THIr st

1uITESas Mavinisndulnelaemaianisiseujzearsamasnsiusunss
o - J 1 L d @ W :l el 1
AsINzIdegUuieh JuiunazaieszuUARIINANNI SR IANgras T uINI Y Ine

o 1 ar AACY =] d' L] =1 @ d
Wldothedalud® Junafiafasianldfe nadeuiresaioasnsiusunsunssns

or 2 o o - n. o o o J d ar
\Begunie  gidelaviimsidelaesaainmssniiumsisenugrwieiunisisunsy

as d -3 Rr a4 o - L)
m3snzieguiie Fashludssgnaldiumssunniumslmiuwnaiangsaly
TumsduunFumsssniOuwnnenylasdaludfine dwnsoilanaigisnig
L ar oo :# é 1 = s = =]
Aaeiu Fanameiiauls Aa malusunsumssnziBegusienialousati (Inductive Logic
. r . {0 N —
Programming ~ ILP) \#8991n38n1sit drenainisallonarnaiitasiulugiuuunas
as o :‘ é & l:‘ L o 2 o L5 1 o = Q‘ J’
Tusunsumssnzdnauiniels FeezdialvnisdunndayarinlaodrofivszBnsnmiean
laavialulausanisingminlldnulgminfidnwaziudowngs (two-class concept)
figpmansadunnsateamiudaingu (class) Ag NFHAIBENUINUALNGHAIDE
o a a ) e r o & = d e o
au laenisasrengiisaduiengumiodiouan Awin Lieingiasielaluduun

ar ¥ 1 ar d ar ° ) e 1 ar . N ar
megnln megnanassnungazgniunaliungusiiageuan smeagwnladaseiung

]
oo oA a ]

[ (=7 ] as 1 H o o ar
azgndunniungusiegnay ualunsdnsaenisnissuulaseafiluldiuunaietie
pandunatengs (multi-class concept) U 819fiRI0EIUAIlAELRNIZAIBEINT
ar C; 1 ar £ L3 é ‘.-J' 4 =
doygmsunan (noisy data) Nldmssnungdalatenisbuwgnmaingnenan delunsd

kg o P a ' o 1 ° ar 1 a :hl )
vduiszuvlauaafiudAesagiaderlddarnrsodiunnaisdslndnvusitle
Jesnlnmsedismsdwinandieiavilvszuulsusaiainsadunnaresvoaniiv
watengula

o & oo S 1 ad ] a o ar 1
ponulnanideidadnnssdneimisnig Banansmianldiuwnmatig

welismnunghlaanszuuloueadt ileldnszumnishdinvusdAguazisnis

TRIAINTUNNTINEG TR

SN



uiinwsawnduiiaseafialisn (Backpropagation Neural Network: BNN) tauszanmng
o - Vel oo o o ) Y o w ar o
dmiuBannguilnaidsslunsdinonain asldnszummsivdnvasdag e
[ ar e o d 1
snwuzdAgsInnganuinis jUuuvzasgnuanssiddenlvaglugdaas
1 or c;.:[u o L 3
AAManwaz (attribute value) ﬁaL"ﬂm']fymnuaﬂummﬂuminmﬂmﬂs:wau
(propositional logic) lmeldArAnnaSenndnemzdAgdmiudunmanaes (input
o v e B oo o 2 a 5 oo ad o )
vector) iiatlanlrunfivseafiaisniSenduammadau Arseanaisninitmeisaus
ﬂl ﬂ! 3 L ] 1 ﬂl (=) -3 o - Gi
gaumsasunuuniedeldiuadounsvate aseinfseaiaisnamisndeuiiie
Usuanmimtnsandwmdennelulaseasne Fadunrsimuaniiadagivun

WWuidansdne g sviumimhanesazdagadewdnduyaliudiseaiiaiin

d 1 [=] L L5 = oo o 21 ar o & of
EHBHIWATSUIWNITLIBUIUAD %’J‘iﬂﬁl,ﬁlﬂL'ﬁﬂﬁ]zﬁ’lN'ﬁﬂﬂ’lﬁ%ﬂlﬂ?ﬁﬁﬂﬂ'mzd’lﬂmﬁﬂiﬂﬂ

& e " ar o W oo F ar d d a o
AndAgaInnianeazdAiedn aungdAninUsznisnienifenldis
wonnsawnduiisoaiatdsn Ae HrseanmiIfnainisoduunmlog1ong

p

anvazidunatengule senuslen1IdInIzuINAIsRsanwmzdiAguas
winwsawnnaguiisaamisnaldnanungainszvulanead azvinldisngansa
ingflsainssuulausadianduunsaed lunsdigaeseiulinseiungioln
Fanitananls

nan1s3deflduanalRifiniy nisshisnismednwasdAnaldsmiu
wiinwsawnduiasoaifianisn yiliuszandniwsasnsTusunsumssnaBoguiinizu
aansnduuneragwibinsweitungaasnlfidneswi  wazwaniananesild
wanslmAndolasifudmnugniosfiiinauaaidnisiinaus Wefisuiuszuy

o as @

d'ﬂ‘ Ad 1 od é o P
louaanaundiod lagliinimeassiugadoyanateyn wazisnisninauslyiug

=3

e 1 o o ] L]
nRntszuulaueadinfiogynszuulugngadoya

T

(W



gonaaulunasuise
= o d)ﬂ ) 1] Cl o A £~ -2
naswideiifigaianegh maviudnnsenniuiseadindsn andeluns
LT | -] d' 1 d o ar ot 1 O‘ =)
szanmminglndidsslunsdinlafingiasewainusmeee aansafindszindnmons

— ko ) =] o W J 3 -] »r L = as =l
ssuulauaai lands Huwnwiderugmdidelvifaanadomilwerwidomelouean

= ! o A a' o o o L
wazdBmatianansalivszgnaliaiadssindamidiunsdumniuma tunanemyls

wennungidedld huwaasesnislduinnsanunduiseafiaisnundis
TunsusznamnglndidssluussgnstunsGeusuoaniesdnisnimitida nadeud
sulidadula  waswudruwidei amnsoldemldadienienseinisadaedia
UszBindnmeaemaeuiauliindulaldagime waruwidenlddifiailuvnsas
Fnswingdnaisunans waselasunisARaniunwlssgaigInsuIwIgii
SnmansunANmIeiL unATafdAy 9 Taun

- Boonsem Kijsirikul, Sukree Sinthupinyo and Kongsak Chongkasemwongse, “Ap-
proximate Match of Rules Using Backpropagation Neurai Networks”, Machine Leaming
Journal, Volume 44, Issue 3, pp.273-299, September, 2001.

- Nuanwan Soonthornphisaj, Boonserm Kijsirikul, “Iterative Cross-Training: An  Al-
gorithm for Web Page Categorization”, Intelligent Data Analysis, Vol. 7(3) or 7(4) 2003
(to appear).

o =

sowfigase  GdieAanse1s AI.UQLETH TAANA
MATTIAINTIHADHNIRAES ANZTIAINTINANERS
FRIAINININATINEAE
In3AnY o-ebed-bwo® 13815 o-Wbed-ba&e

E-mail: boonserm.k{@chula.ac.th

JRIRINIUNNINGRE



lanaTTvuaLaY 6,10

Proceedings of the Secund Internativnal Conference wn Intelligent Technologies (2nFech 20011, November 27 - 29, 2001 Edited by Tanprasert. Thiﬁpmg
Pablishe 3 by Foculty of Scrence and Techn dogy. Assunption Uaiversity, Bungkok [hailand; ISBN- 974613 .u53-3

An Evaluation of the Incremental Iterative Cross-Training Approach on
Web Page Classification

Nuanwan Sconthornphisaj' and Boonserm Kijsirilul®

Machine Intelligence & Knowledge Discovery Laboratory
Department of Computer Engincering,
Facuity of Engineermg,
Chulalongkarn University,
Phathwawan, Bangkok, 10330, Thailand.
E-mail: suanwan’@chula.com, boonserm. k@ chula.ac.1h

Abstract: The paper investigates an lterative Cruss-Training algorithm using the
incremental labeling mode (I-ICT) with more challenging problems. The main
concept of I-ICT is to iteratively Uain two sub-classifiers and classify unlabeled
examples in crossing style. We conducted experiments on two Web page
categonization problems in order to prove the robustness of the algorithm. We
compare I-ICT against the supervised Naive Bayes classifier. The experimental
results show that T-ICT suill preserves its robustess performance in the Web page
categorization tasks and has encugh potential 1o he applied by a search engine.
Key words: Web page classification, Incremenaal Iterative Cross-Traiming

1. Introduction

The Internet is the biggest source of all kinds of
mformation, which can be accessed by anvene
through a search engine. As the aumber of web
pages Increases exponentially, it 1s more difficult 1o
obtain the information rapidly. Therefore, an ideal
search engine should have the most updated
mnformation of all web pages to provide the optimumn
search result for the user. One solution o this
problem 1s to vse a web robot to crawl the Internet
and categorize the web pages beforehand. As we
know, thc Web page classification task 15 a tedious
job and ume-consuming task for human to read and
analyze the category of the pages. Thus, we want it
1o be automatic and have high classification
teltability,

The problem of text classification has been explored
by many researchers with variety of learning
algorithms [1,2,3,4,5,6,7]. When we give a sufficient
set of fabeled training examples, supervised leaming
1s the most effecive method for the classitication,
However, the construction of hand-labeled data tnust
be dene by human and thus this 15 a ime-consuming
precess. Though it is costly to construct band-
labeled data, in some domains it is easy 10 obtam
unlabeled ones, such as data in the Internet
Therefore, it is our interest to apply our algorithm to
this problem in order to see some aspects and
analyse its performance.

The lterative Cross-Training (ICT) is a learning
algorithin, which has been proven to be robust under

the assumption that at least one classifier is supplied
with domain knowlcdge. ICT has two labeling
modes, which are batch-labeling and incremental-
labeling. ICT was successfully applied to Thai Web
page identification using the batch-labeling mode.
The  incremental-labeling mode  was  alse
investigated on the problem of Coursemon-Course
Web page classification. However, the impact of
ICT in the exceptional case with more challenging
problems is also ap interesting aspect. Therefore, we
employed the ICT in incremental-labeling mode (1-
ICT) to do the Web page classification tasks.

We applied our method w two Web page
classification problems. The first problem is the
classification of Web pages into four categories,
which are course, faculty, project and student
homepage respectively. The second one is the
classification of Web pages into four categories,
which are car, motorcycle, jazz and astronomy. In
order to make the explicit performance comparison
of [-ICT, we also implement the supervised leaming
algorithm. The experimental results show that the
performance of 1-ICT is comparable to the classifier
using the supervised learning algonithm.

The paper is organized as follows. Section 2
describes in detail about I-ICT and the classification
mechanism of classifiers 1s also introduced. The
concept of the supervised learning algorithm 1§
explained in Scction 3. Section 4 shows the
cxperimental results. Discussion and conclusion wilt

be given in Section 5 and 6, respectively.
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2. Incremental Iterative Cross-Training

The architecture of ICT using incremental-labeling
mode consists of two naive Bayes classifiers, each of
which learns from different features of Web pages.
The heading-based classifier considers words
appearing in all headings of the Web page during the
learning and classification process. The conteat-
based classifier uses words appearing in the content

of the Web page as the feature for the classification
mechanism.

Figure 1 : The architecture of Incremental
Iterative Cross-Training.

The process is started with a small number of initial
labeled data. Bach classifier estimates its parameters
and uses the learncd paramcters to classify unlabeled
data for the other as shown in Fignre 1. The
classification for unlabeled data is dome in
incremental way, i.e., the algorithm incrementally
labels a small number of data. The training data is
duplicated into two sets: TrainingDatal for training
the heading-based classifier and TrainingData2 for
training the conteni-based one. The heading-based
classifier is trained. by the labeled examples in
TrainingDatal to estimate its parameter set 8,. With
this current 6, the heading-based classifier will
classify TrainingData? into predefined classes.
Then the consistency checking process is performed

o ask for the agreement from the content-based
classi§ﬁer.

The most confident p examples from each class will-

be labeled. The content-based classifier starts with
Parameter estimation by using labeled examples in
TrainingDatal. This process will be repeatedly done
until all data are labeled.

Table 1. Incremental-ICT algorithm

Given:
¢ Two training sets TrainingDatal of heading-
based data and TrainingData2 of content-
based data (TrainingDatal and

TrainingData?2 both contain U labeled

examples).

— Use labeled data in TrainingDatal to
estimate the parameter set 8, of the heading-
based classifier.

~ Use labeled data in TrainingData2 to
esumate the parameter set 8, of the content-
based classifier.

—  Loop until all data are labeled.

s Usc the content-based classifier with
current 8. to classify TrainingDatal into
categories,

= Check consistency of the
classification  with the
heading-based classifier.
Label the class for the most
confident p examples for each
category.

= Train the heading-based
classifier by the labeled

A examples in TrainingDatal 1o
estimate the parameter set 6;
of the classifier.

s Use the heading-based classifier with
current 8, to classify TrainingData2 nto
categones.

= Check consistency of the
classification  with the
content-based classifier.
Labe) the class for the most
confident p examples for each
category.

*= Tran the content-based
classifier by the labeled
examples in"TrainingData to
estimate the parameter set 8,
of the classifier.

The classification mechanisms of these tweo
classifiers are the same, which use the naive Bayes
algorithm. The algorithm 1s a weil-known approach
and is considered to be one of the most effective
ways for text classification {10]. This algormthm
employs bag-of-words to represent the document.
The method is described below.
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Given a set of class labels L= {/,, 1,,.... ) and a
document d of n words {w;, w;,..,w,}, the most likety
class label 7* estimated by naive Bayes is the one
that maximizes Pr(ljwy,...w,) :

I* =argmax Prljw,...,w,) (1)
A
= argmax Pr(l)Pr(w,,...w,l;) (2)
L Priw;, ..., wy)

argmax Pr(l; )Priw,,...wJl;} (3)
i
For our data set, L is the set of class labels, which
are the categories of Web pages that we want the
classifier 1o learn their concepts. Priwy,..., w,) in
equation 2 can be ignored, as we are mterested in
finding the most likely class label. As there are
usually an extremely large number of possible
values for d = (w,w;..,w,), calculating the term
Priw,, ..., w,{) requires a huge number of examples
to obtain reliable estimation. Therefore, to reduce
the number of required examples and improve
reliability of the estimation, assumptions of naive
Bayes are made. These assumptions are (1) the
conditional independent assumption, ie. the
presence of each word is conditionally independent
of all other words in the document piven the class
label, and (2) an assumption that the position of a
word is unimportant, e.g. encountering the word
“subject’™ at the beginning of a document is the same
as encountering it at the end [10]. Equation 3 can be
rewritten as:

n
I* = argmax Pril) 11 Priw;|Lw, .. wy) (4)
i i=1
”
= grgmax Pr(lj) 13| Pr(w,-[l}) (5)
I i=1

The probabilities Pr(l;) and Pr(w/}]) are used as the
parameter sets &, and 8, of the classifiers, and are
estimated from the training data. The prior
probability Pr(l}) is estimated as the ratio between
the number of examples belonging to the class J, and
the’ number of all examples. The conditional
probability Pr(wi|{}, of seeing word w; given class
label [, is estimated by the following equation:

Priwil) =1 + Nw,l,} (6)
T+ M)

Where N(w,[) is the number of times word w,
appears in the training examples from class label [,
N({}) is the total number of words in the training set.

T is the vocabulary size of the training set. Equation
6 employs Laplace smoothing (add one to all of
word counis), o avoid assigning probability values

of zero to words that do not occur in the training
examples for a particular class.

To evaluate our method, we will compare it to the
supervised naive Bayes classifier. The main idea of
this classifier will be described in the next section.

3. Supervised Naive Bayes Classifier
The basic concept of supervised learning for
building a classifier is that it requires a large set of
examples with predefined classes. That means all of
training data must be labeled. The classificr is then
iry to find some common properties of the different
classes in order to make correct classification for
unseen data. Thus, this kind of classifier needs a
large number of labeled examples to correctly
model the characteristic of the class duning the
leamning process. Labeling must be done by human
in order to train the classifier accurately. In our
experiment, we employ the naive Bayes classifier
as a supervised learning algonithm. The algorithm
of the naive Bayes is the same as one described in
Section 2, except that it is trained by hand-labeled
data.

4. Experimental Results

In order to evaluate the impact of the EICT
algorithm, we set up experiments on the problem of
Web page cateporization, and compare the
performance of I-ICT to the supervised naive Bayes
classifier. This section describes the data set, the
setting of each classifier, and the results of the
comparison on two data sets: {1) WebKb data set,
and (2) WebClass data set.

4.1. The result on WebKb data set

The WebKb data set contains many Web pages
related to the university dormain. It 15 obtained via
fip from Camegie Mellon University [8]. The data
set consists of 981 Web pages collected from
Computer Science department Web sites at four
universities: Cornell, Univessity of Washington,
University of Wisconsin, and University of Texas.
These Web pages have been hand-labeled into 4
categories, which are course homepage, faculty
homepage, project homepage and student homepage.

In this data set, some categones are actually closely
related which make the classification more difficuit.
A course home page gives information about the
subject such as the course outline, the class
schedule, reference books. A faculty homepage is an
imstructor homepage, which gives information aboul
Instructor’s tesearch, teaching cowrse. A project
homepage is actually a research homepage.
A student homepage is a personal homepage of a
student in the university.
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Experimental Setting

We have 220 course Web pages, 147 faculty Web
Pages, 81 project Web pages and 533 student Web
pages. Each sample is filtered to remove words that
give no significance in predicting the class of the
document. Words to be eliminated are auxiliary
wverbs, prepesitions, pronouns, possessive pronouns,
phone numbers, digit sequences, dates and special
characters. Then, the word stemming process is
applied to each sample by using Porter algorithm
[11] in order to remove all suffixes and search for
similar words based on the root word. Finally, we
extract all beadings appearing in each Web page to
be the feature of the heading-based classifier.
Therefore, cach Web page can be viewed as a set of
words appearing in the page’s content and a set of
words appearing in all headings.

The settings for the classifiers are as follow.

{1} For HICT, we randomly selected 30% of all
samples from each category to be an imitial labeled
data. The trainimg set (unlabeled data) consists of
30% of all samples and 40% of all samples were
used as a test set. The parameter p was set to 1 for
cach class.

(2) For the supervised naive Bayes classifier, we
supplied the algorithm with 60% of labeled data and
40% of all samples were used as a test set,

Fhe experiments were conducted using S-fold cross-
. validation in order to give each Web page 2 chance
to be trained and tested equally.

The Resulis
Standard precision (P}, recall (R), Fy-measure (F;)
are used to evaluate the performance of the

classifiers. These measurements are defined as
follows.

P = no. of comrectly predicted examples in the target class
no. of predicted examples in the target class

o

R = no. of correctly predicted examples in the target class
N no. of afl examples in the target class

&

F1=2PR (9)
PR

Table 2, 3 and 4 show the results of classifiers using
the heading-based feature and the content-based
feature respectively. In the table, “S-Bayes” stands
for the supervised mnaive Bayes classifier.
“I-ICT” is the naive Bayes classifier of the
incremental Iterative Cross-Training classifier.
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Table 2. The performance of classifiers using the
Incremental lterative Cross-Training algorithm.

HCT | Heading-based Content-based
Classifier Classifier

category| P R|IF | P |R F,

course |89.38|95.00792.10|88.94|94.55| 91.66

faculty |54.22 |84.32|66.00(47.02|82.32| 59.85

project | 79.84 | 66.54| 72.59| 58.03 | 60.59 | 59.28

student |93.53|78.27|85.22|94.81 7131 81.40

average | 7924 181.03 | 80.13 | 72.20|77.19| 74.61

Table 3. The performance of classifiers using the

supervised Naive Bayes algorithm.
S-Bayes | Heading-based Content-based
Classifier Classifier

category | P R F P R F,

course |89.321|94.54|91.86(86.98192.27| 89.55

faculty |56.85|88.43(69.21(46.70|83.65| 59.94

project |85.01|77.50|81.08| 58.16]65.00) 61.39

student 194.32|78.11[85.45|95.35|69.80| 80.R4

average |81.38|84.65(81.90|71.92|77.70| 72.93

Consider the average of F; measure, we found that
the content-based classifier of I-ICT got 74.61%
correctness which is bigher than that of S-Bayes which
got only 72.93%. That means, the content-based
classifier of I-ICT can increase the comectness of
S-Bayes 2.30%. However, the heading-based classifier
of IICT got 80.13% which is less than the heading-
based of S-Bayes only 2.16%.
-

In order to see the potential of IHICT in acquiring the
new label data during the training process, we set up
another experiment of S-Bayes using exactly the same
amount of Jabeled data as used by I-JCT. It means that
the labcled data of S-Bayes was supplied with 30% of
al] examples. The results are shown in Table 4.
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Table 4. The performance of classifiers using the
supervised Naive Bayes algonithm {use the same
amount of labeled data as I-1ICT).

Table 5. The performance of classifiers using the
Incremental herative Cross-Training algorithm.

1-ICT Heading-based Content-based

S-Bayes | Heading-based Content-based Classifier Classifier

Classifier Classifier Category P R ¥, F R Fi
category | P | R | F, | P | R ki Astro 79.38 | 79.17 | 79.27 [100.00| 97.92| 98.95
course | 86.45 (9227|8927 |56.86|91.36| 89.05 Auto 86.67 | 64.58 | 74.01 | B6.59| 93.75| 90.03
faculty [ 56.02 | 85.03 [ 67.55 [ 49.07 | 79.49| 60.68 Jazz 57.41 [ 91.67 | 70.60 {100.00]100.00/ 100.00
project | 80.22 (7022|7489 |56.47| 59.34 | 57.87 Motor 86.77| 5208 ) 6509 | 94.12] 87.50) 90.69
smdent | 9217 |77.34 | 84.11 | 93.47 | 73.74| 244 average | 77.56 | 7188 74.61) 95.18 9479] 94.98
average | 78.72 | 8122|7895 | 7147|7598 | 72.51

We found that the performance measured by F, of
heading-based and content-based classifiers of
S-Bayes are decreased w0 72.51% and 78.95%,
respectively. Considering 1-1ICT which uses the same
amount of labeled data, both classifiers’ performance
are higher than those of S-Bayes. This means, the
learning mechanism of 1-1CT could produce more true

positive labeled data that enhance the correciness of
both classifiers.

4.2 The result on WebhClass data set

The WebClass data set was obtained from machine
leaming research group at Italy [13]. It consisis of 192
Web pages comesponding to 4 categories, which are
Astrenomy, Jazz, Auto and Matorcycle. The first two
calegories are semantically distant while Auto and
Motorcycle both concerning about vehicles are closely
related.

Experimental Setting

The preprocessing step was done in the same way as in

the WebKb data set.

The settings for classifiers are as follows.

(1) For IICT, we selected 33% from all examples to
be initial labeled data. The training set consists of
33% and the rest 34% is a test set.

{2} For the supervised naive Bayes classifier, we
select 66% from all examples 1o be labeled data.
The test set is also 34% from all examples.

All experiments are conducted using 3-fold cross-

validation. Table 5, 6 and 7 ate the experimental

results using the WebClass data set.

Considering the average performance measured by F,

in Table 5 and 6, we found that the heading-based

classitier of I-ICT got 74.61% which is higher than
that of S-Bayes. However, the content-based classifier
of IICT got 94.98% while S-Bayes got 95.03%. It
means that the contem-based classifier of

LICT lost only 0.05% of accuracy compared to

S-Bayes. Nevertheless, the performance of the

heading- based classifier of S-Bays is less than that of

[-ICT about 0.67%.

Table 6. The performance of classifiers using the
supervised Naive Bayes algorithm.

S-Bayes Heading-based Content-based
Classifier Classifier
Category | P R F) P R F,
Astro 7090 | 81.25 | 75.72 |100.60| 9792 9895
Auto 90.11 [ 60.42 | 72.32 | 86.93| 93.75( 902}
Jaze 63.49 | 91.67 | 73.02 (100.00/100.00 100.60
Motor 81.48 | 54.17 | 65.07 94.12( B7.50( 90.69
average | 7650|7188 | 74.11 [ 9526) 94.79| 95.03

Table 7. The performance of classifiers using the
supervised Naive Bayes algorithm (use the same
amount of labeled data as I-1CT).

S-Bayes Heading-based Content-based
Classifier Classifier
Category | P R F P R F;
Astro 66.79| 70.83] 68.73[100.00| 97.92| 98.95
Auto 90.56| 54.17( 67.79| 8487 9167| B88.14
Jazz 53.24( 89.58| 66.79/100.60(100.06 100.00
Motor 83.01| 45.83] 5906 92.59) 8542 B8B8.86
average | 73.40| 6510 69.00| 94.36) 9375 94.06

The potential of I-ICT in acquiring the new label data
during the training process was also tested with the
WebClass data set. Table 7 presents the result of the
heading-based classifier and content-based classifier of
S-Bayes using the same amount of labeled Jata as
those of IHCT. The average results measured by F,
show that both classifiers of I-ICT outper{form those of
$-Bayes. The accuracy of the heading-based classifier
of I-ICT is 8 13% higher than that of S-Bays. The
content-based classifier of I-ICT is (.98% higher than
that of S-Bays. These experimental results show that
using the same amount of labeled data, I-ICT has more
potential than S-Bayes in classifying Web pages.
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Figure 2. Performance of I-ICT on WebKb data set using content feature (a)
Performance of I-ICT on WebKb data set using heading feature (b)
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Performance of I-ICT on WebClass data get using heading feature (d)

5. Discussion

The performance of I-ICT is competitive with S-Bayes
in both data sets. Although, no domain knowledge is
given, at least one classifier of I-ICT outperforms
S-Bayes in both data sets. I-ICT has an advantage over
S-Bayes because it needs less labeled examples than
S-Bayes. In both data sets, I-ICT employs only 50% of
labeled data used by S-Bayes, but it is able to produce
a classifier that gives performance comparable to
S-Bayes. It implies that under the restricted condition
of the problem (the closely related of categorics among
classes and no domain knowledge is given), I-ICT still
preserves its robustuess on the classification task.

The performance of I-ICT using different initial label
size was also investigated. As shown in Figure 2, we
evaluated the performance of our algorithm based on
Fi-measure in both data sets (WebKb and WebClass).
The result shows that the number of initial Iabel data
plays an important role i the classification task. As
the initial label size increases up to the optimum point,
the performance of classifier is improved in all
experiments. On WebKb data set, I-ICT {using content
feature) ousperforms S-Bays by using 32 initial label

cxamples, whereas I-ICT using heading feature got the
optimum performance by using 40 initial label
examples. Considering the cxperiments on WebClass
data sct, we found that [-JCT_f(using content feature)
could at least get the samc performance as
S-Bays using 16 initial label examples. For the I-ICT
using heading feature, its performance is improved
starting from 16 initial labe] examples.

The experimental results show the high tendency that
I-ICT could perform well on multiclass problems. We
believe that I-CT has enough potential to deal with
this kind of problems. We plan to build a powerful
classifier with more informative feature sets. The
special characteristics of Web pages are also
challenging to the classification task.  Further
experiments on different data sets and with different
parameters are planed for the near future in order to
study whether the HTML structure of Web pages
could provide a significant contribution on the Web
page classification.
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the Web page categorization problems. The I-ICT linear text classifier, Proc. of the 19" Annual
algorithm has been proven to be robust with more Im. ACM SI_GIR Qonf. .On Research and
challenging problems. Our algorithm has an Development in Intormation Retrieval, 29%-
advantage over the supervised leaming algorithm in 306, 1996.

the sense that the classifier needs only small amount ) )
of ininal labeled data, whereas the supervised [10] Mitchell, T. Machine Learning, McGraw-Hill.
learning algorithm needs a huge number of labeled New York. 180-184, 1997.
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Abstract: This paper presents a method for approximate match of first-order
rules with unseen data. The method is useful especially in case of a multi-class or
noisy domain where unseen data are often not covered by the rules. Qur method
employs a Backpropagation Neural Network for the approximation. To build the
network, we propose a technique for selecting features from the rules to be used
as inputs to the network. Our method has been evaluated on four domains of
first-order learning problems. The experimental results show improvements of

our method over the use of rules alone.

Key words: rule approximation, feature generation, inductive logic program-

ming, backpropagation neural networks

1. Iniroduction

The advantages of inductive logic programming
{ILP} (19, 13] are the expressive power of first-
order logic hypotheses and the ability of em-
ploying background knowledge. ILP systems
use background knowledge provided in form of
first-order logic to generalize training examples,
and produce rules that, fit the training examples.
However, when we apply an ILP system to a real-
world domain, especially the domain where there
are several classes of examples or the noisy do-
main, the produced rules may not. cover or may
not exactly match with the unseen data.

Consider for example the task of learning rules
for classifying English uppercase characters, In
this task, there are 26 classes of examples, i.e.
26 different English characters, and the real-
world data usually contains noise such as noise
due to the quality of the scammer. To classify
English characters, we may use an ILP system
to leazn rules for each class. With exception
of some systems which learn multi-class con-
cepts {1, 2, 10, 12}, most ILP systems work with
two classes of examples {positive and negative)
and construct 2 set of rules for the positive class.

Any example not covered by the riles is clas-
sified as negative. If we want to employ these
two-class systems to learn a multi-class concept,
we could do this by first constructing a set of
rules for the first class with its examples as pos-
itive and the other examples as negative, then
construeting the sets of rules for other classes by
the same process. The learned rules are then
used to classify future data, and the rule that
covers or exactly rmatches the data can be se-
lected as the output. One major problem of this
method is that some test data, especially noisy
data, may not be covered by any rule. Thus the
method is unable to determine the correct rule.
A commonly used technique for solving this prob-
lem is to assign the majority class recorded from
training data to the test data that™s not exactly
matched against any rule [4, 7].

‘We approach this problem directly by proposing
a method to approximate the rule that provides
the best match with the data. Here, we em-
ploy a Backpropagation Neural Network {BNN)
for the approximation of ILP rules. The basic
idea is that when there i3 no nile covering an
example, we can make use of rules which per-



{tally match with (partially cover) the example.
Some of the partially matching rules may cap-
ture important features [properties), and some
may capture unimportant features of the exam-
ples. The best rule then should be the rule that
matches many important. features and does not
necessarily match unimportant ones. The sig-
nificance level of each feature is determined in
terms of a weight that is trained by BNN. Qur
method can deal with a related problem when a
test data is covered by multiple rules. We evalu-
ate our method on four first-order datasets. The
results show improvements of our method over
the use of rules alone.

2. Approximate ILP Rules by a
Backpropagation Neural Net-
work

Several works have shown that combining neural

networks with symbolic rules produced excelient

performances {3, 11, 20]. In this paper, a muiti-
layer feedforward neural network is employed to
select the rule that closely matches with the in-
put data. The algorithm for training the network
used in our method is Backpropagation {17] that

iz widely applied to various classification prob-
lems.

The following suhsections explain the methads
for generating features, building network from
features, and training the network.

2.1. Feature Generation

Our method is based on the idea that when there
is no rule covering an example, we can make use
of rules which pertially cover (partially match
with) the example, i.e. rules whose some literals
are true for that example. The partially match-
ing rule shonld nat be neglected as it may cap-
ture some important properties or features of the
example. The best rule should be the rule that
matches many important features and does not
necessarily match with unimportant ones. The
significance level of each feature is determined in
terms of a weight. trained by BNN which will be
. described leter.

First, congider a first-order rule whose every lit-
eral in the body of the rule has only variables
occurring in the head. For example, the follow-

ing rule contains three literals in the body and
all of them have no new variable.

mesh(A,11)+ long(4),
- one_side loaded(A),
fizred(A).

Each of these literals is for checking a feature
of an example. In such a rule, we will use each
literal as a feature. We call this kind of feature
singleton feature.

However, it is more difficult to determine what
should be used as features when we consider first-
order rules with new variables. A literal with new
variables itself may not check for a specific prop-
erty of the example, i.e. the literal alone may
be mesningless without the presence of other lit-
erals which make use of the newly introduced
variahles. Most literals introducing new variables
are for passing the introduced variables to other
literals that may check a property or introduce
other new variables again. Usually these newly
introduced variables should end at a literal that
checks for a property. The connection of these
variables via the sequence of literals thus exam-
ines a feature of the example. Below we give an
algorithm to select a sequence of literals for using
as a feature. Our method of feature generation
is based on the notion of closed chain.

Definition 1 (Closed chain). A sequence of
some literals in the body of a ruleis said tohe a
closed choin if every new variable not occurring
in the head of the rule appears at least in two
literals of the sequence and occurs at least once
in a literal with variable(s) of the head or with
variable(s) in one of the preceding literals.

Intuitively speaking, a new variable not occur-
ring ip the head of a rule is in a closed chains
if after it is introduced by a literal it must be
consumed by another literal. The closed chain
does not allow a variable which occurs alone in
two or more literals without being linked to ex-
isting variables. However, in some cases, some
variables may oot be in a closed chain.

Definition 2 (Open chain). A sequence of some
literals in the hody of a nile is said to be an open
chain if there exists a new variable not occurring
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in the head of the rule appears only once in a
literal with variable(s) of the head or with vari-
able(s) in one of the preceding literals.

The examples of closed and open chains are
shown below.

Example 1{Closed chain}. For the rule:

p(A B+ qi(A), q2(A,C), g3(C),
q4(C,D), g5(D), q6(A,E,F),
q7(E,G), q8(E,H), qQ(E)
q10{F,I), q11(I,B).

some closed chains are:
(i} 92(4,C), q3(C)

(ii) 92(A,C), q4(c,D), q5(D)

(ifi) @2(A,C), q3(C), q4(C,D), g5(D)

(iv) q6(A,E,F), q2(E), qi0(F,I), q11(1,B)

Example 2{Open chain). For the rule in Exam-
ple 1, some open chains are:

(i) q6(A,E,F}, q7(E,G)

(ii) g6(A,E,F), q8(E,H)

(iii) g6(A,E,F), q7(E,G), qB(E,H)

(iv) g6(A,E,F), q7(E,G), q9(E)

(V) qﬁ(l.EsF). qT(EIG)I QS(E.H). qg(E)

We then describe our method for generating fea-
tures of arule. The method is best. understood by
viewing a rule as a dependency graph. The root
node of the graph is a set of variables occurring
in the head of the rule. Each of the other nodes
represents a set of new variables introduced by
a literal, and an edge to the node represents the
literal. The whole graph shows the dependency
of variables. Figure 1 shows an example of de-
pendency graph of the mile in Example 1.

Using the definitions of closed and open chains
and viewing a rule as a dependency graph, we
can now describe our algorithm for generating
features as shown in Table 1.

The algorithm in Table 1 generates all closed
chains that include variables at the root node
of the graph. However, it does not generate all
possible open chains. Open chains not generated
are ones that are sub-chains of a closed chain
features, This is because we consider that

Figure 1: The dependency graph- for
the rule “p(A,B)+ql(A), q2(A,C), q3(C),
q4(C,D), qo5(D), q6(A,E,F), qT(EsG)s
q8(E,H), q9(E), q10(F,J), qll(I’B)'"

Table 1: The algorithm for feature gener-
atjon.

1. First find every edge beginning and ending
at the root node and use it as a feature.
Remove this kind of edges from the graph
and do not consider the edges in the fol-
lowing ateps.

This type of feature i3 a singleton feature
which introduces no new variable.

2. Find all possible closed chains starting
from the root node, and use the sequerice
of literals along each of the chains as a fea-
ture.

This type of feature is a closed chain fea-
ture.

3. For every leaf node that has no edge to oth-
ers, find all possible paths that start from
the root to that node.

Use the sequence of literals along each of
the paths as a feature.

This type of feature is an opew chain fee-
ture.

4. Find every possible combination of open
chain features in Step 3 that has new vari-
ables {not occurring in the head) in com-
mon. If the combination is different from
the existing open chain features, then add
it to the feature set.
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usually a newly introduced variable should be
consumed by another literal that checks for a
specific property of the example. Therefore,
we first generate all closed chains if they exist;
open chains which are sub-chains of a closed
chain will not. be generated. However, for some
literal which introduces new variables, we may
be unable to find a closed chain feature for the
literal. In such a case, we generate an open chain
feature that includes the literal. An example of
feature generation is shown in Example 3.

Example 3 (feature generation). For the rule in
Exampie 1, all possibie features generated by our
algarithm are:
Step 1. in Table 1
(i) q1¢A)
Step 2.in Table 1
(i) q2€A,C), q3(C)
(iti) g2(A,C), q4(C,D), q5(D)
(iv) q2(A,C), q3(C), q4(C,D), q5(D)
(v) q6(A,E,F}, q9(E), q10(F,I),
q11(1,B)
Step 3.in Table
(vi) q6(A,E,F), q7(E,C)
{vii) q6(A,E,F), qB(E, W)
(viii) q6(A,E,F), q9(E), gq7(E,G)
(ix) q6(A,E,F), q9(E), q8(E,H)
Step 4.in Table 1
(x) q6(A,E,F), q7(E,Q), q8(E,H)
{xi) q6(A,E,F), qT(E,G), g8(E,H),
q9{(E)

2.2. Building Network Structure from
Features
Given a set of rules, we first generate features
for each rule. The features of a rule are used as
input. units that are linked to one hidden unit.
which represents the rule. Therefore, the num-
ber of hidden units in the network is the same
as the number of rules. Each class is represented
by one output unit of the network. In two-class
problems, there will be twa output units, one
for positive and the other for negative class. In
multi-class problems, the number of ontput units
is equal to the number of classes. The links from
hidden units to output. units are fully connected.

For example, consider the following rule set
{C1,02,C3,C4}.

Figure 2: The structure of the neural net-
work for the rule set {C;,C,,C;,C,} in Sec-
tion 2.2.

'y : mesh(A,1) « pot_important(A),
not loaded{A).

(s : mesh{A,2) « short(a),
opposite 1(B,A).

'y . mesh(A,2) « usual(A),
neighbour yz.r(A,B),
cont_loaded(B).

4 : meah(A,3) « short(A),
neighbour zx r(A,B),
oppositer(4,C),
short(C).

The features for each rule are as follows, where
F,C; is the i*® feature of the rule C;.

FLCy: not_important (A)

F3Ch: not_loaded(A)

FCy: short{A)

FyC): opposite1(B,A)

F1C3: uaual{d) -

F>Cy: neighbour yz r(A,B), cont_loaded(B)
F,Cy: short(4)

F;C,: oppositex(A,C), short(C)

F3Cy: neighbour.zx r(A,B)

Assume that there are only three classes, ie
mesh(4,1), mesh(4,2) and mesh{A,3). Figure 2
shows the structure of the network for the above
rules.



When new variables are considered, there can he
many variable bindings for a rule that make dif-
ferent truth values for literals containing such
variables. In our implementation, we use the
binding that gives the maximum number of fea-
tures whose truth values are true. The truth
value of each feature is true if the truth values of
all literals of the feature are true, otherwise the
truth value of the feature is false.

2.3. Training the Network

The weights of the network are randomtly initial-
ized, and the final weights are obtained by stan-
dard backpropagation algorithm [17]. In our ex-
periment, all units in the network use sigmoid
activation function.

To train the network, each training example is
- evaluated with every rule and the truth values
of features are determined. The features whose
truth values are true are set to 1, whereas the fea-
tures whose truth values are false are set to 0 for
input units. The network is repetitively trained
by using training examples until it converges or
the number of treining iterations exceeds the pre-
defined threshold. After trained, the network can
be used to classify unseen data. The unseen data
is evaluated with features of each rule as in train-
ing process. The truth value of features are then
fed into the network, and¥he cutput with highest
value will be taken as the prediction.

3. Experiments & Results

We implemented a learning system, BAN-
NAR (Backpropagation Artificial Neural Net-
work for Approximating Rules) based on the
above method. In the following experiments, we
selected PROGOL [14) or GOLEM [16] for learn-
ing rules. Normally we used rules prodiuced by
PROGOL as the input to BANNAR. However in
experiments on “Mutagenesis” and “King-Rook-
King chess endgame” datasets described below,
we did not successfully train PROGOL to pro-
duce a rule set. In those experiments, we em-
ployed GOLEM developed by the same research
group.of PROGOYL. We then compared the re-
sults obtained by BANNAR with those of the
tule set alone. To show the quality of the rule
set used in our method, we also included the re-

sults ohtained by the other two learning systems,

i.e. 1BC and TILDE. 1BC is a first-order prob-
ahilistic learning system uging naive bayes algo-
rithm [B). TILDE is a muilti-class learning sys-
tem that extends C4.5 to a first-order decision
tree learner [2).

3.1. DataSets

Thai Character Recognition {TCR)

The dataset consists of 77 classes of examples,
i.e. 77 different Thai characteras.! The goal of
this task is to learn rules for predicting the class
for unseen data. In the training set, each charac-
ter has 14 examples constructed from 14 sample
images. The total number of training examples
is 1,078. The noise were added into the original
images, and the test data were constructed. The
test set contains 2,143 test examples. Thisis a
natural experimental setting as an unseen image
usually contains noise when the learned rules or
network are used hy a character recognition soft-
ware.

Each example is of the form
char(A,B,C,D,E,F). The information con-
taining in A,B,C,D,E,F are image features®
extracted by a pre-processing algorithm. These
image features describe various properties of a
character image such as the ratio of the width
and the height of the character, the structure of
lines and circleg that form the character, the list
of zones in the images that contain junctions of
lines, etc. The background knowledge contains
55 predicates. See [9] for more details.

Finite Element Mesh Design (FEM)

The dataset for finite element. mesh design [6],
consists of 5 structures and has 13 classes (13
possible number of partitions for an edge in
a structure). Each example i3 of the form
mesh(Edge ,Number) where Numper indicates
the number of partitions. The total number
of examples is 278. The goal of finite element
mesh design is to learn general rules describing
how many elements should be used to model

IThe dataset will be made
http://www.mind.cp.eng.chula.ac.th.

2These are features describing the structure of the
character images, such as the type of lines or circles con-
tained in the images. These features should not be con-
fused with the featire generation described in Section 2.1

available at
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Table 2: The percent accuracies of BAINNAR and the other systems on four datasets;
TCR — Thai Character Recognition, FEM - Finite Eiement Mesh Design, MUTA ~ Mu-
tagenesis, KRK — King-Rook-King Chess Endgame. Superscripts denote confidence levels
for the difference in accuracy between BANNAR and the corresponding system, using a
one-tailed paired t test: * is 90.0%, ** is 99.0%, *** is 99.5%; no superscripts denote
confidence levels that are below 90%. 3CV denotes the experiment that uses three-fold
cross-validation. The accuracies of PROGOL or GOLEM are calculated by assigning the
majority and negative class to uncovered examples in the case of multi-class and two-class

problems, respectively.

Dataset  # Train  # Test  # Classes

BANNAR PROGOL  TILDE 1BC

or GOLEM
TCR 1,076 2,143 7 G440 7200 8857 7723
FEM 278 eV 13 64.45 57.80" 58.02°°  46.73"
MUTA 188 acv 2 83.58 §2.01 68.94 77.72*
KRK 10,000 3CV 2 99.83 99.76 69.67°°  87.11°"

each edge of a structure. The background
knowledge consists of relations describing the
properties of an edge (e.g. short, not_loaded),
boundary conditions (e.g. free), loadings {e.g.
not_loaded), and the relations describing the
structure of the object (e.g. mneighbour). See
{5, 6] for more details.

Mutagenesis

The dataset. for mutagenests domain consists of
188 molecules, of which 125 are active and 63 are
inactive. The goal of this problem is to predict
the rnutagenicity of the molecules, whether a
molecule is active or inactive in terms of muta-
genicity. This problem is a two-class learning
problem. A molecule is described by listing its
atoms atom(AtomID,Element ,Type,Charge)
and the bonds bond{Atoml,Atom2,BondType)
between atoms. The background knowledge
used in our experiment is the set S2 described
in [18] that contains the definition of atom,
hond, methyl groups, nitro groups, aromatic
rings, hetero-aromatic rings, connected rings,
ring length, and the three distinct topological
ways to connect three benzene rings. See [18]
for more details.

King-Rook-King Chess Endgame (KRK)
The last dataset used in our experiment is
the KRK dataset provided hy the. Oxford

university computing laboratory. * The task
is to distinguish between illegal and legal
board position [15]. The number of examples
in the daraset is 10,000; 3,240 representing
illegal KRK endgame positions (positive),
the rest representing legal endgame positions
{negative}.  Each example is of the form
illegal (WKf ,WKr,WRf ,WRr ,BKf ,BKr), where
(WKf,WKr), (WRf,WRr) and (BXf,BKr) are the
positions (file,rank) of White King, White Rook
and Black King, respectively. Each of these
variahle taking values from 0 to 7. Background
knowledge contains two relations for comparing
rank and file: adj(X,¥Y) and 1t (X,Y) where X, Y
are file or rank. Note that only in this daraset,
for 1BC we used the background relations
described in  [8], such as board2whiteking,
board2blackking,board2vhiterock, fileeq,
rankeq,pos2rank, etc. For the other datasets
described above, all background relations given
to all learning systems are the same.

3.2. Experimental R:sults & Discussions
We used three-fold cross-validation and averaged
the results in all experiments except for the ex-
periment on Thai character recognition dataset
where training and test data are given. The ex-
perimental results are shown in Table 2.

The resuits show that the performance of PRO-

Ihttp: [ /www.comlab.ox.ac.uk foucl /groups/ machlearn /
rhess. html
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Table 3: Improvements of BANNAR. over rules alone, reported according te covered and
uncovered examples. The columns COVERED and UNCOVERED denote the munbers of
examples covered and uncovered by the rules. Each cell denotes the number of examples
correctly classified /the number of examples for that portion.

Data # Test BANNAR PROGOL or GOLEM
Set ' {Majority or Negative Class)
COVERED UNCOVERED COVERED UNCOVERED
TCR 2,143 157071611 453/532 154071611 3/532
FEM 278 145/200 34/78 146/200 14/78
MUTA 188 102/109 55/79 100/109 54/79
KRK 10,000  3352/3356 6638/6644 _ 3350/3356 6633/6644

GOL or GOLEM is comparable to that of
TILDE. It seems that PROGOL or GOLEM per-
formed better than TILDE in two-class prob-
lems, whereas TILDE did better in multi-class
problems. In the datasets tested in our exper-
iment, 1BC did not perform well, compared to
PROGOL or GOLEM. These results show the
high quality of rules produced by PROGOL or
GOLEM. Nevertheless, as shown in the table,
BANNAR is still able to imprave the accuracies
of the rules, especially in the multi-class prob-
lems. Compared with the other learning sys-
tems, BANNAR performed best on all datasets.
Morecever, BANNAR significantly outperformed
PROGOL or GOLEM, TILDE and 1BCon 2, 3
and 4 datasets, respectively. Note that in Mu-
tagenesis domain, there are cases that multiple
rules fire but there is no difficulty for BANNAR
as it predicts the class which best matches the
examples.

We further investigate these improvements. We
want, to see how well BANNAR correctly classify
examples when they are not covered by the rules.
Table 3 summarizes the results.

The results in Table 3 shows the ratic between
the number of examples correctly classified and
the number of examples for each portion. For
example, 453/532 in the row TCR indicates that
532 exarmnples were not covered by the rules, and
453 of them were correctly classified by BAN-
NAR. 3/532 in the same row shows that 3 of
532 examples were correctly classified as we use
majority class for predicting unseen data {or
use negative class for two-class problems). This
means that BANNAR correctly classified 450

more data in the case of uncovered examples.
Similarly, 1570 of 1611 examples were correctly
classified by BANNAR, whereas 1540 were cor-
rectly classifed by PROGOL or GOLEM; though
the number of data covered by PROGOL or
GOLEM was 1611, 1540 out of them were cor-
rect. The similar improvement can be seen on
FEM dataset. The improvements were not sig-
nificantly obtained on MUTA and KRK datasets
which are two-class problems. These results show
that BANNAR improved significantly on data
which were not covered by the rules, especially
in multi-class domains.

We further investigate if our methed will help in
two-class domains with noisy data. We choose
the KRK dataset for doing an additional experi-
ment. The next subsection describes the experi-
ment. and results.

3.3. An Additional Experiment on KRK
Noisy Datasets
To study the effect of noise on two-class learning
problems, we selected the KRK dataset. In the
following experiment, three-fold cross-validation
was used. The dataset was partitioned into three
disjoint subsets. Each subset was used as a test
set once, and the remaining subsets were used as
the training set. Given training and test sets, 5%,
10% and 15% class noise was randomly added
into the training set, and no noise was added
into the test set. In our case, adding z% of
noise means that class value was replaced with
the wrong value in z out of 100 data. For ex-
ample, 5% of noise means that 5% of data were
randomly selected and the class values were re-
placed hy the opposite value (from positive to
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1t {WKE, WRE)

Figure 3: The portion of network for the rule
WRr=BKr, t{WKr,WRr), It(WK{,WRS).”

negative, and vice versa).

The average results of GOLEM * and BANNAR
on noisy data arc shown in Table 4. In the table,
we also included the result on noise-free data for
comparison.

Table 4: The percent accuracies of
GOLEM and BANNAR with 5%, 10% and
15% noise added. The dataset contains
10,000 examples. The experiment was run
using 3-fold cross-validataion. The num-
ber of rules is the average for 3-fold data.
Noise Levels  #Rule  BANNAR  GOLEM

0% 14.00 99.83 99.76
5% 49.67 98.09 92.27
10% 134.00 98.12 87.32
15% 150.00 94.33 82.51

As shown in the table, BANNAR significantly
improved the accuracy of GOLEM when noise
was added (the difference is statistically signifi-
cant at a confidence level of 99.5% for 5% or 10%
noise, and 97.5% for 15% noise). The table also
shows that the number of rules increased when
class noise was added. This means rhat the rules
abtained by GOLEM were more specific and a
large number of rules was needed to cover posi-
tive training data. These rules fit well only the
training data, but they resulted in wrong classifi-
cation for unseen data as shown by Lhe decrease
of the accuracy with increasing noise. The re-

*In the experiment, the number of pairs of examples
tn be considered [nr constructing rlggs 18 set 10 5Q.

“illegal ([ WKI,WKr WRf,WRr,BK{,BKr) +

sults of BANNAR show that the accuracy de-
creased much slower than thar of GOLEM. This
is because of the ahility of BANNAR to give ap-
propriate weights to features: higher weights to
important features and lower weights to unim-
portant ones.

For instance, one of rules obtained when 3% noise
was added is;

i1llegal (WK ,WKr,WREI,WRr ,BKf ,BKr) +

WRr=BKr,

1t (WK1 ,WRr)},

1t (WK ,WRE).
The ruie states that the position is iHegal if (1)
the ranks of the white rook and bhlack king are the
same, and (2) the rank of the white king is less
than the rank of Lhe white rock {thus the white
king is not blocking the check), and (3) the file
of the white king is less than (below) that of the
white rook. Clearly, the feature (3) is not. neces-
sary tf the fearure (1) and (2) satisfy. This rule
15 an over-specific rule and it is likely that the
rule overfits noisy data. The literal 1t (WKE ,WRE)
should not be added to this rule, i.e., the rule will
correctly classify more data if the lireral is not
included in the rule. Whe”we employed BAN-
NAR, the system finds the appropriate weight for
each feature of the rule. In this case, each literal
is selected as a feature. The unnecessary feature,
i.e., 1t (WKf ,WRE), was given a lower weight by
BANNAR. Figure 3 shaws the weights of literals
of the rnle. As shown in the fipure, the weight
of unugeful literal 1t (WKf,WRE) is —2.889 and i3
dominated bv the sum of weights of the nthers
which is 7.214 + 4.151 = 11.365. Therefore, if



the first two features satisfy, this rule represented
by the hidden unit RI will give the positive out-
put and makes a high chance of predicting the
positive class.

The ability to give appropriate weights to feature
ig the advantage of BANNAR, because the unim-
portant feature will be received less attention in
classifying unseen data. In this case, although
the original rule is over-specific, but the obtained

-part of network is very useful to classify unseen
data. )

4. Conclusions
We have proposed a useful method that com-
binea ILP and BNN for finding the first-order
rules which hest match the unseen data. Qur
. method has been evaluated on four domains of
- first-order learning problems. The experimen-
tal results show that our method gives a signif-
icant improvements over the use of rules alone.
The improved results come from the combina-
tion of ILP and BNN. ILP produces rules that
accurately classify the training data, and BNN
makes the rnle more flexible for approximately
matching with unseen or noisy data.

One direction for furthur reseach is to investi-
gate more sophisticated method for evaluating
the truth values of features, such as fuzzy logic.
In the current work, when truth values of some of
literals of a feature are false, the whole feature is
assigned to be false. If we can assign more suit-
able value, it may increase the classification accu-
racy. Another interesting direction is to combine
naive bayes classifier, like 1BC, with our method
that generates features from rules, and use these
features to learn probabilities for a naive bayes
classifier.
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Abstract: The paper presents a learning method, celled Jlerative Cross-Training (ICT),
for classifying Web pages in two classification problems, ie., (1) classification of
Thai/non-Thai Web pages, and {2) classification of course/nen-course home pages. Given
domain knowledge or a small set of labeled data, our method combines two classifiers
that are able to effectively use unlabeled examples to iteratively train each other, We

compare ICT against the other leamning methods: supervised word segmentation classifier,
supervised nai ve Bayes classifier, and co-training-style classifier. The experimental

results, on two classification problems, show that ICT gives better performance than those
of the other classifiers. One of the advantages of ICT is that it necds only a small set of
pre-iabeled data or no pre-labeled data in the case that domain knowledge is available.

Key words: terative Cross-Training, Unlabeled data, Web page classification

1. Introduction

Given pre-labeled training data, supervised learning
has been successfully applied to text classification
{1,3,4,6,7,9,16]. However, one of the difficulties of
using supervised learning is that we have to hand-
label data for constructing training sets. Though it
is costly to construct hand-labeled data, in some
domains it is easy to obtain unlabeled ones, such as
data in the World Wide Web. Thus, if we are able
to effectively utilize the available unlabeled data,
we will simplify the task of building text classifiers.
Various methods have been proposed to use
unlabeled data together with pre-labeled data for
text classification, such as active learning with
committee [10], text classification using EM [14],
co-training algorithm [2].

This paper describes a new algorithm, called
Irerative Cross-Training (ICT), that cffectively uses
unlabeled data in the domain of Web page
classification where unlabeled data is plentiful and
easy to obtain. Our method combines two
classifiers  which iteratively train each other.
Given two sets of unlabeled data, each of which is
for each classifier, the classifiers label the data for
the other. The first classifier is given some
knowledge about the domain, and uses the
knowledge to estimate labels of the examples for
the second classifier, The second classifier has no
domain knowledge and leamns its model from
cxamples labeled by the first, and uses the current

model to label training data for the first. This.
training process is iteratively repeated. With good

interaction  between two  classifiers, the
performance of the whole system is increasingly
improved. In case that we have no domain
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knowledge, instead we suppiy the algorithm with a
small pumber of labeled examples. One of the
advantages of our method is that, as the method
requires no labeled data or needs only a small
nurnber of data, it reduces human effort in labeling
data and can be easily trained with a lot of
unlabeled data.

We apply our method to two classification
problems: (1} the classification of Web pages into
Thai and non-Thai pages, and (2) the classification
of Web pages into course and non-course pages
which was introduced by Blum and Mitcheil [2]. To
evaluate the effectiveness of our method, we
implement other classifiers to empincally conpare
with our method. The implementation is designed
to explain, or at least give some answers io
questions; “is ICT which combines two classifiers
an effective method?”, *“does this kind of
combination of two classifiers perform better than
only one?”, and “can the method successfully use
unlabeled data?’. The other classifiers are: (1)
supervised word segmentation classifier (5-Word),
(2) supervised nai ve Bayes classifier §-Bayes),
(3) co-training-style  classifier  (CoTraining).
Among these classifiers, S-Bayes or S-Word is
single and supervised classifier. CoTraining and
ICT are composed of two sub—classifiers and able to
employ unlabeled data.

The experimental results show that ICT
successfully and efficiently classify Web pages
with high precision and recall. The overall
performance, evaluated by Fi-measure, of ICT is
better than those of the other methods tested in our
experiments. The better performance of ICT than
those of supervised ones (S-Bayes and
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S-Word) demonstrates the successful use of
unlabeled data. The results also show that the
training technique of ICT is also an effective way
as its performance is better than that of CoTraining
which uses a different training technique.

The paper is organized as follows. Section 2
presents an overview of our system, and gives the
details of our classifiers. Section 3 describes other
learning methods used in our comparison. Section 4
describes the experimental results. Discussion and
releted work are given in Section 5. Finally,
Section 6 concludes our work.

2, Iterative Cross-Training

This section presents the Ierative Cross-Training
(ICT). First we describe the architecture of our
learning system, and then gives the details of two
classifiers used in the system.

Classifier]

Classifier2

Figure 1: The architecture of Iterative Cross-
Training. It is composed of two classifiers which
use unlabeled data to iteratively train each
other.

Figure 1 shows our learning system which learns to
classify Web pages. The system is composed of two
classifiers: Classifier] and Classifier?. Given
domain knowledge or a small set of pre-labeled
data, these two classifiers estimate their paramcters
from unlabeled data by receiving training from each
other. Two training data scts, called TrainingData !
and TrainingData? are duplicated from the
unlabeled data provided by the user. Let & and @
be scts of parameters of Classifier] and Classifier2,
respectively.  TrainingDatal is used to train
Classifier] to estimate its parameter set, and the
TrainingData2 is uscd to estimate the parameter set
of Classifier2. The algorithm for training the
classifiers is shown in Table I,

The idea behind our algorithm is that if we can
obtain reliable statistical information contained in
TrainingData2, it should be useful in classifying
TrainingDotal. If the starting parameter set of
Classifier] {8,) has property that it produces more
true positive than wrong positive and mofe true
negative than wrong negative ecxamples for
TrainingData2, the statistical information in
correctly classified examples will be obtained.
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Table 1: The training algorithm of Iterative
Cross-Tralning.

Given:
e two sets TrainingDatal and TrainingData2 of
unlabeled training examples

Initialize the parameter set of Classifier! to 8,
8 «4a,

Initialize the parameter set of Classifier? to s
& <8,

Loop until & does not change or the number of
iterations exceeds a predefined value:

- Iflabeling_mode=BATCH Then

e Use Classifier] with the current parameter
set @ to label all data in TrainingData2
into positive e¢xamples and negative
examples, and check consistency of the
classification with Classifier? if necessary.

Else \* labeling_mode=INCREMENTAL *\

® Use Classifier] with the current parameter
sct & to label the class for the most
confident p positive unlabeled examples
and most confident n negative unlabeled
examples, and check consistency of the
classification with Classifier2 if nccessary.

- Tratn Classifier? by using labeled examples
in TrainingData2 to cstimate the parameter
set 8 of Classifier?.

- labeling_mode=BATCH Then

» Use Classifier2 with the curent pararocter
set & to labet all data in TrainingDatal
into positive examples and negative
examples, and check consistency of the
classification with Classifier! if necessary.

Else\* labeling _mode=INCREMENTAL *\

» Use Classifier? with the current parameter
set @ to label the class for the most
confident p positive unlabeled examples
and most confident n negative unlabeled
examples, and check conzistency of the
classification with Classifier! if necessary.

- Train Classifier] by the iabeled examples in
TrainingDatal to estimate the parameter set
8 of Classifier].

Using this information Classifier? should comrectly
classify more examples in TrainingDatal that have
similar characteristics. If the ncwly labeled
TrainingDatal can produce & better than &, more
refiable parameters of the whole system should be
obtained after each iteration.

In the algorithm, first we initialize the parameter

sets of Classifier! and Classifier2. This is done by
training the classifiers with a small set of labeled

s
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examples if they are available. If no labeled
example provided to the system, the values of the
parameters can be a pre-determined or randomly
chosen ones. When a classifier labels data, it can
ask for the confirmation from the other classifier to
make decision about which class the example
should be, If both classifiers agree with the same
classifying result, that example will be labeled. The
purpose  of the comsistency checking is for
producing more reliable labeled data, but the
checking will slow down the leaming process.

As shown in Table i, the algorithm has two
labeling modes which are batch-labeling and
incremental-labeling. The user must specify which
labeling mode will be used in a particular problem
The difference between these two labeling modes is
how the algorithm labels the data. In incremental-
mode, the algorithm will incrementally produce a
small set of new labeled examples at each round,
but in batch-mode, the algorithm will label all
examples and re-label them at each round. The
batch-mode Iabeling tends to run fast, while the
incremental mode labeling tends to be more robust.

The following subsections describe the details of
the classifiers.

2.1. Sub-Classifiers in ICT for the Classification
of Thai/Non-Thai Web Pages
In the problem of classification of Thai/Non-Thai
Web pages, our goal is to classify Web pages into
Thai and non-Thai pages. This problem is of our
intercst because we want to build a Web robot that
efficiently crawls the Web and retrieves only Thai
pages for building a Thai search engine. In this
problem, the first sub-classifier Classifier] is given
some knowledge about the domain in form of
dictionary and uses the dictionary for helping in
determining whether a page is written in Thai or
not. The algerithm used by Classifier! is word
scgmentation algotithm that will be described
below. The sccond sub-classifier Classifier? is

given no knowledge and uses the nai ve Bayes
classifier.

(1) Word Segmentation Classifier (Classifier])
One straightforward way to determine whether a
Web page is in a specific language is to check the
words in the page with a dictionary. If many words
appear in the dictionary, it is likely that the page is
i that language. We cannot hope that all words in
the page appear in dictionary as the Web page
usnally contains names of persons, organizations,
etc. not occurring in the dictionary and may
containg words written in foreign languages.
Therefore, it is necessary to determine how many
words should be contained. This task is more
difficult when it is considered in a language that has
no word boundary delimiters, such as Thai,
Japanese, etc. [12).
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Note that a string of Thai characters can usually be
scgmented in many possible ways because a word
may be a substring of & longer word, and without a
word delimiter it is difficult to find which
segmentation is correct. Below we describe our
method for word segmentation.

Given a Thai dictionary, a document d of n
characters {c;,c3,...,c,), the word segmentation
classifter gencrates all possible segmentations and
finds the best segmentation (wws,...w,) that
minimizes the cost function in Equation 1.
’ m
argmin X cost(w;}
i=]

Wl,...,W.

)]

where cost(w;) = 7 if w; is a word in the dictionary
= 7R if w; is a string not in the dic-
tionary
In the following experiments, 711 and 42 arc setto 1
and 2, respectively. As generating all possible
segmentations and calculating their costs is very
expensive, we cmploy dynamic programming
technique to implement this calculation. Note that
any sequence of characters, c;,....c;, found in the
dictionary must be considered as a word, and must
not be grouped with nearby characters to form a
long unknown string.

After the best segmentation is deterrined, the
document is composed of (1) words appeared in the
dictionary, and (2) unknown strings not found in
the dictionary. A Thai Web page should be the page
that contains many words and few unknown strings.
We then define WordRatio of a page as:

the number of characters in all words
the number of all characters in the document

Given sets of positive and negative examples, the
classifier finds the threshold of WordRatio that
maximizes the number of comectly classified
positive and negative examples. If WordRatio of a
page is greater than the threshold, we will classify it
as positive (Thai page). Otherwise, we will classify
it as negative (non-Thai page). For simplicity, let us
use only the threshold of WordRatio as the
parameter of word segmentation clasgifier (@).

Having only the threshold of WordRatio (&) as the
parameter, we can find @, which produces more
true positive and true nepgative examples for
TrainingData2. As describes above, most of Thai
pages should have a high value of WordRatio,
whereas non-Thai pages should have a low value
one. If the numbers of Thai and non-Thai pages in
TrainingData2 are the same, it is easily to see that
any value of B, will give more correctly classified
pages than incorrectly ones (except for Go= 0.0 or
@, = 1.0, that gives the same number of correctly
and incorrectly classified pages). In case that the
number of Thai pages is lower than the mumber of



non-Thai pages, a high value of G, (e.g. 0.7, 0.8,
0.9) will produce more correctly classified pages.
This is the case that is likely to be encountered in
the reai world. A low value of §, is for the case
that the number of Thai pages is larger than that of
non-Thai pages.

A new @ can be estimated, after the nai ve Bayes
classifier  (Classifier?) labels data in
TrainingDatal. Let SP be the smallest value of
WordRatio’s from all labeled positive examples,
and LN be the largest value from all labeled
negative examples. In case of $P2IN, the new 8 is
estimated as:

SP+IN
2

@

q=

Now, consider the case of SP<LN. Let ¥,=SP,
Vn=LN, and F;,...,V,, be the values between ¥,
and ¥, (V]SV:SF"SV,JSY,). The new & is estimated
as:

Viet Viey
8= ' 6)
V;s = amgmin {no. of ¥} + no.of ¥)
Vi

Where V) is a value of labeled positive example, ¥
is a value of labeled negative example, and
NSVl ViasVsy,.

If 5P is greater than IN, & will completely
discriminate the labeled positive from negative
examples. Otherwise, @ will give the minimum
crrors of misclassified examples,

(2) Nai  ve Bayes Classifier Classifier2)

For text classification, mi ve Bayes is among the
most commonly used and the most effective
methods [13]. To represent text, the method usually
employs bag-ofwords representation. Instead of
bag-of-words, we use the simpler bag-ofcharacters
representation in the problem of classification of
Thai/non-Thai pages. This representation is suitable
for a Web robot to identify Thai Web pages,
because it requires ne word segmentation and thus
it is very fast. In spite of its simplicity, our results
show the effectivencss of bag-ofcharacters
representation in identifying Thai Web pages, as
shown later in Section 4.

Given a set of class labels L = {1, L., 1.} and a
document & of n characters {),¢5.....c,), the most
likely class label {* cstimated by nai + Bayes is the
one that maximizes Pr(l;c,,....c,):

= al‘g;mel({,[cl,...,c,.)

= angmax PP ) @
[] CtpuensCn
= argmax P ..o )

4

In our case, L is the set of positive and negative
class labels. The term Pr{cy,...,c,) in Equation 4 can
be ignored, as we are interested in finding the most
likely class label,

As there are usually an extremecly large number of
possible values for d = (¢),¢3,...,¢,), calculating the
term Piley.c;.....c. | &) requires a huge number of
examples to obtain reliable estimation. Therefore,

to reduce the number of required examples and

improve reliability of the estimation, assumptions

of nal ve Bayes are mde [13]. These assumptions
are (1) the conditional independent assumption, i.e.

the presence of each character is conditionally
independent of all other characters in the document
given the class label, and (2) an assumption that the
position of a character is unimponant, e.g.

encountering the character “a” at the beginning of a
document is the sare as encountering it at the end.

Clearly, these assumptions are violated in real
world data, but empirically nai ve Bayes has
successfully been applied in  various text
classification problems [7,11,17).

Using the above assumptions, Equation 5 can be
rewritten as:
n

I argr;mx PI(IJ)I:IlPx(c,-llj,cl,....c,v.l)
i =

1

fl

n
argmax Pr)I1 Préeiy) ©
[..-‘-..

i

This model is also called unigram model because it
is based on statistics about single character in
isolation.

The probabilities Pr(l)} and Pr{cjl) are used as the
parameter set & of our nai ve Bayes, and are
cstimated from the training data. The prior
probability Pr(}}} is estimated as the ratio between
the number of examples belonging to the class [
and the number of all examples. The conditional
probability Pr{c,)i), of seeing character ¢; given
class label [, is estimated by the following
equation: -

Pricll) = 1+N(e k) (M

T+N()
Where N(c;,}) is the number of times character ¢,
appears in training set from class label I, N(%)) is the
total number of characters in the training set for
class label [, and T is the total number of unigue
characters in the training set. Equation 7 employs
Laplace smoothing {(adding one to all the character
counts for a class), to avoid assigning probability
values of zero to characters that do not occur in the
training data for a particular class.



2.2. Sub-Classifiers in ICT for the Classification
of Course/Non-Course Home Pages

The problem of classification of Web pages into

course/non-course pages is described in [2]. In this
problem, each Web page contains two sets of
features: (1) words appearing on the page, and (2)

words appearing on the hyperlinks that link to that
page. Therefore, each page can be viewed in two

different ways, ie, pagebased features and
hypetlink-based Eatures. With these two feature

sets, we construct two nai ve Bayes classifiers; the
first one Classifier! in Table 1) leamns its model

from hyperlink-features and the second one

(Classifier2} leams from page-features. Both
classifiers use naf ve Bayes algrithm which is the

same algorithm described in the Section 2.1, except
that for this problem the algonthm wuses
bag-of-word representation.

3. Other Classifiers Used in Comparison
In our experiment, we will compare Iterative Cross-
Training with the following classifiers:

(I) supervised word segmentation classifier,

{2) sapervised nai ve Bayes classifier, and

(3) co-training-style classifier.
Supervised word segmentation and supervise nai ve
Bayes classifiers used in our comparison are the
same as ones described in Section 2.1, except that
they arce trained by hand-labeled data. Co-training-
style classifier is described as follows.

Co-Training-Style Classifier

The co-training algorithm is described in [2]. The
idea of the algorithm is that an example can be
considered in two different views. For example, a
web page can be partitioned into the words
occurring on that page, and the words occurring in
hyperlinks that point to that page {2]. Either view of
the example is assumed to be sufficient for
leaming. The algorithm consists of two sub-
classifiers, each of which learns its parameter sets
from each view of the example.

Based on this idea, we construct a co-training-style
algorithm for aur problems. The algorithm is shown
in Table 2. The algorithm uses two sub-classifiers:
Classifier] and Classifier2. These two classifiers
are the same as ones of ICT:

(1) In the case of classification of Thai/non-Thai
pages, we view each Web page as a set of words
occurring in that page, and a set of characters
occurting in the page. The word segmentation
classifier Classifier]) is employed to leamn from
the view of the word representation, and the naj ve
Bayes classifier (Classifier?) is used for the

character representation. The parameters € and § -

of Classifier! and Classifier? arc estimated in the
same way as described in Section 2.1.
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Table 2: The co-4raining-style algorithm.

Given:
¢ a set LE of labeled training examples
» a set UE of unlabeled examples

Create a pool UE’ of examples by choosing u
examples at random from UE
Loop until no examples left in UE:
- Use LE to estimate the parameter set § of
Classifier].
- Use LE to estimate the parameter sct & of
Classifierd.

- Allow Classifier! with @ to label p
positive and n negative examples from
UE".

- Allow Classifier2 with 6 to label p
positive and n npegative examples from
UE",

- Add these self-labeled examples to LE

- Randomly choose 2p+2n examples from
UE to replenish UE'

(2) In the case of classification of course/mon-
course home pages, we view each Web page as
words occurring on that page, and the words
occurring in hyperlinks that point to that page. The
page-based classifier, Classifier], lcams from
words occurring on that page. The hyperlink-based
classifier, Classifier?, leams from words occurring
in the hyperlinks. For this problem, both Classifier!
and Classifier? are nai ve Bayes classifiers

Our co-training-style algorithm is slightly different
from the original one in that our algorithm will
consurne all data in UE. This is done to provide a
fair comparison with the other methods. Atlowing
that all data to be consumed, there may be a case
that the number of available positive or negative
cxamples is not enough as required by the
clagsifier. In such a case, the classifier is aliowed to
select examples with the other class. '

4. Experimental Results -

We conducted experiments to compare Interative
Cross-Training (fCTy with the other classifiers
described in the previous section: supervised word
segmentation classifier {§-Word), supervised nai ve
Bayes classifier (S-Bayes), and co-training-style
classifier {CoTraining). This section describes the
data set, the setting for each classifier, and the
results of the comparison on two classification

problems: (1) Thai/non-Thai page, and {(2)
course/noncourse home page classification
problems.



41. The Results op Thainon-Thai Page
Classification Problem

In this sub-section, we describe the data set and

experimental setting for algorithms, and the results

as follows.

Data Set & Experimental Setting

We collected the data set by starting from four Web
pages: a Japanesc Web page', two Thai Web
pages®, and m English web page’. From each of
these four pages, a Web robot was nsed to
recursively follow the links within the page until it
retricves 450 pages. Therefore, we have
approximately 900 Thai pages as Thai pages may
link to ones which are in English or other
languages. We also have approximately 450
Japanese and 450 English pages. All of these pages
werc divided into three sets, denoted asA, B and C,
cach of which contains 600 pages (about 300 Thai,
150 Japanese and 150 English pages). Note that
HTMI. matk-up tags were removed before training
and testing process. We used 3-fold cross validation
in all experiments below for averaging the results.

The settings for the classifiers are as follows.

{1} For ICT, we ran the algorithm with both
incremental and batch modes. Below we refer to

incrementabmode ICT and batch-mode ICT as &
ICT and BICT, respectively. We used consistency
checking for HICT and no consistency checking for
B-ICT. No label data was given to BICT. The

initial @p was set to 0.7. For HCT, we gave 18

hand-labeled pages as initial labeled data for nai ve
bayes classifier.

(2) For CoTraining, the values of the parameters of
the classifier (in Table 2) were set in a similar way
as in [2]. As CoTraining requires a small set of

correctly pre-classified training data, we gave the

algorithm with 18 hand-labeled pages. In our
experiment, we set the values of {UE], p, n and « to
1182, 3, 3 and 115, respectively.

The Results

To evaluate the performance of the classifiers, we
use standard  precision(P), recali(R) and
F\-measure* (F\) defined as follows:

p= DO of correctly predicted positive exampies
no. of predicted positive examples

R~ 1O of carrectly predicted positive examples
no. of all positive examples

F. = 2R
VTERR

' hup:/iwww.yaboo.co jp :

2 htp://www.sanook. com, hitp:/fwww . pantip.com

? http://www javasoft.com

* The F\ measare has been introduced by van Rijsbergen

[15] to combine recall and precision with an egual
weight.
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Table 3: The precision (%), recall (%) sud §-
measure of the classifiers for the problem of
Thai/non-Thai page classification.

Classifier P (%) R(%) Fy

HCT(Word) 10000 9944 9972
B-ICT(Word) 16000 9900 9950
S-Bayes 10000 99.00 950
B-ICT(Bayes) 10000 5889 9944
IFICT(Bayes) 9955 9933 94
CoTraining(Bayes) 10000 9889 99.44
S-Word 9908 9961 9934

CoTraining(Word) 10000 9866 9933

The results are shown in Table 3. In the table,

“CoTrrining(Bayes)” and “CoTraining(Word)” are

the results of nai ve Bayes and word segmentation
classifiers of CoTraining, respectively. “B-
ICT{(Bayes)” and “B-ICT(Word)” are for nai ve
Bayes and word segmentation classifiers of ICT

with the batch-mode while “HICT(Bayes)” and |
ICT(Word)” are those of the incremental-mode.

As shown in the table, FHICT(Word) gave the best
performance according to R -measure, followed by
BICT(Word) which pgave a comparable
performance to SBayes. The performance of B
ICT{(Bayes) was also comparable to that of
CoTraining(Bayes) and I-ICT(Bayes). Compared
to the other classifiers, 5-Word and
CoTraining(Word) did not perform well.

Compared to supervised classifiers, the
performance of ICT was comparable to that of S-
Bayes and quite better than that of SWord. The
results demonstrate that our system can effectively
use unlabeled examples and the two medules
succeed in training each other, The reason that |
ICT(Word) gave better performance than B-
ICT(Word) comes from the consistency checking
step during the classification proeesses. Though
we did not include the details of running time of all
classifiers, from the experiments we found that B-
ICT ran much faster than [-ICT and CoTraining.

4.2. The Results on Course/mon-Course Home
Page Classification Problem

Below we describe the data set and experimental

setting, and the results on the course/non-course

page classification problem.

Data Set & Experimental Setting
The data for our experiment is obtained via fip from

Y.t

[



Camegie Mellon University®. It consists of 1,051
Web pages collected from Computer Science
department Web sites at four universitics: Cornell,
University of Washington, University of
Wisconsin, and University of Texas. These Web
pages have been hand-labeled into two categories.
We consider the category “course home page” as
the positive class and the other as the negative
class. In this dataset, 22% of the Web pages are
course home pages.

Bach example is filtered to remove words which
give no significance in predicting the class of the
document. Words to be eliminated are auxiliary
verbs, prepositions, pronouns, possessive pronouns,
phone numbers, digit sequences, dates and special
characters. We have 230 course Web pages and
821 non-course Web pages. Each Web page has
two views, pagebased and hyperlink-based,
respectively. The training set contains 172 course
Web pages and 616 non-course Web pages. Three
positive examples and nine negative examples were
randomly selected from the training dataset to be
the initial labeled data. Therefore, cach data set
containg 12 initial labeled cxamples, 776 unlabeled
training examples and 263 test examples. We then
used 3-fold cross-validation for averaging the
results.

The settings for the classifiers are as follows.

(1) For ICT, we ran the elgorithm with both
incremental and batch modes using consistency
checking. As we have no domain knowledge to
provide to the classifier for this problem, we gave 3
positive and 9 negative examples as initial labeled
data for ICT. The parameters p and n in Teble 1
were set to 1 and 3, respectively.

(2) For CoTraining, the values of the parameters of
the classifier (in Table 2) were set in the same way
as in [2]. As CoTraining requires a small set of pre-
classified training data, we gave the algorithm with
3 positive and 9 negative examples. In our
experiment, we set the values of UE] p, n and u 10
776, 1,3 and 75, respectively.

The Results

The cxperimental results are shown in Table 4. In
Table 4, ICT(Page) and HCT(Hypertink) stand
for the page-based and hyperlink-based nai ve
Bayes classifiers of IICT, respectively, and
B-ICT(Page) and B-ICT(Hyperlink) are those of
BICT.  CoTraining(Page)  and  CoTrining
(Hyperlink) are page-based and hyperlink-based
nai ve Bayes classifiers of CoTraining algorithm,
respectively.  S-Bayes(Page) and  S-Bayes

’ The Word Wide Knowledge Base (web-kb) project,
[hnp:llwww.cs.cmu.ed\dafslcs.cmu.edwprojecb'theo-

S1/www/co-training/data/course-co-traia-data tar g7
Camncgie Mcllon University
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Table 4: The precision (%), recall (%) and K-
measure of the classifiers for the problem of
cours¢/non-course page classification.

Classifier P(%) R F
IICT(Page) 9404 8046 8672
S-Bayes (Page) 7748 9435 8509
S-Bayes(Hyperlink) 8781 6217 7280
HCT(Hyperink) 6154 7241 6989
CoTraining(Hyperlink) 6241  59.19 ~ 6075
CoTraining(Page) 919t 3449  S0.I5
BICT(Page) 6770 3976 5010
BICT(Hyperlink) 6211 3408 4401

. (Hypetlink) are supervised nai veBayes classificrs,

which classify Web pages based on words in Web
pages and words in hyperlinks, respectively.

As shown in the table, FICT(Page) gave the best
performance  followed by  S-Bayes(Page),
S-Bayes(hyperlink), IMICT (Hyperlink), CoTraining
(Hyperlink) and CoTraining(Page). The
perfonnance of B-ICT’s were lower than the others.
Compared to the performance of BICT on Section
4.1, the results of BICT on this problem were not
good. This is due to the fact that unlike B-ICT on
Section 4.1 which was given knowledge in form of
dictionary, B-ICT on this problem had no
knowledge about the dornain. In this problem,
BICT received only a small set of labeled
examples for building its initial parameter set. As
shown by the results, this initial parameter set did
not contain enough statistical information for
labeling the whole examples in batch-mode.
However, when we rmun the algorithm with
incrementalmode, with the help of consistency
checking, HCT incrementally added a small set of
examples on each round, and gave an improved
results over B-ICT.

The reason that l-ICT(PageJ, gave better
performance compared to S5-Bayes is because
FICT(Page) cooperated with IHCT(Hyperlink)
while S-Bays wused single classifier. The
performance of HCT(Hyperlink) was not good as
that of IICT(Page). This is because hyperlinks
contain fewer words and thus are less capable of
building accurate classificr. The training technique
of HICT is also an effective way as its performance
was better than that of Co-Training which uses a
different training technique,

5. Discussion and Related Work

We have applied ICT on two classification
problems. The problem of Thai/non-Thai page
classification is simpler than the problem of



course/non-course home page classification. This
can be scen by the performance of all classifiers
which decreased on the second problem. For a
difficult problem, incrementalmode ICT seems to
be more suitable than batch-mode ICT. Batch-mode
ICT has an advantage that it run fast, and it is
suitable for the problem where we can provide
dosmain knowledge.

Though the performance of our methed is
comparable or better than the other classifiers, the

precision and recall on the problem of course/non-
cours¢ page classification are still not high. This

may be due to the simple model of the classifiers,

ic, nal ve Bayes classificrs. We plan to construct
some domain knowledge for giving to the classifier
and employs more powerful classifiers to test in

this problem in the near future.

Our technique is ielated to Expectation-
Maximization algorithm [5]. EM algunt‘hm is an
cffective method for dealing with missing values in
data, and has successfully been. applied to text
classification [I4). Nigam, et al. [14] have
demonstrated that the accuracy of classifiers can be
improved by using EM 1o augment a small number
of labeled data with a large set of unlabeled data,

Meta-bootstrapping is another unsupervised
algorithm for Jeaming from unlabeled data [8). Like
our method, the algorithm is composed of two sub-
learning algorithms. However, the fraining process
of meta-bootstrapping and the way of using data are
different from our method. This algorithm is multi
level algorithm and is very useful, especially in the
complex domain where sub-leaming algorithms
alone could not produce enough good results. We
also plan to study this kind of multi-level algorithm
for using with our method.

6. Coxnclusion

We have presented a method that effectively uses
unlabeled examples to estimate the parameters of
the system for classifying Web pages. The method
is based on two sub-classifiers that iteratively train
cach other. With no pre-labeled or a small set of
pre-labeled examples, our method gives high
precision and recall on classifying Web pages. The
performance of our method is competitive with
those of supervised ones, which demonstrates the
successful use of unlabeled data of our method.
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Abstract. The goal of Web page categorization
is to classify the Web documents info a certain
number of predefined categories. The previous
works in this area employed a large number of
labeled training documents for supervised
learning. The problem is that, it is difficult to
create the labeled training documents. While it is
easy to collect the unlabeled documents, it is not
so easy to manually categorize them for creating
training documents. Therefore, a new machine
learning algorithm should be investigated to
overcome these difficulties. We proposed a new
algorithm called Iterative Cross-Training (ICT).
The paper also present a new feature set which is
the hierarchical structure of headings appearing
in the Web page to enhance the classification
performance. We found that the hierarchical
structure of headings has a high impact and
could enhance the classification performance.

Keywords. Machine Learning, Web page
categorization, feature sets.
1. Introduction

The availability of large, heterogeneous

repositories of Web pages is increasing rapidly.
There are billions pages accessible on the
Internet with 1.5 million pages being added daily
[4}. A user searching for documents within a
specific category using a general purposed search
engine might have a difficult time finding
valuable documents. Search engines Web sites,

such as a Yahoo', Google2 etc., organize their
Web resources in category-specific style. These
Web sites currently use human experts to
categorize the documents. However, the growth
of Web pages nowadays is exponentially
increased. It is difficult to keep updating and
maintaining the index of billions Web pages. To
improve category specific search, we need a
well-trained classifier with a high ability to
recognize Web pages of a specified category.

Many traditional machine learning techniques
were investigated and applied to the Web pages
categorization problem. The algorithm called
bootstrapping was investigated in the domain of
text learning by Rosie Jones [2]. This algorithm
needs knowledge about the-classes of document,
which is provided in the form of a few keywords
per class and a class hierarchy. The algorithm
proceeds by using the keywords to generate
preliminary labels for some documents by term
matching. Then these labels, the hierarchy and
all of unlabeled document become the input to a
bootstrapping algorithm. The bootstrapping
algorithm combines 2 techniques, which are the
hierarchy  shrinkage  and Expectation—
Maximization (EM) with unlabeled data. They
tested the algorithm with the topic identification
of computer science research papers. The
experimental result shows that the algorithm
could get 66% of correctness.

The Co-Training algorithm was  first
introduced by [1]. The concept of the algorithm

! hitp:/fwww.yahoo.com
* hitp://www.google.com

.



is based on the boosting technique. That means,
the algorithm learn from a small initial labeled
data then it will incrementally classify unlabeled
data into categories. The basic assumption of Co-
Training is that, the instance distribution is
compatible with the target function. It requires
that, for most examples, the target functions over
each feature set predict the same label. For
example, in the web page domain, the class of
the -instance should be identifiable using either
the hyperlink text or the page text alone. The
second assumption is that the features in one set
of an instance are conditionally independent of
the features in the second set, given the class of
the instance. This assumes that the words on a
web page are not related to the words on its
incoming hyperlinks.

We applied our method to two Web page
classification problems. The first problem is the
classification of Web pages into four categories,
which are course, faculty, project and student
homepage respectively. The second one is the
classification of Web pages in the
pharmaceuntical domain. In order to make the
explicit performance comparison of I-ICT, we
also implement the supervised learning algorithm
and Co-Training algorithm. The experimental
results show that the performance of I-ICT is
comparable to the classifier using the supervised
learning algorithm.

The paper is organized as follows. Section 2
describes in detail about the proposed feature
sets used in our experiments. Section 3
introduces the concept of I[-ICT and the
classification mechanism of classifiers. The Co-
Training algorithm will be explain in Section
4.The concept of the supervised learning
algorithm is explained in Section 5. Section 6
shows the experimental results. Discussion and
conclusion will be given in Section 7 and 8§,
respectively.

2. Feature Sets

For the classification problem, the
classifier’s performance usually depends on the
classification mechanism with the support of
feature sets. The appropriate feature sets will
help the classifier to enhance its classification
correctness. Therefore we try to investigate the
possible feature sets to see their contribution on
the precision and recall of the classifier. Feature
sets that we study are as follows

2.1 Content

The content of a Web page provides
information to the user in detail. It is considered
to be the main resource for the text
categorization problem, whether it is done by
human expert or by an automatic classifier.
Therefore, we extract all words in the content to
be the feature set in our experiments.

2.3 Hierarchical Headings

The heading phrase normally represents the
main idea of the following content. Considering
a Web page, we found that, it is normally
organized into a hierarchical style; the main
heading is usually followed by the sub-headings.
Therefore, this structure should somehow
represent the concept of the following content.
We use this opportunity to extract all headings in
the page and assign weight for words appearing
in the heading related to the hierarchical
structure. The weight assignments are shown in
Table 1.

Note that, Table | also include some html
tags that are used to make the different style of
the text, such as the <b> tag which use to make
the bold style, <i> is used to make an italic style.

Table 1. The weight assignment for headings
appeared in the Web page.

Html Tag weight

<title> 10
<META NAME="description™ 10
<META NAME="keyword” 10
<META NAME="rating” - 10
<ht>

<h2>

<h3>

<hd>

<st>

<em>
<blockquote>
<a href="">
<a>

<ol>

<th>

<p>

<u>

<j>
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3.Incremental Iterative Cross-Training

The architecture of our learning algorithm
consists of two naive Bayes classifiers, each of
which learns from different features of a Web
page. For the ease of explanation, we will use the
concrete example of feature sets which are words
appeared on the heading (heading-based) and
words on the page (content-based). Starting with
a small number of labeled data, each classifier
estimates its parameters and uses the learned
parameters to classify unlabeled data for the
other as shown in Figure 1. The classification for
unlabeled data is done in incremental way, ie.,
the algorithmn incrementaily labels a small
number of data. The training data is duplicated
into two sets: TrainingDatal for training the
heading-based classifier and TrainingData2 for
training the content-based one. The concept of
our algorithm is that if we could obtain reliable
statistical information from the first classifier, it
should be useful in classifying training data for
the second classifier. After receiving training
from each other, the parameters of the classifiers
should be more reliable every iteration.

Tramng
Dt 2

heading

content

Figure 1. The architecture of Incremental
iterative-Cross Training algorithm.
Given aset of class labels L = {/,, I,..., [} and a

document d of n words (w), wy,. SWn)s the most
likely class tabel /* estimated by naive Bayes is
the one that maximizes Pr(Zjw,, ... w,}:

* =argmax Pr{l|w, .. w,) (N
y
= argmax Pr{l )JPriw, .. w/ll) @)
A Priw,, ..., w,)
= argmax Pr(l;}Pr(w,,...w)jl) (3)

l

Table 2. Incremental - ICT algorithm

Given:

» Two training sets TrainingDatal of heading-
based data and TrainingData? of content-
based data (TrainingDatal and TrainingData?
bath contain U labeled examples).

—  Use labeled data in TrainingDatal to estimate
the parameter set 8, of the heading-based
classifier.

—  Use labeled data in TrainingData2 to estimate
the parameter set 8. of the content-based
classifier.

—  Loop until all data are labeled.

e Use the content-based classifier with
current 8, to classify TrainingDatal into
categories.

#  Check consistency of the
classification with the heading-
based classifier.  Label the
class for the most confident p
examples for each category.

= Train the  heading-based
classifier by the labeled
examples in TrainingDatal to
estimate the parameter set 6, of
the classifier.

e Use the heading-based classifier with
current 8, to classify TrainingData2 into
categories.

=  Check consistency of the
classification with the content-
based classifier.  Label the
class for the most confident p
examples for each category.

* Train the content-based classifier by the labeled
examples in TrainingData? to estimate the
parameter set £, of the classifier.

For our data set, L is the set of class labels
Pr(wy, ..., w,) in equation 2 can be ignored, as we
are interested in finding the most likely class
label. As there are usually an extremely large
number of possible values for d = (w,wy, ..., w,),
calculating the term Pr(w, ..., w,|[) requires a
huge number of examples to obtain reliable
estimation. Therefore, to reduce the number of
required examples and improve reliability of the
estimation, assumptions of naive Bayes are
made. These assumptions are (1) the conditional
independent assumption, i.e. the presence of each
word is conditionally independent of all other
words in the document given the class label, and
(2) an assumption that the position of a word is
unimportant, e¢.g. encountering the word
“subject” at the beginning of a document is the



same as encountering it at the end (Mitchell,
1997). Equation 3 can be rewritten as:

n
I* = agrgmax Pr(l}T1 Priw| Lwy...we)  (4)
Iy i=1
n
= argmax Pr(i)T1 Pr(w;| 1) {3)
I i=]

The probabilities Pr(f) and Pr(w|l) are
used as the parameter sets 8, and 6., and are
estimated from the fraining data. The prior
probability Pr(/) is estimated as the ratio
between the number of examples belonging to
the class /, and the number of all examples. The
conditional probability Pr(w/{l;), of seeing word
w; given class label /, is estimated by the
following equation:

Priwil) =1+ N(w;j; ) (6)
T+ N()

Where N(w,/) is the number of times word w;
appears in the training examples from class label
I, N(1) is the total number of unique word in the
training set. 7 is the number of class. Equation 6
employs Laplace smoothing (add one to all of
word counts), to avoid assigning probability
values of zero to words that do not occur in the
training examples for a particular class.

4. The Co-Training Algorithm

The Co-Training algorithm explicitly uses the
split of the features when leaming from labeled
and unlabeled data. Its approach is to build the
naive Bayes classifier for each of the distinct
feature sets. Each classifier is initialized using a
few labeled documents. Then every round of Co-
Training, each classifier chooses the most
confident p positive and n negative labeled
examples to add to the labeled set of documents.
The documents selected are those that have the
highest posterior class probability, Pr(/|d). Then,
each classifier rebuilds from the augmented
labeled set and the process repeats [1].

Table 3: The Co-Training algorithm

Given:

A set LE of labeled training examples

A set UE ofunlabeled examples
Create a pool UE' of examples by choosing u
examples at random from UE.
Loop while there exist documents without class
labels:

s Use LE to estimate 8 of the hyperlink-
based classifier using the hyperlink portion
of each document.

e Use LE to estimate 8. of the content-based
classifier using the page portion of each
document.

¢ Allow the hyperlink-based classifier with
current 8, to label p positive and » negative
examples from UE".

e Allow the content-based classifier with
current 6, to label p positive and » negative
examples from UE’.

s Add these self-labeled examples to LE.

» Randomly choose 2p+2n examples from
UE to replenish UE".

5. Supervised Naive Bayes Algorithm

The basic concept of supervised leamning for
building a classifier is that it requires a set of
examples with predefined classes.The classifier
is then try to find some common properties of the
different classes in order to make correct
classification for unseen data. Thus, this kind of
classifiers need a large number of labeled
examples to correctly model the characteristic of
the class during learning process. Labeling must
be done by human to train the classifier
accurately. In our experiment, we employ the
naive Bayes classifier as a supervised learning
algorithm. The algorithm of the naive Bayes is
the same as one described in Section 3, except
that it is trained by hand-labeled data.

6. Experimental Results

In order to test the robustness of the
incremental-ICT algorithm and to investigate
the effectiveness of the feature sets, we set
up experiments on the problem of drug-
usage Web page classification and
university-related Web page classification.
The impacts of the hierarchical headings on
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different learning algorithms are shown in
the next section.

6.1 University-related Data Sets

In the University-related data set, the Web
pages have been hand-labeled into 4 categories,
which are course homepage, faculty homepage,
project homepage and student homepage. In this
data set, some categories are actually closely
related which make the classification more
difficult. A course home page gives information
about the subject such as the course outline, the
class schedule, reference books. A faculty
homepage is an instructor homepage, which
gives information about instructor’s research,
teaching course. A project homepage is actually
a research homepage. A student homepage is a
personal homepage of a student in the university.

6.2 Drug-Usage data set

This data set is The Drug-Usaget data set
consists of 353 Web pages corresponding to 5
categories in pharmaceutical domain. Those
categories are about adverse, Clinical pharmacy,
overdose, patient information and warning.

6.3 Experimental Setting

Each Web page is filtered to remove words
that give no significance in predicting the class of
the page. Then, the word stemming process is
applied to each page by using Porter algorithm [5]
in order to remove all suffixes and search for
similar words based on the root word. Finally, we
extract all headings appearing in each Web page to
be the feature of the heading-based classifier.
Therefore, each Web page can be viewed as a set
of words appearing in the page’s content and a set
of words appearing in all headings.

The Results

Standard precision (P), recall (R), F-measure
(F)) are used to evaluate the performance of the
classifiers[6]. These measurements are defined as
follows. '

P=no. of correctly predicted examples in the target class
no. of predicted examples in the target class

(N

R =no. of correctly predicted examples in the target class
no. of all examples in the target class

(8)

F, = 2PR (9)
P+R

6.4 Experimental results of Supervised Naive
Bayes Classifier.

The objective of this experiment is to see how
the hierarchical headings structure effects the
performance of supervised naive Bayes classifier
(S-Bays). In the Table 4 and 5, feature A means
that the words appearing in the headings are
treated as a plain text (no weight assignment).
Feature set B means that we make use of the
hierarchical headings structure. (assign the
weight according to the weight presented in
Table 1). Feature set C has the same meaning as
feature set B except that we discard the html tag
that change the style of the words; eg. <i>, <I>,
<b>,

Table 4. The F, performance on Drug Usage
Data set

S-Bayes F-Measure (%)

feature| 3726 6109 7918 14187 | 41607
A 3463 | 59.93 | 80.91 85.30 94.02
B 3742 69.64 78.64 83.45 88.94
C 35.64 66.80 78.63 80.38 88.07
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Figure 2. The F, performance of S-Bays using
different no of words in the training data in the
drug usage data set.

Table 5. The F; performance on University-
related Data set

S-Bayes F-Measure (%)

feature| 4557 | 6812 | 13343 | 19810|25087 [37519[49035
A [21.34]28.34|141.36 | 56.75 | 62.85 | 70.82 | 68.81
B |34.88|48.25(52.46|70.18 | 80.60 | 83.42 | 84.56
C |3142(44.79 4976|6672 |77.14 | 82.27 | 81.10
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Figure 3. The Fy performance of S-Bays using
different no of words in the training data on
University-related data set.
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From the experimental result, we found that the
hierarchical headings feature set (feature B)
could enhance the classifier ’s performance in
both data sets. As the number of words in the
labeled training data increase, the performance of
the naive Bayes classifier also increase.

6.5 Experimental results using
hierarchical headings structure on

7. Discussion

The experimental result (as shown in Table
6 and 7) shows that the 1-ICT algorithm can gain
the benefit of the hierarchical structure of the
headings. I-ICT outperforms S-Bays in all
experiment using different no of words in
training data. This means that the classification
mechanism of I-ICT has a high potential and has
good strategy to view the Web page as the words
appeared in the hierarchical heading and words
appeared in the content. I-ICT got the higher
correctness compare to Co-Training when using
the no. of word more than 3726.

8. Conclusion

In this paper, we have proposed to use the
hierarchical heading structure and demonstrated
the concept of the I-ICT algorithm. Our
algorithm has an advantage over the supervised
learning algorithm in the sense that the classifier
needs only small amount of initial labeled data,
whereas the supervised learning algorithm needs
a huge number of labeled data.
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