

รายงานวิจัยฉบับสมบูรณ์

โครงการ การปรับปรุงคุณภาพของเจลซูริมิจากปลาตาหวานหนังบาง (Priacanthus macracanthus)

โดย รองศาสตราจารย์ ดร. สุทธวัฒน์ เบญจกุล

กุมภาพันธ์ 2547

รายงานวิจัยฉบับสมบูรณ์

โครงการ การปรับปรุงกุณภาพของเจลซูริมิจากปลาตาหวานหนังบาง

(Priacanthus macracanthus)

รองศาสตราจารย์ ดร. สุทธวัฒน์ เบญจกุล ภากวิชาเทคโนโลยีอาหาร กณะอุตสาหกรรมเกษตร มหาวิทยาลัยสงชลานครินทร์ หาดใหญ่ สงชลา

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

ขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัย สำหรับการสนับสนุนทุนพัฒนานัก วิจัยเรื่องการปรับปรุงคุณภาพของเจลซูริมิจากปลาตาหวานหนังบาง(Priacanthus macracanthus) และมหาวิทยาลัยสงขลานครินทร์ในการสนับสนุนเงินวิจัยเพิ่มเติม

รองศาสตราจารย์ คร.สุทธวัฒน์ เบญจกุล

บทคัดย่อ

รหัสโครงการ: RSA/19/2544

ชื่อโครงการ: การปรับปรุงคุณภาพของเจลชูริมิจากปลาตาหวานหนังบาง

(Priacanthus macracanthus)

ชื่อนักวิจัย รศ.ดร.สุทธวัฒน์ เบญจกุล

ภาควิชาเทคโนโลยีอาหาร คณะอุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์

หาดใหญ่ สงขลา 90112

E-mail Address: bsoottaw@ratree.psu.ac.th

ระยะเวลาโครงการ: 3 ปี

จากการเปรียบเทียบองค์ประกอบกล้ามเนื้อปลาตาหวานหนังหนา tayenus) และปลาดาหวานหนังบาง (Priacanthus macracanthus) พบว่าปลาทั้งสองสายพันธุ์มี องค์ประกอบคล้ายกันและมีความคงตัวระหว่างการเก็บรักษาในน้ำแข็งภายหลังการจับแตกต่าง ปลาตาหวานหนังหนามีคุณสมบัติการเกิดเจลที่ดีกว่าปลาตาหวานหนังบาง สามารถจัดเรียงตัวกันโดยอันตรกิริยาไฮโดรโฟบิกและพันธะไดซัลไฟต์ได้สูงกว่า นอกจากนี้พบ ว่าเอนไซม์ทรานสกลูตามิเนสซึ่งมีบทบาทต่อการเพิ่มความแข็งแรงของเจลมีแอกติวิตีสูงสุดที่ อุณหภูมิ 70 และ 25 องศาเซลเซียส สำหรับปลาตาหวานหนังหนาและปลาตาหวานหนังบาง ซึ่งการเซ็ดตัวที่อุณหภูมิที่เหมาะสมก่อนให้ความร้อนมีผลให้ค่าแรงเจาะทะลุและ ตามลำดับ ระยะทางก่อนเจาะทะลุของเจลซูริมิของปลาทั้งสองสายพันธุ์เพิ่มขึ้น กล้ามเนื้อปลาตาหวาน หนังบางมีการย่อยสลายตัวเองสูงกว่าปลาตาหวานหนังหนา กล้ามเนื้อปลาทั้งสองสายพันธุ์มี เอนใชม์โปรตีนเอสในส่วนของของเหลวชาร์โคพลาสมิกแตกต่างกันทั้งในด้านชนิดและระดับ ของแอกติวิดี โดยปลาดาหวานหลังบางมีแอกดีวิดีที่สูงกว่า เมื่อทำบริสุทธิ์เอนไซม์โปรตีเอส จากกล้ามเนื้อปลาดาหวานหนังบางพบว่าเอนไซม์หลักเป็นเอนไซม์ชนิดซีรีนที่มีน้ำหนักโมเลกุล 72 กิโลดัลตัน และสามารถย่อยสลายไมโอซินเส้นหนักแต่ไม่ย่อยสลายแอกดิน

การเพิ่มความแข็งแรงของเจลซูริมิจากปลาดาหวานหนังบางสามารถกระทำโดยการเดิม เอนไซม์ทรานสกลูตามิเนสจากจุลินทรีย์ร่วมกับแคลเซียมคลอไรด์และโปรตีนเติมแต่ง(ไข่ขาวผง หรือโปรตีนพลาสมาเลือดวัว) และความแข็งแรงของเจลเพิ่มขึ้นเมื่อเพิ่มระยะเวลาการเซ็ตตัว

คำหลัก: ปลาตาหวาน ชูริมิ ความแข็งแรงของเจล การเช็ตตัว การย่อยสลาย การปรับปรุง

Abstract

Project Code: RSA/19/2544

Project Title: Improvement of Gel Quality of Surimi from Bigeye Snapper (Priacanthus

macracanthus)

Investigator: Associate Professor Soottawat Benjakul, Ph.D.

Department of Food Technology

Faculty of Agro-Industry

Prince of Songkla University

Hat Yai, Songkhla, 90112

E-mail Address: bsoottaw@ratree.psu.ac.th

Project Period: 3 years

Compositions and properties of muscle from two species of bigeye snapper. Priacanthus tayenus and Priacanthus macracanthus were compared. Both species had the similar composition but showed slight difference in some properties, especially stability during iced storage. Superior gel-forming ability was observed for P. tayenus, compared to P. macracanthus due to the higher aggregation of protein, caused by both hydrophobic interaction and disulfide bond. Additionally, Endogenous transglutaminase (TGase) from both species played a role in gel enhancement of surimi. TGase from P. tayenus and P. macracanthus exhibited an optimum temperature at 40 and 25°C. Therefore, setting at appropriate temperature prior to heating at 90C, resulting in the increase in both breaking force and deformation of surimi from both species. Furthermore, muscle proteins from P. macracanthus was more prone to autolysis than those from P. tayenus. Two species contained the different sarcoplasmic proteases in term of compositions and activity level. P. macracanthus muscle generally had higher sarcoplasmic proteolytic activities than P. tayenus muscle. Heat stable alkaline protease from P. macracanthus was purified and characterized to be serine protease with the MW of 72 kDa. It mainly degraded myosin heavy chain, not actin.

The gel strength of surimi from bigeye snapper (P. macracanthus) increased with the addition of microbial transglutamianse (MTGase) in combination with calcium chloride and protein additives, either egg white or beef plasma protein. The gel strength slightly increased with increasing setting time.

Key words: bigeye snapper, surimi, gel strength, setting, degradation, improvement

Chapter 1

Comparative study on compositions and gelling properties of muscle protein from two species of bigeye snapper, *Priancathus tayenus* and *Priancanthus macracanthus*

CHARACTERISTICS OF MUSCLE FROM TWO SPECIES OF BIGEYE SNAPPER, PRIACANTHUS TAYENUS AND PRIACANTHUS MACRACANTHUS

SOOTTWAT BENJAKUL^{1,3}, WONNOP VISESSANGUAN² and KITTIMA LEELAPONGWATTANA¹

'Department of Food Technology Faculty of Agro-Industry Prince of Songkla University Hat Yai, Songkhla, Thailand 90112

¹BIOTEC Yothi-Research Unit National Center for Genetic Engineering and Biotechnology 73/1 NSTDA Building Rama VI Road Bangkok, Thailand 10400

> Received for Publication April 30, 2001 Accepted for Publication December 3, 2001

ABSTRACT

Composition and some properties of muscle from two species of bigeye snapper, P. tayenus and P. macracanthus, were investigated. Both species had a similar composition with the same myofibrillar protein content. However, muscle proteins from P. tayenus had higher thermal stability than those from P. macracanthus, as indicated by the higher enthalpy for transitions as well as the lower inactivation rate constant (K_D) . Upon 15 days of iced storage, natural actomyosin Ca^{2+} -ATPase and Mg^{2+} - Ca^{2+} -ATPase activities decreased, whereas Mg^{2+} -EGTA-ATPase activity increased, suggesting the denaturation of myosin, actomyosin and troponin/tropomyosin complexes, respectively. Increased surface hydrophobicity and decreased sulfhydryl groups indicated the denaturation possibly occurred via hydrophobic interaction and disulfide formation. Heading and eviscerating of fish retarded the denaturation and physicochemical changes of proteins during iced storage. The results indicated that a rapid and proper post harvest handling was of importance to maintain the muscle quality of bigeye snapper.

³ To whom correspondence should be addressed. TEL: (66-74) 226334; FAX: (66-74)212889; E-mail: bsoottaw@ratree.psu.ac.th

INTRODUCTION

Bigeye snapper has become increasingly interesting as a potential raw material for surimi production in Thailand. It is not commonly consumed due to its appearance and thick skin (Morrissey and Tan 2000). In essence, it possesses good gel quality, comparable to fish ordinarily used for surimi production, e.g. threadfin bream, croaker, lizardfish, etc. As a consequence, most of the catch has been used for surimi production. Bigeye snapper caught in Thailand normally includes two species, *Priacanthus tayenus* and *Priacanthus macracanthus*. The former exhibits the superior gel forming ability to the latter (Benjakul et al. 2001a). Therefore, *Priacanthus tayenus* is more preferable among surimi processors, while *Priacanthus macracanthus* is sorted out and used for animal feed or for low-grade surimi production.

Due to overexploitation of fishery resources, the fish fleet must travel for a longer distance. As a consequence, the fish may undergo chemical and microbiological deterioration during post-harvest handling, leading to the lower quality of raw materials for surimi production. Benjakul et al. (2001b) reported that gel-forming ability of surimi produced from two species of bigeye snapper, P. tayenus and P. macracanthus continuously decreased throughout 15 days of iced storage. The rate of deterioration, especially degradation, was also found to be faster in P. macracanthus compared to P. tayenus.

Integrity of myofibrillar proteins is of prime importance for surimi production (An et al. 1996; Benjakul et al. 1997). Different fish have different protein composition (Hashimoto et al. 1979; Kano et al. 1986). Furthermore, endogenous proteinase and transglutaminase can influence the gelling properties of surimi by hydrolyzing or cross-linking myosin, respectively (An et al. 1996; Benjakul et al. 2001a). Properties and stability of muscle proteins, which vary per species, have been reported to be a function of pH (Kamal et al. 1990; Tsai et al. 1989), salt concentration (Nagai et al. 1999), temperature (Tsai et al. 1989; Jiang et al. 1989), actin/myosin ratio (Jiang et al. 1989) and storage time (Nagai et al. 1999; Benjakul et al. 1997). Differences in properties and composition of fish muscle may contribute to the differences in gel forming ability. The objective of this investigation was to determine the composition and properties as well as the physicochemical changes of muscle protein from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus, during iced storage.

MATERIALS AND METHODS

Chemicals

Adenosine 5'-triphosphate (disodium salt), 1-anilinonapththalene-8-sulfonic

acid (ANS), 5,5'-dithio-bis(2-.iitrobenzoic acid), ethylene glycol-bis (β-minoethyl) N,N.N',N'-tetraacetic acid (EGTA) were purchased from Sigma Chemical Co. (St.Louis, MO). Trichloroacetic acid was obtained from Riedel-deHaen (Seelze, Germany).

Fish Samples

Bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus, caught off Songkhla-Pattani Coast along the Gulf of Thailand, were stored in ice and off-loaded within 10-12 h of capture. Fish were placed in ice and transported to Department of Food Technology, Prince of Songkla University, Hat Yai. The ordinary muscles were excised from the dorsal part for natural actomyosin preparation and composition/property analyses.

Fish were separated into two groups, whole fish and headed/eviscerated fish. The fish were placed uniformly between the layers of ice in a styrofoam box. The box containing fish and ice was kept at room temperature (28-30C). The fish/ice ratio was maintained at 1:2 (w/w) throughout the study by removing the melted ice and replacing the same amount of ice every day. Fish were randomly taken every 3 days for analyses.

Compositional Analyses

Protein, ash, fat and moisture contents of whole muscle were determined according to the methods of AOAC (1999). To determine nonprotein and protein compositions, the ordinary muscle were separated into several fractions using different extracting buffers according to the method of Hashimoto et al. (1979). The muscle (20 g) was homogenized in 200 mL of phosphate buffer (15.6 mM Na2HPO4, 3.5 mM KH2PO4), pH 7.5 using IKA Labortechnik homogenizer (Selangor, Malaysia). The homogenate was centrifuged at 5,000 × g for 15 min at 4C using a Sorvall Model RC-B Plus centrifuge (Newtown, CT). The residue was added with 200 mL of the same buffer, homogenized and centrifuged again. These two supernatants were combined and trichloroacetic acid was added to obtain a final concentration of 5%. The resulting precipitate was collected by filtration and referred to as 'sarcoplasmic protein fraction'. The filtrate was used as nonprotein nitrogenous compound fraction. For above residue, 10 volumes of phosphate buffer (15.6 mM Na₂HPO₄, 3.5 mM KH₂PO₄) containing 0.45 M KCl, pH 7.5 were added, homogenized and centrifuged at 5,000 × g for 15 min at 4C. The process was repeated twice. Both supernatants were combined and used as myofibrillar protein fraction. The pellet obtained was mixed with 5 volumes of 0.1 N NaOH and stirred for 12 h at 4C. The mixture was then centrifuged at 5,000 × g for 15 min at 4C. The supernatant was used as alkalisoluble protein fraction. The final residue was used as stroma protein fraction.

Each fraction was subjected to nitrogen analyses using Kjeldahl method (AOAC 1999).

ATPase Activity Assay

ATPase activity was assayed according to the method of Benjakul et al. (1997). Natural actomyosin prepared by the method of Benjakul et al. (1997) was diluted to 3-5 mg/mL with 0.6 M KCl, pH 7.0. A 1 mL of natural actomyosin solution was added into 0.6 mL of 0.5 M Tris-maleate buffer, pH 7.0. To the mixture (final volume of 9.5 mL), various chemicals were added for different assays as follows: 10 mM CaCl, for Ca2+-ATPase, 2 mM MgCl, for Mg2+-Ca2+-ATPase; 2 miv MgCi2 and 0.5 mM EGTA for Mg2+-EGTA-ATPase. To initiate the reaction, 0.5 mL of 20 mM ATP was added to the assay solution. The reaction was conducted at 25C for 8 min and terminated by adding 5 mL of chilled 15% (w/v) trichloroacetic acid. The reaction mixture was centrifuged at 3,500 xg for 5 min at room temperature (28-30C). The inorganic phosphate liberated in the supernatant was measured by the method of Fiske and Subbarow (1925). Specific activity was expressed as µmol inorganic phosphate (Pi) released per mg protein per minute. A blank measurement was performed by adding the chilled trichloroacetic acid prior to the addition of ATP. Ca²⁺ sensitivity was calculated as described by Benjakul et al. (1997) as follows:

$$Ca^{2*}$$
 sensitivity = $1 - \left[\frac{Mg^{2*} - EGTA - ATPase \ activity}{Mg^{2*} - Ca^{2*} - ATPase \ activity} \right] \times 100$

Determination of Hydrophobicity

Protein hydrophobicity was determined according to the method described by Benjakul et al. (1997) using 1-anilinonapththalene-8-sulphonic acid (ANS) as a probe. Natural actomyosin solutions with different concentrations were mixed with ANS. The fluorescence intensity of ANS-protein conjugates was measured at an excitation wavelength of 374 nm and an emission wavelength of 485 nm by FP 750 spectrofluorometer (Jasco, Japan). The initial slope of the plot of fluorescence intensity versus actomyosin concentration was referred to as SoANS.

Determination of Sulfhydryl Content

Total sulfhydryl group content was determined using 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) according to the method of Ellman (1959) as

described by Benjakul and Bauer (2000). A 1 mL of natural actomyosin solution (0.4%) was mixed with 9 mL of 0.2 M Tris-HCl buffer, pH 6.8, containing 8 M urea, 2% SDS and 10 mM EDTA. To 4 mL of the mixture, 0.4 mL of 0.1% DTNB was added and then incubated at 40C for 25 min. The absorbance at 412 nm was measured using a UV-1601 spectrophotometer (Shimadzu, Japan). A blank was performed by replacing the sample with 0.6 M KCl, pH 7.0. The total sulfhydryl group content was calculated using a molar extinction coefficient of 13,600 M⁻¹cm⁻¹.

Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was performed using a Model DSC 7 (Perkin Eln.er, USA). Temperature calibration was run using the Indium thermogram. The samples (15-20 mg) were accurately weighed into aluminum pans and sealed. The samples were scanned at $10C/\min$ over the range of 30-90C using iced water as the cooling medium. The empty pan was used as the reference. Total denaturation enthalpy (ΔH) was estimated by measuring the area in the DSC thermogram. The maximum transition temperature (T_{max}) was estimated from the thermogram.

Thermal and pH Stability

A 1 mL of natural actomyosin solution (3-5 mg/mL) was incubated at different temperatures (0, 10, 20, 30, 40, 50 and 60C). At definite times (0, 5, 10, 20, 30 and 60 min), a sample solution was immediately cooled in iced water. The sample was then equilibrated at 25C prior to Ca²⁺-ATPase activity analyses. To study the effect of pH on the stability, natural actomyosin solution (3-5 mg/mL) was mixed thoroughly with McIlvaine buffer (0.2 M Na-phosphate and 0.1 M Na-citrate) at different pHs (4.5, 5.5, 6.5, 7.5, 8.5 and 9.5) at room temperature (28-30C). At definite times (0, 5, 10, 20, 30 and 60 min), a sample was mixed with assay buffer and equilibrated at 25C before assay. The inactivation rate constant (K_D) of actomyosin was calculated according to Arai et al. (1973) as follows:

$$K_{t.} = (\ln C_0 - \ln C_t)/t$$

Where $C_0 = Ca^{2+}$ -ATPase activity before treatment, $C_t = Ca^{2+}$ -ATPase activity after treatment for time t, and t = treatment time(s).

Electrophoresis Analyses

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out according to the method of Laemmli (1970). Protein fractions were

applied on the gel. Proteins were stained in 0.125% Coomassie brilliant blue R-250 and destained in 25% ethanol and 10% acetic acid.

Protein Determination

Protein was determined by the method of Lowry et al. (1951) using bovine serum albumin as a standard.

Statistical Analyses

The experiments were run in triplicate. The data were subjected to analysis of variance (ANOVA) and mean comparison was carried out using Duncan's multiple range test (Steel and Torrie 1980).

RESULTS AND DISCUSSION

Composition of Bigeye Snapper Muscle

Ordinary muscle of two species of bigeye snapper, P. tayenus and P. macracanthus exhibited a similar proximate composition (P > 0.05) (Table 1). As a major constituent in fish muscle, water accounted for approximately 79%, followed by protein (18%) and trace amounts of ash and lipids. Depending on the species and the nutritional status of the animal, the muscle of marine fish and invertebrates contain 50-80% water (Sikorski et al. 1990). In addition, the composition of muscle can vary depending on the season, size, sex, spawning and feeding condition (Pigott and Tucker 1990). Since fish used in this study were caught and handled under the same time and conditions, the effects of those extrinsic factors could be negligible.

TABLE 1. PROXIMATE COMPOSITION OF BIGEYE SNAPPER ORDINARY MUSCLES

Composition (%wet wt.)	P. tayenus	P. macracanthus
Moisture	78.75±0.25*	78.87±0.13
Protein	18.25±0.11	18.19±0.15
Ash	1.30±0.03	1.36±0.04
Fat ·	1.13±0.02	1.13±0.12

^{*}Average ±SD from triplicate determinations

Further fractionation of muscle proteins based on solubility was used to classify muscle proteins into five fractions (Table 2). The content of nonprotein nitrogen in the muscle of both species ranged from 2.89 to 3.14 mg N/g (9.82-10.05% total nitrogen). Nonprotein nitrogen fraction included amino acids, imidazole, dipeptide, nucleotides, trimethylamine oxide, trimethylamine, urea and the products of postmortem changes (Sikorski 1994; Foegeding et al. 1996). Generally, nonprotein nitrogenous compounds in white fish muscle make up 9-15% of total nitrogen (Sikorski 1994). Muscle of both species constituted with a similar amount of myofibrillar proteins, accounting for \sim 44-45% of total muscle protein (P>0.05). Electrophoretic studies of myofibrillar protein fractions obtained from both species indicated the presence of promin bands corresponding to myosin heavy chain, actin, troponin, tropomyosin as well as myosin light chains (Fig. 1).

TABLE 2.
PROTEIN AND NONPROTEIN CONSTITUENTS IN BIGEYE SNAPPER MUSCLES

Compositions (mgN/ g Muscle)	P. tayenus	P. macracanthus		
Nonprotein nitrogen	3.14±0.16*	2.89±0.43		
Sarcoplasmic protein	10.07±0.24	7.89±0.30		
Myofibrillar protein	12.25±0.49	11.89±0.49		
Alkali soluble protein	4.42±0.03	5.67±0.05		
Stroma protein	1.36±0.03	1.06±0.07		

^{*}Average ±SD from triplicate determinations

P. tayenus muscle possessed higher contents of sarcoplasmic and stroma proteins but slightly lower content of alkaline soluble fraction than P. macracanthus muscle. For sarcoplasmic fraction, proteins with low molecular weight were observed (Fig. 1). Hashimoto et al. (1979) found that myoglobin was dominant in dark muscle, while parvalbumin was prevalent in white muscle of sardine and mackerel. Stroma proteins consist not only of collagen and elastin, but also connectin and other proteins (Sikorski and Borderias 1990). Teleost and elasmobranch species generally contain 3 and 10% stroma, respectively. The protein pattern of alkali-soluble fraction was somewhat like that of myofibrillar fraction. The results were in agreement with those of Hashimoto et al. (1979) who reported that alkali-soluble fraction of sardine and mackerel muscle exhibited a similar protein pattern to the myofibrillar fraction. However, a

protein band with higher molecular weight than myosin heavy chain was found as a major band.

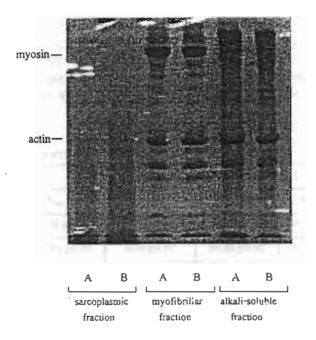


FIG. 1. ELECTROPHORETIC PATTERN OF VARIOUS PROTEIN FRACTIONS FROM BIGEYE SNAPPER MUSCLE
A: P. layenus, B: P. macracanthus

Since most of sarcoplasmic proteins and connective tissues are generally removed during surimi processing, myofibrillar proteins in muscle from both species can be increased and thus play an essential role in muscle functional properties, especially gelling property (Foegeding et al. 1996). Due to their similar muscle compositions, especially the content of myofibrillar protein fraction, the differences in gelation of muscle protein between two species of bigeye snapper possibly resulted from the differences in the intrinsic properties of proteins, e.g. thermal stability, aggregation rate and the conformational changes, especially during postmortem handling.

Thermal Stability of Muscle Protein

Analysis of DSC thermograms of muscle proteins from both species of bigeye snapper revealed two major endothermic peaks with peak maximum temperatures (T_{max}) at 47 and 70C, respectively (Table 3). The observed T_{max} was within the temperature range observed among various fish species in which the first and second peaks were postulated to be the transitions of myosin and actin, respectively. Cod muscle had two indothermic transitions with T_{max} at 45 and 75C (Hasting et al. 1985). Fresh hake muscle also showed two transitions with T_{max} at 46 and 75C (Beas et al. 1990). Myosin and actin of Japanese stingfish had T_{max} of 40.9 and 61 1C, respectively (Nagai et al. 1999). The different T_{max} of the transitions among fish species seems to be correlated with the habitat temperature of the fish (Akahane et al. 1985; Davies et al. 1988).

I max AND ENTHALPT (AH) OF BIGETE SNAPPER MOSCLES							
Samples	Pea	ık l	Peak 2				
	T _{nut} (C)	ΔH (J/g)	T _{nux} (C)	ΔH (J/g)			
P. tayenus	47.72±0.05*	1.42±0.17	70.64±0.50	0.69±0.11			
P. macracanthus	47.61±0.57	0.92±0.07	69.86±0.10	0.144±0.02			

TABLE 3.

Tour AND ENTHALPY (AH) OF BIGEYE SNAPPER MUSCLES

Even though muscles of both species of bigeye snapper showed similar T_{max} for both peaks, pronounced differences in enthalpy, energy required for denaturation, were observed. Enthalpies of the first and second peaks of P. tayenus muscle were 0.54 and 3.93 folds higher than that of P. macracanthus muscle, respectively (Table 3). The results suggested that both myosin and actin of P. tayenus muscle were relatively more stable to thermal denaturation, compared to those of P. macracanthus. The thermal stability of fish proteins from different species resulted in varied thermal gelation of meat paste. A small quantity of heat was used for the easy-setting meat and the easy-disintegrating meat (Iso et al. 1991). Discrepancies in thermal stability may affect how proteins behave or interact with each other during heating, which directly relates to their ability to form a gel under a particular condition.

The inactivation rate constant or K_D value of actomyosin 2nd myosin Ca^{2+} -ATPase activity has been generally used to evaluate the thermal stability of fish proteins (Tsai *et al.* 1989; Jiang *et al.* 1989). Compared to heating at tempera-

^{*}Average ±SD from triplicate determinations

tures below 20C, a significant increase in K_D value of natural actomyosin from both species of bigeye snapper was observed at 30C (Table 4). Kp values increased substantially at temperature above 40C. The results implied that natural actomyosin from both species were not stable at high temperatures, particularly at temperatures above 40C. K_D values of different fish species determined at definite temperature were varied (Tsai et al. 1989), indicating the different stability of muscle protein from different species. At the same temperature, natural actomyosin from P. macracanthus had a higher K_D value, compared to that from P. tayenus. From the results, it was presumed that muscle proteins of P. macracanthus were more susceptible to thermal denaturation than those of P. tayenus. The results of KD were compared to DSC results, in which P. macracanthus muscle proteins had a lower enthalpy for transitions. Thus, the stability of muscle proteins from P. tayenus was higher than that from P. macracanthus. The differences in stability between the 2 species possibly resulted from the different intrinsic properties, amino acid composition as well as actin/myosin ratio. Kp of natural actomyosin was significantly lower than that of myosin. Actin was suggested to play a protective role in the stability of myosin (Jiang et al. 1989).

TABLE 4.

INACTIVATION RATE CONSTANT OF NATURAL ACTOMYOSIN Ca²⁺-ATPase OF
BIGEYE SNAPPER AT VARIOUS TEMPERATURES

Temperatures (C)	, K _D (10 ⁻³ .s ⁻¹)			
	P. tayenus	P. macracanthus		
0	0.10±0.00*e	0.10±0.00f**		
10	0.19±0.01e	0.20±0.00ef		
20	0.38±0.17e	0.48±0.00e		
30	4.46±0.33d	4.72±0.16d		
40	6.53±0.28c	6.51±0.00c		
50	28.46±0.20b	30.28±0.12b		
. 6û	46.97 <u>±</u> 1.32a	52.50±0.43a		

^{*}Mean ±SD from triplicate determinations

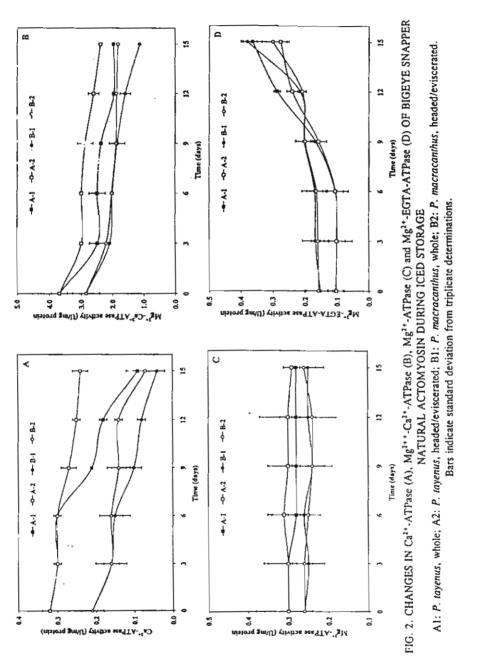
^{**}The same letter in the same column indicates nonsignificant differences (P>0.05).

pH Stability of Muscle Protein

Natural actomyosin from both species of bigeye snapper showed the highest stability in the pH range of 6.5 to 7.5 at 25C as indicated by the lowest K_D values observed among all pH texted (Table 5). Actomyosins from milkfish, tilapia hybrid, tilapia and carp were stable at pH 6.5-7.9 (Jiang et al. 1989). From the results, higher K_D values at both acidic or alkaline pHs possibly indicated the irreversible denaturation of myosin. The denaturation of sardine myofibrils during storage was affected by pHs. Changes in ATPase activity in different pHs might be due to the different degree of modification of actin-myosin interaction by the oxidation of the thiol groups of myosin moiety (Kamal et al. 1990).

TABLE 5.

INACTIVATION RATE CONSTANT OF NATURAL ACTOMYOSIN Ca²⁺-ATPase OF
BIGEYE SNAPPER AT VARIOUS pHS


рН	K _p (10 ⁻⁵ .s ⁻¹)			
	P. tayenus	P. macracanthus 30.11±0.01a**		
4.5	27.67±1.03*a			
5.5	18.28±0.27b	16.32±0.48b		
6.5	1.12±0.01d	1.15±0.05c		
7.5	1.16±0.04d	1.26±0.02c		
8.5	15.37±0.11c	15.93±0.12b		
9.5	17.63±0.39b	19.08±1.58b		

^{*}Mean±SD from triplicate determinations

Changes in ATPase Activities During Iced Storage

A significant decrease in Ca^{2+} -ATPase activity was found in natural actomyosin from P. macracanthus stored in ice up to 6 days of storage (P < 0.05); while no changes in Ca^{2+} -ATPase activity were observed in natural actomyosin from P. tayenus (P > 0.05) (Fig. 2A). For the same species, similar activity was obtained between whole and headed/eviscerated samples. A marked decrease in Ca^{2+} -ATPase activity was noted after 6 days of iced storage. The natural actomyosin from whole samples showed a higher rate of decrease, compared to that from headed/eviscerated samples. A decrease in ATPase

^{**}The same letter in the same column indicates nonsignificant differences (P>0.05).

activity of sardine muscle during 10 days of iced storage was reported by Kamal et al. (1991). Ca²⁺-ATPase activity is used as a good indicator of the integrity of the myosin molecule (Poura and Crupin 1995). Differences in Ca²⁺-ATPase activity between whole and headed/eviscerated samples were presumed to be due to proteolytic degradation of myofibrillar proteins. From our previous results, it was found that P. macracanthus muscle underwent more proteolytic degradation than P. tayenus muscle (Benjakul et al. 2001a). Seki and Narita (1980) found that Ca²⁺-ATPase activity in carp myofibrillar proteins decreased by about 50% during 6 days of iced storage with the concomitant degradation of myosin heavy chain due to proteolysis. Deheading and eviscerating could remove the proteinases localized in the viscera as well as the head and prevent myosin from proteolytic degradation.

Changes in Mg2+-Ca2+-ATPase activities during 15 days of iced storage showed a similar pattern to the changes in Ca2+-ATPase previously observed (Fig. 2B). Natural actomyosin from whole P. tayenus muscle had lower Mg²⁺. Ca²⁺-ATPase activity than headed/eviscerated muscle throughout the storage (P < 0.05). However, no changes in Mg²⁺-ATPase activity were observed during iced storage (P>0.05) (Fig. 2C). Activities of Mg²⁺-ATPase and Mg²⁺-Ca²⁺-ATPase are the indicators of the integrity of the actin-myosin complexes in the presence of endogenous and exogenous Ca2+ ions, respectively (Benjakul et al. 1997). No changes in Mg2+-EGTA-ATPase activity of both species were observed during the first 6 days of iced storage (P>0.05) (Fig. 2D). A pronounced increase in activity was observed after 6 and 12 days for P. tayenus and P. macracanthus, respectively. In general, the rate of increase in activity was higher in P. tayenus, particularly with the extended storage. Mg2+-EGTA-ATPase indicates the integrity of the troponin-tropomyosin complexes (Quali and Valin 1981; Benjakul et al. 1997). The increase in Mg2+-EGTA-ATPase was concomitant with the loss of Ca2+ sensitivity (Fig. 3). Our results confirmed the increase in Mg2+-EGTA-ATPase of carp (Seki and Narita 1980) and Pacific whiting myofibrillar proteins (Benjakul at al. 1997) during iced storage. Natural actomyosin from whole samples generally had a higher Mg2+-EGTA-ATPase activity than that from headed/eviscerated samples, especially when the storage time increased, indicating that more changes in troponin-tro-omyosin complexes occurred in whole samples, compared to the headed/eviscerated samples.

Ca²⁺ sensitivity of natural acts myosin decreased with an incresse in storage time (Fig. 3). Decreasing rate of Ca²⁺ sensitivity in whole samples was higher than that observed in headed/eviscerated samples. Ca²⁺ sensitivity is a good indicator for Ca²⁺ regulation of myofibrillar proteins (Roura and Crupin 1995). It was dependent on the affinity of the troponin molecule for Ca²⁺ ion (Ebashi et al. 1968). Benjakul et al. (1997) hypothesized that the decreased Ca²⁺ sensitivity of Pacific whiting actomyosin was related to proteinase activity. Removal of troponin resulted in a decrease in Ca²⁺ binding capacity (Ebashi et

al. 1968). From the result, the decreased Ca²⁺-sensitivity was presumed to be due to the denaturation and proteolysis of troponin.

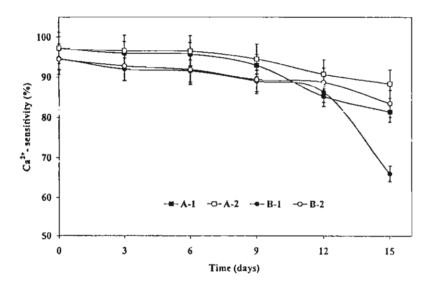


FIG. 3. CHANGES IN Ca²⁺-SENSITIVITY OF BIGEYE SNAPPER NATURAL ACTOMYOSIN DURING ICED STORAGE

A1: P. tayenus, whole; A2: P. tayenus, headed/eviscerated; B1: P. macracanthus, whole; B2: P. macracanthus, headed/eviscerated. Bars indicate standard deviation from triplicate determinations.

Changes in Surface Hydrophobicity of Muscle Protein

Surface hydrophobicity of all samples remained constant in the first 3 days (P>0.05) and slightly increased up to 12 days during iced storage (Fig. 4). Surface hydrophobicity increased substantially at days 12-15. Natural actomyosin from P. macracanthus showed a higher surface hydrophobicity, compared to that from P. tayenus (P<0.05). For the same species, natural actomyosin from whole samples exhibited a slightly higher surface hydrophobicity than that from headed/eviscerated samples. The increased surface hydrophobicity indicated the structural and conformational changes of myofibrillar proteins. The results confirmed the increase in surface hydrophobicity of hake and Pacific whiting

actomyosin during iced storage (Roura et al. 1992; Benjakul et al. 1997). Nevertheless, the sharp increase in surface hydrophobicity obtained in hake and Pacific whiting was found in the first 3 days of iced storage, while no changes were found in this study. The differences in changing pattern between bigeye snapper and those species were possibly caused by the differences in amino acid compositions as well as the different stability of protein during iced storage. From the result, the denaturation or degradation of proteins presumably resulted in an exposure of the interior of molecule, where the hydrophobic portion was located. Exposed hydrophobic amino acids containing an aromatic ring, e.g. phenylalanine and tryptophan, were able to bind to ANS (Kato and Nakai 1980). Hydrophobic interaction between amino acids and exidation of sulfhydryl groups affected surface hydrophobicity (Hill et al. 1982). Therefore, natural actomyosins from both species were susceptible to conformational changes during prolonged iced storage, as indicated by the increased surface hydrophobicity. P. macracanthus muscle was more slightly prone to this change man P. tayenus muscle.

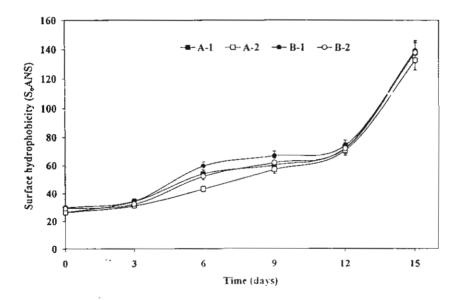


FIG. 4. CHANGES IN SURFACE HYDROPHOBICITY OF BIGEYE SNAPPER NATURAL ACTOMYOSIN DURING ICED STORAGE

A1: P. tayenus, whole; A2: P. tayenus, headed/eviscerated; B1: P. macracanthus, whole; B2: P. macracanthus, headed/eviscerated. Bars indicate standard deviation from triplicate determinations.

Changes in Sulfhydryl Content of Muscle Protein

Total sulfhydryl content of all samples decreased gradually throughout 15 days of iced storage (Fig. 5). Higher decrease in total sulfhydryl content was observed in the whole sample, compared to the headed/eviscerated samples, especially in *P. tayenus* natural actomyosin. The decrease in sulfhydryl group generally resulted from the formation of disulfide bonds through oxidation of sulfhydryl groups or disulfide interchanges (Hayakawa and Nakai 1985). Sulfhydryl groups on the myosin head portion, named SH₁ and SH₂, were reported to involve in ATPase activity of myosin (Kielley and Bradley 1956; Sekine et al. 1962). SH₂, another sulfhydryl group on the light meromyosin region of myosin molecule, was susceptible to oxidation during iced storage of carp actomyosin (Sompongse et al. 1996). The dimer formation via the oxidation of SH₂ resulted in an increase in Mg²⁺-EGTA-ATPase (Sompongse et al. 1996). From our results, the decrease in sulfhydryl groups was coincidental with the increase in Mg²⁺-EGTA-ATPase (Fig. 2B) was concomitant with the

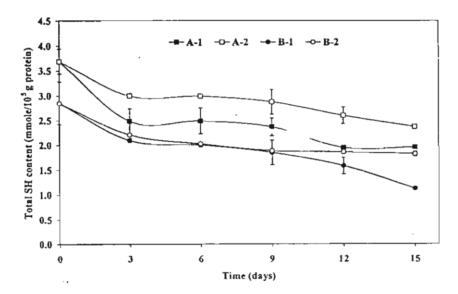


FIG. 5. CHANGES IN TOTAL SULFHYDRYL GROUP CONTENT OF BIGEYE SNAPPER
NATURAL ACTOMYOSIN DURING ICED STORAGE
Al: P. tayenus, whole; A2: P. tayenus, headed/eviscerated; B1: P. macracanthus, whole;
B2: P. macracanthus, headed/eviscerated. Bars indicate standard deviation

from triplicate determinations.

decrease in sulfhydryl group content. Therefore, it was postulated that both sulfhydryl groups localized on either head or tail portions of myosin molecules underwent oxidation, leading to less available free sulfhydryl groups. The oxidation of sulfhydryl groups on the head portion presumably resulted in the decreased Ca²⁺-ATPase and Mg²⁺-Ca²⁺-ATPase activity, whereas oxidation of sulfhydryl groups on the tail portion possibly caused the increase in Mg²⁺-EGTA-ATPase activity. Thus, oxidation of sulfhydryl groups possibly involved in denaturation of myofibrillar proteins in the 2 species during iced storage. Jiang et al. (1989) suggested that sulfhydryl groups on F-actin might compete with those on myosin molecules for the oxidation into disulfides. As a result, the denaturation of myosin may also be dependent on actin/myosin ratio, which may be different between species.

CONCLUSION

Muscles of bigeye snappe: , P. tayenus and P. macracan.hus, possessed similar composition. However, muscle protein of P. tayenus had higher thermal stability than that of P. macracanthus. Denaturation of proteins such as loss of Ca²⁺-ATPase activity during iced storage was presumed to occur via either hydrophobic interaction or disulfide formation. Troponin-tropomyosin complexes were possibly altered by either proteolytic degradation or the oxidation of sulfhydryl groups. Pretreatment of both species by heading and eviscerating retarded the denaturation and physicochemical changes of proteins during iced storage.

ACKNOWLEDGMENT

Authors would like to thank Thailand Research Fund for Project No. RSA/19/2544 and Prince of Songkla University for the financial support.

REFERENCES

AOAC. 1999. Official Methods of Analysis. 16th Ed., Association of Official Analytical Chemists, Washington, DC.

AKAHANE, T., CHIHARA, S., NIKI, T.P., SANO, T., TSUCHIYA, T., NOGUCHI, S.F., OOKAMI, H. and MATSUMOTO, J.J. 1985. Different scanning calorimetric studies on thermal behaviors of myofibrillar proteins. Bull. Jpn. Soc. Sci. Fish. 51, 1841-1846.

- AN, H., PETERS, M.Y. and SEYMOUR, T.A. 1996. Roles of endogenous enzymes on surimi gelation. Trends Food Sci. Technol. 7, 321-327.
- ARAI, K., KAWAMURA, K. and HAYASHI, C. 1973. The relative thermostability of actomyosin ATPase from the dorsal muscle of various fish species. Bull. Jpn. Soc. Sci. Fish. 39, 1077-1082.
- BEAS, V.E., WAGNER, J.R., CRUPIN, M. and ANON, M.C. 1990. Thermal denaturation of hake (*Merluccius hubbsi*) myofibrillar proteins. A differential scanning calorimetric and electrophoretic study. J. Food Sci. 55, 683-687.
- BENJAKUL, S. and BAUER, F. 2000. Physicochemical and enzymatic changes of cod muscle proteins subjected to different freeze-thaw cycles. J. Sci. Food Agric. 80, 1143-1150.
- BENJAKUL, S., SEYMOUR, T.A., MORRISSEY, M.T. and AN, H. 1997. Physicochemical changes in Pacific whiting muscle proteins during iced storage. J. Food Sci. 62, 729-733.
- BENJAKUL, S., VISESSANGUAN, W., RIEBROY, S., ISHIZAKI, S. and TANAKA, M. 2001a. Gel-forming properties of two species of bigeye snapper, *Priacanthus tayenus* and *Priacanthus macracanthus*, as affected by pretreatment and iced storage. J. Sci. Food Agric. (In press).
- BENJAKUL, S., VISESSANGUAN, W., ISHIZAKI, S. and TANAKA, M. 2001b. Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, *Priacanthus tayenus* and *Priacanthus macracanthus*. J.:Food Sci. 66, 1311-1318.
- DAVIES, J.R., BARDSLEY, R.G., LEDWARD, D.A. and POULTER, R.G. 1988. Myosin thermal stability in fish muscle. J. Sci. Food Agric. 45, 61-68.
- EBASHI, S., KODAMA, A. and EBASHI, F. 1968. Troponin I. Preparation and physiological function. J. Biochem. 64, 465-477.
- ELLMAN, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70-77.
- FISKE, C.H. and SUBBAROW, Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375-400.
- FOEGEDING, E.A., LANIER, T.C. and HULTIN, H.O. 1996. Characteristics of edible muscle tissues. In *Food Chemistry*, (O.R. Fennema, ed.) pp. 879-942, Marcel Dekker, New York.
- HASHIMOTO, K., WATABE, S., KONO, M. and SHIRO, K. 1979. Muscle protein composition of sardine and mackerel. Bull. Jpn. Soc. Sci. Fish 45, 1435-1441.
- HASTING, R.J., RODGER, G.W., PARK, R., MATTHEWS, A.D. and ANDERSON, E.M. 1985. Differential scanning calorimetry of fish muscle: the effect of processing and species variation. J. Food Sci. 50, 1503-1510.

- HAYAKAWA, S. and NAKAI, S. 1985. Contribution of hydrophobicity, net charge, and sulfhydryl groups to thermal properties of ovalbumin. Can. Inst. Food Sci. Technol. J. 18, 290-295.
- HILL, A.R., IRVINE, D.M. and BULLOCK, D.H. 1982. Precipitation and recovery of whey proteins. A review. Can. Inst. Food Sci. Technol. J. 15, 155-160.
- ISO, N., MIZUNO, H., OGAWA, H., MOCHIZUKI, Y. and MASUDA, N. 1991. Different scanning calorimetry on fish meat paste Nippon Suisan Gakkaishi 57, 337-340.
- JIANG, S.T., WANG, F.J. and CHEN, C.S. 1989. Properties of actin and stability of the actomyosin reconstituted from milkfish (*Chanos chanos*) actin and myosin. J. Agric. Food Chem. 37, 1232-1235.
- KAMAL, M., WATABE, S. and HASHIMOTO, K. 1990. Stability of sardine myofibrils storage at various pH values. Nippon Suisan Gakkaishi 56, 83-91.
- KAMAL, M., WATABE, S. and HASHIMOTO, K. 1991. Postmortem changes in myofibrillar ATPase of sardine ordinary and dark muscles. Nippon Suisan Gakkaishi 57, 1177-1184.
- KANO, S., SUZUKI, T., MAEYAMA, K., TAKEWA, T., WATABE, S. and HASHIMOTO, K. 1986. Comparative studies on ordinary and dark muscles of tuna fish. Bull. Jpn. Soc. Sci. Fish. 52, 1807–1816.
- KATO, A. and NAKAI, S. 1980. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochem. Biophys. Acta. 624, 13-20.
- KIELLEY, W.W. and BRADLEY, L.B. 1956. The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J. Biol. Chem. 218, 653-659.
- LAEMMLI, U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227, 680-685.
- LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.I. and RANDALL, R.J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 256-275.
- MORRISSEY, M.T. and TAN, S.M. 2000. World resources for surimi. In Surimi and Surimi Seafood, (J.W. Park, ed.) pp. 1-21, Marcel Dekker, New York.
- NAGAI, T., KURATA, M., NAKAMURA, T., ITO, T., FUJIKI, K., NAKAO, M. and YANO, T. 1999. Properties of myofil illar protein from Japanese stingfish (*Sebastes inermis*) dorsal muscle. Food Res. Intern. 32, 401-405.
- OUALI, A. and VALIN, C. 1931. Effect of muscle lysosomal enzymes and calcium activated neutral proteinase on myofibrillar ATPase activity: relationship with aging changes. Meat Sci. 5, 233-245.

- PIGOTT, G.M. and TUCKER, B.W. 1990. Seafood: Effect of Technology on Nutrition. pp. 362, Marcel Dekker, New York.
- ROURA, S.I. and CRUPIN, M. 1995. Biochemical and functional properties of myofibrils from pre and post-spawned hake (*Merluccius hubbi Marini*) stored on ice. J. Food Sci. 60, 269-272.
- ROURA, S.I., SAAVEDRA, J.P., TRUCO, R.E. and CRUPIN, M. 1992. Conformational changes in actomyosin from post-spawned hake on ice. J. Food Sci. 57, 1109-1111.
- SEKI, N. and NARITA, N. 1980. Changes in ATPase activities and other properties of carp myofibrillar protein during iced-storage. Bull. Jpn. Soc. Sci. Fish. 46, 207-213.
- SEKINE, T., BARNETT, L.M. and KIELLEY, W.W. 1962. The active site of myosin adenosine triphosphatase. J. Biol. Chem. 237, 2769-2772.
- SIKORSKI, Z.E. 1994. The contents of proteins and other nitrogenous compounds in marine animals. In *Seafood Protein*, (Z.E. Sikorski, B.S. Pan and F. Shahidi, eds.) pp. 6-12, Chapman & Hall, New York.
- SIKORSKI, Z.E. and BORDERIAS, J.A. 1990. Collagen in the muscles and skin of marine animals. In *Seafood: Resources, Nutritional Composition and Preservation*, (Z.E. Sikorski, ed.) pp. 58-70, CRC Press, Boca Raton, Florida.
- SIKORSKI, Z.E., KOLAKOWSKA, A. and PAN, B.S. 1990. The nutritive composition of the major groups of marine food organisms. In *Seafood: Resources, Nutritional Composition and Preservation*, (Z.E. Sikorski, ed.) pp. 29-54, CRC Press, Boca Raton, Florida.
- SOMPONGSE, W., ITOH, Y. and OBATAKE, A. 1996. Role of SH, in the polymerization of myosin heavy chain during ice storage of carp actomyosin. Fish. Sci. 62, 110-113.
- STEEL, R.D.D. and TORRIE, J.H. 1980. Principles and Procedures of Statistic: a Biometrical Approach, Second Ed., pp. 862, McGraw-Hill, New York.
- TSAI, S.F., WANG, J.H. and JIANG, S.T. 1989. Stability of muscle proteins from some subtropical fish. J. Agric. Food Chem. 37, 749-752.

Differences in Gelation Characteristics of Natural Actomyosin from Two Species of Bigeye Snapper, *Priacanthus tayenus* and *Priacanthus macracanthus*

S HIMAKUL, W. VISESSANGUAN, S. ISHIZAKI, AND M. TANAKA

ABSTRACT: Natural actomyosin (NAM) of *P. tayenus* exhibited higher turbidity and storage modulus (G') upon beating, compared to that of *P. macracanthus*, suggesting the higher protein aggregation and rigidity. At temperature above 35 °C, *P. tayenus* NAM had higher surface hydrophobicity and disulfide bond formation than *P. macracanthus* 5 AM. The α-helix content of NAM from both fish species decreased as the temperature increased, indicating changes in structural conformation during heating. NAM gel from *P. tayenus* rendered more three-dimensional network than that from *P. macracanthus*. These results indicated that *P. tayenus* NAM possessed superior gelling characteristic to *P. macracanthus* NAM due to the higher aggregation of protein caused by both hydrophobic interaction and disulfide bond.

Keywords: natural actomyosin, bigeye snapper, gelation, surimi

Introduction

LEL FORMING ABILITY IS ONE OF THE MOST IMPORTANT AT Tributes of surimi, which can be affected by both intrinand extrinsic factors including species, endogenous enmes additives as well as cooking procedure (Shimizu and men 1981; Niwa 1992; Lee 1986; Araki and Seki 1993; Mormy and others 1993). Myosin has been reported to be an important protein mainly responsible for fish gel formation Miwa 1992). Differences in cross-linking of myosin heavy chan contribute to the differences in gel-forming ability ming the muscles of various fish (Nishimoto and others Endogenous proteinases and transglutaminases can ence the gelling properties of surimi by hydrolyzing myand or cross-linking myosin, respectively (An and others 199). The mal gelation of fish muscle has been reported to from in a three-step process including (1) dissociation of myolibril structures by protein solubilization in the presence of min; (2) partial unfolding of protein structure caused by treatment; and (3) aggregation of unfolded protein via both covalent and noncovalent bonds to form a three-dimensional network (Stone and Stanley 1992). It is essential to wheat denatured fish muscle proteins to align, allowing rgation, before further heating at high temperature, th strengthen the interaction formed during setting Thin and others 1992b). Setting (suwari) was associated with rangutaminase (Kimura and others 1991). Araki and 1993 suggested that transglutaminase-mediated crosslanguage was mainly regulated by conformation of aclanvisin, which varied among fish species. To improve surim rel quality, many approaches have been implemented. Membial transglutaminase has shown potential to increase bedsuringth of surimi by inducing non-disulfide covalent bondformation (Seguro and others 1995), whereas protein and lives have been widely used to alleviate the softening dor'l induced by endogenous thermostable proteinases Mortusey and others 1993).

Thilland is one of the most important surimi producing Ltd. (Tokyo, Japan).

countries in the Southeast Asia with a total production of about 60,000 metric ton per y. An approximate 90% of products are exported to Japan and South Korea (Morrissey and Tan 2000). The surimi production in Thailand is primarily based on threadfin bream (Nemipterus spp.) due to its high gel quality and white color. However, with the overexploitation of resources in the Gulf of Thailand as well as Indian Ocean, harvest of threadfin bream has been decreasing. As a consequence, other fish species, for example bigeye snapper (Priacanthus spp.), lizardfish (Saurida spp.) as well as croaker (Pennahia spp.), have become more economically important as a raw material for surimi production. Among those species, bigeye snapper is more common for surimi manufacture due to the high gel quality and availability. Additionally, it is not consumed directly due to its appearance and thick skin. Bigeye snapper caught in Thailand normally includes two species, Priacanthus tayenus, which is more abundant and Priacanthus macracanthus. P. macracanthus has a slightly whiter mincemeat, however, it possesses a much poorer gel quality, compared to P. tayenus. Due to higher quality gels obtained, P. tayenus is more preferable among processors, while P. macracanthus is either manually sorted out or used for low-grade surimi production. In order to understand the differences in gel forming ability of these two fish species, the physicochemical characteristics of fish muscle and gelation mechanism are needed to elucidate. The objective of this study was to compare the inherent gelforming ability of NAM during thermal gelation between two species of bigeye snapper, P. tayenus and P. macracanthus.

Materials and Methods

Chemicals

8-Anilino-1-naphthalenesulfonic acid was obtained from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). Other chemicals used were purchased from Wako Pure Chemical Industries, Ltd. (Tokyo, Japan).

Hith samples

Iwo species of bigeye snapper, Priacanthus tayenus and macanthus macracanthus, were caught off the Songkhla-humi Coast along the Gulf of Thailand, stored in ice and haded within 10 to 12 h capture. Fish were transported to Dept. of Food Technology, Prince of Songkla Univ., an washed and filleted. The muscle was excised and kept tice prior to NAM extraction.

Preparation of NAM

NAM from fish muscle was prepared according to the shod of MacDonald and Lanier (1994) with a slight modiation. Bigeye snapper muscle was homogenized in chilled 15 M KCl, pH 7.0 at a ratio of 1:10 (w/v) using a homogeniz-MIKA Labortechnik, Selangor, Malaysia). To avoid overating, the sample was placed in ice and homogenized for sec followed by a 20 sec rest interval for a total extraction ne of 4 min. The extract was centrifuged at 5000 × g for 30 at 4 °C. Three volumes of chilled deionized water were mied to precipitate NAM. The NAM was collected by centriat 5000 x g for 20 min at 4 °C. NAM pellet was mixed broughly with glycerol to the final concentration of 30% We and stored at -20 °C. Prior to analysis, frozen NAM was anally thawed with running water (20 °C). The glycerol was moved by addition of 10 volumes of 20 mM Tris-HCl buffpH 7.0. The mixture was stirred gently at 4 °C for 15 min. b obtain the NAM, the mixture was centrifuged at 7800 x g ung a refrigerated centrifuge (Tomy CX250, Tokyo, Japan) #4°C for 15 min. The pellet was kept on ice until used.

Dynamic rheological measurements

Dynamic rheological properties of NAM samples during senting were measured using a Haake RheoStress RS-50 (Bi) Instruments Trading Co., Ltd., Tokyo, Japan) operated the oscillatory mode. The rheometer was equipped with a concentric cylinder measurement system with a bob dia of 16 mm and a cup dia of 48 mm. Dynamic viscoelastic mearements were taken with a gap of 2.1-mm at a fixed fretency of 2.1 Hz and the maximum strain amplitude of 0.05 was used. This condition had been previously determined to ove a linear response in the viscoelastic region. NAM samles (45 mg/mL) were prepared in 20 mM Tris-HCl buffer, 117.0 and added with NaCl to a final concentration of 0.45 M, prior to the determination. Samples (1 g) were loaded min a cup and heated over the range of 20 to 75 °C at 1 °C/ in using a Haake DC 5 temperature control unit. To avoid praporation of the sample during heating, 0.5 mL of liquid puriffin was added. Data were collected every 30 sec and measurements were carried out in duplicate.

Turbidity measurement

NAM (1 mg/mL) dissolved in chilled 50 mM potassium posphate buffer, pH 7.0 containing 0.6 M KCl was placed in swette (light path length of 1 cm) and heated at a heating me of 1 °C/min from 20 to 75 °C. Heating was conducted with a temperature-controlled unit (Hitachi, Tokyo, Japan) connected with spectrophotometer U-3200 (Hitachi). Protein special was monitored continuously by measuring the boorbance at 660 nm (Sano and others 1994).

htal sulfhydryl and disulfide bonds determination

Total sulfhydryl groups were measured according to the authod of Eliman (1959) with a slight modification. NAM solution was prepared at 1 mg/mL in chilled 50 mM potassium phosphate buffer, pH 7.0 containing 0.6 M KCl and a 5 mL al-

iquot was transferred to screw-capped test tube. The solution was linearly heated from 20 to 70 °C using a circulating bath (Haake K20) equipped with a temperature-controlled unit (Haake DC5, Haake Mess-Technik GmbH, Co., Karlsruhe, Germany). The heated aliquot was cooled immediately with iced water (0 to 2 °C). To 0.25 mL aliquot of protein solution (1 mg/mL), 3 mL of 0.2 M Tris-HCl buffer, pH 6.8 containing 8 M urea, 2% SDS and 10-mM EDTA were added. After incubation with 0.25 mL of 10-mM DTNB in 0.2-M Tris-HCl buffer, pH 6.8 at 40 °C for 40 min, absorbance at 412 nm was measured using spectrophotometer (Hitachi U-1100). Reagent blank was prepared by replacing the sample with 50 mM potassium phosphate buffer, pH 7.0 containing 0.6 M KCl. For sample blank, the reaction was run without DTNB solution. Sulfhydryl content was calculated using a molar extinction coefficient of 13600 M-1cm-1. Disulfide bonds in proteins were determined by using 2-nitro-5-thiosulfobenzoate (NTSB) assay as described by Thannhauser and others (1987). To 0.5 mL of protein sample (1 mg/mL), 3.0 mL of freshly prepared NTSB assay solution were added. The mixture was incubated in dark at room temperature (25 °C) for 25 min. Absorbance was then measured at 412 nm. Disulfide bond was calculated from absorbance using the extinction coefficient of 13900 M-1cm-1.

Surface hydrophobicity

Protein surface hydrophobicity was measured according to the method of Li-Chan and others (1985). NAM solution (1 mg/mL in 50 mM potassium phosphate buffer, pH 7.0) was linearly heated from 20 to 70 °C at a rate of 1 °C/min. The heated solution was diluted to 0.05, 0.1, 0.2 and 0.3 mg/mL using the same buffer. A 2 mL aliquot of NAM solution was mixed with 10 mL of 100 mM ANS in 50 mM potassium phosphate buffer, pH 7.0. The fluorescence intensity of ANS-protein conjugates was measured using a spectrofluorometer RF-1500 (Shimadzu, Tokyo, Japan) at the excitation and emission wavelengths at 374 nm and 485 nm, respectively. Protein hydrophobicity was calculated from initial slope of plot of fluorescence intensity against protein concentration using linear regression analysis. The initial slope was referred to as S_pANS.

Circular dichroism

Circular dichroism (CD) analysis was performed at 20 °C using a JASCO spectropolarimeter (J-720, Japan Spectroscopic Co., Ltd., Tokyo, Japan). NAM solution (0.2 mg/mL in chilled 50 mM potassium phosphate buffer, pH 7.0 containing 0.6 M KCl) was linearly heated from 20 to 70 °C at a rate of 1 °C /min. After heated to different temperatures (25, 30, 35, 40, 45, 50, 55, 60, 65, and 70 °C) and cooled with iced water, NAM solution was subjected to CD analysis using scanning wavelengths from 200 to 260 nm. Molar ellipticities at 222 nm, $[\theta]_{222}$, were measured in 1.0-cm path length cell which was thermostated at 20 °C. α -helicity was estimated using molar ellipticities at 222 nm according to the method of Ogawa and others (1993).

Electrophoretic analysis

Protein compositions of NAM preparation were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) according to the method of Laemmli (1970). Samples were loaded on the PAGEL®-Compact precast gel 5-20% gradient and subjected to electrophoresis at a constant voltage of 100 V using a Compact-PAGE apparatus (Atto Corp., Tokyo, Japan). After electrophoresis, gel was

with 0.125% (w/v) Coomassie brilliant blue R-250 in (v/v) ethanol and 10 % (v/v) acetic acid and destained (v/v) ethanol and 10 % (v/v) acetic acid. High and molecular weight markers (Sigma Chemical Co., St. Lou-No., U.S.A.) were used to estimate the molecular weight poteins.

faming electron microscopy (SEM)

MM gels from *R tayenus* and *R macracanthus* (45 mg/g) buind after heating at 1 °C/min from 20 to 45 and 75 °C minmersed in 2.5% glutaraldehyde in 50 mM potassium puphate buffer containing 0.45 M NaCl, pH 7.0 for 2 h. mi specimens were dehydrated in graded ethanol solutions with serial concentrations of 50, 70, 80, 90 and 100%, lived by 100% acetone. The samples were air-dried, coat-with platinum and observed with a Hitachi scanning electroscope (Hitachi).

Intein determination

Protein content was measured using Biuret method memoto 1966). Bovine plasma protein was used as a standard.

Statistical analysis

The experimental design was a completely random design with three replications. Data were presented as mean values with standard deviations. Statistical analyses were performed with the statistical program SPSS (SYSTAT 7.0, SPSS, Inc., Chiago, Ill., U.S.A.). One-way analysis of variance (ANOVA) was carried out and mean comparisons were run by Duncan's multiple range test (Steel and Torrie 1980).

Results and Discussion

Protein compositions of NAM

Similar electrophoretic patterns of NAM preparation were abserved between two species of bigeye snapper (Figure 1). NAM preparations from *P. tayenus* and *P. macracanthus* manly contained myosin and actin. Other proteins naturally

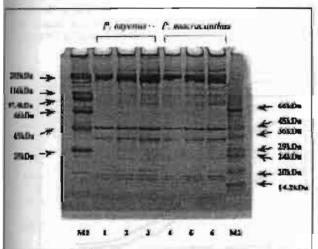


Figure 1—Electrophoretic pattern of NAM from two species of bigeye snapper, P. tayenus and P. macracanthus.

M1 and M2 denote high and low molecular weight standards; Lane 1,4: 2 mg protein; Lane 2,5: 4 mg protein;

Lane 3,6: 10 mg protein

associated with myosin and actin, for example troponin, tropomyosin, and C-proteins were less than 10% as determined by the densitometric analysis of SDS-PAGE gel. Due to no marked differences in protein composition, the different gelling properties between two species were postulated to be the result from the differences in physicochemical characteristics, protein conformation as well as reactive groups, which directly involve in gelation.

Dynamic rheological measurement

Typical gelation profiles of NAM from P. tayenus and P. macracanthus during thermal scanning from 10 to 75 °C are shown in Figure 2. Even though a similar pattern in gelation was observed, changes in storage modulus (G') indicated three major differences in gelation between P. tayenus and P. macracanthus, including 1) a maximum peak temperature, 2) the rate of G' development during heating, and 3) the magnitude of G' developed during and the end of heating process. Gelation patterns of NAM from both P. tavenus and P. macracanthus could be characterized into three main transitions (Figure 2a). The first transition, shown by a sharp increase in G', indicated that NAM of P. tavenus and P. macracanthus formed gel networks at 35 °C with showing a maximum G' at 40 °C and at 38 °C, respectively. Heating of NAM at temperature less than 40 °C generally resulted in dissociation of some myofibrillar components, for example tropomyosin from the F-actin backbone and F-actin from its

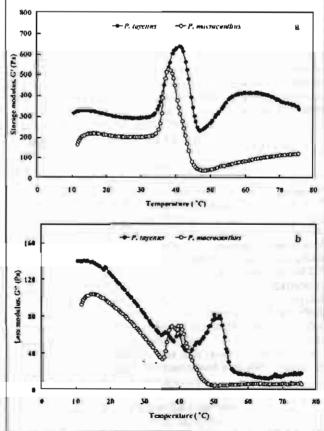


Figure 2—Rheogram of bigeye snapper NAM (45 mg/g, 0.45 M NaCl) heated linearly from 20 to 75 °C at 1 °C/min

helix structure (Ziegler and Acton 1984). However, → tional changes of these proteins had no significant tions on the changes of gel modulus (Xiong 1997). this present in a complex form with actin and other myosin is responsible for the gel elasticity develop-NAM during the thermal gelation (Sano and others and others 1989). It is postulated that partial unof the protein structure initiated by the dissociation in light chain subunits from the heavy chains may man interfilamental association of myosin and form a dimensional structure. In the second transition, G' deand drastically as heating proceeded from 41 to 46 °C for NAM and from 39 to 46 °C for P. macracanthus If the decrease in G' up to 48 °C was possibly caused by weittion of actin-myosin complex (Egelandsdal and othand the denaturation of myosin tail. It is assumed x-coil transformation can lead to a large increase in yof the semi gel and may disrupt some of protein netalready formed (Xiong 1997). Since NAM from P. macmthus reached the peak at the temperature lower than from P. tayenus, it suggested that actomyosin complex in meanthus underwent dissociation at the lower temire, compared to that in P. tayenus. The third transition, cterized by the second increase in G' with heating at 47 (indicated that P. tayenus NAM gel networks were med with a higher rate than P. macracanthus NAM, espewithin the temperature range of 47 to 58 °C. As heating eeded, it was evident that magnitude of G' developed of M from P. tayenus was higher than that of P. macracansuggesting more rigidity of protein matrix formed. The mease in G' after 47 °C probably attributed to the formam of irreversible gel networks (Egelandsdal and others is; Lou and others 2000). At final temperature, NAM from mynus exhibited three times higher G', compared to that P. macracanthus. This indicated that NAM from P. tayemehibited the superior gelling property, compared to that ? macracanthus. This might involve the higher crossbetween protein aggregates or strands and deposition Menatured proteins in the existing protein networks, leadin the strengthening of gel matrix.

For the loss modulus, G", continuous decrease was obmed between 10 to 35 °C for NAM from both species (Figre 2b). G" of NAM from P. macracanthus started to increase #35 °C and reached the maximum at temperature range of 37 to 40 °C, followed by the gradual decrease up to 50 °C. At

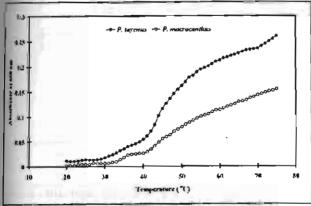


figure 3-Turbidity of bigeye snapper NAM solution (1 mg/ mL) during linear heating from 20 to 75 °C at 1 °C/min

temperature higher than 50 °C, no changes in G" were obtained. For NAM from P. tayenus, a small peak was found at 40 °C, and G" began to increase and reached a maximum at temperature of 50 to 52 °C, followed by a sharp decrease up to 55 °C. However, no marked changes in G" was obtained at temperature higher than 60 °C. In general, the changes in G" were in accordance with the changes in G'. The result suggested that elastic gel network of NAM from P. tayenus was formed at higher temperature, resulting from the gradual unfolding of the myosin, followed by the formation of gel network.

Turbidity measurement

Changes in turbidity of NAM solution indicated the formation of protein aggregate during heating process (Figure 3). Absorbance reading is commonly used to monitor the extent of protein aggregates (Chan and Gill 1994; Sano and others 1994). NAM solution became more turbid as temperature increased, suggesting an increased extent of protein aggregate. An increase in turbidity of P. tayenus and P. macracanthus NAM solution was observed at 30 °C. NAM consists of long filaments, in which approximately 1 mm long thin filaments of actin, tropomyosin, and troponin are conjugated with a great number of myosins all along the filament. Each myosin molecule is bound to the actin filament at its head portion with its tail portion sticking out (Sano and others 1988). Thus, it seems reasonable that the NAM molecules tend to interact with each other and form protein aggregates upon heating. However, at the temperature above 40 °C, P. tayenus NAM exhibited higher rate in turbidity development than that of P. macracanthus. The results suggested that NAM from P. tayenus could undergo aggregation at a higher extent, compared to NAM from P. macracanthus. The differences in turbidity of heat-treated myofibril and myosin solutions among fish species were most probably due to the size and/or rate of aggregation (Chan and Gill 1994). Muscle proteins can associate with one another through hydrophobic, electrostatic and hydrogen bonds, Van der Waals interactions, and disulfide bonds. The relative contributions of each type of bond are different in aggregated proteins than in the native proteins (Xiong 1997). From the result, the difference in aggregation of NAM from two species was possibly due to the difference in hydrophobic domain exposed during heating process between two species. Extent of aggregation for fish myosin seemed to depend on the amount of hydrophobic (Chan and others 1992a). Moreover, the less aggregation of NAM from P. macracanthus was presumably due to the lower intermolecular disulfide bond formation during heating, compared to NAM from P. tayenus. Smyth and others (1998) found that turbidity of myosin solution heated in the absence of dithiothreitol (DTT), reducing agent, was greater than those of myosin solution heated in the presence of DTT, indicating the role of disulfide bond in thermal aggregation. Formation of large aggregates is presumably a prerequisite to formation of a good elastic gel (Chan and others 1992b). The poorer aggregating ability of herring actomyosin reflected the inferior gelling properties of surimi from herring (Chan and others 1992b). The differences in aggregation of NAM were postulated to be associated with the different gelling properties between two species.

Sulfhydryls and total disulfide bonds

Changes in disulfide bonds formation and sulfhydryl content of NAM during heating are shown in Figure 4. Disulfide bonds of NAM from both species increased drastically after

mustment at temperature of 35 to 60 °C and remained ment at temperature ranging from 60 to 70 °C (Figure 4a). and others (1997) found the polymerization of myosin whain via disulfide bond during heating at 80 °C. Correming to the formation of disulfide bond formation, sulfcontent simultaneously decreased at a temperature than 35 °C (Figure 4b). The result indicated that thermy exposed sulfhydryl groups were oxidized to disulfide tui and others (1982) observed the decrease in total amydryl groups of Atlantic croaker actomyosin when it wheated from 30 to 60 °C, while Sano and others (1994) the decrease in total sulfhydryl content in carp NAM m 30 to 80 °C. Formation of disulfide bonds in P. tayenus was higher than P. macracanthus NAM, particularly at erature higher than 40 °C. This result indicated that ydryl groups of NAM from P. tayenus were more prone and sulfide formation. This was possibly facilitated by the mental changes of NAM from P. tayenus during heating, h made the SH groups more susceptible to oxidation. Mesults suggested that disulfide bonds would play an esattal role in actomyosin aggregation. Sulfhydryl group on surface of F-actin might compete with sulfhydryl group memory molecules for the oxidation into disulfides and others 1989). Therefore, the different ratio of actin myosin between two species might lead to the differences notidation pattern of sulfhydryl groups. The differences in selfide bonds formed between NAM from two species

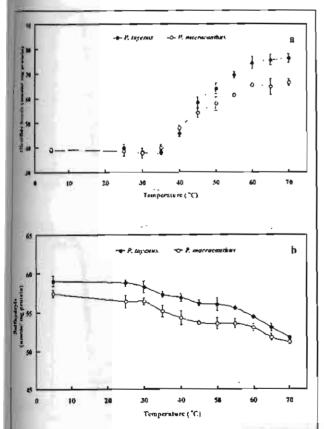


Figure 4—Disulfide bond and total sulfhydryl content in liggye snapper NAM (1 mg/mL) as affected by heat treatment. Vertical bars represent standard deviation from triplicate determinations.

were in accordance with the differences in thermal aggregation as indicated by turbidity (Figure 3) as well as rheological changes as monitored by storage modulus (Figure 2). It was postulated that the structural changes of myosin, particularly at S-1 region, of *P. tayenus* during heating possibly occurred in the way which facilitated the oxidation of sulfhydryl groups, leading to more intermolecular disulfide bond formation, compared to those of *P. macracanthus*. As a result, myosin from *P. tayenus* was more susceptible to heat and formed aggregates, possibly via disulfide formation. Polymerization of myosin heavy chain was due to the oxidation of sulfhydryl groups in S-1, while dimerization was caused by the oxidation of sulfhydryl groups in rod (Kishi and others 1997; Runglerdkriangkrai and others 1999).

Surface hydrophobicity

Changes in surface hydrophobicity of P. tayenus and P. macracanthus NAM during heating from 20 to 70 °C are shown in Figure 5. P. tayenus NAM exhibited lower surface hydrophobicity than that of P. macracanthus at the temperature below 30 °C. However, during heating process, surface hydrophobicity of NAM from P. tayenus was generally higher than that of P. macracanthus, particularly at temperature higher than 45 °C. Surface hydrophobicity generally increased with an increase in temperature. Surface hydrophobicity of P. tayenus NAM increased in two steps, starting with a rapid increase with heating from 30 to 55 °C, followed by a plateau from 55 to 65 °C. Another increase in surface hydrophobicity occurred between 65 and 70 °C. For NAM from P. macracanthus, an increase in surface hydrophobicity was observed from 35 to 45 °C, followed by a constant hydrophobicity up to 55 °C. Another increase was found between 55 and 70 °C. The increased surface hydrophobicity indicated the structural changes of actomyosin during heating, causing the hydrophobic groups emerged at the surface of molecule and subsequently formed hydrophobic interaction to reduce free energy (Sano and others 1994). The increased hydrophobicity also indicated the involvement of hydrophobic interactions in gel formation (Chan and others 1993). This result revealed that hydrophobic groups of P. tayenus NAM were more exposed to the surface and more reactive to form hydrophobic interaction. The higher surface hydrophobicity was in good agreement with the higher aggregation (Figure 3) and storage modulus (Figure 2a). Chan and others (1992b)

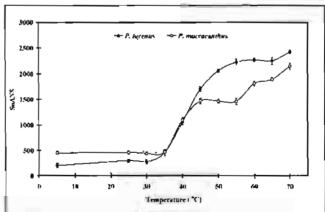


Figure 5—Surface hydrophobicity of bigeye snapper NAM (1 mg/mL) as affected by heat treatment. Vertical bars represent standard deviation from triplicate determinations.

mond that fish myosin lost its helical content with simulations exposure of interior hydrophobic surface while the prims were thermally denatured. Therefore, higher hydrophobic interactions and disulfide bonds were presumed to make from P. tayenus during the heating process, amount to NAM from P. macracanthus. As a consequence, and from P. tayenus rendered the higher gelling property that from P. macracanthus. The formation of intermovals hydrophobic interactions among protein molecules, addition to the disulfide bonding occurred during heating thought to be a primary mechanism for surimi gel formalization.

Circular dichroism and a-helix content

The magnitude of CD spectra of NAM from two species are heating at different temperatures, followed by cooling appears in Figure 6. The magnitude of spectra decreased with a gradual decrease in α -helix content as the temperature increased (Figure 7). This result revealed that α -helical potion of NAM underwent unfolding gradually when the experature increased. The marked decrease in α -helix content was observed at around 40 and 35 °C for NAM and P. tayenus and P. macracanthus, respectively. The result was in accordance with the sharp decrease in storage realists at the same temperature (Figure 2a). Unfolding or

Figure 6—CD spectra of bigeye snapper NAM after heat trainent to different temperatures, followed by cooling

denaturation of light meromyosin possibly contributed to increase in fluidity of myofibrillar filaments (Xiong and Blanchard 1994).

The changes in magnitude of spectra and α-helix content were found at temperature of 30 to 40 °C, which is commonly setting temperature. This result was in agreement with Ogawa and others (1995) who reported the decrease in α-helix during setting at temperature of 30 and 40 °C. The α-helix structures are stabilized by hydrogen bonds between -CO and NH- of a polypeptide chain (Sano and others 1994). Hydrogen bonds can be destroyed at high temperature and are stable with decreasing temperature. From the result, no substantial changes in magnitude of spectra were observed in the samples heated at high temperature. This was due to cooling induced refolding of unfolded α-helix via restabilization of hydrogen bonds. This result was coincidental with Sano and others (1994) who found that unfolded a-helix of carp NAM refolded during cooling process. When comparing the changes in CD spectra and α-helix content between NAM from two species, it was noted that magnitude of spectra for NAM from P. tayenus decreased to a higher extent, compared to those of P. macracanthus at the same temperature tested. This suggested that NAM complexes from P. tayenus unfolded to a higher extent than those from P. macracanthus. As a result, the buried reactive sulfhydryl groups or hydrophobic residues were more exposed and associated each other through disulfide bonding or hydrophobic interaction, respectively. Although uncoiling is necessary to expose reactive groups, chemical and/or physical properties of the unfolded domains seem to be more important for aggregation (Chan and others 1992a). Sano and others (1990) suggested that the interaction of myosin tail portion with high α-helix content mainly involved in aggregation at temperature of 30 to 44 °C. From the result, it can be presumed that NAM from P. tayenus exhibited the superior properties for aggregation, as observed by the higher disulfide formation and α-helix unfolding with higher surface hydrophobicity. As a consequence, higher aggregation with more rigidity of NAM from P. tayenus was obtained, compared to that of P. macracan-

Ultrastructure of NAM gels

The ultrastructure of NAM gels from two species of bigeye snapper in the presence of 0.45 M NaCl is shown in Fig-

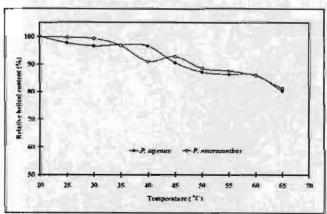


Figure 7—Relative α -helix content in bigeye snapper NAM after heat treatment to different temperatures, followed by cooling

INAM gels from P. tayenus and P. macracanthus preand by heating from 5 to 45 °C at the constant heating of 1°C/min exhibited the granular structure. Gel strucso of NAM from P. tayenus has a larger pore size with the mor structure (Figure 8a), compared to that from P. argumenthus (Figure 8c). The result suggested that P. taye-MAM was postulated to undergo more aggregation heated up to 45 °C, at which the storage modulus bento increase after the sharp declining. The result correunded with the higher aggregation (Figure 3) and higher ange modulus (Figure 2a). For the gels formed by heating to 75 °C, more three-dimensional structure with a lacye network was observed in both NAMs. However, NAM mm P. tayenus exhibited more three-dimensional network halarger granular structure (Figure 8b) than that from nacracanthus (Figure 8d). This was possibly due to the ther aggregation of NAM from P. tayenus, particularly at in all region, leading to the lacy-like structure. Ishioroshi mdothers (1982) reported that both LMM and HMM coninduced network of the gel. Sponge-like and hey-like network structures were produced by HMM IMM, respectively. Therefore, the α-helix tail possibly

played an important role in heat-induced gelation of myosin at the higher temperature, while the globular head underwent the aggregation at the lower temperature. From the result, α-helix content in NAM from both fish species decreased at the higher content at higher temperature. Therefore, it might contribute to the formation of aggregate, resulting in more lacy-like network. Chan and others (1993) proposed that thermal aggregation of cod and herring myosins initiated by the unfolding and interaction of HMM S-2, and further aggregation was mediated through the interaction of LMM to form clusters of aggregates at higher temperature.

From the results, the differences in gelation between two species were caused by different intrinsic properties of muscle proteins, mainly myosin and actin. However, the presence of other proteins possibly contributed to the differences in gelling characteristics. Actin/myosin ratio was found to affect the stability of milkfish actomyosin (Jiang and others 1989) and thermal gelation of carp actomyosin (Sano and others 1989).

Thus, different actin/myosin ratio as well as free myosin/bound myosin ratio probably caused the differences in gela-

tion of NAM between two species of bigeye snapper.

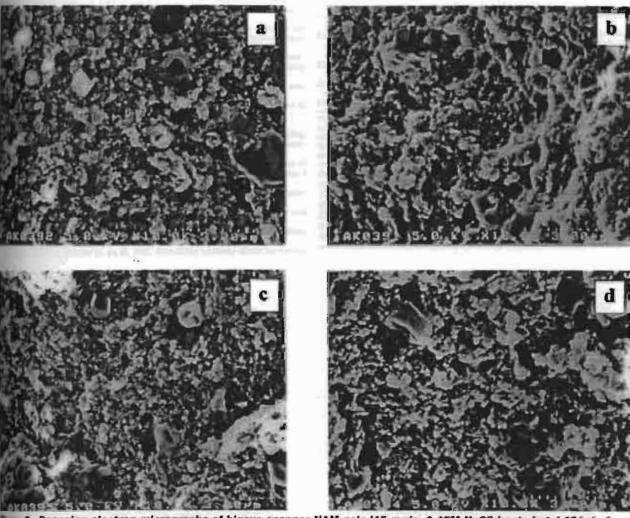


Figure 8—Scanning electron micrographs of bigeye snapper NAM gels (45 mg/g, 0.45M NaCl) heated at 1 °C/min from 3 to either 45 or 75 °C. a: P. tayenus, 45 °C; b: P. tayenus, 75 °C; c: P. macracanthus, 45 °C; d: P. macracanthus,

Conclusion

IFFERENCES IN GEL-FORMING ABILITY OF TWO SPECIES OF bigeye snapper were attributed to the inherent properand NAM. NAM from P. tayenus underwent aggregation via and/or disulfide bonds to a higher ment, compared to that from P. macracanthus. As a consequence, NAM from P. tayenus rendered a superior rheologiproperty with higher gel-forming ability.

References

Peters MY, Seymour TA, 1996, Roles of endogenous enzymes in surimi nn. Trends Food Sci Technol 7:321-327.

H. Seki N. 1993. Comparison of reactivity of transglutaminase to various La stomyosins. Nippon Suisan Gakkaishi 59:711-716.

in It, Gill TA, Paulson AT. 1992a. The dynamics of thermal denaturation of myssins. Food Res Int 25:117-123.

hm K Gill TA, Paulson AT. 1992b. Cross-linking of myosin heavy chains from M. lering and silver hake during thermal setting. J Food Sci 57:906-912.

W. Gill TA, Paulson AT. 1993. Thermal aggregation of myosin subfragment from cod and herring. J Food Sci 58:1057-1061.

J. Gill TA. 1994. Thermal aggregation of mixed fish myosins. J Agric Food

42:2649-2654

andsdal B. Fretheim K, Samejima K. 1986. Dynamic rheological measureneri on heat-induced myosin gels: effect of ionic strength, protein concen-Agrie 37:915-926.

on GL. 1959. Tissue sulfhydryl groups. Arch Biochem Biophys 82:70-77. ull regions of the myosin molecule in heat-induced gelation. J Food Sci

Will, Wang FJ, Chen CS. 1989. Properties of actin and stability of the actomy isin reconstituted from milkfish (Chanos chanos) actin and myosin. J Agric Food Chem 37:1232-1235.

Rimer I. Sugimoto M. Toyoda K, Seki N, Arai K, Fujita T. 1991. A study on the cross linking reaction of myosin in kamaboko surimi gels. Nippon Suisan Catanishi 57:1389-1396.

Ric A, Itoh Y, Obatake A. 1997. The subfragment responsibility for the polymer-born of myosin heavy chain through SS bonding during the heating of carp my in. Nippon Suisan Gakkaishi 63:237-241. Lanier TC. 2000. Gelation chemistry. In: Park JW, editor. Surimi and surimi sea-fool. New York: Marcel Dekker. P 237-265.

Learn & UK.1970. Cleavage of structural proteins during assembly of head of barteriophage T4. Nature 227:680-685.

Le CM. 1986. Surimi process technology. Food Technol 40(3):107-114.

Li-Chin E, Nakai S, Wood DF. 1985. Relationship between functional (fat binding,

sifying) and physicochemical properties of muscle proteins: Effect of heat-ing freezing, pH and species. J Food Sci 50:1034-1040. ou X, Wang C, Xiong YL, Wang B, Mims SD. 2000. Gelation characteristics of

pal lefish (Polyodon spathula) surimi under different heating conditions. J Fo. 1 Sci 65:394-390.

La TM, Lin TS, Lanier TC. 1982. Thermal denaturation and aggregation of actomyssin from Atlantic croaker. J Food Sci 47:1916-1919.

MacDonald GA, Lanier TC. 1994. Actomyosin stabilization to freeze-thaw and

hear denaturation by lactate salts. J Food Sci 59:101-105.
Normsey MT, Tan S-M. 2000. World resources for surimi. In: Park JW, editor.

Surini and surimi seafood. New York: Marcel Dekker. P 1-21.
Normey MT, Wu JW, Lin D, An H. 1993. Proteinase inhibitor effects on torsion

measurements and autolysis of Pacific whiting surimi. J Food Sci 58:1050-1054. Nishimoto S, Hashimoto A, Seki N, Kimura I, Toyoda K, Fujita T, Arai K. 1987. Influencing factors on changes in myosin beavy chain and jelly strength of salted meat paste from Alaska Pollock during setting. Nippon Suisan Gakkaishi 53:2011-2020.

Shi 53:2011-2020.

Niwa E. 1992. Chemistry of surimi gelation. In: Lanler TC, Lee CM, editors. Surimi technology. New York: Marcel Dekker, Inc. P 389-438.

Ogawa M, Ehara T, Tamiya T, Tsuchiya T. 1993. Thermal stability of fish myosin.

Comp Biochem Physiol 106B:517-521.

Ogawa M, Kanamaru J, Miyashita H, Tamiya T, Tsuchiya T, 1995. Alpha-helical

structure of fish actomyosin: changes during setting. J Food Sci 60:297-299, Runglerdkriangkrai J, Itoh Y, Kishi A, Obatake A. 1999. Responsibility of myosin S-1 and rod for the polymerization of myosin heavy chain through disulfide bonding upon heating of actomyosin. Fish Sci 65:310-314.

Sano T, Noguchi SF, Tsuchlya T, Matsumoto JJ. 1988. Dynamic viscoelastic behavior of natural actomyosin and myosin during thermal gelation. J Food Sci 53:924-928.

53:924-928.
Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1989. Role of F-actin in thermal gelation of fish actomyosin. J Food Sci 54:800-804.
Sano T, Noguchi SF, Matsumoto JJ, Tsuchiya T. 1990. Thermal gelation characteristics of myosin subfragments. J Food Sci 55:55-58.

Sano T, Ohno T, Otsuka-Fuchino H, Matsumoto JJ, Tsuchiya T. 1994. Carp natural actomyosin: Thermal denaturation mechanism. J Food Sci 59:1002-1008.

Seguro K, Kumazawa Y, Ohtsuka T, Toiguchi S, Motoki M. 1995. Microbial trans-

Seguro K, Kumazawa Y, Ohtsuka T, Toiguchi S, Motoki M. 1995. Microbial transglutaminase and e(g-glutamyl)lysine cross-link effects on elastic properties of kamaboko gels. J Food Sci 60:305-311.
Shimizu Y, Machida R, Takenami S. 1981. Species variations in gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 47:95-104.
Smyth AB, Smith DM, O'Neill E. 1998. Disulfide bonds influence the heat-induced gel properties of chicken breast muscle myosin. J Food Sci 63:584-588.
Steel RDD, Torrie JH. 1980. Principles and procedures of statistic: A biometrical approach. 2nd ed. New York: McGraw-Hill. 862 p.
Stone AP, Stanley DW. 1992. Mechanisms of fish muscle gelation. Food Res Int 25:381-388.

25:381-388.

Thannhauser TW, Konishi Y, Scheraga HA.1987. Analysis for disulfide bonds in

peptides and proteins. Method Enzymol 143:115-119.

Umemoto S. 1966. A modified method for estimation of fish muscle protein by biuret method. Bull Jap Soc Sci Fish 32:427-435.

Xlong YL. 1997. Structure-function relationships of muscle proteins. In: Damodaran S, Paraf A, editors. Food proteins and their applications. New York: Mar-cel Dekker, Inc. P 341-392.

Xiong YL, Blanchard SP. 1994. Myofibrillar protein gelation: viscoelastic changes related to heating procedures. J Food Sci 59:734-738.

Ziegler GR, Acton JC. 1984. Mechanisms of gel formation by proteins of muscle tissues. Food Technol 38:77.

MS 20001204

This work was supported by The Thalland Research Fund for Project No. RSA/19/2544. The authors are indebted to Japanese Society for the Promotion of Science (ISPS) and Prince of Songkla Univ. for the partial support. The authors also would like to express their sincere thanks to Professor R. Takai of Tokyo Univ. of Fisheries for his technical advice for scanning electron microscopy analysis.

Author Benjakul is with the Dept. of Food Technology, Faculty of Agro-Industry, Prince of Songkla Univ., Hat Yai, Songkhla, 90110, Thailand. Author Visessanguan is with the National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand. Authors Ishizaki and Tanaka are with the Dept. of Food Science and Technology, Tokyo Univ. of Fisheries, Tokyo, Japan. Direct inquiries to author Benjakul (E-mail: bsoottaw@ratree.psu.ac.th).

Gel-forming properties of surimi produced from bigeye snapper, *Priacanthus tayenus* and *P macracanthus*, stored in ice

Soottawat Benjakul, 1* Wonnop Visessanguan, 2 Siriporn Riebroy, 2 Shoichiro Ishizaki 3 and Munihiko Tanaka 3

¹Department of Food Technology, Faculty of Agro-Industry, Prince of Songkia University, Hat Yal, Songkhia 90112, Thailand
²National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand

³Department of Food Science and Technology, Tokyo University of Fisheries, Konan 4, Minato, Tokyo 108-8477, Japan

Abstract: The influence of iced storage of two species of bigeye snapper, Priacanthus tayenus and P macracanthus, on the gel-forming ability of the resulting surimi was investigated. Upon iced storage, whole fish underwent deterioration faster than beheaded/eviscerated fish. Total volatile base and trimethylamine contents of whole fish were higher than those of beheaded/eviscerated fish, particularly after 9 days of storage (P < 0.05). P macracanthus muscle was more susceptible to proteolytic degradation than P tayenus muscle. Ca²⁺-ATPase activity decreased as the storage time increased (P < 0.05), indicating the denaturation of myosin. A marked decrease in Ca²⁺-ATPase activity was found in whole fish kept for more than 6 days in ice (P < 0.05). Breaking force and deformation of surimi gels from both species decreased, with a concomitant decrease in whiteness, as the storage time increased (P < 0.05). Beheading and evisceration of fish retarded the deterioration. However, the gelforming ability of surimi produced from both species decreased continuously throughout iced storage (P < 0.05), probably owing to the denaturation and degradation of myofibrillar proteins.

Keywords: bigeye snapper; gelation; surimi; iced storage; degradation; denaturation

INTRODUCTION

Freshness of fish is generally considered as the most crucial requirement for the raw material to be processed into surimi. Time and temperature of the fish between capture and processing can affect the final swimi quality.1 Lower gel quality can be found with gel made from fish stored over time in ice. However, the rate of loss of gel strength appears to vary among species. The rate of decline in gel strength is dependent on the denaturation and extent of proteolysis of myofibrillar proteins. The gel strength of kamaboko made from lizard fish kept in ice for 3 days was 50% of that made from fresh fish. 2 Northern squawfish surimi could be made from fish stored for up to 9 days.3 MacDonald et al4 revealed that good-quality surimi could be produced from hoki stored in ice for up to 10 days. Surimi gel quality can be influenced by many affecting protein structure.5 Prolonged holding mas and elevated temperatures can cause severe proteolysis of myofibrillar proteins, which is directly associated with inferior gel quality.6 However, degradation of myosin heavy chain also occurred during iced storage of Pacific whiting.⁷ During handling, leakage of digestive enzymes into the muscle also results in subsequent hydrolysis of muscle proteins. Therefore pretreatment of fish, including beheading and evisceration prior to handling, can be another means to retard the deterioration caused by proteolysis.

In addition to threadfin bream, bigeye snapper has been used as an important raw material for surimi production in Thailand. Owing to its thick and tough skin, it is not consumed directly and therefore is suitable for surimi manufacture. Two species of bigeye snapper, Priacanthus tayenus and P macracanthus, are normally caught in the Gulf of Thailand and the Indian Ocean. Surimi produced from P tayenus has been found to exhibit better gelling properties than that from P macracanthus. The differences in gel quality have been determined by both intrinsic and extrinsic parameters. With the overexploitation of fish resources, the fishing fleet must travel a longer distance, leading to lower-quality raw

Email: bscottaw@ratree.psu.ac.th

Contract/grant sponsor: Thailand Research Fund; contract/grant number: RSA/19/2544

ant sponsor: Prince of Songkla University

Commodizant sponsor: Japanese Society for the Promotion of Science (JSPS)

March 2002; revised version received 2 May 2002; accepted 16 May 2002)

^{*}Dorespondence to: Soottawat Benjakul, Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 5 and 5 a 20112, Thailand

merial for surimi production. Consequently, it takes a larger time for handling the fish to shore. The denaturation and degradation of muscle proteins from the two species can occur to different extents. This may contribute to the differences in final surimi gel quality. The objectives of this work were to investigate the physicochemical and chemical changes of P tayenus and P macracanthus stored in ice over an extended period and to study the changes in gel quality of surimi produced from the fish.

MATERIALS AND METHODS

Chemicals

Adenosine 5'-triphosphate (disodium salt) and β -mercaptoethanol were purchased from Sigma Chemical Co (St Louis, MO, USA). Trichloroacetic acid was purchased from Riedel-deHaen (Seelze, Germany). All chemicals for electrophoresis were obtained from Bio-Rad (Richmond, CA, USA).

Fish samples

Bigeye snapper, P tayenus and P macracanthus, caught off the Songkhla-Pattani Coast along the Gulf of Thailand were stored in ice and off-loaded within 10-12h of capture. The fish were transported to the Department of Food Technology, Prince of Songkla University, washed with tap water and separated into two groups, whole fish and beheaded/eviscerated fish. The fish were kept in a styrene foam box containing crushed ice, with a fish/ice ratio of 1:2 (w/w). The fish were placed and distributed uniformly between the layers of ice. The box was kept at room temperature (28-30°C). To maintain the ice content, melted ice was removed and replaced with an equal amount of ice. Fish were randomly taken every 3 days for analysis and surimi preparation.

pH determination

Fish muscle was homogenised with 10 volumes of deionised water (w/v), and the pH was measured using a pH meter (Eutech Instruments Pte Ltd, Singapore).

Determination of total volatile base (TVB) and trimethylamine (TMA) contents

TVB and TMA contents were determined using the Conway microdiffusion assay as described by Ng. ¹⁰ Fish meat (2g) was extracted with 8 ml of 40 g l⁻¹ trichloroacetic acid (TCA). The mixture was filtered using Whatman No 41 paper, and the filtrate was used for analysis. To determine the TMA content, formaldehyde was added to the filtrate to fix ammonia present in the sample.

Determination of Ca2+-ATPase activity

Ca²⁺-ATPase activity of actomyosin was determined as described by Benjakul *et al.*⁷ An aliquot (1 ml) of actomyosin solution (2.5-4g l⁻¹) in 0.6 mol l⁻¹ KCl, pH 7.0 was mixed with 0.6 ml of 0.5 mol l⁻¹ Trismaleate, pH 7.0 and 1 ml of 0.1 mol l⁻¹ CaCl₂. De-

ionised water was added to make up a total volume of 9.5 ml. To the prepared solution, 0.5 ml of 20 mmol l^{-1} ATP was added to initiate the reaction. The reaction mixture was incubated for 8 min at 25 °C, and the reaction was terminated by adding 5 ml of chilled $150 g \, l^{-1}$ TCA. The reaction mixture was then centrifuged at $3500 \times g$ for 5 min. The inorganic phosphate liberated in the supernatant was measured by the method of Fiske and Subbarow. The specific activity was expressed as μ mol inorganic phosphate (Pi) released mg⁻¹ protein min⁻¹. A blank solution was prepared by adding chilled TCA prior to addition of ATP.

Determination of TCA-soluble peptides

TCA-soluble peptides were determined according to the method described by Morrissey et al. ¹² Fish muscle (3g) was homogenised with 27 ml of $50 g l^{-1}$ TCA. The homogenate was kept in ice for 1h and centrifuged at $5000 \times g$ for 5 min. Soluble peptides in the supernatant were measured and expressed as μ mol tyrosine g^{-1} muscle.

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

The protein pattern of bigeye snapper muscle was analysed by SDS-PAGE according to the method of Laemmli. ¹³ To prepare the protein sample, 27 ml of $50 g \, l^{-1}$ SDS solution heated to $85 \,^{\circ}$ C was added to the sample (3g). The mixture was then homogenised (IKA Labortechnik, Malaysia) for 2min. The homogenate was incubated at $85 \,^{\circ}$ C for 1 h to dissolve the proteins. The sample was centrifuged at $3500 \times g$ for 20 min to remove undissolved debris. Protein concentration was determined according to the method of Lowry et al ¹⁴ using bovine serum albumin as standard. The SDS-PAGE gel was made of $10 \,^{\circ}$ running gel and $4 \,^{\circ}$ 6 stacking gel. After separation the proteins were fixed and stained with Coomassie Blue R-250.

Surimi and surimi gel preparation

Fish kept in ice for different times were washed with tap water. The flesh was removed manually and minced to uniformity. The mince was then washed with cold water (5°C) at a mince/water ratio of 1:2 (w/w). The mixture was stirred gently for 3 min and the washed mince was filtered with a layer of nylon screen. The washing process was repeated twice. Finally the washed mince was centrifuged (Model CE 21K basket centrifuge, Grandiumpiant, Belluno, Italy) at $700 \times g$ for 15 min. The washed mince was kept in ice until used.

The prepared surimi was supplemented with 25 mg g⁻¹ salt, and the moisture content was adjusted to 800 mg g⁻¹. The mixture was chopped for 5 min at 4°C to obtain a homogeneous sol. The sol was then stuffed into polyvinylidine casing with a diameter of 2.5 cm, and both ends of the casing were sealed tightly. One-step heated gels were prepared by heating the sol at 90°C for 20 min. Two-step heated gels were

mared by incubating the sol at 40°C for 30 min, led ed by heating at 90°C for 20 min. The gels were soled in iced water and stored for 24h at 4°C prior to make is.

Texture analysis

Tower analysis of surimi gels was carried out using a TA-XT2 texture analyser (Stable Micro Systems, comming, Surrey, UK). Gels were equilibrated and enhanced at room temperature (28–30°C). Five punder-shaped samples with a length of 2.5 cm were propered and subjected to determination. Breaking the gels strength) and deformation (elasticity/deformability) were measured using the texture analyser recupred with a cylindrical plunger (diameter 5 mm, depression speed 60 mm min⁻¹).

Determination of whiteness

sommi gel colour was determined using a JP7100F meter (Juki Corp, Tokyo, Japan). L* (lightness), redness/greenness) and b* (yellowness/blueness) measured and whiteness was calculated as the by Fujii et al: 15

whiteness =
$$100 - [(100 - L^*)^2 + a^{*2} + b^{*2}]^{1/2}$$

Determination of expressible drip

Expressible drip was measured according to the mod of Ng. 16 A gel sample with a thickness of from was weighed and placed between two pieces of mannan paper No 1 paper at the top and three pieces whatman No 1 paper at the bottom. A pressure of love cm⁻² was applied on the sample and maintained min. The sample was removed and weighed. The sample was calculated and expressed as matage of sample weight.

Statistical analysis

Analysis of variance (ANOVA) was performed and comparisons were run by Duncan's multiple-

RESULTS AND DISCUSSION

Changes in pH

much pH values of P tayenus and P macracanthus much were approximately 6.6–6.7 (Fig 1). Up to 6 demoficed storage, changes in pH were observed only the whole fish samples of both species of bigeye mapper, while muscle pH of pretreated samples mained relatively constant. Although an increase in pH was evident in all conditions tested at the later rate of increase than pretreated samples. It mound be noted that beheading and evisceration of macracanthus prior to iced storage resulted in no punificant changes in pH of fish muscle up to 9 days 0.05). In general, post mortem changes, particular phycogen breakdown and anaerobic respiration,

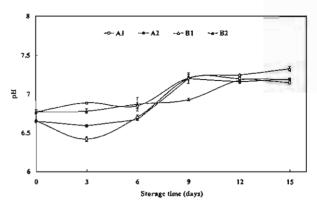
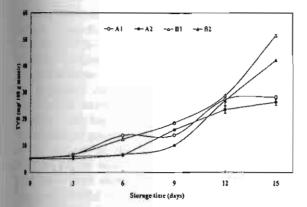



Figure 1. Changes in pH of bigeye snapper muscle during iced storage. A1, *Priacanthus tayenus* whole; A2, *P tayenus* beheaded/eviscerated; B1, *P macracanthus* whole; B2, *P macracanthus* beheaded/eviscerated. Vertical bars represent standard deviation from triplicate determination.

lead to the accumulation of lactic acid and a decrease in pH of fish muscle. The increase in pH was postulated to be due to an increase in volatile bases produced by either endogenous or microbial enzymes. The decomposition of nitrogenous compounds causes an increase in pH in fish flesh. ¹⁸ The changes in pH also depend on the liberation of inorganic phosphate and ammonia due to the enzymatic degradation of ATP. ¹⁸

Changes in TVB and TMA

Changes in TVB and TMA content of fish during iced storage are shown in Fig 2. TVB and TMA contents of fish pretreated by beheading and evisceration were generally lower than those of whole fish stored under the same condition (P < 0.05). At day 0 the initial TVB content of all fish samples was found to be 5.0-5.4 mg per 100 g, indicating that some changes in nitrogenous compounds occurred prior to iced storage (P < 0.05) (Fig 2). TVB comprises mainly TMA and ammonia, which are produced by both microbial and endogenous enzymes. However, no TMA was detected at day 0. TVB and TMA contents of all samples increased slightly during the first 3 days and then increased gradually up to 9 days of iced storage (Fig 2). Marked increases in TVB and TMA were found in all samples kept for more than 9 days in ice, particularly those of P macracanthus. Changes in TVB and TMA content of whole samples occurred at a faster rate than those of beheaded/eviscerated samples (P < 0.05). Owing to the fact that viscera and gills are major sources of enzymes as well as micro-organisms, removal of these organs presumably resulted in less hydrolysis of nitrogenous compounds. The formation of TVB and TMA is generally associated with the growth of micro-organisms. A number of specific spoilage bacteria such as Shewanella putrefaciens, Photobacterium phosphoreum, Vibrionaceae, etc typically use trimethylamine oxide (TMAO) as an electron acceptor in anaerobic respiration, resulting in offodour and off-flavour due to the formation of TMA. 19,20 Since TMA does not increase much during

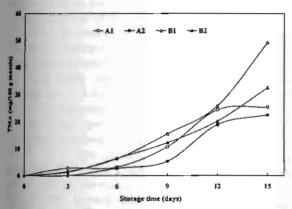


Figure 2. Changes in TVB and TMA in blgeye snapper muscle during iced storage. A1, *Priacanthus tayenus* whole: A2, *P tayenus* behavioriscerated; B1, *P macracanthus* whole; B2, *P macracanthus* behavioriscerated. Vertical bars represent standard deviation from triplicate determination.

the early stage of spoilage, it is not considered suitable as a quality index for fish that have been stored in ice for less than 6 days.²¹

When comparing TVB and TMA contents between the two species under the same pretreatment condition, P macracanthus muscle showed the higher contents of TVB and TMA, especially after 9 days of storage (P < 0.05). The results indicated that P macraconthus muscle had a higher degree of spoilage than P toyenus muscle. It was postulated that P macracanthus possibly contained a higher amount of TMAO and/or TMAO reductase in the muscle. As a consequence, TMA could be formed in P macracanthus more efficiently than in P tayenus. The amount of TMAO in the fish muscle tissue depends on the species, season, fishing grounds, etc. 19 Additionally, P macracanthus probably had a higher count of TMAO eductase-producing bacteria, which can convert TMAO to TMA to a higher extent. Up to 12 days the TVB content of all samples was generally lower thin 30 mg per 100 g, which is the limit of acceptability proposed by Connell.22 However, a much higher Intent of TVB in P macracanthus muscle was detected a lay 15, indicating spoilage caused by micromisms. Nevertheless, no marked increases in IVI and TMA were noted in P tayenus. From the results, TMA was found to be a major constituent of TVB, since it represented a comparable content to TVB. Production of TMA could be used as an indicator of bacterial activity. Since all fish were kept in ice, the formation of TVB and TMA was probably mediated by psychrotropic bacteria. And content and total viable count (TVC) in hake slices stored in ice under modified atmosphere packaging. From the results, pretreatment of bigeye snapper by beheading and evisceration could retard the spoilage of fish during iced storage.

Changes In TCA-soluble peptides and protein pattern

An increase in TCA-soluble peptides indicated autolytic degradation of fish proteins during iced storage (Fig 3). At day 0, P tayenus muscle contained slightly fewer TCA-soluble peptides than P macracanthus muscle. This was possibly caused by the more reactive proteolytic activity in the latter muscle. TCA-soluble peptides in P tayenus muscle increased gradually up to 15 days of iced storage (P < 0.05). For P macracanthus muscle, TCA-soluble peptides increased continuously up to day 12, followed by a sharp increase up to day 15 (P < 0.05). At days 12 and 15 respectively, TCA-soluble peptides in P macracanthus muscle were 1.5-1.7- and 2.9-3.4-fold higher than those observed in P tayenus muscle. The marked differences in degradation between the two species were presumed to be due to the differences in proteolytic activities mediated through muscle proteinases, digestive proteinases as well as microbial proteinases. The increase in TCA-soluble peptides in P macracanthus muscle at days 12 and 15 of iced storage coincided with the increase in TVB and TMA contents (Fig 2). This suggested that bacterial proteinases were mainly involved in the degradation of muscle proteins, especially when the storage time increased.

When comparing the changes in TCA-soluble

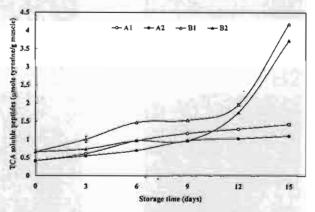


Figure 3. Changes in TCA-soluble peptides in bigeye snapper muscle during iced storage. A1, *Priacanthus tayenus* whole; A2, *P tayenus* beheaded/eviscerated; B1, *P macracanthus* whole; B2, *P macracanthus* beheaded/eviscerated. Vertical bars represent standard deviation from triplicate determination.

prodes between whole and beheaded/eviscerated angles, it was found that whole samples had a higher material of TCA-soluble peptides. This indicated that stole fish proteins underwent degradation to a higher ment than beheaded/eviscerated fish proteins. Whole the comprised the head, gills and internal organs, such are the major sources of proteinases and micromanisms with high proteolytic activity. Pseudomonas aninoglutinosa protease was found to hydrolyse fish muscle protein at 0-2°C. 27 Apart from digestive maynes, which could contaminate muscle, muscle proteinases were shown to cause the degradation of fish muscle during iced storage. 7,28 The degradation of muscle proteins, particularly myosin, resulted in poor gelling properties of the surimi. 5

single soft both species, especially at day 15 of storage, to marked decrease in MHC was observed by SDS-AGE. This was possibly due to the proteolytic legradation of other cytosolic and cytoskeletal profins present in the muscle during iced storage, caused by microbial growth and structural disintegration. Collagenase is capable of hydrolysing collagen to small profides, leading to higher amounts of amino acids or

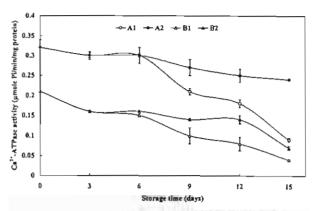
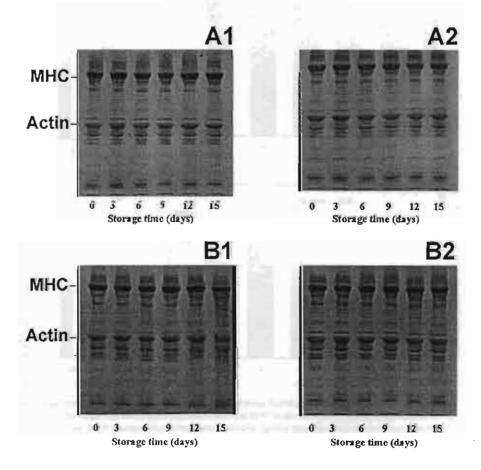
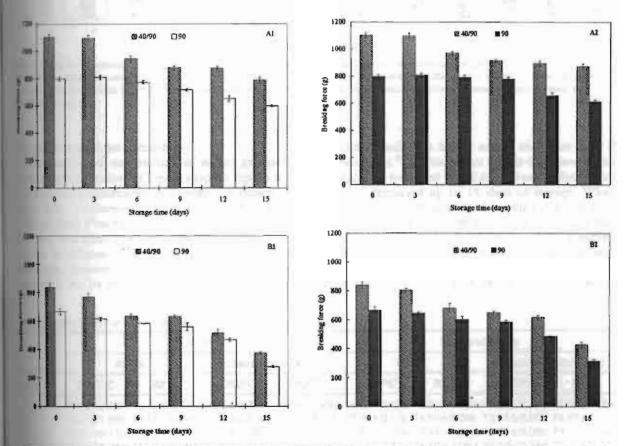
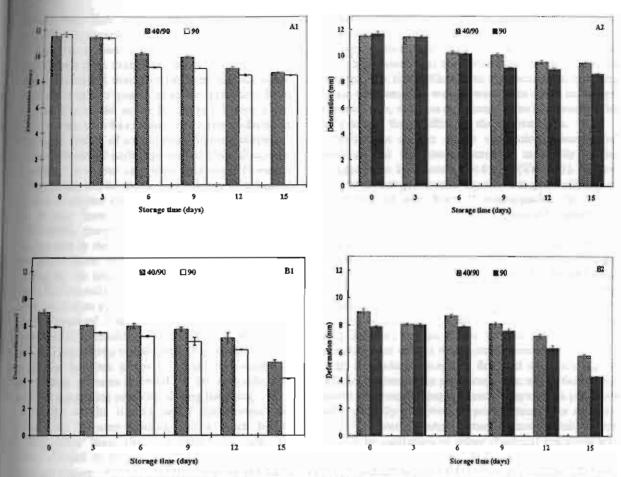



Figure 5. Changes in Ca²⁺-ATPase of bigeye snapper muscle during iced storage. A1, *Priacanthus tayenus* whole; A2, *P tayenus* beheaded/eviscerated; B1, *P macracanthus* whole; B2, *P macracanthus* beheaded/eviscerated. Vertical bars represent standard deviation from triplicate determination.

peptides during extended storage. The solubility of Pacific rockfish muscle collagen increased as the raw muscle texture softened during iced storage.²⁹ The hydrolysis of fish muscle collagen appears to result from two heat-stable alkaline metalloproteinases.³⁰ Additionally, it was possible that endogenous proteinases in muscle and microbial proteinases cleaved the proteins extensively into small peptides. As a result, the fragment with high molecular weight could


use 4. Electrophoretic pattern of e snapper muscle protein during torage. A1, Priacanthus tayenus ol: A2, P tayenus beheaded/ ctrated; B1, P macracanthus t, B2, P macracanthus beheaded/

products of MHC could not be retained in the gel. However, no changes in actin were observed in fish much throughout 15 days of iced storage. MHC was resusceptible to proteolytic degradation than other proteins, eg actin, troponin and tropomyosin. In comparison with P tayenus, P macracanthus MHC med to be more susceptible to proteolytic degradation during iced storage. P macracanthus muscle in played higher proteolytic activity than P tayenus mucle, as shown by autolytic activity assay. The rule suggested that pretreatment of P macracanthus beheading and evisceration effectively protected trosin from degradation.


Changes in Ca2+-ATPase activity

decrease in Ca^{2+} -ATPase activity of extracted atomyosin was generally observed during iced atomyos, especially after 6 days of storage (P < 0.05) Fig.5). For the first 6 days of iced storage, only a slight decrease in Ca^{2+} -ATPase activity was observed in all amples. Thereafter a higher rate of decrease was observed with the actomyosin extracted from whole and of both species compared with that extracted from pretreated fish. Kamal et al^{32} reported a decrease in

myofibrillar ATPase of sardine muscle during 10 days of iced storage. Ca2+-ATPase is considered as an indicator of myosin integrity. 7,33 Since no marked changes in MHC were observed throughout the storage period, the continuous decrease in Ca2+-ATPase of bigeye snapper natural actomyosin during iced storage was presumed to be due to the structural alteration of native myosin rather than proteolytic degradation. The native conformation of myosin is of primary importance for proper gelation. Maximum gel strength cannot be obtained if myosin is denatured before gelation is initiated. 5,34 The denaturation of myosin was possibly caused by changes in sulphydryl groups through oxidation of SH groups or disulphide interchanges. Benjakul et al35 reported a decrease in sulphydryl groups of natural actomyosin extracted from two species of bigeye snapper during iced storage. The conformational changes of myosin could be indicated by the increase in surface hydrophobicity of actomyosin during iced storage.7 Therefore the changes in myosin integrity during iced storage directly affected the gelation of surimi, From the results, pretreatment of fish before storage can be another approach to retard the denaturation of myosin during iced storage.

Changes in breaking force of surimi gel prepared from bigeye snapper stored in ice for different times. Surimi gel was prepared by incubating surimi sol Clor30min, followed by heating at 90°C for 20min. Surimi gel was also prepared by direct heating at 90°C for 20min, A1, Priancanthus tayenus whole; A2, the ded/eviscerated; B1, P macracanthus whole; B2, P macracanthus beheaded/eviscerated. Vertical bars represent standard deviation from the mination.

Fount 7. Changes in deformation of surimity get prepared from bigeye snapper stored in lice for different times. Surimity get was prepared by incubating surimity of at 20 min, followed by heating at 90 °C for 20 min. Surimity get was also prepared by direct heating at 90 °C for 20 min. A1, Priacanthus tayenus whole; A2, P macracanthus beheated/eviscerated; B1, P macracanthus whole; B2, P macracanthus beheated/eviscerated. Vertical bars represent standard deviation from the determination.

Changes in surimi gel properties

Breaking force and deformation of surimi gels prepared from both species of bigeye snapper kept in ice with different pretreatment conditions are shown in Figs 6 and 7 respectively. At death (day 0), surimi produced from P tayenus exhibited a higher breaking force than that from P macracanthus (P < 0.05). This was due to differences in the inherent properties of actomyosin. Actomyosin from P tayenus underwent aggregation via hydrophobic interaction and/or disulphide bonds to a higher extent than that from P macracanthus. Breaking force of gels decreased as the storage time increased (P < 0.05). Breaking force of all samples decreased up to 15 days of storage. When considering the gel quality of surimi produced from fish stored for up to 12 days in ice, it was found that surimi prepared from whole fish had only a slightly lower breaking force than that from beheaded/eviscerated fish at the same period of storage. However, marked differences in breaking force between surimi

Table 1. Whiteness of suriml gels from bigeye snapper during iced storage⁸

Storage time (days)	P tayenus				P macracanthus			
	Whole		Beheaded/eviscerated		Whole		Beheaded/eviscerated	
	40/90°C	90°C	40/90°C	90°C	40/90°C	90°C	40/90°C	90°C
0	77.22±0.20a	79.79±0.23a	77.22±0.20a	79.79±0.23a	74.83±0.42a	75.61±0.08a	74.83±0.42a	75.61±0.08a
3	74.81 ± 1.69b	$78.57 \pm 0.29b$	74.83 ± 0.24b	78.97 ± 0.35b	72.35±0.12b	74.50±0.08b	73.81 ± 0.95b	74.47±0.10b
6	74.07±0.11c	75.56±0.25c	74.52±0.17cd	75.21±0.17c	72.81 ± 0.35b	73.94±0.39c	72.72±0.09c	73.39±0.34c
9	73.08 ± 0.28d	74.28 ± 0.24d	74.30 ± 0.14d	75.02±0.14d	71.54±0.17c	72.10±0.08d	69.23 ± 0.24d	70.95 ± 0.52d
12	71.80±0.23e	73.04 ± 0.18e	73.56±0.10e	74.35 ± 1.02e	70.84±0.36d	71.31±0.38e	68.88±0.04d	69.23±0.32e
15	71.13±0.23f	72.21 ± 0.18f	73.00±0.18f	74.03 ± 1.53f	69.11±0.26e	70.23 ± 0.52f	68.17±0.06e	67.61±0.64f

^{*}Values are mean ± standard deviation (n=5). Values with the same letter within a column are not significantly different (P > 0.05).

induced from fish under different pretreatment matters were observed at day 15 (P < 0.05). Surimi motived from pretreated fish exhibited a much higher bridge force than that from whole fish. From the multi it was noted that pretreatment did not significantly affect the gel quality of surimi produced from the snapper stored in ice for up to 12 days. Controlly, storage time was found to be a crucial factor in making gel quality of surimi from bigeye snapper.

Brenking force of surimi produced from P tayenus terrased at a slower rate than that from P macra-At day 15, breaking force of two-step heated from P tayenus decreased to 79.6-81.3%, while but of gels from P macracanthus decreased to 11.6-73.36%, compared with the values at day 0. This was due to the fact that P macracanthus undermuch faster deterioration than P tayenus, as burved by the higher contents of TVB and TMA Fr.2). Additionally, myofibrillar proteins of P macraanthus were more prone to denaturation and degradatim than those of P tayenus, as shown by the higher content of TCA-soluble peptides (Fig 3) and lower ATPase activity respectively (Fig 5). Apart from inferior inherent property of gel formation, P *** proteins seemed to be unstable and and lost the gelling property during handling.

From the results it was noted that surimi gels supered by two-step heating had a much higher miking force than those prepared by one-step lading. Surimi from bigeye snapper exhibited the temperature setting phenomenon, probably caused by endogenous transglutaminase. Bigeye snapmuscle contained transglutaminase, which could inhibited by EDTA and N-methylmaleimide Benjakul S and Visessanguan W, unpublished). Importutaminase was also found in fish muscle and mediated the formation of cross-linked myosin heavy chain. 36,37 Large differences in breaking force between me-step and two-step heated gels were found in summi produced from P tayenus kept throughout 15 fays of iced storage, while smaller differences were observed in surimi prepared from P macracanthus, puricularly after 3 days of storage. The results implied that P macracanthus possibly possessed endogenous runsglutaminase with a lower activity and stability and/or unsuitable protein conformations for nondisulphide covalent cross-linking.

Surimi gels from P tayenus showed higher deformation than those from P macracanthus in all conditions studied (P < 0.05). Similar to the changes in breaking force, pretreatment was shown not to affect surimi gel deformation, whereas the storage time was found to be an essential factor affecting the deformation.

Whiteness is one factor determining surimi gel quality. Gel whiteness decreased markedly as the storage time increased (P < 0.05) (Table 1). Whiteness of surimi gels from P tayenus was generally higher than that of gels from P macracanthus (P < 0.05) (Table 1). During iced storage, oxidised pigments in fish muscle, particularly metmyoglobin or methaemoglobin, possibly adducted to muscle and could not be totally removed by washing. As a result, surimi gel produced from fish kept for a longer time showed some discolouration. Since myoglobin is retained by the intracellular structure,38 it most likely contributes to the appearance more than haemoglobin does during handling and storage. When comparing the effect of pretreatment on gel whiteness, surimi gels produced from beheaded/eviscerated fish had a slightly higher whiteness than those produced from whole fish. Some blood and internal organs containing various pigments were partially removed by pretreatment. As a consequence, fewer pigments remained and discolouration caused by oxidation or other chemical reactions was reduced. However, the whiteness of surimi from pretreated P macracanthus was lower than that of surimi from whole fish when fish were stored for more than 9 days (Table 1). The discrepancy was presumably related to the high protein degradation found in pretreated P macracanthus muscle. Although fish were gutted, substantial amounts of blood remained in the muscle.³⁹ Therefore protein degradation may allow liberation of haemoglobin as well as myoglobin, which are susceptible to oxidation and could also accelerate lipid oxidation. Evisceration results in exposing the belly area and cut surfaces to the air, thereby rendering them more susceptible to oxidation and discolouration. 19 Furthermore, evisceration has been known to increase lipid oxidation and the oxidation of pigments in some fish species. Oxidised

2. Expressible moisture of surimi gets from bigeye snapper during iced storage*

Storage time	P tayenus				P macracanthus			
	Whole		Beheaded/eviscerated		Whole		Beheaded/eviscerated	
	40/90°C	90°C	40/90°C	90°C	40/90°C	90°C	40/90°C	90°C
0	0.92±0.05e	0.98±0.05f	0.92±0.05e	0.98±0.05d	1.14±0.04f	1.28±0.03e	1.14±0.04e	1.28±0.030
8	1.01±0.08e	1.11±0.05e	$1.03 \pm 0.02d$	1.04 ± 0.03cd	$1.21 \pm 0.02e$	$1.35 \pm 0.06d$	1.16±0.04e	1.29 ± 0.020
€	1.13±0.09de	1.17±0.05d	1.11±0.06c	1.11±0.07c	1.29±0.01d	1.37 ± 0.02d	1.25±0.02d	1.32 ± 0.020
2	1.20±0.08c	1.25 ± 0.05c	1.12±0.07c	$1.15 \pm 0.02c$	1.45±0.05c	1.57 ± 0.02c	1.32±0.02c	1.52 ± 0.020
12	1.34±0.02b	$1.59 \pm 0.01b$	$1.29 \pm 0.03b$	1.30 ± 0.02b	1.30±0.02b	1.76±0.02b	1.55 ± 0.05b	1.70±0.04b
5	1.65 ± 0.02a	$1.89 \pm 0.01a$	1.34±0.05a	1.43±0.01a	1.43±0.04a	1.92±0.03a	1.77 ± 0.05a	1.89±0.02a

are mean \pm standard deviation (n=5). Values with the same letter within a column are not significantly different (P > 0.05).

mem proteins and lipid oxidation products would missequently bind to myofibrillar proteins, leading to the changes in whiteness. Although gels prepared by two-step heating had a higher breaking force and deformation, they showed a lower whiteness compared with those prepared by direct heating. From the results, both pretreatment and storage time directly affected the whiteness of surimi gels from both species of bigeye snapper.

Expressible drip of surimi from both species inmessed with increasing storage time of fish (P < 0.05)(Table 2). P macracanthus surimi gel generally exhinted higher expressible drip than P tayenus surimi gel. When fish were kept for a longer time, proteins were more degraded and lost their functionality, including plation as well as water-holding capacity. As a result, less water was imbibed in the gel network, leading to ligher drip. No marked effects of pretreatment on espressible drip were observed among surimi gels prepared from pretreated or whole fish stored for up to 6 days. However, pretreatment showed a marked elect on water holding in surimi gel from P tayenus mored for more than 9 days, but had no effect on from P macracanthus. This was possibly associated with the protein denaturation and degradation in P macracanthus, as indicated by the decreased Ca2+-ATPase (Fig 5) and increased TCA-soluble peptides (Fig 3). In addition, higher lipid and pigment midation of pretreated P macracanthus stored for a longer time presumably occurred, leading to the loss of motein functionality, especially water-holding capawhen comparing the gels prepared by direct trating and two-step heating, it was generally found that the two-step heating process led to lower apressible drip than the direct heating process, suggesting that more water was retained in the gel matrix. However, higher expressible drip was found in two-step heated gels of surimi produced from premested P macracanthus stored for more than 12 days. During direct heating, rapid unfolding of proteins mults in more intense coagulation. More water is pleased from the gel, and the protein dispersion ecomes very uneven.34 Generally, an increase in epressible drip in surimi gels correlated with a decrease in gel strength. Those changes became more mense with surimi produced from bigeye snapper lept in ice for a longer time.

CONCLUSION

Indomed iced storage of fish resulted in substantial decreases in gel strength and whiteness of surimi from the pecies of bigeye snapper. Beheading and electric of fish prior to storage improved storage willity of fish muscle but had no significant effect on thing ability. Loss of gel-forming ability of fish muscle during iced storage was mainly caused by ensuration of muscle proteins and to a lesser extent proteolytic degradation.

ACKNOWLEDGEMENTS

The authors would like to thank the Thailand Research Fund (project RSA/19/2544), Prince of Songkla University and the Japanese Society for the Promotion of Science (JSPS) for their financial support.

REFERENCES

- 1 Park JW and Morrissey MT, Manufacturing of surimi from light muscle fish, in Surimi and Surimi Seafood, Ed by Park JW, Marcel Dekker, New York, pp 23-58 (2000).
- 2 Kurokawa T, Kamaboko-forming ability of frozen and ice stored lizard fish. Bull Jpn Soc Sci Fish 45:1551-1555 (1979).
- 3 Lin D and Morrissey MT, Northern squawfish (Psychocheilus oregonensis) for surimi production. J Food Sci 60:1245-1247 (1995).
- 4 MacDonald GA, Lelievre J and Wilson NDC, The strength of gels prepared from washed and unwashed minces of hoki (Macreronus novaezelandiae) stored in ice. § Food Sci 55:976– 978 (1990).
- 5 An H, Peters MY and Seymour TA, Roles of endogenous enzymes in surimi gelation. Trends Food Sci Technol 7:321-327 (1996).
- 6 Suzuki T, Fish and Krill Protein. Applied Science Publishers, Barking (1981).
- 7 Benjakul S, Seymour TS, Morrissey MT and An H, Physicochemical changes in Pacific whiting muscle proteins during iced storage. J Food Sci 62:729-733 (1997).
- 8 Morrissey MT and Tan S-M, World resources for surimi, in Surimi and Surimi Seafood, Ed by Park JW, Marcel Dekker, New York, pp 1-22 (2000).
- 9 Benjakul S, Visessanguan W, Ishizaki S and Tanaka M, Differences in gelation characteristics of actomyosin from two species of bigeye snapper, Priacanthus tayenus and Pricanthus macracanthus. J Food Sci 66:1311-1318 (2000).
- 10 Ng CS, Determination of trimethylamine oxide (TMAO-N), trimethylamine (TMA-N), total volatile basic nitrogen (TVB-N) by Conway's method, in Laboratory Manual on Analytical Methods and Procedures for Fish and Fish Products. Part B-3, Ed by Hasegawa H, Marine Fisheries Research Department, Southeast Asian Fisheries Development Center, Singapore, pp 1-8 (1987).
- 11 Fiske CH and Subbarow Y, The colorimetric determination of phosphorus. J Biol Chem 66:375-400 (1925).
- 12 Morrissey MT, Wu JW, Lin DD and An H, Protease inhibitor effects on torsion measurements and autolysis of Pacific whiting surimi. J Food Sci 58:1050-1054 (1993).
- 13 Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680– 685 (1970).
- 14 Lowry OH, Rosebrough NJ, Farr AL and Randall RJ, Protein measurement with the Folin phenol reagent. § Biol Chem 193:256-275 (1951).
- 15 Fujii Y, Watanabe K and Maruyama Y, Relation between the ATP-breakdown in ice-stored Alaska pollack meat and the quality of frozen surimi. Bull Tokai Reg Fish Res Lab 75:7-11 (1973).
- 16 Ng CS, Measurement of free and expressible drips, in Laboratory Manual on Analytical Methods and Procedures for Fish and Fish Products. Part A-4, Ed by Hasegawa H, Marine Fisheries Research Department, Southeast Asian Fisheries Development Center, Singapore, pp 1-2 (1987).
- 17 Steel RGD and Torrie JH, Principles and Procedures of Statistics: a Biometrical Approach, 2nd edn, McGraw-Hill, New York (1980).
- 18 Sikorski Z, Kolakowska A and Burt JR, Postharvest biochemical and microbial changes, in Seafood: Resources, Nutritional Composition and Preservation, Ed by Sikorski ZE, CRC Press, Boca Raton, FL, pp 55-75 (1990).

- HH, Quality and quality changes in fresh fish. FAO Fish Paper 348 (1995).
- L and Huss HH, Microbial spoilage of fish and fish products. Int J Food Microbiol 33:121-137 (1996).
- Mergit PF, Quality assessment and quality control, in Fish Hading and Processing, 2nd edn, Ed by Aitken A, Mackie IM, Merrit JH and Windsor ML, HMSO, Edinburgh, p 177 (1982).
- Finham, Surrey, p 179 (1975). Fishing News Books,
- der M, Buisson DH, Scott DN and Fletcher GC, Storage of New Zealand jack mackerel (*Trachurus novaezelabdiae*) in ice: chemical, microbiological and sensory assessment. J Food Sci 49:1453-1456 (1984).
- Saujima M, Studies on the psychrotolerant bacteria in fish and shellfish. IV. Relation between the number of trimethylamine oxide-reducing psychrotrophic bacteria and their activity. Bull Jim Soc Sci Fish 39:511-518 (1973).
- shiftsh. V. The growth or viability of trimethylamine oxidereducing psychrotrophic bacteria and their activity at subzero temperatures. Bull Jpn Soc Sci Fish 40:630-635 (1974).
- Il Patoriza L, Sampedro G, Herera JJ and Cabo ML, Effect of modified atmosphere packaging on shelf-life of iced fresh hake slices. J Sci Food Agric 71:541-547 (1996).
- Tvenugopol V, Alur MD and Lewis NF, Extracellular protease from Pseudomonas marinoglutinosa: some properties and its action on fish actomyosin. F Food Sci 48:671-675 (1983).
- Bioconi L, Folco EJ, Martone CB, Trucco RE and Sanchez JJ, Fin muscle cytoskeletal network; its spatial organization and its degradation by an endogenous serine proteinase. Arch Biochem Biophys 268:203-208 (1989).
- Cepeda R, Chou E, Bracho G and Haard NF, An immunological method for measuring collagen degradation in the muscle of fish, in Advances in Fisheries Science, Technology and Biotechnology for Increased Profitability, Ed by Voigt MN and Botta JR, Technomic Publishing, Lancaster, PA, pp 487-506 (1990).

- 30 Bracho GE and Haard NF, Characterization of alkaline metalloproteinases with collagenase activity from the muscle of Pacific rockfish (Sebastes sp), in Proceedings of Joint Meeting of Atlantic Fisheries Technologists and Tropical/Subtropical Fisheries Technologists, Ed by Otwell S, Sea Grant, Gainsville, FL, pp 105-125 (1990).
- 31 Benjakul S, Visessanguan W and Leelapongwatana K, Comparative study on proteolysis of two species of bigeye snapper, Priacanthus macracanthus and P tayenus. J Sci Food Agric in review.
- 32 Kamal M, Watabe S and Hashimoto K, Postmortem changes in myofibrillar ATPase of sardine ordinary and dark muscles. Nippon Suisan Gakkaishi 57:1177-1184 (1991).
- 33 Seki N, Oogane Y and Watanabe T, Changes in ATPase activities and other properties of sardine myofibrillar proteins during ice-storage. Bull Jpn Soc Sci Fish 46:607-615 (1980).
- 34 Niwa E, Chemistry of surimi gelation, in Surimi Technology, Ed by Lanier TC and Lee CM, Marcel Dekker, New York, pp 389-427 (1992).
- 35 Benjakul S, Visessanguan W and Leelapongwatana K, Characteristics of muscle from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. J Food Biochem in press.
- 36 Seki N, Uno H, Lee N, Kimura I, Toyoda K, Fujita T and Arai K, Transglutaminase activity in Alaska pollack muscle and surimi and its reaction with myosin B. Nippon Suisan Gakkaishi 56:125-132 (1990).
- 37 Kishi H, Nozawa H and Seki N, Reactivity of muscle transglutaminase on carp myofibrils and myosin B. Nippon Suisan Gakkaishi 57:1203-1210 (1991).
- 38 Haard NF, Biochemistry and chemistry of color and color changes in seafoods, in Advances in Seafood Biochemistry, Composition and Quality, Ed by Flick GJ and Martin RE, Technomic Publishing, Lancaster, PA, pp 305-360 (1992).
- 39 Richards MP and Hultin HO, Contributions of blood and blood components to lipid oxidation in fish muscle. J Agric Food Chem 50:555-564 (2002).

Chapter 2

Proteolysis and setting phenomenon of surimi from two species of bigeye snapper, *Priancathus tayenus* and *Priancanthus macracanthus*