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for all £ € N and u satisfies |u| < uo. By pu(cx) < 0o, we have 3 27 | Mi(3 S lz@)]) -
0 as k — oo, it followes that Mi(3 Zle |z(2)]) = 0 as k — oo, and so Z:Ll |z ()| - 0
as k — co. Put any 8 > 0 and taking ¢ € N such that & < 2¢~1/ there exists a positive

sequence ¢, such that > ;- ¢f < oo and
M (2%u) < K*Mj(u) + cle

for all k.€ N and v satisfies |u| < 5. By % Zi__l |z(i)] — 0 as k - oo, there exists
no € N such that 1 Zi=1 lz(?)| < JTC—QY- for all k£ > ngy. Hence

oc k
ors(Br) = ZMkw% PBECD

—ZMk(ﬂ le B)) + Z M,.(B+ _Zl:v(z

k=ng+1
= sz(ﬁ Z|x(z)| Z M;, 2ﬁ“—2|$(2)|)
k=np+1
= ZMk(b’ Z lz(2)]) + Z Mk(TC—Z |z(D)])
k=ng+1
<ZMk[3 Z|a:(z)| )+ K? Z M c-Z|a: Z cp < 00.
k=no+1 =1 k=ng+1
Therefore Cespr € SCesypy. |

Lemma 6 On Cesaro-Musielak-Orlicz sequence space, if the Musielak-Orlicz function
= (M},) satisfies condition (x) and M € 43, then
(1) fio]l = 1 pue(z) = 1,
(2) for every € > 0 there exists a § > 0 such that ||z|| < 1—J whenever pa(z) < 1—¢,
(3) for every ¢ > 0 and ¢ > 0 there exists a § > 0 such that for any z,y € Cesps, we

have

loam(z +y) — pu(z)]| <€

whenever pap(z) < ¢ and par(y) < 9,
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(4) for every e > 0 there exists a 6 > 0 such that ||z|| > 14§ whenever par(z) > 1+,
and
(5) for any sequence (z,) C Cespy, ||zn|| — 1 implies ppr(zn) — 1.
Proof (1) Assume that ppr(z)} = 1. By definition of ||.||, we have that ||zl] < 1. If

[lz]] < 1, then we have by Proposition 3(1) that par{z) < |jz|| < 1, which contradicts
our assurmption. Therefore |jz|| = 1.

. Conversely, assume that ||z|| = 1. By Proposition 3.3(1), pa(z) < 1. Suppose
that par(z) < 1. By Theorem 5, we have ppr(cz) < oo for all ¢ > 1. By Theorem 2.6.1
the function ¢ — par{cz) is continuous, so there exists an ¢’ > 1 such that py(c'z) = 1.
By using the same proof as in the first path, we have that ||c’z]| = 1 , so ¢/ = 1 which
is contradiction.

(2) Suppose (2)is not true. Then there exists a ¢g > 0 and z,, € Cesps such that
pum(zn) < 1—¢€ and § < ||zpfl and |lzn)i — 1. Let L = sup, {pp(2z,)} we have that
L < oo since M € §5. Let a,, = ”—mlm ~ 1 we have a, <1 and a,, = 0. Then

1= PM(”_;C:T”)
= pm{(2anzn + (1 — an)zp)
< anpm(22n) + (1~ an)pm(zn)
<apL + (1 —¢).

Hence we have 1 < lim,, ,(a,L + (1 —€)) = 1 — ¢, which is a contradiction.
(3) Let z,y € Cespr, e > 0 and ¢ > 0, by Theorem 2.6.5(3), there exists a 6’ > 0

such that for any a,b € 5y, we have

[Ias(a+b) — Inp(a)) < € (3.1)
whenever Ipr(a) < ¢ and Ipn(b) < 4'. For each i € N, let

_ sgn(z (i) +y(1)) if (i) + y(i) # 0,
s(i) =
1if (i) + y(i) =0
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we note that

1|

Z |z(2) + y(5)])
L1 k A
M (= Z s(9)=(i) + ¢ g (2)y(d)). (3.2)

Let a(k) = %Ele s(i)z(i) and b(k) = ¢ Zi=1 s(s )y(z) for all k € N. Then a = (a{k)) €
{pr and b= (b(k)) € Ipr , and from (3.2) we have

pmlz +y)

i Ms i MS

pu(z +y) = Im(a+b),Im(a) < pm(z) and Ine(b) < par(y).

Choose 6 = &'. If ppr(z) < c and ppr(y) < 4 then Ips(a) < cand Ip(d) < &, by (1) we

have
om(x+y) — pm(z) < Ipgla+b) — Ip(a) < e
that is
pu (T +y) < pum(z) + e (3.3)
Next, we shall show that
pum(z) < pu(z+y) + e (3.4)

For each 1 € N, let
sgn(x(2)) if z(z) # 0,
s(i) =
Lifx(i)=0

we note that

oo k
pae(e) = pae((e-+) + (-0) = 3 Mulp 10600 +36) + (v
k=1
o0 k
=3 G gs(z)(:c(z)-l-y IR SMCIETON: (8:5)

Let a(k) = L Y°F | s(3)(2(i) + y() and b(k) = 2 %, s(d)(~y(3)) forallk € N,
Then a = (a(k)) € Iy and b = (b(k)) € l5r , and from (3.5) we have

pu(z) = In(a +b), Ins(a) < py(z +y) and I (b) < prr(—y).
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Choose 6 = &', If py(z) < c and pum(y) < 6 then Ip(a+ b)) = pp(z) < ¢ and
Ine(=b) = Ing(0) < pae(—y) = pum(y) < &', by (3.1) we have

[Is(a+b) = Ina(a)| = [Im(a) — In(a +b)| = [Im((a +b) + (=8)) — Im(a+ b)| <€

it follows that
om(z) — pm(z+1y) < Ipm(a+b) — Ingla) < e
that is
pm(T) < pr(z+y)+e
from (3.3) and (3.4), we have that

lom(z +y) — pu(z)| <e

whenever par(z) < ¢ and par(y) < 6.
(4) Given € > 0, by (3), there exists a § € (0, 1) such that

pr(u) < 1 pm(v) <6 = ppr(u+v) < purlu) + e

Suppose that [jz|] < 1+ 4, then pm(3Y5) < 1 and pM(l‘s—&) < épm(yEs) < 6. This
implies
N dx )
1-1—6 146
< PM(m) te€
<l+e

pum(z) =

(5) Suppose that pasr(zn) 4 1 as n — oo, there exits a ¢y > 0 such that
* pm(zn) — 1] > ¢ foralln e N,
it follows that
orm(zp) — 1> ¢ or prr(zn) — 1 < —€g for all n € N.

If par(zn) — 1 > €, that is pay(z,) > 1+ €, by (4), there exists a § > 0 such that
|zl > 1+8. If par(zn) ~1 < —ep, that is ppr(x,) < 1~ €o, by (2), there exists a §’ > 0
such that |lz,]| < 1 — &', so that ||z,|| # 1 as n — oo, which contradiction. O
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Proposition 7 In Cesaro-Musielak-Orlicz sequence space. If a Musielak-Orlicz function
M = (M) satisfies condition (%) and M € dq, then the norm convergence and modular
convergence coincide.

Proof From Corollary 4, it suffices to prove that modular convergence implies norm
convergence. For this let € € (0, 3), choose a positive integer K such that x5t < €< = -

By Lemma 6(3), there exists a § € (0, %) such that
pumu) < 1,pm(v) <6 = par(u+ ) < par(u) +e.
Suppose that pp(x) < 8, we observe that

pu(nz) < npp(z) + ne,

for n = 1,...,2K-1, In particular, pm(L) < em (2K 1x) < 2K-1pp(z) 4+ 2K 1e <

1+ 1 = 1. This implies ||z|| < 4. D

Theorem 8 If M € §, and M satisfies condition (*),then the space cesps is (UKK)
Proof Assume that M € d2 and suppose that cesps is not (UKK).Then there exists
go > 0 such that for any § > 0 ther are a sequence (z,) in S{cespr) and x € cespy with
sep(zy) > €g ,&n — z and ||z]| > 1 —§. Since sep(z,) > ¢ passing subsequence we may
assume that ||z, — z|| > % for every n € N Since M € §; and M satisfies condition (*)
and = can be assumed to have ||z|| close to 1,ther exists 7 > 0 such that papr(xn, —2) > 7
and ppr(x) > 1 — 2 . Applying Lemma 6(3) there exists o € (0, ¢) such that

7
lomlz +y) - prr(2) < 2
when ever par(y) < o.
Since (z,) C S(cesp) and T, = & ,there exists ip € Nsuch that 3 72, | Me(} Ef=1 |z
o. By z,, = z, which implies that z, = z coordinatewise,hence there exists ng € N

such that

o ; ‘0 k io k
1 el D lon() DMl 1@l <  and Do M( 3 len(i)-2(0) <
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for n > ng. So

[=%] ip k
> M (Zm )= 2 Mul 3 lan) + > Mk Zm(zm

k=ip+1

Zlm M-T+ 3 MEY 6

k"'1.0+1

%
WMS Il

Hence for every n > ng we have

n<p ZMk Zm (i) — z(0)))
-§:Mk( Zlmn(" - z()]) + Z Mi( len(z)—:c(z)l)

k=i0+1

<+ Z Mi(3 Z|mn(z)|)+—
k=ig+1

=3 My Zlmn(zm—ZMk Zawn(z‘)m%’l

II

Mi(; ZI n()|)+_

i 2n
<1- Mk(EZIw(z)D +1+2
k=1 i=1
<1-(1-0)+ 3%7
L
<1-(1-H)+=
Si-Ql-g)+5 <
This is a contradiction. ‘
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Matrix Transformations of Nakano Vector-Valued Sequence Space

SUTHEP SUANTAI

ABSTRACT. In this paper, we give necessary and sufficient condi-
tions for infinite matrices mapping Nakano vector-valued sequence space
£(X,p) into the sequence spaces F, (r > 0) and we also give the matrix
characterlizations from My(X,p) into the space E, where p = (pi) is a

bounded sequence of positive real numbers such that py < 1 for all kK € N,

(1991) AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

For 7 > 0, the normed sequence space F, was first defined by Cooke [1] as follows:

|z
kr

By ={z=(z) [sup < 00}

equipped with the norm

] = sup 2.
kKT

Let (X, ||.||) be a Banach space and p = {px) a bounded sequence of positive

real numbers. We write x = (xy) with =y in X for all ¥ € N. The X-valued sequence
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spaces co(X, p), (X, p), £oo(X, D), £(X,p), and My(X, p) are defined as

co(X,p) = {& = (@) : lim [lal|™ = 0},
c(X,p) = {z = (k) : kh'm lzx — al|P* =0 for some a € X},
— 00

£o(X,p) = {z = (2x) : sup llzx|[P* < oo},

0X,p) = {o=(m): 3 laellP* < oo},
k=1
Mo(X,p) = U?:lg(X)(n"I/Pk)

When X = K, the scalar field of X, the corresponding spaces are written as co(p), c(p),
£5(p), €(p), and My(p), respectively. The spaces co(p), ¢(p), €oo(p) are known as the
sequence spaces of Maddox. These spaces were first introduced and studied by Simons
[7], Maddox [4, 5]. The space £(p) was first defined by Nakano [6] and it is known as
the Nakano sequence space and the space £(X, p) is known as the Nakano vector-valued
sequence space. The spaces Mo(p) was first introduced by Grosse-Erdmann [2] and he
has investigated the structure of the spaces co(p), ¢(p) and £y (p). Grosse-Erdmann [3]
gave the matrix characterizations between scalar-valued sequence spaces of Maddox. Wu
and Liu [9] dealt with the problem of characterizations those infinite matrices mapping
co(X,p), Loo(X,p) into co(g) and £,.(g) where p = (px) and ¢ = (gix) are bounded
sequences of positive real numbers.

Suantai (8] gave necessary and sufficient conditions for infinite matrices mapping
¢(X,p) into £y and £_{g) where p = (px) and ¢ = {gx) are bounded sequence positive
real numbers with p, < 1 for all Kk € N.

In this paper we give characterizations of infinite matrices mapping ¢(X, p) and
My(X, p) into the sequence space E, when pr <1 for all k € N and r > 0. Some results

in [8] are obtained as special cases of this paper.

2. Notation and Definitions

Let (X, ||.||) be a Banach space. The space of all sequences and the space of all
finite sequences in X are denoted by W(X) and ®(X), respectively. When X is K, the

scalar field of X, the corresponding spaces are written as w and ®.
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A sequence space in X is a linear subspace of W(X). Let E be an X-valued
sequence space. For z € F and k € N, we write z standing for the kt* term of z.
For z € X and k € N, let €*(z) be the sequence (0,0, ...,0,,0,...) with z in the k**
position and let e(z) be the sequence (z,z,z,...). For a fixed scalar sequence u = (px)

the sequence space E,, is defined as
E,={z e W(X): (uzs) € E} .

Let A = (ff) with f? in X', the topological dual of X. Suppose that E is a

space of X-valued sequences and F a space of scalar-valued sequences. Then A is said
to map E into F, written by A : F — F if for each 2 = (23) € E, An(z) = Zf,:‘(xk)
k=1

converges for each n € N, and the sequence Az = (A,(z)) €’F. Let (E, F) denote for
the set of all infinite matrices mapping from F into F.

Suppose that the X-valued sequence space F is endowed with some linear topol-
ogy 7. Then E is called a K-space if for each k¥ € N the kt* coordinate mapping
pr : E = X, defined by pi(z) = zx, is continuous on E. If, in addition, (E,7) is an
Fréchet (Banach, LF-, L.B-) space, then E is called an FK- (BK-, LFK-, LBK-) space.
Now, suppose that E contains ®(X). Then E is said to have property AB if the set

n

{Z e*(ry) : n € N } is bounded in E for every z = (zx) € E. It is said to have
k=1
property AK if Ze"(mk) — z in E as n — oo for every £ = (z) € E. It has property
k=1
AD if &(X) is dense in E.

It is known that F, is a BK-sapce and Ey = £,,. The space £(X, p) 1s an FK-space
o0 /M
with AK under the paranorm g(z) = ( _>__ ||:ck|(p") , where M = max {1,sup px}. In
k
k=1

each of the space £oo(X,p) and co(X,p) we consider the function g(z) = sup ||zx}|P*/M,
k
where M = maz {1,sup px}. It is known that co(X, p) is an FK-space with AK under
k
the paranorm g defined as above and £.,(X, p} is a complete LBK-space with AB.

3. Main Results

We start with giving the matrix characterizations from ¢(X, p) into E,.
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Theorem 3.1 Let r > 0 and let p = (px) be bounded sequences of positive real
numbers with pr, < 1 and let A = (f) be an infinite matriz. Then A € (¢(X,p), E,) if
and only if there is mg € N such that sup mglfp"n_’"Hf,?H < 00 .

n, k

Proof. Assume that A € (¢(X,p), E,). In £(X,p), we consider it as a para-
normed space with the paranorm g defined as above and since px < 1 for all k € N, we

have M maz {1, sup pr} = 1. Now, we write ||.|| standing for the paranorm g. By

Zeller’s theorem, A : E(X p) — E, is continuous. Then there is mg € N such that

1
sup |Z fi(ze)| <1 for all z € £(X,p) with ||z]| £ — (3.1)
mo
k=1
Let n,k € N be fixed and let 5 € X be such that ||zg|| < 1. Then e (m7 Pz €
_ 1
UX,p) and || (mg P x| < —. By (3.1), we have
0

mg 7 £ (on)| < sup i |fimg P )| = (14 (my Ve < 1

It implies that sup mgl/”"n—’"lif,?ll < 0.

n,

Conversely, assume that the condition holds. Let z = (z) € £(X,p). By as-
sumption, there is a C' > 0 such that

my P T fR| < € for alln,k e N | (3.2)

Since ||m(1)/p“a:k|| — 0 as k — oo, there is a kg € N such that ||mé/p":1:k|| < 1 for all
k > kp. Since 0 < pp <1 for all £ € N, we have

||m1/pk:ck|| < ||m1/p*$k||p" for all k > kq. (3.3)

*
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It follows from (3.2) and (3.3) that

oG

}j |lmg/P* zelf = Z g/ zill + > lImg/™ zx]

k=1 k=kg+1

ko
<SSP+ S It

k=1 k=ko+1

[aa]
=Ki+mo Y [kl
k=ko+1
< Ky + mgl|z||, K1 = Z (ma/P* |- (3.4)
By (3.2) and (3.4) we have for n € N, ’

oo
N Apz| = n-r|z f?(malfpk (mfl)/PkEk)H

k=1

-1 - 1
g P\ 2 g P |

A
)8

E
I

1

1
(g’ Pzl

Ms

IA

C
k=1
< C(Ky + mol|z|}).

This implies that sup n™"|A,z| < oo, so that Az € E,.. This completes the proof. G
n

When r = 0, we see that E, = £, so we obtain the following result directly
from Theorem 3.1.

Corollary 3.2 Let p = (pr) be a bounded sequence of positive real numbers such
that pr < 1 for all k € N. Then for an infinite matriz A = (f7*), A € (¢(X,p),{x) i
and only if there is mg € N such that sup mg””*llf,;‘” < 00 .
n,k

If pp =s <1 for all k € N, by Theorem 3.1 we obtain the following result:

Corollary 3.3 Letr >0 and0 < s < 1. Then for an infinite matriz A = (f7}),
€ (£5(X), E,) if and only if sup n™"||f]|| < o0 .
n.k
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When p = 1for allk € N and r = 0, we obtain the following result by Corollary
3.3

Corollary 3.4 For an infinite matriz A = (f?), A € ({(X), £x) if and only if
sup ] < co.

Theorem 3.5 Let r > 0 and let p = (pk)'be bounded sequences of positive real
numbers and let A = (f7) be an infinite matriz. Then A € (Mo(X,p), E;) if and only
if for each s € N, sup n~"s/P||fI|| < oo

n, k

?

Proof. Since Mo(X,p) = UsL1£(X)(,-1/p1), we have
A€ (My(X,p), Br) < A€ ({l(X)-1/my Ey)forallse N
For s € N, we can easily show that
A€ (UX) (=i Er) &= (M7 f),, € (U(X), E,).
By Theorem 3.1, we obtain that for s € N,
(827 ) 0 € (€0X), Fr) = sup n"s/B¥||f2] < oo

Thus the theorem is proved. U
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On Matrix Transformations Concerning the Nakano
Vector-Valued Sequence Space

ABSTRACT. In this paper, we give- the matrix characterizations
from Nakano vector-valued sequence space £(X,p) and F,.(X,p) into the
sequence spaces E, £, £,.(q), bs and cs, where p = (pr) and g = (gi) are
bounded sequences of positive real numbers such that p;y > 1 for all kK € IN
and r > (.

Keywords : Matrix transformations, Nakano vector-valued sequence spaces

(2000} AMS Mathematics Subject Classification: 46A45.

1. INTRODUCTION

Let (X,]-]|) be a Banach space , r > 0 and p = (pg) a bounded sequence of
positive real numbers. We write z = (zx) with z; in X for all £ € IN. The X-valued
sequence spaces ¢o( X, p), ¢(X,p), £uo{X,p), £(X,p), E.(X,p) and F.(X,p) are defined
as

o(X,p) = {2 = (2x) + lim [lzx 7 = 0},

o X,p)={z = (z) : klll,n.fo”x"’ —al|[P* =0 for some a € X},

Lo(X,p) = {z = (xi) : supg ||z |IPF < o0},

UX,p) = {o = (a1) : T2 el < oo},

Er(X,p) = {z = (zx) : supk |[zx[P*/k" < oo },

F(X,p) = {o = (1) : 252, K llallPe < oo,

Lo (X,p) = iy {z = (zx) : supk ||zlln'/7*}.

When X = K, the scalar field of X, the corresponding spaces are written as co{(p),
e(p), oo (p) ,L(p), Er(p), Fr-(p) and £, (p), respectively. The spaces co(p), c(p) and £ (p)

Typeset by Ap4STEX

135



136

are known as the sequence spaces of Maddox. These spaces were first introduced and
studied by Simons [7], Maddox (4, 5]. The space £(p) was first defined by Nakano [6]
and it is known as the Nakano sequence space and the space £(X,p) is known as the
Nakano vector-valued sequence space. When py = 1 for all k € IV, the spaces E,.(p)
and F,(p) are written as F, and F,., respectively. These two sequence spaces were first
introduced by Cooke [1]. The space £ (p) was first defined by Grosse-Erdmann [2] and
he has given in [3] characterizations of infinite matrices mapping between scalar-valued
sequence spaces of Maddox. Wu and Liu [10] gave necessary and sufficient conditions
for infinite matrices mapping from co(X,p), £oo(X,p) into colg) and £,.(g). Suantai
[8] has given characterizations of infinite matrices mapping £(X, p) into £ and £__(q)
when pi < 1 for all ¥ € IV and he has also given in [9] charactegizations of those infinite
matrices mapping from £(X, p) into the sequence space E, when p; <1 for all k € IN.

In this paper, we extend the results of (8] and (9] in the case that p; > 1 for all
k € IN. Moreover, we also give the matrix characterizations from £(X,p) and F.(X, p)

into the sequence spaces bs and cs.

2. Notation and Definitions

Let (X,|.]|) be a Banach space, the space of all sequences in X is denoted by
W(X) and (X ) denotes for the space of all finite sequences in X. When X is K, the
scalar field of X | the corresponding spaces are written as w and ©.

A sequence space in X is a linear subspace of W(X). Let E be an X-valued
sequence space. For z € F and k ¢ IN, we write z) stands for the k** term of z.
For £ € IN denote by ¢ the sequence (0,0,...,0,1,0,...) with 1 in the kt* position
and by e the sequence (1,1,1,...). For z € X and k € IN, let ¢*(z) be the sequence
(0,0,...,0,2,0,...) with z in the k** position and let e(z) be the sequence (z,z,z,...).
We call a sequence space E normal if (tyzy) € E for all x = (zx) € E and ¢t € K with
[tr| = 1 for all ¢x € IN. A normed sequence space (E, ||.||) is said to be norm monotone
if £ = (zx), y = (yx) € E with [|zg|| < [yl for all & € IN implies [|z|| < ||yi|. For a

fixed scalar sequence pu = (ux) the sequence space E), is defined as

E,={zx e W(X): (pzi) € E} .
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Let A = (f7!) with f* in X', the topological dual of X. Suppose that E is a

space of X-valued sequences and F' a space of scalar-valued sequences. Then A is said

to map E into F, written by A : E — F if for each z = (z) € E, A,(z) = ka (zx)

converges for each n € IN, and the sequence Az = (A,(z)) € F. Let (E, F) denote for
the set of all infinite matrices mapping from F into F'.

Suppose that the X-valued sequence space E is endowed with some linear topol-

ogy 7. Then E is called a K-space if for each k € IV, the k**® coordinate mapping

x : E — X, defined by px(z) = =y, is continuous on E. If, in addition, (F,7) is an

Fréchet (Banach, LF-, LB-) space, then E is called an FK- (BK-, LFK-, LBK-) space.

Now, suppose that F contains ®(X), then E is said to have property AB if the set

{Z ef(zx) : n € IN } is bounded in E for every = = (x5) € E. It is said to have
k=1

n
property AK if Zek(:ck) — 7 in E as n — oo for every = (z) € E. It has property

k=1
ADif (X)) is dense in .

It is known that the Nakano sequence space £(X, p) is an FK-space with property
00 1/M
AK under the paranorm g(z) = (Z ||:L'k||pk) , where M = max {1,sup pi}. If
k

pr > 1 for all k € IN, then £(X, p) is a BK-space with the Luxemburg norm defined by

Izl = inf {e = Y [lzx/elP* <1}
k=1

3. Main Results

We first give a characterization of an infinite matrix mapping from £(X, p) into
E. when p, > 1 for all k € IN. To do this, we need a lemma.

Lemma 3.1 Let E be an X —valued BK —space which is normal and norm mono-
tone and A = (f1*) an infinite matriz. Then A: E — E, if and only if sup, S 7, |f2(zk)|/n" -
o0 for every z = (xy) € E.

Proof If the condition holds true, it follows that sup, |3 s, fR(zx)|/n" <
SUDPn ¥ peq 2 (ze)|/n" < oo for every z = (zx) € E, hence A: E — E,.
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Conversely, assume that A: F — E,. Since F and E, are BK-spaces, by Zeller’s
Theorem, A : E — E, is bounded, so there exists M > 0 such that

o0

sup 1> fR(zs)|/n” < M. (3.1)
nzis k=1 .

Let z = (zx) € E be such that ||z|| = 1. For each n € IN, we can choose a scalar

sequence (tx) with |tg| = 1 and f2(txzx) = |fi(zk)| for all k € IN. Since E is normal

and norm monotone, we have (tkxy) € E and ||(frxzx)|| < 1. It follows from (3.1) that

Sorey Bz /nm = |, SR (tkzi)|/n" < M, which implies

fgﬂgig |fi (k)| /n” < M. (3.2)

It follows from (3.2) that for every z = (z) € E,

sup ) |fi(ze)l/n” < M|].
nelN g

This complete the proof. O

Theorem 3.2 Let p = (px) be a bounded sequence of positive real numbers with
pr > 1 forallk € IN and 1/pp +1/qx = 1 for all k € IN, and let r > 0. For an infinite
matriv A = (ff*) , A€ ({(X,p), E,) if and only if there is mo € IN such that

oo
sup Z IFE*n ™% my ™ < oo . (3.3)
k=1

Proof. Let z = (zx) € £(X, p). By the condition, there are mg € IN and K > 1
such that

o0
E NFEl®#n~ "% my % < K foralln e IN. (3.4)
k=1

Note that for a, b > 0, we have

ab < aP* + b (3.5)
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It follows by (3.4) and (3.5) that for n € IV,
oo oo
w70 SR )] = a7 S (g imoz)|

< (7 mg I FE I (lmozkl)

NgE

S
il

1

M

x
Il

: oo
nTTEm T fRl% + mg Y llzk]P*
1 k=1

A

oc
K +mg Z |zk)|P* , where o = sup pg.
k
k=1

Hence sup n™"|3 pe, f2(zk)| < 00, so that Az € E,..

Fr(;r necessity, assume that A € ({(X,p), E,). For each £ € IN, we have
sup n~T|f2(z)| < oo for all z € X since e*)(z) € £(X,p). It follows by the uniform
br(;unded principle that for each & € IV there is Cy > 1 such that

sup e < Cr (3.6)

Suppose that (3.3) is not true. Then

oG
sup z e n~ "% m™ % = oo for every m € IV . (3.7
T k=1

For n € IN, we have by (3.6) that for k,m € IV,

o0 k
Z | fE|%n T m % = Z“f;z“qfn—rq;,-m—qj + Z £ %m0 m
=1

=1 ivk
k
SRR M L
j=1 >k
This together with (3.7), we have

sup 3 ||IfFI1%n~"%m % = 0o for all k,m € IV. (3.8)
n ik
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By (3.8) we can choose 0 = kg < k; <k < ... ,m; <ma < .., m; >4 and a

subsequence (n;) of positive intergers such that for all ¢ > 1
Yoo e n M > 2t
ki1 <i<k;
For each ¢ € IN, we can choose z; € X with ||lz;|| =1, for ki_; < j < k; such that
> e m s > 2
ki 1<j<k;
For each i € IV, let F; : (0,00) — (0, 00) be defined by
EM)= Y IfPE)on M.
kio1<j<k; '
Then F; is continuous and nonincreasing such that F(M) — 0 as M — oco. Thus there
exists M; > 0 such that M; > m; and

FM) = 30 1 )ln M7 =2 (3.9)

)
ki1 <g<k;

Put y = (y;), y; = 4’*Mi_(Qj_1)ni_rqf/pj|f_;"'(xj)|qi“1:r:j for ki_y < j < k;. Thus

oo oo
DoilwslPr =30 D AT MR e oo
i=1 i=1k_1<j<k;

oo

< Z 4% Z Mi_Qj n;rqj }f;h (3'33) ‘q,-

i=1 ki 1 <i<k:

4t 2t

o

1

-
I

i
5"—:1.

e

t

f
pos

Thus ¥ = (y;) € £(X,p). Since £(X,p) is a BK-space which is normal and norm

monotone under the Luxemburg norm, by Lemma 3.1, we obtain that

sup Z‘—f’%?kl < 0. (3.10}
k=1
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But we have
e o] (o]
sup > | (wil/n" > sup >\ (y)l/ng
o=l b=t

> sup S wi/ng

ki_1<ji<k;
= sup Z 4—‘!:Mi_.(q.f_1)n£_r(9j/pi+1)If}li(I,L.J.)|Qj
Yok <i<hy

=sup Y ATMTOT IS )l
Y okia<i<ks

=sup Y (17 ()| %n T M) 4T
ok <<k

> sup 2° = oo, because M; > 4

I3

This is contradictory with (3.710). Therefore (3.3) is satisfied. O

Theorem 3.3 Let p = (px) be a bounded sequence of positive real numbers such
thatpr > 1 forallk € IN, 1/pr +1/qe =1 for allk € IN, r > 0 and s > 0. Then for

an infinite matriz A = (), A € (F.(X,p), Es) if and only if there is my € IN such
that

sup Z(k—rG’k/'PkHfl’:”‘irkn—s‘]kmamc) < 0.
n k=1
Proof. Since Fi.(X,p) = £(X,p)r/pey, it is easy to see that
A€ (F(X,p), B) «— (k7P fp), € (8(X,p) B)

By Theorem 3.2, we have (k™"/?% ) € (£(X,p) E,) if and only if there is mo € IV
such that

SUp Y gy (KTTI/PH|| FP||Te =30k m < oo. Thus the theorem is proved. 0O

Since Ey = £, the following two results are obtained directly from Theorem 3.2
and Theorem 3.3, respectively.
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Corollary 3.4 Let p = (px) be a bounded sequence of positive real numbers
with px > 1 for all k € IN and let 1/px + 1/qx = 1 for all k € IN. Then for an
infinite matriz A = (f7) , A € ({(X,p), L) if and only if there 1s mo € IN such that

oo
sup 3 [IfEl%mg® < oo .
" k=1
Corollary 3.5 Let p = (pr) be a bounded sequence of positive real numbers

with py > 1 for all k € IN and let 1/px + 1/qx = 1 for all k € IN. Then for an
inﬁnite matriz A = (f7) , A € (Fr(X,p), £x) if and only if there is mg € IN such that

Su Lorak/ox|| £ q:cm—q:e < 0o .
up Z K24l )

Theorem 3.6 Let p = (pg) and q = (qx) be bounded sequences of positive real
numbers with px > 1 for all k € IN and let 1/py + 1/tx =1 for all k € IN. Then for an

infinite matriz A = (f*), A € (£(X,p),€-(q)) if and only if for each r € IN, there is
m, € IN such that sup rielan || fo||BemIt < oo,

1’1,

Proof. Since £,,(g) = N7Z1loo(r1/acy, it follows that
Ae (X,p)t.(q) — Ae({X,p), Em(ruqk)) forallr € IV
It is easy to show that for r € IV,
A€ (UX,p), Loogrrany) == (= f2) € (UX,p), Loo) -

We obtain by Corollary 3.4 that for r € IV,

oo
(rl/q"f,?)n’k € (£(X,p), £oo) < there is m, € N such that sup ZT“/"“HJ‘EH“‘m,Tt* < 00
k=1

Thus the theorem is proved. O

Theorem 3.7 Let p = (pg) and ¢ = (gx) Ee ‘bounded sequences of positive real
numbers with pr > 1 for all k € IN and let 1/pr + 1/t = 1 for all k € IN. For an
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infinite matriz A = (f}), A€ (F,.(X,p), £..(q)) if and only if for each i € IN, there is
m; € IN such that

o0
Supz.itk/q'rzk—rtk/?k”f’?”tkmi_tk < 00.
" ok=1

Proof. Since F.(X,p) = £(X,p)r/pe), it implies that
A€ (Fr(X,p),Loo(0)) = (K777 f),. . € (6(X, D), £oo(2))-

It follows from Thoerem 3.6 that A € (F,.(X,p),£.(g)) if and only if for each ¢ € IV,

1 =00

there is m; € IV such that sup 3 o it/ k=Tt/Pk || f1||tem; * < o0.
1

Theorem 3.8 Let p = (pi) be bounded sequence of positive real numbers with
pr > 1 for alln € IN and let 1/py, + 1/q; = 1 for all k € IN. Then for an infi-
nite matriz A = (ff') , A € ({(X,p), bs) if and only if there is my € IN such that
S:p Yokt | 225 fill#mg ™ < oo

Proof. For an infinite matrix A = (f7), we can easily show that
A€ ({X,p), ka L € (UX,p), €) .

This implies by Corollary 3.4 that A € (£(X,p), bs) if and only if there is mg € IN such

that - .
sup SIS Fillemy® < oo
" k=1 i=l

g

Theorem 3.9 Let p = (px) be a bounded sequence of positive real numbers with
pr > 1 forallk € IN and let 1/pp+1/q. =1 for allk € IN. Then for an infinite matriz
=(f*), Ae (&X,p), cs) if and only zf ‘
(1) there is mg € IN such that sup Z 1 ka |%*mg % < oo and

k=1 1i=1

(2) for each k € IN andz € X, Z fi{x) converges.

n=1
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Proof. The necessity is obtained by Theorem 3.8 and by the fact that e®)(z) €
£(X,p) for every k € IN and z € X.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we have A : {(X,p) —
bs. Let z = (zx) € #(X,p). Since £(X,p) has the AK property, we have z =
lim Yr_;e®™(zx). By Zeller’s theorem, A : £(X,p) — bs is continuous. It im-

n—+od
plies that Az = hrn Z Ae®) (). By (2), Aet®) (i) € ¢s for all k € IN. Since cs is

a closed subspace of bs 1t implies that Az € ¢s, that is A : £(X,p) — cs. O
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On g-Dual of Vector-Valued Sequence Spaces of Maddox

Abstract. In this paper, the §-dual of a vector-valued sequence space is defined and
studied. We show that if an X-valued sequence space S(X) is a BK-space having AK
property, then the dual space of S{X) and its S-dual are isometrically isomorphic. We
also give characterizations of 8-daul of vector-valuéd sequence spaces of Maddox £(X, p),
Lo (X;p), co(X, p), and (X, p).

Keywords: f-dual ; vector-valued sequence spaces of Maddox
AMS Mathematics Subject Classification (2000): 46A45.

1. Introduction

Let (X, ||-||) be a Banach space and p = (px} a bounded sequence of positive real
numbers. Let IV be the set of all natural numbers, we write z = (zj) with =y in X for
all k € N. The X —valued sequence spaces of Maddox are defined as

co(X,p) = {z = (@) : limpoc ||zx||P* = 0}

(X, p) = {z = (z) : im0 ||z — a||P* = 0 for some a € X };

£l X, p) = {z = () - supy [lzl|P> < o0}

UX,p) = {o = (&) : T2 lzll?* < oo).

When X = K, the scalar field of X, the corresponding spaces are written as
co(p), ¢(p), Lo (p), and £(p), respectively. All of these spaces are known as the se-
quence spaces of Maddox. These spaces were introduced and studied by Simons [7}
and Maddox [3 - 5]. The space £(p) was first defined by Nakano [6] and is known as
the Nakano sequence spa',ce. Grosse-Erdmann [1] has investigated the structure of the
spaces cg(p), ¢(p), £(p), and £..(p) and has given characterizations of S-dual of scalar-
valued sequence spaces of Maddox. B

In (8], Wu and Bu gave characterizations of Kithe dual of the vector-valued

sequence space £,[X], where £,[X] (1 < p < o0) is defined by

(X = {x = (xx) : i‘f(-’l?k”p < oo for each f € X’} )

k=1
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In this paper, the 8-dual of a vector-valued sequence spaces is defined and studied, and
we give characterizations of 8-dual of vector-valued sequence spaces of Maddox £(X, p),

Lo (X, p), co(X, p), and c(X, p). Some results, obtained in this paper, are generalizations
of some in [3].

2. Notation and Definitions

Let (X, ||.]|} be a Banach space. Let W(X) and ®(X) denote the space of all
sequences in X and the space of all finite sequences in X, respectively. A sequence space
in X is a linear subspace of W(X). Let E be an X- valued sequence space. For x € E
and k € N we write that x stand for the kth term of z. For x € X and k € N, we let
e®)(z) be the sequence (0,0,0,...,0,7,0,...) with z in the kth position and let e(z) be
the sequence (z,z,x,...). For a fixed scalar sequence u = (uy) the sequence space F, is

defined as
E, = {z = (zx) € W(X}): (urzy) € E}.

An X-valued sequence space F is said to be normalif (zx) € F and (yx) € W(X)
with |ly|] < |lzx|| for all k£ € N implies that (yz) € E. Suppose the X-valued sequence
space F is endowed with some linear topology 7. Then F is called a K-space if, for each
k € N the kth coordinate mapping px : £ — X, defined by pr(x) = z, i8 continuous on
E. In addition, if (¥, 7) is a Fre'chet(Banach) space, then E is called an FK — (BK—)
space . Now, suppose that F contains ®{X). Then FE is said to have property AK if
Sr_ie®(zy) 5 zin E as n — oo for every z = (z3) € E

The spaces ¢o(p) and c(p) are FK-spaces. In ¢o(X, p), we consider the function
g(z) = sup |jzx||P*/M, where M = max {1,sups px}, as a paranorm on ¢y(X,p), and
it is knm’:rn that co(X,p) is an FK-space having property AK under the paranorm g
defined as above. In £(X,p), we consider it as a paranormed sequence space with the
paranorm given by ||{(zk)ll = O rhe; lzx][P*)"™ , where M = max {1,sup o} It is
known that £(X, p) is an FK-space under the para:flqr;n defined as above.

For an X-valued sequence space S{X), define its Kéthe dual with respect to the
dual pair (X, X')
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( see [2]) as follow :

S(X)l(x,xy = {(fk) cX': Z |fx(zk)| < oo for all z = () € S(X)} X

k=1

Sometime we denote S(X)*|x x+) by S(X)* and it is called the c-dual of S{X).
For a sequence space S(X), the 8-dual of S(X) is defined by

S(X)P = {(fk) cX': ifk(:ck) converges for all (zx) € S(X) } .

k=1
It is easy to see that S(X)* C §(X)”.

For the sake of completeness we introduce some further sequence spaces that will
be considered as §-dual of the vector-valued sequence spaces of Maddox :

Mo(X,p) = {z = (zx) : Lo l|z&||M~2PE < 00 for some M € N };

Moo(X,p) = {z = (z&) : D, ||Ze|in'/P* < coforall ne N };

£o(X,p) = {z=(zx): Lopey llzk||PxM~Pe—1) < oo for some M € N }; where
pr>1forallk € N,

es[X'] = {{(fi) C X' : 3 1e; frlz) converges for allz € X }.

When X = K, the scalar field of X, the corresponding first two sequence spaces

are written as Mg(p) and My (p), respectively. These spaces were first introduced by

Grosse-Erdmann [3].

3. Main Results

We begin with giving some general properties of 5-dual of vector-valued sequence

spaces. .

Proposition 3.1. Let X be a Banach space and let S(X), S1{X), and S2(X) be X-
valued sequence spaces. Then
(i) S(X)* C S(X)P.
(i5) If S1(X) C Sa(X), then So(X)P C S1{X)P.
(i5i) If S{(X) = S1(X) + So(X), then S(X)? = S1(X)P N S2(X)P.
(iv) If S(X) is normal, then S(X)* = S(X)P.
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Proof Assertions (i) - (iii) are immediately obtained by the definitions. To prove (iv),
by (i), it suffices to show only that S{X)? C S(X)* Let (fr) € S(X)? and = =
(z) € S(X). Then Y po, fu(zx) converges. Choose a scalar sequence (tx) such that
feltezr) = |fe(zk)| for all k € N. Since S(X) is normal, (txxzx) € S{X). Thus
S ones (@)l = Y ge fe(tezi) and the series 3 po | fi(tkzx) converges. This implies
that (fx) € S(X)=. : O

If S(X) is an BK-space, we define a norm on S(X)? by the formular

ka z)| .

k=1

H(fe)lls(xys = sup
:]:k “(1

It is easy to show that ||.]|s(x)s is a norm on S(X)?
Next, we give some relations between (-dual of a sequence space and its dual.

Indeed, we need a lemma.

Lemma 3.2. Let S(X) be an X -valued sequence spuce which is an FK-space and
contains ®(X). Then for each k € N, the mapping Ty, : X — S(X), defined by

Tix = €*(x), is continuous.

Proof. Let V = {e*(x):z € X}. Then V is a closed subspace of S(X), so it is an FK-
space because S{X) is an FK-space. Since S(X) is a K-space, the coordinate mapping
pr - V — X is continuous and bijective. It follows from the open mapping theorem that
pi 18 open, which implies that pgl : X — V is continuous. But since T}, = p,;l, we thus

obtain that T} is continuous. J

Theorem 3.3. If S(X) is a BK-space having property AK, then S(X)? and S(X)

are 1sometrically isomorphic.

Proof. We first show that for z = (zx) € S(X) and f € S(X)',
fla) =Y f(eF(zx)) (3.1)
k=1

To show this, let z = (zx) € S(X) and f € S(X)'. Since S{X) has property AK, z =
lim STp_, e®)(zx). By the continuity of f, it follows that f(z) = lim Y i, f(e®(zy)) =
n—o0

n—oC
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> opey f(e®) (), so (3.1) is obtained. For each k € N, let T : X — S(X) be defined
as in Lemma 3.2. Since S(X) is a BK-space, by Lemma 3.2, T} is continuous. Hence
foT, € X' for all k € N. It follows from (3.1) that

flz)= i(f o T )(zy) for all z = (z) € S(X). “ (3.2)

k=1

We have by (3.2) that (f o Tx)32, € S(X)P. Defhlle @ : S(X) — S(X)P by
o(f) = (f o TW), for all f € S(XY.

It is easy to see that ¢ is linear. Now, we shall show that ¢ is onto. Let (fx) € S(X)?.
Define f: S(X) — K, where K is the scalar field of X, by

Flxy =" fulzx) for all z = (zx) € S(X) (3.3)

k=1

For each k € N let p; be the kth coordinate mapping on S(X). Then we have

fla) =" (fxopr)(z)
k=1

i

= lim > (fopk)(a)-
k=1

Since fr and px are continuous linear, so is f o px. It follows by Banach-Steinhaus
theorem that f € S{X)’, and we have by (3.3) that for each k¥ € N and each z € X,
(foTi)(2) = f(e®)(2)) = fe(z). Thus fo Ty = fx for all & € N, which implies
w(f) = (fx), hence ¢ is onto.
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Finally, we shall show that ¢ is linear isometry. For f € S(X)’, we have

1fll=sup |f{(zx))l
lze)lI<1

= sup |)_ f(e®(zp))

(LET91 P I Pt

(by (3.1))

oo

= sup Z(f oTk)(mk.)

Izl =1

= ||(f o Tk)gZ1lls(xys

= |le(H)llsexye-

Hence ¢ is isometry. Therefore ¢ : S(X) — S(X)P is an isometrically isomorphism
form S(X)" onto S(X)?, so the theorem is proved. 0

We next give characterizations of f-dual of the sequence space £(X,p) when
pr > 1forall k€ N.

Theorem 3.4. Letp = (px) be a bounded sequence of positive real numbers with py > 1
for all k € N. Then £(X,p)? = 8y(X',q), where g = (qx) is a sequence of positive real
numbers such that 1/px +1/qx =1 for allk € N.

Proof. Suppose that {fi) € £o(X’,q). Then Y oo, || fell% M ~(2~1) < oo for some M €
N.
Then for each z = (z}) € £(X,p), we have

8

Z|fk($k)| lefkllM‘”””M”p’“Hwkll

o0
<37 (Il M=o /7e o M)
k=1

™8 i

llfkll""‘M (@ ”+MZH$:¢H’”‘ <00,
k=1

a
Il

which implies that S"po.; fx(xxk) converges, so (fi) € £(X,p)?.
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On the other hand, assume that (fi) € £(X,p)?, then 32, fr(zx) converges for
all z = (zx) € £(X,p). For each z = (z) € £(X,p), choose scalar sequence (t) with
lts] = 1 such that fiy(txzk) = |fr(zk)| for all £ € N. Since (txzx) € £(X,p), by our

assumption, we have > oo, fx(txZk) converges, so that

Z|fk(:ck)\ <oo forallze X, p). (3.4)
k=1

We want to show that (fx) € £o(X’,q), that is > po, || fx]|% M (@1 < oo for some
M € N. If it is not true, then

o0
Z||fk||q"m_(q"_1) = oo, for all m € N. (3.5)
k=1

It implies by (3.5) that for each k£ € N,
D fill%mm @ = oo, for allm € N. (3.6)
i>k
By (3.5), let m; = 1, then there is a k; € N such that
> fullmy Y > 1,
k<k,
By (3.6), we can choose my > m; and kg > k; with my > 22 such that
> el %my T > 1 (3.7)
Rk <k<ko

Proceeding in this way, we can choose sequences of positive integers (k;) and (m;) with
l=ky <k <kz<..and m; < mg < .., such that m; > 2° and

CX lnkem Y >

ki1 <k<k;

For each 1 € N, choose zx in X with ||zg||=1for all k € N, &,y < k < k; such that

ST fk(en)|®=m 9 > 1 forall i € N.

ki1 <kski
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= Y fe@)®mI Y Put y = (), vk = a7 'm Y| @) | Ly

ki 1 <k<k;

forall ¥ k;_; < k < k;. For each i € N, we have

So we have that > 77 | |lykl|P*

i€ N,

>

([P

ki1 <k<k;

we have

2

ki1 <k£ki

| fi (y)|

_ Z Pr

ki—1<k<k;

= > a7 mI % filz) | %

kit <kSk,‘

< 3 atmitmy @ ()|
ki1 <k<k;

[ PR L

<302, 1/28 < co. Hence, y = (yx) € (X, p). For each

= Y |Aem I )

ki_1<k<k;

= 3 a7t m Y () |

ki1 <k<k;
.| —(gx—1) qk
= ay Z m; | frlzx)
ky 1 <k<k;
= 1.

So that > |fx(yx)] = oo, which contradicts to (3.4). Hence (fx) € £o{ X', g). The proof

k=1

is now complete.

O

The following theorem give a characterization of S-dual of £(X, p) when py <1
for all £k € N. To do this, the following lemma is needed.

Lemma 3.5. Let p = (px) be a bounded sequeﬁééS" of positive real numbers. Then
loo(X,p) = Uni,y fco(X)(n_l/pk).

Proof. Let x € £ (X,p), then there is some n € N with ||zx|[P* < n for all k €
N. Hence [|zg||n~3/P* < 1 for all k € N, so that z € €oo(X)(n-1/pxy- On the other
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hand, if z € UZL;£o0(X)(n-1/p4), then there are some n € N and M > 1 such that
|zklln=t/Px < M for every k € N. Then we have ||zx|P* < nMP*x < nMe for allk € N,
where a = supy pr. Hence z € £,(X, p). O

Theorem 3.6. Let p = (pi) be a bounded sequence of positve real numbers with py < 1
forall k € N. Then £(X,p)? = £(X',p).

Proof. If (fx) € £(X,p)? , then > 5o, fr(zk) converges for every = = (z) € £(X,p),
using the same proof as in Theorem 3.4, we have

o 8]

> Ifr(zk) < oo forall @ = (zx) € &(X,p) (3.8)
k=1
If (fi) € £oo(X',p) , it follows by Lemma 3.5 that supy, ||fx|[m~1/P* = co for allm € N.
For each i € N, choose sequences (m;) and (k;) of positive integers with m; < ma <.
and k; < kg < ... such that m; > 2° and llf;rc'Hm“l/pk
|zk, || = 1 such that

" > 1. Choose zy, € X with

—1/pk

| frs (e ) my 7 > 1 (3.9)

Lety = (yx), yx = m;llp"":rk,. if k = k; for some ¢, and 0 otherwise. Then 3 5>, [|yx|P* =

Yooy 1/my < 352, 1/28 =1, so that (yx) € £(X,p) and
Z | fi(ue)| = Z|f TP )

~§j ST elew)] = 00 by (3.9),

and this is contradictory to (3.8), hence (fi) € £oo{X', p).

Conversely, assume that (fr) € £(X’,p). By Lemma 3.5, there exists M € N
such that supy ||fi||M~YP* < cc. Let = = (xx) € £(X,p), then there is a K > 0 such
that

I ful < KMYP forall ke N (3.10)

and there is a kg € N such that MY/Px|lzll < 1forallk > ko. By pp < 1forallk € N,
we have that for all & > kg,

MYP || < (MAPH ||z )P = M|zl P (3.11)
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Then
[o%) ko o0
> k@)l < Z\lfk”llwkll + > el
k=1 = k=kq+1
< Z I fxllllzsll + K Z MYPe ||zl (by (3.10))
k=ko+1 '
< Z I felllloell + KM Z lzxlPx (by (3.11))
k=ko+1
< Q.
This implies that 35 ; fx(zx) converges, hence (fx) € £(X, p)?. O

’

Theorem 3.7. Let p = (px) be a bounded sequence of positve real numbers. Then
loo(X,p)f = Moo (X', p).

Proof. 1f (fx) € Moo(X',p) , then 332 || fx|lm*/P* < co for all m € N, we have that
for each z = (zg) € £oo(X,p), there is mp € N such that ||zg| < mil)/p" forall k € N,
hence 252, 1fi (i)l < S22, Iillloell € S22 [ fellmi/® < oo, which implies that
Y ore, fe{zk) converges, so that (fx) € £(X,p)P.

Conversely, assume that (fi) € £oo{X,p)?, then oo | fr(xx) converges for all
z = (zk) € €o(X,p), by using the same proof as in Theorem 3.4, we have

> 1 fn(zx)| < oo for all z = (zx) € £oo (X, p). (3.12)

If (fr) € Moo(X',p), then Y po, |IfellMYPx = 0o for some M € N. Then we can
choose a sequence (k;) of positive integers with 0 = &y < k1 < k2 < ... such that

S Al MY > foralli € N.
ki 1<k<k;

And we choose zy in X with |jzg| = 1 such that for alli e N,

ST )M >

ki1 <kb<k;
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Put ¥ = (yx), yx = MYPray. Clearly, y € £o(X,p) and

Zlfk(yk)! 2 Z | fe(zi)|MYPe > ¢ for alli e N,
k=1 ki1<k<k;

Hence S |fr(yx)] = oo, which contradicts to (3.12). Hence (fi) € Moo(X',p). The
k=1
proof is now complete. - O

Theorem 3.8. Let p = (pix) be a bounded sequence of positve real numbers. Then
CO(X’p)B = MO(lep)'

Proof. Suppose (fi) € Mo(X',p), then oo |Ifx|[M~1/P% < oo for some M € N.
Let ¢ = (zx) € co(X,p). Then there is a positive integer Ky such that ||zg||P* <
1/M for all k > Ky, hence ||zx|| < M~1/P for all k > Ko. Then we have

St < Y el € Y IAlIM TP < oo,

k=K, k=Kq k=Kjy
It follows that Y po, fr(zx) converges, so that (fi) € co(X,p)P.

On the other hand, assume that (fx) € co(X,p)?, then > po, fe(zk) converges
for all z = (zx) € cp(X,p). For each z = (zx) € co(X,p), choose scalar sequence (tx)

with |tg] = 1 such that fr(tgzk) = |fe(zk)| for all K € N. Since {txzr) € co( X, p), by

our assumption, we have Y 7, fr(tki) converges, so that

Z{fk(ack)( < oo forall z € co(X,p). (3.13)

k=1

Now, suppose that (fr) ¢ Mo(X’,p). Then 3 io, |[fe[lm~1/Px = oc for allm € N.
Choose m1, kL € N such that

Y ifwlim e > 1
K<k,
and choose my > my and kz > kq such that

ST felimy VP > 2,

ky <kSk2
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Proceeding in this way, we can choose my < mg < ..., and 0 = k; < k3 < ... such that

ST Wllmy P >

ki—1<k<k;

Take zj, in X with ||zg]] =1 for all &, k;_1 < k < k; such that

ST fulzw)lmg /P >0 forallie N.
ki1 <k<k;

Put y = (yx), yx = mi_l/p":ck for k;_y < k < k;, then y € co(X, p) and

Sl = > Ifsl)lmy /P >4 forallie N.
k=1

ki1 <k<ki

Hence we have 37~ ; | fx(yx)| = 0o which contradicts to (3.13), therefore (fx) € Mo(X',p).
This completes the proof. ‘ O

Theorem 3.9. Let p = (px) be a bounded sequence of positve real numbers. Then
e(X,p)f = Mo(X',p) Nes [ X7).

Proof.  Since ¢(X,p) = co(X,p) + E, where E = {e(z) : x € X}, it follows by
Proposition 3.1(iii) and Theorem 3.8 that ¢(X,p)® = Mu(X’,p) N EA. It is obvious by
the definition that E# = {(fi) C X' : > re, fe(z) converges for all z € X } = cs[X’].
Hence we have the theorem. d
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MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED
SEQUENCE SPACES

Necessary and sufficient conditions have been established for an infinite matrix
A = (f¥) of continuous linear functionals on a Banach space X to transform the vector-
valued sequence spaces of Maddox £..(X,p), €¢(X,p), co(X,p), and ¢(X,p) into the

scalar-valued sequence space c¢(¢), where p = (pg) and ¢ = (g) are bounded sequences
of positive real numbers.

Keywords: Matrix transformations, Maddox vector-valued sequence spaces
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1. Introduction

The study of matrix transformations of scalar- valued sequence spaces is known
since the turn of the century. In seventies, Maddox!?, Gupta® studied matrix trans-
formations of continuous linear mappings on vector-valued sequence spaces. Das and
Choudhury! gave conditions on the matrix A = (f) of continuous linear mappings
from a normed linear space X into a normed linear space Y under which A maps ¢p(X)
into co(Y), £1(X) into £oo(Y), and £;(X) into £,(Y). Liu and Wu?? gave the matrix
characterizations from vector-valued sequence spaces co(X,p), £(X,p), and £, (X, p)
into scalar-valued sequence spaces co(q) and £o.(q). Suantai®* gave the matrix charac-
terizations from the Nakano vector-valued sequence space £(X, p) into the vector-valued
sequence spaces co(Y, q), c(Y), and £,(Y). In this paper, we continue the study of matrix
transformations of continuous linear mappings on vector-valued sequence spaces.

The main purpose of this paper is to give the matrix characterizations from
co(X,p), c(X,p), £oo(X,p), and £(X,p} into c(q), where co(X,p), c(X,p), {eo(X,p),
and £(X,p) are the vector-valued sequence spaces of Maddox as defined in Section 2.
When X = K, the scalar field of X, the corresponding spaces are written as cp(p), ¢(p),
£ (p), and €(p), respectively. Several papers deal with the problem of characterizing

those matrices that map a scalar-valued sequence space of Maddox into anoher such
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spaces, see [6, 7, 11, 13, 15, 17, 18, 19, 21 ]. Some of these results become particular
cases of our theorems. Also some more interesting results are derived.

Section 2 deals with necessary preliminaries and some known results quoted as
lemmas which are needed to characterize an infinite matrix A = () such that A maps
the vector- valued sequence spaces of Maddox into ¢(g), and we also give some auxiliary

results in Section 3. The main results of the paper is in Section 4.
2 Preliminaries and Lemmas

Let (X, ||-li) be a Banach space and p = (px) a bounded sequence of positive real
numbers. Let N be the set of all natural numbers, we write z = (z) with zx in X for all
ke N. Let W(X) and ®(X) denote the space of all sequences and the space of all finite
sequences in X, respectively. When X = K, the scalar field of X, the corresponding
spaces are written as w and ¢, respectively. An X —valued sequence space is a linear
subspace of W{X). The sequence spaces of Maddox are defined as

co(X,p) = {z = (zx) : limg-y00 [|24||P* = 0},

e(X,p) = {z = (zx) : iMoo ||zk — a|[P* = 0 for some ¢ € X},

boo(X,p) = {z = (i) : supy ||z [P+ < o0},

UX,p) = {z = (zx) : 1352, llos]lP* < oo},

When X = K, the scalar field of X, the corresponding spaces are written as
co(p), ¢(p), €oo(p), and £(p), respectively. All of these spaces are known as the se-
quence spaces of Maddox. These spaces were introduced and studied by Simons!®
and Maddox®®. The space #(p) was first defined by Nakano!* and it is known as the
Nakano sequence space. Also, we need to define the following sequence space :

Mo(X,p) = {z = (zk) : Xpey lizk|ln~1/P* < 00 for some n € N }.

When X = K, the‘scalar field of X, the corresponding space is written as My(p).
This space was first introduced by Maddox'®. Grosse-Erdmann? has investigated the
structure of the spaces ¢o(p), c(p), £{p), and £, (p) and he also gave the matrix charac-
terizations between scalar-valued sequence spaces'ojf Maddox in [3]. Let E be an X-
valued sequence space. For z € E and k € N we write that z; stand for the kth term
of z and for x € X and k € N, let e®)(z) be the sequence (0,0,0,...,0,2,0,...) with =

in the kth position and let e(z) be the sequence (z,z,,...), and we denote by e the the
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sequence (1,1,1,...). An X —valued sequence space F is said to be normal if (z;) € E
and {yx) € W(X) with ||yk|| < ||zk|| for all k € N implies that (yx) € E. For a fixed

scalar sequence u = {uy) the sequence space E, is defined as
E, = {z = (zx) € W(X) : (upzi) € E}.
The a—, f— and y— duals of a scalar-valued sequence space F' are defined as
F¢={z € w: (zxyx) € X¢ for every y € F}

for ( = a, B, v and X4 = 41, Xg = cs, and X, = bs, where £, cs and bs are
defined as

6 ={r={(zx) Ew: Y 4o |zk| <00},
cs = {& = (2x) € W: Y gy Tk CONVETZES },

L

bs = {& = (zx) € w:supp| D p_; Tk| < 00 }.
In the same manner, for an X —-valued sequence space F, the a—, f8— and v—

duals of E are defined as
E¢ = {(fx) C X' : (fulzr)) € X for every z = (z3) € E}

for ( = o, 8, v, where X, = £;, Xg = cs and X, = bs.

It is obvious from the definition that E* C EBC EYanditis easy to see that if
E is normal, then E* = Ef = E".

Let A = (f7) with f! in X', the topological dual of X. Suppose that F is an
X-valued sequence space and F a scalar-valued sequence space. Then A is said to map
E into F, written by A : E — F if, for each z = (zz) € FE, A.(z) = Y pey 2 (zk)
converges for each n € N and the sequence Ar = (A,(z)) € F. We denote by (E, F)
the class of all infinite matrices mapping E into F. If u = (ux) and v = (v) are scalar

sequences, let
u(E’ F)v == {A = (fl?) : (unka;l)n,k € (EaF)}

If up #0 for all k € N, we put w=1 = (1/ug). Suppose the X-valued sequence space E
is endowed with some linear topology 7. Then F is called a K-space if, for each k € N
the kth coordinate mapping px : E — X, defined by pr{x) = zx, is continuous on E. A
K-space that is a Fréchet(Banach) space is called an FK — (BK —) space.
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The spaces ¢p(p) and c(p) are FK-spaces. In ¢o{ X, p), we consider the function
g(z) = sup ||zk||P*/M, where M = max {l,supx px}, as a paranorm on co{X,p),
and it is I?nown that ¢o(X, p) is an FK-space under the paranorm g defined as above.
In £(X,p), we consider it as a paranormed sequence space with the paranorm given

by |[(zx)ll = Chey |la:k||P’°)1/M. It is known that £(X,p) is an FK-space under the
paranorm defined as above.

Now let us quote some known results as the following.

Lemma 2.1'° If p = (px) is a bounded sequence of positive real numbers with py > 1
forall k € N, then

o0
E(p)ﬂ ={recw: Z |zi|[* M™% < oo for some M € N}
k=1

where 1/pr + 1/t =1 forallk € N.

Lemma 2.2'% If p = (px) 15 a bounded sequence of positive real numbers with p;, < 1
for all k € N, then £(p)® = £ (p).

Lemma 2.3% If p= (ps) is a bounded sequence of positive real numbers , then

goo(P)ﬁ ={zecw: Z|$k|n1/p“ < oo forall ne N }.
k=1

Lemma 2.41° [fp = (pg) is a bounded sequence of positive real numbers, then co(p)® =
Mo(p).

Lemma 2.5%2 Letp = (pi) be a bounded sequence of positive real numbers and A = (f7*)
an infinite matriz. Then A: co(X,p) — co if and only if
(1)fgui;OasnﬁooforeachkeNand '
; ~oo N[y~ 1/Pk —
(2) n}l_l}loosuPn 2okt L2 llm 0.
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Lemma 2.6%2 Let p = (py) be a bounded sequence of positive real numbers and A = (fI)
an nfinite matriz. Then A : £(X,p) — ¢ if and only if

(1) f;;"‘i;O as n — oo for each k € N and

(2) for each M € N, 37, [ FPIIMYP5 — 0 as k — oo uniformly onn € N.

Lemma 2.722 Let p = (pi) be a bounded sequence of positive real numbers with py > 1
and 1/py + 1/tx = 1 for all k € N and let A = (f}) be an infinite matriz. Then
A:U(X,p) = co if and only if

(1) f,;“f—;O asn — oo for each k € N and

(2) > eei If2%m=% — 0 asm — co uniformly onn € N.

Lemma 2.8%2 Letp = (px) be a bounded sequence of positive real numbers with pr < 1
forallk € N and let A = (f7) be an infinite matriz. Then A : ¢{X,p) — co if and only
if

(1) f,:“i;o asn — oo for each k € N and

(2) sup IFe1P* < oo,

3. Some Auxiliary Results

 Suppose that F and F are sequence spaces and that we want to characterize the
matrix space (E, F). If F and/or F can be derived from simpler sequence spaces in
some fashion, then, in many cases, the problem reduces to the characterization of the

corresponding simpler matrix spaces. We begin with giving various useful results in this

direction.

Proposition 3.1. Let E and E, (n € N) be X -valued sequence spaces, and F and
Fo(n € N) scalar-valued sequence spaces, and let u and v be scalar sequences with
ur # 0,0 0 for all k € N. Then
() (UpL1En, F) = N0y (Ey, F),
(w) (E,M31,1Fn) = N3, (B, Fr),
(i) (Ev+ Ep, F) = (E1,F) N (B, F),
() (Bu, Fy) = o(E, Fly=1.
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Proof. All of them are obtained directly from the definitions.

Propostion 3.2. Let p = (p) be a bounded sequences of positive real numbers . Then
(1) o(X,p) = co(X,p) + {e(z) : 2 € X},
() Mo(X,p) = UR, 80X ) s/,
(i1} £oo(X,p) = Uﬁo=1£00(X)(n—1/Pk)'

Proof.' Assertions (i) and (ii) are immediately obtained from the definitions. To show
(ii), let = € £oo(X,p), then there is some n € N with ||zgx||[P* < n for all k € N.
Hence ||zx||n~1/P% <1 for all k € N, so that z € oo (X) (n-1/pxy- On the other hand, if
T € Upl1€oo(X ) (s-1/5x), then there are some n € N and M > 1 such that |zk||n 2P <
M for every k € N. Then we have |zg||P* < nMPx < nM™* for all k € N, where
o = supg px. Hence x € £, (X, p). O

The next proposition give a relationship between the S— dual of vector-valued

and scalar-valued sequence spaces.

Proposition 3.3 Let X be a Banach space and F a normal scalar-valued sequence
space and define F(X) = {(xx) € W(X) : (||zxl|]) € F }. then for (fx) C X', the
topological dual of X, (fi) € F(X)? if and only if (||fx|) € F~.

Proof. If (|| ficl]) € £, then for x = (zx) € F(X) wehave 33,7, |fu(za)| < 3257, | fullllzell <
00, so that T € F(X)A.

Conversely, suppose that (fr) € F(X)? and a = (ax) € F. Since F is nor-

mal, (jagx|}) € F. For each k¥ € N, we can choose z;; € X such that ||jzg|| = 1
and |fe(zk)| > @.' Let y = (agzk), then y € F(X). Choose a sequence (tx)

of scalars such that |tx| < 1 and fg(txarzr) = |fe(ze)liax| for all £ € N. Since F
is normal, (txyx) € F(X), so we obtain that D> .o, f(tkyx) converges. This implies
S i elllas] < 255 | fulor) llaxl < co. Tt follows that (|| fxll) € F.

By using Proposition 3.3, the following results are obtained immediately from

Lemma 2.1 - 2.4, respectively.
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Proposition 3.4 Ifp = (px) ts a bounded sequence of positive real numbers with py > 1
for all k € N, then

UX,p)P = {(fi) C X' Y fel* M~ < oo for some M € N }
k=1

where 1/pp + 1/ty =1 forallk € N.

Proposition 3.5 Ifp = (px) ts a bounded sequence of positive real numbers with p;, < 1
for all k € N, then £(X,p)? = £o.(X', D).

Proposition 3.6 Ifp = (pi) is a bounded sequence of positive real numbers, then

(X, p)P = {(fr) c X': Z | Fullnt/P* < oo for ;lln eN}

k=1

Proposition 3.7 If p = (px) is a bounded sequence of positive real numbers, then
co(X, p)f = Mo(X',p).

4. Main Results

We begin with the following useful result.

Theorem 4.1. Let ¢ = (gx) be a bounded sequence of positive real numbers and let E

be a normal X — valued sequence space which is an FK-space containing ®(X). Then

(E,c(g)) = (E,co(q)) @ (E,<e>).

To prove this theorem, we need the following two lemmas.

Lemma 4.1. Let E be an X -valued sequence space which is an FK-space containing
®(X). Then for each k € N, the mapping Ty, : X — E, defined by Trx = ef(x), is

continuous.
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Proof. For each k € N, we have that V = {e*(z) : x € X} is a closed subspace of
E,| so it is an FK-space. Since F is a K-space, the coordinate mapping px : V — X is
continuous and bijective. It follows from the open mapping theorem that pg is open,

hence, pgl : X — V is continuous. It follows that Ty is continuous because Ty = p,:l.l:]

Lemma 4.2. If E and F are scalar-valued sequence spaces such that E is normal
containing ¢, F is an FK-space and there is a subsequence (ny) with x,, — 0 as
k—ocforallz = (z,) € F, then (E, F® <e>)=(E, F) ® (B, <e>).

Proof. See [3, Proposition 3.1(vi}) |. aJ

Proof of Theorem 4.1 Since ¢(q) = co{g) & < e >, it is clear that (E, co(q)) + (E,<
e>) C (E.co(g) @ < e>) = (E,c(q)). Moreover, if A € (E,co(q)) () (E,< e >),
then A € (E, colgq) [) < e >), so that 4 € (F,0), which implies that A = 0 because E
contain ®(X). Hence (F,col(q)) + (E, < e >} is a direct sum. Now, we will show that
(E,c(q)) € (E,co(q)) & (E,<e>). Let A= (f) € (£,c(q)) = (F,colg) ® < e >).
For £ € X and k € N, we have (f7(2))32, = AeF(z) € co(q) ® < e >, so that there
exist unique (b2{z))S2; € colq) and (cF(x))52; € <e> with .

(fi (z))ntr = (R (@))nty + (e (@))nia- (4.1)
For each n,k € N, let g7 and A} be the functionals on X defined by
gr(z) =bp(z) and hR(z)=ci(x) for allz € X.

Clearly, g7 and h} are linear, and by (4.1)

*

v =gr+hy forallnkeN. (4.2)

Note that co(g) & < e > is an FK-space in its direct sum topology. By Zeller's theorem,
A E — cp(q) & < e > is continuous. For each £ € N, let T}, : X — E be defined by
Ty(z) = e*(x). By Lemma 4.1, we have that 7} is"continuous for all k € N. Since the
projection P of ¢g(g) & < e > onto cp{g) and the projection Py of co(q) & < e > onto
< e > are continuous and gf =ppoProAcTy; and A =pp,oPro ATy for all n, k €

N, we obtain that g and A} are continuous, so gp, A} € X' foralln,k € N. Let
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B = (gp) and C = (h}). By (4.1) and (4.2), we have A = B+ C, B = (g}) €
(®(X),co(q)) and C = (h}) € (®(X),< e >). We will show that B € (E,co(q))
and C € (E,< e >). To do this, let £ = (zx) € F. Then for a = (o) € £o, we
have ||agzk| = |akl||ze|| < ||Mzg||, where M = supy |ag|. Then the normality of E
implies that (axzy) € E. Hence (f2(zk))nk € (boo, co(g) ® < € >), moreover, we have
(G2 (@) € (B, co@), (B @Kk € (@, < >), and (FP@R)) o = (978N +
(hR{zx)) k- Since £, is normal containing ¢ and ¢o{g) C cp, it follows from Lemma
4.2 that (g5 (), € (Yoo, co(q)) and (h%(zw)), , € (oo, < e>). This implies that
Bz € cy(q) and Cz € < e >, so we have B € (E,co(¢)) and C € (FE,< e >), hence
A€ (E, cp{q)) & (E, < e>). This completes the proof. O

Theorem 4.2. Let g = (gi) be bounded sequences of positive real numbers and A = ()
an infinite matriz. Then A : £o(X) — c(q) if and only if there is a sequence (fi) with
fr € X' for all k € N such that

(1) 2Ll < oo,

(2) m¥Ma (f2 — fr) 5 0 asn — oo for every k,m € N and

(3) for eachm e N, 37, m )| f7 —~ fill = 0 ask — oo uniformly onn € N.

Proof. Necessity. Let A € (£o{X),c(q)). It follows from Theorem 4.1 that A = B+ C,
where B € (£50(X), co(q)) and C € (£{X), < e >). Then there is a sequence ( fx) with
fr € X' for all k € N such that C = (fi)nk and B = (fff — fi), x € (feo(X), co(q)),
which implies that (fi) € £oo{X )P, so (1) is obtained by Proposition 3.6. Since co(g) =
M5e=1C0(m1/ax) (by [2, Theorem 0 (i)]), we have by Proposition 3.1 (ii) and (iv) that for
each m € N, (mY ¢ (f2 — fi)nx) : £oo(X) —+ co. Hence, (2) and (3) are obtained by
Lemma 2.6.

Sufficiency. Suppose that there is a sequence (fg) with fr € X' forall k € N
such that conditions (1), (2) and (3) hold. Let B = (f — fe)nk and C = (fi)n k. It
is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and
Proposition 3.1(ii) and (iv) that B € (£5(X),c0(q)). By Proposition 3.6 , condition
(1) implies that 3 g, fx(zx) converges for all £ = (xx) € £o(X), which implies that
C € ({o(X), < e >). Hence, we obtain by Theorem 4.1 that A € (boc(X),¢(q)). This
completes the proof. £l
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Theorem 4.3. Let p = (px) and g = (gx) be bounded sequences of positive real numbers
and A = (f7) an infinite matriz. Then A : £o(X,p) — c(q) if and only if there is a
sequence (fr) with fr, € X' for allk € N such that (1), (2) and (3) are satisfied, where

(1) for each m € N, 352, || fxl|m*/Pr < oo,

(2) rHan(fP} — fr) Y 0 asn— oo for every k,r € N and

(3) for each m,r € N, ri/an D isk m1/1’1||f}‘ —fill = 0as k& — oo uniformly on

neN.
Moreover, (3) is equivalent to (&), where
(3') for each m € N, limg_,, sup, (Zj>k ml/ P I fj“)qn Yy

Proof. Necessity. Suppose that A : £,.(X,p) — ¢(g). By Theorem 4.1, A = B+ C,
where B € (£oo(X,p),co(q)) and C € (£xo(X,p), < e >). Then there is a sequence (fx)
with fi € X’ for all k € N such that C = (fx)}nk and B = (ff — fr) € (loo(X,p), co(q)).
Since C = (fi)nk : £oo(X,p) =< e >, it implies by Proposition 3.6 that (1) holds.
Since co{g) = N7R_1C0(m1/ax), we have by Proposition 3.1 (ii) that for each r € N,
(ri/en(fp — fk))n,k : £oo(X,p) — co. Hence , (2) and (3) holds by an application of
Lemma 2.6.

Sufficiency. Suppose that there is a sequence (fi) with fr € X’ for all k € N
such that condition (1), (2) and (3) hold. Let B = (f7 — fi)nk and C = (fe)n k- It
is obvious that A = B + C. By condition (2) and (3), we obtain by Lemma 2.6 and
Proposition 3.1(ii) and (iv) that B € (£,,(X,p),co{q)). By Propesition 3.6 , condition
(1) implies that > po., fx(zx) converges for all z = (zx) € £o0(X, p), which implies that
C € ({,(X,p), < e >). Hence, we obtain by Theorem 4.1 that A € (£(X.p},c(q)).

Now we shall show that (3) and (3') are equivalent. Suppose (3) holds and let
g > 0. Choose r € N such that 1/r < e. By (3), there exists kg € NV such that

r1/an S mlUPs || 7 — £l < 1for all k > ko and alln € N,
i>k

which implies that

2n
sup (Zml/pjﬂf?—fjn) <1/r <e fork > ko,

>k

hence, (3') holds.



168

Conversely, assume that (3') holds. Let m,r € N and 0 < £ < 1. Then there
exists kg € N such that

qn
sup (Z mllpj”f;?’ - fj||) <ef/r forallk > kg

>k

where H = suppgn. This implies that

| ‘rlflq"z:ml/f"i||f;-1 — fill < e/ <¢ forallk>koandall n€ N
ik

hence, (3) holds. O

Theorem 4.4. Let p = (px) and q = (qx) be bounded sequencey of positive real numbers
and A = (f) an infinite matriz. Then A : co(X,p) — clq) if and only if there is a
sequence (fi) with f, € X' for allk € N such that (1), (2), and (3) are satisfied, where

(1) S |ifellM~YPe < oo for some M € N,

(2) mv_ln'(f,’c" — fr) Y0 asn — oo for every m,k € N and

(3) for each m € N, sup,, (m¥% 2% ||f2 — fullr~/P*} = 0 asr — oo.

Moreover, (3) is equivalent to (3') where
(3') limroyeo sup, (3252, IF8 — Jellr=/74)™ = 0.

Proof. Necessity. Suppose that A : ¢o(X,p) — c(q). By Theorem 4.1, we have
A = B + C, where B € {co{X,p),co(¢)) and C € (co(X,p), < e >). It follows that
there is a sequence (fr) C X' such that C = (fr)nx and B = (f — fi)n k- Since
co{g) = NP2y Co(pi/ar, it follows from Proposition 3.1 (ii) and (iv) that for each m € N,
(MY (2 — fi))nk € (co(X, D), co), hence, conditions (2) and (3) hold by using the re-
sult from Lemma 2.5. Since C' = (fi)n i € (co(X,p), < € >), we have that 3_- , fe(zk)
converges for all z = z € co(X,p), so that (fi) € co(X,p)?, hence, by Proposition 3.7,
we obtain that there exists M € N such that 3 po, || fellM~/P¢ < oco. Hence, (1) is
obtained. .

Sufficiency. Assume that there is a sequencé ( fx) C X' such that conditions
(1),(2) and (3) hold. Let B = (ff — fx)nk and C = {fx)nx. Then A= B+ C. By
conditions (2)and (3), we obtain from Proposition 3.1(ii) and (iv) and Lemma 2.5 that

B € (co(X,p),colq)). The condition (1) implies by Proposition 3.7 that Y, fi(zk)
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converges for all z = (xy) € co{X, p), so that C € (co(X,p), < e >). Hence, by Theorem
4.1, we obtain that A € (eq(X,p),¢(q))-
Now, we shall show that conditions (3) and (3') are equivalent. To do this,

suppose that (3) holds and let € > 0. Choose m € N, 1/m < . From (3), there is
rp € N such that '

o0 .
sup i/ 3£ = fullr™HP < Lfor allr > ro.
" k=1

This implies that sup,, (Ze, 1/ — fellr~2/7)* < 1/m < ¢ for all r > ro. Hence,
(3"} holds.
Conversely, suppose that (3') holds. Let m € N and 0 < ¢ < 1. Then there

exists ro € NV such that sup, (350, [1ff — fellr~V/?)* < e /m for all r > ry, where
H = sup,q,. Hence, we have

mt/n Z If2 = fllr~ P < ef/an < forall r>rgand ne N,
k=1
so that (3) holds. This completes the proof. |

Theorem 4.5. Let p = (px) and ¢ = (qx) be bounded sequences of positive real numbers
and A = (f}) an infinite matriz. Then A : ¢(X,p) — c(q) if and only if there is a
sequence ( fi) with fr € X' for all k € N such that (1), (2), (3) and (4) are satisfied,
where

(1) S22 1 fullM~YP < oo for some M € N,

(2) for each m,k € N, ml/q"(f};‘ — fx) Y 0 as n— 00,

(3) for eachm € N, sup, m/% S°0° |fr — fillr~ P« — 0asr — oo and

(4) ooz, fR (), €clq) forallz € X.
Moreover, (3) is equivalent to (3 ) where

(3') lim; 0 sup, (Z?:l e - kaT_lfpk)qz = 0.

Proof. Since ¢(X,p) = co(X,p) + {e(z) : z € X} (Proposition 3.2 (i} ), it follows
from Proposition 3.1(iii) that A € (¢(X,p),c(q)) if and only if A € (co(X,p),c(q)) and
A€ ({e(z): z € X},e(q)). By Theorem 4.4, we have A € (co(X,p), c(q)) if and only if
conditions (1)-(3) hold and it is clear that A € ({e(z) : z € X},¢(q)) if and only if (4)
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holds. We have by Theorem 4.4 that (3) and (3') are equivalent. Hence, the theorem is
proved. U

Wu and Liu {(Lemma 2.7) have given a characterization of an infinite matrix A
such that A € (£(X,p),co) when pi > 1 for all k € N. By applications of Proposition
3.1(ii) and (iv), Proposition 3.4, and Theorem 4.1, and using the fact that co(g) =

Mr=1C0(m1/ax)s WE obtain the following result.

Theorem 4.6. Let p = (px) and ¢ = (qi) be bounded sequences of positive real numbers
with pp > 1 for all k € N and 1/px + 1/tx =1 for all k € N, and let A = (f) be
an infinite matriz. Then A: (X, p) — c(q) if and only if there is a sequence (fi) with
fr € X' for all k € N such that '

(1) Sovi Ifell* M~% < oo for some M € N,

(2) mM (P — fi) “S 0asn — oo for all m,k € N and

(3) for each m € N, o, mi=/a||fi — fi|*r~% — 0 as r — oo uniformly on

neN.

By using Lemina 2.8, Proposition 3.1(ii) and (iv), Proposition 3.5 and Theorem

4.1, we also obtain the following result.

Theorem 4.7. Let p = (px} and g = (¢gx) be bounded sequences of positive real numbers
with pr <1 for all k € N and A = (f}) an infinite matriz. Then A: £(X,p) — c(q) if
and only if there is a sequence (fi) with fr € X' for all k € N such that

(1) supy || fell™ < oo,

(2) mYM& (fP — fi) = 0 as n — oo for all m,k € N and

(3) Sll}: mPe/aa || fR — fil|Px < oo for allm € N.

n,

When pr = 1 for all K € N, we obtain the following.

Corollary 4.8. Let ¢ = (qx) be a bounded sequence of positive real numbers and let
A = (fF) be an infinite matriz. Then A : £1{X) — c(q) if and only if there is a
sequence {fi) with fi € X' for all k € N such that
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(1) SUpg ”fk” < 00,
(2) mMa (P — f) = 0as n— oo for allm,k € N and
(8) sup mY/ || f — fill < 0o for everym € N.

n.k

Theorem 4.9. Let p = (px) be a bounded sequence of positive real numbers and A =
(f2) an infinite matriz. Then A : Mo(X,p) — c(q) if and only if there is a sequence
(fr) bf bounded linear functionals on X such that
(1) sup, m!/Px||fr|| < oo for allm € N,
(2) jor each m,r € N, rV/taml/Pe(f1 — f1) “ 0asn— oo forallk€ N and
(3) for each m,r € N, sup ri/anm/ee|l 2 — fi|| < oo .
n,
Proof. It follows from Theorem 4.1 that A € (My(X,p),co(g)® < e >) if and only if
there is a sequence (fi) of bounded linear functionals on X such that A = B + (fx)nx
where B : My(X,p) — co(q) and (fe)nk : Mo(X,p) =< e >. Since B = (f!— fi)nx and
Mo(X,p) = U1 £1(X ) (mm-1/5) (by Proposition 3.2 (ii)), we have by Proposition 3.1 (i)
and (iv) that B : Mo(X,p) — colq) if and only if (m!/P=(fp — fk))n,k 2 0(X) = colq)
for all m € N. Since co(q) = NP2 Cor1/ay, by Proposition 3.1 (ii) and (iv), we have
(mMee(fp — fk))n,k : £4(X) — co(q) if and only if (r/eml/Px(fp — fk))n,k (X)) —
¢o for all 7 € N. By Lemma 2.8 , we have
(rt/anml/pe(fp — fk))n,k : 43(X) — ¢ if and only if
(a) rVam/Pe(fr — f) Y5 0asn— coforallke€ N and
(b) sup rilanmt/ee || 8 — fill < oo .
n,

By Proposition 3.1 (i) and (iv), we have (fi)nr : Mo(X,p) =< e > if and only if
(mYPx f )k £(X) < e > for all m € N. By Proposition 3.5, we obtain that
(mPr fi )k £1(X) =< e > if and only if sup, m/P+||fi|| < co . Hence, the theorem
is proved. " 0.
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e*}(z) be the sequence (0, 0,0, ...,0,2,0,...) with z in the k** position. For a fixed scalar

sequence u = (uy) the sequence space E,, is defined by
E, = {$ = (.’L‘k) € W(X) : (ukxk) € E}

Suppose that the X-valued sequence space F is endowed with some linear topology

7. Then E is called a K-space if for each n € .N the n** coordinate mapping p, :

E — X, defined by p,(z) = z,, is continuous on E. If, in addition, (F,7) is an

Fre'chet(Banach) space, then FE is called an FK — (BK—) space . Now, suppose that

E contains ®(X). Then F is said to have property AB if the set {ki ef(zy) :mn € N}
=1

is bounded in F for every x = (z) € E. It is said to have property AK if i e*(zr) —

k=1
z € E as n — oo for every z = (z) € E. It has property AD if &(X) is dense in E.

If pp > 1 for all & € N, the space £(p) is an BK-space with AK under the
Luxemburg norn defined by

o0
. Tr
= 0: —Pe 1Y
ol = infle > 0: 30 < 1)

For more detail about the space £(p) see [3]. The space co(p) is an FK-space with AK,
¢(p) is an FK-space and £,(p) is a complete LBK-space with AB (see [3]). In each of
the space £oo(X,p) and co(X,p) we consider the function g(x) = sup ||zx||P+/*, where
M = mazx {1, sup px}, as a paranorm on £, (X, p) and ¢o(X, p) a;cld it is known that
¢p(X,p) is an FI’iI-space with AK under the paranorm g defined as above and £..(X, p)
is a complete LBK-space with AB.

Let A = (f7) with f? in X', the topological dual of X. Suppose that E is a
space of X-valued sequemnces and F a space of scalar-valued sequences. Then A is said
to map E tnto F, written A : B — F if for each z = (zx) € E, A,(z) = if{;(xk)
converges for each n € N and the sequence Az = (A,(z)) € F. We denote Ebzyl (E,F)

the set of all infinite matrices mapping F into F. If u = (ug) and v = (vg) are scalar

sequences, let
w(E, F)y = {A=(f) : (noxfink € (B, F)}.

If ug # 0 for all £ € N,we write u™! = (ﬁ)
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Let E be an X-valued sequence space. The S— daul of E is defined to be

Ef = {(fr)y c X': Zf(:ck) converges for all z = (z;) € E.}
k=1

By the defintion, we see that if A = (f) maps the sequence space E into a scalar
sequence space, then each row of A belongs to Ef, ie., (f2)2, € EP , so thisis a
necessary condition for an infinite matrix A mapping from one sequence space into the
other. We shall give characterizations of the S— dual of some vector-valued sequence

spaces in Section 3.

3. The S— Dual of some Vector-Valued Sequence Spaces

’

We start with characterizations of the f— dual of the space co(X, p)

Proposition 3.1 Let p = (px) be a bounded sequences of positive real numbers. Then

co(X,p)? = {(f) c X' Z”fk”M—i < oc for some M € N.}
k=1

o0

Proof. Suppose that > ka“M—ﬁ < oo for some M € N. Let z = (zx) € (X, p).
k=1

Then there is a positive integer Ky such that ||zx||P* < —;7 for all k > K, hence

|zl < M~ for all k > K.

Then we have

St < X elllizell < 3 ellM ™7 < oo,

k=K, k=K, k=Kg

o0
It follows that 3 fx{(xx) converges, so (fx) € co(X,p)?.
k=1
o0
On the other hand, assume that (f;) € co(X,p)?. Then ¥ fi(zi) converges for
k=1

all z = (zx) € co(X,p). For each z = (z3) € ¢o(X, p), choose scalar sequence (ty) with
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|tx] = 1 such that fi(tezk) = |fr(zk)] for all & € N. Since (fxzr) € co(X,p), by our

assumption, we have Y fi(txzi) converges, so that
k=1

> Ifel@e)] < oo for all 7 € co(X, p). o (3.1)
k=1

o .
Now, suppose that > ||fk||m"i = oo for all m € N. Choose m, k; € N such that
k=1

> Hfellmy ** > 1

k<k;

and choose mqy > iy and ko > ky such that

> lifellmy ™ > 2.

ki <k<k:

Proceeding in this way, we can choose m; < mg < ..., and 0 = k1 < kg < ... such that

.
Z Ufellm; ™ > .

ki_1<k<k;

Take z in X with ||zx!| = 1 for all k, k;_; < k < k; such that

.
> |fxlzk)lm; ™ >iforallie N.
ki1<k<k;

1

Put y = (ve), (yx) = m;ﬁmk for k;_1 < k < k;, then y € ¢o(X, p) and we have

oo 1
> 1 felye) > Z [fe(zk)m, ™ >iforallic N.
k=1 ki1 <k<k,

*

Hence we have ) |fe(yx)| = co which contradicts with (3.1). Hence (fx) € {(gx) C

k=1

OO
X'y ||gk||M_ﬁ < oo for some M € N.}. Thus the proposition is proved. J
k=1

Proposition 3.2 Let p = (px) be a bounded sequences of positive real numbers. Then

loo(X,0)? = {(f) € X' : S|l felm? < oo for allm € N.}
k=1
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o0
Proof. If 3 ||fk||mﬁ < oo for allm € N, then we have that for each z = (z;) €
k=1

foo(X,p), there is mg € N such that ||zx]| < mZ* for all k € N, hence Y |fr(zx)| <
k=1

OO o0 L [&.4]
SN lfelllzell < 3 1 fellmy* < oo, which implies that Y fi(zx) converges, so (fx) €
k=1 k=1 k=1 :
oo (X, p)P.
Conversely, assume that (fi) € £oo(X,p)?. Then Y fu(zx) converges for all
k=1
z = (z) € Loo{X,p). We first note that, by using the same proof as in Proposition 3.3,

we have

> "I frlzi)] < oo for all 7 = (zx) € £oo(X, p)- (3.2)
k=1

o0 1 ’
Now, suppose that > ||fx||MPx = oo for some M € N. Then we can choose a sequence

k=1
(k;) of positive integers with 0 = kg < k3 < k2 < ... such that

S fellM# >iforallie N.
ki—l(kSk,‘

Taking z in X with ||zx|| = 1 such that for all ¢ € IV,

ST Ilar)IM >

ki1 <k<k;

Put y = (yx) = (Mﬁxk)zil. Clearly, y € £o(X,p) and

o o0

R .
> 1)l = > | fs(zk)|M? >iforallie N.
k=1 ki1 <k<k;

(ool
Hence ) |fi(yx)| = oo, which contradicts with (3.2). Thus (fx) € {(gx) C X' :
k=1

[=s] OO L

S [lgrllm® < oo for allm € N.}. Hence £oo(X,p)f = {{gx) C X' : 3 |lgrllm® <
k=1 k=1

oo for all m € N.}. |

Proposition 3.3 Let p = (px) be a bounded sequences of positive real numbers. Then

E(X,p)ﬁ ={(fr) C X' Z“fk“t"M—{t"_l) < oo for some M € N}
k=1
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1 1 _
wherep—k—l-a—lforallkeN.

(v

Proof. Suppose that Y || fx||t* M~ ¢=1) < oo for some M € N.
k=1

Then we have that for each z = (z;) € 4(X,p),

o0 oo 1 1
D Ifel@e)l <Y I fellM 77 M |
k=1 k=1

oo

<3 (Wl + Mol

k=1

= ankutkM (te-1) +MZHmknPk <0
k=1

g

00
which implies that E fr(zx) converges, so (fi) € £(X,p)".

On the other hand, assume that (fi) € £(X,p)?. Then Z fr(zy) converges for

all x = (xx) € £(X,p). We first note that, by using the same proof as in Proposition
3.1, we have

Z|fk(:ck)| < oo for all z = (zy) € (X, p). .(3.3)
k=1

We want to show that there exists M € NN such that
0
D el M < 0o
k=1

If it is not true, then

Z”fk”t"m_(t""l) = o0, for all m € N. (3.4)
g=1

And (3.4) implies that for each kg € N.
Z i Fellt*m =~ = oo, for all m € N. (3.5}
k>ko
By (3.4), let m; = 1, then there is a k; € N such that
S Illtemy D > 1,

k<k,
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By (3.5), we can choose my > m; and mg > 2% and ky > k; such that

D Melfmy 70 > 1. (3.6)
k1 <k<ks
By continueing in this way, we obtain sequences (k;) and (m;) of positive integers with

l=ko<ki<k:<.. m1<mz<...,m,‘>2i and

Y fellfemy D s

ki—1<k<k;

Choose zj in X with ||zg|| = 1 such that for alli € N,

S ala)|Emy Y > 1 for all i € N.
ki1<k<k; ’

Leta; = 3 |fe(ze)tem; 7Y Puty = (we), wi = a; 'm] Y| fi(mp) |t~ Lzy for all k,
ki1 <k<k;

k < k;. For each 7 € N, we have

1 13

S dwl = Y|

ki_1<k<k; ki_1<k<k;

= Y @ | flw) |
ki 1<k<k;
el el —(tp—1
= Z o] 'mtm, (e )Ifk(xk)\tk
kg_1<k$ki

1,..-1
m, a4

a_—lm._(tk—l) l.fk(xk) |tk_1$k ”Pk

= a,i_

_ -1

=m;
1

< E.

So we have that
[» a} o0 1
Z”yk”pk < Zg < 00-
k=1 i=1

Hence,

y = (vx) € £(X,p). (3.7)



ON MATRIX TRANSFORMATIONS OF VECTOR-VALUED
SEQUENCE SPACES OF MADDOX

Abstract. In this paper, characterizations of infinite matrices mapping the vector-

valued sequence spaces of Maddox into Musielak-Orlicz sequence space are given.

1. Introduction. Let (X,||.||) be a real Banach space and p = (px) a bounded
sequence of positive real numbers. Let N be the set of all natural numbers, we write z =
(zx) with g in X for all k € N. The X-valued sequence spaces co(X, p), c( X, p), Loo(X, D),
and £(X,p) are defined by

C{}(Xap) = {.T = (Ek) : lim “.’,Ek”pk — 0},
k—oo
c(X,p) = {sc = (zx) klim |zx — a||”* = 0 for some a € X} ,
—00

baa(X,p) = {2 = (20) s sup el < oo} and
k

¢X,p) = {m = (@) Y Nzl < oo} .
k=1

When X = K, the scalar field of X, the corresponding spaces are written as ¢y (p), ¢{p), £(p),
and oo (p),
respectively. The first three spaces are known as the sequence spaces of Maddox. These
spaces were introduced and studied by Simons[9] and Maddox[5, 6]. The space €(p) was
first defined by Nakano|8] and is known as the Nakano sequence space. Grosse-Erdmann
[3] investigated the structure of the spaces co(p), c(p), £(p) and £, (p)-
A function f : R — [0,00) is called an Orlicz function if it has the following

properties:

(1) f is even, continuous and convex,

(2) flz)=04==2z=0,

/(=) =0 and lim m =

(3) Lim= = Jim =
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