บทคัดย่อ

รหัสโครงการ: RSA/12/2543

ชื่อโครงการ: โครงการเตรียมยางธรรมชาติเหลวและยางธรรมชาติน้ำหนักโมเลกุลด่ำ

ที่มีหมู่ฟังก์ชันที่แน่นอนโดยวิธีใหม่และการประยุกด์ใช้

ชื่อนักวิจัย: ดร.จิตต์ลัดดา (ตั้งภักดี) ศักดาภิพาณิชย์ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ถนนพระราม 6 แขวงทุ่งพญาไท กรุงเทพ ฯ 10400 โทรศัพท์ 0-22015163

E-mail address: scjtp@mahidol.ac.th

ระยะเวลาโครงการ: 24 ธ.ค. 2542 ถึงวันที่ 23 พ.ย. 2545 (3 ปี)

โดยปกตินิยมใช้ยางเทียมเหลวในการผสมยางในการผลิตผลิตภัณฑ์ยางและยางล้อรถยนด์ เนื่องจากช่วยทำให้การผลิตง่ายขึ้นและประหยัดพลังงานอย่างมาก แต่ยางสังเคราะห์มีราคาที่สูงและ ไม่สามารถย่อยสลายได้ในสภาวะธรรมชาติ ที่ผ่านมามีการคิดคันการผลิตยางเหลวหรือน้ำหนัก โมเลกุลต่ำจากยางธรรมชาติที่มีน้ำหนักโมเลกุลสูง ด้วยวิธีการย่อยโมเลกุล เช่น วิธีทางกลโดยใช้การ บดยาง ใช้ความร้อนหรือใช้วิธีทางเคมี สำหรับสองวิธีแรกจะง่ายแต่ปฏิกิริยาที่เกิดขึ้นจะค่อนข้างชับ ซ้อนมาก ทำให้ได้ยางที่ได้มีโครงสร้างที่ไม่แน่นอนและยากต่อการควบคุมให้ได้ยางธรรมชาติเหลวที่ มีน้ำหนักโมเลกุลตามต้องการ ทำให้เป็นอุปสรรคต่อการนำไปใช้งาน

ดังนั้นงานวิจัยนี้จึงได้พยายามคิดคันวิธีการเตรียมยางเหลวจากยางธรรมชาติด้วยวิธีที่ง่าย สะดวก ประหยัดตันทุนและรวดเร็ว โดยได้ทำการวิจัยถึงตัวแปรต่าง ๆ เบื้องตันที่มีผลต่อการเกิด ปฏิกิริยาย่อยโมเลกุลแบบออกซิเดชัน ชนิดของน้ำยางที่เหมาะสมที่จะนำมาใช้เป็นวัตถุดิบเริ่มตัน สภาวะการเตรียมรวมถึงโครงสร้างยางเหลวที่เดรียมได้ ซึ่งสามารถสรุปได้ว่า สารที่ไม่ใช่ยางโดย เฉพาะโปรตีนมีผลต่อการย่อยโมเลกุลของยางอย่างมาก ดังนั้นยางที่มีโปรตีนและกรดไขมันต่ำ สามารถถูกใช้เตรียมยางเหลวหรือยางน้ำหนักโมเลกุลต่ำได้ง่ายที่อุณหภูมิ 65°C สารที่สำคัญได้แก่ propanal, butanal และ NaHSO3 ช่วยให้การเตรียมยางเหลวมีประสิทธิภาพ เมื่อใช้ร่วมกับ 1% $K_2S_2O_8$ ที่ใช้เป็น radical initiator ยางเหลวที่ได้มีลักษณะที่ใส่ไม่มีสีและน้ำหนักโมเลกุล 9×10³

ขนาดอนุภาคยางหลังทำปฏิกิริยามีขนาดใหญ่ขึ้นเล็กน้อย แสดงว่าปฏิกิริยานี้เกิดภายใน อนุภาคยาง โดยที่ radical initiator ผ่านเข้าที่ผิวอนุภาคยาง ซึ่งหน้าที่ของ propanal คือทำหน้าที่หยุด ยังการเกิด recombination ของโมเลกุลยางที่ถูกตัดย่อยและช่วยให้อนุภาคยางเกิดการ swell ได้ด้วย จึงจะเห็นได้ว่าปฏิกิริยาที่มี propanal หรือ butanal ด้วย จะมีอัดราการเกิดปฏิกิริยาที่สูง สำหรับการ กระจายตัวของน้ำหนักโมเลกุลด้วยเทคนิค GPC พบว่าเมื่อเวลาในการทำปฏิกิริยานานขึ้น ค่า M, M, และค่าดัชนีการกระจายตัวของน้ำหนักโมเลกุลลดลงอย่างชัดเจน จาก bimodal distribution เป็น unimodal distribution แสดงว่าปฏิกิริยาภายในอนุภาคยางเกิดแบบสุ่ม และในที่สุดก็สามารถตัดโมเลกุลยางให้มีขนาดความยาวที่ใกล้เคียงกันได้

นอกจากนี้ได้ศึกษาถึงการใช้ประโยชน์จากยางเหลวที่เตรียมได้ โดยเบื้องต้นได้ทดลองใช้ แทน processing oil ในกระบวนการผสมยางขึ้นรูป พบว่ายางเหลวที่เตรียมได้ช่วยลดแรง total torque ในกระบวนการผสมได้ นอกจากนี้ยังช่วยปรับความสามารถในการผสมเข้ากันได้ของยางกับ สารเคมีอื่น ๆ ได้เป็นอย่างดี โดยที่สมบัติสุดท้ายของยางขึ้นรูปไม่เปลี่ยนแปลง นั้นคือสามารถใช้ แทน processing oil ที่อาจก่อให้เกิดปัญหาเรื่องสารก่อมะเร็งได้เป็นอย่างดี

คำหลัก: น้ำยางธรรมชาติ, ยางเหลว, ยางน้ำหนักโมเลกุลด่ำที่มีหมู่ฟังก์ชัน, การย่อยสลายแบบ ออกซิเดชัน

Abstract

Project Code: RSA/12/2543

Project title: Preparation of liquid natural rubber and functionalized low molecular-weight

natural rubber by novel method and application.

Investigator: Dr. Jitladda (TANGPAKDEE) SAKDAPIPANICH

Department of Chemistry, Faculty of Science, Mahidol University, Rama VI road, Phayathai,

Bangkok 10400 Phone: 0-22015163 Fax: 0-22458332

E-mail address: scitp@mahidol.ac.th

Project period: 24 December 1999 - 23 November 20002 (3 Year)

ABSTRACT

Liquid elastomers of synthetic origin were normally used extensively with a view to producing technical articles or even tiers. The merits of a liquid or castable elastomers lay in the possibility of easier, less energy-consuming processing with lighter, automatic equipment. At the same time, to increase the competitiveness of natural rubber (NR) comparison to the synthetic elastomers, many of rubber research groups have tried to develope the method to prepare liquid rubber from natural rubber directly via a degradative reaction. The degradation of natural rubber to form liquid rubber has been carried out under various experimental methods, i.e., mechanical, thermal and chemical methods. The mechanical and thermal degradations of NR include a quite complicated reaction and too difficult to control the molecular weight as well as structure of the resulting liquid natural rubber (LNR).

The present work was an effort to establish a novel method for preparation of LNR and LNR latex by using a combination of a radical initiator and carbonyl compound. Many trials were carried out. Protein and fatty acid showed the inhibited affect to degradation of NR. The optimum condition to prepare liquid NR or low molecular weight rubber is by adding a combination of $1\%K_2S_2O_8$ and propanal or butanal or NaHSO₃ at $65^{\circ}C$. The obtained liquid rubber was clear and colorless with viscosity-average molecular-weight of about 11119 $\times 10^3$ g/mol.

The insignificant change in the particle size of rubber latex obtained after the degradation reaction, indicating that the reaction is occurred within rubber particle by no breaking of the particle. It can be proposed that radical initiator is first penetrated into rubber particle and then the rubber molecules are degraded and propanal tapped at the chain end to form more stable functional group, to inhibit the recombination, which would be happened. Another role of propanal or butanal is to swell the rubber particle to make the reaction be more effective. Molecular weight distribution by GPC changed from bimodal to unimodal, implying that the random reaction was occurred to get the same size of rubber chain at equilibrium.

Finally, an attempt to evaluate the application of liquid rubber was carried out as a processing aid comparing to processing oil. It was found that liquid rubber improved processability of rubber processing effectively. Thus, the liquid rubber prepared from the present work can be used instead of processing oil to reduce the problem of its toxicity.

KEYWORDS: Natural rubber latex, liquid natural rubber, functionalized low molecularweight natural rubber, oxidative degradation.