Abstract

The endothelium behaves as a metabolic and endocrine organ, producing a host of active substances as well as inactivating others. The endothelium has been dubbed by Vane as "maestro of the blood circulation", regulating vascular tone and permeability, leukocyte trafficking, platelet aggregation, coagulation, fibrinolysis and angiogenesis. Three potent vasoactive (groups of) mediators are formed by the endothelium, namely prostaglandins (PGs which produced by cyclooxygenase; COX), nitric oxide (NO) and endothelins (ETs), which in concert help to control the circulation. The objective of this project is to study the effects of COX metabolites (PGs) on COX activity and isoforms expressed in endothelial cells activated with VEGF. COX activity was measured by the production of PGs using enzyme immunoassay. COX-1 and COX-2 protein was detected by immunoblotting assay. Untreated HUVEC contained only COX-1 protein while VEGF treated HUVEC contained COX-1 and COX-2 protein. The increased COX-2 in HUVEC by VEGF was mediated through protein tyrosine kinase. PGE2 and PGI2 can increase COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with VEGF in a dose dependent manner. The increased COX activity in HUVEC treated with VEGF was also synergised by PGE2 and PGI2 in a dose dependent manner. In contrast, PGD2 can inhibit COX-2 protein and activity, but not COX-1 protein and activity, expressed in HUVEC treated with VEGF in a dose dependent manner. However, PGF_{2α} and U44069 did not affect on the increased COX-2 protein and activity in HUVEC treated with VEGF. To investigate the signaling mechanisms by using SQ22536, foskolin, SC19220, butaprost, sulprostone and PD98059 (cAMP inhibitor, cAMP activator, EP1 antagonist, EP2 agonist, EP3 agonist and MEK inhibitors, respectively), we found that PGE2 upregulated the induction of COX-2 in HUVEC treated with VEGF via cAMP and MEK through EP2 receptor while PGI₂ upregulated the induction of COX-2 in HUVEC treated with VEGF via cAMP and MEK. Thus, The therapeutic use of PG analogues, COX-2 inhibitors, protein tyrosine kinase inhibitors or MEK inhibitors in the condition which COX-2 and VEGF have been involved in the pathogenesis, e.g. inflammation, arteriosclerosis, proliferative diseases and vascular occlusive disease, as the using of PG analogues to protect NSAIDinduced gastric mucosal injury and to induce labour or terminate pregnancy as well as the use of COX-2 inhibitors as the chemoprevention of colon cancer.

Keywords: Prostaglandins, COX, Endothelium, VEGF, Inflammation

บทคัดย่อ

เซลล์เยื่อบุผนังหลอดเลือดมีหน้าที่หลายอย่างทางสรีรภาพของร่างกาย โดยเฉพาะสาร ที่มีผลต่อการหดและคลายตัวของหลอดเลือด ที่สำคัญได้แก่ โพรสตาแกลนดินส์ (PGs), ในตริคอ อกไซด์ (NO) และเอนโดทรีลิน (ETs) เมื่อร่างกายเกิดพยาธิสภาพอันมีผลต่อการทำหน้าที่ของ เชลล์เยื่อบุผนังหลอดเลือด สารต่างๆเหล่านี้ก็จะมีการเปลี่ยนแปลงตามไปด้วย ทำให้การทำ หน้าที่ด่างๆของร่างกายมีผลกระทบเกิดพยาธิสภาพของร่างกาย ต่อเนื่องเป็นวงจร การศึกษา กลไกการควบคุมของสารต่างๆเหล่านี้ จะทำให้เข้าใจการเกิดพยาธิสภาพของร่างกาย นำไปสู่การป้องกัน รักษา และพยากรณ์โรคได้ การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาผลของ PGs ชนิดต่างๆต่อการปรากฏของสารทำย่อย COX-1 และ COX-2 (จัดเป็นเอนไซม์ที่ใช้ในการ สร้าง PGs) รวมไปถึงปริมาณของ PGs ในน้ำเลี้ยงเซลล์ ในเซลล์เยื่อบุผนังหลอดเลือด โดยใช้ รูปแบบการกระตุ้นการสร้าง COX-1 หรือ COX-2 ในเซลล์เพาะเลี้ยงเยื่อบุผนังหลอดเลือดด้วย VEGF รูปแบบดังกล่าวเปรียบเสมือนตัวแทนการเกิดพยาธิสภาพหลายชนิดในร่างกาย เช่น โรค หลอดเลือดหัวใจหรือสมองขาดเลือด ภาวะหลอดเลือดแข็งหรืออุดตัน เนื้องอก หรือภาวะการ อักเสบ COX-1 และ COX-2 ถูกวัดโดยวิธี immunoblotting ส่วน PGs ในน้ำเลี้ยงเซลล์ ถูกวัด โดยวิธี enzyme immunoassay โดยพบว่า PGE2 และ PGI2 จะส่งเสริมการสร้าง COX-2 ในเซลล์ เพาะเลี้ยงเยื่อบุผนังหลอดเลือดที่กระตุ้นด้วย VEGF ในขณะที่ PGD_2 จะลดการสร้าง COX-2 ใน เซลล์เพาะเลี้ยงเยื่อบุผนังหลอดเลือดที่กระตุ้นด้วย VEGF ส่วน PGF $_{2lpha}$ และ $TXA_{_2}$ ไม่มีผลต่อการ สร้าง COX-2 ในเซลล์เพาะเลี้ยงเยื่อบุผนังหลอดเลือดที่กระตุ้นด้วย VEGF ทั้ง PGE,, PGI, PGD_2 , PGF_{2lpha} และ TXA_2 ไม่มีผลต่อการสร้าง COX-1 ในเซลล์เพาะเลี้ยงเยื่อบุผนังหลอดเลือดที่ กระตุ้นด้วย VEGF ที่น่าสนใจคือ PGE, ส่งเสริมการสร้าง COX-2 ในเซลล์เพาะเลี้ยงเยื่อบุผนัง หลอดเลือดที่กระดุ้นด้วย VEGF โดยผ่านทาง EP2 receptor ซึ่งจะไปกระดุ้นผ่านการเพิ่ม cAMP ในทำนองเดียวกัน PGI_2 ส่งเสริมการสร้าง COX-2 ในเซลล์เพาะเลี้ยงเยื่อบุผนังหลอดเลือดที่ กระตุ้นด้วย VEGF โดยการกระตุ้นผ่านการเพิ่ม cAMP ส่วน PGD $_2$ ลดการสร้าง COX-2 ในเซลล์ เพาะเลี้ยงเยื่อบุผนังหลอดเลือดที่กระดุ้นด้วย VEGF โดยไม่ผ่านทางการเปลี่ยนแปลงของระดับ cAMP นอกจากนี้ยังพบว่า protein tyrosine kinase และ mitogen activated protein kinase kinase (MEK) ยังมีส่วนเกี่ยวข้องในขบวนการสร้าง COX-2 โดย VEGF ในเซลล์เพาะเลี้ยงเยื่อบุผนัง หลอดเลือด ดังนั้นผลการศึกษาที่ได้ จะเป็นแนวทางนำไปสู่การพัฒนาการป้องกัน รักษา สภาวะ ที่มี COX-2 และ VEGF เข้าไปเกี่ยวข้อง โดยใช้ยาที่มีผลต่อระบบ cAMP, protein tyrosine kinase และ MEK ดังเช่นการใช้สารสังเคราะห์ PGs บางชนิดในการรักษาโรคทางระบบทางเดินอาหาร โรคทางสูติกรรม และการใช้ COX-2 inhibitors ในการอักเสบของข้อเข่า หรือการเกิดมะเร็งใน ระบบทางเดินอาหาร

คำหลัก โพรสตาแกลนดินส์, เอนไซม์ COX, เซลล์เยื่อบุผนังหลอดเลือด, VEGF, การอักเสบ