รายงานวิจัยฉบับสมบูรณ์

โครงการ

คุณสมบัติเรขาคณิตและการแปลงเมทริกซ์ของปริภูมิลำดับ Geometric Property and Matrix Transformations of Sequence Spaces

ผู้วิจัย รศ. ดร. สุเทพ สวนใต้ สังกัด ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Scan S

เกียรติคุณประกาศ

ผู้วิจัยขอขอบคุณสำนักงานสนับสนุนการวิจัย (สกว) ที่ให้ทุนสนับสนุนการวิจัยในโครงการนี้ โดยเฉพาะฝ่ายวิชาการ สกว. ที่อำนวยความสะดวกในการทำวิจัยจนทำให้โครงการวิจัยนี้ ประสบความสำเร็จเป็นอย่างดียิ่ง และ ผู้วิจัยขอขอบคุณ ภาควิชาคณิตศาสตร์ คณะวิทยา ศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่สนับสนุนให้ทำการวิจัย และ อำนวยความสะดวกในเรื่องของ สถานที่วิจัย การใช้อุปกรณ์การวิจัย เช่น เครื่องคอมพิวเตอร์ และ เครื่องพิมพ์ ตลอดจนให้การ สนับสนุนงบประมาณบางส่วนในการเดินทางไปเสนอผลงานต่างประเทศ

สารบัญ

	หน้า
เกียรติคุณประกาศ	ก
บทคัดย่อภาษาอังกฤษ	1
บทคัดย่อภาษาไทย	2
บทนำ	3
บทที่ 2 สมบัติเรขาคณิตบางประการของปริภูมิลำดับบานาค	11
(Some Geometric Properties of Banach Sequence Spaces)	
- Some Geometric Properties in Orlicz Sequence Spaces of Bochr	ner Type 12
- Local Uniform Convexity of Cesaro Musielak-Orlicz Sequence Sp	paces 42
- Some Geometric properties of Cesaro Sequence Spaces	69
- On the H-property of Some Banach Sequence spaces	77
- On Some Convexity Properties of Generalized Cesaro Sequence	Spaces 88
- On Property (H) and Rotundity of Difference Sequence Spaces	101
- On Property (UKK) in Cesaro Musielak-Orlicz Sequence Spaces	113
บทที่ 3 การแปลงเมทริกซ์ของปริภูมิลำดับ	127
(Matrix Transformations of Sequence Spaces)	
- Matrix Transformations of Nakano Vector-Valued Sequence Space	ce 128
- On Matrix Transformations Concerning the Nakano Vector-Value	d
Sequence Spaces	135
- On beta-Dual of Vector-Valued Sequence Spaces of Maddox	145
- Matrix Transformations of Some Vector-Valued Sequence Space	es 158
- On Matrix Transformations of Vector-Valued Sequence Spaces of Madd	ox 173
- Matrix Transformations of Vector-Valued Sequence Spaces	192
- Matrix Transformations on the Maddox Vector-valued Sequence Spaces	s 202
- Matrix transformations on the Nakano Vector-Valued Sequence Spaces	220
ผลงานที่ได้รับ(Output)	231
ภาคผนวก	236

Abstract

Project Code: RSA/16/2543

Project Title: Geometric Property and Matrix Transformations of Sequence Spaces

Investigator: Assoc. Prof. Dr. Suthep Suantai, Department of Mathematics,

Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

E-mail Address: scmti005@chiangmai.ac.th suantai@yahoo.com

Project Period: 1 December 1999 - 1 December 2002

The first purpose of this project is to study some geometric properties of some Banach sequence spaces and the second purpose is to give characterizations of infinite matrices mapping from certain sequence spaces into some certain sequence spaces. In this research we define three new sequence spaces, ces(p), ces_M and $\ell(\Delta,p)$, where $p=(p_k)$ is a bounded positive sequence of real numbers and $M=(M_k)$ is a Musielak-Orlicz function. The spaces ces(p) and ces_M are generalizations of the cesaro sequence spaces. We introduce the Luxemburg norm on these spaces.

We show that ces(p) and $\ell(\Delta,p)$ have property (H) if $p_k \geq 1$ for all $k \in N$ and ces(p) is locally uniformly rotund if $p_k > 1$ for all $k \in N$. These results generalized the previous works of many mathematicians. We also show that the difference sequence spaces $\ell(\Delta,p)$ it is rotund if and only if $p_k > 1$ for all $k \in N$. In studying geometric properties on the spaces ces_M , we obtain that the space ces_M is (UKK) space when M satisfies δ_2 - condition and the condition (*), so it has property (H). We further study some geometric properties of Orlicz-sequence spaces of Bochner type.

For the second main purpose of this project, we give characterizations of infinite matrices mapping the Nakano vector -valued sequence spaces $\ell(X,p)$ and $F_r(X,p)$ into E_r , $\ell_\infty,\ell_\infty(q),bs,cs$, when $p_k>1$ for all $k\in N$, and we also we give characterizations of infinite matrices mapping from $\ell(X,p)$ and $M_0(X,p)$ into E_r when $p_k\leq 1$ for all $k\in N$. We can completely give characterizations of infinite matrices mapping from any FK- spaces into the spaces c(q). From this result, we obtain many matrix transformations from certain FK-spaces into c(q). Furthermore, we also we give characterizations of infinite matrices mapping from the sequence spaces of Maddox into Musielak-Orlicz sequence spaces.

Keywords: Geometric properties, property (H), rotund, locally uniformly rotund, uniform Kadec-Klee property, Cesaro sequence spaces, Musielak-Orlicz functions, Matrix transformations, Maddox sequence spaces, Vector-valued sequence spaces

บทคัดย่อ

รพัสโครงการ: RSA/16/2543

ชื่อโครงการ: คุณสมบัติเรขาคณิตและการแปลงเมทริกซ์ของปริภูมิลำดับ

ผู้วิจัย: รศ.ดร.สุเทพ สวนใต้

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

E-mail Address : scmti005@chiangmai.ac.th suantai@yahoo.com ระยะเวลาโครงการ : 1 ธันวาคม 2542 - 1 ธันวาคม 2545

วัดถุประสงค์แรกของงานวิจัยนี้คือการศึกษาสมบัติเรขาคณิตของบางลำดับปริภูมิบานาค และ วัตถุประสงค์ที่สองคือการหาลักษณะเฉพาะของเมทริกซ์อนันด์ที่ส่งจากปริภูมิลำดับ หนึ่งไปสู่อีกปริภูมิลำดับหนึ่ง ในงานวิจัยนี้เรานิยามปริภูมิลำดับใหม่ขึ้นมา 3 ปริภูมิลำดับคือ ces(p), ces_M และ $\ell(\Delta,p)$ เมื่อ $p=(p_k)$ เป็นสำดับที่มีขอบเขตของจำนวนจริง และ $M=(M_k)$ เป็นฟังก์ชันมูสิลักซ์ ปริภูมิ ces(p) และ ces_M เป็นปริภูมิที่วางนัยทั่วไปของ ปริภูมิลำดับเซซาโร เราศึกษาปริภูมิเหล่านี้ภายใต้นอร์มลักเซมเบิกร์ก เราได้แสดงว่าปริภูมิ ces(p) และ $\ell(\Delta,p)$ มีสมบัติ (H) เมื่อ $p_k \ge 1$ สำหรับทุก $k \in N$ และปริภูมิ ces(p) เป็น ปริภูมิ LUR ถ้า $p_k > 1$ สำหรับทุก $k \in N$ ผลด่างๆเหล่านี้คลุมผลงานของนักคณิตศาสตร์ หลายท่าน นอกจากนี้เรายังได้แสดงว่าปริภูมิ $\ell(\Delta,p)$ เป็น rotund ก็ต่อเมื่อ $p_k > 1$ สำหรับ ทุก $k \in N$ สำหรับการศึกษาสมบัติเรขาคณิตในปริภูมิ ces_M นั้นเราได้พบว่าปริภูมิ ces_M เป็นปริภูมิ (UKK) เมื่อ M สอดคล้องเงื่อนไข δ_2 และเงื่อนไข (*) นอกจากนี้เรายังได้ศึกษา สมบัติเรขาคณิตอีกหลายชนิดบนปริภูมิลำดับออร์ลิคซ์ชนิดบอคเนอร์ด้วย

สำหรับวัตถุประสงค์ที่สองนั้นเราได้ให้ลักษณะเฉพาะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิ ลำดับค่าเวกเตอร์นาคาโน $\ell(\Delta,p)$ และ $F_r(X,p)$ ไปยังปริภูมิ $E_r,\ell_\infty,\underline{\ell}_\infty(q),bs,cs$ เมื่อ $p_k>1$ สำหรับทุก $k\in N$ และเรายังได้ให้ให้ลักษณะเฉพาะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิ $\ell(\Delta,p)$ และ $M_0(X,p)$ ไปยังปริภูมิ E_r เมื่อ $p_k\leq 1$ สำหรับทุก $k\in N$ เราสามารถให้ ลักษณะเฉพาะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิ FK ใดๆไปยังปริภูมิ c(q) นอกเหนื่อจากนี้ แล้วเราได้ให้ลักษณะเฉพาะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิลำดับของแมดดอกซ์ไปยังปริภูมิ ลำดับมูสิลัก-ออร์ลิคซ์

คำหลัก: สมบัติเรขาคณิต สมบัติ (H) โรทุน โลคอลลียูนิฟอร์มโรทุน สมบัติยูนิฟอร์มคา เดค-คลี ปริภูมิลำดับเชซาโร ฟังก์ชันมูสิลัค-ออร์ลิคช์ การแปลงเมทริกซ์ ปริภูมิลำดับแมด ดอกซ์ ปริภูมิลำดับค่าเวกเตอร์

บทที่ 1 บทนำ

1.1ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

ปริภูมิลำดับ (Sequence spaces) นับเป็นแขนงที่สำคัญแขนงหนึ่งในสาขาของ การวิเคราะห์ฟังก์ชัน (Functional Analysis) ในปัจจุบันนักคณิตศาสตร์ได้ศึกษาและวิจัยกัน อย่างต่อเนื่องในการคิดค้นทฤษฎีเพื่อหาองค์ความรู้ใหม่ ๆ ต่าง ๆมากมายในหลาย ๆหัวข้อ ของสาขานี้ เป็นที่ยอมรับว่าทฤษฎีและองค์ความรู้ใหม่ ๆที่เกิดจากการวิจัยนั้น นอกจากจะมี ประโยชน์อย่างมากในการพัฒนาความรู้เชิงวิชาการในสาขาแล้ว บางครั้งสามารถนำไปประยุกต์ ในสาขาอื่นๆ การพัฒนาทางวิชาการและการคิดค้นทฤษฎีและองค์ความรู้ใหม่ๆต่าง ๆในสาขานี้นับเป็นการพัฒนาที่สำคัญทางวิทยาศาสตร์พื้นฐาน (Basic science) อันถือเป็นพื้นฐานในการพัฒนาประเทศชาติต่อไป

ปริภูมิลำดับถือได้ว่าเป็นตัวอย่างที่สำคัญของปริภูมิพังก์ชัน (Function spaces) และ ในสาขาการวิเคราะห์ฟังก์ชันนั้นงานวิจัยโดยหลักแล้วก็เป็นการศึกษาคิดค้นทฤษฎีต่าง ๆเกี่ยว กับปริภูมิพังก์ชันทั้งสิ้น ตัวอย่างที่สำคัญ ๆที่ทำให้เกิดแนวคิดที่กว้างขวางยิ่งขึ้นในสาขานี้ ส่วนใหญ่เกิดจากตัวอย่างที่เกี่ยวกับปริภูมิลำดับ ดังนั้นจะเห็นได้ว่าเมื่อนักคณิตศาสตร์ได้คิด ค้นและสร้างแนวคิดใหม่ ๆเกี่ยวกับปริภูมิพังก์ชันก็มักจะหันมาศึกษาทฤษฎีและคุณสมบัติต่าง ๆที่เกี่ยวข้องกับปริภูมิลำดับเสมอ ในปัจจุบันมีนักคณิตศาสตร์จำนวนมากที่สนใจศึกษา วิจัย เกี่ยวกับคุณสมบัติทางเรขาคณิต (Geometric property) ของปริภูมิบานาค (Banach spaces) ซึ่งคุณสมบัติทางเรขาคณิตนั้นนับเป็นคุณสมบัติที่สำคัญที่ทำให้เราทราบถึงลักษณะและคุณ สมบัติที่สำคัญด่างๆของปริภูมิบานาคมากขึ้น เช่น ถ้าปริภูมิบานาคมีคุณสมบัติบางประการทาง เรขาคณิตแล้ว ปริภูมิบานาคนั้นจะเป็นปริภูมิสะท้อน (Reflexive space) ตัวอย่างเช่น ถ้าปริภูมิบานาคมีคุณสมบัติใดคุณสมบัติหนึ่งต่อไปนี้คือ

- 1. Uniform rotund
- 2. P-convexity
- 3. Q-convexity
- 4. Banach -saks property (BSP)

แล้วปริภูมินั้นจะเป็นปริภูมิสะท้อน (Reflexive space) ตัวอย่างอื่น ๆที่น่าสนใจคือ ทฤษฏีที่คิดค้นโดย Rolewicz [42] ที่พบว่าปริภูมิบานาค X มีคุณสมบัติ drop property ก็ต่อ เมื่อ X เป็นปริภูมิสะท้อน และ X มีคุณสมบัติ H (H-property) Huff [30] ก็ได้แสดงว่า ทุก ๆปริภูมิ NUC (nearly uniformly convex) เป็นปริภูมิสะท้อนและมีคุณสมบัติ H

เราจะเห็นได้ว่าคุณสมบัติ H, drop property และ NUC ต่างก็เป็นคุณสมบัติเรขาคณิต ที่สำคัญ ๆของปริภูมิบานาคทั้งสิ้น จากตัวอย่างข้างต้นและผลงานวิจัยอีกมากมายทำให้เกิด ความดื่นตัวกันมากในวงการของการวิเคราะห์ฟังก์ชัน ทำให้นักคณิตศาสตร์ได้ศึกษาทฤษฎีและ คุณสมบัติเรขาคณิตของปริภูมิบานาคมากขึ้น โดยเพียงเวลาไม่ถึง 20 ปี แต่มีการพัฒนาคิดคัน และวิจัยกันอย่างต่อเนื่องเกี่ยวกับคุณสมบัติเรขาคณิตของปริภูมิบานาค

ตามที่ได้กล่าวมาแล้วว่าปริภูมิลำดับเป็นตัวอย่างที่สำคัญของปริภูมิฟังก์ชันและปริภูมิ บานาค ดังนั้นจึงมีนักคณิตศาสตร์จำนวนมาก (ดูได้จากเอกสารอ้างอิง) ได้ศึกษาคิดค้นและ วิจัยเกี่ยวกับคุณสมบัติเรขาคณิตต่าง ๆในปริภูมิลำดับที่น่าสนใจ เช่น ในปริภูมิลำดับออร์ลิคซ์ (Orlicz sequence spaces) ปริภูมิลำดับเซซาโร (Cesaro sequence spaces) ปริภูมิลำดับ มูซึลัก-ออร์ลิกซ์ (Musielak-Orlicz sequence spaces) ปริภูมิลำดับนาคาโน (Nakano sequence spaces)เป็นต้น

จากการศึกษาผลงานวิจัยต่าง ๆที่เกี่ยวข้องพบว่ายังมีปัญหาต่าง ๆมากมายเกี่ยวกับ คุณสมบัติเรขาคณิตของปริภูมิลำดับข้างต้น ตลอดจนปริภูมิลำดับบานาค (Banach sequence spaces) อื่น ๆ อีกมากมาย

ปัญหาอีกปัญหาหนึ่งที่เป็นที่นิยมศึกษาวิจัยกันมากในสาขาของปริภูมิลำดับคือ ปัญหาการแปลงเมทริกซ์ของปริภูมิลำดับซึ่งเป็นปัญหาที่เกิดมาจากการศึกษา Summability Theory ของลำดับลู่ออก (divergent sequence) และอนุกรมลู่ออก (divergent series) ลักษณะของ ปัญหาดังกล่าวนี้คือ เป็นการศึกษาและให้ลักษณะของเมทริกซ์อนันต์ที่ส่ง (map) จากปริภูมิ ลำดับหนึ่งไปยังอีกปริภูมิลำดับหนึ่ง เช่น ทฤษฎีของโคจิมา-เชอร์ (Kojima-Shur Theorem) ได้ให้ลักษณะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิลำดับลู่เข้า (c) ไปยังปริภูมิลำดับลู่เข้า (c) ซึ่ง ถือเป็นการแปลงเมทริกซ์ที่รักษาคุณสมบัติเดิมของปริภูมิที่ถูกส่งไป ปัญหาการแปลงเมทริกซ์ ในช่วงต้นนั้น ได้สนใจศึกษาเฉพาะเมทริกซ์อนันต์ของจำนวนจริงหรือจำนวนเชิงซ้อน และ ปริภูมิลำดับก็เป็นปริภูมิลำดับของจำนวนจริงหรือจำนวนเชิงซ้อน ต่อมานักคณิตศาสตร์จำนวน มากได้ขยายแนวคิดของปัญหาดังกล่าวไปสู่ปริภูมิลำดับค่าเวกเตอร์ (Vector-valued sequence spaces) และเมทริกซ์อนันต์ของตัวดำเนินการ เช่น ในเอกสาร [48 - 50], [73] ดังนั้นการ ศึกษาในปัญหาใหม่นี้นอกจากจะให้ทฤษฎีใหม่ ๆ แล้วผลงานที่ได้ยังสามารถดอบคำถามของ ปัญหาในแบบเดิมได้อีกด้วย

1.2 วัตถุประสงค์ของโครงการ

- 1 ศึกษาคุณสมบัติเรขาคณิดต่างๆของปริภูมิลำดับบานาค(Banach sequence spaces)
- 2 เพื่อหาลักษณะเฉพาะของปริภูมิลำดับบานาคต่างๆ ที่มีคุณสมบัติเรขาคณิตต่างๆ
- 3 เพื่อหาลักษณะของเมทริกซ์อนันด์ที่ส่งระหว่างปริภูมิลำดับ
- 4 เพื่อหาลักษณะของดวลต่างๆของปริภูมิลำดับ

5 เป็นการสร้างและพัฒนานักวิจัยรุ่นใหม่คือนักศึกษาระดับปริญญาโท และ เอก ใน สาขาคณิตศาสตร์ของประเทศไทย

เนื้อหางานวิจัยนี้ได้แบ่งออกเป็นสองบทใหญ่ ๆ คือ การศึกษาสมบัติเรขาคณิตบางประการของ ปริภูมิลำดับบานาคในบทที่ 2 และ การศึกษาเกี่ยวกับการแปลงเมทริกซ์ของปริภูมิลำดับในบท ที่ 3 สำหรับในภาคผนวกนั้นเป็นการรวบรวม reprints ของผลงานที่ได้รับในช่วงที่ทำการวิจัย

เอกสารอ้างอิง

- [1] สารภี ไชยรัตน์, *การแปลงเมทริกซ์ของปริภูมิลำดับ*, วิทยานิพนธ์ขั้นปริญญาโทบัณฑิต วิทยาลัย มหาวิทยาลัยเชียงใหม่ 2538.
- [2] B. Beauzamy, Introduction to Banach Spaces and their Geometry, Elsevier, Amsterdam, 1985.
- [3] E. Bulut and O. Caker, *The sequence space* $\ell(p,s)$ *and related matrix transformations*, Comm. Fac.Sic. Univ Ankara (A₁), 28 (1979), 34 -39.
- [4] R. Chandrasekhara, Pacific. J. Math. 31(1969), 171 174.
- [5] S. Chen, Geometry of Orlicz spaces. Dissertationes Math. 356, 1-204 (1996).
- [6] S. Chen, Some rotundities of Orlicz spaces with Orlicz norm, Bull. Polish Acad. Sci. Math. 34 (1986), 585-596.
- [7] S. Chen, Smoothness of Orlicz spaces, Comment. Math 27 (1987), 49-58.
- [8] S. Chen, Non-squareness of Orlicz spaces, Chinese Ann. Math. 6A (1985), 607-613 (in Chinese)
- [9] S. Chen, Local nonsquareness of sequence Orlicz spaces, ibid. 3(1) (1987), 1-5 (in Chinese)
- [10] S. Chen, B. Lin and X. Yu, Rotund reflexive Orlicz spaces are fully convex, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 79-86.
- [11] S. Chen and Y. Chen, Extreme points and rotundity of sequence Orlicz spaces, ibid. 1 (2) (1985), 1-5 (in add.) (in Chinese).
- [12] S. Chen, H.Sun and C. Wu, λ-property of Orlicz spaces, Bull. Polish Acad. Sci/ Math. 39 (1991), 63-69.
- [13] S. Chen and Y. Wang, *H property of Orlicz spaces*, Chinese Ann. Math. 8A (1987), 61-67 (in Chinese).
- [14] S. Chen and Y. Wang, On definition of non-square normal spaces, ibid. 9A (1988),

- 68-72 (in Chinese).
- [15] S. Chen and Y. Wang, Locally uniform rotundity of Orlicz spaces, J. Math (Wuhan) 5 (1985), 9-14 (in Chinese).
- [16] Cook, G., Infinite Matrices and Sequence Spaces, London, Mcmilland 1950
- [17] Y. Cui, *Mid point locally uniform rotundity of Orlicz spaces*, Nature J. 9 (1986), 230 231 (in Chinese).
- [18] Y. Cui, L. Jie and R. Pluciennik, Local uniform nonsquareness in Cesaro sequence spaces, Comment. Math., 1997, 47-57.
- [19] Y. Cui, R. Pluciennik and T. Wang, *On property* (β) in Orlicz spaces, Arch. Math 69, 1997, 57 69.
- [20] Y. Cui, H. Hudzik and R. Pluciennik, *Banach Saks property in some Banach spaces*, Annales Polonici Mathematici, 1997, 193 201.
- [21] Y. Cui, H. Hudzik, M. Nowak and R. Pluciennik, *Some geometric property in Orlicz sequence spaces equipped with Orlicz norm*, J. Convex. Analysis (to appear).
- [22] M. Denker and R. Kombrink, On B-convex Orlicz spaces, in: Lecture Notes in Math. 79, Springer, 1970, 87-95.
- [23] D.V. Dulst and V.D. Valk, (KK)-property, normal structure and fixed point of non expansive mapping or Orlicz sequence spaces, Cand. J. Math. 38 (1986), 728-750.
- [24] A.S. Granero, property in Orlicz spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 421-431.
- [25] R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Cand.J. Math. 44 (1992), 505 - 515.
- [26] R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme and exposed point in Orlicz spaces, Cand. J. Math. Vol. 44(3), 1992, 505 515.
- [27] R. Grzaslewicz, H. Hudzik and W. Orlicz, Uniform non property in some normed sapces, Bull. Polish Acad. Sci. Math. 34 ((1986), 161-171.
- [28] H. Hudzik, Orlicz spaces without strongly extreme points and without H points, Canad. Math. Bull. 36 (1993), 173-177.
- [29] H. Hudzik and M. Wisla, On extreme points of Orlicz spaces with Orlicz norm, Collect. Math. 44 (1993), 135-146.
- [30] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J.

- Math. 10, 473 479, 1980.
- [31] A. Kaminska, *On uniform convexity of Orlicz spaces*, Indag. Math. A85 (1982), 27 36.
- [32] E. Kreyzig, Introductory Functional Analysis with Applications, New York, John Wiley & Sons, 1978.
- [33] T. Landes, Normal structure and weakly normal structure of Orlicz sequence spaces, Trans. Amer. Math. Soc. 285 (1984), 523 534.
- [34] B. L. Lin and Z. Shi, Denting points and drop properties, J.Math. Anal and appl. 201, 1996, 201-273.
- [35] B. Lao and X. Zhu, Extreme points of Orlicz spaces, J. Zhongshan Univ. 1983 (2), 97-103 (in Chinese).
- [36] Y. Li, Weakly uniform rotundity of sequence Orlicz spaces, Nature J. 9 (1986), 471- 472. (in Chinese)
- [37] Maddox, I.J., *Element of Functional Analysis*, Cambridge, Cambridge University, Press, 1978.
- [38] H. W. Milnes, Convexity of Orlicz spaces, Pacific J. Math. 7 (1957), 1451 1486.
- [39] Mursaleen, Infinite Matrices and Almost Convergent Sequence, SEA Bull. Math. Vol. 1 19, No.1 (1995) 45-48.
- [40] R. Pluciennik, T. Wang and Y. Zhang, *H-points and denting points in Orlicz z spaces*, Comment. Math. Prace Mat. 33, 135-151, 1993.
- [41] R. Pluciennik, T. Wang and Y. Zhang, H-point and denting points in Orlicz spaces of vector valued functions, Fasc. Math. 13 (1981), 5-13.
- [42] S. Rolewicz, On drop property, Stusia Math. 85, 27-35 (1987).
- [43] S. Rolewicz, On Δ-uniform convexity and drop property, Studia Math. 87, 181-191, [44] W. Ruckle, Sequence Spaces, Boston, Pitman, 1980
- [45] Z. Shi, *K-uniform rotundity of Orlicz spaces*, J Heilongjiang Univ. Natur. Sci. 4 (2) (1987), 41 44 (in Chinese).
- [46] S. M. Sirajudeen, Indian. J. Pure. Appl. Math (9) 12,1981.
- [47] S. M. Sirajudeen and D. Somasundaram, Indian. J. Pure. Appl. Math (2) 14, 1983
- [48] S. Suantai, Matrix transformations on some vector-valued sequence spaces,

 Comment. Math. (To appear in Indian Journal of Pure and Applied Math.)

- [49] S. Suantai, Matrix transformations of some vector-valued sequence spaces, Proceeding of international conference in Function Spaces V, Adam Mickywicz university, Poznan, Poland, August 26 - September 3, 1988.
- [50] S. Suantai, On Matrix transformations related to Nakano vector-valued sequence spaces, Bull. Cal. Math. Soc. (to appear)
- [51] S. Suantai, On Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math. (to appear)
- [52] K. Sundaresan, *Uniformly non-square Orlicz spaces*, Nieuw. Arch. Wisk. 14, 1966, 31-39.
- [53] K. Sundaresan, Orlicz spaces isomorphic to strictly convex spaces, Proc. Amer. Math. Soc. 17 (1966), 1353-1356.
- [54] L. Tao, Rotundity of sequence Orlicz spaces, Natur. Sci. J. Harbin NormalUniv. 2(1) (1986), 11-15 (in Chinese).
- [55] L. Tao, Smoothness of Orlicz sequence spaces, ibid. 4(1) (1988), 13 18 (in Chinese).
- [56] B. Wang and Y. Zhang, The smooth point of Orlicz sequence spaces, Natur. Sci.J. Harbin Normal Univ. 7(3) (1991), 18 22 (in Chinese)
- [57] T. Wang, *Property* (G) and (K) of Orlicz spaces, Comment. Math. Univ. Carolin. 31 (1990), 307-313.
- [58] T. Wang, Uniformly convex condition of sequence Orlicz spaces, J. Harbin Univ. Sci. Tech. 7(2) (1983), 1-8(in Chinese)
- [59] T. Wang and S. Chen, *K-rotundity of Orlicz spaces*, Natur. Sci.J. Harbin Normal Univ. 1(4) (1985),11-15 (in Chinese)
- [60] T. Wang and S. Chen, K-rotundity of sequence Orlicz spaces, Canad. Math. Bull. 34 (1991), 128-135.
- [61] T. Wang and Z. Shi, Criteria for KUC, NUC and UKK of Orlicz spaces, Northeast.Math.J. 3(1987), 160-172 (in Chinese).
- [62] T. Wang and Z. Shi, URED of sequence Orlicz spaces, Acta Sci.Math. (Szeged), to appear.
- [63] T. Wang, Z. Shi and Y. Cui, Uniform rotundity in every direction of Orlicz spaces,

- Comment.Math., to appear
- [64] T. Wang, Z. Shi and Y. Li, On uniformly nonsquare points and nonsquare points of Orlicz spaces, Comment.Math.Univ. Carolin. 33 (1992), 477-484
- [65] T. Wang and B. Wang, Normal structure, sum-property and LD property of sequence Orlicz spaces, J. Math. Res. Exposition, to appear.
- [66] T. Wang and B. Wang, The (weakly) normal structure and LD property of Orlicz sequence spaces, J. Math. (Wuhan) 14 (1994), 339-345 (in Chinese).
- [67] T. Wang, Y. Wang and Y. Li, Weakly uniform convexity of Orlicz spaces, J. Math. (Wuhan) 6 (1986), 209-214 (in Chinese).
- [68] T. Wang, Y. Wu and Zhang, W-uniform rotundity of Orlicz apsace, J. Heilongjiang Univ.Natur.Sci. 9(1)(1992), 10-16 (in Chinese).
- [69] Y. Wang, *Uniform non-squareness and flatness in Orlicz spaces*, J. Math.Res. Exposition 4 (1984) (in Chinese).
- [70] Y. Wang and S. Chen, *Non squareness, flatness and B-convexity of Orlicz spaces*, Comment.amth. 28 (1988), 159-169.
- [71] Z. Wang, Extreme points of sequence Orlicz spaces, J. Daging Oil Inst. 7(1) (1983), 112-121 (in Chinese).
- [72] A. Wilansky, "Summability through Functional Analysis" Lehigh University, North-Holland.
- [73] C. Wu and L. Liu, Matrix Transformations on Some Vector-Valued Sequence Spaces, SEA. Bull. Math. Vol.17, No.1 (1993), 83-96
- [74] C. Wu and S. Chen, Extreme points and rotundity of Musielak-Orlicz spaces, Northeast. Math. J. 2(1986), 138-149.
- [75] C. Wu and S. Chen, Extreme point and rotundity of sequence Musielak-Orlicz spaces, J. Math. Res. Exposition 8(1988), 195-200.
- [76] C. Wu, S. Chen and Y. Wang, *H property of sequence Orlicz spaces*, J. Harbin Inst.Tech. Math. issue 1985, 6-11(in Chinese).
- [77] C. Wu, S. Chen and Y. Wang, Geometric characterization of reflexivity and flatness of sequence Orlicz spaces, Northeast. Math.J. 2(1986), 49 - 57 (in Chinese).
- [78] C. Wu and H. Sun, On the λ -property of Orlicz spaces L_M , Comment. Math.

- Univ. Carolin. 31 (1991), 731-741.
- [79] C. Wu and H. Sun, Norm calculation and complex convexity of Musielak-Orlicz sequence spaces, Chinese Ann. Math. 12A (1991), suppl., 98-102 (in Chinese).
- [80] C. Wu and H. Sun, On complex extreme points and complex convexity of Musielak- Orlicz spaces, J. Systems Sci. Math. Sci. 7(1) (1987),7 -13 (in Chinese).
- [81] C. Wu, S. Zhao and J. Chen, On calculation of Orlicz norm and rotundity of Orlicz spaces, J. Harbin Inst. 10(2) 1978, 1 -12 (in Chinease).

บทที่ 2

สมบัติเรขาคณิตบางประการของปริภูมิลำดับบานาค (Some Geometric Properties of Banach Sequence Spaces)

ในบทนี้เป็นการศึกษาสมบัติเรขาคณิตของบางลำดับปริภูมิบานาค ในงานวิจัยนี้เรา นิยามปริกูมิลำดับใหม่ขึ้นมา 3 ปริภูมิลำดับคือ ces(p), ces_M และ $\ell(\Delta,p)$ เมื่อ $p=(p_k)$ เป็นลำดับที่มีขอบเขตของจำนวนจริง และ $M=(M_k)$ เป็นฟังก์ชันมูสิลักซ์ ปริภูมิ ces(p) และ ces_M เป็นปริภูมิที่วางนัยทั่วไปของปริภูมิลำดับเซซาโร เราศึกษาปริภูมิเหล่านี้ภายใต้ นอร์มลักเซมเบิกร์ก และได้แสดงว่าปริภูมิ ces(p) และ $\ell(\Delta,p)$ มีสมบัติ (H) เมื่อ $p_k \ge 1$ สำหรับทุก $k \in N$ และปริภูมิ ces(p) เป็นปริภูมิ LUR ถ้า $p_k > 1$ สำหรับทุก $k \in N$ ผล ต่างๆเหล่านี้คลุมผลงานของนักคณิตศาสตร์หลายท่าน นอกจากนี้เรายังได้แสดงว่าปริภูมิ $\ell(\Delta,p)$ เป็น rotund ก็ต่อเมื่อ $p_k > 1$ สำหรับทุก $k \in N$ สำหรับการศึกษาสมบัติเรขาคณิต ในปริภูมิ ces_M นั้นเราได้พบว่าปริภูมิ ces_M เป็นปริภูมิ (UKK) เมื่อ M สอดคล้องเงื่อนไข δ_2 และเงื่อนไข (*) นอกจากนี้เรายังได้ศึกษาสมบัติเรขาคณิตอีกหลายชนิดบนปริภูมิลำดับ ออร์ลิคซ์ด้วย

SOME GEOMETRIC PROPERTIES IN ORLICZ SEQUENCE SPACE OF BOCHNER TYPE

1. INTRODUCTION

The concept of Orlicz space was introduced by W.Orlicz early in 1932, however it was not until the last ten years that the theory of geometry of Orlicz space was developed extensively. A much richer field of examples is obtained by considering Orlicz sequence space. In 1986, S.Chen, C.Wui, T.Wang, and Y.Wang, published a book, Theory of geometry of Orlicz spaces (in Chinese), which collected the main results on geometry of Orlicz spaces as well as some applications obtained by that time, that was made great advances in the very short time and, at the same time, many geometric properties have been discuss more precisely, to the local behavior, to the pointwiseness. Moreover, since the book was published many open ploblems have been solved.

Chen and Wang[3] have studied \mathbf{H} -property of Orlicz space. Cui, Hudzik and Meng[4] have studied some local geometry of Orlicz sequence space equipped with Luxemburg norm. Huff[7] has studied Banach space which are nearly uniform convex and proved that $(\mathbf{UKK}) \Rightarrow (\mathbf{H})$, $(\mathbf{NUC}) \Leftrightarrow (\mathbf{UKK}) + reflexive$. Turett[15] has studied rotundity of Orlicz spaces.

The aim of this research is to generalize some geometric properties of Orlicz sequence space ℓ_M to the Orlicz sequence space of Bochner tpye $\ell_M(X)$, where X is a Banach space, and give characterizations of the Orlicz sequence space of Bocher tpye $\ell_M(X)$ to have the property (R), (H), (UKK), (LUR), (CLUR) and (WCLUR). Furtheremore, we also give some relationship between those properties in this space.

2. PRELIMINARIES

In this section, we give some definitions, notation and some known results needed for the later section.

Throughout this research, we let \mathbb{N} stand for the set of all positive integers. The field of real and complex numbers are denoted by \mathbb{R} and \mathbb{C} respectively. The symbol \mathbb{F} stands for \mathbb{R} or \mathbb{C} , and \mathbb{R}_+ is denoted by the set of all positive real numbers. The elements of \mathbb{F} are called scalars.

2.1 Metric Space, Normed Space and Banach space.

Definition 2.1.1. A metric space is a pair (X,d), where X is a set and d a metric on X, that is $d: X \times X \to \mathbb{R}$ is a function such that the following three conditions are satisfied by all x, y and z in X:

- (1) $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y.
- (2) d(x,y) = d(y,x).
- (3) $d(x, z) \le d(x, y) + d(y, z)$ (the triangle inequality).

Definition 2.1.2. Let (X,d) be a metric space. A sequence (x_n) of members of X converge to $x \in X$ if $\lim_{n\to\infty} d(x_n,x) = 0$. When (x_n) converges to x, we write $\lim_{n\to\infty} x_n = x$ or $x_n \to x$.

Definition 2.1.3. A sequence (x_n) in a metric space is called a *Cauchy sequence* if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $d(x_m, x_n) < \epsilon$ for all $m, n \geq N$.

Definition 2.1.4. A metric space (X, d) is said to be *complete* if every Cauchy sequence in X converges.

Definition 2.1.5. Let X be a linear space (or a vector space). A *norm* on X is a real-valued function $\|\cdot\|$ on X such that the following conditions are satisfied by all members x and y of X and each scalar α :

(1) $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0.

- (2) $\|\alpha x\| = |\alpha| \|x\|$.
- (3) $||x+y|| \le ||x|| + ||y||$ (the triangle inequality).

The ordered pair $(X, \|\cdot\|)$ is called a *normed space*. When there is no danger of confusion, it is customary to use the same symbol, such as X, to denote the normed space.

Definition 2.1.6. Let X be a normed space. The metric induced by the norm of X is the metric d on X defined by the formular d(x,y) = ||x-y||.

Definition 2.1.7. Let x be a normed space. The closed unit ball of X is $\{x : x \in X, ||x|| \le 1\}$ and is denoted by B(X). The unit sphere of X is $\{x : x \in X, ||x|| = 1\}$ and is denoted by S(X).

Definition 2.1.8. A *Banach space* is a normed linear space which is complete under the metric induced by norm.

2.2 Linear Operator, Strong and Weak convergence

Definition 2.2.1. Let X and Y be normed spaces. Let $T: X \to Y$, if $T(\alpha x + \beta y) = \alpha Tx + \beta Ty$ for all $\alpha, \beta \in \mathbb{F}$ and $x, y \in X$, we say T is a linear operator or linear transformation from X to Y. When $Y = \mathbb{F}$, we say that T is a linear functional on X.

Definition 2.2.2. A linear operator $T: X \to Y$ is bounded if there exists $M \ge 0$ such that $||Tx|| \le M||x||$ for all $x \in X$. The operator norm for a bounded linear operator T is defined as $||T|| = \sup_{0 \ne x \in X} \frac{||Tx||}{||x||}$.

Theorem 2.2.3. A linear operator is bounded if and only if it is continuous. Proof See [11].

Definition 2.2.4. Let X be a normed space. Then the set of all bounded linear functional on X constitutes a normed linear space with normed defined by

$$||T|| = \sup_{0 \neq x \in X} \frac{||Tx||}{||x||}$$

which is called the *dual space of* X and it denoted by X'.

Definition 2.2.5. A sequence (x_n) in a normed space X is said to be *strongly convergent* (or *convergent in norm*) if there is an $x \in X$ such that $\lim_{n \to \infty} x_n = x$ (or $x_n \to x$).

Definition 2.2.6. A sequence (x_n) in a normed space X is said to be weakly convergent if there is an $x \in X$ such that for every $T \in X'$, $\lim_{n \to \infty} Tx_n = Tx$ (or $x_n \to x$, weakly).

2.3 Convex Functions and Orlicz Functions.

Definition 2.3.1. A continuous function $M: \mathbb{R} \to \mathbb{R}$ is called *convex* if

$$M\left(\frac{u+v}{2}\right) \le \frac{M(u)+M(v)}{2} \tag{2.1}$$

for all $u, v \in \mathbb{R}$. If, in addition, the two sides of (2.1) are not equal for all $u \neq v$, then we call M strictly convex.

Proposition 2.3.2. Let $M: \mathbb{R} \to \mathbb{R}$ be a continuous function. The following are equivalent:

- (1) M is convex.
- (2) There exists affine functions $L_n(u) = a_n u + b_n$ such that $M(u) = \sup_{n \in \mathbb{N}} L_n(u)$.
- (3) For any $u, v \in \mathbb{R}$ and $\alpha \in [0, 1]$,

$$M(\alpha u + (1 - \alpha)v) \le \alpha M(u) + (1 - \alpha)M(v). \tag{2.2}$$

(4) For any $u_1, u_2, ..., u_n \in \mathbb{R}$ and $\alpha_i \geq 0$ with $\sum_{i=1}^n \alpha_i = 1$

$$M\left(\sum_{i=1}^{n} \alpha_i u_i\right) \leq \sum_{i=1}^{n} \alpha_i M(u_i)$$

Proof. See [9].

Definition 2.3.3. A continuous function $M : \mathbb{R} \to \mathbb{R}$ is called an *Orlicz function* if it has the following properties:

(1) M is even, continuous, convex and M(0) = 0.

- (2) M(u) > 0 for all $u \neq 0$.
- (3) $\lim_{u\to 0} \frac{M(u)}{u} = 0$ and $\lim_{u\to \infty} \frac{M(u)}{u} = \infty$.

In addition, an Orlicz function N is called a *complementary function* of an Orlicz function M if

$$N(v) := \sup\{|v|u - M(u) : u \ge 0\}.$$

Definition 2.3.4. Let M be an Orlicz function. An interval [a, b] is called a *structural* affine interval of M, or simply, SAI of M, is affine on [a, b] and it is not affine on either $[a - \epsilon, b]$ or $[a, b + \epsilon]$ for any $\epsilon > 0$. Let $\{[a_i, b_i]\}_i$ be all the SAIs of M. We call

$$S_M = \mathbb{R} \backslash [\mathop{\cup}_i (a_i, b_i)]$$

the set of strictly convex points of M.

It is well known that (see [2]) if $u, v \in \mathbb{R}, \alpha \in (0,1)$ and $\alpha u + (1-\alpha)v \in S_M$, then

$$M(\alpha u + (1 - \alpha)v) < \alpha M(u) + (1 - \alpha)M(v).$$

2.4 Convex Modular and Orlicz Vector-valued Sequence Spaces.

Definition 2.4.1 A sequence space is a vector space whose members are sequence under the usual addition and usual scalar multiplication.

Definition 2.4.2 For a real (or complex) vector space X, a function $f: X \to \mathbb{R}_+$ is a modular if the following properties are satisfied:

- (1) f(x) = 0 if and only if x = 0.
- (2) $f(\alpha x) = f(x)$ for all $\alpha \in \mathbb{F}$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) with $|\alpha| = 1$.
- (3) $f(\alpha x + \beta y) \le f(x) + f(y)$ for all $\alpha, \beta \in \mathbb{R}_+$, such that $\alpha + \beta = 1$.

If the property (3) is replaced by:

(3') $f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y)$ for all $\alpha, \beta \in \mathbb{R}_+$, such that $\alpha + \beta = 1$, then we say that f is a convex modular.

Definition 2.4.3. Let X be a Banach space. Denote X^o the space of all sequence in X. For $x \in X^o$, we denote x(i) the i^{th} term of x.

For a given Orlicz function M, we define $\varrho_M: X^o \to [0, \infty]$ by the formular

$$\varrho_{\scriptscriptstyle M}(x) = \sum_{i=1}^{\infty} M(\|x(i)\|).$$

We shall show in Chapter 3 that ϱ_M is a convex modular.

The Orlicz vector-valued sequence space $\ell_M(X)$ and its subspace $h_M(X)$ are defined as follows:

$$\ell_M(X) := \{ x \in X^o : \varrho_{\scriptscriptstyle M}(cx) < \infty \text{ for some } c > 0 \}$$

$$h_M(X) := \{ x \in \ell_M(X) : \varrho_{\scriptscriptstyle M}(cx) < \infty \text{ for all } c > 0 \}$$

We consider $\ell_M(X)$ equipped with the so-called Luxemburg norm

$$||x||_{M} = \inf\{\lambda > 0 : \varrho_{M}(x/\lambda) \le 1\}$$

under which we can show in Chapter 3 that $(\ell_M(X), \|\cdot\|_M)$ is a Banach space. We call $(\ell_M(X), \|\cdot\|_M)$ the Orlicz vector-valued sequence space generated by the Orlicz function M and we will denote $\ell'_M(X)$ for the dual space of $\ell_M(X)$.

Recall that for an Orlicz function M, if $X = \mathbb{R}$ we denote $\ell_M(X)$ by ℓ_M it is known as an Orlicz sequence space and ϱ_M is a convex modular.

Definition 2.4.4. An Orlicz function M is said to be satisfies the δ_2 - condition $(M \in \delta_2 \text{ for short })$ if ther exists constant $K \geq 2$, $u_0 > 0$ such that

$$M(2u) \leq KM(u)$$

holds for every $u \in \mathbb{R}$ satisfying $|u| \leq u_0$.

Theorem 2.4.5. The following are equivalent:

- (1) $M \in \delta_2$.
- (2) There exist l > 1, $u_0 > 0$, and K > 1 such that

$$M(lu) \le KM(u) \quad (u < u_0)$$

(3) For any $l_1 > 1$ and $u_1 > 0$, there exists K' > 0 such that the inequality in (2) holds for $l = l_1$, $u_0 = u_1$ and K = K'.

(4) For any $l_2 > 1$ and $u_2 > 0$ there exists $\epsilon \in (0,1)$ such that

$$M((1+\epsilon)u) \le l_2 M(u) \qquad (u < u_2)$$

Proof. See [2].

For the dual space $\ell'_M(X)$ of $\ell_M(X)$, we say that $\varphi \in \ell'_M(X)$ is a singular functional if $\varphi(h_M(X)) = 0$.

Theorem 2.4.6. Any $f \in \ell'_M(X)$ has a unique decomposition

$$f = \upsilon + \varphi$$

where v and φ are respectively the regular and singular parts of f.

Proof. See
$$[1]$$
.

Before ending this section, we introduce the relation between the distance from $x \in \ell_M(X)$ to $h_M(X)$:

$$\theta(x) = \inf\{\lambda > 0 : \varrho_{M}(u/\lambda) < \infty\}$$

Note that $h_M(X) = \{x \in X^o | \theta(x) = 0\}$. For $x \in \ell_M(X)$ the next theorem show that $d(x, h_M(x)) = \theta(x)$.

Theorem 2.4.7. For any $x \in \ell_M(X)$, we have $d(x) = \theta(x)$, where

$$d(x) = \inf\{ ||x - u||_{M} : u \in h_{M}(X) \}$$

2.5 Some Geometric Properties of Banach Spaces.

In this section we introduce the definitions and notation concerning geometric properties of Banach spaces and give some known results that will be used in the later chapter. **Definition 2.5.1.** For a Banach space X. A point $x \in B(X)$ is called an *extreme point* of B(X) if 2x = y + z and $y, z \in B(X)$ imply y = z. The set of all extreme points of B(X) is denoted by $\mathbf{Ext}\ B(X)$. If $\mathbf{Ext}\ B(X) = S(X)$, then X is called a *rotund* (\mathbf{R}) space.

Definition 2.5.2. For a Banach space X, if for any $x_n, y_n \in B(X), ||x_n + y_n|| \to 2$ implies $||x_n - y_n|| \to 0$, then X is called a *uniformly rotund* (UR) space.

Definition 2.5.3. For a Banach space X, if $x_n, y_n \in B(X)$ and $||x_n + y_n|| \to 2$ imply $x_n - y_n \to 0$ weakly, then X is called a weakly uniformly rotund (WUR) space.

Definition 2.5.4. For a Banach space X, if for each $x \in S(X)$ and each sequence (x_n) in S(X) such that $\lim_{n\to\infty} ||x_n+x|| = 2$, there holds $\lim_{n\to\infty} ||x_n-x|| = 0$, then X is called a locally uniformly rotund (LUR) space.

Definition 2.5.5. For a Banach space X, if for each $x \in S(X)$ and each sequence (x_n) in S(X) such that $\lim_{n\to\infty} ||x_n+x|| = 2$ imply $x_n\to x$ weakly, then X is called a weakly locally uniformly rotund (WLUR) space.

Theorem 2.5.6. Every uniformly rotund normed space is locally uniformly rotund, and every locally uniformly rotund is rotund. In symbols,

$UR \Rightarrow LUR \Rightarrow R$.

Proof. See [11]. □

Definition 2.5.7. For a Banach space X, if for each $x \in S(X)$ and each sequence (x_n) in S(X) such that $\lim_{n\to\infty} ||x_n+x|| \to 2$, there holds (x_n) is compact in S(X), then X is called a *compactly locally uniformly rotund* (CLUR) space.

Definition 2.5.8. For a Banach space X, if for each $x \in S(X)$ and each sequence (x_n) in S(X) with $\lim_{n\to\infty} ||x_n+x|| \to 2$, there are $x' \in S(X)$ and a subsequence $\{x'_n\}$ of (x_n)

in such	that	x'_n	\rightarrow	x'	weakly,	then	X	is	called	\mathbf{a}	weakly	compactly	locally	uniformly
rotund	$(\mathbf{WC}$	LUI	R)	spa	ace.									

Theorem 2.5.9. Banach space X is LUR if and only if X is CLUR and R. Proof. See [13].

Definition 2.5.10. A Banach space X is said to have $property(\mathbf{H})$ (or the Kadec-Klee property) if every weakly convergent sequence on the unit sphere S(X) is convergent in norm.

Definition 2.5.11. A Banach space X is said to have uniform Kadec-Klee property (written UKK) if for any $\epsilon > 0$, there exists $\delta > 0$ such that $x_n \in S(X)$, $x_n \to x$ weakly, and $||x_n - x_m|| \ge \epsilon$ $(n \ne m)$ imply $||x|| \le 1 - \delta$.

Theorem 2.5.12. Every UKK Banach space has property(H).

Proof. See [7]. □

3. MAIN RESULTS

This chapter is divided into two sections. The first section concerning rotundity of Orlicz vector-valued sequence space and the other section study about several geometric properties which are related to rotundity of Orlicz vector-valued sequence space, such as property(H), (UKK), (CLUR), (WCLUR).

3.1 Rotundity of Orlicz Vector - valued Sequence Space

In this section, characterizations of rotundity of Orlicz vector-valued sequence space equipped with the Luxemburg norm. At first, we begin with giving some important properties of the modular $\varrho_{\scriptscriptstyle M}$ and the Luxemburg norm defined by $\varrho_{\scriptscriptstyle M}$. In the first proposition we show that $\varrho_{\scriptscriptstyle M}$ is a convex modular on $\ell_{\scriptscriptstyle M}(X)$.

Proposition 3.1.1. $\varrho_{\scriptscriptstyle M}$ is a convex modular.

Proof. Let $x, y \in X^o$ by definition of ϱ_M we have that

(i)
$$\varrho_M(x) = 0 \Leftrightarrow \sum_{i=1}^{\infty} M(\|x(i)\|) = 0$$

 $\Leftrightarrow M(\|x(i)\|) = 0$ for all i
 $\Leftrightarrow \|x(i)\| = 0$ for all i
 $\Leftrightarrow x = 0$

(ii) For
$$\alpha \in \mathbb{F}(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C})$$
 and $|\alpha| = 1$ we have
$$\varrho_{M}(\alpha x) = \sum_{i=1}^{\infty} M(\|\alpha x(i)\|)$$
$$= \sum_{i=1}^{\infty} M(\|\alpha\|\|x(i)\|)$$
$$= \sum_{i=1}^{\infty} M(\|x(i)\|)$$
$$= \varrho_{M}(x)$$

$$(iii) \quad \text{For } \alpha, \beta \in \mathbb{R}_+, \ \alpha + \beta = 1 \quad \text{we have}$$

$$\varrho_M(\alpha x + \beta y) = \sum_{i=1}^\infty M(\|\alpha x(i) + \beta y(i)\|)$$

$$\leq \sum_{i=1}^\infty M(\|\alpha x(i)\| + \|\beta y(i)\|)$$

$$= \sum_{i=1}^\infty M(\alpha \|x(i)\| + \beta \|y(i)\|)$$

$$\leq \sum_{i=1}^\infty \alpha M(\|x(i)\|) + \sum_{i=1}^\infty \beta M(\|y(i)\|)$$

$$= \alpha \sum_{i=1}^\infty M(\|x(i)\|) + \beta \sum_{i=1}^\infty M(\|y(i)\|)$$

from above we conclude that $\varrho_{\scriptscriptstyle M}$ is a convex modular.

The next proposition we give some important relationship between the modular ϱ_M and the Luxemburg norm.

 $=\alpha \rho_{M}(x)+\beta \rho_{M}(y)$

Proposition 3.1.2. Let $x \in X^o$. Then

- (1) For $\alpha \geq 1$, $\varrho_M(\alpha x) \geq \alpha \varrho_M(x)$.
- (2) For $0 < \alpha < 1$, $\varrho_M(\alpha x) \le \alpha \varrho_M(x)$.
- $(3) ||x||_{\scriptscriptstyle M} \leq 1 \Rightarrow \varrho_{\scriptscriptstyle M}(x) \leq ||x||_{\scriptscriptstyle M}.$
- (4) $||x||_{M} > 1 \Rightarrow \varrho_{M}(x) > ||x||_{M}$.

Proof. (1) and (2) are immediately obtained from the following facts:

- (1) $\alpha \ge 1 \Rightarrow M(\alpha x) \ge \alpha M(x)$.
- (2) $0 < \alpha < 1 \Rightarrow M(\alpha x) \le \alpha M(x)$.

(These two properties hold by the convexity of M)

(3) For any $x \in \ell_M(X)$, without loss of generality we may assume that $x \neq 0$. By definition of $\|\cdot\|_M$ there exists $\lambda_n \downarrow \|x\|_M$ such that $\varrho_M(x/\lambda_n) \leq 1$. Then $\sum_{i=1}^{\infty} M(\frac{\|x(i)\|}{\lambda_n}) \leq 1$ for all $n \in \mathbb{N}$. Thus, for $m \in \mathbb{N}$ we have $\sum_{i=1}^m M(\frac{\|x(i)\|}{\lambda_n}) \leq 1$. By taking $n \to \infty$ we get that $\sum_{i=1}^m M(\frac{\|x(i)\|}{\|x\|_M}) \leq 1$. By taking $m \to \infty$, we obtain that $\sum_{i=1}^{\infty} M(\frac{\|x(i)\|}{\|x\|_M}) \leq 1$, hence $\varrho_M(\frac{x}{\|x\|_M}) \leq 1$.

Thus by (1) we have

$$1 \ge \varrho_{\scriptscriptstyle M}(\frac{x}{\|x\|_{\scriptscriptstyle M}}) \ge \frac{1}{\|x\|_{\scriptscriptstyle M}} \varrho_{\scriptscriptstyle M}(x)$$

which yields $||x||_{M} \geq \varrho_{M}(x)$.

(4) If $||x||_{M} > 1$ then for all small $\epsilon > 0$ and by (2) we have

$$1 < \varrho_{\scriptscriptstyle M} \left(\frac{x}{(1 - \epsilon) \|x\|_{\scriptscriptstyle M}} \right) \leq \frac{1}{(1 - \epsilon) \|x\|_{\scriptscriptstyle M}} \varrho_{\scriptscriptstyle M}(x),$$

which implies that $(1-\epsilon)\|x\|_{M} < \varrho_{M}(x)$. Letting $\epsilon \to 0$ we have $\|x\|_{M} < \varrho_{M}(x)$.

Theorem 3.1.3. $(\ell_M(X), ||\cdot||_M)$ is a Banach space.

Proof. Let $(x_n) = (x_n(i))$ be a Cauchy sequence in $\ell_M(X)$. Then for $\epsilon \in (0,1)$ we can choose $N \in \mathbb{N}$ for all m, n > N such that $||x_n - x_m||_M < M(\epsilon)$ so we have by Proposition 3.1.2(3) that

$$\varrho_M(x_n - x_m) < M(\epsilon).$$

That is

$$\sum_{i=1}^{\infty} M(\|x_n(i) - x_m(i)\|) < M(\epsilon)$$

for all m, n > N.

So for each i, $M(||x_n(i) - x_m(i)||) < M(\epsilon)$ for all m, n > N.

Since M is convex, M is 1-1 on $[0, \infty]$, hence there exists the inverse function M^{-1} on $[0, \infty]$, so it follows that

$$||x_n(i) - x_m(i)|| < \epsilon$$

for all $m, n \geq N$

Thus for each $i \in \mathbb{N}$ we have $||x_n(i) - x_m(i)|| < \epsilon$ for all $m, n \geq N$. That is $(x_n(i))_{n=1}^{\infty}$ is a Cauchy sequence in X. Consequently, since X is a Banach space, there is $x(i) \in X$ such that

$$x_n(i) \to x(i)$$
 as $n \to \infty$.

Since for all m, n > N we have $||x_n - x_m||_{_M} < \epsilon$ that is

$$\sum_{i=1}^{\infty} M\left(\frac{\|x_n(i) - x_m(i)\|}{\epsilon}\right) \le 1$$

for all $m, n \geq N$.

Letting $m \to \infty$ we obtain

$$\varrho_{M}\left(\frac{x_{n}-x}{\epsilon}\right) = \sum_{i=1}^{\infty} M\left(\frac{\|x_{n}(i)-x(i)\|}{\epsilon}\right) \le 1 \tag{*}$$

Putting x = (x(1), x(2), ...)

So from (*) we have that $x_n - x \in \ell_M(X)$ for all $n \geq N$, and since $\ell_M(X)$ is linear space we find that $x = (x - x_N) + x_N \in \ell_M(X)$.

And it follows from (*) that $||x_n - x||_M \le \epsilon$ for all $n \ge N$, that is, $x_n \to x$ as $n \to \infty$, this means that $(\ell_M(X), ||\cdot||_M)$ is a Banach space.

Theorem 3.1.4. An Orlicz function M satisfy δ_2 -condition if and only if $\ell_M(X) = h_M(X)$.

Proof. Suppose that $M \in \delta_2$. Let $\lambda > 0$ and $x \in \ell_M(X)$. Then there exists a $\lambda_o > 0$ such that $\varrho_M(\lambda_o x) < \infty$. If $\lambda \leq \lambda_o$ we have that $\varrho_M(\lambda x) \leq \varrho_M(\lambda_o x) < \infty$. If $\lambda > \lambda_o$, then $\frac{\lambda}{\lambda_o} > 1$. Since $M \in \delta_2$, it follows by Theorem 2.4.5(3) that there exist $u_o > 0$ and K > 0 such that

$$M(\frac{\lambda}{\lambda_o}u) \le KM(u)$$
 $(u \le u_o)$ (*)

Since $\sum_{i=1}^{\infty} M(\lambda_o \|x(i)\|) < \infty$, then there is $i_o \in \mathbb{N}$ such that

$$\lambda_o ||x(i)|| < u_o$$
 for all $i \ge i_o$ (**)

By (*) and (**) we have

$$\begin{split} \varrho_{M}(\lambda x) &= \sum_{i=1}^{i_{o}} M(\lambda \| x(i) \|) + \sum_{i=i_{o}+1}^{\infty} M(\lambda \| x(i) \|) \\ &= \sum_{i=1}^{i_{o}} M(\lambda \| x(i) \|) + \sum_{i=i_{o}+1}^{\infty} M(\frac{\lambda_{o}}{\lambda_{o}}(\lambda \| x(i) \|)) \\ &\leq \sum_{i=1}^{i_{o}} M(\lambda \| x(i) \|) + K \sum_{i=i_{o}+1}^{\infty} M(\lambda_{o} \| x(i) \|) < \infty \end{split}$$

Thus $\varrho_{\scriptscriptstyle M}(\lambda x)<\infty$, so that $x\in h_{\scriptscriptstyle M}(X).$ Hence $\ell_{\scriptscriptstyle M}(X)=h_{\scriptscriptstyle M}(X).$

If $M \notin \Delta_2$, then by Theorem 2.4.5(2), there exists $\alpha_k \downarrow 0$ such that $M(\alpha_k) < \frac{1}{2^{k+1}}$ and $M(v\alpha_k) > 2^{k+1}M(\alpha_k)$ where v > 1 and $k \in \mathbb{N}$. For each $k \in \mathbb{N}$ choose an integer m_k such that

$$\frac{1}{2^{k+1}} \le m_k M(\alpha_k) < \frac{1}{2^k}.$$

Put $x' \in S(X)$ and define

$$x = (\overbrace{\alpha_1 x', \alpha_1 x', ..., \alpha_1 x'}^{m_1 \ times}, \overbrace{\alpha_2 x', \alpha_2 x', ..., \alpha_2 x'}^{m_2 \ times}, ..., \overbrace{\alpha_k x', \alpha_k x', ..., \alpha_k x'}^{m_k \ times}, ...).$$

Observe that

$$\begin{split} \varrho_{M}(x) &= \sum_{i=1}^{m_{1}} M(\|\alpha_{1}x(i)\|) + \sum_{i=m_{1}+1}^{m_{1}+m_{2}} M(\|\alpha_{2}x(i)\|) + \sum_{i=m_{1}+m_{2}+1}^{m_{1}+m_{2}+m_{3}} M(\|\alpha_{3}x(i)\|) + \cdots \\ &+ \sum_{i=m_{1}+m_{2}+\cdots+m_{k}}^{m_{1}+m_{2}+\cdots+m_{k}} M(\|\alpha_{k}x(i)\|) + \cdots \\ &= m_{1}M(\alpha_{1}) + m_{2}M(\alpha_{2}) + \cdots + m_{k}M(\alpha_{k}) + \cdots \\ &= \sum_{k=1}^{\infty} m_{k}M(\alpha_{k}) \\ &< \sum_{k=1}^{\infty} \frac{1}{2^{k}} = 1. \end{split}$$

This show that $x \in \ell_M(X)$.

Now we consider for v > 1,

$$\varrho_{\scriptscriptstyle M}(vx) = \sum_{k=1}^{\infty} m_k M(v\alpha_k) > \sum_{k=1}^{\infty} m_k 2^{k+1} M(\alpha_k) \ge \sum_{k=1}^{\infty} 1 = \infty.$$

This mean that $x \notin h_M(X)$. Hence the theorem is proved.

Remark 3.1.5. For $x \in \ell_M(X)$, define |x| = (||x(1)||, ||x(2)||, ...) then $|x| \in \ell_M$ and we have $|||x|||_M = ||x||_M$ and $\varrho_M(x) = \varrho_M(|x|)$.

Proof. Obviously, $|x| \in \ell_M$. Now, observe that

$$\varrho_{\scriptscriptstyle M}(|x|) = \sum_{i=1}^{\infty} M(||x(i)||) = \varrho_{\scriptscriptstyle M}(x),$$

and

$$\begin{split} |||x|||_{_{M}} &= \inf\{\lambda > 0 \ : \ \varrho_{_{M}}(\frac{|x|}{\epsilon}) \le 1\} \\ &= \inf\{\lambda > 0 \ : \ \sum_{i=1}^{\infty} M(\frac{||x(i)||}{\epsilon}) \le 1\} \\ &= ||x||_{_{M}}. \end{split}$$

Theorem 3.1.6. The modular convergence and norm convergence are equivalent in $\ell_M(X)$ if and only if $M \in \delta_2$.

Proof. Necessity. If $M \notin \delta_2$, then as in the proof of Theorem 3.1.4, there exists x_n in $\ell_M(X)$ such that $\varrho_M(x_n) \to 0$ and $\varrho_M((1+\frac{1}{n})x_n) = \infty$. This implies that $||x_n||_M > \frac{1}{1+\frac{1}{n}}$ for all $n \in \mathbb{N}$, hence $||x_n||_M \not\to 0$.

Sufficiency. Let $M \in \delta_2$ and $\epsilon \in (0,1)$. Choose $u_0 = M^{-1}(\epsilon)$ and $L = 1/\epsilon$ then there exist $K \geq 1$ which

$$M(Lu) \le KM(u)$$
 $(u \le u_0)$

Since $\varrho_{M}(x_{n}) \to 0$ there exists $N \in \mathbb{N}$ such that $\varrho_{M}(x_{n}) < \frac{\epsilon}{K}$ for all $n \geq N$. Thus for $n \geq N$ we have

$$\varrho_{M}(\frac{x_{n}}{\epsilon}) = \sum_{i=1}^{\infty} M(\frac{\|x_{n}(i)\|}{\epsilon}) \leq K \sum_{i=1}^{\infty} M(\|x_{n}(i)\|) = K \varrho_{M}(x_{n}) < K \frac{\epsilon}{K} = \epsilon,$$

this implies that $||x_n||_M < \epsilon$ for all $n \geq N$, which we can deduce that $||x_n||_M \to 0$.

Lemma 3.1.7. Let $x, x_n \in \ell_M(X)$ then

- (1) $||x_n||_M \to \infty \Rightarrow \varrho_M(x_n) \to \infty$.
- (2) $\varrho_{M}(x) = 1 \Rightarrow ||x||_{M} = 1.$

If in addition, $M \in \delta_2$, then we have (3),(4) and the converse of (1),(2) are true;

(3) For any $\epsilon > 0$, there exists $\beta > 0$ such that

$$||x||_{M} \ge \epsilon \Rightarrow \varrho_{M}(x) \ge \beta.$$

(4) For any $\epsilon \in (0,1)$, there exists $\beta \in (0,1)$ such that

$$\varrho_{M}(x) \leq 1 - \epsilon \Rightarrow ||x||_{M} \leq 1 - \beta.$$

Proof. (1) For any $y \in \ell_M(X)$, we first note that if $\varrho_M(y) \leq K$, then $||y||_M \leq \max\{1,K\}$. Indeed, suppose $\varrho_M(y) \leq K$ we consider in two case

Case 1 if $0 < K \le 1$ it follows immediately that $\|y\|_{_M} \le 1$

Case 2 if K > 1 then by Proposition 3.1.2(2) we get $\varrho_M(y/K) \leq \frac{1}{K}\varrho_M(y) \leq 1$ this implies that $\|y\|_M \leq K$.

From above observation, we obtain (1). Conversely, suppose that $M \in \delta_2$ and L > 0. Since $M^{-1}(1) > 0$ we can choose $K \ge 1$ such that

$$M(Lu) \le KM(u) \qquad (u \le M^{-1}(1)) \tag{*}$$

If $y \in \ell_M(X)$ and $||y||_M \leq L$, then $\varrho_M(y/L) \leq 1$. It implies that $\frac{||y(i)||}{L} \leq M^{-1}(1)$ for all $i \in \mathbb{N}$. By (*), we have

$$\varrho_{_{M}}(y) = \sum_{i=1}^{\infty} M(\|y(i)\|) = \sum_{i=1}^{\infty} M(L\frac{\|y(i)\|}{L}) \le K \sum_{i=1}^{\infty} M(\frac{\|y(i)\|}{L}) \le K.$$

So for any L > 0 we obtain that there exist $K \ge 1$ such that

$$||y||_{M} \le L \Rightarrow \varrho_{M}(y) \le K$$
 (**)

The converse of (1) follows immediately from (**).

(2) Assume that $\varrho_{M}(x) = 1$. By definition of $\|\cdot\|_{M}$, we see that if $\|x\|_{M} < 1$ then Proposition 3.1.2(3) implies $\varrho_{M}(x) \leq \|x\|_{M} < 1$. This lead to a contradiction that $\varrho_{M}(x) = 1$, hence we conclude that $\|x\|_{M} = 1$.

Conversely, if $M \in \delta_2$ Theorem 3.1.4 ensures that $x \in \ell_M(X) = h_M(X)$. Since $||x||_M = 1$, we have $\varrho_M(x) \le 1$. For $\epsilon > 0$, we have $\varrho_M(\frac{x}{1-\epsilon}) \ge 1$. Since $\varrho_M(\frac{x}{t})$ is a continuous function of t, we have

$$1 \le \lim_{\epsilon \to 0} \varrho_{\scriptscriptstyle M}(\frac{x}{1-\epsilon}) = \varrho_{\scriptscriptstyle M}(x) \le 1.$$

This implies that $\varrho_{M}(x) = 1$.

(3) is an immediate consequence of Proposition 3.1.2(4) and Theorem 3.1.6.

(4) If (4) does not hold, then there exists $\epsilon > 0$ and $x_n \in \ell_M(X)$ such that $\varrho_M(x_n) < 1 - \epsilon$ and $\frac{1}{2} \le ||x_n||_M \uparrow 1$.

Since $2 \ge \frac{1}{\|x\|_M}$ implies that $1 \ge \frac{1}{\|x_n\|_M} - 1$. Put $a_n = \frac{1}{\|x_n\|_M} - 1$, so we have $a_n \downarrow 0$. By (1), we can let $L = \sup_n \{\varrho_M(2x_n)\} < \infty$. And then

$$1 = \varrho_M \left(\frac{x_n}{\|x_n\|_M} \right) = \varrho_M (2a_n x_n + (1 - a_n) x_n)$$

$$\leq a_n \varrho_M (2x_n) + (1 - a_n) \varrho_M (x_n)$$

$$\leq a_n L + (1 - \epsilon).$$

Since $a_n \to 0$, we obtain that $1 \le 1 - \epsilon$ which is a contradiction. Hence (4) holds. \square

Theorem 3.1.8. $x \in S(\ell_M(X))$ is an extreme point of $B(\ell_M(X))$ if and only if

- (i) $\varrho_{\scriptscriptstyle M}(x) = 1$
- (ii) for all $i \in \mathbb{N}$ which $x(i) \neq 0$ then $\frac{x(i)}{\|x(i)\|} \in \mathbf{Ext} B(X)$
- (iii) $\mu\{i: ||x(i)|| \in \mathbb{R} \setminus S_M\} \leq 1$.

Proof. Necessity. Suppose (i) does not hold, i.e, $\varrho_{M}(x) = c < 1$.

Since M is continuous we choose $\epsilon > 0$ so small such that

$$M(||x(1)|| + \epsilon) \le M(||x(1)||) + \frac{1-c}{2}.$$

By $\varrho_M(x) = \sum_{i=1}^{\infty} M(\|x(i)\|) < 1$, we have $\lim_{i \to \infty} M(\|x(i)\|) = 0$. This implies $\|x(i)\| \to 0$ as $i \to \infty$. So there exists $N \in \mathbb{N}$ for all $n \ge N$, $\|x(n)\| < \epsilon$.

Next, we select $x(n_0)$ for some $n_0 \ge N$ and defined $y = (y(i))_i$, $z = (z(i))_i$ by $y(1) = x(1) - x(n_0)$, $z(1) = x(1) + x(n_0)$ and y(i) = x(i) = z(i) for all $i \ge 2$. Then

2x = y + z and $y \neq z$. Then

$$\varrho_{M}(y) = M(\|x(1) - x(n_{0})\|) + \sum_{i=2}^{\infty} M(\|x(i)\|)
\leq M(\|x(1)\| + \|x(n_{0})\|) + \sum_{i=2}^{\infty} M(\|x(i)\|)
\leq M(\|x(1)\| + \epsilon) + \sum_{i=2}^{\infty} M(\|x(i)\|)
\leq M(\|x(1)\|) + \frac{1-c}{2} + \sum_{i=2}^{\infty} M(\|x(i)\|)
= \varrho_{M}(x) + \frac{1-c}{2}
= c + \frac{1-c}{2}
= \frac{c+1}{2} < 1$$

and similarly we can show that $\varrho_M(z) \leq 1$. Thus $y, z \in B(\ell_M(X))$ which contradicts with the fact that $x \in \text{Ext}B(\ell_M(X))$.

If (ii) is not true, then there exist $i_o \in \mathbb{N}$ and $u(i_o), v(i_o) \in B(X)$ with $u(i_o) \neq v(i_o)$. Define the sequence u' and v' by,

$$u'(i) = \begin{cases} ||x(i_o)||u(i_o) & ; i = i_o \\ x(i) & ; i \neq i_o, \end{cases}$$

and

$$v'(i) = \begin{cases} ||x(i_o)||v(i_o) & ; i = i_o \\ x(i) & ; i \neq i_o. \end{cases}$$

It is easy to see that $\varrho_M(u')$ and $\varrho_M(v') \leq 1$. That is $u', v' \in B(\ell_M(X))$ and 2x = u' + v', $u' \neq v'$ which contradicts our hypothesis that x is an extreme point.

Next, assume (iii) does not holds, without loss of generality we may assume that $||x(1)||, ||x(2)|| \in \mathbb{R}\backslash S_M$ i.e, ||x(1)||, ||x(2)|| belong to some affine intervals $(a_1, b_1), (a_2, b_2)$ of M respectively.

Let $M(u) = k_i u + \beta_i$, $u \in (a_i, b_i)$ (i = 1, 2). Select $\epsilon_1, \epsilon_2 > 0$ such that $k_1 \epsilon_1 ||x(1)|| = k_2 \epsilon_2 ||x(2)||$ and $(1 \pm \epsilon_i) ||x(i)|| \in (a_i, b_i)$ (i = 1, 2).

Define
$$y = (y(i))_i$$
, $z = (z(i))_i$ by

$$y(1) = (1 + \epsilon_1)x(1)$$
 $y(2) = (1 - \epsilon_2)x(2)$

$$z(1) = (1 - \epsilon_1)x(1)$$
 $z(2) = (1 + \epsilon_2)x(2)$

and y(i) = z(i) = x(i) for all i > 2. So

$$y(1) + z(1) = (1 + \epsilon_1)x(1) + (1 - \epsilon_1)x(1)$$

$$= x(1) + \epsilon_1 x(1) + x(1) - \epsilon_1 x(1)$$

$$= 2x(1)$$

$$y(2) + z(2) = (1 - \epsilon_2)x(2) + (1 + \epsilon_2)x(2)$$

$$= x(2) - \epsilon_2 x(2) + x(2) + \epsilon_2 x(2)$$

$$o = 2x(2)$$

and y(i) + z(i) = 2x(i) for all i > 2.

2x = y + z and $y \neq z$. Then

$$\begin{split} \varrho_{\scriptscriptstyle M}(y) &= M(\|y(1)\|) + M(\|y(2)\|) + \sum_{i=3}^{\infty} M(\|y(i)\|) \\ &= M(\|(1+\epsilon_1)x(1)\|) + M(\|(1-\epsilon_2)x(2)\|) + \sum_{i=3}^{\infty} M(\|x(i)\|) \\ &= k_1((1+\epsilon_1)\|x(1)\|) + \beta_1 + k_2((1-\epsilon_2)\|x(2)\|) + \beta_2 + \sum_{i=3}^{\infty} M(\|x(i)\|) \\ &= k_1\|x(1)\| + k_1\epsilon_1\|x(1)\| + \beta_1 + k_2\|x(2)\| - k_2\epsilon_2\|x(2)\| + \beta_2 + \sum_{i=3}^{\infty} M(\|x(i)\|) \\ &= k_1\|x(1)\| + \beta_1 + k_2\|x(2)\| + \beta_2 + \sum_{i=3}^{\infty} M(\|x(i)\|) \\ &= M(\|x(1)\|) + M(\|x(2)\|) + \sum_{i=3}^{\infty} M(\|x(i)\|) \\ &= \rho_{\scriptscriptstyle M}(x) \leq 1. \end{split}$$

In the same way, we can get $\varrho_M(z) \leq 1$, and therefore $y, z \in B(\ell_M(X))$ which contradicts the hypothesis $x \in \text{Ext}B(\ell_M(X))$.

Sufficiency. Let 2x = y + z, $y, z \in B(\ell_M(X))$. Since

$$1 = \varrho_{\scriptscriptstyle M}(x) = \varrho_{\scriptscriptstyle M}(\frac{y+z}{2}) \le \frac{1}{2} [\varrho_{\scriptscriptstyle M}(y) + \varrho_{\scriptscriptstyle M}(z)] \le 1,$$

we have

$$M(\frac{\|y(i)\| + \|z(i)\|}{2}) = \frac{1}{2}[M(\|y(i)\|) + M(\|z(i)\|)],$$

for all $i \in \mathbb{N}$. By (iii) there exists at most one $j \in \mathbb{N}$ such that $||x(j)|| \in \mathbb{R} \setminus S_M$. This give ||x(i)|| = ||y(i)|| = ||z(i)|| for all $i \neq j$. And since

$$1 = \sum_{i=1}^{\infty} M(\|x(i)\|) = \sum_{i=1}^{\infty} M(\|y(i)\|) = \sum_{i=1}^{\infty} M(\|z(i)\|),$$

we deduce ||x(j)|| = ||y(j)|| = ||z(j)||. Since 2(x(i)) = y(i) + z(i) it implies that $\frac{2x(i)}{||x(i)||} = \frac{y(i)}{||y(i)||} + \frac{z(i)}{||z(i)||}$ then we can obtain by (ii) that y = z. Hence, $x \in \text{Ext } B(\ell_M(X))$.

Theorem 3.1.9. $\ell_M(X)$ is rotund if and only if

- (1) $M \in \delta_2$
- (2) X is rotund and
- (3) M is strictly convex on $[0, M^{-1}(1/2)]$.

Proof. Necessity. If $M \notin \delta_2$, then as in the proof of Theorem 3.1.4 we can find $x \in \ell_M(X)$ such that $||x||_M = 1$ and $\varrho_M(x) < 1$, thus by (i) of Theorem 3.1.8 we have $x \notin \text{Ext } B(\ell_M(X))$.

(2) If (2) is not true, then there exist $x,y,z\in S(X)$ with 2x=y+z and $y\neq z$. Pick $u\in S(\ell_M(X))$, by (1) and Lemma 3.1.7(2) we have $1=\varrho_M(u)=\sum_{i=1}^\infty M(\|u(i)\|)$.

Define $x' = (x'(i))_i$, $y' = (y'(i))_i$, $z' = (z'(i))_i$ by

$$x'(i) = ||u(i)||x, y'(i) = ||u(i)||y \text{ and } z'(i) = ||u(i)||z$$

Then

$$\varrho_{\scriptscriptstyle M}(x') = \sum_{i=1}^{\infty} M(\|\|u(i)\|x\|) = \sum_{i=1}^{\infty} M(\|u(i)\|\|x\|) = \sum_{i=1}^{\infty} M(\|u(i)\|) = 1 < \infty,$$

and in the same way we can get $\varrho_M(y'), \varrho_M(z') = 1$. That is $x', y', z' \in S(\ell_M(X))$. Moreover, we can see that $2x' = y' + z', y' \neq z'$ which implies that x' is not an extreme point of $B(\ell_M(X))$, contradicting the rotundity of $\ell_M(X)$.

If (3) does not hold, then M is affine on some interval $[a,b] \subseteq [0,M^{-1}(1/2)]$. Since $b \leq M^{-1}(1/2)$. So $2M(b) \leq 1$, thus we can find $c \in (a,b)$ and d > 0 such that 2M(c) + M(d) = 1.

Choose $x' \in S(X)$ and defind

$$x = (cx', cx', dx', 0, 0, 0, ...) \in \ell_M(X).$$

Then

$$\begin{split} \varrho_{\scriptscriptstyle M}(x) &= \sum_{i=1}^{\infty} M(\|x(i)\|) \\ &= M(\|cx'\|) + M(\|cx'\|) + M(\|dx'\|) \\ &= M(c\|x'\|) + M(c\|x'\|) + M(d\|x'\|) \\ &= M(c) + M(c) + M(d) = 1 \end{split}$$

But $x(1), x(2) \in \mathbb{R}\backslash S_M$. This contradicts whith Theorem 3.1.8 (iii). Hence $x \notin \mathbf{Ext} B(\ell_M(X))$.

Sufficiency. Let $x \in S(\ell_M(X))$. We have to verify (i)-(iii) of Theorem 3.1.8. We shall show that (i) and (iii) are true, which (ii) is obvious by (2). Since $M \in \delta_2$ we have by Lemma 3.1.7 (2) that $\varrho_M(x) = 1$.

Next, Let $I = \{i \in \mathbb{N} : ||x(i)|| \in \mathbb{R} \setminus S_M\}$. Then by (3), for any $i \in I$ we have $||x(i)|| > M^{-1}(1/2)$ that is M(||x(i)||) > 1/2 and since

$$\varrho_{\scriptscriptstyle M}(x) = \sum_{i=1}^{\infty} M(\|x(i)\|) = 1,$$

it implies that I contain at most a single point. Hence, we obtain by Theorem 3.1.8 that $x \in \text{Ext } B(\ell_M(X))$.

Remark 3.1.10. Theorem 3.1.9 may be false if X is not (R). For example, we shall we consider $X = \ell_1^2$ where the norm defined by

$$\|(\alpha_1, \alpha_2)\| = \sum_{j=1}^2 |\alpha_j|$$

and $\alpha_j \in \mathbb{F}$ (j = 1, 2). We have that ℓ_1^2 is a Banach space but not a rotund space (see [11]). Choose $\mathbb{F} = \mathbb{R}$, observe that $(\frac{1}{2}, 0), (0, \frac{1}{2}), (1, 0)$ and (0, 1) are elements in ℓ_1^2 . Let

$$x = ((\frac{1}{2}, 0), (0, \frac{1}{2}), (0, 0), (0, 0), \dots),$$

$$y = ((1, 0), (0, 0), (0, 0), (0, 0), \dots),$$

$$z = ((0, 0), (0, 1), (0, 0), (0, 0), \dots).$$

Thus $x, y, z \in X^o$. Next, we define an Orlicz function $M : \mathbb{R}_+ \to \mathbb{R}_+$ by,

$$M(u) = \left\{ egin{array}{ll} 2u^2 & ext{; for } u \in [0, rac{1}{2}] \\ u & ext{; otherwise} \end{array}
ight.$$

Note that $M^{-1}(\frac{1}{2}) = \frac{1}{2}$, and it easy to see that $M \in \delta_2$ and M is strictly convex on $[0, M^{-1}(\frac{1}{2})]$. Then

$$\varrho_{M}(x) = \sum_{i=1}^{\infty} M(\|x(i)\|) = M(\|x(1)\|) + M(\|x(2)\|) + M(\|x(3)\|) + \cdots$$

$$= M(\frac{1}{2}) + M(\frac{1}{2}) + M(0) + \cdots$$

$$= \frac{1}{2} + \frac{1}{2} + 0 + 0 + \cdots$$

$$= 1.$$

and similarly we can show that $\varrho_M(y) = \varrho_M(z) = 1$. Consequently, it follows by Lemma 3.1.7(2) that $x, y, z \in S(\ell_M(X))$. Moreover, we see that 2x = y + z, and $y \neq z$. This implies that x is not extreme point of $B(\ell_M(X))$. Hence, $\ell_M(X)$ is not a rotund space.

From Theorem 3.1.9, if $X = \mathbb{R}$ we have a corollary as in [2].

Corollary 3.1.11 (Chen[2], Theorem 2.7) ℓ_M is rotund iff

- (1) $M \in \delta_2$ and
- (2) M is strictly convex on $[0, M^{-1}(1/2)]$

Proof. By the fact that \mathbb{R} is a rotund Banach space the corollary is obtained immediately by Theorem 3.1.9.

3.2 Some Geometric Properties Related to Rotundity

In this section show the relations between rotundity and some geometric properties in Orlicz vector-valued sequence spaces. We begin with giving some relation.

Theorem 3.2.1. For an Orlicz vector-valued sequence space $\ell_M(X)$. The following statements are equivalent

- (1) $\ell_M(X)$ has the uniform Kadec Klee property.
- (2) $\ell_M(X)$ has the **H**-property.
- (3) $M \in \delta_2$.

Proof. $(1)\Rightarrow(2)$. Clearly by Theorem 2.5.12.

 $(2)\Rightarrow (3)$. Assume $M\notin \delta_2$. As in the proof of Theorem 3.1.4 we can find an element $x\in S(\ell_M(X))$ such that $\varrho_M(x)\leq 1$ and $\varrho_M(\lambda x)=\infty$ for all $\lambda>1$. This means that $\|\sum_{i=n}^{\infty}x(i)e_i\|_M=1$ for all $n\in\mathbb{N}$, where $e_i=(0,0,0...,0,1,0,0,0,...)$, consequently we can choose an increasing sequence (n_i) of natural numbers such that

$$\|\sum_{j=n_i+1}^{n_{i+1}} x(j)e_j\|_{_M} \ge \frac{1}{2}$$

Define $x_i = (x(1), ..., x(n_i), 0, ..., 0, x(n_{i+1} + 1), ...)$, i = 1, 2, ...

We will show that

- (a) $||x_i||_M = 1$ i = 1, 2, ...
- (b) $x_i \to x$ weakly.

Since

$$\begin{split} \varrho_{M}(x) &= \sum_{j=1}^{\infty} M(\|x(j)\|) \\ &= \sum_{j=1}^{n_{i}} M(\|x(j)\|) + \sum_{j=n_{i}+1}^{n_{i+1}} M(\|x(j)\|) + \sum_{j=n_{i+1}+1}^{\infty} M(\|x(j)\|) \end{split}$$

and $\varrho_{M}(x) \leq 1$, we have

$$\varrho_{M}(x_{i}) = \varrho_{M}(x) - \sum_{j=n_{i}+1}^{n_{i+1}} M(\|x(j)\|) \le 1 - \sum_{j=n_{i}+1}^{n_{i+1}} M(\|x(j)\|) < 1.$$

And from $\varrho_M(\lambda x) = \infty$ for all $\lambda > 1$. This give $\varrho_M(\lambda x_i) = \infty$ for all $\lambda > 1$. This show that $||x_i||_M = 1$.

Next, we will show that (b) holds. Let $f \in \ell'_M(X)$ so there is a unique decomposition $f = v + \varphi$ where v and φ are respectively the regular and singular parts of f, i.e, v is determined by a function $v_0 \in \ell_N(X)$, where N is the complementary function of M. Since $v_0 \in \ell_N(X)$, there exists $\lambda > 0$ such that

$$\sum_{i=1}^{\infty} N(\lambda ||v_0(i)||) < \infty.$$

And since $x_i - x \in h_M(X)$. We have $\langle \varphi, x_i - x \rangle = 0$. So we have

$$\langle f, x_{i} - x \rangle = \langle v + \varphi, x_{i} - x \rangle = \langle v, x_{i} - x \rangle$$

$$= \sum_{j=n_{i}+1}^{n_{i+1}} ||x(j)|| ||v_{0}(j)|| = \frac{1}{\lambda} \left(\sum_{j=n_{i}+1}^{n_{i+1}} ||x(j)|| ||\lambda v_{0}(j)|| \right)$$

By Young inequality, we have

$$\langle f, x_i - x \rangle \le \frac{1}{\lambda} \sum_{j=n_i+1}^{n_{i+1}} (M(\|x(j)\|) + N(\lambda \|v_0(j)\|)) \to 0$$

as $i \to \infty$.

This show that $x_i \to x$ weakly, and therefore (2) holds. Moreover, we have that $||x_i - x||_M \ge \frac{1}{2}$ for all $i \in \mathbb{N}$. So we find that x is not an **H**-point of $B(\ell_M(X))$.

(3) \Rightarrow (1) Since $M \in \delta_2$, for any given $\epsilon > 0$, by Lemma 3.1.7 (3) there exists $\beta > 0$ such that

$$||x||_{M} \geq \frac{\epsilon}{4} \Rightarrow \varrho_{M}(x) \geq \beta.$$

For this β , again by Lemma 3.1.7 (4) we can find $\eta \in (0,1)$ such that

$$\varrho_{M}(x) \leq 1 - \beta \Rightarrow ||x||_{M} \leq 1 - \eta.$$

Now, suppose $x_n \in B(\ell_M(X))$, $x_n \to x$ weakly and $||x_n - x_m||_M \ge \epsilon$ $(n \ne m)$. We shall show that $||x||_M \le 1 - \eta$. If not, that is $||x||_M > 1 - \eta$, then we can select a finite subset I of \mathbb{N} such that $||x_{i_I}||_M > 1 - \eta$. Since the weak convergence of $\{x_n\}$ to x implies

that $x_n \to x$ coordinatewise and since I is finite we deduce that $x_n \to x$ uniformly on I, consequently, there exists $k \in \mathbb{N}$ such that

$$||x_{m_{|_{I}}}||_{M} > 1 - \eta$$
, $||(x_{n} - x_{m})_{|_{I}}||_{M} \le \frac{\epsilon}{2}$

for all n, m > k.

But the first inequality implies

$$\varrho_{\scriptscriptstyle M}(x_{m_{|_I}}) > 1 - \beta \quad (m > k)$$

and the second implies

$$||(x_n - x_m)|_{|\mathbf{N} \setminus I}||_M \ge \frac{\epsilon}{2} \quad (m, n > k, m \ne n).$$

(because $||x_n - x_m||_{M} \ge \epsilon$).

That is

$$\frac{\epsilon}{2} \leq \left\| (x_n - x_m)_{|_{\mathbf{N} \backslash I}} \right\|_{\scriptscriptstyle{M}} \leq \left\| x_{n_{|_{\mathbf{N} \backslash I}}} \right\|_{\scriptscriptstyle{M}} + \left\| x_{m_{|_{\mathbf{N} \backslash I}}} \right\|_{\scriptscriptstyle{M}}$$

which yield $\|x_{n_{|_{\mathbb{N}\backslash I}}}\|_{_{M}} \geq \frac{\epsilon}{4}$ or $\|x_{m_{|_{\mathbb{N}\backslash I}}}\|_{_{M}} \geq \frac{\epsilon}{4}$. Without loss of generality we may assume that $\|x_{m_{|_{\mathbb{N}\backslash I}}}\|_{_{M}} \geq \frac{\epsilon}{4}$. Then $\varrho_{_{M}}(x_{m_{|_{\mathbb{N}\backslash I}}}) \geq \beta$.

So $1 = (1 - \beta) + \beta < \varrho_{M}(x_{m_{|_{I}}}) + \varrho_{M}(x_{m_{|_{I}}}) = \varrho_{M}(x_{m}) \leq 1$ which is a contradiction. Hence we obtain that $||x||_{M} \leq 1 - \eta$. That is $\ell_{M}(X)$ has the *Uniform Kadec-Klee property* \Box

Corollary 3.2.2. The following statements are equivalent:

- (1) $\ell_M(X)$ is rotund.
- (2) $\ell_M(X)$ is **UKK**, X is rotund, and M is strictly convex on $[0, M^{-1}(1/2)]$.
- (3) $\ell_M(X)$ has the $praperty(\mathbf{H})$, X is rotund, and M is strictly convex on $[0, M^{-1}(1/2)]$. **Proof.** (1) \Rightarrow (2). Since $\ell_M(X)$ is rotund, so by Theorem 3.1.9 we have that $M \in \delta_2$, X is rotund, and M is strictly convex on $[0, M^{-1}(1/2)]$. And by $M \in \delta_2$, it follows by Theorem 3.2.1 that $\ell_M(X)$ is **UKK**.
 - $(2) \Rightarrow (3)$. It follows by Theorem 2.5.12.
- $(3) \Rightarrow (1)$. Since $\ell_M(X)$ has $property(\mathbf{H})$, by Theorem 3.2.1 we have that $M \in \delta_2$. It follows by Theorem 3.1.9 that $\ell_M(X)$ is rotund.

Corollary 3.2.3. $\ell_M(X)$ is LUR if and only if $M \in \delta_2$ and $\ell_M(X)$ is WLUR. **Proof.** The proof is an immediate consequence of Theorem 3.2.1.

Theorem 3.2.4. If $M \notin \delta_2$, then $\ell_M(X)$ is not a WCLUR space.

Proof. Since $M \notin \delta_2$, then as in the proof of Theorem 3.1.4 we can find an element $u \in S(\ell_M(X))$ such that $\varrho_M(u) \leq 1$ and $\varrho_M(\lambda u) = \infty$ for all $\lambda > 1$. Next, for $x \in S(\ell_M(X))$ by, convexity of M we can select a subsequence $z = (x(i_k))_{k=1}^{\infty}$ of $x = (x(i))_{i=1}^{\infty}$ such that $z \in h_M(X)$. Let y = x - z. Define $z_n = \sum_{i=1}^n z(i)e_i$, $u^{(n)} = \sum_{i=1}^n z(i)e_i$

 $\sum_{k=1}^{\infty} u(n+k)e_{n+k}, \text{ where } e_i = (0,0,0...,0,1,0,0,0,...) \text{ and } x_n = z_n + u^{(n)} + y \text{ . Then we have}$

$$\|2x\|_{M} - \|\sum_{i=n+1}^{\infty} z(i)e_{i}\|_{M} \le \|x + x_{n}\|_{M} \le \max\{2, 2\varrho_{M}(x) + \sum_{i=n+1}^{\infty} M(\|u(i)\|)\}$$

This implies that $||x_n + x||_M \to 2$. By the same method we can get $||x_n||_M \to 1$.

To complete the proof, we shall show that $\ell_M(X)$ is not a WCLUR space. If not, by $x_n \to x$ coordinatewise we may assume without loss of generality that $x_n \to x$, weakly (passing to a subsequence if necessary). Since

$$\begin{split} d(u, h_M(X)) &= \inf\{\|u - x\|_{_M} : x \in h_M(X)\}\\ &= \inf\{\lambda > 0 : \varrho_{_M}\left(\frac{u}{\lambda}\right) < \infty\} = \theta(u) = 1, \end{split}$$

thanks to the Hahn Banach theorem to obtained that there exist $f \in S(\ell'_M(X))$ such that f(u) = 1 and f(x) = 0 for all $x \in h_M(X)$. Consequently, we have $f(x_n - x) = f(x_n + u^{(n)} + y - x) = f(u - (u - u^{(n)})) = f(u) = 1$. This lead to a contradiction that $x_n \to x$ weakly, which complete the proof.

Theorem 3.2.5 $\ell_M(X)$ is CLUR iff it is WCLUR

Proof. The proof follows immediately from Theorem 3.2.1, 3.2.4 and the general implications CLUR⇒WCLUR.

Theorem 3.2.6. $\ell_M(X)$ is **LUR** if and only if $\ell_M(X)$ is **WCLUR** and **R**.

Proof. It follows immediately from Theorem 2.5.9. and Theorem 3.2.5.

Corollary 3.2.7. The following statements are equivalent:

- (1) $\ell_M(X)$ is LUR
- (2) $\ell_M(X)$ is **CLUR**, X is rotund, and M is strictly convex on $[0, M^{-1}(1/2)]$
- (3) $\ell_M(X)$ is WCLUR, X is rotund, and M is strictly convex on $[0, M^{-1}(1/2)]$ **Proof.** (1) \Rightarrow (2) and (2) \Rightarrow (3) are immediately obtained by Theorem 2.5.9. and 3.1.9. It suffices to show that (3) \Rightarrow (1). Since $\ell_M(X)$ is WCLUR, it follows from Theorem 3.2.4 that $M \in \delta_2$, it follows from Theorem 3.1.9. that $\ell_M(X)$ is \mathbb{R} and then the proof is complete by Theorem 3.2.6.

REFERRENCES

- T. Ando, Linear functionals on Orlicz Spaces, Nieuw. Arch. Wisk.8(3) (1960),1 16.
- [2] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. (Rozprawy Math) 356, 1996.
- [3] S. Chen and Y. Wang, H property of Orlicz Spaces, Chinese Ann. Math. 8A(1987), 61-67 (in Chinese).
- [4] Y. Cui, H. Hudzik and C. Meng, On Some local geometry of Orlicz Sequence spaces equipped with the Luxembrug norm, Acta Math. Hungar.80 (1-2) (1998), 143-154.
- [5] Y. Cui, H. Hudzik and R. Pluciennik, Banach-Saks Property in some Banach Sequence Spaces, Annales Polonici Math. LXV.2 (1997), 193-202.
- [6] H. Hudzik, Orlicz Spaces without strongly extreme points and without H-points, Canad. Math. Bull. 36 (1993), 173-177.
- [7] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 473-479.
- [8] A. Kaminska, On uniform convexity of Orlicz spaces, Proc. A 85 (1), March 22 (1982), 27-36.
- [9] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz spaces, Noordhoff, Groningen, 1961.
- [10] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. No 1034, 1987.
- [11] R. E. Megginson, An Introduction to Banach Space Theory, Spring-Verlag, 1998.
- [12] W. Orlicz, Linear Functional Analysis, World Sci. Singapore 1992.
- [13] B.B. Panda and O.P.Kapoor, Generalization of local uniform convexity of the norm, J. Math. Anal. Appl., 52 (1975), 300-308.
- [14] S. Saejung, Extreme points and Strongly Extreme points in Musielak-Orlicz sequence space equipped with Luxemburg norm, Thesis for master of science, Chiangmai University, 2000.
- [15] B. Turett, Rotundity of Orlicz spaces, Indag. Math. A79 (1976), 462-468.

- [16] C. Wu, S. Chen and Y. Wang, H property of sequence Orlicz spaces, J. Harbin Inst. Tech. Math. issue 1985, 6-11 (in Chinese).
- [17] C. Wu and T. Wang, Orlicz Spaces and Applications, Heilongjiang Sci & Tech. Press, 1983 (in Chinese).
- [18] C. Wu, T. Wang, S. Chen and Y. Wang, Theory of Geometry of Orlicz Spaces, Harbin Inst. of Tech. Press, 1986 (in Chinese).

LOCAL UNIFORM CONVEXITY OF CESARO MUSIELAK-ORLICZ SEQUENCE SPACES

1. INTRODUCTION

A sequence space is defined to be a linear space of scalar (real or complex) functions on N. The study of sequence spaces is thus a special case of the more general study of function spaces, which in turn a branch of functional analysis. Geometric properties of Banach spaces play an important role in studying Banach spaces theories. Some geometric properties imply reflexivity of Banach spaces and some imply fixed point property or weak fixed point property. So the main problems of studying geometric properties of the given Banach spaces is to give necessary and sufficient conditions on the spaces which they have the given geometric properties. It is clear that the geometry of Banach spaces in the form of convexity would play a central role in the theory of Radon-Nikodym differentiation for vector-valued measures.

The theory of geometry of Orlicz sequence spaces was developed extensively by many authors. Y.A. Cui, H. Hudzik and C. Meng [3] have studied the LUR, CLUR and WCLUR, and property (H) in Orlicz sequence spaces under the Luxemburg norm. Y. A. Cui and H. B. Thompson [6] have studied the LUR and property (β) in Musielak-Orlicz sequence spaces under the Luxemburg norm. It is obvious that both Orlicz sequence spaces and Musielak-Orlic sequence spaces are generalization of the l_p space.

In 1970, J. S. Shue introduced the Cesàro sequence spaces $ces_p(1 and Y. Q. Liu, B. E. Wu and Y. Lee [9] studied many geometric properties in <math>ces_p$. It is know that ces_p is LUR and has property (H)(See [9]). Y. A. Cui and Hudzik [4] proved that ces_p has the Banach-Saks property of type p and Y. A. Cui and M. Chenghui [2] proved that ces_p has property (β) and has Banach-Saks property.

In this paper, we define the Cesàro-Musielak-Orlicz sequence spaces Ces_M , where $M = (M_k)$ is a Musielak-Orlicz function. This space is a generalization of the Cesàro sequence spaces ces_p . The main purpose of the thesis is to give sufficient conditions for M such that Ces_M is LUR and has property (H) under the Luxemburg norm defined by the convex modular introduced to Ces_M .

2. PRELIMINARIES

In this chapter, we give some definitions, notations and some useful results that will be used in the later chapter.

Throughout this thesis, we let \mathbb{R} stand for the set of real numbers and \mathbb{N} the set of natural numbers.

2.1 Norms and Normed spaces

Definition 2.1.1 Let X be a linear space. A norm on X is a nonnegative real valued function on X, written as $\|.\|$, such that the following conditions are satisfied by all $x, y \in X$ and each scalar α :

- (1) ||x|| = 0 if and only if x = 0,
- (2) $\|\alpha x\| = |\alpha| \|x\|$,
- (3) $||x+y|| \le ||x|| + ||y||$ (the triangle inequality).

Properly speaking, a *normed space* is an ordered pair (X, ||.||) consisting of a linear space X and a norm ||.|| on X.

Definition 2.1.2 Let X be a normed space. The metric induced by the norm of X is the metric d on X defined by the formula d(x,y) = ||x-y||. Moreover, a complete normed linear space is called a Banach space.

Definition 2.1.3 Let X be a normed space. The *closed unit ball* of X is the set $\{x \in X : ||x|| \le 1\}$ and is denoted by B(X). The *unit sphere* of X, denote by S(X), is the set $\{x \in X : ||x|| = 1\}$.

Definition 2.1.4 A subset A of a normed space is *convex* if for each pair of its points, it contains the line segment joinning them. That is,

$$\{\alpha x + (1 - \alpha)y : \alpha \in [0, 1]\} \subseteq A$$

for all $x, y \in A$.

2.2 Convex functions, Modular functions and Orlicz functions

Definition 2.2.1 A real valued continuous function $M: \mathbb{R} \to \mathbb{R}$ is called *convex* if

$$M(\frac{u+v}{2}) \le \frac{M(u) + M(v)}{2} \tag{2.1}$$

for all $u, v \in \mathbb{R}$. If, in addition, the two sides of (2.1) are not equal for all $u \neq v$, then we call M a *strictly convex* function.

Proposition 2.2.2 Let $M: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then the following statements are equivalent:

- (1) M is convex.
- (2) There exist affine functions $L_n(u) = a_n u + b_n$ such that $M(u) = \sup_n L_n(u)$.
- (3) For any $u, v \in \mathbb{R}$ and $\alpha \in [0, 1]$,

$$M(\alpha u + (1 - \alpha)v) \le \alpha M(u) + (1 - \alpha)M(v). \tag{2.2}$$

(4) For any $u_1, u_2, ..., u_n \in \mathbb{R}$ and $\alpha_i \geq 0$ with $\sum_{i=1}^n \alpha_i = 1$,

$$M(\sum_{i=1}^{n} \alpha_i u_i) \le \sum_{i=1}^{n} \alpha_i M(u_i).$$

In addition, M is strictly convex if and only if for any $u \neq v$ and $\alpha \in (0,1)$, the inequality (2.2) is strict.

Proof. See [1, Proposition 1.3].

Theorem 2.2.3 Suppose that the Orlicz function M is strictly convex.

(1) For any K > 1, $\epsilon > 0$, there exists $\delta > 0$ such that

$$M(\frac{u+v}{2}) \le (1-\delta)\frac{M(u)+M(v)}{2}$$

for all $u, v \in \mathbb{R}$ satisfying $|u|, |v| \leq K$ and $|u - v| \geq \epsilon$.

(2) For any K > 0, $\epsilon > 0$ and $[a, b] \subset (0, 1)$, there exists $\delta > 0$ such that $M(2u + (1 - \alpha)v) \le (1 - \delta)[\alpha M(u) + (1 - \alpha)M(u)]$ for all $\alpha \in [a, b]$ and $u, v \in \mathbb{R}$ satisfying $|u|, |v| \le K$ and $|u - v| \ge \epsilon$.

Proof. See [1, Proposition 1.4].

Definition 2.2.4 A nonnegative function $M : \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$ is said to be an *Orlicz function* if M vanishes only at 0, M is even and convex.

Definition 2.2.5 Let X be a real vector space. A function $\rho: X \to [0, \infty]$ is called *modular* if it satisfies the following properties:

- (1) $\rho(x) = 0$ if and only if x = 0;
- (2) $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$;
- (3) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$.

The modular ρ is called *convex* if

(4) $\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. If ρ is a modular on X, we define

$$X_{\rho} := \{ x \in X : \lim_{\lambda \to 0^+} \rho(\lambda x) = 0 \}$$

and

$$X_{\rho}^* := \{x \in X : \rho(\lambda x) < \infty \text{ for some } \lambda > 0\}.$$

It is clear that $X_{\rho} \subseteq X_{\rho}^*$. If ρ is a convex modular, for $x \in X_{\rho}$ we define

$$||x|| = \inf\{\lambda > 0 : \rho(\frac{x}{\lambda}) \le 1\}.$$
 (2.3)

Orlicz [13] proved that if ρ is a convex modular in X, then $X_{\rho} = X_{\rho}^*$ and $\|.\|$ is a norm on X_{ρ} for which it is a Banach space. The norm $\|.\|$ define as in (2.3) is called the Luxemburg norm.

A modular ρ on X is called

- (a) right-continuous if $\lim_{\lambda \to 1^+} \rho(\lambda x) = \rho(x)$ for all $x \in X_{\rho}$
- (b) left-continuous if $\lim_{\lambda \to 1^-} \rho(\lambda x) = \rho(x)$ for all $x \in X_\rho$
- (c) continuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular ρ and the Luxemburg norm $\|.\|$ on X_{ρ} .

Theorem 2.2.6 Let ρ be a convex modular on X and let $x \in X_{\rho}$ and (x_n) a sequence in X_{ρ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\rho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Proof. See [10, Theorem 1.3].

Theorem 2.2.7 Let ρ be a continuous convex modular on X and $x \in X_{\rho}$. Then

- (1) ||x|| < 1 if and only if $\rho(x) < 1$.
- (2) $||x|| \le 1$ if and only if $\rho(x) \le 1$.
- (3) ||x|| = 1 if and only if $\rho(x) = 1$.

Proof. See [10, Theorem 1.4].

2.3 Musielak-Orlicz Sequence Spaces and Cesàro-Musielak-Orlicz Sequence Spaces

Definition 2.3.1 A sequence $M = (M_k)$ of Orlicz functions is called a *Musielak-Orlicz function*. In addition, a Musielak-Orlicz function $N = (N_k)$ is called a *complementary function* of a Musielak-Orlicz function M if

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\},\$$

k = 1, 2, ...

Definition 2.3.2 Denote by l^0 the space of all real sequences. For a given Musielak-Orlicz function M, we define $I_M: l^0 \to [0, \infty]$ by the formula

$$I_M(x) = \sum_{k=1}^{\infty} M_k(x(k)), \quad x = (x(k)) \in l^0.$$

Then I_M is a convex modular. The Musielak-Orlicz sequence space l_M is the space

$$l_M := \{ x \in l^0 : I_M(cx) < \infty \text{ for some } c > 0 \}.$$

We consider l_M equipped with the Luxemburg norm

$$||x|| = \inf\{k > 0 : I_M(\frac{x}{k}) \le 1\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf\{\frac{1}{k}(1 + I_M(kx)) : k > 0\}.$$

To simplify notation, we put $l_M := (l_M, ||.||)$ and $l_M^0 := (l_M, ||.||^0)$. Both of them are Banach spaces (See [12]).

The subspace h_M of l_M , called the finite (or order continuous) elements, is defined by

$$h_M:=\{x\in l^0:I_M(\lambda x)<\infty \text{ for all }\lambda>0\}.$$

Definition 2.3.3 For $1 \leq p < \infty$, the Cesàro sequence space ces_p is defined by

$$ces_p := \{ x \in l^0 : \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^p < \infty \}.$$

We consider ces_p equipped with the norm

$$||x|| = \left(\sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p}\right)^{\frac{1}{p}}.$$

This space was introduced by J. S. Shue [17]. It is sueful in the theory of matrix operator and others (See [9]). Some geometric properties of the Cesàro sequence space ces_p were studied by many mathematicians.

Definition 2.3.4 Let $p = (p_k)$ be a sequence of positive real numbers with $p_k \ge 1$ for all $k \in \mathbb{N}$. The Cesàro sequence space ces(p) is defined by

$$ces(p) := \{ x \in l^0 : \rho(\lambda x) < \infty \text{ for some } \lambda > 0 \},$$

where $\rho(x) = \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}$. We consider this space equipped with the Luxemburg norm

$$||x|| = \inf\{\lambda > 0 : \rho(\frac{x}{\lambda}) \le 1\}$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$ces(p) := \{ x \in l^0 : \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} < \infty \}.$$

Definition 2.3.5 Let $M = (M_k)$ be the Musielak-Orlicz function. The *Cesàro-Musielak-Orlicz sequence space* is define by

$$Ces_M := \{x \in l^0 : \rho_M(cx) < \infty \text{ for some } c > 0\}$$

where $\rho_M(x) = \sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x(i)|\right)$. We show in Theorem 3.1 that ρ_M is a convex modular on Ces_M . So in this space we can consider the Luxemburg norm induced by the convex modular ρ_M as follows:

$$||x|| = \inf\{\lambda > 0 : \rho_M(\frac{x}{\lambda}) \le 1\}.$$

To simplify notation, we put $Ces_M := (Ces_M, ||.||)$, we have by [10] that Ces_M is a Banach space. We define the subspace $SCes_M$ of Ces_M by

$$SCes_M := \{x \in l^0 : \rho_M(cx) < \infty \text{ for all } c > 0\}.$$

Definition 2.3.6 We say a Musielak-Orlicz function M satisfies the δ_2 -condition ($M \in \delta_2$ for short) if there exist constants $K \geq 2, u_0 > 0$ and a sequence (c_k) of positive numbers such that $\sum_{k=1}^{\infty} c_k < \infty$ and the inequality

$$M_k(2u) \le KM_k(u) + c_k$$

hold for every $k \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $|u| \leq u_0$.

If $M \in \delta_2$ and $N \in \delta_2$, then we write $M \in \delta_2 \cap \delta_2^*$.

Moreover, we say that a Musielak-Orlicz function M satisfies the (*)-condition if for any $\epsilon \in (0,1)$ there exists a $\delta > 0$ such that $M_k((1+\delta)u) \leq 1$ whenever $M_k(u) \leq 1-\epsilon$ for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$.

We shall show in Theorem 3.5 that if $M \in \delta_2$, then $SCes_M = Ces_M$.

2.4 Convergence

Definition 2.4.1 A sequence (x_n) in a Cesàro-Musielak-Orlicz sequence space Ces_M (Musielak-Orlicz sequence space l_M) is said to be

- (1) (norm) convergent, if there exists an $x \in Ces_M(x \in l_M)$ such that $||x_n x|| \to 0$;
- (2) modular convergent, if there exists an $x \in Ces_M(x \in l_M)$ such that $\rho_M(x_n x) \to 0$ ($I_M(x_n x) \to 0$) as $n \to \infty$;

(3) weakly convergent, if there exists an $x \in Ces_M$ $(x \in l_M)$ such that $f(x_n - x) \to 0$ for all f in the dual space of Ces_M (l_M) .

2.5 Rotund Spaces (R) and Locally Uniformly Rotund Spaces (LUR)

Definition 2.5.1 Let $(X, \|.\|)$ be a real Banach space. A point $x \in S(X)$ is said to be an extreme point if for every $y, z \in S(X)$ such that $x = \frac{y+z}{2}$, we have z = y = x. X is said to be rotund (R for short) if every $x \in S(X)$ is an extreme point.

Definition 2.5.2 (J. A. Clarkson, 1936). Let X be a normed space. Define a function $\delta_X : [0,2] \to [0,1]$ by the formula

$$\delta_X(\epsilon) = \inf\{1 - \|\frac{1}{2}(x+y)\| : x, y \in S(X), \|x-y\| \ge \epsilon\}$$

if $X \neq \{0\}$, and by the formula

$$\delta_X(\epsilon) = \begin{cases} 0 \text{ if } \epsilon = 0\\ 1 \text{ if } 0 < \epsilon \le 2 \end{cases}$$

if $X = \{0\}$. Then δ_X is the modulus of rotundity or modulus of convexity of X. The space X is uniformly rotund or uniformly convex (UR for short) if $\delta_X(\epsilon) > 0$ whenever $0 < \epsilon \le 2$.

Proposition 2.5.3 Every uniformly rotund normed space is rotund. **Proof.** See [11, Proposition 5.2.6].

Proposition 2.5.4 Suppose that X is a normed space. Then the following are equivalent.

- (a) The space X is UR.
- (b) Whenever (x_n) and (y_n) are sequence in S(X) and $\|\frac{1}{2}(x_n+y_n)\| \to 1$, it follows that $\|x_n-y_n\| \to 0$.
- (c) Whenever (x_n) and (y_n) are sequence in B(X) and $\|\frac{1}{2}(x_n+y_n)\| \to 1$, it follows that $\|x_n-y_n\| \to 0$.
- (d) Whenever (x_n) and (y_n) are sequence in X and $||x_n||, ||y_n||$ and $||\frac{1}{2}(x_n + y_n)||$ all tend to 1, it follows that $||x_n y_n|| \to 0$.

Proof. See [11, Proposition 5.2.8].

Definition 2.5.5 (A. R. Lovaglia, 1955). Suppose that X is a normed space. Define a function $\delta_X : [0,2] \times S(X) \to [0,1]$ by the formula

$$\delta_X(\epsilon, x) = \inf\{1 - \|\frac{1}{2}(x + y)\| : y \in S(X), \|x - y\| \ge \epsilon\}.$$

Then δ_X is the LUR modulus of X. The space X is locally uniformly rotund or locally uniformly convex (LUR for short) if $\delta_X(\epsilon, x) > 0$ whenever $0 < \epsilon \le 2$ and $x \in S(X)$.

Proposition 2.5.6 Every uniformly rotund normed space is locally uniformly rotund, and every locally uniformly rotund normed space is rotund. In symbols, $UR \Rightarrow LUR \Rightarrow R$.

Proof. See [11, Proposition 5.3.3].

Proposition 2.5.7 Suppose that X is a normed space. Then the following are equivalent.

- (a) The space X is LUR.
- (b) When $x \in S(X)$ and (y_n) is a sequence in S(X) such that $\|\frac{1}{2}(x+y_n)\| \to 1$, it follows that $\|x-y_n\| \to 0$.
- (c) When $x \in S(X)$ and (y_n) is a sequence in B(X) such that $\|\frac{1}{2}(x+y_n)\| \to 1$, it follows that $\|x-y_n\| \to 0$.
- (d) When $x \in S(X)$ and (y_n) are sequence in X such that $||y_n||$ and $||\frac{1}{2}(x+y_n)||$ both tend to 1, it follows that $||x-y_n|| \to 0$.

Proof. See [11, Proposition 5.3.5].

Definition 2.5.8 A Banach space X is said to have the *Kadee-Klee property* (X has the property (H) for short) if the weak convergence and the convergence in norm coincide in S(X).

2.6 Some Useful Results

Theorem 2.6.1 Let X be a real vector space and ρ a modular on X. For $x \in X$ let $f_x : \mathbb{R} \to \mathbb{R}$ be define by $f_x(c) = \rho(cx), c \in \mathbb{R}$. Then f_x is a continuous (See [10]).

Theorem 2.6.2 [15] Let $x \in l_M$.

- (1) If $0 < \alpha \le 1$, then $\frac{1}{\alpha}I_M(\alpha x) \le I_M(x) \le \alpha I_M(\frac{x}{\alpha})$.
- (2) If $\alpha > 1$, then $\alpha I_M(\frac{x}{\alpha}) \leq I_M(x) \leq \frac{1}{\alpha} I_M(\alpha x)$.

Theorem 2.6.3 [15] Let $x \in l_M$.

- (1) If ||x|| < 1, then $I_M(x) \le ||x||$.
- (2) If ||x|| > 1, then $I_M(x) \ge ||x||$.

Theorem 2.6.4 [15] If a Musielak-Orlicz function $M = (M_k)$ satisfies the (*)-condition and $M \in \delta_2$, then, the norm convergence and modular convergence coincide.

Theorem 2.6.5 If the Musielak-Orlicz function $M = (M_k)$ satisfies the (*)-condition and $M \in \delta_2$, then

- (1) $||x|| = 1 \Leftrightarrow I_M(x) = 1$,
- (2) [8] for every $\epsilon > 0$ there exists a $\delta > 0$ such that $||x|| < 1 \delta$ whenever $I_M(x) < 1 \epsilon$,
- (3) [8] for every $\epsilon > 0$ and c > 0 there exists a $\delta > 0$ such that for any $x, y \in l_M$, we have

$$|I_M(x+y) - I_M(x)| < \epsilon$$

whenever $I_M(x) \leq c$ and $I_M(y) \leq \delta$,

- (4) [15] for every $\epsilon > 0$ there exists a $\delta > 0$ such that $||x|| > 1 + \delta$ whenever $I_M(x) > 1 + \epsilon$, and
- (5) [15] for any sequence $(x_n) \subset l_M$, $||x_n|| \to 1$ as $n \to \infty$ implies $I_M(x_n) \to 1$ as $n \to \infty$.

Theorem 2.6.6 [7] If the complementary of a Musielak-Orlicz function $M=(M_k)$ satisfies δ_2 i.e. $N \in \delta_2$, then there exists a $\theta \in (0,1)$ and a sequence (h_k) of positive real numbers with $\sum_{k=1}^{\infty} M_k(h_k) < \infty$ such that

$$M_k(\frac{u}{2}) \leq \frac{1-\theta}{2} M_k(u)$$

hold for every $k \in \mathbb{N}$ and u satisfying $M_k(h_k) \leq M_k(u) \leq 1$.

3. SOME CONVEXITY OF CESÀRO-MUSIELAK-ORLICZ SEQUENCE SPACES

In this section we show that the Cesàro-Musielak-Orlicz sequence spaces Ces_M equipped with the Luxemburg norm is locally uniformly rotund. So it is has property (H) and it is rotund. Before showing these results we give some useful facts and results concerning the modular ρ_M on Ces_M and relationships between the modular ρ_M and the Luxemburg norm on Ces_M . We start with showing that ρ_M is a convex modular on Ces_M .

Theorem 3.1 The functional ρ_M On the Cesàro-Musielak-Orlicz sequence space Ces_M given by

$$\rho_M(x) = \sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right),$$

is a convex modular on Ces_M

Proof. Let $x, y \in Ces_M$. It is obvious that

- (i) $\rho_M(x) = 0 \Leftrightarrow x = 0$
- (ii) For $\alpha \in \mathbb{R}$, with $|\alpha| = 1$, we have

$$\rho_{M}(\alpha x) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i)| \right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(|\alpha| \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)$$

$$= \rho_{M}(x)$$

(iii) For $\alpha, \beta \in \mathbb{R}$, with $\alpha, \beta \geq 0, \alpha + \beta = 1$, by convexity of M_k , we have

$$\begin{split} \rho_{M}(\alpha x + \beta y) &= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i) + \beta y(i)| \right) \\ &\leq \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} (\alpha |x(i)| + \beta |y(i)| \right) \\ &= \sum_{k=1}^{\infty} M_{k} \left(\frac{\alpha}{k} \sum_{i=1}^{k} |x(i)| + \frac{\beta}{k} \sum_{i=1}^{k} |y(i)| \right) \\ &\leq \sum_{k=1}^{\infty} \left(\alpha M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \beta M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right) \right) \\ &= \alpha \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \beta \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right) \\ &= \alpha \rho_{M}(x) + \beta \rho_{M}(y) \end{split}$$

Proposition 3.2 Let $x \in Ces_M$.

- (1) If $0 < \alpha \le 1$, then $\frac{1}{\alpha} \rho_M(\alpha x) \le \rho_M(x) \le \alpha \rho_M(\frac{x}{\alpha})$
- (2) If $\alpha > 1$, then $\alpha \rho_M(\frac{x}{\alpha}) \le \rho_M(x) \le \frac{1}{\alpha} \rho_M(\alpha x)$

Proof. Let $x = (x(i)) \in Ces_M$. For any $0 < \alpha \le 1$, by convexity of each M_k , we have

$$M_k\left(\frac{1}{k}\sum_{i=1}^k |\alpha x(i)|\right) = M_k\left(\alpha \frac{1}{k}\sum_{i=1}^k |x(i)|\right) \le \alpha M_k\left(\frac{1}{k}\sum_{i=1}^k |x(i)|\right)$$

for all $k \in \mathbb{N}$. This implies $\rho_M(\alpha x) \leq \alpha \rho_M(x)$. Next, substituting x by $\frac{x}{\alpha}$, we obtain $\rho_M(x) \leq \alpha \rho_M(\frac{x}{\alpha})$. That is (1) holds. Next, let $\alpha > 1$. Then $0 < \frac{1}{\alpha} < 1$. By (1), we obtain that

$$\alpha \rho_M(\frac{x}{\alpha}) = \frac{1}{\frac{1}{\alpha}} \rho_M(\frac{x}{\alpha}) \le \rho_M(x) \le \frac{1}{\alpha} \rho_M(\frac{x}{\frac{1}{\alpha}}) = \frac{1}{\alpha} \rho_M(\alpha x)$$

, so (2) is satisfied.

Proposition 3.3 For any $x \in Ces_M$, we have

(1) if
$$||x|| \le 1$$
, then $\rho_M(x) \le ||x||$

(2) if ||x|| > 1, then $\rho_M(x) \ge ||x||$

Proof. (1) If x = 0, then the inequality holds. For $x \neq 0$, by the definition of $\|.\|$, there is a sequence $(\epsilon_n) \downarrow \|x\|$ such that $\rho_M(\frac{x}{\epsilon_n}) \leq 1$. This implies $\rho_M(\frac{x}{\|x\|}) \leq 1$, by Proposition 3.2(1), we have $\rho_M(x) \leq \|x\| \rho_M(\frac{x}{\|x\|}) \leq \|x\|$.

(2) Let ||x|| > 1. Then for $\epsilon \in (0, \frac{||x||-1}{||x||})$, we have $(1-\epsilon)||x|| > 1$. By Proposition 3.2(1), we have

$$1 < \rho_M(\frac{x}{(1-\epsilon)||x||}) \le \frac{\rho_M(x)}{(1-\epsilon)||x||}.$$

Letting $\epsilon \to 0$, we obtain (2).

The following result is directly obtained from Proposition 3.3(1).

Corollary 3.4 If $x_n \to 0$ as $n \to \infty$ then $\rho_M(x_n) \to 0$ as $n \to \infty$

Theorem 3.5 If a Musielak-Orlicz function $M=(M_k)\in \delta_2$, then $SCes_M=Ces_M$. **Proof.** Let $x\in Ces_M$. Thus $\rho_M(cx)<\infty$ for some c>0. Since $M\in \delta_2$, there exists $K\geq 2,\ u_0>0$ and a positive sequence (c_k) such that $\sum_{k=1}^{\infty}c_k<\infty$ and

$$M_k(2u) \leq KM_k(u) + c_k$$

for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$ with $|u| \leq u_0$. By $\rho_M(cx) < \infty$, we have that

$$\sum_{k=1}^{\infty} M_k \left(c \frac{1}{k} \sum_{i=1}^k |x(i)| \right) < \infty,$$

it follows that $M_k\left(c\frac{1}{k}\sum_{i=1}^k|x(i)|\right)\to 0$ as $k\to\infty$, and so $\frac{1}{k}\sum_{i=1}^k|x(i)|\to 0$ as $k\to\infty$. Let $\beta>0$ and $t\in\mathbb{N}$ be such that $\frac{\beta}{c}\leq 2^t$. Then there exist $n_0\in\mathbb{N}$ and a positive sequence (c_k') with $\sum_{k=1}^\infty c_k'<\infty$ such that

$$c\frac{1}{k}\sum_{i=1}^{k}|x(i)| \le \frac{u_0}{2^{t-1}} \text{ for all } k \ge n_0,$$

and

$$M_k(2^t u) \leq K^t M_k(u) + c_k'$$
 for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$ with $|u| \leq \frac{u_0}{2^{t-1}}$.

Thus

$$\begin{split} \rho_{M}(\beta x) &= \sum_{k=1}^{\infty} M_{k} \left(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \\ &= \sum_{k=1}^{n_{0}} M_{k} \left(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \sum_{k=n_{0}+1}^{\infty} M_{k} \left(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \\ &= \sum_{k=1}^{n_{0}} M_{k} \left(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \sum_{k=n_{0}+1}^{\infty} M_{k} \left(\beta \frac{c}{c} \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \\ &\leq \sum_{k=1}^{n_{0}} M_{k} \left(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \sum_{k=n_{0}+1}^{\infty} M_{k} \left(2^{t} c \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \\ &\leq \sum_{k=1}^{n_{0}} M_{k} \left(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + K^{t} \sum_{k=n_{0}+1}^{\infty} M_{k} \left(c \frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \sum_{k=n_{0}+1}^{\infty} c_{k}' < \infty. \end{split}$$

Therefore $Ces_M \subseteq SCes_M$.

Lemma 3.6 On Cesàro-Musielak-Orlicz sequence space Ces_M , if the Musielak-Orlicz function $M = (M_k)$ satisfies the (*)-condition and $M \in \delta_2$, then

- $(1) ||x|| = 1 \Leftrightarrow \rho_M(x) = 1,$
- (2) for every $\epsilon > 0$ there exists a $\delta > 0$ such that $||x|| < 1 \delta$ whenever $\rho_M(x) < 1 \epsilon$,
- (3) for every $\epsilon > 0$ and c > 0 there exists a $\delta > 0$ such that for any $x, y \in Ces_M$, we have

$$|\rho_M(x+y) - \rho_M(x)| < \epsilon$$

whenever $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$,

- (4) for every $\epsilon > 0$ there exists a $\delta > 0$ such that $||x|| > 1 + \delta$ whenever $\rho_M(x) > 1 + \epsilon$, and
- (5) for any sequence $(x_n) \subset Ces_M$, $||x_n|| \to 1$ implies $\rho_M(x_n) \to 1$.

Proof. (1) Assume that $\rho_M(x) = 1$. By definition of $\|.\|$, we have that $\|x\| \le 1$. If $\|x\| < 1$, then we have by Proposition 3.3 (1) that $\rho_M(x) \le \|x\| < 1$, which contradicts our assumption. Therefore $\|x\| = 1$.

Conversely, assume that ||x|| = 1. By Proposition 3.3(1), $\rho_M(x) \leq 1$. Suppose that $\rho_M(x) < 1$. By Theorem 3.5, we have $\rho_M(cx) < \infty$ for all c > 1. By Theorem 2.6.1 the function $c \mapsto \rho_M(cx)$ is continuous, so there exists an c' > 1 such that $\rho_M(c'x) = 1$.

By using the same proof as in the first path, we have that ||c'x|| = 1, so c' = 1 which is contradiction.

(2) Let $\epsilon > 0, x \in Ces_M$ such that $\rho_M(x) < 1 - \epsilon$ and we put $a(k) = \frac{1}{k} \sum_{i=1}^k |x(i)|$, then $a = (a(k)) \in l_M$ and we have

$$I_M(a) = \rho_M(x), ||a||_{l_M} = ||x||_{Ces_M}.$$

By Theorem 2.6.5(2), there exists a $\delta > 0$ such that $||a|| < 1 - \delta$ i.e. $||x|| < 1 - \delta$.

(3) Let $x, y \in Ces_M$, $\epsilon > 0$ and c > 0, by Theorem 2.6.5(3), there exists a $\delta' > 0$ such that for any $a, b \in l_M$, we have

$$|I_M(a+b) - I_M(a)| < \epsilon \tag{3.1}$$

whenever $I_M(a) \leq c$ and $I_M(b) \leq \delta'$. For each $i \in \mathbb{N}$, let

$$s(i) = \begin{cases} sgn(x(i) + y(i)) \text{ if } x(i) + y(i) \neq 0, \\ 1 \text{ if } x(i) + y(i) = 0 \end{cases}$$

we note that

$$\rho_{M}(x+y) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i) + y(i)| \right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} s(i)x(i) + \frac{1}{k} \sum_{i=1}^{k} s(i)y(i) \right). \tag{3.2}$$

Let $a(k) = \frac{1}{k} \sum_{i=1}^k s(i)x(i)$ and $b(k) = \frac{1}{k} \sum_{i=1}^k s(i)y(i)$ for all $k \in \mathbb{N}$. Then $a = (a(k)) \in l_M$ and $b = (b(k)) \in l_M$, and from (3.2) we have

$$\rho_M(x+y) = I_M(a+b), I_M(a) \le \rho_M(x) \text{ and } I_M(b) \le \rho_M(y).$$

Choose $\delta = \delta'$. Let $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$. Then $I_M(a) \leq c$ and $I_M(b) \leq \delta'$, by (3.1) we have

$$\rho_M(x+y) - \rho_M(x) \le I_M(a+b) - I_M(a) < \epsilon$$

that is

$$\rho_M(x+y) < \rho_M(x) + \epsilon. \tag{3.3}$$

Proof. Suppose that $x_n(i) - y_n(i) \not\to 0$ as $n \to \infty$ for some $i \in \mathbb{N}$. Without loss of generality we may assume that i = 1, and then assume that, for some $\epsilon_0 > 0$,

$$|x_n(1) - y_n(1)| \ge \epsilon_0$$
 for all $n \in \mathbb{N}$.

Since M_1 is strictly convex by Theorem 2.2.3(1), there exists a $\delta \in (0,1)$ such that

$$M_1(\frac{x_n(1)+y_n(1)}{2}) < \frac{(1-\delta)}{2}(M_1(x_n(1))+M_1(y_n(1)))$$
 for all $n \in \mathbb{N}$.

Hence

$$\begin{split} 1 \leftarrow I_{M}(\frac{x_{n} + y_{n}}{2}) &= \sum_{k=1}^{\infty} M_{k}(\frac{x_{n}(k) + y_{n}(k)}{2}) \\ &= M_{1}(\frac{x_{n}(1) + y_{n}(1)}{2}) + \sum_{k=2}^{\infty} M_{k}(\frac{x_{n}(k) + y_{n}(k)}{2}) \\ &\leq \frac{1 - \delta}{2}(M_{1}(x_{n}(1)) + M_{1}(y_{n}(1)) + \frac{1}{2}\sum_{k=2}^{\infty} (M_{k}(x_{n}(k)) + M_{k}(y_{n}(k))) \\ &= \frac{1}{2}\sum_{k=1}^{\infty} (M_{k}(x_{n}(k)) + M_{k}(y_{n}(k))) - \frac{\delta}{2}(M_{1}(x_{n}(1)) + M_{1}(y_{n}(1))) \\ &\leq \frac{1}{2}\sum_{k=1}^{\infty} (M_{k}(x_{n}(k)) + M_{k}(y_{n}(k))) - \delta M_{1}(|\frac{x_{n}(1) - y_{n}(1)}{2}|) \\ &= 1 - \delta M_{1}(2\epsilon_{0}), \end{split}$$

which is a contradiction.

Lemma 3.9 Suppose $(x_n) \subseteq B(Ces_M)$, $x \in S(Ces_M)$ and each M_k is strictly convex. If $\rho_M(\frac{x_n+x}{2}) \to 1$ as $n \to \infty$, then $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$.

Proof. For each $n \in \mathbb{N}$ and $i \in \mathbb{N}$, let

$$s_n(i) = \begin{cases} sgn(x_n(i) + x(i)), & \text{if } x_n(i) + x(i) \neq 0, \\ 1, & \text{if } x_n(i) + x(i) = 0. \end{cases}$$

Thus

$$1 \leftarrow \rho_M(\frac{x_n + x}{2}) = \sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k \left| \frac{x_n(i) + x(i)}{2} \right| \right)$$
$$= \sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k s_n(i) \frac{x_n(i)}{2} + \frac{1}{k} \sum_{i=1}^k s_n(i) \frac{x(i)}{2} \right). \tag{3.7}$$

Let $a_n(k) = \frac{1}{k} \sum_{i=1}^k s_n(i) x_n(i)$ and $b_n(k) = \frac{1}{k} \sum_{i=1}^k s_n(i) x(i)$ for all $n, k \in \mathbb{N}$. Then $(a_n) \subseteq B(l_M)$ and $(b_n) \subseteq B(l_M)$. From (3.7) we have

$$I_M(\frac{a_n+b_n}{2})\to 1$$
 as $n\to\infty$.

By Lemma 3.8, for each $i \in \mathbb{N}$, we have

$$a_n(i) - b_n(i) \to 0 \text{ as } n \to \infty.$$
 (3.8)

Now, we shall show that $x_n(k) \to x(k)$ as $n \to \infty \ \forall k \in \mathbb{N}$. By (3.8), we have that

$$s_n(1)x_n(1) - s_n(1)x(1) \to 0 \text{ as } n \to \infty.$$

This implies $x_n(1) \to x(1)$ as $n \to \infty$. If $x_n(i) \to x(i)$ as $n \to \infty \ \forall i \le k-1$, then we have

$$s_n(i)(x_n(i) - x(i)) \to 0 \text{ as } n \to \infty \ \forall i \le k - 1$$
 (3.9)

since

$$s_n(k)(x_n(k)-x(k))=k(a_n(k)-b_n(k))-\sum_{i=1}^{k-1}s_n(i)(x_n(i)-x(i)),$$

it follows from (3.8) and (3.9) that

$$s_n(k)(x_n(k)-x(k))\to 0$$
 as $n\to\infty$,

hence $x_n(k) \to x(k)$ as $n \to \infty$. So we have by induction that $x_n(k) \to x(k)$ as $n \to \infty$ for all $k \in \mathbb{N}$.

Theorem 3.10 If a Musielak-Orlicz function M satisfies the (*)-condition, $M \in \delta_2 \cap \delta_2^*$ and M is strictly convex, then the space Ces_M is LUR.

Proof. Let $(x_n) \subseteq B(Ces_M)$, $x \in S(Ces_M)$ be such that $||x_n+x|| \to 2$ as $n \to \infty$. Then $||\frac{x_n+x}{2}|| \to 1$ as $n \to \infty$. By Lemma 3.6(5), we have that $\rho_M(\frac{x_n+x}{2}) \to 1$ as $n \to \infty$. By Lemma 3.9, we have $x_n(i) \to x(i)$ as $n \to \infty$ $\forall i \in \mathbb{N}$. By Lemma 3.6(1), we have

$$\sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right) = 1.$$
 (3.10)

Now, let $\epsilon > 0$ be given. Since $M = (M_k)$ satisfies the (*)-condition and $M \in \delta_2$, there is a $\delta \in (0,1)$ such that

$$|\rho_M(u+v) - \rho_M(u)| < \frac{\epsilon}{3} \tag{3.11}$$

whenever $\rho_M(u) \leq \frac{\epsilon}{3}$ and $\rho_M(v) \leq \delta$. Since $N \in \delta_2$, by Theorem 2.6.6, there exists a $\theta \in (0,1)$ and a sequence (h_k) of positive numbers such that $\sum_{k=1}^{\infty} M_k(h_k) < \infty$ and

$$M_k(\frac{u}{2}) \le (1-\theta)\frac{M_k(u)}{2}$$
 (3.12)

for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$ with $M_k(h_k) \leq M_k(u) \leq 1$. Since $\rho_M(\frac{x_n+x}{2}) \to 1$ as $n \to \infty$, there exists $n' \in \mathbb{N}$ such that $1 - \frac{\theta \delta}{4} < \rho_M(\frac{x_n+x}{2})$ for all $n \geq n'$. First, we will show that there exists $j_0 \in \mathbb{N}$ such that for $j \geq j_0$,

$$\sup_{n \ge n'} \sum_{k=j+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right) \le \delta. \tag{3.13}$$

To show this, suppose that (3.13) dose not hold. Then there exists a sequence of positive integers $\{j_m\}$ with $j_m \to \infty$ as $m \to \infty$ and a sequence of positive integers (n_m) with $n_m \ge n'$ such that

$$\sum_{k=j_m+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_{n_m}(i)| \right) > \delta. \tag{3.14}$$

for every $m \in \mathbb{N}$. Since $M = (M_k)$ satisfies the (*)-condition and $M \in \delta_2$, there exists a $\delta_1 > 0$ such that

$$|\rho_M(u+v) - \rho_M(u)| < \frac{\theta\delta}{8},\tag{3.15}$$

whenever $\rho_M(u) \leq 1$ and $\rho_M(v) \leq \delta_1$. By $x \in Ces_M$, there exists a positive number k_1 such that

$$\sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \le \delta_1, \sum_{k=k_1+1}^{\infty} M_k(h_k) < \frac{\theta \delta}{4}.$$
 (3.16)

Take m so large that $j_m > k_1$. Let

$$u_{n_m} = (\underbrace{0, 0, ..., 0}_{k_1}, \sum_{i=1}^{k_1+1} |x_{n_m}(i)|, |x_{n_m}(k_1+2)|, |x_{n_m}(k_1+3), ...)$$

and

$$u = (\underbrace{0, 0, ..., 0}_{k_1}, \sum_{i=1}^{k_1+1} |x(i)|, |x(k_1+2)|, |x(k_1+3)|, ...).$$

Then

$$\rho_M(\frac{u_{n_m}}{2}) = \sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |\frac{x_{n_m}(i)}{2}| \right) < 1$$

and

$$\rho_M(\frac{u}{2}) = \sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |\frac{x(i)}{2}| \right) < \delta_1.$$

By (3.15), $\rho_M(\frac{u_{n_m}+u}{2}) \le \rho_M(\frac{u_{n_m}}{2}) + \frac{\theta\delta}{8}$. Thus

$$\sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k \left| \frac{x_{n_m}(i) + x(i)}{2} \right| \right) \le \sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k \left| \frac{x_{n_m}(i)}{2} \right| \right) + \frac{\theta \delta}{8}.$$
 (3.17)

By using convexity of each M_k , (3.10), (3.12), (3.14), (3.16) and (3.17), we have

$$1 - \frac{\theta \delta}{4} < \rho_{M}(\frac{x_{n_{m}} + x}{2}) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x_{n_{m}}(i) + x(i)}{2} \right| \right)$$

$$= \sum_{k=1}^{k_{1}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x_{n_{m}}(i) + x(i)}{2} \right| \right) + \sum_{k=k_{1}+1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x_{n_{m}}(i) + x(i)}{2} \right| \right)$$

$$\leq \frac{1}{2} \sum_{k=1}^{k_{1}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| x(i) \right| \right) + \frac{1}{2} \sum_{k=1}^{k_{1}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| x_{n_{m}}(i) \right| \right) +$$

$$\sum_{k=k_{1}+1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x_{n_{m}}(i)}{2} \right| \right) + \frac{\theta \delta}{8}$$

$$\leq \frac{1}{2} + \frac{1}{2} \left[\sum_{k=1}^{\infty} M_k \left(\sum_{i=1}^{k} |x_{n_m}(i)| \right) - \sum_{k=k_1+1}^{\infty} M_k \left(\sum_{i=1}^{k} |x_{n_m}(i)| \right) \right] +$$

$$(\frac{1-\theta}{2}) \sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n_m}(i)| \right) + \frac{1}{2} \sum_{k=k_1+1}^{\infty} M_k (h_k) + \frac{\theta \delta}{8}$$

$$= 1 + (\frac{1-\theta}{2} - \frac{1}{2}) \sum_{k=k_1+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n_m}(i)| \right) + \frac{\theta \delta}{8} + \frac{\theta \delta}{8}$$

$$< 1 - \frac{\theta \delta}{2} + \frac{\theta \delta}{4} = 1 - \frac{\theta \delta}{4},$$

this contradiction proves (3.13). From (3.13), there exists $k' \in \mathbb{N}$ such that

$$\sum_{k=k'+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i)| \right) \le \delta,$$

for all $n \geq n'$. By $x \in Ces_M$, there exists $k'' \in \mathbb{N}$ such that

$$\sum_{k=k''+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \le \frac{\epsilon}{3}.$$

Choose $k_0 = \max\{k', k''\}$. Then, we have

$$\sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) \le \frac{\epsilon}{3}$$

$$\sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right) \le \delta$$

for all $n \geq n'$. Since $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, then there exists $n'' \in \mathbb{N}$ such that

$$\sum_{k=1}^{k_0} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right) \le \frac{\epsilon}{3}$$

for all $n \ge n''$. Choose $n_0 = \max\{n', n''\}$. Then we have

$$\sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i)| \right) \le \delta$$

$$\sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right) \le \frac{\epsilon}{3}$$

$$\sum_{k=1}^{k_0} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right) \le \frac{\epsilon}{3}$$
(3.18)

for all $n \geq n_0$. Put

$$u = \underbrace{(0,0,...,0}_{k_0}, \sum_{i=1}^{k_0+1} |x(i)|, |x(k_0+2)|, |x(k_0+3)|, ...)$$

$$u_n = \underbrace{(0,0,...,0}_{i=1}, \sum_{i=1}^{k_0+1} |x_n(i)|, |x_n(k_0+2)|, |x_n(k_0+3)|, ...)}_{\bullet}$$

for all $n \in \mathbb{N}$. Then

$$\rho_M(u) = \sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right) \le \frac{\epsilon}{3},$$

$$\rho_M(u_n) = \sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right) \le \delta,$$

and

$$\rho_M(u_n + u) = \sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k (|x_n(i)| + |x(i)|) \right).$$

Hence, we have by (3.11)

$$\sum_{k=k_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k (|x_n(i)| + |x(i)|) \right) < \frac{\epsilon}{3} + \rho_M(u).$$
 (3.19)

By (3.18) and (3.19), we have for $n \ge n_0$,

$$\rho_{M}(x_{n}-x) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i) - x(i)|\right)$$

$$= \sum_{k=1}^{k_{0}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i) - x(i)|\right) + \sum_{k=k_{0}+1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i) - x(i)|\right)$$

$$\leq \frac{\epsilon}{3} + \sum_{k=k_{0}+1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} (|x_{n}(i)| + |x(i)|)\right)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \rho_{M}(u)$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Hence $\rho_M(x_n - x) \to 0$ as $n \to \infty$. By Proposition 3.7, we have that $||x_n - x|| \to 0$ as $n \to \infty$. Therefor Ces_M is LUR.

It is well known that every LUR space has property (H), so the following result is obtained.

Corollary 3.11 If a Musielak-Orlicz function M satisfies the (*)-condition, $M \in \delta_2 \cap \delta_2^*$ and M is strictly convex, then the space Ces_M has the property (H).

Corollary 3.12 Suppose that $p = (p_k)$ is a bounded sequence of positive real numbers with $\inf_{k} p_k > 1$. Then ces(p) is LUR.

Proof. We define the function $M_k: \mathbb{R} \to \mathbb{R}^+$ by $M_k(u) = |u|^{p_k}$ for all $k \in \mathbb{N}$. Thus we have the complementary function N_k of M_k is $N_k(v) = |v|^{q_k}$ where $\frac{1}{q_k} + \frac{1}{p_k} = 1$ for all $k \in \mathbb{N}$. Let $M = (M_k)$ and $N = (N_k)$. Clearly M_k is strictly convex for all $k \in \mathbb{N}$ and $M \in \delta_2$ since (p_k) is bounded. By the condition $\inf_k p_k > 1$, it implies that (q_k) is bounded, hence $N = (N_k) \in \delta_2$. To show that M satisfies the (*)- condition. Let $\epsilon \in (0,1)$ and $M_k(u) < 1 - \epsilon$ for all $k \in \mathbb{N}$. Then $|u|^{p_k} < 1 - \epsilon$ for all $k \in \mathbb{N}$. We choose $\delta \in (0,(\frac{1}{1-\epsilon})^{\frac{1}{K}}-1)$ where $K = \sup p_k$. Hence

$$M_k((1+\delta)u) = |(1+\delta)u|^{p_k} = (1+\delta)^{p_k}|u|^{p_k} < (1+\delta)^{p_k}(1-\epsilon)$$

$$\leq \left(1 + (\frac{1}{1-\epsilon})^{\frac{1}{K}} - 1\right)^K (1-\epsilon) = 1.$$

Therefore M satisfies the (*)-condition. By Theorem 3.11, we conclude that ces(p) is LUR.

Corollary 3.13 Suppose that $p = (p_k)$ is a bounded sequence of positive real numbers with $\inf_k p_k > 1$. Then ces(p) has the property (H).

When $p_k = p > 1$ for all $k \in \mathbb{N}$, we obtain immediatly the following result.

Corollary 3.14[9] For $1 , the Cesàro sequence space <math>ces_p$ is LUR and has property (H).

REFERENCES

- [1] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996).
- [2] Y. A. Cui and M. Chenghui, Banach-sake Property and Property (β) in Cesàro sequence Spaces, Southeast Asian Bulletin of Mathematics, (2000), 201-210.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some local geometry of Oricz Sequence Spaces equipped with the Luxemburg norm, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y. A. Cui, H. Hudzik and P. Ryszard, Banach-Saks Property in some Banach Sequence Spaces, Annales Polonici Mathematici LXV. 2 (1997), 193-202.
- [5] Y. A. Cui, P. Ryszard and W. Tingfu, On Property (β) in Orlicz Spaces, Arch.Math.69 (1997), 57-69.
- [6] Y. A. Cui and H. B. Thompson, On some Geometric Properties in Musielak-Orlicz seuence spaces (Preprinted).
- [7] M. Denker and H. Hudzik, Uniformly non- $l_n^{(1)}$ Musielak-Orlicz sequence spaces Proc. Diestel, Acad. Sci. 101 (2) (1991), 71-86.
- [8] A. Kaminska, Rotundity of Sequence Musielak-Orlicz Spaces, Bull. Polish Acad. Sci. Math. 29 (1981), 137-144.
- [9] Y. Q. Liu, B. E. Wu and Y. Lee, Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (in Chiness).
- [10] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of science, (1989).
- [11] R. E. Megginson, Introduction to Banach space Theory, Springer-Verlag, 1998.
- [12] J. Musielak, Orlicz Spaces and Modular spaces, Lecture Note in Math. No.1034, 1987.
- [13] W. Orlicz, A note on modular spaces, Bull. Acad. Polan. Sci. Sér. Sci. Math. Astronom. Phys. 9(1961), 157-162.
- [14] P. Ryszard, T. Wang and Y. Zhang, H-Property and Denting point in Orlicz Spaces, Annales societatic Mathematicase Polonae (1993), 135-151.
- [15] S. Saejung, Extreme points and Strongly Extreme points in Musielak-Orlicz sequence space equipped with the Luxemburg norm, Master thesis, Graduate school, Chiang Mai University, 2000.

- [16] W. Sanhan, On Geometric properties of some Banach Sequence Spaces, Master thesis, Graduate school, Chiang Mai University, 2000.
- [17] J. S. Shue, On the Cesàro Sequence Spaces, Tamkang J. Math., 1 (1970), 143-150.

SOME GEOMETRIC PROPERTIES OF CESARO SEQUENCE SPACE

WINATE SANHAN* AND SUTHEP SUANTAI

ABSTRACT. In this paper we define a modular on the Cesaro sequence space ces(p) and consider it equipped with the Luxemburg norm. We give some relationships between the modular and the Luxemburg norm on this space and show that the space ces(p) has property (H) but it is not rotund (R), where $p = (p_k)$ is a bounded sequence of positive real number with $p_k \geq 1$ for all $k \in \mathbb{N}$.

1. Introduction. Let (X, ||.||) be a real Banach space, and let B(X) (resp. S(X)) be the closed unit ball (resp. the unit sphere) of X.

A point $x \in S(X)$ is an H-point of B(X) if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x (write $x_n \xrightarrow{\omega} x$) implies that $||x_n - x|| \to 0$ as $n \to \infty$. If every point in S(X) is an H-point of B(X), then X is said to have the property (H).

A point $x \in S(X)$ is an extreme point of B(X), if for any $y, z \in S(X)$ the equality 2x = y + z implies y = z.

A point $x \in S(X)$ is an locally uniformly rotund point of B(X) (LUR-point for short) if for any sequence (x_n) in B(X) such that $||x_n + x|| \to 2$ as $n \to \infty$ there holds $||x_n - x|| \to 0$ as $n \to \infty$.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point of B(X). If every point of S(X) is a LUR-point of B(X), then X is said to be locally uniformly rotund (LUR).

It is known that if X is LUR, then it is (R) and possesses property (H). For these geometric notions and their role in Mathematics we refer to the monographs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3], [7], [8], [9] and [14].

^{*} Supported by The Royal Golden Jubilee Project

Let l^0 be the space of all real sequences. For $1 \leq p < \infty$, the Cesaro sequence space (ces_p) , for short) is defined by

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^n |x(i)|)^p < \infty \}$$

equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)|\right)^{p}\right)^{\frac{1}{p}}$$
$$||x||_{0} = \left(\sum_{r=0}^{\infty} \left(\frac{1}{2r} \sum |x(i)|\right)^{p}\right)^{\frac{1}{p}}$$

and $||x||_0 = (\sum_{r=0}^{\infty} (\frac{1}{2^r} \sum_{r} |x(i)|)^p)^{\frac{1}{p}}$ where \sum_{r} denotes a sum over the ranges $2^r \le i < 2^{r+1}$

It is known that these two norms are equivalent and ces_p is Banach with respect to each of the two norms.

This space was introduced by J.S. Shue [15]. It is useful in the theory of matrix operator and others (see [10] and [12]). Some geometric properties of the Cesáro sequence space $(ces_p, ||.||)$ were studied by many mathematicians. It is known that $(ces_p, \|.\|)$ is LUR and possesses property (H) (see [12]). Y. A. Cui and H. Hudzik [4] proved that $(ces_p, ||.||)$ has the Banach-Saks of type p if p > 1, and it was shown in [5] that $(ces_p, ||.||)$ has property (β) .

Now let $p = (p_k)$ be a bounded sequence of positive real number with $p_k \ge 1$ for all $k \in \mathbb{N}$. The Cesaro sequence space ces(p) is defined by

$$ces(p) = \{x \in l^0 : \sum_{r=0}^{\infty} (\frac{1}{2^r} \sum |x(i)|)^{p_r}$$

where $\sum_{r=0}^{r}$ denotes a sum over the ranges $2^r \le i < 2^{r+1}$.

For $x \in ces(p)$, let $\rho(x) = \sum_{r=0}^{\infty} (\frac{1}{2^r} \sum_{r} |x(i)|)^{p_r})$ and define the Luxemburg norm on ces(p) by

$$\|x\|=\inf\;\{\varepsilon>0: \rho(\frac{x}{\varepsilon})\leq 1\},\quad x\in ces(p).$$

The main purpose of this paper is to show that the Cesaro sequence space ces(p)equipped with the Luxemburg norm has property(H) but it is not rotund, so it is not LUR.

Throughout this paper we let $M = \sup_{r} p_r$, and for $x \in l^0$ we put

$$x|_i = (x(1), x(2), ..., x(i), 0, 0, ...)$$

and

$$x|_{\mathbb{N}-i} = (0, 0, ..., 0, x(i+1), x(i+2), ...).$$

MAIN RESULTS

First, we show that ρ is a convex modular on ces(p).

Proposition 2.1 The functional ρ is a convex modular on ces(p).

Proof. It is obvious that $\rho(x) = 0 \Leftrightarrow x = 0$ and $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$.

Let $\alpha \geq 0, \beta \geq 0$ with $\alpha + \beta = 1$. By the convexity of the function $t \to |t|^{p_r}$ for every $r \in \mathbb{N}$, we have

$$\begin{split} \rho(\alpha x + \beta y) &= \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |\alpha x(i) + \beta y(i)| \right)^{p_r} \\ &\leq \sum_{r=0}^{\infty} \left(\alpha \frac{1}{2^r} \sum_{r} |x(i)| + \beta \frac{1}{2^r} \sum_{r} |y(i)| \right)^{p_r} \\ &\leq \alpha \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |x(i)| \right)^{p_r} + \beta \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |y(i)| \right)^{p_r} \\ &= \alpha \rho(x) + \beta \rho(y). \end{split}$$

Proposition 2.2 For $x \in ces(p)$, the modular ρ on ces(p) satisfies the following properties

- (i) if 0 < a < 1, then $a^M \rho(\frac{x}{a}) \le \rho(x)$ and $\rho(ax) \le a\rho(x)$,
- (ii) if a > 1, then $\rho(x) \leq a^M \rho(\frac{x}{a})$,
- (iii) if $a \ge 1$, then $\rho(x) \le a\rho(x) \le \rho(ax)$.

Proof (i) Let 0 < a < 1. Then we have

$$\rho(x) = \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |x_n| \right)^{p_r}$$

$$= \sum_{r=0}^{\infty} \left(\frac{a}{2^r} \sum_{r} |\frac{x_n}{a}| \right)^{p_r}$$

$$= \sum_{r=0}^{\infty} a^{p_r} \left(\frac{1}{2^r} \sum_{r} |\frac{x_n}{a}| \right)^{p_r}$$

$$\geq \sum_{r=0}^{\infty} a^{M} \left(\frac{1}{2^{r}} \sum_{r} \left| \frac{x_{n}}{a} \right| \right)^{p_{r}}$$

$$= a^{M} \sum_{r=0}^{\infty} \left(\frac{1}{2^{r}} \sum_{r} \left| \frac{x_{n}}{a} \right| \right)^{p_{r}}$$

$$= a^{M} \rho(\frac{x}{a}).$$

By convexity of ρ , we have $\rho(ax) \leq a\rho(x)$, so (i) is obtained

- (ii) is an easy consequence of (i) when a is replaced by $\frac{1}{a}$.
- (iii) follows from the convexity of ρ .

Proprosition 2.3 For any $x \in ces(p)$, we have

(i) if ||x|| < 1, then $\rho(x) \le ||x||$,

(ii) if ||x|| > 1, then $\rho(x) \ge ||x||$,

(iii) ||x|| = 1 if and only if $\rho(x) = 1$,

(iv) ||x|| < 1 if and only if $\rho(x) < 1$ and

(v) ||x|| > 1 if and only if $\rho(x) > 1$.

Proof (i) Let $\varepsilon > 0$ be such that $0 < \varepsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of ||.||, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\rho(\frac{x}{\lambda}) \le 1$. By Proposition 2.2(i) and (iii), we have

$$\rho(x) \le \rho\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right)$$

$$= \rho\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\le (\|x\| + \epsilon)\rho(\frac{x}{\lambda})$$

$$\le \|x\| + \epsilon,$$

which implies that $\rho(x) \leq ||x||$. Hence (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{\|x\| - 1}{\|x\|}$, then $1 < (1 - \epsilon)\|x\| < \|x\|$. By definition of $\|.\|$ and by Proposition 2.2(i), we have $1 < \rho\left(\frac{x}{(1-\epsilon)\|x\|}\right) \le \frac{1}{(1-\epsilon)\|x\|}\rho(x)$, so $(1-\epsilon)\|x\| < \rho(x)$ for all $\epsilon \in (0, \frac{\|x\| - 1}{\|x\|})$, which implies that $\|x\| \le \rho(x)$.

(iii) Assume that ||x|| = 1. Let $\epsilon > 0$, then there exists $\lambda > 0$ such that $1 + \epsilon > \lambda > ||x||$ and $\rho(\frac{x}{\lambda}) \le 1$. By Proposition 2.2(ii), we have $\rho(x) \le \lambda^M \rho(\frac{x}{\lambda}) \le \lambda^M < (1 + \epsilon)^M$, so $(\rho(x))^{\frac{1}{M}} < 1 + \epsilon$ for all $\epsilon > 0$ which implies that $\rho(x) \le 1$.

If $\rho(x) < 1$, let $a \in (0,1)$ such that $\rho(x) < a^M < 1$. From Proposition 2.2(i), we have $\rho(\frac{x}{a}) \le \frac{1}{a^M} \rho(x) < 1$, hence $||x|| \le a < 1$, which is a contradiction. Thus, we have $\rho(x) = 1$.

Conversely, assume that $\rho(x) = 1$. By definition of $\|.\|$, we conclude that $\|x\| \le 1$. If $\|x\| < 1$, then we have by (i) that $\rho(x) \le \|x\| < 1$, which contradicts to our assumption, so we obtain that $\|x\| = 1$.

- (iv) follows from (i) and (iii).
- (v) follows from (iii) and (iv).

Proposition 2.4 For $x \in ces(p)$ we have

- (i) if 0 < a < 1 and ||x|| > a, then $\rho(x) > a^M$ and
- (ii) if $a \ge 1$ and ||x|| < a, then $\rho(x) < a^M$.

Proof. (i) Suppose 0 < a < 1 and ||x|| > a. Then $\left|\left|\frac{x}{a}\right|\right| > 1$. By Proposition 2.3(ii), we have $\rho\left(\frac{x}{a}\right) > 1$. Hence, by Proposition 2.2(i), we obtain that $\rho(x) \ge a^M \rho\left(\frac{x}{a}\right) > a^M$.

(ii) Suppose $a \ge 1$ and ||x|| < a. Then $\left\|\frac{x}{a}\right\| < 1$. By Proposition 2.3(i), we have $\rho(\frac{x}{a}) < 1$. If a = 1, we have $\rho(x) < 1 = a^M$. If a > 1, by Proposition 2.2(ii), we obtain that $\rho(x) < a^M \rho(\frac{x}{a}) < a^M$.

Proprosition 2.5 Let (x_n) be a sequence in ces(p).

- (i) If $\lim_{n\to\infty} ||x_n|| = 1$, then $\lim_{n\to\infty} \rho(x_n) = 1$.
- (ii) If $\lim_{n\to\infty} \rho(x_n) = 0$ then $\lim_{n\to\infty} ||x_n|| = 0$.

Proof. (i) Suppose $\lim_{n\to\infty} ||x_n|| = 1$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1-\epsilon < ||x_n|| < 1+\epsilon$ for all $n \ge \mathbb{N}$. By Proposition 2.4, $(1-\epsilon)^M < \rho(x_n) < (1+\epsilon)^M$ for all $n \ge \mathbb{N}$, which implies that $\lim_{n\to\infty} \rho(x_n) = 1$.

(ii) Suppose $||x_n|| \not\to 0$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.4 (i), we obtain $\rho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\rho(x_n) \not\to 0$ as $n \to \infty$.

Lemma 2.6 Let (x_n) be a sequence in ces(p). If $\rho(x_n) \to \rho(x)$ and $x_n(k) \to x(k) \ \forall k$, then $x_n \to x$ as $n \to \infty$.

Proof Suppose that $x_n \not\to x$. By Proposition 2.5 (ii), we have $\rho(\frac{x_n-x}{2}) \not\to 0$. Without loss of generality we may assume that there exists $\epsilon \in (0,1)$ such that $\rho(\frac{x_n-x}{2}) > \epsilon$ for all $n \in \mathbb{N}$. Since $(\rho(\frac{x_n-x}{2}))_{n=1}^{\infty}$ is a bounded sequence, it must have a convergent subsequence. Passing through a subsequence, if necessary we can assume $\rho(\frac{x_n-x}{2}) \to \epsilon_0$ for some $\epsilon_0 \ge \epsilon$. Since $\rho(x) = \lim_{i \to \infty} \rho(x|_{2^i})$ and $(\rho(x|_{2^i}))_{i=0}^{\infty}$ is nondecreasing, we have $\rho(x) = \sup\{\rho(x|_{2^i}) : i \in \mathbb{N}\}$. So there exists $i \in \mathbb{N}$ such that $\rho(x|_{2^i}) > \rho(x) - \epsilon/2$. Thus

$$\rho(x|_{\mathbb{N}-2^i}) < \epsilon/2. \tag{2.1}$$

Since $x_n(k) \to x(k)$ for all $k \in \mathbb{N}$, we have

$$\rho(x_n|_{2^i}) \to \rho(x|_{2^i}) \text{ and } \rho(\frac{x_n - x}{2}|_{2^i}) \to 0 \text{ as } n \to \infty.$$
 (2.2)

By the convexity of ρ together with (2.1) and (2.2), we have

$$\varepsilon_{0} = \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2})
= \lim_{n \to \infty} \left[\rho(\frac{x_{n} - x}{2}|_{2^{i}}) + \rho(\frac{x_{n} - x}{2}|_{\mathbb{N}-2^{i}}) \right]
= \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2}|_{2^{i}}) + \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2}|_{\mathbb{N}-2^{i}})
= 0 + \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2}|_{\mathbb{N}-2^{i}})
\leq \frac{1}{2} \lim_{n \to \infty} \rho(x_{n}|_{\mathbb{N}-2^{i}}) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \frac{1}{2} \lim_{n \to \infty} (\rho(x_{n}) - \rho(x_{n}|_{2^{i}})) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \frac{1}{2} (\rho(x) - \rho(x|_{2^{i}})) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \frac{1}{2} \rho(x|_{\mathbb{N}-2^{i}}) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \rho(x|_{\mathbb{N}-2^{i}})
< \epsilon/2
< \epsilon_{0},$$

which is a contradiction. Therefore $x_n \to x$ as $n \to \infty$.

Theorem 2.7 The space ces(p) has the property (H).

Proof. Let $x \in S(ces(p))$, $x_n \in B(ces(p))$ for all $n \in \mathbb{N}$ such that $x_n \xrightarrow{\omega} x$ and $||x_n|| \to 1$ as $n \to \infty$. By Proposition 2.3(iii), we have $\rho(x) = 1$. By Proposition 2.5(i), we obtain that $\rho(x_n) \to 1$ as $n \to \infty$. So $\rho(x_n) \to \rho(x)$ as $n \to \infty$. Since $x_n \xrightarrow{\omega} x$ and the i^{th} coordinate mapping $p_i : ces(p) \to \mathbb{R}$, defined by $p_i(x) = x_i$, is continuous, it implies that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. It follows from Lemma 2.6 that $x_n \to x$ as $n \to \infty$.

The following result is obtained directly from Theorem 2.7.

Corollary 2.8 For $1 \le p < \infty$, $(ces_p, ||.||_0)$ has property (H)

Remark 2.9 For a bounded sequence of positive real numbers $p = (p_k)$ with $p_k \ge 1$ for all $k \in \mathbb{N}$, the space ces(p) equipped the Luxemburg norm is not rotund, so it is not LUR.

To see this we put

$$x = (0, 1, 1, 0, 0,)$$
 and $y = (0, 2, 0, 0, ...)$

Then $x, y \in S(ces(p))$ because $\rho(x) = \rho(y) = 1$. Since $\rho(\frac{x+y}{2}) = 1$, we have by Proposition 2.3 (iii) that $\|\frac{x+y}{2}\| = 1$. This shows that ces(p) is not rotund, so it is not LUR.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support .

References

- [1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [5] Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesaro sequence spaces, SEA. Bull. Math. 24 (2000), 201-210.
- [6] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515.
- [8] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull 35 (1992), 1 5.
- [9] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [10]P. Y. Lee, Cesáro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [11]B.L. Lin, P. K. Lin and S. L. Troyanski, Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
- [12]Y. Q. Liu, B. E. Wu and Y. P. Lee, *Method of sequence spaces*, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [13]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [15]J. S. Shue, Cesáro sequence spaces, Tamkang J. Math 1 (1970), 143-150.

Winate Sanhan and Suthep Suantai
Department of Mathematics, Chiang Mai University, 50200, Thailand
malsuthe@science.cmu.ac.th

On the H-Property of Some Banach Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we define a generalized Cesáro sequence space ces(p) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces(p) posses property (H) and property (G), and it is rotund, where $p=(p_k)$ is a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$.

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \stackrel{w}{\to} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$;
 - c) a denting point if for every $\epsilon > 0$, $x_0 \notin \overline{conv}\{B(X) \setminus (x_0 + \epsilon B(X))\}$.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point.

A Banach space X is said to posses Property (H) (Property (G)) provided every ponit of S(X) is H-point (denting point).

Typeset by AMS-TFX

For these geometric notions and their role in Mathematics we refer to the monographs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3],[7],[8],[9] and [14].

Let us denote by l^0 the space of all real sequences. For $1 \le p < \infty$, the Cesáro sequence space $(ces_p, for short)$ is defined by

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^p < \infty \}$$

equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{i=1}^{n} |x(i)|\right)^{p}\right)^{\frac{1}{p}}$$

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix operator and others (see [10] and [12]). Some geometric properties of the Cesáro sequence space ces_p were studied by many mathematicians. It is known that ces_p is LUR and posses property (H) (see [12]). Y. A. Cui and H. Hudzik [4] proved that ces_p has the Banach-Saks of type p if p > 1, and it was shown in [5] that ces_p has property (β).

Now, let $p = (p_k)$ be a sequence of positive real numbers with $p_k \geq 1$ for all $k \in \mathbb{N}$. The Nakano sequence space l(p) is defined by

$$l(p) = \{x \in l^0 : \sigma(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where $\sigma(x) = \sum_{i=1}^{\infty} |x(i)|^{p_i}$. We consider the space l(p) equipped with the norm

$$||x|| = \inf\{\lambda > 0 : \sigma(\frac{x}{\lambda}) \le 1\},$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$l(p) = \{x \in l^0 : \sum_{i=1}^{\infty} |x(i)|^{p_i} < \infty\}.$$

Several geometric properties of l(p) were studied in [1] and [4].

The Cesáro sequence space ces(p) is defined by

$$ces(p) = \{x \in l^0 : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where $\varrho(x) = \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n}$. We consider the space ces(p) equipped with the so-called Luxemburg norm

$$\|x\|=\inf\{\lambda>0:\rho(\frac{x}{\lambda})\leq 1\}$$

under which it is a Banach space. If $p = (p_k)$ is bounded, then we have

$$ces(p) = \{x = x(i) : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n} < \infty \}.$$

W. Sanhan [15] proved that ces(p) is nonsquare when $p_k > 1$ for all $k \in \mathbb{N}$. In this paper, we show that the Cesáro sequence space ces(p) equipped with the Luxemburg norm is rotund (R) and posses property (H) and property (G) when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Throughout this paper we assume that $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$, and $M = \sup_k p_k$.

2. Main Results

We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1 The functional ϱ on the Cesaro sequence space ces(p) is a convex modular.

Proof. It is obvious that $\varrho(x) = 0 \Leftrightarrow x = 0$ and $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$. If $x, y \in ces(p)$ and $\alpha \geq 0$, $\beta \geq 0$ with $\alpha + \beta = 1$, by the convexity of the function $t \to |t|^{p_k}$ for every $k \in \mathbb{N}$, we have

$$\begin{split} \varrho(\alpha x + \beta y) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i) + \beta y(i)| \right)^{p_k} \\ &\leq \sum_{k=1}^{\infty} \left(\alpha \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \beta \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right) \right)^{p_k} \\ &\leq \alpha \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} + \beta \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right)^{p_k} \\ &= \alpha \varrho(x) + \beta \varrho(y). \end{split}$$

Proposition 2.2 For $x \in ces(p)$, the modular ϱ on ces(p) satisfies the following properties:

(i) if
$$0 < a < 1$$
, then $a^M \varrho(\frac{x}{a}) \le \varrho(x)$ and $\varrho(ax) \le a\varrho(x)$,
(ii) if $a \ge 1$, then $\varrho(x) \le a^M \varrho(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\varrho(x) \le a\varrho(x) \le \varrho(ax)$.

Proof. It is obvious that (iii) is satisfied by the convexity of ϱ . It remains to prove (i) and (ii).

For 0 < a < 1, we have

$$\begin{split} \varrho(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} \\ &= \sum_{k=1}^{\infty} \left(\frac{a}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k} \\ &= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k} \\ &\geq \sum_{k=1}^{\infty} a^M \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k} \\ &= a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k} \\ &= a^M \varrho(\frac{x}{a}), \end{split}$$

and it implies by the convexity of ϱ that $\varrho(ax) \leq a\varrho(x)$, hence (i) is satisfied.

Now, suppose that $a \geq 1$. Then we have

$$\begin{split} \varrho(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} \\ &= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &\leq a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &= a^M \varrho(\frac{x}{a}). \end{split}$$

So (ii) is obtained.

Next, we give some relationships between the modular ϱ and the Luxemburg norm on ces(p).

Proposition 2.3 For any $x \in ces(p)$, we have

- (i) if ||x|| < 1, then $\varrho(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\varrho(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\varrho(x) = 1$,
- (iv) ||x|| < 1 if and only if $\varrho(x) < 1$,
- (v) ||x|| > 1 if and only if $\varrho(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\varrho(x) > a^M$, and
- (vii) if $a \ge 1$ and ||x|| < a, then $\varrho(x) < a^M$.

Proof. (i) Let $\varepsilon > 0$ be such that $0 < \varepsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of ||.||, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\varrho(\frac{x}{\lambda}) \le 1$. From Proposition 2.2(i) and (iii), we have

$$\varrho(x) \le \varrho\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right)$$

$$= \varrho\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\le (\|x\| + \epsilon)\varrho(\frac{x}{\lambda})$$

$$\le \|x\| + \epsilon,$$

which implies that $\varrho(x) \leq ||x||$, so (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{\|x\| - 1}{\|x\|}$, then $1 < (1 - \epsilon)\|x\| < \|x\|$. By definition of $\|.\|$ and by Proposition 2.2 (i), we have

$$1 < \varrho\left(\frac{x}{(1-\epsilon)\|x\|}\right)$$

$$\leq \frac{1}{(1-\epsilon)\|x\|}\varrho(x),$$

so $(1 - \epsilon)||x|| < \varrho(x)$ for all $\epsilon \in (0, \frac{||x|| - 1}{||x||})$. This implies that $||x|| \le \varrho(x)$, hence (ii) is obtained.

(iii) Assume that $\|x\|=1$. By definition of $\|x\|$, we have that for $\epsilon>0$, there exists $\lambda>0$ such that $1+\epsilon>\lambda>\|x\|$ and $\varrho(\frac{x}{\lambda})\leq 1$. From Proposition 2.2(ii), we have $\varrho(x)\leq \lambda^M\varrho(\frac{x}{\lambda})\leq \lambda^M<(1+\epsilon)^M$, so $(\varrho(x))^{\frac{1}{M}}<1+\epsilon$ for all $\epsilon>0$, which implies $\varrho(x)\leq 1$. If $\varrho(x)<1$, then we can choose $a\in(0,1)$ such that $\varrho(x)< a^M<1$. From Proposition 2.2(i), we have $\varrho(\frac{x}{a})\leq \frac{1}{a^M}\varrho(x)<1$, hence $\|x\|\leq a<1$, which is a contradiction. Therefore $\varrho(x)=1$.

On the other hand , assume that $\varrho(x)=1$. Then $||x||\leq 1$. If ||x||<1 , we have by (i) that $\varrho(x)\leq ||x||<1$, which contradicts our assumption. Therefore ||x||=1.

- (iv) follows directly from (i) and (iii).
- (v) follows from (iii) and (iv).
- (vi) Suppose 0 < a < 1 and ||x|| > a. Then $\left\| \frac{x}{a} \right\| > 1$. By (v), we have $\varrho(\frac{x}{a}) > 1$. Hence, by Proposition 2.2(i), we obtain that $\varrho(x) \ge a^M \varrho(\frac{x}{a}) > a^M$.
- (vii) Suppose $a \ge 1$ and ||x|| < a. Then $\left\| \frac{x}{a} \right\| < 1$. By (iv), we have $\varrho(\frac{x}{a}) < 1$. If a = 1, it is obvious that $\varrho(x) < 1 = a^M$. If a > 1, then , by Proposition 2.2(ii), we obtain that $\varrho(x) \le a^M \varrho(\frac{x}{a}) < a^M$.

Proposition 2.4 Let (x_n) be a sequence in ces(p).

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho(x_n) \to 1$ as $n \to \infty$.
- (ii) If $\varrho(x_n) \to 0$ as $n \to \infty$, then $||x_n|| \to 0$ as $n \to \infty$.

Proof. (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.3 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho(x_n) \to 1$ as $n \to \infty$.

(ii) Suppose $||x_n|| \not\to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.3 (vi), we have $\varrho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho(x_n) \not\to 0$ as $n \to \infty$.

Next, we shall show that ces(p) has the property (H). To do this, we need a lemma.

Lemma 2.5 Let $x \in ces(p)$ and $(x_n) \subseteq ces(p)$. If $\varrho(x_n) \to \rho(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, then $x_n \to x$ as $n \to \infty$.

Proof. Let $\epsilon > 0$ be given. Since $\rho(x) = \sum_{k=1}^{\infty} (\frac{1}{k} \sum_{i=1}^{k} |x(i)|)^{p_k} < \infty$, there is $k_0 \in \mathbb{N}$ such that

$$\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} < \frac{\epsilon}{3} \frac{1}{2^{M+1}}. \tag{2.1}$$

Since $\rho(x_n) - \sum_{k=1}^{k_0} (\frac{1}{k} \sum_{i=1}^k |x_n(i)|)^{p_k} \to \rho(x) - \sum_{k=1}^{k_0} (\frac{1}{k} \sum_{i=1}^k |x_i(i)|)^{p_k}$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, there is $n_0 \in \mathbb{N}$ such that

$$\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} < \varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M}$$
 (2.2)

for all $n \geq n_0$, and

$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} < \frac{\epsilon}{3}.$$
 (2.3)

for all $n \geq n_0$.

It follows from (2.1), (2.2) and (2.3) that for $n \geq n_0$,

$$\begin{split} \varrho(x_n - x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &= \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &< \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &< \frac{\epsilon}{3} + 2^M \left(\varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(2 \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} \right) \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

This show that $\varrho(x_n-x)\to 0$ as $n\to\infty$. Hence, by Proposition 2.4 (ii), we have $||x_n-x||\to 0$ as $n\to\infty$.

Theorem 2.6 The space ces(p) has the property (H).

Proof. Let $x \in S(ces(p))$ and $(x_n) \subseteq ces(p)$ such that $||x_n|| \to 1$ and $x_n \stackrel{w}{\to} x$ as $n \to \infty$. From Proposition 2.3 (iii), we have $\varrho(x) = 1$, so it follows from Proposition 2.4 (i) that $\varrho(x_n) \to \varrho(x)$ as $n \to \infty$. Since the mapping $p_i : ces(p) \to \mathbb{R}$, defined by $p_i(y) = y(i)$, is a continuous linear functional on ces(p), it follows that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. Thus, we obtain by Lemma 2.5 that $x_n \to x$ as $n \to \infty$. Theorem 2.7 The space ces(p) is rotund.

Proof. Let $x \in S(ces(p))$ and $y, z \in B(ces(p))$ with $x = \frac{y+z}{2}$. By Proposition 2.3 and the convexity of ϱ we have

$$1 = \varrho(x) \le \frac{1}{2}(\varrho(y) + \varrho(z)) \le \frac{1}{2}(1+1) = 1$$
,

so that $\varrho(x) = \frac{1}{2}(\varrho(y) + \varrho(z)) = 1$. This implies that

$$\left(\frac{1}{k}\sum_{i=1}^{k}\left|\frac{y(i)+z(i)}{2}\right|\right)^{p_k} = \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right|\right)^{p_k} + \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|\right)^{p_k}$$
(2.4)

for all $k \in \mathbb{N}$.

We shall show that y(i) = z(i) for all $i \in \mathbb{N}$.

From (2.4), we have

$$|x(1)|^{p_1} = \left| \frac{y(1) + z(1)}{2} \right|^{p_1} = \frac{1}{2} (|y(1)|^{p_1} + |z(1)|^{p_1}). \tag{2.5}$$

Since the mapping $t \to |t|^{p_1}$ is strictly convex, it implies by (2.5) that y(1) = z(1).

Now assume that y(i) = z(i) for all i = 1, 2, 3, ..., k - 1. Then y(i) = z(i) = x(i) for all i = 1, 2, 3, ..., k - 1. From (2.4), we have

$$\left(\frac{1}{k}\sum_{i=1}^{k}\left|\frac{y(i)+z(i)}{2}\right|\right)^{p_{k}} = \left(\frac{\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right|+\frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|}{2}\right)^{p_{k}} \\
= \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right|\right)^{p_{k}} + \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|\right)^{p_{k}} \tag{2.6}$$

By convexity of the mapping $t \to |t|^{p_k}$, it implies that $\frac{1}{k} \sum_{i=1}^k |y(i)| = \frac{1}{k} \sum_{i=1}^k |z(i)|$. Since y(i) = z(i) for all i = 1, 2, 3, ..., k-1, we get that

$$|y(k)| = |z(k)|.$$
 (2.7)

If y(k) = 0, then we have z(k) = y(k) = 0. Suppose that $y(k) \neq 0$. Then $z(k) \neq 0$. If y(k)z(k) < 0, it follows from (2.7) that y(k) + z(k) = 0. This implies by

(2.6) and (2.7) that

$$\left(\frac{1}{k}\sum_{i=1}^{k-1}|x(i)|\right)^{p_k} = \left(\frac{1}{k}\left(\sum_{i=1}^{k-1}|x(i)|+|y(k)|\right)\right)^{p_k} \ ,$$

which is a contradiction. Thus, we have y(k)z(k) > 0. This implies by (2.5) that y(k) = z(k). Thus, we have by induction that y(i) = z(i) for all $i \in \mathbb{N}$, so y = z.

Bor-Luh Lin, Pei-Kee Lin and S.L. Troyanski proved (cf. Theorem iii [11]) that element x in a bounded closed convex set K of a Banach space is a denting point of K iff x is an H-point of K and x is an extreme point of K. Combining this result with our results (Theorem 2.6 and Theorem 2.7), we obtain the following result.

Corollary 2.8 The space ces(p) has the property (G).

For $1 < r < \infty$, let $p = (p_k)$ with $p_k = r$ for all $k \in \mathbb{N}$. We have that $ces_r = ces(p)$, so the following results are obtained directly from Theorem 2.6, Theorem 2.7 and Corollary 2.8, respectively.

Corollary 2.9 For $1 < r < \infty$, the Cesáro sequence space ces_r has the property (H). Corollary 2.10 For $1 < r < \infty$, the Cesáro sequence space ces_r is rotund. Corollary 2.11 For $1 < r < \infty$, the Cesáro sequence space ces_r has the property (G).

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support .

References

- [1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [5] Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesaro sequence spaces, SEA. Bull. Math. 24 (2000), 201-210.
- [6] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515.
- [8] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull **35** (1992), 1 5.
- [9] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [10]P. Y. Lee, Cesáro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [11]B.L. Lin, P. K. Lin and S. L. Troyanski, Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
- [12]Y. Q. Liu, B. E. Wu and Y. P. Lee, *Method of sequence spaces*, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [13]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [15] W. Sanhan, On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
- [16]J. S. Shue, Cesáro sequence spaces, Tamkang J. Math 1 (1970), 143-150.

On Some Convexity Properties of Generalized Cesáro Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we define a generalized Cesáro sequence space ces(p) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces(p) is locally uniformly rotund (LUR), where $p=(p_k)$ is a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$.

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) a locally uniformly rotund point (LUR-point for short)if for any sequence (x_n) in B(X) such that $||x_n + x|| \to 2$ as $n \to \infty$ there holds $||x_n x|| \to 0$ as $n \to \infty$;
- c) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \stackrel{w}{\to} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$;
 - d) a denting point if for every $\epsilon > 0$, $x_0 \notin \overline{conv}\{B(X) \setminus (x_0 + \epsilon B(X))\}$.

A Banach space X is said to be *rotund* (R), if every point of S(X) is an extreme point.

Typeset by AMS-TEX

If every $x \in S(X)$ is a LUR-point, then X is said to be *locally uniformly rotund* (LUR).

X is said to posses Property (H) (Property (G)) provided every point of S(X) is H-point (denting point).

For these geometric notions and their role in Mathematics we refer to the monographs [1], [6], [12] and [13]. Some of them were studied for Orlicz spaces in [1], [7], [8], [12] and [14].

Let X be a real vector space. A functional $\varrho: X \to [0, \infty]$ is called a *modular* if it satisfies the conditions

- (i) $\varrho(x) = 0$ if and only if x = 0;
- (ii) $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$;
- (iii) $\varrho(\alpha x + \beta y) \leq \varrho(x) + \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. The modular ϱ is called *convex* if
 - (iv) $\varrho(\alpha x + \beta y) \leq \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. If ϱ is a modular in X, we define

$$X_{\varrho} = \{x \in X: \lim_{\lambda \to 0^+} \varrho(\lambda x) = 0 \ \}$$
 and
$$X_{\varrho}^* = \{x \in X: \varrho(\lambda x) < \infty \text{ for some } \lambda > 0 \ \}.$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^{*}$. If ϱ is a convex modular, we define

$$||x|| = \inf\{\lambda > 0: \varrho\left(\frac{x}{\lambda}\right) \le 1\}$$
 (1.1)

Orlicz [13] proved that if ϱ is a convex modular in X, then $X_{\varrho} = X_{\varrho}^*$ and $\|.\|$ is a norm on X_{ϱ} for which it is a Banach space. The norm $\|.\|$ defined as in (1.1) is called the Luxemburg norm.

A modular ϱ on X is called

- (a) right-continuous if $\lim_{\lambda \to 1^+} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$
- (b) left-continuous if $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$
- (c) cotinuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular ϱ and the Luxemburg norm ||.|| on X_{ϱ} .

Theorem 1.1 Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and (x-n) a sequence in X_{ϱ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\varrho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Proof. See [11, Theorem 1.3].

Theorem 1.2 Let ϱ be a convex modular on X. Then

- (i) ||x|| < 1 if and only if $\varrho(x) < 1$.
- (ii) $||x|| \le 1$ if and only if $\varrho(x) \le 1$.
- (iii) ||x|| = 1 if and only if $\varrho(x) = 1$.

Proof. See [11, Theorem 1.4].

Let us denote by l^0 the space of all real sequences. For $1 \le p < \infty$, the Cesáro sequence space $(ces_p, for short)$ is defined by

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^p < \infty \}$$

equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)|\right)^{p}\right)^{\frac{1}{p}}$$

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix operator and others (see [9] and [10]). Some geometric properties of the Cesáro sequence space ces_p were studied by many mathematicians. It is known that ces_p is LUR and posses property (H) (see [10]). Y. A. Cui and H. Hudzik [2] proved that ces_p has the Banach-Saks of type p if p > 1, and it was shown in [5] that ces_p has property (β).

Now, let $p=(p_k)$ be a sequence of positive real numbers with $p_k \geq 1$ for all $k \in \mathbb{N}$. The Nakano sequence space l(p) is defined by

$$l(p) = \{x \in l^0 : \sigma(\lambda x) < \infty \text{ for some } \lambda > 0\},\$$

where $\sigma(x) = \sum_{i=1}^{\infty} |x(i)|^{p_i}$. We consider the space l(p) equipped with the norm

$$||x|| = \inf\{\lambda > 0 : \sigma(\frac{x}{\lambda}) \le 1\},$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$l(p) = \{x \in l^0 : \sum_{i=1}^{\infty} |x(i)|^{p_i} < \infty\}.$$

Several geometric properties of l(p) were studied in [1] and [4].

The Cesáro sequence space ces(p) is defined by

$$ces(p) = \{x \in l^0 : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0\},\$$

where $\varrho(x) = \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n}$. We consider this space equipped with the so-called Luxemburg norm

$$||x|| = \inf\{\lambda > 0 : \rho(\frac{x}{\lambda}) \le 1\}$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$ces(p) = \{x = x(i) : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n} < \infty\}.$$

W. Sanhan [15] proved that ces(p) is nonsquare when $p_k > 1$ for all $k \in \mathbb{N}$. In this paper, we show that the Cesáro sequence space ces(p) equipped with the Luxemburg norm is LUR and posses property (H) and property (G) when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Throughout this paper we assume that $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$, and $M = \sup_k p_k$.

2. Main Results

We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1 The functional ϱ on the Cesaro sequence space ces(p) is a convex modular.

Proof. It is obvious that $\varrho(x) = 0 \Leftrightarrow x = 0$ and $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$. If $x, y \in ces(p)$ and $\alpha \geq 0$, $\beta \geq 0$ with $\alpha + \beta = 1$, by the convexity of the

function $t \to |t|^{p_k}$ for every $k \in \mathbb{N}$, we have

$$\begin{split} \varrho(\alpha x + \beta y) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i) + \beta y(i)| \right)^{p_k} \\ &\leq \sum_{k=1}^{\infty} \left(\alpha \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \beta \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right) \right)^{p_k} \\ &\leq \alpha \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} + \beta \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right)^{p_k} \\ &= \alpha \varrho(x) + \beta \varrho(y). \end{split}$$

Proposition 2.2 For $x \in ces(p)$, the modular ϱ on ces(p) satisfies the following properties:

(i) if
$$0 < a < 1$$
, then $a^M \varrho(\frac{x}{a}) \le \varrho(x)$ and $\varrho(ax) \le a\varrho(x)$,
(ii) if $a \ge 1$, then $\varrho(x) \le a^M \varrho(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\varrho(x) \le a\varrho(x) \le \varrho(ax)$.

Proof. It is obvious that (iii) is satisfied by the convexity of ϱ . It remains to prove (i) and (ii).

For 0 < a < 1, we have

$$\varrho(x) = \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k}$$

$$= \sum_{k=1}^{\infty} \left(\frac{a}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k}$$

$$= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k}$$

$$\geq \sum_{k=1}^{\infty} a^M \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}| \right)^{p_k}$$

$$= a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x(i)}{a} \right| \right)^{p_k}$$
$$= a^M \varrho(\frac{x}{a}),$$

and it implies by the convexity of ϱ that $\varrho(ax) \leq a\varrho(x)$, hence (i) is satisfied. Now, suppose that $a \geq 1$. Then we have

$$\varrho(x) = \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} \\
= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\
\leq a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\
= a^M \varrho(\frac{x}{a}).$$

So (ii) is obtained.

Proposition 2.3 The modular ϱ on ces(p) is continuous.

Proof. For $\lambda > 1$, by Proposition 2.2 (ii) and (iii), we have

$$\varrho(x) \le \lambda \varrho(x) \le \varrho(\lambda x) \le \lambda^M \varrho(x)$$
 (2.1)

By taking $\lambda \to 1^+$ in (2.1), we have $\lim_{\lambda \to 1^+} \varrho(\lambda x) = \varrho(x)$. Thus ϱ is right-continuous. If $0 < \lambda < 1$, by Proposition 2.2 (i), we have

$$\lambda^{M} \varrho(x) \le \varrho(\lambda x) \le \lambda \varrho(x) \tag{2.2}$$

By taking $\lambda \to 1^-$ in (2.2), we have that $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$, hence, ϱ is left-continuous. Thus ϱ is continuous.

Next, we give some relationships between the modular ϱ and the Luxemburg norm on ces(p).

Proposition 2.4 For any $x \in ces(p)$, we have

(i) if
$$||x|| < 1$$
, then $\varrho(x) \le ||x||$,

(ii) if
$$||x|| > 1$$
, then $\varrho(x) \ge ||x||$,

(iii)
$$||x|| = 1$$
 if and only if $\varrho(x) = 1$,

(iv)
$$||x|| < 1$$
 if and only if $\varrho(x) < 1$,

(v)
$$||x|| > 1$$
 if and only if $\varrho(x) > 1$,

(vi) if
$$0 < a < 1$$
 and $||x|| > a$, then $\varrho(x) > a^M$, and

(vii) if
$$a \ge 1$$
 and $||x|| < a$, then $\varrho(x) < a^M$.

Proof. (i) Let $\varepsilon > 0$ be such that $0 < \varepsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of ||.||, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\varrho(\frac{x}{\lambda}) \le 1$. From Proposition 2.2(i) and (iii), we have

$$\varrho(x) \le \varrho\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right)$$

$$= \varrho\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\le (\|x\| + \epsilon)\varrho(\frac{x}{\lambda})$$

$$\le \|x\| + \epsilon,$$

which implies that $\varrho(x) \leq ||x||$, so (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{||x|| - 1}{||x||}$, then $1 < (1 - \epsilon)||x|| < ||x||$. By definition of ||.|| and by Proposition 2.2 (i), we have

$$1 < \varrho\left(\frac{x}{(1-\epsilon)||x||}\right)$$

$$\leq \frac{1}{(1-\epsilon)||x||}\varrho(x),$$

so $(1 - \epsilon)||x|| < \varrho(x)$ for all $\epsilon \in (0, \frac{||x|| - 1}{||x||})$. This implies that $||x|| \le \varrho(x)$, hence (ii) is obtained.

- (iii) and (iv) follow directly from Theorem 1.2.
- (iv) follows directly from (i) and (iii).
- (v) follows from (iii) and (iv).
- (vi) Suppose 0 < a < 1 and ||x|| > a. Then $\left\| \frac{x}{a} \right\| > 1$. By (v), we have $\varrho\left(\frac{x}{a}\right) > 1$. Hence, by Proposition 2.2(i), we obtain that $\varrho(x) \ge a^M \varrho\left(\frac{x}{a}\right) > a^M$.

(vii) Suppose $a \ge 1$ and ||x|| < a. Then $\left\| \frac{x}{a} \right\| < 1$. By (iv), we have $\varrho(\frac{x}{a}) < 1$. If a = 1, it is obvious that $\varrho(x) < 1 = a^M$. If a > 1, then , by Proposition 2.2(ii), we obtain that $\varrho(x) \le a^M \varrho(\frac{x}{a}) < a^M$.

Proposition 2.5 Let (x_n) be a sequence in ces(p).

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho(x_n) \to 1$ as $n \to \infty$.
- (ii) $||x_n|| \to 0$ as $n \to \infty$ if and only if $\varrho(x_n) \to 0$ as $n \to \infty$.

Proof. (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.4 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho(x_n) \to 1$ as $n \to \infty$. (ii) The only part of (ii) is true by Theorem 1.1, so we need to show only the if part of (ii). Suppose $||x_n|| \not\to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.4 (vi), we have $\varrho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho(x_n) \not\to 0$ as $n \to \infty$.

Proposition 2.6 Let $(x_n) \subseteq B(l(p))$ and $(y_n) \subseteq B(l(p))$. If $\sigma(\frac{x_n + y_n}{2}) \to 1$, then $x_n(i) - y_n(i) \to 0$ as $n \to \infty$ for all $i \in \mathbb{N}$.

Proof. We first note that if $x \in B(\ell(p), \text{ then } \sigma(x) \leq 1$. Supose that $x_n(i) - y(i) \neq 0$ as $n \to \infty$ for some $i \in \mathbb{N}$. Without loss of generality we may assume that i = 1, and then assume that, for some $\epsilon > 0$,

$$|x_n(1) - y_n(1)|^{p_1} \ge \epsilon \ \forall n \in \mathbb{N}$$

Thus

$$2^{p_1}(|x_n(1)|^{p_1} + |y_n(1)|^{p_1}) \ge \epsilon \ \forall n \in \mathbb{N}.$$
(2.3)

Since the function $t \to |t|^{p_1}$ is uniformly convex, there exists $\delta > 0$ such that

$$\left|\frac{x_n(1) + y_n(1)}{2}\right|^{p_1} \le (1 - \delta) \left(\frac{|x_n(1)|^{p_1} + |y_n(1)|^{p_1}}{2}\right) \quad \forall n \in \mathbb{N}.$$
 (2.4)

It follows from (2.3) and (2.4) that for each $n \in \mathbb{N}$,

$$\sigma(\frac{x_n + y_n}{2}) = \sum_{i=1}^{\infty} \left| \frac{x_n(i) + y_n(i)}{2} \right|^{p_i}$$

$$= \left| \frac{x_n(1) + y_n(1)}{2} \right|^{p_1} + \sum_{i=2}^{\infty} \left| \frac{x_n(i) + y_n(i)}{2} \right|^{p_i}$$

$$\leq (1 - \delta) \left(\frac{|x_n(1)|^{p_1} + |y_n(1)|^{p_1}}{2} \right) + \frac{1}{2} \sum_{i=2}^{\infty} |x_n(i)|^{p_i} + \frac{1}{2} \sum_{i=2}^{\infty} |y_n(i)|^{p_i}$$

$$= \frac{1}{2} \sigma(x_n) + \frac{1}{2} \sigma(y_n) - \delta \left(\frac{|x_n(1)|^{p_1} + |y_n(1)|^{p_1}}{2} \right)$$

$$\leq \frac{1}{2} + \frac{1}{2} - \delta \frac{\epsilon}{2^{p_1+1}}$$

$$= 1 - \delta \frac{\epsilon}{2^{p_1+1}}.$$

This implies that $\sigma(\frac{x_n + y_n}{2}) \not\to 1$ as $n \to \infty$.

Proposition 2.7 Let $(x_n) \subseteq B(ces(p))$ and $x \in S(ces(p))$. If $\varrho(\frac{x_n + x}{2}) \to 1$ as $n \to \infty$, then $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$.

Proof. For each $n \in \mathbb{N}$ and $i \in \mathbb{N}$, let

$$s_n(i) = \begin{cases} sgn(x_n(i) + x(i)) \text{ if } x_n(i) + x(i) \neq 0, \\ 1 \text{ if } x_n(i) + x(i) = 0. \end{cases}$$

Hence, we have

$$1 \leftarrow \varrho(\frac{x_n + x}{2}) = \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x_n(i) + x(i)}{2} \right| \right)^{p_k}$$
$$= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} s_n(i) \frac{x_n(i)}{2} + \frac{1}{k} \sum_{i=1}^{k} s_n(i) \frac{x(i)}{2} \right)^{p_k}$$
(2.5)

Let $a_n(k) = \frac{1}{k} \sum_{i=1}^k s_n(i) x_n(i)$ and $b_n(k) = \frac{1}{k} \sum_{i=1}^k s_n(i) x(i)$ for all $n, k \in \mathbb{N}$. Then $(a_n) \in l(p)$ and $(b_n) \in l(p)$, and from (2.5) we have

$$\sigma(\frac{a_n+b_n}{2})\to 1$$
 as $n\to\infty$.

Form Proposition 2.5, we have

$$a_n(i) - b_n(i) \to 0 \text{ as } n \to \infty$$
 (2.6)

for all $i \in \mathbb{N}$. Now, we shall show that $x_n(k) \to x(k)$ as $n \to \infty$ for all $k \in \mathbb{N}$. From (2.6), we have

$$s_n(1)x_n(1) - s_n(1)x(1) \rightarrow 0 \text{ as } n \rightarrow \infty,$$

this implies $x_n(1) \to x(1)$ as $n \to \infty$. Assume that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \le k-1$. Then we have

$$s_n(i)(x_n(i) - x(i)) \to 0 \text{ as } n \to \infty$$
 (2.7)

for all $i \leq k-1$. Since $s_n(k)(x_n(k)-x(k)) = k(a_n(k)-b_n(k)) - \sum_{i=1}^{k-1} s_n(i)(x_n(i)-x(i))$, it follows from (2.6) and (2.7) that $s_n(k)(x_n(k)-x(k)) \to 0$ as $n \to \infty$. This implies $x_n(k) \to x(k)$ as $n \to \infty$. So we have by induction that $x_n(k) \to x(k)$ as $n \to \infty$ for all $k \in \mathbb{N}$.

Theorem 2.8 The space ces(p) is LUR.

Proof. Let $(x_n) \subseteq B(ces(p))$ and $x \in S(ces(p))$ be such that $||x_n + x|| \to 2$ as $n \to \infty$. Then $||\frac{x_n + x}{2}|| \to 1$ as $n \to \infty$. By Proposition 2.5 (i), we have $\varrho(\frac{x_n + x}{2}) \to 1$ as $n \to \infty$. By Proposition 2.7, we have $x_n(i) \to x(i)$ as $n \to \infty$ $\forall i \in \mathbb{N}$.

Now, let $\epsilon > 0$ be given. Then there exists $k_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that

$$\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} < \frac{\epsilon}{3} \frac{1}{2^{M+1}} , \qquad (2.8)$$

$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} < \frac{\epsilon}{3} \quad \text{for all } n \ge n_0 , \qquad (2.9)$$

$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} > \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} - \frac{\epsilon}{3} \frac{1}{2^M} . \tag{2.10}$$

By Proposition 2.4 (i) and (iii), we have $\varrho(x_n) \leq 1$ for all $n \in \mathbb{N}$ and $\varrho(x) = 1$. From these together with (2.8), (2.9), (2.10) and the fact that $(a+b)^{p_k} \leq 2^{p_k}(a^{p_k}+b^{p_k})$ for

 $a, b \ge 0$, we have that for all $n \ge n_0$,

$$\begin{split} \varrho(x_n - x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &= \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &< \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &\leq \frac{\epsilon}{3} + 2^M \left(1 - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &< \frac{\epsilon}{3} + 2^M \left(1 - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(2 \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} \right) \\ &= \frac{\epsilon}{3} + 2^{M+1} \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} \right) \\ &= \frac{\epsilon}{3} + 2^{M+1} \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} \right) \\ &= \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

This shows that $\varrho(x_n-x)\to 0$ as $n\to\infty$. By Proposition 2.4(ii), we have $||x_n-x||\to 0$ as $n\to\infty$. This completes the proof of the theorem.

It is known in general that $LUR \Rightarrow \text{property (H)}$. So we have the following result.

Corollary 2.9 The space ces(p) posses property (H).

Bor-Luh Lin, Pei-Kee Lin and S.L. Troyanski proved (cf. Theorem iii [11]) that element x in a bounded closed convex set K of a Banach space is a denting point of K iff x is an H-point of K and x is an extreme point of K. Combining this result with our results (Theorem 2.8 and Corollary 2.9) and the general fact that $LUR \Rightarrow R$, we obtain the following result.

Corollary 2.10 The space ces(p) has the property (G).

References

- [1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [5] Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesaro sequence spaces, SEA. Bull. Math. 24 (2000), 201-210.
 ef
- [6] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull 35 (1992), 1 - 5.
- [8] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [9] P. Y. Lee, Cesáro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [10]Y. Q. Liu, B. E. Wu and Y. P. Lee, Method of sequence spaces, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [11]L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, (1989).
- [12]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [13]W. Orlicz, Anote on modular spaces I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 157-162.
- [14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [15]W. Sanhan, On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
- [16]J. S. Shue, Cesáro sequence spaces, Tamkang J. Math 1 (1970), 143-150.

On Property (H) and Rotundity of Difference Sequence Spaces

S. Suantai M. Musarleen and A. Kananthai

ABSTRACT. In this paper, we define a modular on difference sequence space $\ell(\Delta,p)$ and consider it equipped with the Luxemburg norm induced by the modular, where $p=(p_k)$ is a bounded sequence of positive real numbers with $p_k\geq 1$ for all $k\in\mathbb{N}$. The main purpose of this paper is to show that $\ell(\Delta,p)$ has property (H) and we also show that $\ell(\Delta,p)$ is rotund if and only if $p_k>1$ for all $k\in\mathbb{N}$.

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Introduction.

Convexity properties in Banach space is an important topic in functional analysis and play an important role in infinite dimensional holomorphy. In order to study the geometric properties of Banach space, Clarkson [5] introduced the very important class of rotundity (strict convexity). Since Clarkson's paper many authors have defined and studied the classes of Banach space lying between the uniform convexity and rotundity (see [2, 3, 5, 12, 14, 17].)

Among geometrical properties, property (H) in Banach spaces is important and it has been studied by various authors. Criteria of property (H) in Orlicz spaces and Orlicz sequence spaces were given by S. Chen and Y. Wang [4] and C. Wu, S. Chen and Y. Wang [20]. R. Pluciennik, T. Wang and Y. Zhang [19] obtained necessary and sufficient conditions for H- points and denting points in Orlicz sequence spaces. In [7], criteria for property (H) is given in Musielak-Orlicz sequence spaces.

Typeset by AMS-TEX

In this paper, we introduce the difference sequence space $\ell(\Delta, p)$, when $p = (p_k)$ is a bounded sequence of positive real number with $p_k \geq 1$ for all $k \in \mathbb{N}$, and consider it equipped the Luxemburg norm. We show that $\ell(\Delta, p)$ has property (**H**) and criteria for rotundity is given.

Now we introduced the basic notations and definitions. In the following, Let \mathbb{R} be the real line and \mathbb{N} the set of natural numbers.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \xrightarrow{w} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$;

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point. X is said to posses property (H) provided every point of S(X) is H-point.

For these geometric notions and their role in Mathematics we refer to the monographs [2], [8], and [17]. Some of them were studied for Orlicz spaces in [3], [6], [9], [10], [11], [19], and [20].

Let X be a real vector space. A functional $\varrho: X \to [0, \infty]$ is called a *modular* if it satisfies the conditions

- (i) $\varrho(x) = 0$ if and only if x = 0;
- (ii) $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$;
- (iii) $\varrho(\alpha x + \beta y) \leq \varrho(x) + \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. The modular ϱ is called *convex* if
 - (iv) $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. If ϱ is a modular in X, we define

$$X_{\varrho} = \{x \in X: \lim_{\lambda \to 0^+} \varrho(\lambda x) = 0 \ \},$$
 and
$$X_{\varrho}^* = \{x \in X: \varrho(\lambda x) < \infty \text{ for some } \lambda > 0 \ \}.$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^*$. If ϱ is a convex modular, we define

$$||x|| = \inf\{\lambda > 0: \varrho\left(\frac{x}{\lambda}\right) \le 1\}.$$
 (1.1)

Orlicz [18] proved that if ϱ is a convex modular in X, then $X_{\varrho} = X_{\varrho}^*$ and $\|.\|$ is a norm on X_{ϱ} for which it is a Banach space. The norm $\|.\|$ defined as in (1.1) is called the Luxemburg norm.

A modular ρ on X is called

- (a) right-continuous if $\lim_{\lambda \to 1^+} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$,
- (b) left-continuous if $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$,
- (c) cotinuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular ϱ and the Luxemburg norm $\|.\|$ on X_{ϱ} .

Theorem 1.1 Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and (x_n) a sequence in X_{ϱ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\varrho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Proof. See [16, Theorem 1.3].

Theorem 1.2 Let ρ be a continuous convex modular on X. Then

- (i) ||x|| < 1 if and only if $\varrho(x) < 1$.
- (ii) $||x|| \le 1$ if and only if $\varrho(x) \le 1$.
- (iii) ||x|| = 1 if and only if $\varrho(x) = 1$.

Proof. See [16, Theorem 1.4].

Let us denoted by ℓ^0 the space of all real sequences and let $p=(p_k)$ be a sequence of positive real numbers. In [13], Kizmaz introduced the sequence spaces $\ell_{\infty}(\Delta)$, $c_0(\Delta)$ and $c(\Delta)$ by considering the difference sequence $\Delta x = (x_k - x_{k+1})_{k=1}^{\infty}$ for any sequence $x \in \ell^0$, where ℓ_{∞} , c_0 an c are Banach spaces of bounded, null and convergent sequences, respectively. In [1], these sequence spaces were extended to $\ell_{\infty}(\Delta, p)$, $c_0(\Delta, p)$ and $c(\Delta, p)$, e.g.

$$\ell_{\infty}(\Delta, p) = \{x \in l^0 : \Delta x \in \ell_{\infty}(p) \}$$

where

$$\ell_{\infty}(p) = \{ x \in l^0 : \sup_{k} |x_k|^{p_k} < \infty \}.$$

In [1] and [13] the authers determined the Köthe-Töeplitz and generalized Köthe-Töeplitz duals of these spaces and consider various matrix transformations.

In this paper we introduced the space $\ell(\Delta, p)$ analogously as follows and study some of its geometric properties.

$$\ell(\Delta, p) = \{ x \in l^0 : \Delta x \in \ell(p) \},\$$

where

$$\ell(p) = \{ x \in l^0 : \sum_{k=1}^{\infty} |x(k)|^{p_k} < \infty \}.$$

For the detail of spaces $\ell_{\infty}(p)$ and $\ell(p)$, we refer to [15].

For $x \in \ell(\Delta, p)$, we define

$$\varrho_p(x) = |x(1)| + \sum_{k=1}^{\infty} |x(k) - x(k+1)|^{p_k}$$

If $p_k \geq 1$ for all $k \in \mathbb{N}$, by convexity of the functions $t \mapsto |t|^{p_k}$ for each $k \in \mathbb{N}$, we have that ϱ_p is a convex modular on $\ell(\Delta, p)$. We consider $\ell(\Delta, p)$ equipped with the Luxemburg norm given by

$$||x|| = \inf \{ \varepsilon > 0 : \varrho_p(\frac{x}{\varepsilon}) \le 1 \}.$$

A normed sequence space S is said to be a K-space if each coordinate mapping P_k , defined by $P_k(x) = x_k$, is continuous. If S is both Banach and K-space, it is called a BK-space.

Throughout this paper we let $M = \sup_k p_k$ and assume that $p_k \geq 1$ for all $k \in \mathbb{N}$.

2. Main Results

We begin with giving some basic properties of modular on the space $\ell(\Delta, p)$.

Proposition 2.1 For $x \in \ell(\Delta, p)$, the modular ϱ_p on $\ell(\Delta, p)$ satisfies the following properties:

(i) if
$$0 < a \le 1$$
, then $a^M \varrho_p(\frac{x}{a}) \le \varrho_p(x)$ and $\varrho_p(ax) \le a\varrho_p(x)$,

(ii) if
$$a \geq 1$$
, then $\varrho_p(x) \leq a^M \varrho_p(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\varrho_p(x) \le a\varrho_p(x) \le \varrho_p(ax)$.

Proof. It is obvious that (iii) is satisfied by the convexity of ϱ_p . It remains to prove (i) and (ii).

For $0 < a \le 1$, we have

$$\varrho_{p}(x) = |x(1)| + \sum_{k=1}^{\infty} |x(k) - x(k+1)|^{p_{k}}
= a \left| \frac{x(1)}{a} \right| + \sum_{k=1}^{\infty} \left| \frac{a(x(k) - x(k+1))}{a} \right|^{p_{k}}
\ge a^{M} \left| \frac{x(1)}{a} \right| + a^{M} \sum_{k=1}^{\infty} \left| \frac{x(k) - x(k+1)}{a} \right|^{p_{k}}
= a^{M} \varrho_{p}(\frac{x}{a}).$$

It follows by the convexity of ϱ that $\varrho_p(ax) \leq a\varrho_p(x)$, hence (i) is satisfied. Now, suppose that $a \geq 1$. Then $\frac{1}{a} \leq 1$. It follows from (i) that

 $a = \frac{1}{a} - \frac{1}{a} \frac{M}{a} \left(\frac{x}{a} \right) = \frac{1}{a} \frac{M}{a$

$$\left(\frac{1}{a}\right)^{M} \varrho_{p}(x) = \left(\frac{1}{a}\right)^{M} \varrho_{p}\left(\frac{x/a}{1/a}\right) \leq \varrho_{p}\left(\frac{x}{a}\right),$$

so that $\varrho_p(x) \leq a^M \varrho_p\left(\frac{x}{a}\right)$, hence (ii) is obtained.

Proposition 2.2 The modular ϱ_p on $\ell(\Delta, p)$ is continuous.

Proof. For $\lambda > 1$, by Proposition 2.1 (ii) and (iii), we have

$$\varrho_p(x) \le \lambda \varrho_p(x) \le \varrho_p(\lambda x) \le \lambda^M \varrho_p(x)$$
(2.1)

By taking $\lambda \to 1^+$ in (2.1), we have $\lim_{\lambda \to 1^+} \varrho_p(\lambda x) = \varrho_p(x)$. Thus ϱ_p is right-continuous. If $0 < \lambda < 1$, by Proposition 2.1 (i), we have

$$\lambda^{M} \varrho_{p}(x) \le \varrho_{p}(\lambda x) \le \lambda \varrho_{p}(x) \tag{2.2}$$

By taking $\lambda \to 1^-$ in (2.2), we have that $\lim_{\lambda \to 1^-} \varrho_p(\lambda x) = \varrho_p(x)$, hence, ϱ_p is left-continuous. Thus ϱ_p is continuous.

Next, we give some relationships between the modular ϱ_p and the Luxemburg norm on $\ell(\Delta, p)$.

Proposition 2.3 For any $x \in \ell(\Delta, p)$, we have

- (i) if ||x|| < 1, then $\varrho_p(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\varrho_p(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\varrho_p(x) = 1$,
- (iv) ||x|| < 1 if and only if $\varrho_p(x) < 1$,
- (v) ||x|| > 1 if and only if $\varrho_p(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\varrho_p(x) > a^M$, and
- (vii) if $a \ge 1$ and ||x|| < a, then $\varrho_p(x) < a^M$.

Proof. (i) Let $\epsilon > 0$ be such that $0 < \epsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of $||\cdot||$, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\varrho(\frac{x}{\lambda}) \le 1$. From Proposition 2.1(i) and (iii), we have

$$\varrho_{p}(x) \leq \varrho_{p} \left(\frac{(\|x\| + \epsilon)}{\lambda} x \right)$$

$$= \varrho_{p} \left((\|x\| + \epsilon) \frac{x}{\lambda} \right)$$

$$\leq (\|x\| + \epsilon) \varrho(\frac{x}{\lambda})$$

$$\leq \|x\| + \epsilon,$$

which implies that $\varrho_p(x) \leq ||x||$, so (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{||x|| - 1}{||x||}$, then $1 < (1 - \epsilon)||x|| < ||x||$. By definition of $||\cdot||$ and by Proposition 2.1 (i), we have

$$1 < \varrho_p \left(\frac{x}{(1 - \epsilon) ||x||} \right)$$

$$\leq \frac{1}{(1 - \epsilon) ||x||} \varrho_p(x),$$

so $(1-\epsilon)||x|| < \varrho_p(x)$ for all $\epsilon \in (0, \frac{||x||-1}{||x||})$. This implies that $||x|| \le \varrho_p(x)$, hence (ii) is obtained.

Since ϱ_p is continuous (Proposition 2.2), (iii) and (iv) follow directly from Theorem 1.2.

- (iv) follows directly from (i) and (iii).
- (v) follows from (iii) and (iv).
- (vi) Suppose 0 < a < 1 and ||x|| > a. Then $\left\| \frac{x}{a} \right\| > 1$. By (v), we have $\varrho_p\left(\frac{x}{a}\right) > 1$. Hence, by Proposition 2.1(i), we obtain that $\varrho_p(x) \ge a^M \varrho_p\left(\frac{x}{a}\right) > a^M$.

(vii) Suppose $a \ge 1$ and ||x|| < a. Then $\left\| \frac{x}{a} \right\| < 1$. By (iv), we have $\varrho_p(\frac{x}{a}) < 1$. If a = 1, it is obvious that $\varrho_p(x) < 1 = a^M$. If a > 1, by Proposition 2.1(ii), we obtain that $\varrho_p(x) \le a^M \varrho_p(\frac{x}{a}) < a^M$.

Proposition 2.4 Let (x_n) be a sequence in $\ell(\Delta, p)$.

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho_p(x_n) \to 1$ as $n \to \infty$.
- (ii) $||x_n|| \to 0$ as $n \to \infty$ if and only if $\varrho_p(x_n) \to 0$ as $n \to \infty$.

Proof. (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.3 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho_p(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho_p(x_n) \to 1$ as $n \to \infty$. (ii) The only part of (ii) is true by Theorem 1.1, so we need to show only the if part of (ii). Suppose $||x_n|| \to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.3 (vi), we have $\varrho_p(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho_p(x_n) \to 0$ as $n \to \infty$.

Next, we shall show that $\ell(\Delta, p)$ has the property (H). To do this, we need two lemmas.

Lemma 2.5 The space $\ell(\Delta, p)$ is a BK-space.

Proof. Since $\ell(\Delta, p)$ equipped with the Luxemburg norm is Banach, we need to show only that $\ell(\Delta, p)$ is a K-space. Suppose $(x_n) \subset \ell(\Delta, p)$ such that $x_n \to 0$ as $n \to \infty$. It follows by Proposition 2.4(ii) that $\varrho_p(x_n) \to 0$ as $n \to \infty$. This implies that

$$|x_n(1)| \to 0$$
 as $n \to \infty$ and

$$|x_n(k) - x_n(k+1)| \to 0$$
 as $n \to \infty$ for all $k \in \mathbb{N}$.

By induction, we have $x_n(k) \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$. Hence $P_k(x_n) \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$. This implies that P_k is continuous for all $k \in \mathbb{N}$.

Lemma 2.6 Let $x \in \ell(\Delta, p)$ and $(x_n) \subseteq \ell(\Delta, p)$. If $\varrho_p(x_n) \to \varrho_p(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, then $x_n \to x$ as $n \to \infty$.

Proof. Let $\epsilon > 0$ be given. Since $\varrho_p(x) = |x(1)| + \sum_{k=1}^{\infty} |x(k) - x(k+1)|^{p_k} < \infty$, there is $k_0 \in \mathbb{N}$ such that

$$\sum_{k=k_0+1}^{\infty} |x(k) - x(k+1)|^{p_k} < \frac{\epsilon}{3} \cdot \frac{1}{2^{M+1}}.$$
 (2.3)

Since $\varrho_p(x_n) \to \varrho_p(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

$$\varrho_{p}(x_{n}) - \left(|x_{n}(1)| + \sum_{k=1}^{k_{0}} |x_{n}(k) - x_{n}(k+1)|^{p_{k}}\right) < \varrho_{p}(x) - \left(|x(1)| + \sum_{i=1}^{k_{0}} |x(k) - x(k+1)|^{p_{k}}\right) + \frac{\varepsilon}{3 \cdot 2^{M}}$$

$$(2.4)$$

and

$$|x_n(1) - x(1)| + \sum_{k=1}^{k_0} |(x_n(k) + x(k)) - (x_n(k+1) - x(k+1))|^{p_k} < \frac{\varepsilon}{3}.$$
 (2.5)

It follows from (2.3), (2.4) and (2.5) that for $n \geq n_0$,

$$\begin{split} \varrho_{p}(x_{n}-x) &= |x_{n}(1)-x(1)| + \sum_{k=1}^{\infty} |(x_{n}(k)-x(k)) - (x_{n}(k+1)-x(k+1))|^{p_{k}} \\ &= |x_{n}(1)-x(1)| + \sum_{k=1}^{k_{0}} |(x_{n}(k)-x(k)) - (x_{n}(k+1)-x(k+1))|^{p_{k}} \\ &+ \sum_{k=k_{0}+1}^{\infty} |(x_{n}(k)-x(k)) - (x_{n}(k+1)-x(k+1))|^{p_{k}} \\ &< \frac{\varepsilon}{3} + 2^{M} (\sum_{k=k_{0}+1}^{\infty} |x_{n}(k) - x_{n}(k+1)|^{p_{k}} + \sum_{k=k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}}) \\ &= \frac{\varepsilon}{3} + 2^{M} (\varrho_{p}(x_{n}) - (|x_{n}(1)| + \sum_{k=1}^{k_{0}} |x_{n}(k) - x_{n}(k+1)|^{p_{k}}) + \sum_{k=k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}} \\ &< \frac{\varepsilon}{3} + 2^{M} (\varrho_{p}(x) - (|x(1)| + \sum_{k=1}^{k_{0}} |x(k) - x(k+1)|^{p_{k}}) + \frac{\varepsilon}{3 \cdot 2^{M}} + \sum_{k_{0}+1}^{\infty} |x(k) - x(k+1)| \\ &= \frac{\varepsilon}{3} + 2^{M} (2 \sum_{k=k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}} + \frac{\varepsilon}{3 \cdot 2^{M}}) \\ &< \frac{\varepsilon}{3} + 2^{M+1} \frac{\varepsilon}{3 \cdot 2^{M+1}} + \frac{\varepsilon}{3} \\ &= \varepsilon. \end{split}$$

This show that $\varrho_p(x_n-x)\to 0$ as $n\to\infty$. Hence, by Proposition 2.4 (ii), we have $||x_n-x||\to 0$ as $n\to\infty$.

Theorem 2.7 The space $\ell(\Delta, p)$ has the property (H).

Proof. Let $x \in S(\ell(\Delta, p))$ and $(x_n) \subset \ell(\Delta, p)$ such that $||x_n|| \to 1$ and $x_n \stackrel{w}{\to} x$ as $n \to \infty$. From Proposition 2.3 (iii), we have $\varrho_p(x) = 1$, so it follows from Proposition 2.4 (i) that $\varrho_p(x_n) \to \varrho_p(x)$ as $n \to \infty$. By Lemma 2.5, we have that the coordinate mapping $P_i : \ell(\Delta, p) \to \mathbb{R}$ is continuous, so it follows that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. Thus, we have by Lemma 2.6 that $x_n \to x$ as $n \to \infty$.

Theorem 2.8 The space $\ell(\Delta, p)$ is rotund if and only if $p_k > 1$ for all $k \in \mathbb{N}$.

Proof. Necessity. Suppose that there is $k_0 \in \mathbb{N}$ such that $p_0 = 1$. Let x = (1, 1, 1, ...) and $y = (\underbrace{0, 0, 0..., 0}_{k_0}, 1, 1, 1, ...)$. Then $x \neq y$ and it is easy to see that

$$\varrho_p(x) = \varrho_p(y) = \varrho_p\left(\frac{x+y}{2}\right) = 1.$$

By Proposition 2.3(iii) , we have x,y and $\frac{x+y}{2}\in S(\ell(\Delta,p))$, so that $\ell(\Delta,p)$ is not rotund.

Sufficiency. Suppose that $p_k > 1$ for all $k \in \mathbb{N}$. Let $x \in S(\ell(\Delta, p))$ and $y, z \in B(\ell(\Delta, p))$ with $x = \frac{y+z}{2}$. By convexity of ϱ_p and Proposition 2.3(iii), we have

$$1 = \varrho_p(x) \le \frac{1}{2}(\varrho_p(y) + \varrho_p(z)) \le \frac{1}{2} + \frac{1}{2} = 1.$$

This implies that

$$\varrho_p(y) = \varrho_p(z) = 1 \tag{2.6}$$

$$\varrho_p(x) = \frac{1}{2}(\varrho_p(y) + \varrho_p(z)). \tag{2.7}$$

By (2.7), we have

$$\begin{split} &\left|\frac{y(1)+z(1)}{2}\right| + \sum_{k=1}^{\infty} \left|\frac{(y(k)-y(k+1))+(z(k)-z(k+1))}{2}\right|^{p_k} \\ &= \frac{1}{2} \left(|y(1)| + \sum_{k=1}^{\infty} |y(k)-y(k+1)|^{p_k}\right) + \frac{1}{2} \left(|z(1)| + \sum_{k=1}^{\infty} |z(k)-z(k+1)|^{p_k}\right) \\ &= \frac{1}{2} (|y(1)| + |z(1)|) + \frac{1}{2} \left(\sum_{k=1}^{\infty} |y(k)-y(k+1)|^{p_k} + \sum_{k=1}^{\infty} |z(k)-z(k+1)|^{p_k}\right), \end{split}$$

which implies that

$$|y(1) + z(1)| = |y(1)| + |z(1)|,$$
 (2.8)

$$\left| \frac{(y(k) - y(k+1)) + (z(k) - z(k+1))}{2} \right|^{p_k} = \frac{1}{2} \left(|y(k) - y(k+1)|^{p_k} + |z(k) - z(k+1)|^{p_k} \right)$$
(2.9)

for all $k \in \mathbb{N}$.

Since the function $t \mapsto |t|^{p_k}$ is strickly convex for every $k \in \mathbb{N}$, it implies by (2.9) that

$$y(k) - y(k+1) = z(k) - z(k+1)$$
 for all $k \in \mathbb{N}$. (2.10)

It follows from (2.6) and (2.10) that |y(1)| = |z(1)|. This implies by (2.8) that y(1) = z(1). This together with (2.10), by using induction, we obtain that y(k) = z(k) for all $k \in \mathbb{N}$. Hence y = z.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support .

References

- Z.U. Ahmad and Mursaleen, Köthe-Töeplitz duals of some new sequence spaces and thier matrix maps, Publ. Inst. Math. (Beograd) 42(56) (1987), 57-61.
- [2] K.W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Dissertation University of Illonios, 1960.
- [3] S. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [4] S. Chen and Y. Wang, H property of Orlicz spaces, Chinese Ann. Math. 8A (1987), 61-67.
- [5] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [6] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [7] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [8] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [9] R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515.
- [10]H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull 35 (1992), 1 - 5.

- [11]H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [12]V.I. Istrătescu, Lecture Note in Pure and Applied Math. 87, Marcel Dekker, Inc., New York and Basel, 1984.
- [13]H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-175.
- [14]A. R. Lovaglia, Locally uniformly convex Banach spaces, Tran. Amer. Math. Soc 78 (1955), 225-238.
- [15]I.J. Maddox, Continuous and Köthe-Töeplitz duals of certain sequence spaces, Proc. Camb. phil. Soc. 65 (1967), 431-435.
- [16]L. Maligranda, Orlicz Spaces and Interpolation, Institute of Mathematics, Polish Academy of Science, Poznań, Poland, 1985.
- [17]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [18]W. Orlicz, A note on modular space I 9 (1961), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 157 - 162.
- [19]R. Pluciennik, T. Wang and Y. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [20]C. Wu, S. Chen and Y. Wang, H property of sequence Orlicz spaces, J. Harbin Inst. Tech. Math. issue (1985), 6 - 11.

Suthep Suantai and A. Kananthai

Department of Mathematics, Faculty of Science,

Chiang Mai University, Chiang Mai, Thailand.

Email: scmti005@chiangmai.ac.th

Email: Malamnka@science.cmu.ac.th

M. Musarleen

Department of Mathematics, Faculty of Science,

Aligarh Muslim University,

Aligarh, India.

ON PROPERTY (UKK) IN CESARO MUSIELAK-ORICZ SEQUENCE SPACES.

WINATE SANHAN* AND SUTHEP SUANTAL

ABSTRACT. In this paper we define a generalized Cesaro sequence space ces_M , where M is a Musielak-Orlicz function, and consider it equipped with the Luxemburg norm. The main purpose of the paper is to show that ces_M is a (UKK) spaace, when $M \in \delta_2$ and satisfies condition (*).

1. Introduction. Geometric of Banach spaces is an important topic in functional analysis and plays an important role in the theory of approximation and optimization. The property of uniform rotundity ensures, for example, the existence and unicity of nearest pionts in best approximation problems. Among geometrical properties, H-property and (UKK) are also improtant. Both of them follow from the uniform convexity (UC) and that (UKK) implies H-property, and nearly uniform convexity (NUC) implies (UKK).

Summarizing the above discussion we have

$$(UC) \Rightarrow (NUC) \Rightarrow (UKK) \Rightarrow H - property$$

The criteria of the H-property in Orlicz function space and Orlicz sequence space were given by S.Chen and Y.Wang[2] and C.Wu, S.Chen and Y. Wang [18]. R.Pluciennik, T.Wang and Y.Zhang[13] considered the problem more precisely and obtained all the criteria for H-points and denting points in both Orlicz function spaces and Orlicz sequence spaces. In [4] criteria for (NUC),(UKK) and H-property are given for Musielak-Orlicz sequence spaces.

The Cesaro sequence space ces_p (1 < p < ∞) were introduced by J.S.Shue[17]. They are useful for theory of matrix operators. Y.Q.Liu, B.E.Wu and P.Y.Lee[9] showed that ces_p has H-property. S.Suantai[16] defined a generalized Cesaro sequence space ces(p), where $p = (p_k)$ is a bounded sequence of positive real number with $p_k > 1$ for all $k \in \mathbb{N}$,

Key words and phrases. Generalized Cesaro sequence space, Luxemburg norm, Geometric property. (2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20..

^{*} Supported by The Royal Golden Jubilee Project

and consider it equipped the Luxemburg norm. He has also showed that ces(p) has H-property.

In this paper we define a new sequence space, ces_M , which is a generalization of the space ces(p) by using a Musielak-Orlicz function. We call the space ces_M , Cesaro Musielak-Orlicz sequence spaces. We show in this paper that if $M \in \delta_2$ and M satisfies the condition (*), then ces_M is (UKK), so it has H-property. These results generalize those in [].

Now we introduce the basic notations and defitions. In the following, let $\mathbb R$ be the real line and $\mathbb N$ the set of natural numbers

Let $(X, \|.\|)$ be a real Banach space, and let B(X) (resp. S(X)) be the closed unit ball (resp. the unit sphere) of X. For any subset A of X, we denote by conv (A) (resp. $\overline{\text{conv}}(A)$) the convex hull (resp. the closed convex hull) of A. Clarkson [1] introduced the concept of uniform convexity.

The norm $\|.\|$ is called *uniformly convex* (write (UC)) if for each $\epsilon > 0$ there is $\delta > 0$ such that for $x, y \in S(X)$ inequality $\|x - y\| > \epsilon$ implies

$$\|\frac{1}{2}(x+y)\| < 1-\delta$$

A Banach space X is said to have the Kadac- $Klee\ property\ (or\ property\ (H))$ if every weakly convergent sequence on the unit sphere is convergent in norm.

Recall that a sequence $\{x_n\} \subset X$ is said to be ϵ -separated sequence for some $\epsilon > 0$ if

$$sep(x_n) = \inf\{\|x_n - x_m\| : n \neq m\} > \epsilon.$$

A Banach space is said to have the unifrom Kadec-Klee property (written UKK) if for every $\varepsilon > 0$ there exists $\delta > 0$ for every sequence (x_n) in S(X) with $sep(x_n) > \varepsilon$ and $x_n \xrightarrow{\omega} x$, we have $||x|| < 1 - \delta$. Every (UKK) Banach space has property (H)(see [5])

A Banach space is said to be nearly uniformly convex (write (NUC)) if for every $\epsilon > 0$ there exists $\delta \in (0,1)$ such that for every sequence $(x_n) \subseteq B(X)$ with $sep(x_n) > \epsilon$, we have

$$conv(x_n) \cap ((1 - \delta)B(X)) \neq \emptyset$$

Huff [5] proved that every (NUC) Banach space is reflexive and it has a property (H) and he proved that X is (NUC) if and only if X is reflexive and (UKK).

Let X be a real vector space. A functional $\varrho: X \to [0, \infty]$ is called a *modular* if it satisfies the conditions

- (i) $\varrho(x) = 0$ if and only if x = 0;
- (ii) $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$;
- (iii) $\varrho(\alpha x + \beta y) \leq \varrho(x) + \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. The modular ϱ is called *convex* if
 - (iv) $\varrho(\alpha x + \beta y) \leq \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. If ϱ is a modular in X, we define

$$X_{\varrho} = \{x \in X: \lim_{\lambda \to 0^+} \varrho(\lambda x) = 0 \}$$
 and
$$X_{\varrho}^* = \{x \in X: \varrho(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^*$. If ϱ is a convex modular, for $x \in X_{\varrho}$ we define

$$||x|| = \inf\{\lambda > 0: \varrho\left(\frac{x}{\lambda}\right) \le 1\}$$
 (1.1)

Orlicz [13] proved that if ϱ is a convex modular on X, then $X_{\varrho} = X_{\varrho}^*$ and $\|.\|$ is a norm on X_{ϱ} for which it is a Banach space. The norm $\|.\|$ defined as in (1.1) is called the Luxemburg norm.

A modular ϱ on X is called

- (a) right-continuous if $\lim_{\lambda \to 1^+} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$
- (b) left-continuous if $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$
- (c) continuous if it is both left-continuous and right-continuous.

The following known results gave some relationships between the modular ϱ and the Luxemburg norm $\|.\|$ on X_{ϱ} .

Theorem 1.1 Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and (x_n) a sequence in X_{ϱ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\varrho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Proof. See [11, Theorem 1.3].

Theorem 1.2 Let ϱ be a convex modular on X and $x \in X_{\varrho}$.

- (i) If ϱ is right-continuous, then ||x|| < 1 if and only if $\varrho(x) < 1$.
- (ii) If ϱ is left-continuous, then $||x|| \le 1$ if and only if $\varrho(x) \le 1$.
- (iii) If ϱ is continuous, then ||x|| = 1 if and only if $\varrho(x) = 1$.

Proof. See [11, Theorem 1.4].

Let l^0 be the space of all real sequences. For $1 \le p < \infty$, the Cesaro sequence space (ces_p) , for short) is defined by

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^n |x(i)|)^p < \infty \}$$

equipped with the norm

$$||x|| = (\sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^p)^{\frac{1}{p}}$$

This space was introduced by Shue [16]. It is useful in the theory of Matrix operator and others (see [7] and [8]). Some geometric properties of the Cesaro sequence space ces_p were studied by many authors. It is known that $(ces_p, ||.||)$ is LUR and has property (H)(see [8]). Cui and Meng [2] prove that $(ces_p, ||.||)$ has property (β) .

A map $\phi : \mathbb{R} \to [0, \infty \text{ is said to be an } Orlicz function if } \phi \text{ vanishes only at } 0$, and ϕ is even and convex.

A sequence $M = (M_k)$ of Orlicz functions is called a *Musielak-Orlicz function*. In addition, a Musielak-Orlicz function $N = (N_k)$ is called a *complementary function* of a Musielak-Orlicz function M if

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \quad k = 1, 2, ...$$

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space l_M is defined by

$$l_M := \{ x \in l^0 : I_M(cx) < \infty \text{ for some } c > 0 \}.$$

where I_{M} is a convex modular defined by

$$I_M(x) = \sum_{k=1}^{\infty} M_k(x(k)), \quad x = (x(k)) \in l_M.$$

This space equipped with the Luxemburg norm

$$||x|| = \inf\{k > 0 : I_M(\frac{x}{k}) \le 1\}$$

equivalent one

$$||x||^0 = \inf\{\frac{1}{k}(1 + I_M(kx)) : k > 0\},\$$

called the Orlicz (or Amemiya) norm is a Banach space. To simplify notation, we put $l_M := (l_M, ||.||)$ and $l_M^0 := (l_M, ||.||^0)$. Both of them are Banach spaces .

Let $M = (M_k)$ be the Musielak-Orlicz function. The Cesàro-Musielak-Orlicz sequence space is define by

$$Ces_M := \{x \in l^0 : \rho_M(cx) < \infty \text{ for some } c > 0\},$$

where $\rho_M(x) = \sum_{k=1}^{\infty} M_k (\frac{1}{k} \sum_{i=1}^k |x(i)|)$. We show in Theorem 3.1 that ρ_M is a convex modular on Ces_M . In this space, we consider the Luxemburg norm induced by the modular ρ_M as follows:

$$||x|| = \inf\{\lambda > 0 : \rho_M(\frac{x}{\lambda}) \le 1\}.$$

We have by [10] that Ces_M is a Banach space. We define the subspace $SCes_M$ of Ces_M by

$$SCes_M := \{x \in l^0 : \rho_M(cx) < \infty \text{ for all } c > 0\}.$$

We say that a Musielak-Orlicz function M satisfies the δ_2 -condition (we will write $M \in \delta_2$ for short) if there exist constants $K \geq 2, u_0 > 0$ and a sequence (c_k) of positive numbers such that $\sum_{k=1}^{\infty} c_k < \infty$ and the inequality

$$M_k(2u) \le KM_k(u) + c_k$$

hold for every $k \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $|u| \leq u_0$.

If $M \in \delta_2$ and $N \in \delta_2$, then we write $M \in \delta_2 \cap \delta_2^*$.

Moreover, we say that a Musielak-Orlicz function M satisfies the (*)-condition if for any $\epsilon \in (0,1)$ there exists a $\delta > 0$ such that $M_k((1+\delta)u) \leq 1$ whenever $M_k(u) \leq 1 - \epsilon$ for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$.

We shall show in Theorem 5 that if $M \in \delta_2$, then $SCes_M = Ces_M$.

MAIN RESULT

We start with showing that ρ_M is a convex modular on Ces_M .

Theorem 1 The functional ρ_M on the Cesàro-Musielak-Orlicz sequence space Ces_M given by

$$\rho_M(x) = \sum_{k=1}^{\infty} M_k(\frac{1}{k} \sum_{i=1}^k |x(i)|),$$

is a modular on Ces_M

Proof Let $x, y \in Ces_M$. It is obvious that

- (i) $\rho_M(x) = 0 \Leftrightarrow x = 0$
- (ii) For $\alpha \in \mathbb{R}$, with $|\alpha| = 1$, we have

$$\rho_{M}(\alpha x) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i)|\right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(|\alpha| \frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)$$

$$= \rho_{M}(x)$$

(iii) For $\alpha, \beta \in \mathbb{R}$, with $\alpha, \beta \geq 0, \alpha + \beta = 1$, by convexity of M_k , we have

$$\rho_{M}(\alpha x + \beta y) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i) + \beta y(i)|\right)
\leq \sum_{k=1}^{\infty} M_{k} \left(\frac{\alpha}{k} \sum_{i=1}^{k} |x(i)| + \frac{\beta}{k} \sum_{i=1}^{k} |y(i)|\right)
\leq \sum_{k=1}^{\infty} (\alpha M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right) + \beta M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)|\right)
= \alpha \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right) + \beta \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)|\right)
= \alpha \rho_{M}(x) + \beta \rho_{M}(y) \leq \rho_{M}(x) + \rho_{M}(y)$$

Proposition 2. Let $x \in Ces_M$.

- (1) If $0 < \alpha \le 1$, then $\frac{1}{\alpha} \rho_M(\alpha x) \le \rho_M(x) \le \alpha \rho_M(\frac{x}{\alpha})$
- (2) If $\alpha > 1$, then $\alpha \rho_M(\frac{x}{\alpha}) \leq \rho_M(x) \leq \frac{1}{\alpha} \rho_M(\alpha x)$

Proof. Let $x = (x(i)) \in Ces_M$. For any $0 < \alpha \le 1$, by convexity of each M_k , we have

$$M_k(\frac{1}{k}\sum_{i=1}^k |\alpha x(i)|) = M_k(\alpha \frac{1}{k}\sum_{i=1}^k |x(i)|) \leq \alpha M_k(\frac{1}{k}\sum_{i=1}^k |x(i)|)$$

for all $k \in \mathbb{N}$. This implies $\rho_M(\alpha x) \leq \alpha \rho_M(x)$. By substituting x by $\frac{x}{\alpha}$, we obtain $\rho_M(x) \leq \alpha \rho_M(\frac{x}{\alpha})$, so that (1) holds. Next, let $\alpha > 1$, then $0 < \frac{1}{\alpha} < 1$. By (1), we obtain that

$$\alpha \rho_M(\frac{x}{\alpha}) = \frac{1}{\frac{1}{\alpha}} \rho_M(\frac{x}{\alpha}) \le \rho_M(x) \le \frac{1}{\alpha} \rho_M(\frac{x}{\frac{1}{\alpha}}) = \frac{1}{\alpha} \rho_M(\alpha x)$$

, hence (2) is satisfied.

Proposition 3. For any $x \in Ces_M$, we have

- (1) if $||x|| \le 1$, then $\rho_M(x) \le ||x||$
- (2) if ||x|| > 1, then $\rho_M(x) \ge ||x||$

Proof (1) If x = 0, then the inequality holds. Let $x \neq 0$. By the definition of $\|.\|$, there is a sequence (ϵ_n) such that $\epsilon_n \downarrow \|x\|$ such that $\rho_M(\frac{x}{\epsilon_n}) \leq 1$. This implies $\rho_M(\frac{x}{\|x\|}) \leq 1$, by Proposition 2(1), we have $\rho_M(x) \leq \|x\| \rho_M(\frac{x}{\|x\|}) \leq \|x\|$.

(2) Let ||x|| > 1. Then for $\epsilon \in (0, \frac{||x||-1}{||x||})$, we have $(1-\epsilon)||x|| > 1$. By Proposition 2(1), we have

$$1 < \rho_M(\frac{x}{(1-\epsilon)||x||}) \le \frac{\rho_M(x)}{(1-\epsilon)||x||}.$$

Letting $\epsilon \to 0$, we obtain (2).

The following result is directly obtained from Proposition 3(1).

Corollary 4 If
$$x_n \to 0$$
 as $n \to \infty$ then $\rho_M(x_n) \to 0$ as $n \to \infty$

Theorem 5 If a Musielak-Orlicz function $M=(M_k)\in \delta_2$, then $SCes_M=Ces_M$. Proof Let $x\in Ces_M$. Thus $\rho_M(cx)<\infty$ for some c>0. Since $M\in \delta_2$, there exists $K\geq 2,\ u_0>0$ and a positive sequence c_k such that $\sum_{k=1}^{\infty}c_k<\infty$ and

$$M_k(2u) \le KM_k(u) + c_k$$

for all $k \in \mathbb{N}$ and u satisfies $|u| \le u_0$. By $\rho_M(cx) < \infty$, we have $\sum_{k=1}^{\infty} M_k(\frac{1}{k} \sum_{i=1}^k |x(i)|) \to 0$ as $k \to \infty$, it follows that $M_k(\frac{1}{k} \sum_{i=1}^k |x(i)|) \to 0$ as $k \to \infty$, and so $\frac{1}{k} \sum_{i=1}^k |x(i)| \to 0$ as $k \to \infty$. Put any $\beta > 0$ and taking $t \in \mathbb{N}$ such that $\frac{\beta}{c} \le 2^{t-1}$, there exists a positive sequence c_k' such that $\sum_{k=1}^{\infty} c_k' < \infty$ and

$$M_k(2^t u) \le K^t M_k(u) + c_k'$$

for all $k \in \mathbb{N}$ and u satisfies $|u| \leq \frac{u_0}{2^{t-1}}$. By $\frac{1}{k} \sum_{i=1}^{k} |x(i)| \to 0$ as $k \to \infty$, there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{k} \sum_{i=1}^{k} |x(i)| \leq \frac{\frac{u_0}{2^{t-1}}}{c}$ for all $k \geq n_0$. Hence

$$\begin{split} \rho_{M}(\beta x) &= \sum_{k=1}^{\infty} M_{k}(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)|) \\ &= \sum_{k=1}^{n_{0}} M_{k}(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)|) + \sum_{k=n_{0}+1}^{\infty} M_{k}(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)|) \\ &= \sum_{k=1}^{n_{0}} M_{k}(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)|) + \sum_{k=n_{0}+1}^{\infty} M_{k}(2\beta \frac{c}{c} \frac{1}{k} \sum_{i=1}^{k} |x(i)|) \\ &= \sum_{k=1}^{n_{0}} M_{k}(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)|) + \sum_{k=n_{0}+1}^{\infty} M_{k}(2^{t} c \frac{1}{k} \sum_{i=1}^{k} |x(i)|) \\ &\leq \sum_{k=1}^{n_{0}} M_{k}(\beta \frac{1}{k} \sum_{i=1}^{k} |x(i)|) + K^{t} \sum_{k=n_{0}+1}^{\infty} M_{k}(c \frac{1}{k} \sum_{i=1}^{k} |x(i)|) + \sum_{k=n_{0}+1}^{\infty} c_{k}' < \infty. \end{split}$$

Therefore $Ces_M \subseteq SCes_M$.

Lemma 6 On Cesàro-Musielak-Orlicz sequence space, if the Musielak-Orlicz function $M = (M_k)$ satisfies condition (*) and $M \in \delta_2$, then

- $(1) ||x|| = 1 \Leftrightarrow \rho_M(x) = 1,$
- (2) for every $\epsilon > 0$ there exists a $\delta > 0$ such that $||x|| < 1 \delta$ whenever $\rho_M(x) < 1 \epsilon$,
- (3) for every $\epsilon > 0$ and c > 0 there exists a $\delta > 0$ such that for any $x, y \in Ces_M$, we have

$$|\rho_M(x+y) - \rho_M(x)| < \epsilon$$

whenever $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$,

- (4) for every $\epsilon > 0$ there exists a $\delta > 0$ such that $||x|| > 1 + \delta$ whenever $\rho_M(x) > 1 + \epsilon$, and
- (5) for any sequence $(x_n) \subset Ces_M$, $||x_n|| \to 1$ implies $\rho_M(x_n) \to 1$.

Proof (1) Assume that $\rho_M(x) = 1$. By definition of $\|.\|$, we have that $\|x\| \le 1$. If $\|x\| < 1$, then we have by Proposition 3(1) that $\rho_M(x) \le \|x\| < 1$, which contradicts our assumption. Therefore $\|x\| = 1$.

Conversely, assume that ||x|| = 1. By Proposition 3.3(1), $\rho_M(x) \leq 1$. Suppose that $\rho_M(x) < 1$. By Theorem 5, we have $\rho_M(cx) < \infty$ for all c > 1. By Theorem 2.6.1 the function $c \mapsto \rho_M(cx)$ is continuous, so there exists an c' > 1 such that $\rho_M(c'x) = 1$. By using the same proof as in the first path, we have that ||c'x|| = 1, so c' = 1 which is contradiction.

(2) Suppose (2) is not true. Then there exists a $\epsilon_0 > 0$ and $x_n \in Ces_M$ such that $\rho_M(x_n) < 1 - \epsilon_0$ and $\frac{1}{2} \le ||x_n||$ and $||x_n|| \to 1$. Let $L = \sup_n \{\rho_M(2x_n)\}$ we have that $L < \infty$ since $M \in \delta_2$. Let $a_n = \frac{1}{||x_n||} - 1$ we have $a_n \le 1$ and $a_n \to 0$. Then

$$1 = \rho_M \left(\frac{x_n}{\|x_n\|} \right)$$

$$= \rho_M (2a_n x_n + (1 - a_n) x_n)$$

$$\leq a_n \rho_M (2x_n) + (1 - a_n) \rho_M (x_n)$$

$$\leq a_n L + (1 - \epsilon).$$

Hence we have $1 \leq \lim_{n \to \infty} (a_n L + (1 - \epsilon)) = 1 - \epsilon$, which is a contradiction.

(3) Let $x, y \in Ces_M$, $\epsilon > 0$ and c > 0, by Theorem 2.6.5(3), there exists a $\delta' > 0$ such that for any $a, b \in l_M$, we have

$$|I_M(a+b) - I_M(a)| < \epsilon \tag{3.1}$$

whenever $I_M(a) \leq c$ and $I_M(b) \leq \delta'$. For each $i \in \mathbb{N}$, let

$$s(i) = \begin{cases} sgn(x(i) + y(i)) \text{ if } x(i) + y(i) \neq 0, \\ 1 \text{ if } x(i) + y(i) = 0 \end{cases}$$

we note that

$$\rho_{M}(x+y) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i) + y(i)|\right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} s(i)x(i) + \frac{1}{k} \sum_{i=1}^{k} s(i)y(i)\right). \tag{3.2}$$

Let $a(k) = \frac{1}{k} \sum_{i=1}^k s(i)x(i)$ and $b(k) = \frac{1}{k} \sum_{i=1}^k s(i)y(i)$ for all $k \in \mathbb{N}$. Then $a = (a(k)) \in l_M$ and $b = (b(k)) \in l_M$, and from (3.2) we have

$$\rho_M(x+y) = I_M(a+b), I_M(a) \le \rho_M(x) \text{ and } I_M(b) \le \rho_M(y).$$

Choose $\delta = \delta'$. If $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$ then $I_M(a) \leq c$ and $I_M(b) \leq \delta'$, by (1) we have

$$\rho_M(x+y) - \rho_M(x) \le I_M(a+b) - I_M(a) < \epsilon$$

that is

$$\rho_M(x+y) < \rho_M(x) + \epsilon. \tag{3.3}$$

Next, we shall show that

$$\rho_M(x) < \rho_M(x+y) + \epsilon. \tag{3.4}$$

For each $i \in \mathbb{N}$, let

$$s(i) = \begin{cases} sgn(x(i)) \text{ if } x(i) \neq 0, \\ 1 \text{ if } x(i) = 0 \end{cases}$$

we note that

$$\rho_{M}(x) = \rho_{M}((x+y) + (-y)) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |(x(i) + y(i)) + (-y(i))|\right)$$

$$= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} s(i)(x(i) + y(i)) + \frac{1}{k} \sum_{i=1}^{k} s(i)(-y(i))\right). \tag{3.5}$$

Let $a(k) = \frac{1}{k} \sum_{i=1}^k s(i)(x(i) + y(i))$ and $b(k) = \frac{1}{k} \sum_{i=1}^k s(i)(-y(i))$ for all $k \in \mathbb{N}$. Then $a = (a(k)) \in l_M$ and $b = (b(k)) \in l_M$, and from (3.5) we have

$$\rho_M(x) = I_M(a+b), I_M(a) \le \rho_M(x+y) \text{ and } I_M(b) \le \rho_M(-y).$$

Choose $\delta = \delta'$. If $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$ then $I_M(a+b) = \rho_M(x) \leq c$ and $I_M(-b) = I_M(b) \leq \rho_M(-y) = \rho_M(y) \leq \delta'$, by (3.1) we have

$$|I_M(a+b) - I_M(a)| = |I_M(a) - I_M(a+b)| = |I_M((a+b) + (-b)) - I_M(a+b)| < \epsilon$$

it follows that

$$\rho_M(x) - \rho_M(x+y) \le I_M(a+b) - I_M(a) < \epsilon$$

that is

$$\rho_M(x) < \rho_M(x+y) + \epsilon$$

from (3.3) and (3.4), we have that

$$|\rho_M(x+y) - \rho_M(x)| < \epsilon$$

whenever $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$.

(4) Given $\epsilon > 0$, by (3), there exists a $\delta \in (0,1)$ such that

$$\rho_M(u) \le 1, \rho_M(v) \le \delta \Rightarrow \rho_M(u+v) \le \rho_M(u) + \epsilon.$$

Suppose that $||x|| \leq 1 + \delta$, then $\rho_M(\frac{x}{1+\delta}) \leq 1$ and $\rho_M(\frac{\delta x}{1+\delta}) \leq \delta \rho_M(\frac{x}{1+\delta}) \leq \delta$. This implies

$$\rho_M(x) = \rho_M(\frac{x}{1+\delta} + \frac{\delta x}{1+\delta})$$

$$\leq \rho_M(\frac{x}{1+\delta}) + \epsilon$$

$$\leq 1 + \epsilon.$$

(5) Suppose that $\rho_M(x_n) \not\to 1$ as $n \to \infty$, there exits a $\epsilon_0 > 0$ such that

•
$$|\rho_M(x_n) - 1| > \epsilon_0$$
 for all $n \in \mathbb{N}$,

it follows that

$$\rho_M(x_n) - 1 > \epsilon_0 \text{ or } \rho_M(x_n) - 1 < -\epsilon_0 \text{ for all } n \in \mathbb{N}.$$

If $\rho_M(x_n) - 1 > \epsilon_0$, that is $\rho_M(x_n) > 1 + \epsilon_0$, by (4), there exists a $\delta > 0$ such that $||x_n|| > 1 + \delta$. If $\rho_M(x_n) - 1 < -\epsilon_0$, that is $\rho_M(x_n) < 1 - \epsilon_0$, by (2), there exists a $\delta' > 0$ such that $||x_n|| < 1 - \delta'$, so that $||x_n|| \not\to 1$ as $n \to \infty$, which contradiction.

Proposition 7 In Cesàro-Musielak-Orlicz sequence space. If a Musielak-Orlicz function $M = (M_k)$ satisfies condition (*) and $M \in \delta_2$, then the norm convergence and modular convergence coincide.

Proof From Corollary 4, it suffices to prove that modular convergence implies norm convergence. For this let $\epsilon \in (0, \frac{1}{2})$, choose a positive integer K such that $\frac{1}{2^{K+1}} < \epsilon \le \frac{1}{2^K}$. By Lemma 6(3), there exists a $\delta \in (0, \frac{1}{2^{K+1}})$ such that

$$\rho_M(u) \le 1, \rho_M(v) \le \delta \Rightarrow \rho_M(u+v) < \rho_M(u) + \epsilon.$$

Suppose that $\rho_M(x) < \delta$, we observe that

$$\rho_M(nx) < n\rho_M(x) + n\epsilon,$$

for
$$n = 1, ..., 2^{K-1}$$
. In particular, $\rho_M(\frac{x}{4\epsilon}) \leq \rho_M(2^{K-1}x) < 2^{K-1}\rho_M(x) + 2^{K-1}\epsilon < \frac{1}{2} + \frac{1}{2} = 1$. This implies $||x|| < 4\epsilon$.

Theorem 8 If $M \in \delta_2$ and M satisfies condition (*),then the space ces_M is (\mathbf{UKK}) Proof Assume that $M \in \delta_2$ and suppose that ces_M is not (\mathbf{UKK}) . Then there exists $\varepsilon_0 > 0$ such that for any $\delta > 0$ ther are a sequence (x_n) in $S(ces_M)$ and $x \in ces_M$ with $sep(x_n) \geq \varepsilon_0$, $x_n \stackrel{\omega}{\to} x$ and $||x|| > 1 - \delta$. Since $sep(x_n) \geq \varepsilon_0$ passing subsequence we may assume that $||x_n - x|| \geq \frac{\varepsilon_0}{2}$ for every $n \in \mathbb{N}$ Since $M \in \delta_2$ and M satisfies condition (*) and x can be assumed to have ||x|| close to 1,ther exists $\eta > 0$ such that $\rho_M(x_n - x) \geq \eta$ and $\rho_M(x) > 1 - \frac{\eta}{5}$. Applying Lemma 6(3) there exists $\sigma \in (0, \frac{\eta}{5})$ such that

$$|\rho_M(x+y) - \rho_M(x)| < \frac{\eta}{5}$$

when ever $\rho_M(y) < \sigma$.

Since $(x_n) \subseteq S(ces_M)$ and $x_n \xrightarrow{\omega} x$, there exists $i_0 \in \mathbb{N}$ such that $\sum_{k=i_0+1}^{\infty} M_k (\frac{1}{k} \sum_{i=1}^k |x(x_0)|^2 + x_0)$. By $x_n \xrightarrow{\omega} x$, which implies that $x_n \to x$ coordinatewise, hence there exists $n_0 \in \mathbb{N}$ such that

$$|\sum_{k=1}^{i_0} M_k(\frac{1}{k}\sum_{i=1}^k |x_n(i)|) - \sum_{k=1}^{i_0} M_k(\frac{1}{k}\sum_{i=1}^k |x(i)|)| < \frac{\eta}{5} \text{ and } \sum_{k=1}^{i_0} M_k(\frac{1}{k}\sum_{i=1}^k |x_n(i) - x(i)|) < \frac{\eta}{5}$$

for $n \geq n_0$. So

$$1 = \sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)|\right) = \sum_{k=1}^{i_0} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)|\right) + \sum_{k=i_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)|\right)$$

$$\geq \sum_{k=1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x(i)|\right) - \frac{\eta}{5} + \sum_{k=i_0+1}^{\infty} M_k \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)|\right)$$

Hence for every $n \geq n_0$ we have

$$\eta \leq \rho_{M}(x_{n} - x) = \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i) - x(i)|\right) \\
= \sum_{k=1}^{i_{0}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i) - x(i)|\right) + \sum_{k=i_{0}+1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i) - x(i)|\right) \\
< \frac{\eta}{5} + \sum_{k=i_{0}+1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i)|\right) + \frac{\eta}{5} \\
= \sum_{k=1}^{\infty} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i)|\right) - \sum_{k=1}^{i_{0}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i)|\right) + \frac{2\eta}{5} \\
= 1 - \sum_{k=1}^{i_{0}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{n}(i)|\right) + \frac{2\eta}{5} \\
\leq 1 - \sum_{k=1}^{i_{0}} M_{k} \left(\frac{1}{k} \sum_{i=1}^{k} |x_{i}(i)|\right) + \frac{\eta}{5} + \frac{2\eta}{5} \\
\leq 1 - (1 - \sigma) + \frac{3\eta}{5} \\
\leq 1 - (1 - \frac{\eta}{5}) + \frac{3\eta}{5} < \eta.$$

This is a contradiction.

REFERENCE

[1]. J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math 40 (1936), 396-414.

- [2]. S.Chen and Y.Wang, *H property of Orlicz spaces*, China Ann.Math. **8A** (1987), 61-67(in Chinese).
- [3]. Cui, Y.A., Meng, C., Banach-Sak Property and Property (β) in Cesaro Sequence Spaces, Southeast Asian Bulletin of Math. 24 (2000), 201-210.
- [4]. J.Danes, A geometric theorem useful in non-linear functional analysis, Bull.Un.Math.Ital. 6 (1972), 369-372.
- [5]. R.Huff, Banach spaces which are nearly uniformly convex., Rocky Mountain J.Math. 10 (1985), 473-749.
- [6]. D.N.Kutzarova, A nearly uniformly convex space which is not a β space, Acta Univ.Corolin.Math 30 (1989), 95-98.
- [7]. D.N.Kutzarova, An isomorphic characterization of property(β) of Rolewicz, Not.Math 10.2 (1990), 347-354.
- [8]. P.Y.Lee, Cesaro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [9]. Y.Q.Lui ,B.E.Wu and P.Y.Lee, *Method of sequence spaces*, Guangdong of Science and Technology Press(in Chinese) (1996).
- [10]L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, (1989).
- [11]R. E. Megginson, Introduction to Banach space Theory, Springer-Verlag (1998).
- [12]V.Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), 93-100.
- [13]R.Pluciennik, T. Wang and Y.Zhang, *H-points and denting points in Orlicz spaces*, Comment. Math. **33** (1993), 135-151.
- [14]S.Rolewicz, On dropproperty, Studia Math. 85 (1987), 181-191.
- [15]S.Rolewicz, On Δ -uniform convexity and drop property, Studia Math. 87 (1987), 619-624.
- [16] W. Sanhan and S. Suantai, Some geometric property of Cesaro sequence space (2002), Kyungpook Math..
- [17]J.S.Shu, Cesaro sequence spaces, Tamkang J.Math 1 (1970), 143-150.
- [18]C.Wu,S.Chen and Y.Wang, *H property of Orlicz sequence spaces*, J.Harbin Inst.Tech.Math.issu (1985), 6-11(in Chinese).

บทที่ 3

การแปลงเมทริกซ์ของปริภูมิลำดับ

(Matrix Transformations of Sequence Spaces)

ในบทนี้เราศึกษาเกี่ยวกับการแปลงเมทริกซ์ของปริภูมิลำดับ เราได้ให้ลักษณะเฉพาะ ของเมทริกซ์อนันต์ที่ส่งจากปริภูมิลำดับค่าเวกเตอร์นาคาโน $\ell(\Delta,p)$ และ $F_r(X,p)$ ไปยัง ปริภูมิ $E_r,\ell_\infty,\ell_\infty(q),bs,cs$ เมื่อ $p_k>1$ สำหรับทุก $k\in N$ และเรายังได้ให้ให้ลักษเฉพาะ ของเมทริกซ์อนันต์ที่ส่งจากปริภูมิ $\ell(\Delta,p)$ และ $M_0(X,p)$ ไปยังปริภูมิ E_r เมื่อ $p_k\leq 1$ สำหรับทุก $k\in N$ เราสามารถให้ลักษณะเฉพาะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิ FK ใดๆไปยังปริภูมิ c(q) นอกเหนื่อจากนี้แล้วเราได้ให้ลักษณะเฉพาะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิ ดับของแมดดอกซ์ไปยังปริภูมิลำดับมูสิลัก-ออร์ลิคซ์

Matrix Transformations of Nakano Vector-Valued Sequence Space

SUTHEP SUANTAI

ABSTRACT. In this paper, we give necessary and sufficient conditions for infinite matrices mapping Nakano vector-valued sequence space $\ell(X,p)$ into the sequence spaces $E_r(r\geq 0)$ and we also give the matrix characterlizations from $M_0(X,p)$ into the space E_r where $p=(p_k)$ is a bounded sequence of positive real numbers such that $p_k\leq 1$ for all $k\in N$.

(1991) AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

For $r \geq 0$, the normed sequence space E_r was first defined by Cooke [1] as follows:

$$E_r = \{ \ x = (x_k) \mid \sup_k \ \frac{|x_k|}{k^r} < \infty \ \}$$

equipped with the norm

$$||x|| = \sup_{k} \frac{|x_k|}{k^r}.$$

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence

spaces $c_0(X,p), c(X,p), \ell_{\infty}(X,p), \ell(X,p),$ and $M_0(X,p)$ are defined as

$$\begin{split} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0\}, \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X\}, \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty\}, \end{split}$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, and $M_0(p)$, respectively. The spaces $c_0(p)$, c(p), $\ell_{\infty}(p)$ are known as the sequence spaces of Maddox. These spaces were first introduced and studied by Simons [7], Maddox [4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and it is known as the Nakano sequence space and the space $\ell(X,p)$ is known as the Nakano vector-valued sequence space. The spaces $M_0(p)$ was first introduced by Grosse-Erdmann [2] and he has investigated the structure of the spaces $c_0(p)$, c(p) and $\ell_{\infty}(p)$. Grosse-Erdmann [3] gave the matrix characterizations between scalar-valued sequence spaces of Maddox. Wu and Liu [9] dealt with the problem of characterizations those infinite matrices mapping $c_0(X,p)$, $\ell_{\infty}(X,p)$ into $c_0(q)$ and $\ell_{\infty}(q)$ where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers.

Suantai [8] gave necessary and sufficient conditions for infinite matrices mapping $\ell(X,p)$ into ℓ_{∞} and $\underline{\ell}_{\infty}(q)$ where $p=(p_k)$ and $q=(q_k)$ are bounded sequence positive real numbers with $p_k \leq 1$ for all $k \in \mathbb{N}$.

In this paper we give characterizations of infinite matrices mapping $\ell(X, p)$ and $M_0(X, p)$ into the sequence space E_r when $p_k \leq 1$ for all $k \in N$ and $r \geq 0$. Some results in [8] are obtained as special cases of this paper.

2. Notation and Definitions

Let $(X, \|.\|)$ be a Banach space. The space of all sequences and the space of all finite sequences in X are denoted by W(X) and $\Phi(X)$, respectively. When X is K, the scalar field of X, the corresponding spaces are written as w and Φ .

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in N$, we write x_k standing for the k^{th} term of x. For $x \in X$ and $k \in N$, let $e^k(x)$ be the sequence (0,0,...,0,x,0,...) with x in the k^{th} position and let e(x) be the sequence (x,x,x,...). For a fixed scalar sequence $\mu = (\mu_k)$ the sequence space E_{μ} is defined as

$$E_{\mu} = \{ x \in W(X) : (\mu_k x_k) \in E \} .$$

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to $map\ E$ into F, written by $A:E\to F$ if for each $x=(x_k)\in E$, $A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$, and the sequence $Ax=(A_n(x))\in F$. Let (E,F) denote for the set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $k \in N$ the k^{th} coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E,τ) is an Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

It is known that E_r is a BK-sapce and $E_0 = \ell_\infty$. The space $\ell(X,p)$ is an FK-space with AK under the paranorm $g(x) = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/M}$, where $M = \max\{1, \sup_k p_k\}$. In each of the space $\ell_\infty(X,p)$ and $c_0(X,p)$ we consider the function $g(x) = \sup_k \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$. It is known that $c_0(X,p)$ is an FK-space with AK under the paranorm g defined as above and $\ell_\infty(X,p)$ is a complete LBK-space with AB.

3. Main Results

We start with giving the matrix characterizations from $\ell(X,p)$ into E_r .

Theorem 3.1 Let $r \geq 0$ and let $p = (p_k)$ be bounded sequences of positive real numbers with $p_k \leq 1$ and let $A = (f_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), E_r)$ if and only if there is $m_0 \in N$ such that $\sup_{n,k} m_0^{-1/p_k} n^{-r} ||f_k^n|| < \infty$.

Proof. Assume that $A \in (\ell(X, p), E_r)$. In $\ell(X, p)$, we consider it as a paranormed space with the paranorm g defined as above and since $p_k \leq 1$ for all $k \in N$, we have $M = max\{1, \sup_k p_k\} = 1$. Now, we write $\|.\|$ standing for the paranorm g. By Zeller's theorem, $A: \ell(X, p) \to E_r$ is continuous. Then there is $m_0 \in N$ such that

$$\sup_{n} \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| \le 1 \quad \text{for all } x \in \ell(X, p) \quad \text{with } ||x|| \le \frac{1}{m_0} . \tag{3.1}$$

Let $n, k \in N$ be fixed and let $x_k \in X$ be such that $||x_k|| \le 1$. Then $e^{(k)}(m_0^{-1/p_k}x_k) \in \ell(X, p)$ and $||e^{(k)}(m_0^{-1/p_k}x_k)|| \le \frac{1}{m_0}$. By (3.1), we have

$$m_0^{-1/p_k} n^{-r} |f_k^n(x_k)| \leq \sup_{i \in \mathbb{N}} i^{-r} |f_k^i(m_0^{-1/p_k} x_k)| = ||Ae^{(k)}(m_0^{-1/p_k} x_k)|| \leq 1.$$

It implies that $\sup_{n,k} |m_0^{-1/p_k} n^{-r}||f_k^n|| < \infty.$

Conversely, assume that the condition holds. Let $x=(x_k)\in \ell(X,p)$. By assumption, there is a C>0 such that

$$m_0^{-1/p_k} n^{-r} ||f_k^n|| < C \text{ for all } n, k \in N$$
 (3.2)

Since $||m_0^{1/p_k}x_k|| \to 0$ as $k \to \infty$, there is a $k_0 \in N$ such that $||m_0^{1/p_k}x_k|| < 1$ for all $k \ge k_0$. Since $0 < p_k \le 1$ for all $k \in N$, we have

$$||m_0^{1/p_k}x_k|| \le ||m_0^{1/p_k}x_k||^{p_k} \text{ for all } k \ge k_0.$$
 (3.3)

It follows from (3.2) and (3.3) that

$$\sum_{k=1}^{\infty} \|m_0^{1/p_k} x_k\| = \sum_{k=1}^{k_0} \|m_0^{1/p_k} x_k\| + \sum_{k=k_0+1}^{\infty} \|m_0^{1/p_k} x_k\|
\leq \sum_{k=1}^{k_0} \|m_0^{1/p_k} x_k\| + \sum_{k=k_0+1}^{\infty} \|m_0^{1/p_k} x_k\|^{p_k}
= K_1 + m_0 \sum_{k=k_0+1}^{\infty} \|x_k\|^{p_k}
\leq K_1 + m_0 \|x\|, K_1 = \sum_{k=1}^{k_0} \|m_0^{1/p_k} x_k\|.$$
(3.4)

By (3.2) and (3.4) we have for $n \in N$,

$$n^{-r}|A_n x| = n^{-r} \Big| \sum_{k=1}^{\infty} f_k^n \Big(m_0^{-1/p_k} (m_0^{1/p_k} x_k) \Big) \Big|$$

$$\leq \sum_{k=1}^{\infty} m_0^{-1/p_k} n^{-r} ||f_k^n|| . ||m_0^{1/p_k} x_k||$$

$$\leq C \sum_{k=1}^{\infty} ||m_0^{1/p_k} x_k||$$

$$\leq C (K_1 + m_0 ||x||).$$

This implies that $\sup_{n} n^{-r} |A_n x| < \infty$, so that $Ax \in E_r$. This completes the proof. \square

When r=0, we see that $E_r=\ell_{\infty}$, so we obtain the following result directly from Theorem 3.1.

Corollary 3.2 Let $p=(p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$. Then for an infinite matrix $A=(f_k^n), A \in (\ell(X,p),\ell_\infty)$ if and only if there is $m_0 \in N$ such that $\sup_{n,k} |m_0^{-1/p_k}||f_k^n|| < \infty$.

If $p_k = s \le 1$ for all $k \in N$, by Theorem 3.1 we obtain the following result:

Corollary 3.3 Let $r \ge 0$ and $0 < s \le 1$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell_s(X), E_r)$ if and only if $\sup_{n,k} |n^{-r}| |f_k^n|| < \infty$.

When $p_k=1$ for all $k\in N$ and r=0, we obtain the following result by Corollary 3.3

Corollary 3.4 For an infinite matrix $A = (f_k^n)$, $A \in (\ell(X), \ell_\infty)$ if and only if $\sup_{n, k} ||f_k^n|| < \infty$.

Theorem 3.5 Let $r \geq 0$ and let $p = (p_k)$ be bounded sequences of positive real numbers and let $A = (f_k^n)$ be an infinite matrix. Then $A \in (M_0(X,p), E_r)$ if and only if for each $s \in N$, $\sup_{n, k} n^{-r} s^{1/p_k} ||f_k^n|| < \infty$

Proof. Since $M_0(X,p) = \bigcup_{n=1}^{\infty} \ell(X)_{(n^{-1/p_k})}$, we have

$$A \in (M_0(X, p), E_r) \iff A \in (\ell(X)_{(s^{-1/p_k})}, E_r) \text{ for all } s \in N$$

For $s \in N$, we can easily show that

$$A \in (\ell(X)_{(s^{-1/p_k})}, E_r) \iff (s^{1/p_k} f_k^n)_{n,k} \in (\ell(X), E_r).$$

By Theorem 3.1, we obtain that for $s \in N$,

$$(s^{1/p_k} f_k^n)_{n,k} \in (\ell(X), E_r) \iff \sup_{n, k} n^{-r} s^{1/p_k} ||f_k^n|| < \infty.$$

Thus the theorem is proved.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

REFERENCES

- [1]. R.G. Cooke, An Infinite Matrices and Sequence Spaces, Macmillan, London, 1950.
- [2]. K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-307.
- [3]. K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223-238.
- [4]. I.J. Maddox, Spaces of strongly summable sequences, Quart.J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [5]. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968), 335 - 340.
- H. Nakano, Modulared sequence spaces, Proc. Japan. Acad. 27 (1951), 508-512.
- [7]. S. Simons, The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc. 15 (1965), 422-436.
- [8]. S. Suantai, On matrix transformations related to Nakano vector-valued sequence spaces, Bull. Cal. Math. Soc. (to appear).
- [9]. C. X. Wu and L. Liu, Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math. 17,1 (1993), 83-96.

Suthep Suantai

Department of Mathematics, Faculty of Science,

Chiang Mai University, Chiang Mai 50200, Thailand.

Email: Scmti005@chiangmai.ac.th, malsutsu@science.cmu.ac.th

On Matrix Transformations Concerning the Nakano Vector-Valued Sequence Space

ABSTRACT. In this paper, we give the matrix characterizations from Nakano vector-valued sequence space $\ell(X,p)$ and $F_r(X,p)$ into the sequence spaces E_r , ℓ_∞ , $\underline{\ell}_\infty(q)$, bs and cs, where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers such that $p_k>1$ for all $k\in I\!\!N$ and $r\geq 0$.

Keywords: Matrix transformations, Nakano vector-valued sequence spaces (2000) AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

Let $(X, \|.\|)$ be a Banach space, $r \geq 0$ and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in \mathbb{N}$. The X-valued sequence spaces $c_0(X, p)$, c(X, p), $\ell_{\infty}(X, p)$, $\ell(X, p)$, $E_r(X, p)$ and $F_r(X, p)$ are defined as

$$\begin{split} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0\}, \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X\}, \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^\infty \|x_k\|^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^\infty \|x_k\|^{p_k} < \infty\}, \\ E_r(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} / k^r < \infty\}, \\ F_r(X,p) &= \{x = (x_k) : \sum_{k=1}^\infty k^r \|x_k\|^{p_k} < \infty\}, \\ \ell_\infty(X,p) &= \bigcap_{n=1}^\infty \{x = (x_k) : \sup_k \|x_k\|^{n_k/p_k}\}. \end{split}$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, $E_r(p)$, $F_r(p)$ and $\ell_{\infty}(p)$, respectively. The spaces $c_0(p)$, c(p) and $\ell_{\infty}(p)$

Typeset by AMS-TEX

are known as the sequence spaces of Maddox. These spaces were first introduced and studied by Simons [7], Maddox [4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and it is known as the Nakano sequence space and the space $\ell(X,p)$ is known as the Nakano vector-valued sequence space. When $p_k = 1$ for all $k \in \mathbb{N}$, the spaces $E_r(p)$ and $F_r(p)$ are written as E_r and F_r , respectively. These two sequence spaces were first introduced by Cooke [1]. The space $\underline{\ell}_{\infty}(p)$ was first defined by Grosse-Erdmann [2] and he has given in [3] characterizations of infinite matrices mapping between scalar-valued sequence spaces of Maddox. Wu and Liu [10] gave necessary and sufficient conditions for infinite matrices mapping from $c_0(X,p)$, $\ell_{\infty}(X,p)$ into $c_0(q)$ and $\ell_{\infty}(q)$. Suantai [8] has given characterizations of infinite matrices mapping $\ell(X,p)$ into ℓ_{∞} and $\ell_{\infty}(q)$ when $p_k \leq 1$ for all $k \in \mathbb{N}$ and he has also given in [9] characterizations of those infinite matrices mapping from $\ell(X,p)$ into the sequence space E_r when $p_k \leq 1$ for all $k \in \mathbb{N}$.

In this paper, we extend the results of [8] and [9] in the case that $p_k > 1$ for all $k \in \mathbb{N}$. Moreover, we also give the matrix characterizations from $\ell(X, p)$ and $F_r(X, p)$ into the sequence spaces bs and cs.

2. Notation and Definitions

Let $(X, \|.\|)$ be a Banach space, the space of all sequences in X is denoted by W(X) and $\Phi(X)$ denotes for the space of all finite sequences in X. When X is K, the scalar field of X, the corresponding spaces are written as w and Φ .

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in I\!\!N$, we write x_k stands for the k^{th} term of x. For $k \in I\!\!N$ denote by e_k the sequence (0,0,...,0,1,0,...) with 1 in the k^{th} position and by e the sequence (1,1,1,...). For $x \in X$ and $k \in I\!\!N$, let $e^k(x)$ be the sequence (0,0,...,0,x,0,...) with x in the k^{th} position and let e(x) be the sequence (x,x,x,...). We call a sequence space E normal if $(t_k x_k) \in E$ for all $x = (x_k) \in E$ and $t_k \in K$ with $|t_k| = 1$ for all $t_k \in I\!\!N$. A normed sequence space (E, ||.||) is said to be norm monotone if $x = (x_k)$, $y = (y_k) \in E$ with $||x_k|| \le ||y_k||$ for all $k \in I\!\!N$ implies $||x|| \le ||y||$. For a fixed scalar sequence $\mu = (\mu_k)$ the sequence space E_μ is defined as

$$E_{\mu} = \{ x \in W(X) : (\mu_k x_k) \in E \}$$
.

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to $map\ E$ into F, written by $A:E\to F$ if for each $x=(x_k)\in E$, $A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in I\!\!N$, and the sequence $Ax=(A_n(x))\in F$. Let (E,F) denote for the set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $k \in \mathbb{N}$, the k^{th} coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E,τ) is an Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$, then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in \mathbb{N}\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

It is known that the Nakano sequence space $\ell(X,p)$ is an FK-space with property AK under the paranorm $g(x) = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/M}$, where $M = \max_{k} \{1, \sup_{k} p_k\}$. If $p_k > 1$ for all $k \in I\!\!N$, then $\ell(X,p)$ is a BK-space with the Luxemburg norm defined by

$$||(x_k)|| = \inf \{ \varepsilon : \sum_{k=1}^{\infty} ||x_k/\varepsilon||^{p_k} \le 1 \}$$

3. Main Results

We first give a characterization of an infinite matrix mapping from $\ell(X,p)$ into E_r when $p_k > 1$ for all $k \in \mathbb{N}$. To do this, we need a lemma.

Lemma 3.1 Let E be an X-valued BK-space which is normal and norm monotone and $A = (f_k^n)$ an infinite matrix. Then $A: E \to E_r$ if and only if $\sup_n \sum_{k=1}^{\infty} |f_k^n(x_k)|/n^r < \infty$ for every $x = (x_k) \in E$.

Proof If the condition holds true, it follows that $\sup_n \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| / n^r \le \sup_n \sum_{k=1}^{\infty} |f_k^n(x_k)| / n^r < \infty$ for every $x = (x_k) \in E$, hence $A : E \to E_r$.

Conversely, assume that $A: E \to E_r$. Since E and E_r are BK-spaces, by Zeller's Theorem, $A: E \to E_r$ is bounded, so there exists M > 0 such that

$$\sup_{\substack{n \in \mathbb{N} \\ \|(x_k)\| \le 1}} \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| / n^r \le M. \tag{3.1}$$

Let $x = (x_k) \in E$ be such that ||x|| = 1. For each $n \in \mathbb{N}$, we can choose a scalar sequence (t_k) with $|t_k| = 1$ and $f_k^n(t_k x_k) = |f_k^n(x_k)|$ for all $k \in \mathbb{N}$. Since E is normal and norm monotone, we have $(t_k x_k) \in E$ and $||(t_k x_k)|| \le 1$. It follows from (3.1) that $\sum_{k=1}^{\infty} |f_k^n(x_k)|/n^r = |\sum_{k=1}^{\infty} f_k^n(t_k x_k)|/n^r \le M$, which implies

$$\sup_{n \in \mathbb{N}} \sum_{k=1}^{\infty} |f_k^n(x_k)| / n^r \le M. \tag{3.2}$$

It follows from (3.2) that for every $x = (x_k) \in E$,

$$\sup_{n \in \mathbb{N}} \sum_{k=1}^{\infty} |f_k^n(x_k)| / n^r \le M ||x||.$$

This complete the proof.

Theorem 3.2 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$, and let $r \geq 0$. For an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), E_r)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \|f_{k}^{n}\|^{q_{k}} n^{-rq_{k}} m_{0}^{-q_{k}} < \infty . \tag{3.3}$$

Proof. Let $x = (x_k) \in \ell(X, p)$. By the condition, there are $m_0 \in \mathbb{N}$ and K > 1 such that

$$\sum_{k=1}^{\infty} \|f_k^n\|^{q_k} n^{-rq_k} m_0^{-q_k} < K \text{ for all } n \in \mathbb{N}.$$
 (3.4)

Note that for $a, b \ge 0$, we have

$$ab \le a^{p_k} + b^{q_k} \ . \tag{3.5}$$

It follows by (3.4) and (3.5) that for $n \in \mathbb{N}$,

$$\begin{split} n^{-r} \big| \sum_{k=1}^{\infty} f_k^n(x_k) \big| &= n^{-r} \big| \sum_{k=1}^{\infty} f_k^n(m_0^{-1}.m_0x_k) \big| \\ &\leq \sum_{k=1}^{\infty} (n^{-r}m_0^{-1} \| f_k^n \|) (\| m_0x_k \|) \\ &\leq \sum_{k=1}^{\infty} n^{-rq_k} m_0^{-q_k} \| f_k^n \|^{q_k} \ + \ m_0^{\alpha} \sum_{k=1}^{\infty} \| x_k \|^{p_k} \\ &\leq K + m_0^{\alpha} \sum_{k=1}^{\infty} \| x_k \|^{p_k} \ , \text{ where } \alpha = \sup_k p_k. \end{split}$$

Hence $\sup_{k=1}^{\infty} n^{-r} \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| < \infty$, so that $Ax \in E_r$.

For necessity, assume that $A \in (\ell(X,p), E_r)$. For each $k \in \mathbb{N}$, we have $\sup_{n} n^{-r} |f_k^n(x)| < \infty$ for all $x \in X$ since $e^{(k)}(x) \in \ell(X,p)$. It follows by the uniform bounded principle that for each $k \in \mathbb{N}$ there is $C_k > 1$ such that

$$\sup_{r} n^{-r} ||f_k^n|| \le C_k \ . \tag{3.6}$$

Suppose that (3.3) is not true. Then

$$\sup_{n} \sum_{k=1}^{\infty} \|f_{k}^{n}\|^{q_{k}} n^{-rq_{k}} m^{-q_{k}} = \infty \quad \text{for every } m \in \mathbb{N} . \tag{3.7}$$

For $n \in \mathbb{N}$, we have by (3.6) that for $k, m \in \mathbb{N}$,

$$\sum_{j=1}^{\infty} \|f_{j}^{n}\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}} = \sum_{j=1}^{k} \|f_{j}^{n}\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}} + \sum_{j>k} \|f_{j}^{n}\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}}$$

$$\leq \sum_{j=1}^{k} C_{j}^{q_{j}} m^{-q_{j}} + \sum_{j>k} \|f_{j}^{n}\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}}.$$

This together with (3.7), we have

$$\sup_{n} \sum_{j>k} \|f_{j}^{n}\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}} = \infty \quad \text{for all } k, m \in I\!\!N. \tag{3.8}$$

By (3.8) we can choose $0 = k_0 < k_1 < k_2 < \dots$, $m_1 < m_2 < \dots$, $m_i > 4^i$ and a subsequence (n_i) of positive intergers such that for all $i \ge 1$

$$\sum_{k_{i-1} < j < k_i} \|f_j^{n_i}\|^{q_j} n_i^{-rq_j} m_i^{-q_j} > 2^i.$$

For each $i \in \mathbb{N}$, we can choose $x_j \in X$ with $||x_j|| = 1$, for $k_{i-1} < j \le k_i$ such that

$$\sum_{k_{i-1} < j < k_i} |f_j^{n_i}(x_j)|^{q_j} n_i^{-rq_j} m_i^{-q_j} > 2^i$$

For each $i \in \mathbb{N}$, let $F_i : (0, \infty) \to (0, \infty)$ be defined by

$$F_{i}(M) = \sum_{k_{i-1} < j \le k_{i}} |f_{j}^{n_{i}}(x_{j})|^{q_{j}} n_{i}^{-rq_{j}} M^{-q_{j}}.$$

Then F_i is continuous and nonincreasing such that $F(M) \to 0$ as $M \to \infty$. Thus there exists $M_i > 0$ such that $M_i > m_i$ and

$$F(M_i) = \sum_{k_{i-1} < j \le k_i} |f_j^{n_i}(x_j)|^{q_j} n_i^{-rq_j} M_i^{-q_j} = 2^i$$
(3.9)

Put $y = (y_j), y_j = 4^{-i} M_i^{-(q_j-1)} n_i^{-rq_j/p_j} |f_j^{n_i}(x_j)|^{q_j-1} x_j$ for $k_{i-1} < j \le k_i$. Thus

$$\sum_{j=1}^{\infty} ||y_{j}||^{p_{j}} = \sum_{i=1}^{\infty} \sum_{k_{i-1} < j \le k_{i}} 4^{-ip_{j}} M_{i}^{-p_{j}(q_{j}-1)} n_{i}^{-rq_{j}} ||f_{j}^{n_{i}}(x_{j})|^{p_{j}(q_{j}-1)}$$

$$\leq \sum_{i=1}^{\infty} 4^{-i} \sum_{k_{i-1} < j \le k_{i}} M_{i}^{-q_{j}} n_{i}^{-rq_{j}} ||f_{j}^{n_{i}}(x_{j})|^{q_{j}}$$

$$= \sum_{i=1}^{\infty} 4^{-i} \cdot 2^{i}$$

$$= \sum_{i=1}^{\infty} \frac{1}{2^{i}} = 1.$$

Thus $y = (y_j) \in \ell(X, p)$. Since $\ell(X, p)$ is a BK-space which is normal and norm monotone under the Luxemburg norm, by Lemma 3.1, we obtain that

$$\sup_{n} \sum_{k=1}^{\infty} \frac{|f_k^n(y_k)|}{n^r} < \infty. \tag{3.10}$$

But we have

$$\begin{split} \sup_{n} \ \sum_{j=1}^{\infty} |f_{j}^{n}(y_{j})| / n^{r} &\geq \sup_{i} \ \sum_{j=1}^{\infty} |f_{j}^{n_{i}}(y_{j})| / n^{r}_{i} \\ &\geq \sup_{i} \ \sum_{k_{i-1} < j \leq k_{i}} |f_{j}^{n_{i}}(y_{j})| / n^{r}_{i} \\ &= \sup_{i} \ \sum_{k_{i-1} < j \leq k_{i}} 4^{-i} M_{i}^{-(q_{j}-1)} n_{i}^{-r(q_{j}/p_{j}+1)} |f_{j}^{n_{i}}(x_{j})|^{q_{j}} \\ &= \sup_{i} \ \sum_{k_{i-1} < j \leq k_{i}} 4^{-i} M_{i}^{-(q_{j}-1)} n_{i}^{-rq_{j}} |f_{j}^{n_{i}}(x_{j})|^{q_{j}} \\ &= \sup_{i} \ \sum_{k_{i-1} < j \leq k_{i}} (|f_{j}^{n_{i}}(x_{j})|^{q_{j}} n_{i}^{-rq_{j}} M_{i}^{-q_{j}}) 4^{-i} M_{i} \\ &\geq \sup_{i} \ 2^{i} = \infty, \ \text{because} \ M_{i} > 4^{i} \end{split}$$

This is contradictory with (3.10). Therefore (3.3) is satisfied.

Theorem 3.3 Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k > 1$ for all $k \in \mathbb{N}$, $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$, $r \geq 0$ and $s \geq 0$. Then for an infinite matrix $A = (f_k^n)$, $A \in (F_r(X, p), E_s)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left(k^{-rq_{k}/p_{k}} ||f_{k}^{n}||^{q_{k}} n^{-sq_{k}} m_{0}^{-q_{k}} \right) < \infty.$$

Proof. Since $F_r(X,p) = \ell(X,p)_{(k^{r/p_k})}$, it is easy to see that

$$A \in (F_r(X, p), E_s) \iff (k^{-r/p_k} f_k^n)_{r,k} \in (\ell(X, p) E_s)$$

By Theorem 3.2, we have $(k^{-r/p_k}f_k^n)_{n,k} \in (\ell(X,p) E_s)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left(k^{-rq_k/p_k} \|f_k^n\|^{q_k} n^{-sq_k} m_0^{-q_k} \right) < \infty.$$
 Thus the theorem is proved. \square

Since $E_0 = \ell_{\infty}$, the following two results are obtained directly from Theorem 3.2 and Theorem 3.3, respectively.

Corollary 3.4 Let $p=(p_k)$ be a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$ and let $1/p_k+1/q_k=1$ for all $k\in\mathbb{N}$. Then for an infinite matrix $A=(f_k^n)$, $A\in(\ell(X,p),\,\ell_\infty)$ if and only if there is $m_0\in\mathbb{N}$ such that $\sup_n\sum_{k=1}^\infty\|f_k^n\|^{q_k}m_0^{-q_k}<\infty.$

Corollary 3.5 Let $p=(p_k)$ be a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$ and let $1/p_k+1/q_k=1$ for all $k\in\mathbb{N}$. Then for an infinite matrix $A=(f_k^n)$, $A\in(F_r(X,p),\,\ell_\infty)$ if and only if there is $m_0\in\mathbb{N}$ such that $\sup_n\sum_{k=1}^\infty \left(k^{-rq_k/p_k}\|f_k^n\|^{q_k}m_0^{-q_k}\right)<\infty.$

Theorem 3.6 Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/t_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A=(f_k^n)$, $A \in (\ell(X,p),\underline{\ell}_{\infty}(q))$ if and only if for each $r \in \mathbb{N}$, there is $m_r \in \mathbb{N}$ such that $\sup_{n,k} r^{t_k/q_n} ||f_k^n||^{t_k} m_r^{-t_k} < \infty$.

Proof. Since $\underline{\ell}_{\infty}(q) = \bigcap_{r=1}^{\infty} \ell_{\infty(r^{1/q_k})}$, it follows that

$$A \in (\ell(X,p),\underline{\ell}_{\infty}(q)) \iff A \in (\ell(X,p),\ \ell_{\infty(r^{1/q_k})}) \text{ for all } r \in I\!\!N$$

It is easy to show that for $r \in \mathbb{N}$,

$$A \in (\ell(X, p), \ \ell_{\infty(r^{1/q_k})}) \iff (r^{1/q_n} f_k^n)_{n,k} \in (\ell(X, p), \ \ell_{\infty}) \ .$$

We obtain by Corollary 3.4 that for $r \in \mathbb{N}$,

$$\left(r^{1/q_n}f_k^n\right)_{n,k} \in (\ell(X,p),\ \ell_\infty) \iff \text{there is } m_r \in N \text{ such that } \sup_n \ \sum_{k=1}^\infty r^{t_k/q_n} \|f_k^n\|^{t_k} m_r^{-t_k} < \infty$$

Thus the theorem is proved.

Theorem 3.7 Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/t_k = 1$ for all $k \in \mathbb{N}$. For an

infinite matrix $A = (f_k^n)$, $A \in (F_r(X, p), \underline{\ell}_{\infty}(q))$ if and only if for each $i \in \mathbb{N}$, there is $m_i \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} i^{t_k/q_n} k^{-rt_k/p_k} ||f_k^n||^{t_k} m_i^{-t_k} < \infty.$$

Proof. Since $F_r(X,p) = \ell(X,p)_{\{k^{r/p_k}\}}$, it implies that

$$A \in (F_r(X, p), \underline{\ell}_{\infty}(q)) \iff (k^{-r/p_k} f_k^n)_{n,k} \in (\ell(X, p), \underline{\ell}_{\infty}(q)).$$

It follows from Theorem 3.6 that $A \in (F_r(X, p), \underline{\ell}_{\infty}(q))$ if and only if for each $i \in \mathbb{N}$, there is $m_i \in \mathbb{N}$ such that $\sup_{n} \sum_{k=1}^{\infty} i^{t_k/q_n} k^{-rt_k/p_k} ||f_k^n||^{t_k} m_i^{-t_k} < \infty$.

Theorem 3.8 Let $p = (p_k)$ be bounded sequence of positive real numbers with $p_k > 1$ for all $n \in \mathbb{N}$ and let $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A=(f_k^n)$, $A\in (\ell(X,p),\ bs)$ if and only if there is $m_0\in I\!\!N$ such that $\sup_{n} \sum_{k=1}^{\infty} \| \sum_{i=1}^{n} f_{k}^{i} \|^{q_{k}} m_{0}^{-q_{k}} < \infty.$

For an infinite matrix $A = (f_k^n)$, we can easily show that

$$A \in (\ell(X, p), bs) \iff \left(\sum_{i=1}^n f_k^i\right)_{n,k} \in (\ell(X, p), \ell_\infty).$$

This implies by Corollary 3.4 that $A \in (\ell(X, p), bs)$ if and only if there is $m_0 \in \mathbb{I}N$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \| \sum_{i=1}^{n} f_{k}^{i} \|^{q_{k}} m_{0}^{-q_{k}} < \infty.$$

Theorem 3.9 Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), cs)$ if and only if

- (1) there is $m_0 \in \mathbb{N}$ such that $\sup_{n} \sum_{k=1}^{\infty} \|\sum_{i=1}^{n} f_k^i\|^{q_k} m_0^{-q_k} < \infty$ and (2) for each $k \in \mathbb{N}$ and $x \in X$, $\sum_{n=1}^{\infty} f_k^n(x)$ converges.

Proof. The necessity is obtained by Theorem 3.8 and by the fact that $e^{(k)}(x) \in \ell(X,p)$ for every $k \in \mathbb{N}$ and $x \in X$.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we have $A: \ell(X,p) \to bs$. Let $x = (x_k) \in \ell(X,p)$. Since $\ell(X,p)$ has the AK property, we have $x = \lim_{n \to \infty} \sum_{k=1}^n e^{(k)}(x_k)$. By Zeller's theorem, $A: \ell(X,p) \to bs$ is continuous. It implies that $Ax = \lim_{n \to \infty} \sum_{k=1}^n Ae^{(k)}(x_k)$. By (2), $Ae^{(k)}(x_k) \in cs$ for all $k \in \mathbb{N}$. Since cs is a closed subspace of bs, it implies that $Ax \in cs$, that is $A: \ell(X,p) \to cs$.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

REFERENCES

- [1] Cooke, R.G., Infinite Matrices and Sequence Spaces, London: Macmillan, 1950.
- [2] Grosse-Erdmann, K.-G., The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-307.
- [3] Grosse-Erdmann, K.-G., Matrix transformations between the sequence spaces of Maddox, J. of Math. Anal. Appl. 180 (1993), 223-238.
- [4] Maddox, I.J., Spaces of strongly summable sequences, Quart.J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [5] Maddox, I.J., Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968), 335 - 340.
- Nakano, H., Modulared sequence spaces, Proc. Japan. Acad. 27 (1951), 508-512.
- [7] Simons, S., The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc. 15 (1965), 422-436.
- [8] Suantai, S., On matrix transformations related to Nakano vector-valued sequence spaces, Bull. Cal. Math. Soc. 91,(3) (1999), 221-226.
- [9] Suantai, S., On matrix transformations related to Nakano vector-valued sequence spaces, Kyung-pook Math. 91,(3) (2000), 221-226.
- [10] Wu, C.X. and Liu, L., Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math. 17,1 (1993), 83-96.

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

Email: malsuthe@science.cmu.ac.th scmti005@chiangmai.ac.th

On \(\beta\)-Dual of Vector-Valued Sequence Spaces of Maddox

Abstract. In this paper, the β -dual of a vector-valued sequence space is defined and studied. We show that if an X-valued sequence space S(X) is a BK-space having AK property, then the dual space of S(X) and its β -dual are isometrically isomorphic. We also give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X, p)$, $\ell_{\infty}(X, p)$, $c_0(X, p)$, and c(X, p).

Keywords: β -dual; vector-valued sequence spaces of Maddox

AMS Mathematics Subject Classification (2000): 46A45.

1. Introduction

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces of Maddox are defined as

$$\begin{split} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0\} \,; \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X\} \,; \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\} \,; \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^\infty \|x_k\|^{p_k} < \infty\}. \end{split}$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p), c(p), \ell_{\infty}(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3 - 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_0(p), c(p), \ell(p)$, and $\ell_{\infty}(p)$ and has given characterizations of β -dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_p[X]$, where $\ell_p[X]$ (1 is defined by

$$\ell_p[X] = \left\{ x = (x_k) : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \text{ for each } f \in X' \right\}.$$

Typeset by A_MS - T_EX

In this paper, the β -dual of a vector-valued sequence spaces is defined and studied, and we give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X,p)$, $\ell_{\infty}(X,p)$, $c_0(X,p)$, and c(X,p). Some results, obtained in this paper, are generalizations of some in [3].

2. Notation and Definitions

Let $(X, \|.\|)$ be a Banach space. Let W(X) and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X- valued sequence space. For $x \in E$ and $k \in N$ we write that x_k stand for the kth term of x. For $x \in X$ and $k \in N$, we let $e^{(k)}(x)$ be the sequence (0,0,0,...,0,x,0,...) with x in the kth position and let e(x) be the sequence (x,x,x,...). For a fixed scalar sequence $u=(u_k)$ the sequence space E_u is defined as

$$E_u = \{ x = (x_k) \in W(X) : (u_k x_k) \in E \}.$$

An X-valued sequence space E is said to be normal if $(x_k) \in E$ and $(y_k) \in W(X)$ with $||y_k|| \le ||x_k||$ for all $k \in N$ implies that $(y_k) \in E$. Suppose the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in N$ the kth coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. In addition, if (E, τ) is a Fre'chet(Banach) space, then E is called an FK - (BK - E) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AK if $\sum_{k=1}^n e^{(k)}(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X,p)$, we consider the function $g(x) = \sup_k \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X,p)$, and it is known that $c_0(X,p)$ is an FK-space having property AK under the paranorm g defined as above. In $\ell(X,p)$, we consider it as a paranormed sequence space with the paranorm given by $\|(x_k)\| = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/M}$, where $M = \max\{1, \sup_k p_k\}$. It is known that $\ell(X,p)$ is an FK-space under the paranorm defined as above.

For an X-valued sequence space S(X), define its Köthe dual with respect to the dual pair (X, X')

(see [2]) as follow:

$$S(X)^{ imes}|_{(X,X')}=\left\{(f_k)\subset X': \sum_{k=1}^{\infty}|f_k(x_k)|<\infty ext{ for all } x=(x_k)\in S(X)
ight\}.$$

Sometime we denote $S(X)^{\times}|_{(X,X')}$ by $S(X)^{\alpha}$ and it is called the α -dual of S(X).

For a sequence space S(X), the β -dual of S(X) is defined by

$$S(X)^{\beta} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x_k) \text{ converges for all } (x_k) \in S(X) \right\}.$$

It is easy to see that $S(X)^{\alpha} \subseteq S(X)^{\beta}$.

For the sake of completeness we introduce some further sequence spaces that will be considered as β -dual of the vector-valued sequence spaces of Maddox :

$$M_0(X,p) = \{x = (x_k) : \sum_{k=1}^{\infty} ||x_k|| M^{-1/p_k} < \infty \text{ for some } M \in N \};$$

$$M_{\infty}(X,p) = \left\{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\| n^{1/p_k} < \infty \text{ for all } n \in N \right\};$$

 $\ell_0(X,p) = \{x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} M^{-(p_k-1)} < \infty \text{ for some } M \in N \}; \text{ where } p_k > 1 \text{ for all } k \in N,$

$$cs[X'] = \{(f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges for all } x \in X \}.$$

When X = K, the scalar field of X, the corresponding first two sequence spaces are written as $M_0(p)$ and $M_{\infty}(p)$, respectively. These spaces were first introduced by Grosse-Erdmann [3].

3. Main Results

We begin with giving some general properties of β -dual of vector-valued sequence spaces.

Proposition 3.1. Let X be a Banach space and let S(X), $S_1(X)$, and $S_2(X)$ be X-valued sequence spaces. Then

- (i) $S(X)^{\alpha} \subset S(X)^{\beta}$.
- (ii) If $S_1(X) \subseteq S_2(X)$, then $S_2(X)^{\beta} \subseteq S_1(X)^{\beta}$.
- (iii) If $S(X) = S_1(X) + S_2(X)$, then $S(X)^{\beta} = S_1(X)^{\beta} \cap S_2(X)^{\beta}$.
- (iv) If S(X) is normal, then $S(X)^{\alpha} = S(X)^{\beta}$.

Proof Assertions (i) - (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that $S(X)^{\beta} \subseteq S(X)^{\alpha}$. Let $(f_k) \in S(X)^{\beta}$ and $x = (x_k) \in S(X)$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges. Choose a scalar sequence (t_k) such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since S(X) is normal, $(t_k x_k) \in S(X)$. Thus $\sum_{k=1}^{\infty} |f_k(x_k)| = \sum_{k=1}^{\infty} f_k(t_k x_k)$ and the series $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges. This implies that $(f_k) \in S(X)^{\alpha}$.

If S(X) is an BK-space, we define a norm on $S(X)^{\beta}$ by the formular

$$\|(f_k)\|_{S(X)^{eta}} = \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f_k(x_k) \right|.$$

It is easy to show that $||.||_{S(X)^{\beta}}$ is a norm on $S(X)^{\beta}$

Next, we give some relations between β -dual of a sequence space and its dual. Indeed, we need a lemma.

Lemma 3.2. Let S(X) be an X-valued sequence space which is an FK-space and contains $\Phi(X)$. Then for each $k \in N$, the mapping $T_k : X \to S(X)$, defined by $T_k x = e^k(x)$, is continuous.

Proof. Let $V = \{e^k(x) : x \in X\}$. Then V is a closed subspace of S(X), so it is an FK-space because S(X) is an FK-space. Since S(X) is a K-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, which implies that $p_k^{-1} : X \to V$ is continuous. But since $T_k = p_k^{-1}$, we thus obtain that T_k is continuous.

Theorem 3.3. If S(X) is a BK-space having property AK, then $S(X)^{\beta}$ and S(X)' are isometrically isomorphic.

Proof. We first show that for $x = (x_k) \in S(X)$ and $f \in S(X)'$,

$$f(x) = \sum_{k=1}^{\infty} f(e^k(x_k))$$
 (3.1)

To show this, let $x = (x_k) \in S(X)$ and $f \in S(X)'$. Since S(X) has property AK, $x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{(k)}(x_k)$. By the continuity of f, it follows that $f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} f(e^{(k)}(x_k)) = \lim_{n \to \infty} f(e^{(k)}(x_k))$

 $\sum_{k=1}^{\infty} f(e^{(k)}(x_k))$, so (3.1) is obtained. For each $k \in N$, let $T_k : X \to S(X)$ be defined as in Lemma 3.2. Since S(X) is a BK-space, by Lemma 3.2, T_k is continuous. Hence $f \circ T_k \in X'$ for all $k \in N$. It follows from (3.1) that

$$f(x) = \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \text{ for all } x = (x_k) \in S(X).$$
 (3.2)

We have by (3.2) that $(f \circ T_k)_{k=1}^{\infty} \in S(X)^{\beta}$. Define $\varphi : S(X)' \to S(X)^{\beta}$ by

$$\varphi(f) = (f \circ T_k)_{k=1}^{\infty} \text{ for all } f \in S(X)'.$$

It is easy to see that φ is linear. Now, we shall show that φ is onto. Let $(f_k) \in S(X)^{\beta}$. Define $f: S(X) \to K$, where K is the scalar field of X, by

$$f(x) = \sum_{k=1}^{\infty} f_k(x_k) \text{ for all } x = (x_k) \in S(X)$$
 (3.3)

For each $k \in N$, let p_k be the kth coordinate mapping on S(X). Then we have

$$f(x) = \sum_{k=1}^{\infty} (f_k \circ p_k)(x)$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} (f \circ p_k)(x).$$

Since f_k and p_k are continuous linear, so is $f \circ p_k$. It follows by Banach-Steinhaus theorem that $f \in S(X)'$, and we have by (3.3) that for each $k \in N$ and each $k \in N$ are $k \in N$ and each $k \in N$ a

Finally, we shall show that φ is linear isometry. For $f \in S(X)'$, we have

$$||f|| = \sup_{\|(x_k)\| \le 1} |f((x_k))|$$

$$= \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f(e^{(k)}(x_k)) \right| \quad \text{(by (3.1))}$$

$$= \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \right|$$

$$= \|(f \circ T_k)_{k=1}^{\infty}\|_{S(X)^{\beta}}$$

$$= \|\varphi(f)\|_{S(X)^{\beta}}.$$

Hence φ is isometry. Therefore $\varphi: S(X)' \to S(X)^{\beta}$ is an isometrically isomorphism form S(X)' onto $S(X)^{\beta}$, so the theorem is proved.

We next give characterizations of β -dual of the sequence space $\ell(X,p)$ when $p_k > 1$ for all $k \in \mathbb{N}$.

Theorem 3.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$. Then $\ell(X, p)^{\beta} = \ell_0(X', q)$, where $q = (q_k)$ is a sequence of positive real numbers such that $1/p_k + 1/q_k = 1$ for all $k \in N$.

Proof. Suppose that $(f_k) \in \ell_0(X',q)$. Then $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-(q_k-1)} < \infty$ for some $M \in N$.

Then for each $x = (x_k) \in \ell(X, p)$, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} M^{1/p_k} ||x_k||
\leq \sum_{k=1}^{\infty} \left(||f_k||^{q_k} M^{-q_k/p_k} + M ||x_k||^{p_k} \right)
= \sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-(q_k-1)} + M \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty ,$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in \ell(X,p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X,p)$. For each $x = (x_k) \in \ell(X,p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in \ell(X,p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x \in \ell(X, p). \tag{3.4}$$

We want to show that $(f_k) \in \ell_0(X',q)$, that is $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-(q_k-1)} < \infty$ for some $M \in N$. If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{q_k} m^{-(q_k-1)} = \infty, \text{ for all } m \in N.$$
(3.5)

It implies by (3.5) that for each $k \in N$,

$$\sum_{i>k} ||f_i||^{q_i} m^{-(q_i-1)} = \infty, \text{ for all } m \in N.$$
 (3.6)

By (3.5), let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k < k_1} ||f_k||^{q_k} m_1^{-(q_k - 1)} > 1.$$

By (3.6), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{q_k} m_2^{-(q_k - 1)} > 1. \tag{3.7}$$

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < ...$ and $m_1 < m_2 < ...$, such that $m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{q_k} m_i^{-(q_k-1)} > 1.$$

For each $i \in N$, choose x_k in X with $||x_k|| = 1$ for all $k \in N$, $k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-(q_k-1)} > 1 \text{ for all } i \in N.$$

Let $a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-(q_k-1)}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-(q_k-1)} |f_k(x_k)|^{q_k-1} x_k$ for all k $k_{i-1} < k \le k_i$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} ||y_k||^{p_k} = \sum_{k_{i-1} < k \le k_i} ||a_i^{-1} m_i^{-(q_k - 1)}| f_k(x_k)|^{q_k - 1} x_k ||^{p_k}$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$\leq \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-1} m_i^{-(q_k - 1)} |f_k(x_k)|^{q_k}$$

$$= a_i^{-1} m_i^{-1} a_i$$

$$= m_i^{-1}$$

$$< 1/2^i.$$

So we have that $\sum_{k=1}^{\infty} ||y_k||^{p_k} \leq \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k(a_i^{-1} m_i^{-(q_k - 1)} |f_k(x_k)|^{q_k - 1} x_k) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(q_k - 1)} |f_k(x_k)|^{q_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-(q_k - 1)} |f_k(x_k)|^{q_k}$$

$$= 1.$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts to (3.4). Hence $(f_k) \in \ell_0(X', q)$. The proof is now complete.

The following theorem give a characterization of β -dual of $\ell(X, p)$ when $p_k \leq 1$ for all $k \in N$. To do this, the following lemma is needed.

Lemma 3.5. Let $p=(p_k)$ be a bounded sequences of positive real numbers. Then $\ell_{\infty}(X,p)=\bigcup_{n=1}^{\infty}\ell_{\infty}(X)_{(n^{-1/p_k})}.$

Proof. Let $x \in \ell_{\infty}(X, p)$, then there is some $n \in N$ with $||x_k||^{p_k} \leq n$ for all $k \in N$. Hence $||x_k||^{n-1/p_k} \leq 1$ for all $k \in N$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other

hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M > 1 such that $||x_k|| n^{-1/p_k} \leq M$ for every $k \in N$. Then we have $||x_k||^{p_k} \leq n M^{p_k} \leq n M^{\alpha}$ for all $k \in N$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

Theorem 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$. Then $\ell(X, p)^{\beta} = \ell_{\infty}(X', p)$.

Proof. If $(f_k) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all} \quad x = (x_k) \in \ell(X, p)$$
 (3.8)

If $(f_k) \notin \ell_{\infty}(X',p)$, it follows by Lemma 3.5 that $\sup_k \|f_k\| m^{-1/p_k} = \infty$ for all $m \in N$. For each $i \in N$, choose sequences (m_i) and (k_i) of positive integers with $m_1 < m_2 < \ldots$ and $k_1 < k_2 < \ldots$ such that $m_i > 2^i$ and $\|f_{k_i}\| m_i^{-1/p_{k_i}} > 1$. Choose $x_{k_i} \in X$ with $\|x_{k_i}\| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1. (3.9)$$

Let $y=(y_k), y_k=m_i^{-1/p_{k_i}}x_{k_i}$ if $k=k_i$ for some i, and 0 otherwise. Then $\sum_{k=1}^{\infty}\|y_k\|^{p_k}=\sum_{i=1}^{\infty}1/m_i<\sum_{i=1}^{\infty}1/2^i=1$, so that $(y_k)\in\ell(X,p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i})|$$

$$= \sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})| = \infty \text{ by (3.9)},$$

and this is contradictory to (3.8), hence $(f_k) \in \ell_{\infty}(X',p)$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X', p)$. By Lemma 3.5, there exists $M \in N$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$. Let $x = (x_k) \in \ell(X, p)$, then there is a K > 0 such that

$$||f_k|| \le KM^{1/p_k} \quad \text{for all} \quad k \in N \tag{3.10}$$

and there is a $k_0 \in N$ such that $M^{1/p_k}||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in N$, we have that for all $k > k_0$,

$$M^{1/p_k} \|x_k\| < (M^{1/p_k} \|x_k\|)^{p_k} = M \|x_k\|^{p_k}. \tag{3.11}$$

Then

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{k_{o}} ||f_{k}|| ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} ||f_{k}|| ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{o}} ||f_{k}|| ||x_{k}|| + K \sum_{k=k_{0}+1}^{\infty} M^{1/p_{k}} ||x_{k}|| \quad \text{(by (3.10))}$$

$$\leq \sum_{k=1}^{k_{o}} ||f_{k}|| ||x_{k}|| + KM \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}} \quad \text{(by (3.11))}$$

$$< \infty.$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, hence $(f_k) \in \ell(X, p)^{\beta}$.

Theorem 3.7. Let $p=(p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p)^{\beta}=M_{\infty}(X',p)$.

Proof. If $(f_k) \in M_{\infty}(X',p)$, then $\sum_{k=1}^{\infty} \|f_k\| m^{1/p_k} < \infty$ for all $m \in N$, we have that for each $x = (x_k) \in \ell_{\infty}(X,p)$, there is $m_0 \in N$ such that $\|x_k\| \leq m_0^{1/p_k}$ for all $k \in N$, hence $\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} \|f_k\| \|x_k\| \leq \sum_{k=1}^{\infty} \|f_k\| m_0^{1/p_k} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in \ell(X,p)^{\beta}$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X,p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X,p)$, by using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell_{\infty}(X, p).$$
(3.12)

If $(f_k) \notin M_{\infty}(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| M^{1/p_k} = \infty$ for some $M \in N$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < \dots$ such that

$$\sum_{k_{i-1} < k < k_i} ||f_k|| M^{1/p_k} > i \quad \text{for all } i \in N.$$

And we choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| M^{1/p_k} > i.$$

Put $y = (y_k)$, $y_k = M^{1/p_k} x_k$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ \geq \sum_{k_{i-1} < k \leq k_i}^{\infty} |f_k(x_k)| M^{1/p_k} > i \ \text{ for all } i \in N.$$

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts to (3.12). Hence $(f_k) \in M_{\infty}(X', p)$. The proof is now complete.

Theorem 3.8. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c_0(X,p)^{\beta} = M_0(X',p)$.

Proof. Suppose $(f_k) \in M_0(X',p)$, then $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$. Let $x = (x_k) \in c_0(X,p)$. Then there is a positive integer K_0 such that $\|x_k\|^{p_k} < 1/M$ for all $k \geq K_0$, hence $\|x_k\| < M^{-1/p_k}$ for all $k \geq K_0$. Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \le \sum_{k=K_0}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=K_0}^{\infty} ||f_k|| M^{-1/p_k} < \infty.$$

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in c_0(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in c_0(X,p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X,p)$. For each $x = (x_k) \in c_0(X,p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in c_0(X,p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x \in c_0(X, p).$$
 (3.13)

Now, suppose that $(f_k) \notin M_0(X',p)$. Then $\sum_{k=1}^{\infty} ||f_k|| m^{-1/p_k} = \infty$ for all $m \in N$. Choose $m_1, k_1 \in N$ such that

$$\sum_{k \le k_1} \|f_k\| m_1^{-1/p_k} > 1$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} \|f_k\| m_2^{-1/p_k} > 2.$$

Proceeding in this way, we can choose $m_1 < m_2 < ...$, and $0 = k_1 < k_2 < ...$ such that

$$\sum_{k_{i-1} < k \le k_i} \|f_k\| m_i^{-1/p_k} > i.$$

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \text{for all } i \in N.$$

Put $y = (y_k), y_k = m_i^{-1/p_k} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \text{for all } i \in N.$$

Hence we have $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$ which contradicts to (3.13), therefore $(f_k) \in M_0(X', p)$. This completes the proof.

Theorem 3.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c(X, p)^{\beta} = M_0(X', p) \cap cs[X']$.

Proof. Since $c(X,p)=c_0(X,p)+E$, where $E=\{e(x):x\in X\}$, it follows by Proposition 3.1(iii) and Theorem 3.8 that $c(X,p)^{\beta}=M_0(X',p)\cap E^{\beta}$. It is obvious by the definition that $E^{\beta}=\{(f_k)\subset X':\sum_{k=1}^{\infty}f_k(x) \text{ converges for all } x\in X\}=cs[X']$. Hence we have the theorem.

Acknowledgements The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

References

- [1] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-307.
- [2] M. Gupta P.K. Kamthan and J. Patterson, Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), 152 168.
- [3] I. J. Maddox, Spaced of strongly summable sequences, Quart.J.Math. Oxford Ser (2) 18 (1967), 345-355.

- [4] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc.Cambridge Philos. Soc. 64 (1968), 335-340.
- [5] I. J. Maddox, "Elements of functional analysis", Cambridge University Press, London, New York, Melbourne, 1951.
- [6] H. Nakano, Modulared sequence spaces, Proc. Japan. Acad. 27 (1952), 508-512.
- [7] S. Simons, The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc. 15 (1965), 422-436.
- [8] C.X. Wu and Q.Y. Bu, Köthe dual of Banach sequence spaces, Comment.Math. Univ. Carolinae 34,2 (1993), 265 - 273.

MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED SEQUENCE SPACES

Necessary and sufficient conditions have been established for an infinite matrix $A = (f_n^k)$ of continuous linear functionals on a Banach space X to transform the vector-valued sequence spaces of Maddox $\ell_{\infty}(X,p)$, $\ell(X,p)$, $c_0(X,p)$, and c(X,p) into the scalar-valued sequence space c(q), where $p = (p_k)$ and $q = (q_k)$ are bounded sequences of positive real numbers.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces

AMS Mathematics Subject Classification (2000): 46A45.

1. Introduction

The study of matrix transformations of scalar- valued sequence spaces is known since the turn of the century. In seventies, Maddox¹², Gupta⁴ studied matrix transformations of continuous linear mappings on vector-valued sequence spaces. Das and Choudhury¹ gave conditions on the matrix $A = (f_k^n)$ of continuous linear mappings from a normed linear space X into a normed linear space Y under which A maps $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_\infty(Y)$, and $\ell_1(X)$ into $\ell_p(Y)$. Liu and Wu²² gave the matrix characterizations from vector-valued sequence spaces $c_0(X,p)$, $\ell(X,p)$, and $\ell_\infty(X,p)$ into scalar-valued sequence spaces $c_0(q)$ and $\ell_\infty(q)$. Suantai²⁰ gave the matrix characterizations from the Nakano vector-valued sequence space $\ell(X,p)$ into the vector-valued sequence spaces $c_0(Y,q)$, c(Y), and $\ell_r(Y)$. In this paper, we continue the study of matrix transformations of continuous linear mappings on vector-valued sequence spaces.

The main purpose of this paper is to give the matrix characterizations from $c_0(X,p), c(X,p), \ell_{\infty}(X,p)$, and $\ell(X,p)$ into c(q), where $c_0(X,p), c(X,p), \ell_{\infty}(X,p)$, and $\ell(X,p)$ are the vector-valued sequence spaces of Maddox as defined in Section 2. When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p), c(p), \ell_{\infty}(p)$, and $\ell(p)$, respectively. Several papers deal with the problem of characterizing those matrices that map a scalar-valued sequence space of Maddox into anoher such

Typeset by $A_{\mathcal{N}}S$ - $T_{\mathcal{E}}X$

spaces, see [6, 7, 11, 13, 15, 17, 18, 19, 21]. Some of these results become particular cases of our theorems. Also some more interesting results are derived.

Section 2 deals with necessary preliminaries and some known results quoted as lemmas which are needed to characterize an infinite matrix $A = (f_k^n)$ such that A maps the vector-valued sequence spaces of Maddox into c(q), and we also give some auxiliary results in Section 3. The main results of the paper is in Section 4.

2 Preliminaries and Lemmas

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. Let W(X) and $\Phi(X)$ denote the space of all sequences and the space of all finite sequences in X, respectively. When X = K, the scalar field of X, the corresponding spaces are written as w and ϕ , respectively. An X-valued sequence space is a linear subspace of W(X). The sequence spaces of Maddox are defined as

$$\begin{split} c_0(X,p) &= \left\{ x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0 \right\}, \\ c(X,p) &= \left\{ x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X \right\}, \\ \ell_\infty(X,p) &= \left\{ x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty \right\}, \\ \ell(X,p) &= \left\{ x = (x_k) : \sum_{k=1}^\infty \|x_k\|^{p_k} < \infty \right\}. \end{split}$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p), c(p), \ell_{\infty}(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons¹⁶ and Maddox^{8,9}. The space $\ell(p)$ was first defined by Nakano¹⁴ and it is known as the Nakano sequence space. Also, we need to define the following sequence space:

$$M_0(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} \|x_k\| n^{-1/p_k} < \infty \text{ for some } n \in N \right\}.$$

When X = K, the scalar field of X, the corresponding space is written as $M_0(p)$. This space was first introduced by Maddox¹⁰. Grosse-Erdmann² has investigated the structure of the spaces $c_0(p), c(p), \ell(p)$, and $\ell_{\infty}(p)$ and he also gave the matrix characterizations between scalar-valued sequence spaces of Maddox in [3]. Let E be an X-valued sequence space. For $x \in E$ and $k \in N$ we write that x_k stand for the kth term of x and for $x \in X$ and $x \in X$ and

sequence (1, 1, 1, ...). An X-valued sequence space E is said to be *normal* if $(x_k) \in E$ and $(y_k) \in W(X)$ with $||y_k|| \le ||x_k||$ for all $k \in N$ implies that $(y_k) \in E$. For a fixed scalar sequence $u = (u_k)$ the sequence space E_u is defined as

$$E_u = \{ x = (x_k) \in W(X) : (u_k x_k) \in E \}.$$

The α -, β - and γ - duals of a scalar-valued sequence space F are defined as

$$F^{\zeta} = \{ x \in w : (x_k y_k) \in X_{\zeta} \text{ for every } y \in F \}$$

for $\zeta = \alpha$, β , γ and $X_{\alpha} = \ell_1$, $X_{\beta} = cs$, and $X_{\gamma} = bs$, where ℓ_1 , cs and bs are defined as

$$\begin{split} &\ell_1 = \{x = (x_k) \in w : \sum_{k=1}^{\infty} |x_k| < \infty \}, \\ &cs = \{x = (x_k) \in w : \sum_{k=1}^{\infty} x_k \text{ converges } \}, \\ &bs = \{x = (x_k) \in w : \sup_n |\sum_{k=1}^n x_k| < \infty \}. \end{split}$$

In the same manner, for an X-valued sequence space E, the α -, β - and γ -duals of E are defined as

$$E^{\zeta} = \{(f_k) \subset X' : (f_k(x_k)) \in X_{\zeta} \text{ for every } x = (x_k) \in E\}$$

for $\zeta = \alpha$, β , γ , where $X_{\alpha} = \ell_1$, $X_{\beta} = cs$ and $X_{\gamma} = bs$.

It is obvious from the definition that $E^{\alpha} \subseteq E^{\beta} \subseteq E^{\gamma}$ and it is easy to see that if E is normal, then $E^{\alpha} = E^{\beta} = E^{\gamma}$.

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is an X-valued sequence space and F a scalar-valued sequence space. Then A is said to map E into F, written by $A:E\to F$ if, for each $x=(x_k)\in E, A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$ and the sequence $Ax=(A_n(x))\in F$. We denote by (E,F) the class of all infinite matrices mapping E into F. If $u=(u_k)$ and $v=(v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we put $u^{-1} = (1/u_k)$. Suppose the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in N$ the kth coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. A K-space that is a Fréchet(Banach) space is called an FK - (BK -) space.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X,p)$, we consider the function $g(x) = \sup_k \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X,p)$, and it is known that $c_0(X,p)$ is an FK-space under the paranorm g defined as above. In $\ell(X,p)$, we consider it as a paranormed sequence space with the paranorm given by $\|(x_k)\| = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/M}$. It is known that $\ell(X,p)$ is an FK-space under the paranorm defined as above.

Now let us quote some known results as the following.

Lemma 2.1¹⁰ If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$, then

$$\ell(p)^{\beta} = \{x \in w : \sum_{k=1}^{\infty} |x_k|^{t_k} M^{-t_k} < \infty \text{ for some } M \in N \}$$

where $1/p_k + 1/t_k = 1$ for all $k \in N$.

Lemma 2.2¹⁶ If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$, then $\ell(p)^{\beta} = \ell_{\infty}(p)$.

Lemma 2.3⁶ If $p = (p_k)$ is a bounded sequence of positive real numbers, then

$$\ell_{\infty}(p)^{\beta} = \{x \in w : \sum_{k=1}^{\infty} |x_k| n^{1/p_k} < \infty \text{ for all } n \in N \}.$$

Lemma 2.4¹⁰ If $p = (p_k)$ is a bounded sequence of positive real numbers, then $c_0(p)^{\beta} = M_0(p)$.

Lemma 2.5²² Let $p = (p_k)$ be a bounded sequence of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c_0(X, p) \to c_0$ if and only if

- (1) $f_k^n \stackrel{w^*}{\to} 0$ as $n \to \infty$ for each $k \in N$ and
- (2) $\lim_{m \to \infty} \sup_{n} \sum_{k=1}^{\infty} ||f_k^n|| m^{-1/p_k} = 0.$

Lemma 2.6²² Let $p = (p_k)$ be a bounded sequence of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \ell_{\infty}(X, p) \to c_0$ if and only if

- (1) $f_k^n \xrightarrow{w^*} 0$ as $n \to \infty$ for each $k \in N$ and
- (2) for each $M \in \mathbb{N}$, $\sum_{j>k} ||f_j^n|| M^{1/p_j} \to 0$ as $k \to \infty$ uniformly on $n \in \mathbb{N}$.

Lemma 2.7²² Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ and $1/p_k + 1/t_k = 1$ for all $k \in N$ and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell(X, p) \to c_0$ if and only if

- (1) $f_k^n \xrightarrow{w^*} 0$ as $n \to \infty$ for each $k \in N$ and
- (2) $\sum_{k=1}^{\infty} ||f_k^n||^{t_k} m^{-t_k} \to 0$ as $m \to \infty$ uniformly on $n \in N$.

Lemma 2.8²² Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \le 1$ for all $k \in N$ and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell(X, p) \to c_0$ if and only if

- (1) $f_k^n \xrightarrow{w^*} 0$ as $n \to \infty$ for each $k \in N$ and
- (2) $\sup_{n,k} ||f_k^n||^{p_k} < \infty.$

3. Some Auxiliary Results

Suppose that E and F are sequence spaces and that we want to characterize the matrix space (E, F). If E and/or F can be derived from simpler sequence spaces in some fashion, then, in many cases, the problem reduces to the characterization of the corresponding simpler matrix spaces. We begin with giving various useful results in this direction.

Proposition 3.1. Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ scalar-valued sequence spaces, and let u and v be scalar sequences with $u_k \neq 0, v_k \neq 0$ for all $k \in N$. Then

- (i) $(\bigcup_{n=1}^{\infty} E_n, F) = \bigcap_{n=1}^{\infty} (E_n, F),$
- (ii) $(E, \cap_{n=1}^{\infty} F_n) = \cap_{n=1}^{\infty} (E, F_n),$
- (iii) $(E_1 + E_2, F) = (E_1, F) \cap (E_2, F),$
- (iv) $(E_u, F_v) = {}_v(E, F)_{u^{-1}}.$

Proof. All of them are obtained directly from the definitions.

Propostion 3.2. Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then

- (i) $c(X, p) = c_0(X, p) + \{e(x) : x \in X\},$
- (ii) $M_0(X,p) = \bigcup_{n=1}^{\infty} \ell(X)_{(n^{-1/p_k})},$
- (iii) $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$.

Proof. Assertions (i) and (ii) are immediately obtained from the definitions. To show (iii), let $x \in \ell_{\infty}(X, p)$, then there is some $n \in N$ with $||x_k||^{p_k} \leq n$ for all $k \in N$. Hence $||x_k|| n^{-1/p_k} \leq 1$ for all $k \in N$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M > 1 such that $||x_k|| n^{-1/p_k} \leq M$ for every $k \in N$. Then we have $||x_k||^{p_k} \leq nM^{p_k} \leq nM^{\alpha}$ for all $k \in N$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

The next proposition give a relationship between the $\beta-$ dual of vector-valued and scalar-valued sequence spaces.

Proposition 3.3 Let X be a Banach space and F a normal scalar-valued sequence space and define $F(X) = \{(x_k) \in W(X) : (\|x_k\|) \in F \}$. then for $(f_k) \subset X'$, the topological dual of X, $(f_k) \in F(X)^{\beta}$ if and only if $(\|f_k\|) \in F^{\beta}$.

Proof. If $(||f_k||) \in F^{\beta}$, then for $x = (x_k) \in F(X)$ we have $\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} ||f_k|| ||x_k|| < \infty$, so that $x \in F(X)^{\beta}$.

Conversely, suppose that $(f_k) \in F(X)^{\beta}$ and $a = (a_k) \in F$. Since F is normal, $(|a_k|) \in F$. For each $k \in N$, we can choose $x_k \in X$ such that $||x_k|| = 1$ and $|f_k(x_k)| \geq \frac{||f_k||}{2}$. Let $y = (a_k x_k)$, then $y \in F(X)$. Choose a sequence (t_k) of scalars such that $|t_k| \leq 1$ and $f_k(t_k a_k x_k) = |f_k(x_k)||a_k|$ for all $k \in N$. Since F is normal, $(t_k y_k) \in F(X)$, so we obtain that $\sum_{k=1}^{\infty} f_k(t_k y_k)$ converges. This implies $\sum_{k=1}^{\infty} ||f_k|||a_k|| \leq 2 \sum_{k=1}^{\infty} |f_k(x_k)||a_k|| < \infty$. It follows that $(||f_k||) \in F^{\beta}$.

By using Proposition 3.3, the following results are obtained immediately from Lemma 2.1 - 2.4, respectively.

Proposition 3.4 If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$, then

$$\ell(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-t_k} < \infty \text{ for some } M \in N \}$$

where $1/p_k + 1/t_k = 1$ for all $k \in N$.

Proposition 3.5 If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$, then $\ell(X, p)^{\beta} = \ell_{\infty}(X', p)$.

Proposition 3.6 If $p = (p_k)$ is a bounded sequence of positive real numbers, then

$$\ell_{\infty}(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} ||f_k|| n^{1/p_k} < \infty \text{ for all } n \in N \}.$$

Proposition 3.7 If $p = (p_k)$ is a bounded sequence of positive real numbers, then $c_0(X,p)^{\beta} = M_0(X',p)$.

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let $q = (q_k)$ be a bounded sequence of positive real numbers and let E be a normal X- valued sequence space which is an FK-space containing $\Phi(X)$. Then

$$(E, c(q)) = (E, c_0(q)) \oplus (E, \langle e \rangle).$$

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X-valued sequence space which is an FK-space containing $\Phi(X)$. Then for each $k \in N$, the mapping $T_k : X \to E$, defined by $T_k x = e^k(x)$, is continuous.

Proof. For each $k \in N$, we have that $V = \{e^k(x) : x \in X\}$ is a closed subspace of E, so it is an FK-space. Since E is a K-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, hence, $p_k^{-1} : X \to V$ is continuous. It follows that T_k is continuous because $T_k = p_k^{-1}$. \square

Lemma 4.2. If E and F are scalar-valued sequence spaces such that E is normal containing ϕ , F is an FK-space and there is a subsequence (n_k) with $x_{n_k} \to 0$ as $k \to \infty$ for all $x = (x_n) \in F$, then $(E, F \oplus \langle e \rangle) = (E, F) \oplus (E, \langle e \rangle)$.

Proof. See [3, Proposition 3.1(vi)].
$$\Box$$

Proof of Theorem 4.1 Since $c(q) = c_0(q) \oplus \langle e \rangle$, it is clear that $(E, c_0(q)) + (E, \langle e \rangle) \subseteq (E, c_0(q) \oplus \langle e \rangle) = (E, c(q))$. Moreover, if $A \in (E, c_0(q)) \cap (E, \langle e \rangle)$, then $A \in (E, c_0(q)) \cap \langle e \rangle$, so that $A \in (E, 0)$, which implies that A = 0 because E contain $\Phi(X)$. Hence $(E, c_0(q)) + (E, \langle e \rangle)$ is a direct sum. Now, we will show that $(E, c(q)) \subseteq (E, c_0(q)) \oplus (E, \langle e \rangle)$. Let $A = (f_k^n) \in (E, c(q)) = (E, c_0(q) \oplus \langle e \rangle)$. For $x \in X$ and $k \in N$, we have $(f_k^n(x))_{n=1}^{\infty} = Ae^k(x) \in c_0(q) \oplus \langle e \rangle$, so that there exist unique $(b_k^n(x))_{n=1}^{\infty} \in c_0(q)$ and $(c_k^n(x))_{n=1}^{\infty} \in \langle e \rangle$ with

$$(f_k^n(x))_{n=1}^{\infty} = (b_k^n(x))_{n=1}^{\infty} + (c_k^n(x))_{n=1}^{\infty}.$$
(4.1)

For each $n, k \in \mathbb{N}$, let g_k^n and h_k^n be the functionals on X defined by

$$g_k^n(x) = b_k^n(x) \ \text{ and } \ h_k^n(x) = c_k^n(x) \ \text{ for all } x \in X.$$

Clearly, g_k^n and h_k^n are linear, and by (4.1)

$$f_k^n = g_k^n + h_k^n \quad \text{for all } n, k \in N.$$

$$(4.2)$$

Note that $c_0(q) \oplus \langle e \rangle$ is an FK-space in its direct sum topology. By Zeller's theorem, $A: E \to c_0(q) \oplus \langle e \rangle$ is continuous. For each $k \in N$, let $T_k: X \to E$ be defined by $T_k(x) = e^k(x)$. By Lemma 4.1, we have that T_k is continuous for all $k \in N$. Since the projection P_1 of $c_0(q) \oplus \langle e \rangle$ onto $c_0(q)$ and the projection P_2 of $c_0(q) \oplus \langle e \rangle$ onto $\langle e \rangle$ are continuous and $g_k^n = p_n \circ P_1 \circ A \circ T_k$ and $h_k^n = p_n \circ P_2 \circ A \circ T_k$ for all $n, k \in N$, we obtain that g_k^n and h_k^n are continuous, so $g_k^n, h_k^n \in X'$ for all $n, k \in N$. Let

 $B = (g_k^n)$ and $C = (h_k^n)$. By (4.1) and (4.2), we have A = B + C, $B = (g_k^n) \in (\Phi(X), c_0(q))$ and $C = (h_k^n) \in (\Phi(X), < e >)$. We will show that $B \in (E, c_0(q))$ and $C \in (E, < e >)$. To do this, let $x = (x_k) \in E$. Then for $\alpha = (\alpha_k) \in \ell_\infty$, we have $\|\alpha_k x_k\| = |\alpha_k| \|x_k\| \le \|M x_k\|$, where $M = \sup_k |\alpha_k|$. Then the normality of E implies that $(\alpha_k x_k) \in E$. Hence $(f_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q) \oplus < e >)$, moreover, we have $(g_k^n(x_k))_{n,k} \in (\Phi, c_0(q))$, $(h_k^n(x_k))_{n,k} \in (\Phi, < e >)$, and $(f_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k} + (h_k^n(x_k))_{n,k}$. Since ℓ_∞ is normal containing ϕ and $c_0(q) \subseteq c_0$, it follows from Lemma 4.2 that $(g_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q))$ and $(h_k^n(x_k))_{n,k} \in (\ell_\infty, < e >)$. This implies that $Bx \in c_0(q)$ and $Cx \in < e >$, so we have $B \in (E, c_0(q))$ and $C \in (E, < e >)$, hence $A \in (E, c_0(q)) \oplus (E, < e >)$. This completes the proof.

Theorem 4.2. Let $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \ell_{\infty}(X) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- $(1) \sum_{k=1}^{\infty} \|f_k\| < \infty,$
- (2) $m^{1/q_n} (f_k^n f_k) \stackrel{w^*}{\to} 0$ as $n \to \infty$ for every $k, m \in N$ and
- (3) for each $m \in N$, $\sum_{j>k} m^{1/q_n} ||f_j^n f_j|| \to 0$ as $k \to \infty$ uniformly on $n \in N$.

Proof. Necessity. Let $A \in (\ell_{\infty}(X), c(q))$. It follows from Theorem 4.1 that A = B + C, where $B \in (\ell_{\infty}(X), c_0(q))$ and $C \in (\ell_{\infty}(X), < e >)$. Then there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k)_{n,k} \in (\ell_{\infty}(X), c_0(q))$, which implies that $(f_k) \in \ell_{\infty}(X)^{\beta}$, so (1) is obtained by Proposition 3.6. Since $c_0(q) = \bigcap_{m=1}^{\infty} c_{0(m^{1/q_k})}$ (by [2, Theorem 0 (i)]), we have by Proposition 3.1 (ii) and (iv) that for each $m \in N$, $(m^{1/q_n}(f_k^n - f_k)_{n,k}) : \ell_{\infty}(X) \to c_0$. Hence, (2) and (3) are obtained by Lemma 2.6.

Sufficiency. Suppose that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that conditions (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1(ii) and (iv) that $B \in (\ell_{\infty}(X), c_0(q))$. By Proposition 3.6, condition (1) implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X)$, which implies that $C \in (\ell_{\infty}(X), \langle e \rangle)$. Hence, we obtain by Theorem 4.1 that $A \in (\ell_{\infty}(X), c(q))$. This completes the proof.

Theorem 4.3. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \ell_{\infty}(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that (1), (2) and (3) are satisfied, where

- (1) for each $m \in N$, $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$,
- (2) $r^{1/q_n}(f_k^n f_k) \stackrel{w^*}{\to} 0$ as $n \to \infty$ for every $k, r \in N$ and
- (3) for each $m, r \in N$, $r^{1/q_n} \sum_{j>k} m^{1/p_j} ||f_j^n f_j|| \rightarrow 0$ as $k \rightarrow \infty$ uniformly on $n \in N$.

Moreover, (3) is equivalent to (3'), where

(3') for each
$$m \in N$$
, $\lim_{k \to \infty} \sup_n \left(\sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| \right)^{q_n} = 0$.

Proof. Necessity. Suppose that $A: \ell_{\infty}(X, p) \to c(q)$. By Theorem 4.1, A = B + C, where $B \in (\ell_{\infty}(X, p), c_0(q))$ and $C \in (\ell_{\infty}(X, p), < e >)$. Then there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k) \in (\ell_{\infty}(X, p), c_0(q))$. Since $C = (f_k)_{n,k} : \ell_{\infty}(X, p) \to < e >$, it implies by Proposition 3.6 that (1) holds. Since $c_0(q) = \bigcap_{m=1}^{\infty} c_{0(m^{1/q_k})}$, we have by Proposition 3.1 (ii) that for each $r \in N$, $(r^{1/q_n}(f_k^n - f_k))_{n,k} : \ell_{\infty}(X, p) \to c_0$. Hence, (2) and (3) holds by an application of Lemma 2.6.

Sufficiency. Suppose that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that condition (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1(ii) and (iv) that $B \in (\ell_{\infty}(X, p), c_0(q))$. By Proposition 3.6, condition (1) implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X, p)$, which implies that $C \in (\ell_{\infty}(X, p), < e >)$. Hence, we obtain by Theorem 4.1 that $A \in (\ell_{\infty}(X, p), c(q))$.

Now we shall show that (3) and (3') are equivalent. Suppose (3) holds and let $\varepsilon > 0$. Choose $r \in N$ such that $1/r < \varepsilon$. By (3), there exists $k_0 \in N$ such that

$$r^{1/q_n} \sum_{j>k} m^{1/p_j} ||f_j^n - f_j|| < 1 \text{ for all } k \ge k_0 \text{ and all } n \in N,$$

which implies that

$$\sup_{n} \left(\sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| \right)^{q_n} \le 1/r < \varepsilon \text{ for } k \ge k_0,$$

hence, (3') holds.

Conversely, assume that (3') holds. Let $m, r \in N$ and $0 < \varepsilon < 1$. Then there exists $k_0 \in N$ such that

$$\sup_{n} \left(\sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| \right)^{q_n} < \varepsilon^H/r \quad \text{for all } k \ge k_0$$

where $H = sup_n q_n$. This implies that

$$\|r^{1/q_n}\sum_{j>k}m^{1/p_j}\|f_j^n-f_j\|$$

hence, (3) holds.

Theorem 4.4. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c_0(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that (1), (2), and (3) are satisfied, where

- (1) $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$,
- (2) $m^{\frac{1}{q_n}}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $m, k \in N$ and
- (3) for each $m \in N$, $\sup_n \left(m^{1/q_n} \sum_{k=1}^{\infty} \|f_k^n f_k\| r^{-1/p_k} \right) \to 0$ as $r \to \infty$. Moreover, (3) is equivalent to (3') where
 - (3') $\lim_{r\to\infty} \sup_{n} \left(\sum_{k=1}^{\infty} ||f_k^n f_k|| r^{-1/p_k} \right)^{q_n} = 0.$

Proof. Necessity. Suppose that $A: c_0(X,p) \to c(q)$. By Theorem 4.1, we have A=B+C, where $B\in (c_0(X,p),c_0(q))$ and $C\in (c_0(X,p),<e>$. It follows that there is a sequence $(f_k)\subset X'$ such that $C=(f_k)_{n,k}$ and $B=(f_k^n-f_k)_{n,k}$. Since $c_0(q)=\bigcap_{r=1}^\infty c_{0(r^{1/q_k})}$, it follows from Proposition 3.1 (ii) and (iv) that for each $m\in N$, $(m^{1/q_n}(f_k^n-f_k))_{n,k}\in (c_0(X,p),c_0)$, hence, conditions (2) and (3) hold by using the result from Lemma 2.5. Since $C=(f_k)_{n,k}\in (c_0(X,p),<e>$, we have that $\sum_{k=1}^\infty f_k(x_k)$ converges for all $x=x_k\in c_0(X,p)$, so that $(f_k)\in c_0(X,p)^\beta$, hence, by Proposition 3.7, we obtain that there exists $M\in N$ such that $\sum_{k=1}^\infty \|f_k\|M^{-1/p_k}<\infty$. Hence, (1) is obtained.

Sufficiency. Assume that there is a sequence $(f_k) \subset X'$ such that conditions (1),(2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. Then A = B + C. By conditions (2) and (3), we obtain from Proposition 3.1(ii) and (iv) and Lemma 2.5 that $B \in (c_0(X, p), c_0(q))$. The condition (1) implies by Proposition 3.7 that $\sum_{k=1}^{\infty} f_k(x_k)$

converges for all $x = (x_k) \in c_0(X, p)$, so that $C \in (c_0(X, p), < e >)$. Hence, by Theorem 4.1, we obtain that $A \in (c_0(X, p), c(q))$.

Now, we shall show that conditions (3) and (3') are equivalent. To do this, suppose that (3) holds and let $\varepsilon > 0$. Choose $m \in N$, $1/m < \varepsilon$. From (3), there is $r_0 \in N$ such that

$$\sup_{n} m^{1/q_{n}} \sum_{k=1}^{\infty} \|f_{k}^{n} - f_{k}\| r^{-1/p_{k}} \le 1 \text{ for all } r \ge r_{0}.$$

This implies that $\sup_n \left(\sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} \right)^{q_n} \le 1/m < \varepsilon \text{ for all } r \ge r_0.$ Hence, (3') holds.

Conversely, suppose that (3') holds. Let $m \in N$ and $0 < \varepsilon < 1$. Then there exists $r_0 \in N$ such that $\sup_n \left(\sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} \right)^{q_n} < \varepsilon^H/m$ for all $r \geq r_0$, where $H = \sup_n q_n$. Hence, we have

$$m^{1/q_n} \sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} < \varepsilon^{H/q_n} \le \varepsilon \text{ for all } r \ge r_0 \text{ and } n \in N,$$

so that (3) holds. This completes the proof.

Theorem 4.5. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that (1), (2), (3) and (4) are satisfied, where

- (1) $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$,
- (2) for each $m, k \in N$, $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$,
- (3) for each $m \in N$, $\sup_n m^{1/q_n} \sum_{k=1}^{\infty} \|f_k^n f_k\| r^{-1/p_k} \to 0 \text{ as } r \to \infty \text{ and }$
- (4) $(\sum_{k=1}^{\infty} f_k^n(x))_{n=1}^{\infty} \in c(q) \text{ for all } x \in X.$

Moreover, (3) is equivalent to (3') where

(3')
$$\lim_{r\to\infty} \sup_{n} \left(\sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} \right)^{q_n} = 0.$$

Proof. Since $c(X,p) = c_0(X,p) + \{e(x) : x \in X\}$ (Proposition 3.2 (i)), it follows from Proposition 3.1(iii) that $A \in (c(X,p),c(q))$ if and only if $A \in (c_0(X,p),c(q))$ and $A \in (\{e(x) : x \in X\},c(q))$. By Theorem 4.4, we have $A \in (c_0(X,p),c(q))$ if and only if conditions (1)-(3) hold and it is clear that $A \in (\{e(x) : x \in X\},c(q))$ if and only if (4)

holds. We have by Theorem 4.4 that (3) and (3') are equivalent. Hence, the theorem is proved. \Box

Wu and Liu (Lemma 2.7) have given a characterization of an infinite matrix A such that $A \in (\ell(X, p), c_0)$ when $p_k > 1$ for all $k \in N$. By applications of Proposition 3.1(ii) and (iv), Proposition 3.4, and Theorem 4.1, and using the fact that $c_0(q) = \bigcap_{m=1}^{\infty} c_{0(m^{1/q_k})}$, we obtain the following result.

Theorem 4.6. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in N$ and $1/p_k + 1/t_k = 1$ for all $k \in N$, and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-t_k} < \infty$ for some $M \in N$,
- (2) $m^{1/q_n}(f_k^n f_k) \stackrel{w^*}{\to} 0$ as $n \to \infty$ for all $m, k \in N$ and
- (3) for each $m \in N$, $\sum_{k=1}^{\infty} m^{t_k/q_n} ||f_k^n f_k||^{t_k} r^{-t_k} \to 0$ as $r \to \infty$ uniformly on $n \in N$.

By using Lemma 2.8, Proposition 3.1(ii) and (iv), Proposition 3.5 and Theorem 4.1, we also obtain the following result.

Theorem 4.7. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- $(1) \sup_{k} ||f_k||^{p_k} < \infty,$
- (2) $m^{1/q_n} (f_k^n f_k) \stackrel{w^*}{\to} 0 \text{ as } n \to \infty \text{ for all } m, k \in \mathbb{N} \text{ and }$
- (3) $\sup_{n,k} m^{p_k/q_n} ||f_k^n f_k||^{p_k} < \infty \text{ for all } m \in N.$

When $p_k = 1$ for all $k \in N$, we obtain the following.

Corollary 4.8. Let $q = (q_k)$ be a bounded sequence of positive real numbers and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell_1(X) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- $(1) \sup_{k} ||f_k|| < \infty,$
- (2) $m^{1/q_n} (f_k^n f_k) \stackrel{w^*}{\to} 0$ as $n \to \infty$ for all $m, k \in N$ and
- (3) $\sup_{n,k} m^{1/q_n} \|f_k^n f_k\| < \infty \text{ for every } m \in N.$

Theorem 4.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A: M_0(X, p) \to c(q)$ if and only if there is a sequence (f_k) of bounded linear functionals on X such that

- (1) $\sup_k m^{1/p_k} ||f_k|| < \infty$ for all $m \in N$,
- (2) for each $m, r \in N$, $r^{1/q_n} m^{1/p_k} (f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $k \in N$ and
- (3) for each $m, r \in N$, $\sup_{n,k} r^{1/q_n} m^{1/p_k} ||f_k^n f_k|| < \infty$.

Proof. It follows from Theorem 4.1 that $A \in (M_0(X,p),c_0(q)\oplus < e>)$ if and only if there is a sequence (f_k) of bounded linear functionals on X such that $A=B+(f_k)_{n,k}$ where $B:M_0(X,p)\to c_0(q)$ and $(f_k)_{n,k}:M_0(X,p)\to < e>$. Since $B=(f_k^n-f_k)_{n,k}$ and $M_0(X,p)=\cup_{m=1}^{\infty}\ell_1(X)_{(m^{-1/p_k})}$ (by Proposition 3.2 (ii)), we have by Proposition 3.1 (i) and (iv) that $B:M_0(X,p)\to c_0(q)$ if and only if $(m^{1/p_k}(f_k^n-f_k))_{n,k}:\ell_1(X)\to c_0(q)$ for all $m\in N$. Since $c_0(q)=\cap_{r=1}^{\infty}c_{0(r^{1/q_k})}$, by Proposition 3.1 (ii) and (iv), we have $(m^{1/p_k}(f_k^n-f_k))_{n,k}:\ell_1(X)\to c_0(q)$ if and only if $(r^{1/q_n}m^{1/p_k}(f_k^n-f_k))_{n,k}:\ell_1(X)\to c_0$ for all $r\in N$. By Lemma 2.8, we have

$$(r^{1/q_n}m^{1/p_k}(f_k^n-f_k))_{n,k}:\ell_1(X)\to c_0$$
 if and only if

- (a) $r^{1/q_n} m^{1/p_k} (f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $k \in N$ and
- (b) $\sup_{n,k} r^{1/q_n} m^{1/p_k} ||f_k^n f_k|| < \infty$.

By Proposition 3.1 (i) and (iv), we have $(f_k)_{n,k}: M_0(X,p) \to < e >$ if and only if $(m^{1/p_k}f_k)_{n,k}: \ell_1(X) \xrightarrow{\bullet} < e >$ for all $m \in N$. By Proposition 3.5, we obtain that $(m^{1/p_k}f_k)_{n,k}: \ell_1(X) \to < e >$ if and only if $\sup_k m^{1/p_k} ||f_k|| < \infty$. Hence, the theorem is proved.

Acknowledgements

The author is thankful to the referee for his useful and valuable suggestions and the author would like to thank the Thailand Research Fund for the financial support.

References

- [1] N. R. Das and A. Choudhury, Calc., 84 (1) (1992), 47-54.
- [2] K. -G. Grosse-Erdmann, Canad. J. Math. 44 (1992), 298-307.
- [3] K.-G. Grosse-Erdmann, J. Math. Anal. Appl. 180 (1993), 223-238.
- [4] M. Gupta, J. Math. Anal. Appl. 78 (1980), 357 366.
- [5] C. G. Lascarides, Pacific J. Math. 38 (1971), 487-500.
- [6] C. G. Lascarides and I. J. Maddox, Proc. Cambridge Philos. Soc. 68 (1970), 99-104.
- [7] Y. Luh, Analysis 9 (1989), 67-81.
- [8] I. J. Maddox, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [9] I. J. Maddox, Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
- [10]I. J. Maddox, Proc. Cambridge Philos. Soc. 65 (1969), 431 435.
- [11]I. J. Maddox, Proc. Cambridge Philos. Soc. 71 (1972), 491 494.
- [12]I. J. Maddox, Proc. Amer. Math. Soc. 63 (1977), 82 86.
- [13]I. J. Maddox and M. A. L. Willey, Pacific. J. Math. 53 (1974), 217 228.
- [14]H. Nakano, Proc. Japan. Acad. 27 (1951), 508-512.
- [15]J. W. Roles, J. London Math. Soc. 3 (1971), 485-487.
- [16]S. Simons, Proc. London. Math. Soc. 15 (1965), 422-436.
- [17]S. M. Sirajudeen, Soochow J. Math. 7 (1981), 165-174.
- [18]S. M. Sirajudeen, Proc. Nat. Acad. Sci. India Sect. A 58 (1988), 403-407.
- [19]D. Somasundaram and S. M. Sirajudeen, Indian J. Pure Appl. Math. 14 (1983), 202-206.
- [20]S. Suantai, SEA. Bull. Math. 24 (2000), 297 303.
- [21]M. A. L. Willey, J. London Math. Soc. 7 (1973), 19 30.
- [22]C. X. Wu and L. Liu, SEA. Bull. Math. 17(1) (1993), 83-96.

 $e^{(k)}(z)$ be the sequence (0,0,0,...,0,z,0,...) with z in the k^{th} position. For a fixed scalar sequence $u=(u_k)$ the sequence space E_u is defined by

$$E_u = \{x = (x_k) \in W(X) : (u_k x_k) \in E\}.$$

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $n \in N$ the n^{th} coordinate mapping p_n : $E \to X$, defined by $p_n(x) = x_n$, is continuous on E. If, in addition, (E,τ) is an Fre'chet(Banach) space, then E is called an FK - (BK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x \in E$ as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

If $p_k > 1$ for all $k \in N$, the space $\ell(p)$ is an BK-space with AK under the Luxemburg norn defined by

$$||x|| = \inf\{\varepsilon > 0 : \sum_{k=1}^{\infty} \left| \frac{x_k}{\varepsilon} \right|^{p_k} \le 1\}$$
.

For more detail about the space $\ell(p)$ see [3]. The space $c_0(p)$ is an FK-space with AK, c(p) is an FK-space and $\ell_{\infty}(p)$ is a complete LBK-space with AB (see [3]). In each of the space $\ell_{\infty}(X,p)$ and $c_0(X,p)$ we consider the function $g(x)=\sup_k \|x_k\|^{p_k/M}$, where $M=\max\{1,\sup_k p_k\}$, as a paranorm on $\ell_{\infty}(X,p)$ and $c_0(X,p)$ and it is known that $c_0(X,p)$ is an FK-space with AK under the paranorm g defined as above and $\ell_{\infty}(X,p)$ is a complete LBK-space with AB.

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to $map\ E$ into F, written $A:E\to F$ if for each $x=(x_k)\in E, A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$ and the sequence $Ax=(A_n(x))\in F$. We denote by (E,F) the set of all infinite matrices mapping E into F. If $u=(u_k)$ and $v=(v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we write $u^{-1} = (\frac{1}{u_k})$.

Let E be an X-valued sequence space. The β - daul of E is defined to be

$$E^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} f(x_k) \text{ converges for all } x = (x_k) \in E.\}$$

By the defintion, we see that if $A = (f_k^n)$ maps the sequence space E into a scalar sequence space, then each row of A belongs to E^{β} , i.e., $(f_k^n)_{k=1}^{\infty} \in E^{\beta}$, so this is a necessary condition for an infinite matrix A mapping from one sequence space into the other. We shall give characterizations of the β - dual of some vector-valued sequence spaces in Section 3.

3. The β - Dual of some Vector-Valued Sequence Spaces

We start with characterizations of the β - dual of the space $c_0(X,p)$

Proposition 3.1 Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then

$$c_0(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} ||f_k|| M^{-\frac{1}{p_k}} < \infty \text{ for some } M \in N.\}$$

Proof. Suppose that $\sum_{k=1}^{\infty} ||f_k|| M^{-\frac{1}{p_k}} < \infty$ for some $M \in N$. Let $x = (x_k) \in c_0(X, p)$. Then there is a positive integer K_0 such that $||x_k||^{p_k} < \frac{1}{M}$ for all $k \geq K_0$, hence

$$||x_k|| < M^{-\frac{1}{p_k}}$$
 for all $k \ge K_0$.

Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \le \sum_{k=K_0}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=K_0}^{\infty} ||f_k|| M^{-\frac{1}{p_k}} < \infty.$$

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in c_0(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in c_0(X, p)^{\beta}$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$. For each $x = (x_k) \in c_0(X, p)$, choose scalar sequence (t_k) with

 $|t_k|=1$ such that $f_k(t_kx_k)=|f_k(x_k)|$ for all $k\in N$. Since $(t_kx_k)\in c_0(X,p)$, by our assumption, we have $\sum_{k=1}^{\infty}f_k(t_kx_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x \in c_0(X, p).$$
(3.1)

Now, suppose that $\sum_{k=1}^{\infty} ||f_k|| m^{-\frac{1}{p_k}} = \infty$ for all $m \in N$. Choose $m_1, k_1 \in N$ such that

$$\sum_{k \le k_1} ||f_k|| m_1^{-\frac{1}{p_k}} > 1$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} ||f_k|| m_2^{-\frac{1}{p_k}} > 2.$$

Proceeding in this way, we can choose $m_1 < m_2 < ...$, and $0 = k_1 < k_2 < ...$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| m_i^{-\frac{1}{p_k}} > i.$$

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-\frac{1}{p_k}} > i \text{ for all } i \in N.$$

Put $y = (y_k), (y_k) = m_i^{-\frac{1}{p_k}} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and we have

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-\frac{1}{p_k}} > i \text{ for all } i \in N.$$

Hence we have $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$ which contradicts with (3.1). Hence $(f_k) \in \{(g_k) \subset X' : \sum_{k=1}^{\infty} ||g_k|| M^{-\frac{1}{p_k}} < \infty$ for some $M \in N$.\right\}. Thus the proposition is proved.

Proposition 3.2 Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then

$$\ell_{\infty}(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} ||f_k|| m^{\frac{1}{p_k}} < \infty \text{ for all } m \in N.\}$$

Proof. If $\sum_{k=1}^{\infty} \|f_k\| m^{\frac{1}{p_k}} < \infty$ for all $m \in N$, then we have that for each $x = (x_k) \in \ell_{\infty}(X,p)$, there is $m_0 \in N$ such that $\|x_k\| \leq m_0^{\frac{1}{p_k}}$ for all $k \in N$, hence $\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} \|f_k\| \|x_k\| \leq \sum_{k=1}^{\infty} \|f_k\| m_0^{\frac{1}{p_k}} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell_{\infty}(X,p)^{\beta}$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X,p)^{\beta}$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X,p)$. We first note that, by using the same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell_{\infty}(X, p).$$
 (3.2)

Now, suppose that $\sum_{k=1}^{\infty} ||f_k|| M^{\frac{1}{p_k}} = \infty$ for some $M \in N$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < \dots$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| M^{\frac{1}{p_k}} > i \text{ for all } i \in N.$$

Taking x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} ||f_k(x_k)|| M^{\frac{1}{p_k}} > i.$$

Put $y = (y_k) = (M^{\frac{1}{p_k}} x_k)_{k=1}^{\infty}$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i}^{\infty} ||f_k(x_k)|| M^{\frac{1}{p_k}} > i \text{ for all } i \in N.$$

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.2). Thus $(f_k) \in \{(g_k) \subset X' : \sum_{k=1}^{\infty} \|g_k\| m^{\frac{1}{p_k}} < \infty$ for all $m \in N$.}. Hence $\ell_{\infty}(X, p)^{\beta} = \{(g_k) \subset X' : \sum_{k=1}^{\infty} \|g_k\| m^{\frac{1}{p_k}} < \infty$ for all $m \in N$.}.

Proposition 3.3 Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then

$$\ell(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty \text{ for some } M \in N\}$$

where $\frac{1}{p_k} + \frac{1}{t_k} = 1$ for all $k \in N$.

Proof. Suppose that $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in \mathbb{N}$. Then we have that for each $x = (x_k) \in \ell(X, p)$,

$$\begin{split} \sum_{k=1}^{\infty} &|f_k(x_k)| \leq \sum_{k=1}^{\infty} &||f_k|| M^{-\frac{1}{p_k}} M^{\frac{1}{p_k}} ||x_k|| \\ &\leq \sum_{k=1}^{\infty} \left(||f_k||^{t_k} M^{-\frac{t_k}{p_k}} + M ||x_k||^{p_k} \right) \\ &= \sum_{k=1}^{\infty} &||f_k||^{t_k} M^{-(t_k-1)} + M \sum_{k=1}^{\infty} &||x_k||^{p_k} < \infty \end{split}$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in \ell(X,p)^{\beta}$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X,p)$. We first note that, by using the same proof as in Proposition 3.1, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell(X, p).$$
(3.3)

We want to show that there exists $M \in N$ such that

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$$

If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
 (3.4)

And (3.4) implies that for each $k_0 \in N$.

$$\sum_{k>k_0} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
 (3.5)

By (3.4), let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k < k_1} ||f_k||^{t_k} m_1^{-(t_k - 1)} > 1.$$

By (3.5), we can choose $m_2 > m_1$ and $m_2 > 2^2$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{t_k} m_2^{-(t_k - 1)} > 1.$$
(3.6)

By continuous in this way, we obtain sequences (k_i) and (m_i) of positive integers with $1 = k_0 < k_1 < k_2 < ..., m_1 < m_2 < ..., m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{t_k} m_i^{-(t_k-1)} > 1.$$

Choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)} > 1 \text{ for all } i \in N.$$

Let $a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-(t_k-1)} |f_k(x_k)|^{t_k-1} x_k$ for all k, $k \le k_i$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} ||y_k||^{p_k} = \sum_{k_{i-1} < k \le k_i} ||a_i^{-1} m_i^{-(t_k - 1)}| f_k(x_k)|^{t_k - 1} x_k ||^{p_k}$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-t_k} |f_k(x_k)|^{t_k}$$

$$\leq \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} m_i^{-1} a_i$$

$$= m_i^{-1}$$

$$< \frac{1}{2^i}.$$

So we have that

$$\sum_{k=1}^{\infty} ||y_k||^{p_k} \le \sum_{i=1}^{\infty} \frac{1}{2^i} < \infty.$$

Hence,

$$y = (y_k) \in \ell(X, p). \tag{3.7}$$

ON MATRIX TRANSFORMATIONS OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX

Abstract. In this paper, characterizations of infinite matrices mapping the vector-valued sequence spaces of Maddox into Musielak-Orlicz sequence space are given.

1. Introduction. Let $(X, \|.\|)$ be a real Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p), c(X, p), \ell_{\infty}(X, p)$, and $\ell(X, p)$ are defined by

$$c_0(X, p) = \left\{ x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0 \right\},$$

$$c(X, p) = \left\{ x = (x_k) : \lim_{k \to \infty} ||x_k - a||^{p_k} = 0 \text{ for some } a \in X \right\},$$

$$\ell_{\infty}(X, p) = \left\{ x = (x_k) : \sup_{k} ||x_k||^{p_k} < \infty \right\}, and$$

$$\ell(X, p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty \right\}.$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), and $\ell_{\infty}(p)$,

respectively. The first three spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons[9] and Maddox[5, 6]. The space $\ell(p)$ was first defined by Nakano[8] and is known as the Nakano sequence space. Grosse-Erdmann [3] investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$ and $\ell_{\infty}(p)$.

A function $f:R\to [0,\infty)$ is called an *Orlicz function* if it has the following properties:

- (1) f is even, continuous and convex,
- $(2) \ f(x) = 0 \Longleftrightarrow x = 0,$
- (3) $\lim_{x \to 0} \frac{f(x)}{x} = 0$ and $\lim_{x \to \infty} \frac{f(x)}{x} = \infty$.

Let $M=(M_n)$ be a sequence of Orlicz functions, for a given real sequence $x=(x_n)$ define

$$\varrho_M(x) = \sum_{n=1}^{\infty} M_n(x_n) .$$

Let $\ell_M = \{x = (x_n) : \varrho_M(\lambda x) < \infty \text{ for some } \lambda > 0.\}$ and for $x = (x_n) \in \ell_M$, define the Luxemburg norm of x by

$$\|x\|=\inf\{\lambda>0:\varrho_M(\frac{x}{\lambda})\leq 1.\}$$

The sequence space $(\ell_M, \|.\|)$ was defined by Musielak [7] and it is called the Musielak-Orlicz sequence space with the Luxemburg norm. If $M_n = M_{n+1}$ for all $n \in \mathbb{N}$, the space ℓ_M is known as the Orlicz sequence space. For more details about the Orlicz sequence space and Musielak-Orlicz sequence space see [1] and [7].

In [4], Grosse-Erdmann gave characterizations of infinite matrices mapping between the scalar sequence spaces of Maddox. Wu [12] gave characterizations of matrix transformations from the space $\ell(X,p)$, $c_0(X,p)$ and $\ell_{\infty}(X,p)$ into the space $c_0(q)$ and $\ell_{\infty}(q)$. These results generalized some of those in [4]. In [11], Suantai gave characterizations of infinite matrices of bounded linear functuionals on X mapping the Nakano sequence space $\ell(X,p)$ into $\ell_{\infty}(q)$ and $\ell_{\infty}(q)$ and $\ell_{\infty}(q)$ and $\ell_{\infty}(q)$. Choudhur [1] gave necessary and sufficient conditions for an infinite matrix of continuous linear operators which maps the vector-valued sequence space $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_{\infty}(Y)$ and $\ell_1(X)$ into $\ell_p(Y)$ where Y is a Banach space. Suantai [10] gave characterizations of infinite matrices of bounded linear operators mapping from the Nakano vector-valued sequence space $\ell(X,p)$ into any BK-space. In this paper, we use some technics in [10] and another new technics to give the matrix characterizations from the sequence space of Maddox $\ell_{\infty}(X,p)$, $\ell(X,p)$ and $c_0(X,p)$ into the Musielak-Orlicz sequence space ℓ_M .

2. Notation and Definitions. Let $(X, \|.\|)$ be a Banach space. The space of all sequences in X is denoted by W(X) and $\Phi(X)$ denotes the space of all finite sequences in X.

A sequence space in X is a linear subspace of W(X). Let E be an X- valued sequence space. For $x \in E$ we write $x = (x_k), k \in N$. For $z \in X$ and $k \in N$, we let

For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k(a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= 1.$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.3). Thus $(f_k) \in \{(g_k) \subset X' : \sum_{k=1}^{\infty} \|g_k\|^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in N\}$. Hence the proposition is proved.

Proposition 3.4 Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$.

Proof. If $x \in \ell_{\infty}(X, p)$, then there is some $n \in N$ with $||x_k||^{p_k} \leq n$ for all $k \in N$. Hence $||x_k|| n^{-1/p_k} \leq 1$ for all $k \in N$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M > 1 such that $||x_k|| n^{-1/p_k} \leq M$ for every $k \in N$. Then we have $||x_k||^{p_k} \leq n M^{p_k} \leq n M^{\alpha}$ for all $k \in N$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$

4. Main Results. Now, we turn to our objective. We begin with giving general characterizations of matrix transformations from an FK-space of vector sequences with AK property into an FK-space of scalar sequences.

Theorem 4.1 Let $E \subseteq W(X)$ be an FK-space with AK property and F an FK-space of scalar sequences. Then, for an infinite matrix $A = (f_k^n), A : E \to F$ if and only if

- (1) for each $n \in N$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $x = (x_k) \in E$,
- (2) for each $k \in N$, $(f_k^n(z))_{n=1}^{\infty} \in F$ for all $z \in X$, and
- (3) $A: \Phi(X) \to F$ is continuous when $\Phi(X)$ is considered as a subspace of E.

Proof. Assume that $A: E \to F$. Then we have that for any $x = (x_k) \in E$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $n \in N$, so (1) holds. Since $e^k(z) \in E$ for all $k \in N$ and all $z \in X$, we obtain that for each $k \in N$,

$$(f_k^n(z))_{n=1}^{\infty} = Ae^k(z) \in F,$$

hence (2) holds. Since E and F are FK-spaces, by Zeller's theorem, $A: E \to F$ is continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

$$Ax = \left(\sum_{k=1}^{\infty} f_k^n(x_k)\right)_{n=1}^{\infty} \in W, \text{ for all } x = (x_k) \in E.$$

It follows from (2) that $Ae^k(z) \in F$ for all $k \in N$ and $z \in X$, which implies that $A: \Phi(X) \to F$. By (3), we have $A: \Phi(X) \to F$ is continuous. Let $x = (x_k) \in E$. Since E has the AK property, we have

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^k(x_k).$$

Then $\left(\sum_{k=1}^n e^k(x_k)\right)_{n=1}^{\infty}$ is a Cuachy sequence in E. Since $A:\Phi(X)\to F$ is continuous and linear, it implies that $\left(\sum_{k=1}^n Ae^k(x_k)\right)_{n=1}^{\infty}$ is a Cauchy sequence in F. Since F is complete, we have $\left(\sum_{k=1}^n Ae^k(x_k)\right)_{n=1}^{\infty}$ converges in F. Since F is a K-space, it implies that $\left(\sum_{k=1}^{\infty} f_k^n(x_k)\right)_{n=1}^{\infty} \in F$, so that $Ax \in F$. This shows that $A: E \to F$.

If $p_k > 1$ for all $k \in N$, it is the same as the space $\ell(p)$ (see []), we have that the space $\ell(X,p)$ is an BK-space with AK property under the Luxemburg norm

$$||x|| = \inf\{\varepsilon > 0 : \sum_{k=1}^{\infty} ||\frac{x_k}{\varepsilon}||^{p_k} \le 1\}$$

The following proposition gives some useful properties conerning about the Luxemburg norm.

Proposition 4.2 Let $p = (p_k)$ be a bounded sequences of positive real numbers such that $p_k > 1$ for all $k \in N$ and let $x = (x_k) \in \ell(X, p)$. Then

(1)
$$||x|| \le 1$$
 if and only if $\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1$, and

(2) If
$$||x|| = 1$$
, then $\sum_{k=1}^{\infty} ||x_k||^{p_k} = 1$.

Proof. If $\sum_{k=1}^{\infty} ||x_k||^{p_k} \leq 1$, we have by the definition of the Luxemburg norm that $||x|| \leq 1$.

If $||x|| \le 1$, then $||x|| < 1 + \frac{1}{n}$ for all $n \in N$, it implies that $\sum_{k=1}^{\infty} ||\frac{x_k}{1 + \frac{1}{n}}||^{p_k} \le 1$.

Since $\frac{1}{(1+\frac{1}{n})^{\alpha}}\sum_{k=1}^{\infty}\|x_k\|^{p_k} \leq \sum_{k=1}^{\infty}\|\frac{x_k}{1+\frac{1}{n}}\|^{p_k}$, where $\alpha = \sup_k p_k$, it follows that

$$\sum_{k=1}^{\infty} \|x_k\|^{p_k} \le \left(1 + \frac{1}{n}\right)^{\alpha} \quad \text{for all } n \in N$$

$$\tag{4.1}$$

By taking $n \to \infty$ in 4.1, we obtain $\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1$.

(2) Assume that ||x|| = 1. By (1) we have $\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1$. If $\sum_{k=1}^{\infty} ||x_k||^{p_k} < 1$,

then for each $\varepsilon > 0$ such that $\sum_{k=1}^{\infty} \|x_k\|^{p_k} < \varepsilon < 1$, we have that $\sum_{k=1}^{\infty} \|\frac{x_k}{\varepsilon}\|^{p_k} > 1$. Since

 $(\frac{1}{\varepsilon})^{\alpha} \geq (\frac{1}{\varepsilon})^{p_k}$ for all $k \in N$, where $\alpha = \sup_k p_k$, we have $(\frac{1}{\varepsilon})^{\alpha} \sum_{k=1}^{\infty} ||x_k||^{p_k} \geq \sum_{k=1}^{\infty} ||\frac{x_k}{\varepsilon}||^{p_k} > 1$, hence

$$\sum_{k=1}^{\infty} \|x_k\|^{p_k} > \varepsilon^{\alpha} . \tag{4.2}$$

By taking $\varepsilon \to 1^-$ in (4.2) we obtain that $\sum_{k=1}^{\infty} ||x_k||^{p_k} \ge 1$ which is a contradiction.

Hence
$$\sum_{k=1}^{\infty} \|x_k\|^{p_k} = 1.$$

Theorem 4.3 Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ for all $k \in \mathbb{N}$, and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell_M$ if and only if

(1) for each $n \in N$ there exists $M_n \in N$ such that

$$\sum_{k=1}^{\infty} ||f_k^n||^{t_k} M_n^{-(t_k-1)} < \infty, \text{ where } \frac{1}{p_k} + \frac{1}{t_k} = 1 \text{ for all } k \in N,$$

- (2) for each $k \in N$ and $x \in X$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$, and
- (3) there exists $\lambda > 0$ such that

$$\sup \ \{ \sum_{n=1}^{\infty} M_n(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k)) : K \subset N \ \text{is finite, } x_k \in X \ \text{for all} \ k \in K \ \text{and} \sum_{k \in K} \|x_k\|^{p_k} \leq 1 \}$$

Proof Assume that $A: \ell(X,p) \to \ell_M$. By Proposition 3.3 and Theorem 4.1, the conditions (1) and (2) are satisfied. Since $\ell(X,p)$ and ℓ_M are BK-spaces with the Luxemburg norm, by Zeller's Theorem, we have that $A: \ell(X,p) \to \ell_M$ is continuous, so $A: \Phi(X) \to \ell_M$ is continuous when $\Phi(X)$ is considered as a subspace of $\ell(X,p)$. It implies that A is bounded, hence there exists $\lambda > 0$ such that $||x|| \le 1$ for all $x \in \Phi(X)$ such that $||x|| \le 1$. By Proposition 4.2(1), we have

$$\varrho_M(\frac{1}{\lambda}Ax) = \sum_{n=1}^{\infty} M_n(\frac{1}{\lambda}\sum_{k=1}^{\infty} f_k^n(x_k)) \le 1$$
(4.3)

for all $x = (x_k) \in \Phi(X)$ such that $||x|| \le 1$.

Let $K \subset N$ be finite and $x_k \in X$ for all $k \in N$ such that $\sum_{k \in K} ||x_k||^{p_k} \le 1$. Let $z = (z_k)$ where $z_k = x_k$ if $k \in K$ and $z_k = 0$ otherwise. Then $\sum_{k \in K} ||z_k||^{p_k} \le 1$. It

implies by Proposition 4.2 (1) that $||z|| \le 1$. By (4.3), we have $\sum_{n=1}^{\infty} M_n(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k)) =$

$$\sum_{n=1}^{\infty} M_n(\frac{1}{\lambda} \sum_{k=1}^{\infty} f_k^n(z_k)) \le 1.$$
 This implies that the condition (3) is satisfied.

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that the conditions (1), (2) and (3) of Theorem 4.1 are satisfied. The condition (1) implies by Proposition 3.3 that $(f_k^n)_{k=1}^{\infty} \in \ell(X,p)^{\beta}$ for all $n \in N$, so $\sum_{k+1}^{\infty} f_k^n(x_k)$ converges for

.

Proof. Assume that $\left(\sum_{k=1}^{\infty}\|f_k^n\|\right)_{n=1}^{\infty}\in\ell_M$. Then there exists $\lambda>0$ and $\alpha>1$ such that $\sum_{n=1}^{\infty}M\left(\lambda\sum_{k=1}^{\infty}\|f_k^n\|\right)\leq\alpha$. Let $x=(x_k)\in\ell_\infty(X)$ and $\|x\|\leq1$. Then $\|x_k\|\leq1$ for all $k\in N$, so $|f_k^n(x_k)|\leq\|f_k^n\|$ for all $n,k\in N$. Putting $K=\frac{\alpha}{\lambda}$. Since M_n is convex, even, and increasing on $[0,\infty)$, it follows that

$$\sum_{n=1}^{\infty} M_n \left(\frac{1}{K} \sum_{k=1}^{\infty} f_k^n(x_k) \right) = \sum_{n=1}^{\infty} M_n \left(\frac{\lambda}{\alpha} \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| \right)$$

$$\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} M_n \left(\lambda \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| \right)$$

$$\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} M_n \left(\lambda \sum_{k=1}^{\infty} |f_k^n(x_k)| \right)$$

$$\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} M_n \left(\lambda \sum_{k=1}^{\infty} |f_k^n(x_k)| \right)$$

$$\leq 1.$$

It follows by Theorem 4.5 that $A \in (\ell_{\infty}(X), \ell_{M})$.

Theorem 4.7 Let $A = (f_k^n)$ be an infinite matrix and let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $A \in (\ell_{\infty}(X, p), \ell_M)$ if and only if

- (1) $\sum_{k=1}^{\infty} m^{1/p_k} ||f_k^n|| < \infty \text{ for all } m, n \in N, \text{and}$
- (2) for each $m \in N$, there exists $K_m > 0$ such that

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K_m} \sum_{k=1}^{\infty} m^{1/p_k} f_k^n(x_k)\right) \le 1$$

for every sequence (x_k) with $||x_k|| \leq 1$ for all $k \in N$.

Proof. By Proposition 3.4, we have $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$. It implies by [10, Proposition 3.1(i)] that

$$A \in (\ell_{\infty}(X, p), \ \ell_{M}) \Longleftrightarrow A \in (\ell_{\infty}(X)_{(m^{-1/p_{k}})}, \ \ell_{M}) \text{ for all } m \in N$$

By [10, Proposition 3.1(iii)], we have

$$A \in (\ell_{\infty}(X)_{(m^{-1/p_k})}, \ \ell_M) \Longleftrightarrow (m^{1/p_k} f_k^n)_{n,k} \in (\ell_{\infty}(X), \ \ell_M)$$

We have by Theorem 4.5 that

$$(m^{1/p_k}f_k^n)_{n,k} \in (\ell_\infty(X), \ \ell_M) \iff$$
 the conditions (1) and (2) hold.

Theorem 4.8 Let $A = (f_k^n)$ be an infinite matrix and let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $A \in (c_0(X, p), \ell_M)$ if and only if

- (1) for each $n \in N$, there exists $K_n \in N$ such that $\sum_{k=1}^{\infty} K_n^{-1/p_k} ||f_k^n|| < \infty$ for all $m, n \in N$, and
- (2) for each $r \in N$, there exists $m_r \in N$ such that

$$x = (x_k) \in \Phi(X)$$
,
$$\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1 \Longrightarrow \sum_{n=1}^{\infty} M_n(r \sum_{k=1}^{\infty} f_k^n(x_k)) \le 1.$$

Proof. By Proposition 3.1, the condition (1) is equivalent to (1) of Theorem 4.1 and it is easy to see that the condition (3) is equivalent to the condition (3) of Theorem 4.1. Hence the theorem is obtained by Theorem 4.1.

5. Matrix Transformations Between Some Scalar Sequence Spaces

In this section, we apply some results of Section 4 for giving characterizations of matrix transformation from the spaces $\ell(p)$ and $\ell_{\infty}(p)$ into ℓ_{M} .

Remark 5.1 Let $A = (a_{nk})$ be an infinite matrix of real numbers. For each $n, k \in N$, let $f_k^n : R \to R$ be defined by

$$f_k^n(x) = a_{nk}x$$
 , $x \in R$.

all $n \in N$ and all $x = (x_k) \in \ell(X, p)$. Thus the condition (1) of Theorem 4.1 holds. It is clear that the condition (2) of Theorem 4.1 hold. By (3), there exists $\lambda > 0$ such that

$$\sup \{ \sum_{k=1}^{\infty} M_n(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k)) : K \subset N \text{ is finite}, \ x_k \in X \text{ for all } k \in K \text{ and } \sum_{k \in K} \|x_k\|^{p_k} \le 1 \} \le 1$$
(4.4)

Let $x = (x_k) \in \Phi(X)$ be such that $||x|| \le 1$. By Proposition 4.2 (1) we have that $\sum_{k \in K} ||x_k||^{p_k} \le 1$ for some finite subset K of N. It follows by (4.4) that

$$\sum_{n=1}^{\infty} M_n(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k)) \le 1 ,$$

which implies $||Ax|| \leq \lambda$, hence A is bounded, so $A: \Phi(X) \to \ell_M$ is continuous. Thus they condition (3) of Theorem 4.1 is satisfied, so we have by Theorem 4.1 that $A: \ell(X,p) \to \ell_M$. The proof is now complete.

Theorem 4.4 Let $p = (p_k)$ be a bounded sequences of positive real numbers such that $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell_M$ if and only if

- (1) for each $k \in N$ and $x \in X$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$, and
- (2) there exists $m_0 \in N$ such that $\sup_{\substack{k \in N \\ ||x|| < 1}} \sum_{n=1}^{\infty} M_n(m_0^{-\frac{1}{p_k}} f_k^n(x)) \leq 1$.

Proof. By [10, Theorem 4.1], we have that

 $A:\ell(X,p) \to \ell_M$ if and only if

- (i) for each $k \in N$ and $x \in X$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$, and
- (ii) there exists $m_0 \in N$ such that

$$\sup_{\substack{k \in N \\ \|x\| \le 1}} \|A(m_0^{-\frac{1}{p_k}} e^k(x))\| \le 1.$$

Proof. By Proposition 4.2 (1), we have that the condition (ii) above is equivalent to (2). Hence $A: \ell(X,p) \to \ell_M$ if and only if the conditions (1) and (2) are satisfied. \square

Theorem 4.5 Let $A = (f_k^n)$ be an infinite matrix and $E \in \{\ell_\infty(X), c_0(X)\}$. Then $A \in (E, \ell_M)$ if and only if

- (1) $\sum_{k=1}^{\infty} ||f_k^n|| < \infty$ for every $n \in N$, and
- (2) there exists K > 0 such that $\sum_{n=1}^{\infty} M_n(\frac{1}{K} \sum_{k=1}^{\infty} f_k^n(x_k)) \le 1$ for every $(x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$.

Proof. Assume that $A \in (E, \ell_{\infty})$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in E$. Hence (1) holds by Proposition 3.1 and 3.2. Since E and ℓ_M are BK-spaces, by Zeller's theorem, A is continuous. It follows that there exists K > 0 such that

$$||Ax|| \le K \tag{4.5}$$

for every $x = (x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$.

Then we have $||A(\frac{1}{K}x)|| \le 1$ for all $x = (x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$. By Proposition 4.2(1), we have

$$\sum_{n=1}^{\infty} M_n \left(\frac{1}{K} \sum_{k=1}^{\infty} f_k(x_k) \right) \le 1$$

for every $x = (x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$. Hence (2) holds.

Conversely, assume that (1) and (2) hold. By Proposition 3.1 and 3.2, we have $\sum_{k=1}^{\infty} f_k(x_k) \text{ converges for every } x = (x_k) \in E. \text{ Let } K > 0 \text{ be such that } \sum_{n=1}^{\infty} M\left(\frac{1}{K}\sum_{k=1}^{\infty} f_k^n(x_k)\right) \leq 1 \text{ for every } x = (x_k) \in E \text{ with } ||x_k|| \leq 1 \text{ for all } k \in N. \text{ Then for } x = (x_k) \in E \text{ and } x \neq 0, \text{ we have}$

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K||x||} \sum_{k=1}^{\infty} f_k^n(x_k)\right) = \sum_{n=1}^{\infty} M\left(\frac{1}{K} \sum_{k=1}^{\infty} f_k^n\left(\frac{x_k}{||x||}\right)\right) \le 1$$

which implies that $Ax \in \ell_M$, hence we have $A \in (E, \ell_M)$.

Corollary 4.6 Let $A = (f_k^n)$ be an infinite matrix. If $(\sum_{k=1}^{\infty} ||f_k^n||)_{n=1}^{\infty} \in \ell_M$, then $A \in (\ell_{\infty}(X), \ell_M)$.

Then f_k^n is a continuous linear functional on R and $||f_k^n|| = |a_{nk}|$. Let $B = (f_k^n)$, for a real sequence $x = (x_k)$, we see that Ax = Bx, hence if E and F are scalar sequence spaces, then

$$A: E \to F \iff B: E \to F$$

Theorem 5.1 Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$, and let $A = (a_{nk})$ be an infinite matrix of real numbers. Then $A: \ell(p) \to \ell_M$ if and only if

- (1) for each $k \in N$, $(a_{nk})_{n=1}^{\infty} \in \ell_M$, and
- (2) there exists $m_0 \in N$ such that $\sup_k \sum_{n=1}^{\infty} M_n(m_0^{-1/p_k} a_{nk}) \leq 1$.

Proof. Let $B = (f_k^n)$ be the matrix defined as in Remark 5.1. Then

$$A: \ell(p) \to \ell_M \iff B: \ell(p) \to \ell_M$$

It implies by Theorem 4.4 that

 $B: \ell(p) \to \ell_M \iff$ the conditions (1) and (2) hold.

Hence
$$A: \ell(p) \to \ell_M \iff (1)$$
 and (2) hold.

If $q=(q_k)$ is a bounded sequence of positive real numbers such that $q_k > 1$ for all $k \in N$, then the function $M_k(x) = ||x|^{p_k}$ is an Orlicz function for all $k \in N$ and we see that the Nakano sequence spaces $\ell(q) = \ell_M$. Hence the following result is directly obtained by Theorem 5.1.

Corollary 5.2 Let $p = (p_k)$ and $q = (q_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ and $q_k > 1$ for all $k \in N$, and $A = (a_{nk})$ an infinite matrix of real numbers. Then $A : \ell(p) \to \ell(q)$ if and only if

- (1) for each $k \in N$, $(a_{nk})_{n=1}^{\infty} \in \ell(q)$, and
- (2) there exists $m_0 \in N$ such that $\sup_k \sum_{n=1}^{\infty} m_0^{-\frac{q_k}{p_k}} |a_{nk}|^{q_k} \le 1$.

Theorem 5.3 Let $p = (p_k)$ be a bounded sequence of positive real numbers and $A = (a_{nk})$ an infinite matrix of nonnegative real numbers. Then $A : \ell_{\infty}(p) \to \ell_M$ if and only if

(1)
$$\sum_{k=1}^{\infty} m^{1/p_k} |a_{nk}| < \infty \text{ for all } m, n \in N, \text{ and }$$

(2) for each $m \in N$, there exists $K_m > 0$ such that

$$\sum_{n=1}^{\infty} M_n(\frac{1}{K_m} \sum_{k=1}^{\infty} m^{1/p_k} a_{nk}) \le 1.$$

Proof. Let $B = (f_k^n)$ be the matrix defined as in Remark 5.1. Then

$$A: \ell_{\infty}(p) \to \ell_M \iff B: \ell_{\infty}(p) \to \ell_M$$
.

It follows by Theorem 4.6 that $B: \ell_{\infty}(p) \to \ell_M$ if and only if the conditions (1) and (2) hold.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

REFERENCES

- [1] Chen, S., Dissertations Mathematicae, Polish Academy of Science, Warszawa, Poland (1992).
- [2] Choudhur, A., Matrix transformations of vector valued sequence spaces, Bull. Cal. Math. Soc. 88, No.1 (1992), 47-54.
- [3] Grosse, K. and Erdmann, G., The structure of sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-307.
- [4] Grosse, K. and Erdmann, G., Matrix transformations between the sequence spaces of Maddox, J. of Math. Anal. Appl. 180 (1993), 223-238.
- [5] Maddox, I.J., Strongly summable sequences, Quart. J. Math. Oxford Ser. 2 No.18 (1967), 345.
- [6] Maddox, I.J., Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc 64 (1968), 335.
- [7] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Note in Math. 1034, Springer (1983).
- [8] Nakano, H., Modulared sequence spaces, Proc. Japan. Acad 27 (1951), 508-512.

- [9] Simons, S., The spaces $\ell(p_v)$ and $m(P_v)$, Proc. London. Math. Soc. 15 (1965), 422-436.
- [10] Suantai, S., Matrix transformations between some vector-valued sequence spaces, to appear in SEA. Bull. Math. (1999).
- [11] Suantai, S., Matrix transformations related to Nakano vector-valued sequence spaces, Bull. Cal. Math. Soc., 91,(3) (1999), 221 226.
- [12] Wu, C.X. and Lui, L., Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math. 17 No.1 (1993), 83-96.

Matrix Transformations of Some Vector-Valued Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we give the matrix characterizations from vector-valued sequence spaces $\ell_\infty(X,p)$, and $\underline{c}_0(X,p)$ into the Orlicz sequence space ℓ_M where $p=(p_k)$ is a bounded sequences of positive real numbers.

(1991) AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

Let $(X, \|.\|)$ be a real Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p)$, c(X, p), $\ell_{\infty}(X, p)$, $\ell(X, p)$, and $\underline{c}_0(X, p)$ are defined as

$$\begin{split} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0\}, \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X\}, \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=0}^{\infty} \|x_k\|^{p_k} < \infty\} \end{split}$$

$$\underline{c}_0(X,p) = \{x = (x_k) : \sup_k \|\frac{x_k}{\delta_k}\|^{p_k} < \infty \ \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for all } k \in N \}$$

When X = R, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, and $\underline{c}_o(p)$ respectively. Each of the first four spaces are known as the sequence spaces of

Typeset by AMS-TEX

A sequence space in X is a linear subspace of W(X). Let E be any X-valued sequence space. For $x \in E$ and $k \in N$, we write x_k stands for the k^{th} term of x. For $k \in N$ denote by e_k the sequence (0,0,...,0,1,0,...) with 1 in the k^{th} position and by e the sequence (1,1,1,...). For $x \in X$ and $k \in N$, let $e^k(x)$ be the sequence (0,0,...,0,x,0,...) with x in the k^{th} position and let e(x) be the sequence (x,x,x,...). For a fixed scalar sequence $\mu = (\mu_k)$ the sequence space E_{μ} is defined as

$$E_{\mu} = \{x \in W(X) : (\mu_k x_k) \in E\}$$
.

The sequence space E is called *normal* if $x \in E$ and $y \in W(X)$ with $||y_k|| \le ||x_k||$ for all $k \in N$ implies that $y \in E$.

2.2 Let $A = (f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to map E into F, written by $A: E \to F$ if for each $x = (x_k) \in E$, $A_n(x) = \sum_{k=1}^{\infty} f_k^n(x_k)$ converges for each $n \in N$, and the sequence $Ax = (A_n(x)) \in F$. Let (E, F) denote for the set of all infinite matrices mapping from E into F. If $u = (u_k)$ and $v = (v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F) \}$$

If $u_k \neq 0$ for all $k \in N$, we write $u^{-1} = (\frac{1}{u_k})$.

2.3 Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $n \in N$ the n^{th} coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E, τ) is an Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is

bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^{n} e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

3. Some Auxiliary Results

Maddox. These spaces were first introduced and studied by Simons [7], Maddox [4, 5], and Nakano [6]. In [2] the structure of the spaces $c_0(p)$, c(p), and $\ell_{\infty}(p)$ have been investigated.

Let $M: R \to [0, \infty)$ be convex, even, continuous and $M(u) = 0 \iff u = 0$. For a given real sequence $x = (x_n)$, define

$$arrho_M(x) = \sum_{n=1}^\infty M(x_n) \;,$$
 $\ell_M = \{x = (x_k) : \varrho_M(\lambda x) < \infty \; ext{for some} \lambda > 0\}, \; ext{and}$ $\|x\| = inf\{\lambda > 0 : \varrho_M(rac{x}{\lambda}) \le 1\} \; ext{for } x \in \ell_M.$

The sequence space $(\ell_M, \|.\|)$ is known as the Orlicz sequence space and it is a BK-space.

In this paper we consider the problem of characterizing those matrices that map an X-valued sequence spaces $\ell_{\infty}(X,p)$ and $\underline{c}_{0}(X,p)$ into the Orlicz sequence spaces. Wu and Liu [8] deal with the problem of characterization those infinite matrices mapping from $c_{0}(X,p)$, c(X,p), $\ell_{\infty}(X,p)$ and $\ell(X,p)$ into the scalar-sequence spaces of Maddox with some conditions on the sequences (p_{k}) and (q_{k}) . Grosse-Erdmann [3] has given characterizations of matrix transformations between the scalar-valued sequence spaces of Maddox. Their characterizations are derived from functional analytic principles. Our approach here is different. We use a method of reduction introduced by Grosse-Erdmann [3]. In [2] it is pointed out that $c_{0}(p)$ is an echelon space of order ∞ . In this paper we also show that $\underline{c}_{0}(X,p)$ and $\ell_{\infty}(X,p)$ is a co-echelon space of order ∞ . Therefore these spaces are made up of simpler spaces. We will use certain auxiliary results(Section 3) to reduce our problem to the characterisations of matrix mapping between much simpler spaces.

2. Notation and Definitions

2.1 Let $(X, \|.\|)$ be a real Banach space, the space of all sequences in X is denoted by W(X) and $\Phi(X)$ is denoted for the space of all finite sequences in X. When X = R, the corresponding spaces are written as w and Φ .

In this section we give various useful results that can be used to reduce our problems into some simpler forms.

Proposition 3.1 Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ scalar sequence spaces, and let u and v be sequences of real numbers with $u_k \neq 0$, $v_k \neq 0$ for all $k \in N$. Then we have

$$(i) \left(\bigcup_{n=1}^{\infty} E_n, F \right) = \bigcap_{n=1}^{\infty} (E_n, F)$$

(ii)
$$(E, \cap_{n=1}^{\infty} F_n) = \cap_{n=1}^{\infty} (E, F_n)$$

(iii)
$$(E_1 + E_2, F) = (E_1, F) \cap (E_2, F)$$

- (iv) $(E, F_1) = (E, F_2) \cap (\Phi(X), F_1)$ if E is an FK-space with AD, F_2 is an FK-space and F_1 is a closed subspace of F_2 .
- $(v) (E_{\mathbf{u}}, F_{\mathbf{v}}) = {}_{\mathbf{v}}(E, F)_{\mathbf{u}^{-1}}.$

Proof. Assertions (i), (ii), (iii), and (v) are immediate. To show (iv), assume that E is an FK-space with AD, F_2 is an FK-space and F_1 is a closed subspace of F_2 . Clearly, $(E, F_1) \subseteq (E, F_2) \cap (\Phi(X), F_1)$ is always the case. Now, assume that $A = (f_k^n) \in (E, F_2) \cap (\phi(X), F_1)$ and $x \in E$. By Zeller's theorem, $A : E \to F_2$ is continuous. Since E has AD, there is a sequence $(y^{(n)})$ with $y^{(n)} \in \Phi(X)$ for all $n \in N$ such that $y^{(n)} \to x$ in E as $n \to \infty$. By the continuity of A, we have $Ay^{(n)} \to Ax$ in F_2 as $n \to \infty$. Since $Ay^{(n)} \in F_1$ for all $n \in N$ and F_1 is a closed subspace of F_2 , we obtain that $Ax \in F_1$. Hence $A \in (E, F_1)$, so that $(E, F_2) \cap (\Phi(X), F_1) \subseteq (E, F_1)$. This complete the proof.

Proposition 3.2 Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then

- (i) $\underline{c}_0(X,p) = \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. Hence $c_0(X,p)$ is an echelon space of order 0.
- (ii) $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$. Hence $\ell_{\infty}(X,p)$ is a co-echelon space of order ∞ .

Proof. (i) Let $x=(x_k)\in\underline{c_0}(X,p)$. Then there is a sequence $(\delta_k)\in c_0$ with $\delta_k\neq 0$ for all $k\in N$ such that $\sup_k\|\frac{x_k}{\delta_k}\|^{p_k}<\infty$. Hence there exists $\alpha>0$ such that $\|x_k\|\leq \alpha^{1/p_k}|\delta_k|$ for all $k\in N$. Choose $n_0\in N$ with $n_0>\alpha$. Then

 $||x_k||n_0^{-1/p_k} \leq \left(\frac{\alpha}{n_0}\right)^{1/p_k}|\delta_k| < |\delta_k|$ which implies that $\lim_{k\to\infty} ||x_k||n_0^{-1/p_k}| = 0$, hence $x = (x_k) \in c_0(X)_{(n^{-1/p_k})} \subseteq \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. On the other hand, suppose that $x = (x_k) \in \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. Then $\lim_{k\to\infty} ||x_k|| n^{-1/p_k} = 0$ for some $n \in N$. Let $\delta = (\delta_k)$ be the sequence definded by

$$\delta_k = \begin{cases} \|x_k\| n^{-1/p_k} & \text{if } \|x_k\| \neq 0\\ \frac{1}{k} & \text{otherwise.} \end{cases}$$

Clearly $(\delta_k) \in c_0$ and $\left\| \frac{x_k}{\delta_k} \right\|^{p_k} \le n$ for all $k \in N$, hence $\sup_k \left\| \frac{x_k}{\delta_k} \right\|^{p_k} \le n$, so $x = (x_k) \in c_0(X, p)$.

Now we show (ii). If $x \in \ell_{\infty}(X, p)$, then there is some $n \in N$ with $||x_k||^{p_k} \leq n$ for all $k \in N$. Hence $||x_k|| \cdot n^{-1/p_k} \leq 1$ for all $k \in N$, so that, $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M > 1 such that $||x_k|| \cdot n^{-1/p_k} \leq M$ for every $k \in N$. Then we have $||x_k||^{p_k} \leq n \cdot M^{p_k} \leq n \cdot M^{\alpha}$ for all $k \in N$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$

3. Main Results

We now turn to our main objective. We begin with giving characterisations of matrix transformations from $\ell_{\infty}(X)$ and $c_0(X)$ into ℓ_M . To do this we need a lemma.

Lemma 4.1 Let $E \in \{\ell_{\infty}(X), c_0(X)\}$ and (f_k) a sequence of continuous linear functionals on X. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in E$ if and only if $\sum_{k=1}^{\infty} \|f_k\| < \infty$

$$\sum_{k=1}^{\infty} \|f_k\| < \infty$$

Proof. If
$$\sum_{k=1}^{\infty} ||f_k|| < \infty$$
, then for each $x = (x_k) \in E$, $\sum_{k=1}^{\infty} |f_k(x_k)| \le \sum_{k=1}^{\infty} ||f_k|| ||x_k|| \le ||x|| \sum_{k=1}^{\infty} ||f_k|| < \infty$, so that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

Conversley, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x=(x_k) \in E$. Define

 $T: E \to R$ by $Tx = \sum_{k=1}^{\infty} f_k(x_k)$. Clearly, T is linear. For each $n \in N$, let $s_n = \sum_{k=1}^n f_k \circ p_k$. Then $s_n \in E'$ since E is a K-space. It is clear that $s_n(x) \to Tx$ as $n \to \infty$ for all $x \in E$. It follows by Banach-Steinhaus theorem that $T \in E'$. Hence there is a positive real

number α such that

$$\left| \sum_{k=1}^{\infty} f_k(x_k) \right| \le \alpha \tag{4.1}$$

for all $x = (x_k) \in E$ with $||x|| \le 1$.

For each $x=(x_k)\in E$ with $||x||\leq 1$, we can choose a real sequence (t_k) with $|t_k|=1$ for all $k\in N$ such that $f_k(t_kx_k)=|f_k(x_k)|$ for all $k\in N$. Clearly, $(t_kx_k)\in E$ and $||(t_kx_k)||\leq 1$. It follows by (4.1)

$$\sum_{k=1}^{\infty} |f_k(x_k)| = \left| \sum_{k=1}^{\infty} f_k(t_k x_k) \right| \le \alpha \tag{4.2}$$

for all $x = (x_k) \in E$ with $||x|| \le 1$.

It implies by (4.2) that

$$\sum_{k=1}^{n} |f_k(x_k)| \le \alpha \tag{4.3}$$

for all $n \in N$ and all $x_k \in X$ with $||x_k|| \le 1$.

It follows from (4.3) that $\sum_{k=1}^{n} ||f_k|| \le \alpha$ for all $n \in \mathbb{N}$, hence $\sum_{k=1}^{\infty} ||f_k|| \le \alpha$. This complete the proof.

Theorem 4.2 Let $A = (f_k^n)$ be an infinite matrix and $E \in \{\ell_{\infty}(X), c_0(X)\}$. Then $A \in (E, \ell_M)$ if and only if

- (1) $\sum_{k=1}^{\infty} \|f_k^n\| < \infty$ for every $n \in N$, and
- (2) There exists K > 0 such that $\sum_{n=1}^{\infty} M\left(\frac{1}{K}\sum_{k=1}^{\infty} f_k^n(x_k)\right) \le 1$ for every $(x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$.

Proof. Assume that $A \in (E, \ell_{\infty})$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in E$. Hence (1) holds by Lemma 4.1. Since E and ℓ_{∞} are BK-spaces, by Zeller's theorem, A is continuous. It follows that there exists K > 0 such that

$$||Ax|| \le K \tag{4.4}$$

for every $x = (x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$.

Then we have $||A(\frac{1}{K}x)| \le 1$ for all $x = (x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$. By [1, Theorem 1.38(1)], we have

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K} \sum_{k=1}^{\infty} f_k(x_k)\right) \le 1$$

for every $x = (x_k) \in E$ with $||x_k|| \le 1$ for all $k \in N$. Hence (2) holds.

Conversely, assume that (1) and (2) hold. By Lemma 4.1, we have $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x=(x_k)\in E$. Let K>0 be such that $\sum_{n=1}^{\infty} M\left(\frac{1}{K}\sum_{k=1}^{\infty} f_k^n(x_k)\right)\leq 1$ for every $x=(x_k)\in E$ with $\|x_k\|\leq 1$ for all $k\in N$. Then for $x=(x_k)\in E$ and $x\neq 0$, we have

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K||x||} \sum_{k=1}^{\infty} f_k^n(x_k)\right) = \sum_{n=1}^{\infty} M\left(\frac{1}{K} \sum_{k=1}^{\infty} f_k^n\left(\frac{x_k}{||x||}\right)\right) \le 1$$

which implies that $Ax \in \ell_M$, hence we have $A \in (E, \ell_M)$.

Corollary 4.3 Let $A = (f_k^n)$ be an infinite matrix. If $(\sum_{k=1}^{\infty} ||f_k^n||)_{n=1}^{\infty} \in \ell_M$, then $A \in (\ell_{\infty}(X), \ell_M)$.

Proof. Assume that $\left(\sum_{k=1}^{\infty}\|f_k^n\|\right)_{n=1}^{\infty}\in\ell_M$. Then there exists $\lambda>0$ and $\alpha>1$ such that $\sum_{n=1}^{\infty}M\left(\lambda\sum_{k=1}^{\infty}\|f_k^n\|\right)\leq\alpha$. Let $x=(x_k)\in\ell_\infty(X)$ and $\|x\|\leq 1$. Then $\|x_k\|\leq 1$ for all $k\in N$, so $|f_k^n(x_k)|\leq \|f_k^n\|$ for all $n,k\in N$. Putting $K=\frac{\alpha}{\lambda}$. Since M is convex,

even, and increasing on $[0, \infty)$, it follows that

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K} \sum_{k=1}^{\infty} f_k^n(x_k)\right) = \sum_{n=1}^{\infty} M\left(\frac{\lambda}{\alpha} \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| \right)$$

$$\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} M\left(\lambda \left| \sum_{k=1}^{\infty} f_k^n(x_k) \right| \right)$$

$$\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} M\left(\lambda \sum_{k=1}^{\infty} |f_k^n(x_k)| \right)$$

$$\leq \frac{1}{\alpha} \sum_{n=1}^{\infty} M\left(\lambda \sum_{k=1}^{\infty} |f_k^n(x_k)| \right)$$

$$\leq 1.$$

It follows by Theorem 4.2 that $A \in (\ell_{\infty}(X), \ell_{M})$.

Theorem 4.4 Let $A = (f_k^n)$ be an infinite matrix and let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $A \in (\ell_{\infty}(X, p), \ell_M)$ if and only if

(1)
$$\sum_{k=1}^{\infty} m^{1/p_k} ||f_k^n|| < \infty \text{ for all } m, n \in \mathbb{N}, \text{ and }$$

(2) There exists K > 0 such that

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K} \sum_{k=1}^{\infty} m^{1/p_k} f_k^n(x_k)\right) \le 1$$

for every sequence (x_k) with $||x_k|| \le 1$ for all $k \in N$.

Proof. By Proposition 3.2(ii), we have $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$. It implies by Proposition 3.1(i) that

$$A \in (\ell_{\infty}(X, p), \ell_{M}) \iff A \in (\ell_{\infty}(X)_{(m^{-1/p_{k}})}, \ell_{M}) \text{ for all } m \in N$$

By Proposition 3.1(v), we have

$$A \in (\ell_{\infty}(X)_{(m^{-1/p_k})}, \ell_M) \iff (m^{1/p_k} f_k^n)_{n,k} \in (\ell_{\infty}(X), \ell_M)$$

We have by Theorem 4.2 that

$$(m^{1/p_k}f_k^n)_{n,k} \in (\ell_\infty(X), \ell_M) \iff$$
 the conditions (1) and (2) hold.

Hence the theorem is proved.

Theorem 4.5 Let $A = (f_k^n)$ be an infinite matrix and let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $A \in (\underline{c}_0(X, p), \ell_M)$ if and only if

- (1) $\sum_{k=1}^{\infty} m^{1/p_k} ||f_k^n|| < \infty \text{ for all } m, n \in \mathbb{N}, \text{ and }$
- (2) There exists K > 0 such that

$$\sum_{n=1}^{\infty} M\left(\frac{1}{K} \sum_{k=1}^{\infty} m^{1/p_k} f_k^n(x_k)\right) \le 1$$

for every sequence $(x_k) \in c_0(X)$ with $||x_k|| \le 1$ for all $k \in N$.

Proof. Since $\underline{c}_0(X,p) = \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$, we have by Proposition 3.1(i) that

$$A \in (\underline{c}_0(X,p), \ell_M) \iff A \in (c_0(X)_{(m^{-1/p_k})}, \ell_M) \text{ for all } m \in N$$

By Proposition 3.1(v), we have

$$A \in (c_0(X)_{(m^{-1/p_k})}, \ell_M) \iff (m^{1/p_k} f_k^n)_{n,k} \in (c_0(X), \ell_M)$$

It follows by Theorem 4.2 that

$$(m^{1/p_k}f_k^n)_{n,k} \in (\ell_\infty(X), \ \ell_M) \iff$$
 the conditions (1) and (2) hold.

Hence we have the theorem.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

REFERENCES

- [1]. S. Chen, Geometry of Orlicz spaces, the Institute of Mathematics, Polish Academy of Science, Warszana, 1996.
- [2]. K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-307.
- [3]. K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. of Math. Anal. Appl. 180 (1993), 223-238.
- [4]. I.J. Maddox, Spaces of strongly summable sequences, Quart.J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [5]. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968), 335 340.
- [6]. H. Nakano, Modulared sequence spaces, Proc. Japan. Acad. 27 (1951), 508-512.
- [7]. S. Simons, The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc. 15 (1965), 422-436.
- [8]. C.X. Wu and L. Liu, Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math. 17,1 (1993), 83-96.

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

Email: Scmti005@chiangmai.ac.th

MATRIX TRANSFORMATIONS ON THE MADDOX VECTOR-VALUED SEQUENCE SPACES

Suthep Suantai

Department of Mathematics, Faculty of Science,

Chiang Mai University, Chiang Mai 50200, Thailand.

E-mail: malsuthe@science.cmu.ac.th

Chanan Sudsukh

Department of Mathematics Satistics and Computer Sciences, Faculty of Liberal Arts and Science,

Kasetsart University, Kamphaeng Saen Campus, Nakhorn Prathom 73140, Thailand.

E-mail: faaschs@nontri.ku.ac.th

Abstract. In this paper, we give the matrix characterizations from any normal vectorvalued FK-space containing $\phi(X)$ into scalar-valued sequence space c(q) and by applying this result, we also obtain necessary and sufficient conditions for infinite matrices mapping the sequence spaces $c_0(X,p), c(X,p), \ell_{\infty}(X,p), \ell(X,p), \underline{c_0}(X,p), E_r(X,p)$, and $F_r(X,p)$ into the space c(q), where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers and $r \geq 0$.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces

AMS Mathematics Subject Classification (2000): 46A45.

1. Introduction

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p), c(X, p), \ell_\infty(X, p), \ell(X, p), \underline{c_0}(X, p), E_r(X, p)$, and $F_r(X, p)$ are defined as

Typeset by AMS-TeX

- (a) $c_0(X, p) = \{x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0\};$
- (b) $c(X, p) = \{x = (x_k) : \lim_{k \to \infty} ||x_k a||^{p_k} = 0 \text{ for some } a \in X\};$
- (c) $\ell_{\infty}(X, p) = \{x = (x_k) : \sup_k ||x_k||^{p_k} < \infty\};$
- (d) $\ell(X,p) = \{x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty\};$
- (e) $\underline{c_0}(X,p) = \{x = (x_k) : \sup_k \|x_k/\delta_k\|^{p_k} < \infty \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for all } k \in N\};$
- (f) $E_r(X, p) = \{x = (x_k) : \sup_k k^{-r} ||x_k||^{p_k} < \infty\};$
- (g) $F_r(X, p) = \{x = (x_k) : \sum_{k=1}^{\infty} k^r ||x_k||^{p_k} < \infty \}.$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p), c(p), \ell_{\infty}(p), \ell(p), c_0(p), E_r(p)$ and $F_r(p)$, respectively. The first three spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [9] and Maddox [5 - 7]. The space $\ell(p)$ was first defined by Nakano [8] and is known as the Nakano sequence space. The spaces $c_0(p)$ was first introduced by Grosse-Erdmann [3] and he investigated in [3] the structure of the spaces $c_0(p), c(p), \ell(p)$, and $\ell_{\infty}(p)$. Grosse-Erdmann [4] gave the matrix characterizations between scalar-valued sequence spaces of Maddox. When $p_k = 1$, for all $k \in N$, the spaces $E_r(p)$ and $F_r(p)$ are written as E_r and F_r , respectively. These two spaces were first introduced by Cooke [2]. Now the problem of matrix transformations becomes more general, we consider infinite matrices of bounded linear operators instead of matrices of real or complex numbers and we consider on vector-valued sequence spaces instead of scalar-valued sequence spaces. Choudhury [1] gave the matrix characterizations mapping $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_{\infty}(Y)$, and $\ell_1(X)$ into $\ell_p(Y)$. Wu and Liu [12] deal with the problem of characterizing infinite matrices mapping $c_0(X,p)$ and $\ell_\infty(X,p)$ into $c_0(q)$ and $\ell_\infty(q)$, where $p = (p_k)$ and $q = (q_k)$ are bounded sequences of positive real numbers. Suantai [10] has given matrix characterizations from $\ell(X,p)$ into the vector-valued sequence spaces $c_0(Y,q),c(Y)$ and $\ell_s(Y)$, where $q=(q_k)$ is a sequence of positive real numbers, Y is a Banach space and $s \geq 1$. He has also given in [11] necessary and sufficient conditions for infinite matrices mapping $\ell(X,p)$ into ℓ_{∞} and $\underline{\ell}_{\infty}(q)$.

In this paper, we extend some results in [10] and [11] and generalize some results in [4]. We also obtain some related results as mentioned in the abstract.

2. Notation and Definitions

Let $(X, \|.\|)$ be a Banach space. Let W(X) and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X. When X = K, the scalar field of X, the corresponding spaces are written as w and Φ , respectively. A sequence space in X is a linear subspace of W(X). Let E be an X- valued sequence space. For $x \in E$ and $k \in N$ we write that x_k stand for the kth term of x. For $x \in X$ and $k \in N$, we let $e^{(k)}(x)$ be the sequence (0,0,0,...,0,x,0,...) with x in the kth position and let e(x) be the sequence (x,x,x,...), and we denote by e the the sequence (1,1,1,...). For a fixed scalar sequence $u=(u_k)$ the sequence space E_u is defined as

$$E_u = \{ x = (x_k) \in W(X) : (u_k x_k) \in E \}.$$

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose E is an X-valued sequence space and F a scalar-valued sequence space. Then A is said to $map\ E$ into F, written by $A:E\to F$ if, for each $x=(x_k)\in E, A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$, and the sequence $Ax=(A_n(x))\in F$. We denote by (E,F) the set of all infinite matrices mapping E into F. If $u=(u_k)$ and $v=(v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we put $u^{-1} = (1/u_k)$. An X-valued sequence space E is said to be normal if $(x_k) \in E$ and $(y_k) \in W(X)$ with $||y_k|| \leq ||x_k||$ for all $k \in N$ implies that $(y_k) \in E$.

Suppose the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in N$ the kth coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. In addition, if (E, τ) is a Fre'chet(Banach) space, then E is called an FK - (BK-) space.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X,p)$, we consider the function $g(x) = \sup_k \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X,p)$, and it is known that $c_0(X,p)$ is an FK-space under the paranorm g defined as above. In $\ell(X,p)$, we consider it as a paranormed sequence space with the paranorm given by $\|(x_k)\| = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/M}$, where $M = \max\{1, \sup_k p_k\}$. It is known that $\ell(X,p)$ is an FK-space under the paranorm defined as above.

3. Some Auxiliary Results

We start with the following useful results that will reduce our problems into some simpler forms.

Proposition 3.1. Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ scalar-valued sequence spaces, and let μ and ν be scalar sequences with $\mu_k \neq 0, \nu_k \neq 0$ for all $k \in N$. Then

(i)
$$(\bigcup_{n=1}^{\infty} E_n, F) = \bigcap_{n=1}^{\infty} (E_n, F);$$

(ii)
$$(E, \cap_{n=1}^{\infty} F_n) = \cap_{n=1}^{\infty} (E, F_n);$$

(iii)
$$(E_1 + E_2, F) = (E_1, F) \cap (E_2, F);$$

$$(iv) (E_u, F_v) = {}_{v}(E, F)_{u^{-1}}.$$

Proof. All assertions are immediately obtained directly by the definition.

Propostion 3.2. Let $p = (p_k)$ be a bounded sequences of positive real numbers and $r \geq 0$. Then

(i)
$$c(X,p) = c_0(X,p) + \{e(x) : x \in X\};$$

(ii)
$$\underline{c_0}(X, p) = \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-\frac{1}{p_k}})};$$

(iii)
$$E_{\tau}(X,p) = \ell_{\infty}(X,p)_{(k^{-\frac{\tau}{p_k}})};$$

(iv)
$$F_r(X,p) = \ell(X,p)_{(k^{\frac{r}{p_k}})}$$
;

(v)
$$\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$$
.

Proof. Assertions (i), (iii) and (iv) are immediately obtained by the definition. To show (ii), let $x=(x_k)\in \underline{c_0}(X,p)$. Then there is a sequence $(\delta_k)\in c_0$ with $\delta_k\neq 0$ for all $k\in N$ such that $\sup_k\|x_k/\delta_k\|^{p_k}<\infty$. Hence there exists $\alpha>0$ such that $\|x_k\|\leq \alpha^{1/p_k}|\delta_k|$ for all $k\in N$. Choose $n_0\in N$ so that $n_0>\alpha$. Then

$$||x_k|| n_0^{-1/p_k} \leq (\alpha/n_0)^{1/p_k} |\delta_k| < |\delta_k|,$$

which implies that $\lim_{k\to\infty} ||x_k|| n_0^{-1/p_k} = 0$, hence $x = (x_k) \in c_0(X)_{(n_0^{-1/p_k})} \subseteq \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. On the other hand, suppose $x = (x_k) \in \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. Then $\lim_{k\to\infty} ||x_k|| n^{-1/p_k}$ = 0 for some $n \in N$. Let $\delta = (\delta_k)$ be the sequence defined by

$$\delta_k = \left\{ egin{array}{ll} \|x_k\| n^{-1/p_k}, & ext{if} \ x_k
eq 0 \ 1/k, & ext{otherwise.} \end{array}
ight.$$

Clearly, $(\delta_k) \in c_0$ and $||x_k/\delta_k||^{p_k} \le n$ for all $k \in N$, hence $\sup_k ||x_k/\delta_k||^{p_k} \le n$, so $x = (x_k) \in c_0(X, p)$.

It remains to show (v). If $x \in \ell_{\infty}(X, p)$, then there is some $n \in N$ with $||x_k||^{p_k} \le n$ for all $k \in N$. Hence $||x_k||^{n-1/p_k} \le 1$ for all $k \in N$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M > 1 such that $||x_k||^{n-1/p_k} \le M$ for every $k \in N$. Then we have $||x_k||^{p_k} \le nM^{p_k} \le nM^{\alpha}$ for all $k \in N$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

Proposition 3.3. Let (f_k) be a sequence of continuous linear functionals on X. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$ if and only if $\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty$ for some $M \in N$.

Proof. Suppose $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$. Let $x = (x_k) \in c_0(X, p)$. Then there is a positive integer K_0 such that $\|x_k\|^{p_k} < 1/M$ for all $k \geq K_0$, hence $\|x_k\| < M^{-1/p_k}$ for all $k \geq K_0$. Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \le \sum_{k=K_0}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=K_0}^{\infty} ||f_k|| M^{-1/p_k} < \infty.$$

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

On the other hand, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$. For each $x = (x_k) \in c_0(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in c_0(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x \in c_0(X, p).$$
 (3.1)

Now, suppose that $\sum_{k=1}^{\infty} ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. Choose $m_1, k_1 \in \mathbb{N}$ such that

$$\sum_{k < k_1} ||f_k|| m_1^{-1/p_k} > 1$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} ||f_k|| m_2^{-1/p_k} > 2.$$

Proceeding in this way, we can choose $m_1 < m_2 < ...$, and $0 = k_1 < k_2 < ...$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| m_i^{-1/p_k} > i.$$

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \text{for all } i \in N.$$

Put $y = (y_k), y_k = m_i^{-1/p_k} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \text{for all } i \in N.$$

Hence we have $\sup_{k=1}^{\infty} |f_k(y_k)| = \infty$ which contradicts with (3.1). This completes the proof.

Proposition 3.4. Let (f_k) be a sequence of continuous linear functionals on X. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X,p)$ if and only if $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$ for all $m \in N$.

Proof. If $\sum_{k=1}^{\infty} \|f_k\| m^{1/p_k} < \infty$ for all $m \in N$, we have that for each $x = (x_k) \in \ell_{\infty}(X,p)$, there is $m_0 \in N$ such that $\|x_k\| \le m_0^{1/p_k}$ for all $k \in N$, hence $\sum_{k=1}^{\infty} |f_k(x_k)| \le \sum_{k=1}^{\infty} \|f_k\| \|x_k\| \le \sum_{k=1}^{\infty} \|f_k\| m_0^{1/p_k} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

Conversely, if $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X, p)$, by using the same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell_{\infty}(X, p).$$
 (3.2)

Now, suppose that $\sum_{k=1}^{\infty} ||f_k|| M^{1/p_k} = \infty$, for some $M \in N$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < ...$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| M^{1/p_k} > i \quad \text{for all } i \in N.$$

And we choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| M^{1/p_k} > i.$$

Put $y = (y_k)$, $y_k = M^{1/p_k} x_k$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i}^{\infty} |f_k(x_k)| M^{1/p_k} > i \text{ for all } i \in N.$$

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.2). The proof is now complete. \square

Proposition 3.5. Let (f_k) be a sequence of continuous linear functionals on X and $p = (p_k)$ a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$ if and only if $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in N$, where $1/p_k + 1/t_k = 1$ for all $k \in N$.

Proof. Suppose $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in N$. Then we have that for each $x = (x_k) \in \ell(X, p)$,

$$\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} M^{1/p_k} ||x_k||
\leq \sum_{k=1}^{\infty} \left(||f_k||^{t_k} M^{-t_k/p_k} + M ||x_k||^{p_k} \right)
= \sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} + M \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty ,$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

On the other hand, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$. By using the same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell(X, p).$$
(3.3)

We want to show that there exists $M \in N$ such that $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$. If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
 (3.4)

It implies by (3.4) that for each $k \in N$,

$$\sum_{i>k} ||f_i||^{t_i} m^{-(t_i-1)} = \infty, \text{ for all } m \in N.$$
 (3.5)

By (3.4), let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k < k_1} ||f_k||^{t_k} m_1^{-(t_k - 1)} > 1.$$

By (3.5), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{t_k} m_2^{-(t_k - 1)} > 1. \tag{3.6}$$

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < ...$ and $m_1 < m_2 < ...$, such that $m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{t_k} m_i^{-(t_k-1)} > 1.$$

For each $i \in N$, choose x_k in X with $||x_k|| = 1$ for all $k \in N$, $k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k - 1)} > 1 \text{ for all } i \in N.$$

Let
$$a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)}$$
. Put $y = (y_k), \ y_k = a_i^{-1} m_i^{-(t_k-1)} |f_k(x_k)|^{t_k-1} x_k$

for all k $k_{i-1} < k \le k_i$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} ||y_k||^{p_k} = \sum_{k_{i-1} < k \le k_i} ||a_i^{-1} m_i^{-(t_k - 1)}| f_k(x_k)|^{t_k - 1} x_k ||^{p_k}$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-t_k} |f_k(x_k)|^{t_k}$$

$$\leq \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} m_i^{-1} a_i$$

$$= m_i^{-1}$$

$$< 1/2^i.$$

So we have that $\sum_{k=1}^{\infty} ||y_k||^{p_k} \leq \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k(a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= 1.$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.3). The proof is now complete. \square

Proposition 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $(f_k) \subset X'$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$ if and only if there exists $M \in N$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$.

Proof. If $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all} \quad x = (x_k) \in \ell(X, p)$$
 (3.7)

Suppose that $\sup_k \|f_k\| m^{-1/p_k} = \infty$ for all $m \in N$. For each $i \in N$, choose sequences (m_i) and (k_i) of positive integers with $m_1 < m_2 < ...$ and $k_1 < k_2 < ...$ such that $m_i > 2^i$ and $\|f_{k_i}\| m_i^{-1/p_{k_i}} > 1$. Choose $x_{k_i} \in X$ with $\|x_{k_i}\| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1$$
 (3.8)

Let $y = (y_k)$, $y_k = m_i^{-1/p_{k_i}} x_{k_i}$ if $k = k_i$ for some i, and 0 otherwise. Then $\sum_{k=1}^{\infty} \|y_k\|^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1$, so that $(y_k) \in \ell(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i})|$$

$$= \sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})| = \infty \text{ by } (3.8),$$

and this is contradictory with (3.7). Therefore, there exists $M \in N$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$.

Conversely, assume that there exists $M \in N$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$. Let $x = (x_k) \in \ell(X, p)$, then there is a K > 0 such that

$$||f_k|| \le KM^{1/p_k} \quad \text{for all} \quad k \in N \tag{3.9}$$

and there is a $k_0 \in N$ such that $M^{1/p_k}||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in N$, we have that for all $k \ge k_0$,

$$M^{1/p_k} ||x_k|| \le (M^{1/p_k} ||x_k||)^{p_k} = M||x_k||^{p_k}.$$
(3.10)

Then

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{k_{o}} ||f_{k}|| ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} ||f_{k}|| ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{o}} ||f_{k}|| ||x_{k}|| + K \sum_{k=k_{0}+1}^{\infty} M^{1/p_{k}} ||x_{k}|| \quad \text{(by (3.9))}$$

$$\leq \sum_{k=1}^{k_{o}} ||f_{k}|| ||x_{k}|| + KM \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}} \quad \text{(by (3.10))}$$

$$< \infty.$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let $q = (q_k)$ be a bounded sequence of positive real numbers and let E be a normal X – valued sequence space which is an FK-space and contains $\Phi(X)$. Then

$$(E, c(q)) = (E, c_0(q)) \oplus (E, \langle e \rangle).$$

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X-valued sequence space which is an FK-space and contains $\Phi(X)$. Then for each $k \in N$, the mapping $T_k : X \to E$, defined by $T_k x = e^k(x)$, is continuous.

Proof. Let $V = \{e^k(x) : x \in X\}$. Then V is a closed subspace of E, so it is an FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, which implies that $p_k^{-1} : X \to V$ is continuous. But since $T_k = p_k^{-1}$, we thus obtain that T_k is continuous.

Lemma 4.2. Let $q=(q_k)$ be a bounded sequence of positive real numbers. If E and F are scalar-valued sequence spaces such that E is normal containing Φ and F is an FK-space with the property that for each $x=(x_k) \in F$, there is a subsequence (x_{n_k}) of (x_k) with $x_{n_k} \to 0$ as $k \to \infty$, then $(E, F \oplus \langle e \rangle) = (E, F) \oplus (E, \langle e \rangle)$.

Proof. See [2, Proposition 3.1(vi)].
$$\Box$$

Proof of Theorem 4.1 Since $c(q) = c_0(q) \oplus \langle e \rangle$, it is clear that $(E, c_0(q)) + (E, \langle e \rangle) \subseteq (E, c_0(q) \oplus \langle e \rangle) = (E, c(q))$. Moreover, if $A \in (E, c_0(q)) \cap (E, \langle e \rangle)$,

then $A \in (E, c_0(q) \cap \langle e \rangle)$, so that $A \in (E, 0)$, which implies that A = 0 because E contain $\Phi(X)$. Hence $(E, c_0(q)) + (E, \langle e \rangle)$ is a direct sum. Now, we will show that $(E, c(q)) \subseteq (E, c_0(q)) \oplus (E, \langle e \rangle)$. Let $A = (f_k^n) \in (E, c(q)) = (E, c_0(q)) \oplus \langle e \rangle$. For $x \in X$ and $k \in N$, we have $(f_k^n(x))_{n=1}^{\infty} = Ae^k(x) \in c_0(q) \oplus \langle e \rangle$, so that there exist unique $(b_k^n(x))_{n=1}^{\infty} \in c_0(q)$ and $(c_k^n(x))_{n=1}^{\infty} \in \langle e \rangle$ with

$$(f_k^n(z))_{n=1}^{\infty} = (b_k^n(z))_{n=1}^{\infty} + (c_k^n(z))_{n=1}^{\infty}. \tag{4.1}$$

For each $n, k \in \mathbb{N}$, let g_k^n and h_k^n be the functionals on X defined by

$$g_k^n(x) = b_k^n(x)$$
 and $h_k^n(x) = c_k^n(x)$ for all $x \in X$.

Clearly, g_k^n and h_k^n are linear, and by (4.1)

$$f_k^n = g_k^n + h_k^n \quad \text{for all } n, k \in N.$$
(4.2)

Note that $c_0(q) \oplus \langle e \rangle$ is an FK-space in its direct sum topology. By Zeller's theorem, $A: E \to c_0(q) \oplus \langle e \rangle$ is continuous. For each $k \in N$, let $T_k: X \to E$ be defined by $T_k(x) = e^k(x)$. By Lemma 4.1, we have that T_k is continuous for all $k \in N$. Since the projection P_1 of $c_0(q) \oplus \langle e \rangle$ onto $c_0(q)$ and the projection P_2 of $c_0(q) \oplus \langle e \rangle$ onto < e > are continuous and $g_k^n = p_n \circ P_1 \circ A \circ T_k$ and $h_k^n = p_n \circ P_2 \circ A \circ T_k$ for all $n, k \in$ N, we obtain that g_k^n and h_k^n are continuous, so $g_k^n, h_k^n \in X'$ for all $n, k \in N$. Let $B=(g_k^n)$ and $C=(h_k^n)$. By (4.1) and (4.2) we have A=B+C, $B=(g_k^n)\in$ $(\Phi(X), c_0(q))$ and $C = (h_k^n) \in (\Phi(X), \langle e \rangle)$. We will show that $B \in (E, c_0(q))$ and $C \in (E, \langle e \rangle)$. To do this, let $x = (x_k) \in E$. Then for $\alpha = (\alpha_k) \in \ell_{\infty}$, we have $\|\alpha_k x_k\| = |\alpha_k| \|x_k\| \le \|Mx_k\|$, where $M = \sup_k |\alpha_k|$. Then the normality of E implies that $(\alpha_k x_k) \in E$. Hence $(f_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q) \oplus \langle e \rangle)$, moreover, we have $(g_k^n(x_k))_{n,k} \in (\Phi, c_0(q)), (h_k^n(x_k))_{n,k} \in (\Phi, \langle e \rangle), \text{ and } (f_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k} + (g_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k} (g_k^n(x_k))_{n,k} + (g_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k} + (g_k^n(x_k))_{n$ $(h_k^n(x_k))_{n,k}$. Since ℓ_∞ is normal containing Φ and $c_0(q) \subseteq c_0$, it follows from Lemma 4.2 that $(g_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q))$ and $(h_k^n(x_k))_{n,k} \in (\ell_\infty, \langle e \rangle)$. This implies that $Bx \in c_0(q)$ and $Cx \in \langle e \rangle$, so we have $B \in (E, c_0(q))$ and $C \in (E, \langle e \rangle)$, hence $A \in (E, c_0(q)) \oplus (E, \langle e \rangle)$. This completes the proof. **Theorem 4.2.** Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c_0(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty \text{ for some } M \in N,$
- (2) $m^{\frac{1}{q_n}}(f_k^n f_k) \stackrel{w^*}{\to} 0$ as $n \to \infty$ for every $m, k \in N$ and
- (3) $\sum_{k=1}^{\infty} m^{1/q_n} ||f_k^n f_k|| r^{-1/p_k} \rightarrow 0 \text{ as } n, r \rightarrow \infty \text{ for each } m \in \mathbb{N}.$

Proof. If $A \in (c_0(X,p),c(q))$ we have $A \in (c_0(X,p),c_0(q) \oplus \langle e \rangle)$ since $c(q)=c_0(q) \oplus \langle e \rangle$. It follows from Theorem 4.1 that A=B+C, where $B \in (c_0(X,p),c_0(q))$ and $C \in (c_0(X,p),\langle e \rangle)$. Let $C=(g_k^n)$. Since $\Phi(X) \subseteq c_0(X,p)$, we have $(g_k^n(x))_{n=1}^{\infty} \in \langle e \rangle$ for all $x \in X$ and $k \in N$, which implies that $g_k^n=g_k^{n+1}$ for all $n,k \in N$, let $f_k=g_k^1$. Then we have $B=(f_k^n-f_k)_{n,k} \in (c_0(X,p),c_0(q))$. By [3, Theorem 0 (i)), we have $c_0(q)=\bigcap_{m=1}^{\infty}c_{0(m^{1/p_k})}$. It follows from Proposition 3.1(ii) and (iv) that $(m^{1/q_n}(f_k^n-f_k))_{n,k} \in (c_0(X,p),c_0)$ for all $m \in N$. By Wu [11, Theorem 2.4], we have that the conditions (2) and (3) hold. Since $C=(f_k)_{n,k} \in (c_0(X,p),\langle e \rangle)$, we have $\sum_{k=1}^{\infty}f_k(x_k)$ converges for all $x=x_k \in c_0(X,p)$, hence (1) is obtained by Proposition 3.3.

Conversely, assume that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that conditions (1),(2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By conditions (2) and (3), we obtain by Proposition 3.1(ii) and (iv), and Wu [11, Theorem 2.4] that $B \in (c_0(X, p), c_0(q))$. The condition (1) implies by Proposition 3.3 that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$, which implies that $C \in (c_0(X, p), < e >)$. Hence we have by Theorem 4.1 that $A \in (c_0(X, p), c(q))$. This completes the proof.

Theorem 4.3. Let $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \ell_{\infty}(X) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- $(1) \sum_{k=1}^{\infty} \|f_k\| < \infty,$
- (2) $m^{1/q_n} (f_k^n f_k) \stackrel{w^*}{\to} as n \to \infty \text{ for every } k, m \in N \text{ and }$
- (3) for each $m, r \in N$, $\sum_{j>k} m^{1/q_n} ||f_j^n f_j|| r^{1/p_j} \to 0$ as $k \to \infty$ uniformly on $n \in N$.

Proof. If $A \in (\ell_{\infty}(X), c(q))$, then the condition (1) holds by Proposition 3.4. It follows from Theorem 4.1 that A = B + C, where $B \in (\ell_{\infty}(X), c_0(q))$ and $C \in (\ell_{\infty}(X), < e >)$. Using the same proof as in Theorem 4.2, there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k)_{n,k} \in (\ell_{\infty}(X), c_0(q))$. Since $c_0(q) = \bigcap_{k=1}^{\infty} c_0 \frac{1}{(m^{\frac{1}{p_k}})}$, we thus obtain (2) and (3) by Proposition 3.1(ii) and (iv), and Wu [11, Theorem 2.9].

Conversely, assume that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that condition (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By conditions (2) and (3), we obtain by Proposition 3.1(ii) and (iv), and Wu [11, Theorem 2.9] that $B \in (\ell_{\infty}(X), c_0(q))$. The condition (1) implies by Proposition 3.4 that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X)$, which implies that $C \in (\ell_{\infty}(X), < e >)$. Hence, we have by Theorem 4.1 that $A \in (\ell_{\infty}(X), c(q))$. This completes the proof.

Theorem 4.4. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \ell_{\infty}(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$ for all $m \in N$,
- (2) $r^{1/q_n}\left(m^{1/p_k}f_k^n-f_k\right) \stackrel{w^*}{\to} 0 \text{ as } n \to \infty \text{ for every } m,k,r \in N \text{ and }$
- (3) for each $m, r, s \in N$, $\sum_{j>k} r^{1/q_n} ||m^{1/p_j} f_j^n f_j||s^{1/p_j} \to 0$ as $k \to \infty$ uniformly on $n \in N$.

Proof. By Proposition 3.2 (v), $\ell_{\infty}(X,p) = \bigcup_{m=1}^{\infty} \ell_{\infty}(X)_{(m^{-1/p_k})}$. It follows from Proposition 3.1(i) and (iv), Proposition 3.4 and Theorem 4.3 that

$$A: \ell_{\infty}(X, p) \to c(q) \iff \left(m^{1/p_k} f_k^n\right)_{n,k} : \ell_{\infty}(X) \to c(q) \text{ for all } m \in N$$
 $\iff \text{ the conditions (1), (2), and (3) hold.}$

Theorem 4.5. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

(1)
$$\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty \text{ for some } M \in N$$
,

- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $m, k \in N$,
- (3) $\sum_{k=1}^{\infty} m^{1/q_n} ||f_k^n f_k|| r^{-1/p_k} \rightarrow 0 \text{ as } n, r \rightarrow \infty \text{ for every } m \in \mathbb{N} \text{ and }$
- (4) $\left(\sum_{k=1}^{\infty} f_k^n(x)\right)_{n=1}^{\infty} \in c(q) \text{ for all } x \in X.$

Proof. Since $c(X,p) = c_0(X,p) + \{e(x) : x \in X\}$ (Proposition 3.2 (i)), it follows from Proposition 3.1(iii) that $A \in (c(X,p),c(q))$ if and only if $A \in (c_0(X,p),c(q))$ and $A \in (\{e(x) : x \in X\},c(q))$. By Theorem 4.2, we have $A \in (c_0(X,p),c(q))$ if and only if conditions (1)-(3) hold and it is clear that $A \in (\{e(x) : x \in X\},c(q))$ if and only if (4) holds. Hence, the theorem is proved.

Wu [12, Theorem 2.7] has given a characterization of an infinite matrix A such that $A \in (\ell(X, p), c_0)$ when $p_k > 1$ for all $k \in N$. By applying of Proposition 3.1(ii) and (iv), Proposition 3.5 and Theorem 4.1, and using the fact that $\bigcap_{m=1}^{\infty} c_{0(m^{1/p_k})}$, we obtain the following result.

Theorem 4.6. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in N$ and $1/p_k + 1/t_k = 1$ for all $k \in N$, and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty \text{ for some } M \in N,$
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $m, k \in N$ and
- (3) for each $m \in N$, $\left(\sum_{k=1}^{\infty} m^{t_k/q_n} \|f_k^n f_k\|^{t_k} r^{-(t_k-1)}\right) \to 0 \text{ as } r \to \infty \text{ uniformly on } n \in N$.

By using [12, Theorem 2.6], Proposition 3.1(ii) and (iv), Proposition 3.6 and Theorem 4.1, we also obtain the following result.

Theorem 4.7. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sup_{k} ||f_k|| M^{-1/p_k} < \infty$ for some $M \in N$,
- (2) $m^{1/q_n} (f_k^n f_k) \stackrel{w^*}{\to} 0$ as $n \to \infty$ for all $m, k \in N$ and

(3)
$$\sup_{n,k} m^{p_k/q_n} ||f_k^n - f_k||^{p_k} < \infty \text{ for all } m \in N.$$

Theorem 4.8. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \underline{c_0}(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| < \infty$,
- (2) $m^{1/q_n}(s^{1/p_k}f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $m, k, s \in N$ and
- (3) $\frac{1}{r} \sum_{k=1}^{\infty} m^{1/q_n} \|s^{1/p_k} f_k^n f_k\| \to 0 \text{ as } n, r \to \infty \text{ for each } m, s \in N.$

Proof. By Proposition 3.2(ii), we have $\underline{c_0}(X,p) = \bigcup_{s=1}^{\infty} c_0(X)_{(s^{-1/p_k})}$. By Proposition 3.2(i) and (iv) and Theorem 4.2, we have

$$A: \underline{c_0}(X, p) \to c(q) \iff A: \cup_{s=1}^{\infty} c_0(X)_{(s^{-1/p_k})} \to c(q)$$

$$\iff A: c_0(X)_{(s^{-1/p_k})} \to c(q), \text{ for all } s \in N$$

$$\iff \left(s^{1/p_k} f_k^n\right)_{n,k}: c_0(X) \to c(q), \text{ for all } s \in N$$

$$\iff \text{the conditions } (1), (2) \text{ and } (3) \text{ hold.}$$

Theorem 4.9. Let $p=(p_k)$ and $q=(q_k)$ be a bounded sequences of positive real numbers and $r\geq 0$, and let $A=(f_k^n)$ be an infinite matrix. Then $A:E_r(X,p)\to c(q)$ if and only if there is a sequence (f_k) with $f_k\in X'$ for all $k\in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty \text{ for all } m \in N$,
- (2) $r^{1/q_n} \left(m^{1/p_k} k^{r/p_k} f_k^n f_k \right) \stackrel{w^*}{\to} 0 \text{ as } n \to \infty \text{ for every } m, k, r \in \mathbb{N} \text{ and }$
- (3) for each $m, r, s \in N$, $\sum_{j>k} r^{1/q_n} \|m^{1/p_j} j^{r/p_j} f_j^n f_j\|s^{1/p_j} \to 0 \text{ as } k \to \infty \text{ uniformly on } n \in N$.

Proof. By Proposition 3.2(iii), we have $E_r(X,p) = \ell_{\infty}(X,p)_{(k^{-r/p_k})}$. By Proposition 3.1 (iv) and Theorem 4.4, we have

$$\begin{split} A: E_r(X,p) &\to c(q) \Longleftrightarrow A: \ell_\infty(X,p)_{(k^{-r/p_k})} \to c(q) \\ &\iff \left(k^{r/p_k} f_k^n\right)_{n,k}: \ell_\infty(X,p) \to c(q) \\ &\iff \text{the conditions (1), (2) and (3) hold.} \end{split}$$

In the last theorem, we give a characterization of a matrix transformation from the space $F_r(X,p)$ into c(q). It is known by Proposition 3.2 (iv) that $F_r(X,p) = \ell(X,p)_{(k^{r/p_k})}$. By Proposition 3.1(iv), for a scalar sequence space E and an infinite matrix $A = (f_k^n)$, we have

$$A: F_r(X,p) \to E \iff \left(k^{-r/p_k} f_k^n\right)_{n,k} : \ell(X,p) \to E.$$

So we the following theorem is obtained by applying Theorem 4.6.

Theorem 4.10. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in N$, $1/p_k + 1/t_k = 1$ for all $k \in N$ and $r \ge 0$, and let $A = (f_k^n)$ be an infinite matrix. Then $A : F_r(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k||^{t_k} k^{-rt_k/p_k} M^{-(t_k-1)} < \infty \text{ for some } M \in N$,
- (2) $m^{1/q_n} \left(k^{-r/p_k} f_k^n f_k \right) \xrightarrow{w^*} 0 \text{ as } n \to \infty \text{ for all } m, k \in \mathbb{N} \text{ and }$
- (3) for each $m \in N$, $\sum_{k=1}^{\infty} m^{t_k/q_n} \|k^{-r/p_k} f_k^n f_k\|^{t_k} r^{-(t_k-1)} \rightarrow 0 \text{ as } r \rightarrow \infty \text{ uniformly on } r$.

Acknowledgements The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

References

- [1] Choudhury, A., Matrix transforms of vector valued sequence spaces, Bull.Call.Math.Soc.84 1, 47-54, (1992).
- [2] Cooke, R.G., Infinite Matrices and sequence spaces, Macmillan, London, (1950).
- [3] Grosse-Erdmann, K.-G., The structure of the sequence spaces of Maddox, Canad. J. Math. 44, 298-307, (1992).
- [4] Grosse-Erdmann, K.-G., Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180, 223-238, (1993).
- [5] Maddox, I.J., Spaced of strongly summable sequences, Quart.J.Math. Oxford Ser (2) 18, 345-355, (1967).

- [6] Maddox, I.J., Paranormed sequence spaces generated by infinite matrices, Proc.Cambridge Philos. Soc. 64, 335-340, (1968).
- [7] Maddox, I.J., *Elements of functional analysis*, Cambridge University Press, London, New York, Melbourne, (1951).
- [8] Nakano, H., Modulared sequence spaces, Proc. Japan. Acad. 27, 508-512, (1951).
- [9] Simons, S., The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc. 15, 422-436, (1965).
- [10]Suantai, S., Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math. 24, 1-7, (2000).
- [11]Suantai, S., Matrix transformations related to Nakano Vector-Valued sequence spaces, Bull. Cal. Math. Soc. 91(3), 221-226, (1999).
- [12] Wu, C.X. and Liu, L., Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math. 17(1), 83-96, (1993).

MATRIX TRANSFORMATIONS ON THE NAKANO VECTOR-VALUED SEQUENCE SPACE

CHANAN SUDSUK AND SUTHEP SUANTAI

Abstract: In this paper, we give the matrix characterizations from any FK-space of vector sequences with AK property into any FK-space of scalar sequences, and by applying this result we also obtain necessary and sufficient conditions for infinite matrices mapping the spaces $\ell(X,p)$ into Maddox sequence spaces $c_0(q)$ and $\ell(q)$ where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers such that $p_k \geq 1$ for all $k \in N$.

1. Introduction: Let (X, ||.||) be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p), c(X, p), \ell_{\infty}(X, p)$, and $\ell(X, p)$ are defined by

$$c_0(X, p) = \left\{ x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0 \right\},$$

$$c(X, p) = \left\{ x = (x_k) : \lim_{k \to \infty} ||x_k - a||^{p_k} = 0 \text{ for some } a \in X \right\},$$

$$\ell_{\infty}(X, p) = \left\{ x = (x_k) : \sup_{k} ||x_k||^{p_k} < \infty \right\}, and$$

$$\ell(X, p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty \right\}.$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell(p)$, and $\ell_{\infty}(p)$,

respectively. The first three spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons[7] and Maddox[4, 5]. The space $\ell(p)$ was first defined by Nakano[6] and is known as the Nakano sequence space, and the space $\ell(X,p)$ is known as the Nakano vector-valued sequence space. Choudhur[1] gave

Typeset by $A_{M}S$ - $T_{E}X$

necessary and sufficient conditions for an infinite matrix of continuous linear operators which maps the vector-valued sequence space $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_\infty(Y)$ and $\ell_1(X)$ into $\ell_p(Y)$ where Y is a Banach space. Grosse-Erdmann[2] investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$ and $\ell_\infty(p)$ and the problem of characterizing a matrix that maps a sequence space of Maddox into another such space is studied by them in[3]. Suantai[9, 10, 11] gave the matrix characterizations from $\ell(X,p)$ into the space $c_0(Y,p)$, $\ell_\infty(q)$ and F_s in the case $p_k \leq 1$ for all $k \in N$ and $s \geq 0$, where Y is a Banach space. Wu[12] gave characterizations of matrix transformations from the space $\ell(X,p)$ into the space c_0 and $\ell_\infty(q)$. The characterizations of matrix transformations from the space $\ell(X,p)$ into $\ell(q)$ and $c_0(q)$ can not be expected to be characterized completely in term of Toeplitz conditions, but however we can give characterizations of these matrix transformations in term of other conditions. Even the classical pair (ℓ_p, ℓ_q) is an open problem when $1 < p, q < \infty$, and $(p,q) \neq (2,2)$. Also, in the case $(\ell(p), \ell(q))$ is an open problem if $q_k < 1$ for all $k \in N$.

2. Notation and Definitions: Let $(X, \|.\|)$ be a Banach space. The space of all sequences in X is denoted by W(X) and $\Phi(X)$ denote for the space of all finite sequences in X.

A sequence space in X is a linear subspace of W(X). Let E be an X- valued sequence space. For $x \in E$ we write $x = (x_k), k \in N$. For $z \in X$ and $k \in N$, we let $e^{(k)}(z)$ be the sequence (0,0,0,...,0,z,0,...) with z in the k^{th} position. For a fixed scalar sequence $u = (u_k)$ the sequence space E_u is defined by

$$E_u = \{x = (x_k) \in W(X) : (u_k x_k) \in E\}.$$

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $n \in N$ the n^{th} coordinate mapping p_n : $E \to X$, defined by $p_n(x) = x_n$, is continuous on E. If, in addition, (E,τ) is an Fre'chet(Banach, LF-, LB-) space, then E is called an FK-(BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have **property AB** if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have **property AK** if $\sum_{k=1}^n e^k(x_k) \to x \in E$ as $n \to \infty$ for every $x = (x_k) \in E$. It

has property AD if $\Phi(X)$ is dense in E. Let $A = (f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalarvalued sequences. Then A is said to map E into F, written $A: E \to F$ if for each $x = (x_k) \in E, A_n(x) = \sum_{k=1}^{\infty} f_k^n(x_k)$ converges for each $n \in N$ and if the sequence $Ax = (A_n(x)) \in F$. We denote by (E,F) the set of all infinite matrices mapping E into F. If $u = (u_k)$ and $v = (v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we write $u^{-1} = (\frac{1}{u_k})$.

Some Auxiliary Results: We start with the following useful results that will reduce our problems into some simpler forms.

Proposition 3.1 Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ scalar sequence spaces, and let μ and ν be scalar sequences with $\mu_k \neq \infty$

$$0, \nu_k \neq 0$$
 for all $k \in N$. Then
$$(i) \ (E, \bigcap_{n=1}^{\infty} F_n) = \bigcap_{n=1}^{\infty} (E, F_n) \text{ and}$$

$$(ii) \ (E_u, F_v) = \ _v (E, F)_{u^{-1}}.$$

(ii)
$$(E_u, F_v) = v(E, F)_{u^{-1}}$$

Proof (i) and (ii) are immediately obtained by the definition.

Let (f_k) be a sequence of continuous linear functional on X and Proposition 3.2 $p=(p_k)$ a bounded sequence of positive real numbers with $p_k>1$ for all $k\in N$. Then $\sum_{k=0}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X,p)$ if and only if

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty \text{ for some } M \in \mathbb{N},$$

where $\frac{1}{p_k} + \frac{1}{t_k} = 1$ for all $k \in N$.

Proof. Suppose that $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in N$.

Then we have that for each
$$x = (x_k) \in \ell(X, p)$$
,
$$\sum_{k=1}^{\infty} |f_k(x_k)| \le \sum_{k=1}^{\infty} ||f_k|| M^{-\frac{1}{p_k}} M^{\frac{1}{p_k}} ||x_k||$$

$$\leq \sum_{k=1}^{\infty} \left(\|f_k\|^{t_k} M^{-\frac{t_k}{p_k}} + M \|x_k\|^{p_k} \right) = \sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} + M \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty$$
 which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

On the other hand, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$. For each $x = (x_k) \in \ell(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in \ell(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell(X, p).$$
(3.1)

We want to show that there exists $M \in N$ such that

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$$

If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
 (3.2)

And (3.2) implies that for each $k_0 \in N$.

$$\sum_{k>k_0} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
 (3.3)

By (3.2). let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k < k_1} ||f_k||^{t_k} m_1^{-(t_k - 1)} > 1.$$

By (3.3), we can choose $m_2 > m_1$ and $m_2 > 2^2$ and $k_2 > k_1$, such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{t_k} m_2^{-(t_k - 1)} > 1.$$

By continuous in this way, we obtain sequences (k_i) and (m_i) of positive integers such that $1 = k_0 < k_1 < k_2 < ...$ and $m_1 < m_2 < ..., m_i > 2^i$ and

$$\sum_{k_{i-1} < k < k_i} ||f_k||^{t_k} m_i^{-(t_k - 1)} > 1.$$

Choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)} > 1 \text{ for all } i \in N.$$

Let
$$a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)}$$
.

Put
$$y = (y_k)$$
, $y_k = a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k$ for all $k, k_{i-1} < k \le k_i$.

For each $i \in N$, we have

$$\sum_{\substack{k_{i-1} < k \le k_i}} ||y_k||^{p_k} = \sum_{\substack{k_{i-1} < k \le k_i}} \left\| a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k \right\|^{p_k} = \sum_{\substack{k_{i-1} < k \le k_i}} a_i^{-p_k} m_i^{-t_k} |f_k|^{p_k}$$

$$\leq \sum_{\substack{k_{i-1} < k \le k_i}} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k} = a_i^{-1} m_i^{-1} a_i = m_i^{-1} < \frac{1}{2^i}.$$

So we have that

$$\sum_{k=1}^{\infty} ||y_k||^{p_k} \le \sum_{i=1}^{\infty} \frac{1}{2^i} < \infty.$$

Hence $y = (y_k) \in \ell(X, p)$.

For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k(a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= 1.$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.4). The proof is now complete. \square

4. Main Results: Now, we turn to our objective. We begin with giving characterizations of matrix transformations from an FK-space of vector sequences with AK property into an FK-space of scalar sequences.

Theorem 4.1.1 Let $E \subseteq W(X)$ be an FK-space with AK property and F an FK-space of scalar sequences. Then, for an infinite matrix $A = (f_k^n), A : E \to F$ if and only if

- (1) for each $n \in N$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $x = (x_k) \in E$,
- (2) for each $k \in N$, $(f_k^n(z))_{n=1}^{\infty} \in F$ for all $z \in X$, and
- (3) $A: \Phi(X) \to F$ is continuous when $\Phi(X)$ is considered as a subspace of E.

Proof. Assume that $A: E \to F$. Then we have that for any $x = (x_k) \in E$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $n \in N$, so (1) holds. Since $e^k(z) \in E$ for all $k \in N$ and all $z \in X$, we obtain that for each $k \in N$,

$$(f_k^n(z))_{n=1}^{\infty} = Ae^k(z) \in F,$$

hence (2) holds. Since E and F are FK-spaces, by Zeller's theorem, $A: E \to F$ is continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

$$Ax = \left(\sum_{k=1}^{\infty} f_k^n(x_k)\right)_{n=1}^{\infty} \in W, \text{ for all } x = (x_k) \in E.$$

It follows from (2) that $Ae^k(z) \in F$, for all $k \in N$ and $z \in X$, which implies that $A: \Phi(X) \to F$. By (3), we have $A: \Phi(X) \to F$ is continuous. Let $x = (x_k) \in E$. Since E has the AK property, we have

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^k(x_k).$$

Then $\left(\sum_{k=1}^n e^k(x_k)\right)_{n=1}^{\infty}$ is a Cuachy sequence in E. Since $A:\Phi(X)\to F$ is continuous and linear, it implies that $\left(\sum_{k=1}^n Ae^k(x_k)\right)_{n=1}^{\infty}$ is a Cauchy sequence in F. Since F is complete, we have $\left(\sum_{k=1}^n Ae^k(x_k)\right)_{n=1}^{\infty}$ converges in F. Since F is a K-space, it implies that $\left(\sum_{k=1}^{\infty} f_k^n(x_k)\right)_{n=1}^{\infty} \in F$, so that $Ax \in F$. This shows that $A: E \to F$.

It is known that the space $\ell(X,p)$ is an FK-space with AK property under the paranorm

$$g(x) = \left(\sum_{k=1}^{\infty} ||x_k||^{p_k}\right)^{\frac{1}{M}}$$
, when $M = \max_{k} \{1, \sup_{k} p_k\}$.

By Proposition 3.2 and Theorem 4.1.1, we have the following theorem.

Theorem 4.1.2 Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ for all $k \in N$, and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell(q)$ if and only if

(1) for each $n \in N$ there exists $M_n \in N$ such that

$$\sum_{k=1}^{\infty} ||f_k^n||^{t_k} M_n^{-(t_k-1)} < \infty, \text{ where } \frac{1}{p_k} + \frac{1}{t_k} = 1 \text{ for all } k \in N,$$

- (2) for each $k \in N$ and $z \in X$, $\sum_{n=1}^{\infty} |f_k^n(z)|^{q_n} < \infty$, and
- (3) for each $r \in N$ there exists $M_r \in N$ such that

$$\sum_{k \in K} ||x_k||^{p_k} < \frac{1}{M_r} \Rightarrow \sum_{n=1}^{\infty} |\sum_{k \in K} f_k^n(x_k)|^{q_n} < \frac{1}{r},$$

for all $x = (x_k) \in \Phi(X)$ and all finite subsets K of N.

Now, we have the sufficient conditions for an infinite matrix $A = (f_k^n)$ that maps $\ell(X, p)$ into $\ell(q)$.

Theorem 4.1.3 Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ and $q_k > 1$ for all $k \in N$, and $A = (f_k^n)$ an infinite matrix. Then $A: \ell(X, p) \to \ell(q)$ if the following two conditions hold;

(1) for each $n \in N$ there exists $M_n \in N$ such that

$$\sum_{k=1}^{\infty} ||f_k^n||^{t_k} M_n^{-(t_k-1)} < \infty \text{ where } \frac{1}{p_k} + \frac{1}{t_k} = 1 \text{ for all } k \in \mathbb{N}, \text{and}$$

(2) there exists $M_0 \in N$ such that

$$\sup_{K} \sum_{n=1}^{\infty} \left(\sum_{k \in K} \|f_k^n\| M_0^{-\frac{1}{p_k}} \right)^{q_n} < \infty,$$

where supremum is taken over all finite subsets K of N.

Proof. Suppose that the two conditions hold. Then by Proposition 3.2 the condition (1) implies the condition (1) of Theorem 4.1.1. By the condition (2), we have that there exists $M_0, L \in \mathbb{N}$ such that

$$\sum_{n=1}^{\infty} \left(\sum_{k \in K} \|f_k^n\| M_0^{-\frac{1}{p_k}} \right)^{q_n} < L, \tag{4.1}$$

for all the finite subsets K of N. Then, for each $z \in X - \{0\}$ we can choose $M_1 > M_0$ such that $M_1||z|| > 1$. Then for each $k \in N$, we have by (4.1) that

$$\begin{split} \sum_{n=1}^{\infty} |f_{k}^{n}(z)|^{q_{n}} &\leq \sum_{n=1}^{\infty} \left(\|f_{k}^{n}\| \|z\| \right)^{q_{n}} \\ &= \sum_{n=1}^{\infty} \left(\|f_{k}^{n}\| M_{1}^{-\frac{1}{p_{k}}} M_{1}^{\frac{1}{p_{k}}} \|z\| \right)^{q_{n}} \\ &\leq \sum_{n=1}^{\infty} \left(\|f_{k}^{n}\| M_{1}^{-\frac{1}{p_{k}}} M_{1} \|z\| \right)^{q_{n}} \\ &\leq (M_{1} \|z\|)^{\beta} \sum_{n=1}^{\infty} \left(\|f_{k}^{n}\| M_{1}^{-\frac{1}{p_{k}}} \right)^{q_{n}}; \; \beta = \sup_{n} \, q_{n} \\ &\leq (M_{1} \|z\|)^{\beta} L \end{split}$$

So, we have that $(f_k^n(z))_{n=1}^{\infty} \in \ell(q)$ for all $z \in N$ and $k \in N$. Hence the condition (2) of Theorem 4.1.1 holds. We shall now show that the condition (3) of Theorem 4.1.1 is satisfied. To show this, let $\varepsilon > 0$ and $x = (x_k) \in \Phi(X)$. Recall that $||x|| = \left(\sum_{k=1}^{\infty} ||x_k||^{p_k}\right)^{\frac{1}{M}}$ where $M = \sup_n q_n$. If $||x|| \leq 1$, then for all $k \in N$ we have

$$||x_k|| \le ||x||^{\frac{M}{p_k}} \le ||x||. \tag{4.2}$$

Since $x = (x_k) \in \Phi(X)$, there is a finite subset K_0 of N such that

$$\sum_{k=1}^{\infty} f_k^n(x_k) = \sum_{k \in K_0} f_k^n(x_k) \text{ for all } n \in N.$$

$$\tag{4.3}$$

So, we have by (4.1), (4.2), and (4.3) that

$$||Ax|| = \left(\sum_{n=1}^{\infty} |\sum_{k=1}^{\infty} f_{k}^{n}(x_{k})|^{q_{n}}\right)^{\frac{1}{G}}$$

$$= \left(\sum_{n=1}^{\infty} |\sum_{k \in K_{0}} f_{k}^{n}(x_{k})|^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq \left(\sum_{n=1}^{\infty} (\sum_{k \in K_{0}} ||f_{k}^{n}|| ||x_{k}||)^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq \left(\sum_{n=1}^{\infty} (\sum_{k \in K_{0}} ||f_{k}^{n}|| M_{0}^{-\frac{1}{p_{k}}} M_{0}^{\frac{1}{p_{k}}} ||x||)^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq \left(M_{0}^{G} ||x|| \sum_{n=1}^{\infty} (\sum_{k \in K_{0}} ||f_{k}^{n}|| M_{0}^{-\frac{1}{p_{k}}})^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq M_{0}(||x||L)^{\frac{1}{G}}, G = \sup_{n} q_{n}. \tag{4.4}$$

It implies by (4.4) that $A: \Phi(X) \to \ell(q)$. Now choose $\delta = \min\{1, \frac{1}{L}(\frac{\epsilon}{M_0})^G\}$. It follows by (4.4) that

$$||x|| < \delta \Rightarrow ||Ax|| < \varepsilon.$$

It follows that $A: \Phi(X) \to \ell(q)$ is continuous. Hence, by Theorem 4.1.1, we have that $A: \ell(X,p) \to \ell(q)$.

By using the previous auxiliary results and Theorem 1.6 in [12], we obtain necessary and sufficient conditions for infinite matrices mapping the space $\ell(X,p)$ into $c_0(q)$.

Theorem 4.1.4 Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ for all $k \in N$, and $A = (f_k^n)$ an infinite matrix. Then $A: \ell(X,p) \to c_0(q)$ if and only if

(1) for all $m, k \in N$, $m^{\frac{1}{q_n}} f_k^n \to 0$ weakly as $n \to \infty$, and

(2) for each $m \in N$,

$$\left(\sum_{k=1}^{\infty} m^{\frac{t_k}{q_n}} \|f_k^n\|^{t_k} r^{-(t_k-1)}\right) \to 0 \text{ uniformly for } n \ge 1 \text{ as } r \to \infty,$$

where $\frac{1}{p_k} + \frac{1}{t_k} = 1$ for all $k \in N$.

Proof. By Theorem 0 in [2], we have $c_0(q) = \bigcap_{s=1}^{\infty} c_{0(s^{\frac{1}{q_n}})}$. By Proposition 2.1(i) and (ii) and Theorem 1.6 in [12], we have

$$A: \ell(X,p) \to c_0(q) \iff A: \ell(X,p) \to \bigcap_{m=1}^{\infty} c_{0(m^{\frac{1}{q_n}})}$$

$$\iff A: \ell(X,p) \to c_{0(m^{\frac{1}{q_n}})}, \text{ for all } m \in N$$

$$\iff \left(m^{\frac{1}{q_n}} f_k^n\right)_{n,k} : \ell(X,p) \to c_0, \text{ for all } m \in N$$

$$\iff \text{the conditions (1) and (2) hold.}$$

Acknowledgements

The author would like to thank the Thailand Research Fund and Kasetsart University Development Funds for the financial support during the preparation of this paper.

References

- [1]. Choudhur, A., Matrix transformations of vector valued sequence spaces, Bull. Cal. Math. Soc. 88, No.1 (1992), 47-54.
- [2]. Grosse, K. and Erdmann, G., The structure of sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-307.
- [3]. Grosse, K. and Erdmann, G., Matrix transformations between the sequence spaces of Maddox, J. of Math. Anal. Appl. 180 (1993), 223-238.
- [4]. Maddox, I.J., Strongly summable sequences, Quart. J. Math. Oxford Ser. 2 No.18 (1967), 345.
- [5]. Maddox, I.J., Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc 64 (1968), 335.
- [6]. Nakano, H., Modulared sequence spaces, Proc. Japan. Acad 27 (1951), 508-512.
- [7]. Simons, S., The spaces $\ell(p_v)$ and $m(P_v)$, Proc. London. Math. Soc. 15 (1965), 422-436.
- [8]. Suantai, S., Matrix transformations from Nakano vector-valued sequence space into the Orlicz sequence space, to appear in the proceeding of functions, Adam Michiewitz University, Poznan, Poland. (1998).
- [9]. Suantai, S., Matrix transformations between some vector-valued sequence spaces, to appear in SEA. Bull. Math. (1999).

- [10]. Suantai, S., Matrix transformations related to Nakano vector-valued sequence spaces, to appear in Bull. Cal. Math. Soc. (1999).
- [11].Suantai, S., Matrix transformations of Nakano vector-valued sequence space, to appear in Kyung-pook Math. J..
- [12].Wu, C.X. and Lui, L., Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math. 17 No.1 (1993), 83-96.

Dr. Suthep Suantai
Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand.
E-mail: Scmti005@chiangmai.ac.th

Chanan Sudsukh

Department of Mathematics Satistics and Computer Sciences, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhorn Prathom 73140, Thailand.

E-mail: faaschs@nontri.ku.ac.th

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

ผลงานที่ได้จากโครงการวิจัยนี้เป็นผลงานวิจัยที่ได้รับการตอบรับให้ดีพิมพ์ในวารสาร ระดับนานาชาติต่างๆ รวมทั้งที่รอผลการตอบรับจากวารสาร จำนวน 14 เรื่อง (papers) และ เป็นผลงานที่เสนอในที่ประชุมนานาชาติอีก 3 เรื่อง คลอดจนการผลิตนักวิจัยรุ่นใหม่อีก จำนวน 6 คน

1. ผลงานวิจัยที่เป็น paper ตีพิมพ์ในวารสารต่าง ๆ จำนวน 14 เรื่อง ดังนี้

1 ได้คิดค้นทฤษฎีใหม่เกี่ยวกับการแปลงเมทริกซ์ของปริภูมิลำดับค่าเวกเตอร์นาคาโน $\ell(X,\rho)$ เมื่อ $\rho=(\rho_k)$ เป็นลำดับของจำนวนจริงซึ่ง $\rho_k \leq 1$ สำหรับทุกค่าของจำนวนนับ k ไปยังปริภูมิลำดับ $E_r(r \geq 0)$ และ ได้ให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับเมทริกซ์ อนันด์ที่ส่งจากปริภูมิ $M_0(X,\rho)$ ไปยังปริภูมิ $E_r(r \geq 0)$

ผลงานนี้ชื่อ "Matrix transformations of Nakano vector-valued sequence spaces" ตีพิมพ์ในวารสาร Kyungpook Mathematical Journal, Vol. 40, No. 1 (2000) 93 - 97.

2. ได้รับเชิญจากสมาคมคณิตศาสตร์ CALCUTTA ประเทศอินเดีย ในฐานะวิทยากร รับเชิญให้ไปเสนอผลงานวิจัยในที่ประชุมนานาชาติที่ CALCUTTA MATHEMATICAL SOCIETY ระหว่างวันที่ 23 - 26 มกราคม 2543 และผู้วิจัยได้นำเสนอผลงานเรื่อง "On Matrix Transformations of vector-valued sequence spaces of Maddox"

ผลงานนี้ดีพิมพ์ในวารสาร Bulletin of Culcutta Mathematical society, vol 9, no. 1&2 (2001), 99 - 110.

ในงานวิจัยนี้ได้ให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับเมทริกซ์อนันต์ที่ส่งจากปริภูมิ ลำดับ Maddox ไปยังปริภูมิ Musielak-Orlicz sequence space

3. ได้ผลงานดีพิมพ์ชื่อ "On matrix transformations concerning the Nakano vector-valued sequence space" ตีพิมพ์ในวารสาร International Journal of Mathematics and Mathematical Science (IJMMS) vol. 26, no. 11 (2001), 671 - 678.

งานวิจัยนี้ได้ให้เงื่อนไขที่จะเป็นและเพียงพอสำหรับเมทริกซ์อนันต์ที่ส่งจากปริภูมิลำดับ นาคาโน $\ell(X,p)$ และ $F_r(X,p)$ ไปยังปริภูมิลำดับ $E_r,\ell_\infty,\underline{\ell}_\infty(q),bs,cs$

- 4. ได้ผลงานดีพิมพ์ชื่อ "On β dual of vector-valued sequence spaces of Maddox" ดีพิมพ์ในวารสารชื่อ สาร International Journal of Mathematics and Mathematical Science (IJMMS) vol. 30, no. 7 (2002), 383 392. ผลงานดังกล่าวเป็นการศึกษาหาลักษณะเฉพาะของ β dual ของปริภูมิลำดับค่าเวกเตอร์ ของแมดดอกซ์ $\ell(X,p), \ell_{\infty}(X,p), c(X,p), c_0(X,p)$
- 5. ได้ผลงานดีพิมพ์ชื่อ "Matrix Transformations of Some Vector-Valued Sequence Spaces" ผลงานนี้ได้รับการตอบรับให้ลงตีพิมพ์ในวารสารระดับนานาชาติ ชื่อ Indian Journal of Pure and Applied Mathematics

งานวิจัยนี้ได้ทฤษฎีองค์ความรู้ใหม่เกี่ยวกับการแปลงเมทริกซ์ที่ส่งจากปริภูมิลำดับที่ เป็นนอร์มัล FK- space ไปยังปริภูมิ c(q) และโดยการประยุกต์ผลดังกล่าวนี้ ให้สามารถให้ลักษณะของเมทริกซ์อนันต์ที่ส่งจากปริภูมิลำดับของแมดดอกซ์ไปยังปริภูมิ c(q)

6. ได้ผลงานดีพิมพ์ชื่อ "Matrix Transformations on the Nakano vector-valued sequence spaces" ซึ่งได้รับการตอบรับให้ดีพิมพ์ในวารสาร Kyungpook Mathematical Journal

ผลงานดังกล่าวนี้ได้ให้เงื่อนไขที่จำเป็นและเพียงพอสำหรับเมดริช์อนันต์ที่ส่ง จากปริภูมิลำดับนาคาโน $\ell(X,p)$ ไปยังปริภูมิลำดับ E_r เมื่อ $p_k \leq 1$ ทุกๆ $k \in N$

- 7. ได้ผลงานดีพิมพ์ชื่อ "Matrix Transformations of Orlicz Sequence Spaces" ผลงานดังกล่าวนี้ ได้ส่งไปเพื่อดีพิมพ์ในวารสาร Journal of Mathematical Analysis and Applications ผลงานนี้ได้ให้ลักษณะเฉพาะของเมทริกซ์อนันด์ที่ส่งจากปริภูมิลับนาคาโน $\ell(X,p)$ ไปยังปริภูมิลำดับออร์ลิคซ์ ℓ_M และส่งจากปริภูมิลำดับออร์ลิคซ์ไปยังปริภูมิลำดับ แมดดอกซ์
- 8. ได้ผลงานตีพิมพ์ชื่อ "Some Geometric Properties of Cesaro Sequence spaces" ผลงานนี้ได้รับการตอบรับให้ตีพิมพ์ลงในวารสาร Kyungpook Mathematical Journal

ผลงานนี้ใจ้พบว่าปริภูมิลำดับเชซาโร ces(p) ภายใต้ Luxemburg norm เป็น ปริภูมิ ที่มี Property (H) แต่ไม่ rotund (R)

9. ได้ผลงานตีพิมพ์ชื่อ "On the H-property of Some Banach sequence Spaces" ผลงานนี้ได้รับการตอบรับให้ดีพิมพ์ในวารสาร Archivum Mathematicum

ผลงานดังกล่าวได้แสดงว่าปริภูมิลำดับเซซาโร ces(p) ภายใต้ Luxemburg norm (ที่แดกต่างจาก นอร์มในผลงานวิจัย 6) มีสมบัติ (H) และเป็นปริภูมิ rotund

- 10. ได้ผลงานดีพิมพ์ชื่อ "On some convexity property of generalized Cesaro sequence spaces" ผลงานดังกล่าวนี้ ได้รับการยอมรับให้ดีพิมพ์ในวารสาร Georgian Mathematical Journal ผลงานนี้ได้แสดงว่า ปริภูมิลำดับเซซาโร ces(p) ภายใต้ Luxemburg norm เป็นปริภูมิ locally uniformly rotund เมื่อ $p_k > 1$ ทุก ๆ $k \in N$
- 11. ได้ผลงานดีพิมพ์ชื่อ "On the property (H) and Rotundity of Difference Sequence Spaces" ผลงานดังกล่าวนี้ ได้รับการตอบรับให้เพื่อดีพิมพ์ในวารสาร Journal of Nonlinear Analysis and Convex Analysis ผลงานนี้ได้แสดงว่า ปริภูมิ $\ell(\Delta,p)$ เป็น ปริภูมิ rotund และมีสมบัติ (H) ภายใต้ Luxemburg norm เมื่อ $p_k > 1$ ทุก ๆ $k \in N$
- 12. ได้ผลงานดีพิมพ์ชื่อ "On property (UKK) in Cesaro-Musielak-Orlicz Sequence Spaces" ผลงานดังกล่าวนี้ ได้ส่งไปเพื่อดีพิมพ์ในวารสาร Czechoslovak Mathematical Journal ผลงานนี้ได้แสดงว่า ปริภูมิ Cesaro-Musielak-Orlicz Ces_M มี สมบัติ (UKK) และ สมบัติ (H) ภายใต้ Luxemburg norm เมื่อ M เป็นฟังก์ซัน Musielak-Orlicz
- 13. ได้ผลงานตีพิมพ์ชื่อ "Some Geometric Properties in Orlicz Sequence Spaces of Bocher Type" ผลงานดังกล่าวนี้ ได้ส่งไปเพื่อดีพิมพ์ในวาร nonlinear Analysis and Applications ผลงานนี้ได้ให้ลักษณะของปริภูมิลำดับออร์ลิคซ์ ชนิดบอซเนอร์ $\ell_{\scriptscriptstyle M}(X)$ ที่เป็นปริภูมิ rotund (R), locally unifromly (LUR), CLUR, WCLUR, มีสมบัติ (H), (UKK) ภายใต้ Luxemburg norm เมื่อ M เป็นฟังก์ซันออร์ลิคซ์
- 14. ได้ผลงานดีพิมพ์ชื่อ Local Uniform Convexity of Cesaro Musielak-Orlicz Sequence Spaces ผลงานนี้ได้ส่งไปเพื่อลงดีพิมพ์ในวารสาร Bulletin of Australian

Mathematics. ผลงานนี้ได้แสดงว่า ปริภูมิ Ces_M ภายใต้นอร์มลักเซมเบิร์กเป็นปริภูมิ LUR เมื่อ M สอดคล้องเงื่อนไข บางประการ

2. ผลงานวิจัยที่นำเสนอในที่ประชุมนานาชาติ

- เรื่อง ON MATRIX TRANSFORMATIONS OF VECTOR-VALUED SEQUENCESPACES OF MADDOX นำเสนอในที่ประชุมนานาชาติ International Conference in Mathematics ที่ Calcutta Mathematical Society ประเทศอินเดีย ระหว่างวันที่ 23 - 26 มกราคม 2543
- เรื่อง Some Geometric Properties in Cesaro Sequence Space with the Luxemburg norm เสนอในที่ประชุมนานาชาติ The Third Asian Mathematical Conference (AMC 2000) ซึ่งจัดที่ University of the Philippines, Diliman, Quezon City, Philippines ระหว่างวันที่ 23 –27 ตุลาคม 2543
- เรื่อง On the H-Property of Some Banach Sequence Spaces
 ซึ่งเสนอในที่ประชุมนานาชาติ Function Spaces VI ซึ่งจัดที่ Institute of Mathematics
 Wroclaw University of Technology, Wroclaw, Poland
 ระหว่างวันที่ 3 8 กันยายน 2544

3. การผลิตนักวิจัยรุ่นใหม่

การผลิตบัณฑิตระดับปริญญาโท และ เอก

ได้ผลิตบัณฑิตระดับปริญญาโท สาขาคณิตศาสตร์ จำนวน 5 คน ดังนี้

 นาย วิเนตร แสนหาญ ปีที่จบ เมษายน 2543
 หัวข้อวิทยานิพนซ์ Some Geometric Properties of Banach Sequence Spaces

ปัจจุบันกำลังศึกษาปริญญาเอกอยู่ที่ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ นางสาว อรวรรณ ดรีพักตร์ ปีที่จบ เมษายน 2543
 หัวข้อวิทยานิพนธ์ Matrix Transformations Between Vector-Valued
 Sequence Spaces

ปัจจุบันทำงานที่ ภาควิชาคณิตศาสตร์ ∙คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์

- 3. นาย ภักดี เจริญสวรรค์ ปีที่จบ มีนาคม 2544
 หัวข้อวิทยานิพนธ์ Some Geometric Properties of Banach Sequence
 Spaces
 ปัจจุบันทำงานที่ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
 มหาวิทยาลัย เชียงใหม่
- 4 นาย นรินทร์ เพชร์โรจน์ ปีที่จบ มีนาคม 2544 หัวข้อวิทยานิพนธ์ Rotundity in Orlicz Vector-valued Sequence Spaces

ปัจจุบันทำงานที่ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร

- 6. ได้ผลิตบัณฑิตระดับปริญญาเอก สาขาคณิตศาสตร์ จำนวน 1 คน ดังนี้
 นาย ชานันท์ สุดสุข ปีที่จบการศึกษา พฤษภาคม 2543
 หัวข้อวิทยานิพนธ์ Matrix Transformations of Some Vector-Valued
 Sequence Spaces
 ปัจจุบันทำงานที่ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์
 มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน

ภาคผนวก (Reprints ผลงานวิจัย และ manuscript)

ON MATRIX TRANSFORMÁTIONS CONCERNING THE NAKANO VECTOR-VALUED SEQUENCE SPACE

SUTHEP SUANTAI

(Received 15 August 2000 and in revised form 20 October 2000)

ABSTRACT. We give the matrix characterizations from Nakano vector-valued sequence space $\ell(X,p)$ and $F_r(X,p)$ into the sequence spaces E_r , ℓ_∞ , $\underline{\ell}_\infty(q)$, bs, and cs, where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers such that $p_k>1$ for all $k\in\mathbb{N}$ and $r\geq 0$.

2000 Mathematics Subject Classification, 46A45.

1. Introduction. Let $(X, \|\cdot\|)$ be a Banach space, $r \ge 0$ and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in \mathbb{N}$. The X-valued sequence spaces $c_0(X, p)$, c(X, p), $\ell_\infty(X, p)$, $\ell(X, p)$, $E_r(X, p)$, $F_r(X, p)$, and $\underline{\ell}_\infty(X, p)$ are defined as

$$c_{0}(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k}||^{p_{k}} = 0 \right\},$$

$$c(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k} - a||^{p_{k}} = 0, \text{ for some } a \in X \right\},$$

$$\ell_{\infty}(X,p) = \left\{ x = (x_{k}) : \sup_{k} ||x_{k}||^{p_{k}} < \infty \right\},$$

$$\ell(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} < \infty \right\},$$

$$E_{r}(X,p) = \left\{ x = (x_{k}) : \sup_{k} \frac{||x_{k}||^{p_{k}}}{k^{r}} < \infty \right\},$$

$$F_{r}(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} k^{r} ||x_{k}||^{p_{k}} < \infty \right\},$$

$$\ell_{\infty}(X,p) = \bigcap_{n=1}^{\infty} \left\{ x = (x_{k}) : \sup_{k} ||x_{k}||^{n/p_{k}} \right\}.$$
(1.1)

When X=K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell_{p}(p)$, $\ell_{r}(p)$, $\ell_{r}(p)$, $\ell_{r}(p)$, and $\ell_{\infty}(p)$, respectively. The spaces $c_0(p)$, c(p), and $\ell_{\infty}(p)$ are known as the sequence spaces of Maddox. These spaces were first introduced and studied by Simons [7] and Maddox [4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and it is known as the Nakano sequence space and the space $\ell(X,p)$ is known as the Nakano vector-valued sequence space. When $p_k=1$ for all $k\in\mathbb{N}$, the spaces $\ell(p)$ and $\ell(p)$ are written as $\ell(p)$ and $\ell(p)$, respectively. These two

sequence spaces were first introduced by Cooke [1]. The space $\underline{\ell}_{\infty}(p)$ was first defined by Grosse-Erdmann [2] and he has given in [3] characterizations of infinite matrices mapping between scalar-valued sequence spaces of Maddox. Wu and Liu [10] gave necessary and sufficient conditions for infinite matrices mapping from $c_0(X,p)$ and $\ell_{\infty}(X,p)$ into $c_0(q)$ and $\ell_{\infty}(q)$. Suantai [8] has given characterizations of infinite matrices mapping $\ell(X,p)$ into ℓ_{∞} and $\underline{\ell}_{\infty}(q)$ when $p_k \leq 1$ for all $k \in \mathbb{N}$ and he has also given in [9] characterizations of those infinite matrices mapping from $\ell(X,p)$ into the sequence space E_r when $p_k \leq 1$ for all $k \in \mathbb{N}$.

In this paper, we extend the results of [8, 9] in case $p_k > 1$ for all $k \in \mathbb{N}$. Moreover, we also give the matrix characterizations from $\ell(X, p)$ and $F_r(X, p)$ into the sequence spaces bs and cs.

2. Notations and definitions. Let $(X, \|\cdot\|)$ be a Banach space, the space of all sequences in X is denoted by W(X), and $\Phi(X)$ denotes the space of all finite sequences in X. When X = K, the scalar field of X, the corresponding spaces are written as w and Φ .

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in \mathbb{N}$, x_k stands for the kth term of x. For $k \in \mathbb{N}$, we denote by e_k the sequence $(0,0,\ldots,0,1,0,\ldots)$ with 1 in the kth position and by e the sequence $(1,1,1,\ldots)$. For $x \in X$ and $k \in \mathbb{N}$, let $e^k(x)$ be the sequence $(0,0,\ldots,0,x,0,\ldots)$ with x in the kth position and let e(x) be the sequence (x,x,x,\ldots) . We call a sequence space E normal if $(t_kx_k) \in E$ for all $x = (x_k) \in E$ and $t_k \in K$ with $|t_k| = 1$ for all $t_k \in \mathbb{N}$. A normed sequence space $(E, \|\cdot\|)$ is said to be *norm monotone* if $x = (x_k)$, $y = (y_k) \in E$ with $\|x_k\| \le \|y_k\|$ for all $k \in \mathbb{N}$ we have $\|x\| \le \|y\|$. For a fixed scalar sequence $\mu = (\mu_k)$, the sequence space E_μ is defined as

$$E_{\mu} = \{ x \in W(X) : (\mu_k x_k) \in E \}. \tag{2.1}$$

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to map E into F, written by $A:E\to F$, if for each $x=(x_k)\in E$, $A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in\mathbb{N}$, and the sequence $Ax=(A_n(x))\in F$. Let (E,F) denote the set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $k \in \mathbb{N}$, the kth coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E,τ) is a Fréchet (Banach) space, then E is called an FK- (BK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in \mathbb{N}\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

It is known that the Nakano sequence space $\ell(X,p)$ is an FK-space with property AK under the paranorm $g(x) = (\sum_{k=1}^{\infty} \|x_k\|^{p_k})^{1/M}$, where $M = \max\{1, \sup_k p_k\}$. If $p_k > 1$ for all $k \in \mathbb{N}$, then $\ell(X,p)$ is a BK-space with the Luxemburg norm defined by

$$||(x_k)|| = \inf \left\{ \varepsilon > 0 : \sum_{k=1}^{\infty} \left\| \frac{x_k}{\varepsilon} \right\|^{p_k} \le 1 \right\}.$$
 (2.2)

3. Main results. We first give a characterization of an infinite matrix mapping from $\ell(X, p)$ into E_r when $p_k > 1$ for all $k \in \mathbb{N}$. To do this, we need the following lemma.

LEMMA 3.1. Let E be an X-valued BK-space which is normal and norm monotone and let $A = (f_k^n)$ be an infinite matrix. Then $A : E \to E_r$ if and only if $\sup_n \sum_{k=1}^{\infty} |f_k^n(x_k)|/n^r < \infty$ for every $x = (x_k) \in E$.

PROOF. If the condition holds true, it follows that

$$\sup_{n} \frac{\left|\sum_{k=1}^{\infty} f_{k}^{n}(x_{k})\right|}{n^{r}} \leq \sup_{n} \sum_{k=1}^{\infty} \frac{\left|f_{k}^{n}(x_{k})\right|}{n^{r}} < \infty \tag{3.1}$$

for every $x = (x_k) \in E$, hence $A : E \to E_r$.

Conversely, assume that $A: E \to E_r$. Since E and E_r are BK-spaces, by Zeller's theorem, $A: E \to E_r$ is bounded, so there exists M > 0 such that

$$\sup_{\substack{n \in \mathbb{N} \\ \|(x_k)\| \le 1}} \frac{\left| \sum_{k=1}^{\infty} f_k^n(x_k) \right|}{n^{\tau}} \le M. \tag{3.2}$$

Let $x = (x_k) \in E$ be such that ||x|| = 1. For each $n \in \mathbb{N}$, we can choose a scalar sequence (t_k) with $|t_k| = 1$ and $f_k^n(t_k x_k) = |f_k^n(x_k)|$ for all $k \in \mathbb{N}$. Since E is normal and norm monotone, we have $(t_k x_k) \in E$ and $||(t_k x_k)|| \le 1$. It follows from (3.2) that

$$\sum_{k=1}^{\infty} \frac{|f_k^n(x_k)|}{n^r} = \frac{|\sum_{k=1}^{\infty} f_k^n(t_k x_k)|}{n^r} \le M,$$
(3.3)

which implies

ŧ

$$\sup_{n\in\mathbb{N}}\sum_{k=1}^{\infty}\frac{|f_k^n(x_k)|}{n^r}\leq M. \tag{3.4}$$

It follows from (3.4) that for every $x = (x_k) \in E$,

$$\sup_{n \in \mathbb{N}} \sum_{k=1}^{\infty} \frac{|f_k^n(x_k)|}{n^r} \le M \|x\|. \tag{3.5}$$

This completes the proof.

THEOREM 3.2. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$, and let $r \ge 0$. For an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), E_r)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} ||f_{k}^{n}||^{q_{k}} n^{-rq_{k}} m_{0}^{-q_{k}} < \infty.$$
 (3.6)

PROOF. Let $x = (x_k) \in \ell(X, p)$. By (3.6), there are $m_0 \in \mathbb{N}$ and K > 1 such that

$$\sum_{k=1}^{\infty} ||f_k^n||^{q_k} n^{-rq_k} m_0^{-q_k} < K, \quad \forall n \in \mathbb{N}.$$
 (3.7)

Note that for $a, b \ge 0$, we have

$$ab \le a^{p_k} + b^{q_k}. \tag{3.8}$$

It follows by (3.7) and (3.8) that for $n \in \mathbb{N}$,

$$n^{-r} \left| \sum_{k=1}^{\infty} f_{k}^{n}(x_{k}) \right| = n^{-r} \left| \sum_{k=1}^{\infty} f_{k}^{n}(m_{0}^{-1} \cdot m_{0}x_{k}) \right|$$

$$\leq \sum_{k=1}^{\infty} (n^{-r} m_{0}^{-1} || f_{k}^{n} ||) (|| m_{0}x_{k} ||)$$

$$\leq \sum_{k=1}^{\infty} n^{-r} q_{k} m_{0}^{-q_{k}} || f_{k}^{n} ||^{q_{k}} + m_{0}^{\alpha} \sum_{k=1}^{\infty} || x_{k} ||^{p_{k}}$$

$$\leq K + m_{0}^{\alpha} \sum_{k=1}^{\infty} || x_{k} ||^{p_{k}}, \quad \text{where } \alpha = \sup_{k \neq 0} p_{k}.$$
(3.9)

. Hence $\sup n^{-r} |\sum_{k=1}^{\infty} f_k^n(x_k)| < \infty$, so that $Ax \in E_r$.

For necessity, assume that $A \in (\ell(X, p), E_r)$. For each $k \in \mathbb{N}$, we have $\sup_n n^{-r} |f_k^n(x)| < \infty$ for all $x \in X$ since $e^{(k)}(x) \in \ell(X, p)$. It follows by the uniform bounded principle that for each $k \in \mathbb{N}$ there is $C_k > 1$ such that

$$\sup_{n} n^{-r} ||f_k^n|| \le C_k. \tag{3.10}$$

Suppose that (3.6) is not true. Then

$$\sup_{n} \sum_{k=1}^{\infty} ||f_{k}^{n}||^{q_{k}} n^{-rq_{k}} m^{-q_{k}} = \infty, \quad \forall m \in \mathbb{N}.$$
 (3.11)

For $n \in \mathbb{N}$, we have by (3.10) that for $k, m \in \mathbb{N}$,

$$\sum_{j=1}^{\infty} \left\| f_{j}^{n} \right\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}} = \sum_{j=1}^{k} \left\| f_{j}^{n} \right\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}} + \sum_{j>k} \left\| f_{j}^{n} \right\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}}$$

$$\leq \sum_{j=1}^{k} C_{j}^{q_{j}} m^{-q_{j}} + \sum_{j>k} \left\| f_{j}^{n} \right\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}}.$$
(3.12)

This together with (3.11) give

$$\sup_{n} \sum_{j>k} \left\| f_{j}^{n} \right\|^{q_{j}} n^{-rq_{j}} m^{-q_{j}} = \infty, \quad \forall k, m \in \mathbb{N}.$$
 (3.13)

By (3.13) we can choose $0 = k_0 < k_1 < k_2 < \cdots$, $m_1 < m_2 < \cdots$, $m_i > 4^i$ and a subsequence (n_i) of positive integers such that for all $i \ge 1$,

$$\sum_{k_{i-1} < j \le k_i} \left\| f_j^{n_i} \right\|^{q_j} n_i^{-rq_j} m_i^{-q_j} > 2^i.$$
 (3.14)

For each $i \in \mathbb{N}$, we can choose $x_j \in X$ with $||x_j|| = 1$, for $k_{i-1} < j \le k_i$ such that

$$\sum_{k_{i-1} < j \le k_i} \left| f_j^{n_i}(x_j) \right|^{a_j} n_i^{-r a_j} m_i^{-a_j} > 2^i. \tag{3.15}$$

$$F_{i}(M) = \sum_{k_{i-1} < j \le k_{i}} \left| f_{j}^{n_{i}}(x_{j}) \right|^{q_{j}} n_{i}^{-rq_{j}} M^{-q_{j}}.$$
 (3.16)

Then F_i is continuous and non-increasing such that $F(M) \to 0$ as $M \to \infty$. Thus there exists $M_i > 0$ such that $M_i > m_i$ and

$$F(M_i) = \sum_{k_{i-1} < j \le k_i} \left| f_j^{n_i}(x_j) \right|^{a_j} n_i^{-rq_j} M_i^{-q_j} = 2^i.$$
 (3.17)

Put

$$y = (y_j), \quad y_j = 4^{-i} M_i^{-(a_j - 1)} n_i^{-ra_j/p_j} \left| f_j^{n_i}(x_j) \right|^{a_j - 1} x_j \text{ for } k_{i-1} < j \le k_i.$$
 (3.18)

Thus

$$\sum_{j=1}^{\infty} ||y_{j}||^{p_{j}} = \sum_{i=1}^{\infty} \sum_{k_{i-1} < j \le k_{i}} 4^{-ip_{j}} M_{i}^{-p_{j}(a_{j}-1)} n_{i}^{-ra_{j}} |f_{j}^{n_{i}}(x_{j})|^{p_{j}(a_{j}-1)}$$

$$\leq \sum_{i=1}^{\infty} 4^{-i} \sum_{k_{i-1} < j \le k_{i}} M_{i}^{-a_{j}} n_{i}^{-ra_{j}} |f_{j}^{n_{i}}(x_{j})|^{a_{j}}$$

$$= \sum_{i=1}^{\infty} 4^{-i} \cdot 2^{i}$$

$$= \sum_{i=1}^{\infty} \frac{1}{2^{i}} = 1.$$
(3.19)

Thus $y = (y_j) \in \ell(X, p)$. Since $\ell(X, p)$ is a BK-space which is normal and norm monotone under the Luxemburg norm, by Lemma 3.1, we obtain that

$$\sup_{n} \sum_{k=1}^{\infty} \frac{|f_k^n(y_k)|}{n^r} < \infty. \tag{3.20}$$

But we have

$$\sup_{n} \sum_{j=1}^{\infty} \frac{\left| f_{j}^{n}(y_{j}) \right|}{n^{r}} \geq \sup_{i} \sum_{j=1}^{\infty} \frac{\left| f_{j}^{n_{i}}(y_{j}) \right|}{n^{r}_{i}} \geq \sup_{i} \sum_{k_{i-1} < j \leq k_{i}} \frac{\left| f_{j}^{n_{i}}(y_{j}) \right|}{n^{r}_{i}}$$

$$= \sup_{i} \sum_{k_{i-1} < j \leq k_{i}} 4^{-i} M_{i}^{-(a_{j}-1)} n_{i}^{-r(a_{j}/p_{j}+1)} \left| f_{j}^{n_{i}}(x_{j}) \right|^{a_{j}}$$

$$= \sup_{i} \sum_{k_{i-1} < j \leq k_{i}} 4^{-i} M_{i}^{-(a_{j}-1)} n_{i}^{-ra_{j}} \left| f_{j}^{n_{i}}(x_{j}) \right|^{a_{j}}$$

$$= \sup_{i} \sum_{k_{i-1} < j \leq k_{i}} \left(\left| f_{j}^{n_{i}}(x_{j}) \right|^{a_{j}} n_{i}^{-ra_{j}} M_{i}^{-a_{j}} \right) 4^{-i} M_{i}$$

$$\geq \sup_{i} 2^{i} = \infty, \quad \text{because } M_{i} > 4^{i}.$$

This is contradictory with (3.20). Therefore (3.6) is satisfied.

THEOREM 3.3. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k > 1$ for all $k \in \mathbb{N}$, $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$, $r \ge 0$ and $s \ge 0$. Then for an infinite matrix $A = (f_k^n)$, $A \in (F_r(X, p), E_s)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left(k^{-rq_{k}/p_{k}} ||f_{k}^{n}||^{q_{k}} n^{-sq_{k}} m_{0}^{-q_{k}} \right) < \infty.$$
 (3.22)

PROOF. Since $F_r(X, p) = \ell(X, p)_{\{k^r/p_k\}}$, it is easy to see that

$$A \in (F_r(X, p), E_s) \iff (k^{-r/p_k} f_k^n)_{n,k} \in (\ell(X, p) E_s). \tag{3.23}$$

By Theorem 3.2, we have $(k^{-r/p_k}f_k^n)_{n,k} \in (\ell(X,p)E_s)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left(k^{-rq_{k}/p_{k}} ||f_{k}^{n}||^{q_{k}} n^{-sq_{k}} m_{0}^{-q_{k}} \right) < \infty.$$
 (3.24)

Thus the theorem is proved.

Since $E_0 = \ell_{\infty}$, the following two results are obtained directly from Theorems 3.2 and 3.3, respectively.

COROLLARY 3.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), \ell_\infty)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} ||f_{k}^{n}||^{q_{k}} m_{0}^{-q_{k}} < \infty.$$
 (3.25)

COROLLARY 3.5. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A = (f_k^n)$, $A \in (F_r(X, p), \ell_\infty)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left(k^{-rq_{k}/p_{k}} ||f_{k}^{n}||^{q_{k}} m_{0}^{-q_{k}} \right) < \infty.$$
 (3.26)

THEOREM 3.6. Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/t_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A=(f_k^n)$, $A \in (\ell(X,p),\underline{\ell}_{\infty}(q))$ if and only if for each $r \in \mathbb{N}$, there is $m_r \in \mathbb{N}$ such that

$$\sup_{n,k} \sum_{k=1}^{\infty} r^{t_k/q_n} ||f_k^n||^{t_k} m_r^{-t_k} < \infty.$$
 (3.27)

PROOF. Since $\underline{\ell}_{\infty}(q) = \bigcap_{r=1}^{\infty} \ell_{\infty(r^{1/q}k)}$, it follows that

$$A \in \left(\ell(X, p), \underline{\ell}_{\infty}(q)\right) \Longleftrightarrow A \in \left(\ell(X, p), \ell_{\infty(r^{1/q_k})}\right), \quad \forall r \in \mathbb{N}. \tag{3.28}$$

It is easy to show that for $r \in \mathbb{N}$,

$$A \in \left(\ell(X,p), \ell_{\infty(r^{1/q_k})}\right) \Longleftrightarrow \left(r^{1/q_n} f_k^n\right)_{n,k} \in \left(\ell(X,p), \ell_{\infty}\right). \tag{3.29}$$

We obtain by Corollary 3.4 that for $r \in \mathbb{N}$, $(r^{1/q_n} f_k^n)_{n,k} \in (\ell(X,p),\ell_\infty)$ if and only if there is $m_r \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} r^{t_{k}/q_{n}} ||f_{k}^{n}||^{t_{k}} m_{r}^{-t_{k}} < \infty.$$
 (3.30)

Thus the theorem is proved.

THEOREM 3.7. Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/t_k = 1$ for all $k \in \mathbb{N}$. For an infinite matrix $A=(f_k^n)$, $A \in (F_r(X,p),\underline{\ell}_{\infty}(q))$ if and only if for each $i \in \mathbb{N}$, there is $m_i \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} i^{t_k/q_n} k^{-rt_k/p_k} ||f_k^n||^{t_k} m_i^{-t_k} < \infty.$$
 (3.31)

PROOF. Since $F_r(X, p) = \ell(X, p)_{(k^r/p_k)}$, it implies that

$$A \in (F_r(X, p), \underline{\ell}_{\infty}(q)) \iff (k^{-r/p_k} f_k^n)_{n,k} \in (\ell(X, p), \underline{\ell}_{\infty}(q)). \tag{3.32}$$

It follows from Theorem 3.6 that $A \in (F_r(X, p), \underline{\ell}_{\infty}(q))$ if and only if for each $i \in \mathbb{N}$, there is $m_i \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} i^{t_k/q_n} k^{-rt_k/p_k} ||f_k^n||^{t_k} m_i^{-t_k} < \infty.$$
 (3.33)

THEOREM 3.8. Let $p = (p_k)$ be bounded sequence of positive real numbers with $p_k > 1$ for all $n \in \mathbb{N}$ and let $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), bs)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left\| \sum_{i=1}^{n} f_{k}^{i} \right\|^{q_{k}} m_{0}^{-q_{k}} < \infty. \tag{3.34}$$

PROOF. For an infinite matrix $A = (f_k^n)$, we can easily show that

$$A \in (\ell(X, p), bs) \Longleftrightarrow \left(\sum_{i=1}^{n} f_{k}^{i}\right)_{n,k} \in (\ell(X, p), \ell_{\infty}). \tag{3.35}$$

This implies by Corollary 3.4 that $A \in (\ell(X, p), bs)$ if and only if there is $m_0 \in \mathbb{N}$ such that

$$\sup_{n} \sum_{k=1}^{\infty} \left\| \sum_{i=1}^{n} f_{k}^{i} \right\|^{q_{k}} m_{0}^{-q_{k}} < \infty. \tag{3.36}$$

THEOREM 3.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$ and let $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell(X, p), cs)$ if and only if

- (1) there is $m_0 \in \mathbb{N}$ such that $\sup_{n \geq k=1}^{\infty} \|\sum_{i=1}^{n} f_k^i\|^{q_k} m_0^{-q_k} < \infty$ and
- (2) for each $k \in \mathbb{N}$ and $x \in X$, $\sum_{n=1}^{\infty} f_k^n(x)$ converges.

PROOF. The necessity is obtained by Theorem 3.8 and by the fact that $e^{(k)}(x) \in \ell(X,p)$ for every $k \in \mathbb{N}$ and $x \in X$.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we have $A: \ell(X, p) \to bs$. Let $x = (x_k) \in \ell(X, p)$. Since $\ell(X, p)$ has the AK property, we have $x = \lim_{n \to \infty} \sum_{k=1}^n e^{(k)}(x_k)$. By Zeller's theorem, $A: \ell(X, p) \to bs$ is continuous. It implies that

$$Ax = \lim_{n \to \infty} \sum_{k=1}^{n} Ae^{(k)}(x_k). \tag{3.37}$$

By (2), $Ae^{(k)}(x_k) \in cs$ for all $k \in \mathbb{N}$. Since cs is a closed subspace of bs, it implies that $Ax \in cs$, that is, $A: \ell(X, p) \to cs$.

ACKNOWLEDGEMENT. The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

REFERENCES

- R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan, London, 1950. MR 12,694d. Zbl 040.02501.
- [2] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), no. 2, 298-307. MR 93d:46017. Zbl 777.46008.
- [3] ______, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), no. 1, 223-238. MR 95d:40017. Zbl 791.47029.
- [4] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355. MR 36#4195. Zbl 156.06602.
- [5] ______, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968), 335–340. MR 36#5565. Zbl 157.43503.
- [6] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.MR 13,954g. Zbl 044.11302.
- [7] S. Simons, The sequence spaces $l(p_v)$ and $m(p_v)$, Proc. London Math. Soc. (3) 15 (1965), 422-436. MR 31#600. Zbl 128.33805.
- [8] S. Suantai, On matrix transformations related to Nakano vector-valued sequence spaces, Bull. Calcutta Math. Soc. 91 (1999), no. 3, 221-226. MR 2000m:46041. Zbl 943.47025.
- [9] S. Suantai and C. Sudsukh, Matrix transformations of Nakano vector-valued sequence space, Kyungpook Math. J. 40 (2000), no. 1, 93-97. MR 2001g:46041. Zbl 992.06378.
- [10] C. X. Wu and L. Liu, Matrix transformations on some vector-valued sequence spaces, Southeast Asian Bull. Math. 17 (1993), no. 1, 83-96. MR 94e:46041. Zbl 794.40006.

Suther Suantai: Department of Mathematics, Faculty of Science, Chaing Mai University, Chiang Mai, 50200, Thailand

E-mail address: malsuthe@science.cmu.ac.th

ON β -DUAL OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX

SUTHEP SUANTAL and WINATE SANHAN

Received 13 April 2001 and in revised form 10 October 2001

The β -dual of a vector-valued sequence space is defined and studied. We show that if an X-valued sequence space E is a BK-space having AK property, then the dual space of E and its β -dual are isometrically isomorphic. We also give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X,p)$, $\ell_{\infty}(X,p)$, $c_{0}(X,p)$, and c(X,p).

2000 Mathematics Subject Classification: 46A45.

1. Introduction. Let $(X, \|\cdot\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let $\mathbb N$ be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in \mathbb N$. The X-valued sequence spaces of Maddox are defined as

$$c_{0}(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k}||^{p_{k}} = 0 \right\};$$

$$c(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k} - a||^{p_{k}} = 0 \text{ for some } a \in X \right\};$$

$$\ell_{\infty}(X,p) = \left\{ x = (x_{k}) : \sup_{k} ||x_{k}||^{p_{k}} < \infty \right\};$$

$$\ell(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} < \infty \right\}.$$
(1.1)

When $X=\mathbb{K}$, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_\infty(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$, and $\ell_\infty(p)$ and has given characterizations of β -dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_p[X]$, where $\ell_p[X]$, 1 , is defined by

$$\ell_p[X] = \left\{ x = (x_k) : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \text{ for each } f \in X' \right\}.$$
 (1.2)

In this paper, the β -dual of a vector-valued sequence space is defined and studied and we give characterizations of β -dual of vector-valued sequence spaces of Maddox

 $\ell(X,p)$, $\ell_{\infty}(X,p)$, $c_0(X,p)$, and c(X,p). Some results, obtained in this paper, are generalizations of some in [1, 3].

2. Notation and definitions. Let $(X, \|\cdot\|)$ be a Banach space. Let W(X) and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $X \in E$ and $K \in \mathbb{N}$ we write that K stand for the Kth term of K. For K is an equal of K in the K has position and let K be the sequence K be the sequence K in the sequence space K is defined as

$$E_{u} = \{x = (x_{k}) \in W(X) : (u_{k}x_{k}) \in E\}.$$
(2.1)

An X-valued sequence space E is said to be *normal* if $(y_k) \in E$ whenever $||y_k|| \le ||x_k||$ for all $k \in \mathbb{N}$ and $(x_k) \in E$. Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in \mathbb{N}$, the kth coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. In addition, if (E,τ) is a Fréchet (Banach) space, then E is called an FK-(BK)-space. Now, suppose that E contains $\Phi(X)$, then E is said to have property AK if $\sum_{k=1}^{n} e^{(k)}(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X,p)$, we consider the function $g(x) = \sup_k \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X,p)$, and it is known that $c_0(X,p)$ is an FK-space having property AK under the paranorm g defined as above. In $\ell(X,p)$, we consider it as a paranormed sequence space with the paranorm given by $\|(x_k)\| = (\sum_{k=1}^{\infty} \|x_k\|^{p_k})^{1/M}$. It is known that $\ell(X,p)$ is an FK-space under the paranorm defined as above.

For an *X*-valued sequence space E, define its Köthe dual with respect to the dual pair (X, X') (see [2]) as follows:

$$E^{\times}|_{(X,X')} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} |f_k(x_k)| < \infty \ \forall x = (x_k) \in E \right\}. \tag{2.2}$$

In this paper, we denote $E^*|_{(X,X')}$ by E^{α} and it is called the α -dual of E.

For a sequence space E, the β -dual of E is defined by

$$E^{\beta} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x_k) \text{ converges } \forall (x_k) \in E \right\}.$$
 (2.3)

It is easy to see that $E^{\alpha} \subseteq E^{\beta}$.

For the sake of completeness we introduce some further sequence spaces that will be considered as β -dual of the vector-valued sequence spaces of Maddox:

$$M_0(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k|| M^{-1/p_k} < \infty \text{ for some } M \in \mathbb{N} \right\};$$

$$M_{\infty}(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k|| n^{1/p_k} < \infty \ \forall n \in \mathbb{N} \right\};$$

$$\ell_0(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} M^{-p_k} < \infty \text{ for some } M \in \mathbb{N} \right\}, \quad p_k > 1 \ \forall k \in \mathbb{N};$$

$$cs[X'] = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges } \forall x \in X \right\}.$$
(2.4)

When $X = \mathbb{K}$, the scalar field of X, the corresponding first two sequence spaces are written as $M_0(p)$ and $M_{\infty}(p)$, respectively. These two spaces were first introduced by Grosse-Erdmann [1].

3. Main results. We begin by giving some general properties of β -dual of vectorvalued sequence spaces.

PROPOSITION 3.1. Let X be a Banach space and let E, E_1 , and E_2 be X-valued sequence spaces. Then

- (i) $E^{\alpha} \subseteq E^{\beta}$.
- (ii) If E₁ ⊆ E₂, then E₂^β ⊆ E₁^β.
 (iii) If E = E₁ + E₂, then E^β = E₁^β ∩ E₂^β.
- (iv) If E is normal, then $E^{\alpha} = E^{\beta}$.

PROOF. Assertions (i), (ii), and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that $E^{\beta} \subseteq E^{\alpha}$. Let $(f_k) \in E^{\beta}$ and $x = f(f_k)$ $(x_k) \in E$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges. Choose a scalar sequence (t_k) with $|t_k| = 1$ and $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since E is normal, $(t_k x_k) \in E$. It follows that $\sum_{k=1}^{\infty} |f_k(x_k)|$ converges, hence $(f_k) \in E^{\alpha}$.

If E is a BK-space, we define a norm on E^{β} by the formula

$$||(f_k)||_{E^{\beta}} = \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f_k(x_k) \right|.$$
 (3.1)

It is easy to show that $\|\cdot\|_{E^{\beta}}$ is a norm on E^{β} .

Next, we give a relationship between β -dual of a sequence space and its continuous dual. Indeed, we need a lemma.

LEMMA 3.2. Let E be an X-valued sequence space which is an FK-space containing $\Phi(X)$. Then for each $k \in \mathbb{N}$, the mapping $T_k: X \to E$, defined by $T_k x = e^k(x)$, is continuous.

PROOF. Let $V = \{e^k(x) : x \in X\}$. Then V is a closed subspace of E, so it is an FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping $p_k: V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, which implies that $p_k^{-1}: X \to V$ is continuous. But since $T_k = p_k^{-1}$, we thus obtain that T_k is continuous.

THEOREM 3.3. If E is a BK-space having property AK, then E^{β} and E' are isometrically isomorphic.

PROOF. We first show that for $x = (x_k) \in E$ and $f \in E'$,

$$f(x) = \sum_{k=1}^{\infty} f(e^{k}(x_{k})).$$
 (3.2)

To show this, let $x = (x_k) \in E$ and $f \in E'$. Since E has property AK,

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{(k)}(x_k). \tag{3.3}$$

By the continuity of f, it follows that

$$f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} f(e^{(k)}(x_k)) = \sum_{k=1}^{\infty} f(e^{(k)}(x_k)), \qquad (3.4)$$

so (3.2) is obtained. For each $k \in \mathbb{N}$, let $T_k : X \to E$ be defined as in Lemma 3.2. Since E is a BK-space, by Lemma 3.2, T_k is continuous. Hence $f \circ T_k \in X'$ for all $k \in \mathbb{N}$. It follows from (3.2) that

$$f(x) = \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \quad \forall x = (x_k) \in E.$$
 (3.5)

It implies, by (3.5), that $(f \circ T_k)_{k=1}^{\infty} \in E^{\beta}$. Define $\varphi : E' \to E^{\beta}$ by

$$\varphi(f) = (f \circ T_k)_{k=1}^{\infty} \quad \forall f \in E'. \tag{3.6}$$

It is easy to see that φ is linear. Now, we show that φ is onto. Let $(f_k) \in E^{\beta}$. Define $f: E \to K$, where K is the scalar field of X, by

$$f(x) = \sum_{k=1}^{\infty} f_k(x_k) \quad \forall x = (x_k) \in E.$$
 (3.7)

For each $k \in \mathbb{N}$, let p_k be the kth coordinate mapping on E. Then we have

$$f(x) = \sum_{k=1}^{\infty} (f_k \circ p_k)(x) = \lim_{n \to \infty} \sum_{k=1}^{n} (f \circ p_k)(x).$$
 (3.8)

Since f_k and p_k are continuous linear, so is also continuous $f \circ p_k$. It follows by Banach-Steinhaus theorem that $f \in E'$ and we have by (3.7) that; for each $k \in \mathbb{N}$ and each $z \in X$, $(f \circ T_k)(z) = f(e^{(k)}(z)) = f_k(z)$. Thus $f \circ T_k = f_k$ for all $k \in \mathbb{N}$, which implies that $\varphi(f) = (f_k)$, hence φ is onto.

Finally, we show that φ is linear isometry. For $f \in E'$, we have

$$||f|| = \sup_{\|(x_k)\| \le 1} |f((x_k))|$$

$$= \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f(e^{(k)}(x_k)) \right| \quad \text{(by (3.2))}$$

$$= \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \right|$$

$$= ||(f \circ T_k)_{k=1}^{\infty}||_{E^{\beta}}$$

$$= ||\varphi(f)||_{E^{\beta}}.$$
(3.9)

Hence φ is isometry. Therefore, $\varphi: E' \to E^{\beta}$ is an isometrically isomorphism from E' onto E^{β} . This completes the proof.

We next give characterizations of β -dual of the sequence space $\ell(X, p)$ when $p_k > 1$ for all $k \in \mathbb{N}$.

THEOREM 3.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^{\beta} = \ell_0(X', q)$, where $q = (q_k)$ is a sequence of positive real numbers such that $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$.

PROOF. Suppose that $(f_k) \in \ell_0(X',q)$. Then $\sum_{k=1}^{\infty} \|f_k\|^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. Then for each $x = (x_k) \in \ell(X,p)$, we have

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{\infty} ||f_{k}|| M^{-1/p_{k}} M^{1/p_{k}} ||x_{k}||$$

$$\leq \sum_{k=1}^{\infty} (||f_{k}||^{q_{k}} M^{-q_{k}/p_{k}} + M||x_{k}||^{p_{k}})$$

$$= \sum_{k=1}^{\infty} ||f_{k}||^{q_{k}} M^{-(q_{k}-1)} + M \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}}$$

$$= M \sum_{k=1}^{\infty} ||f_{k}||^{q_{k}} M^{-q_{k}} + M \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}}$$

$$\leq \infty.$$
(3.10)

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in \ell(X,p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X,p)$. For each $x = (x_k) \in \ell(X,p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_k x_k) \in \ell(X,p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x \in \ell(X, p).$$
 (3.11)

We want to show that $(f_k) \in \ell_0(X',q)$, that is, $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{q_k} m^{-q_k} = \infty \quad \forall m \in \mathbb{N}.$$
(3.12)

It implies by (3.12) that for each $k \in \mathbb{N}$,

$$\sum_{i>k} ||f_i||^{q_i} m^{-q_i} = \infty \quad \forall m \in \mathbb{N}.$$
(3.13)

By (3.12), let $m_1 = 1$, then there is a $k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} ||f_k||^{q_k} m_1^{-q_k} > 1. \tag{3.14}$$

By (3.13), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{q_k} m_2^{-q_k} > 1. \tag{3.15}$$

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < \cdots$ and $m_1 < m_2 < \cdots$, such that $m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{q_k} m_i^{-q_k} > 1.$$
 (3.16)

For each $i \in \mathbb{N}$, choose x_k in X with $||x_k|| = 1$ for all $k \in \mathbb{N}$, $k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-q_k} > 1 \quad \forall i \in \mathbb{N}.$$
 (3.17)

Let $a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-q_k}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k-1} x_k$ for all $k \in \mathbb{N}$ with $k_{i-1} < k \le k_i$. By using the fact that $p_k q_k = p_k + q_k$ and $p_k (q_k - 1) = q_k$ for all $k \in \mathbb{N}$, we have that for each $i \in \mathbb{N}$,

$$\sum_{k_{i-1} < k \le k_i} ||y_k||^{p_k} = \sum_{k_{i-1} < k \le k_i} ||a_i^{-1} m_i^{-q_k}| f_k(x_k)|^{q_k - 1} x_k||^{p_k}$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-p_k q_k} |f_k(x_k)|^{q_k}$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-p_k} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$\leq a_i^{-1} m_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$\leq a_i^{-1} m_i^{-1} a_i$$

$$= m_i^{-1}$$

$$< \frac{1}{2i},$$

$$(3.18)$$

so we have that $\sum_{k=1}^{\infty} \|y_k\|^{p_k} \le \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in \mathbb{N}$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} |f_k(a_i^{-1} m_i^{-a_k} |f_k(x_k)|^{a_k - 1} x_k)|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-a_k} |f_k(x_k)|^{a_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-a_k} |f_k(x_k)|^{a_k}$$

$$= 1.$$
(3.19)

so that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.11). Hence $(f_k) \in \ell_0(X', q)$. The proof is now complete.

The following theorem gives a characterization of β -dual of $\ell(X,p)$ when $p_k \le 1$ for all $k \in \mathbb{N}$. To do this, the following lemma is needed.

LEMMA 3.5. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$.

PROOF. Let $x \in \ell_{\infty}(X, p)$, then there is some $n \in \mathbb{N}$ with $\|x_k\|^{p_k} \le n$ for all $k \in \mathbb{N}$. Hence $\|x_k\| n^{-1/p_k} \le 1$ for all $k \in \mathbb{N}$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in \mathbb{N}$ and M > 1 such that $\|x_k\| n^{-1/p_k} \le M$ for every $k \in \mathbb{N}$. Then we have $\|x_k\|^{p_k} \le nM^{p_k} \le nM^{p_k}$ for all $k \in \mathbb{N}$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

THEOREM 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \le 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^{\beta} = \ell_{\infty}(X', p)$.

PROOF. If $(f_k) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell(X, p).$$
 (3.20)

If $(f_k) \notin \ell_{\infty}(X',p)$, it follows by Lemma 3.5 that $\sup_k \|f_k\| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. For each $i \in \mathbb{N}$, choose sequences (m_i) and (k_i) of positive integers with $m_1 < m_2 < \cdots$ and $k_1 < k_2 < \cdots$ such that $m_i > 2^i$ and $\|f_{k_i}\| m_i^{-1/p_{k_i}} > 1$. Choose $x_{k_i} \in X$ with $\|x_{k_i}\| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1.$$
 (3.21)

Let $y = (y_k)$, $y_k = m_i^{-1/p_{k_i}} x_{k_i}$ if $k = k_i$ for some i, and 0 otherwise. Then $\sum_{k=1}^{\infty} \|y_k\|^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1$, so that $(y_k) \in \ell(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i})|$$

$$= \sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})|$$

$$= \infty \quad \text{(by (3.21)),}$$
(3.22)

and this is contradictory to (3.20), hence $(f_k) \in \ell_{\infty}(X', p)$.

Conversely, assume that $(f_k) \in \ell_\infty(X', p)$. By Lemma 3.5, there exists $M \in \mathbb{N}$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$, so there is a K > 0 such that

$$||f_k|| \le KM^{1/p_k} \quad \forall k \in \mathbb{N}. \tag{3.23}$$

Let $x = (x_k) \in \ell(X, p)$. Then there is a $k_0 \in \mathbb{N}$ such that $M^{1/p_k} ||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in \mathbb{N}$, we have that, for all $k \ge k_0$,

$$M^{1/p_k}||x_k|| \le (M^{1/p_k}||x_k||)^{p_k} = M||x_k||^{p_k}. \tag{3.24}$$

Then

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} ||f_{k}|| ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + K \sum_{k=k_{0}+1}^{\infty} M^{1/p_{k}} ||x_{k}|| \quad \text{(by (3.23))}$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + KM \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}} \quad \text{(by (3.24))}$$

$$\leq \infty.$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, hence $(f_k) \in \ell(X, p)^{\beta}$.

THEOREM 3.7. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p)^{\beta} = M_{\infty}(X',p)$.

PROOF. If $(f_k) \in M_{\infty}(X',p)$, then $\sum_{k=1}^{\infty} \|f_k\| m^{1/p_k} < \infty$ for all $m \in \mathbb{N}$, we have that for each $x = (x_k) \in \ell_{\infty}(X,p)$, there is $m_0 \in \mathbb{N}$ such that $\|x_k\| \le m_0^{1/p_k}$ for all $k \in \mathbb{N}$, hence $\sum_{k=1}^{\infty} \|f_k(x_k)\| \le \sum_{k=1}^{\infty} \|f_k\| \|x_k\| \le \sum_{k=1}^{\infty} \|f_k\| m_0^{1/p_k} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in \ell_{\infty}(X,p)^{\beta}$.

Conversely, assume that $(f_k) \in \ell_\infty(X, p)^\beta$, then $\sum_{k=1}^\infty f_k(x_k)$ converges for all $x = (x_k) \in \ell_\infty(X, p)$, by using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell_{\infty}(X, p).$$
 (3.26)

If $(f_k) \notin M_\infty(X', p)$, then $\sum_{k=1}^\infty ||f_k|| M^{1/p_k} = \infty$ for some $M \in \mathbb{N}$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < \cdots$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| M^{1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.27)

And we choose x_k in X with $||x_k|| = 1$ such that for all $i \in \mathbb{N}$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| M^{1/p_k} > i.$$
(3.28)

Put $y = (y_k)$, $y_k = M^{1/p_k} x_k$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} \le k \le k_i}^{\infty} |f_k(x_k)| M^{1/p_k} > i \quad \forall i \in \mathbb{N}.$$
 (3.29)

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.26). Hence $(f_k) \in M_{\infty}(X', p)$. The proof is now complete.

THEOREM 3.8. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c_0(X, p)^{\beta} = M_0(X', p)$.

PROOF. Suppose $(f_k) \in M_0(X', p)$, then $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in \mathbb{N}$. Let $x = (x_k) \in c_0(X, p)$. Then there is a positive integer K_0 such that $\|x_k\|^{p_k} < 1/M$ for all $k \ge K_0$, hence $\|x_k\| < M^{-1/p_k}$ for all $k \ge K_0$. Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \le \sum_{k=K_0}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=K_0}^{\infty} ||f_k|| M^{-1/p_k} < \infty.$$
 (3.30)

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in c_0(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in c_0(X,p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X,p)$. For each $x = (x_k) \in c_0(X,p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_kx_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_kx_k) \in c_0(X,p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_kx_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x \in c_0(X, p).$$
 (3.31)

Now, suppose that $(f_k) \notin M_0(X',p)$. Then $\sum_{k=1}^{\infty} ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. Choose $m_1, k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} ||f_k|| m_1^{-1/p_k} > 1 \tag{3.32}$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} ||f_k|| m_2^{-1/p_k} > 2. \tag{3.33}$$

Proceeding in this way, we can choose $m_1 < m_2 < \cdots$, and $0 = k_1 < k_2 < \cdots$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| m_i^{-1/p_k} > i. \tag{3.34}$$

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| \, m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.$$
 (3.35)

Put $y = (y_k)^p$, $y_k = m_i^{-1/p_k} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| \, m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.$$
 (3.36)

Hence we have $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.31), therefore $(f_k) \in M_0(X', p)$. This completes the proof.

THEOREM 3.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c(X, p)^{\beta} = M_0(X', p) \cap cs[X']$.

PROOF. Since $c(X,p)=c_0(X,p)+E$, where $E=\{e(x):x\in X\}$, it follows by Proposition 3.1(iii) and Theorem 3.8 that $c(X,p)^\beta=M_0(X',p)\cap E^\beta$. It is obvious by definition that $E^\beta=\{(f_k)\subset X':\sum_{k=1}^\infty f_k(x) \text{ converges for all } x\in X\}=cs[X']$. Hence we have the theorem.

ACKNOWLEDGMENT. The author would like to thank the Thailand Research Fund for the financial support.

REFERENCES

- K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), no. 2, 298-302.
- [2] M. Gupta, P. K. Kamthan, and J. Patterson, Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), no. 1, 152-168.
- [3] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [4] ______, Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. 64 (1968), 335–340.
- [5] _____, Elements of Functional Analysis, Cambridge University Press, London, 1970.
- [6] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
- [7] S. Simons, The sequence spaces $l(p_v)$ and $m(p_v)$, Proc. London Math. Soc. (3) 15 (1965), 422-436.
- [8] C. X. Wu and Q. Y. Bu, Köthe dual of Banach sequence spaces $l_p[X]$ ($1 \le p < \infty$) and Grothendieck space, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 265-273.

SUTHEP SUANTAI: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY, CHIANG MAI 50200, THAILAND

E-mail address: malsuthe@science.cmu.ac.th

Winate Sanhan: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

© Springer-Verlag 2000

Matrix Transformations Between Some Vector-Valued Sequence Spaces

Suthep Suantai

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail: scmti005@chiangmai.ac.th; malsuthe@science.cmu.ac.th

AMS Subject Classification (2000): 46A45

Abstract. In this paper, we give necessary and sufficient conditions for infinite matrices mapping from the Nakano vector-valued sequence space $\ell(X, p)$ into any BK-space, and by using this result, we obtain the matrix characterizations from $\ell(X, p)$ into the sequence spaces $\ell_{\infty}(Y)$, $c_0(Y, q)$, c(Y), $\ell_s(Y)$, $\ell_s(Y)$, and $\ell_s(Y)$, where $\ell_s(Y)$ and $\ell_s(Y)$ are bounded sequences of positive real numbers such that $\ell_s(Y)$ and $\ell_s(Y)$ are bounded sequences of positive real numbers such that $\ell_s(Y)$ and $\ell_s(Y)$ are bounded sequences of positive real numbers such that $\ell_s(Y)$ and $\ell_s(Y)$ and

Keywords: matrix transformations, vector-valued sequences spaces

1. Introduction

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p)$, c(X, p), $\ell_{\infty}(X, p)$, $\ell(X, p)$, $\ell(X, p)$, $\ell(X, p)$, and $\ell(X, p)$ are defined as

- (a) $c_0(X, p) = \{x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0\};$
- (b) $c(X, p) = \{x = (x_k) : \lim_{k \to \infty} ||x_k a||^{p_k} = 0 \text{ for some } a \in X\};$
- (c) $\ell_{\infty}(X, p) = \{x = (x_k) : \sup_k ||x_k||^{p_k} < \infty\};$
- (d) $\ell(X, p) = \{x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty\};$
- (e) $E_r(X, p) = \{x = (x_k) : \sup_k ||x_k||^{p_k}/n^r < \infty\};$
- (f) $F_r(X, p) = \{x = (x_k) : \sum_{k=1}^{\infty} k^r ||x_k||^{p_k} < \infty \}.$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, $E_r(p)$, and $F_r(p)$, respectively and the first three spaces are known as the sequence spaces of Maddox. These spaces were first introduced and studied by Simons [8] and Maddox [4–6]. The space $\ell(p)$ was first introduced by Nakano [7]. When $p_k = 1$, for all $k \in N$, the space $E_r(p)$ and $F_r(p)$ are written as E_r and F_r , respectively. These two spaces were first defined by Cooke [1]. The structure of sequence spaces $c_0(p)$, c(p), and $\ell_{\infty}(p)$ have been investigated by Grosse-Erdmann [2] and he has given in [3] characterizations of matrix transformations between the scalar-valued sequence

298 S. Suantai

spaces of Maddox. Wu and Liu [9] deal with the problem of characterizations of infinite matrices mapping from $c_0(X, p)$ and $\ell_{\infty}(X, p)$ into $c_0(q)$ and $\ell_{\infty}(q)$.

2. Notation and Definitions

Let $(X, \|.\|)$ and $(Y, \|.\|)$ be Banach spaces, and the space of all continuous linear operators from X into Y is denoted by $\mathcal{L}(X, Y)$. Let W(X) and $\Phi(X)$ denote for the space of all sequences in X and the space of all finite sequences in X. When X = K, the scalar filed of X, the corresponding spaces are written as X and X and X are spectively.

A sequence spaces in X is a linear subspace of W(X). Let E be any X-valued sequence space. For $x \in E$ and $k \in N$, we write that x_k stands for the kth term of x. For $x \in X$ and $k \in N$, let $e^k(x)$ be the sequence (0, 0, ..., 0, x, 0, ...) with x in the kth position and let e(x) be the sequence (x, x, x, ...). For a fixed scalar sequence $\mu = (\mu_k)$, the sequence space E_{μ} is defined as

$$E_{\mu} = \{x \in W(X) : (\mu_k x_k) \in E\}.$$

Let $A = (T_k^n)$ with T_k^n in $\mathcal{L}(X,Y)$. Suppose E is an X-valued sequence space and F a Y-valued sequence space. Then A is said to $map\ E$ into F, written by $A:E\to F$ if, for each $x=(x_k)\in E$, $A_n(x)=\sum_{k=1}^\infty T_k^n(x_k)$ converges for each $n\in N$, and the sequence $Ax=(A_n(x))\in F$. Let (E,F) denote the set of all infinite matrices mapping from E into F. If $u=(u_k)$ and $v=(v_k)$ are scalar sequences, let

$$u(E, F)_v = \{A = (T_k^n) : (u_n v_k T_k^n)_{n,k} \in (E, F)\}$$

If $u_k \neq 0$ for all $k \in N$, we write $u^{-1} = (1/u_k)$.

Suppose the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in N$, the kth coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. In addition, if (E, τ) is a Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that E contains $\phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

The space $\ell(p)$ is an FK-space with AK under the paranorm $g(x) = (\sum_{k=1}^{\infty} |x_k|^{p_k})^{1/M}$, where $M = \max\{1, \sup_k p_k\}$ (see [6]). The space $c_0(p)$ is an FK-space with AK, c(p) is an FK-space, and $\ell_{\infty}(p)$ is a complete LBK-space with AB (see [2, 6]). It is known that the space $\ell(X, p)$ is an FK-space with AK under the paranorm $g(x) = (\sum_{k=1}^{\infty} ||x_k||_k^p)^{1/M}$, where $M = \max\{1, \sup_k p_k\}$. In each of the space $\ell_{\infty}(X, p)$ and $c_0(X, p)$, we consider the function $g(x) = \sup_k ||x_k||^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$. It is known that $c_0(X, p)$ is an FK-space with AK under the paranorm g defined as above and $\ell_{\infty}(X, p)$ is a complete LBK-space with AB.

3. Some Auxiliary Results

In this section we give some useful results that can be used to reduce our problems into some simpler forms.

299 Matrix Transformations

Proposition 3.1. Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ Y-valued sequence spaces, and let u and v be sequences of real numbers with $u_k \neq 0$, $v_k \neq 0$ for all $k \in N$. Then we have

- (i) $(\bigcup_{n=1}^{\infty} E_n, F) = \bigcap_{n=1}^{\infty} (E_n, F);$ (ii) $(E, \bigcap_{n=1}^{\infty} F_n) = \bigcap_{n=1}^{\infty} (E, F_n);$
- (iii) $(E_u, F_v) = v(E, F)_{u^{-1}}$.

Proof. Assertion (i)–(iii) are immediately obtained directly by the definitions.

Proposition 3.2. Let $p = (p_k)$ be a bounded sequence of positive real numbers and $r \geq 0$. Then

- (i) $F_r(X, p) = \ell(X, p)_{(n^r)}$;
- (ii) $c_0(X, p) = \bigcap_{n=1}^{\infty} c_0(X)_{(n^{1/p_k})}$

Proof. Assertion (i) is obviously obtained by the definition.

To show (ii), let $x \in c_0(X, p)$. Then $||x_k||^{p_k} \to 0$ as $k \to \infty$. For each $n \in N$, let $\delta_k = \|x_k\|^{p_k} n$ for all $k \in N$. We have that $\delta_k \to 0$ as $k \to \infty$; hence, $||x_k|| n^{1/p_k} = \delta_k^{1/p_k} \to 0$ as $k \to \infty$ (because $p \in \ell_\infty$), so we have $x \in c_0(X)_{(n^{1/p_k})}$. Conversely, assume $x \in \bigcap_{n=1}^{\infty} c_0(X)_{(n^{1/p_k})}$. Then, $\lim_{k\to\infty} \|x_k\| n^{1/p_k} = 0$ for every $n \in \mathbb{N}$. Then, for $n \in \mathbb{N}$, we have $||x_k||^{p_k} \le 1/n$ for large k, hence, $x \in c_0(X, p)$.

4. Main Results

We begin by giving the matrix characterizations mapping from $\ell(X, p)$ into a BK-space, where $p_k \leq 1$ for all $k \in N$.

Theorem 4.1. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k < 1$ for all $k \in N$ and let E be a Y-valued sequence space which is a BK-space. Then for an infinite matrix $A = (T_k^n)$, $A \in (\ell(X, p), E)$ if and only if

- (1) for each $k \in N$, $(T_k^n(x))_{n=1}^{\infty} \in E$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \|A(m_0^{-1/p_k} e^k(x))\| \le 1.$$

Proof. Suppose $A \in (\ell(X, p), E)$. Since $e^k(x) \in \ell(X, p)$ for all $x \in X$ and all $k \in N$, we have $Ae^k(x) \in E$, so (1) is obtained. Now, we shall show that condition (2) is satisfied. By Zeller's theorem, we have that $A: \ell(X, p) \to E$ is continuous. Then there exists $m_0 \in N$ such that

$$x = (x_k) \in \ell(X, p), \quad ||x|| \le \frac{1}{m_0} \implies ||Ax|| \le 1.$$
 (4.1)

Let $x \in X$ with $||x|| \le 1$ and $k \in N$. We have $m_0^{-1/p_k}e^k(x) \in \ell(X, p)$ and $||m_0^{-1/p_k}e^k(x)|| \le 1/m_0$. By (4.1), we have $||A(m_0^{-1/p_k}e^k(x))|| \le 1$. This implies that

$$\sup_{k} \sup_{\|x\| \le 1} \|A(m_0^{-1/p_k} e^k(x))\| \le 1.$$

300 S. Suantai

Hence, (2) holds.

Conversely, assume that conditions (1) and (2) hold. By (2), there is $m_0 \in N$ such that

$$\sup_{k} \|A(m_0^{-1/p_k} e^k(x))\| \le 1 \tag{4.2}$$

for all $x \in X$ with $||x|| \le 1$.

This implies by (4.2) that

$$\sup_{k} \|A(m_0^{-1/p_k} e^k(x))\| \le \|x\| \tag{4.3}$$

for all $x \in X$.

Let $x = (x_k) \in \ell(X, p)$. For each $k \in N$, by (4.3), we have that

$$||Ae^{k}(x_{k})|| = ||A(m_{0}^{1/p_{k}}(m_{0}^{-1/p_{k}}e^{k}(x_{k})))||$$

$$= m_{0}^{1/p_{k}}||A(m_{0}^{-1/p_{k}}e^{k}(x_{k}))||$$

$$\leq m_{0}^{1/p_{k}}||x_{k}||.$$
(4.4)

Since $(m_0^{1/p_k} x_k) \in \ell(X, p)$, so $(m_0^{1/p_k} x_k) \in c_0(X, p) \subseteq c_0(X)$. Hence, there is a $k_0 \in N$ such that $m_0^{1/p_k} ||x_k|| < 1$ for all $k > k_0$. Since $0 < p_k \le 1$ for all $k \in N$, we have

$$m_0^{1/p_k} \|x_k\| \le \left(m_0^{1/p_k} \|x_k\| \right)^{p_k} = m_0 \|x_k\|^{p_k} \tag{4.5}$$

for all $k > k_0$.

It follows by (4.4) and (4.5) that

$$\sum_{k=1}^{\infty} ||Ae^{k}(x_{k})|| \leq \sum_{k=1}^{\infty} m_{0}^{1/p_{k}} ||x_{k}||$$

$$= \sum_{k=1}^{k_{0}} m_{0}^{1/p_{k}} ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} m_{0}^{1/p_{k}} ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{0}} m_{0}^{1/p_{k}} ||x_{k}|| + m_{0} \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}}$$

$$\leq \infty$$

Hence, $\sum_{k=1}^{\infty} Ae^k(x_k)$ converges absolutely in E. Since E is Banach, $\sum_{k=1}^{\infty} Ae^k(x_k)$ converges in E. Let $y=(y_k)\in E$ be the sum of $\sum_{k=1}^{\infty} Ae^k(x_k)$. Since E is a K-space, we have that, for each $m\in N$, p_m is continuous, so that

$$y_m = p_m(y) = \lim_{n \to \infty} \sum_{k=1}^n p_m(Ae^k(x_k)) = \lim_{n \to \infty} \sum_{k=1}^n T_k^m(x_k).$$

This implies that Ax exists and $(Ax)_m = \sum_{k=1}^{\infty} T_k^n(x_k) = y_m$, hence, $Ax \in E$. This completes the proof.

When $p_k = 1$ for all $k \in N$, the following results are obtained directly from Theorem 4.1.

Matrix Transformations 301

Theorem 4.2. Let E be a Y-valued sequence space which is a BK-space and $A = (T_k^n)$ an infinite matrix. Then $A \in (\ell(X), E)$ if and only if

(1) for each $k \in N$, $(T_k^n(x))_{n=1}^{\infty} \in E$ for all $x \in X$ and

(2)
$$\sup_{k} \sup_{\|x\| \le 1} \|Ae^{k}(x)\| < \infty.$$

Theorem 4.3. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), \ell_{\infty}(Y))$ if and only if

- (1) for each $k \in N$, $\sup_n ||T_k^n|| < \infty$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{n,k} m_0^{-1/p_k} ||T_k^n|| \le 1.$$

Proof. By Theorem 4.1, to prove this theorem we only show that conditions (1) and (2) are equivalent to conditions (1') and (2'), respectively, where

- (1') for each $k \in N$, $Ae^k(x) \in \ell_{\infty}(Y)$ for all $x \in X$ and
- (2') there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \|A(m_0^{-1/p_k} e^k(x))\| \le 1.$$

Conditions (1) and (1') are equivalent by the uniform bounded principle.

If (2) holds, for $k, n \in N$ and $x \in X$ with $||x|| \le 1$, we have $m_0^{-1/p_k} ||T_k^n x|| \le m_0^{-1/p_k} ||T_k^n|| ||x|| \le m_0^{-1/p_k} ||T_k^n|| \le 1$, which implies

$$\sup_{k} \sup_{\|x\| \le 1} \|A(m_0^{-1/p_k} e^k(x))\| = \sup_{k} \sup_{\|x\| \le 1} \sup_{n} m_0^{-1/p_k} \|T_k^n x\| \le 1.$$

so (2') is obtained.

Now, suppose that (2') holds. Then there exists $m_0 \in N$ such that

$$\sup_{n} m_0^{-1/p_k} \|T_k^n x\| = \|A(m_0^{-1/p_k} e^k(x))\| \le 1$$
 (4.6)

for all $k \in N$ and all $x \in N$ with $||x|| \le 1$.

It follows by (4.6) that, for each $n, k \in \mathbb{N}$, $m_0^{-1/p_k} ||T_k^n|| \le 1$, so (2) is obtained. \square

By using the same proof as in Theorem 4.3, we obtain

Theorem 4.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \le 1$ for all $k \in N$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), c_0(Y))$ if and only if

- (1) for each $k \in N$, $T_k^n(x) \to 0$ as $n \to \infty$ for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{n,k} m_0^{-1/p_k} ||T_k^n|| \le 1.$$

302 S. Suantai

Theorem 4.5. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k \leq 1$ for all $k \in N$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), c_0(Y, q))$ if and only if

- (1) for each $k \in N$ and $m \in N$, $m^{1/p_n}T_k^n(x) \to 0$ as $n \to \infty$ for all $x \in X$ and
- (2) for each $m \in N$, there exists $r_m \in N$ such that

$$\sup_{n,k} r_m^{-1/p_k} m^{1/p_n} ||T_k^n|| \le 1.$$

Proof. By Proposition 3.1(ii) and 3.2(ii), we have

$$A \in (\ell(X, p), c_0(Y, q)) \iff A \in (\ell(X, p), c_0(Y)_{(m^{1/q_k})}) \text{ for all } m \in N.$$

It follows by Proposition 3.1(iii) that, for each $m \in N$,

$$A \in (\ell(X, p), c_0(Y)_{(m^{1/q_k})}) \iff (m^{1/q_n} T_k^n)_{n,k} \in (\ell(X, p), c_0(Y)).$$

By Theorem 4.4, we obtain that

$$(m^{1/q_n}T_k^n)_{n,k} \in (\ell(X, p), c_0(Y)) \iff (1) \text{ and } (2) \text{ are satisfied.}$$

By applying Theorem 4.1, and using the same proof as in Theorem 4.3, we obtain

Theorem 4.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), c(Y))$ if and only if

- (1) for each $k \in N$, $\lim_{n\to\infty} T_k^n(x)$ exists for all $x \in X$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{n,k} m_0^{-1/p_k} ||T_k^n|| \le 1.$$

By applying Theorem 4.1, we also have the following result.

Theorem 4.7. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$, $s \geq 1$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), \ell_s(Y))$ if and only if

- (1) for each $k \in N$, $(T_k^n(x))_{n=1}^{\infty} \in \ell_s(Y)$ for all $x \in X$ and (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} m_0^{s/p_k} \|T_k^n x\|^s \le 1.$$

Since $E_r(Y) = \ell_{\infty}(Y)_{(k-r)}$, the following result is obtained by Proposition 3.1(iii) and Theorem 4.3.

Matrix Transformations 303

Theorem 4.8. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$, $r \geq 0$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), E_r(Y))$ if and only if

- (1) for each $k \in N$, $\sup_{n} ||n^{-r}T_k^n|| < \infty$ and
- (2) there exists $m_0 \in N$ such that

$$\sup_{n,k} m_0^{-1/p_k} n^{-r} ||T_k^n|| \le 1.$$

Since $F_r(Y) = \ell(Y)_{(k')}$, by applying Proposition 3.1(iii) and Theorem 4.1, we obtain

Theorem 4.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$, $r \geq 0$ and let $A = (T_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), F_r(Y))$ if and only if

- (1) for each $k \in N$, $(n^r T_k^n(x))_{n=1}^{\infty} \in \ell(Y)$ for all $x \in X$ and (2) there exists $m_0 \in N$ such that

$$\sup_{k} \sup_{\|x\| \le 1} \sum_{n=1}^{\infty} m_0^{-1/p_k} n^r \|T_k^n x\| \le 1.$$

Acknowledgement. The author would like to thank the Thailand Research Fund for their financial support during the preparation of this paper.

References

- 1. Cooke, R.G.: Infinite Matrices and Sequence Spaces, Macmillan, London 1950.
- 2. Grosse-Erdmann, K.-G.: The structure of the sequence spaces of Maddox, Canad. J. Math. 44, 298-307 (1992).
- 3. Grosse-Erdmann, K.-G.: Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180, 223-238 (1993).
- Maddox, I.J.: Spaces of strongly summable sequences, Quart. J. Math. Oxford (2) 18, 345–355 (1967).
- 5. Maddox, I.J.: Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64, 335-340 (1968).
- 6. Maddox, I.J.: Elements of Functional Analysis, Cambridge University Press, Cambridge, London, New York, Melbourne, 1970.
- 7. Nakano, H.: Modulared sequence spaces, Proc. Japan Acad. 27, 508-512 (1951).
- 8. Simons, S.: The spaces $\ell(p_n)$ and $m(p_n)$, Proc. London. Math. Soc. 15, 422-436 (1965).
- 9. Wu, C.X., Liu, L.: Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math. 17(1), 83-96 (1993).

भारतीय राष्ट्रीय विज्ञान अकादमी INDIAN NATIONAL SCIENCE ACADEMY

Bahadur Shah Zafar Marg, New Delhi - 110 002
Tel.: (91-11) 3221931 upto 1950 (20 Lines) Fax: 3235648 & 3231095
E-mail: insa@giasdl01.vsnl.net.in; insa@delnet.ren.nic.in; insa1@ndf.vsnl.net.in

Prof. O.P. Bhulani Edilor ~<\

No. PB/12944 JM

Dated:

2 7 SEP 333

Dr. Suthep Suantai
Department of Mathematics
Faculty of Science
Chiang Mai University
Chiang Mai 50200
Thailand

Subject: Paper entitled Matrix Transformations of Some Vector-Valued Sequence Spaces

Dear Dr. Suantai,

I am pleased to inform you that the above paper has been accepted for publication in the INDIAN JOURNAL OF PURE AND APPLIED MATHEMATICS.

Your paper is scheduled to appear in______

Yours sincerely

(OYP. Bhūlani)

MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED SEQUENCE SPACES

Suthep Suantai

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: scmti005@chiangmai.ac.th, suantai@yahoo.com

Necessary and sufficient conditions are established for an infinite matrix $A = (f_n^k)$ of continuous linear functionals on a Banach space X to transform the vector-valued sequence spaces of Maddox $\ell_{\infty}(X,p)$, $\ell(X,p)$, $c_0(X,p)$, and c(X,p) into the scalar-valued sequence space c(q), where $p = (p_k)$ and $q = (q_k)$ are bounded sequences of positive real numbers.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces

AMS Mathematics Subject Classification (2000): 46A45.

1. Introduction

The study of matrix transformations of scalar-valued sequence spaces is known since the turn of the century. In seventies, Maddox¹², Gupta⁴ studied matrix transformations of continuous linear mappings on vector-valued sequence spaces. Das and Choudhury¹ gave conditions on the matrix $A = (f_k^n)$ of continuous linear mappings from a normed linear space X into a normed linear space Y under which A maps $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_\infty(Y)$, and $\ell_1(X)$ into $\ell_p(Y)$. Liu and Wu²² gave the matrix characterizations from vector-valued sequence spaces $c_0(X,p)$, $\ell(X,p)$, and $\ell_\infty(X,p)$ into scalar-valued sequence spaces $c_0(q)$ and $\ell_\infty(q)$. Suantai²⁰ gave the matrix characterizations from the Nakano vector-valued sequence space $\ell(X,p)$ into the vector-valued sequence spaces $c_0(Y,q)$, c(Y), and $\ell_r(Y)$. In this paper, we continue the study of matrix transformations of continuous linear mappings on vector-valued sequence spaces.

The main purpose of this paper is to give the matrix characterizations from $c_0(X,p)$, c(X,p), c(X,p), $\ell_{\infty}(X,p)$, and $\ell(X,p)$ into c(q), where $c_0(X,p)$, c(X,p), $\ell_{\infty}(X,p)$, and $\ell(X,p)$ are the vector-valued sequence spaces of Maddox as defined in Section 2. When X=K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, and $\ell(p)$, respectively. Several papers deal with the problem of characterizing those matrices that map a scalar-valued sequence space of Maddox into anoher such spaces, see [6, 7, 11, 13, 15, 17, 18, 19, 21]. Some of these results become particular cases of our theorems. Also some more interesting results are derived.

Section 2 deals with necessary preliminaries and some known results quoted as lemmas which are needed to characterize an infinite matrix $A = (f_k^n)$ such that A maps the vector-valued sequence spaces of Maddox into c(q), and we also give some auxiliary results in Section 3. The main results of the paper is in Section 4.

2 Preliminaries and Lemmas

Typeset by AMS-TEX

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. Let W(X) and $\Phi(X)$ denote the space of all sequences and the space of all finite sequences in X, respectively. When X = K, the scalar field of X, the corresponding spaces are written as w and ϕ , respectively. An X-valued sequence space is a linear subspace of W(X). The sequence spaces of Maddox are defined as

```
\begin{aligned} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0\} \,, \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X\} \,, \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_k \|x_k\|^{p_k} < \infty\} \,, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^\infty \|x_k\|^{p_k} < \infty\} \,. \end{aligned}
```

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $l_\infty(p)$, and l(p), respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons¹⁶ and Maddox^{8,9}. The space l(p) was first defined by Nakano¹⁴ and it is known as the Nakano sequence space. Also, we need to define the following sequence space:

$$M_{\mathbb{C}}(X,p) = \left\{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\| n^{-1/p_k} < \infty \text{ for some } n \in \mathbb{N} \right\}.$$

When X = K, the scalar field of X, the corresponding space is written as $M_0(p)$. This space was first introduced by Maddox¹⁰. Grosse-Erdmann² has investigated the structure of the spaces $c_0(p), c(p), \ell(p)$, and $\ell_{\infty}(p)$ and he also gave the matrix characterizations between scalar-valued sequence spaces of Maddox in [3]. Let E be an X- valued sequence space. For $x \in E$ and $k \in N$ we write that x_k stand for the kth term of x and for $x \in X$ and $k \in N$, let $e^{(k)}(x)$ be the sequence (0,0,0,...,0,x,0,...) with x in the kth position and let e(x) be the sequence (x,x,x,...), and we denote by e the the sequence (1,1,1,...). An X-valued sequence space E is said to be normal if $(x_k) \in E$ and $(y_k) \in W(X)$ with $||y_k|| \le ||x_k||$ for all $k \in N$ implies that $(y_k) \in E$. For a fixed scalar sequence $u = (u_k)$ the sequence space E_u is defined as

$$E_{u} = \{x = (x_{k}) \in W(X) : (u_{k}x_{k}) \in E\}.$$

The α -, β - and γ - duals of a scalar-valued sequence space F are defined as

$$F^{\zeta} = \{x \in w : (x_k y_k) \in X_{\zeta} \text{ for every } y \in F\}$$

. for $\zeta = \alpha$, β , γ and $X_{\alpha} = \ell_1$, $X_{\beta} = cs$, and $X_{\gamma} = bs$, where ℓ_1 , cs and bs are defined as $\ell_1 = \{x = (x_k) \in w : \sum_{k=1}^{\infty} |x_k| < \infty \}$, $cs = \{x = (x_k) \in w : \sum_{k=1}^{\infty} x_k \text{ converges } \}$, $bs = \{x = (x_k) \in w : \sup_n |\sum_{k=1}^n x_k| < \infty \}$.

In the same manner, for an X-valued sequence space E, the α -, β - and γ - duals of E are defined as

$$E^{\zeta} = \{ (f_k) \subset X' : (f_k(x_k)) \in X_{\zeta} \text{ for every } x = (x_k) \in E \}$$

for $\zeta = \alpha$, β , γ , where $X_{\alpha} = \ell_1$, $X_{\beta} = cs$ and $X_{\gamma} = bs$.

It is obvious from the definition that $E^{\alpha} \subseteq E^{\beta} \subseteq E^{\gamma}$ and it is easy to see that if E is normal, then $E^{\alpha} = E^{\beta} = E^{\gamma}$.

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is an X-valued sequence space and F a scalar-valued sequence space. Then A is said to $map\ E$ into F, written by $A:E\to F$ if, for each $x=(x_k)\in E$, $A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$ and the sequence $Ax=(A_n(x))\in F$. We denote by (E,F) the class of all infinite matrices mapping E into F. If $u=(u_k)$ and $v=(v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we put $u^{-1} = (1/u_k)$. Suppose the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in N$ the kth coordinate mapping

 $p_k: E \to X$, defined by $p_k(x) = x_k$, is continuous on E. A K-space that is a Fréchet(Banach) space is called an FK - (BK -) space.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X, p)$, we consider the function $g(x) = \sup \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X, p)$, and it is known that $c_0(X, p)$ is an FK-space under the paranorm g defined as above. In $\ell(X, p)$, we consider it as a paranormed sequence space with the paranorm given by $\|(x_k)\| = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{1/M}$. It is known that $\ell(X, p)$ is an FK-space under the paranorm defined as above.

Now let us quote some known results as the following.

Lemma 2.1¹⁰ If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$, then

$$\ell(p)^{\beta} = \{x \in w : \sum_{k=1}^{\infty} |x_k|^{t_k} M^{-t_k} < \infty \text{ for some } M \in N \}$$

where $1/p_k + 1/t_k = 1$ for all $k \in N$.

Lemma 2.2¹⁶ If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$, then $\ell(p)^{\beta} = \ell_{\infty}(p).$

Lemma 2.3⁶ If $p = (p_k)$ is a bounded sequence of positive real numbers, then

$$\ell_{\infty}(p)^{\beta} = \{x \in w : \sum_{k=1}^{\infty} |x_k| n^{1/p_k} < \infty \text{ for all } n \in N \}.$$

Lemma 2.4¹⁰ If $p = (p_k)$ is a bounded sequence of positive real numbers, then $c_0(p)^{\beta} = M_0(p)$.

Lemma 2.5²² Let $p = (p_k)$ be a bounded sequence of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A: c_0(X, p) \rightarrow c_0$ if and only if

- (1) $f_k^n \xrightarrow{w^*} 0$ as $n \to \infty$ for each $k \in N$ and (2) $\lim_{m \to \infty} \sup_n \sum_{k=1}^{\infty} ||f_k^n|| m^{-1/p_k} = 0$.

Lemma 2.6²² Let $p = (p_k)$ be a bounded sequence of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A: \ell_{\infty}(X, p) \to c_0$ if and only if

- (1) $f_k^n \xrightarrow{w^*} 0$ as $n \to \infty$ for each $k \in N$ and (2) for each $M \in N$, $\sum_{j>k} \|f_j^n\| M^{1/p_j} \to 0$ as $k \to \infty$ uniformly on $n \in N$.

Lemma 2.7²² Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ and $1/p_k + 1/t_k =$ 1 for all $k \in \mathbb{N}$ and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell(X, p) \to c_0$ if and only if

- (1) $f_k^n \xrightarrow{w^*} 0$ as $n \to \infty$ for each $k \in N$ and (2) $\sum_{k=1}^{\infty} \|f_k^n\|^{t_k} m^{-t_k} \to 0$ as $m \to \infty$ uniformly on $n \in N$.

Lemma 2.8²² Let $p=(p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and let $A = (f_k^n)$ be an infinite matrix. Then $A : \ell(X, p) \to c_0$ if and only if

(1)
$$f_k^n \xrightarrow{w^*} 0$$
 as $n \to \infty$ for each $k \in N$ and

(2)
$$\sup_{n,k} ||f_k^n||^{p_k} < \infty.$$

3. Some Auxiliary Results

Suppose that E and F are sequence spaces and that we want to characterize the matrix space (E, F). If E and/or F can be derived from simpler sequence spaces in some fashion, then, in many cases, the problem reduces to the characterization of the corresponding simpler matrix spaces. We begin with giving various useful results in this direction.

Proposition 3.1. Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ scalarvalued sequence spaces, and let u and v be scalar sequences with $u_k \neq 0$, $v_k \neq 0$ for all $k \in \mathbb{N}$. Then

- (i) $(\bigcup_{n=1}^{\infty} E_n, F) = \bigcap_{n=1}^{\infty} (E_n, F),$
- (ii) $(E, \cap_{n=1}^{\infty} F_n) = \cap_{n=1}^{\infty} (E, F_n),$
- (iii) $(E_1 + E_2, F) = (E_1, F) \cap (E_2, F),$
- (iv) $(E_u, F_v) = {}_{v}(E, F)_{u^{-1}}$.

Proof. All of them are obtained directly from the definitions.

Propostion 3.2. Let $p = (p_k)$ be a bounded sequences of positive real numbers. Then

- (i) $c(X,p) = c_0(X,p) + \{e(x) : x \in X\},$
- (ii) $M_0(X,p) = \bigcup_{n=1}^{\infty} \ell(X)_{(n^{-1/p_k})},$ (iii) $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}.$

Proof. Assertions (i) and (ii) are immediately obtained from the definitions. To show (iii), let $x \in$ $\ell_{\infty}(X,p)$, then there is some $n \in N$ with $\|x_k\|^{p_k} \le n$ for all $k \in N$. Hence $\|x_k\|^{n-1/p_k} \le 1$ for all $k \in N$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M>1 such that $||x_k||n^{-1/p_k}\leq M$ for every $k\in N$. Then we have $||x_k||^{p_k}\leq nM^{p_k}\leq nM^{\alpha}$ for all $k \in N$, where $\alpha = \sup_{k} p_{k}$. Hence $x \in \ell_{\infty}(X, p)$.

The next proposition give a relationship between the β - dual of vector-valued and scalar-valued sequence spaces.

Proposition 3.3 Let X be a Banach space and F a normal scalar-valued sequence space and define $F(X) = \{(x_k) \in W(X) : (\|x_k\|) \in F \}$. then for $(f_k) \subset X'$, the topological dual of X, $(f_k) \in F(X)^{\beta}$ if and only if $(\|f_k\|) \in F^{\beta}$.

Proof. If $(\|f_k\|) \in F^{\beta}$, then for $x = (x_k) \in F(X)$ we have $\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} \|f_k\| \|x_k\| < \infty$, so that

Conversely, suppose that $(f_k) \in F(X)^{\beta}$ and $a = (a_k) \in F$. Since F is normal, $(|a_k|) \in F$. For each $k \in N$, we can choose $x_k \in X$ such that $||x_k|| = 1$ and $|f_k(x_k)| \ge \frac{||f_k||}{2}$. Let $y = (a_k x_k)$, then $y \in F(X)$. Choose a sequence (t_k) of scalars such that $|t_k| \leq 1$ and $f_k(t_k \tilde{a_k} x_k) = |f_k(x_k)| |a_k|$ for all $k \in \mathbb{N}$. Since F is normal, $(t_k y_k) \in F(X)$, so we obtain that $\sum_{k=1}^{\infty} f_k(t_k y_k)$ converges. This implies $\sum_{k=1}^{\infty} \|f_k\| |a_k| \le 2 \sum_{k=1}^{\infty} |f_k(x_k)| |a_k| < \infty. \text{ It follows that } (\|f_k\|) \in F^{\beta}.$

By using Proposition 3.3, the following results are obtained immediately from Lemma 2.1 - 2.4, respectively.

Proposition 3.4 If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$, then

$$\ell(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-t_k} < \infty \text{ for some } M \in N \}$$

where $1/p_k + 1/t_k = 1$ for all $k \in N$.

Proposition 3.5 If $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$, then $\ell(X, p)^{\beta} = \ell_{\infty}(X', p)$.

Proposition 3.6 If $p = (p_k)$ is a bounded sequence of positive real numbers, then

$$\ell_{\infty}(X,p)^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} \|f_k\| n^{1/p_k} < \infty \text{ for all } n \in N \}.$$

Proposition 3.7 If $p = (p_k)$ is a bounded sequence of positive real numbers, then $c_0(X, p)^{\beta} = M_0(X', p)$.

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let $q = (q_k)$ be a bounded sequence of positive real numbers and let E be a normal X-valued sequence space which is an FK-space containing $\Phi(X)$. Then

$$(E, c(q)) = (E, c_0(q)) \oplus (E, < e >).$$

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X-valued sequence space which is an FK-space containing $\Phi(X)$. Then for each $k \in N$, the mapping $T_k : X \to E$, defined by $T_k x = e^k(x)$, is continuous.

Proof. For each $k \in N$, we have that $V = \{e^k(x) : x \in X\}$ is a closed subspace of E, so it is an FK-space. Since E is a K-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, hence, $p_k^{-1} : X \to V$ is continuous. It follows that T_k is continuous because $T_k = p_k^{-1}$.

Lemma 4.2. If E and F are scalar-valued sequence spaces such that E is normal containing ϕ , F is an FK-space and there is a subsequence (n_k) with $x_{n_k} \to 0$ as $k \to \infty$ for all $x = (x_n) \in F$, then $(E, F \oplus \langle e \rangle) = (E, F) \oplus (E, \langle e \rangle)$.

Proof of Theorem 4.1 Since $c(q) = c_0(q) \oplus \langle e \rangle$, it is clear that $(E, c_0(q)) + (E, \langle e \rangle) \subseteq (E, c_0(q) \oplus \langle e \rangle) = (E, c(q))$. Moreover, if $A \in (E, c_0(q)) \cap (E, \langle e \rangle)$, then $A \in (E, c_0(q)) \cap \langle e \rangle$, so that $A \in (E, 0)$, which implies that A = 0 because E contain $\Phi(X)$. Hence $(E, c_0(q)) + (E, \langle e \rangle)$ is a direct sum. Now, we will show that $(E, c(q)) \subseteq (E, c_0(q)) \oplus (E, \langle e \rangle)$. Let $A = (f_k^n) \in (E, c(q)) = (f_k^n) \oplus (f_k$

 $(E, c_0(q) \oplus \langle e \rangle)$. For $x \in X$ and $k \in N$, we have $(f_k^n(x))_{n=1}^\infty = Ae^k(x) \in c_0(q) \oplus \langle e \rangle$, so that there exist unique $(b_k^n(x))_{n=1}^{\infty} \in c_0(q)$ and $(c_k^n(x))_{n=1}^{\infty} \in c_0(q)$ with

$$(f_k^n(x))_{n=1}^{\infty} = (b_k^n(x))_{n=1}^{\infty} + (c_k^n(x))_{n=1}^{\infty}.$$

$$(4.1)$$

For each $n, k \in N$, let g_k^n and h_k^n be the functionals on X defined by

$$g_k^n(x) = b_k^n(x)$$
 and $h_k^n(x) = c_k^n(x)$ for all $x \in X$.

Clearly, g_k^n and h_k^n are linear, and by (4.1)

$$f_k^n = g_k^n + h_k^n \quad \text{for all } n, k \in N. \tag{4.2}$$

Note that $c_0(q) \oplus \langle e \rangle$ is an FK-space in its direct sum topology. By Zeller's theorem, $A: E \to$ $c_0(q) \oplus \langle e \rangle$ is continuous. For each $k \in N$, let $T_k : X \to E$ be defined by $T_k(x) = e^k(x)$. By Lemma 4.1, we have that T_k is continuous for all $k \in N$. Since the projection P_1 of $c_0(q) \oplus c < e >$ onto $c_0(q)$ and the projection P_2 of $c_0(q) \oplus \langle e \rangle$ onto $\langle e \rangle$ are continuous and $g_k^n = p_n \circ P_1 \circ A \circ T_k$ and $h_k^n =$ $p_n \circ P_2 \circ A \circ T_k$ for all $n, k \in N$, we obtain that g_k^n and h_k^n are continuous, so $g_k^n, h_k^n \in X'$ for all $n, k \in N$. Let $B = (g_k^n)$ and $C = (h_k^n)$. By (4.1) and (4.2), we have A = B + C, $B = (g_k^n) \in (\Phi(X), c_0(q))$ and $C = (h_k^n) \in (\Phi(X), \langle e \rangle)$. We will show that $B \in (E, c_0(q))$ and $C \in (E, \langle e \rangle)$. To do this, let $x = (x_k) \in E$. Then for $\alpha = (\alpha_k) \in \ell_{\infty}$, we have $\|\alpha_k x_k\| = |\alpha_k| \|x_k\| \le \|M x_k\|$, where $M = (\alpha_k) \in \ell_{\infty}$ $\sup_k |\alpha_k|$. Then the normality of E implies that $(\alpha_k x_k) \in E$. Hence $(f_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q) \oplus \langle e \rangle)$, inoreover, we have $(g_k^n(x_k))_{n,k} \in (\Phi, c_0(q)), (h_k^n(x_k))_{n,k} \in (\Phi, \langle e \rangle), \text{ and } (f_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k} + (g_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k$ $(h_k^n(x_k))_{n,k}$. Since ℓ_{∞} is normal containing ϕ and $c_0(q) \subseteq c_0$, it follows from Lemma 4.2 that $(g_k^n(x_k))_{n,k} \in$ $(\ell_{\infty}, c_0(q))$ and $(h_k^n(x_k))_{n,k} \in (\ell_{\infty}, < e >)$. This implies that $Bx \in c_0(q)$ and $Cx \in < e >$, so we have $B \in (E, c_0(q))$ and $C \in (E, < e >)$, hence $A \in (E, c_0(q)) \oplus (E, < e >)$. This completes the proof. \square

Theorem 4.2. Let $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A: \ell_{\infty}(X) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such

- $(1) \ \sum_{k=1}^{\infty} \|f_k\| < \infty,$
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $k, m \in N$ and (3) for each $m \in N$, $\sum_{j>k} m^{1/q_n} \|f_j^n f_j\| \to 0$ as $k \to \infty$ uniformly on $n \in N$.

Proof. Necessity. Let $A \in (\ell_{\infty}(X), c(q))$. It follows from Theorem 4.1 that A = B + C, where $B \in$ $(\ell_{\infty}(X), c_0(q))$ and $C \in (\ell_{\infty}(X), \langle e \rangle)$. Then there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k)_{n,k} \in (\ell_\infty(X), c_0(q))$, which implies that $(f_k) \in \ell_\infty(X)^3$, so (1) is obtained by Proposition 3.6. Since $c_0(q) = \bigcap_{m=1}^{\infty} c_{0(m^{1/q_k})}$ (by [2, Theorem 0 (i)]), we have by Proposition 3.1 (ii) and (iv) that for each $m \in N$, $(m^{1/q_n}(f_k^n - f_k)_{n,k}) : \ell_{\infty}(X) \to c_0$. Hence, (2) and (3) are obtained by Lemma 2.6.

Sufficiency. Suppose that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that conditions (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1(ii) and (iv) that $B \in (\ell_{\infty}(X), c_0(q))$. By Proposition 3.6, condition (1) implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x=(x_k) \in \ell_{\infty}(X)$, which implies that $C \in (\ell_{\infty}(X), < e >)$. Hence, we obtain by Theorem 4.1 that $A \in (\ell_{\infty}(X), c(q))$. This completes the proof.

Theorem 4.3. Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers and $A=(f_k^n)$ an infinite matrix. Then $A: \ell_{\infty}(X,p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that (1), (2) and (3) are satisfied, where

- (1) for each $m \in N$, $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$,
- (2) $r^{1/q_n}(f_k^n f_k) \xrightarrow{w} 0$ as $n \to \infty$ for every $k, r \in N$ and (3) for each $m, r \in N$, $r^{1/q_n} \sum_{j>k} m^{1/p_j} \|f_j^n f_j\| \to 0$ as $k \to \infty$ uniformly on $n \in N$. Moreover, (3) is equivalent to (3), where

(3') for each
$$m \in N$$
, $\lim_{k\to\infty} \sup_n \left(\sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| \right)^{q_n} = 0$.

Necessity. Suppose that $A: \ell_{\infty}(X,p) \to c(q)$. By Theorem 4.1, A=B+C, where $B \in$ $(\ell_{\infty}(X,p),c_0(q))$ and $C\in (\ell_{\infty}(X,p),< e>)$. Then there is a sequence (f_k) with $f_k\in X'$ for all $k\in N$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k) \in (\ell_\infty(X,p), c_0(q))$. Since $C = (f_k)_{n,k} : \ell_\infty(X,p) \to \langle e \rangle$, it implies by Proposition 3.6 that (1) holds. Since $c_0(q) = \bigcap_{m=1}^{\infty} c_{0(m^{1/q_k})}$, we have by Proposition 3.1 (ii) that for each $r \in N$, $(r^{1/q_n}(f_k^n - f_k))_{n,k} : \ell_{\infty}(X,p) \to c_0$. Hence, (2) and (3) holds by an application of Lemma 2.6.

Sufficiency. Suppose that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that condition (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1(ii) and (iv) that $B \in (\ell_{\infty}(X, p), c_0(q))$. By Proposition 3.6, condition (1) implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x=(x_k) \in \ell_{\infty}(X,p)$, which implies that $C \in (\ell_{\infty}(X, p), \langle e \rangle)$. Hence, we obtain by Theorem 4.1 that $A \in (\ell_{\infty}(X, p), c(q))$.

Now we shall show that (3) and (3') are equivalent. Suppose (3) holds and let $\varepsilon > 0$. Choose $r \in N$ such that $1/r < \varepsilon$. By (3), there exists $k_0 \in N$ such that

$$r^{1/q_n} \sum_{j>k} m^{1/p_j} ||f_j^n - f_j|| < 1 \text{ for all } k \ge k_0 \text{ and all } n \in N,$$

which implies that

$$\sup_{n} \left(\sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| \right)^{q_n} \le 1/r < \varepsilon \text{ for } k \ge k_0,$$

hence, (3') holds.

Conversely, assume that (3') holds. Let $m, r \in N$ and $0 < \varepsilon < 1$. Then there exists $k_0 \in N$ such that

$$\sup_{n} \left(\sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| \right)^{q_n} < \varepsilon^H/r \quad \text{for all } k \ge k_0$$

where $H = \sup_{n} q_n$. This implies that

$$r^{1/q_n} \sum_{j>k} m^{1/p_j} \|f_j^n - f_j\| < \varepsilon^{H/q_n} < \varepsilon \quad \text{for all } k \geq k_0 \text{ and all } n \in N$$

Theorem 4.4. Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers and $A=(f_k^n)$ an infinite matrix. Then $A: c_0(X,p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that (1), (2), and (3) are satisfied, where (1) $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$,

- (2) $m^{\frac{1}{q_n}}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $m, k \in N$ and

(3) for each $m \in N$, $\sup_{n} \left(m^{1/q_n} \sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} \right) \to 0$ as $r \to \infty$. Moreover, (3) is equivalent to (3') where

(3')
$$\lim_{r\to\infty} \sup_{n} \left(\sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} \right)^{q_n} = 0.$$

Proof. Necessity. Suppose that $A: c_0(X,p) \to c(q)$. By Theorem 4.1, we have A=B+C, where $B \in (c_0(X,p),c_0(q))$ and $C \in (c_0(X,p), < e >)$. It follows that there is a sequence $(f_k) \subset X'$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k)_{n,k}$. Since $c_0(q) = \bigcap_{r=1}^{\infty} c_{0(r^{1/q_k})}$, it follows from Proposition 3.1 (ii) and (iv) that for each $m \in N$, $(m^{1/q_n}(f_k^n - f_k))_{n,k} \in (c_0(X,p), c_0)$, hence, conditions (2) and (3) hold by using the result from Lemma 2.5. Since $C = (f_k)_{n,k} \in (c_0(X,p), \langle e \rangle)$, we have that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = x_k \in c_0(X, p)$, so that $(f_k) \in c_0(X, p)^{\beta}$, hence, by Proposition 3.7, we obtain that there exists $M \in N$ such that $\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty$. Hence, (1) is obtained.

Sufficiency. Assume that there is a sequence $(f_k) \subset X'$ such that conditions (1),(2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. Then A = B + C. By conditions (2) and (3), we obtain from Proposition 3.1(ii) and (iv) and Lemma 2.5 that $B \in (c_0(X,p),c_0(q))$. The condition (1) implies by Proposition 3.7 that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$, so that $C \in (c_0(X, p), < e >)$. Hence, by Theorem 4.1, we obtain that $A \in (c_0(X, p), c(q))$.

Now, we shall show that conditions (3) and (3') are equivalent. To do this, suppose that (3) holds and let $\varepsilon > 0$. Choose $m \in N$, $1/m < \varepsilon$. From (3), there is $r_0 \in N$ such that

$$\sup_{n} m^{1/q_{n}} \sum_{k=1}^{\infty} \|f_{k}^{n} - f_{k}\| r^{-1/p_{k}} \le 1 \text{ for all } r \ge r_{0}.$$

This implies that $\sup_n \left(\sum_{k=1}^{\infty} \|f_k^n - f_k\| r^{-1/p_k} \right)^{q_n} \le 1/m < \varepsilon$ for all $r \ge r_0$. Hence, (3') holds.

Conversely, suppose that (3') holds. Let $m \in N$ and $0 < \varepsilon < 1$. Then there exists $r_0 \in N$ such that $\sup_n \left(\sum_{k=1}^{\infty} \|f_k^n - f_k\|r^{-1/p_k}\right)^{q_n} < \varepsilon^H/m$ for all $r \ge r_0$, where $H = \sup_n q_n$. Hence, we have

$$m^{1/q_n} \sum_{k=1}^{\infty} \|f_k^n - f_k\|r^{-1/p_k} < \varepsilon^{H/q_n} \le \varepsilon \text{ for all } r \ge r_0 \text{ and } n \in N,$$

so that (3) holds. This completes the proof.

Theorem 4.5. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A: c(X,p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k\in N$ such that (1), (2), (3) and (4) are satisfied, where (1) $\sum_{k=1}^{\infty}\|f_k\|M^{-1/p_k}<\infty$ for some $M\in N$,

- (2) for each $m, k \in N$, $m^{1/q_n}(f_k^n f_k) \xrightarrow{w} 0$ as $n \to \infty$, (3) for each $m \in N$, $\sup_n m^{1/q_n} \sum_{k=1}^{\infty} ||f_k^n f_k|| r^{-1/p_k} \to 0$ as $r \to \infty$ and (4) $(\sum_{k=1}^{\infty} f_k^n(x))_{n=1}^{\infty} \in c(q)$ for all $x \in X$. Moreover, (3) is equivalent to (3') where

(3') $\lim_{r\to\infty} \sup_{n} \left(\sum_{k=1}^{\infty} ||f_k^n - f_k|| r^{-1/p_k} \right)^{q_n} = 0.$

Proof. Since $c(X,p)=c_0(X,p)+\{e(x):x\in X\}$ (Proposition 3.2 (i)), it follows from Proposition 3.1(iii) that $A \in (c(X,p),c(q))$ if and only if $A \in (c_0(X,p),c(q))$ and $A \in (\{e(x):x\in X\},c(q))$. By Theorem 4.4, we have $A \in (c_0(X, p), c(q))$ if and only if conditions (1)-(3) hold and it is clear that $A \in \{\{e(x): x \in X\}, c(q)\}$ if and only if (4) holds. We have by Theorem 4.4 that (3) and (3') are equivalent. Hence, the theorem is proved.

Wu and Liu (Lemma 2.7) have given a characterization of an infinite matrix A such that $A \in$ $(\ell(X,p),c_0)$ when $p_k>1$ for all $k\in N$. By applications of Proposition 3.1(ii) and (iv), Proposition 3.4, and Theorem 4.1, and using the fact that $c_0(q) = \bigcap_{m=1}^{\infty} c_{0(m^{1/q_k})}$, we obtain the following result.

Theorem 4.6. Let $p=(p_k)$ and $q=(q_k)$ be bounded sequences of positive real numbers with $p_k>1$ for all $k \in N$ and $1/p_k + 1/t_k = 1$ for all $k \in N$, and let $A = (f_k^n)$ be an infinite matrix. Then $A: \ell(X,p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-t_k} < \infty \text{ for some } M \in N,$
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $m, k \in N$ and (3) for each $m \in N$, $\sum_{k=1}^{\infty} m^{t_k/q_n} ||f_k^n f_k||^{t_k} r^{-t_k} \to 0$ as $r \to \infty$ uniformly on $n \in N$.

By using Lemma 2.8, Proposition 3.1(ii) and (iv), Proposition 3.5 and Theorem 4.1, we also obtain the following result.

Theorem 4.7. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X,p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- $(1) \sup_{k} \|f_k\|^{p_k} < \infty,$
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $m, k \in N$ and
- (3) $\sup m^{p_k/q_n} ||f_k^n f_k||^{p_k} < \infty \text{ for all } m \in N.$

When $p_k = 1$ for all $k \in N$, we obtain the following.

Corollary 4.8. Let $q=(q_k)$ be a bounded sequence of positive real numbers and let $A=(f_k^n)$ be an infinite matrix. Then $A: \ell_1(X) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sup_{k} ||f_{k}|| < \infty$,
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $m, k \in N$ and
- (3) $\sup m^{1/q_n} ||f_k^n f_k|| < \infty$ for every $m \in N$.

Theorem 4.9. Let $p=(p_k)$ be a bounded sequence of positive real numbers and $A=(f_k^n)$ an infinite matrix. Then $A: M_0(X,p) \to c(q)$ if and only if there is a sequence (f_k) of bounded linear functionals on X such that

- (1) $\sup_k m^{1/p_k} ||f_k|| < \infty$ for all $m \in N$,
- (2) for each $m, r \in N$, $r^{1/q_n} m^{1/p_k} (f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for all $k \in N$ and (3) for each $m, r \in N$, $\sup_{n,k} r^{1/q_n} m^{1/p_k} ||f_k^n f_k|| < \infty$.

Proof. It follows from Theorem 4.1 that $A \in (M_0(X, p), c_0(q) \oplus \langle e \rangle)$ if and only if there is a sequence (f_k) of bounded linear functionals on X such that $A = B + (f_k)_{n,k}$ where $B : M_0(X,p) \to c_0(q)$ and $(f_k)_{n,k}: M_0(X,p) \to < e >$. Since $B = (f_k^n - f_k)_{n,k}$ and $M_0(X,p) = \bigcup_{m=1}^{\infty} \ell_1(X)_{(m^{-1/p_k})}$ (by Proposition 3.2 (ii)), we have by Proposition 3.1 (i) and (iv) that $B: M_0(X,p) \to c_0(q)$ if and only if $(m^{1/p_k}(f_k^n - f_k))_{n,k} : \ell_1(X) \to c_0(q) \text{ for all } m \in N. \text{ Since } c_0(q) = \bigcap_{r=1}^{\infty} c_{0(r^{1/q_k})}, \text{ by Proposition 3.1 (ii)}$ and (iv), we have $\left(m^{1/p_k}(f_k^n-f_k)\right)_{n,k}:\ell_1(X)\to c_0(q)$ if and only if $\left(r^{1/q_n}m^{1/p_k}(f_k^n-f_k)\right)_{n,k}:\ell_1(X)\to c_0(q)$ c_0 for all $r \in N$. By Lemma 2.8, we have

$$(r^{1/q_n}m^{1/p_k}(f_k^n-f_k))_{n,k}:\ell_1(X)\to c_0$$
 if and only if

- (a) $r^{1/q_n} m^{1/p_k} (f_k^n f_k) \xrightarrow{w^*} 0 \text{ as } n \to \infty \text{ for all } k \in \mathbb{N} \text{ and}$ (b) $\sup_{n,k} r^{1/q_n} m^{1/p_k} ||f_k^n f_k|| < \infty$.

By Proposition 3.1 (i) and (iv), we have $(f_k)_{n,k}: M_0(X,p) \to < e > \text{if and only if } (m^{1/p_k}f_k)_{n,k}:$ $\ell_1(X) \to < e >$ for all $m \in N$. By Proposition 3.5, we obtain that $(m^{1/p_k} f_k)_{n,k} : \ell_1(X) \to < e >$ if and only if $\sup_k m^{1/p_k} ||f_k|| < \infty$. Hence, the theorem is proved.

Acknowledgements

The auther is thankful to the referee for his useful and valuable suggestions and the author would like to thank the Thailand Research Fund for the financial support.

References

- N. R. Das and A. Choudhury, Calc., 84 (1) (1992), 47-54.
- [2] K. -G. Grosse-Erdmann, Canad. J. Math. 44 (1992), 298-307.
- [3] K. -G. Grosse-Erdmann, J. Math. Anal. Appl. 180 (1993), 223-238.
- [4] M. Gupta, J. Math. Anal. Appl. 78 (1980), 357 366.
- [5] C. G. Lascarides, Pacific J. Math. 38 (1971), 487-500.
- [6] C. G. Lascarides and I. J. Maddox, Proc. Cambridge Philos. Soc. 68 (1970), 99-104.
- [7] Y. Luh, Analysis 9 (1989), 67-81.
- [8] I. J. Maddox, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [9] I. J. Maddox, Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
- [10]I. J. Maddox, Proc. Cambridge Philos. Soc. 65 (1969), 431 435.
- [11]I. J. Maddox, Proc. Cambridge Philos. Soc. 71 (1972), 491 494.
- [12]I. J. Maddox, Proc. Amer. Math. Soc. 63 (1977), 82 86.
- [13]I. J. Maddox and M. A. L. Willey, Pacific. J. Math. 53 (1974), 217 228.
- [14]H. Nakano, Proc. Japan. Acad. 27 (1951), 508-512.
- [15]J. W. Roles, J. London Math. Soc. 3 (1971), 485-487.
- [16]S. Simons, Proc. London. Math. Soc. 15 (1965), 422-436.
- [17]S. M. Sirajudeen, Soochow J. Math. 7 (1981), 165-174.
- [18]S. M. Sirajudeen, Proc. Nat. Acad. Sci. India Sect. A 58 (1988), 403-407.
- [19]D. Somasundaram and S. M. Sirajudeen, Indian J. Pure Appl. Math. 14 (1983), 202-206.
- [20]S. Suantai, SEA. Bull. Math. 24 (2000), 297 303.
- [21]M. A. L. Willey, J. London Math. Soc. 7 (1973), 19 30.
- [22]C. X. Wu and L. Liu, SEA. Bull. Math. 17(1) (1993), 83-96.

ON PROPERTY (H) AND ROTUNDITY OF DIFFERENCE SEQUENCE SPACES.

A. KANANTHAI, M. MUSARLEEN, AND S. SUANTAI*

ABSTRACT. In this paper, we define a modular on difference sequence space $\ell(\Delta, p)$ and consider it equipped with the Luxemburg norm induced by the modular, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k \geq 1$ for all $k \in \mathbb{N}$. The main purpose of this paper is to show that $\ell(\Delta, p)$ has property (H) and we also show that $\ell(\Delta, p)$ is rotund if and only if $p_k > 1$ for all $k \in \mathbb{N}$.

1. Introduction.

Convexity properties of Banach spaces is an important topic in functional analysis and plays an important role in infinite dimensional holomorphy. In order to study the geometric properties of Banach spaces, Clarkson [5] introduced the very important class of rotund (strictly convex) spaces. Since Clarkson's paper, many authors have defined and studied various convexity properties lying between uniform convexity and rotundity (see [2, 3, 5, 12, 14, 17].)

Among the geometrical properties of Banach spaces, property (H) has proved to be particularly important and has been studied by various authors. Criteria for property (H) in Orlicz spaces and Orlicz sequence spaces were given by S. Chen and Y. Wang [4] and C. Wu, S. Chen and Y. Wang [20]. R. Pluciennik, T. Wang and Y. Zhang [19] obtained necessary and sufficient conditions for H- points and denting points in Orlicz sequence spaces.

In [7], criteria are given for Musielak-Orlicz sequence spaces to have property (H).

In this paper, we introduce the difference sequence space $\ell(\Delta, p)$, when $p = (p_k)$ is a bounded sequence of positive real number with $p_k \geq 1$ for all $k \in \mathbb{N}$, and consider it equipped the Luxemburg norm. We show that $\ell(\Delta, p)$ has property (H) and establish criteria for rotundity.

We begin by introducing the basic notations and definitions. In the following, Let \mathbb{R} be the real line and \mathbb{N} the set of natural numbers.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called:

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (written $x_n \stackrel{w}{\to} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$;

²⁰⁰⁰ Mathematics Subject Classification. 46B20, 46B45, 46E30.

Key words and phrases. Property (H), rotundity, difference sequence spaces.

Corresponding auther.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point. X is said to posses property (H) provided every point of S(X) is an H-point.

For these geometric notions and their role in Mathematics we refer to the monographs [2], [8], and [17]. Some of them were studied for Orlicz spaces in [3], [6], [9], [10], [11], [19], and [20].

Let X be a real vector space. A functional $\varrho: X \to [0, \infty]$ is called a modular if it satisfies the conditions

- (i) $\varrho(x) = 0$ if and only if x = 0;
- (ii) $\rho(\alpha x) = \rho(x)$ for all scalars α with $|\alpha| = 1$;
- (iii) $\varrho(\alpha x + \beta y) \leq \varrho(x) + \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. The modular ϱ is called *convex* if
 - (iv) $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. If ϱ is a modular in X, we define

$$X_{\varrho} = \{ x \in X : \lim_{\lambda \to 0^+} \varrho(\lambda x) = 0 \},$$

and
$$X_{\varrho}^* = \{x \in X : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^*$. If ϱ is a convex modular, we define

(1.1)
$$||x|| = \inf\{\lambda > 0: \varrho\left(\frac{x}{\lambda}\right) \le 1\}.$$

Orlicz [18] proved that if ϱ is a convex modular in X, then $X_{\varrho} = X_{\varrho}^*$ and $\|.\|$ is a norm on X_{ϱ} for which it is a Banach space. The norm $\|.\|$ defined as in (1.1) is called the Luxemburg norm.

A modular ϱ on X is called

- (a) right-continuous if $\lim_{\lambda \to 1^+} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$,
- (b) left-continuous if $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$,
- (c) cotinuous if it is both right-continuous and left-continuous.

The following known results gave some relationships between the modular ϱ and the Luxemburg norm $\|.\|$ on X_{ϱ} .

Theorem 1.1 Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and (x_n) a sequence in X_{ϱ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\varrho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Proof. See [16, Theorem 1.3].

Theorem 1.2 Let ϱ be a continuous convex modular on X. Then

- (i) ||x|| < 1 if and only if $\varrho(x) < 1$.
- (ii) $||x|| \le 1$ if and only if $\varrho(x) \le 1$.
- (iii) ||x|| = 1 if and only if $\varrho(x) = 1$.

Proof. See [16, Theorem 1.4].

Let us denoted by ℓ^0 the space of all real sequences and let $p = (p_k)$ be a bounded sequence of positive real numbers. In [13], Kizmaz introduced the sequence spaces $\ell_{\infty}(\Delta)$, $c_0(\Delta)$ and $c(\Delta)$ by considering the difference sequence $\Delta x = (x_k - x_{k+1})_{k=1}^{\infty}$ for any sequence $x \in \ell^0$, where ℓ_{∞} , c_0 an c are Banach spaces of bounded, null and

convergent sequences, respectively. In [1], these sequence spaces were extended to $\ell_{\infty}(\Delta, p)$, $c_0(\Delta, p)$ and $c(\Delta, p)$, where, for example

$$\ell_{\infty}(\Delta, p) = \{ x \in l^0 : \Delta x \in \ell_{\infty}(p) \}$$

with

$$\ell_{\infty}(p) = \{ x \in l^0 : \sup_{k} |x_k|^{p_k} < \infty \}.$$

In [1] and [13] the authers determined the Köthe-Töeplitz and generalized Köthe-Töeplitz duals of these spaces and consider various matrix transformations.

In this paper we introduce the space $\ell(\Delta, p)$ defined analogously as follows,

$$\ell(\Delta, p) = \{ x \in l^0 : \Delta x \in \ell(p) \},\$$

where

$$\ell(p) = \{ x \in \ell^0 : \sum_{k=1}^{\infty} |x(k)|^{p_k} < \infty \}.$$

and study some of its geometric properties.

For details of the spaces $\ell_{\infty}(p)$ and $\ell(p)$, we refer to [15].

For $x \in \ell(\Delta, p)$, we define

$$\varrho_p(x) = |x(1)| + \sum_{k=1}^{\infty} |x(k) - x(k+1)|^{p_k}$$

If $p_k \geq 1$ for all $k \in \mathbb{N}$, we have, by the convexity of the functions $t \mapsto |t|^{p_k}$ for each $k \in \mathbb{N}$, that ϱ_p is a convex modular on $\ell(\Delta, p)$. We consider $\ell(\Delta, p)$ equipped with the Luxemburg norm given by

$$||x|| = \inf \{ \epsilon > 0 : \varrho_p(\frac{x}{\epsilon}) \le 1 \}.$$

A normed sequence space S is said to be a K-space if each coordinate mapping P_k , defined by $P_k(x) = x_k$, is continuous. If S is both a Banach and a K-space, it is called a BK-space.

Throughout this paper we let $M = \sup_k p_k$ and assume that $p_k \ge 1$ for all $k \in \mathbb{N}$.

2. Main Results

We begin by giving some basic properties of the modular on the space $\ell(\Delta, p)$.

Proposition 2.1 For $x \in \ell(\Delta, p)$, the modular ϱ_p on $\ell(\Delta, p)$ satisfies the following:

(i) if
$$0 < a \le 1$$
, then $a^M \varrho_p(\frac{x}{a}) \le \varrho_p(x)$ and $\varrho_p(ax) \le a\varrho_p(x)$,

(ii) if
$$a \geq 1$$
, then $\varrho_p(x) \leq a^M \varrho_p(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\varrho_p(x) \le a\varrho_p(x) \le \varrho_p(ax)$.

Proof. It is obvious that (iii) is satisfied by the convexity of ρ_p . It remains to prove (i) and (ii).

For $0 < a \le 1$, we have

$$\varrho_p(x) = |x(1)| + \sum_{k=1}^{\infty} |x(k) - x(k+1)|^{p_k}$$

$$= a \left| \frac{x(1)}{a} \right| + \sum_{k=1}^{\infty} \left| \frac{a(x(k) - x(k+1))}{a} \right|^{p_k}$$

$$\geq a^M \left| \frac{x(1)}{a} \right| + a^M \sum_{k=1}^{\infty} \left| \frac{x(k) - x(k+1)}{a} \right|^{p_k}$$

$$= a^M \varrho_p(\frac{x}{a}).$$

It follows by the convexity of ϱ that $\varrho_p(ax) \leq a\varrho_p(x)$, hence (i) is satisfied.

Now, suppose that $a \ge 1$. Then $\frac{1}{a} \le 1$. It follows from (i) that

$$\left(\frac{1}{a}\right)^{M} \varrho_{p}(x) = \left(\frac{1}{a}\right)^{M} \varrho_{p}\left(\frac{x/a}{1/a}\right) \leq \varrho_{p}\left(\frac{x}{a}\right),$$

so that $\varrho_p(x) \leq a^M \varrho_p\left(\frac{x}{a}\right)$, hence (ii) is obtained.

Proposition 2.2 The modular ϱ_p on $\ell(\Delta, p)$ is continuous. **Proof.** For $\lambda > 1$, by Proposition 2.1 (ii) and (iii), we have

(2.1)
$$\varrho_p(x) \le \lambda \varrho_p(x) \le \varrho_p(\lambda x) \le \lambda^M \varrho_p(x)$$

By taking $\lambda \to 1^+$ in (2.1), we have $\lim_{\lambda \to 1^+} \varrho_p(\lambda x) = \varrho_p(x)$. Thus ϱ_p is right-continuous. If $0 < \lambda < 1$, by Proposition 2.1 (i), we have

(2.2)
$$\lambda^{M} \varrho_{p}(x) \leq \varrho_{p}(\lambda x) \leq \lambda \varrho_{p}(x)$$

By taking $\lambda \to 1^-$ in (2.2), we have that $\lim_{\lambda \to 1^-} \varrho_p(\lambda x) = \varrho_p(x)$, hence, ϱ_p is left-continuous. Thus ϱ_p is continuous.

Next, we give some relationships between the modular ϱ_p and the Luxemburg norm on $\ell(\Delta, p)$.

Proposition 2.3 For any $x \in \ell(\Delta, p)$, we have

- (i) if ||x|| < 1, then $\varrho_p(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\varrho_p(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\varrho_p(x) = 1$,
- (iv) ||x|| < 1 if and only if $\varrho_p(x) < 1$,
- (v) ||x|| > 1 if and only if $\varrho_p(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\varrho_p(x) > a^M$, and
- (vii) if $a \ge 1$ and ||x|| < a, then $\varrho_p(x) < a^M$.

Proof. (i) Let $\epsilon > 0$ be such that $0 < \epsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of $||\cdot||$, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\varrho(\frac{x}{\lambda}) \le 1$. From Proposition 2.1(i) and (iii), we have

$$\varrho_p(x) \le \varrho_p\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right)$$

$$= \varrho_p\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\leq (\|x\| + \epsilon)\varrho(\frac{x}{\lambda})$$

$$\leq \|x\| + \epsilon,$$

which implies that $\varrho_p(x) \leq ||x||$, so (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{\|x\|-1}{\|x\|}$, then $1 < (1-\epsilon)\|x\| < \|x\|$. By definition of $\|\cdot\|$ and by Proposition 2.1 (i), we have

$$1 < \varrho_p \left(\frac{x}{(1 - \epsilon) \|x\|} \right)$$

$$\leq \frac{1}{(1 - \epsilon) \|x\|} \varrho_p(x),$$

so $(1-\epsilon)\|x\| < \varrho_p(x)$ for all $\epsilon \in (0, \frac{\|x\|-1}{\|x\|})$. This implies that $\|x\| \le \varrho_p(x)$, hence (ii) is obtained.

Since ϱ_p is continuous (Proposition 2.2), (iii) and (iv) follow directly from Theorem 1.2.

- (iv) follows directly from (i) and (iii).
- (v) follows from (iii) and (iv).
- (vi) Suppose 0 < a < 1 and ||x|| > a. Then $\left\| \frac{x}{a} \right\| > 1$. By (v), we have $\varrho_p\left(\frac{x}{a}\right) > 1$.
- Hence, by Proposition 2.1(i), we obtain that $\varrho_p(x) \geq a^M \varrho_p(\frac{x}{a}) > a^M$. (vii) Suppose $a \geq 1$ and ||x|| < a. Then $\left\| \frac{x}{a} \right\| < 1$. By (iv), we have $\varrho_p(\frac{x}{a}) < 1$. If a = 1, it is obvious that $\varrho_p(x) < 1 = a^M$. If a > 1, by Proposition 2.1(ii), we obtain that $\varrho_p(x) \leq a^M \varrho_p(\frac{x}{a}) < a^M$.

Proposition 2.4 Let (x_n) be a sequence of elements of $\ell(\Delta, p)$.

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho_p(x_n) \to 1$ as $n \to \infty$.
- (ii) $||x_n|| \to 0$ as $n \to \infty$ if and only if $\varrho_p(x_n) \to 0$ as $n \to \infty$.
- **Proof.** (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.3 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho_p(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho_p(x_n) \to 1$ as $n \to \infty$.
- (ii) The only part of (ii) is true by Theorem 1.1, so we need to show only the if part. Suppose $||x_n|| \not\to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.3 (vi), we have $\varrho_p(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho_p(x_n) \not\to 0$ as $n \to \infty$.

Next, we shall show that $\ell(\Delta, p)$ has property (H). To do this, we need two lemmas.

Lemma 2.5 The space $\ell(\Delta, p)$ is a BK-space.

Proof. Since $\ell(\Delta, p)$ equipped with the Luxemburg norm is Banach, we need only show that $\ell(\Delta,p)$ is a K-space. Suppose $(x_n)\subset \ell(\Delta,p)$ such that $x_n\to 0$ as $n\to\infty$. It follows by Proposition 2.4(ii) that $\varrho_p(x_n)\to 0$ as $n\to\infty$. This implies

that

$$|x_n(1)| \to 0$$
 as $n \to \infty$ and $|x_n(k) - x_n(k+1)| \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$.

By induction, we have $x_n(k) \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$. Hence $P_k(x_n) \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$. This implies that P_k is continuous for all $k \in \mathbb{N}$.

Lemma 2.6 Let $x \in \ell(\Delta, p)$ and $(x_n) \subseteq \ell(\Delta, p)$. If $\varrho_p(x_n) \to \varrho_p(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, then $x_n \to x$ as $n \to \infty$. Proof. Let $\epsilon > 0$ be given. Since $\varrho_p(x) = |x(1)| + \sum_{k=1}^{\infty} |x(k) - x(k+1)|^{p_k} < \infty$, there is $k_0 \in \mathbb{N}$ such that

(2.3)
$$\sum_{k=k_0+1}^{\infty} |x(k) - x(k+1)|^{p_k} < \frac{\epsilon}{3} \cdot \frac{1}{2^{M+1}}.$$

Since $\varrho_p(x_n) \to \varrho_p(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$,

(2.4)
$$\varrho_p(x_n) - \left(|x_n(1)| + \sum_{k=1}^{k_0} |x_n(k) - x_n(k+1)|^{p_k} \right)$$

$$< \varrho_p(x) - \left(|x(1)| + \sum_{k=1}^{k_0} |x(k) - x(k+1)|^{p_k} \right) + \frac{\varepsilon}{3 \cdot 2^M}$$

and

$$(2.5) |x_n(1) - x(1)| + \sum_{k=1}^{k_0} |(x_n(k) + x(k)) - (x_n(k+1) - x(k+1))|^{p_k} < \frac{\varepsilon}{3}.$$

It follows from (2.3), (2.4) and (2.5) that for $n \ge n_0$,

$$\varrho_{p}(x_{n}-x) = |x_{n}(1) - x(1)| + \sum_{k=1}^{\infty} |(x_{n}(k) - x(k)) - (x_{n}(k+1) - x(k+1))|^{p_{k}}
= |x_{n}(1) - x(1)| + \sum_{k=1}^{k_{0}} |(x_{n}(k) - x(k)) - (x_{n}(k+1) - x(k+1))|^{p_{k}}
+ \sum_{k=k_{0}+1}^{\infty} |(x_{n}(k) - x(k)) - (x_{n}(k+1) - x(k+1))|^{p_{k}}
< \frac{\varepsilon}{3} + 2^{M} (\sum_{k=k_{0}+1}^{\infty} |x_{n}(k) - x_{n}(k+1)|^{p_{k}} + \sum_{k=k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}})
= \frac{\varepsilon}{3} + 2^{M} (\varrho_{p}(x_{n}) - (|x_{n}(1)| + \sum_{k=1}^{k_{0}} |x_{n}(k) - x_{n}(k+1)|^{p_{k}})
+ \sum_{k=k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}})$$

$$< \frac{\varepsilon}{3} + 2^{M} (\varrho_{p}(x) - (|x(1)| + \sum_{k=1}^{k_{0}} |x(k) - x(k+1)|^{p_{k}}) + \frac{\varepsilon}{3 \cdot 2^{M}} + \sum_{k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}})$$

$$= \frac{\varepsilon}{3} + 2^{M} (2 \sum_{k=k_{0}+1}^{\infty} |x(k) - x(k+1)|^{p_{k}} + \frac{\varepsilon}{3 \cdot 2^{M}})$$

$$< \frac{\varepsilon}{3} + 2^{M+1} \frac{\varepsilon}{3 \cdot 2^{M+1}} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

This show that $\varrho_p(x_n-x)\to 0$ as $n\to\infty$. Hence, by Proposition 2.4 (ii), we have $||x_n-x||\to 0$ as $n\to\infty$.

Theorem 2.7 The space $\ell(\Delta, p)$ has property (H).

Proof. Let $x \in S(\ell(\Delta, p))$ and $(x_n) \subset \ell(\Delta, p)$ such that $||x_n|| \to 1$ and $x_n \xrightarrow{w} x$ as $n \to \infty$. From Proposition 2.3 (iii), we have $\varrho_p(x) = 1$, so it follows from Proposition 2.4 (i) that $\varrho_p(x_n) \to \varrho_p(x)$ as $n \to \infty$. By Lemma 2.5, we have that the coordinate mapping $P_i : \ell(\Delta, p) \to \mathbb{R}$ is continuous, so it follows that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. Thus, we have by Lemma 2.6 that $x_n \to x$ as $n \to \infty$.

Theorem 2.8 The space $\ell(\Delta, p)$ is rotund if and only if $p_k > 1$ for all $k \in \mathbb{N}$.

Proof. Necessity. Suppose that there is $k_0 \in \mathbb{N}$ such that $p_{k_0} = 1$. Let x = (1, 1, 1, ...) and $y = (\underbrace{0, 0, 0..., 0}_{k_2}, 1, 1, 1, ...)$. Then $x \neq y$ and it is easy to see that

$$\varrho_p(x) = \varrho_p(y) = \varrho_p\left(\frac{x+y}{2}\right) = 1.$$

By Proposition 2.3(iii) , we have x,y and $\frac{x+y}{2} \in S(\ell(\Delta,p))$, so that $\ell(\Delta,p)$ is not round.

Sufficiency. Suppose that $p_k > 1$ for all $k \in \mathbb{N}$. Let $x \in S(\ell(\Delta, p))$ and $y, z \in B(\ell(\Delta, p))$ with $x = \frac{y+z}{2}$. By convexity of ϱ_p and Proposition 2.3(iii), we have

$$1 = \varrho_p(x) \le \frac{1}{2}(\varrho_p(y) + \varrho_p(z)) \le \frac{1}{2} + \frac{1}{2} = 1.$$

This implies that

(2.6)
$$\varrho_p(y) = \varrho_p(z) = 1$$

(2.7)
$$\varrho_p(x) = \frac{1}{2}(\varrho_p(y) + \varrho_p(z)).$$

By (2.7), we have

$$\left| \frac{y(1) + z(1)}{2} \right| + \sum_{k=1}^{\infty} \left| \frac{(y(k) - y(k+1)) + (z(k) - z(k+1))}{2} \right|^{p_k}$$

$$= \frac{1}{2} \left(|y(1)| + \sum_{k=1}^{\infty} |y(k) - y(k+1)|^{p_k} \right) + \frac{1}{2} \left(|z(1)| + \sum_{k=1}^{\infty} |z(k) - z(k+1)|^{p_k} \right)$$

$$= \frac{1}{2} (|y(1)| + |z(1)|) + \frac{1}{2} \left(\sum_{k=1}^{\infty} |y(k) - y(k+1)|^{p_k} + \sum_{k=1}^{\infty} |z(k) - z(k+1)|^{p_k} \right),$$

which implies that

$$(2.8) |y(1) + z(1)| = |y(1)| + |z(1)| and$$

(2.9)
$$\left| \frac{(y(k) - y(k+1)) + (z(k) - z(k+1))}{2} \right|^{p_k} = \frac{1}{2} (|y(k) - y(k+1)|^{p_k} + |z(k) - z(k+1)|^{p_k})$$

for all $k \in \mathbb{N}$.

Since the function $t \mapsto |t|^{p_k}$ is strictly convex for every $k \in \mathbb{N}$, we see that (2.9) implies,

$$(2.10) y(k) - y(k+1) = z(k) - z(k+1) for all k \in \mathbb{N}.$$

It follows from (2.6) and (2.10) that |y(1)| = |z(1)|. This implies by (2.8) that y(1) = z(1). This, together with (2.10), yields by an inductive argument that y(k) = z(k) for all $k \in \mathbb{N}$. Hence y = z.

Acknowledgements

The author would like to thank the Thailand Research Fund for their financial support.

REFFERENCES

- [1] Z.U. Ahmad and Mursaleen, Köthe-Töeplitz duals of some new sequence spaces and thier matrix maps, Publ. Inst. Math. (Beograd) 42(56) (1987), 57-61.
- [2] K.W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Dissertation University of Illonios, 1960.
- [3] S. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996, pp. 356.
- [4] S. Chen and Y. Wang, H property of Orlicz spaces, Chinese Ann. Math. 8A (1987), 61-67.
- [5] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396 414.
- [6] Y. A. Cui, H. Hudzik, and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [7] Y.A. Cui, H. Hudzik, and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [8] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [9] R. Grzaslewicz, H. Hudzik, and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515.

- [10] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull 35 (1992), 1 - 5.
- [11] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [12] V.I. Istrătescu, Lecture Note in Pure and Applied Math. 87, Marcel Dekker, Inc., New York and Basel, 1984.
- [13] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-175.
- [14] A. R. Lovaglia, Locally uniformly convex Banach spaces, Tran. Amer. Math. Soc 78 (1955), 225-238.
- [15] I.J. Maddox, Continuous and Köthe-Töeplitz duals of certain sequence spaces, Proc. Camb. phil. Soc. 65 (1967), 431-435.
- [16] L. Maligranda, Orlicz Spaces and Interpolation, Institute of Mathematics, Polish Academy of Science, Poznań, Poland, 1985.
- [17] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [18] W. Orlicz, A note on modular space I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 157 - 162.
- [19] R. Pluciennik, T. Wang, and Y. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [20] C. Wu, S. Chen, and Y. Wang, H property of sequence Orlicz spaces, J. Harbin Inst. Tech. Math. issue (1985), 6 - 11.

Manuscript received November 4, 2002

A. KANANTHAI

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand. E-mail address: scmti005chiangmai.ac.th

M. MUSARLEEN

Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, India .

SUTHER SUANTAL

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand. E-mail address: Malamnkascience.cmu.ac.th

Southeast Asian Bulletin of Mathematics (2002) 26: 349-362

Southeast Asian Bulletin of Mathematics O Springer-Verlag 2002

Matrix Transformations of the Maddox Vector-Valued Sequence Spaces

Suthep Suantai

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail: malsuthe@science.cmu.ac.th

Chanan Sudsukh

Department of Mathematics Satistics and Computer Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhorn Prathom 73140, Thailand

E-mail: faaschs@nontri.ku.ac.th

AMS Subject Classification (2000): 46A45.

Abstract. In this paper, we give the matrix characterizations from any normal vector-valued FK-space containing $\phi(X)$ into scalar-valued sequence space c(q) and by applying this result, we also obtain necessary and sufficient conditions for infinite matrices mapping the sequence spaces $c_0(X, p), c(X, p), \ell_{\infty}(X, p), \ell(X, p), \underline{c_0}(X, p), E_r(X, p)$, and $F_r(X, p)$ into the space c(q), where $p = (p_k)$ and $q = (q_k)$ are bounded sequences of positive real numbers and $r \ge 0$.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces

1. Introduction

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in \mathbb{N}$. The X-valued sequence spaces $c_0(X, p), c(X, p), \ell_{\infty}(X, p), \ell(X, p)$, $c_0(X, p), E_r(X, p)$, and $F_r(X, p)$ are defined as

- (a) $c_0(X, p) = \{x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0\};$
- (b) $c(X, p) = \{x = (x_k) : \lim_{k \to \infty} ||x_k a||^{p_k} = 0 \text{ for some } a \in X\};$

- (c) $\ell(X, p) = \{x = (x_k) : \min_{k \to \infty} \|x_k\|^{p_k} < \infty\};$ (d) $\ell(X, p) = \{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty\};$ (e) $\underline{\ell_0}(X, p) = \{x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty\};$ (e) $\underline{\ell_0}(X, p) = \{x = (x_k) : \sup_{k} \|x_k/\delta_k\|^{p_k} < \infty \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_k) \in c_0 \text{ with } \delta_k \neq 0 \text{ for some } (\delta_$ $\overline{\text{all }} k \in N$ };

(f)
$$E_r(X, p) = \{x = (x_k) : \sup_k k^{-r} ||x_k||^{p_k} < \infty \};$$

(g) $F_r(X, p) = \{x = (x_k) : \sum_{k=1}^{\infty} k^r ||x_k||^{p_k} < \infty \}.$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p), c(p), \ell_{\infty}(p), \ell(p), c_0(p), E_r(p)$ and $F_r(p)$, respectively. The first three spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [9] and Maddox [5-7]. The space $\ell(p)$ was first defined by Nakano [8] and is known as the Nakano sequence space. The spaces $c_0(p)$ was first introduced by Grosse-Erdmann [3] and he investigated in [3] the structure of the spaces $c_0(p)$, c(p), $\ell(p)$, and $\ell_{\infty}(p)$. Grosse-Erdmann [4] gave the matrix characterizations between scalar-valued sequence spaces of Maddox. When $p_k = 1$, for all $k \in N$, the spaces $E_r(p)$ and $F_r(p)$ are written as E_r and F_r , respectively. These \ two spaces were first introduced by Cooke [2]. Now the problem of matrix transformations becomes more general, we consider infinite matrices of bounded linear operators instead of matrices of real or complex numbers and we consider on vector-valued sequence spaces instead of scalar-valued sequence spaces. Choudhury [1] gave the matrix characterizations mapping $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_{\infty}(Y)$, and $\ell_{1}(X)$ into $\ell_{p}(Y)$. Wu and Liu [12] deal with the problem of characterizing infinite matrices mapping $c_0(X, p)$ and $\ell_{\infty}(X, p)$ into $c_0(q)$ and $\ell_{\infty}(q)$, where $p = (p_k)$ and $q = (q_k)$ are bounded sequences of positive real numbers. Suantai [10] has given matrix characterizations from $\ell(X, p)$ into the vectorvalued sequence spaces $c_0(Y,q), c(Y)$ and $\ell_s(Y)$, where $q=(q_k)$ is a sequence of positive real numbers, Y is a Banach space and $s \ge 1$. He has also given in [11] necessary and sufficient conditions for infinite matrices mapping $\ell(X, p)$ into ℓ_{∞} and $\underline{\ell}_{\infty}(q)$.

In this paper, we extend some results in [10] and [11] and generalize some results in [4]. We also obtain some related results as mentioned in the abstract.

2. Notation and Definitions

Let $(X, \|.\|)$ be a Banach space. Let W(X) and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X. When X = K, the scalar field of X, the corresponding spaces are written as w and Φ , respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in N$ we write that x_k stand for the kth term of x. For $x \in X$ and $k \in N$, we let $e^{(k)}(x)$ be the sequence $(0,0,0,\ldots,0,x,0,\ldots)$ with x in the kth position and let e(x) be the sequence (x,x,x,\ldots) , and we denote by e the the sequence $(1,1,1,\ldots)$. For a fixed scalar sequence $u=(u_k)$ the sequence space E_u is defined as

$$\dot{E}_u = \{x = (x_k) \in W(X) : (u_k x_k) \in E\}.$$

Let $A = (f_k^n)$ with f_k^n in X', the topological dual of X. Suppose E is an X-valued sequence space and F a scalar-valued sequence space. Then A is said to map E into F, written by $A: E \to F$ if, for each $x = (x_k) \in E$, $A_n(x) =$

 $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for each $n \in \mathbb{N}$, and the sequence $Ax = (A_n(x)) \in \mathbb{F}$. We denote by (E, F) the set of all infinite matrices mapping E into F. If $u = (u_k)$ and $v = (v_k)$ are scalar sequences, let

$$u(E,F)_{p} = \{A = (f_{k}^{n}) : (u_{n}v_{k}f_{k}^{n})_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we put $u^{-1} = (1/u_k)$. An X-valued sequence space E is said to be normal if $(x_k) \in E$ and $(y_k) \in W(X)$ with $||y_k|| \le ||x_k||$ for all $k \in N$ implies that $(y_k) \in E$.

Suppose the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if, for each $k \in \mathbb{N}$ the kth coordinate mapping $p_k: E \to X$, defined by $p_k(x) = x_k$, is continuous on E. In addition, if (E, τ) is a Fre'chet (Banach) space, then E is called an FK-(BK-)space.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X, p)$, we consider the function $g(x) = \sup \|x_k\|^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X, p)$,

and it is known that $c_0(X, p)$ is an FK-space under the paranorm g defined as above. In $\ell(X, p)$, we consider it as a paranormed sequence space with the paranorm given by $\|(x_k)\| = (\sum_{k=1}^{\infty} \|x_k\|^{p_k})^{1/M}$, where $M = \max\{1, \sup_k p_k\}$. It is known that $\ell(X, p)$ is an FK-space under the paranorm defined as above.

3. Some Auxiliary Results

We start with the following useful results that will reduce our problems into some simpler forms.

Proposition 3.1. Let E and E_n $(n \in N)$ be X-valued sequence spaces, and F and F_n $(n \in N)$ scalar-valued sequence spaces, and let μ and ν be scalar sequences with $\mu_k \neq 0$, $\nu_k \neq 0$ for all $k \in N$. Then

- (i) $(\bigcup_{n=1}^{\infty} E_n, F) = \bigcap_{n=1}^{\infty} (E_n, F);$ (ii) $(E, \bigcap_{n=1}^{\infty} F_n) = \bigcap_{n=1}^{\infty} (E, F_n);$ (iii) $(E_1 + E_2, F) = (E_1, F) \cap (E_2, F);$ (iv) $(E_u, F_v) = {}_{v}(E, F)_{u^{-1}}.$

Proof. All assertions are immediately obtained directly by the definition.

Propostion 3.2. Let $p = (p_k)$ be a bounded sequences of positive real numbers and $r \geq 0$. Then

- (i) $c(X, p) = c_0(X, p) + \{e(x) : x \in X\};$ (ii) $c_0(X, p) = \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})};$
- (iii) $\overline{E}_r(X,p) = \ell_\infty(X,p)_{(k^{-r/p_k})};$
- (iv) $F_r(X, p) = \ell(X, p)_{(k'/p_k)}$;
- $(\mathsf{v}) \; \ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/\rho_k})}.$

Proof. Assertions (i), (iii) and (iv) are immediately obtained by the definition. To show (ii), let $x = (x_k) \in \underline{c_0}(X, p)$. Then there is a sequence $(\delta_k) \in c_0$ with $\delta_k \neq 0$ for all $k \in N$ such that $\sup_k ||x_k/\delta_k||^{p_k} < \infty$. Hence there exists $\alpha > 0$ such that $||x_k|| \le \alpha^{1/p_k} |\delta_k|$ for all $k \in N$. Choose $n_0 \in N$ so that $n_0 > \alpha$. Then

$$||x_k||n_0^{-1/p_k} \le (\alpha/n_0)^{1/p_k}|\delta_k| < |\delta_k|,$$

which implies that $\lim_{k\to\infty} ||x_k|| n_0^{-1/p_k} = 0$, hence $x = (x_k) \in c_0(X)_{(n_0^{-1/p_k})} \subseteq \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. On the other hand, suppose $x = (x_k) \in \bigcup_{n=1}^{\infty} c_0(X)_{(n^{-1/p_k})}$. Then $\lim_{k\to\infty} ||x_k|| n^{-1/p_k} = 0$ for some $n \in N$. Let $\delta = (\delta_k)$ be the sequence defined by

$$\delta_k = \begin{cases} \|x_k\| n^{-1/p_k}, & \text{if } x_k \neq 0\\ 1/k, & \text{otherwise.} \end{cases}$$

Clearly, $(\delta_k) \in c_0$ and $||x_k/\delta_k||^{p_k} \le n$ for all $k \in N$, hence $\sup_k ||x_k/\delta_k||^{p_k} \le n$, so $x = (x_k) \in c_0(X, p)$.

It remains to show (v). If $x \in \ell_{\infty}(X, p)$, then there is some $n \in N$ with $||x_k||^{p_k} \le n$ for all $k \in N$. Hence $||x_k||^{n-1/p_k} \le 1$ for all $k \in N$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in N$ and M > 1 such that $||x_k||^{n-1/p_k} \le M$ for every $k \in N$. Then we have $||x_k||^{p_k} \le nM^{p_k} \le nM^{\alpha}$ for all $k \in N$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

Proposition 3.3. Let (f_k) be a sequence of continuous linear functionals on X. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$ if and only if $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$.

Proof. Suppose $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in N$. Let $x = (x_k) \in c_0(X, p)$. Then there is a positive integer K_0 such that $\|x_k\|^{p_k} < 1/M$ for all $k \ge K_0$, hence $\|x_k\| < M^{-1/p_k}$ for all $k \ge K_0$. Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \leq \sum_{k=K_0}^{\infty} ||f_k|| \, ||x_k|| \leq \sum_{k=K_0}^{\infty} ||f_k|| M^{-1/p_k} < \infty.$$

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

On the other hand, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$. For each $x = (x_k) \in c_0(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in c_0(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x \in c_0(X, p).$$
 (3.1)

Now, suppose that $\sum_{k=1}^{\infty} ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. Choose $m_1, k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} \|f_k\| m_1^{-1/p_k} > 1$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} \|f_k\| m_2^{-1/p_k} > 2.$$

Proceeding in this way, we can choose $m_1 < m_2 < \cdots$, and $0 = k_1 < k_2 < \cdots$ such

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| m_i^{-1/p_k} > i.$$

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} \le k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \text{for all } i \in N.$$

Put $y = (y_k)$, $y_k = m_i^{-1/p_k} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \text{for all } i \in N.$$

Hence we have $\sup_{k=1}^{\infty} |f_k(y_k)| = \infty$ which contradicts with (3.1). This completes the proof.

Proposition 3.4. Let (f_k) be a sequence of continuous linear functionals on . X. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X, p)$ if and only if $\sum_{k=1}^{\infty} \|f_k\| m^{1/p_k} < \infty$ for all $m \in \mathbb{N}$.

Proof. If $\sum_{k=1}^{\infty} \|f_k\| m^{1/p_k} < \infty$ for all $m \in \mathbb{N}$, we have that for each $x = (x_k) \in \ell_{\infty}(X, p)$, there is $m_0 \in \mathbb{N}$ such that $\|x_k\| \le m_0^{1/p_k}$ for all $k \in \mathbb{N}$, hence $\sum_{k=1}^{\infty} |f_k(x_k)| \le \sum_{k=1}^{\infty} \|f_k\| \|x_k\| \le \sum_{k=1}^{\infty} \|f_k\| m_0^{1/p_k} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x = (x_k) \in \ell_{\infty}(X, p).$$
 (3.2)

Now, suppose that $\sum_{k=1}^{\infty} ||f_k|| M^{1/p_k} = \infty$, for some $M \in \mathbb{N}$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < \cdots$ such that

$$\sum_{k_{i-1} < k \le k_i} \|f_k\| M^{1/p_k} > i \quad \text{for all } i \in \mathbb{N}.$$

And we choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| M^{1/p_k} > i.$$

Put $y = (y_k)$, $y_k = M^{1/p_k} x_k$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i}^{\infty} |f_k(x_k)| M^{1/p_k} > i \quad \text{for all } i \in \mathbb{N}.$$

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.2). The proof is now completed.

Proposition 3.5. Let (f_k) be a sequence of continuous linear functionals on X and $p = (p_k)$ a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$ if and only if $\sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in \mathbb{N}$, where $1/p_k + 1/t_k = 1$ for all $k \in \mathbb{N}$.

Proof. Suppose $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in \mathbb{N}$. Then we have that for each $x = (x_k) \in \ell(X, p)$,

$$\begin{split} \sum_{k=1}^{\infty} |f_k(x_k)| &\leq \sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} M^{1/p_k} \|x_k\| \\ &\leq \sum_{k=1}^{\infty} (\|f_k\|^{t_k} M^{-t_k/p_k} + M \|x_k\|^{p_k}) \\ &= \sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} + M \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty, \end{split}$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges. On the other hand, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in$ $\ell(X, p)$. By using the same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x = (x_k) \in \ell(X, p).$$
 (3.3)

We want to show that there exists $M \in N$ such that $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$. If it is not true, then

$$\sum_{k=1}^{\infty} \|f_k\|^{t_k} m^{-(t_k-1)} = \infty, \quad \text{for all } m \in \mathbb{N}.$$
 (3.4)

It implies by (3.4) that for each $k \in N$,

$$\sum_{i>k} ||f_i||^{t_i} m^{-(t_i-1)} = \infty, \text{ for all } m \in N.$$
 (3.5)

By (3.4), let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k \le k_1} \|f_k\|^{t_k} m_1^{-(t_k-1)} > 1.$$

By (3.5), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{k_1 < k \le k_2} \|f_k\|^{t_k} m_2^{-(t_k - 1)} > 1. \tag{3.6}$$

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < \cdots$ and $m_1 < m_2 < \cdots$, such that $m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} \|f_k\|^{t_k} m_i^{-(t_k-1)} > 1.$$

For each $i \in N$, choose x_k in X with $||x_k|| = 1$ for all $k \in N$, $k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k - 1)} > 1 \quad \text{for all } i \in N.$$

Let $a_i = \sum_{\substack{k_{i-1} < k \le k_i \\ \text{for all } k \ k_{i-1} < k \le k_i.}} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-(t_k-1)} |f_k(x_k)|^{t_k-1} x_k$

$$\sum_{k_{i-1} < k \le k_i} \|y_k\|^{p_k} = \sum_{k_{i-1} < k \le k_i} \|a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k\|^{p_k}$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-t_k} |f_k(x_k)|^{t_k}$$

$$\leq \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} m_i^{-1} a_i$$

$$= m_i^{-1}$$

$$< 1/2^i.$$

So we have that $\sum_{k=1}^{\infty} \|y_k\|^{p_k} \le \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} |f_k(a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k)|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= 1$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3.3). The proof is now complete.

Proposition 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \le 1$ for all $k \in N$ and $(f_k) \subset X'$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \mathcal{C}(X, p)$ if and only if there exists $M \in N$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$.

Proof. If $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Proposition 3.3, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \text{for all } x = (x_k) \in \ell(X, p)$$
 (3.7)

Suppose that $\sup_{k} ||f_{k}|| m^{-1/p_{k}} = \infty$ for all $m \in \mathbb{N}$. For each $i \in \mathbb{N}$, choose sequences (m_{i}) and (k_{i}) of positive integers with $m_{1} < m_{2} < \cdots$ and $k_{1} < k_{2} < \cdots$ such that $m_{i} > 2^{i}$ and $||f_{k_{i}}|| m_{i}^{-1/p_{k_{i}}} > 1$. Choose $x_{k_{i}} \in X$ with $||x_{k_{i}}|| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1. (3.8)$$

Let $y = (y_k)$, $y_k = m_i^{-1/p_{k_i}} x_{k_i}$ if $k = k_i$ for some *i*, and 0 otherwise. Then $\sum_{k=1}^{\infty} ||y_k||^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1$, so that $(y_k) \in \ell(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i})|$$

$$= \sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})| = \infty \quad \text{by (3.8)},$$

and this is contradictory with (3.7). Therefore, there exists $M \in N$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$.

Conversely, assume that there exists $M \in N$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$. Let $x = (x_k) \in \mathcal{E}(X, p)$, then there is a K > 0 such that

$$||f_k|| \le KM^{1/p_k} \quad \text{for all } k \in N \tag{3.9}$$

and there is a $k_0 \in N$ such that $|M^{1/p_k}||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in N$, we have that for all $k \ge k_0$,

$$M^{1/p_k} ||x_k|| \le (M^{1/p_k} ||x_k||)^{p_k} = M ||x_k||^{p_k}. \tag{3.10}$$

Then

$$\begin{split} \sum_{k=1}^{\infty} |f_k(x_k)| &\leq \sum_{k=1}^{k_o} ||f_k|| \, ||x_k|| + \sum_{k=k_0+1}^{\infty} ||f_k|| \, ||x_k|| \\ &\leq \sum_{k=1}^{k_o} ||f_k|| \, ||x_k|| + K \sum_{k=k_0+1}^{\infty} M^{1/p_k} ||x_k|| \quad \text{(by (3.9))} \\ &\leq \sum_{k=1}^{k_o} ||f_k|| \, ||x_k|| + K M \sum_{k=k_0+1}^{\infty} ||x_k||^{p_k} \quad \text{(by (3.10))} \\ &< \infty. \end{split}$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let $q = (q_k)$ be a bounded sequence of positive real numbers and let E be a normal X-valued sequence space which is an FK-space and contains $\Phi(X)$. Then

$$(E, c(q)) = (E, c_0(q)) \oplus (E, \langle e \rangle).$$

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X-valued sequence space which is an FK-space and contains $\Phi(X)$. Then for each $k \in N$, the mapping $T_k : X \to E$, defined by $T_k x = e^k(x)$, is continuous.

Proof. Let $V = \{e^k(x) : x \in X\}$. Then V is a closed subspace of E, so it is an FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, which implies that $p_k^{-1} : X \to V$ is continuous. But since $T_k = p_k^{-1}$, we thus obtain that T_k is continuous.

Lemma 4.2. Let $q = (q_k)$ be a bounded sequence of positive real numbers. If E and F are scalar-valued sequence spaces such that E is normal containing Φ and F is an FK-space with the property that for each $x = (x_k) \in F$, there is a subsequence (x_{n_k}) of (x_k) with $x_{n_k} \to 0$ as $k \to \infty$, then $(E, F \oplus \langle e \rangle) = (E, F) \oplus (E, \langle e \rangle)$.

Proof. See [2, Proposition 3.1(vi)].

Proof of Theorem 4.1. Since $c(q) = c_0(q) \oplus \langle e \rangle$, it is clear that $(E, c_0(q)) + (E, \langle e \rangle) \subseteq (E, c_0(q) \oplus \langle e \rangle) = (E, c(q))$. Moreover, if $A \in (E, c_0(q)) \cap (E, \langle e \rangle)$, then $A \in (E, c_0(q)) \cap \langle e \rangle$, so that $A \in (E, 0)$, which implies that A = 0 because E contain $\Phi(X)$. Hence $(E, c_0(q)) + (E, \langle e \rangle)$ is a direct sum. Now, we will show that $(E, c(q)) \subseteq (E, c_0(q)) \oplus (E, \langle e \rangle)$. Let $A = (f_k^n) \in (E, c(q)) = (E, c_0(q) \oplus \langle e \rangle)$. For $x \in X$ and $k \in N$, we have $(f_k^n(x))_{n=1}^\infty = Ae^k(x) \in c_0(q) \oplus \langle e \rangle$, so that there exists unique $(b_k^n(x))_{n=1}^\infty \in c_0(q)$ and $(c_k^n(x))_{n=1}^\infty \in \langle e \rangle$ with

$$(f_k^n(z))_{n=1}^{\infty} = (b_k^n(z))_{n=1}^{\infty} + (c_k^n(z))_{n=1}^{\infty}. \tag{4.1}$$

For each $n, k \in N$, let g_k^n and h_k^n be the functionals on X defined by

$$g_k^n(x) = b_k^n(x)$$
 and $h_k^n(x) = c_k^n(x)$ for all $x \in X$.

Clearly, g_k^n and h_k^n are linear, and by (4.1)

$$f_k^n = g_k^n + h_k^n \quad \text{for all } n, k \in N.$$
 (4.2)

Note that $c_0(q) \oplus \langle e \rangle$ is an FK-space in its direct sum topology. By Zeller's theorem, $A: E \to c_0(q) \oplus \langle e \rangle$ is continuous. For each $k \in N$, let $T_k: X \to E$ be defined by $T_k(x) = e^k(x)$. By Lemma 4.1, we have that T_k is continuous for all $k \in N$. Since the projection P_1 of $c_0(q) \oplus \langle e \rangle$ onto $c_0(q)$ and the projection P_2 of $c_0(q) \oplus \langle e \rangle$ onto $\langle e \rangle$ are continuous and $g_k^n = p_n \circ P_1 \circ A \circ T_k$ and $h_k^n = p_n \circ P_2 \circ A \circ T_k$ for all $n, k \in N$, we obtain that g_k^n and h_k^n are continuous, so $g_k^n, h_k^n \in X'$ for all $n, k \in N$. Let $B = (g_k^n)$ and $C = (h_k^n)$. By (4.1) and (4.2) we have A = B + C, $B = (g_k^n) \in (\Phi(X), c_0(q))$ and $C = (h_k^n) \in (\Phi(X), \langle e \rangle)$. We will show that $B \in (E, c_0(q))$ and $C \in (E, \langle e \rangle)$. To do this, let $x = (x_k) \in E$. Then for $\alpha = (\alpha_k) \in \ell_\infty$, we have $\|\alpha_k x_k\| = |\alpha_k| \|x_k\| \le \|Mx_k\|$, where $M = \sup_k |\alpha_k|$. Then the normality of E implies that $(\alpha_k x_k) \in E$. Hence $(f_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q) \oplus \langle e \rangle)$, moreover, we have $(g_k^n(x_k))_{n,k} \in (\Phi, c_0(q))$, $(h_k^n(x_k))_{n,k} \in (\Phi, \langle e \rangle)$, and $(f_k^n(x_k))_{n,k} = (g_k^n(x_k))_{n,k} + (h_k^n(x_k))_{n,k}$. Since ℓ_∞ is normal containing Φ and $c_0(q) \subseteq c_0$, it follows from Lemma 4.2 that $(g_k^n(x_k))_{n,k} \in (\ell_\infty, c_0(q))$ and $(h_k^n(x_k))_{n,k} \in (\ell_\infty, \langle e \rangle)$. This implies that $Bx \in c_0(q)$ and $Cx \in \langle e \rangle$, so we have $B \in (E, c_0(q))$ and $C \in (E, \langle e \rangle)$, hence $A \in (E, c_0(q)) \oplus (E, \langle e \rangle)$. This completes the proof.

Theorem 4.2. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c_0(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty$ for some $M \in N$,
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $m, k \in N$ and (3) $\sum_{k=1}^{\infty} m^{1/q_n} ||f_k^n f_k|| r^{-1/p_k} \to 0$ as $n, r \to \infty$ for each $m \in N$.

Proof. If $A \in (c_0(X, p), c(q))$ we have $A \in (c_0(X, p), c_0(q) \oplus \langle e \rangle)$ since c(q) = $c_0(q) \oplus \langle e \rangle$. It follows from Theorem 4.1 that A = B + C, where $B \in$ $(c_0(X,p),c_0(q))$ and $C \in (c_0(X,p),\langle e \rangle)$. Let $C = (g_k^n)$. Since $\Phi(X) \subseteq c_0(X,p)$, we have $(g_k^n(x))_{n=1}^{\infty} \in \langle e \rangle$ for all $x \in X$ and $k \in N$, which implies that $g_k^n = g_k^{n+1}$ for all $n, k \in N$, let $f_k = g_k^1$. Then we have $B = (f_k^n - f_k)_{n,k} \in (c_0(X, p), c_0(q))$. By [3, Theorem 0 (i)], we have $c_0(q) = \bigcap_{m=1}^{\infty} c_0(m^{1/p_k})$. It follows from Proposition 3.1(ii) and (iv) that $(m^{1/q_n}(f_k^n - f_k))_{n,k} \in (c_0(X, p), c_0)$ for all $m \in N$. By Wu [11, Theorem 2.4], we have that the conditions (2) and (3) hold. Since $C = (f_k)_{n,k} \in$ $(c_0(X, p), \langle e \rangle)$, we have $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = x_k \in c_0(X, p)$, hence (1) is obtained by Proposition 3.3.

Conversely, assume that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that conditions (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By conditions (2) and (3), we obtain by Proposition 3.1(ii) and (iv), and Wu [11, Theorem 2.4] that $B \in (c_0(X, p), c_0(q))$. The condition (1) implies by Proposition 3.3 that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in$ $c_0(X, p)$, which implies that $C \in (c_0(X, p), \langle e \rangle)$. Hence we have by Theorem 4.1 that $A \in (c_0(X, p), c(q))$. This completes the proof.

Theorem 4.3. Let $q = (q_k)$ be bounded sequences of positive real numbers and $A=(f_k^n)$ an infinite matrix. Then $A:\ell_\infty(X)\to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} \|f_k\| < \infty$, (2) $m^{1/q_n} (f_k^n f_k) \stackrel{\text{w.}}{\to} as \ n \to \infty \ for \ every \ k, m \in N \ and$ (3) for each $m, r \in N$, $\sum_{j>k} m^{1/q_n} \|f_j^n f_j\| r^{1/p_j} \to 0 \ as \ k \to \infty \ uniformly \ on \ n \in N$.

Proof. If $A \in (\ell_{\infty}(X), c(q))$, then the condition (1) holds by Proposition 3.4. It follows from Theorem 4.1 that A = B + C, where $B \in (\ell_{\infty}(X), c_0(q))$ and $C \in$ $(\ell_{\infty}(X), \langle e \rangle)$. Using the same proof as in Theorem 4.2, there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that $C = (f_k)_{n,k}$ and $B = (f_k^n - f_k)_{n,k} \in (\ell_{\infty}(X), c_0(q))$. Since $c_0(q) = \bigcap_{k=1}^{\infty} c_{\ell_{\infty}(1/n_k)}$, we thus obtain (2) and (3) by Proposition 3.1(ii) and (iv), and Wu [11, Theorem 2.9].

Conversely, assume that there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that condition (1), (2) and (3) hold. Let $B = (f_k^n - f_k)_{n,k}$ and $C = (f_k)_{n,k}$. It is obvious that A = B + C. By conditions (2) and (3), we obtain by Proposition 3.1(ii) and (iv), and Wu [11, Theorem 2.9] that $B \in (\ell_{\infty}(X), c_0(q))$. The condition (1) implies by Proposition 3.4 that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X)$, which implies that $C \in (\ell_{\infty}(X), \langle e \rangle)$. Hence, we have by Theorem 4.1 that $A \in (\ell_{\infty}(X), c(q))$. This completes the proof.

Theorem 4.4. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : \ell_{\infty}(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} \|f_k\| m^{1/p_k} < \infty$ for all $m \in N$, (2) $r^{1/q_n} (m^{1/p_k} f_k^n f_k) \stackrel{\text{w}}{\to} 0$ as $n \to \infty$ for every $m, k, r \in N$ and (3) for each $m, r, s \in N$, $\sum_{j>k} r^{1/q_n} \|m^{1/p_j} f_j^n f_j\| s^{1/p_j} \to 0$ as $k \to \infty$ uniformly on $n \in N$.

Proof. By Proposition 3.2 (v), $\ell_{\infty}(X, p) = \bigcup_{m=1}^{\infty} \ell_{\infty}(X)_{(m^{-1/p_k})}$. It follows from Proposition 3.1(i) and (iv), Proposition 3.4 and Theorem 4.3 that

$$A: \ell_{\infty}(X, p) \to c(q) \Leftrightarrow (m^{1/p_k} f_k^n)_{n,k} : \ell_{\infty}(X) \to c(q)$$
 for all $m \in N$ \Leftrightarrow the conditions (1), (2), and (3) hold.

Theorem 4.5. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers and $A = (f_k^n)$ an infinite matrix. Then $A : c(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} \|f_k\| M^{-1/p_k} < \infty$ for some $M \in \mathbb{N}$, (2) $m^{1/q_n} (f_k^n f_k) \stackrel{\text{w.}}{\to} 0$ as $n \to \infty$ for every $m, k \in \mathbb{N}$, (3) $\sum_{k=1}^{\infty} m^{1/q_n} \|f_k^n f_k\| r^{-1/p_k} \to 0$ as $n, r \to \infty$ for every $m \in \mathbb{N}$ and (4) $(\sum_{k=1}^{\infty} f_k^n(x))_{n=1}^{\infty} \in c(q)$ for all $x \in X$.

Proof. Since $c(X, p) = c_0(X, p) + \{e(x) : x \in X\}$ (Proposition 3.2 (i)), it follows from Proposition 3.1(iii) that $A \in (c(X, p), c(q))$ if and only if $A \in (c_0(X, p), c(q))$ and $A \in (\{e(x) : x \in X\}, c(q))$. By Theorem 4.2, we have $A \in (c_0(X, p), c(q))$ if and only if conditions (1)-(3) hold and it is clear that $A \in \{\{e(x) : x \in X\}, c(q)\}$ if and only if (4) holds. Hence, the theorem is proved.

Wu [12, Theorem 2.7] has given a characterization of an infinite matrix A such that $A \in (\ell(X, p), c_0)$ when $p_k > 1$ for all $k \in N$. By applying of Proposition 3.1(ii) and (iv), Proposition 3.5 and Theorem 4.1, and using the fact that $\bigcap_{m=1}^{\infty} c_{0_{m-1}/p_{k}}$, we obtain the following result.

Theorem 4.6. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in N$ and $1/p_k + 1/t_k = 1$ for all $k \in N$, and let $A = (f_k^n)$ be an infinite matrix. Then $A: \ell(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in N$,
- (2) $m^{1/q_n}(f_k^n f_k) \xrightarrow{w} 0$ as $n \to \infty$ for all $m, k \in \mathbb{N}$ and (3) for each $m \in \mathbb{N}$, $(\sum_{k=1}^{\infty} m^{t_k/q_n} || f_k^n f_k ||^{t_k} r^{-(t_k-1)}) \to 0$ as $r \to \infty$ uniformly on $n \in N$.

By using [12, Theorem 2.6], Proposition 3.1(ii) and (iv), Proposition 3.6 and Theorem 4.1, we also obtain the following result.

Theorem 4.7. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k \le 1$ for all $k \in \mathbb{N}$ and $A = (f_k^n)$ an infinite matrix. Then $A: \ell(X,p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$

- (1) $\sup_{k} \|f_{k}\| M^{-1/p_{k}} < \infty \text{ for some } M \in \mathbb{N},$ (2) $m^{1/q_{n}} (f_{k}^{n} f_{k}) \xrightarrow{w^{*}} 0 \text{ as } n \to \infty \text{ for all } m, k \in \mathbb{N} \text{ and}$ (3) $\sup_{n,k} m^{p_{k}/q_{n}} \|f_{k}^{n} f_{k}\|^{p_{k}} < \infty \text{ for all } m \in \mathbb{N}.$

Theorem 4.8. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numhers and $A = (f_k^n)$ an infinite matrix. Then $A : c_0(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| < \infty$, (2) $m^{1/q_n} (s^{1/p_k} f_k^n f_k) \xrightarrow{w^*} 0$ as $n \to \infty$ for every $m, k, s \in N$ and

(3)
$$\frac{1}{r} \sum_{k=1}^{\infty} m^{1/q_k} ||s^{1/p_k} f_k^n - f_k|| \to 0 \text{ as } n, r \to \infty \text{ for each } m, s \in \mathbb{N}.$$

Proof. By Proposition 3.2(ii), we have $\underline{c_0}(X, p) = \bigcup_{s=1}^{\infty} c_0(X)_{(s^{-1/p_k})}$. By Proposition 3.2(i) and (iv) and Theorem 4.2, we have

$$A: \underline{c_0}(X, p) \to c(q) \Leftrightarrow A: \bigcup_{s=1}^{\infty} c_0(X)_{(s^{-1/p_k})} \to c(q)$$

$$\Leftrightarrow A: c_0(X)_{(s^{-1/p_k})} \to c(q), \quad \text{for all } s \in N$$

$$\Leftrightarrow (s^{1/p_k} f_k^n)_{n,k} : c_0(X) \to c(q), \quad \text{for all } s \in N$$

$$\Leftrightarrow \text{the conditions } (1), (2) \text{ and } (3) \text{ hold.}$$

Theorem 4.9. Let $p = (p_k)$ and $q = (q_k)$ be a bounded sequences of positive real numbers and $r \geq 0$, and let $A = (f_k^n)$ be an infinite matrix. Then $A : E_r(X, p) \rightarrow c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$ for all $m \in N$,
- (2) $r^{1/q_n}(m_i^{1/p_k}k^{r/p_k}f_k^n f_k) \xrightarrow{w} 0$ as $n \to \infty$ for every $m, k, r \in \mathbb{N}$ and (3) for each $m, r, s \in \mathbb{N}$, $\sum_{j>k} r^{1/q_n} \|m^{1/p_j}j^{r/p_j}f_j^n f_j\|s^{1/p_j} \to 0$ as $k \to \infty$ uniformly on $n \in \mathbb{N}$.

Proof. By Proposition 3.2(iii), we have $E_r(X, p) = \ell_{\infty}(X, p)_{(k^{-r/p_k})}$. By Proposition 3.1 (iv) and Theorem 4.4, we have

$$A: E_r(X, p) \to c(q) \Leftrightarrow A: \ell_{\infty}(X, p)_{(k^{-r/p_k})} \to c(q)$$

$$\Leftrightarrow (k^{r/p_k} f_k^n)_{n,k} : \ell_{\infty}(X, p) \to c(q)$$

$$\Leftrightarrow \text{the conditions (1), (2) and (3) hold.}$$

In the last theorem, we give a characterization of a matrix transformation from

the space $F_r(X, p)$ into c(q). It is known by Proposition 3.2 (iv) that $F_r(X, p) =$ $\ell(X,p)_{(k'/p_k)}$. By Proposition 3.1(iv), for a scalar sequence space E and an infinite ___ matrix $A = (f_k^n)$, we have

$$A: F_r(X,p) \to E \Leftrightarrow (k^{-r/p_k}f_k^n)_{n,k}: \ell(X,p) \to E.$$

So we the following theorem is obtained by applying Theorem 4.6.

Theorem 4.10. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$, $1/p_k + 1/t_k = 1$ for all $k \in \mathbb{N}$ and $r \ge 0$, and let $A = (f_k^n)$ be an infinite matrix. Then $A : F_r(X, p) \to c(q)$ if and only if there is a sequence (f_k) with $f_k \in X'$ for all $k \in N$ such that

- (1) $\sum_{k=1}^{\infty} \|f_k\|^{t_k} k^{-rt_k/p_k} M^{-(t_k-1)} < \infty$ for some $M \in \mathbb{N}$, (2) $m^{1/q_n} (k^{-r/p_k} f_k^n f_k) \xrightarrow{w} 0$ as $n \to \infty$ for all $m, k \in \mathbb{N}$ and (3) for each $m \in \mathbb{N}$, $\sum_{k=1}^{\infty} m^{t_k/q_n} \|k^{-r/p_k} f_k^n f_k\|^{t_k} r^{-(t_k-1)} \to 0$ as $r \to \infty$ uniformly on $n \in N$.

Acknowledgements. The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

References

- 1. Choudhury, A.: Matrix transforms of vector valued sequence spaces, Bull. Call. Math. Soc. 84 1, 47-54 (1992).
- Cooke, R.G.: Infinite Matrices and sequence spaces, Macmillan, London, 1950.
- 3. Grosse-Erdmann, K.-G.: The structure of the sequence spaces of Maddox, Canad. J. Math. 44, 298-307 (1992).
- 4. Grosse-Erdmann, K.-G.: Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180, 223-238 (1993).
- 5. Maddox, I.J.: Spaced of strongly summable sequences, Quart. J. Math. Oxford Ser 18(2), 345-355 (1967).
- 6. Maddox, I.J.: Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64, 335-340 (1968).
- 7. Maddox, I.J.: Elements of functional analysis, Cambridge University Press, London, New York, Melbourne, 1951.
- Nakano, H.: Modulared sequence spaces, Proc. Japan. Acad. 27, 508-512 (1951).
- 9. Simons, S.: The spaces $\ell(p_0)$ and $m(p_0)$, Proc. London. Math. Soc. 15, 422-436 (1965).
- Suantai, S.: Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math. 24, 1-7 (2000).
- 11. Suantai, S.: Matrix transformations related to Nakano Vector-Valued sequence spaces, Bull. Cal. Math. Soc. 91(3), 221-226 (1999).
- 12. Wu, C.X., Liu, L.: Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math. 17(1), 83-96 (1993).

Reprinted from

KYUNGPOOK

Mathematical Journal

Matrix transformations of Nakano vector-valued sequence space

Suthep Suantai and Chanan Sudsukh

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai

50200. Thailand

e-mail: Scmti005@chiangmai.ac.th malsuthe@science.cmu.ac.th

Matrix Transformations of Nakano Vector-valued Sequence Space

SUTHEP SUANTAI AND CHANAN SUDSUKH

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

e-mail: Scmti005@chiangmai.ac.th; malsuthe@science.cmu.ac.th

(1991 AMS Mathematics Subject Classification: 46A45.)

In this paper, we give necessary and sufficient conditions for infinite matrices mapping Nakano vector-valued sequence space $\ell(X,p)$ into the sequence spaces $E_r(r \geq 0)$ and we also give the matrix characterlizations from $M_0(X,p)$ into the space E_r where $p=(p_k)$ is a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$.

1. Introduction

For $r \geq 0$, the normed sequence space E_r was first defined by Cooke [1] as follows:

$$E_r = \{ x = (x_k) \mid \sup_k \frac{|x_k|}{k^r} < \infty \}$$

equipped with the norm

$$||x|| = \sup_{k} \frac{|x_k|}{k^r}.$$

Let (X, ||.||) be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. We write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p)$, c(X, p), $\ell_{\infty}(X, p)$, $\ell(X, p)$, and $M_0(X, p)$ are defined as

$$\begin{split} c_0(X,p) &= \{x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0\}, \\ c(X,p) &= \{x = (x_k) : \lim_{k \to \infty} ||x_k - a||^{p_k} = 0 \text{ for some } a \in X\}, \\ \ell_\infty(X,p) &= \{x = (x_k) : \sup_{k \to \infty} ||x_k||^{p_k} < \infty\}, \\ \ell(X,p) &= \{x = (x_k) : \sum_{k=1}^k ||x_k||^{p_k} < \infty\}, \\ M_0(X,p) &= \bigcup_{n=1}^\infty \ell(X)_{(n^{-1/p_k})} \end{split}$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, $\ell(p)$, and $M_0(p)$, respectively. The spaces $c_0(p)$, c(p), $\ell_{\infty}(p)$ are known as the sequence spaces of Maddox. These spaces were first introduced and studied

⁽Received: September 9, 1999)

The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

by Simons [7], Maddox [4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and it is known as the Nakano sequence space and the space $\ell(X,p)$ is known as the Nakano vector-valued sequence space. The spaces $M_0(p)$ was first introduced by Grosse-Erdmann [2] and he has investigated the structure of the spaces $c_0(p)$, c(p) and $\ell_{\infty}(p)$. Grosse-Erdmann [3] gave the matrix characterizations between scalar-valued sequence spaces of Maddox. Wu and Liu [9] dealt with the problem of characterizations those infinite matrices mapping $c_0(X,p)$, $\ell_{\infty}(X,p)$ into $c_0(q)$ and $\ell_{\infty}(q)$ where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers.

Suantai [8] gave necessary and sufficient conditions for infinite matrices mapping $\ell(X,p)$ into ℓ_{∞} and $\underline{\ell}_{\infty}(q)$ where $p=(p_k)$ and $q=(q_k)$ are bounded sequence positive real numbers with $p_k \leq 1$ for all $k \in N$.

In this paper we give characterizations of infinite matrices mapping $\ell(X,p)$ and $M_0(X,p)$ into the sequence space E_r when $p_k \leq 1$ for all $k \in N$ and $r \geq 0$. Some results in [8] are obtained as special cases of this paper.

2. Notation and Definitions

Let (X, ||.||) be a Banach space. The space of all sequences and the space of all finite sequences in X are denoted by W(X) and $\Phi(X)$, respectively. When X is K, the scalar field of X, the corresponding spaces are written as w and Φ .

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in N$, we write x_k standing for the k^{th} term of x. For $x \in X$ and $k \in N$, let $e^k(x)$ be the sequence (0,0,...,0,x,0,...) with x in the k^{th} position and let e(x) be the sequence (x,x,x,...). For a fixed scalar sequence $\mu = (\mu_k)$ the sequence space E_{μ} is defined as

$$E_{\mu}=\{x\in W(X): (\mu_k x_k)\in E\}\ .$$

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to $map\ E$ into F, written by $A:E\to F$ if for each $x=(x_k)\in E$, $A_n(x)=\sum_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$, and the sequence $Ax=(A_n(x))\in F$. Let (E,F) denote for the set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $k \in N$ the k^{th} coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E, τ) is an Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^n e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^n e^k(x_k) \to x$ in E as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

It is known that E_{τ} is a BK-sapce and $E_0=\ell_{\infty}$. The space $\ell(X,p)$ is an FK-space with AK under the paranorm $g(x)=\left(\sum_{k=1}^{\infty}\|x_k\|^{p_k}\right)^{1/M}$, where M=

 $\max \{1, \sup_k p_k\}$. In each of the space $\ell_\infty(X, p)$ and $c_0(X, p)$ we consider the function $g(x) = \sup_k \|x_k\|^{p_k/M}$, where $M = \max \{1, \sup_k p_k\}$. It is known that $c_0(X, p)$ is an FK-space with AK under the paranorm g defined as above and $\ell_\infty(X, p)$ is a complete LBK-space with AB.

3. Main Results

We start with giving the matrix characterizations from $\ell(X,p)$ into E_r .

Theorem 3.1. Let $r \geq 0$ and let $p = (p_k)$ be bounded sequences of positive real numbers with $p_k \leq 1$ and let $A = (f_k^n)$ be an infinite matrix. Then $A \in (\ell(X, p), E_r)$ if and only if there is $m_0 \in N$ such that $\sup_{n,k} m_0^{-1/p_k} n^{-r} ||f_k^n|| < \infty$.

Proof. Assume that $A \in (\ell(X, p), E_r)$. In $\ell(X, p)$, we consider it as a paranormed space with the paranorm g defined as above and since $p_k \leq 1$ for all $k \in N$, we have $M = max \{1, \sup_k p_k\} = 1$. Now, we write $\|.\|$ standing for the paranorm g. By Zeller's theorem, $A : \ell(X, p) \to E_r$ is continuous. Then there is $m_0 \in N$ such that

$$\sup_{n} n^{-r} \Big| \sum_{k=1}^{\infty} f_k^n(x_k) \Big| \le 1 \quad \text{for all } x \in \ell(X, p) \quad \text{with } ||x|| \le \frac{1}{m_0} \ . \tag{3.1}$$

Let $n, k \in N$ be fixed and let $x_k \in X$ be such that $||x_k|| \le 1$. Then $e^{(k)}(m_0^{-1/p_k}x_k) \in \ell(X, p)$ and $||e^{(k)}(m_0^{-1/p_k}x_k)|| \le \frac{1}{m_0}$. By (3.1), we have

$$m_0^{-1/p_k} n^{-r} |f_k^n(x_k)| \leq \sup_{i \in N} i^{-r} |f_k^i(m_0^{-1/p_k} x_k)| = ||Ae^{(k)}(m_0^{-1/p_k} x_k)|| \leq 1.$$

It implies that $\sup_{n,k} |m_0^{-1/p_k} n^{-r}||f_k^n|| < \infty.$

Conversely, assume that the condition holds. Let $x=(x_k)\in \ell(X,p)$. By assumption, there is a C>0 such that

$$m_0^{-1/p_k} n^{-r} ||f_k^n|| < C \text{ for all } n, k \in N$$
 (3.2)

Since $||m_0^{1/p_k}x_k|| \to 0$ as $k \to \infty$, there is a $k_0 \in N$ such that $||m_0^{1/p_k}x_k|| < 1$ for all $k \ge k_0$. Since $0 < p_k \le 1$ for all $k \in N$, we have

$$||m_0^{1/p_k}x_k|| \le ||m_0^{1/p_k}x_k||^{p_k} \text{ for all } k \ge k_0.$$
 (3.3)

It follows from (3.2) and (3.3) that

$$\sum_{k=1}^{\infty} ||m_0^{1/p_k} x_k|| = \sum_{k=1}^{k_0} ||m_0^{1/p_k} x_k|| + \sum_{k=k_0+1}^{\infty} ||m_0^{1/p_k} x_k||
\leq \sum_{k=1}^{k_0} ||m_0^{1/p_k} x_k|| + \sum_{k=k_0+1}^{\infty} ||m_0^{1/p_k} x_k||^{p_k}
= K_1 + m_0 \sum_{k=k_0+1}^{\infty} ||x_k||^{p_k}
\leq K_1 + m_0 ||x||, K_1 = \sum_{k=1}^{k_0} ||m_0^{1/p_k} x_k||.$$
(3.4)

By (3.2) and (3.4) we have for $n \in N$,

$$\begin{array}{ll} n^{-r}|A_nx| &= n^{-r} \Big| \sum_{k=1}^{\infty} f_k^n \Big(m_0^{-1/p_k} (m_0^{1/p_k} x_k) \Big) \Big| \\ &\leq \sum_{k=1}^{\infty} m_0^{-1/p_k} n^{-r} ||f_k^n||.||m_0^{1/p_k} x_k|| \\ &\leq C \sum_{k=1}^{\infty} ||m_0^{1/p_k} x_k|| \\ &\leq C(K_1 + m_0 ||x||). \end{array}$$

This implies that $\sup_{n} n^{-r} |A_n x| < \infty$, so that $Ax \in E_r$. This completes the proof.

When r=0, we see that $E_r=\ell_{\infty}$, so we obtain the following result directly from Theorem 3.1.

Corollary 3.2. Let $p=(p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$. Then for an infinite matrix $A=(f_k^n)$, $A \in (\ell(X,p),\ell_\infty)$ if and only if there is $m_0 \in N$ such that $\sup_{n,k} m_0^{-1/p_k} ||f_k^n|| < \infty$.

If $p_k = s \le 1$ for all $k \in N$, by Theorem 3.1 we obtain the following result:

Corollary 3.3. Let $r \ge 0$ and $0 < s \le 1$. Then for an infinite matrix $A = (f_k^n)$, $A \in (\ell_s(X), E_r)$ if and only if $\sup_{n,k} |n^{-r}||f_k^n|| < \infty$.

When $p_k = 1$ for all $k \in N$ and r = 0, we obtain the following result by Corollary 3.3.

Corollary 3.4. For an infinite matrix $A = (f_k^n)$, $A \in (\ell(X), \ell_\infty)$ if and only if $\sup_{n \in \mathbb{N}} ||f_k^n|| < \infty$.

Theorem 3.5. Let $r \geq 0$ and let $p = (p_k)$ be bounded sequences of positive real numbers and let $A = (f_k^n)$ be an infinite matrix. Then $A \in (M_0(X, p), E_r)$ if and only if for each $s \in N$, $\sup_{n,k} n^{-r} s^{1/p_k} ||f_k^n|| < \infty$.

Proof. Since $M_0(X,p) = \bigcup_{n=1}^{\infty} \ell(X)_{(n^{-1/p_k})}$, we have

$$A \in (M_0(X,p),\ E_r) \iff A \in (\ell(X)_{(s^{-1/p_k})},\ E_r) \text{ for all } s \in N$$

For $s \in N$, we can easily show that

$$A \in (\ell(X)_{(s^{-1/p_k})}, E_r) \iff (s^{1/p_k} f_k^n)_{n,k} \in (\ell(X), E_r).$$

By Theorem 3.1, we obtain that for $s \in N$,

$$(s^{1/p_k}f_k^n)_{n,k} \in (\ell(X), E_r) \iff \sup_{n,k} n^{-r}s^{1/p_k}||f_k^n|| < \infty.$$

Thus the theorem is proved.

References

- [1] R. G. Cooke, An Infinite Matrices and Sequence Spaces, Macmillan, London, (1950).
- [2] K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math., 44(1992), 298-307.
- [3] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180(1993), 223-238.
- [4] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, Ser., (2)18(1967), 345-355.
- [5] I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc., 64(1968), 335-340.
- [6] H. Nakano, Modulared sequence spaces, Proc. Japan. Acad., 27(1951), 508-512.
- [7] S. Simons, The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc., 15(1965), 422-436.
- [8] S. Suantai, On matrix transformations related to Nakano vector-valued sequence spaces, Bull. Cal. Math. Soc., 91(3)(1999), 221-226.
- [9] C. X. Wu and L. Liu, Matrix transformations on some vector-valued sequence spaces, SEA. Bull. Math., 17(1)(1993), 83-96.

KYUNGPOOK

Mathematical Journal

Matrix Transformations on the Nakano Vectorvalued Sequence Space

Chanan Sudsukh

Department of Mathematics, Statistics and Computer Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhorn Prathom 73140, Thailand. e-mail: faaschs@nontri.ku.ac.th

Suthep Suantai

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

e-mail: scmti005@chiangmai.ac.th

Matrix Transformations on the Nakano Vector-valued Sequence Space

CHANAN SUDSUKH

Department of Mathematics Satistics and Computer Sciences, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakhorn Prathom 73140, Thailand.

e-mail: faaschs@nontri.ku.ac.th

SUTHEP SUANTAI

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

e-mail: Scmti005@chiangmai.ac.th

(2000 Mathematics Subject Classification: 46A45)

In this paper, we give the matrix characterizations from any FK-space of vector sequences with AK property into any FK-space of scalar sequences, and by applying this result we also obtain necessary and sufficient conditions for infinite matrices mapping the spaces $\ell(X,p)$ into Maddox sequence spaces $c_0(q)$ and $\ell(q)$ where $p=(p_k)$ and $q=(q_k)$ are bounded sequences of positive real numbers such that $p_k \geq 1$ for all $k \in N$.

1. Introduction

Let $(X, \|.\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence spaces $c_0(X, p), c(X, p), \ell_{\infty}(X, p)$, and $\ell(X, p)$ are defined by

$$c_0(X,p) = \left\{ x = (x_k) : \lim_{k \to \infty} ||x_k||^{p_k} = 0 \right\},$$

$$c(X,p) = \left\{ x = (x_k) : \lim_{k \to \infty} ||x_k - a||^{p_k} = 0 \text{ for some } a \in X \right\},$$

$$\ell_{\infty}(X,p) = \left\{ x = (x_k) : \sup_{k \to \infty} ||x_k||^{p_k} < \infty \right\}, \text{ and }$$

$$\ell(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty \right\}.$$

When X = K, the scalar field of X, the corresponding spaces are written as

(Received: January 20, 2000. Revised: July 10, 2000)

Key words and phrases: sequence Space, matrix transformations and Nakano vectorvalued sequence space. $c_0(p), c(p), \ell(p)$, and $\ell_{\infty}(p)$, respectively. The first three spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons[7] and Maddox[4, 5]. The space $\ell(p)$ was first defined by Nakano[6] and is known as the Nakano sequence space, and the space $\ell(X,p)$ is known as the Nakano vector-valued sequence space. Choudhur[1] gave necessary and sufficient conditions for an infinite matrix of continuous linear operators which maps the vector-valued sequence space $c_0(X)$ into $c_0(Y), \ell_1(X)$ into $\ell_{\infty}(Y)$ and $\ell_1(X)$ into $\ell_p(Y)$ where Y is a Banach space. Grosse-Erdmann[2] investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$ and $\ell_{\infty}(p)$ and the problem of characterizing a matrix that maps a sequence space of Maddox into another such space is studied by them in [3]. Suantai [8, 9, 10, 11] gave the matrix characterizations from $\ell(X,p)$ into the space $c_0(Y,p),\ell_\infty(q)$ and F_s in the case $p_k \leq 1$ for all $k \in N$ and $s \geq 0$, where Y is a Banach space. Wu[12] gave characterizations of matrix transformations from the space $\ell(X,p)$ into the space c_0 and $\ell_{\infty}(q)$. The characterizations of matrix transformations from the space $\ell(X,p)$ into $\ell(q)$ and $c_0(q)$ can not be expected to be characterized completely in term of Toeplitz conditions, but however we can give characterizations of these matrix transformations in term of other conditions. Even the classical pair (ℓ_p, ℓ_q) is an open problem when $1 < p, q < \infty$, and $(p,q) \neq (2,2)$. Also, in the case $(\ell(p), \ell(q))$ is an open problem if $q_k < 1$ for all $k \in N$.

2. Notation and Definitions

Let (X, ||.||) be a Banach space. The space of all sequences in X is denoted by W(X) and $\Phi(X)$ denote for the space of all finite sequences in X. A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ we write $x = (x_k), k \in N$. For $z \in X$ and $k \in N$, we let $e^{(k)}(z)$ be the sequence (0,0,0,...,0,z,0,...) with z in the k^{th} position. For a fixed scalar sequence $u = (u_k)$ the sequence space E_u is defined by

$$E_u = \{x = (x_k) \in W(X) : (u_k x_k) \in E\}.$$

Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $n \in N$ the n^{th} coordinate mapping $p_n : E \to X$, defined by $p_n(x) = x_n$, is continuous on E. If, in addition, (E,τ) is an Fre'chet(Banach, LF-, LB-) space, then E is called an FK-(BK-, LFK-, LBK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\underset{k=1}{\longrightarrow} \sum e^k(x_k) : n \in N\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\underset{k=1}{\longrightarrow} \sum e^k(x_k) \to x \in E$ as $n \to \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E. Let $A = (f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and E a space of scalar-valued sequences. Then E is said to map E into E, written E is for each E if for each E in E

 $v = (v_k)$ are scalar sequences, let

$$u(E,F)_v = \{A = (f_k^n) : (u_n v_k f_k^n)_{n,k} \in (E,F)\}.$$

If $u_k \neq 0$ for all $k \in N$, we write $u^{-1} = (\frac{1}{u_k})$.

3. Some Auxiliary Results

We start with the following useful results that will reduce our problems into some simpler forms.

Proposition 3.1. Let E and $E_n(n \in N)$ be X-valued sequence spaces, and F and $F_n(n \in N)$ scalar sequence spaces, and let μ and ν be scalar sequences with $\mu_{k} \neq 0, \nu_{k} \neq 0 \text{ for all } k \in N. \text{ Then}$ $(i) \quad (E, \bigcap_{n=1}^{\infty} F_{n}) = \bigcap_{n=1}^{\infty} (E, F_{n}) \text{ and}$ $(ii) \quad (E_{u}, F_{v}) = {}_{v} (E, F)_{u^{-1}}.$

(i)
$$(E, \bigcap_{n=1}^{\infty} F_n) = \bigcap_{n=1}^{\infty} (E, F_n)$$
 and

(ii)
$$(E_u, F_v) = v(E, F)_{v-1}$$

Proof. (i) and (ii) are immediately obtained by the definition.

Proposition 3.2. Let (f_k) be a sequence of continuous linear functional on Xand $p = (p_k)$ a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$. Then $\sum_{k=0}^{\infty} f_k(x_k)$ converges for all $x=(x_k) \in \ell(X,p)$ if and only if

$$\sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} < \infty \text{ for some } M \in N,$$

where $\frac{1}{p_k} + \frac{1}{t_k} = 1$ for all $k \in \mathbb{N}$.

Proof. Suppose that $\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in \mathbb{N}$. Then we have that for each $x = (x_k) \in \ell(X, p)$,

$$\begin{split} &\sum_{k=1}^{\infty} |f_k(x_k)| \leq \sum_{k=1}^{\infty} ||f_k|| M^{-\frac{1}{p_k}} M^{\frac{1}{p_k}} ||x_k|| \\ &\leq \sum_{k=1}^{\infty} \left(||f_k||^{t_k} M^{-\frac{t_k}{p_k}} + M ||x_k||^{p_k} \right) = \sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} + M \sum_{k=1}^{\infty} ||x_k||^{p_k} < \infty \end{split}$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

On the other hand, assume that $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x=(x_k) \in \ell(X,p)$. For each $x = (x_k) \in \ell(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in \ell(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

(3.1)
$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell(X, p).$$

We want to show that there exists $M \in N$ such that

$$\sum_{k=1}^{\infty} ||f_k||^{t_k} M^{-(t_k-1)} < \infty$$

If it is not true, then

(3.2)
$$\sum_{k=1}^{\infty} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$

And (3.2) implies that for each $k_0 \in N$.

(3.3)
$$\sum_{k>k_0} ||f_k||^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$

By (3.2), let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k \leq k_1} ||f_k||^{t_k} m_1^{-(t_k-1)} > 1.$$

By (3.3), we can choose $m_2 > m_1$ and $m_2 > 2^2$ and $k_2 > k_1$, such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{t_k} m_2^{-(t_k - 1)} > 1.$$

By continueing in this way, we obtain sequences (k_i) and (m_i) of positive integers such that $1 = k_0 < k_1 < k_2 < ...$ and $m_1 < m_2 < ..., m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{t_k} m_i^{-(t_k-1)} > 1.$$

Choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)} > 1 \text{ for all } i \in N.$$

Let $a_i = \sum_{\substack{k_{i-1} < k \le k_i \\ \text{for all } k}} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)}$. Put $y = (y_k), \ y_k = a_i^{-1} m_i^{-(t_k-1)} |f_k(x_k)|^{t_k-1} x_k$

For each $i \in N$, we have

$$\begin{split} &\sum_{k_{i-1} < k \le k_i} ||y_k||^{p_k} \\ &= \sum_{k_{i-1} < k \le k_i} \left\| a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k \right\|^{p_k} \\ &= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-t_k} |f_k(x_k)|^{t_k} \\ &\le \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k} \\ &= a_i^{-1} m_i^{-1} a_i \\ &= m_i^{-1} < \frac{1}{2^i}. \end{split}$$

So we have that

$$\sum_{k=1}^{\infty} ||y_k||^{p_k} \le \sum_{i=1}^{\infty} \frac{1}{2^i} < \infty.$$

Hence $y = (y_k) \in \ell(X, p)$. For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k(a_i^{-1} m_i^{-(t_k - 1)} | f_k(x_k)|^{t_k - 1} x_k) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= 1.$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts with (3. 4). The proof is now complete.

4. Main Results

Now, we turn to our objective. We begin with giving characterizations of matrix transformations from an FK-space of vector sequences with AK property into an FK-space of scalar sequences.

Theorem 4.1.1. Let $E \subseteq W(X)$ be an FK-space with AK property and F an FK-space of scalar sequences. Then, for an infinite matrix $A = (f_k^n)$, $A : E \to F$ if and only if

- (1) for each $n \in N$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $x = (x_k) \in E$,
- (2) for each $k \in N$, $(f_k^n(z))_{n=1}^{\infty} \in F$ for all $z \in X$, and
- (3) $A: \Phi(X) \to F$ is continuous when $\Phi(X)$ is considered as a subspace of E.

Proof. Assume that $A: E \to F$. Then we have that for any $x = (x_k) \in E$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $n \in N$, so (1) holds. Since $e^k(z) \in E$ for all $k \in N$ and

all $z \in X$, we obtain that for each $k \in N$,

$$(f_k^n(z))_{n=1}^{\infty} = Ae^k(z) \in F,$$

hence (2) holds. Since E and F are FK-spaces, by Zeller's theorem, $A: E \to F$ is continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

$$Ax = \left(\sum_{k=1}^{\infty} f_k^n(x_k)\right)_{n=1}^{\infty} \in W$$
, for all $x = (x_k) \in E$.

It follows from (2) that $Ae^k(z) \in F$, for all $k \in N$ and $z \in X$, which implies that $A: \Phi(X) \to F$. By (3), we have $A: \Phi(X) \to F$ is continuous. Let $x = (x_k) \in E$. Since E has the AK property, we have

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{k}(x_{k}).$$

Then $\left(\sum_{k=1}^n e^k(x_k)\right)_{n=1}^\infty$ is a Cuachy sequence in E. Since $A:\Phi(X)\to F$ is continuous and linear, it implies that $\left(\sum_{k=1}^n Ae^k(x_k)\right)_{n=1}^\infty$ is a Cauchy sequence in F. Since F is complete, we have $\left(\sum_{k=1}^n Ae^k(x_k)\right)_{n=1}^\infty$ converges in F. Since F is a K-space, it implies that $\left(\sum_{k=1}^\infty f_k^n(x_k)\right)_{n=1}^\infty\in F$, so that $Ax\in F$. This shows that $A:E\to F$.

It is known that the space $\ell(X,p)$ is an FK-space with AK property under the paranorm

$$g(x) = \left(\sum_{k=1}^{\infty} \|x_k\|^{p_k}\right)^{\frac{1}{M}}, \text{ when } M = \max\left\{1, \underset{k}{\rightarrow} \sup p_k\right\}.$$

By Proposition 3.2 and Theorem 4.1.1, we have the following theorem.

Theorem 4.1.2. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ for all $k \in N$, and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell(q)$ if and only if

(1) for each $n \in N$ there exists $M_n \in N$ such that

$$\sum_{k=1}^{\infty} \|f_k^n\|^{t_k} M_n^{-(t_k-1)} < \infty, \text{ where } \frac{1}{p_k} + \frac{1}{t_k} = 1 \text{ for all } k \in N,$$

- (2) for each $k \in N$ and $z \in X$, $\sum_{n=1}^{\infty} |f_k^n(z)|^{q_n} < \infty$, and
- (3) for each $r \in N$ there exists $M_r \in N$ such that

$$\sum_{k \in K} ||x_k||^{p_k} < \frac{1}{M_r} \Rightarrow \sum_{n=1}^{\infty} |\sum_{k \in K} f_k^n(x_k)|^{q_n} < \frac{1}{r},$$

for all $x = (x_k) \in \Phi(X)$ and all finite subsets K of N.

Now, we have the sufficient conditions for an infinite matrix $A = (f_k^n)$ that maps $\ell(X, p)$ into $\ell(q)$.

Theorem 4.1.3. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ and $q_k > 1$ for all $k \in N$, and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell(q)$ if the following two conditions hold;

(1) for each $n \in N$ there exists $M_n \in N$ such that

$$\sum_{k=1}^{\infty} \|f_k^n\|^{t_k} M_n^{-(t_k-1)} < \infty \text{ where } \frac{1}{p_k} + \frac{1}{t_k} = 1 \text{ for all } k \in \mathbb{N}, \text{ and }$$

(2) there exists $M_0 \in N$ such that

$$\sup_{K} \sum_{n=1}^{\infty} \left(\sum_{k \in K} ||f_k^n|| M_0^{-\frac{1}{p_k}} \right)^{q_n} < \infty,$$

where supremum is taken over all finite subsets K of N.

Proof. Suppose that the two conditions hold. Then by Proposition 3.2 the condition (1) implies the condition (1) of Theorem 4.1.1. By the condition (2), we have that there exists $M_0, L \in \mathbb{N}$ such that

(4.1)
$$\sum_{n=1}^{\infty} \left(\sum_{k \in K} \|f_k^n\| M_0^{-\frac{1}{p_k}} \right)^{q_n} < L,$$

for all the finite subsets K of N. Then, for each $z \in X - \{0\}$ we can choose $M_1 > M_0$ such that $M_1||z|| > 1$. Then for each $k \in N$, we have by (4.1) that

$$\begin{split} \sum_{n=1}^{\infty} |f_k^n(z)|^{q_n} & \leq \sum_{n=1}^{\infty} \left(\|f_k^n\| \|z\| \right)^{q_n} \\ & = \sum_{n=1}^{\infty} \left(\|f_k^n\| M_1^{-\frac{1}{p_k}} M_1^{\frac{1}{p_k}} \|z\| \right)^{q_n} \\ & \leq \sum_{n=1}^{\infty} \left(\|f_k^n\| M_1^{-\frac{1}{p_k}} M_1 \|z\| \right)^{q_n} \\ & \leq (M_1 \|z\|)^{\beta} \sum_{n=1}^{\infty} \left(\|f_k^n\| M_1^{-\frac{1}{p_k}} \right)^{q_n} \; ; \; \beta = \sup_n q_n \\ & \leq (M_1 \|z\|)^{\beta} L \\ & < \infty. \end{split}$$

So, we have that $(f_k^n(z))_{n=1}^{\infty} \in \ell(q)$ for all $z \in N$ and $k \in N$. Hence the condition (2) of Theorem 4.1.1 holds. We shall now show that the condition (3) of Theorem 4.1.1 is satisfied. To show this, let $\varepsilon > 0$ and $x = (x_k) \in \Phi(X)$. Recall that $||x|| = \left(\sum_{k=1}^{\infty} ||x_k||^{p_k}\right)^{\frac{1}{M}}$ where $M = \sup_n q_n$. If $||x|| \le 1$, then for all $k \in N$ we have

$$(4.2) ||x_k|| \le ||x||^{\frac{M}{p_k}} \le ||x||.$$

Since $x = (x_k) \in \Phi(X)$, there is a finite subset K_0 of N such that

$$(4.3) \qquad \sum_{k=1}^{\infty} f_k^n(x_k) = \sum_{k \in K_0} f_k^n(x_k) \text{ for all } n \in N.$$

So, we have by (4.1), (4.2), and (4.3) that

$$||Ax|| = \left(\sum_{n=1}^{\infty} |\sum_{k=1}^{\infty} f_{k}^{n}(x_{k})|^{q_{n}}\right)^{\frac{1}{G}}$$

$$= \left(\sum_{n=1}^{\infty} |\sum_{k \in K_{0}} f_{k}^{n}(x_{k})|^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq \left(\sum_{n=1}^{\infty} (\sum_{k \in K_{0}} ||f_{k}^{n}|| ||x_{k}||)^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq \left(\sum_{n=1}^{\infty} (\sum_{k \in K_{0}} ||f_{k}^{n}|| M_{0}^{-\frac{1}{p_{k}}} M_{0}^{\frac{1}{p_{k}}} ||x||)^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq \left(M_{0}^{G} ||x|| \sum_{n=1}^{\infty} (\sum_{k \in K_{0}} ||f_{k}^{n}|| M_{0}^{-\frac{1}{p_{k}}})^{q_{n}}\right)^{\frac{1}{G}}$$

$$\leq M_{0}(||x||L)^{\frac{1}{G}}, G = \sup_{n} q_{n}.$$

It implies by (4.4) that $A: \Phi(X) \to \ell(q)$. Now choose $\delta = \min\{1, \frac{1}{L}(\frac{\varepsilon}{M_0})^G\}$. It follows by (4.4) that

$$||x|| < \delta \Rightarrow ||Ax|| < \epsilon.$$

It follows that $A: \Phi(X) \to \ell(q)$ is continuous. Hence, by Theorem 4.1.1, we have that $A: \ell(X, p) \to \ell(q)$.

By using the previous auxiliary results and Theorem 1.6 in [12], we obtain necessary and sufficient conditions for infinite matrices mapping the space $\ell(X, p)$ into $c_0(q)$.

Theorem 4.1.4. Let $p = (p_k)$ and $q = (q_k)$ be bounded sequences of positive real numbers such that $p_k > 1$ for all $k \in N$, and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to c_0(q)$ if and only if

- (1) for all $m, k \in N$, $m^{\frac{1}{q_n}} f_k^n \to 0$ weakly as $n \to \infty$, and
- (2) for each $m \in N$,

$$\left(\sum_{k=1}^{\infty} m^{\frac{t_k}{q_n}} \|f_k^n\|^{t_k} r^{-(t_k-1)}\right) \to 0 \ \text{uniformly for } n \geq 1 \ \text{as } r \to \infty,$$

where $\frac{1}{p_k} + \frac{1}{t_k} = 1$ for all $k \in N$.

Proof. By Theorem 0 in [2], we have $c_0(q) = \bigcap_{s=1}^{\infty} c_{0(s^{\frac{1}{q_n}})}$. By Proposition 2.1(i) and (ii) and Theorem 1.6 in [12], we have

$$\begin{array}{ll} A:\ell(X,p)\to c_0(q)&\Longleftrightarrow A:\ell(X,p)\to \bigcap\limits_{m=1}^\infty c_{0(m^{\frac{1}{q_n}})}\\ &\Longleftrightarrow A:\ell(X,p)\to c_{0(m^{\frac{1}{q_n}})}, \text{ for all } m\in N\\ &\Longleftrightarrow \left(m^{\frac{1}{q_n}}f_k^n\right)_{n,k}:\ell(X,p)\to c_0, \text{ for all } m\in N\\ &\Longleftrightarrow \text{the conditions (1) and (2) hold.} \end{array}$$

Acknowledgements. The author would like to thank the Thailand Research Fund and Kasetsart University Development Funds for the financial support during the preparation of this paper.

References

- Choudhur, A., Matrix transformations of vector valued sequence spaces, Bull. Cal. Math. Soc., 88(1)(1992), 47-54.
- [2] Grosse, K. and Erdmann, G., The structure of sequence spaces of Maddox, Canad. J. Math., 44(1992), 298-307.
- [3] Grosse, K. and Erdmann, G., Matrix transformations between the sequence spaces of Maddox, J. of Math. Anal. Appl., 180(1993), 223-238.
- [4] Maddox, I. J., Strongly summable sequences, Quart. J. Math. Oxford Ser., 2(18)(1967), 345.
- [5] Maddox, I. J., Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc., 64(1968), 335.
- [6] Nakano, H., Modulared sequence spaces, Proc. Japan. Acad., 27(1951), 508-512.
- [7] Simons, S., The spaces $\ell(p_v)$ and $m(P_v)$, Proc. London. Math. Soc., 15(1965), 422-436.
- [8] Suantai, S., Matrix transformations from Nakano vector-valued sequence space into the Orlicz sequence space, to appear in the proceeding of functions, Adam Michiewitz University, Poznan, Poland, (1998).

- [9] Suantai, S., Matrix transformations between some vector-valued sequence spaces, to appear in SEA. Bull. Math., (1999).
- [10] Suantai, S., Matrix transformations related to Nakano vector-valued sequence spaces, to appear in Bull. Cal. Math. Soc., (1999).
- [11] Suantai, S., Matrix transformations of Nakano vector-valued sequence space, to appear in Kyungpook Math. J..
- [12] Wu, C. X. and Lui, L., Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math., 17(1)(1993), 83-96.

URGENT.

Please Return

Review Bull. Cal. Math. Soc., 9, (1 & 2) 99-110 (2001)

ON MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED SEQUENCE SPACES

SUTHEP SUANTAI

Abstract. In this paper, chracterizations of infinite matrices mapping the Nakano vector-valued sequence space into Musielak-Orilicz sequence space are given, and we also give characterizations of the β -dual of the Nakano-vector valued sequence space.

1. Introduction. Let $(X, \|\cdot\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let N be the set of all natural, we write $x = (x_k)$ with x_k in X for all $k \in N$. The X-valued sequence space $c_0(X, p), c(X, p), \ell_\infty(X, p)$, and $\ell(X, p)$ are defined by

$$c_0(X,p) = \left\{ x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0 \right\},$$

$$\boldsymbol{c}(X,p) = \left\{ x = (x_k) : \lim_{k \in \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X \right\},$$

$$\ell_{\infty}(X,p) = \left\{ x = (x_k) : \sup_{k} \|x_k\|^{p_k} < \infty \right\},$$
and
$$\ell(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty \right\}.$$

When X = K, the scalar field of X, the corresponding spaces are written as $c_0(p), c(p), \ell_\infty(p)$, and $\ell(p)$, respectively. The first three spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons (1965) and Maddox (1967, 1968). The space $\ell(p)$ was first defined by Nakano (1951) and is known as the Nakano sequence space. Grosse-Erdmann (1992) investigated the structure of the spaces $c_0(p), c(p), \ell_\infty(p)$, and $\ell(p)$.

A function $f: R \to [0, \infty)$ is called an *Orlicz function* if it is even, continuous, convex and vanishing at 0 and $f(x) \to \infty$ as $x \to \infty$. Let $M = (M_n)$ be a sequence of Orlicz functions, for a given real sequence $x = (x_n)$, define

$$\varrho_M(x) = \sum_{n=1}^{\infty} M_n(x_n).$$

Let $\ell_M = \{x = (x_n) : \varrho_M(\lambda x) < \infty \text{ for some } \lambda > 0\}$ and for $x = (x_n) \in \ell_M$, the Luxemburg norm of x is defined by the formula

$$\|x\|=\inf\left\{\lambda>0:\varrho_{M}\left(\frac{x}{\lambda}\right)\leq1\right\}$$

The sequence space $(\ell_M, \|\cdot\|)$ was first defined by Musielak (1983) and it is called the Musielak-Orlicz sequence space with the Luxemburg norm. If $M_n = M_{n+1}$ for $n \in N$, the space ℓ_M is known as the Orlicz sequence space. We also see that if $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k \geq 1$ for all $k \in N$, then the Musielak-Orlicz sequence space ℓ_M , where $M_k(t) = |t|^{\frac{1}{N}}$, is the Nakano sequence space $\ell(p)$. So the Musielak-Orlicz sequence space is a generalization of both Orlicz and Nakano sequence spaces. For more details about the orlicz sequence space and Musielak-Orlicz sequence space see Chen (1996) and Musielak (1983).

Grosse-Erdmann (1993) gave characterizations of infinite matrices mapping between scalar-valued sequence spaces of Maddox. Wu and Liu (1993) gave characterizations of matrix transformations from the spaces $\ell(X,p)$, $c_0(X,p)$ and $\ell_\infty(X,p)$ into the spaces $c_0(q)$ and $\ell_\infty(q)$. These results generalized some of Grosse-Erdmann (1993). Suantai (1999) gave characterizations of infinite matrices of bounded linear functionals on X mapping the Nakano sequence space $\ell(X,p)$ into $\ell_\infty(q)$ and $\ell_\infty(q)$ and $\ell_\infty(q)$ and $\ell_\infty(q)$. Choudhur (1992) gave necessary and sufficient conditions for an infinite matrix of continuous linear operators which maps the vector-valued sequence space $c_0(X)$ into $c_0(Y)$, $\ell_1(X)$ into $\ell_\infty(Y)$ and $\ell_1(X)$ into $\ell_0(Y)$, where Y is a Banach space. Suantai (2000) gave characterizations of infinite matrices of bounded linear operators mapping from the Nakano vector-valued sequence space $\ell(X,p)$ into any BK-space.

In this paper, we use some technics of Suantai (2000) and other technics to give the matrix characterizations from the Nakano vector-valued sequence space $\ell(X, p)$ into the Musielak-Orlicz sequence space ℓ_M .

2. Notation and definitions. Let $(X, \|\cdot\|)$ be a Banach space. The space of all sequences in X is denoted by W(X) and $\Phi(X)$ denotes the space of all finite sequences in X.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ we write $x = (x_k)$, $k \in N$. For $z \in X$ and $k \in N$, we let $e^{(k)}(z)$ be the sequence $(0,0,0,\cdots,0,z,0,\cdots)$ with z in the kth position. Suppose that the X-valued sequence space E is endowed with some linear topology τ . Then E is called a K-space if for each $n \in N$ the nth coordinate mapping $p_n : E \to X$, defined by $p_n(x) = x_n$, is continuous on E. If, in addition, (E,τ) is an Fre-chet(Banach) space, then E is called an FK - (BK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AK if $\sum_{k=1}^{n} e^k(x_k) \to x$ as $n \to \infty$ for all $x = (x_k) \in E$.

If $p_k \geq 1$ for all $k \in N$, the space $\ell(p)$ is a BK-space with AK property under the Luxemburg norm defined by

$$||x|| = \inf \left\{ \varepsilon > 0 : \sum_{k=1}^{\infty} \left| \frac{x_k}{\varepsilon} \right|^{p_k} \le 1 \right\}.$$

For more detail about the space the space $\ell(p)$ see Gross-Erdmann (1992). By using the same argument as in the case of real sequence space $\ell(q)$, we can also obtain that $\ell(X,p)$ is a BK-

space with AK property under the Luxemburg norm defined by the formula

$$||x|| = \inf \left\{ \varepsilon > 0 : \sum_{k=1}^{\infty} \left\| \frac{x_k}{\varepsilon} \right\|^{p_k} \le 1 \right\}.$$

Let $A=(f_k^n)$ with f_k^n in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to map E into F, written by $A:E\to F$ if for each $x=(x_k)\in E$, $A_n(x)=\sum\limits_{k=1}^\infty f_k^n(x_k)$ converges for each $n\in N$ and the sequence $Ax=(A_n(x))\in F$.

Let E be an X-valued sequence space. The β -dual of E is defined to be

$$E^{eta} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x_k) \text{ converges for all } x = (x_k) \in E \right\}$$

We see that if $A = (f_k^n)$ maps a sequence space E into a scalar sequence space, then each row of A must belong to E^{β} , i.e., $(f_k^n)_{k=1}^{\infty} \in E^{\beta}$, so this is a necessary condition for an infinite matrix A mapping from one sequence space into the other. In this paper, we also give characterizations of the β -dual of Nakano vector-valued sequence space.

3. Main results. We begin with giving characterizations of the β -dual of the Nakano vector-valued sequence space.

PROPOSITION 3.1. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$. Then

$$\ell(X,p)^{\beta} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} < \infty \text{ for some } M \in N \right\}$$

where $\frac{1}{p_k} + \frac{1}{t_k} = 1$ for all $k \in N$.

Proof: Suppose that $\sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} < \infty$ for some $M \in N$. By using the fact that $ab \le a^{t_k} + b^{p_k}$ for all $a, b \ge 0$ and all $k \in N$, we then obtain that for each $x = (x_k) \in \ell(X, p)$,

$$\begin{split} \sum_{k=1}^{\infty} |f_k(x_k)| &\leq \sum_{k=1}^{\infty} \|f_k\| M^{-\frac{1}{p_k}} M^{\frac{1}{p_k}} \|x_k\| \\ &\leq \sum_{k=1}^{\infty} \left(\|f_k\|^{t_k} M^{-\frac{t_k}{p_k}} + M \|x_k\|^{p_k} \right) \\ &= \sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{-(t_k-1)} + M \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty \end{split}$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in \ell(X,p)^{\beta}$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X,p)$. For each $x = (x_k) \in \ell(X,p)$, choose a scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in N$. Since $(t_k x_k) \in \ell(X,p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell(X, p).$$
(3.1)

We want to show that there exists $M \in N$ such that

$$\sum_{k=1}^{\infty} \|f_k\|^{t_k} M^{(-t_k-1)} < \infty.$$

If it is not true, then

$$\sum_{k=1}^{\infty} \|f_k\|^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
(3.2)

And (3.2) implies that for each $k_0 \in N$,

$$\sum_{k>k_0} \|f_k\|^{t_k} m^{-(t_k-1)} = \infty, \text{ for all } m \in N.$$
(3.3)

By (3.2), let $m_1 = 1$, then there is a $k_1 \in N$ such that

$$\sum_{k \le k_1} \|f_k\|^{t_k} m_1^{-(t_k-1)} > 1.$$

By (3.3), we can choose $m_2 > m_1$ and $m_2 > 2^2$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} \|f_k\|^{t_k} m_2^{-(t_k - 1)} > 1. \tag{3.4}$$

By continuing in this way, we obtain sequences (k_i) and (m_i) of positive integers with $1 = k_0 < k_1 < k_2 < \cdots, m_1 < m_2 < \cdots, m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{t_k} m_i^{-(t_k-1)} > 1.$$

Choose x_k in X with $||x_k|| = 1$ such that for all $i \in N$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k-1)} > 1 \text{ for all } i \in N.$$

Let

$$a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{t_k} m_i^{-(t_k - 1)}.$$

Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-(t_k-1)} |f_k(x_k)|^{t_k-1} x_k$ for all $k, k_{i-1} < k \le k_i$. For each $i \in N$, we have

$$\begin{split} \sum_{k_{i-1} < k \le k_i} \|y_k\|^{p_k} &= \sum_{k_{i-1} < k \le k_i} \left\| a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k \right\|^{p_k} \\ &= \sum_{k_{i-1} < k \le k_i} a_i^{-p_k} m_i^{-t_k} |f_k(x_k)|^{t_k} \\ &\le \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{(-t_k - 1)} |f_k(x_k)|^{t_k} \\ &= a_i^{-1} m_i^{-1} a_i = m_i^{-1} < \frac{1}{2^i}. \end{split}$$

So we have that

$$\sum_{k=1}^{\infty} \|y_k\|^{p_k} \le \sum_{i=1}^{\infty} \frac{1}{2^i} < \infty.$$

Hence,

$$y=(y_k)\in\ell(X,p).$$

For each $i \in N$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k \left(a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k - 1} x_k \right) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m^{-(t_k - 1)} |f_k(x_k)|^{t_k}$$

$$= 1.$$

So that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.1). Thus.

$$(f_k) \in \left\{ (g_k) \subset X' : \sum_{k=1}^{\infty} \|g_k\|^{t_k} M^{-(t_k-1)} < \infty \text{ for some } M \in N \right\}.$$

Hence the proposition is proved.

PROPOSITION 3.2. Let $p=(p_k)$ be a bounded sequence of positive real numbers with $p_k \leq 1$ for all $k \in N$ and $(f_k) \subset X'$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x=(x_k) \in \ell(X,p)$ if and only if there exists $M \in N$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$.

Proof: if $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Proposition 3.1, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \text{ for all } x = (x_k) \in \ell(X, p).$$
(3.5)

Suppose that $\sup_{k} \|f_{k}\| m^{-1/p_{k}} = \infty$ for all $m \in N$. For each $i \in N$, choose sequences (m_{i}) and (k_{i}) of positive integers with $m_{1} < m_{2} < \cdots$ and $k_{1} < k_{2} < \cdots$ such that $m_{i} > 2^{i}$ and $\|f_{k_{i}}\| m_{i}^{-1/p_{k_{i}}} > 1$. Choose $x_{k_{i}} \in X$ with $\|x_{k_{i}}\| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1. (3.6)$$

Let $y = (y_k)$, $y_k = m_i^{-1/p_{k_i}} x_{k_i}$ if $k = k_i$ for some i, and 0 otherwise. Then

$$\sum_{k=1}^{\infty} ||y_k||^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1,$$

so that $(y_k) \in \ell(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} \left| f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i}) \right|$$

$$= \sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})| = \infty \text{ by (3.6)}$$

and this is contradictory to (3.5). Therefore, there exists $M \in \mathbb{N}$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$.

Conversely, assume that there exists $M \in N$ such that $\sup_k \|f_k\| M^{-1/p_k} < \infty$. Let $x = (x_k) \in \ell(X, p)$, then there is a K > 0 such that .

$$||f_k|| \le KM^{1/p_k} \quad \text{for all } k \in N \tag{3.7}$$

and there is a $k_0 \in N$ such that $M^{1/p_k} ||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in N$, we have that for all $k \ge k_0$,

$$M^{1/p_k} \|x_k\| \le (M^{1/p_k} \|x_k\|)^{p_k} = M \|x_k\|^{p_k}. \tag{3.8}$$

Then

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{k_{0}} ||f_{k}|| \, ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} ||f_{k}|| \, ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| \, ||x_{k}|| + K \sum_{k=k_{0}+1}^{\infty} M^{1/p_{k}} ||x_{k}|| \quad \text{by (3.7)}$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| \, ||x_{k}|| + KM \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}} \quad \text{by (3.8)}$$

$$\leq \infty.$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges.

The following proposition gives some useful properties concerning the Luxemburg norm χ on $\mathcal{L}(\chi, \rho)$. PROPOSITION 3.3. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k > 1$ for all $k \in N$ and let $x = (x_k) \in \ell(X, p)$. Then

(1)
$$||x|| \le 1$$
 if and only if $\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1$, and

(2) If
$$||x|| = 1$$
, then $\sum_{k=1}^{\infty} ||x_k||^{p_k} = 1$.

Proof. If $\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1$, we have by the definition of the Luxemburg norm that $||x|| \le 1$.

If $||x|| \le 1$, then $||x|| < 1 + \frac{1}{n}$ for all $n \in \mathbb{N}$, which implies that

$$\sum_{k=1}^{\infty} ||x_k/(1+1/n)||^{p_k} \le 1.$$

Since

$$(1/(1+1/n))^{\alpha} \sum_{k=1}^{\infty} ||x_k||^{p_k} \le \sum_{k=1}^{\infty} ||x_k/(1+1/n)||^{p_k},$$

where $\alpha = \sup_{k} p_k$, it follows that

$$\sum_{k=1}^{\infty} \|x_k\|^{p_k} \le (1+1/n)^{\alpha} \text{ for all } n \in N.$$
(3.9)

By taking $n \to \infty$ in (3.9), we obtain $\sum_{k=1}^{\infty} ||x_k||^{p_k} \le 1$.

(2) Assume that ||x|| = 1. By (1) we have

$$\sum_{k=1}^{\infty} \|x_k\|^{p_k} \le 1.$$

If $\sum_{k=0}^{\infty} ||x_k||^{p_k} < 1$, then for each $\epsilon > 0$ such that

$$\sum_{k=1}^{\infty} ||x_k||^{p_k} < \varepsilon < 1,$$

we have that

$$\sum_{k=1}^{\infty} ||x_k/\varepsilon||^{p_k} > 1.$$

Since $(1/\varepsilon)^{\alpha} \geq (1/\varepsilon)^{p_k}$ for all $k \in N$, where $\alpha = \sup_k p_k$, we have

$$(1/\varepsilon)^{\alpha} \sum_{k=1}^{\infty} ||x_k||^{p_k} > 1,$$

hence

$$\sum_{k=1}^{\infty} \|x_k\|^{p_k} > \varepsilon^{\alpha}. \tag{3.10}$$

By taking $\varepsilon \to 1^-$ in (3.10) we obtain that $\sum_{k=1}^{\infty} ||x_k||^{p_k} \geq 1$ which is a contradiction. Hence $\sum_{k=1}^{\infty} \|x_k\|^{p_k} = 1.$

In the next theorem, we give necessary and sufficient conditions for infinite matrices mapping the Nakano sequence space $\ell(X, p)$, when $p_k \leq 1$ for all $k \in N$, into the Musielak-Orlicz sequence space ℓм

THEOREM 3.4. Let $p=(p_k)$ be a bounded sequence of positive real numbers such that $p_k \leq 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell_M$ if and only if

- (1) for each $k \in N$ and $x \in X$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$, and
- (2) there exists $m_0 \in N$ such that

$$\sup_{\substack{k \in \mathbb{N} \\ \|x\| \le 1}} \left\| A\left(m^{-\frac{1}{p_k}} e^k(x)\right) \right\| \le 1. \quad \sup_{k \in \mathbb{N}} \left\| \sum_{n=1}^{\infty} \bigcap_{n \in \mathbb{N}} \left(m_o^{-\frac{1}{p_k}} f_k^n(x)\right) \le 1.$$

By Proposition 3.3 (1), we have that the condition (ii) above is equivalent to (2). Hence $A: \ell(X,p) \to \ell_M$ if and only if the conditions (1) and (2) are satisfied.

By Suantai (2000) (Theorem 4.1), we obtain that A: l(x,p)>lm iff (1) holds and

By general results in Musiclak (1983), it implies that (2) and 125 are equivalent. Hence the theorem

We next give the matrix characterizations from $\ell(X,p)$ into ℓ_M when $p_k > 1$ for all $k \in N$. To obtain this, we first give a general result concerning matrix transformations between FKspaces.

THEOREM 3.5. Let $E \subseteq W(X)$ be an FK-space with AK property and F an FK-space of scalar sequences. Then, for an infinite matrix $A = (f_k^n)$, $A : E \to F$ if and only if

- (1) for each $n \in N$, $\sum_{k=0}^{\infty} f_k^n(x_k)$ converges for all $x = (x_k) \in E$,
- (2) for each $k \in N$, $(f_k^n(x))_{n=1}^{\infty} \in F$ for all $x \in X$, and
- (3) $A: \Phi(X) \to F$ is continuous when $\Phi(X)$ is considered as a subspace of E.

Proof: Assume that $A: E \to F$. Then we have that for any $x = (x_k) \in E$, $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $n \in N$, so (1) holds. Since $e^k(z) \in E$ for all $k \in N$ and all $z \in X$, we obtain that for each $k \in N$,

$$(f_k^n(z))_{n=1}^{\infty} = Ae^k(z) \in F,$$

hence (2) holds. Since E and F are FK-spaces, by Zeller's theorem, $A: E \to F$ is continuous, so (3) is obtained.

Conversely, assume that the conditions hold. By (1), we have

$$Ax = \left(\sum_{k=1}^{\infty} f_k^n(x_k)\right)_{n=1}^{\infty} \in \mathcal{W}$$
, for all $x = (x_k) \in E$.

It follows from (2) that $Ae^k(z) \in F$ for all $k \in N$ and $z \in X$, which implies that $A: \Phi(X) \to F$. By (3), we have $A: \Phi(X) \to F$ is continuous. Let $x = (x_k) \in E$. Since E has the AK property, we have

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{k}(x_k).$$

Then
$$\left(\sum_{k=1}^{n} e^{k}(x_{k})\right)_{n=1}^{\infty}$$
 is a Cauchy sequence in E . Since $A: \Phi(X) \to F$ is continuous and linear, it implies that $\left(\sum_{k=1}^{n} A e^{k}(x_{k})\right)_{n=1}^{\infty}$ is a Cauchy sequence in F . Since F is complete, we have $\left(\sum_{k=1}^{n} A e^{k}(x_{k})\right)_{n=1}^{\infty}$ converges in F . Since F is a K -speae, it implies that

have
$$\left(\sum_{k=1}^{N} Ae^k(x_k)\right)_{n=1}^{\infty}$$
 converges in F. Since F is a K-spcae, it implies that

$$\left(\sum_{k=1}^{n} f_k^n(x_k)\right)_{n=1}^{\infty} \in F,$$

so that $Ax \in F$. This shows that $A: E \to F$.

4-5

m_n suther suantai

THEOREM 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers such that $p_k > 1$ for all $k \in N$ and $A = (f_k^n)$ an infinite matrix. Then $A : \ell(X, p) \to \ell_M$ if and only if

(1) for each $n \in N$ there exists $m_n \in N$ -there exists $M_n \in N$ such that

$$\sum_{k=1}^{\infty} \|f_k^n\|^{t_k} ||\mathbf{m}_n^{-(t_k-1)}| < \infty, \text{ where } \frac{1}{p_k} + \frac{1}{t_k} = 1 \text{ for all } k \in \mathbb{N},$$

- (2) for each $k \in N$ and $x \in X$, $(f_k^n(x))_{n=1}^{\infty} \in \ell_M$, and
- (3) there exists $\lambda > 0$ such that

$$\sup \left\{ \sum_{n=1}^{\infty} M_n \left(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k) \right) : K \subset N \text{ is finite,} \right.$$

$$x_k \in X \text{ for all } k \in K \text{ and } \sum_{l \in K} \|x_k\|^{p_k} \le 1 \right\} \le 1.$$

Proof: Assume that $A: \ell(X,p) \to \ell_M$. By Proposition 3.1 and Theorem 3.5, conditions (1) and (2) are satisfied. Since $\ell(X,p)$ and ℓ_M are BK-spaces with the Luxemburg norm, by Zeller's Theorem, we have that $A: \ell(X,p) \to \ell_M$ is continuous, so $A: \Phi(X) \to \ell_M$ is continuous when $\Phi(X)$ is considered as a subspace of $\ell(X,p)$. It follows that A is a bounded, hence there exists $\lambda > 0$ such that $||Ax|| \le \lambda$ for all $x \in \Phi(X)$ such that $||x|| \le 1$. By Theorem 2.15

$$\varrho_{M}\left(\frac{1}{\lambda}Ax\right) = \sum_{n=1}^{\infty} M_{n}\left(\frac{1}{\lambda}\sum_{k=1}^{\infty} f_{k}^{n}(x_{k})\right) \leq 1$$
Musi elak (1983), we have

for all $x = (x_k) \in \Phi(X)$ such that $||x|| \le 1$.

Let $K \subset N$ be finite and $x_k \in X$ for all $k \in N$ such that

$$\sum_{k \in K} \|\mathbf{x}_{k}\|^{p_{k}} \leq 1.$$

Let $z = (z_k)$ where $z_k = x_k$ if $k \in K$ and $z_k = 0$ otherwise. Then

$$\sum_{k \notin K} ||z_k||^{p_k} \le 1.$$

This implies by Proposition 3.3(1) that $||z|| \le 1$. By (3.11), we have

$$\sum_{n=1}^{\infty} M_n \left(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k) \right) = \sum_{n=1}^{\infty} M_n \left(\frac{1}{\lambda} \sum_{k=1}^{\infty} f_k^n(z_k) \right) \leq 1.$$

This implies that condition (3) is satisfied.

k e K

Conversely, assume that conditions (1), (2) and (3) hold. We will show that the conditions (1), (2) and (3) of Theorem 3.5 are satisfied. The condition (1) implies by Proposition 3.1 that $(f_k^n)_{k=1}^{\infty} \in \ell(X,p)^{\beta}$ for all $n \in N$, so $\sum_{k=1}^{\infty} f_k^n(x_k)$ converges for all $n \in N$ and all $x=(x_k)\in\ell(X,p)$. Thus condition (1) of Theorem 3.5 holds. It is clear that condition (2) of Theorem 3.5 hold. By (3), there exists $\lambda > 0$ such that

$$\sup \left\{ \sum_{k=1}^{\infty} M_n \left(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k) \right) : K \subset N \text{ is finite,} \right.$$

$$x_k \in X \text{ for all } k \in K \text{ and } \sum_{k \in K} \|x_k\|^{p_k} \le 1 \right\} \le 1. \tag{3.12}$$

Let $x = (x_k) \in \Phi(X)$ be such that $||x|| \leq 1$. By Proposition 3.3(1) we have that

$$\sum_{k \in K} ||x_k||^{p_k} \le 1$$
The finite subset K of N . It follows by (3.12) that

for some finite subset K of N. It follows by (3.12) that

$$\sum_{n=1}^{\infty} M_n \left(\frac{1}{\lambda} \sum_{k \in K} f_k^n(x_k) \right) \le 1,$$

which implies $||Ax|| \leq \lambda$, hence A is bounded, so $A: \Phi(X) \to \ell_M$ is continuous. Thus condition (3) of Theorem 3.5 is satisfied, so we have by Theorem 3.5 that $A: \ell(X,p) \to \ell_M$. The proof is now complete.

Acknowledgements. The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

References

Chen, S. (1996): Dissertations Mthematicae, Polish Academy of Science, Warszawa, Poland.

Choudhur, A. (1992): Matrix transformations of vector valued sequence spaces, Bull. Cal. Math. Soc., 88, 1, 47.

Grosse-Erdmann, K.G. (1992): The structure of sequence spaces of Maddox, Canad, J. Math., 44, 298.

- (1993): Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180, 223.

Maddox, I.J. (1967): Strongly summable sequences, Quart. J. Math., Oxford, 2, 18, 345.

- (1968): Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos Soc., 64, 335.

Musielak, J. (1983): Orlicz Spaces and Modülar Spaces, Lecture Note in Math., 1034, Springer.

Nakano, H. (1951): Modulared sequence spaces, Proc. Japan. Acad, 27, 508.

Simons, S. (1965): The spaces $\ell(p_v)$ and $m(p_v)$, Proc. London. Math. Soc., 15, 422.

Suantai, S. (1999): Matrix transformations related to Nakano vector-valued sequence spaces, Bull. Cal. Math. Soc., 91, (3), 221.

--- (2000): Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math., 24, 24, 7

Wu, C.X. and Lui, L. (1993): Matrix transformations between some vector-valued sequence spaces, SEA. Bull. Math., 17, 1, 83.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE CHIANG MAI UNIVERSITY CHIANG MAI 50200 THAILAND

Mathematical Journal

Prof. Suthep Suantai(and Winate Santan)
Department of Math.
Chiang Mai Univ., 50200
Thailand

July 8, 2002

We inform you of the state of your papers entitled

" Some geometric properties of Cesaro sequence space (KMJ# 1011) " which you submitted for publications in KMJ.

L	1	received
[]	in the referee's consideration
[]	in the Editorial Committee's consideration
[]	accepted conditionally (send the revised form)
]	accepted (send me your floppy diskette)(using TEX))
[]	rejected by the Editorial committee
[]	will appear in

Sincerely yours,

Professor Young Soo Park

The Managing Editor

Kyungpook Mathematical Journal

Georga park

Department of Mathematics

College of Natural Sciences

Kyungpook National University

Taegu 702-701, KOREA

e-mail: yngspark@knu.ac.kr

SOME GEOMETRIC PROPERTIES OF CESARO SEQUENCE SPACE

WINATE SANHAN* AND SUTHEP SUANTAI

ABSTRACT. In this paper we define a modular on the Cesaro sequence space ces(p) and consider it equipped with the Luxemburg norm. We give some relationships between the modular and the Luxemburg norm on this space and show that the space ces(p) has property (H) but it is not rotund (R), where $p = (p_k)$ is a bounded sequence of positive real number with $p_k \geq 1$ for all $k \in \mathbb{N}$.

1. Introduction. Let $(X, \|.\|)$ be a real Banach space, and let B(X) (resp. S(X)) be the closed unit ball (resp. the unit sphere) of X.

A point $x \in S(X)$ is an H-point of B(X) if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x (write $x_n \stackrel{\omega}{\longrightarrow} x$) implies that $||x_n - x|| \to 0$ as $n \to \infty$. If every point in S(X) is an H-point of B(X), then X is said to have the property (H)..

A point $x \in S(X)$ is an extreme point of B(X), if for any $y, z \in S(X)$ the equality 2x = y + z implies y = z.

A point $x \in S(X)$ is an locally uniformly rotund point of B(X) (LUR-point for short) if for any sequence (x_n) in B(X) such that $||x_n + x|| \to 2$ as $n \to \infty$ there holds $||x_n - x|| \to 0$ as $n \to \infty$.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point of B(X). If every point of S(X) is a LUR-point of B(X), then X is said to be locally uniformly rotund (LUR).

It is known that if X is LUR, then it is (R) and possesses property (H). For these geometric notions and their role in Mathematics we refer to the monographs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3], [7], [8], [9] and [14].

^{*} Supported by The Royal Golden Jubilee Project

Let l^0 be the space of all real sequences. For $1 \leq p < \infty$, the Cesaro sequence space (ces_p) , for short) is defined by

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^n |x(i)|)^p < \infty \}$$

equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)|\right)^{p_r}\right)^{\frac{1}{p}} ||x||_0 = \left(\sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{i=1}^{r} |x(i)|\right)^p\right)^{\frac{1}{p}}$$

and $\|x\|_0 = (\sum_{r=0}^\infty (\frac{1}{2^r} \sum_{r} |x(i)|)^p)^{\frac{1}{p}}$ where \sum denotes a sum over the ranges $2^r \le i < 2^{r+1}$

It is known that these two norms are equivalent and ces_p is Banach with respect to each of the two norms.

This space was introduced by J.S. Shue [15]. It is useful in the theory of matrix operator and others (see [10] and [12]). Some geometric properties of the Cesáro sequence space $(ces_p, ||.||)$ were studied by many mathematicians. It is known that $(ces_p, \|.\|)$ is LUR and posses property (H) (see [12]). Y. A. Cui and H. Hudzik [4] proved that $(ces_p, ||.||)$ has the Banach-Saks of type p if p > 1, and it was shown in [5] that $(ces_p, ||.||)$ has property (β) .

Now let $p = (p_k)$ be a bounded sequence of positive real number with $p_k \ge 1$ for all $k \in \mathbb{N}$. The Cesaro sequence space ces(p) is defined by

$$ces(p) = \{x \in l^0 : \sum_{r=0}^{\infty} (\frac{1}{2r} \sum |x(i)|)^{p_r}$$

 $ces(p)=\{x\in l^0: \sum_{r=0}^{\infty}(\tfrac{1}{2^r}\sum_{r}|x(i)|)^{p_r}$ where $\sum\limits_{r}$ denotes a sum over the ranges $2^r\leq i<2^{r+1}$.

For $x \in ces(p)$, let $\rho(x) = \sum_{r=0}^{\infty} (\frac{1}{2^r} \sum_{r} |x(i)|)^{p_r})$ and define the Luxemburg norm on ces(p) by

$$||x|| = \inf \{ \varepsilon > 0 : \rho(\frac{x}{\varepsilon}) \le 1 \}, \quad x \in ces(p).$$

The main purpose of this paper is to show that the Cesaro sequence space ces(p)equipped with the Luxemburg norm has property(H) but it is not rotund, so it is not LUR.

Throughout this paper we let $M = \sup_{r} p_r$, and for $x \in l^0$ we put

$$x|_i = (x(1), x(2), ..., x(i), 0, 0, ...)$$

and

$$x|_{\mathbb{N}-i} = (0, 0, ..., 0, x(i+1), x(i+2), ...).$$

we have

$$\rho(x) \le \rho\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right)$$

$$= \rho\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\le (\|x\| + \epsilon)\rho(\frac{x}{\lambda})$$

$$\le \|x\| + \epsilon,$$

which implies that $\rho(x) \leq ||x||$. Hence (i) is satisfied.

- (ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{\|x\| 1}{\|x\|}$, then $1 < (1 \epsilon)\|x\| < \|x\|$. By definition of $\|.\|$ and by Proposition 2.2(i), we have $1 < \rho\left(\frac{x}{(1-\epsilon)\|x\|}\right) \le \frac{1}{(1-\epsilon)\|x\|}\rho(x)$, so $(1-\epsilon)\|x\| < \rho(x)$ for all $\epsilon \in (0, \frac{\|x\| 1}{\|x\|})$, which implies that $\|x\| \le \rho(x)$.
- (iii) Assume that ||x|| = 1. Let $\epsilon > 0$, then there exists $\lambda > 0$ such that $1 + \epsilon > \lambda > ||x||$ and $\rho(\frac{x}{\lambda}) \le 1$. By Proposition 2.2(ii), we have $\rho(x) \le \lambda^M \rho(\frac{x}{\lambda}) \le \lambda^M < (1 + \epsilon)^M$, so $(\rho(x))^{\frac{1}{M}} < 1 + \epsilon$ for all $\epsilon > 0$ which implies that $\rho(x) \le 1$.

If $\rho(x) < 1$, let $a \in (0,1)$ such that $\rho(x) < a^M < 1$. From Proposition 2.2(i), we have $\rho(\frac{x}{a}) \le \frac{1}{a^M} \rho(x) < 1$, hence $||x|| \le a < 1$, which is a contradiction. Thus, we have $\rho(x) = 1$.

Conversely, assume that $\rho(x) = 1$. By definition of $\|.\|$, we conclude that $\|x\| \le 1$. If $\|x\| < 1$, then we have by (i) that $\rho(x) \le \|x\| < 1$, which contradicts to our assumption, so we obtain that $\|x\| = 1$.

- (iv) follows from (i) and (iii).
- (v) follows from (iii) and (iv).

Proposition 2.4 For $x \in ces(p)$ we have

- (i) if 0 < a < 1 and ||x|| > a, then $\rho(x) > a^M$ and
- (ii) if $a \ge 1$ and ||x|| < a, then $\rho(x) < a^M$.

Proof. (i) Suppose 0 < a < 1 and ||x|| > a. Then $\left\|\frac{x}{a}\right\| > 1$. By Proposition 2.3(ii), we have $\rho\left(\frac{x}{a}\right) > 1$. Hence, by Proposition 2.2(i), we obtain that $\rho(x) \ge a^M \rho\left(\frac{x}{a}\right) > a^M$.

(ii) Suppose $a \ge 1$ and ||x|| < a. Then $\left\|\frac{x}{a}\right\| < 1$. By Proposition 2.3(i), we have $\rho(\frac{x}{a}) < 1$. If a = 1, we have $\rho(x) < 1 = a^M$. If a > 1, by Proposition 2.2(ii), we obtain that $\rho(x) < a^M \rho(\frac{x}{a}) < a^M$.

Proprosition 2.5 Let (x_n) be a sequence in ces(p).

- (i) If $\lim_{n\to\infty} ||x_n|| = 1$, then $\lim_{n\to\infty} \rho(x_n) = 1$.
- (ii) If $\lim_{n\to\infty} \rho(x_n) = 0$ then $\lim_{n\to\infty} ||x_n|| = 0$.

Proof. (i) Suppose $\lim_{n\to\infty} ||x_n|| = 1$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1-\epsilon < ||x_n|| < 1+\epsilon$ for all $n \ge \mathbb{N}$. By Proposition 2.4, $(1-\epsilon)^M < \rho(x_n) < (1+\epsilon)^M$ for all $n \ge \mathbb{N}$, which implies that $\lim_{n\to\infty} \rho(x_n) = 1$.

(ii) Suppose $||x_n|| \neq 0$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.4 (i), we obtain $\rho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\rho(x_n) \neq 0$ as $n \to \infty$.

Lemma 2.6 Let (x_n) be a sequence in ces(p). If $\rho(x_n) \to \rho(x)$ and $x_n(k) \to x(k) \ \forall k$, then $x_n \to x$ as $n \to \infty$.

Proof Suppose that $x_n \neq x$. By Proposition 2.5 (ii), we have $\rho(\frac{x_n-x}{2}) \neq 0$. Without loss of generality we may assume that there exists $\epsilon \in (0,1)$ such that $\rho(\frac{x_n-x}{2}) > \epsilon$ for all $n \in \mathbb{N}$. Since $(\rho(\frac{x_n-x}{2}))_{n=1}^{\infty}$ is a bounded sequence, it must have a convergent subsequence. Passing through a subsequence, if necessary we can assume $\rho(\frac{x_n-x}{2}) \to \epsilon_0$ for some $\epsilon_0 \geq \epsilon$. Since $\rho(x) = \lim_{i \to \infty} \rho(x|_{2^i})$ and $(\rho(x|_{2^i}))_{i=0}^{\infty}$ is nondecreasing, we have $\rho(x) = \sup\{\rho(x|_{2^i}) : i \in \mathbb{N}\}$. So there exists $i \in \mathbb{N}$ such that $\rho(x|_{2^i}) > \rho(x) - \epsilon/2$. Thus

$$\rho(x|_{\mathbb{N}-2^i}) < \epsilon/2. \tag{2.1}$$

Since $x_n(k) \to x(k)$ for all $k \in \mathbb{N}$, we have

$$\rho(x_n|_{2^i}) \to \rho(x|_{2^i})$$
 and $\rho(\frac{x_n - x}{2}|_{2^i}) \to 0$ as $n \to \infty$. (2.2)

MAIN RESULTS

First, we show that ρ is a convex modular on ces(p).

Proposition 2.1 The functional ρ is a convex modular on ces(p).

Proof. It is obvious that $\rho(x) = 0 \Leftrightarrow x = 0$ and $\rho(\alpha x) = \rho(x)$ for all scalar α with $|\alpha| = 1$.

Let $\alpha \geq 0, \beta \geq 0$ with $\alpha + \beta = 1$. By the convexity of the function $t \to |t|^{p_r}$ for every $r \in \mathbb{N}$, we have

$$\begin{split} \rho(\alpha x + \beta y) &= \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |\alpha x(i) + \beta y(i)| \right)^{p_r} \\ &\leq \sum_{r=0}^{\infty} \left(\alpha \frac{1}{2^r} \sum_{r} |x(i)| + \beta \frac{1}{2^r} \sum_{r} |y(i)| \right)^{p_r} \\ &\leq \alpha \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |x(i)| \right)^{p_r} + \beta \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |y(i)| \right)^{p_r} \\ &= \alpha \rho(x) + \beta \rho(y). \end{split}$$

Proposition 2.2 For $x \in ces(p)$, the modular ρ on ces(p) satisfies the following property (i) if 0 < a < 1, then $a^M \rho(\frac{x}{a}) \le \rho(x)$ and $\rho(ax) \le a\rho(x)$,

(ii) if
$$a > 1$$
, then $\rho(x) \le a^M \rho(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\rho(x) \le a\rho(x) \le \rho(ax)$.

Proof (i) Let 0 < a < 1. Then we have

$$\rho(x) = \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_r |x_n| \right)^{p_r}$$

$$= \sum_{r=0}^{\infty} \left(\frac{a}{2^r} \sum_r |\frac{x_n}{a}| \right)^{p_r}$$

$$= \sum_{r=0}^{\infty} a^{p_r} \left(\frac{1}{2^r} \sum_r |\frac{x_n}{a}| \right)^{p_r}$$

$$\geq \sum_{r=0}^{\infty} a^{M} \left(\frac{1}{2^{r}} \sum_{r} \left| \frac{x_{n}}{a} \right| \right)^{p_{r}}$$

$$= a^{M} \sum_{r=0}^{\infty} \left(\frac{1}{2^{r}} \sum_{r} \left| \frac{x_{n}}{a} \right| \right)^{p_{r}}$$

$$= a^{M} \rho(\frac{x}{a}).$$

By convexity of ρ , we have $\rho(ax) \leq a\rho(x)$, so (i) is obtained (ii) Let a>1 . Then

$$\rho(x) = \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} |x_n| \right)^{p_r}$$

$$= \sum_{r=0}^{\infty} a^{p_r} \left(\frac{1}{2^r} \sum_{r} \left| \frac{x_n}{a} \right| \right)^{p_r}$$

$$\leq a^M \sum_{r=0}^{\infty} \left(\frac{1}{2^r} \sum_{r} \left| \frac{x_n}{a} \right| \right)^{p_r}$$

$$= a^M \rho(\frac{x}{a}).$$

Hence (ii) is satisfied. (iii) follows from the convexity of ρ .

Proprosition 2.3 For any $x \in ces(p)$, we have

- (i) if ||x|| < 1, then $\rho(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\rho(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\rho(x) = 1$,
- (iv) ||x|| < 1 if and only if $\rho(x) < 1$ and
- (v) ||x|| > 1 if and only if $\rho(x) > 1$.

Proof (i) Let $\varepsilon > 0$ be such that $0 < \varepsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of ||.||, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\rho(\frac{x}{\lambda}) \le 1$. By Proposition 2.2(i) and (iii),

By the convexity of ρ together with (2.1) and (2.2), we have

$$\varepsilon_{0} = \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2})
= \lim_{n \to \infty} \left[\rho(\frac{x_{n} - x}{2}|_{2^{i}}) + \rho(\frac{x_{n} - x}{2}|_{\mathbb{N}-2^{i}}) \right]
= \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2}|_{2^{i}}) + \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2}|_{\mathbb{N}-2^{i}})
= 0 + \lim_{n \to \infty} \rho(\frac{x_{n} - x}{2}|_{\mathbb{N}-2^{i}})
\leq \frac{1}{2} \lim_{n \to \infty} \rho(x_{n}|_{\mathbb{N}-2^{i}}) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \frac{1}{2} \lim_{n \to \infty} (\rho(x_{n}) - \rho(x_{n}|_{2^{i}})) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \frac{1}{2} (\rho(x) - \rho(x|_{2^{i}})) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}}) + \frac{1}{2}\rho(x|_{\mathbb{N}-2^{i}})
= \rho(x|_{\mathbb{N}-2^{i}})
< \epsilon/2
< \epsilon_{0},$$

which is a contradiction. Therefore $x_n \to x$ as $n \to \infty$.

Theorem 2.7 The space ces(p) has the property (H).

Proof. Let $x \in S(ces(p))$, $x_n \in B(ces(p))$ for all $n \in \mathbb{N}$ such that $x_n \xrightarrow{\omega} x$ and $||x_n|| \to 1$ as $n \to \infty$. By Proposition 2.3(iii), we have $\rho(x) = 1$. By Proposition 2.5(i), we obtain that $\rho(x_n) \to 1$ as $n \to \infty$. So $\rho(x_n) \to \rho(x)$ as $n \to \infty$. Since $x_n \xrightarrow{\omega} x$, it implies that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. It follows from Lemma 2.6 that $x_n \to x$ as $n \to \infty$.

The following result is obtained directly from Theorem 2.7.

Corollary 2.8 For $1 \le p < \infty$, $(ces_p, ||.||_0)$ has property (H)

Remark 2.9 For a bounded sequence of positive real numbers $p = (p_k)$ with $p_k \ge 1$ for all $k \in \mathbb{N}$, the space ces(p) equipped the Luxemburg norm is not rotund, so it is not LUR.

To see this we put

$$x = (0, 1, 1, 0, 0,)$$
 and $y = (0, 2, 0, 0, ...)$

Then $x, y \in S(ces(p))$ because $\rho(x) = \rho(y) = 1$. Since $\rho(\frac{x+y}{2}) = 1$, we have by Proposition 2.3 (iii) that $\|\frac{x+y}{2}\| = 1$. This shows that ces(p) is not rotund, so it is not LUR.

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support .

References

- [1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [5] Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesaro sequence spaces, SEA. Bull. Math. 24 (2000), 201-210.
- [6] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] R. Grzaslewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515.
- [8] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull 35 (1992), 1 - 5.

- [9] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [10]P. Y. Lee, Cesáro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [11]B.L. Lin, P. K. Lin and S. L. Troyanski, Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
- [12]Y. Q. Liu, B. E. Wu and Y. P. Lee, *Method of sequence spaces*, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [13]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [15]J. S. Shue, Cesáro sequence spaces, Tamkang J. Math 1 (1970), 143-150.

Winate Sanhan and Suthep Suantai
Department of Mathematics, Chiang Mai University, 50200, Thailand
malsuthe@science.cmu.ac.th

ARCHIVUM MATHEMATICUM (BRNO)

MASARYK UNIVERSITY, FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Janáčkovo nám. 2a, 662 95 Brno, Czech Republic Tel. ++420-5-41321251, Fax. ++420-5-41210337 E-mail: archmath@math.muni.cz

Dr. Suthep Suantai
Department of Mathematics
Faculty of Science
Chiang Mai University
Chiang Mai
TAILAND

Brno, April 16, 2002

Dear Dr. Suantai,

We are pleased to inform you that your paper entitled On the H-property of some Banach sequence spaces has been accepted for a publication.

Yours sincerely,

Jiří Rosický Editor-in-Chief Accepted for publication in Archivum Mathematicum

On the H-Property of Some Banach Sequence Spaces

SUTHEP SUANTAI

ABSTRACT. In this paper, we define a generalized Cesáro sequence space ces(p) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces(p) posses property (H) and property (G), and it is rotund, where $p=(p_k)$ is a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$.

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \xrightarrow{w} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$;
 - c) a denting point if for every $\epsilon > 0$, $x_0 \notin \overline{conv}\{B(X) \setminus (x_0 + \epsilon B(X))\}$.

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point.

A Banach space X is said to posses Property (H) (Property (G)) provided every ponit of S(X) is H-point (denting point).

Typeset by A_MS - T_EX

For these geometric notions and their role in Mathematics we refer to the monographs [1], [2], [6] and [13]. Some of them were studied for Orlicz spaces in [3], [8], [8], [9] and [14].

Let us denote by l^0 the space of all real sequences. For $1 \le p < \infty$, the Cesáro

sequence space (ces_p , for short) is defined by

$$ces_{p} = \{x \in l^{0} : \sum_{i=1}^{\infty} (\frac{1}{i}) | x(i) |^{p} < \infty \}$$

equipped with the norm

$$\binom{d}{d} \left(|(i)x| \sum_{i=i}^{n} \frac{1}{i} \right) \sum_{i=u}^{\infty} = ||x||$$

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix operator and others (see [10] and [12]). Some geometric properties of the Cesáro sequence space \cos_p were studied by many mathematicians. It is known that \cos_p is LUR and posses property (H) (see [12]). Y. A. Cui and H. Hudzik [4] proved that \cos_p has the Banach-Saks of type p if p > 1, and it was shown in [5] that \cos_p has property (β). Now, let $p = (p_k)$ be a sequence of positive real numbers with $p_k \ge 1$ for all

 $k \in \mathbb{N}$. The Nakano sequence space $\ell(p)$ is defined by

$$l(p) = \{l \in l^0 : \sigma(\lambda x) < \infty \text{ for some } \lambda > 0\}$$

where $\sigma(x) = \sum_{i=1}^{\infty} |x(i)|^{p_i}$. We consider the space l(p) equipped with the norm

$$\{1 \ge (\frac{x}{\lambda})o : 0 < \lambda\} \text{Ini} = \|x\|$$

under which it is a Banach space. If $p=(p_k)$ is bounded, we have

$$l(p) = \{x \in l^0 : \sum_{i=1}^{\infty} |x(i)|^{p_i} < \infty\}.$$

Several geometric properties of l(p) were studied in [1] and [4]. The Cesáro sequence space ces(p) is defined by

$$ces(b) = \{x \in \mathfrak{f}_0 : \delta(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where $\varrho(x) = \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n}$. We consider the space ces(p) equipped with the so-called Luxemburg norm

$$||x|| = \inf\{\lambda > 0 : \rho(\frac{x}{\lambda}) \le 1\}$$

under which it is a Banach space. If $p = (p_k)$ is bounded, then we have

$$ces(p) = \{x = x(i) : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n} < \infty\}.$$

W. Sanhan [15] proved that ces(p) is nonsquare when $p_k > 1$ for all $k \in \mathbb{N}$. In this paper, we show that the Cesáro sequence space ces(p) equipped with the Luxemburg norm is rotund (R) and posses property (H) and property (G) when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Throughout this paper we assume that $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$, and $M = \sup_k p_k$.

2. Main Results

We begin with giving some basic properties of modular on the space ces(p).

Proposition 2.1 The functional ϱ on the Cesaro sequence space ces(p) is a convex modular.

Proof. It is obvious that $\varrho(x) = 0 \Leftrightarrow x = 0$ and $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$. If $x, y \in ces(p)$ and $\alpha \geq 0$, $\beta \geq 0$ with $\alpha + \beta = 1$, by the convexity of the function $t \to |t|^{p_k}$ for every $k \in \mathbb{N}$, we have

$$\begin{split} \varrho(\alpha x + \beta y) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\alpha x(i) + \beta y(i)| \right)^{p_k} \\ &\leq \sum_{k=1}^{\infty} \left(\alpha \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right) + \beta \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right) \right)^{p_k} \\ &\leq \alpha \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} + \beta \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |y(i)| \right)^{p_k} \\ &= \alpha \rho(x) + \beta \rho(y). \end{split}$$

Proposition 2.2 For $x \in ces(p)$, the modular ϱ on ces(p) satisfies the following properties:

(i) if
$$0 < a < 1$$
, then $a^M \varrho(\frac{x}{a}) \le \varrho(x)$ and $\varrho(ax) \le a\varrho(x)$,
(ii) if $a \ge 1$, then $\varrho(x) \le a^M \varrho(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\varrho(x) \le a\varrho(x) \le \varrho(ax)$.

Proof. It is obvious that (iii) is satisfied by the convexity of ϱ . It remains to prove (i) and (ii).

For 0 < a < 1, we have

$$\begin{split} \varrho(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} \\ &= \sum_{k=1}^{\infty} \left(\frac{a}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &\geq \sum_{k=1}^{\infty} a^M \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &= a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &= a^M \varrho(\frac{x}{a}), \end{split}$$

and it implies by the convexity of ϱ that $\varrho(ax) \leq a\varrho(x)$, hence (i) is satisfied.

Now, suppose that $a \geq 1$. Then we have

$$\begin{split} \varrho(x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} \\ &= \sum_{k=1}^{\infty} a^{p_k} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &\leq a^M \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |\frac{x(i)}{a}|\right)^{p_k} \\ &= a^M \varrho(\frac{x}{a}). \end{split}$$

So (ii) is obtained.

Next, we give some relationships between the modular ϱ and the Luxemburg norm on ces(p).

Proposition 2.3 For any $x \in ces(p)$, we have

- (i) if ||x|| < 1, then $\varrho(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\varrho(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\rho(x) = 1$,
- (iv) ||x|| < 1 if and only if $\varrho(x) < 1$,
- (v) ||x|| > 1 if and only if $\varrho(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\varrho(x) > a^M$, and
- (vii) if $a \ge 1$ and ||x|| < a, then $\varrho(x) < a^M$.

Proof. (i) Let $\varepsilon > 0$ be such that $0 < \varepsilon < 1 - ||x||$, so $||x|| + \epsilon < 1$. By definition of ||.||, there exists $\lambda > 0$ such that $||x|| + \epsilon > \lambda$ and $\varrho(\frac{x}{\lambda}) \le 1$. From Proposition 2.2(i) and (iii), we have

$$\varrho(x) \le \varrho\left(\frac{(\|x\| + \epsilon)}{\lambda}x\right)$$

$$= \varrho\left((\|x\| + \epsilon)\frac{x}{\lambda}\right)$$

$$\le (\|x\| + \epsilon)\varrho(\frac{x}{\lambda})$$

$$\le \|x\| + \epsilon,$$

which implies that $\varrho(x) \leq ||x||$, so (i) is satisfied.

(ii) Let $\epsilon > 0$ be such that $0 < \epsilon < \frac{\|x\| - 1}{\|x\|}$, then $1 < (1 - \epsilon)\|x\| < \|x\|$. By definition of $\|.\|$ and by Proposition 2.2 (i), we have

$$1 < \varrho\left(\frac{x}{(1-\epsilon)\|x\|}\right)$$
$$\leq \frac{1}{(1-\epsilon)\|x\|}\varrho(x),$$

so $(1 - \epsilon)||x|| < \varrho(x)$ for all $\epsilon \in (0, \frac{||x|| - 1}{||x||})$. This implies that $||x|| \le \varrho(x)$, hence (ii) is obtained.

(iii) Assume that $\|x\|=1$. By definition of $\|x\|$, we have that for $\epsilon>0$, there exists $\lambda>0$ such that $1+\epsilon>\lambda>\|x\|$ and $\varrho(\frac{x}{\lambda})\leq 1$. From Proposition 2.2(ii), we have $\varrho(x)\leq \lambda^M\varrho(\frac{x}{\lambda})\leq \lambda^M<(1+\epsilon)^M$, so $(\varrho(x))^{\frac{1}{M}}<1+\epsilon$ for all $\epsilon>0$, which implies $\varrho(x)\leq 1$. If $\varrho(x)<1$, then we can choose $a\in(0,1)$ such that $\varrho(x)< a^M<1$. From Proposition 2.2(i), we have $\varrho(\frac{x}{a})\leq \frac{1}{a^M}\varrho(x)<1$, hence $\|x\|\leq a<1$, which is a contradiction. Therefore $\varrho(x)=1$.

On the other hand , assume that $\varrho(x)=1$. Then $||x||\leq 1$. If ||x||<1 , we have by (i) that $\varrho(x)\leq ||x||<1$, which contradicts our assumption. Therefore ||x||=1.

- (iv) follows directly from (i) and (iii).
- (v) follows from (iii) and (iv).
- (vi) Suppose 0 < a < 1 and ||x|| > a. Then $\left\| \frac{x}{a} \right\| > 1$. By (v), we have $\varrho\left(\frac{x}{a}\right) > 1$. Hence, by Proposition 2.2(i), we obtain that $\varrho(x) \ge a^M \varrho\left(\frac{x}{a}\right) > a^M$.
- (vii) Suppose $a \ge 1$ and ||x|| < a. Then $\left\| \frac{x}{a} \right\| < 1$. By (iv), we have $\varrho(\frac{x}{a}) < 1$. If a = 1, it is obvious that $\varrho(x) < 1 = a^M$. If a > 1, then , by Proposition 2.2(ii), we obtain that $\varrho(x) \le a^M \varrho(\frac{x}{a}) < a^M$.

Proposition 2.4 Let (x_n) be a sequence in ces(p).

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho(x_n) \to 1$ as $n \to \infty$.
- (ii) If $\varrho(x_n) \to 0$ as $n \to \infty$, then $||x_n|| \to 0$ as $n \to \infty$.

Proof. (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.3 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho(x_n) \to 1$ as $n \to \infty$.

(ii) Suppose $||x_n|| \not\to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.3 (vi), we have $\varrho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho(x_n) \not\to 0$ as $n \to \infty$.

Next, we shall show that ces(p) has the property (H). To do this, we need a lemma.

Lemma 2.5 Let $x \in ces(p)$ and $(x_n) \subseteq ces(p)$. If $\varrho(x_n) \to \rho(x)$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, then $x_n \to x$ as $n \to \infty$.

Proof. Let $\epsilon > 0$ be given. Since $\rho(x) = \sum_{k=1}^{\infty} (\frac{1}{k} \sum_{i=1}^{k} |x(i)|)^{p_k} < \infty$, there is $k_0 \in \mathbb{N}$ such that

$$\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} < \frac{\epsilon}{3} \frac{1}{2^{M+1}}. \tag{2.1}$$

Since $\rho(x_n) - \sum_{k=1}^{k_0} (\frac{1}{k} \sum_{i=1}^k |x_n(i)|)^{p_k} \to \rho(x) - \sum_{k=1}^{k_0} (\frac{1}{k} \sum_{i=1}^k |x_n(i)|)^{p_k}$ as $n \to \infty$ and $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$, there is $n_0 \in \mathbb{N}$ such that

$$\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} < \varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M}$$
 (2.2)

for all $n \geq n_0$, and

$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} < \frac{\epsilon}{3}.$$
 (2.3)

for all $n \geq n_0$.

It follows from (2.1), (2.2) and (2.3) that for $n \geq n_0$,

$$\begin{split} \varrho(x_n - x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &= \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} \\ &< \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &< \frac{\epsilon}{3} + 2^M \left(\varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} \right) \\ &= \frac{\epsilon}{3} + 2^M \left(2 \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} \right) \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

This show that $\varrho(x_n - x) \to 0$ as $n \to \infty$. Hence, by Proposition 2.4 (ii), we have $||x_n - x|| \to 0$ as $n \to \infty$.

Theorem 2.6 The space ces(p) has the property (H).

Proof. Let $x \in S(ces(p))$ and $(x_n) \subseteq ces(p)$ such that $||x_n|| \to 1$ and $x_n \xrightarrow{w} x$ as $n \to \infty$. From Proposition 2.3 (iii), we have $\varrho(x) = 1$, so it follows from Proposition 2.4 (i) that $\varrho(x_n) \to \varrho(x)$ as $n \to \infty$. Since the mapping $p_i : ces(p) \to \mathbb{R}$, defined by $p_i(y) = y(i)$, is a continuous linear functional on ces(p), it follows that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$. Thus, we obtain by Lemma 2.5 that $x_n \to x$ as $n \to \infty$. Theorem 2.7 The space ces(p) is rotund.

Proof. Let $x \in S(ces(p))$ and $y, z \in B(ces(p))$ with $x = \frac{y+z}{2}$. By Proposition 2.3 and the convexity of ϱ we have

$$1 = \varrho(x) \le \frac{1}{2}(\varrho(y) + \varrho(z)) \le \frac{1}{2}(1+1) = 1 ,$$

so that $\varrho(x) = \frac{1}{2}(\varrho(y) + \varrho(z)) = 1$. This implies that

$$\left(\frac{1}{k}\sum_{i=1}^{k}\left|\frac{y(i)+z(i)}{2}\right|\right)^{p_k} = \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right|\right)^{p_k} + \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|\right)^{p_k}$$
(2.4)

for all $k \in \mathbb{N}$.

We shall show that y(i) = z(i) for all $i \in \mathbb{N}$.

From (2.4), we have

$$|x(1)|^{p_1} = \left| \frac{y(1) + z(1)}{2} \right|^{p_1} = \frac{1}{2} (|y(1)|^{p_1} + |z(1)|^{p_1}). \tag{2.5}$$

Since the mapping $t \to |t|^{p_1}$ is strictly convex, it implies by (2.5) that y(1) = z(1).

Now assume that y(i) = z(i) for all i = 1, 2, 3, ..., k - 1. Then y(i) = z(i) = x(i) for all i = 1, 2, 3, ..., k - 1. From (2.4), we have

$$\left(\frac{1}{k}\sum_{i=1}^{k}\left|\frac{y(i)+z(i)}{2}\right|\right)^{p_k} = \left(\frac{\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right| + \frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|}{2}\right)^{p_k} \\
= \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|y(i)\right|\right)^{p_k} + \frac{1}{2}\left(\frac{1}{k}\sum_{i=1}^{k}\left|z(i)\right|\right)^{p_k} \tag{2.6}$$

By convexity of the mapping $t \to |t|^{p_k}$, it implies that $\frac{1}{k} \sum_{i=1}^k |y(i)| = \frac{1}{k} \sum_{i=1}^k |z(i)|$. Since y(i) = z(i) for all i = 1, 2, 3, ..., k-1, we get that

$$|y(k)| = |z(k)|.$$
 (2.7)

If y(k) = 0, then we have z(k) = y(k) = 0. Suppose that $y(k) \neq 0$. Then $z(k) \neq 0$. If y(k)z(k) < 0, it follows from (2.7) that y(k) + z(k) = 0. This implies by

(2.6) and (2.7) that

$$\left(\frac{1}{k}\sum_{i=1}^{k-1}|x(i)|\right)^{p_k} = \left(\frac{1}{k}\left(\sum_{i=1}^{k-1}|x(i)| + |y(k)|\right)\right)^{p_k} \ ,$$

which is a contradiction. Thus, we have y(k)z(k) > 0. This implies by (2.5) that y(k) = z(k). Thus, we have by induction that y(i) = z(i) for all $i \in \mathbb{N}$, so y = z.

Bor-Luh Lin, Pei-Kee Lin and S.L. Troyanski proved (cf. Theorem iii [11]) that element x in a bounded closed convex set K of a Banach space is a denting point of K iff x is an H-point of K and x is an extreme point of K. Combining this result with our results (Theorem 2.6 and Theorem 2.7), we obtain the following result.

Corollary 2.8 The space ces(p) has the property (G).

For $1 < r < \infty$, let $p = (p_k)$ with $p_k = r$ for all $k \in \mathbb{N}$. We have that $ces_r = ces(p)$, so the following results are obtained directly from Theorem 2.6, Theorem 2.7 and Corollary 2.8, respectively.

Corollary 2.9 For $1 < r < \infty$, the Cesáro sequence space ces_r has the property (H).

Corollary 2.10 For $1 < r < \infty$, the Cesáro sequence space ces_r is rotund.

Corollary 2.11 For $1 < r < \infty$, the Cesáro sequence space ces_r has the property (G).

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support .

References

- [1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [5] Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesaro sequence spaces, SEA. Bull. Math. 24 (2000), 201-210.
- [6] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] R. Grzaslewicz, H. Hudzik and W. Kurc,, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515.
- [8] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull **35** (1992), 1 5.
- [9] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [10]P. Y. Lee, Cesáro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [11]B.L. Lin, P. K. Lin and S. L. Troyanski, Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528.
- [12]Y. Q. Liu, B. E. Wu and Y. P. Lee, Method of sequence spaces, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [13]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).
- [14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [15] W. Sanhan, On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
- [16]J. S. Shue, Cesáro sequence spaces, Tamkang J. Math 1 (1970), 143-150.

Accepted for publication in Georgian Mathematical Journal

On Some Convexity Properties of Generalized Cesáro Sequence Spaces

SUTHEP SUANTAL

ABSTRACT. In this paper, we define a generalized Cesáro sequence space ces(p) and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space ces(p) is locally uniformly rotund (LUR), where $p=(p_k)$ is a bounded sequence of positive real numbers with $p_k>1$ for all $k\in\mathbb{N}$.

(2000) AMS Mathematics Subject Classification: 46E30, 46E40, 46B20.

1. Preliminaries.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball of X, respectively. A point $x_0 \in S(X)$ is called

- a) an extreme point if for every $x, y \in S(X)$ the equality $2x_0 = x + y$ implies x = y;
- b) a locally uniformly rotund point (LUR-point for short)if for any sequence (x_n) in B(X) such that $||x_n + x|| \to 2$ as $n \to \infty$ there holds $||x_n x|| \to 0$ as $n \to \infty$;
- c) an *H-point* if for any sequence (x_n) in X such that $||x_n|| \to 1$ as $n \to \infty$, the weak convergence of (x_n) to x_0 (write $x_n \stackrel{w}{\to} x_0$) implies that $||x_n x|| \to 0$ as $n \to \infty$;

A Banach space X is said to be rotund (R), if every point of S(X) is an extreme point.

If every $x \in S(X)$ is a LUR-point, then X is said to be locally uniformly rotund

 $(T\Omega B)$

and [14].

X is said to possess property (H) provided every ponit of S(X) is H-point . For these geometric notions and their role in Mathematics we refer to the monographs [1], [6], [12] and [13]. Some of them were studied for Orlicz spaces in [1], [8], [7], [8], [12]

Let X be a real vector space. A functional $\varrho:X\to [0,\infty]$ is called a modular if

it satisfies the conditions

- 0 = x if yield one if 0 = (x)y (i)
- (ii) $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$;
- (iii) $\varrho(\alpha x + \beta y) \le \varrho(x) + \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \le \varrho(x) + \varrho(y) = 1$.

The modular ϱ is called convex if (iv) $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$

(iv) $\varrho(\alpha x + \beta y) \leq \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. If ϱ is a modular in X, we define

$$\{\ 0=(x\lambda)\underline{\circ} \, \min_{t=0,\ldots,K} \ : X\ni x\}=\underline{\circ} X$$

$$\text{..} \{\ 0 < \lambda \text{ emos rof } \infty > (\lambda \lambda) \subseteq X \in X \} = {}_{g}^{*}X \text{ bas}$$

It is clear that $X_{\varrho}\subseteq X_{\varrho}^*.$ If ϱ is a convex modular, for $x\in X_{\varrho}$ we define

Orlicz [13] proved that if ϱ is a convex modular in X, then $X_{\varrho} = X_{\varrho}^*$ and $\|\cdot\|$ is a norm on X_{ϱ} for which it is a Banach space. The norm $\|\cdot\|$ defined as in (1.1) is called the Luxemburg norm.

A modular ϱ on X is called

the Luxemburg norm $\|\cdot\|$ on λ_{ϱ} .

- (a) πght -continuous if $\lim_{\lambda \to 1+} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_{\varrho}$
- (b) left-continuous if $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$ for all $x \in X_\varrho$
- (c) continuous if it is both left-continuous and right-continuous.

The following known results gave some relationships between the modular ϱ and

Theorem 1.1 Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and (x_n) a sequence in X_{ϱ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\varrho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Proof. See [11, Theorem 1.3].

Theorem 1.2 Let ϱ be a convex modular on X and $x \in X_{\varrho}$.

- (i) If ϱ is right-continuous, then ||x|| < 1 if and only if $\varrho(x) < 1$.
- (ii) If ϱ is left-continuous, then $||x|| \le 1$ if and only if $\varrho(x) \le 1$.
- (iii) If ϱ is continuous, then ||x|| = 1 if and only if $\varrho(x) = 1$.

Proof. See [11, Theorem 1.4].

Let us denote by l^0 the space of all real sequences. For $1 \le p < \infty$, the Cesáro sequence space $(ces_p, for short)$ is defined by

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^p < \infty \}$$

equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |x(i)|\right)^{p}\right)^{\frac{1}{p}}$$

This space was introduced by J.S. Shue [16]. It is useful in the theory of matrix operators and others (see [9] and [10]). Some geometric properties of the Cesáro sequence space ces_p were studied by many mathematicians. It is known that ces_p is LUR and possesses property (H) (see [10]). Y. A. Cui and H. Hudzik [2] proved that ces_p has the Banach-Saks property, and it was shown in [5] that ces_p has property (β).

Now, let $p = (p_k)$ be a sequence of positive real numbers with $p_k \geq 1$ for all $k \in \mathbb{N}$. The Nakano sequence space l(p) is defined by

$$l(p) = \{x \in l^0 : \sigma(\lambda x) < \infty \text{ for some } \lambda > 0\},$$

where $\sigma(x) = \sum_{i=1}^{\infty} |x(i)|^{p_i}$. We consider the space l(p) equipped with the norm

$$||x|| = \inf\{\lambda > 0 : \sigma(\frac{x}{\lambda}) \le 1\},$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$l(p) = \{x \in l^0 : \sum_{i=1}^{\infty} |x(i)|^{p_i} < \infty\}.$$

Several geometric properties of l(p) were studied in [1] and [4].

The generalized Cesáro sequence space ces(p) is defined by

$$ces(p) = \{x \in l^0 : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0\},\$$

where $\varrho(x) = \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n}$. We consider this space equipped with the so-called Luxemburg norm

$$||x|| = \inf\{\lambda > 0 : \varrho(\frac{x}{\lambda}) \le 1\}$$

under which it is a Banach space. If $p = (p_k)$ is bounded, we have

$$ces(p) = \{x = x(i) : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^{p_n} < \infty \}.$$

W. Sanhan [15] proved that ces(p) is nonsquare when $p_k > 1$ for all $k \in \mathbb{N}$. In this paper, we show that the Cesáro sequence space ces(p) equipped with the Luxemburg norm is LUR and has property (H) when $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$.

Throughout this paper we assume that $p = (p_k)$ is bounded with $p_k > 1$ for all $k \in \mathbb{N}$, and $M = \sup_k p_k$.

2. Main Results

We begin with giving some basic properties of the modular ϱ on the space ces(p). By convexity of the function $t \to |t|^{p_k}$ for every $k \in \mathbb{N}$, we have that ϱ is a convex modular. So we have the following proposition.

Proposition 2.1 The functional ϱ on the Cesaro sequence space ces(p) is a convex modular.

Proposition 2.2 For $x \in ces(p)$, the modular ϱ on ces(p) satisfies the following properties:

(i) if
$$0 < a < 1$$
, then $a^M \varrho(\frac{x}{a}) \le \varrho(x)$ and $\varrho(ax) \le a\varrho(x)$,

(ii) if
$$a \ge 1$$
, then $\varrho(x) \le a^M \varrho(\frac{x}{a})$,

(iii) if
$$a \ge 1$$
, then $\varrho(x) \le a\varrho(x) \le \varrho(ax)$.

Proof. All assertions are clearly obtained by definition of ρ .

Proposition 2.3 The modular ρ on ces(p) is continuous.

Proof. For $\lambda > 1$, by Proposition 2.2 (ii) and (iii), we have

$$\varrho(x) \le \lambda \varrho(x) \le \varrho(\lambda x) \le \lambda^M \varrho(x)$$
 (2.1)

By taking $\lambda \to 1^+$ in (2.1), we have $\lim_{\lambda \to 1^+} \varrho(\lambda x) = \varrho(x)$. Thus ϱ is right-continuous. If $0 < \lambda < 1$, by Proposition 2.2 (i), we have

$$\lambda^{M} \varrho(x) \le \varrho(\lambda x) \le \lambda \varrho(x) \tag{2.2}$$

By taking $\lambda \to 1^-$ in (2.2), we have that $\lim_{\lambda \to 1^-} \varrho(\lambda x) = \varrho(x)$, hence, ϱ is left-continuous. Thus ϱ is continuous.

Next, we give some relationships between the modular ϱ and the Luxemburg norm on ces(p).

Proposition 2.4 For any $x \in ces(p)$, we have

- (i) if ||x|| < 1, then $\varrho(x) \le ||x||$,
- (ii) if ||x|| > 1, then $\varrho(x) \ge ||x||$,
- (iii) ||x|| = 1 if and only if $\varrho(x) = 1$,
- (iv) ||x|| < 1 if and only if $\varrho(x) < 1$,
- (v) ||x|| > 1 if and only if $\varrho(x) > 1$,
- (vi) if 0 < a < 1 and ||x|| > a, then $\varrho(x) > a^M$, and
- (vii) if $a \ge 1$ and ||x|| < a, then $\varrho(x) < a^M$.

Proof. If $||x|| \le 1$, it follows by convexity and continuity of ϱ that $\varrho(x) = \varrho\left(||x|| \frac{x}{||x||}\right) \le ||x|| \varrho\left(\frac{x}{||x||}\right) \le ||x|| \varrho\left(\frac{x}{||x||}\right) \le ||x||$. So (i) is obtained. If ||x|| > 1, then there is $\varepsilon_0 > 0$ such that $||x|| - \varepsilon > 1$ for all $\varepsilon \in (0, \varepsilon_0)$. Consequently, $\varrho(x) = \varrho\left((||x|| - \varepsilon) \frac{x}{||x|| - \varepsilon}\right) \ge 1$

 $(\|x\| - \varepsilon)\varrho\left(\frac{x}{\|x\| - \varepsilon}\right) > \|x\| - \varepsilon$, so (ii) is satisfied. It is clear that (iii), (iv) and (v) follow by Theorem 1.2, and properties (vi) and (vii) follow by Proposition 2.2.

Proposition 2.5 Let (x_n) be a sequence in ces(p).

- (i) If $||x_n|| \to 1$ as $n \to \infty$, then $\varrho(x_n) \to 1$ as $n \to \infty$.
- (ii) $||x_n|| \to 0$ as $n \to \infty$ if and only if $\varrho(x_n) \to 0$ as $n \to \infty$.

Proof. (i) Suppose $||x_n|| \to 1$ as $n \to \infty$. Let $\epsilon \in (0,1)$. Then there exists $N \in \mathbb{N}$ such that $1 - \epsilon < ||x_n|| < 1 + \epsilon$ for all $n \ge N$. By Proposition 2.4 (vi) and (vii), we have $(1 - \epsilon)^M < \varrho(x_n) < (1 + \epsilon)^M$ for all $n \ge N$, which implies that $\varrho(x_n) \to 1$ as $n \to \infty$. (ii) It follows from Theorem 1.1 that if $||x_n|| \to 0$ as $n \to \infty$, then $\varrho(x_n) \to 0$ as $n \to \infty$. For the converse, suppose $||x_n|| \not\to 0$ as $n \to \infty$. Then there is an $\epsilon \in (0,1)$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_k}|| > \epsilon$ for all $k \in \mathbb{N}$. By Proprosition 2.4 (vi), we have $\varrho(x_{n_k}) > \epsilon^M$ for all $k \in \mathbb{N}$. This implies $\varrho(x_n) \not\to 0$ as $n \to \infty$.

Proposition 2.6 Let $(x_n) \subseteq B(l(p))$ and $(y_n) \subseteq B(l(p))$. If $\sigma(\frac{x_n + y_n}{2}) \to 1$, then $x_n(i) - y_n(i) \to 0$ as $n \to \infty$ for all $i \in \mathbb{N}$.

Proof. We first note that if $x \in B(\ell(p), \text{ then } \sigma(x) \leq 1$. Supose that $x_n(i) - y(i) \neq 0$ as $n \to \infty$ for some $i \in \mathbb{N}$. Without loss of generality we may assume that i = 1, and then assume without loss of generality (passing to a subsequence if necessary) that, for some $\epsilon > 0$,

$$|x_n(1) - y_n(1)|^{p_1} \ge \epsilon \ \forall n \in \mathbb{N}$$

Thus

$$2^{p_1}(|x_n(1)|^{p_1} + |y_n(1)|^{p_1}) \ge \epsilon \ \forall n \in \mathbb{N}.$$
(2.3)

Since the function $t \to |t|^{p_1}$ is uniformly convex, there exists $\delta > 0$ such that

$$\left|\frac{x_n(1) + y_n(1)}{2}\right|^{p_1} \le (1 - \delta) \left(\frac{|x_n(1)|^{p_1} + |y_n(1)|^{p_1}}{2}\right) \quad \forall n \in \mathbb{N}.$$
 (2.4)

It follows from (2.3) and (2.4) that for each $n \in \mathbb{N}$,

$$\sigma(\frac{x_n + y_n}{2}) = \sum_{i=1}^{\infty} \left| \frac{x_n(i) + y_n(i)}{2} \right|^{p_i}$$

$$= \left| \frac{x_n(1) + y_n(1)}{2} \right|^{p_1} + \sum_{i=2}^{\infty} \left| \frac{x_n(i) + y_n(i)}{2} \right|^{p_i}$$

$$\leq (1 - \delta) \left(\frac{|x_n(1)|^{p_1} + |y_n(1)|^{p_1}}{2} \right) + \frac{1}{2} \sum_{i=2}^{\infty} |x_n(i)|^{p_i} + \frac{1}{2} \sum_{i=2}^{\infty} |y_n(i)|^{p_i}$$

$$= \frac{1}{2} \sigma(x_n) + \frac{1}{2} \sigma(y_n) - \delta \left(\frac{|x_n(1)|^{p_1} + |y_n(1)|^{p_1}}{2} \right)$$

$$\leq \frac{1}{2} + \frac{1}{2} - \delta \frac{\epsilon}{2^{p_1+1}}$$

$$= 1 - \delta \frac{\epsilon}{2^{p_1+1}}.$$

This implies that $\sigma(\frac{x_n+y_n}{2}) \not\to 1$ as $n\to\infty$, a contradiction, which finishes the proof.

Proposition 2.7 Let $(x_n) \subseteq B(ces(p))$ and $x \in S(ces(p))$. If $\varrho(\frac{x_n + x}{2}) \to 1$ as $n \to \infty$, then $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$.

Proof. For each $n \in \mathbb{N}$ and $i \in \mathbb{N}$, let

$$s_n(i) = \begin{cases} sgn(x_n(i) + x(i)) & \text{if } x_n(i) + x(i) \neq 0, \\ 1 & \text{if } x_n(i) + x(i) = 0. \end{cases}$$

Hence, we have

$$1 \leftarrow \varrho(\frac{x_n + x}{2}) = \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} \left| \frac{x_n(i) + x(i)}{2} \right| \right)^{p_k}$$
$$= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} s_n(i) \frac{x_n(i)}{2} + \frac{1}{k} \sum_{i=1}^{k} s_n(i) \frac{x(i)}{2} \right)^{p_k}$$
(2.5)

Let $a_n(k) = \frac{1}{k} \sum_{i=1}^k s_n(i) x_n(i)$ and $b_n(k) = \frac{1}{k} \sum_{i=1}^k s_n(i) x(i)$ for all $n, k \in \mathbb{N}$. Then $(a_n) \in l(p)$ and $(b_n) \in l(p)$, and from (2.5) we have

$$\sigma(\frac{a_n + b_n}{2}) \to 1 \quad \text{as } n \to \infty.$$

Form Proposition 2.6, we have

$$a_n(i) - b_n(i) \to 0 \text{ as } n \to \infty$$
 (2.6)

for all $i \in \mathbb{N}$. Now, we shall show that $x_n(k) \to x(k)$ as $n \to \infty$ for all $k \in \mathbb{N}$. From (2.6), we have

$$s_n(1)x_n(1) - s_n(1)x(1) \to 0 \text{ as } n \to \infty,$$

this implies $x_n(1) \to x(1)$ as $n \to \infty$. Assume that $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \le k-1$. Then we have

$$s_n(i)(x_n(i) - x(i)) \to 0 \text{ as } n \to \infty$$
 (2.7)

for all $i \leq k-1$. Since $s_n(k)(x_n(k)-x(k)) = k(a_n(k)-b_n(k)) - \sum_{i=1}^{k-1} s_n(i)(x_n(i)-x(i))$, it follows from (2.6) and (2.7) that $s_n(k)(x_n(k)-x(k)) \to 0$ as $n \to \infty$. This implies $x_n(k) \to x(k)$ as $n \to \infty$. So we have by induction that $x_n(k) \to x(k)$ as $n \to \infty$ for all $k \in \mathbb{N}$.

Theorem 2.8 The space ces(p) is LUR.

Proof. Let $(x_n) \subseteq B(ces(p))$ and $x \in S(ces(p))$ be such that $||x_n + x|| \to 2$ as $n \to \infty$. Then $||\frac{x_n + x}{2}|| \to 1$ as $n \to \infty$. By Proposition 2.5 (i), we have $\varrho(\frac{x_n + x}{2}) \to 1$ as $n \to \infty$. By Proposition 2.7, we have $x_n(i) \to x(i)$ as $n \to \infty$ for all $i \in \mathbb{N}$.

Now, let $\epsilon > 0$ be given. Then there exists $k_0 \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that

$$\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)| \right)^{p_k} < \frac{\epsilon}{3} \frac{1}{2^{M+1}} , \qquad (2.8)$$

$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i) - x(i)| \right)^{p_k} < \frac{\epsilon}{3} \quad \text{for all } n \ge n_0 \;, \tag{2.9}$$

$$\sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x_n(i)| \right)^{p_k} > \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^k |x(i)| \right)^{p_k} - \frac{\epsilon}{3} \frac{1}{2^M} \text{ for all } n \ge n_0.$$
 (2.10)

By Proposition 2.4 (i) and (iii), we have $\varrho(x_n) \leq 1$ for all $n \in \mathbb{N}$ and $\varrho(x) = 1$. From these together with (2.8), (2.9), (2.10) and the fact that $(a+b)^{p_k} \leq 2^{p_k}(a^{p_k}+b^{p_k})$ for

 $a, b \ge 0$, we have that for all $n \ge n_0$,

$$\begin{split} \varrho(x_n - x) &= \sum_{k=1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i) - x(i)|\right)^{p_k} \\ &= \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i) - x(i)|\right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i) - x(i)|\right)^{p_k} \\ &< \frac{\epsilon}{3} + 2^M \left(\sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i)|\right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}\right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x_n) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i)|\right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}\right) \\ &\leq \frac{\epsilon}{3} + 2^M \left(1 - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^{k} |x_n(i)|\right)^{p_k} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}\right) \\ &< \frac{\epsilon}{3} + 2^M \left(1 - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}\right) \\ &= \frac{\epsilon}{3} + 2^M \left(\varrho(x) - \sum_{k=1}^{k_0} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}\right) \\ &= \frac{\epsilon}{3} + 2^M \left(2 \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} + \frac{\epsilon}{3} \frac{1}{2^M} + \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k}\right) \\ &= \frac{\epsilon}{3} + 2^{M+1} \sum_{k=k_0+1}^{\infty} \left(\frac{1}{k} \sum_{i=1}^{k} |x(i)|\right)^{p_k} + \frac{\epsilon}{3} \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{split}$$

This shows that $\varrho(x_n - x) \to 0$ as $n \to \infty$. By Proposition 2.5(ii), we have $||x_n - x|| \to 0$ as $n \to \infty$. This completes the proof of the theorem.

It is known in general that a locally uniformly rotund space has property (H). So we have the following result.

Corollary 2.9 The space ces(p) possesses property (H).

Acknowledgements

The author would like to thank the Thailand Research Fund for the financial support and the author is very indebted to the referee for his valuable comments and suggestions.

References

- [1] S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math., 1996.
- [2] Y. A. Cui and H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179-187.
- [3] Y. A. Cui, H. Hudzik and C. Meng, On some lacal geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143-154.
- [4] Y.A. Cui, H. Hudzik and R. Pliciennik, Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193-202.
- [5] Y. A. Cui and C. Meng, Banach-Sak property and property (β) in Cesáro sequence spaces, SEA. Bull. Math. 24 (2000), 201-210.
- [6] J. Diestel, Geometry of Banach Spaces Selected Topics, Springer-Verlag, 1984.
- [7] H. Hudzik, Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull 35 (1992), 1 5.
- [8] H. Hudzik and D. Pallaschke, On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167-185.
- [9] P. Y. Lee, Cesáro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29-45.
- [10]Y. Q. Liu, B. E. Wu and Y. P. Lee, *Method of sequence spaces*, Guangdong of Science and Technology Press (1996 (in Chinese)).
- [11]L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, (1989).
- [12]J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983).

- [13] W. Orlicz, A note on modular spaces I, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 157-162.
- [14]R. Pluciennik, T.F Wang and Y. L. Zhang, H-points and Denting Points in Orlicz Spaces, Comment. Math. (Prace Mat.) 33 (1993), 135-151.
- [15]W. Sanhan, On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000.
- [16] J. S. Shue, Cesáro sequence spaces, Tamkang J. Math 1 (1970), 143-150.