfied by employing an
appropriate value of the factor A{r} in Eq. (7). For each
infeasible individual, the factor i{¢) that makes the pe-
nalized fitness value of that infeasible individual exactly
equal to ¢(1)F74} is computed. After that, values of the
factor /(r) obtained from all infeasible individuals are
compared and the maximum one is selected as the real
A{r). 1f the maximum value is negative. zero is used in-

stead. In short, A(r) can be expressed as

). (10)

Eq. (10) insures that Eq. (9) is satisfied.

In this study, a modified bilinear scaling technique as
shown in Fig. 1 s employed for fitness scaling. The
minimum scaled fitness is set to be 0 to avoid negative
fitness values while the scaled fitness of the average fit-
ness of all feasible individuals is set to be 1. Further-
more, the maximum scaled fitness that is to be obtained
from the best feasible members is set to be C. Thus, the
chance of the best members being sclected into the
mating pool is equal to C times that of the average
feasible members. All together, the scaled fitness can be
written as

F(x;) — $(0FF
E (x,-)

A(?) = max (0, max

wx, el

F
A
C _______________
i
I
|
!
I ity :
i f
| I
! I
t 1
0 I | —p
Fr, Fowd

Fig. I. Bilinear fitness scaling.
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C=1 . Far—CRy
P00 = o 4
Fmﬁx - E\‘g F:ax F;]\-g
H g aF
if 7(x) = Foe an
] Fo
P = s
]:3”5 - r.r‘|in !r;nn - "““
R a a,F
it P <P,

where F*{x) denotes the scated fitness function. In ad-
dition, £, denotes the minimum fitness value after the
penalty while F“"" denotes the fitness value of the best
feasible mcmbers This scaled fitness function F*(x) will
be used in Eq. (6) instead of F2(x}.

For all generations, the chance of the best infeasible
members being selected into the mating pool is set to be
equal to ¢ times that of the average feasible members,

Le.,
F(x) €{@Fk = ) forvx € U, (12)

where F:_fv; 1s the scaled value of the average fitness of all
feasible individuals, which is equal to 1. Note that ¢ is
constant for all generations. From the above condition,

¢(£) in Eq. (9) is expressed in terms of ¢ as

CFAE 4 F2F (o — 1) —
(l‘)({) avg mu( 3 @ avg ‘-01_ QD 2 13 (133)
(C— )
L
¢([) = N @ ﬂvi (p min er (Pg 1 (l3b)
F;‘vg

In real calculations, the coefficient ¢ will be set at the
beginning of the calculation. This coefficient has a very
clear physical meaning, i.e., the chance to be selected
into the mating pool of the best infeasible members
compared with that of the average feasible members.
This physical meaning is directly related to the degree of
penally. In addision, the coefficient does not have any
units. Due to these reasons, il is possible to set this
coefficient by using experience. Aflter ¢ is set, ¢(r) and,
subsequently, A(r) can be computed. In case of ¢ = |,
¢(1) can be obtained from Eq. (13a) directly because
all parameters in the equation are readily available.
In this case, the parameters F“f‘v; and F;i can be ob-
tained directly from original fitness values of feasible
individuals without any penalty consideration. On the
contrary, if ¢ < 1, ¢(r) cannot be obtained without it-
eration since one of the pacameters, e, &2 . ig not
readily available. Note that £3, ts the minimum fitness
in the generation afler the penalty and it is most likely
that F2_ will belong to infeasible members. This F3.
can be obtained from Eq. (7) which, in tum, requires the
value of ¢{r) (see Eq. {10)). Nevertheless, the iteration is
very' simple and takes almost no time to perform. To

this end, the individual xm that gives the minimum
augmenled fitness value is considered. Here, Eq. (7)
yields

nlJH F"d ( X

Also, consider the individual x; that gives the value of
A(r) in Eq. (10}, 1e.,

A1) = max (O’Eifj[ﬂi%ﬂ})

_F() = ¢OFs
E(X,‘_)

=) 0E(e, ) 09

{15}

Using Eq. (15) in Eq. (14) gives

Substituting Eq. (16) into Eq. (13h) yields
¢U%:ﬂw—ﬂf@qJth+E@AP(n%)

rorzd - or (v, )|}/ e
+(p-1E x,nm]]} {17)

A problem is that the individuals x; and xp are not
known from the beginning and iteration is reaﬂired ln
the first step of the iteration, it is assumed that 77, =
F;\g By using Eq. (13b), the intermediate vaiue of ¢{t)
for this step of the iteration is obtained, i.e., ¢(1) = 1.
After that, the intermediate value of A(r) i1s obtained
from Eq. (10) ard at the same time the individual x; can
be identified. With the obtained A{¢), the individual xp
can be subsequently ideatified from Eq. (7). Conse-
quently, the value of ¢(r) for the next step of the itera-
von is computed from Eq. (17). The process is repecated
until the value of ¢(r) becomes unchanging.

To be able to understand the proposed scheme better,
let us consider an optimization problem of a uniaxial bar
shown in Fig. 2. A omiaxial orce of 10 Ib is applied at
the free end of the bar. Allowable stress is assumed to be
2 psi. Qur task 1s to find the optimal area of the bar that
yields minimum volume. For illustrative purpose. it is

] 7 =10

L=1f )

—]

Fig. 2. Mustrative example—uciaxial problem.
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assumed that the area of the bar is 4 continuous variable
and, as a result, the optimal solution is simply equal to 5
in.> Suppose that GAs are used to obtain the solution
and the fitness function 1s defined as

|
F(Area) = - - ormr————c
(Area) I + Volume {in.*}
!

= . 1
1 + Arca (in.?) x Length {in.) (18)

From this finess function, it 1s obvious that the
smaller the arca is. the larger the fitness value will be (see
Fig. 3). Nevertheless, the area cannot be smaller than 5
in.”: otherwise, the bar will violate the stress constrainl.
Therefore, fitness values of those individuals that violate
the constraint have to be reduced. In this example, 19
individuals with different areas ranging from 1 to 19 in?
arc assumed (see Fig. 3). In the proposed penalty
scheme, the average fitness of all feasible members 74 is
calculated. If there are any individuals that have their
fitness values exactly equal to £}, they are the average
feasible members. Nevertheless, i real calculations, 1t
does not matter whether there are any of them or not in
the population since only the value of their fitness F2¥ is
to be used. In the proposed scheme, infeasible members
are penalized in such a way that the best infeasible
members have scaled fitness values equal to ¢ times that
of the average feasible members. Fig. 5 illustratively
shows scaled fitness values after the penalty and scaling
when ¢ = 1.0 and 1.5 while Fig. 4 shows fitness values
just after the penalty buf before the scaling. Note that, in
this example, the maximum fitness is scaled to be 2.0
while the average fitness of feasible members is scaled to
be 1.0. I addition. the minimum fitness is scaled to be 0.
By adjusting the value of ¢, the degree of penalty can be
effictently adjusted.

In fact. the purposc of the proposed scheme is 1o {ix,
throughout the calculation, the relative chance of the
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Fig. 3. Original fitness value—uniaXial problem.
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Fig. 4. Fitness value after the penalty—uniaxial problem.

best infeasible members being selected into the mating
peol compared with that of the average feasible mem-
bers. This means that the penalty 1s always adjusted so
that the aforementioned purpose is achieved in all gen-
crations. This guaraniees that the desired degree of
penalty 1s obtained throughour the evolution process.
Consequently, the problem of too weak or too strong a
penalty during different phases of the evolution is re-
moved. Note that the relative scaled fitness values of the
best feasible members and the average feasible members
are set via fitness scaling (see Fig. 1). As a result, the
relative chance of the best feasible members being se-
lected into the mating pool compared with that of the
best infeasible members can also be controlled. For ex-
ample, when ¢ 1s set to be 1.0 in the current example, the
chance of the best feasible members to be selected be-
comes two times that of the best infeasible members
since, from the fitness scaling, the chance of the best
feasiblc members is set to be two times that of the av-
erage feasible members.
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Fig. 5. Fitness value after the scaling—uniaxial problem.
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In this study, since the fitness scaling in Fig. I is
employed, acceptable values of ¢ therclore lie beiween 0
and C. Note that C is the scaled fitness of the best fea-
sible individuals. Using only positive values for ¢ 1s
obviously necessary because only positive scaled fitness
values are acceptable. Setting ¢ exactly equal to zero is
actually equivalent to using the death penalty scheme,
which simply rejects infeasible solutions from the popu-
lation. Using ¢ that is greater than € is in fact possible
but it will mean that the best infeasible individuals will
have a better chance to be selected into the mating pool
than the best feasible ones. This is obviously too harsh a
penalty. For this reason, the valuc of ¢ should not ex-
ceed C. For any value of ¢ between 0 and C, the best
feasible individuals always have the maximum fitness
value among all other individuals in the generation.
Nevertheless, depending on the magnitude of ¢, some
infeasible members may have higher fitness than a cer-
tain number of feasible ones (sce Fig. 5).

Actually, the key point in the development of the
proposed scheme is that the user-specified penalty pa-
ramelter ¢ is defined based on the relationship between
two fitness values that are already scaied. Since scaled
fitness values are directly used in the selection for the
mating pool without further modification, the physical
meaning of the proposed penalty parameter can be pre-
served. I penalty parameters are defined before the fit-
ness scaling is performed, the fitness scaling will probably
destroy the desired physical meanrings of the parameters.

Since the proposed penalty scheme requires the av-
erage fitness value over all feasible individuals, it is
necessary to have at least one feasible individual in the
population. In the case that there is none, the fitness
values of infeasible individuals will be given based on the
magnitudes of error they have. The idea is to strongly
encourage the population to move toward the feasible
region, Here, a bilinear scaling scheme as shown in Fig.
6 is used. Fitness is scaled in such a way that scaled
fitness values of individuals with the highest error are
equal to ¢ and scaled fitness values of individuals with
average error are equal to 1. In addition, scaled fitness

7

1
!
I
b
1

£ £ Eone

“num v

Fig. 6. Bilinear fitness scaling for the case when no feasible

individual is available.

values of individuals with the smallest error are set (o be
Z. Thus, the chance of the individuals with the smallest
error being selected into the mating pool is equal to Z
times that of the individuals with average error. In
summary, the scaled fitness is expressed as

-1 - Ell'[lll - ZE&I\Q - -

—E, N TR, TEN S

! E ) Em;n il Flx I
2 Euu\ ‘(x + Em.n - E;u'g l (\) - e

{19}

4. Results

To investigate the validity and efliciency of the pro-
posed penalty scheme, the scheme is used m design op-
tmization of three different two-dimensional structures.
1Le., a six-bar truss, a ten-bar truss, and a one-bay eight-
story frame. To be able to sce clearly the advantages of
the proposed scheme over conventional schemes, par-
ticularly in terms of robustness. obtained results are
compared with those from a selected conventional
scheme. Since most conventional schemes are based on
the same concept with slightdy different details, com-
parison with onc selected conventional scheme is suffi-
cient to show advantages of the proposed scheme over
conventional schemes. As already mentioned. the main
objective of this study is 1o develop an adaptive penalty
scheme that is: robust and still able to reproduce the
same quality of results as ones obtained from GAs
found 1n the literature. To show this comparison of the
proposed method, results are also compared with exist-
g results in the litcrature.

4.7, Six-bar truss

The first problem to be considered is the six-bar truss
as shown in Fig. 7. Here, only sizing optimization is
considered. Thus, design variables are six sectional areas
of the six members of the truss, The cross-sectional arca
of cach member is taken from the following 32 discrete
values, ie, 1.62, 1.80. 238, 2.62. 2.88, 3.09. 3.13. 3.38,
3.63, 3.84, 3.87, 4.18, 4.49_ 4.80. 497, 5.12. 3.74, 7.22.
7.97. 115, 13,5, 13.9. 14.2. 155, 16.0. 18.8. 19.9, 22.0.
239, 26.3, 30.0. and 33.51n.% Therefore. a five-birt string
is required for cach design vaviable. There are two types
ol constraint in this problem. e stress and displace-
ment constraints, Design parameters used in the prob-
lem are shown in Table 1.

For comparison. the most popular conventional
penalty form is selected. ie..

F* = F(x) = Flx) — P(x) = Fx) ~ iE(x). (20)
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Fig. 7. Six-bar truss.

where the coefficient 2 is constant and the error term
£(x;} is the same as that defined mmn Eq. (8). In both
proposed and conventional schemes, the fitness function
F(x;) is defined as

1
FO) = T3 Weight(xy)” -

where two different units of weight, i.c., pound (Ib) and
newton (N) are used. Two units are used in order to
investigate the effect of unit on the results from both
schemes.

Since it is impossible to judiciously estimate an ap-
propriate value of the coefficient 4 in the conventional
scheme, a wide range of values will be used. All GA
parameters used in this problem can be found in Table I.
To start the calculation, an initial population is gener-
ated at random. The type of crossover operator used
lere is the one-point crossover [15].

Table 1
Design and GA parameters for the six-bar truss problem

Design parameters GA parameters

Item Value Item Value

Modulus of 107 psi
elasticity

Maximum 100
number of
generations
Weight density  0.F 1bfin?

Allowable ten- 25000 psi  Population 70
sile stress size
Allowable 25000 psi  Crossover 0.8
compressive probability
stress
Mutation 0.001
probability
Maximum y- 2. @ 0.25-1.75
displacement
p) 0.000001-100
c - 20
Z - 5.4

Fig. 8 shows results obtained from the proposed and
conventional schemes. Each pomt in the graph repre-
sents an average weight of the best feasible designs ob-
tained from 200 different runs. The results obtained by
using newtons in Eq. (21) are converted into pounds for
comparison. In the conventional scheme, the coefficient
4 is varied exponentially from 0.00000] to 100 while in
the proposed scheme the coefficient ¢ is varied from 0.25
to 1.75. Note that the value of ¢ should be varied be-
tween 0 to 2.0 since the maximum scaled fitness value C
is set to be 2.0 (see Table 1). It can be clearly seen from
the results that the proposed scheme is more robust than
the conventional scheme. In the proposed scheme,
changing the unit has little effect on the results while in
the conventional scheme the effect is much more no-
ticeable. Moreover, in the proposed scheme, it is easier
to notice a trend in the results when ¢ i1s varied. It can be
reasonably said that good results are obtained with
values of ¢ around 0.75-1.0. On the contrary, it is much
more difficult to observe this kind of trend in the results
of the conventional scheme as they are very much scat-
tered and exhibit no recognizable pattern. Although the
trend in the results of the proposed scheme can be ob-
served, it is also important to note that, when ¢ is var-
ied, the results of the proposed scheme actually vary toa
much lesser degree than the results of the conventional
scheme do when 2 is varied. Even though it may be
argued that. in this study, £ is exponentially changed
while ¢ is linearly changed, the same difference in the
way that the parameters are varied and tried is expected
in the real practice. This is because, in the real practice, it
will also be impossible to estimate appropriate values of
the coefficient £ in the conventional scheme, so a very
wide range of values must be tested. With the proposed
scheme, lesser sensitivity of results to the magnitude of
the parameter ensures that even when the appropriate
value of ¢ is not clearly known, a range of values of ¢
may be used and reasonable results can still be obtained.
This fact really confirms the robustness of the proposed
scheme.

To ensure that the proposed scheme is capable of
giving results of the same quality as those GAs found in
the Jiterature. the best result obtained from the proposed
scheme is also compared with the best result reported by
Rajan {9]. They are exactly the same. The details of the
results are shown in Table 2. Tt must be noted that in this
study, except for the new penalty algorithm, the rest of
the algorithms are standard. This is not the case for the
work by Rajan [9]. which employs more complicated
GAs.

4.2. Ten-bar 1russ

The next problem to be considered is the ten-bar
truss as shown in Fig. 9. This problem is one of the
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Fig. 8. Average weight of the best feasible designs obtained from 200 runs—six-bar truss.
Table 2 Table 3
Comparison of the results for the six-bar truss problem Design and GA parameters for the ten-bar truss problem
Member Size of member (in.?} Design parameters GA parameters
Proposed Ref. [9] item Value Item Value
1 30.0 30.0 Modulus of 167 psi Maximum 100
d 19.9 [9.9 elasticity number of
3 15.5 15.5 Weight density 0.1 Ib/in.’  genera-
4 7.22 7.22 tions
5 220 22.0 Allowable ten- 15000 psi Population 40
6 220 22.0 sile stress size
. Allowable com- 25,000 psi  Crossover 0.8
Total weight (Ib)  4962.1 4962.1 pressive stress probability
Maximum x, v 2in. Muztation  0.001
displacements prabability
@ (.25-1.75
/ 0.000001-100
C 20
Z 5.0

100 kip

Fig. 9. Ten-bar truss.

benchmark problems used to test optimization methods.”
Also in this problem, only sizing optimization is con-
sidered. Therefore, design variables are ten sectional
areas. Cross-sectional areas of members 1, 3, 4, 7. 8 and
Q are taken from the following 32 discrete values, 1.,
3.13. 338, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22,
449, 139, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5,
13.9. 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5,
30.0. and 33.5 in? For the rest ol the members, the
cross-sectional areas are taken from the following 32
discrete values, ie., 1.62, 1.80, 1.99, 2.13, 2.38, 2.62,
2.63. 2.88, 2.93, 3.09, 3.13, 3.38, 3-47, 3.55, 3.63, 3.84,

3.87, 3.88, 4.18, 4.22, 449, 459, 430, 497, 5.12, 5.74,
7.22,7.97, 11.5, 13.5, 13.9, and 14.2 in.* Similar to the
previous problem. z five-bit string is required for each
design variable. Design parameters and genetic para-
meters are shown in Table 3.

Results obtained from the proposed and conven-
tional schemecs are shown in Fig. 10. Similar to the
previous problem, each point in the graph represents an
average weight of the best feasible designs obtained from
200 different runs. The robustness of the proposed
scheme is again obvious. The effect of the unit used on
the results from the proposed scheme is noticeably less
than that on the results from the conventional scheme.
Moreover, the results from the proposed scheme also
exhibit a rather clear tendency with respect to the value
of the coefiicient used while those from the conventional
scheme do not, and are quite scattered. In the proposed
scheme, it can be reasonably said that good results
are obtained with values of ¢ around 0.5-0.75. Similar
to the previous problem, even though the trend in the
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Fig. 10. Average weight of the best feasible designs obtained from 200 runs—ten-bar truss.
Table 4 appropriate values of the coeflicient for similar problems

Comparison of the results for the ten-bar truss problem

Member Size of member (in.”)

Proposed  Ref. Ref. Ref.
[19] (213 29
! 335 335 30.0 335
2 1.62 1.62 1.62 .62
3 229 220 26.5 220
4 15.5 15.5 13.5 14.2
5 .62 1.62 1.62 1.62
6 1.62 1.62 1.62 1.62
7 7.22 14.2 7.22 797
8 229 19.9 229 229
9 220 19.9 22.0 220
10 1.62 262 1.62 1.62
Total weight (Ib} 54993 5613.8 55569 54583

results of the proposed scheme can be observed. the
results are not that much sensitive to the magnitude of
the penalty parameter when compared with the con-
ventional scheme. Consequently, a range of values of ¢
may be used when the appropriate value is not known.
The best result obtained from the proposed scheme is
also compared with the best results reported by Rajeev
and Krishnamoorthy [19], Camp et al. [21], and Galante
[29] 1 Table 4. It can be seen that the result ob-
tained from the proposed penalty scheme is relatively
g00d although Rajeev and Krishnamoorthy [19]. Camp
et al. [21L and Galante [29] employ more complicated
GAs.

In the previous six-bar truss problem. the appropriate
vilue of ¢ 15 around 0.75- 1.0, which 1s similar o the
value obtained for the ten-bar truss problem. Since the
two problems are quite similar, similar values of the co-
efficient from the two problems are cxpected. In this as-
pect, the proposed scheme evidently -outperforms the
conventional scheme, which does not exhibit any obvious
similarily between these two problems. Having simitar

allows the coefficient to be sel by experience. Since the
coefficient in the proposed scheme has a physical mean-
ing, which directly corresponds to the understandable
degree of penalty, the characteristics of the problems
being solved can be directly related to the appropriate
degree of penalty. This kind of advantage may not be
found in existing conventional schemes.

4.3 One-bay cight-story frame

The last problem to be considered is the one-bay
eight-story frame as shown in Fig. 11. Similar to the
previous two problems, only sizing optimization is con-
sidered. The 24 members of the structure are categorized

A 100 kip downward load is
applied at each connection
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. One-bay cight-story frame.
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Table 5
Design and GA parameters for the one-bay wight-story {rume
problem

Design parameters GA parameters

Item Value Jtem Value
Modulus of 29 x 10* ksi  Maximum 100
elasticity number of
generations
Weight density 2.83 x 107#
kipfin.}
Maximum x- 21n. Population 30
displacement size
at the top of
the structure
Crossover 0.85
probability
Mutation 0.05
probability
@ 0.25-1.75
-~ 0.000001-100
C 2.0
Z 5.0

into eight groups (as indicated in Fig. 11). In this prob-
lem, 256 sections are selected from a list of 268 W-scc-
tions from the American Institute of Steel Construction
Allowable Stress Design (AISC-ASD) specifications
given in Ref. [30] by discarding the 12 biggest sections
from the list. Thus, an eight-bit string is required for each
design variable. There 1s only a displacement constraint
in the problem that is the maximum x-displacement at
the top of the structure. Design and genetic parameters
are shown in Table 3.

Fig. 12 shows results obtained from the proposed and
conventional schemes. In the figure, each point in the
graph also represents an average weight of the best fea-
sible designs obtained from 200 different runs. Once

2537

Table 6
Comparison of the results for the one-bay eight-story frame
problem

Group number Proposed GAs[2]) Optimality

critersa {21]
1 WI2x4> WIBx46 W l4x34
2 Wldx34 WI6x31 WI0x39
3 WiZx35 WIex26 W I0x 33
4 WI0x 19 WI2x16 W8xI1§
3 W18 x 35 WIEx35 W21 x68
6 W I8 x40 WI8x35 W24x55
7 WIl6x36 WI8x35 W2|x30
8 WI6x20 WI6x26 W I12x40
Total weight (kipy 7.47 7.38 9.22

again, the robustness of the proposed scheme is con-
firmed. The effect of 1he unit on the results obtained from
the proposed scheme is almost negligible. This conclu-
sion is not true for the case of the conventional scheme,
which exhibits large differences between the results from
the two diflerent units. In this problem, the insensitivity
of the results to the value of the parameter is very ap-
parent for the proposed scheme. On the contrary, the
results from the conventional scheme show very high
variation when the parameter is varied. This confirms the
higher robustness of the proposed scheme over the con-
ventional one. Although some of the averages of the best
results from the conventional scheme shown in Fig. 12
may seem to be better than those from the proposed
scheme, a comparison of the best result obtained from
the proposed technique and results reported by Camp
et al. [21] in Table 6 shows that the proposed method is
actually acceptable. In their paper, Camp et al. [21]
provide both results from their own GAs, which are not
the standard GAs. and from the cptimality criteria
methed [31].
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Fig. 12. Average weight of the best feasible designs obtained from 200 runs—-one-bay eight-story frame.
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5. Conclusion

This paper presents a new adaptive penalty scheme in
GAs for structural design optimization. Existing penalty
schemes generally require the values of some coeflicients
o be specified at the beginning of the calculation and
these coefficients usually have no clear physical mean-
ings. Consequently, it is very difficult to select appro-
priate values of these coefficients even by experience.
Moreover, most existing schemes employ constant co-
efficients throughout the entire calculation. This may
resuit in too weak or too strong a penalty during dif-
ferent phases of the evolution. To avoid these draw-
backs. a new penalty scheme is proposed. The main
concept of the proposed scheme is to fix, throughout all
generations. the chance to be sclected into the mating
pool of the best infeasible members compared with that
of the average feasible members. The parameter that has
to be sel is the ratio between the fitness value of the best
infeasible members and the fitness value of the average
feasible members. This ratio has a very clear physical
meaning. Therefore, it can be set easily, based on ex-
perience of different types of problem. In addition, under
this concept, the penalty is always adjusted so that the
desired degree of penalty is achieved in all generations.

The proposed scheme is tested by using three opti-

mization problems of truss and frame structures, Com-

parisons with a representative coaventional scheme
clearly show the advantages of the proposed method.
From the results, it can be seen that the proposed
scheme is very robust. The results from the proposed
scheme do not significantly depend on the units used. In
addition. for some problems, it will be possible to ob-
serve trends in the results of the proposed scheme when
the magnitude of the coefficient is varied. Moreover, it
can be expected that, if similar problems are considered,
appropriate values of the coefficient will be similar. Ali
these characteristics encourage setting the value of the
coefficient by experience. It 15 also observed that the
results of the proposed scheme do not exhibit high
fluctuation when the penalty coefficient is varied. As a
result. even when appropriate values of the coefficient
are ned clearly known, a range of values may be used
and reasonable results can stili be obtained. Finally,
comparisons with results from the literature also show
that the proposed penalty scheme yields relatively good
results although, except for the new penalty algorithm,
the proposed technique employs very standard GAs.
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ABSTRACT

In genetic algorithms, constraints are mostly handled by using the concept of penalty
functions, which penalize infeasible solutions by reducing their fitness values in proportion
to the degrees of constraint violation. In most of the available penalty schemes, some
coefficients or constants have to be specified at the beginning of the calculation. Since
these coefficients usunally have no clear physical meanings, it is nearly impossible to estimate
the appropriate values of these coefficients even by experience. Moreover, most of the
schemes employ constant coefficients throughout the entire calculation. This may result
in too weak or too strong a penalty during different phases of the evolution. In this study,
a new penalty scheme that is free from the aforementioned disadvantages is developed.
The proposed penalty function will be able to adjust itself during the evolution in such a
way that the desired degree of the penalty is always obtained. The coefficient used in the
proposed scheme will have a clear physical meaning. Thus, it will not be difficult to set
the value of the coefficient by using experience.

1. INTRODUCTION

1t is commonly known that Genetic Algorithms (GAs) are directly applicable only to
unconstrained optimization. Nevertheless, many researchers have proposed solutions that
can eliminate this limitation. Constraints are mostly handled by using the concept of penalty
functions, which penalize infeasible solutions by reducing their fitness values in proportion
to their degrees of constraint violation. In all available penalty schemes, the degree of the
penalty can be further controlled by means of setting values of various coefficients in the
penalty functions'??. Most of these coefficients are treated as constants during the
calculation and their values have to be specified at the beginning of the calculation®®,
These coefficients usually have no clear physical meanings. Thus. it is nearly impossible
to know the appropriate values of the coefficients even by experience. This 1s because it 15
very hard to understand the correlation between the values of the coefficients and the
characteristics of the problems without physical meanings of the coefficients. Consequently,
for all problems with either similar or different natures, the appropriate values of the
coefficients are generally obtained by trial and error. Many researchers, however, have
tried to suggest different ranges of appropriate values for these coefficients, for various
types of problem. Most of these suggestions are obviously doubtful. The reason is simply
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that the appropriate values are usually given without any reference to the units used in the
problems although the coefficients may have units and the appropriate values should vary
with the units used. Another important concern 1s that these conventional penalty schemes
do not usually adjust the strength of the penalty during the calculation, as the coefficients
used are always kept constant. As a result, too weak or too strong penalty during different
phases of the evolution may occur. This may lead to inaccurate solutions. Actually, there
are some penalty schemes that vary the values of the coefficients to adjust the strength of
the penalty during the calculation’®®. However, this kind of scheme usually requires the
varying values of these coefficients to be manually specified. It, therefore, becomes even
more difficult to judiciously select appropriate values for different phases of the calculation.

Keeping these facts in mind, we develop a new penalty scheme that is frec from the
above disadvantages in this study. The proposed penalty function will be able to adjust
itself during the evolution in such a way that the desired degree of the penalty is
always obtained. The coefficient used in the proposed scheme will have a clear physical
meaning and it will have no unit. Thus, it will not be difficult to set the value of the

coefficient by experience.
2.  GENETIC ALGORITHMS FOR CONSTRAINED OPTIMIZATION

In GAs, an optimization problem can be generally written as

F(x) = F[f(x)] (1)

under constraints defined as

gi (x) < 0’ i= 1,..., K,
h,- (X):O, i:l,___’P

2)

For the structural design optimization, x is an N-dimensional vector called the design
vector, representing design variables of N structural components to be optimized and
flx) is the objective function. In addition, g,(x) and /,(x) are inequality and equality
constraints, respectively. They represent constraints, which the design must satisfy, such
as stress and displacement limits. Finally, F(x) is the fitness function which is defined
as a figure of merit'. :

It is not possible to directly utilize GAS to solve the above problem due to the presence of

the constraints. In GAs, constraints are mostly handled by using the concept of penalty

functions, which penalize infeasible solutions, ie.,
Fo(x)= F(x) xekF
F(xy=F(x)— P(x)

(3)

where F denotes the feasible search space. Here, P(x) is a penalty function whose value
is greater than zero. In addition, F“(x) represents the augmented fitness function after
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the penalty. Several forms of penalty functions have been proposed in the literature''-!>13,
Nevertheless, most of them can be written 1n the following general form, i.e.,

13 B »p
P(x)= Y (), |6,0] + X | 1,00 @

where
G;{x) = max [O,gj(x)}
H (x}=abs [h'j(x)]

(5)

Here, G (x) and H,(x) represent the degrees of the inequality and equality constraint
violations, respectively. In addition, (A} I (A) ; and [ are constants. In most cases,
the same value is used for all (4;),’s and (4,),’s. As for 3, itis usually set to be I or 2,

In the first operator in GAs, the reproduction operator, a mating pool is created by letting

individuals with higher fitness values have higher chance to be selected into the mating

pool. Many reasonable selection algorithms are possible, However, the most widely used

technique is the proportional selection. In this technique, the probability of the with

individual to be selected into the mating pool is

p(xi) = rrF (XI)
D> F(x)
j=1

where x; represents the i individual in the population and n is the population size.
Clearly, in the above equation, it is essential that all fitness values must be positive.
Therefore, the obtained fitness function after the penalty F“(x) may not be directly
usable as its values may be negative. Moreover, the difference between the fitness values
of the best feasible individuals and the average individuals varies generation by
generation. In early generations, the difference can be very large and the best individuals
become relatively too strong. As a result, the premature convergence may be obtained.
In later generations, the difference can be very small and the average individuals become
almost as strong as the best individuals. As a result, the search may become a random
walk. To prevent all of these problems, the augmented fitness function is usualily scaled
into a specified positive range.

{6)

The penalty schemes used in GAs play a very important role in the performance of GAs.
This role becomes even more important when the optimal solution lies on or close to the
boundary between feasible and infeasible search spaces, which is very usual for the
structural design optimization. In this study, we propose a new penalty scheme. The aim
of the development is to create a scheme that is free from the disadvantages of the existing
schemes, mentioned earlier.

[9
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3.  ADAPTIVE PENALTY FUNCTION

To make the scheme simple, we employ a simple form of the penalized fitness
function, 1.e.,

F'=F(x) = F(x)— P(x;) = F(x,) - M E(x) (7)

where [ represents the fitness function of the i individual after the penalty. Here, A(f)
is a factor multiplied to E(x,) that is an error term. The factor A(¢) varies with generation
and the generation number is denoted by t. In this study, the error term £(x;) is defined as

K P
E(x)=) G(x)+ D> H(x) (8)
i=1 j=1
where G ,(x;) and H,(x,) have already been defined in Eq. (5).

Now, the question is what the magnitude of the factor A(r) should be. It is not difficult to
imagine that if the factor is too small, infeasible individuals with high original fitness
values may have penalized fitness values higher than the fitness value of the feasible
optimal individual being searched. If this happens, the population in subsequent generations
will move toward the false peaks that appear in the infeasible region. On the contrary, if
A(t) is too large, good characteristics in some infeasible individuals will have no chance
to survive and will disappear rapidly. This may lead to premature convergence and the
obtained solution can be quite wrong.

To avoid the above problems, the degree of the penalty must be enough to make the feasible
optimal solution have the maximum fitness value, compared with all individuals (feasible
and infeasible) after the penalty. However, the penalty must not be made too much stronger
than that. To this end, we introduce the following condition, i.e.,

Fi(x)<¢ FF  for Vx, eU )

avy

in which U/ represents the infeasible search space. Here, F:f: denotes the average fitness

vatue of all feasible individuals in the generation and ¢ is a constant.

The above condition sets the maximum fitness value of the infeasible individuals in the
generation to be at most equal to ¢ F;‘l’,; but not more than that. At this moment, it is not
useful to consider the physical meaning of the constant ¢ yet because the penalized fitness
function will have to be scaled afterwards. Therefore, it is enough to simply say that the
factor ¢ is used to adjust the strength of the penalty. A way to obtain the value of this
constant will be explained shortly. To satisfy the condition in Eq. (9), we calculate the
factor A(f) by computing, for each infeasible individual, the factor A(f) that makes the
penalized fitness value of that infeasible individual exactly equal to ¢ F;: . After that,
the values of the factor obtained from all infeasible individuals are compared and the
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maximum one is selected as A(¢). If the maximum value is negative, zero is used instead.
In short, we can express A(f) as

Fo(x)—¢ FoF
A() = max 0’&1‘&5}5 : % o

Eq. (10} insures that Eq. (9) is satisfied.

In this study, we employ a modified bilinear scaling technique shown in Figure 1.
The minimum scaled fitness is set to zero to avoid negative fitness values while the scaled

F.!'
A
Clbe . —
1 _______
|
|
0 L —— fa
F E.l Rl

Figure I: Bilinear fitness scaling.

fitness of the average fitness of all feasible individuals Fa‘f: i$ set to one. Furthermore,
the maximum scaled fitness that is to be obtained from the best feasible members is set to
(. Thus, the chance of the best feasible members being selected into the mating pool is
equal to C times that of the average feasible members. All together, we have

a.F a,F

C - 1 F max C‘F:zvg

F(x)= TF&FFG(JC) R ()2 FF
max avg max avg (1 1)
5 1 4 Fﬂ‘ . a2 a,F
a (x):<;F——aF (X)‘f"% ifF(x)< ‘L;v:g
avg Fmin Fmin - 'Fa;vg

where F°(x) denotes the scaled fitness function. In addition, F.  denotes the
minimum fitness value after the penalty while F%! denotes the fitness value of the

best feasible members. This scaled fitness function F*(x) will be used in Eq. (6)
instead of F(x) .
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For all generations, we set the chance of the best infeasible members being selected into
the mating pool to be equal to @times that of the average feasible members, i.e.,

F(x)<(pF*f=¢) for Vx, el (12)

avg

where F;‘,’ﬁis the scaled value of the average fitness of all feasible individuals which is
equal to 1. From the above condition, we can express @ in Eq. (9) in terms of ¢ as

CF*F 4 F*F (o —1)— oF*F
— avg max (¢) 2 q) avg fOI’ qo 2 1
(C-DF,;
; (132, b)
E. +@F"" —@F
¢ — min a‘:gﬁ min f()r GDSI
F

In the real calculation, the coefficient ¢ will be set at the beginning of the calculation.
This coefficient has a very clear physical meaning, 1.e., the chance to be selected into the
mating pool of the best infeasible members compared with that of the average feasible
members. In addition, the coefficient does not have any unit. Due to these reasons, it is
possible to set this coefficient by using experience. Knowing ¢, we can compute ¢ and,
subsequently, the factor A(z). Incase of ¢ 2 1, ¢ can be obtained from Eq. (13a) directly
because all parameters in the equation are readily available. In this case, the parameters
F:Vf and F*" can be obtained directly from the original fitness values of the feasible
individuals without any penalty consideration. On the contrary, if @ <1, ¢ cannot be
obtained without iteration since one of the parameters, i.e., F. , is not readily available.
Note that F. is the minimum fitness in the generation after the penalty and it is most
likely that F2.  will belong to the infeasible members. This F,, can be obtained from
Eq. (7), which, in turn, requires the value of ¢ [see Eq. (10)]. Nevertheless, the required
iteration is very simple and takes almost no time to perform.

F.V

|
|
|
I |
|
|
|
|
' > E
E,

i

I

|

i
Eavg E max

in

Figure 2: Bilinear fitness scaling for cases where no
Sfeasible individual is available.
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In short, the purpose of the scheme is to fix, throughout the calculation, the relative chance
of the best infeasible members being selected into the mating pool compared with that of
the average feasible members. This means that the penalty is always adjusted so that the
aforementioned purpose is achieved in all generations. This guarantees that the desired
degree of the penalty is obtained throughout the evolution. Consequently, the problem of
too weak or too strong penalty during different phases of the evolation is removed.

Since the proposed penalty scheme requires the average fitness value over all feasible
individuals, it is necessary to have at least one feasible individual in the population. In the
case that there 1s none, the fitness values of the infeasible individuals will be given based
on the magnitudes of the error they have. The idea is to strongly encourage the population
to move toward the feasible region. Here, a bilinear scaling scheme shown in Figure 2 is
used. The fitness is scaled in such a way that the scaled fitness values of the individuals
with the highest error are equal to zero and the scaled fitness values of the individuals with
the average error are equal to one. In addition, the scaled fitness values of the individuals
with the smallest error are set to be Z. Thus, the chance of the individnals with the smallest
error being selected into the mating pool is equal to Z times that of the individuais with the
average error. In summary, we have

Z - 1 Emin - ZEav .
FS(X):ﬁ"E(X)‘i'-E——S if E(X)SEavg
min ~ “avg min ~ avg (14)
Frx)e— B +—tm  if g > E
Emrg - Emax Emax - Eavg o
4. RESULTS

To investigate the validity and efficiency of the proposed penalty scheme, the scheme is
used in the design optimization of two different structures, i.e., six-bar and ten-bar trusses.
To be able 1o see clearly the advantages of the proposed scheme over the conventional
schemes, the obtained results are compared with those from a selected conventional scheme.
Since most of the conventional schemes are based on the same concept with slightly different
details, comparison with one selected conventional scheme is sufficient to show the
advantages of the proposed scheme over the conventional schemes. Finally, the results are
also compared with the existing results in the literature.

23



24

A Novel Penalty Scheme ... Pruettha Nanakorn and Konlakarn Meesomklin

4.1. Six-Bar Truss

The first problem to be considered is the six-bar truss shown in Iigure 3. Here, we consider
only the sizing optimization. Thus, the design variables are six sectional areas of the six
members of the truss. The cross-sectional area of each member is taken from the following
32 discrete values, i.e., 1.62, 1.80,2.38,2.62, 2.88, 3.09, 3.13, 3.38,3.63, 3.87,4.18, 4.49,
4.80,4.97,5.12,5.74,7.22,797,11.5,13.5, 13.9,14.2, 15.5, 16.0, 18.§8, 19.9,22.0, 22.9,
26.5, 30.0, and 33.5 in% Therefore, a five-bit string is required for each design variable.
There are two types of constraint in this problem, i.e., the stress and displacement
constraints. The design parameters used in the problem are shown in Table 1.

-t 360 in. g 200 I

>
> 1 _
4 5 6 }
60 in.
M > 2 3 \
Ly :

x 100 kip 100 kip

Figure 3: Six-bar truss.

For comparison, the most popular conventional penalty scheme is also used to solve the
problem. The conventional form is expressed as

F* = F'(x)= F(x,)~ P(x;) = F(x,)— AE(x,) (15)

where the coefficient A is constant and the error term E(x;) is the same as that defined in
Eq. (8). In both proposed and conventional schemes, the fitness function F(x;) is defined as
1

Fx) = ———
) 1+ Weight(x,) (16)

where two different units of weight, i.e., pound (lb) and newton (N) are used. Two units
are used in order to investigale the effect of unit on the resuits from both schemes. Since it
is impossible to judiciously estimate the appropriate value of the coefficient A in the
conventional scheme, a wide range of vaslues will be used. All GA parameters used can
be found in Table 1. To start the calculation, the initial population is generated at random.
The type of crossover operator used here is the one-point crossover'.

Figure 4 shows the results obtained from the proposed and conventional schemes.
Each point in the graph represents an average weight of the best feasible designs obtained
from 200 different runs. The results obtained by using newtons in Eq. (16) are converted
into pounds for comparison. In the conventional scheme, the coefficient A is varied
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Table 1: Design and GA parameters for the six-bar truss problem.

Design parameters : GA parameters
Item Value Item Value
Modulus of elasticity 107 psi Maximum number of 100
generations
Weight density 0.1 Ibfin?
Allowable tensile stress | 25,000 psi Population size 70

Allowable compressive | 25,000 psi Crossover probability 0.8
stress

Maximuam y-displacement | 2 in. Mutation probability 0.001
Q@ 0.25-1.75
Y 0.000001 —-100
C 2
4

5

Tabie 2: Comparison of the results for the six-bar truss problem.

Item Proposed Rajan [8]
Area 1 (in?) 30.0 30.0
Area 2 19.9 19.9
Area 3 15.5 15.5
Area 4 7.22 7.22
Area s 22.0 22.0
Area 6 22.0 22.0
Total Weight (Ib) 4962.1 4962.1
3450
5400
Z 5350 1= X
_:'_: ;;00 !L\ P ] Fﬁ\ K‘\‘ " . S —+—N
N N NP NC S iy ||
= 52350 < -
5200
5150 — —_— —_— '
O N I T € 5958 6€Se
o - O @ © o - = o S .S & = = G =
z 2 g 2 = - = 8 o g G T &
2R
=i — -

Figure 4: Average weight of the best feasible designs obtained from 200 runs — six-bar truss.
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exponentially from 0.000001 to 100 while in the proposed scheme the coefficient is
varied from 0.25 to 1.75. Note that the value of @should be varied between (} to 2.0
since the maximum scaled fitness value C is set to be 2.0 (see Table 1). It can be clearly
seen from the results that the proposed scheme is more robust than the conventional
scheme. In the proposed scheme, changing the unit has little effect on the results while
in the conventional scheme the effect is much more noticeable. Moreover, in the proposed
scheme, it is easier to notice the trend of the results when ¢ is varied. It can be reasonably
said that good results are obtained with the value of ¢ around 0.75. On the contrary, in
the conventional scheme, this kind of trend is not very obvious, considering both results
obtained with newtons and pounds. Nevertheless, we may say that good results are
obtained with the value of Aaround 0.0001.

The best result obtained from the proposed scheme is also compared with the best
result reported by Rajand. They are exactly the same. The details of the result are
shown in Table 2. It must be noted that in this study, except for the new penalty
algorithm, the rest of the algorithms are standard. This is not the case for the work by
Rajan®, which employs more complicated GAs.

4.2 Ten-Bar Truss

The next problem to be considered is the ten-bar truss shown in Figure 5. This problem is
one of the benchmark problems used to test optimization methods. In this problem, we
also consider only the sizing optimization. Therefore, the design variables are ten sectional
areas. The cross-sectional areas of members 1, 3,4, 7, 8 and 9 are taken from the following
32 discrete values, i.e., 3.13, 3.38, 3.47,3.55,3.63, 3.84, 3.87, 3.88,4.18,4.22, 4.49, 4 59,
4.80,497,5.12,5.74,7.22,7.97,11.5,13.5,13.9, 14.2,15.5,16.0, 16.9, 18.8, 19.9, 22.0,
229, 26.5, 30.0, and 33.5 in% For the rest of the members, the cross-sectional areas are
taken from the following 32 discrete values, i.e., 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63,
2.88,2.93,3.09,3.13,3.38,3.47, 3.55,3.63,3.84,3.87,3.88,4.18,4.22, 4.49, 4.59, 4.80,
4.97,5.12,5.74,7.22,7.97,11.5, 13.5, 13.9, and 14.2 in®. Similar to the previous problem,

360 in.

Figure 5: Ten-bar truss.
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Table 3: Design and GA parameters for the ten-bar truss problem.

Design parameters GA parameters
Ttem Value Item Value
Modulus of elasticity 107 psi Maximum number of 100
generations
Weight density 0.1 Ib/in’
Allowable tensile stress | 25,000 psi Population size 40
Allowable compressive | 25,000 psi Crossover probability 0.8
stress
Maximum x, 2 in. Mutation probability 0.001
y-displacement @ 0.25-1.75
Y 0.000001 -100
C 2
Z 5

a five-bit string is required for each design variable. The design parameters and genetic

parameters are shown in Table 3.

The results obtained from the proposed and conventional schemes are shown in Figure 6.
Similar to the previous problem, each point in the graph represents an average weight of
the best feasible designs obtained from 200 different runs. The robustness of the proposed
scheme is again obvious. The effect of the unit used on the results from the proposed
scheme is noticeably less than that on the results from the conventional scheme. Moreover,
the results from the proposed scheme also exhibit clear tendency with respect to the value
of the coefficient used while those from the conventional scheme do not. In the proposed

6350
6300
]
< 6250 :‘/\.‘i — '
B 6200 NI S E.A‘?L TN
0
36]50 \/ ;\\/r\ X.’g/ - —a—Ib
6100
6050 7 T r T T T T T T Y T T T T
i i i il . i S 8 6 6 6 S S
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Figure 6: Average weight of the best feasible designs obtained from 200 runs — ten-bar truss.
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Table 4: Comparison of the results for the ten-bar truss problem.

Item Proposed Rajeev and Camp et al. Galante
Krishnamoorthy [,6] [Error!
[e beginning of the Reference source
calculation®] not found.]

Area 1 (in%) 33.5 335 30.0 335 |

Area 2 1.62 1.62 1.62 1.62

Area 3 229 220 26.5 22.0

Area 4 15.5 15.5 13.5 14.2

Area$ 1.62 1.62 1.62 1.62

Area 6 1.62 1.62 i.62 1.62

Area7 7.22 14.2 7.22 7.97

Area 8 229 19.9 22.9 22.9

Area 9 220 19.9 22.0 220

Area 10 1.62 2.62 1.62 1.62

Total Weight (Ib) | 5,499.3 5,613.8 5,556.9 5,458.3

scheme, it can be said that good results are obtained with the value of @around 0.5, In the
conventional scheme, although it is not very obvious, we may barely say that good results
are obtained with the value of A around 0.1.

The best result obtained from the proposed scheme is also compared with the best results
reported by Rajeev and Krishnamoorthy*, Camp et al.%, and Galante'? in Table 4. It can be
seen that the result obtained from the proposed penalty scheme is relatively very good
although Rajeev and Krishnamoorthy?*, Camp et al.%, and Galante'® employ more
complicated GAs.

In the previous probiem, the appropriate vaiue of ¢ is around .75 and the appropriate
value of A is around 0.0001. Since the two problems are quite similar, similar values of
the coefficients from the two problems are expected. In this aspect, the proposed scheme
evidently outperforms the conventional scheme. Having similar appropriate values of the
coefficient for similar problems allows the coefficient to be set by experience. Since the
coefficient in the proposed scheme has a physical meaning, which directly corresponds to
the understandable degree of the penalty, the characteristics of the problems being solved
can be directly related to the appropriate degree of the penalty. This kind of advantage
cannot be found in the conventional schemes.
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5. CONCLUSION

This paper presents a new adaptive penalty scheme in GAs for structural design
optimization. The existing penalty schemes generally require the values of some
coefficients to be specified at the beginning of the calculation and these coefficients
usually have no clear physical meanings. Consequently, it is very difficult to select
the appropriate values of these coefficients even by experience. Moreover, most of
the existing schemes employ constant coefficients throughout the entire calculation.
This may result in too weak or too strong penaity during different phases of the
evolution. To avoid these drawbacks, a new penalty scheme is proposed. The main
concept of the proposed scheme is to fix, throughout all generations, the chance to be
selected into the mating pool of the best infeasible members compared with that of
the average feasible members. The parameter that has to be sct is the ratio between
the fitness value of the best infeasible members and the fitness value of the average
feasible members. This ratio has a very clear physical meaning. Therefore, it can be
set easily, based on experience of different types of problem. In addition, under this
concept, the penalty is always adjusted so that the desired degree of the penalty is
achieved in all generations.

The proposed scheme is tested by using two optimization problems of truss structures.
The comparisons with a representative conventional scheme clearly show the advantages
of the proposed method. From the results, it can be seen that the proposed scheme is
robust and the required parameter can be obtained by experience. In addition, the
comparnisons with the resulis from the literature also show that the proposed penalty scheme
yields relatively good results although, except for the new penalty algorithm, the proposed
technique employs very standard GAs.
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Abstract

In consideration of cracking localization,
it is more suitable to have an energy expression
written in terms of discrete irreversible
variables, which will allow the variations of the
energy with respect to the irreversible variables
to be considered easily. This implies that the
discrete crack approach should be more
appropriate for this kind of analysis than the
smeared crack approach. However, the discrete
crack approach may not be the best choice for
problems with many cracks, which are
unavoidabie for the analysis of the cracking
localization. To avoid the drawbacks in both
approaches, a special treatment on the smeared
crack approach to allow the consideration of
the cracking localization is developed. To this
end, discrete irreversible variables related to
crack strains are introduced, and the cracking
localization is 1investigated, based on these
discrete irreversible variables. The results
obtained show promising capability of the
method in analyzing problems with the
cracking localization.

1. Introduction

Cracking localization prior to the failure
plays a very important role in the fracture
behavior of quasi-brittle materials, such as
concrete. In order to capture-the real ultimate
capacity of such materials in structures,
consideration of the cracking localization

cannot generally be neglected. However, the
analysis of the cracking localization is very
expensive. Because of this reason, many
researchers avoid the consideration of the
cracking localization. This can be done by
either allowing many cracks to open or grow
without the consideration of the localization [1,
2, 3, 4, 5] or assuming the locations of the
localized cracks [5, 6]. The first approach is not
realistic and can lead to very inaccurate results.
When compared with having one or a few
localized cracks, having many cracks without
localization allows different amounts of energy
to dissipate from the domain. Thus, the
obtained results will be different as well. Only
in some cases where the stress gradients of the
problems are very large and the stress criteria
for crack initiation are used, can the localized
solution possibly be obtained from this
approach [1, 2, 4]. When the stress gradient 1s
very high, it is numerically possible that major
cracks will finally prevail and the other cracks
will undergo the elastic unloading. The second
approach, which assumes the locations of the
localized cracks prior to the analysis, may also
possibly yield reasonable results in some cases.
These include cases where the assumed
locations of the localized cracks are reasonably
correct, such as bending problems of concrete
beams with long notches [6]. The others are
cases where the required solutions, such as the
ultimate loads, are not sensitive to the locations
of the localized cracks [5]. Nevertheless, this
second approach is not appropriate for general



cases since the locations of the localized cracks
may not be easily predicted or the required
solution may be sensitive to the locations of the
cracks.

In the analysis of the cracking
localization, consideration of stability and
bifurcation of equilibrium states is one of the
tasks to be done. Many researchers have
considered the stability and bifurcation of the
equilibrium  states by investigating the
definiteness of the stiffness matrices (Hessian
Matrices) {7, 8, 9]. When the matrix is
positive-definite, the equilibrium is stable. The
same theory can be applied to the analysis of
the cracking localization. Nevertheless, to
consider the stability and bifurcation of
irreversible processes such as cracking, the
stationary condition of the energy of the system
with respect to irreversible parameters has to
be examined [10, 11, 12]. This requires
expression of the energy in terms of the
irreversible parameters. For crack problems,
the 1rreversible parameters can be the crack
opening displacement variables in the discrete
crack approach or the crack strain variables in
the smeared crack approach. In the discrete
crack  approach, the crack opening
displacement variables are usually discretized
along crack paths and treated as the degrees of
freedom in the analysis. The energy of the
system 1s expressed in terms of these degrees
of freedom. Computing the first and second
vanations of the energy with respect to the
crack opening displacement degrees of freedom
can be done easily. The stability and
bifurcation of the equilibrated solutions can be
considered by employing just the ordinary
calculus [12]. On the contrary, if the smeared
crack approach is employed, the energy of the
system will be expressed in terms of the
ireversible crack strain variables, which are
not discretized variables. These crack strain
variables are functions of position. To compute
the first and second vaniations of the energy
with respect to these crack strain functions,
complex mathematics involving_the calculus of
variations must be employed.

This fact implies that the discrete crack
approach in the finite element method may be

more suitable for the cracking localization
analysis than the smeared crack approach.
Nevertheless, the discrete crack approach may
not perform best when there are many cracks.
In this aspect, the smeared crack approach is
more appropriate.

To avoid the drawbacks in both methods,
in this study, a special treatment on the
smeared crack finite element analysis is
proposed. The proposed treatment will make it
possible to consider the cracking localization
by using the smeared crack models. In the
proposed method, discrete irreversible
variables related to the crack strains are
introduced in the smeared crack models. These
discrete variables will allow the consideration
of the stability and bifurcation of the
equilibrated solution to be done by considering
the variations of the energy with respect to the
proposed discrete variables. The proposed
scheme will not be used to obtain the stiffness
equation that is used to obtain the equilibrium
paths. The original smeared crack models will
be still used for that purpose. The proposed
method will be used only for the investigation
of the stability and bifurcation.

2. Cracking Localization

Consider a system of a deformable body
with cracks where the energy is dissipated.
Following Nguyen [10] and Brocca [12], we
define the total energy of the body as

M(w, ;) =11" (4,0, )+ 11%(a,) (1)

where 1" (u,,,) is the mechanical potential

energy and I—ID(am) is the dissipated energy.
The of the ;
(i=L..,N})and a, (i=1,...,K), represent the
reversible variables and irreversible variables,
respectively. Here, N is the number of the
reversible variables and K is the number of the
irreversible variables,

Applying the stationary conditions to Eq.
(1), we have

arguments functions, u



al_

0 =1,...N, 2a
o, i (2a}
irl—:0 j=1L..,K. (2b)
8aj

From Eq. (2), the equilibrated solution can be
obtained. Employing the obtained solution, we
can express the reversible parameters in terms
of the irreversible parameters, i.e., u; =, ().

Therefore, we can express the total energy in
Eq. (1) as a function of only the irreversible
parameters, L.e.,

T (a,)=IT"(a,)+ 1"(a,) 3)

where T (@) = U(u,(e,),a;) and

I (a,) =TT" (u,(a,).a,) -
The signs of the eigenvalues of the

2 -

. : I
Hessian Matrix [a—

are used to check
da0a,

the stability of the equilibrated solution
obtained from Eg. (2). If all the eigenvalues are
positive, the equilibrated solution 1s stable and
there is no bifurcation. Otherwise, the solution
1s unstable and the bifurcation, which leads to
the localization, occurs.

3. Smeared Crack Finite Element Analysis
for Cracking Localization
The fundamental scheme of the smeared
crack models is the decomposition of the total
strain increment Ae into a strain increment of

the intact solid between the cracks A¢® and the
crack strain increment Ae” ;) i.e., [1, 13, 14]

Ae = A€’ + A (4)
The strain increment vectors in the above
equation are in the global coordinate system. It
will be helpful to consider the strain increments
also in a local coordinate system, which aligns
with the crack. Based on the local coordinate
systemn, a local crack strain increment vector in
two-dimensional cases is written as

ae” =(agz aprf 6)
where A€, and Ay are the mode I normal

crack strain increment and the mode II shear
crack strain increment, respectively., The

relationship between the global crack strain
increment Ae¢” and the local crack strain

increment A€” is written as
Ae” = TAeé” (6)

where T is the transformation matrix between
the global and local coordinate systems defined
as

cos’ @ —sinfcosd
sin’ @ sinfcosf (7)

2sinfcosd  cos’ @ —sin’ @

T =

where @ is the angle between the normal of the
crack and the global x-axis. In the local
coordinate system, we consider the local
traction increment across the crack, i.e.,

At =(air aie ) (8)

where A denotes the mode I normal traction

increment and A/ denotes the mode Il shear
traction increment. By using the transformation
matrix T, the relationship between the traction
increment At” and the global stress increment
Ao is expressed as

At =T Ag . 9)

The .constitutive models for the material
between the cracks and for the smeared cracks
must be specified. For the material between the
cracks, we have

Ao =D’A€’ (10)
where D° is the constitutive matrix for the
material between the cracks. For the cracks, we



have the local traction-crack strain relationship,
re.,

At = D7 AE” (11)
where D“ is the crack constitutive matrix
incorporating mixed-mode properties of the
cracks.

By using Egs. (4)«(11), the incremental
stress-strain  relationship  for the cracked
material is obtained as

a0 = (D7 = D°T[B" + T7D°T] ' T'D° ac. (12)

In order to discuss the cracking
localization, we follow the concept of the
localization explained in the previous section.
To begin with, we consider the total energy
increment for the domain of interest V, i.e.,

AlT = B IAE"TAadV - jAuTAde
v 4

- _[AuTAtdS} (13)

oL j AT AT AV
2 14

where the first and second pairs of the brackets
represent the mechanical potential energy
increment and the dissipated energy increment,
respectively [10, 12]. Here, At and Af denote
the surface traction increment vector and the
body force increment vector, respectively. In
addition, Au denotes the total displacement
increment vector.

From Egs. (4), (10), (11), and (13) and
the inverse relationship of Eq. (6), i.e.,

AET = TAe” (14)

where

—2sinfcosé g

2sin&@cosd ,

cos’ @
T=| sin’é#
sinfcosf® cos’@—sin’ @

(15)

we obtain

All = B— j(Ae —AeT) D(Ae — A dV
4

— [au” Aty - JAuTAtdS} (16)
v S
+{1 J-Ae"TD“’Ae”dV}
2 14
in which
D” =T'D“T. (17)

Here, we introduce a crack displacement
increment vector Au” defined as

Au = Au® + Au” (18)

where the strain increments computed from
Au, Au’ and Au” are Ae , A¢’ and Ae”
respectively.

Consider the /® element in the finite
element analysis. The element is assumed to be
a cracked eclement. Interpolate these three
displacement increments from nodal quantities,
ie.,

Au=NAU, Au’ =NAU’, 9

Au” = NA'U”, AU =AU +A'U” :
in which AU, AU° and A'U® are the nodal
quantities of Au, Au” and Au“, respectively.
Here, N is the shape function matrix. Note that
the superscript i for the /™ element is used in
thc equations because the nodal crack
displacement increments of the same node for
different elements can be different. This is
natural because, in the smeared crack approach,
cracking in each element is completely



independent of each other. Therefore, the
continuity of the crack displacement increment
between elements is not required and must not
be enforced. On the contrary, the total
displacement  increment Au  must be
continuous across elements. Therefore, the
superscript { representing the element number
is not actually necessary for the nodal values of
the total displacement increment. Similar to the
crack displacement increment, the
displacement increment related to the strain
increment of the uncracked solid A'u® is not
continuous across eclements’ boundaries;
therefore, the superscript f is required.

Computing strains from Eq. (18), we
obtain Eq. (4), i.e.,

Ne=ANe’ +A'¢” (20)
where
ANe=BAU, (21a)
Ne® = BAU®, (21b)
Ae“ =BAU". (21¢)

Substituting Eq. (21) into Eq. (16) for the
™ element gives

AT = %AUT JBTD”BdVAU
¥

—%AUT jBTDOBdVA"U“
v

~%A"U“’r J'BTD"BdVAU
g (22)

+%A"U”T jBTD”BdVA"U“
v

+%AfurrT J‘BTDchdVAiUcr
Iy

_AUT jNTAde —AU7 jNTAtdS.
' Y

Next, we apply the statioﬁary condition
8(AIT) =0, and assume that both D° and D

are symmetric. Since 5(AUT) and &(A U’y

are arbitrary, we obtain the element stiffness
equation for the i" element, i.e.,

j B'D’BdV - IBTD°BdV
%4

; AU
~ [B"D"B4V  [B'D°BAV + [B'D"BaV {A"U"]f
4 4 v

) jNTAfdm INTAtdS
v 0 s -
(23)

After assembling all elements and
applying prescribed displacements and forces,
we arrange the global stiffness equation as

K, K, | AU AR,
o [ = )
K, K, ||AU AR,

The static condensation is used to remove
the nodal total displacement increment from
the obtained global matrix equation. Therefore,
the equation can be written in the following
form, 1.¢.,

KCI‘AUCF :ARCF‘- (25)

It must be noted that Eq. (25) is a
singular equation because AU contains the
rigid-body crack displacement increments, i.e.,
for two-dimensional cases, two rigid
translations and one rigid rotation. These three
rigid-body crack displacement increments can
be found in all cracked elements. To avoid
them, constraints to remove them from all
elements must be applied to the equation. In
this study, the following constraints are
employed at the center of each element without
loss of generality, 1.e.,

A (E=0,7=0)=0
AV (E = 0,7 =0)= 0

v (& =0,71=0) _
ox

(26)

0
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Fig. 1 Uniaxial problem using two 1-D bar elements

where the global x -y and natural £-—7
coordinate systems are used in the equation.
Here, Au“ and Av™ are the incremental crack
displacements  in and  y-dircctions,

respectively. _
Eq. (25), after applying the constraints,
can be expressed as

X-

K“AU“ = AR . (27)

The stability condition is obtaincd by

checking the eigenvalues of K . If all the
cigenvalues are positive, it means that the
equilibrium path is stable with respect 10 the
current crack pattern and therc 15 no
bifurcation. On the contrary, if somc of the
eigenvalues are negative, the equilibrium path
is not stable with respect to the current crack
patten and a stable crack pattern must be
found.

4. Results and Discussion

In order to illustrate the advantage of the
method in the analysis of the cracking
localization, a simple one-dimensional uniaxial

problem shown in Fig. [ is considered.
Application of the proposed mcllmq to
problems in two- and three-dimensional

domains is just straightforward. Nevertheless,
two- and three-dimensional problems are not
used here because illustrative analytical results

I8}

cannot be easily obtained from them. As shown
in Fig. 1, the bar has one fixed support at one
end. At the other end, controlled displacement
u 1s applied. The length of the bar is 2L and
the area is 4. The material i1s assumed to be
elastic with Young’s modulus equal to £. The
bar is discretized into two elements, each of
which has the length of L. Each element can
accommodate one crack. The characteristic
length or crack band width of each crack, in
this case, is equal to the length of the element.
The conventional linear shape function is used
for the displacement interpolation.

It is assumed that there 1s no crack at the
beginning. The controlled displacement is then
increased until the stress of the bar reaches the
tensile strength f, . By the strength critenion,

both elements are cracked. The cracks follow
the constitutive taw for cracks. For opening
cracks, a linear relationship between the
transmitted tensile stress and the crack opening

displacement (COD) with the slope
ACOD

cqual to H 1s assumed. For unloading cracks, a
vertical unloading path with a constant COD
cqual to the existing COD is applied (see Fig,
1).

Consider an incremental step after the
initiation of the cracks. Assembling all elernent
stiffness cquations given by Eq. (23), we can
write the global stiffness equation. After



applying the prescribed boundary conditions,
we obtain

28 E -E -E E [ay
E  E+H —(E+H) 0 0 AU
Ak —(E+Hy E+H 0 0 AU
-E 0 0 E+H —(E+H)||8U
E 0 0 —(E+H) E+H AU
FAu
0
:f 0
— EAu
EAL

(28)

where H =HL . Here, AU, represents the
nodal displacement increment of the node i.
Moreover, A"U;t’ represents the nodal crack
displacement increment of the node j and, at
the same time, of the element /.

Using the static condensation to remove
AU, , we get

[ E+2H  E+2ff E _E |
2 2_ 2 2 iy per
_E+2H E+2H  E E ||AY
A 2 2 2 2 _|lavy
L E E E+2H  E+2H ||AUy
2 2 2 2 atur
E E E+2H  E+2H
L 2 2 2 2
_ Eau
z
EAu
Al 2
T L] EAR|
2
EMu
2
(29)

~ The above equation is singular due to the
rigid-body crack displacement increments in
the two elements. For one-dimensional
problems, the crack displacement increment at
the center of each element is set to zero, 1.e.,

Au“(£=0)= %(A‘U," +AUS Y =0,

| (30)

ANu“(E=0)= E(NU;’ +AUTY =0,
which leads to
A| 2E+2H) 2F AU
L 2E AE+2H) || AUT
(31)

4 (- EAW
L |-EAm|”

Note that, in applying the constraints to Eq.
(29), not only the row but also the column
operations must be performed to the stiffness
matrix so as to obtain the symmetric matrix in
Eq. (31). Actually, the constraints may be
directly applied to each element before
assembling the element stiffness equations.

The eigenvalues of the obtained stiffness

4A4AH AAE+H)
—

matrix are _L_ and Both

eigenvalues are positive only when H >0. This
means that the crack pattern having two cracks
opening at the same time is unstable unless
hardening behavior occurs at the cracks.

If we assume that the crack in the
element 2 undergoes the elastic unloading, the
global stiffness equation will contain only one
cracked element. Employing the same process
of applying the prescribed boundary conditions
and using the static condensation for this case,
we obtain

%[2(5 r2ilfaue )= %{- EAR}  (32)

The eigenvalue of the stiffness matrix is
2A(E +2H) which is positive when H > —-122
Assuming that the crack in the element 1
undergoes the elastic unloading will yield the
same conclusion.
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Fig. 2 Responses of the uniaxial problem using two I-D bar elements

In summary, immediately after the two
elements are cracked due to the strength
criterion employed, the equilibrium path is
unstable and bifurcation occurs unless both
cracks exhibit hardening behavior, ie, when

H>0. In reality, cracks will exhibit softening
behavior. Therefore, the two cracks cannot

continue to open at the same time. If one of the

cracks undergoes the elastic unloading, the
stable equilibrium path can be observed as long

as §>—§. As shown in Fig. 2, which

summarizes all the possible results, the cases

~ E .
where H <—E~ represent the responses with

snapback behavior. Under the displacement

control, the snapback responses are always
unstable.

It can be seen from the results that the
proposed method allows the consideration of
the cracking localization to be done even when
the smeared crack approach is used. As
mentioned before, there 1s no intention to use
the stiffness equation obtained from the
proposed method in the analysis to obtain the
unknown displacements. For that purpose, the
original smeared crack approach is much more
appropriate and will be used. The proposed

scheme is used only for the investigation of the
stability of the crack patterns.

The reason' that the smeared crack
approach is selected for the analysis of the
localization is that the analysis of this kind
involves problems with many cracks. To
permit the investigation of the stability of the
crack patterns with the smeared crack models,
the discrete irreversible variables are
introduced to the models. As it is seen from the
derivation and the results, the introduced
irreversible variables, which are the crack
displacement variables, allow the energy of the
system to be expressed as a function of the
discrete 1rreversible variables. Therefore, the
stationary condition of the energy with respect
to these discrete irreversible variables can be
done easily. Consequently, we can use the
smeared crack models both for computing the
unknown displacements and for checking the
stability of the crack patterns.

Nevertheless, there are still many more
problems, related to the analysis of the
cracking localization, to be solved. For
complex localization problems, such as the
four-point bending problem, there are chances
that there will be many stable crack patterns
occurring at the same time. Because of the
complicated crack patterns, it is not easy to
single out the correct solutions. The complete



and efficient analysis methods still have to be
developed.
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problems of concrete beams with long notches
[61. The others are cases where the required
solutions, such as the ultimate loads, are not
sensitive to the locations of the localized cracks
[S]. However, this second approach is not
appropriate for general cases since the locations
of the localized cracks may not be easily
predicted or the required solutions may be
sensitive to the locations of the cracks.

In the analysis of the cracking
focalization, which  involves  irreversible
processes, consideration of stability and

bifurcation of equilibrium states with respect to
irreversible parameters is one of the tasks to be
done. Many researchers have considered the
stability and bifurcation of the equilibrium states
by investigating the definiteness of the stiffness
matrices (Hessian Matrices) (7, 8, 9]. When the
matrix 5 positive-definite, the eguilibrium is
stable. The same theory can be applied to the
analysis of the cracking localization. However,
cracking is an trreversible process. To consider
stability and bifurcation of irreversibie
processes, the stationary condition of the energy
of the system with respect to irreversible
parameters has to be investigated {10, 11, 12].
For this reason, the expression of the energy. in
terms of the irreversible parameters is required.
For crack problems, the irreversible parameters
can be the discrete irreversible crack opening
displacements in the discrete crack approach or
the irreversible crack strains in the smeared
crack approach. In the discrete crack approach,
the crack opening displacements are usually
discretized along crack paths and treated as the
degrees of freedom in the analysis. The energy
of the system can be expressed in terms of these
degrees of freedom. Computing the first and
second variations of the energy with respect to
these discrete crack opening displacements can
be done easily by employing ordinary calculus
[12}. In the smeared crack approach, the energy
is expressed in terms of irreversible crack
strains, which are functions of position and are
generally not discretized. To compute the first
and second variations of the energy with respect
to these crack straing, a complex mathematics
involving the calculus of variations must be
employed. This fact implies that the discrete
crack approach in the finite element method may
be more suitable for the cracking localization
analysis than the smeared crack approach.
However, the discrete crack approach

29

may not be the best choice for problems with
many cracks. In the cracking localization
analysts, there will be many cracks appearing in
the domain. Having many cracks m the domain
leads to many degrees of freedom. Furthermore,
as the anumber of cracks increases, the mesh
topology of the problem may have to be
changed significantly to cope with the new crack
patterns. In addition, the singularity problem of
the system stiffness equation may also arise.
These problems can be mostly avoided if the
smeared crack approach is employed. In the
smeared crack models, no increase in the
number of the degrees of freedom or change in
the mesh topology is required during the
propagation of cracks, Although the smeared
crack models may also face the singularity
problem of the system in case of softening
materials, the problem is less serious than that of
the discrete crack models.

To avoid the drawbacks in both
approaches, in this study, discrete irreversible
variables are introduced in the smeared crack
models. To this end, a mixed formulation of the
finite element method that includes the
discretization of the displacement and crack
strain fields s proposed. The energy of the
system is written in terms of the discretized
displacements and crack strains. Consequently,
the stability of crack patterns with respect to the
discretized irreversible crack strains can be
easily evaluated, and the cracking localization
can be discussed.

In this paper, the derivation of the proposed
mixed formulation is shown. Afier that, the
validity of the proposed technique is checked by
solving a benchmark umaxial problem using
one- and two-dimensional elements. The
obtained resuits show promising capability of
the method for the analysis of the cracking
localization.

2. Mixed Finite Element Formulation for
Analysis of Cracking Localization

The fundamental scheme of the smeared
crack models [1, 13, 14] is the decomposition of
the total strain increment Ag into the strain
increments of an intact solid part Ag” and a

cracked part A", ie.,

Ae = A’ + A7, (1)
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displacement and local crack strain increments.

For the i* element in the finitc element

analysis, we have

Au = NAU (10a)
Aécr — NcrAiEcr (10b)

where N and N represent the shape function
matrices for the displacement and local crack

straint incremeunts, respectively. In addition, A'U

and A'E“ represent the nodal displacement and
nodal local crack strain increment vectors,
respectively.
) Note that the local crack strain increments
are not continuous across elements and the nodal
local crack strain increments of the same node
for different elements can be different. The
continuity of the local crack strain increments
between elements is not required and must not
be enforced. One example is a problem with one
cracked element surrounded by uncracked
elements. In the cracked element including its
boundary, non-zero crack strain increments (see
Fig. 1) can be expected. However, in the
surrounding uncracked elements, the crack
strain increments are expected to be zero
because there is no crack in those elements. On
the contrary, the total displacement increments
must be continuous across the elements.

By substituting Eq. (1) into Eq. (9), the
total energy increment for the i* element is
rewritten as

ATl = % [ae- 867} D*(ae - ae~ Jav
14

I ":.r nrAscrdV

- [Au” Afdy - IAu AtdS.

“—sM

(11)

From Eq. (10a), we write the total strain
increment in terms of the nodal displacement
increment, i.e.,

At =BAU. (12)
Substituting Eq. (10b) into Eq. (3) yields

Ae” = TN“AES. (13)

31

Shher
cracked element - A'E

(KIS EI 3

7 V va
/ / 23/, -

16

12

intact elements

Fig. 1 A problem with one cracked element
surrounded by uncracked elements

Substituting Eqs. {12) and (13) into Eq.
(11), we get

L J’A’U"B’D"BA'UdV
2
_1 IA"UTBTD"TN"A"E”’Q'V
2 ¥
—% J-A"E"TN"TTTD"BA'UdV
+ % | AR N T DTN AR~ dV
¥
+1 IA’E”’TN"Tﬁ"N“A’ﬁJ"dV
2 v
- jA"UTNTAde— j’A‘U’N’AtdS.
¥ 5

(14)
Applying the stationary condition to Eq.
(14) and assuming that both D' and D are
symmetric, we get
&(am)=5(x'UT ) [B"D"BAVAU
¥
AJUT IBTDfJTNCrdVAJEcr
J(A' ) N T"D*BdVA'U
+(5(A' ) N T DTN VA E”
+5(A’ ) N DTN VAR
~5(auT) j NTAfaV
v
- S{xUT}NT Ads
5

=0.
(15)
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and J(A'E"T)

Since  S(AU7) are
arbitrary, we obtain the element stiffness
equation for the i element, i.e.,

k, k,| AU Ar
[ 11 IZ:H :AC’\I_{ } (]6)
k2| Ky ‘A E J) 0
where
k, = [B"D"BdV
V
k=~ [B'D"TN"aV
v
Ky, =- [N T DBV
¥
Ky = J’N"T(ﬁ" ST D XN ay
;
Ar= [N"AfaV + [N as.
I’ S
(17)

After assembling all element stiffness
equations and  applying prescribed
displacements and forces, we arrange the system
stiffness equation in the following form, i.e.,

[K” KIIHAU} {ARI}
. b= (18)
K, K, ||AE” AR,

where AU and AE“ represent, respectively, the
nodal displacement increment and nodal local
crack strain increment vectors for the system
stiffness equation.

The static condensation is then used to
remove the nodal displacement increment from
the obtained system stiffniess  equation.
Consequently, the equation can be written in the
following form, i.e.,

K“AEY = AR (19)
where K* and AR“ are defined as
KY =K, - K]lKI—I!KIZ

AR =AR, —K ,K[/AR,. (20)

To investigate the stability of crack

patterns, we compute the eigenvalues of K. If
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all of the eigenvalues are positive, it means that
the solution is stable with respect to the current
crack pattern. Otherwise, the solution is unstable
and bifurcation occurs [10, 11, 15]. This will
finally result in the localization of the cracks.
Note that the proposed scheme is not used to
obtain the displacement solution. The scheme is
used only for stability consideration. The
displacement sclution will be obtained from the
original smeared crack model where the only
basic unknowns are the nodal displacements.

3. Results

In order to illustrate the advantage of the
proposed method in the analysis of the cracking
localization, a simple one-dimensional uniaxial
problem shown in Fig. 2 is considered. The bar
has one fixed support at one end. At the other
end, the controlled displacement & is applied
(see Fig. 2a). The length of the bar is 2L and the
area is A. The material is assumed to be elastic
with Young’s modulus equal to E (see Fig. 2c).
The bar is discretized into two elements, each of
which has the length of L (see Fig. 2a). Each
element can accommodate one crack. The
characteristic length of each crack is equal to the
length of the element. The conventional linear
shape function is used for the displacement and
local crack strain interpolations.

Assume no crack at the beginning. After
that, the controlled displacement # is increased
until the stress in the bar reaches the tensile
strength  f,. By the strength criterion, both

elements are cracked (see Fig. 2b), and they are
changed from the elastic elements into the
smeared crack elements. Thereafter, the cracks
follow the constitutive law for cracks (see Fig.
2d). For opening cracks, a linear relationship
between the transmitted tensile stress and the
crack opening displacemeni (COD) with the

slope equal to H is assumed. Since,

for ordinary cracks, sofiening behavior is always
observed { H < 0), this relationship is called the
tenston-softening relationship. It can be seen
from the tension-softening relationship (/7 <0)
that when a crack opens wider, the tensile stress
transmitted across the crack decreases. This
tension-softening relationship, which is used for
all opening cracks, is also called the loading
path.
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d) Constitutive law for cracks
(tension-softenning curve)

Fig. 2 Untaxial problem using one-dimensional bar elements

Generally, during loading, there may be
some cracks that stop opening. These cracks are
the unloading cracks. When a crack stops
opening, its COD stops increasing. In this study,
cracking s assumed to be an irreversible
process, which means that CODs will not
decrease. Therefore, each of these cracks will
follow a vertical unloading path with a constant
COD equal to the current COD that the crack
has just before the unloading occurs (see Fig.
2d). For cracks with different CODs when the
unloading occurs, different vertical unloading
paths will be used.

Consider an incremental step after the
initiation of the cracks. Note that both elements
are now the smeared crack elements.
Assembling all element stiffness equations given
by Eq. (16), we write the system stiffness
equation as
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smeared cracks

opening crack

/ loading path

2) Opening crack using the loading path

4

b} Unloading crack using the unloading path

Fig. 3 Solution with one unloading crack

Ao

where H = i Here, [

=HL =HL.

o

represents the characteristic length of the crack
and ts equal to L. In addition, AU, and AR,

represent the nodal displacement increment and
the nodal force increment of the node 1,

respectively. Moreover, A'EY represents the
nodal focal crack strain increment of the node

and, at the same time, of the element /.
Since  Al,, AU, . and AR, are
prescribed, the equation can be reduced into

(35 £ _E £ E

L 2 2 2 2

,EMM o] 0 AlZ,
2 3 6 AE

A—EE‘FHE E+H 0 A'é;’

L]

3 3 foe
52 z o (ErAlledil i-‘?"
o :
£ (e ) (e Ak
= 0 [V S e
L2 6 3
Au
5
0
a3
7
Au
7

(22)

Using the static condensation to remove
aAl,, we get

fsevsd) (£+4d)  3E 3 |[ar
ar|levait) (e+sit) 3 e (|agr
21| 3E 38 [seesd) (peaid)|lwé;
3E 3E £+ait) [se+8il)]|a'ér
Eai
_ A |Eau
T4 | £aa
EAii

(23)

The eigenvalues of the obtained stiffness
AHL  AE+ BDL  A(E + H)L

matrix are

2 6 6
and M All eigenvalues will be

positive only when H >0. This means that the
crack pattern having two cracks opening at the
same time is unstable unless hardening behavior

occurs at the cracks (A > 0). In reality, cracks
will exhibit softening behavior. As a result, the
two cracks cannot continue to open at the same

time.

If we assume that the crack in the
element 2 undergoes the elastic unloading, this
crack will follow the verlical unloading path
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shown in Fig. 3b. The crack in the element 1,
which still continues to open, will follow the
loading path shown in Fig. 3a. Note, in Fig. 3b,
that the unloading path for the crack in the
element 2 has the COD equal to zero. This is
because, at the current state, the cracks in both
elements are just initiated and the CODs are still
exactly equal to zero. Remember that an
incremental step afier the initiation of the cracks
is being considered and the stable solution path
for this incremental step is being searched. With
the crack in the element 2 unloading, the system
stiffness equation wiil contain only one crack
element, ie.,

(£ £, £ E ]
L L 2 2
Tded Tl
E E Y
Ado-2= o o v Lolaeh
Li . =) (1A Er '
E_E o lesahlecd) %% g}
12 1., 6, |B&
E_E, \evAlled
L2 2 6 3

(24)

Employing the same process of applying

the prescribed boundary conditions and using
the static condensation, we obtain

AL[(SE+8HY(E+4H) || 8E; =g{£mz}
24| (E+4H)SE+8H) ||aEr | 4 |BAU[
(25)

£ ey % RN
P " two cracks: stable

one crack: stable

two cracks: unstable
one crack: stable

u

W 2w

- er2 ! erl

W 2w, 2L,
E

" two cracks: unstable
one crack: unstable

The eigenvalues of the stiffness matrix

are LEFHIL 4 ﬁ@?ﬂ. Both will be

6
. . ~ E
positive at the same time only when H > -3

Assuming that the crack in the element |
undergoes the elastic unloading will yield the
same result.

In summary, immediately after the two
elements are cracked due to the strength
criterion employed, the equilibrium path with
two opening cracks is unstable and bifurcation
occurs unless the two cracks exhibit hardening
behavior, ie., when H >0. In reality, cracks
will exhibit softening behavior. Therefore, the
two cracks cannot continue to open at the same
time. If one of the cracks undergoes the elastic
unloading, the stable equilibrium path can be

observed as long as H >—§%. In the case of

H< _EEE’ even the equilibrium path with one

opening crack is not stable. Fig. 4 schematically
shows the responses, obtained from the original
smeared crack finite element model, for
different cases of consideration. For this uniaxial
problem, the responses obtained from the finite
element model are exact since the linear shape
function used in each element can exactly
represent the exact displacement solutions,
which are piecewise-linear functions of the axial
coordinate. Note that the exact solutions mean

—£<H<O
2L

2L coD

'

a <
T(Wcrz<w
VA Hso o e
3 g
H<f£
CoD 2L
COD

oy < 2
E

Fig. 4 Responses of the uniaxial problem using one-dimensional bar elements

-
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the solutions that are obtained exactly from the
equilibrium although they may not be stable.
From Fig. 4, it can be scen that, when there is

one opening crack and H < _EEZ’ the obtained

responses are the responses with snapback
behavior. Under the displacement control, the
snapback responses are always unstable.

Next, consider a uniaxial problem shown
in Fig. 5. Same as the previous problem, the bar
has a fixed support at one end and the
displacement is controlled at the other end.
However, this time, the two-dimensional
elements will be used. The dimensions of the bar
are as shown in the figure. The material is
assumed to be elastic with Young’s Modulus
and Poisson’s ratio equal to 25,000 and O,
respectively. The bar is discretized into two
four-noded quadrilateral elements as also shown
in the same figure.. Each element can
accommodate one crack. Singe the alignment of
each crack will be vertical and the elements are
perfect rectangies, the characteristic length of
each crack is equal to the horizontal dimension
of the element. The conventional bilinear shape
function is used for.the displacement and local
crack strain interpolations.

contolled displacement %
6 H

200

EJ

2

4
|

200 200
thickness = 100

a) Before cracking,

controlied displacement If
4 5 6

smeared cracks

b) After cracking

Fig. 5 Uniaxial problem using two-
dimensional elements

The controlled displacement & s
increased until the tensile stress in the bar
reaches the tensile strength f,, which initiates
the cracks in both elements. After that, opening
cracks are assumed to follow the constitutive
law for cracks defined by Eq. (7). For this
problem, the crack constitutive matrix D s

expressed as
b= 2
0 G

where A and G represent the mode | and
mode Il crack madulus, respectively.

Since the problem is purely uniaxial and
there will be only mode I cracking, the
parameter G is irrelevant and a small value
{0.00001) is used just to prevent spurious mode
[1 instability. For mode | cracking, various linear
tension-softening relationships shown in Fig. 6

(26)

are investigated. First, the tension-softening -

curve 4, which has the critical crack opening

displacement equal to 0.05, is used. Note that

the critical crack opening displacement is the

crack opening displacement at which the stress-

free crack occurs. For this tension-softening

Fofoe g
Ag

=[5 2 oo,
0.05

Again, consider an incremental step after
the initiation of the cracks. After assembling all
element stiffness equations and applying all
prescribed boundary conditions, the static
condensation is used to remove all nodal
displacement degrees of freedom and the

stiffness K“ in Eq. (19) is obtained. Since two

curve, equal to

[e)

. -unioading path
' /Ioading path

0020032 005" “OP

Fig. 6 Tension-softening curves for the
problem using two-dimenstonal elements
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opening cracks are being assumed, there will be
totatly 16 local crack strain increment degrees of
freedom, eight from each of the two elements.

Therefore, K is a 16x16 matrix. The

eigenvalue analysis is performed on K and the
eigenvalues are obtained as

[ 5.6667x10" ]
5.6667x10°
5.6667 % 10°
1.8889x10°
1.8889x 10°
1.3889x10°
1.3889x10°

10.000
10.000
1.7000x 10"

—~8.0000x10°
4.0569x10°
4.1667x10°
4.5257x10°
3.1326x10°

|- 1.6368x10° |

Since not all eigenvalues are positive, the
current crack pattern is not stable. Therefore,
one of the cracks must undergo the elastic
unloading. The element that undergoes the
elastic unloading is incrementally considered as
an elastic element without crack. In this
problem, there are again two alternatives since
either of the two elements can be selected as the
unloading element. Both alternatives are
investigated and the eigenvalues of the modified

stiffness matrices K“ for both cases are
obtained as
Opening crack in the | Opening crack in the—‘
first element second element
4.5000x10° (l.sssgx 10°
1.8889x10° 4.5000x10°
5.6667x10° 5.6667x10°
4.5997x10° 1.7614x10°
1.7614x10° 1.3889x 10°
1.3889x10° 3.2680x10°
39216x10° 4.5997x10°
| 10.000 |~ 10.000
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It can be seen that the solutions with only
one opening crack are stable because all the
eigenvalues are positive. It is interesting to
check whether the solutions with one opening
crack will be always stable even for different
tension-softening curves. From the previous
problem, it is found that steep tension-softening
curves can lead to unstable one-opening-crack
solutions. To investigate this matter, the tension-
softening curves B and C in Fig. 6 are tried. In

these B and C cases, H is equal to
.z 200 and 2 200, respectively.
0.02 0.032

From the eigenvalue analyses, the eigenvalues

of the stifiness matrices K for the case B are
obtained as

Opening crack in the | Opening crack in the

first element second element

[ 1.6667x10° ] | 5.5556x10° |
5.5556x10° 1.6667 x10°
~7.5000x10° ~7.5000x10°
1.3889%10° 1.3889x1¢°

10.000 10.000

3.8603x10° 3.2680 x10°
3.9216x10° 3.8603x10°

| -1.4991x10° | -1.4991x10° |

In addition, the eigenvalues for the case C are
obtained as

Opening crack in the | Opening crack in the
first element second efement
[ 1.3889x10° ] [ 1.3889x10° |
1.3889x10° 1.3889x10°
-2.1458x107® -1.9667x107°
10.000 4.1667x10°
4.1667x10° 10.000
4.1667x10° 4.1667x10°
6.9444 x 10° 6.9444 x10*
| 3.9216x10° | | 3.2680x10° |

From the result, it can be seen that the
tension-softening curve B yields unstable
solutions even when there is only one opening
crack. As for the tension-softening curve C, one
of the obtained eigenvalues in each of the two
solutions is very small compared to the rest of
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{B) one crack:unstable
{C) one crack:unstable
(A4) one crack:stable
(A) two cracks:unstable
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>

0.10

0.02 0.032 0.05

Fig. 7 Responses of the uniaxial problem for
various tension-softening curves

the eigenvalues and must actually be considered

as a zero, Therefore, the tension-softening curve
C actually defines a boundary between stable
and unstable one-opening-crack solutions. For
those cases with tension-softening curves
steeper than the curve C (e.g. the curve B}, the
solutions with one opening crack are not stable
and they are in fact the snap-back responses. For
those cases with tension-softening curves flatter
than the curve C (e.g. the curve 4), the solutions
with one opening crack are stable. Note that the
same tensile strength is assumed for all cases.

Fig. 7 shows the responses, obtained from
the smeared crack finite element model, for all
cases A, B and C. For the case A4, the response
without the localization is also plotted. Similar
to the previous example, these results are also
exact because the shape function used is capable
of representing the exact solutions of this
problem. From the results, it is clear that the
localization judgment s necessary if the
accurate solution is to be obtained.

4. Conclusion

The smeared crack approach can be used
in the analysis of the cracking localization by
employing the mixed formulation in the finite
element method. In the formulation, the
displacements and crack strains are both
discretized. The discretization of the crack
strains, which are the imreversible varnables,
allows the consideration of stability and
bifurcation of equilibrium states with respect to
the irreversible variables to be done easily.
Therefore, the cracking localization can be
subsequently discussed. The technique is tried
with an axial bar problem employing both one-
dimensional two-noded and two-dimensional
four-noded elements. The obtained results show
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promising capability of the method for the
analysis of the cracking localization.

5. Acknowledgments

The authors are grateful to the Thailand
Research Fund (TRF) for providing the financial
support to this study.

6. References

[1] Rots, . G. and de Borst, R. Analysis of
Mixed-Mode Fracture in Concrete, Journal
of Engineering Mechanics, Vol.113, No.11,
pp-1739-1758, 1987.

Rots, J. G., Stress Rotation and Siress
Locking in  Smeared Analysis of
Separation, Fracture Toughness and
Fracture Energy: Test Methods for
Concrete and Rock, H. Takahashi, Folker
H. Wittmann and H. Mihashi (Eds.),
Balkema, Rotterdam, pp.367-382, 1989.
Dvorkin, E. N. and Assanelli, A. P.,, 2D
Finite  Elements with  Displacement
Interpolated Embedded lLocalization Lines:
The Analysis of Fracture in Frictional
Materials, Computer Methods in Applied
Mechanics and  Engineering, Vol.90,
pp.B29-844, {991.

Jirasek, M. and Zimmermann, T., Rotating
Crack Model with Transition to Scalar

(2]

{3

[4]

Damage,  Journal  of  Engineering
Mechanics, Vol.124, No.J3, pp.277-284,
1998,

Shirai, N., JCI round robin analysis of size
effect in concrete structures, Size Effect in
Concrete  Structures, H. Mihashi, H.
Okamura and Z. P. Bazant (Eds.), E&FN
Spon, London, pp.295-322, 1994.
Carpinteri, A., Softening and Snap-Back
Instability in Cohesive Solids, International
Journal  for Numerical Methods in
Engineering, Vol.28, pp.1521-1537, 1989.
Riks, E., An Incremental Approach to the
Solution- of Snapping and Buckling
Problems, Int. J. Solids Structures, Vol.15,
pp-529-551, 1979.

de Borst, R., Computaticn of Post-
Bifurcation and Post-Failure Behavior of
Strain-Softening Solids, Computers and
Structures, Vol.25, No.2, pp.211-224, 1987.
Valente, S., Bifurcation Phenomena in
Cohesive Crack Propagation, Computers

(5]

(6]

[7]

[8]

{9



Thammasat Int. J. Sc. Tech., Vol.5, No.3, September-December 2000

and Structures, Vol.44, No.1/2, pp.55-62 ,
1992.

[10] Nguyen, Q. S., Bifurcation and Post-
Bifurcation Analysis in Plasticity and
Brittle Fracture, J. Mech. Phys. Solids,
Vol.35, No.3, pp.303-324, 1987,

[11] Herti, H. and Okui, Y., Thermomechanics
and Micromechanics-Based Continuum
Theory for Localization Phenomena,
Fracture of Brittle, Disordered Materials:
Concrete, Rock, and Ceramics, G. Baker
and B. L. Karihaloo (Eds.), E&FN Spon,
London. pp.391-405, 1995.

[12] Brocca, M., Analysis of Cracking
Localization and Crack Growth Based on
Thermomechanical Theory of Localization.

39

Master of Engineering Thesis, The
University of Tokvo, Tokyo, 1997.

[13] Bazant, Z. P. and Oh, B. H., Crack Band
Theory for Fracture of Concrete, Materiaux

et Constructions, Vol.16, No.93, pp.155-

177, 1983.
[14] Shah, 8. P, Swantz, S. E. and Ouyang, C,,
Fracture Mechanics of Concrete:

Applications of Fracture Mechanics to
Concrete, Rock, and Other Quasi-Brittle
Materials, John Wiley & Sons, New York,
1995,

[15] Bazant, Z. P. and Cedolin, L., Stability of
Structures: Elastic, Inelastic, Fracture, and
Damage Theories, Oxford University Press,
New York, 1991.



TR OIRTIINS ATHIISpnazens 10 12 T 3 v, 2544

RESEARCH AND DEVELOPMENT JOURNAL VOLUME 12 N( 3, 2001

Cracking Localization Analysis Using a Specially Treated Smeared Crack
Finite Element Model with Energy Consideration
Pruettha Nanakorn and Vasan Thitawat
Sirindhorn International Institute of Technology, Thammasat University
PO Box 22, Thammasat-Rangsit Post Gffice
Pathumthani 12121, Thailand
Phone (66-2) 986-9011-13 Ext. 1906
Fax (66-2) 986-9011-13 Ext. 1900
E-Mail: nanakorn@siit.tu.ac.th

Abstract

In this paper, an analysis method to analyze
problems involving cracking localization 1is
proposed. The proposed analysis method
empioyed the well-known smeared crack
model. Nevertheless, in the finite element
formulation, a rmixed formulation that
discretizes not only displacements but also
crack strains is used. This is to allow stability
consideration of crack patterns to be done
efficiently. Stability analysis of crack patterns
is done by performing eigenvalue analysis of
Hessian matrices obtained from the mixed
finite element formulation. At each bifurcation
point identified by the stability analysis, the
actual equilibrium path is incrementally traced
by searching for a crack pattern with the
ninimum total potential energy increment.
Search algorithms employed include an
exhaustive search algorithm and a genetic
algorithm. Finally, the proposed analysis
method is used to analyze the four-point
bending problem of plain concrete and the
results are discussed.

1. Introduction

Tensile failure of quasi-brittle materials
such as concrete 1s commonly known to start
from formation of cracks, and propagation of
the newly formed cracks or existing defects.
After that, these cracks will localize into one or
a few cracks. This will subsequently lead to the
final failure. In order to capture the ultimate
capacity of such materials in a structure,
consideration of cracking localization cannot
generally be neglected. - However, the
consideration of cracking localization needs a
very expensive computation because solution

11

methods for solving localization problems
involve checking stability and bifurcation of
many different equilibrium paths.
Consequently, many researchers avoid the
consideration of cracking localization by either
allowing many cracks to grow without the
consideration of Jocalization [1-3] or by
assuming positions for localized cracks {4].
The first approach is not realistic and can
generally lead to inaccurate results. Having
many cracks without localization allows an
incorrect amount of energy to dissipate from
the domain. Thus, obtained results will also be
inaccurate. However, in some cases where the
gradient of stress is very high, it is possible that
major cracks will finally prevail and other
cracks will undergo elastic unloading even
when cracking localization is not considered.
The second approach, which assumes positions
of localized cracks prior to analysis, may yield
reasonable results in some cases. These include
cases where assumed positions of localized
cracks are reasonably or undoubtedly correct
and cases where solutions are not sensitive to
locations of localized cracks. Nevertheless, the
approach is not appropriate for general cases
since locations of localized cracks may not be
easily predicted or solutions may be sensitive
to locations of cracks.

Consideration of stability and bifurcation of
equilibrium states is one of the major tasks to
be done in the analysis of cracking localization.
Many researchers have considered stability and
bifurcation of equilibrium  states by
investigating definiteness of stiffness matrices
[5-6]. When a stiffness matrix is positive-
definite, an equilibrium state is considered
stable. The same theory can be applied to the

RECEIVED 16 JULY, 2001
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analysis of cracking localization. However,
cracking is an irreversible process. In this case,
stability and bifurcation of equilibrium states
can be determined by investigating definiteness
of stiffness  matrices  (Hessian  matrices)
constructed with respect (o irreversible
parameters [7]. These inrreversible parameters
can be crack opening displacements in the
discrete crack approach or crack strains in the
smeared crack  approach.  Investigating
definiteness of Hessian matrices will provide
information on stability of equilibrium paths.
Consequently, bifurcation points can be
located. Nevertheless, tracing the actual
equilibrium path needs some more effort.
Employing Gibbs’ statement of the second
law of thermodynamics, Nemat-Nasser (8]
pointed out that the equilibrium path that
makes the total potential energy an absolute
minimum would also render the elastic energy
an absolute minimum. In addition, this path
will also be the actual equilibrium path [9].
Employing the same concept, Brocca [10] used
crack opening displacements in the discrete
crack finite element analysis as irreversible
parameters in the analysis of cracking
localization. In his work, Hessian matrices
constructed with respect to irreversible crack
opening displacements are used to investigate
stability and bifurcation of crack patterns. In
addition, the equilibrium path is also traced by
using the Simplex method to find the path with
the minimum total potential energy. From his
work, it is clear that Hessian matrices
constructed  with  respect to irreversible
parameters can easily be obtained when the
discrete crack approach is employed because
irreversible parameters are discrete.
Nevertheless, the discrete crack approach is not
suitable for problems with many cracks in the
domain. Usually, in the cracking localization
analysis, there will be many cracks occurring
in the domain. As the number of cracks
increases, the mesh topology may have to be
changed to cope with the new crack patterns
and this leads to more degrees of freedom. On
the other hand, the smeared crack approach,
which is more suitable for problems with many
cracks, does not provide any discrete

RESEARCH AND DEVELOPMENT JOURNAL VOLUME 12 NO 3, 2004
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irreversible parameters for construction of
Hessian matrices. Another disadvantage of the
smeared crack approach is that, with this
approach, it is necessary to define the crack-
band width or the crack characteristic length.
For fairly regular meshes, the characteristic
length is frequently determined in an intuitive
way which 1s difficult to generalize in a formal
manner for irregular meshes and arbitrary crack
directtons. However, for two-dimensional
domains, this problem can be overcome. Oliver
[11}] proposed a general approach for
calculation of the characteristic length. In his
study, a crack is modeled as a limiting case of
two singular lines that coincide with the
boundary of elements covering the crack path.
The expression for the characteristic length is
obtained by analyzing the energy dissipated
from the band bounded by these two singular
lines.

To allow the consideration of cracking
localization in the smeared crack model,
Nanakorn and Soparat [12] proposed an
analysis method that uses the smeared crack
finite element model with a mixed formulation.
In their work, the discretization is performed
not only on the displacement field but also on
the crack strain field. The newly introduced
discrete nodal crack strain variables serve as
the discrete irreversible variables needed for
the localization analysis. However, their work
is limited to stability analysis of crack patterns,
and there is no attempt to trace the cemplete
equilibrium path.

In this study, an analysis method for
cracking localization 1s proposed. In the
proposed method, stability of crack patterns is
investigated by employing the analysis method
proposed by Nanakorn and Soparat [12]. When
the current crack pattern becomes unstable, the
stable crack pattern with the minimum total
potential energy is searched for and selected as
the solution path [B]. In the search for the
stable crack patiern with the minimum total
potential energy, an exhaustive search
algorithm and a genetic algorithm are used.
The proposed analysis method is used to solve
the cracking localization problem of a four-
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point bending beam of plain concrete. Finally,
the obtained results are discussed.

2. Smeared Crack Model with a Mixed
Finite Element Formuiation
In the smeared crack model, the total strain
increment Ag is decomposed into the strain
increment of the intact elastic solid Ag” and

the strain increment of the cracked solid Ag™,
ie.,
Ae = Ae” +Ae”. (O
The relationship between the global crack
strain increment Ag” and the local crack strain
increment Ag is expressed as

Ag” =TAg” (2)
where T is the transformation matrix, which
can be written as a function of the angle
between the vector normal (o the crack surfaces
and the global x-axis.

By following Nanakorn and Soparat [12],
the total potential energy increment of a
cracked domain V is expressed as

AT = ATTY + AIT?

1 j Ae’ D A" dV
— 2 1%

= (3)
— jAuTAfdv _ jAuTAtdS
Vv 5

1 . - .
+ #JAE“TD"AE(rdV )
2

The total potential energy increment All
shown above consists of two parts that are the
mechanical potential energy increment AIT"
and the dissipated energy increment AIT”.
Here, Au denotes the displacement increment

vector. In addition, D®and D denote the
constitutive matrices for the intact elastic solid
and the cracked solid, respectively. Finally, Af
and At represent the body force increment
vector and the surface traction increment
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Fig. 1 A problem with one cracked element
surrounded by intact elastic elements [12]

vector, respectively. :
Discretizing both displacement and local
crack strain increments, we have for the i

element in the finite element analysis [12]

Au=NA'U, (4a)
Aéc'r — N('f’AiErr (4b)

where N and N7 represent the shape function
matrices for the displacement increment and
the local crack strain increment, respectively.

In addition, A'U and A'E” represent the
nodal displacement increment and the nodal
local crack strain increment, respectively. Note
that the focal crack strain increments are not
continuous across elements and the nodal local
crack strain increments of the same node for
different elements can be different. One
example is a problem with one cracked element
surrounded by uncracked elements (see Fig. 1).
In the cracked element including its boundary,

non-zero crack strain  increments can be
expected. However, in the surrounding
uncracked  elements, the crack  strain

increments are expected to be zero becausc
there is no crack in those elements. On the
contrary, the total displacement increments
must be continuous across all the elements.

Erom (2) and (4), the total strain increment
and the global crack strain increment are
expressed as

Ae=BA'U,
AE(T — TN(‘rAiEA:vr .

(5a)
(5b)
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From (1), (3) and (5), the total potential
energy increment can be expressed as

Al = % jA"UTBTD“BA*'Udv
1%
- % jA"UTBTD”TN“A'I?:"dv
v
. é- j AL N TTDUBA U4V
v (6)
+ % jA"E”TN"TTTD”TN AR AV
v
1 ¢ n .
+ E jAIE{rTNfrTD(‘errAlE(rdV
13

- jA"UTNTAfdv - jA"UTNTAtdS_
W 5

Applying  the  stationary  condition
J(AH):O, we obtain the element stiffness

equation for the i element as

k, k,||l AU Ar
] el
where  k,, = [B"D'BaV,
k, = V—J’BTD"TN”(IV ,
v
k,, =- [N T"D’BaV,
v
k= [N (D7 + T DTN aV,
v
Ar = [N"AfdV + [N7AtdS .
After assevmbling alls element stiffness
equations and applying prescribed

displacements and forces, the system stiffness
equation is arranged as

K, K,|[AU] AR, -
K, K, ||AE"[ |AR,
where AU and AE“ are the nodal

displacement increment and the nodal local
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crack strain increment of the system,
respectively.

The static condensation is then used to
remove the nodal displacement increment from
the obtained system matrix  equation.
Consequently, the equation can be wrilten in

the following form, 1.e.,

KFFAECV — AI{F! (9)

where K and AR are defined as
KU:KZZ_KZIK;I]KIZ’ (10a)
AR = AR, —KZ,K,]'AR-,. (10b)

In the consideration of stability of crack
patterns, the eigenvalue analysis of K is
performed. If all the eigenvalues are positive,
then it means that the stationary solution in (9)
is stable with respect to the current crack
pattern. Otherwise, the stationary solution is
unstable and bifurcation occurs. Note that this
scheme is only used for stability analysis of
crack patterns, not for obtaining the
displacement solution. The displacement
solution will be obtained from the original

smeared crack model where the basic
unknowns are the nodal displacement
merements.

3. Equilibrium Path with The Minimum

Total Potential Energy

When the equilibrium path reaches a
bifurcation point, a fan of many possible
equilibrium  paths  emanates from the
bifurcation point. In fact, if instability occurs in
the real system, the actual equilibrium path is
the path that contains the minimum total
potential energy [9] or the minimum elastic
strain energy [8]. These two conditions are
actually the same [8], if one defines the total
potential energy in the usual way. In this study,
the minimum total potential energy criterion is
employed. However, since the analysis is
performed incrementally, and the total
potential energy is written in the incremental
form [sec (3)], the stable path with the
minimum total potential energy increment is
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Fig. 2 Examples of coding of crack patterns

the desired solution path.

In order to obtain the solution path with the
minimum total potential energy increment,
energy increments of all possible equilibrium
paths, which depend on their crack patterns,
can be compared. This approach of comparing
all possible solutions is essentially an
exhaustive search. The algorithm for this
search approach is simple and straightforward.
Nevertheless, 1t is obvious that the technique is
expensive and suitable only for small problems
where the complete search is still possible. In
the case of larger problems where many cracks
occur in the domain and, as a result, many
crack patterns are possible, the exhaustive
search may not be practical and it is advisable
to employ an appropriate optimization
technigue to find the mimmum energy path. In
this study, a genetic algorithm (GA) [13] is
used for this purpose because this optimization
technique 1s suitable for problems with discrete
variables. Variables in the minimization
problem of the total potential energy increment
are discrete statuses of cracks that can be either
opening or unloading. Since GAs do not
require the evaluation of the gradient of the
function being minimized or maximized, the
evaluation of the total potential energy
increment is enough for the minimization
process.

In this study, the simple GA is employed. It
1s composed of three different operators, i.e.,
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Fig. 3 One-point crossover

reproduction,  crossover and  mutation
operators. These three operators are based on
the same basic elements in the real natural
genetics. The details of this technique can be
found in the literature [13-14].

In general, GAs do not directly work with
the parameters themselves. The algorithms
start with coding of the parameter set. For
coding, binary strings are most popular and
convenient. Each point in a search space, often
called “individual” in the GA terminology, is
represented by a single string of number 0’s
and 1’s. The optimization problem of this study
1s to minimize the total potential energy
increment. The total potential energy increment
to be minimized is a function of crack patterns.
Therefore, each crack pattern will be coded as
a binary string. The idea of the coding is to
have each bit in a binary string represent the
status of one particular crack. If the value of
the bit i1s one (1), it indicates that its
corresponding crack is opening. If the value of
the bit is zero (0), the corresponding crack 1s
unloading. Fig. 2 shows examples of the
coding of two different crack patterns. The
number of bits used in the string is equal to the
number of the existing crack paths.

In GAs, the reproduction operator defines a
process in which individuals are selected for
mating based on their fitness values relative to
that of the population. Fitness is defined as a
figure of merit. Individuals with higher fitness
values have higher probabilities of being
selected for mating and subsequent genetic
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Fig. 4 Two-point crossover
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Fig. 5 Uniform crossover

actions. Consequently, highly fit individuals
live and reproduce, and less fit individuals die.
In this study, a crack pattern that results in a
smaller total potential energy increment will be
given a higher fitness value.

In the crossover operator, new strings are
created by exchanging information among
strings. Many crossover operators exist in the
literature [13]. Generally, two strings are
selected at random as a crossover pair and
some portions of the t(wo strings are
exchanged. The two strings participating in the
crossover are known as parent strings and the
resulting strings are known as-children strings.
In this study, three types of crossover operator
are employed, i.e., one-point, two-point and
uniform crossover operators. Fig. 3 shows an
example of the one-point crossover. In this
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Fig. 6 Mutation

study, the one-point crossover is performed by
randomly selecting a crossing site along the
parent strings and by exchanging all bits on the
right hand side of the selected crossing site. In
the case of the two-point crossover, two
crossing sites are randomly selected and all the
bits between the two crossing sites of the two
parent strings are exchanged as shown in Fig.
4. For the uniform crossover, the number of
bits to be crossed over and their positions are
randomly determined. Fig. 5 shows an example
of this type of crossover in this study.

It is clear that the crossover operator may
yield better or worse children strings. To be
able to adjust the degree of the uncertainty of
the crossover phase, it is not necessary to use
all individuals in the mating pool in the
operator. This is done by adjusting the
probability that a crossover is performed
(crossover probability).

The last genetic algorithm operator is the
mutation operator. Fig. 6 shows an example of
the mutation operator employed in this study.
The mutation operator changes 1 to 0 and vice
versa at a randomly chosen bit. The operator is

used sparingly with a small probability
(mutation probability).
4. Analysis Procedure

In the analysis, the specimen under

consideration is analyzed by using the
conventional smeared crack model. Cracks are
initiated when the maximum tensile stress
reaches the tensile strength of the material.
After that, the cracks follow the tension-
softening curve, which is treated as one of the
material - properties. The tension-softening
curve is the relationship between the tensile
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Fig. 7 Four-point bending problem

stress transferred across the crack surfaces and
the crack opening displacement. Note that, in
this study, shear retention of cracks is assumed
negligible. As mentioned earlier, the analysis is
done incrementally. In each step, the stability
of the obtained crack patterm will be
investigated by performing eigenvalue analysis
of the matrix K obtained from the mixed
smeared crack finite element formulation [12].
If the crack pattern is found to be stable, the
analysis is continued to the next step. However,
if the crack pattern is unstable, the search for
the crack pattern with the minimum total
potential energy increment must be performed.
Here, if the number of possible crack patterns
is not very large, an exhaustive search can be
employed; otherwise, a GA will be used,
instead. It must be noted that, 1f a GA or
another optimization technique is used, the
obtained crack pattern may have a near-
minimum total potential energy increment, not
the true minimum one for the finite element
discretization being currently used. In order to
compare total potential energy increments of
different crack patterns, the energy for cases
with different crack patterns must be evaluated
under the same controlled parameter. In this
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Fig. 8 Specimen with different numbers of
allowable crack paths

study, the controlled displacement 1s used.
After the crack pattern with the minimum or
near-minimum total potential energy increment
i1s obtained, the analysis 1s carried on to the
next step. The same process 18 then repeated
and the actual equilibrium path can be traced.

5. Results

Here, the classical four-point bending beam
test of plain concrete shown in Fig. 7a is
investigated.  Specimen’s  dimension 15
300x100x100 mm. Controlled displacements
are applied at the top of the beam, 100 mm
from both ends. Young’s modulus and Poison’s
ratio used are 27.5 GPa and 0.2, respectively.
Unit weight of the material is 2,300 kg/m’. The
tension-softening curve used is shown 1n Fig.
7b. In the analysis, four-noded quadrilateral
elements are employed. The finite element
mesh consists of 2,232 elements and 2,288
nodes (see Fig. 7a).

For this problem, it can be reasonably
assumed that all crack paths are straight. To
simplify the problem, cracks will be aliowed to
occur only on the pre-specified paths. The
problem is solved both with and without the
specimen’s self-weight. When the self-weight
is neglected, the problem is solved with various
numbers of allowable crack paths as shown in
Fig. 8, and, in all of these cases with different
allowable crack paths, the equilibrtum path
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Fig. 9 Load-controtled displacement responses and crack patterns

with the minimum total potential energy
increment is  traced by employing an
exhaustive search. In addition, only for the case
with 31 allowable crack paths, a GA is also
employed for the search. When the self-weight
1s considered, the analysis is done only for the
case with 31 allowable crack paths, and the
equilibrium path with the minimum total
potential energy increment 1is ftraced by
employing both exhaustive search and GA. GA
parameters used in the analysis are shown in
Table 1.

Fig. 9a shows load-controlled displacement
responses for all of the calculations mentioned
above. Moreover, it also includes the case with
31 allowable crack paths when the cracking
localization 1s not considered. This additienal
case is performed without the self-weight and it
will allow the importance of the Jocalization
analysis to be observed. Fig. 9b shows crack
patterns obtained from these different cases at
the loading points indicated by black circular

Table | GA parameters

[ Population size 40 ]
Number of generations 40
Crossover probability | 0.80

Mutation probability 0.05 i

markers on every response curve. Af these
loading points, the main cracks in all cases
reach the length of 90 percent of the beam
depth. For the case with 31 allowable crack
paths with the localization consideration (the
cases D and E), it can be seen that the results
obtained from the exhaustive search and the
GA are exactly the same. Therefore, 1t is
shown that GAs can be used instead of the
exhaustive search. [t must be noted that the
time used by the exhaustive search is very
much longer than that used by the GA. For the
cases B, C, and D where no self-weight is
assumed, it can be seen that the obtained
results, both crack patterns. and response
curves, are not much different. Therefore, for
this problem, having only five allowable crack
paths that are distributed properly is sufficient
for obtaining the converged solution. Since i
can be observed {rom the crack patterns of the
cases B, C, and D that there are actually two
long cracks in the beam, it may be understood
that the response s actually governed by two
main localized cracks which are not localized
into one crack until at a much later loading
stage. Also from the response curves, it is seen
that the results of the case A, which assumes
one localized crack at the center of the span,
and the case F, which does not consider the

18
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Fig. 10 Crack patterns of specimen with 31 allowable crack paths

localization, are very much different from
those of the cases B, C, and D which properly
consider the localization. Finally, from a
comparison of the results of the cases D
(without self-weight) and E (with self-weight),
it can be seen that the load-displacement
responses of both cases are very similar.
Therefore, for this particular problem,
neglecting the self-weight does not have a
significant effect. Nevertheless, it can also be
observed from the obtained crack patterns that
the two main cracks are closer to each other
when the self-weight is considered. This is
expected since the self-weight makes the stress
higher at locations closer to the center of the
span. Fig. 10 shows the crack patterns of the
cases D and E at different loading stages.

6. Conclusions

In this study, an analysis method for
cracking localization in quasi-brittle materials
is presented. The analysis method employs the
smeared crack finite elements with a mixed

19

formulation for the stability investigation of
crack patterns. In the mixed formulation, the
discretization is performed on not only the
displacement field but also the crack strain
field. The discretized crack strains will allow
the stability analysis of crack patterns to be
done more easily. At bifurcation points, the
actual equilibrium path is traced incrementally
by finding the path with the minimum total
potential energy increment. The search for the
minimum total potential energy increment is
done by employing both the exhaustive and
GA search-algorithms, depending on the size of
the problem being solved. It is found in this
study that GAs can be efficiently used for this
search. The results obtained from the four-
point bending problem of plain concrete clearly
show that the true localized solutions are very
much different from the solution obtained by
assuming one localized crack at the center of
the span. Furthermore, the true localized
solutions are also very much different from the
solution obiained without the localization
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consideration. It is also found that there are two
major localized cracks that are not localized
into one crack until at a much later loading
stage. The behavior of the beam is therefore
governed by these two cracks. This clearly
illustrates that assuming only one localized
crack from the beginning may lead to
erroncous results. Finally, it is found that, for
the four-point bending test of plain concrete,
neglecting the self-weight does not have
significant effect on the obtained results. With
self-weight or without self-weight, there are
two main localized cracks. Although these two
cracks are slightly closer when the self-weight
is considered, the difference between the
obtained responses from both cases are
negligible.
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