บทคัดย่อ

รหัสโครงการ: RSA/19/2543

ชื่อโครงการ: ออกซิเจนที่อินเทอเฟสระหว่างเอพิแทกซีเพชรและแผ่นรองรับเพชร

วิเคราะห์โดยโฟโตอิเล็กตรอนสเปกโทรสโกปี

ชื่อนักวิจัยและสถาบัน: นายวิทยา อมรกิจบำรุง ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์

มหาวิทยาลัยขอนแก่น

E-mail Address: vittaya@kku.ac.th

ระยะเวลาโครงการ: 1 ธ.ค. 2543 - 30 พ.ย. 2545

งานวิจัยนี้มีวัตถุประสงค์เพื่อค้นหาวิธีการกำจัดชั้นออกไซด์บนแผ่นรองรับซิลิกอน หน้าผลึก (100) และเพชรหน้าผลึก (100) และศึกษาผลต่อการเคลือบเพชรด้วยกระบวนการ chemical vapor deposition ก่อนการเครียมฟิล์มเพชรมีการทำความสะอาดแผ่นรองรับทั้งสอง ชนิดด้วยการล้างในอะซิโตน เมทานอล และน้ำสะอาด 18 MΩ-cm ใน ultrasonic bath แล้วยัง ได้ใช้การเครียมผิวแผ่นรองรับซิลิกอนทั้งการขัดด้วยผงเพชร และกัดด้วยกรด ส่วนการเตรียม ผิวแผ่นรองรับเพชรเราใช้การกัดด้วยกรดอย่างเดียว ทำการเคลือบเพชรบนแผ่นรองรับซิลิกอน ประสบความสำเร็จเมื่อมีการขัดผิวด้วยผงเพชร และอุณหภูมิใส้ทั้งสเตน 1700-2000 °C อุณหภูมิแผ่นรองรับ 400-600 °C ผลจากรามานพบ compressive stress ในฟิล์มเพชร ประมาณ 2 GPa และ stress สามารถอยู่ได้นานเป็นเดือนในเงื่อนไขอุณหภูมิและบรรยากาศ ปกติ ผลจากการตรวจสอบฟิล์มเพชรด้วยเทคนิค XRD พบ SiO₂ แสดงถึงการกำจัดชั้น ออกไซด์ไม่ได้หมดไปจากผิวซิลิกอน หรืออาจมาจากการปนเปื้อนภายในระบบการเดรียมก์ เป็นไปได้ อย่างไรก็ตามการพบ α-SiC , β-SiC , graphite , DLC composite จาก XRD และ Raman อาจเป็นส่วนประกอบที่ทำให้ฟิล์มเพชรมีความเสถียรสูง ภายใต้ high compressive stress

คำหลัก: เพชร, คาร์บอนคล้ายเพชร, ให้ความร้อนด้วยเลเชอร์, เอกซ์เรย์ดิฟแฟรกชัน, รามาน, จุลทรรศน์อิเล็กตรอนแบบส่องกราด

Abstract

Project Code: RSA/19/2543

Project Title: Oxygen Impurities at the Homoepitaxially Grown Diamond-Substrate

Interface Analyzed by X-Ray Photoelectron Spectroscopy

Investigator: Dr.Vittaya Amornkitbamrung, Department of Physics Faculty of

Science, Khon Kean University

E-mail Address: vittaya@kku.ac.th

Project Period: 1 December 2000 - 30 November 2002

The objective of this research is to investigate the methods used for oxide layer removal for the silicon (100) and diamond (100) substrates, and to study their effects on diamond thin film deposition using chemical vapor deposition (CVD) technique. Prior to the diamond film deposition, both types of substrate were cleaned in ultrasonic bath using acetone, methanol, and 18 M Ω -cm de-ionized water; respectively. The silicon substrates were then subjected to diamond powder scratching and acidic etching processes. For the diamond substrates, only the acidic etching was applied. The hot filament chemical vapor deposition (HFCVD) was employed to deposit the diamond films on the substrates. The deposition of diamond films was successful for the scratched silicon substrates. The deposition was carried out at the filament temperature of 1700-2000 °C and the substrate temperature of 400-600 °C. The results from Raman spectroscopy showed that the compressive stress of about 2 GPa was present in the films on silicon surface were scratched by diamond powder. The stress sustained for the period of the investigation (longer than a month) at room temperature and ambient atmosphere. X-ray diffraction analysis revealed the SiO₂ phase in the film. This may be due to the incomplete removal of oxide layer from the substrate surface or the oxide contamination in the growth chamber. The XRD and Raman results also indicated the presence of α-SiC, β-SiC, graphite and DLC. These composite phases may assist in the high stability of the diamond film under the high compressive stress.

Keywords: Diamond, DLC, Laser heating, XRD, Raman, SEM