Fynruail RSA/16/2543

5189URRERTUANYTDL

TAseanIS

AudNtBsIANALazMsulaunndnduaslzgisau
Geometric Property and Matrix Transformations

of Sequence Spaces

s

oo, 1 4
HISE SA. AT AN AULA

ANA NAIBIAIRAIRAS AUSINENATARNS
NN R EILBEIG L AN

anuayulngdinunamuatiuayunisiae

(rudiwlumeutiduesdidy ang. dndusiaaiusatianaly)

Sta. 2



Lﬁﬂia@lmﬂ‘izn’lﬂ

AIdTaTe U ME NN UERLARUMTINY  (FNN) ﬁ'l,ﬁnuaﬁfum&uﬂﬂ's"‘:{l’mlﬂﬂﬁnﬁi{
Tosawzthedmms  sm. Adwgenuasainlumiidyauriilasansisud
Yrsguanudniuiuanits uas Aivvaraugn aedmadiamaad  anzing
aFad uwInenasgoalnal ﬁaﬁfumﬁu‘lﬁﬁ'\m‘s"’ﬁ’s W uaanuszaInlwSaives
gouiiase nildgunyoinisidn wou winsnanRuned use wissuw asaasulinis
miuawIvlzinmundulumaiumiliisueranuddsuna



GRENET

\griqudsznia
UnAaganImaInNg e
unaatianiw Ing
unin
undi 2 suddmadeunzmsranRiniisauuiwe
(Some Geometric Properties of Banach Sequence Spaces)
- Some Geometric Properties in Orlicz Sequence Spaces of Bochner Type
- Local Uniform Convexity of Cesaro Musielak-Orlicz Sequence Spaces
- Some Geometric properties of Cesaro Sequence Spaces
- On the H-property of Some Banach Sequence spaces
- On Some Convexity Properties of Generalized Cesaro Sequence Spaces
- On Property (H) and Rotundity of Difference Sequence Spaces
- On Property (UKK) in Cesaro Musielak-Orlicz Sequence Spaces

undi 3 mswasuninduasigldeau

(Matrix Transformations of Sequence Spaces)

- Matrix Transformations of Nakano Vector-Valued Sequence Space

- On Matrix Transformations Concerning the Nakano Vector-Valued

Sequence Spaces

- On beta-Dual of Vector-Valued Sequence Spaces of Maddox

- Matrix Transformations of Some Vector-Valued Sequence Spaces
- On Matrix Transform:ations of Vector-Valued Sequence Spaces of Maddox
- Matrix Transformations of Vector-Valued Sequence Spaces
- Matrix Transformations on the Maddox Vector-valued Sequence Spaces
— Matrix transformations on the Nakano Vector-Valued Sequence Spaces
HaIWA LS u(Output)
AMHWIN

11

12
42
69
77
88
101
113

127

128

135
145
158
173
192
202
220
231
236



Abstract
Project Code : RSA/16/2643
Project Title : Geometric Property and Matrix Transformations of Sequence Spaces
Investigator : Assoc. Prof. Dr. Suthep Suantai, Depariment of Mathematics,
Faculty of Science, Chiang: Mai University, Chiang Mai, 50200, Thailand.
E-mail Address : scmti005@chiangmai.acth  suantai@yahoo.com
Project Period : 1 December 1999 - 1 December 2002

The first purpose of this project is to study some geometric properties of some

Banach sequence spaces and the second purpose is to give characterizations of infinite
matrices mapping from certain sequence spaces into some certain sequence spaces.
In this research we define three new sequence spaces, ces(p), ces, and £(4A,p).
where p=(p,) is a bounded positive sequence of real numbers and M =(M,)is a
Musielak-Orlicz function. The spaces ces(p) and ces,, are generalizations of the
cesaro sequence spaces, We introduce the Luxemburg norrn on these spaces.
We show that ces(p) and £(A,p) have property (H) if p, =21 for al ke N and
ces(p) is locally uniformly rotund if p, >1 for all k € N. These results generalized the
previous works of many mathematicians. We ailso show that the difference sequence
spaces f(A,p) it is rotund if and only if p, >1 for all ke N. In studying geometric
properties on the spaces ces,,, we obtain that the space ces,, is (UKK) space when
M satisfies &,- condition and the condition (*), so it has property (H). We further
study some geometric properties of Orlicz-sequence spaces of Bochner type.

For the second main purpose of this project, we give characterizations of
infinite matrices mapping the Nakano vector -valued sequence spaces {X,p) and
F(X,p)into E ¢ _,£ (g).bs,cs, when p,>1 forall ke N, and we also we give
characterizations of infinite matrices mapping from £#(X,p) and M,(X,p) into E,
when p, <1 for all ke N. We can completely give characterizations of infinite
matrices mapping from any FK- spaces into the spaces c(g). From this resuit, we
obtain many matrix transformations from certain FK-spaces into c¢(q). Furthermore,
we also we give characterizations of infinite matrices mapping from the sequence
spaces of Maddox into Musielak-Orlicz sequence spaces.

Keywords : Geometric properties, property (H), rotund, locally uniformly rotund,
uniform Kadec-Klee property, Cesaro sequence spaces, Musielak-Orlicz functions,

Matrix transformations, Maddox sequence spaces, Vector-valued sequence spaces -
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SOME GEOMETRIC PROPERTIES IN ORLICZ
SEQUENCE SPACE OF BOCHNER TYPE

1. INTRODUCTION

The concept of Orlicz space was introduced by W.Orlicz early in 1932, however it
was not until the last ten years that the theory of geometry of Orlicz space was developed
extensively. A much richer field of examples is obtained by considering Orlicz sequence
space. In 1986, S.Chen, C.Wui, T.Wang, and Y.Wang, published a book, Theory of
geometry of Orlicz spaces (in Chinese), which collected the main results on geometry of
Orlicz spaces as well as some applications obtained by that time, that was made great
advances in the very short time and, at the same time, many geometric properties have
been discuss more precisely, to the local behavior, to the pointwiseness. Moreover, since
the book was published many open ploblems have been solved.

Chen and Wang[3] have studied H-property of Orlicz space. Cui, Hudzik and
Meng|4] have studied some local geometry of Orlicz sequence space equipped with Lux-
emburg norm. Huff[7] has studied Banach space which are nearly uniform convex and
proved that (UKK)=(H), (NUC)&(UKK)+reflexive. Turett{15] has studied rotun-
dity of Orlicz spaces.

The aim of this research is to generalize some geometric properties of Orlicz
sequence space £ps to the Orlicz sequence space of Bochner tpye £p7(X), where X is
a Banach space, and give characterizations of the Orlicz sequence space of Bocher tpye
£3(X) to have the property (R), (H), (UKK), (LUR), (CLUR) and (WCLUR).

Furtheremore, we also give some relationship between those properties in this space.

Typeset by ApS-TEX
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2. PRELIMINARIES

In this section, we give some definitions, notation and some known results needed
for the later section. 7

Throughout this research, we let N stand for the set of all positive integers. The
field of real and complex numbers are denoted by R and C respectively. The symbol
F stands for R or C, and R, is denoted by the set of all positive real numbers. The
elements of I are called scalars.

2.1 Metric Space, Normed Space and Banach space.

Definition 2.1.1. A metric space is a pair (X, d), where X is a set and d a metric
on X, that is d: X x X — R is a function such that the following three conditions are
satisfied by all z,y and z in X:

(1) d(z,y) > 0 and d(z,y) = 0 if and only if z = y.

(2) d(z,y) = d(y,z).

(3) d(z,z) <d(z,y) +d(y,2z) (the triangle inequality).

Definition 2.1.2. Let (X,d) be a metric space. A sequence (z,) of members of X

converge to x € X if lim d(z,,x) = 0. When (z,) converges to z, we write lim z, =z
n— 00 n—o0

or T, — T.

Definition 2.1.3. A sequence (z,) in a metric space is called a Cauchy sequence if for

every € > ( there exists‘N € N such that d(z,, z,) < € for all m,n > N.

Definition 2.1.4. A metric space (X, d) is said to be complete if every Cauchy sequence

in X converges.

Definition 2.1.5. Let X be a linear space (or a vector space). A normon X is a
real-valued function || - || on X such that the following conditions are satisfied by all
members z and y of X and each scalar «:

(1) ||z|| > 0, and {|z|| = 0 if and only if z = 0.
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(2) llozll = |edllz]-
(3) llz+yll < |lz|| + lly|| (the triangle inequality).
The ordered pair (X, || -||) is called a normed space. When there is no danger of confu-

sion, it is customary to use the same symbol, such as X, to denote the normed space.

Definition 2.1.6. Let X be a normed space. The metric induced by the norm of X is

the metric d on X defined by the formular d(z,y) = ||z — y||.

Definition 2.1.7. Let z be a normed space. The closed unit ball of X is {z : z €
X, ||lz|| € 1} and is denoted by B(X). The unit sphere of X is {z : z € X, ||z|| = 1}
and is denoted by S{X).

¥

Definition 2.1.8. A Banach space is a normed linear space which is complete under

the metric induced by norm.
2.2 Linear Operator, Strong and Weak convergence

Definition 2.2.1. Let X and Y be normed spaces. Let T: X = Y, if T(az + 8y) =
aTx + Ty for all @, 8 € ¥ and z,y € X, we say T is a linear operator or linear

transformation from X to Y. When Y = F, we say that T is a linear functional on X.

Definition 2.2.2. A linear operator T : X — Y is bounded if there exists M > 0
such that ||Tz|| < M||z|| for all z € X. The operator norm for a bounded linear operator

T is defined as ||T|| = sup ”ﬁ;—%ﬂ
0#xe X

Theorem 2.2.3. A linear operator is bounded if and only if it is continuous. Proof See
[11]. O

Definition 2.2.4. Let X be a normed space. Then the set of all bounded linear

functional on X constitutes a normed linear space with normed defined by

[Tzl

IT| = _—
ozzex ||zl
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which is called the dual space of X and it denoted by X'.

Definition 2.2.5. A sequence (z,) in a normed space X is said to be strongly conver-

gent (or convergent in norm) if there is an z € X such that lim z,, = z (or z, — 2).
n—00

Definition 2.2.6. A sequence (z,) in a normed space X is said to be weakly convergent
if there is an x € X such that for every T € X', lim Tz, =Tz (or 2, = z, weakly).
) =

2.3 Convex Functions and Orlicz Functions.

Definition 2.3.1. A continuous function M : R — R is called convez if

M (_1%11) < M(u);—M('u)

(2.1)

for all u,v € R. If, in addition, the two sides of (2.1) are not equal for all u # v, then
we call M strictly convex.

Proposition 2.3.2. Let M : R — R be a continuous function. The following are
equivalent:

(1) M is convex.
(2} There exists affine functions L, (u) = a,u + by, such that M(u) = supL,(u).
(3) For any u,v € R and «a € [0, 1],

Mau+ (1 - a)v) < aM(u) + (1 - o) M (v). (2.2)
(4) For any uy,ua,...,un € Rand a; > 0 with > a; =1
4 i=1
M (Z aiui) < Z%M(Ui)
=1 i=1
Proof. See [9). a

Definition 2.3.3. A continuous function M : R — R is called an Orlicz function if it
has the following properties:

(1) M is even, continuous, convex and M(0) = 0.
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(2) M(u)> 0 for all u # 0.
(3) lim ™ =0 and lim #% = co.
u—+ T o0
In addition, an Orlicz function N is called a complementary function of an Orlicz func-

tion M if
N(v) :=sup{|vju — M(u) : u > 0}.

Definition 2.3.4. Let M be an Orlicz function. An interval [a, b] is called a structural
affine interval of M, or simply, SAT of M, is affine on [a, b] and it is not affine on either
[@a — €, b] or [a,b+ €] for any € > 0. Let {[as, b;]}; be all the SATs of M. We call

Sy = R\[lij(ai’ b;)]

the set of strictly convez points of M.

It is well known that (see [2]} if u,v € R, € (0,1) and au + (1 — a)v € Su, then

M{au+ (1 — a)v) < aM(u) + (1 — )M (v).

2.4 Convex Modular and Orlicz Vector-valued Sequence Spaces.

Definition 2.4.1 A sequence space is a vector space whose members are sequence

under the usual addition and usual scalar multiplication.

Definition 2.4.2 For a real (or complex) vector space X, a function f: X -+ R, is a
modular if the following properties are satisfied:

(1) f(z)=0if and only if z = 0.

(2) flaz)= f(z) forall @ € F (F =R or C) with |a| = 1.

(3) flaz+ By) < f(z)+ f(y) forall o, € Ry, suchthat a+ [ =1.
If the property (3) is replaced by:

(3") flaz+ By) < af(z)+ Bf(y) for all o, B € R4, such that o+ 8 =1,

then we say that f is a conver modular.

Definition 2.4.3. Let X be a Banach space. Denote X the space of all sequence in
X. For z € X°, we denote x(i) the i term of z.
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For a given Orlicz function M, we define g,, : X? — [0, 00] by the formular

0w (@) = > M@

We shall show in Chapter 3 that g,, is a convex modular.

The Orlicz vector-valued sequence space £37(X) and its subspace hps(X ) are defined as
follows : :

(X)) :={z € X°: g, (cx) < oo forsome c¢> 0}

hp{X) = {x € lp(X): g, (cx) <00 forall ¢> 0}
We consider £ps(X) equipped with the so-called Luzemburg norm
lzll,, = inf{A > 0: g, (x/A) < 1}

under which we can show in Chapter 3 that (£a(X), || - 1|,,) is a Banach space.
We call (£a7(X), |- 1|,,) the Orlicz vector-valued sequence space generated by the Orlicz
function M and we will denote £4,(X) for the dual space of £3/(X).

Recall that for an Orlicz function M, if X = R we denote £p(X) by ¢ M. it is

known as an Orlicz sequence space and p,, is a convex modular.

Definition 2.4.4. An Orlicz function M 1is said to be satisfies the &5 — condition
(M € & for short ) if ther exists constant K > 2, up > 0 such that

M(2u) < KM(u)

holds for every u € R satisfying |u| < ug.

Theorem 2.4.5. The foliowing are equivalent:
(1) M €.
(2) There exist I > 1, ug > 0, and K > 1 such that

M(lu) < KM(u) (u <ug)

(3) For any !; > 1 and u; > 0, there exists K’ > 0 such that the inequality in (2)
holds for I =1y , up = uy and K = K'.
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(4) For any ls > 1 and ug > 0 there exists e € (0,1) such that
M{(1+eu) <LbM(u) (u<ug)

Proof. See [2]. O

For the dual space £4,(X) of £p(X), we say that ¢ € £4,(X) is a singular
functional if ¢(hp (X)) = 0.

Theorem 2.4.6. Any f € £,,(X) has a unique decomposition
M
f=v+ep

.

where v and ¢ are respectively the regular and singular parts of f.
Proof. See [1]. : 0O

Before ending this section, we introduce the relation between the distance from
z € £p(X) to hp(X) -

B(z) =inf{A>0:p, (u/A) < o0}

Note that hp(X) = {2z € X°|0(z) = 0}. For z € £34(X) the next theorem show
that d(z, hp(z)) = 0(x).

Theorem 2.4.7. For any x € £3;(X), we have d(z) = 0(z), where

d(z) = inf{liz — ully : u € hyr(X)}

Proof. See [2]. O
2.5 Some Geometric Properties of Banach Spaces.
In this section we introduce the definitions and notation concerning geometric

properties of Banach spaces and give some known results that will be used in the later

chapter.
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Definition 2.5.1. For a Banach space X. A point z € B(X) is called an eztreme point
of B(X) if 22 = y+ 2 and y,z € B(X) imply y = z. The set of all extreme points of

B(X) is denoted by Ext B(X). If Ext B(X) = §(X), then X is called a rotund (R)
space.

Definition 2.5.2. For a Banach space X, if for any z,,y, € B{(X),||zn + ynl| = 2
implies ||z, — yn|| = 0, then X is called a uniformly rotund (UR) space.

Definition 2.5.3. For a Banach space X, if 2, ¥, € B(X) and ||z, + yn|] — 2 imply
Ty ~ Yn — 0 weakly, then X is called a weakly uniformly rotund (WUR) space.

Definition 2.5.4. For a Banach space X, if for each z € S(X) and each sequence (z,)

in S(X) such that lim ||z, + z|| = 2, there holds lim ||z, — z|| = 0, then X is called a
n-—>00 : n—00

locally uniformly rotund (LUR) space.

Definition 2.5.5. For a Banach space X, if for each z € S(X) and each sequence (z,)

in S(X) such that lim ||z, + || = 2 imply z, = = weakly, then X is called a weakly
TL—0O

locally uniformly rotund (WLUR) space.

Theorem 2.5.6. Every uniformly rotund normed space is locally uniformly rotund,

and every locally uniformly rotund is rotund. In symbols,

UR = LUR = R.

Proof. See [11]. O

»

Definition 2.5.7. For a Banach space X, if for each z € S(X) and each sequence (z,)

in S(X) such that lim ||z, + z|| — 2, there holds (z,) is compact in S(X) , then X is
n—oo

called a compactly locally uniformly rotund (CLUR) space.

Definition 2.5.8. For a Banach space X, if for each z € S(X) and each sequence (z,,)
in §(X) with nle |l2n + z|| = 2, there are ' € S(X) and a subsequence {z!,} of (z,)
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in such that z,, — z' weakly, then X is called a weakly compactly locally uniformly
rotund (WCLUR) space.

Theorem 2.5.9. Banach space X is LUR if and only if X is CLUR and R. Proof. See
[13]. : O

Definition 2.5.10. A Banach space X is said to have property(H)(or the Kadec-Klee
property) if every weakly convergent sequence on the unit sphere S(X) is convergent in

Nnorimn.

Definition 2.5.11. A Banach space X is said to have uniform Kadec-Klee property
(written UKK) if for any ¢ > 0, there exists § > 0 such that z, € S(X), z, —
z weakly, and ||z, — z,|| > € (n # m) imply ||z]| <1 - 6.

Theorem 2.5.12. Every UKK Banach space has property(H).
Proof. See [7]. O
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3. MAIN RESULTS

This chapter is divided into two sections. The first section concerning rotundity of
Orlicz vector-valued sequence space and the other section study about several geometric
properties which are related to rotundity of Orlicz vector-valued sequence space, such
as property(H), (UKK), (CLUR), (WCLUR).

3.1 Rotundity of Orlicz Vector - valued Sequence Space -

In this section, characterizations of rotundity of Orlicz vector-valued sequence
space equipped with the Luxemburg norm. At first, we begin with giving some impor-
tant properties of the modular g,, and the Luxemburg norm defined by ¢,,. In the first

proposition we show that p,, is a convex modular on £ps(X).

Proposition 3.1.1. p,, is a convex modular.

Proof. Let z,y € X° by definition of p,, we have that

(i) oy(z)=0e ZM lz(@)I) =

i=1

< M(||z()|]) =0 for all ¢
& lz(@)|| =0 for all 4

Sr=0

(7) ForaeF(F=R or C) and |a| =1 we have

. (az) = ZM(IIGSU("' )
- ZM(la]IIm(i)")

=3 M(l=@))

= Qu (:E)
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(ii1) For a,B € Ry, a+ B =1 we have

w02+ fy) = 3 M{llaz (i) + By(D))

< ZM(naz(z)n + 1By

I
MS‘;

M{allz(@)i + Blly @)

-
1
—

'M8

M([jz(2)]]) JrZﬁM(Hﬁ,r(z Ih2

i

=a Z M{||z@|) + B Z M(lly(@)
= ag,, (z) + Bo,, (¥)

from above we conclude that g,, is a convex modular. O

The next proposition we give some important relationship between the modular

onm and the Luxemburg norm.

Proposition 3.1.2. Let z € X°. Then

(1) For @ > 1, p,,(ax) > ap,, (z).

(2) For 0 < a < 1, p,,(az) < ap,(z).

(3) 7l <1 04 (@) < llo]l,.

(4) llzlie > 1= oy (x) > {lally-
Proof. (1) and (2) are immediately obtained from the following facts:

(1) a>1= M(az) > aM(z).

(2) 0<a<l= M(az) < oM(z).
(These two properties hold by the convexity of M)

(3) For any = € £p(X), without loss of generality we may assume that z #

0. By definition of || - ||,, there exists A, | ||z||,, such that g, (z/A,) < 1. Then
Y2, MOy < 5 for all n € N. Thus, for m € N we have 3277, pM(lzlly <9, By
taking n — oo we get that > .-, M (el !lei ) < 1. By taking m — oo, we obtain that
pIyat ML=l I-'CII ) <1, hence o, (7= 0 )< 1.
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Thus by (1) we have

x 1
t2 ) = g, )

which yields ||z||,, > o, (z).
(4) If ||z||,, > 1 then for all small ¢ > 0 and by (2) we have

z 1
I<e ( ) < = 0n (%),
«\T= ol ) = T=afe, 2
which implies that (1 — €)|z||,, < ¢,,(z). Letting ¢ — 0 we have ||z|[,, < o, (z). O

Theorem 3.1.3. ({p(X),||-||,,) is a Banach space.
Proof. Let (z,) = (z,(7)) be a Cauchy sequence in £3/(X). Then for € € (0,1) we can

choose N € N for all mm,n > N such that ||z, —zm||,, < M(€) so we have by Proposition
3.1.2(3) that

Ox (ZTn — Tm) < M(€).
That is -
ZM(H%(%') ~ zm(1)]]) < M(e)

for all m,n > V.

So for each 7, M(||z,(i) — zm(?)||) < M(e) for all m,n > N.

Since M is convex, M is 1-1 on [0, cc], hence there exists the inverse function M~! on
[0, o0}, so it follows that

20 (i) — zm ()| <€
for all m,n > N
Thus for each ¢ € N we have ||z,(¢) — zm (i)l < € for all m,n > N. That is (zn(#))7Z;

is a Cauchy sequence in X. Consequently, since X is a Banach space, there is z(i) € X
such that

z,(i) = z(i) as n = oo.

Since for all m,n > N we have ||z, — zn||,, < € that is

i . (umn(z‘) - xm("')”) <1

forall m,n > N.
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Letting m — oo we obtain

l'n—.'l?

I (s =20) .

O

Putting z = (z(1), 2(2),...)

So from (*) we have that z,, —x € £p(X) for all n > N. and since £3(X) is linear space
we find that ¢ = (z —zn) + zn € £ (X).

And it follows from (*) that ||z, — z||,, < e for all n > N, that is, 2, » z asn — oo
, this means that (£5(X),]|| - ||,,) is @ Banach space. ]

Theorem 3.1.4. An Orlicz function M satisfy 52—conditi?n if and only if £p(X) =
har(X).

Proof. Suppose that M € ;. Let A > 0 and = € £p(X). Then there exists a
Ao > 0 such that g, (A.z) < c0. If A < A, we have that g, (Ax) < p,, (Asz) < 0. If
A > A, , then XAZ > 1. Since M € 6y, it follows by Theorem 2.4.5(3) that there exist
u, > 0 and K > 0 such that

M(3u) < KM(u) (< uo) (*)
Since -2, M(Xol|z(3)]]) < oc , then there is i, € N such that
Aollz(B)]| < o for all 7 > 1, (**)
By (*) and (**) we have
m (AT) = ZM(AH»’C(%)“ Z M(Al|z(2)]])

t=i,4+1

o0

=iM(A||w(i)ll)+ > MEEAOD)

i=io+1
< ZM Az + K Z M(ollz(@)]) <
=i, +1

Thus g,, (Az) < oo, so that z € hy(X). Hence £,,(X) = h,, (X).
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If M ¢ A,, then by Theorem 2.4.5(2), there exists ax J. 0 such that M (ax) < 2t
and M(vax) > 2¥t1M(c;) where v > 1 and k& € N. For each k € N choose an

integer my, such that
1

2k.+1 =~ mkM(ak) 2k'
Put ' € S(X) and define
m) times mo times ) my times

L - ~ L ~

I ! ' f ! ! / ' /
= (anz’,on2’,...,o0%" a0’ oz, ..., a0z, .. o o’ LoD ).

Observe that

my+mg mi+mz+msa
u(T) = ZM(llalfﬂ(ﬂ)ll > M(lez(®)+ D, M(llesz@)) +
t=m;+1 i=my+matl

my -ty +my

+ > M(laz(@)) +

i=my+met4mp 1 +1
= mlM(al) + sz(Q’z) +-- 4 mkM(ak) + -

= Z mkM(ak)

=1
PIREE

This show that = € £ (X).

Now we consider for v > 1,

oS
0y (vT) = imkM(Uak Zm 2Pt M (o) > Z
k=1

k=1 k=1

This mean that z ¢ hp{X). Hence the theorem is proved. O

Remark 3.1.5. For = € £)7(X), define |z| = (]|z(1)]], [|z(2)|l, ...) then |z| € £3r and we

have [[|z(|l, = l|zll,, and ¢, (z} = e, (I=]).
Proof. Obviously, |z| € £)r. Now, observe that

2 (I2]) = ZM(HSB(%')H) = 0, (2),
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and

||

llzlll,, = inf{A >0 : ¢, (—) <1}

"
= inf{A >0 : iM(”“’i—i)”) <1}
el

g

Theorem 3.1.6. The modular convergence and norm convergence are equivalent in £p(X) if
and ouly if M € ;.

Proof. Necessity. If M ¢ 09, then as in the proof,of Theorem 3.1.4, there
exists z,, in £3(X) such that g, (z,) — 0 and ¢,,((1+ 2)z,) = co. This implies that
znll, > T_Eﬁ;— for all n € N, hence ||z,||,, # 0.

Sufficiency. Let M € &, and € € (0,1). Choose ug = M~ !(¢) and L = 1/¢ then there
exist K > 1 which

M(Lu) < KM (u) (u < ug)

Since g,,{(x,) — 0 there exists N € N such that ¢, (z,) < £ for all n > N. Thus for
n > N we have

Ou xe—") = ZM(M) <KDY M(jza()l) = Koy (z2) < K% —c
=1 i=1

this implies that ||z,]|,, < € for all n > N, which we can deduce that ||z,|,, = 0. O

Lemma 3.1.7. Let z,z, € £3(X) then
(1) Hlznlly = 00 = 04 (zn) — 0.
(2) 0 (z) = 1= [loil,, =1
If in addition, M € d; , then we have (3),(4) and the converse of (1),(2) are true ;
(3) For any € > 0, there exists § > 0 such that

[zl = €= 0y (x) 2 8.
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(4) For any ¢ € (0,1), there exists 8 € (0,1) such that

eu(@) S1—e= llzfl, <1-5.

Proof. (1) For any y € £,,(X), we first note that if g, (y) < K, then [jyil,, <
max{l, K'}. Indeed, suppose p,,(y) < K we consider in two case ’

Case 1if 0 < K <1 it follows immediately that ||y[|,, <1

Case 2if K > 1 then by Proposition 3.1.2(2) we get ¢,,(y/K) < %o, (y) <1 this
implies that ||y||,, < K.
From above observation, we obtain (1). Conversely, suppose that M € d, and L > 0.
Since M~1(1) > 0 we can choose K > 1 such that

M(Lu) < KM (u) (u < M7H(1)) ™)

Ifye€ fy(X)and |ly|, <L, then p,, (y/L) < 1. It implies that “—y—[(:‘—)-ﬁ < M~1(1) for
all i € N. By (*), we have

) = 3 Myl = 3wy < o 5™ ) <
=1 =1 =1

So for any L > 0 we obtain that there exist K > 1 such that

Iyl L= 0, () <K (**)
The converse of (1) follows immediately from (**).

(2) Assume that g, (z) = 1. By definition of || - ||,,, we see that if ||z||,, < 1
then Proposition 3.1.2(3) implies g, (x)} < {|z||,, < 1. This lead to a contradiction that
0., (z) = 1, hence we conclude that ||z|[,, = 1.

Conversely, if M € §» Theorem 3.1.4 ensures that z € £(X) = hp(X). Since
llzll,, = 1, we have g, (x) < 1. For ¢ > 0, we have g, (7%;) > 1. Since g, (%) isa

continuous function of £, we have

T

< li = <1
1< lime, (7)) =0u(z) <1

This implies that g, (z) = 1.

(3) is an immediate consequence of Proposition 3.1.2(4) and Theorem 3.1.6.
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(4) If (4) does not hold, then there exists € > 0 and z, € £p(X) such that

0y (Zn) <1—eand § < flz,],, 11
Since 2 > ;—+— implies that 1 > —2— — 1. Put a, = —— — 1, so we have a, 0.
”x”M ”mn”M . ”:cn"M

By (1), we can let L = sup{g,,(2z,)} < cc. And then
1]

1= O ( Iy ) — QM(Zanmﬂ + (]_ — an)xn)
(2

< On @y (23311) + (1 - an)QM (xﬂ-)
<a,L+(1-¢).

Since a,, — 0, we obtain that 1 <1 — ¢ which is a contradiction. Hence (4) holds. 0O

Theorem 3.1.8. z € S(€p (X)) is an extreme point of B(E,\;(X)) if and only if
(1) on(z) =1
(ii) for all i € N which (s) # 0 then 2, € ExtB(X)
(i) wfi: (@)l € R\Sp} < 1.
Proof. Necessity. Suppose (i) does not hold, i.e, g, {z) =c < L.

Since M is continuous we choose € > ( so small such that

MU+ &) < M(Je@I) + 55

B}" o, (z) = §M(|lm(z)|l) < 1, we have JLI&M(H&"(?)”) = (. This implies ||z()|| = 0
as 1 — 00. SOT}llere exists N € Nforalln > N, ||z(n)| <e.

Next, we select z(ng) for some ng > N and defined y = (y(2))i, 2= (2{2)); by
y{1) = z(1) — z(no), 2z(1) = (1) + z(ng) and y(i) = z(i) = 2(¢) for all ¢ > 2. Then
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2z =y+ z and ¥ # 2. Then
o1 (y) = M(||lz(1) — z(no)[) + Y M(||=(3)]))
i=2

< M(Jlz()] + lz(mo)ll) + >_ M([l2(3)]))

i=2

< M(ll=()ll + ) + Y M(l=(@)])

< Ml + 1+ 3 M(le))
i=2
= @um (x) + L ; ¢
_ 1—c¢
—rc+ 2
c+1
=3 <1

and similary we can show that g,,(z) < 1. Thus y, 2z € B(£p(X)) which contradicts
with the fact that z € ExtB(£3(X)).

If (ii) is not true, then there exist 1, € N and u(i,), v(i,) € B(X) with u(i,) #
v(1,). Define the sequence v’ and v’ by,

2 (io) || ul(io) 11 =1,
£ (0) :{
z (%) 11 # Go,
. l2(io)llo(io) o~
iy Tits)||v{te =1,
Ve {I(i) 31 # 1o

It is easy to see that g+, (v') and p, (v') < 1. That is v',v' € B{{p(X)) and 2z =

u' + v, u' # v’ which contradicts our hypothesis that z is an extreme point.

Next, assume (iii) does not holds, without loss of generality we may assume that

()}, lz(2)[| € R\Sar 1.¢, ||z(1)|], [|z(2)| belong to some affine intervals (a,, 1), (a2, b2)
of M respectively.

Let M(u}) = kju+ fi, u € (a;,b) ( = 1,2). Select €;,e2 > 0 such that
kiedfz(1)|| = kaeallz{2}|l and (1 £ &){lz(2)[| € (as, b:) (i =1,2).
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Define y = (y(i))i, z = (2(3))s by

y(1) = (1 +e)z(l)  y(2) = (1-e2)z(2)
z(1) = (1 — e1)z(1) 2(2) = (1 + e2)z(2)

and y(¢) = z(s) = z(4) for all ¢ > 2. So

y(1) + 2(1) = 1+ e)z(1) + (1 — e1)z(1)
=z(1) + e12(1) + z(1) — e12(1)
= 2z(1)

y(2) + 2(2) = (1 — e2)z(2) + (1 + €2)z(2)
= z(2) — €22(2) + 2(2) + e2x(2)

0 = 2x(2)

and y(i} + z(¢) = 2x(7) for all ¢ > 2.
2z =y + z and y # 2. Then

on (¥) = M([ly(D)) + M([ly(2)]]) ZM(lly(%)Il)

1=3

= M([|(1 +e)z(D) + M1 = e2e@)) + Y M(lz(D)])

=3

= k(1 + e)ll=U)]]) + Br + k(1 — e)lle(@)ll) + B2 + Y M(Jl=(@)])
=3
= Ealje ()l + krerliz (D) + By + kal|2(2)]| — Eaeallz (@)l + B2 + D M(llz(i)]])

=3

= kllz ()l + By + kall2 (@) + B2 + D M(l|z(5)]))

=3
= M{||z(1)]} + M(||z(2)i]) +ZM(|I$ )
=0, (z) <1

In the same way, we can get g,,(2) < 1, and therefore y,z € B(£3(X))) which contra-
dicts the hypothesis z € ExtB(£y(X)).
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Sufficiency. Let 2z =y + 2, y,2z € B(£p(X)). Since

1= 0,,(7) = 0, (12 2) < Slow () + @ (2] < 1,

o

we have

pr (WO, _ Ly iy + 2o,

for all ¢ € N. By (iii) there exists at most one j € N such that ||z(7)| € R\Sa. This
give ||z(2)|| = ||ly(£)]| = ||z(?)|| for all £ # j. And since

1_ZM||3: @1 ZMHy m =Z (=@,

we deduce ||z(3)| = [ly(H) = l|z(G)|- Since 2(x(i)) = y(i}+2(i) it implies that tzj(j =

J-L“y(t)” + _Q_IIZ(%)H then we can obtain by (ii) that y = z. Hence, x € Ext B(£3r(X)). O

Theorem 3.1.9. {£p/(X) is rotund if and only if

(1) M €6y

(2) X is rotund and

(3) M is strictly convex on [0, M~1(1/2)]. :
Proof. Necessity. If M ¢ J2, then as in the proof of Theorem 3.1.4 we can find z €

£p(X) such that ||z||as = 1 and g,,(z) < 1, thus by (i) of Theorem 3.1.8 we have z ¢
Ext B({p(X)).

(2) If (2) is not true, then there exist z,y,z € S(X) with 22 = y + z and
y # z. Pick v € S({p(X)), by (1) and Lemma 3.1.7(2) we have 1 = o, (u) =
2z M([lu(@BID)-
Define ' = (z'(i));, v = (¥'(1))i, 2" = (2'(4)); by

(i) = [u(@lle, ¥'(@) = [[u(@)lly and 2'(5) = |lu(i)]|2

Then

ou () = M(|lllu@llz|) = > M{lu@llill) = > M{lu@]) =1 < oo,
i=1 1=1 i=1
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and in the same way we can get g, (¥'),0,(2') = 1. That is z',y’, 2’ € S(€um(X)).
Moreover, we can see that 2z’ = ¢’ +2’, 4’ # 2’ which implies that z’ is not an extreme
point of B(€r(X)), contradicting the rotundity of £xs(X).

If (3} does not hold, then M is affine on some interval [a,b] < [0, M~1(1/2)).
Since b < M~1(1/2). So 2M(b) < 1, thus we can find ¢ € (a,b) and d > 0 such that
2M{c) + M(d) = 1.
Choose ' € S(X) and defind

z = {ex',ex’,dx’,0,0,0,...) € £y (X).

Then

o (2) = ) M(|lz(i)])
i=1

= M(llez’[}) + M(llez"[]) + M(||d="[})
= M(c||="[l} + Mcll'|]) + M (dliz’|])
=M(c)+ M)+ M(d)=1

But z(1),z(2) € R\Sas. This contradicts whith Theorem 3.1.8 (iii). Hence z ¢ ExtB{£p(X)).

Sufficiency. Let z € S(€p(X)). We have to verify (i)-(iii) of Theorem 3.1.8. We shall
show that (i) and (iii) are true, which (ii) is obvious by (2). Since M € §; we have by
Lemma 3.1.7 (2) that g, {z} = 1.

Next, Let I = {1 € N : ||z(i)|| € R\Sa}. Then by (3), for any i € I we have
Hz(3)|| > M~1(1/2) that is M (||z(i)|]) > 1/2 and since

e (@) = 3 Ml =1,

it implies that I contain atmost a single point. Hence, we obtain by Theorem 3.1.8 that
xr € Ext B(£p(X)). O
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Remark 3.1.10. Theorem 3.1.9 may be false if X is not (R). For example, we shall

we consider X = £2 where the norm defined by

2
(e, o)l = las]
i=1

and a; € F ( = 1,2). We have that £ is a Ba.nach space but not a rotund space
(see [11]). Choose F = R, observe that (3,0),(0,3),(1,0) and (0,1) are elements
in £2. Let

7= (3,0, (0,5), 0,0),0,0), .,

y = ((1,0),(0,0),(0,0),(0,0),...),

z = ((0,0),(0,1),(0,0),(0,0),...).

Thus z,y,z € X°. Next, we define an Orlicz function M : Ry — Ry by,

M) 2u? ifor u € [0, 1]
ul =
u ;otherwise

Note that M~1(3) = 3, and it easy to see that M € d; and M is strictly convex on
[0, M~1(3)]. Then

0u (@) =D _ M(z@)|l) = M(le)ll) + M(||z@)]) + M(lz@)I) + -
i=1

and similary we can show that g, (y) = ¢,,(z) = 1. Consequently, it follows by Lemma
3.1.7(2) that z,y,z € S(€m(X)). Moreover, we see that 2z = y + z, and y # z. This
implies that z is not extreme point of B{£p(X)). Hence, £3/(X) is not a rotund space.0]

From Theorem 3.1.9, if X =R we have a corollary as in [2].

Corollary 3.1.11 {Chen[2], Theorem 2.7) £ps is rotund iff
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(1) M € 63 and

(2) M is strictly convex on [0,M~1(1/2)]
Proof. By the fact that R is a rotund Banach space the corollary is obtained imme-
diately by Theorem 3.1.9. O
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3.2 Some Geometric Properties Related to Rotundity

In this section show the relations between rotundity and some geometric prop-

erties in Orlicz vector-valued sequence spaces. We begin with giving some relation.

Theorem 3.2.1. For an Orlicz vector-valued sequence space £3(X). The following
statements are equivalent

(I)VEM(X) has the uniform Kadec —~ Klee property.

(2) £p(X) has the H-property.

(3) M € ds.
Proof. (1)=(2). Clearly by Theorem 2.5.12.

(2)=(3). Assume M ¢ 4. As in the proof of Theorem 3.1.4 we can find an

element z € S(¢p (X)) such that g, (2) < 1 and ¢,,(Az) = oo for all A > 1. This

i—1 times

e e
means that || 3 e, z(i)eifl,, = 1 for all n € N, where ¢; = (0,0,0...,0,1,0,0,0, ...},
consequently we can choose an increasing sequence {n;) of natural numbers such that

T4

IS el >

j=n;+1
Define z; = {z(1),...,z(n;),0,...,0,z(n;41 + 1),...) ,1=1,2,..
We will show that
(a) |lzill,, =1 i=1,2,..
(b) x; — z weakly.

Since

ow(e) = 2 M=)

= ZM(HSC(J )+ Z Mz + Y- M@
j=ni4l j=niq1+1
and g,, () <1, we have

2u (i) = 00 (2) - Z M(jlz(7)) < 1- Z M(|lz(H)) < 1.

F=n;+1 J=n;+1
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And from g,, (Az) = oo for all A > 1. This give g,,(Az;) = oo for all A > 1. This show
that {lz;]|,, = 1.

Next, we will show that (b) holds. Let f € £3,(X) so there is a unique decom-
position f = v + ¢ where v and ¢ are respectively the regular and singular parts of f,
i.e, v is determined by a function vy € ¢n(X), where N is the complementary function
of M. Since vg € €n(X), there exists A > 0 such that

3 N(Alluo(@)) < oo.

i=1
And since z; — x € hp(X). We have {p,z; — z) = 0.

So we have

{fix; —x) = (v-’r(p,rz,; —z)={v,T; — )

= > IelivoG =+ > ||$(J')||||/\Uo(j)||)

j=n;+1 Fe=ng+l
By Young inequality, we have

it

D M=) + Nl ()ID) — 0

j=n;+1

(f,.'l?,;-fﬂ) S

> ] b=

as 1 — 00.
This show that z; — & weakly, and therefore (2) holds. Moreover, we have that
liz: ~ zl|,, > 3 for all i € N. So we find that z is not an H-point of B(£p(X)).
(3)= (1) Since M € &, for any given € > 0, by Lemma 3.1.7 (3) there exists
A > 0 such that
el > 5 = eu(e) 2 6.

For this 8, again by Lemma 3.1.7 (4) we can find n € (0,1) such that
ou(T) <1=-B=|z|, <1-n

Now, suppose z,, € B{{p (X)), zp, — = weakly and ||z, — Tml||,, = € (n #m). We
shall show that ||z||,, <1 — 5. If not, that is ||z||,, > 1 — 5, then we can select a finite

subset I of N such that ||zy,]|,, > 1 —#. Since the weak convergence of {z,} to = implies
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that x,, = z coordinatewise and since I is finite we deduce that z,, — z uniformly on

I, consequently, there exists £ € N such that

' €
||$m|]”M >1-—n, |(zn- mm)lr”m < 9
for all n,m > k.
But the first inequality implies

QM(.’Em“) >1-8 (m>k)

and the second implies

€
[(zn — $m)|N\I”M 2 5 (myn > k,m # n).

(because ||z, — Zmll,, = €).
That is

< N1@n = sl < Mg, s + 1yl

B[ ™

which yield ||:cn,N\! |l = Sor ”Imlw I, > %. Without loss of generality we may assume
that ”mm|N\I"M > %£. Then QM(:cm{N\,) > B.

Sol=(1-58)+8<0y(@m,)+ 2y (Tm,,) =0y {zm) <1 which is a contradiction.
Hence we obtain that lz||,, < 1—n. That is £,, (X)) has the Uniform Kadec-Klee property
O

Corollary 3.2.2. The following statements are equivalent :

(1) £ar(X) is rotund.

(2) £m(X) is UKK, X is rotund, and M is strictly convex on [0, M ~1(1/2)].

(3) £p(X) has the prgperty(H), X is rotund, and M is strictly convex on [0, M ~1(1/2)].
Proof. (1)= (2). Since £pr(X) is rotund, so by Theorem 3.1.9 we have that M € ds,
X is rotund, and M is strictly convex on [0, M~1(1/2)]. And by M € §,, it follows by
Theorem 3.2.1 that £r{X) is UKK.

(2)= (8). It follows by Theorem 2.5.12.

(3)= (1). Since £3s(X) has property(H), by Theorem 3.2.1 we have that M € 5.
It follows by Theorem 3.1.9 that £,/(X) is rotund. O
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Corollary 3.2.3. £p(X) is LUR if and only if M € §3 and £p(X) is WLUR.
Proof. The proof is an immediate consequence of Theorem 3.2.1. O

Theorem 3.2.4. If M ¢ &,, then £3/(X) is not a WCLUR space.

Proof. Since M € 85, then as in the proof of Theorem 3.1.4 we can find an element
u € S{(¢pm(X)) such that p, (u) < 1 and g,, (Au) = oo for all A > 1. Next, for z €
S(€ap (X)) by, convexity of M we can select a subsequence z = (z(ix))3e, of z =
(z(i))$2, such that z € hp(X). Let y = z — 2. Define z, = Y i, z(i)e; , ut™ =

i—1 times

*® u(n+ k)entr, where e; = (0,0,0...,0,1,0,0,0,...) and z,, = z, + u{™ +y . Then
k=1 +
we have

2zl — 1 D 2@)eill < N+ zally < maz{2,20, (@) + > M(u()])}

i=n+l iz=n4l

This implies that ||z, + z|l,, — 2. By the same method we can get ||z,||,, — 1.

To complete the proof, we shall show that £37(X) is not a WCLUR space. If
not, by z, — z coordinatewise we may assume without loss of generality that z, —

z, weakly (passing to a subsequence if necessary). Since

d(u, hag (X)) = inf{lju — zll,, : = € ha(X)}

=inf{A>0:p,, (%) < oo} =8(u) =1,

thanks to the Hahn Banach theorem to obtained that there exist f € S(£},(X)) such
that f{u) = 1 and f(z) = 0 for all z € hp(X). Consequently, we have f(z, — z) =
flzn +ul™ +y — ) = f(u— (u—u™)) = f(u) = 1. This lead to a contradiction that
T, — = weakly, which complete the proof. 0

Theorem 3.2.5 £,(X) is CLUR iff it is WCLUR
Proof. The proof follows immediately from Theorem 3.2.1, 3.2.4 and the general im-
plications CLUR=>WCLUR. a

Theorem 3.2.6. £,;(X) is LUR if and only if £3/(X) is WCLUR and R.
Proof. It follows immediately from Theorem 2.5.9. and Theorem 3.2.5. ]



39

Corollary 3.2.7. The following statements are equivalent :

(1) £pm(X)is LUR

(2) £p(X) is CLUR, X is rotund, and M is strictly convex on [0, M ~1(1/2)]

(3) £m(X)is WCLUR, X is rotund, and M is strictly convex on [0, M ~1(1/2)]
Proof. (1)=(2) and (2)=(3) are immediately obtained by Theorem 2.5.9. and 3.1.9.
It suffices to show that (3)=(1). Since £p(X) is, WCLUR, it follows from Theorem
3.2.4 that M € &5 , it follows from Theorem 3.1.9. that £3¢(X) is R and then the proof
is complete by Theorem 3.2.6. [
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LOCAL UNIFORM CONVEXITY OF CESARO MUSIELAK-ORLICZ
SEQUENCE SPACES

1. INTRODUCTION

A sequence space is defined to be a linear space of scalar (real or complex)
functions on N. The study of sequence spaces is thus a special case of the more general
study of function spaces, which in turn a branch of functional analysis. Geometric
properties of Banach spaces play an important role in studying Banach spaces theories.
Some geometric properties imply reflexivity of Banach spaces and some imply fixed point
property or weak fixed point property. So the main problems of studying geometric
properties of the given Banach spaces is to give necessary and sufficient conditions on
the spaces which they have the given geometric properties. It is clear that the geometry
of Banach spaces in the form of convexity would play a central role in the theory of
Radon-Nikodym differentiation for vector-valued measures.

The theory of geometry of Orlicz sequence spaces was developed extensively by
many authors. Y.A. Cui, H. Hudzik and C. Meng (3] have studied the LUR, CLUR and
WCLUR, and property (/) in Orlicz sequence spaces under the Luxemburg norm. Y.
A. Cui and H. B. Thompson [6] have studied the LUR and property (8) in Musielak-
Orlicz sequence spaces under the Luxemburg norm. It is obvious that both Orlicz
sequence spaces and Musijelak-Orlic sequence spaces are generalization of the [, space.

In 1970, J. S. Shue introduced the Cesaro sequence spaces cesp(1 < p < 00) and
Y. Q. Liu, B. E. Wu and Y. Lee [9] studied many geometric properties in cesp. It is
know that cesp, is LUR and has property (H)(See [9]). Y. A. Cui and Hudzik [4] proved
that ces, has the Banach-Saks property of type p and Y. A. Cui and M. Chenghui [2]
proved that ces, has property (8) and has Banach-Saks property.

In this paper, we define the Cesaro-Musielak-Orlicz sequence spaces Cesjs, where
M = (M) is a Musielak-Orlicz function. This space is a generalization of the Cesaro
sequence spaces cesp. The main purpose of the thesis is to give sufficient conditions for
M such that Cesps is LUR and has property (H) under the Luxemburg norm defined

by the convex modular introduced to Cesps.

Typeset by ApS-TEX
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2. PRELIMINARIES
In this chapter, we give some definitions, notations and some useful results that

will be used in the later chapter.

Throughout this thesis, we let R stand for the set of real numbers and N the set

of natural numbers.

2.1 Norms and Normed spaces
Definition 2.1.1 Let X be a linear space. A norm on X is a nonnegative real valued
function on X, written as |.||, such that the following conditions are satisfied by all
x,y € X and each scalar « :

(1) ||z|]| = 0 if and only if z = 0,

(2) llozll = |edli=],

(3) |lz +yll < llz|l + |lyll (the triangle inequality).
Properly speaking, a normed space is an ordered pair (X, ||.||} consisting of a linear space

X and a norm ||.|| on X.

Definition 2.1.2 Let X be a normed space. The metric induced by the norm of X
is the metric d on X defined by the formula d{z,y) = |z — y|. Moreover, a complete

normed linear space is called a Banach space.

Definition 2.1.3 Let X be a normed space. The closed unit ball of X is the set
{r € X :||z|| £ 1} and is denoted by B(X). The unit sphere of X, denote by S(X), is
the set {z € X : ||zl = 1}.

Definition 2.1.4 A subset A of a normed space is conver if for each pair of its points,

it contains the line segmeﬁt joinning them. That is,
{ez+(l—-a)y:ae[0,1]} C A,

for all z,y € A.

2.2 Convex functions, Modular functions and Orlicz functions
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Definition 2.2.1 A real valued continuous function M : R — R is called conver if

) < M{u) + M(v)

2
for all w,v € R. If, in addition, the two sides of (2.1) are not equal for all u # v, then

u+v

M(2

(2.1)

we call M a strictly convex function.

Proposition 2.2.2 Let M : R — R be a continuous function.Then the following state-
ments are equivalent:
(1) M is convex.
(2) There exist affine functions L, (u) = a,u + b, such that M (u) = sup,, L, (u).
(3) For any u,v € R and a € [0,1],

M(ou+ (1 - a)v) < aM(u) + (1 - a)M{v). (2.2)

(4) For any uq,u2,...,us € R and a; > 0 with 31, oy =1,

M(Z CE,;'LL,;) S ZQiM(’U,,;).

In addition, M is strictly convex if and only if for any « # v and « € (0,1), the
inequality (2.2) is strict.
Proof. See [1, Proposition 1.3].

Theorem 2.2.3 Suppose that the Orlicz function M is strictly convex.
(1) For any K > 1,¢e > 0, there exists 6 > 0 such that

M(u) + M(v)
2

u+v
2

M( ) S (1-9)

for all u,v € R satisfying |u|, |v| < K and |u — v| > €.
(2) For any K > 0,e > 0 and [a,b] C (0, 1), there exists 6 > 0 such that M(2u+(1 -
a)v) < (1 = §)aM(u) + (1 — a)M(u)] for all @ € [a,b] and u,v € R satisfying
lu|, |v} < K and |u ~ v| > e
Proof. See [1, Proposition 1.4].
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Definition 2.2.4 A nonnegative function M : R — R* U {0} is said to be an Orlicz

function if M vanishes only at 0, M is even and convex.

Definition 2.2.5 Let X be a real vector space. A function p : X — [0, 00] is called
modular if it satisfies the following properties: ‘ '
(1) p(z) = 0 if and only if x = 0; )
(2) plax) = p(z) for all scalar a with |a| = 1;
(3) plaz + By) < p(z) + p(y), forall z,y € X and all ¢, B > O with a + 3 = 1.

The modular p is called convex if

(4) plaz + By) < ap(z) + Bp(y), forall z,y€ X and all o, § > 0 with a + 8 = 1.
If p is a modular on X, we define

X,={zeX: Agrgl+p(Am) =0}

and

X, :={zr € X : p(Ax) < co for some A > 0}.

It is clear that X, C X7. If p is a convex modular, for z € X, we define
el = inf{A > 0" p(—i-) <1} (2.3)

Orlicz [13] proved that if p is a convex modular in X, then X, = X3 and .|| is
a norm on X, for which it is a Banach space. The norm ||.|| define as in (2.3} is called
the Luremburg norm.
A modular p on X is called
(a) right-continuous if limy_,;+ p(Az) = p(z) for all z € X,
(b) left-continuous if lir‘n,\_,l— p(Az) = p(z) for allz € X,

(¢) continuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular p and
the Luxemburg norm ||.|| on X,.

Theorem 2.2.6 Let p be a convex modular on X and let z € X, and (z,) a sequence

in X,. Then ||z, —~ z|| = 0 as n — oo if and only if p(A(z, — z)) = 0 as 1 — oo for
every A > 0.
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Proof. See [10, Theorem 1.3].

Theorem 2.2.7 Let p be a continuous convex modular on X and z € X,. Then
(1) |l=|| <1 if and only if p(z) < 1.
(2) ||z|| €1 if and only if p(z) < 1.
(3) ||z|| =1 if and only if p(z) = 1.

Proof. See [10, Theorem 1.4].

2.3 Musielak-Orlicz Sequence Spaces and Cesaro-Musielak-Orlicz Sequence
Spaces

Definition 2.3.1 A sequence M = (Mjy) of Orlicz functions is called a Musielak- Orlicz
function. In addition, a Musielak-Orlicz function N = (Ng) is called a complementary
function of a Musielak-Orlicz function M if

Ne(v) = sup{[ofu ~ Mi(u) : u > 0},
k=1,2,..

Definition 2.3.2 Denote by {° the space of all real sequences. For a given Musielak-
Orlicz function M, we define Ips : [° — [0, 00] by the formula

o0
Ing(z) = Mi(z(k)), == (z(k)) e’
k=1
Then s is a convex modular. The Musielak-Orlicz sequence space lpr is the space
Iar o= {z € 1% : Ins(ex) < oo for some ¢ > 0}.

We consider I, equipped with the Luzemburg norm

el = inf{k > 0: Ing(7) < 1)

or equipped with the Orlicz norm

lz]° = inf{%(l + In(kz)) : k> 0},
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To simplify notation, we put Iy := (Ias, ||.]]) and 8, := (Iar,]]-]|*). Both of them are
Banach spaces (See [12]).

The subspace has of Iy, called the finite (or order continuous } elements, is
defined by

hae :={z €1°: Iny(Ax) < 0 for all A > 0}.

Definition 2.3.3 For 1 < p < oo, the Cesaro sequence space ces, is defined by

cesp = {x €l’: Z (% Z |33(z)|) < oo}

We consider ces, equipped with the norm

] = (i (%2 |m(i)|)p) % |

k=1 i=1
This space was introduced by J. S. Shue [17]. It is sueful in the theory of matrix

operator and others (See [9]). Some geometric properties of the Cesaro sequence space

ces, were studied by many mathematicians.

Definition 2.3.4 Let p = (px) be a sequence of positive real numbers with p, > 1 for
all k£ € N. The Cesaro sequence space ces(p) is defined by

ces(p) := {z €1°: p(Ax) < oo for some X > 0},

P
where p(z) = Y e, (% Zle |m(z)|) * . We consider this space equipped with the Lux-

emburg norm

ol =inf{A>0: p(5) <1}

under which it is a Banach space. If p = (px) is bounded, we have

o0

k Pk
ces(p) :={z el: Z (-IIE Z |3:(z)|) < oo}
i=1

k=1
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Definition 2.3.5 Let M = (M}) be the Musielak-Orlicz function. The Cesaro-Musielak-

Orlicz sequence space is define by
Cesys := {z €1°: par(ex) < oo for some ¢ > 0}

where par(z) = Y 5o, My (% Zle |x(z)|) We show in Theorem 3.1 that pps is a convex
modular on Cesps. So in this space we can consider the Luxemburg norm induced by

the convex modular pjr as follows:
lz]| = inf{)\ > 0 : pM(i) <1}

To simplify notation, we put Cesar := (Cesp, ||.]]), we have by [10} that Cesp
is a Banach space. We define the subspace SCesps of Cespys py

SCespr := {z €1%: ppr(ez) < oo for all ¢ > 0}.

Definition 2.3.6 We say a Musielak-Orlicz function M satisfies the §;-condition (M €
Ja for short) if there exist constants K > 2,ug > 0 and a sequence (cg) of positive

numbers such that 3 o, cx < oo and the inequality
M (2u) < KMi(u) + ¢k

hold for every k € N and « € R satisfying |u| < ug.

If M € §9 and N € 43, then we write M € §2 N 45.

Moreover, we say that a Musielak-Orlicz function M satisfies the (x)-condition if
for any € € (0, 1) there exists a § > 0 such that My ((1+6)u) < 1 whenever My (u) < 1—¢
forall k € Nand u € R.

We shall show in Theorem 3.5 that if M € ds, then SCespr = Cesyy.

2.4 Convergence
Definition 2.4.1 A sequence (z,) in a Cesaro-Musielak-Orlicz sequence space Cesps (
Musielak-Orlicz sequence space Lps) is said to be
(1) {(norm} convergent, if there exists an z € Cesps(z € Ipr) such that ||z, —z| — 0;
(2) modular convergent, if there exists anx € Cesp(x € [ar) such that ppr(zn,—2) —

0 (Ip(zp —z) — 0) as n — o0
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(3) weakly convergent, if there exists an z € Cespr (z € lpr) such that f(z,—z) = 0
for all f in the dual space of Cespr (Ias).

2.5 Rotund Spaces (R) and Locally Uniformly Rotund Spaces (LUR)
Definition 2.5.1 Let (X, ||.||) be a real Banach space. A point z € S(X) is said to be
an extreme point if for every y,z € S(X) such that z = 3’%’5, wehave z=y=z. X is

said to be rotund (R for short) if every z € S(X) is an extreme point.

Definition 2.5.2 (J. A. Clarkson, 1936). Let X be a normed space. Define a function
dx :[0,2] = [0, 1] by the formula

5x(€) = inf{1 ~ |3z + )] : 2,9 € S(X), lo ~ vl > &)

if X # {0}, and by the formula

0ife=0
5){(6):{

1if0<e<2
if X = {0}. Then éx is the modulus of rotundity or modulus of convezity of X.. The

space X is uniformly rotund or uniformly conver (UR for short) if éx(¢) > 0 whenever
0<e<2.

Proposition 2.5.3 Every uniformly rotund normed space is rotund.
Proof. See [11, Proposition 5.2.6].

Proposition 2.5.4 Suppose that X is a normed space. Then the following are equiva-
lent.
(a) The space X is UR.
(b) Whenever (z,,) and (y,) are sequence in S(X) and || (zn + ya)|| = 1, it follows
that ||zn — ynl|| — 0.
(c) Whenever (z,) and (y) are sequence in B(X) and ||1(zn +yn)|| = 1, it follows
that ||z, — yn|| = 0.
(d) Whenever (z,,) and (y,) are sequence in X and ||zal|, [ya|| and ||3(zn + y»)|| all
tend to 1, it follows that ||z, — yn|| = 0.
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Proof. See [11, Proposition 5.2.8].

Definition 2.5.5 (A. R. Lovaglia, 1955). Suppose that X is a normed space. Define
a function dx : [0, 2] x S(X) -+ [0, 1] by the formula

bx(6,2) = inf{1 - |5 (@ + 9)]| : v € SX), o~ 9] > ).

Then §x is the LUR modulus of X. The space X is locally uniformly rotund or locally
uniformly convex (LUR for short) if éx (¢, z) > 0 whenever 0 < € < 2 and z € S(X).

Proposition 2.5.6 Every uniformly rotund normed space is locally uniformly rotund,
and every locally uniformly rotund normed space is rotund. In symbols, UR = LUR =
R. ’

Proof. See [11, Proposition 5.3.3].

Proposition 2.5.7 Suppose that X is a normed space. Then the following are equiva-
lent.
(a) The space X is LUR.
(b) When = € S(X) and (yn) is a sequence in S(X) such that || 2(z + y,)|| = 1, it
follows that ||z ~ yn| — 0.
(c) When z € S(X) and (y.) is a sequence in B(X) such that [|5(z + y.)|| = 1, it
follows that ||z — yn|| — 0.
(d) When z € S(X) and (y,) are sequence in X such that ||y,| and [|1(z + y.)||
both tend to 1, it follows that ||z — y.|| — 0.
Proof. See [11, Proposition 5.3.5].

Definition 2.5.8 A Banach space X is said to have the Kadee-Klee property (X has the

property (H) for short ) if the weak convergence and the convergence in norm coincide
in S(X).

2.6 Some Useful Results
Theorem 2.6.1 Let X be a real vector space and p a modular on X. For z € X let
fz : R = R be define by f.{c) = p(cz), c € R. Then f; is a continuous (See [10]).
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Theorem 2.6.2 [15] Let z € {p.
(1) If0 < o < 1, then LIp(ax) < Iy(z) < alp(E).
(2) If & > 1, then adp (%) < In(z) < LIy(ax).

Theorem 2.6.3 [15] Let = € {s.
(1) If ||z|| < 1, then Ip(zx) < ||z||.
(2) If |z|| > 1, then Inf(z) > ||z||.

Theorem 2.6.4 [15] If a Musielak-Orlicz function M = (M},) satisfies the (x} —condition

and M € ¢, then, the norm convergence and modular convergence coincide.

Theorem 2.6.5 If the Musielak-Orlicz function M = (M}) satisfies the (x)—condition
and M € dg, then
(1) [7] llall = 1 Tnr(z) = 1,
(2) [8] for every € > 0 there exists a § > 0 such that ||z|| < 1 — 6 whenever Inf(z) <
1 — ¢,
(3) [8] for every € > 0 and ¢ > 0 there exists a § > 0 such that for any z,y € {5, we

have

|IM(.1:—§—y) —IM(:L')| <€

whenever Ips(z) < c and Ip(y) < 6,
(4) [15] for every € > 0 there exists a § > 0 such that ||z|| > 1 4+ § whenever
Ing(z) > 1+ € and
(6) [15] for any sequence (z,) C la, ||zn|| = 1 as n — oo implies Ipr(zn) —
lLasn — o0.
Theorem 2.6.6 [7] If the complementary of a Musielak-Orlicz function M = (My)
satisfies d; i.e. N € 42, then there exists a & € (0, 1) and a sequence (i) of positive real
numbers with 37> | M (hs) < co such that

Mi(y) < * 5 M)

— Ny

hold for every k € N and u satisfying Mg {(hi) < Mi(u) < 1.
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3. SOME CONVEXITY OF CESARO-MUSIELAK-ORLICZ
SEQUENCE SPACES

In this section we show that the Cesaro-Musielak-Orlicz sequence spaces Cesys
equipped with the Luxemburg norm is locally uniformly rotund. So it is has property
(H) and it is rotund. Before showing these results we give some useful facts and results
concerning the modular par on Cesps and relationships between the modular pas and
the Luxemburg norm on Cesys. We start with showing that pas is a convex modular

on Cesyy.

Theorem 3.1 The functional ppsr On the Cesdro-Musielak-Orlicz sequence space Cesps

given by
o k
_ 1 .
m(z) =) My (z 2 lx(z)l) :
k=1 i=1
is a convex modular on Cesyr
Proof. Let z,y € Cesys. It is obvious that

() pu(z})=0&2=0
(ii) For @ € R, with |a| = 1, we have

k=1 i=1
oo k

=Y M (m% > |sc(a)|)
k=1 =1
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(iii) For o, B € R, with o, 8 > 0, + § = 1, by convexity of M, we have

|
e (12
(5

o |
M~

pumlaz + By) |z (i) + ﬁy(z)l)

1

3

Eol e

i M“’ 1 Ma-

(elz(@)] + ﬁly(@)l)

B < -
|z()] + ley(m)
=1

I

i MB I IPAﬂS il MS

=R
?t"l

<> (aMk (%iu()) +ﬁMk( > in z)|))

k=1 i=1 =1
oo k oo k
=ay M (% > |:c(z')|) +8 M (% > Iy(i)l)
k=1 i=1 k=1 i=1

= appm(z) + Bom(y)

Proposition 3.2 Let z € Cesyy.
(1) If 0 < < 1, then Lpp(az) < pp(z) < apu(2)
(2) If a > 1, then app(Z) < pu(z) < Lpn(ox)
Proof. Let z = (z(?)) € Cesp. For any 0 < a < 1, by convexity of each My, we have

() - 3 (350 < (15w

for all £ € N. This implies par(az) < app(r). Next, substituting z by Z, we obtain
pr(z) < app(Z). That is (1) holds. Next, let @ > 1. Then 0 < L < 1. By (1), we
obtain that ‘

T 1 T 1 T 1
CEPM(E) = IPM(E) < pumiz) < apM(I) = aPM(afﬂ)

, 80 (2) is satisfied. O

Proposition 3.3 For any z € Cesps, we have
(1) if ||lz|| < 1, then pm(z) < |lz||
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(2) if ||lz|| > 1, then pp(z) = ||z
Proof. (1) If x = 0, then the inequality holds. For z # 0, by the definition of ||.|j,
there is a sequence (es) | ||z]| such that par(F) < 1. This implies pM(” IE) <1, by
Proposition 3.2(1), we have par(z) < ||x|]pM(”m”) < ||z
(2) Let ||z|] > 1. Then for € € (0, H%I!il_l_l)’ we have (1 —¢€)||z|| > 1. By Proposition

3.2(1), we have

) < pu()
)II«'BII - (1 —9)ll=ll’

Letting € — 0, we obtain (2). O

1<PM((

The following result is directly obtained from Proposition 3.3(1).
Corollary 3.4 If z,, — 0 as n — oo then py(z,) = 0 as n = 0o

Theorem 3.5 If a Musielak—Oﬂicz function M = (My) € 62, then SCesp = Cesy.
Proof. Let z € Cesps. Thus ppr{cz) < oo for some ¢ > 0. Since M € §2, there exists
K > 2, up > 0 and a positive sequence (cj) such that > ., cx < oo and

M (2u) < KM(u) + ¢
for all £ € N and u € R with |u| < ug. By pam(cx) < oo, we have that
o0 k
1
3 (e 301 <o
it follows that My (¢ S, ()]} — 0 as k — oo, and so L8, [o(3)] — 0 as

k — oco. Let 8 > 0 and ¢t € N be such that 'g < 2. Then there exist ngp € N and a

positive sequence (c}) with Y_p7 , ¢}, < co such that

C**le( | <

and
M (2'u) < K*My(u) + ¢}, for all k € N and u € R with |u| <

2t—1'
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Therefore Cesp C SCespy. O

Lemma 3.6 On Cesaro-Musielak-Orlicz sequence space Cesyy, if the Musielak-Orlicz
function M = (My) satisfies the (x)—condition and M € d,, then '
M) {zll =1 pulz) =1,
(2) for every ¢ > 0 there exists a § > 0 such that ||z|| < 1—6 whenever ppr(z) < 1—¢,
(3) for every € > 0 and ¢ > 0 there exists a § > 0 such that for any z,y € Cespr, we

have

oMz +1y) — pm(z)| <€

whenever ppr(z) < ¢ and par(y) <4,
(4) for every € > 0 there exists a § > 0 such that ||z|| > 1+6 whenever pp(z) > 1+-¢,
and g
(5) for any sequence (z,} C Cespr, ||zn|| — 1 implies ppr(zn) — 1.
Proof. (1) Assume that pap(x) = 1. By definition of ||.||, we have that ||z} < 1. If
llz]| < 1, then we have by Proposition 3.3 (1) that pp(z) < ||z| < 1, which contradicts
our assumption. Therefore ||z|| = 1.
Conversely, assume that [|z|| = 1. By Proposition 3.3(1), par(z) < 1. Suppose
that ppr(x) < 1. By Theorem 3.5, we have ppr(ex) < oo for all ¢ > 1. By Theorem 2.6.1

the function ¢ — par(cz) is continuous, so there exists an ¢’ > 1 such that pp(c'z) = 1.
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By using the same proof as in the first path, we have that ||c’z|| = 1, so ¢/ = 1 which

is contradiction.

(2) Let € > 0,z € Cesp such that pp(z) < 1—€ and we put a(k) = ¢ Er_l lz(3)],
then a = (a(k)) € Iy and we have

IM(G’) = pM(m)1 ”a”iM = ”"E”C'ESM'

By Theorem 2.6.5(2), there exists a § > 0 such that ||a|| <1 -6 ie. ||z]| <1 -6
(3) Let z,y € Cespr,e > 0 and ¢ > 0, by Theorem 2.6.5(3), there exists a §' > 0
such that for any a,b € [)r, we have

[Iar(a+b) — Insla)| < € (3.1)

whenever Ips(a} < c and Ips(b) < §'. For each i € N, let

o(6) = { sgn(z(i) + y(2)) if z(é) + y(2) # 0,
Lifz(z) +y(i) =0
we note that
Mz +y)= ( Z!w z)er(%)l)

il

=M
A /L
DM ( D s(Dz() + - ZS('é)y(i)). (3.2)
k=1

i=1 i=1

Let a(k) = 5% s(i)x() and b(k) = £ 5| s(i)y(i) forallk € N. Thena = (a(k)) €
I and b= (b(k)) € lpr , and from (3.2) we have

pu(z +y) = In(a+b), Ing(a) < par(z) and Ing(b) < par(y).

Choose § = §'. Let pp(z) < ¢ and ppr(y) < 6. Then Ipr(a) < ¢ and Iy (b) < &, by
(3.1) we have

put (& +9) ~ par(2) < Tarla +8) — Ing(a) < e
that is

pm(z +y) < pu(z) +e (3.3)
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Proof. Suppose that z,(i) — yn(i) # 0 as n — oo for some ¢ € N. Without loss of

generality we may assume that 4 = 1, and then assume that , for some ¢g > 0,
|2, (1) — yn(1)| > ¢ for all m € N.

Since M, is strictly convex by Theorem 2.2.3(1), there exists a § € (0,1) such that

Ml(xn(l) + yn(l)

5 )< u ; %) (M1 (2,(1)) + My(yn(1))) for alln e N.

Hence

| IM(E"—;yﬂ) — ZMk(In(k) ‘;“ yn(k))
k=1

= Ml(xn(l) '2|_ yﬂ(l)) + ZMk(mn(k) ;‘yn(k))
k=2

< 152 (M (1) + Miua(D) + 5 D (Me@a(8) + Mi(ya(K)
k=2
= 5 2 (Malk) + Melun(h)) = 5s(an(1) + M (1)
< 5 D (Mo (k) + Ml () - by 2222
=1 —_(le(?.eg),
which is a contradiction. L

Lemma 3.9 Suppose (z,,) C B(Cesyp) , x € S(Cespr) and each My is strictly convex.
If ppr(¥2F2) — 1 as n — oo, then z,(i) — z(i) as n » oo for all i € N.
Proof. For eachn € N 4nd 7 € N, let
_ sgn(zn (i) + (1)), if z,(3) + z(2) # 0,
nlt) = { 1, if 2 (i) + (i) = 0.
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Thus

k=1 =1
00 k . k .

=Y M G- 3 5a(d) m“;”) + % an(iﬁéi)) Y o)
k=1 =1 =1

Let an(k) = 1% 5.(9)2,(i) and b,(k) = 1 3%  5,(4)z(i) for all n,k € N. Then
(an)} € B(lpr) and (b,) C B(lar). From (3.7) we have

Gy + bp
2

I ( y—=1 asn— oco.
By Lemma 3.8, for each i € N, we have ‘

an{i) — by (i) — 0 as n — oco. (3.8)
Now, we shall show that z,(k) — z(k) as n — oo Vk € N. By (3.8), we have that

Sp(D)z(1) — sp(1)z(1) = 0 as n — oo.

This implies z,{1} = z(1) as n = oco. If z,(i} — z{i) as n — oo Vi < k — 1, then we
have

sn(i)(zn(i) —z(i)) =+ O0asn— oo Vi< k—1 (3.9)
since i
s (k) (@n (k) = 2(k)) = k(an(k) = ba(k)) = 3 sn(D)(@a(i) - 2(),
it follows from (3.8) and (3.9) that -
$n(k)(@n(k) = 2(k)) = 0 as n = o0,

hence z,,(k) — z(k) as n — 0o. So we have by induction that =, (k) — z(k) as n = oo
for all £ € N. O

Theorem 3.10 If a Musielak-Orlicz function M satisfles the (*)-condition, M € §,N8%
and M is strictly convex , then the space Cesys is LUR.
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Proof. Let (z,) C B(Cesm), x € S(Cespr) be such that ||z, +zl} — 2 asn — co. Then
f| 222} — 1 as n — co. By Lemma 3.6(5), we have that pa(Z2£2) — 1 as n — oo. By

Lemma 3.9, we have z,(i) = z(i) as n — oc Vi € N. By Lemma 3.6(1), we have

fule] k
> My (%le(m) = 1. ©(3.10)
k=1 i=1

Now, let € > 0 be given. Since M = (M) satisfies the (#)-condition and M € §&,, there
is a § € (0,1) such that

loas(u+v) = pae(w)] < 3 (3.11)

whenever pap(u) < § and ppr(v) < 4. Since N € 8z, by Theorem 2.6,6, there exists a
6 € (0,1) and a sequence (h;) of positive numbers such that Y7, ; Mi(hx) < co and

[ Mk(u)

Mi(5) < (1 -6)—— (3.12)

for all k € N and u € R with Mk(hk) < Mi(u) < 1. Since ppr(2F2) — 1 as n — oo,
there exists n’ € N such that 1 — & < pa(Z2£2) for all n > n'. First, we will show

that there exists jo € N such that for i > jo,

k
1 N
sup Z M, (Ezmn(m)]) < 6. (3.13)
n>n' e N

F+1 t=1
To show this, suppose that (3.13) dose not hold. Then there exists a sequence of positive
integers {jy,} with j,, — o0 as m — oo and a sequence of positive integers (7.,) with
N, > n' such that

> Mk( prnm(m) > 6. (3.14)

k=jm+1 i=1
for every m € N. Since M = (My) satisfies the (x)-condition and M € &, there exists

a &1 > 0 such that
)

g:
whenever ppr(u) <1 and par(v) < 4;. By = € Cesyy, there exists a positive number k;
such that

lpa (v +v) — par(u)] < (3.15)

i Mk( Z|$(z)|) < dy, Z My (hy) < @ (3.16)

k=ky+1 k=ky+1
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Take m so large that j,, > k1. Let

k141
Ung = (0,0,..,0, Y [z, ()], |Zn,p (k1 + 2)|; |z, (k1 +3), .-.)
Ky i=1
and
k141
u=(0,0,..,0, ¥ |z(d)], |z(k1 + 2}, [z(k1 + 3)[,...).
T =1
Then
U = 1N Zn (z)
pu(=5)= D Mi| 73 |- | <1
k=ki+1 $=1
and

w, & 1 &L 2(4) '
PM(§)= Z M E;|T| < by

k-:k:l+1
By (3.15), par(®22F%) < par(U3m) + 4. Thus
oo k . . o0 k oy
: 1 Tn,, (1) + (1) 1 Zn,, (1) 8d
> Mk(zZ'—z——‘ < DMl p Pl ey G
k=k;+1 t=1 k=k,+1 i=1

By using convexity of each My, (3.10), (3.12), (3.14), (3.16) and (3.17), we have
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§%+~;~E:Mk (imm ) Z Mk(me@ H

k=ki;+1
k 86
Z Mk (EZMTnmz )‘*‘— Z Mk h.k
k k1+1 =1 k= k1+1
1-6 1, & )
=14 (——-3) > Mk( Zkﬂnm(z )4“* tg
k=k1+1
g8 66 6o
<1_?+Z lm—z,

this contradiction proves (3.13). From (3.13), there exists &’ € N such that
oo 1 .k
Z My, (E Z|~’En(3)|) <4,
k=k'+1 i=1
for all n > n'. By z € Cesyy, there exists ¥’ € N such that
= 1 €
k=k"+1 i=1
Choose ko = max{k’,k”}. Then, we have

o0 k
> M (-,};wn) <

k=ko+1

5 Mk( Z|xn(z')|) <5

k=ko+1

IA

for all n > n'. Since z,(¢) — z(7) as n — oo for all i € N, then there exists n” € N such

that
k

>, (% > leali) - w(z)|)

colm

k=1 i=1

for all n > n”. Choose ny = max{n',n”}. Then we have

oo k
Z M;, (%Zi%(i)l) <é

k=kg+1
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oo k
S M (%Zlm(i)l) <t

k=ko+1 i=1
ZMk (— ; |Zn(d) - m(i)|) < % (3.18)
for all n > ng. Put
ko+1
u=(0,0,...,0, Y |a&(i)|, |z(ko + 2)1, lz(ko + 3)], .
i=1
ko
ko+1
Un = (0,0,..,0, Y |zn (i), |znlko + 2)|, |Tn(ko + 3], -..)
\T/ P ‘
for all n € N. Then
o0 1 k
>, M (g >_l=(0) ) 3
k=ko+1 i=1
o0 1 k
pm(Un) = Z My, (EZ |$n(3)‘)
k=ko+1 i=1

and .
1 ) .
par (g + u) Z M (E > =z () + ;w(z)n).
k=ko+1 i=1
Hence, we have by (3.11)

> Mk( Z(Jmn(zlﬂx(z)l)) < =+ par(u). (3.19)

k=kp+1
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By (3.18) and (3.19), we have for n > nq,

Tn — ) = ZMk( Z|$n(?«)—$(%)|)

k
i=1
k

=§Mk(%2|mﬂ( —a:(zl)—i— Z Mk( Zlmn -x(z)

k=1 i=1 k=ko+1

k
% + M, (% ;(lxn(i)l + |$(i)|))

A

Sgtgtsz=
Hence ppr(z, — ) — 0 as n — oo. By Proposition 3.7, we have that ||z, — z|| — 0 as
n - oo. Therefor Cesys is LUR. O
It is well known that every LU R space has property (H), so the following result

is obtained.

Corollary 3.11 If a Musielak-Orlicz function M satisfies the (*}-condition, M & d;N4;
and M is strictly convex, then the space Cesys has the property (H).

Corollary 3.12 Suppose that p = (px) is a bounded sequence of positive real numbers
with ilgfpk > 1. Then ces(p) is LUR.

Proof. We define the function My : R — R by My(u) = |u/P for all kK € N. Thus
we have the complementary function Ny of My is Ni(v) = |v|% where é‘; + 3;1; =1 for
all k € N. Let M = (M) and N = (V). Clearly My is strictly convex for all k ¢ N
and M € J, since (pi) js bounded. By the condition iréf pr > 1, it implies that {gx)
is bounded, hence N = (Ny) € d2. To show that M satisfies the (*)— condition. Let
€ € (0,1) and Mg(u) <1—¢for all k € N. Then |u[P* < 1 — € for all £ € N. We choose

de (0,(1 )h — 1) where K—-supp;c Hence
Me((1 4 8)u) = (1 + ulP* = (1 4+ §)P*|ulP* < (1 4+ 6)P*(1 - €)

< (1+(1i6)%—1)K(1—e)=1-
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Therefore M satisfies the (x)~condition. By Theorem 3.11, we conclude that ces(p) is
LUR. O

Corollary 3.13 Suppose that p = (pg)} is a bounded sequence of positive real numbers

with ir}gf pr > 1. Then ces{p) has the property (H).
When pi, = p > 1 for all £ € N, we obtain imrhediatly the following result.

Corollary 3.14[9] For 1 < p < oo, the Cesaro sequence space ces, is LUR and has
property (H).
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SOME GEOMETRIC PROPERTIES OF CESARO SEQUENCE SPACE

WINATE SANHAN* AND SUTHEP SUANTAI

ABSTRACT. In this paper we define a modular on the Cesaro sequence space ces(p} and
consider it equipped with the Luxemburg norm. We give some relationships between
the modular and the Luxemburg norm on this space and show that the space ces(p) has
property (H) but it is not rotund (R), where p = (px) is a bounded sequence of positive
real number with px > 1 for all k € N.

1. Introduction. Let (X,||.]|) be a real Banach space, and let B(X) (resp. S(X)) be
the closed unit ball (resp. the unit sphere) of X.

A point z € S(X) is an H-point of B(X) if for any sequence (z,) in X such
that ||z,| — 1 as n — oo, the weak convergence of (x,,) to = (write z,, — z ) implies
that ||z, — z|]| = 0 as n — oco. If every point in S(X) is an H-point of B{X), then X
is said to have the property (H).

A point z € S(X) is an extreme point of B(X), if for any y,z € S(X) the
equality 2z = y + z implies y = z.

A point z € S(X) is an locally uniformly rotund point of B(X) (LUR-point for
short) if for any sequence (z,) in B(X) such that ||z, +z|| = 2 as n — oo there holds
|zn — z|]] = 0 as n — oc.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme
point of B(X). If every point of S(X) is a LUR-point of B{X), then X is said to be
locally uniformly rotund (LUR).

It is known that if X is LUR, then it is (R) and possesses property (H). For
these geometric notions and their role in Mathematics we refer to the monographs [1],
[2] . [6] and {13]. Some of them were studied for Orlicz spaces in [3],[7],[8],[9]and [14].

* Supported by The Royal Golden Jubilee Project
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Let I° be the space of all real sequences. For 1 < p < oo, the Cesaro sequence
space (ces, , for short) is defined by
cesp = {z €1%: 370 (5 300, [2(i)])P < o0}
equipped with the norm
lell = (i, (2 Ty l2@))?)»
and lzllo = (720 (- Tle (@)
where ) denotes a sum over the ranges 2" <1i < 2”:“‘1

Iq: is known that these two norms are equivalent and ces, is Banach with respect
to each of the two norms.

This space was introduced by J.S. Shue [15]. It is useful in the theory of ma-
trix operator and others (see [10] and [12]). Some geometrio properties of the Cesdro
sequence space {cesp, ||.||) were studied by many mathematicians. It is known that
(cesp, ||-||) is LUR and possesses property (H) {see [12] ). Y. A. Cui and H. Hudzik [4]
proved that {(cesp, ||.||) has the Banach-Saks of type p if p > 1, and it was shown in [5]
that (cesyp, ||.||) has property ().

Now let p = {px) be a bounded sequence of positive real number with p; > 1 for
all ¥ € N. The Cesaro sequence space ces(p) is defined by

ces(p) = {z € 10+ T2 (& Tla(a) )7

—
where 3 denotes a sum over the ranges 2" < ¢ < 27+1.
r

For z € ces(p), let p(z) = Y oo (5= |z(i}|)Pr) and define the Luxemburg norm

on ces(p) by
|lz]| = inf {e > 0 : p(g) <1}, =z € ces(p).

The main purpose of this paper is to show that the Cesaro sequence space ces(p)
equipped with the Luxemburg norm has property(H) but it is not rotund ,so0 it is not
LUR.

Throughout this paper we let M = sup p,, and for x € {? we put
T

z|; = (2(1),2(2), ..., 2(4), 0,0, ...)

and
Zln—i = (0,0,...,0,z(s 4+ 1), z(z + 2), ...).
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MAIN RESULTS

First, we show that p is a convex modular on ces(p).

Proposition 2.1 The functional p is a convez modular on ces(p).
Proof. It is obvious that p{z) = 0 & z = 0 and p(az) = p(z) for all scalar o with
|| = 1. _

Let @ > 0,8 > 0 with @« + 8 = 1. By the convexity of the function ¢ — |¢|P~ for
every r € N, we have

e+ )= 3 (3t 30
r=0 r
<3 (a;—,Dx(z’n " ﬁzerIy(iH)
r=4§ T r
o0 Dr co Pr
<o3S (33k01) +o3 (Fhon)
r=0 r r=0 r
= ap(z) + Bp(y).

Proposition 2.2 For z € ces(p),the modular p on ces(p) satisfies the following prop-
erties
(i) if 0 <a <1, then a™p(&) < p(z) and p(az) < ap(z),
(i) ifa> 1, then p(z) < aMp(2),
(1) if a > 1, then p(z) < ap(x) < plaz).
Proof (i) Let 0 < @ < 1. Then we have
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bt 1 T .
> ZGM (QTZI‘C? )
r=0 T
” 0 1 o, Pr
= |\
r=0 T

= aMp(2).

By convexity of p, we have p(ax) < ap(x), so (i) is obtained
‘ 1
(ii) is an easy consequence of (i) when a is replaced by o

(iii) follows from the convexity of p.

Proprosition 2.3 For any = € ces{p), we have

(1) if llzl| <1, then p(z) < |||,

(i) if {|z|| > 1, then p(z) = |l=l],

(iii) ||z|| = 1 #f and only if p(x) =1,

(iv) ||z|l <1 if and only if p(z) < 1 and

(v) l|z|| > 1 if and only if p(z) > 1.
Proof (i} Let £ > 0 be such that 0 < & < 1 — ||z{], so ||z|| + € < 1. By definition of |||,
there exists A > 0 such that {|z|| + € > X and p(§) < 1. By Proposition 2.2(i) and (iii),

we have
o< o129,

= p{Uell +)3)

< (ll=ll + e)p(3)

< flell + e,

d
A

which implies that p(z) < ||z||. Hence (i) is satisfied.

[z}l -1
[l
||.]| and by Proposition 2.2(i), we have 1 < p ((1_?)"3:") < (1—el)ilsc|§p($)’ so (1—¢)|lz|| <

zj|—1

plz) for all € € (0, ﬂﬂt;"—), which implies that ||z|| < p(z).

(ii) Let € > 0 be such that 0 < e <

,then 1 < (1—¢€)||z|| < liz||. By definition of
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(iii) Assume that |[jz|| = 1. Let € > 0, then there exists A > 0 such that 1 +¢ > A > ||zl
and p(%) < 1. By Proposition 2.2(ii), we have p(z) < AMp(Z) < AM < (1 + €)M, so
(p(z))# < 1+¢ for all € > 0 which implies that p(z) < 1.

If p(z) < 1, let a € (0, 1) such that p{z) < a™ < 1. From Proposition 2.2(i), we
have p(2) < —rp(z) < 1, hence |[z|| < a < 1, which is a contradiction. Thus, we have
p(z) = 1. .

Conversely, assume that p(z) = 1. By definition of ||.||, we conclude that ||z|| < 1.
If ||z]] < 1, then we have by (i) that p(z) < ||z|]] < 1, which contradicts to our
assumption, so we obtain that ||z|| = 1.

(iv) follows from (i) and (iii).
(v) follows from (iii) and (iv).

Proposition 2.4 For z € ces(p) we have

(i) if0 < a<1 and|z| > a, then p(z) > a™ and

(i1) ifa > 1 and ||z|| < a , then p(z) < aM.
Proof. (i) Suppose 0 < @ < 1 and |jz}] > a. Then Hf” > 1. By Proposition 2.3(ii), we
have p(2) > 1. Hence, by Proposition 2.2(i), we obtain that p(z) > a™p(2) > a™.

(ii) Suppose @ > 1 and ||z|]| < a. Then H%H < 1. By Proposition 2.3(i), we have
p(2) < 1. If a = 1, we have p(z) < 1 =a™. If a > 1, by Proposition 2.2(ii), we obtain
that p(z) < a™p(Z) < oM.

Proprosition 2.5 Let (z,,) be a sequence in ces(p).

(i) If im0 llzn|] = 1, then limg .o plzn) = 1.

(1) If limp o0 p(Zn) = 0 then lim, e ||Zn|| = 0.
Proof. (i) Suppose lim, e ||Tn]] = 1. Let € € (0,1). Then there exists N € N such
that 1 —e < ||zy|| < 1+e€ for all n > N. By Proposition 2.4, (1—€)™ < p(z,) < (1+6)M
for all n > N, which implies that lim, . p(z,) = 1.

(ii) Suppose ||| # 0. Then there is an € € (0,1) and a subsequence (z,,) of (z,)
such that ||z,, || > € for all k € N. By Proprosition 2.4 (i), we obtain p(z,,) > ¢ for
all k € N. This implies p(z,) # 0 as n — co.
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Lemma 2.6 Let (z,,) be a sequence in ces(p).If p(x,) — p(x) and z,(k) — z(k) Vk,
then , =& = as n — 0o.

Proof Suppose that z, /4 . By Proposition 2.5 (ii), we have p(Z2=%) 4 0.Without
loss of generality we may assume that there exists ¢ € (0,1) such that p(*s7%) > ¢
for all n € N. Since (p(=-2))52, is a bounded sequence, it must have a convergent
subsequence. Passing through a subsequence, if necessary we can assume p(%a-=) — ¢
for some ¢; > €. Since p(z) = lim; 4o p(z|2:) and (p(z|9:))2, is nondecreasing , we
have p(z) = sup{p(x|s:) : i € N}. So there exists i € N such that p{z|s) > p(z) — €/2.
Thus

plahiz) < €/2. (2.1)
Since z,(k) — z(k) for all k¥ € N, we have '
Tp — I
p{znlei) — plz]e:) and p( 5 l2:}) = 0 as n — oo. (2.2)

By the convexity of p together with (2.1) and (2.2), we have

! Lp— T
go = lim p(~——)
oy Tn— T, Ty — T 7
= lim [p(=5—l2:) + p(—5— In-2:)
. . xn — X ) . Inp — X )
= lm p(—5—z) + lm p(——5—In-2)
Tn — X

=0+ lim p( =2 )
n—ro0

< %nli_fgo P(ZTnln-2i) + %P(-'ElN—SZ‘)

= 1 lim (plen)  plenlar)) + 2 plein-)
= 2 (0(2) — plalx)) + 5p(elnz)

= %p(m|N_2.-) + %P($|N—2")

= p{T|x—a:)

< €f2

< €p,

which is a contradiction. Therefore z,, — z as n — oo.
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Theorem 2.7 The space ces(p) has the property (H).

Proof. Let = € S(ces(p)), z. € B(ces(p)) for all n € N such that z, — z and
||£n|] = 1 as n — co. By Proposition 2.3(iii), we have p(z) = 1. By Proposition 2.5(i),
we obtain that p(z,) — 1 as n — oco. So p(z,) — p(z) as n — co. Since z, — x
and the i** coordinate mapping p; : ces(p) — R, defined by p;(z) = z;, is continuous ,
it implies that z,(i) — z(¢) as n — oo for all s € N. It follows from Lemma 2.6 that
Ty — T a8 1 — 00,

The following result is obtained directly from Theorem 2.7.
Corollary 2.8 For1l < p < oo, (cesp,||.|lo) has property (H)

Remark 2.9 For a bounded sequence of positive real numbers p = (py) with pp > 1

for all k € N, the space ces(p) equipped the Luxemburg norm is not rotund , so it is
not LUR.

To see this we put
z=1(0,1,1,0,0,.....) and y = (0,2,0,0,...)

Then z,y € S(ces(p)) because p(z) = p(y) = 1 . Since p(XF¥) = 1, we have by
Proposition 2.3 (iii) that ||Z£%|| = 1. This shows that ces(p) is not rotund, so it is not
LUR.
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On the H-Property of Some Banach Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we define a generalized Cesédro sequence
space ces(p) and consider it equipped with the Luxemburg norm under
which it is a Banach space , and we show that the space Ces(p) posses
property (H) and property (G) , and it is rotund, where p = (pk) is a

bounded sequence of positive real numbers with pp > 1 forall k € N .

(2000) AMS Mathematics Subject Classification: 46K30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by $(X)} and B(X) the unit sphere and unit
ball of X, respectively. A point zy € S(X) is called

a) an eztreme point if for every z,y € S(X) the equality 2zy = = + y implies
=1y

b) an H-point if for any sequence (z,) in X such that ||z,|| = 1 as n — oo , the
weak convergence of (z,) to zo (write z,, & z¢) implies that ||z, — z|| = 0 as n — oo;

c) a denting point if for every € > 0, zo ¢ conv{B(X)\{zo + ¢B(X))}.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme
point.

A Banach space X is said to posses Property (H) (Property (G)) provided every
ponit of S(X) is H-point (denting point).
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For these geometric notions and their role in Mathematics we refer to the mono-
graphs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3],[7],[8],[9]and
[14].

Let us denote by I the space of all real sequences. For 1 < p < oo, the Cesaro

sequence space (cesp, for short) is defined by

cesy = {z €10 Z(% S e (@) < oo}
n=1 i=1

ol = (i (%im(in)p)% |

i=1

equipped with the norm

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix
operator and others (see [10] and [12]). Some geometric properties of the Cesaro se-
quence space ces, were studied by many mathematicians. It is known that ces, is LUR
and posses property (H) (see {12] }. Y. A. Cui and H. Hudzik [4] proved that ces, has
the Banach-Saks of type p if p > 1, and it was shown in [5] that ces, has property (8).

Now, let p = (px) be a sequence of positive real numbers with py > 1 for all

k € N. The Nakano sequence space {{p) is defined by
I(p) = {zr € 1°: o(\z) < oo for some X > 0},
where o(z) = >, |z(2)|P*. We consider the space {(p) equipped with the norm
ol = inf{A > 0: 0(3) < 1},

under which it is a Banach space. If p = (pi) is bounded, we have
p) ={z €l”: D |s(i)P* < oo}
i=1

Several geometric properties of {(p) were studied in [1] and [4].

The Cesédro sequence space ces(p) is defined by

ces(p) = {z € 1" : p(Az) < oo for some X > 0},
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where p(z) = 327 (£ 37, |z(2)|)P=. We consider the space ces(p) equipped with the
so-called Luxemburg norm

lell = inf{x>0: p(3) < 1}

under which it is a Banach space. If p = (px)} is bounded, then we have
ces(p) = {z = z(4) : Z Z |z(2)|)P* < o},
n=1

W. Sanhan [15] proved that ces(p) is nonsquare when py > 1 for all k € N. In this paper,
we show that the Cesdro sequence space ces(p) equipped with the Luxemburg norm is
rotund (R) and posses property (H) and property (G) when p = (px) is bounded with
pr > 1 forall k e N.

Throughout this paper we assume that p = (px) is bounded with pg > 1 for all
k €N, and M = sup, pk.

2. Main Results
We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1 The functional ¢ on the Cesaro sequence space ces(p) is a convez
modular. '
Proof. 1t is obvious that p(x) = 0 & = = 0 and g(az) = p(z) for all scalar a with

| = 1. If z,y € ces(p) and @ > 0, 8 > 0 with o+ 8 = 1, by the convexity of the

function t — |¢|P* for every k € N, we have
[J

olaz + By) = Z( Zlaw +ﬁy%)|)

= ap(z) + Boly).
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Proposition 2.2 For z € ces(p), the modular g on ces(p) satisfies the following prop-
erties :

(i) if0 < a <1, then aMg(g) < o(z) and o(az) < ap(x),

(i) ifa> 1, then o(s) < aM (%),

(iii) if a > 1, then o(z) < ap(z) < plaz).
Proof. It is obvious that (iii) is satisfied by the convexity of g . It remains to prove (i)
and (ii) .

For 0 < a < 1, we have

k=1 i=1
oo 1 ( ) P
oM z(i
> (E e )
k=1 i=1
T
= a’MQ(E)s

and it implies by the convexity of g that g(az) < ap(z) , hence (i) is satisfied.
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Now , suppose that a > 1. Then we have

fos) k Pk
oz) =3 (]; S Ja(i)|

So (ii) is obtained. O

Next, we give some relationships between the modular g and the Luxemburg

norm on ces(p}.

Proposition 2.3 For any z € ces(p), we have

(i) if llzll <1, then o(x) < ||z,

(ii) if ol > 1, then o(z) > |,

(iii) {|z|| = 1 if and only if o(z) =1,

(iv) ||z]| <1 if and only if o(z) < 1,

(v) fiz|| > 1 if and only if o(z) > 1,

(vi) if 0 < a <1 and ||z|| > a, then o(z) > aM , and

(vii) if a > 1 and ||z|| < a, then p(z) < o™.
Proof. (i) Let € > 0 be such that 0 <& < 1 - ||z||, so ||z]| + € < 1. By definition of .||,
there exists A > 0 such that ||zf| +e€> X and ¢(F) < 1. From Proposition 2.2(i) and

(iii), we have
oto) < o (129 )

=o((llzl +93)

< (l2ll + 9e(3)
<|lzll +¢,
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which implies that o(z) < ||z||, so (i) is satisfied.
izl — 1

]l

of ||.|| and by Proposition 2.2 (i), we have

< o(a=am)

1
< T—one 2

(i1) Let € > 0 be such that 0 < € < , then 1 < (1 - ¢)||z|| < ||z||. By definition

-1 o .
so (1 —¢e)||z|| < o(z) for all € € (0, %—) This implies that ||z|| < o(z), hence (ii)
i
is obtained.
(ili) Assume that ||z|| = 1. By definition of ||z||, we have that for ¢ > 0, there exists

A > 0 such that 1 +¢€ > A > ||z|| and o(5) < 1. From Proposition 2.2(ii), we have
o(z) < AMp(2) < MM < (1+6)M , 50 (o(z))™ < 1+¢ forall € > 0, which implies
o(x) < 1. If p(z) < 1, then we can choose a € (0,1) such that o(x) < aM < 1.
From Proposition 2.2(i), we have g(£) < —re(z) < 1, hence j|z]| < a <1, which is a
contradiction. Therefore g(z) = 1.

On the other hand , assume that g(x) = 1. Then ||z|| < 1. If ||z}l < 1, we have
by (i) that o(z) < ||z|| < 1, which contradicts our assumption. Therefore ||z| = 1.
(iv) follows directly from (i) and (iii).
(v) follows from (iii) and (iv).
(vi) Suppose 0 < a < 1 and ||z|| > a. Then HEH > 1. By (v), we have Q(g) > 1.
Hence, by Proposition 2.2(i), we obtain that g(z) > a™ (%) > ™.
(viil) Suppose a > 1 and ||z|| < a. Then H-;EH < 1. By (iv), we have g(z) <l.Ifa=1,
it is obvious that g(z) < 1 = a™. If a > 1, then , by Proposition 2.2(ii), we obtain that

o(z) < aMg(g) < aM.

Proposition 2.4 Let (z,,) be a sequence in ces(p).

(i) If |zau|l = 1 asn — oo, then o(z,) = 1 asn — oco.

(i) If o(zn) = 0 as n — 0o , then ||znu]| = 0 as n — oo.
Proof. (i) Suppose ||z,|| = 1 as n — oco. Let € € (0,1). Then there exists N € N such
that 1 — e < ||zn|] < 1 4+ € for all n > N. By Proposition 2.3 (vi) and (vii), we have
(1 - €)™ < p(z,) < (1 + €)M for all n > N, which implies that g(z,) — 1 as n = cc.
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(ii) Suppose Yjzn|| # 0 as n — oo. Then there is an € € (0,1) and a subsequence
(zn,) of (z) such that ||z,,|| > € for all ¥k € N. By Proprosition 2.3 (vi), we have
o(zs,) > €M for all k € N. This implies o(z,) /4 0 as n — oco.

Next, we shall show that ces(p) has the property (H). To do this, we need a

lemimna.

Lemma 2.5 Let z € ces(p) and (z,) C ces(p). If o(z,) — p(z) as n — oo and
zn(i) = (i) as n — oo for alli € N, then x,, & = as n — oc.
Proof. Let e > 0 be given. Since p(z) =3 5o, (4 Zf=1 |z(%)|)P* < 0o , thereis kg € N
such that

(1 e

2 (E le(i)l) < 3MyT (2.1)

k=ko+1 i=1

Since p(wn) ~ Lk (F 2ima [2a (@) = p(z) = 424 (F 305 [2(D)])P* as n — 00 and

zn(t) — z(i) as n — oo for all ¢ € N, there is ng € N such that

ko 1 k P ko 1 k Pk e 1
CREDY (E Zlmn(i)l) <eolz)- ) (;le(i)l) +aomw (22

k=1 i=l k=1

for all n > ng, and
ko 1 k Pk .
(E > lzn(d) - m(i)|) <3 (2.3)

for all n > ny.
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It follows from (2.1), (2.2) and (2.3) that for n > ng,

o k Pk
Q(wn - 512) = Z (”]é Z I-’Bn(z) - JI(E)l)
k=1 i=1
ko 1 k P oo 1 k Pk
- (Z |z (i) —m(i)l) + > (EZI%(%') ~$(i)|)
k=1 i=1 k=ko-+1 \  i=l
-~ o k Pk
< g+ ( 3 (kZIxn(z)l) + 2 (%Zlm(i)l) )
k=kq+1 k=ko+1 i=1
) ko 1 k Pk oo 1 k Pk
=3 + oM (g(mn) - Z (‘EZWn(‘ﬂ”) + Z (EZM:(z)I) )
i=1 k=ko+1 i=1
€ 1< €l 1o "
<§+2M (g(x) Z(kZW(ﬁ ) tagar t (EZ'“’("”) )
=1 k=kg+1 i=1
. oo 1 P e 1 00 1 k Pk
k=ko+1 i=1 k=ko+1 fz=l
€ = 1 k o e 1
=3 +2M (2 > (EZIx(iH) + —3-2—)
k=ko+1 =1
Griri=e

This show that g(z, —z) — 0 as n — oo. Hence, by Proposition 2.4 (ii), we have
|zn — z|| = 0 as n — oco.

Theorem 2.6 The space ces(p) has the property (H).

Proof. Let 2 € S(ces(p)) and (z,) C ces(p) such that ||z,]| = 1 and z,, = z asn — cc.
From Proposition 2.3 (iii), we have g{z) = 1, so it follows from Proposition 2.4 (i) that
o{z,) = o(z) as n — oco. Since the mapping p; : ces(p) — R, defined by p;(y)} = y(1), 1s
a continuous linear functional on ces(p), it follows that x,(i) — z(i) as n — oo for all

1 € N. Thus, we obtain by Lemma 2.5 that z,, & z as n — oc. O
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Theorem 2.7 The space ces(p) is rotund.
. y+z o
Proof. Let x € S(ces(p)) and y,z € B(ces(p)) with ¢ = — By Proposition 2.3
and the convexity of p we have

b2 | =

1= 0e) < 5(ol0) +0(2)) < 5O +1) =1,

so that o(z) = %(g(y) + o(z)) = 1. This implies that

QLA R I A T AN S 1(1 A
(E ; |_2 |) =3 (E;Lﬂ(ﬁ)l) t3 \“k‘; |z(’¢)|) (2.4)
for all £ € N.

We shall show that y(i) = z(¢) for all i € N.

From (2.4), we have
m

= Sy )P + [2)). (2.5)

o = U0

Since the mapping ¢t — [¢[P! is strictly convex, it implies by (2.5) that y(1) = z(1).
Now assume that y(¢) = z(3) for all 4 = 1,2,3, ...,k — 1. Then y(i) = 2(3) = (i)
foralli=1,2,3,...,k - 1. From (2.4), we have

Lo p@)+2G6) )\ (AR @)+ LR @\
I e

2

k

= (%Dyun) +3 (éf\:‘lu(z‘n) (26)

i=1

, : ey 1 . 1 :
By convexity of the mapping ¢ — |¢|P* , it implies that Z Zf;l ly(7)| = z Zle |z(%)].
Since y(4) = 2(¢) for all ¢ = 1,2,3,...,k — 1, we get that

ly(k)| = |2(k}. (2.7)

If y(k) = 0, then we have 2(k) = y(k) = 0. Suppose that y(k) # 0. Then
z(k) # 0. If y(k)z(k) < 0, it follows from (2.7) that y(k) + 2(k) = 0. This implies by
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(2.6) and (2.7) that

PRt Pk 1 [ P

which is a contradiction. Thus, we have y{k)z(k) > 0. This implies by (2.5) that
y(k) = z(k). Thus, we have by induction that y(i) = z(7) for all i € N, so y = 2. O

Bor-Luh Lin , Pei-Kee Lin and S.L. Troyanski proved { cf. Theorem iii [11]) that
element z in a bounded closed convex set K of a Banach space is a denting point of K
iff z is an H-point of K and z is an extreme point of K. Combining this result with our

results (Theorem 2.6 and Theorem 2.7), we obtain the following result.

Corollary 2.8 The space ces(p) has the property (G).

For 1 < r < oo, let p = (px) with pr = r for all £ € N. We have that ces, =
ces(p), so the following results are obtained directly from Theorem 2.6, Theorem 2.7

and Corollary 2.8, respectively.

Corollary 2.9 For1 <7 < oo, the Cesdro sequence space cesy has the property (H).
Corollary 2.10 For 1 < r < oo, the Cesdro sequence space ces, is rotund.

Corollary 2.11 For1 < r < oo, the Cesdro sequence space ces, has the property (G).
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On Some Convexity Properties of Generalized
Cesaro Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we define a generalized Cesdro sequence
space ces(p) and consider it equipped with the Luxemburg norm under
which it is a Banach space , and we show that the spa::e ces(p) is locally
uniformly rotund (LUR), where p = (pk) is & bounded sequence of positive

real numbers with py > 1 forall k € N .

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S{X) and B(X) the unit sphere and unit
ball of X, respectively. A point zo € S(X) is called

a) an ertreme point if for every z,y € S(X) the equality 229 = z + y implies
z=y;

b) a locally uniformly rotund point (LUR-point for short)if for any sequence
(z,) in B(X) such that ||z, + z|| — 2 as n — oo there holds ||z, — z|| — 0 as n — oo;

¢) an H-point if for any sequence (z,,) in X such that ||z,|| > 1 as n — oc, the
weak convergence of (z,,) to zp (write z, 2 zq) implies that ||z, — || = 0 as n — oo;

d) a denting point if for every € > 0, 2o ¢ conv{B(X)\(z¢ + ¢B(X))}.

A Banach space X is said to be rotund (R), if every point of S(X} is an extreme
point.
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If every =z € §(X) is a LUR-point, then X is said to be locally uniformly rotund
(LUR).

X is said to posses Property (H) (Property (G)) provided every ponit of S{X)
is H-point {denting point).

For these geometric notions and their role in Mathematics we refer to the mono-
graphs (1], {6] , [12] and [13]. Some of them were studied for Orlicz spaces in [1],[7],[8],[12]
and [14].

Let X be a real vector space. A functional p: X — [0, 00] is called a modular if
it satisfies the conditions

(i) o(z) = 0 if and only if = = 0;
(i) o(azr) = o(z) for all scalar @ with |a| =1 ;
(iil) plax + By) < o{z) + o(y), for all z,y € X and all o, § > 0 with o + 5 = 1.
The modular g is called convex if

(iv) g(ax + By) < ag(z) + Bo(y), forallz,ye X and all @, B> 0 with e+ 8 =1.
If ¢ is a modular in X, we define

X,={zeX: AEIE+Q(A$)=O}
and X} ={z € X : p(Az) < oo for some A > 0 }.

It is clear that X, C X7. If ¢ is a convex modular, we define

i z
llz]| = inf{A>0: o (X) <1} (1.1)
Orlicz {13] proved that if ¢ is a convex modular in X, then X, = X and ||.|| is a norm
on X, for which it is a Banach space. The norm ||.|| defined as in (1.1) is called the

Luxemburg norm.
A modular ¢ on ).{ is called
(a) right-continuous if imy_,y+ o(Az) = p(z) for all z € X,
(b) left-continuous if limy_, ;- o(Az) = p(z) for all z € X,

(c) cotinuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular g and

the Luxemburg norm {|.|| on X .
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Theorem 1.1 Let p be a conver modular on X and let x € X, and (x —n) a sequence
in X,. Then ||z, —z|| = 0 as n = oo if and only if p(A(z, — z)) = 0 as n — oo for
every A > 0.

Proof. See [11, Theorem 1.3].

Theorem 1.2 Let g be a convexr modular on X. Then
(i) ||z|| <1 if and only if o(z) < 1.
(i) ||z|| < 1 if and only if o(z) < 1.
(it} ||z|| = 1 if and only if o(z) = 1.
Proof. See [11, Theorem 1.4].

Let us denote by [° the space of all real sequences. For 1 < p < oo, the Ceséaro

sequence space {cesp, for short) is defined by

ces, = {rel’: Z(;l,: Z |z(2)|)P < oo}
n=1 i=1

equipped with the norm - .
lall = (D26 =)
n=1 ' i=1

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix
operator and others (see [9] and [10]). Some geometric properties of the Cesdro sequence
space cesp were studied by many mathematicians. It is known that ces, is LUR and
posses property (H) (see [10] ). Y. A. Cui and H. Hudzik [2] proved that ces, has the
Banach-Saks of type p if p > 1, and it was shown in [5] that ces, has property (5).

Now, let p = (px) be a sequence of positive real numbers with py > 1 for all
k € N. The Nakano sequence space I(p) is defined by

I(p) = {z €1°: a(Azx) < oo for some A > 0},
where o(z) = Y i, |z(i)|P*. We consider the space I(p) equipped with the norm

lz|| = inf{x > 0:0(<) < 1},

> 8
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under which it is a Banach space. If p = (px) is bounded, we have

oo
I(p)={zel: Z lz(2}|P* < oo}
i=1
Several geometric properties of [(p) were studied in [1] and [4].

The Cesaro sequence space ces(p) is defined by
ces(p) = {z €1°: p(Az) < co for some A > 0},

where g(z) = Y oo (3% |z(i)|)P=. We consider this space equipped with the so-
called Luxemburg norm

ol = inf{A > 0: p(3) < 1}

under which it is a Banach space. If p = (px) is bounded, we have

n

ces(p) = {z = 2 : (= D la(i))* < oo},

i=1
W. Sanhan [15] proved that ces(p) is nonsquare when pg > 1 for all k € N. In this paper,
we show that the Cesdro sequence space ces{p) equipped with the Luxemburg norm is

LUR and posses property (H) and property (G) when p = (px) is bounded with pg > 1
for all k € N,

Throughout this paper we assume that p = (py) is bounded with py > 1 for all
k¢ N. and M = sup,, px.

2. Main Results

We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1 The functional p on the Cesaro sequence space ces(p) is a conver
modular.

Proof. It is obvious that p{z) = 0 & z = 0 and p(az) = g(z) for all scalar a with
el = 1. If z,y € ces(p) and @ > 0, 8 > 0 with a + 8 = 1, by the convexity of the
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function t — [t|P* for every k € N, we have
oo 1 k Pk
olaz + By) = (E > laz(@) + 6’y(i)|)
L
(a (EZIm( )|) +8

Proposition 2.2 For x € ces(p), the modular g on ces(p) satisfies the following prop-
erties :

(i) if 0 <a <1, then aMg(Z) < p(z) and plazx) < ap(z),

(it) if a > 1, then o(z) < aMo(%),

(iti) if a > 1, then p(z) < ag(:c)ag olazx).
Proof. It is obvious that (iii) is satisfied by the convexity of ¢ . It remains to prove (i)
and (ii) .

For 0 < a < 1, we have

o@) = (% )y I:c(i)l)

k=1

oo k . P
:Zam (%ZI?O

k=1 =1

00 k . Pk
>Y aM (%ZI%‘)I)

k=1 i=1
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:aMZGD%)

i=1

and it implies by the convexity of ¢ that p(az) < ag(z) , hence (i) is satisfied.
Now , suppose that ¢ > 1. Then we have

oo 1 k - Pk
oo =3 (13010

k=1 i=1

o0 k .
PO
i=1

k=1

I

k

<A 333 B

k=1 i=1

So (ii) is obtained. O
Proposition 2.3 The modular g on ces(p) is continuous.
Proof. For A > 1, by Proposition 2.2 (ii) and (iii), we have

o(z) < Ao(x) < o(Az) < AMo(z) (2.1)

By taking A — 17 in (2.1), we have limy_,1+ p(Az) = g(z). Thus g is right-continuous.
If 0 < A < 1, by Proposition 2.2 (i), we have

M o(z) < o(Az) < Ao(w) (2.2)

By taking A — 17 in 62.2), we have that limy_,,- o(Az) = o(z), hence, o is left-

continuous. Thus ¢ is continuous.

Next, we give some relationships between the modular ¢ and the Luxemburg

norm on ces(p).
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Proposition 2.4 For any x € ces(p), we have

(i) if Iall < 1, then o(z) < |2,

(1) if o]l > 1, then o(z) > {|=l,

(ii2) ||z|| = 1 if and only if o(z) =1,

(iv) ||z|| <1 if and only if o(z) < 1,

(v) ||z|| > 1 if and only if o(z) > 1, :

(vi} if 0 < a <1 and ||z|| > a, then o(z) > a™ , and

(vii) if a > 1 and ||z|} < a, then o(z) < oM.
Proof. (i) Let € > 0 be such that 0 < e < 1 —||z||, so ||z|| + € < 1. By definition of ||.,
there exists A > 0 such that ||z]|+e¢> A and p(3) < 1. From Proposition 2.2(i) and

(iii), we have
sy <o (49,

xr
= ¢ ((lall +93)
< (Jlzll + )e(3)

< lzfl +¢

which implies that g(z) < ||z||, so (i) is satisfied.
llcl} — 1
a0 < e <]
of ||.]| and by Proposition 2.2 (i), we have

1< e (=5

1
< u—_amé’(-’ﬂ),

(ii) Let ¢ > 0 be such that 0 < e < , then 1 < (1 —¢)||z|| < ||z||. By definition

el =1

so (1~ e)||z|| < e(z) for all € € (0, el
T

). This implies that ||z|| < o(z), hence (ii)
is obtained.

(iii} and (iv) follow directly from Theorem 1.2.

(iv) follows directly from (i) and (iii}.

(v) follows from (iii} and (iv).

(vi) Suppose 0 < @ < 1 and ||z|| > a. Then HEH > 1. By (v), we have Q(z-) > 1.
Hence, by Proposition 2.2(i), we obtain that g(z) > a™g(2) > oM.
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(vii) Suppose a > 1 and ||z|| < a. Then ”ZH < 1. By (iv), we have g(f) <l Ilfa=1,
a
it is obvious that o(z) < 1 = a™. If @ > 1, then , by Proposition 2.2(ii), we obtain that
T
o(z) < aMg(a) < aM.

Proposition 2.5 Let (x,) be a sequence in ces(p).

(i) If ||zn]| = 1 as n — oo, then o(z,) = 1 as n — oo.

(it} ||zn|| = 0 as n — oo if and only if p(z,) = 0 as n — co.
Proof. (i) Suppose l|z,|| = 1 as n — oo. Let € € (0,1). Then there exists N € N such
that 1 — € < ||zn]| < 1 + ¢ for all n > N. By Proposition 2.4 (vi) and (vii), we have
(1 6™ < o(z,) < (14 €)M for all n > N, which implies that g(z,) — 1 as n — oo.
(ii) The only part of (ii) is true by Theorem 1.1, so we need to show only the if part
of (ii). Suppose ||zn| 7 0 as n — oo. Then there is an € € (0,1) and a subsequence
(zn,) of (z,) such that ||z, /| > € for all & € N. By Proprosition 2.4 (vi), we have
o{zy,,) > €M for all ke N. This implies o(z,) # 0 as n — oo.

Tn + Yn
2

Proposition 2.6 Let (z,) € B(i(p)) and (yn) C B(i(p)) . If o
Zu(1) — yn(i) = 0 as n — oo for all i € N.
Proof . We first note that if z € B(£(p), then o(z) < 1. Supose that z,(i) — y(i) A~ 0

as n — oo for some ¢ € N. Without loss of generality we may assume that ¢ = 1 , and

) — 1, then

then assume that , for some € > 0,
|Zn(1) —yn(1)|"* 2 ¢ VR EN

Thus
22 (|zn(1)[P* + {yn (1)) = € YR EN, (2.3)

Since the function ¢ — |¢[P* is uniformly convex, there exists § > 0 such that

lw‘;y"—(l)lm <(1-4) ('””(l)lpl ; 'y"(mpl) ¥n € N.

(2.4)
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It follows from (2.3) and (2.4) that for each n € N,

z +yn T (1) + yn(2) |7
( n ) — Z n( ) 5 1)

i=1

IENOESAOTENE NERURS MO G
2 ; 2
i=2
o (1P + |y (1) |7 1S
i=2 1.—-2
1 1 |Zn ()P + |y (1)
= 2o(on) + 3ot =5 :
1 1 € ’
- § + 5 - ap1+1
€
This implies that cr(m" ;_ Iny 51 as n — oc.

Ty + X
2

Proposition 2.7 Let (x,,) C B(ces(p)) and z € S(ces(p)). If of
then z,(i) = (i) asn — oo for all i € N.
Proof. Foreachn € Nand ¢ €N, let

52 (i) = { sgn(Tn (i) + z(9)) if 2, (i) + z(3) # 0,

Lif 2, (2) + x(3) = 0.
=000 s

Let an(k) = L 3% | sa(d)za(d) and by(k) = L%  s.(6)2(i) for all n,k € N. Then
(an) € I(p) and (bn) € {(p), and from (2.5) we have

) — 1 asn — oo,

Hence, we have

.’E+23 o0 k
1<—(“ =2(
i

zn (i) +2(7) + z(1)

@y, + by,
2

o

J->1 asn — oc.
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Form Proposition 2.5, we have
a,{1) — b.(i) 2 0asn - o0 (2.6)

for all i € N. Now, we shall show that z,(k) — z(k) as n — oo for all ¥ € N. From
(2.6), we have

Sn(Dzn(1) — 8,(1)x(1) —-0 as n — o0,

this implies z,(1) — z(1) as n — oco. Assume that z,(i) = z(i) as n — oo for all
i < k — 1. Then we have

Sn()(zn(@) —z(7)) 2 0 as n — (2.7)

for all i < k—1. Since s, (k)(zp (k) —2(k)) = k(an(k) —ba(k)) = 5] 5,(8) (mn () —2(4)),
it follows from (2.6) and (2.7) that s,(k)(zn(k) — z(k)) — 0 as n — oco. This implies
Tn(k) — z(k) as n — oo. So we have by induction that z,(k) — z(k) as n — oo for all
ke N

Theorem 2.8 The space ces(p) is LUR.

Proof. Let (z,) C B(ces(p)) and = € S(ces(p)) be such that ||z, + z|| = 2 as n — oc.
Iy + T Int+x

Then || 7

n — 0o. By Proposition 2.7, we have z,(¢) — z{i) asn —+ co Vi € N.

|| = 1 as n — oco. By Proposition 2.5 (i), we have p( ) = 1 as

Now, let € > 0 be given. Then there exists kg € N and ng € N such that

oo k Pk
> (%Z |x(i)|) <o (28)

k=kg+1 =1
ko 1 k P .
> (’E > leali) - x(i)|) <3 foralln>no, (2.9)
k=1 i=1

ko 1 k D ko 1 k Pk e 1

> (E > |$n(i)|) >y (EZ |-’C(i)|) 390 (2.10)
k=1 i=1 k=1 i=1

By Proposition 2.4 (i) and (iii), we have g(z,) < 1 for all n € N and g(x) = 1. From

these together with (2.8), (2.9), (2.10) and the fact that (a + b)P* < 2P*(aP* + bPx) for
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a,b > 0, we have that for all n > ng,

9(3311, - .T) =

A

IA

oo k P
> (% 3 lanld) - w(ﬂ!)
k=1 i=1
ko 1 k P o0 1 k Px
> (1m0 -=0l) + 3 (13 rm0-01)
k=1 i=1 k=ko+1 i=1
¢ o0 1 k Pk 00 1 k Pk
o (33m0l) + 3 (13kl) )
k=ko+1 i=1 k=ko+1 i=1
. o ko 1 k ‘ P 00 1 k . Pk
s (e -3 (Fwm0l) + 3 (10l )
=1 =1 =kg+1 i=1
] ko (1 K Pk . i k Pk
5 +2" (1—2(-];2@“(@'”) + ) (EZ|:C(?;)|) )
k=1 i=1 k=ko+1 i=1
. ko 1 k Pk e 1 oo 1 k P
oo (St e0) i £, ()
=1 i=1 =kg+1 i=1
e ko () K e © (1 o
§+2M (g(w)* (-,;z:lx(i)l) +taom > (;Elm(i)l) )
k=1 i=1 k=ko+1 i=1
5+2M( 5 (li (')l)mnte L, (lil (')l)pk)
3 PP 39M PRALLY
k=kg+1 i=1 k=kg+1 i=1
€ poM |9 i lzk:kc(i)l pk+5—1—
3 k=kg+1 k¢=1 32
€ 1 > 1@ . o €
§+2M+ k=kzﬂ+1 (Elzzlhﬂ(%”) +§
€L e 8
3T3t3=e

This shows that g(z, —z) — 0 as n — co. By Proposition 2.4(ii) , we have ||z, — x| — 0

as n — co. This completes the proof of the theorem.

g

It is known in general that LU R = property (H). So we have the following result.

Corollary 2.9 The space ces(p) posses property (H).
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Bor-Luh Lin , Pei-Kee Lin and S.L. Troyanski proved ( ¢f. Theorem iii [11]) that
element z in a bounded closed convex set K of a Banach space is a denting point of K
iff z is an H-point of K and x is an extreme point of X. Combining this result with our

results (Theorem 2.8 and Corollary 2.9) and the general fact that LUR = R, we obtain
the following result.

Corollary 2.10 The space ces(p) has the property (G).



100

References

[1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.

[2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of
some Banach sequence spaces, Acta Sci. Math. (Szeged ) 65 (1999), 179-187.

[3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces
equipped the Luzemburg norms, Acta Math. Hungar. 80 (1- 2) (1998), 143-154.

[4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach se-
quence spaces, Annales Math. Polonici 65 (1997), 193-202.

[5] Y. A. Cui and C. Meng, Banach-Sak property and property (8) in Cesaro sequence
spaces, SEA. Bull. Math. 24 (2000), 201-210.

ef
[6] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer-Verlag, 1984.

¥

[7] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points,
Canad. Math. Bull 35 (1992), 1 - 5.

[8] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces,
Math. Nachr. 186 (1997), 167-185.

[9] P. Y. Lee, Cesdro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.

[10]Y. Q. Liu, B. E. Wu and Y. P. Lee, Method of sequence spaces, Guangdong of Science
and Technology Press (1996 (in Chinese }).

[11]L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish
Academy of Science, (1989).

[12)). Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034,
Springer-Verlag, (1983).

[13]W. Orlicz, Anote on modular spaces I, Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys. 9 (1961), 157-162.

[14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz
Spaces, Comment. Math. {Prace Mat.) 33 (1993), 135-151.

[15]W. Sanhan, On geometric properties of some Banach sequence spaces, Thesis for the
degree of Master of Science in Mathematics, Chiang Mai University, 2000.

[16]]. S. Shue, Cesdro sequence spaces, Tamkang J. Math 1 (1970), 143-150.



On Property (H) and Rotundity of Difference Sequence Spaces

S. SUANTAI M. MUSARLEEN AND A. KANANTHAI

ABSTRACT. In this paper, we define & modular on difference se-
quence space £(A,p) and consider it equipped with the Luxemburg norm
induced by the modular, where p = (pk) is a bounded sequence of positive
real numbers with pr > 1 for all £ € N. The main purpose of this paper
is to show that E(A,p)' has property (H) and we also show that £(A,p) is
rotund if and only if p; > 1 for all £k € N.

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Introduction.

4

Convexity properties in Banach space is an important topic in functional analysis
and play an important role in infinite dimensional holomorphy. In order to study the
geometric properties of Banach space, Clarkson [5] introduced the very important class
of rotundity (strict convexity). Since Clarkson’s paper many authors have defined and
studied the classes of Bahach space lying between the uniform convexity and rotundity
(see [2, 3, 5, 12, 14, 17]. )

Among geometrical properties, property (H) in Banach spaces is important and
it has been studied by various authors. Criteria of property (H) in Orlicz spaces and
Orlicz sequence spaces were given by S. Chen and Y. Wang [4] and C. Wu, S. Chen
and Y. Wang [20]. R. Pluciennik, T. Wang and Y. Zhang [19] obtained necessary and
sufficient conditions for H- points and denting points in Orlicz sequence spaces. In [7],

criteria for property (H) is given in Musielak-Orlicz sequence spaces.

Typeset by ApS-TEX
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In this paper, we introduce the difference sequence space £(A, p), when p = (p)
is a bounded sequence of positive real number with pp > 1 for all ¥ € N, and consider
it equipped the Luxemburg norm. We show that £(A, p) has property (H) and criteria
for rotundity is given.

Now we introduced the basic notations and definitions. In the following, Let R
be the real line and N the set of natural numbers.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit
ball of X, respectively. A point zg € S{X) is called

a) an extreme point if for every z,y € S(X) the equality 2z¢ = x + y implies
=1

b) an H-point if for any sequence (z,) in X such that ||g,| = 1 as n — oo, the

weak convergence of (z,) to xq (write z,, — zo) implies that ||z, — z|| ~ 0 as n — oo;

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme
point. X is said to posses property (H) provided every point of S{(X) is H-point .

For these geometric notions and their role in Mathematics we refer to the mono-
graphs [2], [8], and [17]. Some of them were studied for Orlicz spaces in 3], [6], [9], [10],
[11], [19], and [20].

Let X be a real vector space. A functional ¢ : X — {0, 00] is called a modular if
it satisfies the conditions

(1) o{x) = 0 if and only if z = 0;
(ii) g(ax) = o(z) for all scalar & with |a| =1 ;
(i) o(ax + By) < o(z) + o(y), forall z,y € X and all @, B > 0 witha+ 8 = 1.
The modular g is called convex if

(iv} olox + By) < ap(z) + Bo(y), forallz,y€ X and all @, 8 > 0 with o + 8 = 1.
If p is a modular in X, we define

X,={zeX: ,\1}:& e(Az) =0},

and X, = {zr € X :o(Ar) < oofor some A >0}

It is clear that X, C X7. If ¢ is a convex modular, we define

|| = inf{A > 0: o (;) <1}. (1.1)
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Orlicz (18] proved that if g is a convex modular in X, then X, = X and |.|| is 2 norm
on X, for which it is a Banach space. The norm ||.|| defined as in (1.1) is called the
Luxemburg norm.
A modular g on X is called
(a) right-continuous if limy_,1+ o(Az) = p(z) for all z € X,
(b) left-continuous if limy_, ;- o(Az) = g(z) for all z € X,,,

(¢) cotinuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular ¢ and
the Luxemburg norm ||.|| on X,.

Theorem 1.1 Let g be a convez modular on X and let z € X, and (x,) a sequence
in Xo. Then ||z, — z|l - 0 as n — oo if and only if o(Mzn — x)) = 0 as n = oo for
every A > 0.

Proof. See [16, Theorem 1.3].

Theorem 1.2 Let p be a continuous conver modular on X. Then
(i) ||| <1 if and only if o(zx) < 1.
(ii) ||z]| < 1 if and only if o(z) < 1.
(iii) ||z|| = 1 if and only if p(z) = 1.
Proof. See [16, Theorem 1.4].

Let us denoted by £° the space of all real sequences and let p = (pi) be a sequence
of positive real numbers. In [13], Kizmaz introduced the sequence spaces £ (A), co(A)
and ¢(A) by considering the difference sequence Az = (z; — zx41)52, for any sequence
z € [°, where £, cp an ¢ are Banach spaces of bounded, null and convergent sequences,
respectively. In [1], these sequence spaces were extended to £o(A,p), co(A,p) and
c(A,p), eg.

b(A,p)={z €l : Az €lo(p)}

where

loo() ={z €1° : sup|zsIP* < o0}
k
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In [1] and [13] the authers determined the Kothe-T6eplitz and generalized Kéthe-
Toeplitz duals of these spaces and consider various matrix transformations.

In this paper we introduced the space #{A,p) analogously as follows and study

some of its geometric properties.
A, p)={xel®: Az ecf(p)},

where

Lp)={zel®: > |z(k)’* <oo}.
k=1

For the detail of spaces £ (p) and £(p), we refer to [15].
For z € £(A,p), we define

op(x) = l2()] + Y (k) — z(k + 1)
k=1

If p, > 1 for all k € N, by convexity of the functions ¢ — |t|P* for each k € N, we
have that g, 1s a convex modular on £(A,p). We consider £(A,p) equipped with the

Luxemburg norm given by
. x
|z|| = inf{e > 0: Qp(g) < 1}.

A normed sequence space S is said to be a K-space if each coordinate mapping
Py, defined by Pi(z) = g, is continuous. If S is both Banach and K-space, it is called
a BK-space.

Throughout this paper we let M = supg px and assume that pp, > 1 forallk € N.
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2. Main Results
We begin with giving some basic properties of modular on the space £(A, p).

Proposition 2.1 For z € £(A,p), the modular o, on £(A,p) satisfies the-following
properties :

(i) if 0 <a <1, then aMgp(g) < pp(z) and oplaz) < agp(x),

| (it} if a > 1, then gp(z) < aMQp(E),

(iii) if a > 1, then pp(zx) < agp(:z:)as op(az).
Proof. It is obvious that (iii) is satisfied by the convexity of g,. It remains to prove (i)
and (ii).

For 0 < a < 1, we have

ep(z) = jz(1)| + Z (k) — z(k + 1)[P

a:(l 2 |a(z —a:k+1))
> oM =l MM{E z(k) —o(k +1) ™
k=1
:aMQp(z)-

It follows by the convexity of g that gp(az) < app(z) , hence (i) is satisfied.
Now, suppose that a > 1. Then l < 1. It follows from (i) that
a

1\ M z/a T
Z N el Ve b
(a) 2p() (a) &p (l/a) = @p (a) ’
so that gp(z) < aMp, (g—) , hence (ii) is obtained. O

Proposition 2.2 The modular g, on £(A,p) is continuous.
Proof. For A > 1, by Proposition 2.1 (ii) and (iil), we have

op(2) < Agp(z) < op(Az) < AM gy(x) (2.1)
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By taking A — 1% in (2.1), we have lim, i+ gp(Az) = gp(z). Thus g, is right-
continuous. If 0 < A < 1, by Proposition 2.1 (i), we have

MM op(z) < ep(Az) < Agp(2) (2.2)

By taking A — 17 in (2.2), we have that limy_,;- op(Az) = gp(), hence, g, is left-

continuous. Thus g, is continuous. : O

Next, we give some relationships between the modular g, and the Luxemburg

norm on £(4, p).

Proposition 2.3 For any z € (A, p), we have

() if sl <1, then gy(a) < Il

(i6) if lzl] > 1, then gy() > 2]

(i3} ||z|| = 1 if and only if gp{x) =1,

(1) ||z|| < 1 if and only if gp(z) < 1,

(v} llz|| > 1 if and only if pp(z) > 1,

(vi) if 0 < a < 1 and ||z|| > a, then gp(z) > a™ |, and

(vii) if a > 1 and ||z|| < a, then gy(z) < a™.
Proof. (i) Let € > 0 be such that 0 < e < 1 —||z}j, so ||z|| + ¢ < 1. By definition of || - ||,
there exists A > 0 such that ||z|| +e¢ > A and ¢(%) < 1. From Proposition 2.1(i) and

(1ii), we have

A
= o ((lell +03)

< (lell + 9e(3)
< llzll+ ¢,

op(Z) < op (M-’ﬂ)

which implies that g,{z) < ||z||, so (i) is satisfied.
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izl —
]l

of || - || and by Proposition 2.1 (i), we have

Lo ((1 $)l|x|l)

1
< m@p('ﬂ),

]l =
]l

(ii) Let € > 0 be such that 0 < € <

1
, then 1 < (1 —¢€)||z|| < |jz||. By definition

80 (1 —e)||z|| < gp(z) for all € € (0, ) This implies that |jz|| < gp(z), hence (ii)
is obtained.

Since g, is continuous (Proposition 2.2) , (iii) and (iv) follow directly from The-
orem 1.2.
(iv) follows directly from (i) and (iii).
(v) follows from (iii) and (iv).
(vi) Suppose 0 < a < 1 and ||z|| > a. Then Hg” > 1. By (v), we have gp(g) > 1.
Hence, by Proposition 2.1(i), we obtain that gp(z) > a™0,(2) > a™
(vil) Suppose ¢ > 1 and |lz|| < a. Then HE—H < 1. By (iv), we have gp(g) < 1. If
a = 1, it is obvious that op(z) < 1 =aM. If a > 1, by Proposition 2.1(ii), we obtain
that o,(z) < a™ Qp( ) < aM, O

Proposition 2.4 Let (z,,) be a sequence in £(A,p).

(1) If l|lznll = 1 asn — oo, then gp(zn) = 1 asn — oo.

(it) |zn|] = 0 as n = oo if and only if gp(zn) — 0 as n — oo.
Proof. (i) Suppose ||z,|| = 1 as n — oc. Let € € (0,1). Then there exists N € N such
that 1 — € < {|zp]i < 1+ ¢ for all n > N. By Proposition 2.3 (vi) and (vii), we have
(1-eM < gp(zn) < (14 €)™ for all n > N, which implies that gp(z,) = 1 as n — oco.
(it) The only part of (ii) is true by Theorem 1.1, so we need to show only the if part
of (ii). Suppose ||z,|| /> 0 as n ~» co. Then there is an € € (0,1) and a subsequence
(Tn,) Of (zn) such that ||z, | > € for all £ € N. By Proprosition 2.3 (vi), we have
0p(Tn,) > €M for all k € N. This implies p,(z,) / 0 as n — co. d

Next, we shall show that £(A, p) has the property (H). To do this, we need two

lemmas.
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Lemma 2.5 The space £(A,p) is a BK-space.

Proof. Since (A, p) equipped with the Luxemburg norm is Banach, we need to show
only that £(A,p) is a K—space. Suppose (z,) C £(A,p) suth that z, — 0 as n — oo.
It follows by Proposition 2.4(ii) that gp(z,) — 0 as n — oco. This implies that

|zn(1)] >0 as n— o0 and

|Zn (k) — 2p(k+1)| = 0 asn — oo forall ke N.

By induction, we have z,(k) — 0 as n — oo for all £ € N. Hence Py(z,) =+ 0asn — oo
for all k € N. This implies that P is continuous for all £ € N.

Lemma 2.6 Let x € £(A,p) and (z,) C £(A,p). If 0p(xn)— pp(z) as n = oo and
ZTn(3) = z(2) asn — oo for alli € N, then z, = x as n — oo.

Proof. Let € > 0 be given. Since gp(z) = |2(1)] + Xy l2(k) — z(k + 1)|P* < 0,
there is ky € N such that

— . € 1
> le®) — sk + D™ < 5 oy (2.3)
k=ko+1

Since gp(2n) — op{z) as n — oo and z,(i) — z(i) as n — oo for all i € N, there is
ng € N such that for all n > ng,

ko ko
0p(2n) — (|33n(1)| + ) |za(k) — zalk + 1)!”) < op(z) - (|$(1)| + > lo(k) ~ 2k + 1)|”")
k=1 i=1
€

3.2M

(2.4)

and

ko
(1) = 2()] + Y l(@alk) +5(B) — (@alk + 1) s+ D) < 5 (25)
k=1
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It follows from (2.3), (2.4) and (2.5) that for n > nyg,

op(@n — @) = |za(1) — 2()] + Y [(zalk) = 2(k)) ~ (2alk + 1) — x(k + 1)) [

k=1

ko
= lza() = (V)] + D [(@a(k) — 2(k)) = (2a(k+ 1) — 2k + 1))
k=1

+ D |(@alk) = 2(k)) = (@alk + 1) — x(k + 1))

k=ko+1
<SH2MC YD feak) =k + D+ 3 fo(k) — 2k + D)
k=kp+1 k=ko+1
€ kg o0
= 5 +2M(ep(za) = (lon(D)] + D lon(k) =2k + DI™) + > |5k} — ok + 1)
k=1 k=ko+1
£
< 3 +2M(gp(x) - (I2(1) |+Z|x(k —a(k+ ) + g + 5 falk) —2(k + 1)
k=1 ko+1
_E oM % . oy €
=5 +2M2 ) le(k) —o(k+ DI + 5 5)
k=kg+1
€ oM+1__ & €
<3t ggme
=£.

This show that gp{zn — ) — 0 as n — oo. Hence, by Proposition 2.4 (ii), we have

|zn — || = 0 as n — co.

Theorem 2.7 The space (A, p) has the property (H).

Proof. Let r € S(4(A,p)) and (z,) C £(A,p) such that ||z,}{| — 1 and z, = z as
n — oo. From Proposition '2.3 (iii), we have p,(z) = 1, so it follows from Proposition
2.4 (i) that gp(z,) — ep(z) as n — co. By Lemma 2.5, we have that the coordinate
mapping P; : £(A,p) — R is continuous, so it follows that z,(i) — z(i) as n — oo for

all i € N. Thus, we have by Lemma, 2.6 that z, — = as n — oo. ]
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Theorem 2.8 The space £(A,p) is rotund if and only if pp, > 1 for all k € N.

Proof. Necessity. Suppose that there is kp € N such that pg = 1. Let 2 = (1,1,1,...)
and ¥ = (0,0,0...,0,1,1,1,...). Then z # y and it is easy to see that
S —

ko

T+ y

op(2) = 0p(y) = 0p (—2-) - 1.

By Proposition 2.3(iii) , we have z,y and # € S(¢(A,p)), so that £(A,p) is not
rotund.

Sufficiency. Suppose that p, > 1 for all k € N. Let © € S(4(A,p)) and g,z €
B(¢(A,p)) with £ = ytz

. By convexity of g, and Proposition 2.3(iii), we have

1=gy(z) £ %(Qp(y) + 0p(2)) < % + % = 1.
This implies that
op(y) = op(2) =1 (2.6)
00(2) = 5(2p(¥) + 25(2)). (27)

By (2.7), we have

1)+ z(1 > k) —ylk+1 z2(k) — z(k + 1)) |P*
{y();()’+z(y() y(k + 1)) + (2(k) — 2(k + 1))

2

- % (Iy(l)l + Z ly(k) — y(k + 1)|pk) + % (|z(1)| + Z |2(k) - 2(k + 1)|pk)

=—(|y(1)|+|Z(1)I)+ (Zly(k) k+1)|“+Z|Z —zk+1)|p")

which implies that
ly(1) + z(1)] = lg(1)] + [2(1)] , (2.8)

(y(k) — y(k + 1) + (2(k) — z(k + 1)) |**
2

= 2 (k) = y(k -+ P + [2(8) — 2(k + D)
(2.9)

for all £ € N.
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Since the function ¢ «— J¢[P* is strickly convex for every k € N, it implies by (2.9) that
y(k) —y(k+1)=2(k) —2(k+1) forallk € N. (2.10)

It follows from (2.6) and (2.10) that |y(1)] = |2(1)|. This implies by (2.8) that
y(1) = z(1). This together with (2.10), by using induction, we obtain that y(k) = z(k)
for all K € N. Hence y = 2.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial
support .

References

[1] Z.U. Ahmad and Mursaleen, Kdthe-Téeplitz duals of some new sequence spaces and
thier matriz maps, Publ. Inst. Math.(Beograd) 42(56) (1987), 57-61.

(2] K.W. Anderson, Midpoint local uniform convezity, and other geometric properties
of Banach spaces, Dissertation University of Illonios, 1960.

[3] S. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.

[4] S. Chen and Y. Wang, H property of Orlicz spaces, Chinese Ann. Math. 8 A (1987},
61- 67.

(5] J.A. Clarkson, Uniformly conver spaces, Trans. Amer. Math. Soc. 40 (1936}, 396 -
414.

[6] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces
equipped the Luzembdrg norms, Acta Math. Hungar. 80 (1- 2) (1998), 143-154.

[7] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach se-
quence spaces, Annales Math. Polonici 65 (1997), 193-202.

[8] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer-Verlag, 1984.

9] R. Grzaslewicz, H. Hudzik and W. Kurc,, Ezireme and exposed points in Orlicz
spaces, Canadian J. Math. 44 (1992), 505-515.

[10jH. Hudzik, Ovlicz spaces without strongly extreme points and without H-points,
Canad. Math. Bull 35 (1992), 1 - 5.



112

[11]H. Hudzik and D. Pallaschke, On some convezity properties of Orlicz sequence spaces,
Math. Nachr. 186 (1997), 167-185.

[12]V.1. Istritescu, Lecture Note in Pure and Applied Math. 87, Marcel Dekker, Inc.,
New York and Basel, 1984.

[13]H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-175.

[14]A. R. Lovaglia, Locally uniformly conver Banach spaces, Tran. Amer. Math. Soc
78 (1955}, 225-238.

[15)1.]. Maddox, Continuous and Kothe-Téeplitz duals of certain sequence spaces, Proc.
Camb. phil. Soc. 65 (1967), 431-435.

[16]L. Maligranda, Orlicz Spaces and Interpolation, Institute of Mathematics, Polish
Academy of Science, Poznat, Poland, 1985. s

{17]3. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034,
Springer-Verlag, (1983).

[18]W. Orlicz, A note on modular space 19 (1961), Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astronom. Phys., 157 - 162.

[19]R. Pluciennik, T. Wang and Y. Zhang, H-points and Denting Points in Orlicz Spaces,
Comment. Math. (Prace Mat.) 33 (1993), 135-151.

[20]C. Wu, S. Chen and Y. Wang, H property of sequence Orlicz spaces, J. Harbin Inst.
Tech. Math. issue (1985), 6 - 11.

Suthep Suantai and A. Kananthai

Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai, Thailand.
Email : scmti005@chiangmai.ac.th

Email : Malamnka@science.cmu.ac.th

M. Musarleen

Department of Mathematics, Faculty of Science,
Aligarh Muslim University,

Aligarh, India .



ON PROPERTY (UKK) IN CESARO
MUSIELAK-ORICZ SEQUENCE SPACES.

WINATE SANHAN* AND SUTHEP SUANTAI

ABSTRACT. In this paper we define a generalized Cesaro sequence space cesps , where M
is a Musielak-Orlicz function , and consider it equipped with the Luxemburg norm . The
main purpose of the paper is to show that cesps is a (UKK)} spaace, when M € 42 and
satisfies condition (*).

1. Introduction. Geometric of Banach spaces is an important topic in functional anal-
ysis and plays an important role in the theory of approximation and optimization. The
property of uniform rotundity ensures, for example, the existence and unicity of nearest
pionts in best approximation problems. Among geometrical properties, H-property and
(UKK) are also improtant. Both of them follow from the uniform convexity (UC) and
that (UKK)} implies H-property, and nearly uniform convexity (NUC) implies (UKK).

Summarizing the above discussion we have
(UC) = (NUC) = (UKK) = H — property

The criteria of the H-property in Orlicz function space and Orlicz sequence
space were given by S.Chen and Y.Wang[2] and C.Wu, S.Chen and Y. Wang [18].
R.Pluciennik, T.Wang and Y.Zhang[13] considered the problem more precisely and ob-
tained all the criteria for H-points and denting points in both Orlicz function spaces
and Orlicz sequence spaces. In [4] criteria for (NUC),(UKK) and H-property are given
for Musielak-Orlicz sequence spaces.

The Cesaro sequence space ces, (1 < p < oo) were introduced by J.S.Shue[17].They
are useful for theory of matrix operators. Y.Q.Liu, B.E.Wu and P.Y.Lee[9] showed that
cesp has H-property. S.Suantai[16] defined a generalized Cesaro sequence space ces(p),

where p = (pg) is a bounded sequence of positive real number with py > 1 for all kK € N,

Key words and phrases. Generalized Cesaro sequence space,Luxemburg norm,Geometric prop-
erty. {2000)AMS Mathematics Subject Classification :46E30,46E40,46B20..
* Supported by The Royal Golden Jubilee Project
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and consider it equipped the Luxemburg norm. He has also showed that ces(p) has
H-property.

In this paper we define a new sequence space, cesps, which is a generalization of
the space ces(p) by using a Musielak-Orlicz function. We call the space cesps,Cesaro
Musielak-Orlicz sequence spaces. We show in this paper that if M € 6§, and M satisfies
the condition (*), then cesps is (UKK), so it has H-property. These results generalize
those in [].

Now we introduce the basic notations and defitions. In the following, let R be
the real line and N the set of natural numbers

Let (X,|.||) be a real Banach space, and let B(X) (resp. S(X)) be the closed
unit ball (resp. the unit sphere) of X. For any subset A of X, we denote by conv
(A) (resp. conv(A)) the convex hull (resp. the closed convex hull) of A. Clarkson [1]
introduced the concept of uniform convexity.

The norm ||.|| is called uniformly convez (write (UC)) if for each ¢ > 0 there is

d > 0 such that for r,y € S(X) inequality ||z — y|| > € implies
1
Iy +ul<i-o

A Banach space X is said to have the Kadac-Klee property (or property (H)) if every
weakly convergent sequence on the unit sphere is convergent in norm.
Recall that a sequence {z,} C X is said to be e—separated sequence for some

e>0if
sep(z,) = inf{||zn — zm|| i n #m} > e

A Banach space is said to have the unifrom Kadec-Klee property (written UKK)
if for every € > 0 there exists § > 0 for every sequence (z,) in S(X) with sep(z,) > ¢
and z, = r ,we have ||z|| < 1 — é. Every (UKK) Banach space has property (H)(see
5)

A Banach space is said to be nearly uniformly convezr ( write (NUC) ) if for
every € > 0 there exists § € (0,1} such that for every sequence (z,) C B(X) with

sep{zy,) > €, we have

conv(zy,) N ({1 —§)B(X)) #0
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Huff [5] proved that every (NUC) Banach space is reflexive and it has a property
(H) and he proved that X is (NUC) if and only if X is reflexive and (UKK).
Let X be a real vector space. A functional p: X — [0,00] is called a modular if
it satisfies the conditions
(i) o(z) = 0 if and only if z = 0;
(i1) g(ax) = p(z) for all scalar « with |a| =1 ;,
(iil) olaz + By) < o(z) + o(y), forallz,y € X and all @, B> O witha -8 =1.

The modular ¢ is called convez if

(iv) olaz + By) < ao(z) + Boly), for all z,y € X and all o, 8 > 0 with o+ 8 = 1.
If p is a modular in X, we define

Xp={zeX: lim o(hz)=0}
and X = {r € X : o(Az) < oo for some A > 0 }.

It is clear that X, C X]. If ¢ is a convex modular, for z € X, we define

|| = inf{A>0: o (%) <1} (1.1)
Orlicz [13] proved that if g is a convex modular on X, then X, = X7 and ||.|| is a norm
on X, for which it is a Banach space. The norm ||.|| defined as in (1.1) is called the

Luxemburg norm.
A modular p on X is called
(a) right-continuous if imy_,1+ go(Az) = o(z) for all z € X,
(b) left-continuous if limy 1~ ¢(Az) = p(z) for all z € X,

() continuous if it is both left-continuous and right-continuous .

The following kndwn results gave some relationships between the modular g and
the Luxemburg norm ||.|| on X,.

Theorem 1.1 Let ¢ be a conver modular on X and let x € X, and (z,,) a sequence

in X,. Then ||z, — z]| = 0 as n — oo if and only if p(A(zn, — x)) = 0 as n — oo for
every A > 0.

Proof. See [11, Theorem 1.3].
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Theorem 1.2 Let p be a convex modular on X and z € X,.

(i) If p is right-continuous, then ||z|| < 1 if and only if p(z) < 1.
(i) If p is left-continuous, then ||z|| < 1 if and only if o(z) < 1.
(#i) If p is continuous, then ||z|| = 1 if and only if o(z) = 1.

Proof. See [11, Theorem 1.4].

Let {9 be the space of all real sequences. For 1 < p < oo, the Cesaro sequence

space (ces, , for short) is defined by

cesp ={z €l’: 2?:1(% Z?:l |z(8)])? < oo}
equipped with the norm

lell = OG- S la@)?)?
: n=1 i=1

This space was introduced by Shue [16]. It is useful in the theory of Matrix
operator and others (see [7] and [8]). Some geometric properties of the Cesaro sequence
space ces, were studied by many authors. It is known that (cesy, ||.||) is LUR and has

property (H)(see [8]). Cui and Meng [2] prove that (ces,, ||.||) has property (8).

A map ¢ : R — [0, 00 is said to be an Orlicz function if ¢ vanishes only at 0, and

¢ is even and convex.

A sequence M = (My) of Orlicz functions is called a Musielak-Orlicz function.
In addition, a Musielak-Orlicz function N = () is called a complementary function
of a Musielak-Orlicz function M if

Ni(v) =sup{|v|u — Mg(v) :u >0}, k=1,2,..

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space [y
is defined by

Ing = {z € 1°: Ing{ex) < oo for some ¢ > 0}.

where Iys is a convex modular defined by

In(z) = > Mi(z(k)), == (z(k))€ ln.
k=1
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This space equipped with the Luzemburg norm
2| = inf{k >0 : IM(%) <1}

equivalent one
1
|lz||® = inf{g(l + Ing(kx)) : k> 0},

called the Orlicz (or Amemiya) norm is a Banach space. To simplify notation, we put
Ing = (g, |)-|) and 8, := ({ar,]-]|°). Both of them are Banach spaces .
Let M = (My) be the Musielak-Orlicz function. The Cesdro-Musielak-Orlicz

sequence space is define by
Cesy := {z €1 : ppr(cx) < oo for some ¢ > 0},

where pp(z) = 350 | Mi(3 ELI |z(?)|). We show in Theorem 3.1 that pps is a convex
modular on Cesps. In this space, we consider the Luxemburg norm induced by the

modular pps as follows:
. T
lz|l = inf{A > 0: pM(X) <1}
We have by [10] that Cesps is a Banach space. We define the subspace SCespy
of Cespr by
SCespr = {x €1°: ppr(cx) < oo for all ¢ > 0}.

We say that a Musielak-Orlicz function M satisfies the 6;-condition (we will write M €
82 for short) if there exist constants K > 2,19 > 0 and a sequence (cg) of positive

numbers such that 3 7. ; ¢x < co and the inequality
Mk(Qu) < KMk(U) + ¢

hold for every k € N and v € R satisfying |u| < ug.

If M € §; and N € 42, then we write M € d, N d5.
Moreover, we say that a Musielak-Orlicz function M satisfies the (x)-condition if for
any € € (0,1) there exists a § > 0 such that My((1+ d)u) < 1 whenever My(u) <1 —¢
forall k € Nand u € R.

We shall show in Theorem 5 that if M € 5, then SCesps = Cesar.

MAIN RESULT



118 W. Sanhan and S. Suantai

We start with showing that pps is a convex modular on Cesyy.

Theorem 1 The functional pps on the Cesaro-Musielak-Orlicz sequence space Cesps

given by

ZMk Z @D,

is a modular on Cesps

Proof Let z,y € Cesp. It is obvious that
() pu(z)=0c2z=0
(ii) For o € R, with || = 1, we have

ZMk( Zla-’ﬂ %'I
k=1

= Ial— Z |z(9)1)
= Z Zlm(z)l)

= p:r(ﬂ?)

2
I|

(iii) For e, 8 € R, with a,8 > 0,a+ 8 = 1, by convexity of M, we have

pulaz + By) = ZMk( Zlafﬂ(%)*‘ﬁy )
k=1

o] k

<M Z|x + 23 o)
oo k
<3 (@Ml Z|x(z + BMi (= _Zly(i)l))

k
oS M S+ 3 M S D)
k=1 i=1 k=1 i=1

=apm(z)+ Bom(y) < pm(x) + pm(y)

Proposition 2. Let z € Cesyy.
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(1) If 0 < a < 1, then Lpp(ax) < par(x) < app(E)
(2) If o > 1, then apar(Z) < pp(z) < ;pm(ax)
Proof. Let z = (z(2)) € Cesp. For any 0 < a < 1, by convexity of each My, we have

k
(G D los)]) = Mila oL S i) < b le

i=1
for all ¥ € N. This implies ppr(az) < apM(:v). By substituting = by £, we obtain

pr(z) < apy(%), so that (1) holds. Next, let a > 1, then 0 < é < 1. By (1), we
obtain that

z 1 T 1 z 1
apm(=) = 1om(=) < pumlz)} £ —pm(7) = —pu(az)

, hence (2) is satisfied. U

Proposition 3. For any z € Cesys, we have

(1) i fal < 1, then par(z) < |zl

(2) i o]l > 1, then par(z) > |z
Proof (1) If z =0, then the inequality holds. Let z # 0. By the definition of ||.||, there
is a sequence (€,) such that e, | |||l such that par(%) < 1. This implies pM(W) <1,
by Proposition 2(1), we have ppr(z) < ||:B||pM(“$”) < lz|]-

(2) Let !|z|| > 1. Then for € € (0, JJWIJ“_) we have (1 —¢)||z|| > 1. By Proposition
2(1), we have

) < pm(T)

Lol ol < = ol

Letting ¢ — 0, we obtain (2).
The following result is directly obtained from Proposition 3(1).

Corollary 4 If z, — 0 as n — oo then pp(z,) > 0asn — oo a

Theorem 5 If a Musielak-Orlicz function M = (M) € d2, then SCespr = Cesyy.
Proof Let z € Cespy. Thus ppr{cx) < oo for some ¢ > 0. Since M € §,, there exists

K > 2, up > 0 and a positive sequence ¢ such that > .~ ¢z < co and

M. (2u) < KM (u) + ¢
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for all £ € N and u satisfies |u| < uo. By pu(cx) < 0o, we have 3 27 | Mi(3 S lz@)]) -
0 as k — oo, it followes that Mi(3 Zle |z(2)]) = 0 as k — oo, and so Z:Ll |z ()| - 0
as k — co. Put any 8 > 0 and taking ¢ € N such that & < 2¢~1/ there exists a positive

sequence ¢, such that > ;- ¢f < oo and
M (2%u) < K*Mj(u) + cle

for all k.€ N and v satisfies |u| < 5. By % Zi__l |z(i)] — 0 as k - oo, there exists
no € N such that 1 Zi=1 lz(?)| < JTC—QY- for all k£ > ngy. Hence

oc k
ors(Br) = ZMkw% PBECD

—ZMk(ﬂ le B)) + Z M,.(B+ _Zl:v(z

k=ng+1
= sz(ﬁ Z|x(z)| Z M;, 2ﬁ“—2|$(2)|)
k=np+1
= ZMk(b’ Z lz(2)]) + Z Mk(TC—Z |z(D)])
k=ng+1
<ZMk[3 Z|a:(z)| )+ K? Z M c-Z|a: Z cp < 00.
k=no+1 =1 k=ng+1
Therefore Cespr € SCesypy. |

Lemma 6 On Cesaro-Musielak-Orlicz sequence space, if the Musielak-Orlicz function
= (M},) satisfies condition (x) and M € 43, then
(1) fio]l = 1 pue(z) = 1,
(2) for every € > 0 there exists a § > 0 such that ||z|| < 1—J whenever pa(z) < 1—¢,
(3) for every ¢ > 0 and ¢ > 0 there exists a § > 0 such that for any z,y € Cesps, we

have

loam(z +y) — pu(z)]| <€

whenever pap(z) < ¢ and par(y) < 9,
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(4) for every e > 0 there exists a 6 > 0 such that ||z|| > 14§ whenever par(z) > 1+,
and
(5) for any sequence (z,) C Cespy, ||zn|| — 1 implies ppr(zn) — 1.
Proof (1) Assume that ppr(z)} = 1. By definition of ||.||, we have that ||zl] < 1. If

[lz]] < 1, then we have by Proposition 3(1) that par{z) < |jz|| < 1, which contradicts
our assurmption. Therefore |jz|| = 1.

. Conversely, assume that ||z|| = 1. By Proposition 3.3(1), pa(z) < 1. Suppose
that par(z) < 1. By Theorem 5, we have ppr(cz) < oo for all ¢ > 1. By Theorem 2.6.1
the function ¢ — par{cz) is continuous, so there exists an ¢’ > 1 such that py(c'z) = 1.
By using the same proof as in the first path, we have that ||c’z]| = 1 , so ¢/ = 1 which
is contradiction.

(2) Suppose (2)is not true. Then there exists a ¢g > 0 and z,, € Cesps such that
pum(zn) < 1—¢€ and § < ||zpfl and |lzn)i — 1. Let L = sup, {pp(2z,)} we have that
L < oo since M € §5. Let a,, = ”—mlm ~ 1 we have a, <1 and a,, = 0. Then

1= PM(”_;C:T”)
= pm{(2anzn + (1 — an)zp)
< anpm(22n) + (1~ an)pm(zn)
<apL + (1 —¢).

Hence we have 1 < lim,, ,(a,L + (1 —€)) = 1 — ¢, which is a contradiction.
(3) Let z,y € Cespr, e > 0 and ¢ > 0, by Theorem 2.6.5(3), there exists a 6’ > 0

such that for any a,b € 5y, we have

[Ias(a+b) — Inp(a)) < € (3.1)
whenever Ipr(a) < ¢ and Ipn(b) < 4'. For each i € N, let

_ sgn(z (i) +y(1)) if (i) + y(i) # 0,
s(i) =
1if (i) + y(i) =0
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we note that

1|

Z |z(2) + y(5)])
L1 k A
M (= Z s(9)=(i) + ¢ g (2)y(d)). (3.2)

Let a(k) = %Ele s(i)z(i) and b(k) = ¢ Zi=1 s(s )y(z) for all k € N. Then a = (a{k)) €
{pr and b= (b(k)) € Ipr , and from (3.2) we have

pmlz +y)

i Ms i MS

pu(z +y) = Im(a+b),Im(a) < pm(z) and Ine(b) < par(y).

Choose 6 = &'. If ppr(z) < c and ppr(y) < 4 then Ips(a) < cand Ip(d) < &, by (1) we

have
om(x+y) — pm(z) < Ipgla+b) — Ip(a) < e
that is
pu (T +y) < pum(z) + e (3.3)
Next, we shall show that
pum(z) < pu(z+y) + e (3.4)

For each 1 € N, let
sgn(x(2)) if z(z) # 0,
s(i) =
Lifx(i)=0

we note that

oo k
pae(e) = pae((e-+) + (-0) = 3 Mulp 10600 +36) + (v
k=1
o0 k
=3 G gs(z)(:c(z)-l-y IR SMCIETON: (8:5)

Let a(k) = L Y°F | s(3)(2(i) + y() and b(k) = 2 %, s(d)(~y(3)) forallk € N,
Then a = (a(k)) € Iy and b = (b(k)) € l5r , and from (3.5) we have

pu(z) = In(a +b), Ins(a) < py(z +y) and I (b) < prr(—y).
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Choose 6 = &', If py(z) < c and pum(y) < 6 then Ip(a+ b)) = pp(z) < ¢ and
Ine(=b) = Ing(0) < pae(—y) = pum(y) < &', by (3.1) we have

[Is(a+b) = Ina(a)| = [Im(a) — In(a +b)| = [Im((a +b) + (=8)) — Im(a+ b)| <€

it follows that
om(z) — pm(z+1y) < Ipm(a+b) — Ingla) < e
that is
pm(T) < pr(z+y)+e
from (3.3) and (3.4), we have that

lom(z +y) — pu(z)| <e

whenever par(z) < ¢ and par(y) < 6.
(4) Given € > 0, by (3), there exists a § € (0, 1) such that

pr(u) < 1 pm(v) <6 = ppr(u+v) < purlu) + e

Suppose that [jz|] < 1+ 4, then pm(3Y5) < 1 and pM(l‘s—&) < épm(yEs) < 6. This
implies
N dx )
1-1—6 146
< PM(m) te€
<l+e

pum(z) =

(5) Suppose that pasr(zn) 4 1 as n — oo, there exits a ¢y > 0 such that
* pm(zn) — 1] > ¢ foralln e N,
it follows that
orm(zp) — 1> ¢ or prr(zn) — 1 < —€g for all n € N.

If par(zn) — 1 > €, that is pay(z,) > 1+ €, by (4), there exists a § > 0 such that
|zl > 1+8. If par(zn) ~1 < —ep, that is ppr(x,) < 1~ €o, by (2), there exists a §’ > 0
such that |lz,]| < 1 — &', so that ||z,|| # 1 as n — oo, which contradiction. O
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Proposition 7 In Cesaro-Musielak-Orlicz sequence space. If a Musielak-Orlicz function
M = (M) satisfies condition (%) and M € dq, then the norm convergence and modular
convergence coincide.

Proof From Corollary 4, it suffices to prove that modular convergence implies norm
convergence. For this let € € (0, 3), choose a positive integer K such that x5t < €< = -

By Lemma 6(3), there exists a § € (0, %) such that
pumu) < 1,pm(v) <6 = par(u+ ) < par(u) +e.
Suppose that pp(x) < 8, we observe that

pu(nz) < npp(z) + ne,

for n = 1,...,2K-1, In particular, pm(L) < em (2K 1x) < 2K-1pp(z) 4+ 2K 1e <

1+ 1 = 1. This implies ||z|| < 4. D

Theorem 8 If M € §, and M satisfies condition (*),then the space cesps is (UKK)
Proof Assume that M € d2 and suppose that cesps is not (UKK).Then there exists
go > 0 such that for any § > 0 ther are a sequence (z,) in S{cespr) and x € cespy with
sep(zy) > €g ,&n — z and ||z]| > 1 —§. Since sep(z,) > ¢ passing subsequence we may
assume that ||z, — z|| > % for every n € N Since M € §; and M satisfies condition (*)
and = can be assumed to have ||z|| close to 1,ther exists 7 > 0 such that papr(xn, —2) > 7
and ppr(x) > 1 — 2 . Applying Lemma 6(3) there exists o € (0, ¢) such that

7
lomlz +y) - prr(2) < 2
when ever par(y) < o.
Since (z,) C S(cesp) and T, = & ,there exists ip € Nsuch that 3 72, | Me(} Ef=1 |z
o. By z,, = z, which implies that z, = z coordinatewise,hence there exists ng € N

such that

o ; ‘0 k io k
1 el D lon() DMl 1@l <  and Do M( 3 len(i)-2(0) <



Some Geometric Properties on Cesaro Musielak-Orlicz Sequence Spaces
for n > ng. So

[=%] ip k
> M (Zm )= 2 Mul 3 lan) + > Mk Zm(zm

k=ip+1

Zlm M-T+ 3 MEY 6

k"'1.0+1

%
WMS Il

Hence for every n > ng we have

n<p ZMk Zm (i) — z(0)))
-§:Mk( Zlmn(" - z()]) + Z Mi( len(z)—:c(z)l)

k=i0+1

<+ Z Mi(3 Z|mn(z)|)+—
k=ig+1

=3 My Zlmn(zm—ZMk Zawn(z‘)m%’l

II

Mi(; ZI n()|)+_

i 2n
<1- Mk(EZIw(z)D +1+2
k=1 i=1
<1-(1-0)+ 3%7
L
<1-(1-H)+=
Si-Ql-g)+5 <
This is a contradiction. ‘
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Matrix Transformations of Nakano Vector-Valued Sequence Space

SUTHEP SUANTAI

ABSTRACT. In this paper, we give necessary and sufficient condi-
tions for infinite matrices mapping Nakano vector-valued sequence space
£(X,p) into the sequence spaces F, (r > 0) and we also give the matrix
characterlizations from My(X,p) into the space E, where p = (pi) is a

bounded sequence of positive real numbers such that py < 1 for all kK € N,

(1991) AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

For 7 > 0, the normed sequence space F, was first defined by Cooke [1] as follows:

|z
kr

By ={z=(z) [sup < 00}

equipped with the norm

] = sup 2.
kKT

Let (X, ||.||) be a Banach space and p = {px) a bounded sequence of positive

real numbers. We write x = (xy) with =y in X for all ¥ € N. The X-valued sequence
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spaces co(X, p), (X, p), £oo(X, D), £(X,p), and My(X, p) are defined as

co(X,p) = {& = (@) : lim [lal|™ = 0},
c(X,p) = {z = (k) : kh'm lzx — al|P* =0 for some a € X},
— 00

£o(X,p) = {z = (2x) : sup llzx|[P* < oo},

0X,p) = {o=(m): 3 laellP* < oo},
k=1
Mo(X,p) = U?:lg(X)(n"I/Pk)

When X = K, the scalar field of X, the corresponding spaces are written as co(p), c(p),
£5(p), €(p), and My(p), respectively. The spaces co(p), ¢(p), €oo(p) are known as the
sequence spaces of Maddox. These spaces were first introduced and studied by Simons
[7], Maddox [4, 5]. The space £(p) was first defined by Nakano [6] and it is known as
the Nakano sequence space and the space £(X, p) is known as the Nakano vector-valued
sequence space. The spaces Mo(p) was first introduced by Grosse-Erdmann [2] and he
has investigated the structure of the spaces co(p), ¢(p) and £y (p). Grosse-Erdmann [3]
gave the matrix characterizations between scalar-valued sequence spaces of Maddox. Wu
and Liu [9] dealt with the problem of characterizations those infinite matrices mapping
co(X,p), Loo(X,p) into co(g) and £,.(g) where p = (px) and ¢ = (gix) are bounded
sequences of positive real numbers.

Suantai (8] gave necessary and sufficient conditions for infinite matrices mapping
¢(X,p) into £y and £_{g) where p = (px) and ¢ = {gx) are bounded sequence positive
real numbers with p, < 1 for all Kk € N.

In this paper we give characterizations of infinite matrices mapping ¢(X, p) and
My(X, p) into the sequence space E, when pr <1 for all k € N and r > 0. Some results

in [8] are obtained as special cases of this paper.

2. Notation and Definitions

Let (X, ||.||) be a Banach space. The space of all sequences and the space of all
finite sequences in X are denoted by W(X) and ®(X), respectively. When X is K, the

scalar field of X, the corresponding spaces are written as w and ®.
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A sequence space in X is a linear subspace of W(X). Let E be an X-valued
sequence space. For z € F and k € N, we write z standing for the kt* term of z.
For z € X and k € N, let €*(z) be the sequence (0,0, ...,0,,0,...) with z in the k**
position and let e(z) be the sequence (z,z,z,...). For a fixed scalar sequence u = (px)

the sequence space E,, is defined as
E,={z e W(X): (uzs) € E} .

Let A = (ff) with f? in X', the topological dual of X. Suppose that E is a

space of X-valued sequences and F a space of scalar-valued sequences. Then A is said
to map E into F, written by A : F — F if for each 2 = (23) € E, An(z) = Zf,:‘(xk)
k=1

converges for each n € N, and the sequence Az = (A,(z)) €’F. Let (E, F) denote for
the set of all infinite matrices mapping from F into F.

Suppose that the X-valued sequence space F is endowed with some linear topol-
ogy 7. Then E is called a K-space if for each k¥ € N the kt* coordinate mapping
pr : E = X, defined by pi(z) = zx, is continuous on E. If, in addition, (E,7) is an
Fréchet (Banach, LF-, L.B-) space, then E is called an FK- (BK-, LFK-, LBK-) space.
Now, suppose that E contains ®(X). Then E is said to have property AB if the set

n

{Z e*(ry) : n € N } is bounded in E for every z = (zx) € E. It is said to have
k=1
property AK if Ze"(mk) — z in E as n — oo for every £ = (z) € E. It has property
k=1
AD if &(X) is dense in E.

It is known that F, is a BK-sapce and Ey = £,,. The space £(X, p) 1s an FK-space
o0 /M
with AK under the paranorm g(z) = ( _>__ ||:ck|(p") , where M = max {1,sup px}. In
k
k=1

each of the space £oo(X,p) and co(X,p) we consider the function g(z) = sup ||zx}|P*/M,
k
where M = maz {1,sup px}. It is known that co(X, p) is an FK-space with AK under
k
the paranorm g defined as above and £.,(X, p} is a complete LBK-space with AB.

3. Main Results

We start with giving the matrix characterizations from ¢(X, p) into E,.
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Theorem 3.1 Let r > 0 and let p = (px) be bounded sequences of positive real
numbers with pr, < 1 and let A = (f) be an infinite matriz. Then A € (¢(X,p), E,) if
and only if there is mg € N such that sup mglfp"n_’"Hf,?H < 00 .

n, k

Proof. Assume that A € (¢(X,p), E,). In £(X,p), we consider it as a para-
normed space with the paranorm g defined as above and since px < 1 for all k € N, we

have M maz {1, sup pr} = 1. Now, we write ||.|| standing for the paranorm g. By

Zeller’s theorem, A : E(X p) — E, is continuous. Then there is mg € N such that

1
sup |Z fi(ze)| <1 for all z € £(X,p) with ||z]| £ — (3.1)
mo
k=1
Let n,k € N be fixed and let 5 € X be such that ||zg|| < 1. Then e (m7 Pz €
_ 1
UX,p) and || (mg P x| < —. By (3.1), we have
0

mg 7 £ (on)| < sup i |fimg P )| = (14 (my Ve < 1

It implies that sup mgl/”"n—’"lif,?ll < 0.

n,

Conversely, assume that the condition holds. Let z = (z) € £(X,p). By as-
sumption, there is a C' > 0 such that

my P T fR| < € for alln,k e N | (3.2)

Since ||m(1)/p“a:k|| — 0 as k — oo, there is a kg € N such that ||mé/p":1:k|| < 1 for all
k > kp. Since 0 < pp <1 for all £ € N, we have

||m1/pk:ck|| < ||m1/p*$k||p" for all k > kq. (3.3)

*
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It follows from (3.2) and (3.3) that

oG

}j |lmg/P* zelf = Z g/ zill + > lImg/™ zx]

k=1 k=kg+1

ko
<SSP+ S It

k=1 k=ko+1

[aa]
=Ki+mo Y [kl
k=ko+1
< Ky + mgl|z||, K1 = Z (ma/P* |- (3.4)
By (3.2) and (3.4) we have for n € N, ’

oo
N Apz| = n-r|z f?(malfpk (mfl)/PkEk)H

k=1

-1 - 1
g P\ 2 g P |

A
)8

E
I

1

1
(g’ Pzl

Ms

IA

C
k=1
< C(Ky + mol|z|}).

This implies that sup n™"|A,z| < oo, so that Az € E,.. This completes the proof. G
n

When r = 0, we see that E, = £, so we obtain the following result directly
from Theorem 3.1.

Corollary 3.2 Let p = (pr) be a bounded sequence of positive real numbers such
that pr < 1 for all k € N. Then for an infinite matriz A = (f7*), A € (¢(X,p),{x) i
and only if there is mg € N such that sup mg””*llf,;‘” < 00 .
n,k

If pp =s <1 for all k € N, by Theorem 3.1 we obtain the following result:

Corollary 3.3 Letr >0 and0 < s < 1. Then for an infinite matriz A = (f7}),
€ (£5(X), E,) if and only if sup n™"||f]|| < o0 .
n.k
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When p = 1for allk € N and r = 0, we obtain the following result by Corollary
3.3

Corollary 3.4 For an infinite matriz A = (f?), A € ({(X), £x) if and only if
sup ] < co.

Theorem 3.5 Let r > 0 and let p = (pk)'be bounded sequences of positive real
numbers and let A = (f7) be an infinite matriz. Then A € (Mo(X,p), E;) if and only
if for each s € N, sup n~"s/P||fI|| < oo

n, k

?

Proof. Since Mo(X,p) = UsL1£(X)(,-1/p1), we have
A€ (My(X,p), Br) < A€ ({l(X)-1/my Ey)forallse N
For s € N, we can easily show that
A€ (UX) (=i Er) &= (M7 f),, € (U(X), E,).
By Theorem 3.1, we obtain that for s € N,
(827 ) 0 € (€0X), Fr) = sup n"s/B¥||f2] < oo

Thus the theorem is proved. U
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On Matrix Transformations Concerning the Nakano
Vector-Valued Sequence Space

ABSTRACT. In this paper, we give- the matrix characterizations
from Nakano vector-valued sequence space £(X,p) and F,.(X,p) into the
sequence spaces E, £, £,.(q), bs and cs, where p = (pr) and g = (gi) are
bounded sequences of positive real numbers such that p;y > 1 for all kK € IN
and r > (.

Keywords : Matrix transformations, Nakano vector-valued sequence spaces

(2000} AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

Let (X,]-]|) be a Banach space , r > 0 and p = (pg) a bounded sequence of
positive real numbers. We write z = (zx) with z; in X for all £ € IN. The X-valued
sequence spaces ¢o( X, p), ¢(X,p), £uo{X,p), £(X,p), E.(X,p) and F.(X,p) are defined
as

o(X,p) = {2 = (2x) + lim [lzx 7 = 0},

o X,p)={z = (z) : klll,n.fo”x"’ —al|[P* =0 for some a € X},

Lo(X,p) = {z = (xi) : supg ||z |IPF < o0},

UX,p) = {o = (a1) : T2 el < oo},

Er(X,p) = {z = (zx) : supk |[zx[P*/k" < oo },

F(X,p) = {o = (1) : 252, K llallPe < oo,

Lo (X,p) = iy {z = (zx) : supk ||zlln'/7*}.

When X = K, the scalar field of X, the corresponding spaces are written as co{(p),
e(p), oo (p) ,L(p), Er(p), Fr-(p) and £, (p), respectively. The spaces co(p), c(p) and £ (p)
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are known as the sequence spaces of Maddox. These spaces were first introduced and
studied by Simons [7], Maddox (4, 5]. The space £(p) was first defined by Nakano [6]
and it is known as the Nakano sequence space and the space £(X,p) is known as the
Nakano vector-valued sequence space. When py = 1 for all k € IV, the spaces E,.(p)
and F,(p) are written as F, and F,., respectively. These two sequence spaces were first
introduced by Cooke [1]. The space £ (p) was first defined by Grosse-Erdmann [2] and
he has given in [3] characterizations of infinite matrices mapping between scalar-valued
sequence spaces of Maddox. Wu and Liu [10] gave necessary and sufficient conditions
for infinite matrices mapping from co(X,p), £oo(X,p) into colg) and £,.(g). Suantai
[8] has given characterizations of infinite matrices mapping £(X, p) into £ and £__(q)
when pi < 1 for all ¥ € IV and he has also given in [9] charactegizations of those infinite
matrices mapping from £(X, p) into the sequence space E, when p; <1 for all k € IN.

In this paper, we extend the results of (8] and (9] in the case that p; > 1 for all
k € IN. Moreover, we also give the matrix characterizations from £(X,p) and F.(X, p)

into the sequence spaces bs and cs.

2. Notation and Definitions

Let (X,|.]|) be a Banach space, the space of all sequences in X is denoted by
W(X) and (X ) denotes for the space of all finite sequences in X. When X is K, the
scalar field of X | the corresponding spaces are written as w and ©.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued
sequence space. For z € F and k ¢ IN, we write z) stands for the k** term of z.
For £ € IN denote by ¢ the sequence (0,0,...,0,1,0,...) with 1 in the kt* position
and by e the sequence (1,1,1,...). For z € X and k € IN, let ¢*(z) be the sequence
(0,0,...,0,2,0,...) with z in the k** position and let e(z) be the sequence (z,z,z,...).
We call a sequence space E normal if (tyzy) € E for all x = (zx) € E and ¢t € K with
[tr| = 1 for all ¢x € IN. A normed sequence space (E, ||.||) is said to be norm monotone
if £ = (zx), y = (yx) € E with [|zg|| < [yl for all & € IN implies [|z|| < ||yi|. For a

fixed scalar sequence pu = (ux) the sequence space E), is defined as

E,={zx e W(X): (pzi) € E} .
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Let A = (f7!) with f* in X', the topological dual of X. Suppose that E is a

space of X-valued sequences and F' a space of scalar-valued sequences. Then A is said

to map E into F, written by A : E — F if for each z = (z) € E, A,(z) = ka (zx)

converges for each n € IN, and the sequence Az = (A,(z)) € F. Let (E, F) denote for
the set of all infinite matrices mapping from F into F'.

Suppose that the X-valued sequence space E is endowed with some linear topol-

ogy 7. Then E is called a K-space if for each k € IV, the k**® coordinate mapping

x : E — X, defined by px(z) = =y, is continuous on E. If, in addition, (F,7) is an

Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space.

Now, suppose that F contains ®(X), then E is said to have property AB if the set

{Z ef(zx) : n € IN } is bounded in E for every = = (x5) € E. It is said to have
k=1

n
property AK if Zek(:ck) — 7 in E as n — oo for every = (z) € E. It has property

k=1
ADif (X)) is dense in .

It is known that the Nakano sequence space £(X, p) is an FK-space with property
00 1/M
AK under the paranorm g(z) = (Z ||:L'k||pk) , where M = max {1,sup pi}. If
k

pr > 1 for all k € IN, then £(X, p) is a BK-space with the Luxemburg norm defined by

Izl = inf {e = Y [lzx/elP* <1}
k=1

3. Main Results

We first give a characterization of an infinite matrix mapping from £(X, p) into
E. when p, > 1 for all k € IN. To do this, we need a lemma.

Lemma 3.1 Let E be an X —valued BK —space which is normal and norm mono-
tone and A = (f1*) an infinite matriz. Then A: E — E, if and only if sup, S 7, |f2(zk)|/n" -
o0 for every z = (xy) € E.

Proof If the condition holds true, it follows that sup, |3 s, fR(zx)|/n" <
SUDPn ¥ peq 2 (ze)|/n" < oo for every z = (zx) € E, hence A: E — E,.
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Conversely, assume that A: F — E,. Since F and E, are BK-spaces, by Zeller’s
Theorem, A : E — E, is bounded, so there exists M > 0 such that

o0

sup 1> fR(zs)|/n” < M. (3.1)
nzis k=1 .

Let z = (zx) € E be such that ||z|| = 1. For each n € IN, we can choose a scalar

sequence (tx) with |tg| = 1 and f2(txzx) = |fi(zk)| for all k € IN. Since E is normal

and norm monotone, we have (tkxy) € E and ||(frxzx)|| < 1. It follows from (3.1) that

Sorey Bz /nm = |, SR (tkzi)|/n" < M, which implies

fgﬂgig |fi (k)| /n” < M. (3.2)

It follows from (3.2) that for every z = (z) € E,

sup ) |fi(ze)l/n” < M|].
nelN g

This complete the proof. O

Theorem 3.2 Let p = (px) be a bounded sequence of positive real numbers with
pr > 1 forallk € IN and 1/pp +1/qx = 1 for all k € IN, and let r > 0. For an infinite
matriv A = (ff*) , A€ ({(X,p), E,) if and only if there is mo € IN such that

oo
sup Z IFE*n ™% my ™ < oo . (3.3)
k=1

Proof. Let z = (zx) € £(X, p). By the condition, there are mg € IN and K > 1
such that

o0
E NFEl®#n~ "% my % < K foralln e IN. (3.4)
k=1

Note that for a, b > 0, we have

ab < aP* + b (3.5)
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It follows by (3.4) and (3.5) that for n € IV,
oo oo
w70 SR )] = a7 S (g imoz)|

< (7 mg I FE I (lmozkl)

NgE

S
il

1

M

x
Il

: oo
nTTEm T fRl% + mg Y llzk]P*
1 k=1

A

oc
K +mg Z |zk)|P* , where o = sup pg.
k
k=1

Hence sup n™"|3 pe, f2(zk)| < 00, so that Az € E,..

Fr(;r necessity, assume that A € ({(X,p), E,). For each £ € IN, we have
sup n~T|f2(z)| < oo for all z € X since e*)(z) € £(X,p). It follows by the uniform
br(;unded principle that for each & € IV there is Cy > 1 such that

sup e < Cr (3.6)

Suppose that (3.3) is not true. Then

oG
sup z e n~ "% m™ % = oo for every m € IV . (3.7
T k=1

For n € IN, we have by (3.6) that for k,m € IV,

o0 k
Z | fE|%n T m % = Z“f;z“qfn—rq;,-m—qj + Z £ %m0 m
=1

=1 ivk
k
SRR M L
j=1 >k
This together with (3.7), we have

sup 3 ||IfFI1%n~"%m % = 0o for all k,m € IV. (3.8)
n ik
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By (3.8) we can choose 0 = kg < k; <k < ... ,m; <ma < .., m; >4 and a

subsequence (n;) of positive intergers such that for all ¢ > 1
Yoo e n M > 2t
ki1 <i<k;
For each ¢ € IN, we can choose z; € X with ||lz;|| =1, for ki_; < j < k; such that
> e m s > 2
ki 1<j<k;
For each i € IV, let F; : (0,00) — (0, 00) be defined by
EM)= Y IfPE)on M.
kio1<j<k; '
Then F; is continuous and nonincreasing such that F(M) — 0 as M — oco. Thus there
exists M; > 0 such that M; > m; and

FM) = 30 1 )ln M7 =2 (3.9)

)
ki1 <g<k;

Put y = (y;), y; = 4’*Mi_(Qj_1)ni_rqf/pj|f_;"'(xj)|qi“1:r:j for ki_y < j < k;. Thus

oo oo
DoilwslPr =30 D AT MR e oo
i=1 i=1k_1<j<k;

oo

< Z 4% Z Mi_Qj n;rqj }f;h (3'33) ‘q,-

i=1 ki 1 <i<k:

4t 2t

o

1

-
I

i
5"—:1.

e

t

f
pos

Thus ¥ = (y;) € £(X,p). Since £(X,p) is a BK-space which is normal and norm

monotone under the Luxemburg norm, by Lemma 3.1, we obtain that

sup Z‘—f’%?kl < 0. (3.10}
k=1
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But we have
e o] (o]
sup > | (wil/n" > sup >\ (y)l/ng
o=l b=t

> sup S wi/ng

ki_1<ji<k;
= sup Z 4—‘!:Mi_.(q.f_1)n£_r(9j/pi+1)If}li(I,L.J.)|Qj
Yok <i<hy

=sup Y ATMTOT IS )l
Y okia<i<ks

=sup Y (17 ()| %n T M) 4T
ok <<k

> sup 2° = oo, because M; > 4

I3

This is contradictory with (3.710). Therefore (3.3) is satisfied. O

Theorem 3.3 Let p = (px) be a bounded sequence of positive real numbers such
thatpr > 1 forallk € IN, 1/pr +1/qe =1 for allk € IN, r > 0 and s > 0. Then for

an infinite matriz A = (), A € (F.(X,p), Es) if and only if there is my € IN such
that

sup Z(k—rG’k/'PkHfl’:”‘irkn—s‘]kmamc) < 0.
n k=1
Proof. Since Fi.(X,p) = £(X,p)r/pey, it is easy to see that
A€ (F(X,p), B) «— (k7P fp), € (8(X,p) B)

By Theorem 3.2, we have (k™"/?% ) € (£(X,p) E,) if and only if there is mo € IV
such that

SUp Y gy (KTTI/PH|| FP||Te =30k m < oo. Thus the theorem is proved. 0O

Since Ey = £, the following two results are obtained directly from Theorem 3.2
and Theorem 3.3, respectively.
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Corollary 3.4 Let p = (px) be a bounded sequence of positive real numbers
with px > 1 for all k € IN and let 1/px + 1/qx = 1 for all k € IN. Then for an
infinite matriz A = (f7) , A € ({(X,p), L) if and only if there 1s mo € IN such that

oo
sup 3 [IfEl%mg® < oo .
" k=1
Corollary 3.5 Let p = (pr) be a bounded sequence of positive real numbers

with py > 1 for all k € IN and let 1/px + 1/qx = 1 for all k € IN. Then for an
inﬁnite matriz A = (f7) , A € (Fr(X,p), £x) if and only if there is mg € IN such that

Su Lorak/ox|| £ q:cm—q:e < 0o .
up Z K24l )

Theorem 3.6 Let p = (pg) and q = (qx) be bounded sequences of positive real
numbers with px > 1 for all k € IN and let 1/py + 1/tx =1 for all k € IN. Then for an

infinite matriz A = (f*), A € (£(X,p),€-(q)) if and only if for each r € IN, there is
m, € IN such that sup rielan || fo||BemIt < oo,

1’1,

Proof. Since £,,(g) = N7Z1loo(r1/acy, it follows that
Ae (X,p)t.(q) — Ae({X,p), Em(ruqk)) forallr € IV
It is easy to show that for r € IV,
A€ (UX,p), Loogrrany) == (= f2) € (UX,p), Loo) -

We obtain by Corollary 3.4 that for r € IV,

oo
(rl/q"f,?)n’k € (£(X,p), £oo) < there is m, € N such that sup ZT“/"“HJ‘EH“‘m,Tt* < 00
k=1

Thus the theorem is proved. O

Theorem 3.7 Let p = (pg) and ¢ = (gx) Ee ‘bounded sequences of positive real
numbers with pr > 1 for all k € IN and let 1/pr + 1/t = 1 for all k € IN. For an
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infinite matriz A = (f}), A€ (F,.(X,p), £..(q)) if and only if for each i € IN, there is
m; € IN such that

o0
Supz.itk/q'rzk—rtk/?k”f’?”tkmi_tk < 00.
" ok=1

Proof. Since F.(X,p) = £(X,p)r/pe), it implies that
A€ (Fr(X,p),Loo(0)) = (K777 f),. . € (6(X, D), £oo(2))-

It follows from Thoerem 3.6 that A € (F,.(X,p),£.(g)) if and only if for each ¢ € IV,

1 =00

there is m; € IV such that sup 3 o it/ k=Tt/Pk || f1||tem; * < o0.
1

Theorem 3.8 Let p = (pi) be bounded sequence of positive real numbers with
pr > 1 for alln € IN and let 1/py, + 1/q; = 1 for all k € IN. Then for an infi-
nite matriz A = (ff') , A € ({(X,p), bs) if and only if there is my € IN such that
S:p Yokt | 225 fill#mg ™ < oo

Proof. For an infinite matrix A = (f7), we can easily show that
A€ ({X,p), ka L € (UX,p), €) .

This implies by Corollary 3.4 that A € (£(X,p), bs) if and only if there is mg € IN such

that - .
sup SIS Fillemy® < oo
" k=1 i=l

g

Theorem 3.9 Let p = (px) be a bounded sequence of positive real numbers with
pr > 1 forallk € IN and let 1/pp+1/q. =1 for allk € IN. Then for an infinite matriz
=(f*), Ae (&X,p), cs) if and only zf ‘
(1) there is mg € IN such that sup Z 1 ka |%*mg % < oo and

k=1 1i=1

(2) for each k € IN andz € X, Z fi{x) converges.

n=1
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Proof. The necessity is obtained by Theorem 3.8 and by the fact that e®)(z) €
£(X,p) for every k € IN and z € X.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we have A : {(X,p) —
bs. Let z = (zx) € #(X,p). Since £(X,p) has the AK property, we have z =
lim Yr_;e®™(zx). By Zeller’s theorem, A : £(X,p) — bs is continuous. It im-

n—+od
plies that Az = hrn Z Ae®) (). By (2), Aet®) (i) € ¢s for all k € IN. Since cs is

a closed subspace of bs 1t implies that Az € ¢s, that is A : £(X,p) — cs. O
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On g-Dual of Vector-Valued Sequence Spaces of Maddox

Abstract. In this paper, the §-dual of a vector-valued sequence space is defined and
studied. We show that if an X-valued sequence space S(X) is a BK-space having AK
property, then the dual space of S{X) and its S-dual are isometrically isomorphic. We
also give characterizations of 8-daul of vector-valuéd sequence spaces of Maddox £(X, p),
Lo (X;p), co(X, p), and (X, p).

Keywords: f-dual ; vector-valued sequence spaces of Maddox
AMS Mathematics Subject Classification (2000): 46A45.

1. Introduction

Let (X, ||-||) be a Banach space and p = (px} a bounded sequence of positive real
numbers. Let IV be the set of all natural numbers, we write z = (zj) with =y in X for
all k € N. The X —valued sequence spaces of Maddox are defined as

co(X,p) = {z = (@) : limpoc ||zx||P* = 0}

(X, p) = {z = (z) : im0 ||z — a||P* = 0 for some a € X };

£l X, p) = {z = () - supy [lzl|P> < o0}

UX,p) = {o = (&) : T2 lzll?* < oo).

When X = K, the scalar field of X, the corresponding spaces are written as
co(p), ¢(p), Lo (p), and £(p), respectively. All of these spaces are known as the se-
quence spaces of Maddox. These spaces were introduced and studied by Simons [7}
and Maddox [3 - 5]. The space £(p) was first defined by Nakano [6] and is known as
the Nakano sequence spa',ce. Grosse-Erdmann [1] has investigated the structure of the
spaces cg(p), ¢(p), £(p), and £..(p) and has given characterizations of S-dual of scalar-
valued sequence spaces of Maddox. B

In (8], Wu and Bu gave characterizations of Kithe dual of the vector-valued

sequence space £,[X], where £,[X] (1 < p < o0) is defined by

(X = {x = (xx) : i‘f(-’l?k”p < oo for each f € X’} )

k=1

Typeset by AAS-TEX
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In this paper, the 8-dual of a vector-valued sequence spaces is defined and studied, and
we give characterizations of 8-dual of vector-valued sequence spaces of Maddox £(X, p),

Lo (X, p), co(X, p), and c(X, p). Some results, obtained in this paper, are generalizations
of some in [3].

2. Notation and Definitions

Let (X, ||.]|} be a Banach space. Let W(X) and ®(X) denote the space of all
sequences in X and the space of all finite sequences in X, respectively. A sequence space
in X is a linear subspace of W(X). Let E be an X- valued sequence space. For x € E
and k € N we write that x stand for the kth term of z. For x € X and k € N, we let
e®)(z) be the sequence (0,0,0,...,0,7,0,...) with z in the kth position and let e(z) be
the sequence (z,z,x,...). For a fixed scalar sequence u = (uy) the sequence space F, is

defined as
E, = {z = (zx) € W(X}): (urzy) € E}.

An X-valued sequence space F is said to be normalif (zx) € F and (yx) € W(X)
with |ly|] < |lzx|| for all k£ € N implies that (yz) € E. Suppose the X-valued sequence
space F is endowed with some linear topology 7. Then F is called a K-space if, for each
k € N the kth coordinate mapping px : £ — X, defined by pr(x) = z, i8 continuous on
E. In addition, if (¥, 7) is a Fre'chet(Banach) space, then E is called an FK — (BK—)
space . Now, suppose that F contains ®{X). Then FE is said to have property AK if
Sr_ie®(zy) 5 zin E as n — oo for every z = (z3) € E

The spaces ¢o(p) and c(p) are FK-spaces. In ¢o(X, p), we consider the function
g(z) = sup |jzx||P*/M, where M = max {1,sups px}, as a paranorm on ¢y(X,p), and
it is knm’:rn that co(X,p) is an FK-space having property AK under the paranorm g
defined as above. In £(X,p), we consider it as a paranormed sequence space with the
paranorm given by ||{(zk)ll = O rhe; lzx][P*)"™ , where M = max {1,sup o} It is
known that £(X, p) is an FK-space under the para:flqr;n defined as above.

For an X-valued sequence space S{X), define its Kéthe dual with respect to the
dual pair (X, X')
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( see [2]) as follow :

S(X)l(x,xy = {(fk) cX': Z |fx(zk)| < oo for all z = () € S(X)} X

k=1

Sometime we denote S(X)*|x x+) by S(X)* and it is called the c-dual of S{X).
For a sequence space S(X), the 8-dual of S(X) is defined by

S(X)P = {(fk) cX': ifk(:ck) converges for all (zx) € S(X) } .

k=1
It is easy to see that S(X)* C §(X)”.

For the sake of completeness we introduce some further sequence spaces that will
be considered as §-dual of the vector-valued sequence spaces of Maddox :

Mo(X,p) = {z = (zx) : Lo l|z&||M~2PE < 00 for some M € N };

Moo(X,p) = {z = (z&) : D, ||Ze|in'/P* < coforall ne N };

£o(X,p) = {z=(zx): Lopey llzk||PxM~Pe—1) < oo for some M € N }; where
pr>1forallk € N,

es[X'] = {{(fi) C X' : 3 1e; frlz) converges for allz € X }.

When X = K, the scalar field of X, the corresponding first two sequence spaces

are written as Mg(p) and My (p), respectively. These spaces were first introduced by

Grosse-Erdmann [3].

3. Main Results

We begin with giving some general properties of 5-dual of vector-valued sequence

spaces. .

Proposition 3.1. Let X be a Banach space and let S(X), S1{X), and S2(X) be X-
valued sequence spaces. Then
(i) S(X)* C S(X)P.
(i5) If S1(X) C Sa(X), then So(X)P C S1{X)P.
(i5i) If S{(X) = S1(X) + So(X), then S(X)? = S1(X)P N S2(X)P.
(iv) If S(X) is normal, then S(X)* = S(X)P.
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Proof Assertions (i) - (iii) are immediately obtained by the definitions. To prove (iv),
by (i), it suffices to show only that S{X)? C S(X)* Let (fr) € S(X)? and = =
(z) € S(X). Then Y po, fu(zx) converges. Choose a scalar sequence (tx) such that
feltezr) = |fe(zk)| for all k € N. Since S(X) is normal, (txxzx) € S{X). Thus
S ones (@)l = Y ge fe(tezi) and the series 3 po | fi(tkzx) converges. This implies
that (fx) € S(X)=. : O

If S(X) is an BK-space, we define a norm on S(X)? by the formular

ka z)| .

k=1

H(fe)lls(xys = sup
:]:k “(1

It is easy to show that ||.]|s(x)s is a norm on S(X)?
Next, we give some relations between (-dual of a sequence space and its dual.

Indeed, we need a lemma.

Lemma 3.2. Let S(X) be an X -valued sequence spuce which is an FK-space and
contains ®(X). Then for each k € N, the mapping Ty, : X — S(X), defined by

Tix = €*(x), is continuous.

Proof. Let V = {e*(x):z € X}. Then V is a closed subspace of S(X), so it is an FK-
space because S{X) is an FK-space. Since S(X) is a K-space, the coordinate mapping
pr - V — X is continuous and bijective. It follows from the open mapping theorem that
pi 18 open, which implies that pgl : X — V is continuous. But since T}, = p,;l, we thus

obtain that T} is continuous. J

Theorem 3.3. If S(X) is a BK-space having property AK, then S(X)? and S(X)

are 1sometrically isomorphic.

Proof. We first show that for z = (zx) € S(X) and f € S(X)',
fla) =Y f(eF(zx)) (3.1)
k=1

To show this, let z = (zx) € S(X) and f € S(X)'. Since S{X) has property AK, z =
lim STp_, e®)(zx). By the continuity of f, it follows that f(z) = lim Y i, f(e®(zy)) =
n—o0

n—oC
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> opey f(e®) (), so (3.1) is obtained. For each k € N, let T : X — S(X) be defined
as in Lemma 3.2. Since S(X) is a BK-space, by Lemma 3.2, T} is continuous. Hence
foT, € X' for all k € N. It follows from (3.1) that

flz)= i(f o T )(zy) for all z = (z) € S(X). “ (3.2)

k=1

We have by (3.2) that (f o Tx)32, € S(X)P. Defhlle @ : S(X) — S(X)P by
o(f) = (f o TW), for all f € S(XY.

It is easy to see that ¢ is linear. Now, we shall show that ¢ is onto. Let (fx) € S(X)?.
Define f: S(X) — K, where K is the scalar field of X, by

Flxy =" fulzx) for all z = (zx) € S(X) (3.3)

k=1

For each k € N let p; be the kth coordinate mapping on S(X). Then we have

fla) =" (fxopr)(z)
k=1

i

= lim > (fopk)(a)-
k=1

Since fr and px are continuous linear, so is f o px. It follows by Banach-Steinhaus
theorem that f € S{X)’, and we have by (3.3) that for each k¥ € N and each z € X,
(foTi)(2) = f(e®)(2)) = fe(z). Thus fo Ty = fx for all & € N, which implies
w(f) = (fx), hence ¢ is onto.
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Finally, we shall show that ¢ is linear isometry. For f € S(X)’, we have

1fll=sup |f{(zx))l
lze)lI<1

= sup |)_ f(e®(zp))

(LET91 P I Pt

(by (3.1))

oo

= sup Z(f oTk)(mk.)

Izl =1

= ||(f o Tk)gZ1lls(xys

= |le(H)llsexye-

Hence ¢ is isometry. Therefore ¢ : S(X) — S(X)P is an isometrically isomorphism
form S(X)" onto S(X)?, so the theorem is proved. 0

We next give characterizations of f-dual of the sequence space £(X,p) when
pr > 1forall k€ N.

Theorem 3.4. Letp = (px) be a bounded sequence of positive real numbers with py > 1
for all k € N. Then £(X,p)? = 8y(X',q), where g = (qx) is a sequence of positive real
numbers such that 1/px +1/qx =1 for allk € N.

Proof. Suppose that {fi) € £o(X’,q). Then Y oo, || fell% M ~(2~1) < oo for some M €
N.
Then for each z = (z}) € £(X,p), we have

8

Z|fk($k)| lefkllM‘”””M”p’“Hwkll

o0
<37 (Il M=o /7e o M)
k=1

™8 i

llfkll""‘M (@ ”+MZH$:¢H’”‘ <00,
k=1

a
Il

which implies that S"po.; fx(xxk) converges, so (fi) € £(X,p)?.
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On the other hand, assume that (fi) € £(X,p)?, then 32, fr(zx) converges for
all z = (zx) € £(X,p). For each z = (z) € £(X,p), choose scalar sequence (t) with
lts] = 1 such that fiy(txzk) = |fr(zk)| for all £ € N. Since (txzx) € £(X,p), by our

assumption, we have > oo, fx(txZk) converges, so that

Z|fk(:ck)\ <oo forallze X, p). (3.4)
k=1

We want to show that (fx) € £o(X’,q), that is > po, || fx]|% M (@1 < oo for some
M € N. If it is not true, then

o0
Z||fk||q"m_(q"_1) = oo, for all m € N. (3.5)
k=1

It implies by (3.5) that for each k£ € N,
D fill%mm @ = oo, for allm € N. (3.6)
i>k
By (3.5), let m; = 1, then there is a k; € N such that
> fullmy Y > 1,
k<k,
By (3.6), we can choose my > m; and kg > k; with my > 22 such that
> el %my T > 1 (3.7)
Rk <k<ko

Proceeding in this way, we can choose sequences of positive integers (k;) and (m;) with
l=ky <k <kz<..and m; < mg < .., such that m; > 2° and

CX lnkem Y >

ki1 <k<k;

For each 1 € N, choose zx in X with ||zg||=1for all k € N, &,y < k < k; such that

ST fk(en)|®=m 9 > 1 forall i € N.

ki1 <kski
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= Y fe@)®mI Y Put y = (), vk = a7 'm Y| @) | Ly

ki 1 <k<k;

forall ¥ k;_; < k < k;. For each i € N, we have

So we have that > 77 | |lykl|P*

i€ N,

>

([P

ki1 <k<k;

we have

2

ki1 <k£ki

| fi (y)|

_ Z Pr

ki—1<k<k;

= > a7 mI % filz) | %

kit <kSk,‘

< 3 atmitmy @ ()|
ki1 <k<k;

[ PR L

<302, 1/28 < co. Hence, y = (yx) € (X, p). For each

= Y |Aem I )

ki_1<k<k;

= 3 a7t m Y () |

ki1 <k<k;
.| —(gx—1) qk
= ay Z m; | frlzx)
ky 1 <k<k;
= 1.

So that > |fx(yx)] = oo, which contradicts to (3.4). Hence (fx) € £o{ X', g). The proof

k=1

is now complete.

O

The following theorem give a characterization of S-dual of £(X, p) when py <1
for all £k € N. To do this, the following lemma is needed.

Lemma 3.5. Let p = (px) be a bounded sequeﬁééS" of positive real numbers. Then
loo(X,p) = Uni,y fco(X)(n_l/pk).

Proof. Let x € £ (X,p), then there is some n € N with ||zx|[P* < n for all k €
N. Hence [|zg||n~3/P* < 1 for all k € N, so that z € €oo(X)(n-1/pxy- On the other
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hand, if z € UZL;£o0(X)(n-1/p4), then there are some n € N and M > 1 such that
|zklln=t/Px < M for every k € N. Then we have ||zx|P* < nMP*x < nMe for allk € N,
where a = supy pr. Hence z € £,(X, p). O

Theorem 3.6. Let p = (pi) be a bounded sequence of positve real numbers with py < 1
forall k € N. Then £(X,p)? = £(X',p).

Proof. If (fx) € £(X,p)? , then > 5o, fr(zk) converges for every = = (z) € £(X,p),
using the same proof as in Theorem 3.4, we have

o 8]

> Ifr(zk) < oo forall @ = (zx) € &(X,p) (3.8)
k=1
If (fi) € £oo(X',p) , it follows by Lemma 3.5 that supy, ||fx|[m~1/P* = co for allm € N.
For each i € N, choose sequences (m;) and (k;) of positive integers with m; < ma <.
and k; < kg < ... such that m; > 2° and llf;rc'Hm“l/pk
|zk, || = 1 such that

" > 1. Choose zy, € X with

—1/pk

| frs (e ) my 7 > 1 (3.9)

Lety = (yx), yx = m;llp"":rk,. if k = k; for some ¢, and 0 otherwise. Then 3 5>, [|yx|P* =

Yooy 1/my < 352, 1/28 =1, so that (yx) € £(X,p) and
Z | fi(ue)| = Z|f TP )

~§j ST elew)] = 00 by (3.9),

and this is contradictory to (3.8), hence (fi) € £oo{X', p).

Conversely, assume that (fr) € £(X’,p). By Lemma 3.5, there exists M € N
such that supy ||fi||M~YP* < cc. Let = = (xx) € £(X,p), then there is a K > 0 such
that

I ful < KMYP forall ke N (3.10)

and there is a kg € N such that MY/Px|lzll < 1forallk > ko. By pp < 1forallk € N,
we have that for all & > kg,

MYP || < (MAPH ||z )P = M|zl P (3.11)
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Then
[o%) ko o0
> k@)l < Z\lfk”llwkll + > el
k=1 = k=kq+1
< Z I fxllllzsll + K Z MYPe ||zl (by (3.10))
k=ko+1 '
< Z I felllloell + KM Z lzxlPx (by (3.11))
k=ko+1
< Q.
This implies that 35 ; fx(zx) converges, hence (fx) € £(X, p)?. O

’

Theorem 3.7. Let p = (px) be a bounded sequence of positve real numbers. Then
loo(X,p)f = Moo (X', p).

Proof. 1f (fx) € Moo(X',p) , then 332 || fx|lm*/P* < co for all m € N, we have that
for each z = (zg) € £oo(X,p), there is mp € N such that ||zg| < mil)/p" forall k € N,
hence 252, 1fi (i)l < S22, Iillloell € S22 [ fellmi/® < oo, which implies that
Y ore, fe{zk) converges, so that (fx) € £(X,p)P.

Conversely, assume that (fi) € £oo{X,p)?, then oo | fr(xx) converges for all
z = (zk) € €o(X,p), by using the same proof as in Theorem 3.4, we have

> 1 fn(zx)| < oo for all z = (zx) € £oo (X, p). (3.12)

If (fr) € Moo(X',p), then Y po, |IfellMYPx = 0o for some M € N. Then we can
choose a sequence (k;) of positive integers with 0 = &y < k1 < k2 < ... such that

S Al MY > foralli € N.
ki 1<k<k;

And we choose zy in X with |jzg| = 1 such that for alli e N,

ST )M >

ki1 <kb<k;
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Put ¥ = (yx), yx = MYPray. Clearly, y € £o(X,p) and

Zlfk(yk)! 2 Z | fe(zi)|MYPe > ¢ for alli e N,
k=1 ki1<k<k;

Hence S |fr(yx)] = oo, which contradicts to (3.12). Hence (fi) € Moo(X',p). The
k=1
proof is now complete. - O

Theorem 3.8. Let p = (pix) be a bounded sequence of positve real numbers. Then
CO(X’p)B = MO(lep)'

Proof. Suppose (fi) € Mo(X',p), then oo |Ifx|[M~1/P% < oo for some M € N.
Let ¢ = (zx) € co(X,p). Then there is a positive integer Ky such that ||zg||P* <
1/M for all k > Ky, hence ||zx|| < M~1/P for all k > Ko. Then we have

St < Y el € Y IAlIM TP < oo,

k=K, k=Kq k=Kjy
It follows that Y po, fr(zx) converges, so that (fi) € co(X,p)P.

On the other hand, assume that (fx) € co(X,p)?, then > po, fe(zk) converges
for all z = (zx) € cp(X,p). For each z = (zx) € co(X,p), choose scalar sequence (tx)

with |tg] = 1 such that fr(tgzk) = |fe(zk)| for all K € N. Since {txzr) € co( X, p), by

our assumption, we have Y 7, fr(tki) converges, so that

Z{fk(ack)( < oo forall z € co(X,p). (3.13)

k=1

Now, suppose that (fr) ¢ Mo(X’,p). Then 3 io, |[fe[lm~1/Px = oc for allm € N.
Choose m1, kL € N such that

Y ifwlim e > 1
K<k,
and choose my > my and kz > kq such that

ST felimy VP > 2,

ky <kSk2
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Proceeding in this way, we can choose my < mg < ..., and 0 = k; < k3 < ... such that

ST Wllmy P >

ki—1<k<k;

Take zj, in X with ||zg]] =1 for all &, k;_1 < k < k; such that

ST fulzw)lmg /P >0 forallie N.
ki1 <k<k;

Put y = (yx), yx = mi_l/p":ck for k;_y < k < k;, then y € co(X, p) and

Sl = > Ifsl)lmy /P >4 forallie N.
k=1

ki1 <k<ki

Hence we have 37~ ; | fx(yx)| = 0o which contradicts to (3.13), therefore (fx) € Mo(X',p).
This completes the proof. ‘ O

Theorem 3.9. Let p = (px) be a bounded sequence of positve real numbers. Then
e(X,p)f = Mo(X',p) Nes [ X7).

Proof.  Since ¢(X,p) = co(X,p) + E, where E = {e(z) : x € X}, it follows by
Proposition 3.1(iii) and Theorem 3.8 that ¢(X,p)® = Mu(X’,p) N EA. It is obvious by
the definition that E# = {(fi) C X' : > re, fe(z) converges for all z € X } = cs[X’].
Hence we have the theorem. d
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MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED
SEQUENCE SPACES

Necessary and sufficient conditions have been established for an infinite matrix
A = (f¥) of continuous linear functionals on a Banach space X to transform the vector-
valued sequence spaces of Maddox £..(X,p), €¢(X,p), co(X,p), and ¢(X,p) into the

scalar-valued sequence space c¢(¢), where p = (pg) and ¢ = (g) are bounded sequences
of positive real numbers.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces
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1. Introduction

The study of matrix transformations of scalar- valued sequence spaces is known
since the turn of the century. In seventies, Maddox!?, Gupta® studied matrix trans-
formations of continuous linear mappings on vector-valued sequence spaces. Das and
Choudhury! gave conditions on the matrix A = (f) of continuous linear mappings
from a normed linear space X into a normed linear space Y under which A maps ¢p(X)
into co(Y), £1(X) into £oo(Y), and £;(X) into £,(Y). Liu and Wu?? gave the matrix
characterizations from vector-valued sequence spaces co(X,p), £(X,p), and £, (X, p)
into scalar-valued sequence spaces co(q) and £o.(q). Suantai®* gave the matrix charac-
terizations from the Nakano vector-valued sequence space £(X, p) into the vector-valued
sequence spaces co(Y, q), c(Y), and £,(Y). In this paper, we continue the study of matrix
transformations of continuous linear mappings on vector-valued sequence spaces.

The main purpose of this paper is to give the matrix characterizations from
co(X,p), c(X,p), £oo(X,p), and £(X,p} into c(q), where co(X,p), c(X,p), {eo(X,p),
and £(X,p) are the vector-valued sequence spaces of Maddox as defined in Section 2.
When X = K, the scalar field of X, the corresponding spaces are written as cp(p), ¢(p),
£ (p), and €(p), respectively. Several papers deal with the problem of characterizing

those matrices that map a scalar-valued sequence space of Maddox into anoher such
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spaces, see [6, 7, 11, 13, 15, 17, 18, 19, 21 ]. Some of these results become particular
cases of our theorems. Also some more interesting results are derived.

Section 2 deals with necessary preliminaries and some known results quoted as
lemmas which are needed to characterize an infinite matrix A = () such that A maps
the vector- valued sequence spaces of Maddox into ¢(g), and we also give some auxiliary

results in Section 3. The main results of the paper is in Section 4.
2 Preliminaries and Lemmas

Let (X, ||-li) be a Banach space and p = (px) a bounded sequence of positive real
numbers. Let N be the set of all natural numbers, we write z = (z) with zx in X for all
ke N. Let W(X) and ®(X) denote the space of all sequences and the space of all finite
sequences in X, respectively. When X = K, the scalar field of X, the corresponding
spaces are written as w and ¢, respectively. An X —valued sequence space is a linear
subspace of W{X). The sequence spaces of Maddox are defined as

co(X,p) = {z = (zx) : limg-y00 [|24||P* = 0},

e(X,p) = {z = (zx) : iMoo ||zk — a|[P* = 0 for some ¢ € X},

boo(X,p) = {z = (i) : supy ||z [P+ < o0},

UX,p) = {z = (zx) : 1352, llos]lP* < oo},

When X = K, the scalar field of X, the corresponding spaces are written as
co(p), ¢(p), €oo(p), and £(p), respectively. All of these spaces are known as the se-
quence spaces of Maddox. These spaces were introduced and studied by Simons!®
and Maddox®®. The space #(p) was first defined by Nakano!* and it is known as the
Nakano sequence space. Also, we need to define the following sequence space :

Mo(X,p) = {z = (zk) : Xpey lizk|ln~1/P* < 00 for some n € N }.

When X = K, the‘scalar field of X, the corresponding space is written as My(p).
This space was first introduced by Maddox'®. Grosse-Erdmann? has investigated the
structure of the spaces ¢o(p), c(p), £{p), and £, (p) and he also gave the matrix charac-
terizations between scalar-valued sequence spaces'ojf Maddox in [3]. Let E be an X-
valued sequence space. For z € E and k € N we write that z; stand for the kth term
of z and for x € X and k € N, let e®)(z) be the sequence (0,0,0,...,0,2,0,...) with =

in the kth position and let e(z) be the sequence (z,z,,...), and we denote by e the the
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sequence (1,1,1,...). An X —valued sequence space F is said to be normal if (z;) € E
and {yx) € W(X) with ||yk|| < ||zk|| for all k € N implies that (yx) € E. For a fixed

scalar sequence u = {uy) the sequence space E, is defined as
E, = {z = (zx) € W(X) : (upzi) € E}.
The a—, f— and y— duals of a scalar-valued sequence space F' are defined as
F¢={z € w: (zxyx) € X¢ for every y € F}

for ( = a, B, v and X4 = 41, Xg = cs, and X, = bs, where £, cs and bs are
defined as

6 ={r={(zx) Ew: Y 4o |zk| <00},
cs = {& = (2x) € W: Y gy Tk CONVETZES },

L

bs = {& = (zx) € w:supp| D p_; Tk| < 00 }.
In the same manner, for an X —-valued sequence space F, the a—, f8— and v—

duals of E are defined as
E¢ = {(fx) C X' : (fulzr)) € X for every z = (z3) € E}

for ( = o, 8, v, where X, = £;, Xg = cs and X, = bs.

It is obvious from the definition that E* C EBC EYanditis easy to see that if
E is normal, then E* = Ef = E".

Let A = (f7) with f! in X', the topological dual of X. Suppose that F is an
X-valued sequence space and F a scalar-valued sequence space. Then A is said to map
E into F, written by A : E — F if, for each z = (zz) € FE, A.(z) = Y pey 2 (zk)
converges for each n € N and the sequence Ar = (A,(z)) € F. We denote by (E, F)
the class of all infinite matrices mapping E into F. If u = (ux) and v = (v) are scalar

sequences, let
u(E’ F)v == {A = (fl?) : (unka;l)n,k € (EaF)}

If up #0 for all k € N, we put w=1 = (1/ug). Suppose the X-valued sequence space E
is endowed with some linear topology 7. Then F is called a K-space if, for each k € N
the kth coordinate mapping px : E — X, defined by pr{x) = zx, is continuous on E. A
K-space that is a Fréchet(Banach) space is called an FK — (BK —) space.
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The spaces ¢p(p) and c(p) are FK-spaces. In ¢o{ X, p), we consider the function
g(z) = sup ||zk||P*/M, where M = max {l,supx px}, as a paranorm on co{X,p),
and it is I?nown that ¢o(X, p) is an FK-space under the paranorm g defined as above.
In £(X,p), we consider it as a paranormed sequence space with the paranorm given

by |[(zx)ll = Chey |la:k||P’°)1/M. It is known that £(X,p) is an FK-space under the
paranorm defined as above.

Now let us quote some known results as the following.

Lemma 2.1'° If p = (px) is a bounded sequence of positive real numbers with py > 1
forall k € N, then

o0
E(p)ﬂ ={recw: Z |zi|[* M™% < oo for some M € N}
k=1

where 1/pr + 1/t =1 forallk € N.

Lemma 2.2'% If p = (px) 15 a bounded sequence of positive real numbers with p;, < 1
for all k € N, then £(p)® = £ (p).

Lemma 2.3% If p= (ps) is a bounded sequence of positive real numbers , then

goo(P)ﬁ ={zecw: Z|$k|n1/p“ < oo forall ne N }.
k=1

Lemma 2.41° [fp = (pg) is a bounded sequence of positive real numbers, then co(p)® =
Mo(p).

Lemma 2.5%2 Letp = (pi) be a bounded sequence of positive real numbers and A = (f7*)
an infinite matriz. Then A: co(X,p) — co if and only if
(1)fgui;OasnﬁooforeachkeNand '
; ~oo N[y~ 1/Pk —
(2) n}l_l}loosuPn 2okt L2 llm 0.
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Lemma 2.6%2 Let p = (py) be a bounded sequence of positive real numbers and A = (fI)
an nfinite matriz. Then A : £(X,p) — ¢ if and only if

(1) f;;"‘i;O as n — oo for each k € N and

(2) for each M € N, 37, [ FPIIMYP5 — 0 as k — oo uniformly onn € N.

Lemma 2.722 Let p = (pi) be a bounded sequence of positive real numbers with py > 1
and 1/py + 1/tx = 1 for all k € N and let A = (f}) be an infinite matriz. Then
A:U(X,p) = co if and only if

(1) f,;“f—;O asn — oo for each k € N and

(2) > eei If2%m=% — 0 asm — co uniformly onn € N.

Lemma 2.8%2 Letp = (px) be a bounded sequence of positive real numbers with pr < 1
forallk € N and let A = (f7) be an infinite matriz. Then A : ¢{X,p) — co if and only
if

(1) f,:“i;o asn — oo for each k € N and

(2) sup IFe1P* < oo,

3. Some Auxiliary Results

 Suppose that F and F are sequence spaces and that we want to characterize the
matrix space (E, F). If F and/or F can be derived from simpler sequence spaces in
some fashion, then, in many cases, the problem reduces to the characterization of the

corresponding simpler matrix spaces. We begin with giving various useful results in this

direction.

Proposition 3.1. Let E and E, (n € N) be X -valued sequence spaces, and F and
Fo(n € N) scalar-valued sequence spaces, and let u and v be scalar sequences with
ur # 0,0 0 for all k € N. Then
() (UpL1En, F) = N0y (Ey, F),
(w) (E,M31,1Fn) = N3, (B, Fr),
(i) (Ev+ Ep, F) = (E1,F) N (B, F),
() (Bu, Fy) = o(E, Fly=1.
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Proof. All of them are obtained directly from the definitions.

Propostion 3.2. Let p = (p) be a bounded sequences of positive real numbers . Then
(1) o(X,p) = co(X,p) + {e(z) : 2 € X},
() Mo(X,p) = UR, 80X ) s/,
(i1} £oo(X,p) = Uﬁo=1£00(X)(n—1/Pk)'

Proof.' Assertions (i) and (ii) are immediately obtained from the definitions. To show
(ii), let = € £oo(X,p), then there is some n € N with ||zgx||[P* < n for all k € N.
Hence ||zx||n~1/P% <1 for all k € N, so that z € oo (X) (n-1/pxy- On the other hand, if
T € Upl1€oo(X ) (s-1/5x), then there are some n € N and M > 1 such that |zk||n 2P <
M for every k € N. Then we have |zg||P* < nMPx < nM™* for all k € N, where
o = supg px. Hence x € £, (X, p). O

The next proposition give a relationship between the S— dual of vector-valued

and scalar-valued sequence spaces.

Proposition 3.3 Let X be a Banach space and F a normal scalar-valued sequence
space and define F(X) = {(xx) € W(X) : (||zxl|]) € F }. then for (fx) C X', the
topological dual of X, (fi) € F(X)? if and only if (||fx|) € F~.

Proof. If (|| ficl]) € £, then for x = (zx) € F(X) wehave 33,7, |fu(za)| < 3257, | fullllzell <
00, so that T € F(X)A.

Conversely, suppose that (fr) € F(X)? and a = (ax) € F. Since F is nor-

mal, (jagx|}) € F. For each k¥ € N, we can choose z;; € X such that ||jzg|| = 1
and |fe(zk)| > @.' Let y = (agzk), then y € F(X). Choose a sequence (tx)

of scalars such that |tx| < 1 and fg(txarzr) = |fe(ze)liax| for all £ € N. Since F
is normal, (txyx) € F(X), so we obtain that D> .o, f(tkyx) converges. This implies
S i elllas] < 255 | fulor) llaxl < co. Tt follows that (|| fxll) € F.

By using Proposition 3.3, the following results are obtained immediately from

Lemma 2.1 - 2.4, respectively.
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Proposition 3.4 Ifp = (px) ts a bounded sequence of positive real numbers with py > 1
for all k € N, then

UX,p)P = {(fi) C X' Y fel* M~ < oo for some M € N }
k=1

where 1/pp + 1/ty =1 forallk € N.

Proposition 3.5 Ifp = (px) ts a bounded sequence of positive real numbers with p;, < 1
for all k € N, then £(X,p)? = £o.(X', D).

Proposition 3.6 Ifp = (pi) is a bounded sequence of positive real numbers, then

(X, p)P = {(fr) c X': Z | Fullnt/P* < oo for ;lln eN}

k=1

Proposition 3.7 If p = (px) is a bounded sequence of positive real numbers, then
co(X, p)f = Mo(X',p).

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let ¢ = (gx) be a bounded sequence of positive real numbers and let E

be a normal X — valued sequence space which is an FK-space containing ®(X). Then

(E,c(g)) = (E,co(q)) @ (E,<e>).

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X -valued sequence space which is an FK-space containing
®(X). Then for each k € N, the mapping Ty, : X — E, defined by Trx = ef(x), is

continuous.
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Proof. For each k € N, we have that V = {e*(z) : x € X} is a closed subspace of
E,| so it is an FK-space. Since F is a K-space, the coordinate mapping px : V — X is
continuous and bijective. It follows from the open mapping theorem that pg is open,

hence, pgl : X — V is continuous. It follows that Ty is continuous because Ty = p,:l.l:]

Lemma 4.2. If E and F are scalar-valued sequence spaces such that E is normal
containing ¢, F is an FK-space and there is a subsequence (ny) with x,, — 0 as
k—ocforallz = (z,) € F, then (E, F® <e>)=(E, F) ® (B, <e>).

Proof. See [3, Proposition 3.1(vi}) |. aJ

Proof of Theorem 4.1 Since ¢(q) = co{g) & < e >, it is clear that (E, co(q)) + (E,<
e>) C (E.co(g) @ < e>) = (E,c(q)). Moreover, if A € (E,co(q)) () (E,< e >),
then A € (E, colgq) [) < e >), so that 4 € (F,0), which implies that A = 0 because E
contain ®(X). Hence (F,col(q)) + (E, < e >} is a direct sum. Now, we will show that
(E,c(q)) € (E,co(q)) & (E,<e>). Let A= (f) € (£,c(q)) = (F,colg) ® < e >).
For £ € X and k € N, we have (f7(2))32, = AeF(z) € co(q) ® < e >, so that there
exist unique (b2{z))S2; € colq) and (cF(x))52; € <e> with .

(fi (z))ntr = (R (@))nty + (e (@))nia- (4.1)
For each n,k € N, let g7 and A} be the functionals on X defined by
gr(z) =bp(z) and hR(z)=ci(x) for allz € X.

Clearly, g7 and h} are linear, and by (4.1)

*

v =gr+hy forallnkeN. (4.2)

Note that co(g) & < e > is an FK-space in its direct sum topology. By Zeller's theorem,
A E — cp(q) & < e > is continuous. For each £ € N, let T}, : X — E be defined by
Ty(z) = e*(x). By Lemma 4.1, we have that 7} is"continuous for all k € N. Since the
projection P of ¢g(g) & < e > onto cp{g) and the projection Py of co(q) & < e > onto
< e > are continuous and gf =ppoProAcTy; and A =pp,oPro ATy for all n, k €

N, we obtain that g and A} are continuous, so gp, A} € X' foralln,k € N. Let
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B = (gp) and C = (h}). By (4.1) and (4.2), we have A = B+ C, B = (g}) €
(®(X),co(q)) and C = (h}) € (®(X),< e >). We will show that B € (E,co(q))
and C € (E,< e >). To do this, let £ = (zx) € F. Then for a = (o) € £o, we
have ||agzk| = |akl||ze|| < ||Mzg||, where M = supy |ag|. Then the normality of E
implies that (axzy) € E. Hence (f2(zk))nk € (boo, co(g) ® < € >), moreover, we have
(G2 (@) € (B, co@), (B @Kk € (@, < >), and (FP@R)) o = (978N +
(hR{zx)) k- Since £, is normal containing ¢ and ¢o{g) C cp, it follows from Lemma
4.2 that (g5 (), € (Yoo, co(q)) and (h%(zw)), , € (oo, < e>). This implies that
Bz € cy(q) and Cz € < e >, so we have B € (E,co(¢)) and C € (FE,< e >), hence
A€ (E, cp{q)) & (E, < e>). This completes the proof. O

Theorem 4.2. Let g = (gi) be bounded sequences of positive real numbers and A = ()
an infinite matriz. Then A : £o(X) — c(q) if and only if there is a sequence (fi) with
fr € X' for all k € N such that

(1) 2Ll < oo,

(2) m¥Ma (f2 — fr) 5 0 asn — oo for every k,m € N and

(3) for eachm e N, 37, m )| f7 —~ fill = 0 ask — oo uniformly onn € N.

Proof. Necessity. Let A € (£o{X),c(q)). It follows from Theorem 4.1 that A = B+ C,
where B € (£50(X), co(q)) and C € (£{X), < e >). Then there is a sequence ( fx) with
fr € X' for all k € N such that C = (fi)nk and B = (fff — fi), x € (feo(X), co(q)),
which implies that (fi) € £oo{X )P, so (1) is obtained by Proposition 3.6. Since co(g) =
M5e=1C0(m1/ax) (by [2, Theorem 0 (i)]), we have by Proposition 3.1 (ii) and (iv) that for
each m € N, (mY ¢ (f2 — fi)nx) : £oo(X) —+ co. Hence, (2) and (3) are obtained by
Lemma 2.6.

Sufficiency. Suppose that there is a sequence (fg) with fr € X' forall k € N
such that conditions (1), (2) and (3) hold. Let B = (f — fe)nk and C = (fi)n k. It
is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and
Proposition 3.1(ii) and (iv) that B € (£5(X),c0(q)). By Proposition 3.6 , condition
(1) implies that 3 g, fx(zx) converges for all £ = (xx) € £o(X), which implies that
C € ({o(X), < e >). Hence, we obtain by Theorem 4.1 that A € (boc(X),¢(q)). This
completes the proof. £l
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Theorem 4.3. Let p = (px) and g = (gx) be bounded sequences of positive real numbers
and A = (f7) an infinite matriz. Then A : £o(X,p) — c(q) if and only if there is a
sequence (fr) with fr, € X' for allk € N such that (1), (2) and (3) are satisfied, where

(1) for each m € N, 352, || fxl|m*/Pr < oo,

(2) rHan(fP} — fr) Y 0 asn— oo for every k,r € N and

(3) for each m,r € N, ri/an D isk m1/1’1||f}‘ —fill = 0as k& — oo uniformly on

neN.
Moreover, (3) is equivalent to (&), where
(3') for each m € N, limg_,, sup, (Zj>k ml/ P I fj“)qn Yy

Proof. Necessity. Suppose that A : £,.(X,p) — ¢(g). By Theorem 4.1, A = B+ C,
where B € (£oo(X,p),co(q)) and C € (£xo(X,p), < e >). Then there is a sequence (fx)
with fi € X’ for all k € N such that C = (fx)}nk and B = (ff — fr) € (loo(X,p), co(q)).
Since C = (fi)nk : £oo(X,p) =< e >, it implies by Proposition 3.6 that (1) holds.
Since co{g) = N7R_1C0(m1/ax), we have by Proposition 3.1 (ii) that for each r € N,
(ri/en(fp — fk))n,k : £oo(X,p) — co. Hence , (2) and (3) holds by an application of
Lemma 2.6.

Sufficiency. Suppose that there is a sequence (fi) with fr € X’ for all k € N
such that condition (1), (2) and (3) hold. Let B = (f7 — fi)nk and C = (fe)n k- It
is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and
Proposition 3.1(ii) and (iv) that B € (£,,(X,p),co{q)). By Propesition 3.6 , condition
(1) implies that > po., fx(zx) converges for all z = (zx) € £o0(X, p), which implies that
C € ({,(X,p), < e >). Hence, we obtain by Theorem 4.1 that A € (£(X.p},c(q)).

Now we shall show that (3) and (3') are equivalent. Suppose (3) holds and let
g > 0. Choose r € N such that 1/r < e. By (3), there exists kg € NV such that

r1/an S mlUPs || 7 — £l < 1for all k > ko and alln € N,
i>k

which implies that

2n
sup (Zml/pjﬂf?—fjn) <1/r <e fork > ko,

>k

hence, (3') holds.
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Conversely, assume that (3') holds. Let m,r € N and 0 < £ < 1. Then there
exists kg € N such that

qn
sup (Z mllpj”f;?’ - fj||) <ef/r forallk > kg

>k

where H = suppgn. This implies that

| ‘rlflq"z:ml/f"i||f;-1 — fill < e/ <¢ forallk>koandall n€ N
ik

hence, (3) holds. O

Theorem 4.4. Let p = (px) and q = (qx) be bounded sequencey of positive real numbers
and A = (f) an infinite matriz. Then A : co(X,p) — clq) if and only if there is a
sequence (fi) with f, € X' for allk € N such that (1), (2), and (3) are satisfied, where

(1) S |ifellM~YPe < oo for some M € N,

(2) mv_ln'(f,’c" — fr) Y0 asn — oo for every m,k € N and

(3) for each m € N, sup,, (m¥% 2% ||f2 — fullr~/P*} = 0 asr — oo.

Moreover, (3) is equivalent to (3') where
(3') limroyeo sup, (3252, IF8 — Jellr=/74)™ = 0.

Proof. Necessity. Suppose that A : ¢o(X,p) — c(q). By Theorem 4.1, we have
A = B + C, where B € {co{X,p),co(¢)) and C € (co(X,p), < e >). It follows that
there is a sequence (fr) C X' such that C = (fr)nx and B = (f — fi)n k- Since
co{g) = NP2y Co(pi/ar, it follows from Proposition 3.1 (ii) and (iv) that for each m € N,
(MY (2 — fi))nk € (co(X, D), co), hence, conditions (2) and (3) hold by using the re-
sult from Lemma 2.5. Since C' = (fi)n i € (co(X,p), < € >), we have that 3_- , fe(zk)
converges for all z = z € co(X,p), so that (fi) € co(X,p)?, hence, by Proposition 3.7,
we obtain that there exists M € N such that 3 po, || fellM~/P¢ < oco. Hence, (1) is
obtained. .

Sufficiency. Assume that there is a sequencé ( fx) C X' such that conditions
(1),(2) and (3) hold. Let B = (ff — fx)nk and C = {fx)nx. Then A= B+ C. By
conditions (2)and (3), we obtain from Proposition 3.1(ii) and (iv) and Lemma 2.5 that

B € (co(X,p),colq)). The condition (1) implies by Proposition 3.7 that Y, fi(zk)
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converges for all z = (xy) € co{X, p), so that C € (co(X,p), < e >). Hence, by Theorem
4.1, we obtain that A € (eq(X,p),¢(q))-
Now, we shall show that conditions (3) and (3') are equivalent. To do this,

suppose that (3) holds and let € > 0. Choose m € N, 1/m < . From (3), there is
rp € N such that '

o0 .
sup i/ 3£ = fullr™HP < Lfor allr > ro.
" k=1

This implies that sup,, (Ze, 1/ — fellr~2/7)* < 1/m < ¢ for all r > ro. Hence,
(3"} holds.
Conversely, suppose that (3') holds. Let m € N and 0 < ¢ < 1. Then there

exists ro € NV such that sup, (350, [1ff — fellr~V/?)* < e /m for all r > ry, where
H = sup,q,. Hence, we have

mt/n Z If2 = fllr~ P < ef/an < forall r>rgand ne N,
k=1
so that (3) holds. This completes the proof. |

Theorem 4.5. Let p = (px) and ¢ = (qx) be bounded sequences of positive real numbers
and A = (f}) an infinite matriz. Then A : ¢(X,p) — c(q) if and only if there is a
sequence ( fi) with fr € X' for all k € N such that (1), (2), (3) and (4) are satisfied,
where

(1) S22 1 fullM~YP < oo for some M € N,

(2) for each m,k € N, ml/q"(f};‘ — fx) Y 0 as n— 00,

(3) for eachm € N, sup, m/% S°0° |fr — fillr~ P« — 0asr — oo and

(4) ooz, fR (), €clq) forallz € X.
Moreover, (3) is equivalent to (3 ) where

(3') lim; 0 sup, (Z?:l e - kaT_lfpk)qz = 0.

Proof. Since ¢(X,p) = co(X,p) + {e(z) : z € X} (Proposition 3.2 (i} ), it follows
from Proposition 3.1(iii) that A € (¢(X,p),c(q)) if and only if A € (co(X,p),c(q)) and
A€ ({e(z): z € X},e(q)). By Theorem 4.4, we have A € (co(X,p), c(q)) if and only if
conditions (1)-(3) hold and it is clear that A € ({e(z) : z € X},¢(q)) if and only if (4)
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holds. We have by Theorem 4.4 that (3) and (3') are equivalent. Hence, the theorem is
proved. U

Wu and Liu {(Lemma 2.7) have given a characterization of an infinite matrix A
such that A € (£(X,p),co) when pi > 1 for all k € N. By applications of Proposition
3.1(ii) and (iv), Proposition 3.4, and Theorem 4.1, and using the fact that co(g) =

Mr=1C0(m1/ax)s WE obtain the following result.

Theorem 4.6. Let p = (px) and ¢ = (qi) be bounded sequences of positive real numbers
with pp > 1 for all k € N and 1/px + 1/tx =1 for all k € N, and let A = (f) be
an infinite matriz. Then A: (X, p) — c(q) if and only if there is a sequence (fi) with
fr € X' for all k € N such that '

(1) Sovi Ifell* M~% < oo for some M € N,

(2) mM (P — fi) “S 0asn — oo for all m,k € N and

(3) for each m € N, o, mi=/a||fi — fi|*r~% — 0 as r — oo uniformly on

neN.

By using Lemina 2.8, Proposition 3.1(ii) and (iv), Proposition 3.5 and Theorem

4.1, we also obtain the following result.

Theorem 4.7. Let p = (px} and g = (¢gx) be bounded sequences of positive real numbers
with pr <1 for all k € N and A = (f}) an infinite matriz. Then A: £(X,p) — c(q) if
and only if there is a sequence (fi) with fr € X' for all k € N such that

(1) supy || fell™ < oo,

(2) mYM& (fP — fi) = 0 as n — oo for all m,k € N and

(3) Sll}: mPe/aa || fR — fil|Px < oo for allm € N.

n,

When pr = 1 for all K € N, we obtain the following.

Corollary 4.8. Let ¢ = (qx) be a bounded sequence of positive real numbers and let
A = (fF) be an infinite matriz. Then A : £1{X) — c(q) if and only if there is a
sequence {fi) with fi € X' for all k € N such that
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(1) SUpg ”fk” < 00,
(2) mMa (P — f) = 0as n— oo for allm,k € N and
(8) sup mY/ || f — fill < 0o for everym € N.

n.k

Theorem 4.9. Let p = (px) be a bounded sequence of positive real numbers and A =
(f2) an infinite matriz. Then A : Mo(X,p) — c(q) if and only if there is a sequence
(fr) bf bounded linear functionals on X such that
(1) sup, m!/Px||fr|| < oo for allm € N,
(2) jor each m,r € N, rV/taml/Pe(f1 — f1) “ 0asn— oo forallk€ N and
(3) for each m,r € N, sup ri/anm/ee|l 2 — fi|| < oo .
n,
Proof. It follows from Theorem 4.1 that A € (My(X,p),co(g)® < e >) if and only if
there is a sequence (fi) of bounded linear functionals on X such that A = B + (fx)nx
where B : My(X,p) — co(q) and (fe)nk : Mo(X,p) =< e >. Since B = (f!— fi)nx and
Mo(X,p) = U1 £1(X ) (mm-1/5) (by Proposition 3.2 (ii)), we have by Proposition 3.1 (i)
and (iv) that B : Mo(X,p) — colq) if and only if (m!/P=(fp — fk))n,k 2 0(X) = colq)
for all m € N. Since co(q) = NP2 Cor1/ay, by Proposition 3.1 (ii) and (iv), we have
(mMee(fp — fk))n,k : £4(X) — co(q) if and only if (r/eml/Px(fp — fk))n,k (X)) —
¢o for all 7 € N. By Lemma 2.8 , we have
(rt/anml/pe(fp — fk))n,k : 43(X) — ¢ if and only if
(a) rVam/Pe(fr — f) Y5 0asn— coforallke€ N and
(b) sup rilanmt/ee || 8 — fill < oo .
n,

By Proposition 3.1 (i) and (iv), we have (fi)nr : Mo(X,p) =< e > if and only if
(mYPx f )k £(X) < e > for all m € N. By Proposition 3.5, we obtain that
(mPr fi )k £1(X) =< e > if and only if sup, m/P+||fi|| < co . Hence, the theorem
is proved. " 0.
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e*}(z) be the sequence (0, 0,0, ...,0,2,0,...) with z in the k** position. For a fixed scalar

sequence u = (uy) the sequence space E,, is defined by
E, = {$ = (.’L‘k) € W(X) : (ukxk) € E}

Suppose that the X-valued sequence space F is endowed with some linear topology

7. Then E is called a K-space if for each n € .N the n** coordinate mapping p, :

E — X, defined by p,(z) = z,, is continuous on E. If, in addition, (F,7) is an

Fre'chet(Banach) space, then FE is called an FK — (BK—) space . Now, suppose that

E contains ®(X). Then F is said to have property AB if the set {ki ef(zy) :mn € N}
=1

is bounded in F for every x = (z) € E. It is said to have property AK if i e*(zr) —

k=1
z € E as n — oo for every z = (z) € E. It has property AD if &(X) is dense in E.

If pp > 1 for all & € N, the space £(p) is an BK-space with AK under the
Luxemburg norn defined by

o0
. Tr
= 0: —Pe 1Y
ol = infle > 0: 30 < 1)

For more detail about the space £(p) see [3]. The space co(p) is an FK-space with AK,
¢(p) is an FK-space and £,(p) is a complete LBK-space with AB (see [3]). In each of
the space £oo(X,p) and co(X,p) we consider the function g(x) = sup ||zx||P+/*, where
M = mazx {1, sup px}, as a paranorm on £, (X, p) and ¢o(X, p) a;cld it is known that
¢p(X,p) is an FI’iI-space with AK under the paranorm g defined as above and £..(X, p)
is a complete LBK-space with AB.

Let A = (f7) with f? in X', the topological dual of X. Suppose that E is a
space of X-valued sequemnces and F a space of scalar-valued sequences. Then A is said
to map E tnto F, written A : B — F if for each z = (zx) € E, A,(z) = if{;(xk)
converges for each n € N and the sequence Az = (A,(z)) € F. We denote Ebzyl (E,F)

the set of all infinite matrices mapping F into F. If u = (ug) and v = (vg) are scalar

sequences, let
w(E, F)y = {A=(f) : (noxfink € (B, F)}.

If ug # 0 for all £ € N,we write u™! = (ﬁ)
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Let E be an X-valued sequence space. The S— daul of E is defined to be

Ef = {(fr)y c X': Zf(:ck) converges for all z = (z;) € E.}
k=1

By the defintion, we see that if A = (f) maps the sequence space E into a scalar
sequence space, then each row of A belongs to Ef, ie., (f2)2, € EP , so thisis a
necessary condition for an infinite matrix A mapping from one sequence space into the
other. We shall give characterizations of the S— dual of some vector-valued sequence

spaces in Section 3.

3. The S— Dual of some Vector-Valued Sequence Spaces

’

We start with characterizations of the f— dual of the space co(X, p)

Proposition 3.1 Let p = (px) be a bounded sequences of positive real numbers. Then

co(X,p)? = {(f) c X' Z”fk”M—i < oc for some M € N.}
k=1

o0

Proof. Suppose that > ka“M—ﬁ < oo for some M € N. Let z = (zx) € (X, p).
k=1

Then there is a positive integer Ky such that ||zx||P* < —;7 for all k > K, hence

|zl < M~ for all k > K.

Then we have

St < X elllizell < 3 ellM ™7 < oo,

k=K, k=K, k=Kg

o0
It follows that 3 fx{(xx) converges, so (fx) € co(X,p)?.
k=1
o0
On the other hand, assume that (f;) € co(X,p)?. Then ¥ fi(zi) converges for
k=1

all z = (zx) € co(X,p). For each z = (z3) € ¢o(X, p), choose scalar sequence (ty) with
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|tx] = 1 such that fi(tezk) = |fr(zk)] for all & € N. Since (fxzr) € co(X,p), by our

assumption, we have Y fi(txzi) converges, so that
k=1

> Ifel@e)] < oo for all 7 € co(X, p). o (3.1)
k=1

o .
Now, suppose that > ||fk||m"i = oo for all m € N. Choose m, k; € N such that
k=1

> Hfellmy ** > 1

k<k;

and choose mqy > iy and ko > ky such that

> lifellmy ™ > 2.

ki <k<k:

Proceeding in this way, we can choose m; < mg < ..., and 0 = k1 < kg < ... such that

.
Z Ufellm; ™ > .

ki_1<k<k;

Take z in X with ||zx!| = 1 for all k, k;_; < k < k; such that

.
> |fxlzk)lm; ™ >iforallie N.
ki1<k<k;

1

Put y = (ve), (yx) = m;ﬁmk for k;_1 < k < k;, then y € ¢o(X, p) and we have

oo 1
> 1 felye) > Z [fe(zk)m, ™ >iforallic N.
k=1 ki1 <k<k,

*

Hence we have ) |fe(yx)| = co which contradicts with (3.1). Hence (fx) € {(gx) C

k=1

OO
X'y ||gk||M_ﬁ < oo for some M € N.}. Thus the proposition is proved. J
k=1

Proposition 3.2 Let p = (px) be a bounded sequences of positive real numbers. Then

loo(X,0)? = {(f) € X' : S|l felm? < oo for allm € N.}
k=1



178

o0
Proof. If 3 ||fk||mﬁ < oo for allm € N, then we have that for each z = (z;) €
k=1

foo(X,p), there is mg € N such that ||zx]| < mZ* for all k € N, hence Y |fr(zx)| <
k=1

OO o0 L [&.4]
SN lfelllzell < 3 1 fellmy* < oo, which implies that Y fi(zx) converges, so (fx) €
k=1 k=1 k=1 :
oo (X, p)P.
Conversely, assume that (fi) € £oo(X,p)?. Then Y fu(zx) converges for all
k=1
z = (z) € Loo{X,p). We first note that, by using the same proof as in Proposition 3.3,

we have

> "I frlzi)] < oo for all 7 = (zx) € £oo(X, p)- (3.2)
k=1

o0 1 ’
Now, suppose that > ||fx||MPx = oo for some M € N. Then we can choose a sequence

k=1
(k;) of positive integers with 0 = kg < k3 < k2 < ... such that

S fellM# >iforallie N.
ki—l(kSk,‘

Taking z in X with ||zx|| = 1 such that for all ¢ € IV,

ST Ilar)IM >

ki1 <k<k;

Put y = (yx) = (Mﬁxk)zil. Clearly, y € £o(X,p) and

o o0

R .
> 1)l = > | fs(zk)|M? >iforallie N.
k=1 ki1 <k<k;

(ool
Hence ) |fi(yx)| = oo, which contradicts with (3.2). Thus (fx) € {(gx) C X' :
k=1

[=s] OO L

S [lgrllm® < oo for allm € N.}. Hence £oo(X,p)f = {{gx) C X' : 3 |lgrllm® <
k=1 k=1

oo for all m € N.}. |

Proposition 3.3 Let p = (px) be a bounded sequences of positive real numbers. Then

E(X,p)ﬁ ={(fr) C X' Z“fk“t"M—{t"_l) < oo for some M € N}
k=1
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1 1 _
wherep—k—l-a—lforallkeN.

(v

Proof. Suppose that Y || fx||t* M~ ¢=1) < oo for some M € N.
k=1

Then we have that for each z = (z;) € 4(X,p),

o0 oo 1 1
D Ifel@e)l <Y I fellM 77 M |
k=1 k=1

oo

<3 (Wl + Mol

k=1

= ankutkM (te-1) +MZHmknPk <0
k=1

g

00
which implies that E fr(zx) converges, so (fi) € £(X,p)".

On the other hand, assume that (fi) € £(X,p)?. Then Z fr(zy) converges for

all x = (xx) € £(X,p). We first note that, by using the same proof as in Proposition
3.1, we have

Z|fk(:ck)| < oo for all z = (zy) € (X, p). .(3.3)
k=1

We want to show that there exists M € NN such that
0
D el M < 0o
k=1

If it is not true, then

Z”fk”t"m_(t""l) = o0, for all m € N. (3.4)
g=1

And (3.4) implies that for each kg € N.
Z i Fellt*m =~ = oo, for all m € N. (3.5}
k>ko
By (3.4), let m; = 1, then there is a k; € N such that
S Illtemy D > 1,

k<k,
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By (3.5), we can choose my > m; and mg > 2% and ky > k; such that

D Melfmy 70 > 1. (3.6)
k1 <k<ks
By continueing in this way, we obtain sequences (k;) and (m;) of positive integers with

l=ko<ki<k:<.. m1<mz<...,m,‘>2i and

Y fellfemy D s

ki—1<k<k;

Choose zj in X with ||zg|| = 1 such that for alli € N,

S ala)|Emy Y > 1 for all i € N.
ki1<k<k; ’

Leta; = 3 |fe(ze)tem; 7Y Puty = (we), wi = a; 'm] Y| fi(mp) |t~ Lzy for all k,
ki1 <k<k;

k < k;. For each 7 € N, we have

1 13

S dwl = Y|

ki_1<k<k; ki_1<k<k;

= Y @ | flw) |
ki 1<k<k;
el el —(tp—1
= Z o] 'mtm, (e )Ifk(xk)\tk
kg_1<k$ki

1,..-1
m, a4

a_—lm._(tk—l) l.fk(xk) |tk_1$k ”Pk

= a,i_

_ -1

=m;
1

< E.

So we have that
[» a} o0 1
Z”yk”pk < Zg < 00-
k=1 i=1

Hence,

y = (vx) € £(X,p). (3.7)



ON MATRIX TRANSFORMATIONS OF VECTOR-VALUED
SEQUENCE SPACES OF MADDOX

Abstract. In this paper, characterizations of infinite matrices mapping the vector-

valued sequence spaces of Maddox into Musielak-Orlicz sequence space are given.

1. Introduction. Let (X,||.||) be a real Banach space and p = (px) a bounded
sequence of positive real numbers. Let N be the set of all natural numbers, we write z =
(zx) with g in X for all k € N. The X-valued sequence spaces co(X, p), c( X, p), Loo(X, D),
and £(X,p) are defined by

C{}(Xap) = {.T = (Ek) : lim “.’,Ek”pk — 0},
k—oo
c(X,p) = {sc = (zx) klim |zx — a||”* = 0 for some a € X} ,
—00

baa(X,p) = {2 = (20) s sup el < oo} and
k

¢X,p) = {m = (@) Y Nzl < oo} .
k=1

When X = K, the scalar field of X, the corresponding spaces are written as ¢y (p), ¢{p), £(p),
and oo (p),
respectively. The first three spaces are known as the sequence spaces of Maddox. These
spaces were introduced and studied by Simons[9] and Maddox[5, 6]. The space €(p) was
first defined by Nakano|8] and is known as the Nakano sequence space. Grosse-Erdmann
[3] investigated the structure of the spaces co(p), c(p), £(p) and £, (p)-
A function f : R — [0,00) is called an Orlicz function if it has the following

properties:

(1) f is even, continuous and convex,

(2) flz)=04==2z=0,

/(=) =0 and lim m =

(3) Lim= = Jim =
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Let M = (M,) be a sequence of Orlicz functions, for a given real sequence
z = (z,) define

om(z) = Z M (zn) .

Let ¢y = {2 = (zn) : oMm(Ax) < 00 for some A > 0.} and for z = (z,) € &um,
define the Luxemburg norm of =z by

x

llzll = inf{rA>0:em(3) < 1.}

The sequence space (£, ||-||) was defined by Musielak [7] and it is called the
Musielak-Orlicz sequence space with the Luxemburg norm. If M, = M, for all
n € N, the space £;r is known as the Orlicz sequence space. For more details about the
Orlicz sequence space and Musielak-Orlicz sequence space see il] and (7).

In [4], Grosse-Erdmann gave characterizations of infinite matrices mapping be-
tween the scalar sequence spaces of Maddox. Wu [12] gave characterizations of matrix
transformations from the space £(X,p), co(X,p) and £ (X, p) into the space cy(g) and
€5(g). These results generalized some of those in [4]. In [11], Suantai gave character-
izations of infinite matrices of bounded linear functuionals on X mapping the Nakano
sequence space £(X,p) into £.(¢) and £ (¢) and Mo(X,p) into £ (g). Choudhur [1]
gave necessary and sufficient conditions for an infinite matrix of continuous linear oper-
ators which maps the vector-valued sequence space co(X) into co(Y'), £1(X) into £ (Y)
and £;(X) into £,(Y) where Y is a Banach space. Suantai [10] gave characterizations
of infinte matrices of bounded linear operators mapping from the Nakano vector-valued
sequence space ¢(X,p) into any BK-space. In this paper, we use some technics in [10]
and another new technics to give the matrix characterizations from the sequence spaces

of Maddox £o. (X, p), £(X,p) and co(X, p) into the Musielak-Orlicz sequence space £y..

2. Notation and Definitions. Let (X,||.||) be a Banach space. The space
of all sequences in X is denoted by W(X) and ®(X) denotes the space of all finite
sequences in X.

A sequence space in X is a linear subspace of W(X). Let E be an X- valued
sequence space. For z € E we write z = (zx),k € N. For 2 € X and k € N,we let
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For each : € N, we have

ST oMl = Y [felertmi 4V ) )

ki1 <k<k; ki1 <k<k;

= S o tm G f(a)

ki) <k§ki

=a;t Y0 O fi)

ki—1<k<k;
=1.

So that > |fx(yk)| = oo, which contradicts with (3.3). Thus (fx) € {(gx) € X' :
k=1

(o o]
3 |lgx]lt M~ ¢—1) < oo for some M € N}. Hence the proposition is proved. a
k=1

Proposition 3.4 Let p = (px) be a bounded sequences of positive real numbers. Then
Loo(X,p) = U?=1£w(X)(n—l/pk)~

Proof. If © € €o(X,p), then there is some n € N with [|zx||P* < n for all k €
N. Hence ||zx||n~/P* < 1 for all k € N, so that = € £oo(X) (n-1/pky- On the other
hand, if z € UFL €o0(X)(n-1/p4), then there are some n € N and M > 1 such that
|lzx||n~ /P« < M for every k € N. Then we have ||zx||P* < nMP» < nM*forallk € N,
where a = szp pr- Hence z € £,(X, p) 0.

4. Main Results. Now, we turn to our objective. We begin with giving general
characterizations of matrix transformations from an F K-space of vector sequences with

AK property into an F'K -space of scalar sequences.

Theorem 4.1 Let E C W(X) be an FK -space with AK property and F' an FK -space
of scalar sequences. Then for an infinite matriz A = (f7),A: E — F if and only if
(1) for eachn € N, Z fl(zk) converges for all z = (zx) € F,
(2) for each k € N, (f,C (2))5L, € F forall z€ X, and
(8) A: ®(X)— F is continuous when ®(X) is considered as a subspace of E.
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Proof. Assume that A: E — F. Then we have that for any z = (z) € E, Y fl(zk)
k=1

converges for all n € N, so (1) holds. Since'e*(z) € E for all k € N and all z € X, we
obtain that for each &k € N,

(fR(2)52y = Ae*(z) € F,

hence (2) holds. Since E and F are FK-spaces, by Zeller’s theorem, A : E — F is
continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

o] oo
Az = (Z f,;*(zk)) €W, for all z = (z) € E.
k=1 n=1 ’
It follows from (2) that Ae*(z) € F for all k € N and z € X, which implies that
A:®(X)— F. By (3), we have A : ®(X) — F is continuous. Let z = (zx) € E. Since
E has the AK property, we have

n
z = lim Zek(:z:k).
—+00
k=1

Then (Z e"(:z:k)) is a Cuachy sequence in F. Since A : ®(X) — F is continuous
k=1 n=1

‘ . oo
and linear, it implies that (Z Ae’“(xk)) is a Cauchy sequence in F. Since F is
k=1 n=1

o0

n
complete, we have (Z Aek (:ck)) converges in F'. Since F' is a K-space, it implies
k=1

n=1

that (Z f,?(a;k)) € F, so that Az € F. This shows that A: F — F. O
k=1 n=1

If pr > 1 for all k € N, it is the same as the space £(p) (see { } ), we have that
the space (X, p) is an BK-space with AK property under the Luxemburg norm

o0
. Tk
= >0: —|IPx < 1
el = infle > 05 3 ISHP < 1)

The following proposition gives some useful properties conerning about the Luxemburg

nor.
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Proposition 4.2 Let p = (px) be a bounded sequences of positive real numbers such
that pr. > 1 for all k € N and let x = (zx) € ¢{(X,p). Then

(1) llz|l < 1 if and only if Y _ ||zkl[P* < 1, and
k=1

(2) If |zl| = 1, then ) _ |lzk||P* = 1.
k=1

o0

Proof. If Z l|zk||P* < 1, we have by the definition of the Luxemburg norm that
k=1

] < 1.

1 o0
If lz]] < 1, then [lz]| < 14 ~ for all n. € N, it implies that Z k[P < 1.

n

1
Since W Z lzel”* < Z i i’“ - |[7*, where a = SUp P it follows that
k=1 n

G 1
Z lzl|P* < (1 + E)a forallne N (4.1)

oo
By taking n — oo in 4.1, we obtain Z |zk]|P* < 1.

k=1
o0 (oo}
(2) Assume that [|z|| = 1. By (1) we have Zuxkﬂp“ < 1. If Z”xk”pk < 1,
k=1 k=1
then for each € > 0 such that Z |zk||P* < € <1, we have that Z Hw—Hpk > 1. Since
k=1 k=1

( )°‘ > ( )P for all k € N, where o = Sup P we have ( Z lzx|[P* > Z |— Hp"

1, hence

oo
> llzkllPe > e (4.2)
k=1

oo
By taking ¢ — 17 in {4.2) we obtain that Z||a:k||p“ > 1 which is a contradiction.
k=1

Hence Y [lzk|P* = 1. O
k=1
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Theorem 4.3 Let p = (px) and g = (gx) be bounded sequences of positive real numbers
such that pr, > 1 for allk € N, and A = (f7) an infinite matriz. Then A : ¢(X,p) = €m
if and only if

(1) for each n € N there exists M, € N such that

o0

1 1
S IR M, =Y < 0o, where — + — =1 for all k € N,
k=1 Pr

(2) for each k€ N and z € X, (fP(2))%2, € Ly, and
(3) there exists A > 0 such that

(o]
1 . .
sup {Z Mn(:\-Zf,':(xk)) : K C N 1is finite, xx € X for all k € K and ZKszH”" <1}
n=1 keK ’ ke

Proof Assume that A : {(X,p) — £p. By Proposition 3.3 and Theorem 4.1, the
conditions (1) and (2) are satisfied. Since 4(X,p) and £ are BK-spaces with the
Luxemburg norm, by Zeller’s Theorem, we have that A : £(X,p) — £ps is continuous,
so A : ®(X) — £pr is continuous when ®(X) is considered as a subspace of £(X,p). It
implies that A is bounded, hence there exists A > 0 such that |Az|| < 1for allz € ®(X)
such that ||z|| < 1. By Proposition 4.2(1), we have

w(547) = 3 Mol 3 fi(an)) < 1 (4.3

for all z = (zx) € ®(X) such that ||z|| < 1.

Let K C N be finite and zx € X for all k¥ € N such that ) [|zg||P* < 1. Let
kEK
z = (zx) where 2 = z if Kk € K and zx = 0 otherwise. Then 3 |lz¢||Px < 1. It
keK

o
1
implies by Proposition 4.2 (1) that ||z|| < 1. By (4.3), we have ZM"(X Z Hz)) =
n=1 keK

o0 o0

1
E M"(X E f(zx)) < 1. This implies that the condition (3) is satisfied.
n=1 k=1

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that
the conditions (1), (2) and (3) of Theorem 4.1 are satisfied. The condition (1) implies

(o8]
by Proposition 3.3 that (), € £(X,p)? for all n € N, so Zf,?(zk) converges for
k+1
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Proof. Assume that (Z | fe || € m. Then there exists A > 0 and a > 1 such
- - k=1

that > M(AY [Iffl]) < . Let = (zk) € foo(X) and ||z]| < 1. Then ||zx|| < 1 for
n=1 k=1

all k € N, so |flH(zk)| < ||fR] for all n,k € N. Putting K = %\!—' Since M, i8 convex,

even, and increasing on [0, 00), it follows that

glen( kam i:j (igf;(m)
s%iMn(Aiﬁ:(u))

IN
QI
F’]
:
=
3
Hngk:
=
g

1 > en
n=1 k=1
<1.
It follows by Theorem 4.5 that A € (£o(X), £pr). - 0O

Theorem 4.7 Let A = (f7) be an infinite matriz and let p = (px) be a bounded
sequence of positive real numbers. Then A € (£o(X,p), £um) if and only if

(1) > mPx{|fr|| < oo for all m,n € N ,and
k=1
(2) for each m € N, there erists K., > 0 such that

M (= S mie () < 1
n=1 m

for every sequence (xy) with ||zg|| <1 for allk € N.

Proof. By Proposition 3.4, we have 2o (X,p) = Urw £oo(X) (n-1/rx)- It implies by [10
, Proposition 3.1(1)] that

A € (boo(X,p), tr) &= A € (oo X)(sm-1/peys €M) forallm e N
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By [10, Proposition 3.1(iii)], we have
A € (boo(X) (n-1/50), Eu) == (M7 [k € (Loo(X), Lar)
We have by Theorem 4.5 that
(P fPY, & € (€oo(X), €ar) <= the conditions (1) and (2) hold.
(]

Theorem 4.8 Let A = (f}) be an infinite matriz and let p = (px) be a bounded
sequence of positive real numbers. Then A € (co(X,p), £m) if and only if

(1) for each n € N, there exists K,, € N such that ZK;I/”"Hf,?H < oo for all

k=1
m,n € N,and

(2) for each r € N, there exists m, € N such that

z=(zx) € B(X), ) |zl S 1= Mp(r>  fi(z)) <1.
k=1

k=1 n=1 =

Proof. By Proposition 3.1, the condition (1) is equivalent to (1) of Theorem 4.1 and it
is easy to see that the condition (3) is equivalent to the condition (3) of Theorem 4.1.

Hence the theorem is obtained by Theorem 4.1. |

5. Matrix Transformations Between Some Scalar Sequence Spaces

In this section, we apply some results of Section 4 for givng characterizations of

matrix transformation from the spaces £(p) and £, (p) into £ps.

Remark 5.1 Let A = (a,k) be an infinite matrix of real numbers. For each n,k € N,
let f* : R — R be defined by

flz)=anzr ,z€R.
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alln € N and all z = (z¢) € £(X,p). Thus the condition (1) of Theorem 4.1 holds. It
is clear that the condition (2) of Theorem 4.1 hold. By (3), there exists A > 0 such that

— np ] e
sup {ZM"(X Zf,?(:ck)) : K C N is finite, zx € X for all k € K and ZHEka" <1} <1
k=1 kEK keK - (1.4)

Let z = (zx) € ®(X) be such that ||z|| < 1. By Proposition 4.2 (1) we have that

Z l|lzx||P* < 1 for some finite subset K of N. It follows by (4.4) that
kEK

oo

S Ma(s Y fRe) €1,

n=1 keK

which implies ||Az|| < A, hence A is bounded, so A : ®(X) — {€pr is continuous.
Thus thye condition (3) of Theorem 4.1 is satisfied, so we have by Theorem 4.1 that
A ¢(X,p) > €ar. The proof is now complete. d

Theorem 4.4 Let p = (px) be a bounded sequences of positive real numbers such that
pr <1 forallk € N and A = (fi}) an infinite matriz. Then A : £(X,p) = €y if and
only if

(1) for each k € N andz € X, (ff ()52, € £y, and

(2) there exists mg € N such that sup Z Mn(m;F"—f,?(m)) <1.

kEN
fzlicy ™=1

Proof. By [10, Theorem 4.1 |, we have that
A ¢(X,p) — L if and only if
(1) foreach k€ N and z € X, (f}(2))o2, € Zpm, and
( ii) there exists mo € N such that
sup [|A(mg ™ (@) < 1.
EN

k
I=zli<1

Proof. By Proposition 4.2 (1), we have that the condition (ii) above is equivalent to
(2). Hence A : £(X,p) — £ if and only if the conditions (1) and (2) are satisfied. O
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Theorem 4.5 Let A = (fi}) be an infinite matriz and E € {€o(X),co(X)}. Then
A€ (E, y) if and only if

(1) Z I fEll < co for everyn € N, and
k=1

(2) there exists K > 0 such that Z Mn(% Zf,?(mk)) <1 for every (zy) € E with
n=1 k=1 .

||zk|] £ 1 for all k € N.

oo
Proof. Assume that A € (F,£4y). Then ka(xk) converges for all z =
k=1
(zr) € E. Hence (1) holds by Proposition 3.1 and 3.2. Since E and £p are BK-spaces,

by Zeller’s theorem, A is continuous. It follows that there exists K > 0 such that

|Az]| < K (4.5)

for every z = (z) e E with ||zg]| < 1 forall k € N.

Then we have ||A( z)|| < 1for all z = (zx) € E with ||zx]| < 1 for all kK € N. By
Proposition 4.2(1), we have

2 Mo ka(wk

for every x = (zx) € E with ||zi|| <1 for all k € N. Hence (2) holds.

Conversely, assume that (1) and (2) hold. By Proposition 3.1 and 3. 2 we have
oo (o]
Z fr(zx) converges for every z = (zx) € E. Let K > 0 be such that Z M(~ Z fe(zi))

k=1 n=1
1 for every = = (zx) € E with |[zg|| < 1 for all K € N. Then for z = (zx) € E and

x # 0, we have

oo o0 1 o0
fi(z)) = I (
> M (a2 Z £n) = 2 Mg )
which implies that Az € ¢ps, hence we have A € (E, £pr). O

Corollary 4.6 Let A = (f) be an infinite matriz. If (Z||fi‘||)°°

ne1 € £pr, then
k=1

A€ (Loo(X), €rr)-
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Then f is a continuous linear functional on R and ||f7]| = |enk|. Let B = (f7), for
a real sequence r = (zy), we see that Axr = Bz, hence if F and F are scalar sequence

spaces, then

AE—-F<— B:E—> F

Theorem 5.1 Let p = (px) be a bounded sequence of positive real numbers such that
Pk <1 for all k € N, and let A = (ank) be an infinite matriz of real numbers. Then
A L(p) = €pr if and only if
( 1) for each k € N, (ank)5%y € €pm, and
{ 2) there exists mop € N such that sup ZMn(mgl/p"ank) < 1.
k

n=1

Proof. Let B = (f?) be the matrix defined as in Remark 5.1. Then
A:l(p) oty — B:L(p) = ln

It implies by Theorem 4.4 that

B : {(p) — £y <= the conditions (1) and (2) hold.

Hence A : ¢(p) = €pr <= (1) and (2)hold. a

If ¢ = (gx) is a bounded sequence of positive real numbers such that ¢ > 1 for
all k € N, then the function My (z) = ||z|P* is an Orlicz function for all £ € N and we

see that the Nakano sequence spaces £(g) = £5s. Hence the following result is directly
obtained by Theorem 5.1.

Corollary 5.2 Let p = (pg) and ¢ = (qx) be a bounded sequence of positive real numbers
such that pr < 1 and gx > 1 for all k € N, and A = (anx) an infinite matriz of real
numbers. Then A : £(p) — £(q) if and only if

(1) for each k € N, (an)2., € £(q), and

X _%
(2) there exists mg € N such that sup Z my 7* |ank|?* < 1.
k

n=1
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Theorem 5.3 Let p = (px) be a bounded sequence of positive real numbers and A =
(ank) an infinite matriz of nonnegative real numbers. Then A : £oo(p) — €pr if and only
of
oo
(1) Zml/”klank| < oo for allm,n € N, and

k=1
( 2) for each m € N, there exists Ky, > 0 such that

[e.¢} 1 e o]

1
ZMn(K—mZm /pkank) S 1 .
n=1 k=1

Proof. Let B = (f!) be the matrix defined as in Remark 5.1. Then

A:lo(p) 2 by <= B:l(p) = tnm -

It follows by Theorem 4.6 that B : £ (p) — £ if and only if the conditions (1) and (2)
hold. ]
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Matrix Transformations of Some Vector-Valued Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we give the matrix characterizations
from vector-valued sequence spaces £o0 (X, D), and ¢y(X, p) into the Orlicz

sequence space £)s where p = (pk) is a bounded sequences of positive real

t 4
numbers.

(1991) AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

Let (X, ||.]}) be a real Banach space and p = (px) a bounded sequence of positive
real numbers. We write = (xx) with zx in X for all £k € N. The X-valued sequence

spaces ¢o(X,p), ¢(X,p), €wo(X,p), £(X,p), and ¢,(X, p) are defined as

o(X,p) = (= () fim [lax | =0},
C(X>p) = {:C = (xlc) : klzm ”Ik — a||p" =0 for some a € X}’
—00

foo( X, p) = {z = (z4) : sup lzkl[P* < oo},
UX,p) ={z = (&) : i [lze][P* < oo}
k=1
co(X,p) = {z = (zx) : .sz;p Hﬁ—:llp" < oo for some (6x) € co with 8 # 0 for allk € N }
When X = R, the corresponding spaces are written as co(p), ¢(p), Loo(p) ,€(p), and

¢,(p) respectively. Each of the first four spaces are known as the sequence spaces of

Typeset by ApS-TEX
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A sequence space in X is a linear subspace of W(X). Let E be any X-valued
sequence space. For x € E and k € N, we write zx stands for the k** term of z.
For k € N denote by ex the sequence (0,0,...,0,1,0,...) with 1 in the k** position
and by e the sequence (1,1,1,...). For z € X and k € N, let e¥(z) be the sequence
(0,0,...,0,2,0,...) with z in the k** position and let e(z) be the sequence (z,z,z,...).

For a fixed scalar sequence p = (ux) the sequence space E,, is defined as
Ey,={z e W(X): (uzi) € E} .

The sequence space E is called normal if x € E and y € W(X) with lvx|| < ||lzk|| for
all £k € N implies that y € E.

2.2Let A = (f2) with f in X', the topological dual of X. Suppose that F is a space of
X-valued sequences and F' a space of scalar-valued sequences. Then A is said to map E

o0
into F, written by A: E — F if for each z = (z) € E, An(z) = Zf,?(zk) converges

k=1
for each n € N, and the sequence Az = (A,(z)) € F. Let (E, F) denote for the set

of all infinite matrices mapping from F into F. If u = (ux) and v = (vg) are scalar

sequences, let
U(EvF)‘v = {A= (fl?) : ('Ufnka]?)n,k € (E’F) }

If ug # 0 for all k € N, we write u™! = (i)
U,

2.3 Suppose that the X-valued sequence space E is endowed with some linear topology
7. Then FE is called a K-space if for each n € N the nt® coordinate mapping px : £ — X,
defined by pg(z) = i, is continuous on E. If, in addition, (¥, 7) is an Fréchet (Banach,
LF-, LB-) space, then F'is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that

E contains ®(X). Then F is said to have property AB if the set {Z e¥(rx) :n €N }is
k=1

n
bounded in E for every z = (zx) € E. It is said to have property AK if Zek(:z:k) -z

k=1
in £ as n — oo for every z = (z) € E. It has property AD if $(X) is dense in F.

3. Some Auxiliary Results
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Maddox. These spaces were first introduced and studied by Simons [7], Maddox (4, 5],
and Nakano [6]. In [2] the structure of the spaces co(p), c(p), and £, (p) have been
investigated.

Let M : R — [0,00) be convex, even, continuous and M (u) = 0 <= u = 0. For

a given real sequence z = (z,), define
m .
om(z) =y M(za),
n=1

Ly = {z = (&) : oM (Az) < o0 for somed > 0}, and

lz|| = inf{A>0: gM(i) < 1} for z € £y

The sequence space (€ar, |||} is known as the Orlicz sequence space and it is a
BK-space.

In this paper we consider the problem of characterizing those matrices that map
an X-valued sequence spaces £oo (X, p) and ¢y(X, p) into the Orlicz sequence spaces. Wu
and Liu [8] deal with the problem of characterization those infinite matrices mapping
from ¢o(X, p), ¢(X,p), £eo(X,p) and £(X,p) into the scalar-sequence spaces of Maddox
with some conditions on the sequences (px) and (gx). Grosse-Erdmann [3] has given
characterizations of matrix transformations between the scalar-valued sequence spaces
of Maddox. Their characterizations are derived from functional analytic principles.
Our approach here is different. We use a method of reduction introduced by Grosse-
Erdmann [3]. In [2] it is pointed out that co(p) is an echelon space of order 0 and
that o (p) i1s a co-echelon space of order co. In this paper we also show that ¢,(X, p)
and £, (X, p) is a co-echelon space of order co. Therefore these spaces are made up of
simpler spaces. We will use certain auxiliary results(Section 3) to reduce our problem

to the characterisations of matrix mapping between much simpler spaces.

2. Notation and Definitions

2.1 Let (X, ||-]|) be a real Banach space, the space of all sequences in X is denoted by
W{X) and ®(X) is denoted for the space of all finite sequences in X. When X = R,

the corresponding spaces are written as w and 9.
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In this section we give various useful results that can be used to reduce our

problems into some simpler forms.

Proposition 3.1 Let E and E,(n € N) be X-valued sequence spaces, and F
and F,(n € N) scalar sequence spaces, and let u and v be sequences of real numbers
with ux # 0, vg # 0 for all k € N. Then we have

() ((UaBas P) = 03 (B, P
(ii) (B,N52, Fn) = N2, (B, F)
(iit) (E1 + B2, F) = (Ey, F) N (Es, F)
(iv) (E,F) = (E,F)N(®(X), ) if E is an FK-space with AD, Fy is an FK-space
and Fy is a closed subspace of Fs.
(v) (Bu, Fy) = o(E, F)y-1.

Proof. Assertions (i), (ii), (iii), and (v) are immediate. To show (iv), assume
that E is an FK-space with AD, F3 is an FK-space and F; is a closed subspace of
Fy. Clearly, (B, F,)) C (E,F;) N (®(X), F}) is always the case. Now, assume that
A= (f1) € (BE,F2)Nn(¢(X),Fy) and = € E. By Zeller’s theorem, A : E — F, is
continuous. Since E has AD, there is a sequence (y™) with y(™ € ®(X) for alln € N
such that y(™ — z in E as n — oco. By the continuity of A, we have Ay(™ — Az in
Fy as n — oo. Since Ay(™) € Fy for all n € N and F} is a closed subspace of Fy, we
obtain that Az € F;. Hence A € (F, F1), so that (E, F») N (®(X), Fy) C (E, Fy). This
complete the proof. O

Proposition 3.2 Let p = (px) be a bounded sequences of positive real numbers.
Then
(1) co(X,p) = Unlico(X)(n-1/pky- Hence co(X,p) is an echelon space of order 0.
(11) Loo(X,p) = UpL1loo(X ) -1/eiy- Hence €oo(X,p) is a co-echelon space of order
0.

Proof. (i) Let £ = () € ¢y(X,p). Then there is a sequence {dx) € co
with d; # 0 for all £ € N such that sup ||?||Pk < oo. Hence there exists @ > 0
k k

such that ||zg|| < al/Px|éi| for all K ¢ N. Choose ng € N with ng > a. Then
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lzxllng P+ < (ng)l/pkldkl < |0x| which implies that JLim |zkllng /%% = 0, hence
z = (zx) € co(X)m-1pey € Upiico(X)(n-1/p1y- On theo?)ther hand, suppose that
z = (zx) € Uleco(X)(n-l/pk). Then klgnc}o llxklln_l/"“ = (0 for some n € N. Let
d = (dx) be the sequence definded by

{ lzxllnt/Pxif |kl # O
8 =

1

- otherwise.
k

Clearly (8x) € c¢o and Hg—f“pk < n for all k € N, hence sup “(.7;_:”;;,‘ <n,soz=(zx) €
¢o (X, p)-

Now we show (ii). If £ € £ (X,p), then there is some n € N with ||zx||P* < n
for all k € N. Hence ||zx||.n~ /P < 1 for all k € N, so that,z € £oo(X)}(n-1/p)- On
the other hand, if z € Ulefoo(X)(n_l/pk), then there are some n € N and M > 1 such
that ||zx|l.n~1/Px < M for every k € N. Then we have ||zx||?* < n.MP* < n.M® for all
k € N, where o = szksp pr. Hence x € € (X, p) O.

3. Main Results

We now turn to our main objective. We begin with giving characterisations of

matrix transformations from £..(X) and c¢o(X) into £3s. To do this we need a lemma.

Lemma 4.1 Let E € {£x(X),co(X)} and (fx) a sequence of continuous linear

x>
functionals on X. Then Z frx(zk) converges for every z = (zx) € E if and only if
k=1

oo
D el < o
k=1

Proof. If Y lIfell < oo, then for each z = (zx) € B, D _|fulzx)| <
k=1 k=1

o0 o0 o
SOl felllzell < Ul D7 N fell < oo, so that > fi(xzx) converges.
k=1 k=1 k=1



197

oo

Conversley, assume that Z fr(zk) converges for every z = (zx) € E. Define
o k=1 .
T:E— Rby Tz =), fi(zx). Clearly, T islinear. For eachn € N, let s, = >  fropk.

k=1 =
Then s,, € E' since E is a K-space. It is clear that s,(z) > Tz asn — oo for all z € E.

It follows by Banach-Steinhaus theorem that T' € E’. Hence there is a positive real

number « such that

> felzx)
k=1

<a (4.1)

for all z = (z¢) € F with ||z|| < 1.
For each z = (zx) € F with ||z|| < 1, we can choose a real sequence (¢x) with

|tx]| = 1 for all & € N such that fi(txzx) = |fe(zk)| for all k € N. Clearly, (txz) € E
and ||(¢xzk)]| < 1. It follows by (4.1)

o0
D felze)l =
k=1 k=1

for all z = (zx) € E with ||z]| < 1.
It implies by (4.2) that

(tezi)) < @ (4.2)

Zlfk(wk)l <o (4.3)

for all n € N and all z € X with ||:ck|l <1

It follows from (4.3) that Z | fe|| < e for alln € N, hence Z || fxl] < «. This complete

k=1 k=1
the proof. O

Theorem 4.2 Let A = (f7?) be an infinite matriz and E € {{(X),co(X)}.
Then A € (E, £p) if and only if

(1) ZHf,CH < oo for everyn € N, and
k=1
o0

x
(2) There ezists K > 0 such that Z M(% Z fi(zx)) <1 for every (zx) € E with
n=1 k=1

lzkl| < 1 for all k € N.
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o0
Proof. Assume that A € (E,£.). Then ka (zx) converges for all x = (z) €
k=1
E. Hence (1) holds by Lemma 4.1. Since E and {., are BK-spaces, by Zeller’s theorem,

A is continuous. It follows that there exists K > 0 such that
1Az| < K (4.4)

for every z = (zx) € E with [|zx|| <1 for all k € N.
Then we have ||A(T1{—x) < 1for all z = (zx) € E with ||z¢]| < 1 for all k € N. By [1,
Theorem 1.38(1) ], we have

S M(% D fulm) <1
n=1 k=1

for every z = (zx) € E with ||zg|| £ 1 for all ¥ € N. Hence (2) holds.

Conversely, assume that (1) and (2) hold. By Lemma 4.1 , we have Z fi(zk)

k=1
o0 1 oo
converges for every x = (zx) € E. Let K > 0 be such that Z M(R— Zf;?(ka)) <1
n=1 k=1
for every z = (zx) € E with ||zx|| <1 for all k € N. Then for z = (z}) € E and z # 0,
we have
o0 o0
M ( R (z)) = fi(
,; Kllxll Z § ,;1 Z ¢ llxll
which implies that Az € £, hence we have A € (E, {r). O

oo
Corollary 4.3 Let A = (f') be an infinite matriz. If (Z Hf,,?“):o:l € lp, then
k=1
A€ (boo(X), um)-

[ o]
Proof. Assume that (Z |[f,?||)2°=1 € £pr. Then there exists A > 0 and o > 1
k=1

o0 xd
such that » M (AD [IfRll) < o Let = (zx) € Loo(X) and ||z]| < 1. Then |jzk|| < 1
n=1 k=1

for all k € N, so |ff(zi)| < ||f2|| for all n,k € N. Putting K = %. Since M is convex,
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even, and increasing on [0, 00), it follows that

o o]

> M5 > i) =
n=1

k=1

NE

M(3
o

M

> (k)
k=1

)

> fi(zx)

e

2 MR I )
1

n=1 k=

1

2
I

IN
Q|
NE

n=1

(A
I

(A
Rim

SOMA R

3

<

—

It follows by Theorem 4.2 that A € (boo(X), £ar). a

Theorem 4.4 Let A = (f]}) be an infinite matriz and let p = (px) be a bounded
sequence of positive real numbers. Then A € (€uo(X, D), L) if and only f

o

(1) Zml/p"Hf,?H < oo for all m,n € N,and
k=1

(2) There exists K > 0 such that

o0 1 e o]
D M(g Y m f @) <1
n=1 k=1

for every sequence (zx) with ||zk|| <1 for all k € N.

Proof. By Proposition 3.2(ii), we have £oo(X,p) = Uns; loo(X)(n-17ps)- It
implies by Proposition 3.1(i) that

A€ (Uoo(X,p), ty) = A€ (EOO(X)(m_l/pk), Lyr) for allm e N
By Proposition 3.1(v), we have
A € (Loo(X) m-1/mnys Ea) == (MMPE 1), 4 € (Loo(X), £ar)

We have by Theorem 4.2 that

(mYPr Y,k € (€eo(X), €ar) <= the conditions (1) and (2) hold.
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Hence the theorem is proved. O

Theorem 4.5 Let A = (f}) be an infinite matriz and let p = (px) be a bounded
sequence of positive real numbers. Then A € (cy(X,p), Lum) if and only if

[ee]
(1) Zml/p“ﬂf,?ﬂ < 00 for all m,n € N,and

k=1
(2) There exists K > 0 such that

& e) 1 o0
D M(g d mlP i (wy) < 1
n=1 k=1

for every sequence (zx) € co(X) with ||zk|| <1 for allk € N.

Proof. Since ¢y(X,p) = Uplico(X)(,-1/s), we have by Proposition 3.1(i) that
A€ (c(X,p), tm) < A€ (CO(.X)(m—I/pk), ly) forallme N
By Proposition 3.1(v), we have
A € (co(X)(m-1/mys Eia) = (MV/P* fi) ke € (co(X), ar)
It follows by Theorem 4.2 that
(mYPx f1), k€ (Boo(X), €ar) <= the conditions (1) and (2) hold.

Hence we have the theorem. ]
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ping the sequence spaces co(X,p),c(X,p), €o(X,p), &X,p), co(X,p) ,Er(X,p), and
F.(X,p) into the space c(q), where p = (px) and ¢ = (gi) are bounded sequences of
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1. Introduction

Let (X, |}.]|) be a Banach space and p = (px) a bounded sequence of positive real

numbers. Let NV be the set of all natural numbers, we write z = (z) with zx in X for all

k € N. The X —valued sequence spaces co(X, p), c(X, p), £ (X, p), ¢(X, P), co(X, p), E.(X, ),
and F,.(X,p) are defined as
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(a) co(X,p) = {z = (2&) : limyoco [jzk|[P* = 0}

(b) e¢(X,p) = {z = (zk) : limk— oo ||Tk — a||P* =0 for some a € X} ;

(©) feo(X,p) = {z = (@) : sup ||zk||P* < o0};

(d) &X,p) = {z = (z&) : 1511 llzxl|P* < oo};

(e) co(X,p) = {z = (zx) : supy, ||zx/dx]|P* < oo for some (dx) € cp with 0 # 0 for all k € N'};
(f) Er(X,p) = {z = (zk) : supy k7"[|zx]|P* < oo}; .

(8) Fr(X,p) = {z = (zx) : 1kZ; K" ||z|/P* < oo}.

When X = K, the scalar field of X, the corresponding spaces are written as
co(p), ¢(p), Lo (p), £(p), colp), Ev(p) and Fy(p), respectively. The first three spaces are
known as the sequence spaces of Maddox. These spaces were introduced and studied
by Simons [9] and Maddox [5 - 7]. The space £(p) was first defined by Nakano [8} and is
known as the Nakano sequence space. The spaces cy(p) was first introduced by Grosse-
Erdmann [3] and he investigated in [3] the structure of the spaces co(p), c(p), £(p), and
£ (p). Grosse-Erdmann (4] gave the matrix characterizations between scalar-valued
sequence spaces of Maddox. When py = 1, for all £ € N, the spaces E,.(p) and F,(p)
are written as F, and F,, respectively. These two spaces were first introduced by Cooke
[2]. Now the problem of matrix transformations becomes more general, we consider
infinite matrices of bounded linear operators instead of matrices of real or complex
numbers and we consider on vector-valued sequence spaces instead of scalar-valued
sequence spaces. Choudhury [1] gave the matrix characterizations mapping co(X) into
co(Y), €1(X) into € (Y'), and £1(X) into £,(Y). Wu and Liu [12] deal with the problem
of characterizing infinite matrices mapping ¢o(X,p) and £oo (X, p) into co(gq) and £ (q),
where p = (px) and ¢ = (gx) are bounded sequences of positive real numbers. Suantai
[10] has given matrix characterizations from 4(X,p) into the vector-valued sequence
spaces ¢o(Y, q),c(Y) and £,(Y) , where ¢ = (g) is a sequence of positive real numbers,
Y is a Banach space and s > 1. He has also given in [11] necessary and sufficient
conditions for infinite matrices mapping ¢(X,p) into £o and £, (q).

In this paper, we extend some results in [10] and [11] and generalize some results

in [4]. We also obtain some related results as mentioned in the abstract.

2. Notation and Definitions
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Let {X.|.]]) be a Banach space. Let W(X) and ®(X) denote the space of all
sequences in X and the space of all finite sequences in X. When X = K, the scalar
field of X, the corresponding spaces are written as w and ®, respectively. A sequence
space in X is a linear subspace of W(X). Let E be an X- valued sequence space. For
r € F and k € N we write that z; stand for the kth term of z. For z € X and k € N,
we let e(*)(z) be the sequence (0,0,0, .y 0,2,0,...) with z in the kth position and let
e(z) be the sequence (z,z,z,...), and we denote by e the the sequence (1,1,1,...). For

a fixed scalar sequence u = (uy) the sequence space E, is defined as
FE, = {:C = (:L‘k) € W(X) : (ukzk) S E}

Let A = (f) with f7 in X', the topological dual of X. Syppose E is an X-valued
sequence space and F' a scalar-valued sequence space. Then A is said to map E into F,
written by A : E — F if, for each z = (zx) € E, An(z) = > poq /7 (zk) converges for
each n € N, and the sequence Az = (A,(z)) € F. We denote by (E, F') the set of all

infinite matrices mapping E into F. If v = (ux) and v = (v;) are scalar sequences, let
u(EsF)‘u = {A = (fl?) : (un'kal?)n,k € (E’F)}

If up, # 0 for all k € N, we put u=* = (1/ug). An X —valued sequence space F is said
to be normal if (zx) € E and (yx) € W(X) with ||yk|| < [|zx|| for all & € N implies that
(ye) € E.

Suppose the X-valued sequence space E is endowed with some linear topology 7.
Then E is called a K-space if, for each k € N the kth coordinate mapping px : £ = X,
defined by px(z) = zx, is continuous on F. In addition, if (F,7) is a Fre'chet(Banach)
space. then E is called an FK — (BK—) space .

The spaces ¢o(p) and c(p) are FK-spaces. In ¢q(X,p), we consider the function
g(z) = sup ||zx]|P*/™, where M = max {1,supx px}, as a paranorm on co(X,p), and
it is knovtn that co(X,p) is an FK-space under the paranorm g defined as above. In
¢(X,p), we consider it as a paranormed sequence space with the paranorm given by
Izl = Ore ||a:k||Pk)1/M , where M = max {1,supg px}- It is known that £(X,p) is
an FK-space under the paranorm defined as above.

3. Some Auxiliary Results
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We start with the following useful results that will reduce our problems into some
simpler forms.

Proposition 3.1. Let E and E,(n € N) be X -valued sequence spaces, and F and
F,(n € N) scalar-valued sequence spaces, and let u and v be scalar sequences with
e #F 0, #0 for allk € N. Then
(i) (U321 Bn, F) = (62, (Bu, F);
(ir) (E,05L Fn) = N3, (B, F);
(iti) (E1+ B3, F) = (E1, F) 0 (Ea, F);
(1v) (Bu, Fy) = o(E, Fy-1.

Proof. All assertions are immediately obtained directly by the definition.

Propostion 3.2. Let p = (px) be a bounded sequences of positive real numbers and
r>0. Then
(i) c(X,p) = co(X,p) + {e(z) : z € X};
(i) co(X,p) =Uplico(X) _ o ;
(n 7k)
(“7’) Er(Xap) = EOO(Xap)(k—;,r;');
(v) Fr(X,p)=X,p), =,

(kPk )’
(’U) EOO(X7p) = U?:lgoo(X)(n_l/Pk)'

Proof. Assertions (i), (iii} and (iv) are immediately obtained by the definition. To show
(i), let = (zx) € co(X,p). Then there is a sequence (6x) € co with dx # Oforallk € N
such that supy ||zx/0x||P* < co. Hence there exists o > 0 such that [|zx] < a/Px|]
for all £k € N. Choose gy € N so that ng > a. Then

llzkllng /P* < (a/no) /P |6k] < |6k]

which implies that lim_, co||z||ng /P* = 0, hence z = (zx) € co(X)( ~1/piy © U2 1€0(X) (n-1/
o
On the other hand, suppose x = (zx) € UL c0(X)(,-1/p). Then litng s o0 || Tk ||~ 1/P5
= 0 for some n € N. Let § = (6x) be the sequence defined by
lzklln =%, i zx #0
5 = '
1/k, otherwise.
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Clearly, (0x) € co and ||zx/0k||P* < n for all kK € N, hence supy, ||zx/0k||P* <n ,s0z =
(zx) € co(X, p).

It remains to show (v). If z € £ (X, p), then there is some n € N with ||zg||P* <
n for all k € N. Hence lzx||n~1/Px < 1 for all k € N, so that = € €°°(X)(n_1/,,k). On
the other hand, if € UZZ ;€50 (X)(,,~1/5x), then there are some n € N and M > 1 such
that ||zx||n—1/Px < M for every k € N. Then we have ||zx|P* < nMP* < nM< for all
k € N, where a = supy px. Hence x € £(X, p). O

Proposition 3.3. Let (fr) be a sequence of continuous linear functionals on X. Then

Y rey fe(zk) converges for all x = (xx) € co(X,p) o and only if >y, || fil| M~ 1/Pe <
oo for some M € N.

Proof. Suppose Y po, || fellM~1/Px < oo for some M € N. Let z = (zx) € co(X,p).
Then there is a positive integer Koy such that ||zx||[P* < 1/M for all k > Kj, hence
lzk|| < M~1/P« for all k > K. Then we have

Sl < Y Il < 3 15l < oo

k=Ko k=Kp k=Kg

It follows that > o, fr(zk) converges.

On the other hand, assume that Y po, fe(zk) converges for all z = (zx) €
co(X,p). For each z = (zg) € co(X,p), choose scalar sequence (tx) with [¢tx] = 1 such
that fi(trzr) = |fx(zx)| for all k € N. Since (txzk) € co(X,p), by our assumption, we

have 377 | fx(tkzk) converges, so that

o
Zlfk(ask)| < oo forall x € ¢o(X,p). (3.1)
k=1
Now, suppose that 3 pv, || fe|lm~/P = oo for all m € N. Choose m,k; € N such
that
~1/pxk
Z | fiellmy >1

k<k,
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and choose my > m; and ks > k; such that
S fallmg VP > 2.
ky<k<kq
Proceeding in this way, we can choose m; < mg < ..., and 0 = k1 < k3 < ... such that
S0 MlimI P >
ki—1<k<Lk;
Take z in X with ||zg|| =1 for all &k, k;—; < k < k; such that

> |fe(m)|m /P > i for alli € N.
ki—1<k<k;

Put y = (y&), vk = mi_l/p":r:k for k;—y < k < k;, then y € co(X,p) and

Sife)l 2 >0 fulz)im VP >4 forallie N.
k=1 ki1 <k<k;

Hence we have sum§2,|fx(yx)| = oo which contradicts with (3.1). This completes the

proof. _ 0l

Proposition 3.4. Let (fi) be a sequence of continuous linear functionals on X. Then

S re, fr(zk) converges for all z = (zx) € oo(X,p) if and only if Y oo | || fl|m/Px <
oo for all m € N.

Proof. If 352 . |Ifxllm!/Px < oo for all m € N, we have that for each z = (z) €

€oo(X, ), there is mg € N such that ||zx|| < ma/P* for all k € N, hence Y opey I fe(zi)] <

Soney Ifellllzell < e, kanmé/p" < oo, which implies that 3 72, fi(zx) converges.
Conversely, if Z,i";l fr(zx) converges for all z = (zx) € £oo(X,p), by using the

same proof as in Proposition 3.3, we have

> Ifr(zi)| < 0o for all z = (zx) € £oo(X, p). (3.2)
k=1
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Now, suppose that Y oo, || fx||M/Px = 0o, for some M € N. Then we can choose a

sequence (k;) of positive integers with 0 = kg < ky < k2 < ... such that

S© flMYP >0 foralli€ N.
ki—l<k$ki

And we choose zx in X with ||zx|| = 1 such that for all ¢ € N,

> |feler)| MY >

ki1 <k<k;

Put y = (yx), yx = M/Prxy. Clearly, y € £oo(X,p) and

o< o0
Z|fk(yk)| > Z |fk($k)|M1/p" >1 forallie N.
k=1 .. ki-—l<k$k" ’

(o)
Hence Y |fx(yx)| = 0o, which contradicts with (3.2). The proof is now complete. O
k=1

Proposition 3.5. Let (fx) be a sequence of continuous linear functionals on X and
p = (px) @ bounded sequence of positive real numbers with pr > 1 for all k € N. Then
S22, fulzk) converges for all z = (zx) € £(X,p) if and only if Yoy || fil|t* M~ (—D <
oo for some M € N, where 1/px + 1/t =1 for allk € N.

Proof. Suppose S I fellte M~ < oo for some M € N.
Then we have that for each z = (zx) € ¢(X, p),

o0 o«
S fklme)l < DI fllM Mk |
k=1 k=1
oo
< 3 (el M/2% 4 M)
k=1

o0
[ fll® M= 4 MY gt < oo,
k=1

MS I

x
il
—

which implies that > >, fi(zk) converges.
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On the other hand, assurne that Y _po, fx(zx) converges for all z = (zx) € 4(X, p).

By using the same proof as in Proposition 3.3, we have

i|fk(:ck)| < oo for all z = (z) € (X, p). (3.3)
k=1

We want to show that there exists M € N such that > oo, || fel®* M~ C+~1 < oo, If it

is not true, then

o0
lefkﬂt"m_("‘_l) =00, for allm € N. (3.4)
k=1

It implies by (3.4) that for each k € N,
> Mfallm~ =Y = oo, for all m € N. (3.5)
i>k

By (3.4), let m; = 1, then there is a k; € N such that

S felltrmy Y > 1

k<ky
By (3.5), we can choose my > my and kg > k; with my > 22 such that
S lflitmy D > 1 (3.6)
k1<ksk2

Proceeding in this way, we can choose sequences of positive integers (k;) and (m;) with

1=ko < kiy <ky<..and my < mgy < ..., such that m; > 2° and

S flimy Y >

ki_1<k<k;

For each ¢ € N, choose zg in X with ||zg|| =1 for all k € N, k;_1 < k < k; such that

Z |fk(:l:k)|t"m;(t"_l) >1 forallte N.
ki—1<k<k;

Letai= S |fe(zme)|*m] . Puty = (i), e = a7 m] 7Y fe(zx) | Lo
ki~—1<kski
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for all & k;_1 < k < k;. For each 71 € N, we have

> llwl = >0

ki_1 <kSk,‘ ki—1<k<k;

= D o my | ()|
ki_1<k<k;

< Y et m ey G e
ki_1<k<k;

S TS S
=a; m; a;

Pk
k2

’aiﬂlm-_(t"—l)|fk(xk)|t"_1$k

_ -1
=m;

<1/2".

So we have that Y oo |lyellP* < 32, 1/2% < oco. Hence, y = (yx) € £(X,p). For each
1€ N, we have

Sl = > |t m T )l )

ki_y <k<k; ki_1<k<k;

= Y a'my Y e

kio1<k<k;

=a;7t Y my Y | f)

ki1 <k<k;
= 1.

[e.@]
So that > | fx(yx)| = oo, which contradicts with (3.3). The proof is now complete. O
k=1

Proposition 3.6. Let p = (px) be a bounded sequence of positve real numbers with
pe <1 forallk € N and (fi) C X'. Then > o, fu(zk) converges for every z = (zi) €
£(X,p) if and only if there exists M € N such that supy || fi| M ~1/P* < co.

Proof. If Y72 | fi(zx) converges for every x = (zx) € £(X, p), using the same proof as

in Proposition 3.3, we have

i |fe(zk)| < oo forall == (zx) € 4(X,p) (3.7)
k=1
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Suppose that supy || fx|lm~1/P* = co for all m € N. For each i € N, choose sequences
(m;) and (k;) of positive integers with m; < mg < ... and k1 < k2 < ... such that
m; > 2" and || f, |lm; P4+ 1. Choose Zg, € X with ||zg,|| = 1 such that

-1 .
| (i)l P > 1 . (38)
._1/Pk,»

Lety = (yk), yx = m Tk, if k = k; for some 7, and 0 otherwise. Then Y po , [lyx|P*
Yo 1/my <3072, 1728 =1, so that (yx) € £(X,p) and

Z(fk Yk )| |f (m ,Upk"ka.-)l

my P fr (k)| = 00 by (3.8),

il

Nk nM8

Il
NA

and this is contradictory with (3.7). Therefore, there exists M € N such that supy, || fx||M ~1/Px <
cO.

Conversely, assume that there exists M € N such that supy || f||M ~*/P* < oo.
Let z = (xx) € £(X,p), then there is a K > 0 such that

I fxll < KMYPe forall ke N (3.9)

and there is a kg € IV such that Ml/Pklla:kH <lforallk > ko. Bypr < lforallke N,
we have that for all & > ko,

MYP ||z || < (MYPH [l ])P* = M|z [P~ (3.10)
Then
Zlfk zi)| s Zka“”-'Ek” + > I felillzl
k=1 k=ko+1

<Z||fk|||l$k|l+K Z M|zl (by (3.9))

k=ko+1

<Z||fk|l|l$kl|+KM Z |zl (by (3.10))

k=ko+1
< 0.
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This implies that Y 3., fe(zx) converges. O

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let ¢ = (qx) be a bounded sequence of positive real numbers and let E

be a normal X — valued sequence space which is an FK-space and contains ®(X). Then

(E,c(q)) = (E,cofq)) ® (E,<e>).

L4

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X -valued sequence space which is an FK-space and contains
®(X). Then for each k € N, the mapping Ty : X — E, defined by Trx = e*(x), is

continuous.

Proof. LetV = {e*(z):x € X}. Then V is a closed subspace of E, so it is an FK-space
because E is an FK-space. Since F is a K-space, the coordinate mapping px : V — X
is continuous and bijective. It follows from the open mapping theorem that py is open,
which implies that p;1 : X — V is continuous. But since T = p,zl, we thus obtain

that T} is continuous. O

Lemma 4.2. Let ¢ = (qx) be a bounded sequence of positive real numbers. If E and

F are scalar-valued sequence spaces such that E is normal containing ® and F is an
FK-space with the property that for each z = (zx) € F, there is a subsequence (z,,) of
(zx) withz,, — 0 ask — oo, then (E, F® <e>)=(E, F) & (E, <e>).

Proof. See [2, Proposition 3.1(vi) |. O

Proof of Theorem 4.1 Since ¢(q) = co(q) & < e >, it is clear that (E, ¢o(q)) + (E, <
e>) C (E,colg) ® < e>) = (E,c(q)). Moreover, if 4 € (E, co(q)) ) (F,< e >),
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then A € (E, ¢o(g) [) < e >), so that A € (F,0), which implies that A = 0 because F
contain ®(X). Hence (E,co(q)) + (E,< e >) is a direct sum. Now, we will show that
(E,c(9)) € (B,clq) & (E,<e>). Let A= (f¢) € (E,c(g)) = (E,colq) & < e >).
For z € X and k € N, we have (f2(z))3; = Ae*(z) € co(g) ® < e >, so that there
exist unique (bF(z))sL; € co(q) and (cf(x))sl,; € < e > with '

(FE (2))az1 = (0 (2))aly + (R (2))aiy- (4.1)
For each n,k € N, let g¢ and A} be the functionals on X defined by
gr(z) = b (z) and hi(z)=cp(z) forallz € X.
Clearly, g¢ and hy are linear, and by (4.1)
fE=gr+ht foralln,ke N. (4.2)

Note that co(g) @ < e > is an FK-space in its direct sum topology. By Zeller’s theorem,
A E > co(q) ® < e > is continuous. For each k € N, let Ty, : X — E be defined by
Ti(z) = €*(z). By Lemma 4.1, we have that T}, is continuous for all k € N. Since the
projection P; of ¢co{g) ® < e > onto co(g) and the projection P, of co(¢) & < e > onto
< e > are continuous and gf =pp,oProAoTy; and A =p,o P, o0 AoTy foralln,k €
N, we obtain that g and A} are continuous, so gp,h} € X' foralln,k € N. Let
B = (g3) and C = (h}). By (4.1) and (4.2) we have A = B+ C, B = (g;) €
(®(X),co(q)) and C = (h}) € (®(X),< e >). We will show that B € (E,co(q))
and C € (E,< e >). To do this, let z = (zx) € E. Then for @ = (ak) € foo, We
have |jarzk|| = |ak|l|zk|| < ||[Mzg|| ,where M = supk |ak|. Then the normality of E
implies that (axzk) € E. Hence (f7(2k))nk € (£, co(q) ® < € >), moreover, we have
(G2(@)nik € (@, col@), (B (2D € (@, < e >), and (FP(zr))nx = (97 (08)), s +
(h(zk)), - Since £y is normal containing ® and co(q) C co, it follows from Lemma
4.2 that (g (zk)), x € (boo, colg)) and (hi(zk)), ; € (feo, <€ >). This implies that
Bz € ¢o(g) and Cz € < e >, so we have B € (F,co(q)) and C € (F,< e >), hence
Ac (E, co(q)) ® (F, <e>). This completes the proof. O



214

Theorem 4.2. Letp = (px) and q = (qx) be bounded sequences of positive real numbers
and A = (fJ}) an infinite matriz. Then A : co(X,p) — c(q) if and only if there is a
sequence (fr) with fr € X' for all k € N such that

(1) Soe, Ifxl|M~YPe < oo for some M € N,

(2) m#(f,’c‘ — fx) =0 asn — oo for everym,k € N and

(3) Sope,mY |\ fr — fillr~YPx — 0asn,r — oo for each m € N.

Proof. If A € (co(X,p), c(q)) we have A € (co(X,p),co(q) & < e >) since c{g) = coq) & <
e >. It follows from Theorem 4.1 that A = B + C, where B € (co(X, p), co(q)) and
C € (co(X,p),<e>). Let C = (gf). Since (X) C co(X,p), we have (gp(z))32, €
< e > for all x € X and k¥ € N, which implies that g = g,':“ for all n,k € N,
let fx = gi. Then we have B = (f7 ~ [k € (co(X,p), co(q)). By [3, Theorem 0
(1)), we have co(g) = NZ=1Co(m1/ri)- It follows from Proposition 3.1(it) and (iv) that
(e (2~ fx), x € (co(X,p), co) for allm € N. By Wu [11, Theorem 2.4], we have
that the conditions (2) and (3) hold. Since C = (fx)nk € (co(X,p), < e >), we have
> e fx(zk) converges for all z = z € ¢o(X,p), hence (1) is obtained by Proposition
3.3.

Conversely, assume that there is a sequence (fx) with fr € X' for all k € N
such that conditions (1),(2) and (3) hold. Let B = (f} — fx)nk and C = (fi)n k. It is
obvious that A = B+C. By conditions (2) and (3), we obtain by Proposition 3.1(ii) and
(iv), and Wu [11, Theorem 2.4] that B € (co(X,p),co(g)). The condition (1) implies by
Proposition 3.3 that > po, fx(zx) converges for all z = (zx) € co(X,p), which implies
that C' € (co(X,p), < e >). Hence we have by Theorem 4.1 that A € (co(X,p),c(q)).
This completes the proof. O

Theorem 4.3. Let g = (qx) be bounded sequences of positive real numbers and A = (f})
an infinite matriz. Then A : £oo(X) — c(q) if and only if there is a sequence (fx) with
fr € X' for all k € N such that
(1) T Il < oo,
(2) mY (f2 — fr) 5 asn— oo for every k,m € N and
(8) for each m,r € N, 3., m/ || fr — fi||r}/Ps = 0 as k — oo uniformly on
ne N.
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Proof. If A € (£o(X),c(q)), then the condition (1) holds by Proposition 3.4. It follows
from Theorem 4.1 that A = B+C, where B € (£o(X), co(g)) and C € ({oo(X), < e>).
Using the same proof as in Theorem 4.2, there is a sequence (fx) with fr € X' for
all k € N such that C = (fi)nx and B = (fJ _fk)n,k € (£eo(X), co(g)). Since
co(q) = ﬂ,;";lco(m#k_) , we thus obtain (2) and (3) by Proposition 3.1(ii) and (iv), and
Wu [11, Theorem 2.9]. )

Conversely, assume that there is a sequence (fx) with fx € X' for all k € N
such that condition (1), (2) and (3) hold. Let B = (f{ — fe),, s, and C = (fi)nx- It is
obvious that A = B + C. By conditions (2) and (3), we obtain by Proposition 3.1(ii)
and (iv), and Wu [11, Theorem 2.9] that B € (£5(X), co(g)). The condition (1) implies
by Proposition 3.4 that Y . ; fx(zk) converges for all z = (zx) € £oo(X), which implies
that C € (£0o(X),< e >). Hence, we have by Theorem 4.1 that A € (£oo(X),c(q))-
This completes the proof. O

Theorem 4.4. Let p = (pr) and g = (qx) be bounded sequences of positive real numbers
and A = (f) an infinite matriz. Then A : (X, p) — c(q) if and only if there is a
sequence (fi) with fr, € X' for all k € N such that

(1) S N fellm/Px < oo for allm € N,

(2) vV (m/Px 2 — ) “S 0 asn — oo for every m,k,r € N and

(8) for eachm,r,s € N, Zj>kr1/q"||m1/pf f}‘—-f,-\lsl/pi — 0as k — oo uniformly
onn € N.

Proof. By Proposition 3.2 (v), £oo(X,p) = Un=1€eo(X)(m-1/rcy. It follows from
Proposition 3.1(1) and (iv), Proposition 3.4 and Theorem 4.3 that

Al (X,p) — cEq) — (ml/”"f,?) . (X)) —c(q) forall meN

n,

<= the conditions (1), (2), and (3) hold.

Theorem 4.5. Let p = (px) and g = (gx) be bounded sequences of positive real numbers
and A = (f) an infinite matriz. Then A : ¢(X,p) — c(q) if and only if there is a
sequence (fi) with fr € X' for all k € N such that

(1) S e, I feliM~YPe < oo for some M € N,
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(2) mYan(f2 — fi) Y 0as no oo for every m,k € N,
(8) Soo, mY@||f2 — fellr=YP — 0asn,r — oo for every m € N and
(4) Opey fo(@))o, €clq) forallz € X.

Proof. Since ¢(X,p) = co(X,p) + {e(z) : = € X} (Proposition 3.2 (i) ), it follows
from Proposition 3.1(iii) that A4 € (¢(X,p),c(q)) if and only if A € (co(X,p),c(q)) and
A € ({e(z) : z € X},c(g)) - By Theorem 4.2, we have A4 € (co(X,p),c(q)) if and only if
conditions (1)-(3) hold and it is clear that A € ({e(z) : z € X}, ¢(q)) if and only if (4)
holds. Hence, the theorem is proved. O

Wu (12, Theorem 2.7] has given a characterization of an infinite matrix A such
that A € (£(X,p),co) when pr > 1 for all k € N. By applying of Proposition 3.1(ii)
and (iv), Proposition 3.5 and Theorem 4.1, and using the fact that ﬁ$=1co(m1/pk), we

obtain the following result.

Theorem 4.6. Let p = (px) and q = (qx) be bounded sequences of positive real numbers
with px > 1 for allk € N and 1/px + 1/tx = 1 for all k € N, and let A = {f}}) be
an infinite matriz. Then A : (X, p) — c(q) if and only if there is a sequence (fi) with
frx € X' for all k € N such that

(1) 52 Il M~®=D < co for some M € N,

(2) mYan(fr — fr) Y 0 asn - oo forall mk e N and

(3) for eachm € N, (332, m/a||fi — fi|tr=(t«=1) - 0 asr — oo uniformly

on n &€ N.

By using [12, Theorem 2.6], Proposition 3.1(ii) and (iv), Proposition 3.6 and
Theorem 4.1, we also obtain the following result.

Theorem 4.7. Let p = (pr) and g = (qx) be bounded sequences of positive real numbers
with pr <1 for allk € N and A = (f]}) an infinite matriz. Then A : (X, p) — c(q) if
and only if there is a sequence (fi) with fr € X' for all k € N such that

(1) supg||fxl|M~YPx < 0o for some M € N,

(2) mM e (f2 — fi) Y, 0as n— oo for allm,k € N and
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(8) sup mPx/dn||f8 — fi||P* < oo for allm € N.
n,k

Theorem 4.8. Letp = (px) and q¢ = (qx) be bounded sequences of positive real numbers
and A = (f7) an infinite matriz. Then A : cy(X,p) = c(q) if and only if there is a
sequence {fx) with fi € X' for all k € N such that '

(1) SRl < o0,

(2) mM 4 (sV/Pr P — £1) 25 0 as n — oo for every m,k,s € N and

(3) %Zl‘f’:l mt/n||st/PefB — fill — 0asn,r — oo for each m,s € N.
Proof. By Proposition 3.2(ii), we have ¢o(X,p) = US2,¢0(X)4-1/xy - By Proposition
3.2(i) and (iv) and Theorem 4.2, we have

A:co(X,p) = clg) &= A UL co(X) (5-1/piy = ¢(q)
> A:co(X)-1/e) 2 c(g), forall s e N

= (s””"f;?)nk cco(X) = c(g),forallse N

<= the conditions (1), (2) and (3) hold. O

Theorem 4.9. Let p = (px) and ¢ = (gx) be a bounded sequences of positive real
numbers and v > 0, and let A = (f;') be an infinite matriz. Then A : E.(X,p) = c(q)
if and only if there is a sequence (fi) with fr € X' for all k € N such that
(1) S5, Ifxllm'/Px < oo for all m € N,
(2) vt an (mt/Pegr/Pe R — i) Y 0asn— oo for every m, k,r € N and
(3) for eachm,r,s € N, Zrl/q"I|m1/pijr/1’ff;-‘—fj||sl/”i — 0ask — oo uniformly onn €
N. i
Proof. By Proposition 3.2(iii), we have E.(X,p) = KOO(X,p)(k_r/pk). By Proposition
3.1 (iv) and Theorem 4.4, we have

A E(X,p) = c(q) <= A Loo(X, D) (h-rrmiy — €(g)
— (k””" f,?) . £oo(X,p) — c(q)

n,K

<= the conditions (1), (2) and (3) hold. a
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In the last theorem, we give a characterization of a matrix transformation from
the space F,(X,p) into ¢(g). It is known by Proposition 3.2 (iv) that F.(X,p) =

X, p)(kr/pk). By Proposition 3.1(iv), for a scalar sequence space F and an infinite
matrix A = (f}), we have

A:F(X,p) = E < (k““’“’k f,?) _AX,p) = B,

So we the following theorem is obtained by applying Theorem 4.6.

Theorem 4.10. Letp = (px) and ¢ = (qx) be bounded sequences of positive real numbers
with pgy, > 1 forallk € N, 1/px +1/tx =1 forallk € N andr > 0, and let A = (f7)
be an infinite matriz. Then A : F.(X,p) — c(q) if and only if t.here is a sequence (fi)
with fr. € X' for all k € N such that

(1) 02, I felltrk—rte/Pe M~ =1 < oo for some M € N,

(2) mYa (k=r/Pefr — f1) % 0 as m— oo for all m,k € N and

(8) foreachm € N, 3 oo  mte/an||k=r/Pe fi— fi||ter— =1 — g asr — oo uniformly onr
N.
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MATRIX TRANSFORMATIONS ON THE NAKANO
VECTOR-VALUED SEQUENCE SPACE

CHANAN SUDSUK AND SUTHEP SUANTAI

Abstract: In this paper, we give the matrix characterizations from any F K-space of
vector sequences with AK property into any F'K-space of scalar sequences, and by ap-
plying this result we also obtain necessary and sufficient conditions for infinite matrices
mapping the spaces £(X, p) into Maddox sequence spaces co(qz and £(q) where p = (px)
and ¢ = (gx) are bounded sequences of positive real numbers such that px > 1 for all
k€ N.

1. Introduction: Let (X,||.||) be a Banach space and p = (px) a bounded sequence of
positive real numbers. Let N be the set of all natural numbers, we write z = (i) with
zx in X for all K € N. The X —valued sequence spaces co(X,p), c(X,p), £o(X,p), and
¢(X,p) are defined by

5= (o) 5 i [l =0},

.) : lim ||z — a||P* = 0 for some a € X} ,
k—oc

z = (xx) : sup ||zk||P* < oo} ,and
k

U X,p) = {a: = (xg) : Z lzk||P* < oo} .
k=1

When X = K the scalar field of X ,the corresponding spaces are written as co(p), ¢(p), £(p),
and £.(p),

respectively. The first three spaces are known as the sequence spaces of Maddox. These
spaces were introduced and studied by Simons[7] and Maddox[4, 5]. The space £(p)
was first defined by Nakano[6] and is known as the Nakano sequence space, and the

space £(X,p) is known as the Nakano vector-valued sequence space. Choudhur(1l] gave
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necessary and sufficient conditions for an infinite matrix of continuous linear operators
which maps the vector-valued sequence space co(X) into co(Y), £1(X) into £o(Y) and
£,(X) into £,(Y) where Y is a Banach space. Grosse-Erdmann[2] investigated the
structure of the spaces co(p), ¢(p), £(p) and £o(p) and the problem of characterizing a
matrix that maps a sequence space of Maddox into another such space is studied by
them in[3]. Suantai[9, 10, 11] gave the matrix characterizations from £(X,p) into the
space co(Y,p), £xc(q) and F; in the case pp < 1 for all k € N and s > 0, where Y is a
Banach space. Wu[12] gave characterizations of matrix transformations from the space
£(X,p) into the space ¢y and £oo(g). The characterizations of matrix transformations
from the space £(X,p) into £(q) and co(g) can not be expected to be characterized
completely in term of Toeplitz conditions, but however we can give characterizations of
these matrix transformations in term of other conditions. Even the classical pair (£, £4)
is an open problem when 1 < p, ¢ < o0, and (p, q) # (2,2). Also, in the case (¢(p), £(q))
is an open problem if gx < 1 for all k € N.

2. Notation and Definitions: Let (X, ||.||) be a Banach space. The space of all
sequences in X is denoted by W (X)) and ®(X) denote for the space of all finite sequences
in X.

A sequence space in X is a linear subspace of W(X). Let E be an X- valued
sequence space. For x € E we write z = (z¢),k € N. For z € X and k € N,we let
e(*)(z) be the sequence (0,0,0, ...,0, 2,0, ...) with z in the k** position. For a fixed scalar

sequence u = (u) the sequence space E, is defined by
E, ={z = (zx) € W(X) : (ugzx) € E}.

Suppose that the X-valwed sequence space F is endowed with some linear topology

7. Then E is called a K-space if for each n € N the nt* coordinate mapping p,, :

F — X, defined by p,(z) = zn, is continuous on E. If, in addition, (£, 7) is an

Fre'chet(Banach, LF—, LB—) space, then FE is called an FK—(BK—,LFK—,LBK—)

space. Now, suppose that E contains ®(X). Then E is said to have property AB

if the set {ki e®(zx) : n € N} is bounded in E for every z = (z3) € E. It is said
=1

n
to have property AK if > e*(zx) = 2 € F as n — oo for every z = (2x) € E. It
k=1
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has property AD if ®(X) is dense in E. Let A = (f2) with f in X’,the topological
dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-
valued sequences. Then A is said to map F into F, written A : E — F if for each
z = (zx) € E,An(z) = i i (zx) converges for each n € N and if the sequence

k=1
Az = (A,(z)) € F. We denote by (F, F) the set of all infinite matrices mapping E into

F. If u = (ux) and v = (vg) are scalar sequences, let-

u(EaF)v = {A = (fl?) : (unkal?)n,k € (E!F)}

If ux, # 0 for all k € N,we write u™! = (1).

3. Some Auxiliary Results: We start with the following useful results that will

reduce our problems into some simpler forms.

Proposition 3.1 Let E and E,(n € N) be X-valued sequence spaces, and F' and

F,(n € N) scalar sequence spaces, and let p and v be scalar sequences with ux #
O,v #0 for all k € N. Then

@) (B, ) Fo)= 0 (B,Fy) and
(11) (Eu,F)— v(E F) -1
Proof (i) and (ii) are immediately obtained by the definition. O

Proposition 3.2  Let (fx) be a sequence of continuous linear functional on X and
p = (pk) a bounded sequence of positive real numbers with pr > 1 for all k € N. Then
3 fr(zk) converges for all x = (xzg) € £(X,p) if and only if

k=1

o0
S Il M= < oo for some M € N,
k=1

1 1
wh,erep—k+g—1forallk€N.

Proof. Suppose that Z I frllts M~ —1 < oo for some M € N.
Then we have that for each xT = (xk) € ¢(X,p),
S 1)l < kE | fill M5 M3 |||

=1

k=1
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oo t (o) (=]
< 52 (1Al M7+ M) = 35l M= 1 M 5 il < oo
k=1 k=1 k=1

[o.o]
which implies that > fix(zx) converges.
k=1

On the other hand, assume that Y fi(zx) converges for all z = (xx) € (X, p).

k=1

For each z = (zx) € £(X,p), choose scalar sequence (tx) with |tx| = 1 such that
Tx(txzi) = | fr(zk)| for all k € N. Since (txzx) € £(X,p), by our assumption, we have

> fr(txzk) converges, so that
k=1

> I fx(zr)] < oo for all z = (zx) € (X, p).

k=1

We want to show that there exists M € N such that
o
Dl fill* M= < oo
k=1

If it is not true, then

(e o]
Z“fkﬂt"m*(t"_l) = oo, for all m € N.
k=1

And (3.2) implies that for each kg € N.

Z || Fellt=m == = oo, for all m € N.
k>kg

By (3.2). let y = 1, then there is a k; € N such that

D elfrmy 7Y > 1.

k<k

By (3.3), we can choose m3 > m; and my > 22 and kg > ki, such that

S lfeliemy Y > 1

k1 <kSk2

(3.1)

(3.2)

(3.3)
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By continueing in this way, we obtain sequences (k;) and (m;) of positive integers such
that 1 = kg < ky < ks < ...and m; < mg < ...,m; > 2¢ and

S flfelltemy®TY > 1

ki1 <k<k;

Choose zj in X with ||zg| = 1 such that for alli € N,

S fel)lmy ™D > 1 foralli € N.
ki1 <k<k;

Let a; = > |fk(:z:k)|t’=mi_(t’°—1).
ki—1<k<k;

Put y = (k). v = a; 'm; * 7| fi(zg)|* Ly, for all k, kioy < k < ki

For each 7 € N, we have

_ - | Pk _ _
O L e Y e T D DR L a1
ki 1<k<k; ki _1 <k<k; ki_1<k<k;
< Y q7mImI Y ) = e7tmite = mit < L

ki1 <k<k;
So we have that

oo 4
Z“yk”p" < ZE < oo.
k=1 g=1

Hence y = (yx) € 4(X, p).

For ea_ch 1 € N. we have

S el = X0 |l T ()| )

ki1 <k<k; ki1 <k<k;

= Y a7 tmy Y f(a) |

ki_1<k<k;

- —(tr—1 \
a7 Y mi T (e
ki1 <k<Lk;
=1.

o0
So that > |fx(yx)| = oo, which contradicts with (3.4). The proof is now complete. O
k=1

4. Main Results: Now, we turn to our objective. We begin with giving charac-
terizations of matrix transformations from an F'K-space of vector sequences with AK

property into an F K-space of scalar sequences.
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Theorem 4.1.1 Let E C W(X) be an FK-space with AK property and F an FK-
space of scalar sequences. Then, for an infinite matric A = (ff}),A: E — F if and only
if

(1) for eachn € N, io: fi(zx) converges for all z = (zx) € E,

(2) for each k € N, ffé(z));';l € F forallz€ X, and

(3) A:®(X)— F is continuous when ®(X) is considered as a subspace of E.

' 0o
Proof. Assume that A: E — F. Then we have that for any z = (z¢) € E, > ' (zx)
k=1
converges for all n € N, so (1) holds. Since €f(z) € FE for all k € N and all z € X, we

obtain that for each k € N,
(fR(2))52, = Ae*(2) € F,

hence (2) holds. Since F and F are FK-spaces, by Zeller’s theorem, A : B — F is
continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

00 oo

Az = (Zf,?(xk)) e W, for all x = (z) € E.
k=1 n=1

It follows from (2) that Ae*(z) € F, for all k € N and 2z € X, which implies that

A:d(X)— F. By (3), we have A: ®(X) — F is continuous. Let z = (zx) € E. Since

E has the AK property, we have

n
z = lim Zek(zk).
n—o0
k=1

n oo .
Then (E e* (:ck)> is a Cuachy sequence in E. Since A : ®(X) — F is continuous
k=1 n=1

n oo
and linear, it implies that (Z Ae* (a:k)> is a Cauchy sequence in F. Since F is
k=1 n=1
0

complete, we have (Z AeF (:ck)> converges in F'. Since F' is a K-space, it implies
k=1

n=1

o0 (o]
that (Z f,?(:z:k)> € F, so that Az € F. This shows that A: E — F. O
k=1 n=1
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It is known that the space £(X,p) is an F K-space with AK property under the

paranorm
1

g(x) = (ZHMH”) , when M = max {1,Slltp Dk}

By Proposition 3.2 and Theorem 4.1.1, we have the following theorem.

Theorem 4.1.2 Let p = (px) and ¢ = (gx) be bounded sequences of positive real
numbers such that pr > 1 for all k € N, and A = (fi}) an infinite matriz. Then
A:4(X,p) — £(q) if and only if

(1) for each n € N there exists M, € N such that

Z”fn ||t M7 D < o0, wherei+l —lfor allk € N,
k=1 Pk

(2) for eachk € N and z € X, Z]fk( )9 < o0, and

(8) for each r € N there exists M € N such that

> Ml < 7= SIS A <=

keK n=1 keK

for all z = (zx) € ®(X) and all finite subsets K of N.

Now, we have the sufficient conditions for an infinite matrix A = (f') that maps
(X, p) into £(q).

Theorem 4.1.3 Let p = (px) and g = (qx) be bounded sequences of positive real numbers
such that px > 1 and qr > 1 for all k € N, and A = (fi}) an infinite matriz. Then
A X,p) — £(q) if the following two conditions hold;

(1) for each n € N there exists M, € N such that

ZHf” [|B A7 (b= 1)<oowherepi—f-—l——l for all k € N and
k=1
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(2) there exists My € N such that

supZ(anan ) < o0,

n=1 \keK

where supremum is taken over all finite subsets K of N.

Proof. Suppose that the two conditions hold. Then by Proposition 3.2 the condition
(1) implies the condition (1) of Theorem 4.1.1. By the condition (2), we have that there
exists My, L € N such that

z (znf:uMﬁ) <1 (@)

keK

for all the finite subsets K of N. Then, for each z € X — {0} we can choose M; > My
such that Mi||z|| > 1. Then for each k& € N, we have by (4.1) that

< - sz
> (nfk My ™ M ||zn) "
=2

gn
(nfk 1M Mluzn)

)
n=1

_ 1\
< onllP S (U1 ) 8 = s

n=1

< (Mlllzn)ﬁL

* < 00.

So, we have that (f7(z))o_, € £(g) for all z € N and k € N. Hence the condition
(2) of Theorem 4.1.1 holds. We shall now show that the condition (3) of Theorem
4.1.1 is satisfied. To show this, let € > 0 and z = (zx) € ®(X). Recall that ||z|| =

N
o8] Af

(Z ||xk||p’=) where M = sup ¢,. If ||z|| < 1, then for all k € N we have
k=1 n

M
lzxll < lizi[?x < lz[]- (4.2)
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Since z = (z) € ®(X), there is a finite subset Ko of N such that

> fi(mk) = fi(zx) for all m € N. (4.3)
k=1

keKy

So, we have by (4.1), (4.2), and (4.3) that

|Az|| = (Zl‘;f,?(w")

n=1 k=1

o0 &
- (D )y f;?(:vk)l"")

n=1 ke Kp

o é ’
< ( (> ||f;?||||$k||)q")

n=1 keKp

< (Z( S pIM, *Ma"l?nzu)%)

n=1 k€Kp

(A

) L e
Mg il (Y IR IM, )"")

n=1 k€Kjq
< Mo(||zl|L)?, ,G = sup gn. (4.4)

It implies by (4.4) that A : ®(X) — £(g). Now choose § = min{1, 7(3-)%}. It follows
by (4.4) that

lz|| < 6 = ||Az| < e.

It follows that A : ®(X) — £(q) is continuous. Hence, by Theorem 4.1.1, we have that
A:4(X,p) — £(q). O

By using the previous auxiliary results and Theorem 1.6 in [12], we obtain neces-

sary and sufficient conditions for infinite matrices mapping the space £(X, p) into co(gq).

Theorem 4.1.4 Let p = (px) and ¢ = (qx) be bounded sequences of positive real
numbers such that pr, > 1 for all k € N, and A = (f7) an infinite matriz. Then
AU X,p) — co(q) if and only if

(1) for all m,k € N, mﬁf,;1 — 0 weakly as n — oo, and
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(2) for each m € N,

[e @]
t
Zma%||f£||tk7‘_(t"_l) — 0 unsformly forn > 1 as T — oo,

k=1
1 1 _
wherep—k+g—1forallkeN.
o]
Proof. By Theorem 0 in [2], we have co{q) = S =y By Proposition 2.1(i) and
s=1 Uis9r
(if) and Theorem 1.6 in [12], we have
o0
A UX,p) > colg) = A:{X,p) > ﬂ Cotm)
=1

> A {(X,p) —)co( & forallme N

= (m#f,?) ; 1 X,p) > co, forallme N

]

<= the conditions (1) and (2) hold. O
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ABSTRACT. We give the matrix characterizations from Nakano vector-valued sequence
space £(X,p) and F,(X,p) into the sequence spaces Er, o, £,(q), bs, and cs, where
p = (pr) and q = (4x) are bounded sequences of positive real numbers such that py > 1
forall k € N and v > 0.
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1. Introduction. Let (X,| - 1) be a Banach space, r > 0 and p = (px) a bounded
sequence of positive real numbers. We write x = (xi) with xx in X for all k € N. The
X-valued sequence spaces co(X,p), c(X,p), = (X,p), £(X,p), E-(X,p), Fr(X,p), and
£ (X,p) are defined as

colX.p) = {x = (xi) : lim x| = 0},

c(X,p) = {X = {xv) :Pmek"aHpk =0, for some aex},
(X, p) = {x = (xk):SL,:pkaH”“ < oo},

00X, p) = = () 3 Il < o],

k=1 (1.1)
P

Er(‘X,p) = {x = (x) :s%p% < oo},
FrXp) = fx = (a) s SR el < o,

k=1

74

2. X,p) = {x = (k) :sm:pllxknn”ﬂk},
n=1

When X = K, the scalar field of X, the corresponding spaces are written as co(p),
c(p)Le(p), £(p), E-(p), Fr(p), and £, (p), respectively. The spaces co(p), c{p), and
£ (p) are known as the sequence spaces of Maddox. These spaces were first intro-
duced and studied by Simons [7] and Maddox [4, 5. The space £(p) was first defined
by Nakano [6] and it is known as the Nakano sequence space and the space £(X,p)
is known as the Nakano vector-valued sequence space. When py = 1 forallk € N,
the spaces E,(p) and F,(p) are written as £, and F,, respectively. These two
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sequence spaces were first introduced by Cooke [1]. The space £, (p) was first defined
by Grosse-Erdmann [2] and he has given in [3] characterizations of infinite matrices
mapping between scalar-valued sequence spaces of Maddox. Wu and Liu [10] gave
necessary and sufficient conditions for infinite matrices mapping from co(X,p) and
£=(X,p) into co{q) and £.(q). Suantai [8) has given characterizations of infinite ma-
trices mapping £(X,p) into £, and £, (q) when py <1 for all k € N and he has also
given in [9] characterizations of those infinite matrices mapping from £(X, p) into the
sequence space E, when p, < 1 forall k e N.

In this paper, we extend the results of [8, 9] in case pi > 1 for all k € N. Moreover,
we also give the matrix characterizations from £(X, p) and F, (X, p) into the sequence
spaces bs and cs. ,

2. Notations and definitions. Let (X,[| - [|) be a Banach space, the space of all se-
quences in X is denoted by W (X), and #(X) denotes the space of all finite sequences
in X. When X = K, the scalar field of X, the corresponding spaces are written as w
and <.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence
space. For x € E and k € N, x; stands for the kth term of x. For k € N, we denote by
e, the sequence (0,0,...,0,1,0,...) with 1 in the kth position and by e the sequence
(1,1,1,...). Far x € X and k € N, let e¥(x) be the sequence (0,0,...,0,x,0,...) with
x in the kth position and let e(x) be the sequence (x,x,Xx,...). We call a sequence
space E normal if (tixy) € E for all x = (xx) € E and t, € K with {tx] = 1 for all
tx € N. A normed sequernce space (E, |« ||} is said to be norm monotone if x = (xy),
¥ = () € E with |lxkll < llykll for all k € N we have (x| < ||v]l. For a fixed scalar
sequence u = (), the sequence space E, is defined as

Ey={x e W(X): (nxx) € E}. (2.1)

Let A = (f7) with f]' in X', the topological dual of X. Suppose that E is a space
of X-valued sequences and F a space of scalar-valued sequences. Then A is said to
map E into F, written by A : E — F, if for each x = (xi) € E, An(x) = Spoy f{x)
converges for each n € N, and the sequence Ax = (A, (x)) € F. Let (E,F) denote the
set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology
7.Then E is called a K-space if for each k € N, the kth coordinate mapping px : E — X,
defined by pi(x) = xy, is continuous on E. If, in addition, (E,T) is a Fréchet (Banach)
space, then E is called an FK- (BK-) space. Now, suppose that E contains ®(X). Then £
is said to have property AB if the set {3¢_; e*(x;) : n € N} is bounded in E for every
x = (xx) € E. Itis said to have property AKif Y}_, e*{xy) — x in E as n — « for every
x = (x) € E. It has property AD if (X) is dense in E.

[t is known that the Nakano sequence space £(X, p) is an FK-space with property AK
under the paranorm g(x) = {3 p_; llxx1Px)!M, where M = max{1,sup; pi}. If pi > 1
for all k € N, then £(X,p) is a BK-space with the Luxemburg norm defined by

llxe)il = mf{e >0: 3 |[X
k=1

a1
£

<
J’. .

Ia
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3. Main results. We first give a characterization of an infinite matrix mapping from
{(X,p) into E, when p; > 1 for all k € N. To do this, we need the following lemma.

LEMMA 3.1. LetE be an X-valued BK-space which is normal and norm monotone and
let A = (ff) be aninfinite matrix. Then A : E = E, if and only if sup, Y g, | ff (x| /n”
< oo for every x = (xy) € E.

PrOOE. If the condition holds true, it follows that

ol x x
Suple_li;i'( k) < sup Z|f"( x) | <o
n

"kl

(3.1)

for every x = (xi) € E, hence A:E ~—~ E,.

Conversely, assume that A : E — E,. Since E and E, are BK-spaces, by Zeller's
theorem, A : E — E, is bounded, so there exists M > 0 such that
«© n
sup M <M. (3.2)
neN nr
s
Let x = (xi) € E be such that || x|| = 1. For each n € N, we can choose a scalar sequence
(te) with [tg] =1 and f7} (texk) = | f (xx)| for all k € N. Since E is normal and norm
monotone, we have (tyxy) € E and || (tyxk) || < 1. It follows from (3.2) that

Z LACS IR b>S¥ ST 53
- nr
which implies
sup Z L () | <M. (3.4)
nENk =1 nr
It follows from (3.4) that for every x = (xx} € E,
sup Z |fn "” < Mixy. (3.5)
neN ;o)
This completes the proof. 0

THEOREM 342. Let p = (pr) be a bounded sequence of positive real numbers with
pr>1foralke Nandl/pe+1/qr =1 forallk € N, and let r = 0. For an infinite
matrix A = (f'), A € ({(X,p),E,) if and only if there is mo € N such that

sup > | fZ1*n T me " < o, (3.6)
kel

PROOFE. Let x = (xy) € £(X,p). By (3.6), there are my € N and K > 1 such that

Z || %nTaem%* <K, VneN. (3.7)

Note that for a,b = 0, we have

ab < aPk + b%, (3.8)
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It follows by (3.7) and (3.8) that for n e N,

-r

> (xx)
k=1

2. (myt - moxi)
k=1

[\/]a

(n " mg RN Qlmoxel))
i

It

! (3.9)

iA
[1e

nT g YA + mf Z fei P

k=1

oo
mg Z |lxx||P*, where o= sup py.
k=1 k o

. Hence supn~TI 2., fit(xk)) < o, s0 that Ax € E,.
For necessity, assume that A € (£(X, p), E,}. For each k € N, we have sup,, n™"{ 7' {x}|
< oo for all x € X since e*}{x) & £(X, p). It follows by the uniform bounded principle
that for each k € N there is Cp > 1 such that

supn || ) = Cr. (3.10
n

Suppose that (3.6) is not true. Then
sup > N fA ¥ n T Um % =0, YmEN. 3.11)
o=l

For n € N, we have by (3.10) that for k,m € N,

S il nrom s = Sl wsimcns 5 g o roms
i=1 -

v (3.12)
Z m4 e 3 |l arame,
i=1 ik
This together with (3.11) give
sup 3 |77V em v =, vkmen. 3.13)
" Jj>k
By (3.13) we canchoose O = ko <ky <ks <---,my <my <---, ;>4 and a
subsequence (n;) of positive integers such that foralli= 1,
I m % > 2, (3.14)

ki1<jsk;

For each i € N, we can choose x; € X with ||x;}l =1, for k;_1 < j < k; such that

S| n Om s 20 (3.15)

ki_y<j=ky

——
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For each i € N, let F;: (0,0} — (0, 0) be defined by

FOD= 3 |f [ Yn e, 3.16)
kiy<f=k; -

Then F; is continuous and non-increasing such that F{(M) — 0 as M — oo, Thus there
exists M; > 0 such that M; > m; and

FM) = 5 || Y M = 2t (3.17)
ki <j=k;
Put
s —{gi— —ra: iy q;-1 :
= (J’j)' ¥j =4ﬁ'Ml- aj-b irqjlpj|f;t‘(Xj)| ¢ xjfor kg < j =k {(3.18)
Thus

o0 oo

—ipiag Pilai-1Y_-vdj i pila;-1)
Z |yJHpJ_Z Z 47iPi M, Pjld; n, quf}‘a(xJ_)| EALY}
j=1

<=k

4t S M )Y

ki_y<j=kq

IA
Mg ||

-~
il
—

(3.19)

1t
e
B
L
N

I
—

If
M s
2

]

Y

Thus ¥ = (¥;) € £(X, p). Since £(X, p) is a BK-space which is normal and norm mono-
tone under the Luxemburg norm, by Lemnma 3.1, we obtain that

SUPZ Ifk,(lym (3.20)
Rog=1
But we have
& |f, m - If”*(y,)l o] yJ)I
Z up 3, = >
f=1 J=1 l ki 1<f=k 1
-(q;-1) fflq tpi+) | a4
—= 4 tM 7 JiFy i
sutlpkl gSk! x|
=sup. > I(4-‘:\4{‘“1'‘“n;’“J|f;='(xj)|“J’ (3.21)
i-1<i=k;
ssup 3 (G|
ki 1 <Jsk;

> sup2 = », because M; > 4%
i

This is contradictory with (3.20). Therefore (3.6) is satisfied. O
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THEOREM 3.3. Let p = (pi) be a bounded sequence of positive real numbers such
thatpr > 1 forallke N, 1/py+1/gqe =1 forallk e N, = 0 and s = 0. Then for an
infinite matrix A = (f!), A € (F-(X,p), Es) if and only if there is mg € N such that

sup 3. (k~"/Pel| f1]| e n-stemg ) < oo, (3.22)
L )

PROOF. Since Fr(X,p) =4£(X,p)rire,, it is easy to see that
A€ (F(X,p),Es) = (k777 1), € (8(X,p)Es). (3.23)

By Theorem 3.2, we have (k~7/Px fl'}, , € (£(X,p)E;) if and only if dhere is mg € N
such that

sup > (k“”qk”’kﬂffHq"n““kma“") < 0. (3.24)
k=1

Thus the theorem is proved. m|

Since Egq = ¥, the following two results are obtained directly from Theorems 3.2
and 3.3, respectively.

COROLLARY 3.4. Let p = (py) be a bounded sequence of positive real numbers with
pr>1forallkeNandlet 1/pr+1/qr =1 for all k € N. Then for an infinite matrix
A= (f), Ae ((X,p),{x) if and only if there is mgy € N such that

sup DN me ™ < oo, (3.25)
k=1

COROLLARY 3.5. Let p = {py) be a bounded sequence of positive real numbers with
vr>1 forallk e N andlet 1{pr+1/qx =1 for all k € N. Then for an infinite matrix
A= (), A {F(X,p), L) if and only if there is mg € N such that

sup Z (k—rﬂk.’ﬂk”f;l”ﬂkmaqk) < oo, (3.26)
nokel

THEOREM 3.6. Let p = (py) and q = (qi) be bounded sequences of positive real
numbers with py > 1 forallk e N and let 1{py + 1{t, = 1 for all k € N. Then for an
infinite matrix A = (fi), A € ({(X,p),L.(q)) if and only if for each v € N, there is
m, € N such that

sup > vi/an | f1]%my ™ < oo, (3.27)
mk oy

PROOF. Since £.(q) = N7 1 €u 114y, it follows that
A€ (8(X,p),£ul@) = A (8(X, ) oy, VT EN. (3.28)

It is easy to show that for r e N,

A€ (8X.p) darar,) <= (PO 1), € (X, p), 0 ). (3.29)
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We obtain by Corollary 3.4 that for » € N, (r1/an "), € (£(X,p),€=») if and only if
there is m, € N such that

sup 3 ytelan|| £ %t < oo, (3.30)
k=1

Thus the theorem is proved. O

THEOREM 3.7. Let p = (px) and q = {qx) be bounded sequences of positive real
numbers with p, > 1 forallk e N and let 1/py + 1/t = 1 for all k € N. For an infinite
matrix A = (f'), A € (Fr(X,p),£.(q)) if and only if for each i € N, there is m; € N
such that

sup Z itkr"ink—T-'-kak”f,‘:l”tkmi_tk < oo, (3.31)
nok=1

PROOF. Since Fr(X,p) =€(X,p) ., it implies that
Ac(F(X,p) L,.(@) = (K77 f7) € (B(X,p). L (). (3.32)

It follows from Theorem 3.6 that A € (F (X, p),£..(q)) if and only if for each i € N,
there is m; € N such that

sup Z itk!anvrtkqu[f’zl”fkm;fk < 0o, (3.33)
nok=1 a
THEOREM 3.8. Let p = (py) be bounded sequence of positive real numbers with

pr>lforallneNandletl/pr+1/q =1 for all k € N. Then for an infinite matrix
A=(f", Ae(£(X,p),bs) if and only if there is mg € N such that

o n ax
sup > || > fill me®™ < o (3.34)
" ok=1]]i=1
Proo¥. For an infinite matrix A = {f{'), we can easily show that
. n
Ae (8(X,p).bs) = (Zf,ﬁ) € (#(X,p), £=). (3.35)
i=1 n.k

This implies by Corollary 3.4 that A € (£(X,p),bs) if and only if there is mp € N
such that
a

my®™ < oo (3.36)

o«
sup >
" k=1 O

S A
i=1

THEOREM 3.9. Let p = (py) be a bounded sequence of positive real numbers with
pe>1forallkeNandlet 1/py+1/qr =1 for all k € N, Then for an infinite matrix
A= (M, Ae€(X,p),cs) if and only if

(1) there is mg € N such that sup, i | X1 fill%mg® < co and

(2) foreachkeNandx € X, 3., fir(x) converges.
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PROOF. The necessity is obtained by Theorem 3.8 and by the fact that e (x) €
£(X,p) forevery k e N and x € X.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we have A: £(X,p) — bs.Letx =
{xx) € £(X,p). Since £(X,p) has the AK property, we have x = lim, e > p.; €® (x1).
By Zeller's theorem, A : £(X,p) — bs is continuous. It implies that

n
. k)
Ax = gﬂgm fxr). (3.37)

By (2), Ae™ (x}) € ¢s for all k € N. Since ¢s is a closed subspace of bs, it implies that
Ax € cs, thatis, A: €(X,p) — cs. ]

’
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The g-dual of a vector-valued sequence space is defined and studied. We show that if an
X-valued sequence space E is a BK-space having AK property, then the dual space of E
and its B-dual are isometrically isomorphic, We also give characterizations of f-dual of
vector-valued sequence spaces of Maddox £(X,p), £ (X.p), co(X,p), and c{X,p).
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1. Introduction. Let (X, ||-||) be a Banach space and p = (p;) a bounded sequence
of positive real numbers. Let N be the set of all natural numbers, we write x = (x3)
with x in X for all k € N. The X-valued sequence spaces of Maddox are defined as

colX,p) = § = () : im a7 = o

c(X,p)= {x = (xk):Emek—all”“ =0 for some a EX};

(1.1)
(X, p) = {x = (xk):SIipkaH"" < oo};

{{X,p) = {x ={x¢): i lixel P < w}_

k=1

When X = K, the scalar field of X, the corresponding spaces are written as ¢co(p),
elp), £a(p), and £€(p), respectively. All of these spaces are known as the sequence
spaces of Maddox. These spaces were introduced and studied by Simons [7] and
Maddox [3, 4, 5]. The space £{p) was first defined by Nakano [6] and is known as
the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the
spaces co(p), ¢{p), £(p), and £.(p) and has given characterizations of f-dual of
scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Kothe dual of the vector-valued sequence
space £,[X], where £,[X], 1 < p < o, is defined by

-t

£p[X] = {x = (xp): i | F{xk)|F < oo for each f EX'}. (1.2)
k=1

In this paper, the B-dual of a vector-valued sequence space is defined and studied
and we give characterizations of 8-dual of vector-valued sequence spaces of Maddox
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L£(X,p), €= (X, p), colX,p), and ¢ (X, p). Some results, obtained in this paper, are gen-
eralizations of some in [1, 3].

2. Notation and definitions. Let (X, - ||) be a Banach space. Let W (X} and &(X)
denote the space of all sequences in X and the space of all finite sequences in X,
respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-
valued sequence space. For x € E and k € N we write that x, stand for the kth term
of x. For x € X and k € N, we let e'¥ (x) be the sequence (0,0,0,...,0,x,0,...) with x in
the kth position and let e(x) be the sequence {x,x,x,...}. For a fixed scalar sequence
u = (uy), the sequence space E, is defined as

Ey ={x = (x1) e W(X): (ugxy) € E}. ’ (2.1}

An X-valued sequence space E is said to be normal if (yy) € E whenever |yl <
ixell for all k € N and (x;) € E. Suppose that the X-valued sequence space E is
endowed with some linear topology 7. Then E is called a K-space if, for each k € N,
the kth coordinate mapping pi : E — X, defined by pe{x) = xy, is continuous on E. In
addition, if (E,T) is a Fréchet (Banach) space, then E is called an FK-(BK)-space. Now,
suppose that E contains $(X), then E is said to have property AK if 31, e (xy) — x
in E as n — oo for every x = {(xy) € E.

The spaces co(p) and c(p) are FK-spaces. In ¢o(X,p), we consider the function
g(x) = supy [xpftPx'™ where M = max{1,sup, px}, as a paranorm on co{X,p), and
it is known that ¢c¢(X, p) is an FK-space having property AK under the paranorm g
defined as above. In £(X, p), we consider it as a paranormed sequence space with the
paranorm given by |(x )l = (X 7=, xellP5)VY¥ 1t is known that £(X,p) is an FK-space
under the paranorm defined as above.

For an X-valued sequence space E, define its Kothe dual with respect to the dual
pair (X, X"} (see {2]) as follows:

E*lixxy = {(fk) CX': D | felxw)| <o ¥x = (xx) eE}. (2.2)
k=1
In this paper, we denote E*{x x; by E® and it is called the &-dual of E.
For a sequence space E, the B-dual of E is defined by

EE = {(fk) cX': i Jr(xx) converges ¥V (x3) EE}. 2.3)
k=1

It is easy to see that E* c EF.
For the sake of completeness we introduce some further sequence spaces that will
be considered as f-dual of the vector-valued sequence spaces of Maddox:

My(X,p) = {x = (xi) : D ||xk[{M~/Px < co for some M € N};
k=1

Mo (X,p) = {x = () D lxalntPr <o Ve N};
k=1
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£o(X,p) = {xz(x;c) : D ||xk||P*M 7% < oo for some M € N}, P> 1 YkeEN;
k=1

cs[X'] = {(fk) CX': > fr(x) converges ¥ x EX}.
k-1

(2.4)

When X = K, the scalar field of X, the corresponding first two sequence spaces are
; written as My(p) and M, {p), respectively. These two spaces were first introduced by
i Grosse-Erdmann [1].

3. Main results. We begin by giving some general properties of 8-dual of vector-
valued sequence spaces.

PROPOSITION 3.1. Let X be a Banach space and let E, Ey, and Ex be X-valued se-
quence spaces. Then
(i) E*c E£,
(i) IfE, < E;, then E5 < EF.
(iii) IfE = Ey +Ea, then E8 = EP nEE.
(iv} If E is normal, then E* = EF,

PROOF. Assertions (i), {ii), and (iii) are immediately obtained by the definitions.
To prove (iv), by (i), it suffices to show only that E# ¢ E* Let (fx) € Ef and x =
{xy) € E. Then 2.7., fi{xk) converges. Choose a scalar sequence (ty) with |tx| = 1
and fi(tixe) = | fx(xi)i for all k € N, Since E is normal, (f3xp) € E. It follows that
> -1 1 fx(xp)) converges, hence (f) € E®. 0

If E is a BK-space, we define a norm on Ef by the formula

> felxk)

k=1

. 3.1}

Il ge = sup

HEMIES!

it is easy to show that {| - lizs is a norm on E#,
Next, we give a relationship between g-dual of a sequence space and its continuous
dual. Indeed, we need a lemma.

LEMMA 3.2. Let E be an X -valued sequence space which is an FK-space containing
${X}. Then for each k € N, the mapping Ty : X — E, defined by Ti.x = e¥(x), is contin-
: Lous.

PROOF. Let V = {e¥(x}:x € X}. Then V is a closed subspace of E, so it is an
FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping
pr 1V — X is continuous and bijective. It follows from the open mapping thecrem
that p; is open, which implies that pg 1. X — V is continuous. But since Ty = Vi L we
thus obtain that Ti is continuous. a

|
|
‘ THEOREM 3.3. IfE is a BK-space having property AK, then Ef and E' are isometri-
' cally isomorphic.
|
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PROOF. We first show that for x = (xg) cE and f € E',

fix) = i Fle* (). {(3.2)

k=1
To show this, let x = {x;) € E and f € E’. Since E has property AK,

n
x = lim > e®(xy). (3.3)
k=1
By the continuity of f, it follows that
n o
fear=lim Y fe®x) = ¥ fe® ), 3.4)
k=1 k=1

50 (3.2) is obtained. For each k € N, let T, : X — E be defined as in Lemma 3.2. Since
E is a BK-space, by Lemma 3.2, T} is continuous. Hence foT, € X’ forall k e N. It
follows from (3.2) that

fO) =D (feT)xk) Vx=(xx)€E. (3.5)
k=1
It implies, by (3.5), that (f o Ty)y., € Ef. Define @ : E' - E8 by
@) =(fTi)p, VFEE. (3.6)

It is easy to see that ¢ is linear. Now, we show that ¢ is onto. Let (fi) € E8. Define
f 1 E — K, where K is the scalar field of X, by

fixy=> filxi) ¥x=(x)€eE. (3.7)
k=t ‘
For each k & N, let p; be the kth coordinate mapping on E. Then we have
o n
Fee) =3 (feopr)(x) = im > (f o pic) (x). (3.8)
k=1 k=1

Since fi and py are continuous linear, so is also continuous f o py. It follows by Banach-
Steinhaus theorem that f € E’ and we have by (3.7) that; for each k € N and each
zeX, (foT)(z) = f(e®(z)) = fi(2). Thus fo Ty = fx for all k € N, which implies
that @ (f) = (fi), hence ¢ is onto.
Finally, we show that @ is linear isometry. For f € E’, we have
Wfli = sup | f((xe))]
Al =1

o

> fle®(xy))

k=1

= sup
HixgH<1

(by (3.2))

(3.9)
= sup
i(xe <t

S (Fo T (xx)

k=1
= |1(f ° Tk lles
= li@(Hllgs-
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Hence ¢ is isometry. Therefore, @ : E' — Ef is an isometrically isomorphism from E’
onto E£. This completes the proof. m]

We next give characterizations of 8-dual of the sequence space £(X,p) when p; > 1
forallkeN.

THEOREM 3.4. Let p = (px) be a bounded sequence of positive real numbers with
pr> 1 forallk e N. Then£(X,p)f = £,(X’,q), where q = (qy) is a sequence of positive
real numbers such that 1/pr +1/qr =1 for all k € N.

PROOF. Suppose that (fi} € £o(X’,q). Then 37.; | fxl|% M % < oo for some M € N.
Then for each x = {xi) € £(X,p), we have

o

|fk(xk | = > Al M2/ 2e M7k || x|
k=1

;|M8

g

< 3 (Ifiell® M-at#e 4 M| |P*)
k=1

(3.10)
lIfklI“"M - ”+MZ [Elig
1 k=1

~M i im0 S (el
k=1

k=1

I
M

< o0,

which implies that Y, fi(xx) converges, so (fi} € £(X,p)f.

On the other hand, assume that (fi) € £(X,p)¥#, then 3.7, fi(xi) converges for
all x = {xi) € £(X,p). For each x = (x) € £(X,p), choose scalar sequence {ty) with
ity = 1 such that fi(texk) = | fr{xw)t for all k € N. Since (trx) € £(X,p), by our
assumption, we have > _; fi(tkxy) converges, so that

[

| fulxk)| <o V¥Vxef(X,p). (3.11)

k=1

1

[ ]
We want to show that (fi) € fo(X’,q), thatis, > 1., | fell%M % < o for some M € N.
If it is not true, then

SIfll*m % =0 YmeN. (3.12)
k=1

It implies by {3.12) that for each k € N,

S Ifill%m % =0 ¥meN. (3.13)
>k

By (3.12), let m; = 1, then there is a k1 € N such that

3 ilfell®em ™ > 1. (3.14)

kskl
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By (3.13), we can choose 3 > m; and ky > k; with m» > 22 such that

5 feli®mz% > 1. (3.15)
ky<k=ky -

Proceeding in this way, we can choose sequences of positive integers (k;) and ()

with 1 = kg <k; <k; <--+ and my <mp <---, such that m; > 2! and
> NAFm™ > 1. (3.16)
k[ﬁ|<k5ki

For each i € N, choose x; in X with x|l =1 for all k e N, k;—; < k < k; such that

> | fla) |®m;% >1 vieN. ' (3.17)

ki <k$k"

Leta; = Y, , <ksk, |frelxi1%m; %, Put v = (W), 3 = a7tm; % | fi(xp) 1% xy for all
k e N with k;.1 <k = k;. By using the fact that piqy = pi + gx and py(gy — 1} = g\ for
all k € N, we have that for each i e N,

- - Pi
ol = 3 |laitmi®] il 1% x|
ki1 <ksky ki) <ksk;
= Z ai‘pkm;pqulfk(xk)rik
ki <k=k;
= Z a;pkm;pkmi‘qklfk(xk)lflk
ki1 <ksk;
_ - (3.18)
zatmt Y m% | fulx) |
ky_y<k=<k;

<a;'mta;
:m;l

1

<'§,

so we have that > p_y IvkllP* = ¥, 1/2¢ < . Hence, ¥ = () € £(X,p). For each
i € N, we have

oA = T [ Adaitm ™) fula) | % ) |
ki y<k=k; ki_y<k=skg
= 2 ai'm™ | felea) ™
ki <ksk; (3.19)
=at Y m | fula) [
kiy <k=k;
:1’

so that 37, | fu(Yi)| = o0, which contradicts (3.11). Hence {fx) € £o(X’,q). The proof
is now complete. a
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The following theorem gives a characterization of f-dual of £(X,p) when p, < 1
for all k € N. To do this, the following lemma is needed.

LEMMA 3.5. Let p = (px) be a bounded sequence of positive real numbers. Then
£ (X, P) = U:::lgca (X)(n—llﬂk]-

PROOF. Let x € £.(X,p), then there is some n € N with |[xg||P s nforallkeN.
Hence |ixk|[n~1/Px <1forallk € N,sothatx € £ (X) 1105,y On the other hand, if x €
Un=1€e (X) (n-111xy, then there are some n € N and M > 1 such that Ixpn~VPe < M
for every k € N. Then we have |lx||Px = nMPk < nM®* for all k € N, where o = sup, py.
Hence x € €= (X,p). O

THEOREM 3.6. Let p = (py) be a bounded sequence of positive real numbers with
pe=<1forallk eN. Then£(X,p)? =£.(X".p).

PROOE. If (f) € £(X,p}f, then 3|, fi(xx) converges for every x = (x;) € £(X,p),
using the same proof as in Theorem 3.4, we have

Z filxx)| <0 ¥Vx={(xy)eb(X,p). (3.20)

If (fi) ¢ £<(X’,p), it follows by Lemma 3.5 that sup, || filim~1/P% = oo for all m e N.

For each i € N, choose sequences (m;) and (k;) of posmve integerswith m, <m, <.

1/
and k; < k2 <+ -+ such that m; > 2! and Il fx, Ilm Py 1. Choose xi, € X with

lIxk; I =1 such that

1.’
| fi, (xe,) | Py, (3.21)

-1/py,
Lety = (), Ye=m; p"‘xki if k = k; for some i, and 0 otherwise. Then 37 iy lPx =
Y l/mi <Y, 1/28 =1, s0 that () € £(X,p) and

i | Fie{oicd | I fk( ”pk in)

(3.22)

Sm T fi () |
i=1
=oo {(by(3.21)),

and this is contradictory to (3.20), hence (fi) € £ (X', p).

Conversely, assume that {fi) € £.(X',p). By Lemma 3.5, there exists M € N such
that sup, | fi 1M ~1Pc < oo, so there is a K > 0 such that

| fel] = KMYPe Yk N, (3.23)

Let x = (xi} € (X, p). Then there is a kg € N such that MVPx||x i < 1 for alt k = kg.
By pr = 1 for all k € N, we have that, for all k = kg,

MUPEl ]| < (MUPE x| = M I* (3.24)
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Then
0a ko o
D I fclxd | s 2 AN+ 2 [ fllllxll
k1 k=1 k=ko+1
ko
= > | Alllixll + K Z MYPx||x, || (by (3.23)
& kekge1 (3.25)
ko
< Z (1 filll|xed] + KM Z |lxel[™ oy 3.24)
k=1 k=kg+1
< e s
This implies that 3., fi{xx) converges, hence (fi) € £(X, p)5. 0

THEOREM 3.7. Let p = (px) be a bounded sequence of positive real numbers. Then
’goo (X-p)ﬂ =My (X'.P).

PROOE, If (fi} € M.(X',p), then Y1, || fillen!/Pk < oo for all m € N, we have that
for each x = (xi) € £ {(X,p), there is my € N such that |jxi|| < mo""" forall k
N, hence 30y Lfe(xe) | < Yooy Ufaltilxel < 25, “fk"QOk < oo, which implies that
351 felxy) converges, so that (fi) € £ (X, p)E.

Conversely, assume that (fi) € £« (X, p)f, then 37, fi(xi) converges for all x =
(xy) € £ (X, p), by using the same proof as in Theorem 3.4, we have

D 1 felxi) | <0 Vx = (xi) € Ll X,p). (3.26)
k=1

If {fi) € Mo, (X', p}, then 3.7, || filMYPe = o for some M & N. Then we can choose a
sequence (k;) of positive integers with ¢ = ko < ky < kz < -« - such that

> NAIMYP s vieN (3.27)
ki1<k=k;

And we choose x; in X with ||xll = 1 such that forall i € N,

S frl) | MY > (3.28)

ki) <ksk;

Put ¥ = {¥i}, ¥ = MVUPkx,. Clearly, v € £.(X,p) and

oo

Sialz S (fba)[MYP S VieN. (3.29)
k=1 ki_y<k=kg

Hence 3.1 [ fx(vx)! = oo, which contradicts (3.26). Hence { i} € M (X’,p). The proof
is now complete. a

THEOREM 3.8. Let p = (pi) be a bounded sequence of positive real numbers. Then
colX,p)f = Mo(X', p).
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PROOF. Suppose {fi) € Mp(X',p), then ¥;_, [ fxll M~ 1Pk < oo for some M € N. Let
x = (xy) € co(X,p). Then there is a positive integer Ky such that {|x[|Px < 1/M for all
k = Ky, hence ||xgll < M~VP: for all k = K. Then we have

> 1l = 3 Afidlllell s 3, i < oo, (3:30
k=Ko k=Kq k=Kq
It follows that X[, fi(xi) converges, so that (fx) € co(X,p)5.

On the other hand, assume that {(f;} € cp(X,p)¥, then > i1 Jr(xz) converges for
all x = (xg) € co{X, p). For each x = (x}) € co(X,p), choose scalar sequence (t;) with
{te) = 1 such that fir(tixi) = | fi(x){ for all k € M. Since (fxxy) € co(X,p), by our
assumption, we have X _, fi(fxxy) converges, so that

S | fulxk)| <o ¥x €coiX,p). (3.31)
k=1

Now, suppose that {fi) ¢ Mo(X’,p). Then Yo, llfrllm VP = oo for all m € N,
Choose m;,k; € N such that

S fllmit ™ > 1 (3.32)

kskl

and choose m; > m; and k; > k; such that

S | fellmz P > 2. (3.33)

ky<k=k;
Proceeding in this way, we can choose m; < m; <-.-,and 0 = k; <kz < --- such that
S lfdllmt s b (3.34)

k) <ksk;

Take xy in X with x|l =1 for all k,k; ; < k < k; such that

S 1 fele) |mi P s i vien, (3.35)
ki_y<kskg
Put v = (y Ve = m;””“xk for ki_y < k < k¢, then v € cp{X,p) and
SIAidiz Y il |mPsi vien. (3.36)
k=1 ki_y<ksky

Hence we have > 7| | fi(¥i}| = oo, which contradicts (3.31), therefore { fx) € Ma{X".p).
This completes the proof. 0

THEOREM 3.9. Let p = (py) be a bounded sequence of positive real numbers. Then
(X, p)B = Mo( X', p)es[X'].

PROOF. Since c(X,p) = cp(X,p) + E, where E = {e(x) : x € X}, it follows by
Proposition 3.1(iii) and Theorem 3.8 that c(X,p)# = My(X’,p) nEB. It is obvious by

definition that £f = {(fi) € X" : 3} fr{x) converges for all x € X} = cs{X’). Hence
we have the theorem. [m]
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1. Introduction

Let (X, |.]|) be a Banach space and p = (p:) a bounded sequence of positive real
numbers. We write x = (x;) with x; in X for all k € N. The X-valued sequence spaces
CO(X! p)s C(Xa P)‘, EOO(X’ P)s ’E(Xa p)v EF(X’ p)a and Fr(Xa P) are deﬁne‘i as

(@) co(X, py = {x = (xx) : imyo oo [k |17 = OF;

b) X, p) ={x = (xp) : limg_, o0 l|x — al|”* =0 for some a € X};
(€) €o(X, p) = {x = (xi) : supy |lxe|lP* < oo}

(d) &X, p) = {x = () : T2 lIxell P < ool

(e) E-(X, p) = {x = (xx) : supy |x||?*/n" < oo};

() Fr(X,p)={x= () T2k [lx||P* < o0).

When X = K, the scalar field of X, the corresponding spaces are written as co(p),
c(ph £c(P), £(p), E;(p), and F,(p), respectively and the first three spaces are known
as the sequence spaces of Maddox. These spaces were first introduced and studied by
Simons [8] and Maddox [4-6]. The space £(p) was first introduced by Nakano [7]. When
pr = 1, forallk € N, the space E, (p) and F,(p) are written as E, and F,, respectively.
These two spaces were first defined by Cooke [1]. The structure of sequence spaces
co(p), c(p), and £(p) have been investigated by Grosse-Erdmann [2] and he has given
in [3] characterizations of matrix transformations between the scalar-valued sequence
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spaces of Maddox. Wu and Liu [9] deal with the problem of characterizations of infinite
matrices mapping from cg(X, p) and £,.(X, p) into co(g) and £.(q).

2. Notation and Definitions

Let (X, |I.ID and (Y, ||.||) be Banach spaces, and the space of all continuous linear
operators from X into Y is denoted by £(X, Y). Let W(X) and ®(X) denote for the
space of all sequences in X and the space of all finite sequences in X. When X = K,
the scalar filed of X, the corresponding spaces are written as W and @, respectively.

A sequence spaces in X is a linear subspace of W(X). Let E be any X -valued sequence
space. Forx € E and k € N, we write that x; stands for the kth term of x. For x € X and
k € N, let ¢*(x) be the sequence (0,0, ..., 0, x, 0, ...} with x in the kth position and let
e(x) be the sequence (x, x, x, ...). For a fixed scalar sequence i = (i), the sequence
space E,, is defined as .

E,={xeW(X): (uxx) € E}.

Let A = (T) with T]" in L(X, ¥). Suppose E is an X-valued sequence space and F
a Y-valued sequence space. Then A is said to map E into F, writtenby A : £ — F
if, for each x = (x¢) € E, Ap(x) = T2, T/ (xx) converges for each n € N, and the
sequence Ax = (An (x)) € F.Let (E, F) denote the set of all infinite matrices mapping
from E into F. If u = (uy) and v = (v;) are scalar sequences, let

W(E, F)y ={A = (T[:I) : (unUkT}:])n,k € (E, F}}

Ifur #0forallk € N, we write u~! = (1/uz).

Suppose the X-valued sequence space E is endowed with some linear topology t.
Then E is called a K-space if, for each k € N, the kth coordinate mapping py : £ — X,
defined by pi(x) = xi, is continuous on E. In addition, if (£, t) is a Fréchet (Banach,
LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that
E contains ¢ (X). Then E is said to have property AB if the set {E,’\;lek (x;) :n € N}is
bounded in E for every x = (xx) € E.Itis said to have property AK if 2};’=lek (xx) = x
in £ asn — oo for every x = (xi) € E. It has property AD if ®(X) isdense in E.

The space £(p) is an FK-space with AK under the paranorm g(x) = (X722 |xz|#*) /M
where M = max{1, sup; pi} (see [6]). The space cg(p) is an FK-space with AK, ¢(p) is
an FK-space, and £, (p) is a complete LBK-space with AB (see [2, 6]). It is known that
the space £(X, p) is an FK-space with AK under the paranorm g(x) = (E22 [lx||7)1/™,
where M = max{1, sup, p«). In each of the space £, (X, p) and cg(X, p), we constder
the function g(x) = sup, [lxz||P*/M, where M = max{l, sup; pr}. It is known that
co(X, p) is an FK-space with AK under the paranorm g defined as above and £,,(X, p)
is a complete LBK-space with AB.

3. Some Auxiliary Results

In this section we give some useful results that can be used to reduce our problems into
some simpler forms.
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Proposition 3.1. Let E and E,(n € N) be X-valued sequence spaces, and F and

Fu(n € N) Y-valued sequence spaces, and let u and v be sequences of real numbers
withu, # 0, vp # 0 forallk € N. Then we have

(1) (U2 Ey, F) =002 (En, F)s
(i) (E, ﬂ" 1) =02 (B, ),
(111) (Eu’ F ) e v(Ea F)Lt_"

Proof. Assertion (1)~ii1) are immediately obtained directly by the definitions. |

Proposition 3.2. Let p = (pi) be a bounded sequence of positive real numbers and
r > 0. Then

(1) F(X, p) =X, p)(n');
(11) C()(X, p) = ﬂgc;lCO(X)(n””k}-

Proof. Assertion (i) is obviously obtained by the definition.
To show (11), let x € ¢o(X, p). Then ||x;}|?* — O as k — oo. Foreachn € N,

let 8§ = |[xx[\{*n for all & € N. We have that § — 0 as ¥ — o©0; hence,
|xplinl/Ps = 5,3,/")*' — 0 as k — oo (because p € {u), so we have x € co(X)g,ny.
Conversely, assume x € ﬂjjozic{)(X)(”um. Then, im0 ||xk||n’/f’k = 0 for every

n € N.Then, forn € N, we have [ix;||” < 1/n for large k, hence, x € co(X, p). 0

4. Main Results

We begin by giving the matrix characterizations mapping from £(X, p) into a BK-space,
where pi < lforallk e N.

Theorem 4.1. Let p = (pi) be a bounded sequence of positive real numbers such that
pr = 1 forall k € N andlet E be a Y-valued sequence space which is a BK-space.
Then for an infinite matrix A = (T["), A € (E(X, P E) if and only if

(1) foreachk € N, (Té’(x)):il € Eforallx € X and
(2) there exists mg € N such that

sup sup [JA(my ")) < 1.
Eoflel=<i

Proof. Suppose A € (£(X, p), E). Since e (x) € £(X. p) forall x € X and all k € N,
we have Aef(x) € E, so {1) is obtained. Now, we shall show that condition (2) is
satisfied. By Zeller’s theorem, we have that A 1 £(X, p) — E is continuous. Then there
gxists mqg € N such that

i
x = (x) € £X, p), x| = . = [lAxli<1. 4.1)
0
Let x € X with |x|| < 1 and ¥ € N. We have m, 1 ef(x) € £(X,p) and
llmg e (x))| < 1/my. By (4.1), we have [{A(m /" I‘(x))|| < 1. This implies that

sup sup (|A{mg /P NI < 1.
Aojlvii=t
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Hence. (2) holds.
Conversely, assume that conditions (1) and (2) hold. By (2), there is mg € N such that

sup [|A (mg Pk <1 4.2)

forall x ¢ X with [[x]] < 1.
This implies by (4.2) that

sup A (mg P )| < lxl) 43)

foralix € X.
Let x = (xz) € £(X, p). Foreach k € N, by (4.3), we have that
1A )| = NA(mg/ ™ (mg P e )
— mé’/Pk llA(mO L/ o k(xk))”

< m/ x| (4.4)

Since (mé ‘x1) € £(X, p),so (m(l)/‘”“xk) € co(X, p) € co(X). Hence, there isaky € N
such that mD/p‘ llxx)l < 1 forallk > kg. Since O < py < 1 forall k € N, we have

ny Plxell < (my P lx )™ = mollxi ) (4.5)

forall & > kyp.
It follows by (4.4) and (4.5) that

Yo lAt )l < Zm}/ P e
k=1 k
ko

= Zmo/"‘ el + Z mg P x|

k=ky+1
ko

< Zm TP |2l 4 mo Z i 17+

k=ko+1
< X,

Hence, X722, Ae*(x;) converges absolutely in E. Since E is Banach, T Ae*(xy)
converges in E. Let y = (v} € E be the sum of Ef(’ilAek (xt). Since E 1s a K-space,
we have that, for each m € N, p,, 1s continuous, so that

n n

V= N — i k o '

ym = pn(y) = m D" p(Ad(u)) = lim > T ().
k=1 k=1

This implies that Ax exists and (Ax),, = EE‘;I T (xk) = ym, hence, Ax € E.
This completes the proof. D

When pi = 1 forall k € N, the following results are obtained directly from Theorem
4.1.
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Theorem 4.2. Let E be a Y-valued sequence space which is a BK-space and A = (T})
an infinite matrix. Then A € (E(X), E) if and only if

(1) foreachk ¢ N, (Tf(x))sil € E forall x € X and
(2) supy supy, < 1Ae* (x}]| < oc. O

Theorem 4.3. Let p = (py) be a bounded sequence of positive real numbers such that

pi < lforallk € N andlet A = (T{?) be an infinite matrix. Then A € (£(X, p), £oo(Y))
if and only if

(1) foreachk € N, sup, | 1’| < oo and
(2} there exists mg € N such that

supmg /PYTN < 1.
nk

Proof. By Theorem 4.1, to prove this theorem we only show that conditions (1) and (2)
are equivalent to conditions (1') and (2"), respectively, where

(1'y foreach k € N, Ae*(x) € €5 (Y) forall x € X and
(2) there exists mg € N such that

sup sup [[A(my /PO < 1.

E lxfl=t
Conditions (1) and (1) are equivalent by the uniform bounded principle.
If (2) holds, for k,n € N and x € X with ||x|| < 1, we have nrJ”"" 170 x| =
my PN T x ) < my ' PUTEY < 1, which implies

sup sup [|A(m5“”"ek(x))[| = sup sup sup maup‘ N0l < 1.
ko llvlf=t koflxll<1 on
so (27) is obtained.
Now, suppose thiat (2') holds. Then there exists my € N such that

sup mg P TExl = | A(mg P e )l < 1 (4.6)

forall k € N and all x € N with ||x|| < L.
It follows by (4.6) that, for each n, k € N, my /P | T7|| < 1,50 (2) is obtained. O

By using the same proof as in Theorem 4.3, we obtain

Theorem 4.4. Let p = (py) be a bounded sequence of positive real numbers such that

pr < Lforallk € N andlet A = (T}') be an infinite matrix. Then A € (E(X, p). CO(Y))
if and only if

(1) foreachk e N, T'(x) - 0asn — oo forall x € X and
(2} there exists mg € N such that

—1 '
sup my (NI < L

n.k
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Theorem 4.5. Let p = (pi) and q = (qx) be bounded sequences of positive real
numbers such that py < | forallk € N and let A = (T}') be an infinite matrix. Then
A e (((X, p), co(Y, @) if and only if

(1) foreachk € Nandm € N, m"/PT(x) > Oasn — oo forall x € X and

(2) foreachm € N, there exists rp, € N such that

supry, /Pem/ P TR < L

n.k

Proof. By Proposition 3.1(ii) and 3.2(ii), we-have

A€ (UX, p), coY.q)) < A € (&X, p), co(Y)miay) forallm e N.

’

It follows by Proposition 3.1(ii1) that, for eachm € N,
A € (£X, p), (V) gimy) €= (m 1) € (E(X, p), co(Y)) .
By Theorem 4.4, we obtain that
(m'/eTn) € (6X, p), co(Y)) < (1) and (2) are satisfied.
By applying Theorem 4.1, and using the same proof as in Theorem 4.3, we obtain

Theorem 4.6. Let p = (pi) be a bounded sequence of positive real numbers such that
pr < 1forallk € N and let A = (T\") be an infinite matrix. Then A € (E(X, 7). C(Y))
if and only if

(1) foreachk € N, lim, , » T,'(x) exists for all x € X and
(2) there exists my € N such that

—1
sup my ' PITI < 1
n.k

By applying Theorem 4.1, we also have the following result.

Theorem 4.7. Let p = (pi) be a bounded sequence of positive real numbers such
thatr pr < 1 forallk € N, s = 1 and let A = (TI') be an infinite matrix. Then
Ae (E(X, . E_\(Y)) if and only if

(L) foreachk € N, (T,\f'(x))r;[ e £,(Y) forall x € X and

(2) there exists my € N such that

o0
sup sup ng/p“ N xl® < L
Eollell=1

n=1

Since E, (Y) = €c(Y) -, the following result is obtained by Proposition 3.1(i11)
and Theorem 4.3.
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Theorem 4.8. Let p = (pr) be a bounded sequence of positive real numbers such
that pp < 1 forallk € N, r = 0and let A = (I[') be an infinite matrix. Then
A e (&(X, p). E.(Y))ifand only if

(1) foreachk € N, sup, |ln~"T|| < co and
(2) there exists mg € N such that

sup my P TE ) < 1.
n.k

Since F;(Y) = £(Y)yry, by applying Proposition 3.1(1i1) and Theorem 4.1, we obtain
Theorem 4.9, Let p = (py) be a bounded sequence of positive real numbers such
that pr < 1 forallk € N, r > 0and let A = (1)) be an infinite matrix. Then
A € (&X, p), F(Y)) ifand only if

(1) foreachk € N, (n"T{(x)),_ | € £(Y) forall x € X and
(2) there exists mg € N such thar

=2
sup sup Zmal/f)‘n"il?";'xj! < 1.
Eollell=1 =1

Acknowledgement. The author would like to thank the Thailand Research Fund for their financial
support during the preparation of this paper.

References

bt

. Cooke, R.G.: Infinite Matrices and Sequence Spaces, Macmillan. London 1930.

2. Grosse-Erdmann, K.-G.: The structure of the sequence spaces of Maddox. Canad. J. Math.
44, 298-307 (1992).

3. Grosse-Erdmann, K.-G.: Matrix transformations between the sequence spaces of Maddox, J.

Math. Anal. Appl. 180, 223238 (1993).

. Maddox, L.J.: Spaces of strongly summable sequences, Quarr. J. Math. Oxford (2) 18, 345-355
(1967}

. Maddox, 1.}.: Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge
Phitos. Soc. 64, 335-340 (1968).
6. Maddox, L).: Elements of Functional Analysis, Cambridge University Press, Cambndge,
London, New York, Melbourne, 1970.
. Nakano. H.: Modulared sequence spaces, Proc. Japan Acad. 27, 508-512 (1951).
Simons, S.: The spaces €£{p,) and m(p,), Proc. London. Math. Soc. 15, 422-436 (1965).

Wu, C.X.. L, L.: Matrix transformations on some vector-valued sequence spaces, SEA. Bull.
Math. 17(1), 83-96 (1993).

L

0 90



YR U [{sE srarast

INDIAN NATIONAL SCIENCE ACADEMY
Bahadur Shah Zafar Marg, New Delhi - 110 002
Tel.: (91-11) 3221931 upto 1950 (20 Lines) Fax : 3235648 & 3231095
E-mail: insa@giasdiO1.vsnl.net.in; insa@delnet.ren.nic.in ; insat @ndf.vsni.net.in

: <Q
Prof. DP Bhulani N
EdilLor

No. PB/12944 IM

Mnted: -
2 1St¥

Dr. Sulhep Suvanlai
Peparimenl of Mathemalics
Facully of Science

Chiang Mai Universily
Chiang Mai 50200

That land

Subjecl: Paper enlilled Materix Transformalions of Some Veclor-
Valued Sequence Spaces

Ttear M. Suanlai,

T am pleased Lo inform you bLhal Lhe above paper has been accepled
for publicalion in Lhe TNDTAN JOQURNAT, OF ~PURE AND APPLTED
MATHEMATTCS.

Your paper is scheduled Lo appear in

Yours sincerely .

(G Bhulani)

53



Accepted to be published in Indian Journal of Pure and Applied Mathematics

MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED
SEQUENCE SPACES

Suthep Suantai
Department of Mathematics, Faculty of Science,
Chiang Mal University, Chiang Mai 50200, Thailand.
E-mail : semti005@chiangmai.ac.th, suantai@yahoo.com

Necessary and sufficient conditions are established for an infinite matrix A = (f*} of continu-
ous linear functionals on a Banach space X to transform the vector-valued sequence spaces of Maddox
o(X,p), €(X,p), co(X,p), and (X, p) into the scalar-valued sequence space ¢{g), where p = (px) and
g = (gx) are bounded sequences of positive real numbers.
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1. Introduction

The study of matrix transformations of scalar- valued sequence spaces is known since the turn of the
century. In seventies, Maddox'?, Gupta* studied matrix transformations of continuous linear mappings
on vector-valued sequence spaces. Das and Choudhury! gave conditions on the matrix A = (f7) of
continuous linear mappings from a normed linear space X into a normed linear space Y under which
A maps co{X) into cp(Y), £1(X) into £oo(Y), and ¢1(X) into &,(Y). Liu and Wu?? gave the matrix
characterizations from vector-valued sequence spaces co( X, p}, £(X,p), and £,(X,p) into scalar-valued
sequence spaces cy{q) and £.,(g). Suantai?® gave the matrix characterizations from the Nakano vector-
valued sequence space £{X,p) into the vector-valued sequence spaces co(Y, ¢), c(Y}, and £.(Y'). In this
paper, we continue the study of matrix transformations of continuous linear mappings on vector-valued
sequence spaces.

The main purpose of this paper is to give the matrix characterizations from ¢q( X, p}, ¢(X,p),
£.{X,p), and £(X,p) into c(q), where co(X,p), c(X,p), o(X,p), and £(X,p) are the vector-valued
sequence spaces of Maddox as dgfined in Section 2. When X = K, the scalar field of X, the correspending
spaces are written as co(p), c(p), €eo(p), and £(p), respectively. Several papers deal with the problem
of characterizing those matrices that map a scalar-valued sequence space of Maddox into anoher such
spaces, see [6, 7, 11, 13, 15, 17, 18, 19, 21 |. Some of these results become particular cases of our theorems.
Also some more interesting results are derived.

Section 2 deals with necessary preliminaries and some known results quoted as lemmas which are
needed to characterize an infinite matrix A = (f*) such that A maps the vector- valued sequence spaces

of Maddox into c{g), and we also give some auxiliary results in Section 3. The main results of the paper
is in Section 4.

2 Preliminaries and Lemmas

Typeset by AGS-TEX
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Let (X, ].]i) be a Banach space and p = (px) a bounded sequence of positive real numbers. Let N
be the set of all natural numbers, we write z = (zx) with z; in X for all k € N. Let W{(X) and $(X)
denote the space of all sequences and the space of all finite sequences in X, respectively. When X = K,
the scalar field of X, the corresponding spaces are written as w and ¢, respectively. An X -—valued
sequence space is a linear subspace of W(X). The sequence spaces of Maddox are defined as

CO(X!p) = {I = (xk) Hlimg oo ”mk”pk = 0}1

e(X,p) = {z = (zr) : iMoo |zx — af/P* =0 for some a € X},

boo(X, p) = {z = (2&) : sup, "zk“pk < oo},

84X, p) = {z = (26) : 2, lewlP < oo}. :

When X = K, the scalar field of X, the corresponding spaces are written as co(p), e{p), £ (p), and
#(p), respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were
introduced and studied by Simons!® and Maddox®®. The space #(p) was first defined by Nakano'4 and
it is known as the Nakano sequence space. Also, we need to define the following sequence space :

Mo(X,p) = {z = {zr) : Yopey lzxlln~1/P* < oo for some ne N }.

When X = K, the scalar field of X, the corresponding space is written as Mp{p). This space was
first introduced by Maddox!?. Grosse-Erdmann? has investigated the structure of the spaces co(p), c(p), £(p),
and ¢,.(p) and he also gave the matrix characterizations between scalar-valued sequence spaces of Mad-
dox in [3]. Let £ be an X- valued sequence space. For = € E and k € N we write that z; stand for the
kth term of = and for z € X and k € N, let e(*}{z) be the sequence (0,0,0,...,0,x,0,...) with z in the
kth position and let e(z) be the sequence (x,x,z,...), and we denote by e the the sequence (1,1,1,...).
An X —valued sequence space E is said to be normal if (z:) € E and (yi) € W(X) with ||y € |z«] for
all k € N implies that (yc) € E. For a fixed scalar sequence © = {uy) the sequence space E,, is defined as

Ey={z={(zy) e W(X): {urz) € E}.
The a—, 8— and v~ duals of a scalar-valued sequence space F are defined as
F¢= {z € w:{zpys) € X for every y € F}

for ¢ =0, 8, vy and X, = ¥{;, Xp = cs, and X, = bs, where ¢;, cs and bs are defined as
={z=(x) €w: T fax] < o0 },
es = {z = (zx) € w: I pe Tk converges },
bs = {x = (xx) € w:supn|> o, Tk < 00 }.
In the same manner, for an X -—-valued sequence space E, the a—, §~ and v— duals of E are
defined as
ES = {(fr) C© X" : (fu(zs)) € X for every z = (2} € E}

for { = a, 3, 7, where X, = £, Xp = cs and Xy = bs.

It is obvious from the definition that E* C EP C E7 and it is easy to see that if F is normal, then
EY = EP = Ev.

Let A = (f7) with f in X', the topological dual of X. Suppose that E is an X-valued sequence
space and F a scalar-valued sequence space. Then A is said to map E into F, written by A : E — F if, for
each = = (xx) € E, An(x) = 3 5y fi(zs) converges for each n € N and the sequence Az = (A,(z)) € F.
We denote by (F, F) the class of all infinite matrices mapping E into F. If © = (uz) and v = (vi)} are
scalar sequences, let

u(E;F)U = {A = (f.::l) : (uﬂkai?)ﬂ.k € (E:F)}

If ug £ 0 for all £k € N, we put u=! = (1/ux). Suppose the X-valued sequence space E is endowed
with some linear topology 7. Then E is called a K-space if, for each k£ € N the kth coordinate mapping
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Pr : E — X, defined by pi(z) = 4, is continuous on E. A K-space that is a Fréchet{Banach) space is
called an FK — (BK-) space.

The spaces co{p) and c(p) are FK-spaces. In co{X, p), we consider the function g(z) = sup ||zk||P*/™,
&
where M = max {1,supx px}, s a paranorm on ¢{X, p), and it is known that co(X,p) is an FK-space
under the paranorm g defined as above. In £(X, p), we consider it as a paranormed sequence space with

the paranorm given by |[(zx)|| = (3o, ||3:k|lp'=)1/M. It is known that £(X, p) is an FK-space under the
paranorm defined as above.

Now let us quote some known results as the following.
Lemma 2.1!° If p = (pi) s a bounded sequence of positive real numbers with pr > 1 for all k € N, then

tp) ={zcw: Z k| M™% < oo for some M € N }

k=1

where 1/py + 1/t =1 for allk € N.

Lemma 2.2'6 If p = (pi) is a bounded sequence of positive real numbers with py < 1 for ellk ¢ N, then
£p)° = baclp).

Lemma 2.3° If p= (px) is o bounded sequence of positive real numbers , then

loo(p)’ = {zEw: Y |ae|n!/P* < oo for all ne N }.
k=1

Lemma 2.4'9 [fp = (p,) is a bounded sequence of positive real numbers, then c:o(p)ﬁ = Moy(p).

Lemma 2.5%2 Let p = (pi) be a bounded sequence of positive real numbers and A = (f) an infinite
matriz. Then A : co(X,p) — ¢ if and only if

(1) f2 50 as n — oo for each k € N and

(2) lim_sup, 52, I/ Im = = 0.

Lemma 2.6%% Let p = (pi) be a bounded sequence of positive real numbers and A = (f?) an infinite
matriz. Then A: €(X,p) — co if and only if

(1) frS0asn— oo for gach k € N and

(2) for each M € N, 3, I fFIIMYP: = 0 as k — oo uniformly onn € N.

Lemma 2.7%2 Letp = (pi) be a bounded sequence of positive real numbers with pr, > 1 and 1/px+ 1/t =
1 forallk € N and let A= {f) be an infinite matriz. Then A: X, p) — ¢y if and only if

(i) fg‘i:Oasn——»ooforeacthN and
(2) e I f2"*m="* — 0 asm — oo uniformly onn € N,

Lemma 2.822 Let p = (pg) be a bounded sequence of positive real numbers with p < 1 for allk € N
and let A = (f) be an infinite matrizc. Then A: {(X,p) — cp if end only if

(1) f;gO as n — oo for each k € N and



(2) sup || fg|P* < oo
n,k

3. Some Auxiliary Results

Suppose that E and F are sequence spaces and that we want to characterize the matrix space
(E,F). If E and/or F can be derived from simpler sequence spaces in some fashion, then, in many cases,
the problem reduces to the characterization of the corresponding simpler matrix spaces. We begin with
giving various useful results in this direction.

Proposition 3.1. Let E and E,(n € N) be X -valued sequence spaces, and F and F,(n € N) scalar-
valued sequence spaces, and let u and v be scalar sequences with uy # 0,v, # 0 for allk € N. Then
(7‘) (UgczlEn)F) = m‘;t.o=l (ETL:F):
(i) (E,N2,Fp) =N2, (B, F),
(iti) (Ey + E2, F) =(E1,F) N (Ea, F),
(iv) (Ey,Fu) = J(E,F),1.

Proof. All of them are obtained directly from the definitions.

Propostion 3.2. Let p = (pr) be a bounded sequences of positive real numbers . Then
(i) e(X,p} = co(X,p) + {e(z) : x € X},
(&) Mo(X,p) = U;l.ozle(X)(n“U”k)l
(111} Loc(X,P) = Uni1loo(X) (n-1/0e)-

Proof. Assertions (i) and (ii) are immediately obtained from the definitions. To show (iii), let z €
oo (X, p), then there is some n € N with ||lzx||P* < n for all k € N. Hence ||zxlin~2/P* < 1 forallk € N,
so that 2 € €u(X)(,-1/sr). On the other hand, if x € UL €50 (X)(,,-1/ry), then there are some n € N
and M > 1 such that ||zg]|n~1/P* < M for every k € N. Then we have ||z4{|P* < nMP* < nM® for all
k € N, where a = sups pr. Hence x € £..(X, p). O

The next proposition give a relationship between the S— dual of vector-valued and scalar-valued
sequence spaces.

Proposition 3.3 Let X be a Banach space and F a normal scalar-valued sequence space and define
F(X) = {(zx) € W{X) : (lz|) € F }. then for (fi) C X', the topological dual of X, (fr) € F(X)? if
and only if (|| fill) € F7.

Proof. If (|| fell) € F®, then for = (z) € F{X} we have 3o, [fulzi)] € ey [ felllzell < o0, so that
xr e F(X)?

Conversely, suppose that (fy) € F(X)® and a = (a) € F. Since F is normal, (|ay|) € F. For
each k € N, we can choose zp € X such that Yzi|| = 1 and |fe(zi)| = MI—I Let y = (arzg), then

y € F(X). Choose a sequence (t;) of scalars such that |{tx] < 1 and fr(tearzi) = |fe(z)||ak| for all
k € N. Since F is normal, (txyx) € F(X), so we obtain that 3 o7, fe(txyx) converges. This implies
Sore s M felllae] < 23500y 1fx(me)lla] < oo. It follows that (|| fiell) € FP.

By using Proposition 3.3, the following results are obtained immediately from Lemma 2.1 - 2.4,
respectively.
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Proposition 3.4 If p = (pk) is e bounded sequence of positive veal numbers with py > 1 for all k € N,
then

X, p)P ={(fiyc X': ank“t"M_t" < 00 for some M € N}
k=1

where 1/px + 1/tg =1 for allk € N.

Proposition 3.5 If p= (pi) is o bounded sequence of positive real numbers with py, < 1 for all k € N,
then £(X, p)? = €(X', p).

Proposition 3.6 If p = (p) is a bounded sequence of positive real numbers, then

loo(X, )P = {(fi) C X' ) ||felln'/P* < 00 for alin € N }.
k=1

Proposition 3.7 Ifp = (px) is a bounded sequence of positive real numbers, then co(X, p)* = Mo(X',p).

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let g = (gx} be a bounded sequence of positive real numbers and let E be a normal X —
valued sequence space which is an FK-space containing ©(X). Then

(E,e(q)) = (Bicolg)) & (E,<e>)

To prove this thecrem, we need the following two lemmas.

Lemma 4.1. Let E be an X -valued sequence space which is an FK-space containing ®(X). Then for
cach k € N, the mapping Ty : X — E, defined by Tpx = e*(x), is continuous.

Proof. For each k € N, we have that V = {e*(z) : z € X} is a closed subspace of E, so it is an FK-space.
Since F is a K-space, the coordinate mapping px : V' — X is continuous and bijective. It follows from

the open mapping theorem that py is open, hence, p,?l : X — V is continuous. It follows that T} is
continuous because Ty = pgl.‘ 0

Lemma 4.2. If E and F are scalar-valued sequence spaces such that E is normal containing ¢, F
is an FH-space and there is a subsequence (ng) with x,, — 0 as k — oo for all z = (z,) ¢ F, then
(E, F@& <e>)=(E, F) ® (E, <e>).

Proof. See (3, Proposition 3.1(vi) ]. a

Proof of Theorem 4.1 Since c¢(q) = co(g) & < e >, it is clear that {F, co{q)) + {(E.< e >} C
(E,colq) ® < e>)=(F, c(q). Moreover, if A € (E,co(q)) [ (E, < e>), then A € (E, co(q) [ < e >),
so that A € (E,0), which implies that A = 0 because E contain ®(X). Hence (E, co{q)) + (E, < e >) is
a direct sum. Now, we will show that (E,c(q)) € (E,co(q)) & (E,<e>). Let A= (f7) € (E,clg)) =
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(E,co(g) ® < e>). Forz € X and k € N, we have (f2(z})22, = Aef(z) € co{q) @ < e >, so that there
exist unique (b (x))3%, € co{g) and {ch{z))32, € < e> with

(@) = BR@)32, + (R (). (41)
For each n, k € N, let gf and A} be the functionals on X defined by
gr(z) = bf(z) and hi(x) =ci(zx) forallz e X.
Clearly, g7 and A} are linear, and by (4.1)
fe=gt+hy forallnke N. (4.2)

Note that colg) & < e > is an FK-space in its direct sum topology. By Zeller’s theorem, A : £ —
co{q) & < e > is continuous. For each k € N, let T : X — E be defined by Ti(z) = e*(z}. By Lemma
4.1, we have that T} is continuous for all k € N. Since the projection P; of ¢p{q) & < e > onto co(g)
and the projection Ps of cp(q) @ < e > onto < e > are continuous and gff = p. o Py o AoT} and A} =
pnoPyoAocTy for all n,k € N, we obtain that g} and A} are continuous, so 9}:, hf e X' foralln, k € N.
Let B = (gf) and C = (h). By (4.1) and (4.2), we have A = B+ C, B = (gF) € (8(X),c0(q))
and C = (h}) € (2(X),< e >). We will show that B € (E,co(q)) and C € (F, < e >). To do this,
let £ = (z¢) € E. Then for a = (ar) € €y, we have Jagzill = |lowl|lze]l < ||Mxk|, where M =
supy |ag|. Then the normality of F implies that (oxzx) € E. Hence (f7(zx))nk € (foo, co(q) & < € >),
noreover, we have (¢7(z& )i € (B, co(@)), (AL (@k))ni € (&, < e >), and (F(ze)), ¢ = (G2 (Tk))p s +
(h% (2k)), - Since £ is normal containing ¢ and co(g) € co, it follows from Lemma 4.2 that (g7 (zx)),, , €
(€o, colq)) and (hE(zk)), , € (feo, < €>). This implies that Bz € ¢y(q) and Cr € < e >, s0 we have
B e (F,colq)) and C € (E,< e >), hence A € (E, colg)) & (E, < e>). This completes the proof. 0O

Theorem 4.2. Let ¢ = (qi) be bounded sequences of positive real numbers and A = (fJ) an infinite

matric. Then A : €.{X) — c(q) if and only if there is a sequence (f) with fr € X' for allk € N such
that

(1) T2l < oo,
(2) mYe (fF — fi) S0 asn— oo for every k,m € N and
(3) for each m € N, Ej>km1/‘?"||f;‘ —fill = 0 ask — co unifermly onne N.

Proof. Necessity. Let A € (£..{X),¢(q)). It follows from Theorem 4.1 that A = B + C, where B €
(boo(X), colg)) and C € (£o(X), < e >}. Then there is a sequence (fi) with fr € X' forall k ¢ N
such that C = (fedni and B = (f — fi), € (foo(X), co(g)), which implies that (fi) € £oo(X)?, s0
(1) is obtained by Proposition 3.6. Since co(q) = NRe1C0¢mi/axy (by {2, Theorem 0 (i)}), we have by
Proposition 3.1 (ii) and (iv} that for each m € N, (m!/%(f2 — fi}ax) : Loo(X) — co. Hence, (2} and
(3) are obtained by Lemma 2.6.

Sufficiency. Suppose that there is a sequence (fi) with fi. € X' for all £ € N such that conditions
(1), (2) and (3) hold. Let B = (f? — fi)nk and C = (fe)ni. It is obvious that A = B+ C. By
condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1(ii} and (iv) that B € {£..(X), co(q)).
By Proposition 3.6 , condition (1) implies that ¥ - ; fx{z«) converges for all x = (1) € £.o(X), which
implies that ¢ € ({(X),< e >). Hence, we obtain by Theorem 4.1 that 4 € (£.{X),c(q)). This
completes the proof. O
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Theorem 4.3. Let p = (px) and ¢ = {qgx) be bounded sequences of positive real numbers and A = (f7})
an infinite matrir. Then A: (X, p) — c(q) if and only if there is o sequence (fi) with fr € X' for all
k € N such that (1), (2) and (3) are satisfied, where

(1) for each m € N, S5 | || fel|m!/P < oo,

(2) ri/an(f2 — fi) Y, Qasn — oo for every k,r € N and

(8) for each m,r € N, v1/an Zj>km1/3’f IfF = fill = 0as k — oo uniformly onn e N.
Moreover, (8] is equivalent to (¥ ), where

gn
(8') for each m € N, limg_.oc sup, (E:j}k ml/p; I — fj”) = 0.

Proof. Necessity. Suppose that A : £.(X,p) — c(q). By Theorem 4.1, A = B + C, where B €
(f{X,p),c0(q)) and C € ({o(X,p), < e >}. Then there is a sequence (fi) with fr € X' forallk e N
such that C = {fy)nr and B = (I — fi) € (£ec{X,p), co(q)). Since C = (fi)n i : boo(X,p) —< e >, it
implies by Proposition 3.6 that (1) holds. Since co{g) = Nir=1C0(mm1/ax), We have by Proposition 3.1 (i)
that for each r € N, (ri/9~(f2 — 'fk))n,k t £oe( X, p) ~+ cp. Hence , (2) and (3) holds by an application of
Lemma 2.6.

Sufficiency. Suppose that there is a sequence (fi.) with fi, € X' for all k € N such that condition
(1), (2) and (3) hold. Let B = (f2 — fi)ax and C = (fi)n k. It is cbvious that A = B+ C. By condition
(2) and (3), we obtain by Lemma 2.6 and Proposition 3.1(ii) and (iv) that B € {(£o.(X,p), co(g)). By
Proposition 3.6 , condition (1) implies that 5 p. | fx(zx) converges for all z = (zx) € €oc(X,p), which
implies that C € (£..(X, p}, < e >). Hence, we obtain by Theorem 4.1 that A € (£,(X,p), c(9)).

Now we shall show that (3) and (3') are equivalent. Suppose (3) holds and let ¢ > 0. Choose
r € N such that 1/r < g, By (3), there exists kg € N such that

rt/an N " mlPs|ifr — fil < 1for all k > ko and all n € N,
ik

which implies that

Qn

sup Zmlfpfﬂff—fjﬂ <1/r <e fork > ko,
"o \uk

hence, (3') holds.

Conversely, assume that (3') holds. Let m,7 € N and 0 < € < 1. Then there exists kg € N such
that

qn
sup Zm”plﬂff—fjﬂ <effr forallk > kg
"o Agek
where H = supng,. This implies that
rl/an Zvrnl/”"||fj,TL — fill < /1" <& forallk>kpandall ne N
i>k

hence, (3) holds. a

Theorem 4.4. Let p = (pi) and q = (qx) be bounded sequences of positive real numbers and A = (f7)
an infinite matric. Then A : co{X,p) — ¢(q) if and only if there is a sequence (f) with f € X' for all
k € N such that (1), (2}, and (3) are satisfied, where

(1) S0 WSl M~YPe < 0o for some M e N,

(2) m?%(f,?ffk) Y20 asn — oo for every m, ke N and



(8) for each m € N, sup,, (mM/ ™ 3% | [If — fllr=1/P*) — 0 asr - oo.
Moreover, (8) is equivalent to (3') where

(3') Timr—co supy (D22 IS0 - fellr=220)™ =0,

Proof. Necessity. Suppose that A : c{X,p) — ¢(q). By Theorem 4.1, we have A = B + C, where
B € (co(X,p),co{q)) and C € {cp(X,p), < e >). It follows that there is a sequence (fi) C X' such
that C = (fx)n,x and B = (f — fi)nk. Since cofg) = NP21C0(r1 /96y, It follows from Proposition-3.1 (ii}
and (iv) that for each m € N, (mY % (f2 — fi)lnx € {co{X, ), co), hence, conditions (2) and (3) hold
by using the result from Lemma 2.5. Since C' = (fi)n i € (co{X,p), < € >), we have that Y 77 | fu(zk)
converges for all = z € co(X,p), so that (fi) € co(X,p)?, hence, by Proposition 3.7, we obtain that
there exists M € N such that 3 o | || fx|| M~} < co. Hence, (1) is obtained.

Sufficiency. Assume that there is a sequence (fi) C X’ such that conditions (1),(2) and (3) hold.
Let B = (ff — fi)nk and C = (fi)nx. Then A = B+ C. By conditions (2)and (3), we obtain from
Proposition 3.1(ii) and (iv) and Lemma 2.5 that B € {co(X,p),co(g)). The condition (1) implies by
Proposition 3.7 that Y ;- , fk(zx) converges for all z = (zx) € co(X,p), so that C € {co(X,p), < e >).
Hence, by Theorem 4.1, we obtain that A € (co(X, p), ¢(q)).

Now, we shall show that conditions (3) and (3') are equivalent. To do this, suppose that (3) holds
and let £ > 0. Choose m € N, 1/m < £. From (3), there is ro € N such that

sup m*/ 3 | = fillr™H7 < Lforallr > 7o,
n k=1

This implies that sup,, (332, /i - fk”f'_l/p*)q“ < 1/m < e for all r > rg. Hence, {3’) holds.
Conversely, suppose that {3') helds. Let m € N and 0 < € < 1. Then there exists rp € N such
that sup,, (352, Nf2 — fellr=1/P)™ < &ff fm for all 7 > 7o, where H = suppgn,. Hence, we have

m N fE = fullrTHPr < e#/9n < g forall 7> rgand neN,
k=1
so that {3) holds. This completes the proof. O

Theorem 4.5. Let p = (px) and ¢ = (gx) be bounded sequences of positive real numbers and A = (f7)
an infinite matriz. Then A : c(X,p) — c(q) if and only if there is a sequence (f) with fi € X' for all
k € N such that (1), (2), (3) and ({) are satisfied, where

(1) Tro I fellM7YPe < oo for some M €N,

(2) for each m.k € N, mY0(fi —~ fi) % 0 as n— oo,

(3) for each m € N, sup, m¥= 30 ||f2 — fellr~V/Px —Qesr — oo and

(4) (R, fR@), €clg) forallz € X.
Moreover, (8) is equivalent to (3} where

(37) limr_co sup, (52, IfE = Sl /)™ =0

Proof. Since e(X.p) = co(X,p) + {e{x) : = € X} (Proposition 3.2 (i) ), it follows from Proposition
3.1(iii} that A € (c(X,p),c(q)) if and only if A € (cp(X,p),c(g)) and 4 € ({e(z): z € X},c(q)}. By
Theorem 4.4, we have A € (co(X,p),c{q)) if and only if conditions (1)-(3) hold and it is clear that
A € ({e(z) : = € X},c(g)) if and only if (4) holds. We have by Theorem 4.4 that (3) and (3') are
equivalent. Hence, the theorem is proved. C
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Wu and Liu (Lemma 2.7) have given a characterization of an infinite matrix A such that A €
{(6(X,p),co) when p; > 1 for all £ € N. By applications of Proposition 3.1(ii) and (iv), Proposition 3.4,
and Theorem 4.1, and using the fact that co{g) = N{7=;¢0(,1/2¢), We obtain the following result.

Theorem 4.6. Let p = (pr) and ¢ = (gx) be bounded segquences of positive real numbers with py > 1
forallk € N and 1/pp + 1/t = 1 for all k € N, and let A = (f7}) be an infinite matriz. Then
A (X, p) — clq) if and only if there is a sequence (fi) with fr € X' for all k € N such that

(1) Speq Ifel* M™% < oo for some M € N,

(2) mVan(f2 — fi) ®5 0 asn-— oo forallm ke N and

(8) for each m € N, 3 g mi/an|[f0 — fi|%*r~% — 0 as r — oo uniformly on n € N.

By using Lemma 2.8, Proposition 3.1{ii) and (iv), Proposition 3.5 and Theorem 4.1, we also obtain
the following result.

Theorem 4.7. Let p = (pi) and ¢ = (qx) be bounded sequences of positive real numbers with pr, < 1 for
all k€ N and A = (f) an infinite matriz. Then A : £(X,p) — c(q) if and only if there is a sequence
(fx) with fr € X" for all k € N such that
(1) sup, |Ifell7* < o0,
(2) mYan (f2 — f)™ 0 as n— oo for allm,k € N and
(8) sup mPe/In || f2 — fi||P* < oo for allm € N.
n,k

When pp = 1 for all k € N, we cbtain the following.

Corollary 4.8. Let g = (gi) be a bounded sequence of positive real numbers and let A = (fJ) be an
infinite matriz. Then A : 6(X) — c(q) if and only if there is a sequence (fi) with fr € X' forallk e N
such that
(1) supellfel < oo,
(2) mte (f7 — fr) = 0as n — oo for allm,k € N and
(8) sup mM | fE - foll < 0o for every m € N.
n,k

Theorem 4.9. Let p = (pi) be a bounded sequence of positive real numbers and A = (f2) an infinite
matriz. Then A : My(X,p) — clq) if and only if there is a sequence (fr} of bounded linear functionals
on X such that

(1) sup, mYPx| fill < co far allm € N,

(2) for each m,r € N, ri/Inmi/Pe(fr — fi3 “ 0asn- ooforallke N and

(3) for each m,r € N, sup r1/9ml/P||fi — fill < 0o .
n,k

Proof. It follows from Theorem 4.1 that A € (Mp(X, p), co{q)® < e >) if and only if there is a sequence
(f) of bounded linear functionals on X such that A = B + (fi)nx where B : My(X,p) — colg)
and (fe)ng + Mo(X,p) —< e >. Since B = (fff — fe)nr and My(X,p) = Um=181(X ) (m-1/pey (bY
Proposition 3.2 (ii)), we have by Proposition 3.1 (i) and (iv) that B : Mu(X,p} — co(q) if and only if
(mi/Pe(fp fk))n,k : £1(X) — colg) for all m € V. Since co(g) = NI, 0, 1/ary, by Proposition 3.1 (ii)
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and (iv), we have (mYP*(f — fi}), . : €1(X) — colg) if and only if (rM/%m/Pe(f — fi)) . 1 €3(X) —
cg for all r € N. By Lemma 2.8 , we have '
(r1/ammPe(f2 — fi)). . : £1(X) — co if and only if

(a) rM/anml/Px(fr — fi) . 0asn— coforall k€ N and
(b} sup rl/emml/Pel|fr — fill < oo .
n,k

By Proposition 3.1 (i) and (iv), we have (fi)n, : Mo(X,p) —< e > if and only if (m!/P* fi),. & :
£(X) —»< e > for all m € N. By Proposition 3.5, we obtain that (ml/P“fk)n,k s €1(X) —-< e > if and
only if sup, m/P*|| f|| < co . Hence, the theorem is proved. - 0.
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ON PROPERTY (H) AND ROTUNDITY OF DIFFERENCE
SEQUENCE SPACES.

A KANANTHAI, M. MUSARLEEN, AND 5. SUANTAI"

ABSTRACT. In this paper, we define a modular on difference sequence space
£(A, p) and consider it equipped with the Luxemburg norm induced by the mod-
ular, where p = (pi) is a bounded sequence of positive real numbers with p > 1
for all X € N. The main purpose of this paper is to show that £(A, p} has property
(H) and we also show that £(A,p) is rotund if and only if py > 1 for all £ € N.

1. INTRODUCTION.

Convexity properties of Banach spaces is an important topic in functional anal-
ysis and plays an important role in infinite dimensional holomorphy. In order to
study the geometric properties of Banach spaces, Clarkson [5! introduced the very
important class of rotund (strictly convex) spaces. Since Clarkson’s paper, many
authors have defined and studied various convexity properties lying between uniform
convexity and rotundity (see [2, 3, 5, 12, 14, 17]. )

Among the geometrical properties of Banach spaces, property (H) has proved
to be particularly important and has been studied by various authors. Criteria for
property (H) in Orlicz spaces and Otrlicz sequence spaces were given by S. Chen
and Y. Wang {4] and C. Wu, S. Chen and Y. Waung [20]. R. Pluciennik, T. Wang
and Y. Zhang [19] obtained necessary and suflicient conditions for H- points and
denting points in Orlicz sequence spaces.

In [7], criteria are given for Musielak-Orlicz sequence spaces to have property
(H).

In this paper, we introduce the difference sequence space £(A, p), when p = (pi)
is a bounded sequence of positive real number with py > 1 for all £ € N, and
consider it equipped the Luxemburg norm. We show that £(A, p) has property (H)
and establish criteria for rotundity.

We begin by intreducing the basic notations and definitions. In the following,
Let R be the real line and N the set of natural numbers.

For a Banach space X, we denote by S{X) and B{X) the unit sphere and unit
ball of X, respectively. A point zp € S(X) is called:

a) an extremne point if for every z,y € S{X) the cquality 2z¢ = 2 + y implies
=y

b} an f{-point if for any sequence (z,,) in X such that [|z,| — 1 as n — oo, the
weak convergence of (xy,) to xp (written a, = o) implies that ||z, — 2] — 0 as
1 00

2000 Mathemetics Subject Classification. 46B20, 46345, 4GE30.
Key words and phreses. Property (H}, rotundity, difference sequence spaces.
° Corresponding auther.
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A Banach space X is said to be rotund (R), if every point of §(X) is an extreme
point. X is said to posses property (H) provided every point of S(X) is an H-point.
For these geometric notions and their role in Mathematics we refer to the mono-
graphs [2], {8, and [17]). Some of thein were studied for Orlicz spaces in [3], [6], [9],

[10], [11], [19], and [20].
Let X be a real vector space. A functional g "X — [0, 00] is called a modular if

it satisfies the conditions
(i) o(x) =0 if and only if z = 0
(ii) p(azx) = p(z) for all scalars @ with Ja|=1;
(iii) plaz + By) < o(z) + o(y), forall z,y € X and all o, [3>0w1tha+ﬁ_1
The modular g is called convex if
(iv) olaz+Py) < ag(z)+ Pely), forallz,y € X and a,lla B> 0witha+8=1.
If p is a modular in X, we define

X, = X h Az)y =0
p={ze X Jim o) =0},

and X} = {z € X : p(Az) < oo for some A > 0 }.
It is clear that X, C X7. If ¢ is a convex modular, we define

(1.1) [z|| = inf{A > 0: g(,\) <1}

Orlicz [18] proved that if p is a convex modular in X, then X, = X and ||.]| is
a norm on X, for which it is a Banach space. The norm {[.|| defined as in (1.1) is
cailed the Luxemburg norm.
A modular p on X is called

(a) right-continuous if limy 1+ p{Ax) = p(z) for all z € X,,

(b) left-continuous if imy_,- p(Az) = p(z) for all z € X,

(c) cotinuous if it is both right-continuous and left-contimious.
The following known results gave some relationships between the modular g and
the Luxcmburg norm ||| on X,.

Theorem 1.1 Let ¢ be a conver modular on X and let z € X, and (z,) @
sequence in X, Then ||z, — x| = 0 as n — oo if and only if p(Mzn — x)) = 0 as

n — oo for cvery A > 0.
Proof. See [16, Theorem 1.3].

Theorem 1.2 Let ¢ be o conlinuous convexr modular on X. Then
(1) fle)l < 14f and only of o(z) < 1.
(1) |l.ell < 1 if and ondy if o(z) < 1.
(i1} el = 1 of and only if p(2) = 1.
Proof. See {16, Theorcm 1.4].

Let us denoted by € the space of all real sequences and let p = (pg) be a bounded
scyuence of positive real numbers. In [13], Kizmaz introduced the sequence spaces
loo(A), co(A) and ¢(A) by considering the difference sequence Az = (2 — Tg41)52,
for any sequence @ € [ ) where £, cp an ¢ are Banach spaces of bounded, null and
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convergent sequences, respectively. In [1], these sequence spaces were extended to
loo(D, p}, co(A,p) and (A, p), where, for example

lo(A,p)={z €l : Az € ly(p) )}

with
loo(p) = {z €1 : sup |2|P* < o0 ).
k

In [1] and [13] the authers determined the Kothe-Téeplitz and generalized Kothe-
Toeplitz duals of these spaces and consider various matrix transformations.
In this paper we introduce the space £(A, p} defined analogously as follows,

HAa,p) ={zel’: Az e ip) },
where

p) = {zel®: Zlm )PE < oo}

and study some of its geometric pl‘Opelt]BS.
For details of the spaces oo (p) and £(p), we refer to [15].
For x € {{A, p), we define

op(z) = |z(1)| + Z fx(k}) — x(k + 1)

Hpr > 1 forall & € N, we have, by the convexity of the functions £ — [¢[P* for cach
k€ N, that gp is a convex modular on {(A, p). We consider £(A, p) equipped with
the Luxemburg norm given by

izl = inf{e > 0: Q,,(g) < 1).

A normed sequence space S is said to be a K-space if each coordinate mapping
Py, defined by Pi{z) = zi, is continuous. If S is both a Banach and a K-space, it
is called a BIK-space.

Throughout this paper we let M = sup, pr and assume that py > 1 forall bk € M.
. 2. MAIN RESULTS

We begin by giving some basic properties of the modular on the space £(A, p).

Proposition 2.1 For x € f(/_\. p) the modular p, on (A, p) sutisfies the following:
(1) if 0 < a <1, then o gp( ) < Qp( z) end gyl{az) < agy(z),

(ii) if « > 1, then g,(x) < al g‘,,( ),

(1i1) if a 2 1, then pp(z) < (rgl,,(fz,) < oplaz).
Proof. It is obvious that (ii1) 1s satisfied by the convexity of g,. It remains to prove
(i) and (ii).

For 0 < a <1, we have

op(z) = }+Zp, ) - x(k + 1)
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3(1) i

af{xz( A,)—:L]»-i‘l))

AEICN

a
z

).

It follows by the convexity of g that gy(az) < agp(z) , hence (i) is satisfied.
) ,
Now, suppose that a > 1. Then " < 1. It follows from (i) that

&) ser= () o) 50 )

so that g,(z) < a“gp (—) , hence (ii) is obtained. - O
a

= o’ Qp(

Proposition 2.2 The modular g, on £(A,p) is continuous.
Proof. For A > 1, by Proposition 2.1 {ii) and (iii}, we have

(2.1) op(7) < Agp(z) < gp(Az) < A gy(z)

By taking A — 1% in (2.1), we have limy_1+ op{Az) = gp(z). Thus g, is right-
continuous. If 0 < A < 1, by Proposition 2.1 (i), we have

(2.2) )\MQ;U(“T) < Qp{)\m) < )\Qp(z)
By taking A — 17 in (2.2), we have that limiy_,;-0,(Az) = g,(x), hence, p, is
left-continuous. Thus g, is continuous. 0

Next, we give some relationships between the modular g, and the Luxemburg
norm on (A, p).

Proposition 2.3 For any = € £(A,p), we have

() if lall < 1, then gy() < fl=],

(1) if il > L, then pp(a) = |[=(,

(1ii) |jz}l =1 "':f and only if gy(x) =1,

(iv) lzll < 1 if and only if op{z) < 1,

(v) ||zl > 1 if and only if p,(z) > 1,

{vi) f 0 <a <1 and l|z|| > e, then py(z) > o™ and

(vii) if @ = 1 and 2| < a, then gy(z) < o
Proof. {i) Let ¢ > 0 be such that 0 <e<l - H.L‘H, so ||z|l + ¢ < 1. By definition of
II -}, there exists A > 0 such that |lzff +¢ > A and  o{5) < 1. From Proposition
2.1(1) and (i), we have

op(z) < 0, (wt)

=, (=) +9)5)
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< (llali + c)e(3)
< =zl +¢,
which implies that gp(z} < {|z]|, so (i) is satisfied.
(ii) Let ¢ > 0 be such that 0 < € < Hmll_——l, then 1 < {1 — e)l|z]| < |lzll. By

|zl

definition of || - || and by Proposition 2.1 (i), we have

<o (=)

1
S T %@

so (1—-e€)||z|| < pp(z) for all € € (0, ”SEHHTHI) This implies that ||zj| < g,(z), hence

(ii) is obtained.
Since g, is continuous (Proposition 2.2) , (iil) and (iv) follow directly from The-
orem 1.2,
(iv) follows directly from (i) and (iii).
(v) follows from (iii) and (iv).
(vi) Suppose 0 < a < 1 and {jz|l > a. Then “E” > 1. By (v), we have QP(E) > 1.
a a .
Hence, by Proposition 2.1(i), we obtain that gp(z) > a*gp(Z) > ™.
(vii) Suppose a > 1 and ||z]] < a. Then EH < 1. By (iv), we have gp(g) < 1. If
a
a = 1, it is obvious that p,(z} < 1 = aM_ If @ > 1, by Proposition 2.1(ii), we obtain

:‘L- ¥
that g, (r) < a‘”gp(g) < oM, O

Proposition 2.4 Let () be a sequence of elements of £(A, p).

(i) If |lza|l = 1 asn - oo, then py(zy,) = 1 asn — co.

(1) ||xn]| = 0 as n = oo if and only if pp(zn) = 0 asn — oo,
Proof. (i} Suppose ||z,]] = 1 as n -+ co. Let € € (0,1). Then there exists N € N
such that 1 —e < ||zn]] < 1+ € for all n > N. By Proposition 2.3 (vi) and (vii), we
have (1 — )M < g,0z,) < (1 + €)™ for all n > N, which implies that g,(z,) — 1 as
1n — oo.
(ii) The ouly part of (ii) is true by Theorem 1.1, so we need to show only the if
part. Suppose ||zn| 7 0 as n — oo. Then there is an e € (0,1) aund a subsequence
(zn,) of (zn) such that ||z, || > € for all £ € N. By Proprosition 2.3 (vi), we have
0y(1n,) > ¢ forall ke N. This implies g,(zn) 4 0 as n - oo J

Next, we shall show thal £(A,p) has property (H). To do this, we need two
lennas.

Lemma 2.5 The space {(A,p) is a BK-space.

Proof. Since £(A, p) equipped with the Luxemburg norm is Banach, we need only
show that ¢(A,p) is a K—space. Suppose (x,) C {{A,p) suth that z,, = 0 as
1 — co. It follows by Proposition 2.4(ii) that g,{z,) — 0 as n = oco. This implies
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that
lzp(1){ = 0 as n— oo and

lzn(k) — zp(k+ 1)) = 0 asn — oo forall ke N

By induction, we have z,(k) — 0 as n — oo for all ¥ € N. Hence P.(z,) —
0 asn — oo for all &£ € M. This implies that P is continuous for all £ € N,

Lemma 2.6 Let z € L(A,p) and (z,) G €A, p). If op(zn) = 0p(z) asn — 00 and
Zn(i) = z(i) as n — oo for all i € N, then zn, =  as n — oo.

Proof. Let € > 0 be given. Since gp(z) = |z(1)|+ > jfo, l2(k) —z(k -+ 1)P% < 00,
there is kg € N such that

> € 1
(23) k:%;-l !'E(k) — .r(k + l)lp"‘ < 5 . W ’

Since pp(zn) = op(x) as n — oo and z,(i) - x(i) as n — oo for all i € N, there is
ng € N such that for all n > ng,

Ky
(2.4) op(zn) — (lmn(l)] + Z |zn (k) — zn(k + 1)|PL)

k=1

< olo) - ('$ 1}|+Zim —x(xc+1)|m)+3_iﬂ

and

2l

(25)  Jea(l |+Z|«zn )+ 2(k)) = (Ealk + 1) — 2k + 1) <

It follows from (2.3), (2.4) aud (2.5) that for n > ny,

op(zn — z) = zn (1) — z(1)| + D [(mn k) = (k) — (za(k + 1) — z(k + 1)) [P

k=1
ko
= lza (1) = ()] + Y [(za(k) = 2(k)) — (gnlk + 1) — x(k + 1))}
k=1
+ i [(zn () — x(k)) — (zn(k+ 1) —x(k+ 1))
k=kg+1
< ; + 28057 Ja (k) — a1 ST Ja(k) - a(k + 1))
k=kao+1 k=ko+1
Ly
- §+z’”(g,,(a;,,) (lz. (1 |+Eian (k) = zn(k + 1))

+ Y (k) = 2k + D))

k=kp+1
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ko
. £
< g+ 2M(gp(®) = (a4 3 lal) — (ki + D) + 55
k=1
oQ
+ Z lz(k) — z(k + 1}|P*)
ko+1
€ - i
k=ko+1
€ Myl & £
<3 +2 3 oM +1 + 3
=€,

This show that gp(z, — ) — 0 as n —> co. Hence, by Proposition 2.4 (ii}, we
have ||z, —z|| = 0 as n — oo.

Theorem 2.7 The space £(A,p) has property (H).

Proof. Let o € S(£(A,p)) and (z,) C £(A, p) such that ||z,)| — 1 and 2, = = as
n — oc. From Proposition 2.3 (iii), we have g,(z) = I, so it follows from Proposition
2.4 (i) that gp(zn) — op(z) as n — co. By Lemma 2.5, we have that the coordinate
mapping &5 : £{A,p) — R is continuous, so it folows that «, (1) — x(i) as n — oo
for all i € N. Thus, we have by Lemma 2.6 that £, — = as n — oo. ||

Theorem 2.8 The space £{A,p) is rotund if and only if pr > 1 for all k € N.

Proof.  Necessity. Suppose that therc is &y € N such that py, = 1. Let z =
(1,1,1,...} and y = (0,0,0...,0,1,1,1,...}). Then = # y and it is easy to see that
——

ko

oplx) = Qp(y) = Op (-‘B ; ?j) = 1.

iy s -+ .
By Proposition 2.3{iii) , we have z,y and rry € 5(¢{A,p)), so that £(A,p) is not
rotund.
Sufficiency. Suppose that p;, > 1 for all &k € N. Let z € S{£(A,p)) and y,2z €

B{A,p)) withz = l;—z— By convexity of g, and Proposition 2.3(iii), we have

, 1 . 1 1

1= :(_’p(-'“) < 3(0})(?}') + Q;u(z)) < 5 + 5 = 1.
This implies that
(2-6) Q]J(y} = Q}'l(z) =1

(27) Q})(fﬁ) - é’(@p(y) - Qi?(z))'
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By (2.7}, we have

oo

Y= y(h + 1))+ (2(k) — z(k + 1)) [P*

y(1)+ z(1)

I T iOP ;

= (Iy(l)HZly(k (k+1)|“) (lz 1)|+le )=z I~+1)|”")
k=1

= S(p()f + 1)) + 5 (Zly(k y(k+1)|“+2|z —zk+1w’*~)
which implies that
(2.8) (1) + z(1)] = |y(1)] + |2(1){ and

(y(k) —y(k + 1)) + (2(k) — 2(k + 1)) |
2

(2.9)

(ly(k) — gyl + )P +12(k) — z(k + 1)P*)

t\)ls—a

for all k € N.
Since the function ¢ — [f[P% is strictly convex for every & € N, we see that(2.9)

implies,
(2.10} ylk) —y(k+1)=z2(k)—2(k+1) forallk e N.

Tt follows from (2.6} and (2.10} that |y(1)] = [2(1)]. This inplies by (2.8) that
y(1}) = 2(1). This, together with (2.10), yields by an inductive argument that
y(k) = z{k) for all k € N. Hence y = 2.

Acknowledgements
The author would like to thank the Thaland Research Fund for their financial
support.

REFFERENCES

[1] Z.U. Alunad and Mursaleen, Kéthe-Toeplitz duals of some new sequence spaces end thier
matriz maps, Publ. Inst. Math.(Beograd) 42(56) {1987), 57-61.

{2] K.W. Anderson, Midpoint local uniform cenvewity, and other geometric properties of Banach
spaces, Dissertation University of Monios, 1960.

[3] S. Chen, Geometry of Orlicz spaces, Disscriationes Math., 1996, pp. 356.

[4] S. Clhicu and Y. Wang, H property of Orlicz spuces, Chinese Ann. Math. 8A (1987}, 61- 67.

[5] J.A. Clarkson, Uniformiy conver spaces, Trans. Amer. Math. Soc. 40 {1936), 396 - 414.

[6] Y. A. Cui, H. Hudzik, and C. Meng, On some lacal geometry of Orlicz scquence spaces equipped
the Luzcmburg norms, Acta Math, Hungar. 80 (1- 2} (1998), 143-154.

{7] Y.A. Cui, H. Hudzik, and R. Pliciennik, Banaech-Saks property tn seme Banach sequence spaces,
Anuales Math. Polonici 65 (1997}, 193-202.

I8] J. Diestel, Geometry of Banach Spaces - Selected Topics, Springer-Verlag, 1984.

9] R. Grzaslewicz, H. Hudzik, and W. Kure, Extreme and exposed points in Orlicz spaces, Cana-
dian J. Math. 44 (1992), 505-515.



(10
(11
[12

[13
[14

15
(16
(a7
(18
[19

[20

AL

ON PROPERTY {H} AND ROTUNDITY OF DIFFERENCE SEQUENCE SPACES 9

| H. Hudzik, Orlicz spaces without sirongly extreme points end without H-points, Canad. Math.
Buli 35 (1992}, 1 - 5.

] H. Hudmk and D. Pallaschke, On some convezity properites of Orlicz sequence spaces Math.
Nachr. 186 (1997), 167-185.

] V.1 Istritescu, Lecture Note in Pure and Applied Math. 87, Marcel Dekker, Inc., New York
and Basel, 1984. .

| H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981}, 169-175.

] A. R. Lovaglia, Locally uniformly convex Banach spaces, Tran. Amer. Math. Soc 78 (1955),
225-238.

] I.J. Maddox, Continuous and Kothe- Toep.lz'tz duals of certain sequence spaces, Proc. Camb.
phil. Soc. 65 (1967), 431-435. '

] L. Maligranda, Orlicz Spaces and Inferpolation, Institute of Mathematics, Polish Academy of
Science, Poznan, Poland, 1985.

1 J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springei-Verlag,
{1983).

] W. Orlicz, A note on modular space I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
9 (19861), 157 - 162.

] R. Pluciennik, T. Wang, and Y. Zhang, I-points and Denting Poinits in Orlicz Spaces, Com-
ment. Math, (Prace Mat.) 33 {(1993), 135-151.

] C. Wu, S. Chen, and Y. Wang, H property of sequence Orlicz spaces, J. Harbin Inst. Tech.
Math. issue (1985}, 6 - I1.

Manuscript received November 4, 2002

KANANTHAL

Departinent of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.

AfL
De
Su
Da

E-maoil address: scmtiD05chiangmai.ac.th

MUSARLEEN
partment of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India .

THEP SUANTA)
partment of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
E-mad address: Malamnkascience.cmu.ac.th



(18)

Southeast Asian Bulletin of Mathematics (2002) 26: 349-362 Southeast Asian

Bulletin of
Mathematics
© Springer-Verlag 2002

Matrix Transformations of the Maddox Vector-Valued
Sequence Spaces

Suthep Suantai
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai

50200, Thailand :
E-mail: malsuthe@science.cmu.ac.th

Chanan Sudsukh

Department of Mathematics Satistics and Computer Sciences, Faculty of Liberal Arts
and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhomn Prathom 73140,
Thailand

E-mail: faaschs@nontr.ku.ac.th

AMS Subject Classification {2000): 46A45.

Abstract. In this paper, we give the matrix characterizations from any normal vector-valued
FK-space containing ¢(X) into scalar-valued sequence space ¢(g) and by applying this re-
sult, we also obtain necessary and sufficient conditions for infinite matrices tnapping the
sequence spaces (X, p), e(X, p), 4u(X, p),£(X, p), 6ol X, p), EX, p), and F(X, p) into
the space ¢(q), where p = (p«) and g = (qx) are bounded sequences of positive real num-
bersand r > 0.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces

1. Iotroduction

:

Let (X, ||-]|) be a Banach space and p = {px) a bounded sequence of positive real
numbers. Let N be the set of all natural numbers, we write x = (xz) with x; in X
for all k e N. The X-valued sequence spaces co(X, p), c(X, p), 4 (X, p),£(X, D),
colX, p), E(X, p), and F,(X, p) are defined as

(@) co(X, p) = {x = (xx) : limp—cofxe}|™ = O};

(b) (X, p) = {x = (xx) : imp_ o Jjxx — al}™® = O for some a e X};

(€) (X, p) = {x = (xx) : sup | xe[|”* < o0};

(@) (X, ) = (x = () : T2 [l < oo}

(8) colX, p) = {x = (xx) : supl|xx /G }™* < co for some (k) € co With &g # 0 for
all ke N};

IKJ'ZZHHCW SVMHK J-9691 SEABM, 26:2 PMU: WSL 227702 Tmath (0).3.05.05 pp. 343-362 Chig P lp.3491—|

349



350 8. Suantai and C. Sudsukh

(f) E(X, p) = {x = (x) : supy &~"[|x[|™* < co};
(8) FAX,p) ={x=(x): Ly k"Ixell”* < o0}

When X = K, the scalar field of X, the corresponding spaces are written as
co{p), ¢(p), 2 (p), £(p), co(p), E.(p) and F,(p), respectively. The first three spaces
are known as the sequence spaces of Maddox. These spaces were introduced and
studied by Simons [9] and Maddox [5-7]. The space ¢(p) was first defined by
Nakano [8} and is known as the Nakano sequence space. The spaces co(p) was
first introduced by Grosse-Erdmann [3] and he investigated in (3] the structure of
the spaces co(p), c(p),£(p), and £, (p). Grosse-Erdmann [4] gave the matrix char-
acterizations between scalar-valued sequence spaces of Maddox. When py = 1, for
all k e N, the spaces E,(p) and F,(p) are written as E, and F,, respectively. These
two spaces were first introduced by Cooke [2]. Now the problem of matrix trans-
formations becomes more general, we consider infinite matrices of bounded linear
operators instead of matrices of real or complex numbers and* we consider on
vector-valued sequence spaces instead of scalar-valued sequence spaces. Choud-
hury [1] gave the matrix characterizations mapping co(X) into ¢o(¥), £1(X) into
lo{Y), and £1(X) into £,(Y). Wu and Liu [12] deal with the problem of charac-
terizing infinite matrices mapping co(X, p) and 4 (X, p) into cp(g) and 4, (q),
where p = (p) and g = (qx)} are bounded sequences of positive real numbers.
Suantai {10] has given matrix characterizations from /(X p) into the vector-
valued sequence spaces ¢p{ Y, q),¢(Y) and 4(Y) , where g = {(gx) is a sequence of
positive real numbers, ¥ is a Banach space and s > 1. He has also given in [11]
necessary and sufficient conditions for infinite matrices mapping £(X, p) into £
and £, (q).

In this paper, we extend some results in [10] and [11] and generalize some results
in [4]. We also obtain some related results as mentioned in the abstract.

2. Notation and Definitions

Let (X,].]]) be a Banach space. Let W(X) and ®(X) denote the space of all
sequences in X and the space of all finite sequences in X. When X = K, the sca-
lar field of X, the corresponding spaces are written as w and @, respectively. A
sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence
space. For x € E and & € N we write that x; stand for the kth term of x. Forxe X
and k € N, we let e)(x) be the sequence (0,0,0,...,0,x,0,...) with x in the kth
position and let e(x) be the sequence (x, x, x,...), and we denote by e the the se-
quence (1,1,1,...). For a fixed scalar sequence u = (1) the sequence space E,
is defined as

E,= {x=(xx) € W(X) : (xxs) € E}.

Let 4 =(f7) with f in X', the topological dual of X. Suppose E is an
X-valued sequence space and F'a scalar-valued sequence space. Then A is said
to map E into F, written by 4: E— F if, for each x=(xx) € E, A,(x)=

(V7 2277 13:43) SV/HK 19691 SEABM, 26:2 PM'): WSL22/7/02 Tmath {01.3.05.05 pp. 349-362 Ch18 P {p. 350}
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> sy S (xi) converges for each n € N, and the scquence Ax = {4,(x)) € F. We
denote by (E, F) the set of all infinite matrices mapping E into F. If u = (u;) and
v = () are scalar sequences, let

i

(B F)y = {4 = () : (a0 S € (B, F)}-

If u; # 0 for alt k € N, we put ' = (1/u). An X-valued sequence space E is said
to be normal if (xx) € E and (y,) € W(X) with ||ye]} < ||xe]] for all £ € N implies
that () e E.

Suppose the X-valued sequence space E is endowed with some linear topology
t. Then E is called a K-space if, for each ke N the kth coordinate mappmg
pr 1 E — X, defined by pir(x) = x;, is continuous on E. In addition, if (E,7) is a
Fre'chet (Banach) space, then E is called an FK-(BK-)space.

The spaces ¢o(p ) and ¢(p) are FK-spaces. In ¢o(X, p), we consider the function

g{x) = sup lxe )|/, where M = max{1,sup, px}, as a paranorm on c¢o(.X, p),

and it is known that ¢o(X, p) is an FK-space under the paranorm g defined as
above. In Z( X, p), we consider it as a paranormed sequence space with the para-
norm given by ||(x¢)lj = (X5, [[x]|?)"/™, where M = max{l,sup; px}. It is
known that #(X, p) is an FK-space under the paranorm defined as above.

3. Some Auxiliary Results

We start with the following useful results that will reduce our problems into some
simpler forms.

Propesition 3.1. Let E and E, (ne N) be X-valued sequence spaces, and F and
F, (n € N} scalar-valued sequence spaces, and let u and v be scalar sequences with
e =0, v #£0forall ke N, Then

) (U, En, F) = (Voo (En, F):
(i1 (E, ﬂ:i; F) = ﬂ:ll(E, Fy);
i) (Ei + By, F) = (E,F)N(Ex, F);
(V) (Eus Fo) = o(E, F) .

Proof. All assertions are immediately obtained directly by the definition.

Propostion 3.2, Let p = (pi) be a bounded sequences of positive real numbers and
r=0. Then

(i) c(X,p) = co(X,p) + {e(x) : xe X}
(i1) CO(X p)= U,,_ CO(X)(,, Vekyr

(iif) (X, p) =‘lw(X, P)(k—rin)

(iv) F(X,p)=¢(X, P)(k Ty

(v} bo(X,p) = U (X)(,,-w,,)

V7 22/7 13:43) SV/HK J-9691 SEABM, 26:2 PMU: WSL 22/2/02 Tmath [0).3.05.05 pp. 349-362 ChiB_P (p. 351r’
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Proof. Assertions (i), (iii) and (iv) are immediately obtained by the definition. To
show (ii), let x = {x) € co(X, p). Then there is a sequence (J;) € cp with d;. # 0 for
all k € NV such that sup,[jxx/8x{iP* < o0. Hence there exists & > 0 such that |lx:]| <
al/Pe\5, ] for all k € N. Choose ng € N so that np > . Then

Ixillng /7% < (oefmo) " i6e] < 1Bk,

which implies that lim;_q{xllny ek — g, hence x = (xk)eco(X) “iney S

Uney €0(X)a-imy- On the other hand, suppose x = (x¢) € | ), co(X’ )(,,-:rp,,) Then
limy g [|x ||~ /P = 0 for some n € N. Let § = (J;) be the sequence defined by

5. = { [xilln 2, if xp #£ 0
g 1/k, otherwise.

Clearly, () € cp and ||x¢ /]| < n for all k € N, hence supk"xk/csknp" <n, so
x = (%) € (X, p).

It remains to show (v). If x € £, (X, p), then there is some ne N w1th |l < n
for ail k € N. Hence ||x[ln~"/P < 1 for all k € N, so that x € £o{X)(,-un). On the
other hand, if x & (J;2 4o(X)(,-un), then there are some n € N and M > 1 such
that [x,[jn~'/" < M forevery k e N Then we have ||x||?* < nMP?* < nM* for all
ke N, where o = sup, px. Hence x e 40 (X, p). n

Proposition 3.3. Let (fy) be a sequence of continuous linear functionals on
X. Then 5.7, filxk) converges for all x=(xx)eco(X,p} if and only if
Yot ISl M~Yoe < o for some M e N.

Proof. Suppose 32 | fill M~1/7 < oo for some M e N. Let x = (x¢) € co( X, p).
Then there is a positive integer Ko such that [[x¢||”* < 1/M for all k = Kj, hence
lixell < M~YPe for all k > Kp. Then we have

}j felxi)l < }: el flaxill < Z [l fellM~1P < co.
_KD
It follows that 3.7 | fi(xx) converges.

On the other hand, assume that 3,7, fi{x} converges for all x = (xx) €
¢o(X, p). For each x = (x;) € co(X, p), choose scalar sequence (7) with || =1
such that fi(texg) = |fi(xi)l for all ke N. Since (fxy) € co(X, p), by our as-
sumption, we have 3 ., fi(txxx) converges, so that

i [fi(xx)l < o0 for all x e cp( X, p). (3.1)

k=1

Now, suppose that 3 2, || fi|lm~ /P = o for all m e N. Choose n1, k) € N such
that

[T‘.'? 227 13:43) SVMHK 9691 SEABM, 26:2 PMU: WSL 22702 Tmath {0L.3.05.05 pp.349-362 ChiB_P (p. 352



Matrix Transformations of the Maddox Vector-Valued Sequence Spaces 353

S felimy P > 1

ksk

and choose my > my and k3 > &y such that

ST llmy P > 2.

ki<k <k

Proceeding in this way, we can choose m; < ny < -,and 0 =ky < k; < ---such
that

ST Wl >

kioy<k <k

Take x; in X with ||x|| = 1 for all k, k;_; < k < k; such that

Z e (e)lm; P > i forallieN.
ki <k <kp

Put y = (y), ye = m; P x, for ki_y < k < k;, then y € co(X, p) and

oD
SO 2 Y k)i P > foraliie N
k=1

ki1 <k <k

Hence we have sum2 | fi(y«}] = co which contradicts with (3.1). This completes
the proof. . |

Proposition 3.4. Let (fi) be a sequence of continuous linear functionals on
. X. Then 3077, filxe) converges for all x = (xi) €ln(X,p) if and only if
iy M filimPe < o for allme N.

Proof. If D00, I fxllm'P* < o for all me N, we have that for each x=
{xk) € lo(X,, p), there is mg e N such that ||x|| Sm;/”" for all ke N, hence
o L)l < S 1A Il < X2, I llmg™™ < oo, which  implies  that
3 req Je(xi) converges.

Conversely, if 357, fi(xx) converges for all x = (xi) € £ (X, p), by using the
same proof as in Proposition 3.3, we have

'y

o

fe(xe)| < o forall x = (xx) € £ (X, p). (3.2)
k=1

Now, suppose that 3 7, ||.)‘}1c||1\4%'/“"E = o, for some M e N. Then we can choose
a sequence (k;) of positive integers with 0 = kg < k) < k2 < - -- such that

-
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S WlM Ve > i forallieN.

ko <k <k;

——

And we choose x; in X with |lx;|| = I such that for all i e N,

> il > i

kiy<k <k

Put y = (yi), yx = MPexy, Clearly, y € £ (X, p) and

o &0
STAGZ S k)M VP > forallieN.
k=1 ke <k <k

@
Hence 3 |fx(yx)| = oo, which contradicts with (3.2). The proof is now com-
k=1

pleted. ]

Proposition 3.5. Ler (fy) be a seguence of continuous linear functionals on X
and p = (pi) a bounded sequence of positive real numbers with py > 1 for all
keN. Then 332, fu(xi) converges for all x = (xi)e¢(X,p) if and only if
S Mfll* M- < oo for some M € N, where 1/p, + 1/t = | forallke N.

Proof. Suppose Y 5o, Ifll* M~ < oo for some M e N.
Then we have that for each x = (x;) € (X, p),

SOV S S LAlM o 0 o |
k=1 k=1

< S (AN M7 4 Mljxf#)
I

k=
o X
= Y AN M0 £ MY x| < oo,
k=1 k=1
which implies that } .2, fa(xx) converges.
On the other hand, assume that > g, fi(xx) converges for all x = (xx} e
(X, p). By using the same proof as in Proposition 3.3, we have

i!ﬁ((xk)l < oo forall x = (x) (X, p). (3.3)
k=

We want to show that there exists M € N such that 3.2, || il “M "~V < 0. If
it is not true, then
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o
S WAl m e =0, forallmeN. (3.4)
k=1

It implies by (3.4) that for cach ke N,

Z “ﬂ.“hm-('e-l) =c0, forallmeN. (3.5)

i>k

By (3.4), let m; = 1, then there is a k; € N such that

STl m D > 1

k <k,

By (3.5), we can choose my > m; and ks > k; with my > 22 such that

P AR B (3.6)

ky<k <ky

Proceeding in this way, we can choose sequences of positive integers (k;) and (m;)
withl=ky < k) <ky <---and m < my <---,such that m; > 2' and

— ’ — —1
S el > 1

ki <k sk

For each i € N, choose xi in X with ||x¢|| = 1 forallk e N, ki) < k < k; such that

Z ()| *m7 0 > 1 forallie N.
ki <k £k

Leta= 3 el %m0 Put y = (i), 3 = a7 tm | fela) | 7 x
-] <K S K

forall k ;. <k <k;. Foreachic N, we have

1. —{n-t -1
S M= 37 lartmy T Al T el

kioi<k<k; ki <k sk;

= Y gt
kiy<k gk
< Y atmtm O ol

» ]

ki <k <k

1 !

=a; m; a

R |
=m;

< 1/2%
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So we have that 3 2, llwli™ < 32, 1/2' < 0. Hence, y = (y) € £(X, p). For
each i ¢ N, we have

————

ST O = S e m T (i )

kg <k sk ki <k <k;
N (]
= Y0 ' Ol
kioy <k <k
- —(t=1
= a; 1 Z m; {tx )lﬁc(xk)l‘k
ki1 <k sk

=L

(2] -
So that > {fi(ye}| = oo, which contradicts with (3.3). The proof is now com-
plete, k=l "

Proposition 3.6. Let p = (pi) be a bounded sequence of positve real numbers with
pe <1 for all ke N and (fi) = X'. Then Y oo, fu(xi) converges for every x =
(xk) € £(X, p) if and only if there exists M € N such that sup,|| fi |M~V/? < co.

Proof. If 352 fe(xx) converges for every x = (x;) € £(X, p), using the same proof
as in Proposition 3.3, we have

i Vel )l < oo forall x = (xx) e (X, p) (3.7
k=1

Suppose that supg||fillm~ /7 = co for all me N. For each ie N, choose se-
quences (ny;) and (k;} of positive integers with my <my < ---and ky <ky < ---
such that m; > 27 and || fi,[lm; /7 > 1. Choose xi, € X with {|x,[| = 1 such that

i Cer Mo 72% > 1. (3.8)
Let y=(w), yx=m; He * Xk, if k= k; for some i, and 0 otherwise. Then
e el = 3202, 1/me < 032, 1/27 = 1, so that (yx) € £(X, p) and

SCLAGON =3 sl )]
k=i

i=1
_ 2 =1/p, _
- m; 'ﬁl(xki)l =0 by (38)$

i=t

and this is contradictory with (3.7). Therefore, there exists M € N such that
supy [ fill M ~1/Px < oo .

Conversely, assume that there exists M € N such that sup|| il M~1/7 < 0.
Let x = {x;) € £(X, p), then there is a X > 0 such that
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(fill < KMYPe forallke N (3.9)

and there is a ko € N such thatM /7 |jx. )} < 1 for all k = ko. By pr < 1 for all
k € N, we have that for all £ > ky,

MR x|l < (M2 (lxel)P* = M| ]| (3.10)
Then
o0 ko oo
DGt < Dkl + D7 Il lxel
k=1 k=1 k=ko+1 .
&, o .
< YA+ K Y0 M| (by (3.9))
k=1 k=kg+1 :
kq w0
< YW=l + KM D7 ™ (by (3.10))
k=1 k=ko+1
< 0.
This implies that 3°2°, fi(x) cor;vergcs. =

4, Main Results
We begin with the following useful result.

Theorem 4.1. Let g = (qi) be a bounded sequence of positive real numbers and let

E be a normal X-valued sequence space which is an FK-space and contains O(X).
Then

(E' C(Q)) = (E’ CU(Q)) @ (E, (&)

'

. * .
To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X-valued sequence space which is an FK-space and contains
®(X). Then for each k € N, the mapping Ty : X — E, defined by Tix = e*(x), is
continuous.

Proof. Let ¥V = {e*(x) : x € X}. Then ¥ is a closed subspace of E, so it is an FK-
space because E is an FK-space. Since E is a K-space, the coordinate mapping
Pk : ¥V — X is continuous and bijective. It follows from the open mapping theo-

rem that p; is open, which implies that pg': X — V is continuous. But since
T = p;!, we thus obtain that T} is continuous. ]

.
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Lemma 4.2. Let g = (qy) be a bounded sequence of positive real numbers. If E and F
are scalar-valued sequence spaces such that E is normal containing © and F is an
FK-space with the property that for each x = (xi) € F, there is a subsequence (X, )
of (xi) with x,, — 0 ask — o0, then (E,F @ {e)) = (E,F) ® (E, {e)).

Proof. See (2, Proposition 3.1(vi)]. . =

Proof of Theorem 4.1. Since c(q) = co(q) @ <e), it is clear that (E,co(q)) +
(E,<e>) < (E,co(q) ® {ed) = (E,c(g)). Moreover, if A e (E,co{q)) N(E,<e)),
then A€ (E, r:g(q)ﬂ(e)) so that Ae(E,0), which implies that 4 =0 be-
cause E contain ®(X). Hence (E,co(q)) + (E,{eD) is a direct sum. Now, we
will show that (E,c(q)) < (E,colg)) @ (E,{e)). Let A= U;c) e (E, c(q))

(E,co{lg) ®e)). For xeX and keN, we have (f(x )n_ = Ae*(x) e

co(q) ® {e>, so that there exists unique (b}(x))., € co(q) and (ck(x))n_l e ()
with

(@) s = (B22),2, + (kD) - (4.1)

For each n,k e N, let g and A} be the functionals on X defined by
gr(x) =bf(x) and hf(x) =cf(x) forallxeX.
Clearly, g¢ and A} are linear, and by (4.1)
=gy +hi forallnmkeN. (4.2)

Note that co(q) @ {e) is an FK-space in its direct sum topology. By Zeller's
theorem, A : E — ¢co{q) @ (e} is continuous. For each ke N, let Tp : X = E
be defined by Ti(x) = e*(x). By Lemma 4.1, we have that T} is continuous for
all k € N. Since the projection Py of co{q) @ {e) onto cy(g) and the projection
P of co{q) @ {e)> onto {e) are continuous and gy =p,oPjoAde T and A} =
pnoProAoTy for all n,ke N, we obtain that gf and A are continuous,
so gg,hy X’ for all n,keN. Let B= (g7) and C = (h}). By (4.1) and (4.2)
we have A =B+ C, B=(g]) € (Q(X),cg(q)) and C = (h]) € (P(X),{e)). We
will show that Be (E,co(g)) and Ce(E,{e)). To do this, let x = (xx) € E.
Then for a={o) €y, we have |laexe| = [ol Xkl || Mxi]l, where M =
sup,|ax|. Then the normality of E implies that (aexi) € E. Hence (f*(xk)), , €
(4w, co(q) @ <e>), moreover, we have (9202}, i € (@, co(q)) (kg (xk))n L €
(®,<e>), and (7 (x)),, , = (95(xk)) o + (1 (xk))n & Since 4y, is normal contain-
ing ® and co{g) S co, it follows from Lemma 4.2 that (gp(x2)), - (¢ c0(q))
and (A7 (Jc:,;;)),l & € (4w,<e)). This implies that Bx € cp{g) and Cx e {e>, so we have

Be (E,colq)) and C e (E,(e)), hence A € (E,co{q)) ® (E, {e)). This completes
the proof. n
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Theorem 4.2. Let p = (py) and q = (qu) be bounded sequences of positive real num-
bers and A = () an infinite matrix. Then A : co(X, p) — c(q) if and only if there
is a sequence (f) with fr € X' for all k € N such that ——

(1) i ”ﬁc”M_]{vpf < oo for some M € N,
(2) mMa(f7 — fi) = 0 as n — oo for every m,k € N and
(3) T mV%| £ — fillr /P — 0 as n,r — oo for eachme N.

Proof. If A € (co(X, p),c(q)) we have A e (co(X, p),colq) ® {e)) since ¢(g) =
co(q) ®e). It follows from Theorem 4.1 that A =8B+ C, where Be
(co(X, p},co(g)) and C € {co(X, p), (D). Let C = (gf). Since O(X) < co(X, p),
we have (g,’c'(x)):il € {e) for all xe X and k € N, which implies that g} = g}*!
for all n,k € N, let fy = g}. Then we have B = (/" — fi),, « € (co( X, p), c0(q))- By
(3, Theorem 0 (i)), we bave eo(g) = ()_, co(m!/#t). It follows from Proposition
3.1(ii) and (iv) that (m"/%(f? — fi)),, , € (co(X, p), co) for all me N. By Wu [11,
Theorem 2.4}, we have that the conditions (2) and (3) hold. Since C = (f),, €
(co(X, p), (e)), we have Y ;> fi(x:) converges for all x = x; € cp(X, p), hence
(1) is obtained by Proposition 3.3.

Conversely, assume that there is a sequence (f;) with fi € X’ for all k € N such
that conditions (1), (2) and (3) hold. Let B = (f — fi),, and C = (fi),,- Itis
obvious that A = B+ C. By conditions (2) and (3), we obtain by Proposition
3.1(ii) and (iv), and Wu [11, Theorem 2.4] that B € (co(X, p), co(g)). The condi-
tion (1) implies by Proposition 3.3 that 377 | fi(xk) converges for all x = () €
co(X, p), which implies that C e (co(X P (e)). Hence we have by Theorem 4.1
that 4 € (co(X, p), ¢(g)). This completes the proof. n

Theorem 4.3. Let g = (g¢) be bounded sequences of positive real numbers and
A = (f]7) an infinite matrix. Then A : £ (X) — c(q) if and only if there is a sequence
(fx) with fi € X' for all k € N such that

(1) TR 1Al < o,
(2) mVe(f" — fi} > asn — co for every k,me N and
(3) foreachm,re N, 3%, m”‘?"llj}" — filIr'#?r — 0 as k — oo uniformly onne N.

Proof. If 4 € ({(X),¢(g)), then the condition (1) holds by Proposition 3.4. It
follows from Theojem 4.1 that 4 = B+ C, where B € (£o(X),¢0(g)) and Ce
({w(X),(e)). Using the same proof as in Theorem 4.2, there is a sequence
(fi) with fr e X' for all ke N such that C=(fi),, and B=(f' = fi)os €
(¢o{X), co(g)). Since co{g) = ﬂ,o;l €o_,,,.» We thus obtain {2) and (3) by Propo-
siton 3.1(ii) and (iv), and Wu [11, Théorem 2.9].

Conversely, assume that there is a sequence (fi) with f; € X’ for all k € N such
that condition (1), (2) and (3) hold. Let B = (f ~ fi),; and C = (fi), - It is
obvious that 4 = B+ C. By conditions (2) and (3), we obtain by Proposition
3.1(#i) and (iv), and Wu [I1, Theorem 2.9] that B e (/(X),co(g)). The con-
dition (1) implies by Proposition 3.4 that > 2, fi(x;) converges for all
x = (x) € {o(X), which implies that C & (/{(X), {e)>). Hence, we have by The-
orem 4.1 that 4 € (£ (X), c(g)). This completes the proof. m
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Theorem 4.4. Let p = (p;) and q = (qx) be bounded sequences of positive real num-
bers and A = (f;) an infinite matrix. Then A : {o(X, p) — c(q) if and only if there
is a sequence (fy) with fi. € X' for all k e N such that

(1) 25 Lfilm!e < oofor allmeN,
(2) rl/qu(milptfn ﬁc) ¥ 0asn — COfD}' every m, k.reN and

(3) for each m,r,;se N, 3, rllqﬂllm‘/i’!f" fﬂs'/f’f — 0 as k — oo uniformiy on
neN.

Proof. By Proposition 3.2 (v), fu(X,p) = Uy feo(X)gn-1ms)- It follows from
Proposition 3.1(i) and (iv), Proposition 3.4 and Theorem 4.3 that

A (X, p) ~ c(q) & (m'PAD), b X) = c(q) forgllmeN
<> the conditions (1), (2}, and (3) hold.

Theorem 4.5. Let p = (pi) and g = (qi) be bounded sequences of positive real num-
bers and 4 = (f|7) an infinite matrix. Then A : ¢(X, p) — c{q) if and only if there is
a sequence (fi) with fi € X' for all k € N such that

(1) e "fk"M—'/"’* < oo for some M € N,
(2) mita(fr -y 5 0asn— oo for every m,k € N,
3) 3L ml/q"”f" ~filrV/" < 0 asn,r — o for every me N and

(4) (3 fk"(x)):;; eclg) forallxe X.

Proof. Since (X, p) = co{ X, p) + {e{x) : x e X} (Proposition 3.2 (i), it follows
from Proposition 3.1(iii) that 4 € (c(X, p), ¢{g)) if and only if 4 € {co(X, p), c{g))
and A e ({e(x): xe X},¢(g)). By Theorem 4.2, we have A € (co(X, p}, c(q)) if
and only if conditions (1)—(3) hold and it is clear that 4 € ({e(x) : x € X}, c(q)) if
and only if (4) holds. Hence, the theorem is proved. u

Wu (12, Theorem 2.7] has given a characterization of an infinite matrix 4 such
that A € (¢(X, p),co) when px > 1 for all k e N. By applying of Propos;tlon 3.1(i1)
and (iv}, Proposition 3.5 and Theorem 4.1, and using the fact that ﬂm_l 0,11y
we obtain the following result.

Theorem 4.6. Let p = {py) and g = (gx) be bounded sequences of positive real num-
bers with py >V forall ke N and 1 [px + 1/tx = | for all ke N, and let A = (f)
be an infinite matrix. Then A : £(X, p) — ¢(q) if and only if there is a sequence (fi)
with fi € X' for all k € N such that

(1) 2, Al M) < o for some M € N,
(2) m'o(f7 — fi) 5 0 as n — oo for all m,k € N and

(3) for each me N, (3.0, m"‘/‘f" WA = fil *r =1y — 0 as r — oo uniformly on
neN.

By using {12, Theorem 2.6], Proposition 3.1{ii) and (iv), Proposition 3.6 and
Theorem 4.1, we also obtain the following result.
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Theorem 4.7. Let p = (px) and q = (qx) be bounded sequences of positive real
numbers with py <1 for all ke N and A= (f]) an infinite matrix. Then

TTA (X, p) — <(q) if and only if there is a sequence (fi) with fr € X' forall k€N
such that

(1) supyll filk M —\ex + < o for some M €N,
(2) m"e(f" = fi) = O asn — oo for all mk € N and
(3) sup m‘""/""llfk — fxll?* < oo foralimeN.

nk

Theorem 4.8. Let p = (py) and g = (q) be bounded sequences of positive real num-
kers and A = (f;") an infinite matrix. Then A : co(X, p) — c(g) if and only if there
is a sequence (fi) with fi, € X' for all k € N such that

(1) 2l el < o0, '
(2) i/ﬂf"(:r‘/""*_f"' —£:) 5 0 as n — co for every m, k seN and

z:m”q"[|.s"/""f,‘r ~fkll = 0 as n,r — oo for eachm,se N.

Proof. By Proposition 3.2(ii), we have ¢o(X, p) = U::l co{X)(s-1/esy - By Proposi-
tion 3.2(i) and (iv) and Theorem 4.2, we have

A+ X, p) = clg) ¢ A U colX)omy = (@)

& A eo(X)mumy — clq), forallseN

< (s”-"“j}c")n‘k 1cg(X) — cfg), forallseN

& the conditions (1), (2) and (3) hold. n
Theorem 4.9. Let p = (px) and q = (qi) be a bounded sequences of positive real

numbers andr > 0, and let A = (f;") be an infinite matrix. Then A : E(X, p) — ¢(q)
if and only if there is a sequence (fi) with fi € X' for all k € N such that

) 2 Wlmte < w for all me N,

(2) rMa(mMP kIR — ) 55 0 as n — o for every m k,r e N and

(3) for each m,r,s€ N, E ra|jm ejringe — fi|s'e — 0ask — oo uniformly on
neN.

Proof. By Proposition 3.2(jii), we have E,(X, p) = fuo(X, p}x-my- By Proposition
3.1 (iv) and Theorem 4.4, we have

A: EF(X»p) - C(Q) <4 (cn(XrP)(k"fPt) - C(Q)

& (KPSt fo (X, p) — €(q)
« the conditions (1), (2) and (3) hold. [

In the last theorem, we give a characterization of a matrix transformation from
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the space F,(X, p) into ¢(g). It is known by Proposition 3.2 {iv) that F.(X, p) =
(X, p)(k’fﬁk y- By Proposition 3.1(iv}, for a scalar sequence space E and an infinite _
matrix 4 = (f;"), we have

A:F(X,p) — E & (k7P f), 1 ¢(X,p) — E.
So we the following theorem is obtained by applying Theorem 4.6.

Theorem 4.10. Let p = (p) and q = (q) be bounded sequences of positive real
numbers with py > 1 forallk e N, 1/p + 1/ty =1 forallk e N and r = 0, and let
A = (') be an infinite matrix. Then A : F,(X, p) — ¢(q) if and only if there is a
sequence (fi) with fi e X' for all k € N such that

(M e NﬁcH"‘k'"’"""‘M t:—1) < oo for some M e N,

(2) m'fa(k=rireft — )5 0 asn— oo for all mk e N and

(3) for each me N, 352, mislo|\k="/pefn fkll" -(=1) 0 as r — o uniformly
onneN.
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In this paper, we give necessary and suflicient conditions for infinite matrices mapping
Nakano vector-valued sequence space #{X,p) into the sequence spaces E.{r > 0) and we
also give the matrix characterlizations from Mg (X, p) into the space E, wiiere p = (px) is
a bounded sequence of positive real numbers such that p, <1 for all k € N.

1. Introduction

For + > 0, the normed sequence space E, was first defined by Cooke [1] as
follows :
|z

- AR
B ={z= (=) |sup 5 < o)

equipped with the norm
|z

Tl = sup ——.
lf 1p

Let {X, |i.|i} be a Banach space and p = (px) a bounded sequence of positive
real numbers. We write z = (&) with 2y in X for all ¥k € N. The X-valued
sequence spaces ¢o(X,p), ¢(X,p), €oo(X,p), £(X,p), and Mo(X,p) are defined as

co(Xp) = {z = (z) = lim [jzxl* = 0},

e(X,p) ={z={(x4): klim |lzx — allP* =0 for some e € X},
€eo(X,p) = {z = (2k) : sup lzellP* < oo},

86X, p) = {= = (zx) : 3200, llzslIP* < oo},

Mo(X,p) — U:):], £(.X)(rrl/m=)

When X = K, the scalar field of X, the corresponding spaces are written as co(p),
e(p), £o(p), £(p), and My(p), respectively. The spaces ¢o(p}, ¢(p), £oo (p) are known
as the sequence spaces of Maddox. These spaces were first introduced and studied

(Received : September 9, 1999)
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by Simons {7}, Maddox (4, 5]. The space £{p) was first defined by Nakano {6] and
it is known as the Nakano sequence space and the space £(X,p) is known as the
Nakano vector-valued sequence space. The spaces My(p) was first introduced by
Grosse-Erdmann [2] and he has investigated the structure of the spaces ¢y(p), c(p)
and £ (p}). Grosse-Erdmann [3] gave the matrix characterizations between scalar-
valued sequence spaces of Maddox. Wu and Liu [9] dealt with the problem of
characterizations those infinite matrices mapping co(X, p), £oo{X, p) into co{g) and
£0(q) where p = {pg) and g = (gi) are bounded sequences of positive real numbers.

Suantai [8] gave necessary and sufficient conditions for infinit€ matrices mapping
£(X,p) into ¢y and £, (q) where p = {p:) and ¢ = (g} are bounded sequence
positive real numbers with p; < 1forall k € N.

In this paper we give characterizations of infinite matrices mapping £(X, p) and
Mu(X, p) into the sequence space E, when p; < 1 for all k € N and r > 0. Some
results in [8] are obtained as special cases of this paper.

2. Notation and Definitions

Let {X,]|.||) be a Banach space. The space of all sequences and the space of all
finite sequences in X are denoted by W{X) and ®{X), respectively. When X is K,
the scalar field of X, the corresponding spaces are written as w and &.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued
sequence space. For z € £ and k € N, we write z; standing for the k" term of =.
For z € X and k € N, let e*(z) be the sequence (0,0,...,0,x,0,...) with z in the
kt® position and let e(z) be the sequence (z,z,z,...). For a fixed scalar sequence
g = {px) the sequence space E, is defined as

E, = {c € W(X): (xy) € E} .

Let A = (f7) with f2 in X', the topological dual of X. Suppose that E is a
space of X-valued sequences and F' a space of scalar-valued sequences. Then A is
said to map Einto F, written by A: E — F if for each ¢ = (&) € E, A,(x) =
S ey fR(xx) converges for each n € N, and the sequence Az = (A, (z)) € F. Let
(E, F) denote for the set of all infinite matrices mapping from ¥ into F.

Suppose that the X-valued sequence space F is endowed with some linear topol-
ogy 7. Then E is called a K-space if for each k € N the k" coordinate mapping
pr : E = X, defined by p.(z) = zi, is continuous on E. If, in addition, (E,7) is
an Fréchet {Banach, LF-, LB-) space, then F is called an FK- (BK-, LFK-, LBK-)
space. Now, suppose that £ contains ${X). Then F is said to have property AB if
the set {3°,_; e*(zx) :n € N } is bounded in F for every z = {zx) € E. It is said
to have property AKif 3 ¢, €*(zx) = = in E as n — oo for every z = (z4) € E.
It has property AD if ${X) is dense in E.

It is known that E, is a BK-sapce and Fy = f£... The space £(X,p) is an

/M
FK-space with AK under the paranorm g{x) = (Zfo:l ||:ck§!1’*) , where M =
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maz {1,sup pi}. In each of the space £ (X, p) and co(X,p) we consider the func-
k

tion g{z) = sup ||zx||**/™, where M = maz {1,sup pi}. It is known that ¢o(X, p)
k k

is an FK-space with AK under the paranorm g defined as above and £,,(X,p) is a
complete LBK-space with AB. :

3. Main Results
We start with giving the matrix characterizations from £(X,p) into E,.

Theorem 3.1. Letr > 0 and let p = (pr) be bounded sequences of positive real
numbers with p,. < 1 and let A = (fI') be an infinite matriz. Then A € (6(X,p), E,)
if and only if thereis mg € N such that sup mgl/p"n""nf,?u <00 .

n, k
Proof.  Assume that A € (£(X,p), E,). In £{X, p), we consider it as a paranormed
space with the paranorm ¢ defined as above and since p; < 1 for all k € V, we have

M = maz {1,sup pr} = 1. Now, we write ||.|| standing for the paranorm g. By
k
Zeller’s theorem, A : £(X, p) — E, is continuous. Then there is my € N such that
fe o)
-r n : 1
supn iz ()] <1 forall x € (X, p) with |lz]| < — . (3.1)
n =1 o

Let n,k € N be fixed and let z € X be such that ||zx]| < 1. Then e} (mg P zy) €
_ 1
£(X.p) and [le!®) (mg 1P z,)|| < —. By (3.1), we have
a

mo 0T R k)] < sup iU fi(mg P )| = Ae®) (mg Ptk < 1
(1

It implies that sup mglfp'“n“"llfﬁll < ©0.
nk

Conversely, assume that the condition holds. Let x = (z.) € £(X,p). By
assumption, there is a C > 0 such that

mo /PnT|fEl < C forallmk e N (8.2)

Since |imé/p"zk!| — 0 as k —+ oo, there is a kg € N such that |imé/p":ck1| < 1 for all
k > k. Since 0 < p, < 1 for all k € N, we have

lmo ™ 2yl < |lmd/™ zi|iP* for all k > ko. (3.3)
It follows from (3.2) and (3.3) that
TRl llmg ™ aull = Sl zall + S5 llmo 2
< St mg Pl + S lmo Pl g

=Ky +mo Y pe, g |kl
k 1
< Ky +mollzll, Ky = Y52, llmg ™ aill.
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By (3.2) and (3.4) we haveforn € N,

nTApz] = n—rlzzc;_llﬁ. (mE”"" (mtlalj;xk))l
< Z:o=1 My ’;“n"'ll_f,:‘ll.“mo Pl
<SC LR, limy™ o)
< C(Ky + mg)|z|)).

This implies that sup n™"|A,z| < oo, so that Az € E,. This completes the proof.
n
’ a

When r = 0, we see that £, = £, 50 we obtain the following result directly
from Theorem 3.1.

Corollary 3.2. Let p = (py) be a bounded sequence of positive real numbers such
that pr <1 for all k € N. Then for an infinite matrizc A = (f7), A € ({(X,p),4)

if and only if there is mo € N such that sup mallp"“f;‘ll <o0o0.
n,k

If pp =5 <1forall ke N, by Theorem 3.1 we obtain the following result:
Corollary 3.3. Letr > 0 and 0 < s < 1. Then for an infinite matriz A = (f),
A€ (84(X), E;) if and only if sup n™"||fF]| < o0 .

r,k

When pr = 1 for all k € N and r = 0, we obtain the following result by Corollary
3.3

Corollary 3.4. For an infinite matric A = (f1!), A € (£(X), £x) if and only if
sup 1N < oo.

Theoremn 3.5. Letr > 0 and let p = (px) be bounded sequences of positive real
numbers and let A = (f2) be an infinite matriz. Then 4 € (Mo(X,p), E;) if and
only if for each s € N, sup n~"sY/P+||fll| < oo.
n, k
Proof. Since Mo(X,p) = Ua, £(X)(5-1/r1), We have
A€ (Mo(X,p), E;) &= A€ ((X)-1/ny, Er)forallse N
For s € N, we can easily show that
A€ (UX)(g-reny, Br) = (8P fD), , € (8(X), Er) .
By Theorem 3.1, we obtain that for s € NV,

(sllpkf,?)nlk € ({(X), E;) <= su;z n sV fR|| < oo

Thus the theorem is proved. O
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In this paper, we give the matrix characterizations from any FK-space of vector se-
quences with AK property into any FK-space of scalar sequences, and by applying this
result we also obtain necessary and sufficient conditions for infinite matrices mapping the
spaces £{X,p) into Maddox sequence spaces ¢g(g) and £(g) where p = (p,) and g = (gx)
are bounded sequences of positive real numbers such that p;, > 1 for all k € N.

1. Introduction

Let {X,]|.]]) be a Banach space and p = (px) a bounded sequence of positive
real numbers. Let IV be the set of all natural numbers, we write ¢ = (z;) with z;
in X for all £ € N. The X —valued sequence spaces (X, p), c{ X, p), £ (X, p}, and
£(X,p) are defined by

co(X,p) = {z=(zx): Jim [zl = }
k—ro0
c(X,p) =4z =(2): lim ||z} — a|fP* = 0 for some e € X},
k-300
telX,p) =14 = (2:) : sup|lexll? < oo },and
k
{X,p)  ={z={(2&): 2 llzll™ < oo
k=1

When X = K the scalar field of X ,the corresponding spaces are written as

(Received : Janunary 20, 2000. Revised : July 10, 2000)
Key words and phrases : sequence Space, matrix transformations and Nakano vector-
valued sequence space.
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ea(p), c(p), £(p), and £.{p), respectively. The first three spaces are known as the
sequence spaces of Maddox. These spaces were introduced and studied by Simons[7]
and Maddox[4, 5]. The space £(p) was first defined by Nakano[6] and is known as the
Nakano sequence space, and the space £{.X, p) is known as the Nakano vector-valued
sequence space. Choudhur(1] gave necessary and sufficient conditions for an infinite
matrix of continuous linear operators which maps the vector-valued sequence space
co(X) into co(Y), £1(X) into £o(Y) and £, (X) into £,(Y) where ¥ is a Banach
space. Grosse-Erdmann|2] investigated the structure of the spaces ¢o(p), c(p), £(p)
and £.,{(p) and the problem of characterizing a matrix that map# a sequence space
of Maddox into another such space is studied by them in[3]. Suantai(8, 9, 10, 11]
gave the matrix characterizations from £(X, p) into the space co(Y, p), £(q) and F,
in the case py < 1for all k € N and s > 0, where Y is a Banach space. Wu[12] gave
characterizations of matrix transformations from the space £(X, p) into the space cp
and f.(g). The characterizations of matrix transformations from the space £(X, p)
into £(q) and cp{g) can not be expected to be characterized completely in term
of Toeplitz conditions, but however we can give characterizations of these matrix
transformations in term of other conditions. Even the classical pair {£,,£,) is an
open problem when 1 < p,g < 00, and {p,q) # (2,2). Also, in the case (£(p), £(q))
is an open problem if ¢ <1 for all k € N.

2. Notation and Definitions

Let (X, ||.||) be a Banach space. The space of all sequences in X is denoted by
W{X) and $(X) denote for the space of all finite sequences in X.
A sequence space in X is a linear subspace of W(X). Let E be an X- valued se-
quence space. For z € F we write z = (zx),k € N. For z € X and k € N,we let
e'®)(z) be the sequence (0,0,0,...,0, 2,0,...) with z in the k** position. For a fixed
scalar sequence u = (u;) the sequence space E, is defined by

E, ={z=(zx) € W{X): (uezs) € E}.

Suppose that the X-valued sequence space E is endowed with some linear topol-
ogy 7. Then E is called a K-space if for each n € N the n** coordinate
mapping pn : £ — X, defined by p,(z) = z,, is continuous on E. If, in
addition, (E,7) is an Fre'chet{Banach, LF—,LB—-) space, then E is called an
FK — (BK—,LFK—, LBK-) space. Now, suppose that E contains #(X). Then
E is said to have property AB if the set {kjl B3 Ye*(xx) :n € N}isboundedin E

for every x = {xx) € E. It is said to have property AK if e 53 YeHz) 2z € E

as n —+ oo for every © = (z;) € E. It has property AD if $(X) is dense in E.

Let A = (f7) with fJ* in X' the topological dual of X. Suppose that E is a space
of X -valued sequences and F a space of scalar-valued sequences. Then A is said
to map E into F, written 4 : E — F if for each = = (2:) € E, A, (z) =2

B STfP{(xk) converges for each n € N and if the sequence Az = (A4,(z)) € F. We
denote by (E, F) the set of all infinite matrices mapping F into F. If 4 = (u;) and
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v = {v;) are scalar sequences, let

wlly FYo = {4 =(fT} : (unvefi)ns € (B, F)}

If ux # 0 for all k € N,we write u™! = (ul_,.)
3. Some Auxiliary Results

We start with the following useful results that will reduce our problems into
some simpler forms.

Proposition 3.1. Let E and E,(n € N) be X-valued sequence spaces, end F

and F,(n € N) scolar sequence spaces, and let u and v be scalar sequences with
px #0, vk;céOfar allkEN. Then

@) (B[ P = () (B.F) ond
=1
(i) (EU,F)_- D(E F), -
Proof. (i) and (ii) are 1mmedxately obtained by the definition. O

Proposition 3.2. Let (fi) be a sequence of continuous linear functional on X
and p = (pi) a bounded sequence of positive real numbers withpy > 1 forallk e N.
o]

Then Y fe(zr) converges for all z = (xy) € £(X,p) if and only if
k=1

Z | £t M8~ < 0o for some M € N,
k=1

wherei-l-L:lforallkEN.

Proof. Suppose that E [ frl|t* M ~t=1) < oo for some M € N.
Then we have that for each z = (zx) € X, p),

o0 oo 1 1
2 I filze)| € kz_il [ fxllM=u MPx ||z |

k=100 _ iy o0 00
S & (AT Ml = 57 WAl M0 4 M 3 g < o0

which implies that 3 fi(zy) converges.
k=1

o
On the other hand, assume that 3 fi(zx) converges for all z = (zy) € £(X, p).

k=1
For each # = (x;) € £(X,p), choose scalar sequence {¢x) with |t;| = 1 such that
Felteze) = |fe(zk)| for all k € N. Since (txxx) € £(X,p), by our assumption, we
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oo
have 3 fi(trzi) converges, so that
k=1

(3.1 i lf;;(mk)i < oo for all z = (z) € £(X,p).
k=1

We want to show that there exists M € N such that

o0
DNl M < 0o ’
k=1
If it is not true, then
oo
(3.2) S lifetem =Y = 0o, for all m € N.
k=1

And (3.2) implies that for each ky € N.

(3.3) 37 Nl m 1) = oo, for all m € N.
k>ko

By (3.2), let m; =1, then there is a k; € N such that

S el ) s 0

K<k,

By (3.3), we can choose ms > m; and m3 > 2? and ks > k), such that

> felemy Y o,

ki <k<ka

By continueing in this way, we obtain sequences (k;) and (m;) of positive integers
suchthat 1 = kg < k) < ks < ...and m; < map < ...,m, > 2" and

PR AT R &

kg_1<k5ki

Choose zy in X with |jzx|} = 1 such that for alli € NV,

> |felz)iem " > 1 for alli € N.
k:’—l(kﬁk"

Lete;= 3 felmn)l*m @7 Puty = (), s = o7 'm, D lfulm) B
i—1<RSR;

forallk k; 1 <k < k;.
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For each i € N, we have

>l
ki <k<k;
-1 —(ta—1 - Pa
a] lmi (ta )Uk(zk)pk 117k||

= ¥ |
= ¥ e m ™ flek)|®

ki—1<k<k;
ki1 <k<k;

IA

— - - -1
a; lme lmi (e )Ifk(xk)lh

-

ki <k<k;
-1, -1
@; Ty 0
-1 1

my < 37-

1§

So we have that
Znyknp* < Z— < oo.

Hence y = (yx) € £(X,p). For each i € N, we have

Sl = % el mi T )l )
k1< k<k, ki1 <k<k;
= Z ai—lm:(t.g—l)lfk(xk)lth
k1 <k<k
= a -1 z m:(th_l)lfk(zk)lh
ki1 <k<k,
=1.

So that 3 |fx(yx)| = 00, which contradicts with (3. 4). The proof is now complete.

k=1
a
4. Main Results

Now, we turn o our objective. We begin with giving characterizations of matrix
transformations from an F'K-space of vector sequences with AK property into an
F K -space of scalar sequences.

Theorem 4.1.1. Let E C W(X) be an FK-space with AK property and F an

FK -space of scalar sequences. Then, for an infinite matrizc A= (f}'),A: E > F if
and only if

(1) foreachne N, E fi{xx) converges for ell z = (xk) €E,

(2) foreachke N, (f,c ()2 ,eF forallz€ X, and
(3) A:®(X)— F is continuous when $(X) is considered as a subspace of E.

Proof. Assume that A : E —+ F. Then we have that for any z = () € E,
o0

5. fP(zi) converges for all n € N, so (1) holds. Since e*(z) € E for all k € N and
k=1
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ali z € X, we obtain that for each k € N,
(fR(2))oz1 = Ae*(2) € F,

hence (2) holds. Since E and F are FK-spaces, by Zeller’s theorem, A: £ — F is
continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

o0

Az = (i f,:‘(a:k)) €W, for all z = (zy) €'E.
k=1

n=1

It follows from (2) that Ae*(z) € F, for all k € N and z € X, which implies that
A:&(X) — F. By (3), we have A: $(X) — F is continuous. Let z = (z) € E.
Since E has the AK property, we have

n
z = lim Zek(xk).
n—o0
k=1

n o

Then (}: e* (:r:k)) is a Cuachy sequence in E. Since A : #(X) — F is contin-
k=1 n=1

uous

n o0
and linear, it implies that (E Aek (:u;,)) is a Cauchy sequence in F'. Since F
k=1 n=1

n o0
is complete, we have (E Ae* (zk)) converges in F. Since F is a K-space, it
oo k:lm n=1
immplies that (z f;‘(z:k)) € F, so that Ax € F. This shows that A: E — F.
k=1 n=1
O

It is known that the space £(X,p) is an FK-space with AK property under the
paranorm

<

g(z) = (Z ||zkl|p") , when M = max {1,»: sup pi}.
k=1

By Proposition 3.2 and Theorem 4.1.1, we have the following theorem.

Theorem 4.1.2. Let p = (px) and ¢ = (gi) be bounded sequences of positive real
numbers such that py > 1 for all k € N, and A = (f') an infinite matriz. Then
A: X, p) — £q) if and only if

{1} for each n € N there ezists M, € N such that

oo

11
SR MY < oo, where St =lforall ke N,

k=1
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(2) foreachk e N andz€ X, E |f2 (2} < o0, and
(3) for each r € N there erists M E N such that

Z “I-'I:llpl < - => Zl Z fn(g;k |Qn < _

ke K n=1 k€K
for all x = (z) € ¥(X) and all finite subsets K of N.

Now, we have the sufficient conditions for an infinite matrix A = (f) that maps
¢ X,p) into £(q).

Theorem 4.1.3. Let p = (px) and ¢ = (gzx) be bounded sequences of positive real
numbers such that pr > 1 and qx > 1 for allk € N, and A = (f}) an infinite
matriz. Then A: {(X,p) — £(q) if the following two conditions hold ;

(1) for each n € N there exists M, € N such that

1 1
lef“ 1 M1 < oo where P 1 forall k € N, and

k=1

(2) there exists My € N such that

supz (Zufk 1y ) < oo,

kEK

where supremum is taken over all finite subsets K of N.

Proof. Suppose that the two conditions hold. Then by Proposition 3.2 the condi-
tion (1) implies the condition (1} of Theorem 4.1.1. By the condition (2}, we have
that there exists My, L € N such that

oo . Gn
(4.1) S (Z llf;:‘IIMJ“) <L,
n=1

4 keK

for all the finite subsets K of N. Then, for each z € X — {0} we can choose M; > My
such that M||z|| > 1. Then for each k € N, we have by {4.1) that

ijl e < i (2=l
-5 (ka M ""M""HzH) ’
qn
< (ufk 1M, % Mluzn)

o —_ 1\
< (i) S (ilf,:‘IIMl ) B = supan

n=1
< (My||2|)°L
< 00.
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So, we have that (f7*(2))o., € £(g) for all z € N and k € N. Hence the condition
(2) of Theorem 4.1.1 holds. We shall now show that the condition (3) of Theorem
4.1.1 is satisfied. To show this, let £ > 0 and =z = (zz) € &(X). Recall that

L

=] M
||l2f] = (k‘;l HIkH"") where M = sup gn. If |jz|| < 1, then for all k € N we have

M
(4.2) lizell < Nzli> < llzil.
Since = = () € #(X), there is a finite subset Ky of N such fhat
{4.3) Zf;‘(a:k) = Z fi{zy) foralln e N.
k=1 ke Ko

. S0, we have by (4.1), (4.2), and (4.3) that

1Az S8 ) a%) ’

n=1 k=1

S f;?(xk)l"“)
n=1 k€K,

il
N

I

<S¢ uf:nnzkn)qn)
(4.4) 1

(=] 1 L ¢
(Z( > NfRlMy ™ Mo""llrll)"")
n=1 k€K,
.zg

1

It implies by (4.4) that A : #(X) — €(g). Now choose § = min{l,—}j(—ﬁ—};)G}. It
follows by (4.4) that .
llz|l < 6 = ||Az| < €.

It follows that 4 : #(X) — £(qg) is continuous. Hence, by Theorem 4.1.1, we have
that 4: £(X,p) — q). O

By using the previous auxiliary results and Theorem 1.6 in [12], we obtain
necessary and sufficient conditions for infinite matrices mapping the space £(X, p)
into cg(g)-

Theorem 4.1.4. Let p = (pi) and ¢ = (gr) be bounded sequences of positive real
numbers such that pr > 1 for all k € N, and A = (f[*) on infinite matriz. Then
A: (X, p) — colq) if and only if
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(1) for allm,k € N, m% f — 0 weakly as n — 0o, and
{2) for eachm € N,

(Z m%&”f,’c‘ﬂ“r_("“l)) — 0 uniformly for n > 1 as r — o0,
k=1

1 L_
where;—+t—;—1forallk€N.

Proof. By Theorem 0 in [2], we have ¢o(g) = [) Coreit
5=1 "

y By Proposition 2.1(i)

and (ii) and Theorem 1.6 in [12], we have

A

o
X p) o eolg) = A:4X,p)—> N Co( oS
m=1 mn

= A X, p)>¢c 1 ,forallmeN
0(man)

— (m%nf,?) . X,p) Do, forallmme N
&= the conditions (1) and (2) hold.
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ON MATRIX TRANSFORMATIONS OF SOME
VECTOR-VALUED SEQUENCE SPACES

SUTHEP SUANTALI

L]

Abstract. In this paper, chracterizations of infinite matrices mapping theNakano vector-valued sequence
space into Musielak-Orilicz sequence space are given, and we also give characterizations of the S-dual of the
Nakano-vector valued sequence space.

1. Introduction. Let (X,||-||) be a Banach space and p = (px) a bounded sequence of
positive real numbers. Let N be the set of all natural, we write £ = (x) with z; in X for all

k € N. The X-valued sequence space co(X,p),e{X,p), loo(X,p) , and £(X, p} are defined by

w(X,p) = {2 = (@0) s Jim ol =0},

-—% c- - c(X,p) = {x = (z&): :!‘éil, [izx — aljP* = 0 for some a € X} )

boo(X,p) = {z = (zx) : st;p”a:kllp* < oc;},
and ~£(X,p) = {:r = (zx) :Zﬂa:kl]p" < oo}.
k=1 .

When X = K, the scalar field of X, the corresponding spaces are written as co(p),c(p), o {p),
and £(p), respectively. The first three spaces are known as the sequence spaces of Maddox.
These spaces were introduced and studied by Simons (1965) and Maddox (1967, 1968). The
space £(p) was first defined by Nakano (1951) and is known as the Nakano sequence space.
Grosse-Erdmann (1992) investigated the structure of the spaces co(p), c(p), foc (9}, and £(p}.

A function f: R — [0, 00) is called an Orlicz function if it is even, continuous, convex and

vanishing at 0 and f{z) — oo as = — oo. Let M = {M,) be a sequence of Orlicz functions, for
a given real sequence = = (z,), define

M(z) = Z M (zn)-

Let £3 = {z = (z.) : em(Az) < 0o for some A > 0} and for z = (z,) € Ly, the Luxemburg
norm of z is defined by the formula

liz] = inf {A >0: on (;) < 1}

99
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The sequence space ({1, ]|) was first defined by Musielak (1983) and it is called the
Musielak-Orlicz sequence space with the Luxemburg norm. If M,, = M, for n € N, the space
Z5s is known as the Orlicz sequence space. We also see that if p = (pi) is a bounded sequnce
of positive real numbers with px = 1 for all k¥ € N, then the Musielak-Orlicz sequence space
L5, where Mi(t) ={t1% is the Nakano sequence space #(p).: So the Musielak-Orlicz sequence
space is a generalization of both Orlicz and Nakano sequence spaces. For more details about

the orlicz sequence space and Musielak-Orlicz sequence space see Chen (1996) and Mus1ela.k
(1983).

L3

Grosse-Erdmarnn (1993) gave characterizations of infinite matrices mapping between scalar-

valued sequence spaces of Maddox. Wu and Liu (1993) gave characterizations of matrix ‘

transformations from the spaces £(X,p), co(X,p) and £(X,p) into the spaces co(q) and
£oo{g). These results generalized some of Grosse-Erdmann (1993). Suantai (1999) gave
characterizations of infinite matrices of bounded linear functionals on X mapping the Nakano
sequence space £(X, p) into £o(g) and £_.(g) and Mp(X, p) into £_oo(g). Choudhur (1992) gave

necessary and sufficient conditions for an infinite matrix of continuous linear operators which -

maps the vector-valued sequence space ¢cp(X) into co(Y), £1(X) into £o{Y) and £(X) into
£,(Y), where Y is a Banach space. Suantai (2000) gave characterizations of infinite matrices of

bounded linear operators mapping from the Nakano vector-valued sequence space £{X, p) into
any BK-space.

In this paper, we use some technics of Suantm (2000) and other technics to give the matrix

characterizations from the Nakano vector-valued sequence space £(X, p) into the Musielak-Orlicz
sequence space fg.

2. Notation and definitions. Let (X, || ||) be a Banach space. The space of all sequences
in X is denoted by W{X) and ®(X) denotes the space of allfinite sequences in X.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space.
For z € E we write = (xx), k € N. For z € X and k € N, we let e(*)(z) be the sequence
(0,0,0,---,0,2,0,---) with z in the kth position. Suppose that the X-valued sequence space E
is endowed with some linear topology 7. Then F is called a K-space if for each n € N the nth
coordinate mapping py : £ — X, defined by p,(z) = z,, is continuous on E. If, in addition,
(E,7) is an Fre*chet{ Banach) space, then E is called an FK — (BK —) space. Now, suppose

that E contains $(X). Then F is said to have property AK if Ze"(zk) —~ 7 as n — oo for
all z = (z) € E.

If pp > 1for all k € N, the space £(p) is a BK-space with AK property under the Luxemburg

norm defined by

=inf 0: 3 Ik
ll= in {f> §|E

Pk }
<15.

For more detail about the spmeWE(p) see Gross-Erdmann (1992). By ﬁsing the same

argument as in the case of real sequence space £(¢), we can also obtain that £(X,p) is a BK-
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space with AK property under the Luxemburg norm defined by the formula

o0 i
. . T ||PR
||z||=inf{e>0:2:“?k 51}_.
k=1 . .

Let A = (f2) with fP in X’, the topological dual of X. Suppose that E is a space of X-
- valued sequences and F a space of scalar-valued sequences. Then A is said to maep E into F,

written by A: E — F if for each z = (z) € E, An(z) = f fi(xx) converges for each n € N
: k=1 -
and the sequnce Ax = (A,(z)} € F.
Let E be an X-valued sequence space. The S-dual of E is defined to be

E'S = {(fk) cX': Efk(zk) converges for all x = (zz) € E}
k=l

We see that if A = (f') maps a seqeunce space E into a scalar sequence space, then each row of
A must belong to EP, ie., (f1)52., € E# so this is a necessary condition for an infinite matrix
- A mapping from one sequence space into the other. In this paper, we also give characterizations
of the S-dual of Nakano vector-valued sequence space. o} +he

- Mam results. We begin with giving cha:racterlzatlons of the f-dual ohe Nakano
vector-valued sequence space. '

PROPOSITION 3.1. Let p = (px) be a bounded sequence of positive real numbers with p; > 1
forallk € N. Then

{X,p)f = {(fk) cX': Z kaHt"M_(‘“"l)' < oo for some M € N}

k=1

where-l——ﬁ—tl::lforallkeN.

Proof: Suppose that E | el M~ =1 < oo for some M € N. By using the fact that ab <
a* +bP* for all a,b > 0 and all k € N, we then obtain that for each z = (zx) € #(X, p),

8

Z | feCer)l < Z IlkalM"“ M ||z |

MS I

NOARE R

k

1

= D llfuf e pgm (e ”+MZ||mk||P* < o0

k=1 k=1

g

which implies that § fi(xk) converges, so (fi) € £(X,p)%. .
k=1




102 SUTHEP SUANTAI

On the other hand, assume that ( fk) € &X,p)®. Then E Ju(zi) converges for all

z = (xx) € £(X,p). For each z = (i) € E(X p), choose a sca.la.r seqeunce (t;,) with {tg| = 1
. such that Fe(tezi) = |fe(zw)] for all k € N. Since (tkmk) € ¥ X,p), by our assumption, we

have Z fe{tezs) converges, so that
k=1

.

Z |fe(ze)} < oo for all z = (zx) € 8(X, p) (3.1)
k=] -

We want to show that there exists M € N such that
oo .
DMl MR < co.
k=1

If it is not true, then

Z I fk||"‘m’(”‘ B = oo, for all m € N (3.2)

k=1
And (3.2) implies that for each kg € N,

Sl full*m= D = oo, for all m € N. : (3.3)

k>ko

By (3.2), let my =1, then there is a k; € N such that

O Ml my ™Y > 0

K<k,

By (3.3), we can choose mg > m; and my > 22 and k; > k; such that\

> Mm@ > 1 L (34)
k1 <k<kz

\

By continuing in this way, we obtain sequences (k;) and (m,) of positive integers with
l=ko<ki<ky<-- ,my<mg < --,m; >2 and

‘ > Melsm Y > 1

k,‘_ 1 <k$ki

Choose zx in X with {{zi]| = 1 such that for all i € N,

Z— NAfe(@e)|m; 0 5 1 for alli € N.

ki,_1<k5k.'
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Let
a= Y Iea)emy .

ki—1<k<k;

Put y = (vi), vk = o] m; Y| fi(aw)| 1z for all k,kioy < k < ki Foreachie N, we

have
: e — _ P .
. S dwlr = 3 [ortmr T s |
o ki1<k<k; ki1<k<k; v
= > a7 mI™|fi(z)|™
i<k <k '
< Y et mitm Y fm)
.'c.-__l“:k_(_k" i
= a;’lmfla; = m,-'1 < =

2

So we have that
00 o 1
Sl <34 <o
k=1 i=1

v = (y} € £(X,p).

Hence,

For each i € N, we have

S ) = Y ‘fk(aflm,-_“"_l)lfk(rk)lt""lzk)|

ko <k<k, ki 1<k<ks

= ¥ &' mi O hEle

k"_l<ksk.‘

=a7t D mTOT Y (e

ki_1<ksk"" 7

= 1.
So that 3 |fe{vk)| = oo, which contradicts (3.1). Thus .
k=1

{fi) € {(gk) c X' legknt"M‘(t*'l) < oo for some M € N}.

k=1, a

Hence the proposition is proved.
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PROPOSITION 3.2.-Let p = (px) be ¢ bounded sequence of positive real numbers with p, <1

for allk € N and (fi) C X'. Then Y fr(zr) converges for every = = (z) € €(X,p) if and
k=1

only if there exists M € N such that sup, || fx| M ~V/?* < co.

o

Proof: if Y fi(zi) converges for every x = (xx) € £(X,p), using the same proof as in
k=1 . .

Proposition 3.1, we have )

> 1 felzi)] < oo for all z = (z) € £(X,p). (3.5) -

k=1
v

Suppose that sup, [[fxl|lm=/P* = oo for all m € N. For each i € N, choose sequences (m;)
and (k;) of positive integers with m; < mgy < --- and & < kz < --- such that m; > 2% and _
| fx, Hmi_llp*" > 1. Choose i, € X with [zk,|| = 1 such that

|feo () fmy P > 1. (3.6)

—1/px;

Let y = {wx), y& = m, xy, if k = k; for some i, and 0 ptherwise. Then

oo . o0 - oo
S ollwelrr =S "1/m < Y1720 =1,
k=1 i=1 i=1

so that {yx) € £(X,p) and

2 nlan)l = 3 o)

[
)8

my VP f(zh)| = 00 by (3),

.
il
P

and this is contradictory to (3.5). Therefore, there exists M € N such that sup, || fi[M~Y/Px <
00.

Conversely, assume that there exists M € N such that supy | fell M~YP < co. Let
= (zx) € £(X, p}, then there is a K > 0 such that. '

Il fxll < KMY?* forall ke N (3.7)

and there is a kg € N such that_Ml/P'jﬂka <lforallk > kg. Bypr <lforall ke N, we
have that for all & > kg,

MYzl < (MYP ||z} = MjzilP. ' (38
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Then
Zlfk(zkmzllfku il + Z £l Izl -
k=ko+1 ' . :
. <}:nfk|| EAE: Z M‘/“nzkn by (3.7
k=ky+1
<Zufk||nxk||+KM E Izl by (3.8) :
k=kog+1 -

< 00,
This implies that E Fe(zx) converges. . !

The following proposition gives some useful properties concerning the Luxemburg normy on /&(X : € )

PROPOSITION 3.3, Let p = (px) be a bounded sequence of positive real numbers such that
pr>1 for allk € N and let z = (z3) € £(X,p). Then

() izl <1 if and only if 3 ||z|P* < 1, and
k=1

(2) Fllel =1, then 3 [lzxll™ =1.
k=1

Proof: 1f 3~ |lz||P* <1, we have by the definition of the Luxemburg norm that |jzj| < 1.
k=1 '

If [z], <1, then j|z]| < 1+ % for all n € N, which implies that

D /(1 + /)P < 1.
k=1

4

Since ’

W/ +1/n)=S el < S N/ (1 + 1/m),
k=1 k=1 .

where a = sup,, px, it follows that

S lzxllP* < (14 1/m)* forall ne N, | (3.9)
k=1 - .

o0
By taking n — oo in {3.9), we obtain 3 [lze[|®* < 1.
k=1
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(2) Assume that fjz|| = 1. By (1) we have
Sl < 1.
k=1

If 3 |lz&l/P* < 1, then for each & > O such that
k=1

| inxknm <e<1,
k=1

we have that

L)
D llze/el™ > 1. .
k_=1 !
Since (1/e)® > (1/e)P* for all k € N, where o = sup,, pi, we have P

(1/e)Y _llzal™ > 1,
k=1

hence

oo .
Z l|zel|P* > &7, (3.10)
k=1

o =] .
By taking € — 17 in (3.10) we obtain that 3 |lz«[j?* > 1 which is a contradiction. Hence
- k=1
2 llzelP* = 1.
k=1

In the next theorem, we give necessary and sufficient conditions for infinite matrices mapping
the Nakano sequence space £{ X, p}, when py, < 1forallk € N, into the Musielak-Orlicz sequence
space £ o

THEOREM 3.4. Let p = (pi) be a bounded sequence of positive real numbers such that p, <1
forallk € N and A = (fi}) an infinite matriz. Then A: £(X,p) — £y if and only if

(1) for each k € N andz € X, (fi (=)L, € p, and

(2} there emists mo € N such thet

k
/ m [$3]
sup - e~ (z) “ <1 ‘iMP % m ( .'} )
kEN e N
W=iisy TR

1t1 3.3 (% e t t the ondm ii) al&ve 1:.\ ui
DY &r if and : nl nditions are satisfied.

]

@‘5 Suantar (2099) ('Wemm 40 , Wi chtmm fnat A (O, 0> L

1 -\
P K <
[1)/ hone € xists m,,eN sauch dak Sup “A(Mo ke €Cx)) “ $ .
. e &N
vl &y

%‘j 5znmw( vesults 1w Musielak (19%3), (t Yeplies Hhat @y o d

7’ .
(1> ave Q?uwa M{T Renw Yne dnecvim iy ok
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We next give the matrix characterizations from £(X, p) into £py when py > 1 for all k € N,
To obtain this, we first give a general result concerning matrix transformations between FK-
spaces. - '

. THEOREM 3.5. Let E C W(X) be an FK-space with AK property and F an FK-space of scalar

¥ >

¥ =

Az~

+-

sequences. Then, for an infinite matriz A = (f7), A: E — F if and only if

(1) for eachn € N, i‘;’ 2 (zx) converges for all z= (zx) € E,
k=1

v

(2) for eachk € N, (fR(z))iL; € F foraliz € X, and
(3) A:®(X) — F is continuous when ®(X) is considered as a subspace ofrE.

X
Proof: Assume that A: E — F. Then we have that for any z = (zx) € E, 3 fi'(xx) converges
k=1 ,
for all n € N, so (1) holds. Since e*(2) € E for all k € N and all z € X, we obtain that for
each ke N, ‘

(L (=)o, = Ae*(2) € F,

hence (2) holds. Since E and F are FK-spaces, by Zeller’s theorem, A : E — F is continuous,
so {3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

oo oo W [
Az = (Z f;’:(:zk)) E\%. for all z = (zx) € E.

k=1 n=1

It follows from (2) that Ae*(z) € F forallk € N and z € X, which implies that A : ®(X)} — F.

-By (3), we have A : $(X) — F is continuous. -Let x = (x;) € E. Since E has the AK property,

we have

z = lim Zek(xk).;
k=1

n—00

7 oo

Then (Z ek(:ck)) is a Cauchy sequence in E. Since A : ®(X) — F is continuous and

k=1 n=1 e o ;5 o -

linear, it implies that (Z Ae* (;rk)) is!&?Cauchy sequence in F. Since F is complete, we
k=1

n=1
a

v oo
have (Z Ae* (xk)) converges in F. Since F is a K-spcae, it implies that
k=1

n=1

€ F,
1

Ee) oo
(Zﬁ:(fﬂk))
k=1 n=

so that Az € F. This shows that A: E - F.
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THEOREM 3.6. Leét p = (p) be o] bounded sequence of positive real numbers such that p, > 1
for allk € N and A = (f)} an infinite matriz. Then A : 0(X,p) — £ if and only if

(1) for each n € N there exists W, € N4here—eriste-MeF such that

Z"fnltgxnn(ik—l)<00 whem——-l——l--_l forallkEN
k=1

LY

(2) foreach ke N endz € X, (f2 (=)o, € &um, and
{3) there exists A > O such that

sup {Z;M'n ( j;{fk (xk)) K C N is finite,
n= € .

B
T € X forall ke K and Z |z (P> < 1} < 1.
keK

Proof: Assume that A : £(X, p) — £p¢. By Proposition 3.1 and Theorem 3.5, conditions (1) and
(2) are satisfied. Since #(X,p) and £py are BK-spaces with the Luxemburg norm, by Zeller’s
Theorem, we have that A : £(X,p) — €p is continuqus, so A : ${X) — £, is continuous when
$(X) is considered as a subspace of £(X.,p). It follows that A is a bounded, hence there exists

T“?éé&lts in
M lak- (1957 ; wesh
u (5) =-§Mn( ka(mk)) usielak Uty e have

for all x = (zx) € ®(X) such that [jz|] < 1.
Let K € N be finite and z € X for all £ € N such that

D il <1

kEK

Let z = (z;) where 2z, =z if K € K and z; = 0 otherwise. Then

Szl 21

k€K

This implies by Proposition 3.3(1) that ||z|] < 1. By (3.11), we have

St (33 stten) = o0 (§5r0w) <
n=1 kSK n=1 k=1

This implies that condition (3) is satisfied.
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Conversely, assume that conditions (1), (2} and (3) hold. We will show that the conditions
{1), (2) and (3) of Theorem 3.5 are satisfied. Thé condition (1) implies by Proposition

3.1 that (f1), € £(X,p)? for all n € N, s0 Efk (zx) converges for all n € N and all

z = (zx) € £(X,p). Thus condition (1} of Theorern 3.5 holds. It is clear that condition (2) of
Theorem 3.5 hold. By (3), there exists A > 0 such that

sup {Z M, (; Z f,’c‘(:ck)) K C N is finite]
k=1

ke

zr € X forall ke K and ) [z < 1} <1 (3.12)
keK . .

Let x = (z«) € ©{X) be such that |z| < 1. By Proposition 3.3(1} we have that

_ > Nzl < 1
’ =
for some finite subset K of N. It follows by (3.12) that &

kEK

which implies ||Az|| < A, hence A is bounded, so A : #(X) — £,s is continuous. Thus condition
(3) of Theorem 3.5 is satisfied, so we have by Theorem 3.5 that A : £(X,p) — €x. The proof
is now complete.
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SOME GEOMETRIC PROPERTIES OF CESARO SEQUENCE SPACE

WINATE SANHAN* AND SUTHEP SUANTAI

ABsTRACT. In this paper we define a modular on the Cesaro sequence space ces(p) and
consider it equipped with the Luxemburg norm., We give some relationships between
the modular and the Luxemburg norm on this space and show that the space ces(p) has
property (H) but it is not rotund (R), where p = (pg) is a bounded sequence of positive
real number with p; > 1 for all k e N,

1. Introduction. Let (X, ||.||) be a real Banach space, and let B{X) (resp. S(X)) be
the closed unit ball (resp. the unit sphere) of X.

A point z € S(X) is an H-point of B(X) if for any sequence (z,) in X such
that ||zal| — 1 as n — oo, the weak convergence of (z,,) to = (write z, —» = ) implies
that ||z, — zl| — 0 as n — oo. If every point in S{X) is an H-point of B(X), then X
is said to have the property (H)..

A point z € S(X) is an extreme point of B(X), if for any y,2z € S(X) the
equality 2z = y + z implies y = 2.

A point z € S(X) is an locally uniformly rotund point of B(X) (LUR-point for
short) if for any sequence {z,) in B(X) such that ||z, +z|| — 2 as n — oo there holds
[[xn — xl] = 0 as n — oo.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme
point of B(X). If every pdint of S(X) is a LUR-point of B(X), then X is said to be
locally uniformly rotund (LUR).

It is known that if X is LUR, then it is (R) and possesses property (H). For
these geometric notions and their role in Mathematics we refer to the monographs (1],
[2] , [6] and [13]. Some of them were studied for Orlicz spaces in [3],(7],[8],[9)and [14].

* Supported by The Royal Golden Jubilee Project

Typeset by ApS-TEX



2 ' W. Sanhan and S. Suantai

Let I° be the space of all real sequences. For 1 < p < oo, the Cesaro sequence
space (ces, , for short) is defined by
Cesp = {33 ell: Zf:l(% E?-_q lz(@))P < OO}
equipped with the norm
el = (oL T 2@
and lello = (CrZo(3= X l=(@))?)

-
where >~ denotes a sum over the ranges 2" < i < 27+1

Iq: is known that these two norms are equivalent and ces, is Banach with respect
to each of the two norms.

This space was introduced by J.S. Shue [15]. It is useful in the theory of ma-
trix operator and others (see [10] and [12]). Some geometric properties of the Ceséro
sequence space (cesp, ||.||) were studied by many mathematicians. It is known that
(cesp,|-|]) is LUR and posses property (H) (see [12] ). Y. A. Cui and H. Hudzik [4]
proved that (ces,, ||.||} has the Banach-Saks of type p if p > 1, and it was shown in [5]
that (cesp, ||-||) has property (3).

Now let p = (px) be a bounded sequence of positive real number with py > 1 for
all k € N. The Cesaro sequence space ces(p) is defined by

ces(p) = {z € 1°: 122 (& TJa(i)|)Pr
where Y denotes a sum over the ranges 2" < ¢ < 2”1:1.
lgor z € ces(p), let p(z) = Y o0 (5 2 |z(é)|)P") and define the Luxemburg norm

on ces(p) by
|| = inf {e > 0 p(f) <1}, z € ces(p).

The main purpose of this paper is to show that the Cesaro sequence space ces(p)
equipped with the Luxemburg norm has property(H) but it is not rotund ,so it is not
LUR.

Throughout this paper we let M = sup p,, and for z € [® we put

zl; = (2(1), 2(2), ..., 2(1), 0,0, ...

and

z|n—i = (0,0,...,0,z(i + 1), z(¢ + 2), ...).
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we have

p(x) < p (M\—+E)$)

= o ((lell+93)

< (el + (3)
< llall +-¢,

> 8

which implies that p(z) < ||z||. Hence (i) is satisfied.

llzll =1
il
||l.I| and by Proposition 2.2(i), we have 1 < p ((1—5"3:") < (1—€1)||a:||p(x)’ so (1—¢)l|z|| <

p(z) for all € € (0, "—gﬁlir|;|1)’ which implies that ||z]| < p(x).

(ii) Let € > 0 be such that 0 < e < , then 1 < (1 —¢)||z| < ||z|. By definition of

(iii) Assume that |jz|| = 1. Let € > 0, then there exists A > 0 such that 1 +¢ > A > |||
and p(§) < 1. By Proposition 2.2(i1), we have p(z) < AMp(2) < AM < (1 + )M, so
(p(z))¥ < 1+¢€ for all e > 0 which implies that p(z) < 1.

If p(r) < 1, let a € (0, 1) such that p(z) < a™ < 1. From Proposition 2.2(i), we
have p(%) < Jzp(z) < 1, hence ||z|| < a < 1, which is a contradiction. Thus, we have
plz) = 1.

Conversely, assume that p(z) = 1. By definition of ||.||, we conclude that ||z|| < 1.
If ||z| < 1, then we have by (i) that p{z) < |lz|j < 1, which contradicts to our
assumption, so we obtain that ||z| = 1.

(iv) follows from (i) and (iii).
(v} follows from (iii) and (iv).
Proposition 2.4 For x e' ces(p) we have

(i) if0<a<1and|z| >a, then p(z) > a™ and

(1) ifa > 1 and ||z]| < a , then p(z) < aM.

Proof. (i} Suppose 0 < a < 1 and ||z|| > a. Then ||£|| > 1. By Proposition 2.3(ii), we
have p(Z) > 1. Hence, by Proposition 2.2(i), we obtain that p(z) > a™p(Z) > a™M.
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p(£) < 1. If a =1, we have p(z) < 1 =aM. If a > 1, by Proposition 2.2(ii), we obtain
that p(z) < a™p(2) < a™.

(i) Suppose a > 1 and ||zl < a. Then ||%]| < 1. By Proposition 2.3(i), we have

Proprosition 2.5 Let (z,,) be a sequence in ces(p).

(i) If litng, oo |znl] = 1, then lim, o plzn) =1.

(1) If imy, o0 p(z2) = 0 then lim,_ . ||za] = 0.
Proof. (i) Suppose lim, o [|z,|] = 1. Let € € (0,1). Then there exists N € N such
that 1 —€ < ||zn|| < 14¢ for all n > N. By Proposition 2.4, (1~&)™ < p(z,) < (1+e)M
for all n > N, which implies that lim, ., p(z,) = 1.

(i1) Suppose ||zn|l #+ 0. Then there is an € € (0,1) and a subsequence (z,,) of (z,)
such that {|z,, || > € for all k£ € N. By Proprosition 2.4 (i), we obtain p(z,,) > ¢ for
all & € N. This implies p{z,) /4 0 as n — co.

Lemma 2.6 Let (z,) be a sequence in ces(p).If p(zn) — plz) and z,(k) — z{k) Vk,
then ,, — © as n — o0o.

Proof Suppose that x, # z. By Proposition 2.5 (ii), we have p(Z2:%) A4 0.Without
loss of generality we may assume that there exists ¢ € (0,1) such that p(F25%) > ¢
for all n € N. Since (p(¥25;-5))52, is a bounded sequence, it must have a convergent
subsequence. Passing through a subsequence, if necessary we can assume p(2-%) — €
for some ¢p > e. Since p(z) = lm; o p(x|2:) and (p(xle:))$2, is nondecreasing , we
have p(r) = sup{p(zls:) : 7 € N}. So there exists i € N such that p(z|s:) > p(z) —€/2.
Thus

p(xin_2) < €/2. (2.1)

Since z, (k) — z(k) for all £ € N, we have

planla) = p(alas) and p(F—

[2:) = 0 as n -— oo. (2.2)
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MAIN RESULTS

First, we show that p is a convex modular on ces(p).

Proposition 2.1 The functional p is a conver modular on ces(p).
Proof. It is obvious that p(z) = 0 & z = 0 and p(az) = p(x) for all scalar o with
lo| = 1.

Let « > 0,8 > 0 with a + 3 = 1. By the cénvexity of the function t — [t|Pr for
every r € N, we have

20

plaz+ By) = (%Zlax(i) + ﬁy(i)l)

r=0

<y («%le(ﬁn + ﬁ;Dy(z‘)l)

=0 r r

<a3 (F001) 403 (5 o)
=0 - r=0 r

= ap(z) + Bp(y).-

Proposition 2.2 For x € ces(p),the modular p on ces(p) satisfies the following property
(i) if 0 < a <1, then a™p(2) < p(z) and plaz) < ap(z),

(%) ifa > 1, then p(z) < a™p(E),

(i11) if a > 1, then p(z) < ap(x) < plaz).
Proof (i) Let 0 < a < 1. Then we have

pla) = _O(TDznl)
(o)

r=0 T

-y (gizr%) r

Mlg

8
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fave) 1 . Pr
SV EY
43
r=0 r
o0 1 Pr
£
-3 (3]
r=0

_ M T
=a"p(=).

By convexity of p, we have p(az) < ap(z}, so (i} is obtained
(ii) Let @ > 1 . Then

Hence (ii) is satisfied. (iii) follows from the convexity of p.

Proprosition 2.3 For any x € ces(p), we have

) ifllzl < 1, then p(z) < Jja],

(i) if |zl > 1, then p(z) = |izi],

(i) liz|| = 1 if and only if p(z) = 1,

() ||zl < 1 if and only #f p(x) < 1 and

(v) ||x|| > 1 if and only if p(z) > 1.
Proof (i) Let € > 0 be such that 0 < ¢ <1 - ||z||, so ||z]| + € < 1. By definition of ||.||,
there exists A > 0 such that ||zlj + ¢ > A and p($) < 1. By Proposition 2.2(i) and (iii),
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By the convexity of p together with (2.1) and (2.2}, we have

Tp —

g0 = lim p(—5—)
= lim [p(Z =) + A Ina)
= nli_’nclm,o(mn_m 2i)+n1LH§OP(In2~$|N*2")
=0+nlgréop($n2_ﬂ:lm—2i)

1 .. 1
< = lim p(Tn|n—2i) + zp(%|n=21)
2 n—oo 2
i . 1
= & lim (p(zn) — p(wnl2:)) + 5o(|n_2:)
2 n-oo 2

- %(p(ﬂr) — plx]a:)) + 1:-’4'($|1%1~2“)

2
1 1
= §P($|N—2i) + §P($[N—2i)
= P($|N—2s‘)
< €f2
< €p,

which is a contradiction. Therefore z,, — x as n — oo.

Theorem 2.7 The space ces(p) has the property (H}.

Proof. Let z € S(ces(p)), xn € B(ces(p)) for all n € N such that z, -2+ z and
lizn]| = 1 as n — co. By Proposition 2.3(iii}, we have p(z) = 1. By Proposition 2.5(i),
we obtain that p{(z,) — 1 as n — oo. So p(z,) — p(z) as n — oo. Since z, — z,
1t implies that z,(#) — x(i) as n — oo for all i € N. Tt follows from Lemma 2.6 that

Ty — T A5 N — O0.
The following result is obtained directly from Theorem 2.7.

Corollary 2.8 For 1 <p < oo, (cesp, |.llo) has property (H)
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Remark 2.9 For a bounded sequence of positive real numbers p = (pg) with p, > 1
for all k € N, the space ces(p) equipped the Luxemburg norm is not rotund , so 1t is
not LUR.

To see this we put
z=1{0,1,1,0,0,.....) and y = (0,2,0,0,...)

Then 7,y € S(ces(p)) because p(z) = p(y) = 1 . Since p(%3¥) = 1, we have by
Proposition 2.3 (iii) that ||2$¥| = 1. This shows that ces(p) is not rotund, so it is not
LUR.

s
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On the H-Property of Some Banach Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we define a generalized Cesdro sequence
space ces(p) and consider it equipped with the Luxemburg norm under
which it is a Banach space , and we show that the space ces(p) posses
property (H) and property (G) , and it is rotund, where p = ('pk) is a

bounded sequence of positive real numbers with py > 1 foralt k € N .

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit
ball of X, respectively. A point zg € S(X) is called

a) an extreme point if for every z,y € S(X) the equality 229 = x + y implies
r=1y

b) an H-point if for any sequence (z,,) in X such that ||z,|| — 1 asn — oo, the
weak convergence of (z,} to zq (write <, — zo) implies that ||z, — z|| — 0 as n — oc;

c) a denting point if for every ¢ > 0, zg ¢ cont{ B(X)\(zo + eB(X))}}.

A Banach space X is said to be rotund (R), if every point of S(X} is an extreme

point.
A Banach space X is said to posses Property (H) (Property (G)) provided every
ponit of S{X) is H-point (denting point).

Typeset by ApS-TEX
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where o(z) = > 07 (2 577 | |=(4)|)P». We consider the space ces(p) equipped with the
so-called Luxemburg norm

|| = inf{x > 0 : p(§) <1}

under which it is a Banach space. If p = (py) is bounded, then we have
o0 ]. n
ces(p) = {w = 2(0) : (= 320" < o0},
n=1 =1

W. Sanhan [15] proved that ces(p) is nonsquare when pr > 1 for all k € N. In this paper,
we show that the Cesaro sequence space ces{p) equipped with the Luxemburg norm is
rotund (R) and posses property (H) and property (G) when p = (px) is bounded with
pr > 1forall ke N

Throughout this paper we assume that p = (px) is bounded with p; > 1 for all
k € N, and M = sup,, pk.

2. Main Results

We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1 The functional p on the Cesaro sequence space ces(p) is a conver
modular.
Proof. It is obvious that g(z) = 0 © z = 0 and p{az) = p(x) for all scalar o with

o = 1. If z,y € ces(p) and @ > 0, 8 > 0 with a + 5 = 1, by the convexity of the
function ¢ — [t|P* for every k € N | we have
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Proposition 2.2 For x € ces(p), the modular o on ces(p) satisfies the following prop-
erties :

(i) if 0 < a <1, then aMg(g) < o(z) and g(az) < ap(z),
(W) if a1, then g(a) < aMo(),
(111) if a > 1, then p(x) < ag(:c)as olazx).
Proof. It is obvious that (iii) is satisfied by the convexity of ¢ . It remains to prove (i)

and (ii) .
|z(3) I)

For 0 < a < 1, we have
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Now , suppose that a > 1. Then we have

So (i1} is obtained. a

Next, we give some relationships between the modular ¢ and the Luxemburg

norm on ces(p).

Proposition 2.3 For any x € ces{p), we have

(1) of |zl <1, then o(x) < [l

(i3) if 2l > 1, then o(x) > |lal,

(i12) ||z|| = 1 if and only if o{z) =1,

() ||lz)l <1 if and only if o(z) <1,

(v) \|z|| > 1 if and only if o(x) > 1,

(vi) if 0 <a <1 and |z|| > a, then o(z) > a™ , and

(vii) if a > 1 and ||z|| < a, then o(z) < aM.
Proof. (i) Let € > 0 be such that 0 < e < 1 — ||zl|, so ||z]| + € < 1. By definition of ||.|,
there exists A > 0 such thzft lizl| +e> X and p(%) < 1. From Proposition 2.2(i) and

ooy < o (U2,
= o (U=l + )
< (Jlzll + e

< [l + e,

(ii1), we have

> 8

)

>| 8
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which implies that g(z) < ||z||, so (i) is satisfied.
el — 1

1l

of ||.|| and by Proposition 2.2 (i), we have

1<9(q%m)

S A=

(ii) Let € > 0 be such that 0 < e <

, then 1 < (1 —€)||z]] < }|z||. By definition

-1
so (1 —¢)||z|| < o{x) for all € € (0, flal — 1

}. This implies that ||z|| < p(z), hence (ii)
is obtained.
(iii) Assume that [|z[| = 1. By definition of ||z||, we have that for € > 0, there exists
A > 0 such that 14+¢€ > A > |z|| and o(¥) < 1. From Proposition 2.2(ii), we have
o(x) < AMp(2) < AM < (1+e)™ | 50 (o(z))¥ < 1+¢ forall € > 0, which implies
o(z) < 1. If p(x) < 1, then we can choose a € (0,1) such that o(z) < a™ < 1.
From Proposition 2.2(i), we have o(2) < —ro(z) < 1, hence ||z|| < a < 1, which is a
contradiction. Therefore go(z) = 1.

On the other hand , assume that p(z) = 1. Then ||z|| < 1. If ||z|| < 1, we have
by (i) that g{z) < ||z|| < 1, which contradicts our assumption. Therefore ||z|| = 1.
(iv) follows directly from (i) and (iii).
(v) follows from (iit) and (iv).
(vi) Suppose 0 < a < 1 and ||z|| > a. Then HE” > 1. By (v), we have Q(E) > 1.
Hence, by Proposition 2.2(i), we obtain that Q(:r:)az aMg(2) > aM. ¢
(vii) Suppose a > 1 and ||z| < a. Then “g“ < 1. By (iv), we have Q(z) <1l Ifa=1,
it is obvious that g(z) < 1 = a™. If a > 1, then , by Proposition 2.2(ii), we obtain that
Qﬁ)SaMd§)<aM-

Proposition 2.4 Let (z,) be a sequence in ces(p).

(i) If |znf]l = 1 asn — oo, then p(zn) = 1 asn —» co.

(i) If o{xzy) = 0 as n— oo, then ||z |l — 0 asn — co.
Proof. (i) Suppose ||x,|| — 1 as n — 00. Let € € {(0,1). Then there exists N € N such
that 1 — € < |jzn|| < 1+ € for all n > N. By Proposition 2.3 (vi) and (viit), we have
(1 — M < o(z,) < (14 €)M for all n > N, which implies that g(z,) — 1 as n — oo.
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(ii) Suppose ||z.|| #» 0 as n — oo. Then there is an € € (0,1) and a subsequence
(Zn,) of () such that ||z, | > € for all k£ € N. By Proprosition 2.3 (vi), we have
o(z,, ) >eM  for all k€ N. This implies o(z,) 4 0 as n — co.

Next, we shall show that ces(p) has the property (H). To do this, we need a

lemma.

Lemma 2.5 Let x € ces(p) and (zn) C ces(p). If p(zn) — p(z) as n — oo and
Zn (i) — (i) as n — oo for all it € N, then z, — = as n — oo.
Proof. Let € > 0 be given. Since p(z) = 372, (3 Ele |z(2)])P* < oo, thereis kg € N
such that

= 1 o e 1

> (E me) < ot (2.1)

k=ko+1 =1

Since p(za) = 3ok21 ( Sima [oa () — p(2) = 342, (F Xoien [2(0)])7 a5 — oo and

Tn(t) — x{i) as n — oo for all 4 € N, there is ny € N such that

ko 1 k Pk ko 1 k Pr e 1
COEDY (E 3 mmr) <o@-3 (; ) |:r(z')|) rier o (22)
k=1 i=1 k=1 =1
for all n > ng, and
ko i k Pk c
> (1; > lea(i) — sc(i)l) <3 (2.3)
k=1 i=1

for all n > ng.
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It follows from (2.1), (2.2) and (2.3) that for n > ny,

o k Pr
olzn —x =Z(é§3lmn<z -z )
= (%Zmn(z) — z(i) ) + Z (%{Z|$n(1) "m(i)|)

k= i=1 k=ko+1 i=1
5o Pk L Pk
<§+2M( Z ( len(z ) + (%Zlm(z I) )
k=ko+1 k=ko+1 i=1
c o ko 1 k ’ Pk o0 1 . P
=5 +2M | o(za) - > p PENGIE Y - PNEIO]
k=1 i=1 k=ko+1 i=1
¢ u ko e 1 oo 1 k ‘ Px
<z +2M|e@) - Z Z|m(z)| tiomt D |52l
k= k=kg+1 iz=1
€ = k o e 1 > 1< o
:§+2M( > (;Z'W)') taoaw t DL Ezlx(zn) )
k=ko+1 i=1 k=ko+1 i=1
=§+2M (2 3 (%Zm(m) +§2i)
k=ko+1 i=1
< % + % + % = €.

This show that o(z, — ) — 0 as n — oo. Hence, by Proposition 2.4 (ii), we have

lzn — x| — 0 as n — oo.

Theorem 2.6 The space ces(p) has the property (H).

Proof. Let x € S{ces(p)) and (z,,) C ces(p) such that ||z,|| — 1 and z, = z asn — oo
From Proposition 2.3 (iii), we have o(z) = 1, so it follows from Proposition 2.4 (i) that
o(zn) — o(x) as n — oo. Since the mapping p; : ces(p) — R, defined by p;(y) = y(4), is
a continuous linear functional on ces(p), it follows that z,(i) — z(i) as n — oo for all

7 € N. Thus, we obtain by Lemma 2.5 that x,, — = as n — . O
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Theorem 2.7 The space ces(p) is rotund.
. y+=z -
Proof. Let z € S(ces(p)) and y,z € B(ces(p)) with z = — By Proposition 2.3
and the convexity of p we have

1= o@) < 5(el0) +02)) S 31+ 1) =1,
so that o(z) = %(g(y) + o(z)) = 1. This implies that
k . . Pk k Pr k Pk
(};@ﬁ?@)=%@;¥w)+%@§yw) (2.4
for all k € N.
We shall show that y(i) = 2(7) for all i € N.
From (2.4), we have
P = [P P + P, (2.5)

Since the mapping ¢ — |t|P! is strictly convex, it implies by (2.5} that y(1) = z(1).
Now assume that y(i) = z(2) for all : = 1,2,3, ...,k — 1. Then y(i) = z() = z(¢)
foralli=1,2.3,...,k — 1. From (2.4), we have

L& (i) +26) N (A @+ 2R @\
N e

2
k P k Pk
1(1 . 1/(1 .
=3 (E ; ly(1)|) To (E ; |Z(?)|) (2.6)
: . P 1 <& . 1 & .
By convexity of the mappipg ¢ — |¢|P* , it implies that Z Yooy @) = % D oieg 12(8)]
Since y(i) = z(¢) for alli =1,2,3,...,k — 1, we get that
ly(k)| = |2(k)]. (2.7)

If y(k) = 0, then we have z(k) = y(k) = 0. Suppose that y(k) # 0. Then
z(k) # 0. If y(k)z(k) < 0, it follows from (2.7) that y(k) + z(k) = 0. This implies by
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(2.6) and (2.7) that

1 k2 Pk 1 k-1 px
(-];le(i)l) = (E (Z ()] +|y(k)|)) ,

which is a contradiction. Thus, we have y(k)z(k) > 0. This implies by (2.5} that
y{k) = z(k). Thus, we have by induction that y(i) = z(¢) forall i € N, so y = 2. O

Bor-Luh Lin , Pei-Kee Lin and S.L. Troyanski proved ( ¢f. Theorem iii [11}) that
element z in a bounded closed convex set K of a Banach space is a denting point of K
iff z is an H-point of K and z i5 an extreme point of K. Combining this result with our

results (Theorem 2.6 and Theorem 2.7), we obtain the following'result.
Corollary 2.8 The space ces(p) has the property (G).

For 1 < 7 < oo, let p = (px) with pr = r for all kK € N. We have that ces, =
ces(p), so the following results are obtained directly from Theorem 2.6, Theorem 2.7

and Corollary 2.8, respectively.

Corollary 2.9 For 1 <r < oo, the Cesdro sequence space ces, has the property (H).
Corollary 2.10 For 1 <r < 0o, the Cesdro sequence space ces, 1s rotund.

Corollary 2.11 For 1 < r < oo, the Cesdro sequence space ces, has the property (G).
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ABSTRACT. In this paper, we define a generalized Cesdro sequence
space ces(p) and consider it equipped with the Luxemburg norm under
which it is a Banach space , and we show that the space ces(p) is locally
uniformly rotund (LUR), where p = (pk) is a bounded sequence of positive
real numbers with py > 1 for all k € N .

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit
ball of X, respectively. A point 2y € S(X) is called

a} an ectreme point if for every z,y € S(X) the equality 2z9 = = + ¥ implies
=1y ‘

b} a locally uniformly rotund point (LUR-point for short)if for any sequence
(zn) in B(X) such that ||z,, + || — 2 as n - oo there holds ||z, — x| — 0 as n — oo;

¢) an H-point if for any sequence (z,) in X such that |jz,|| — 1 as n — oo, the
weak convergence of (z,,) to xg (write z, — xg) implies that ||z, — || — 0 as n — oo;

A Banach space X is said to be rotund (R}, if every point of S(X) is an extreme

point.

Typeset by ApSTEX
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Theorem 1.1 Let p be a convexr modular on X and let x € X, and (z,) a sequence
in Xp. Then ||z, — z|]| — 0 as n — o0 if and only if o(AM(zn, — z)) — 0 as n — oo for
every A > 0.

Proof. See [11, Theorem 1.3].

Theorem 1.2 Lei p be a conver modular on X .and x € X,.

(1) If o is right-continuous, then ||z|| < 1 if and only if o(z) < 1.
(it) If ¢ is left-continuous, then ||z|] < 1 if and only if o(z) < 1.
(111) If g is continuous, then ||z|| = 1 if and only if o(z) = 1.

Proof. See [11, Theorem 1.4].

Let us denote by I° the space of all real sequences. For 1 < p < oo, the Ceséro

sequence space (cesp, for short) is defined by

ces, ={z €l°: Z(% Z |z(7)])? < oo}
i=1

n=1

equipped with the norm
oo 1 n N
— _ Yy P
lall = (2 Lo le@y)

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix
operators and others (see [9] and [10]). Some geometric properties of the Cesdro sequence
space ces, were studied by many mathematicians. It is known that ces, is LUR and
possesses property (H) (see [10] ). Y. A. Cui and H. Hudzik [2] proved that ces, has
the Banach-Saks property , and it was shown in [5] that ces, has property (3).

Now, let p = (px) be a sequence of positive real numbers with py > 1 for all
k € N. The Nakano sequence space I(p) is defined by

I(p) = {x €1°: o(Dz) < oo for some A > 0},
where o(z) = 3.2, |z(2)|P*. We consider the space I{p) equipped with the norm

lz|l = inf{A > 0: cr(;) <1},
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under which it is a Banach space. If p = (px) is bounded, we have
o
(p)={zecl’: Z |z(2)}{?* < oo},
=1

Several geometric properties of I(p) were studied in 1] and [4].

The generalized Cesaro sequence space ces(p) is defined by
ces(p) = {z € I°: p(Az) < oo for some A > 0},

where p(z) = Y oo (2 > oin; 12(2)])P". We consider this space equipped with the so-
called Luxemburg norm
ol = inf{x > 0: o(3) < 1}

under which it is a Banach space. If p = (px) is bounded, we have

ces(p) = {=2(i): 3 (> I @)™ < o0},

n=1
W. Sanhan [15] proved that ces(p) is nonsquare when p; > 1 for all k£ € N. In this paper,
we show that the Cesdro sequence space ces(p) equipped with the Luxemburg norm is
LU R and has property (H) when p = (px) is bounded with px > 1 for all £k € N.

Throughout this paper we assume that p = (pi) is bounded with p; > 1 for all
k €N, and M = sup; p.

2. Main Results
We begin with giving some basic properties of the modular g on the space ces(p).
By convexity of the function t — |[¢[P* for every k € N, we have that g is a convex

modular. So we have the following proposition.

Proposition 2.1 The functional ¢ on the Cesaro sequence space ces(p) is a conver

modular.

Proposition 2.2 For z € ces(p), the modular ¢ on ces(p) satisfies the following prop-

erties :



(i) if 0 < a <1, then aMg(z) < o(z) and olax) < ap(z),
(i) if a> 1, then o(x) < aMo(2),
(13) if a > 1, then o(z) < ap(z) < olaz).

Proof. All assertions are clearly obtained by definition of g. . O

Proposition 2.3 The modular ¢ on ces(p) is continuous.

Proof. For A > 1, by Proposition 2.2 (ii) and (iii), we have
o(z) < Ao(z) < o(hz) < AMo(z) (2.1)

By taking A — 17 in (2.1), we have limy_,1+ ¢(Az) = o(z). Thus ¢ is right-continuous.
If 0 < A < 1, by Proposition 2.2 (i}, we have

Mo(z) < o(dz) < Mo(x) (2:2)

By taking A — 17 in (2.2), we have that limy_, ;- g{Az) = p(z), hence, ¢ is left-

continuous. Thus p is continuous.

Next, we give some relationships between the modular ¢ and the Luxemburg

norm on ces(p).

Proposition 2.4 For any x € ces{p), we have
(1) #f llzll <1, then o(z) < |z,
() if ||lz]| > 1, then o(z) = ||=||,
(111) ||z]| =1 ¢f and only if o(z) = 1,
() ||z]| < 1 if and only if o(z) < 1,
(v) ||z|| > 1 if andeonly if o(x) > 1,
(vi) if 0 < a <1 and {|z|| > a, then o(z) > a™ , and
(vit) if a > 1 and ||z|| < a, then p(z) < a™.

Proof. If ||z|| < 1, it follows by convexity and continuity of g that ¢{(z) = ¢ (||:r:|| -E—) <

=l

[ (ﬁ) < |lzll. So (i) is obtained. If [|z]| > 1, then there is g > O such

that ||z|]] —e > 1 for all € € {0,20). Consequently, g(z) = ¢ ((“55” “5)—_”23]?“6) 2
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(lzli — €)e (‘—H—lx—) > |lz|| — €, so (ii) is satisfied. It is clear that (iii), (iv) and (v)
x| —¢
follow by Theorem 1.2, and properties (vi) and (vii) follow by Proposition 2.2. 0

Proposition 2.5 Let (z,,) be a sequence in ces(p).

(i) If ||zn|| = 1 as n— oo, then o(z,) =1 asn — co.

(i) |lzn]l — 0 as n — oo if and only if o(z,) =0 asn — oo.
Proof. (i) Suppose ||z,| — 1 asn — co. Let ¢ € (0,1). Then there exists N € N such
that 1 — € < [|zn| < 1+ € for all n > N. By Proposition 2.4 (vi) and (vii}, we have
(1 — &)™ < p(xn) < (1 + €)M for all n > N, which implies that o(z,) — 1 as n — oo.
(ii) It follows from Theorem 1.1 that if ||z.|| — 0 as n — oo, then p(z,) — 0 as
n — oco. For the converse, suppose ||z,|| # 0 as n — oco. Then there is an € € (0,1)
and a subsequence (z,, ) of (z,) such that ||z,,|| > € for all k € N. By Proprosition 2.4
(vi), we have o(z, ) > €M for all k€ N. This implies g(z,,) 4 0 as n — . !
Proposition 2.6 Let (z,) C B(l(p)) and (yn) € B(l(p)) . If g(w
Zn(i) —yn(i) = 0 as n — oo for alli € N.
Proof . We first note that if z € B(¢(p), then o(x) < 1. Supose that z,(¢) — y(i) /% 0

as n — oo for some 7 € N. Without loss of generality we may assume that 2 =1 , and

) — 1, then

then assume without loss of generality (passing to a subsequence if necessary) that , for

some € > 0,
(2o, (1) ~ g (1)) > e VR EN

Thus
2P (lzn (1P + |y (1)|P1) > € Yn €N, (2.3)
Since the function t — |£|P* is uniformly convex, there exists § > 0 such that

lmn_(ll—;—_yrc(}lipl <(1-6) ('mn(lﬂpl ;’ |yn(1)|p1) vn € N. (2.4)




It follows from (2.3) and (2.4) that for each n € N,

O_(mn";‘yn) :Z

=1
mn(l) + yn(l) i

> | T

<(1- (lwn(1)|p -;— |yn (1 ) 5 Z | ()P + 5 Z lyn (4) [P

i=2 =2

Tn (1) + yn(2) P
2

T (8} 4 ynl7) g

=%a@a+%a@J—5(hMUW”;WAUW)
= % + % - 62p16+1
=1- 62pf+1
‘This implies that o s _2|_ yn) # 1 as n — oo, a contradiction, which finishes the proof

O

:cn-i—:c

Proposition 2.7 Let (x,) C B(ces(p)) and x € S(ces(p)). If of

then z,(i) — z(i) as n — oo for alli e N.

)—blasn—r‘oo,

Proof. For eachn € Nand i €N, let

o { sgn(2n(i) + 2() i 2n(d) + i) #0,
U 1 2a(i) + 2() = 0.
1
(e

k P
(1 eomle 3 w0) e

i=1 i=1

Hence, we have

osn+3: Tn z)+:z:
— o)

H

s T[™]¢

k

Let an(k) = L 3% | sp(i)za(i) and bo(k) = L35 s,(i)x(s) for all n,k € N. Then
(ar) € l(p) and (b,) € I(p), and from (2.5} we have

™" bﬂ.
cr(a —2|_ )—1 asn— oo
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Form Proposition 2.6, we have
an(i) — by(i) ~0asn — o (2.8)

for all ¢ € N. Now, we shall show that z,(k) — z(k) as n — oo for all k¥ € N. From
(2.6), we have '

$n{1)2n (1) = 5, (1)z(1) — 0 a8 n — o0,

this implies z,(1) — z(1) as n — oo. Assume that z,(i) — z(i) as n — oo for all
i < k — 1. Then we have

sp(t){zn(i) —z(i)) = 0asn — oo (2.7

for all i < k~1. Since sp (k)(n (k) ~2(k)) = k(an(k) —ba(k)) = 3571 50 (6)(xn(5) ~ 2(3)),
it follows from (2.6) and (2.7) that s,{k)(z.(k) — z(k)) — 0 as n — oo. This implies
z,(k) — z(k) as n — o0. So we have by induction that z,(k) — z(k) as n — oo for all

keN

Theorem 2.8 The space ces(p) 1s LUR.

Proof. Let (z,) € B{ces(p)) and z € S{ces(p)) be such that ||z, + z|| — 2 as n — .

Then “$n2 $|l — 1 as n — oo. By Proposition 2.5 (i), we have g(m"2 33) — 1 as

n — oo. By Proposition 2.7, we have z,(i) — z{i) as n — oo for all i € N.

Now, let € > 0 be given. Then there exists kg € N and ng € N such that

oo % Pk
S (%Ztm(m) < 5w (2.8)

k=kg+1 i=1
ko 1 k Pk .
:/:—,: (}: ; |zn i) — x(z)l) < 3 foralln > ng, (2.9)
ko /1 KX P ko fq K P
; (E ; '“:"(i)l) > k; (-,; };1 lr(i)l) ~ oy forallnzng. (210

By Proposition 2.4 (i) and (iii), we have g(z,) < 1 for all » € N and g(z) = 1. From
these together with (2.8), (2.9), (2.10) and the fact that (a + b)P* < 2P%(aP* + bPF) for



a,b > 0, we have that for all n > ng,

k=1

ko & Ph o0 Pk
- (%Zun(i)wm(iﬂ) + 0y ( len(%)—x(%)l)

k=1 \ " i k=kot+1 \" i=1

A

€ oM (ki( Z|xn(z)|) .S ( Zlﬂ)l) )

=ko+ k=ko+1 i=1

Pk oo k Pk
=§+2M (g Tn) — Z ( len(z ) + > (%le(i)l) )
k=ko+1 =1 7
. ko 1 k Pk oo 1 k Pk
<3 + oM (1 - (E Z|:cn(i)|) + Y (EZW”) )
k=1 i=1 k=ko+1 i=1
. ko /4 N e & 1 "
<g+2M[1=371 23 @l taomt Dl |32l
k=1 i=1 k=ko+1 i=1
€ o (1 o e 1 > k "
=5 +2" (Q(w) -y (E zlm(i)l) + gt > (E le(e)\) )
k=1 i=1 k=ko+1 i=1
e ol S (1d N e ® (1< a
=5 +2 > EZ|$(1)| +35m + > EZlm(z)l
k=ko+1 i=1 k=ko+1 i=1
el S f1& N e
=z +2¥ 2 > EZ\:{:(zﬂ + 3537
k=kg+1 i=1
oo k Pk
=S4T Y (%Zu(m) +3
k=kg+1 i=1

This shows that g(z, —z) — 0 as n — oc. By Proposition 2.5(ii) , we have ||z, —z|| — 0

as n — 00. This completes the proof of the theorem. O

It is known in general that a locally uniformly rotund space has property (H).
S0 we have the following result.
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Corollary 2.9 The space ces(p) possesses property (H).
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