

รายงานโครงการวิจัยุฉบับสมบูรณ์

มาตรฐานชุดทดสอบการตอบสนองต่อสารเคมีฆ่าแมลงเชิงพฤติกรรมในยุงพาหะนำโรค

Standardization of Excito-Repellency escape chamber for mosquito behavior

โดย

รศ.ดร.ธีรภาพ เจริญวิริยะภาพ

วันที่ 30 พฤศจิกายน พ.ศ. 2547

สัญญาเลขที่ RSA/01/2545

รายงานโครงการวิจัยฉบับสมบูรณ์

มาตรฐานชุดทดสอบการตอบสนองด่อสารเคมีฆ่าแมลงเชิงพฤติกรรมในยุงพาหะนำโรค Standardization of Excito-Repellency escape chamber for mosquito behavior

โดย

รศ.ดร.ธีรภาพ เจริญวิริยะภาพ ภาควิชาก็ฏวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ บางเขน กรุงเทพ

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

กิตติกรรมประกาศ

การวิจัยครั้งนี้สำเร็จลุล่วงไปด้วยดีด้วยความร่วมมือของหลายผ่าย โดยเฉพาะ สำนักงาน สนับสนุนการวิจัย (สกว.) ที่ได้สนับสนุนเงินทุนในการทำวิจัยโครงการทุนพัฒนานักวิจัย ตามโครง การเลขที่ RSA/01/2545 โดยมีนายธีรภาพ เจริญวิริยะภาพ เป็นหัวหน้าโครงการ ซึ่งผู้วิจัยขอ ขอบคุณมา ณ โอกาสนี้ ขอขอบคุณกองการเกษตรและสหกรณ์ สำนักงานทหารพัฒนา กองบัญชา การทหารสูงสุด บ้านพุเดย ตำบลท่าเสา อำเภอไทรโยค จังหวัดกาญจนบุรี ที่อำนวยความสะดวก เรื่องที่พักและสถานที่ทำงานวิจัยในระหว่างการปฏิบัติงาน และขอขอบคุณสถาบันวิจัยและพัฒนา แห่งมหาวิทยาลัยเกษตรศาสตร์ ที่ได้ร่วมสนับสนุนเงินทุนสมทบเพื่อให้โครงการตามสัญญาเลขที่ RSA/01/2545 ดำเนินไปด้วยความราบรื่น สุดท้ายนี้ผู้วิจัยขอขอบคุณ นิสิต นักศึกษาและผู้ร่วมงาน ทุกคนที่มีส่วนร่วมทำให้งานวิจัยครั้งนี้สำเร็จไปได้ด้วยดี

Project Code: RSA/01/2545

Project Title: Standardization of Excito-Repellency escape chamber for mosquito behavior

Investigator: Theeraphap Chareonviriyaphap, Department of Entomology, Faculty of

Agriculture, Kasetsart University Bangkok

E-mail: faasthc@ku.ac.th

Project Period:3 Yrs

The objective of this present study is to complete development of tests for quantifying behavioral responses of disease vectors to insecticides using the excito-repellency test system. Seventeen test populations of mosquitoes were used for the standardization processes. Of these, nine test populations were Aedes aegypti and eight were Anopheles mosquitoes. All test populations were exposed to pyrethroids and DDT at the operational field doses. Factors influencing the excito-repellency test results were characterized. These included time of the test, temperature, humidity, holding period, age of mosquitoes, nutritional status, physiological conditions, insecticide levels, resistant vs. susceptible test populations, sources of test paper, field and laboratory test populations and contact vs. noncontact with insecticides.

All test populations of *Anopheles* showed marked contact irritancy to deltamethrin compared to paired controls and non-contact repellency trials, in controlled laboratory colonies and field-caught populations. The degree of repellency was less profound than irritancy but, in most cases, produced a significant escape response compared to paired controls. In case of *Ae. aegypti*, both field and laboratory test populations demonstrated irritancy action, not repellency function as seen in *Anopheles* mosquitoes. In this study, very interesting result was found when behavioral responses to insecticides of two species within *An. minimus* taxon were compared. *Anopheles minimus* species A showed dramatically strong repellency function whereas *An minimus* C demonstrated the irritancy actions to pythroids and DDT. This will provide a basic cue of how insecticide resistance (physiological) will occur in the mosquito populations.

In this study, seasonal abundance and blood feeding activity of *An. minimus* was also obtained. In addition, other minor factors that may influent test results were tested to compare the behavioral responses of *An. minimus*. Results are the subject of this report.

Keywords: Irritancy-Repellency Mosquitoes Insecticides Resistance

การศึกษาวิจัยครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาชุดทดสอบการสารเคมีให้ครบ กระบวนการ เพื่อใช้ทดสอบพฤติกรรมของแมลงพาหะนำโรคเมื่อมีการนำสารเคมีมาใช้ ในการควบคุม ซึ่งการพัฒนากระบวนการชุดทดสอบดังกล่าวเพื่อใช้ทดสอบการทำงาน ในการนี้ได้ใช้ยุงทั้งหมด ของสารเคมีว่าจะมีผลกระทบกับแมลงพาหะอย่างไร ประชากร (ยูงกันปล่อง 8 ประชากร ยุงลาย 7 ประชากร) เป็นดันแบบในการกำหนด มาตรฐานปัจจัยด่างๆ ของชุดทดสอบ น้ำยุงทั้ง 17 ประชากรมาทดสอบกับสารเคมีใน กลุ่มดีทีและสารไพรีทรอยด์อีกหลายชนิดที่ปัจจุบันยังคงใช้กันในพื้นที่ในการควบคุมยุง ในการทดสอบแต่ละครั้งได้หาความเหมาะสมของปัจจัยต่างๆ ที่มีผลด่อการใช้เครื่องมือ และ/หรืออาจทำให้การตอบสนองของยุงเปลี่ยนแปลงไป เช่น เวลาที่ทดสอบ อุณหภูมิ ระยะเวลาพักยุงก่อนการทดสอบ อายุของยุง สถานะภาพทางสรีระและ โภชนาการ ระดับความเข้มข้นของสารเคมีฆ่าแมลง สถานภาพการต้านทานต่อสารเคมี ของยุง กระดาษเคลือบสารเคมี ยุงจากพื้นที่/ห้องทดลอง การได้สัมผัสหรือไม่สัมผัส สารเคมี เป็นต้น ซึ่งได้ผลเรียบร้อยแล้วเพื่อกำหนดระดับความเหมาะสมของปัจจัยต่างๆ ขณะที่ทำการทดสอบพฤติกรรมการดอบสนองของสารเคมี

หลังจากกำหนดปัจจัยต่างๆ ครบแล้ว การศึกษาพบว่าสารเคมีทั้งหมดไม่ได้ฆ่ายุงที่ใช้ในการศึกษา โดยยุงกันปล่องบินหลบหนีไปหลังจากที่ได้สัมผัสกับสารเคมี มีบางส่วนของยุงกันปล่องได้หลบหนีไปก่อนที่จะสัมผัสกับสารเคมี ส่วนยุงลายทุกประชากรจะต้องสัมผัสสารเคมีก่อนที่จะหลบหนี นอกจากนี้พบว่ายุงมินิมัส เอ และ ซี มีการสนองตอบต่อสารเคมีอย่างแตกต่างกัน มินิมัสเอส่วนใหญ่หลีกหนีสารเคมีโดยไม่ได้สัมผัสกับสารเคมีเลย ขณะที่มินิมัสซีไม่หลีกหนีสารเคมีหากไม่ได้รับการสัมผัสกับสารนั้นๆ ข้อมูลเหล่านี้มีประโยชน์มากในการศึกษาการด้านทานสารเคมีของยุงพาหะในอนาคต ดังได้เห็นจากยุงลายที่ด้านทานสารเคมีอย่างมาก

นอกจากได้สร้างบรรทัดฐานในการศึกษาพฤดิกรรมต่อสารเคมีโดยใช้ชุดทดสอบ แล้วการวิจัยครั้งนี้ได้ศึกษาการกระจายตัวและการออกหาอาหารของยุงกันปล่องมินิมัส พบว่ายุงกันปล่องมินิมัสบางส่วนยังคงหากินและเกาะพักในบ้านเรือน

INTRODUCTION

One of the principal techniques of vector borne disease abatement has been through various methods of vector control to reduce transmission risk. For decades, Insecticides has been used to control vectors of disease. Today, resistance of several mosquito vectors including *Anopheles minimus* and *Aedes aegypti* to DDT and pyrethroids occurs. Concomitantly, mosquito populations in some countries have not developed resistance in spite of regular insectice of use, especially with vectors of malaria. These difference responses to insecticides have raised the issue of avoidance behavior (sometimes referred to as "behavioral resistance") having a role in disease prevention and in the suppression of insecticide resistance, especially in malaria vectors (Roberts and Andre 1994).

Avoidance of insecticides by malaria vectors has been recorded in the presence and absence of physiological resistance and the relationships, if any, between resistance and behavioral avoidance are still unclear. The failure to understand these relationships is due to a remarkable shortage of systematic and detailed studies on behavioral responses of vectors to insecticides. The contributions that insecticide resistance vice insecticide-avoidance contribute to the reemerging malaria problem are unclear.

Excito-repellency tests to study the irritant (contact) effect of insecticides on mosquitoes have been developed as far back as 1963 (WHO 1970). Investigations have been conducted on malaria vectors using modified WHO excito-repellency test boxes (Bondareva et al. 1986; Ree and Loong 1989; Pell et al. 1989). The typical chamber mimics a house miniturized, having walls, an entrance and an exit window. Unfortunately, no method for assessment of behavioral responses of mosquitoes have been fully accepted, indicating the past difficulties of conducting excito-repellency testing, data analysis and interpretation (Roberts et al. 1984; Evan 1993). Until recently, adequate methods have not been available for testing non-contact repellency (Roberts et al. 1997). Chareonviriyaphap et al. (1997), used an improved experimental escape chamber that was provided information on both contact irritability and non-contact repellency for behavioral response tests on Anopheles albimanus in laboratory and natural field conditions. However, this prototype test system was cumbersome, sometimes difficult to use, and required much time to attach the test papers onto the inner walls, especially under field To help alleviate these problems, an improved collapsible, metal excitorepellency test chamber was developed as described in Chareonviriyaphap and Aum-Aong,

2000. This test system has already been used in a study of behavioral responses of a *An. minimus* laboratory colony to DDT. Using this test system obtained highly reproducible test results (Chareonviriyaphap, et al. 2000).

As with DDT, synthetic pyrethroids also elicit behavioral responses in insects. Recently, mosquito control strategies using pyrethroid-impregnated bed nets and intradomicillary spraying with pyrethroids has been introduced to many countries including Thailand. The continuing prospect of wide-scale pyrethroid use should be a major stimulus for extensive studies on the significance of pyrethroid avoidance in Thailand. The role of pyrethroid irritability and repellency should be clearly defined for important malaria vector before large-scale programs are initiated and limited major resources are expanded.

OBJECTIVE

Presently, there are <u>no adequate standardized tests</u> for accurately for quantifying the behavioral responses of malaria vectors to insecticide sprayed house walls. The proposed research herein was to quantify vector behavioral responses to insecticides using excito-repellency test chambers. The ultimate goal was to complete of tests for measurement of behavioral responses of malaria vectors to insecticides used in vector control. The improved test systems was evaluated against level of insecticides and types of behavioral responses as measured both in the laboratory and in the field.

A regime of standardizing test procedures was conducted, as follows:

A.the accuracy of the excito-repellency test system in counting specimens escaping from test chambers was verified.

B.the relationships between escape frequency and variations in number of test specimens were defined.

C.An ambient temperature, relative humidity, the cycle of dark and light, nutritional and physiological conditions of test specimens, insecticide tested papers, different level insecticides, different populations, and length of holding periods before specimens taking off from the chamber were completely compared.

C.escape frequency between female mosquitoes released into filter paper-lined chambers and female released into chambers with the screen cylinders was measured (with prevent contact with the surface of filter paper) and,

D.the relationships of these variables and the relationship between these and insecticides used in this study were measured.

Study site. Based on preliminary surveillance on pesticide avoidance behavior in Anopheles minimus, a vector of malaria in Thailand, Ban Pu Teuy, Kanchanaburee Province was selected for a study site. This site is a perfect location for this proposed study

since all three main malana are abundance and is useful for comparative field studies, for

collecting specimens for electrophoretic analysis, for testing laboratory-based assays of

excito-repellency behavior, and for detection of insecticide resistance.

Isozyme. Specimens from field site were obtained by landing collection. We emphasized

landing collection simply because we would like to know exactly which species of An.

minimus (A and C) remains endophilic and endophagic. Polyacrylamide gel

electrophoresis will be performed on ODH following the technique of Green et al. 1991.

ODH is used as a diagnostic enzyme to separate a sibling species of An. minimus.

Physiological resistance assay: Populations of Anopheles minimus adults were exposed

for one hour to diagnostic dosages of DDT, deltamethrin and lambdacyhalothrin etc

according to the WHO protocol (World Health Organization 1981). For each test, five

cylinders (2 for the controls and 3 for the treatments) were used. Control cylinders contain

filter paper impregnated with solvent; whereas treatments contained paper impregnated with

the diagnostic concentration of insecticide in solvent. Twenty-five mosquitoes were

introduced into each cylinder for one hour. Mosquitoes were then transferred to holding

containers, and a 10% sucrose solution will be provided. Mortalities were recorded at 24

hours. Each test was replicated 3 times.

Measurement and criteria for assessing resistance status:

resistance/susceptibility was measured using the standard World Health Organization

susceptibility test procedures which were a more or less standardized and precise method

of measuring mainly field materials. In use of discriminating dosages, the test results had

been classified and reconfirmed on the F1 generation as:

A.>90% mortalities: susceptible

50-90% mortalities:intermediate,and

>50%mortlaities: resistant

' Previous work showed both endophilic (endophagic) and exophilic (exophagic) of An. minimus

8

<u>Excloto-repellency test</u>: A standardizing test procedures was conducted as follows:

- 1. verify the accuracy of counts of specimens taking off from test chambers.
- . 2. define the relationships and interactions between numbers escaping and variations in: (a) number of test specimens, (b) temperature, (c) relative humidity, (d) a cycle of dark and light period, (e) nutritional state and physiological condition of test specimens, (f) mosquito species and (g) lengths of holding period before specimens are allowed to escape test chambers.
- compare the escape patterns of female releases in filter paper-lined chambers with females released in chambers with the screen cylinders (with prevent contact with the surface of filter paper).
- 4. determine the relationships of variables listed in 1,2 and 3 and variable doses of insecticides used in malaria control program.
- In collaboration with the Department of Biostatistic, Faculty of Liberal Arts and Science, the preliminary data to evaluate various statistical treatments for the bioassay data was used.

Only An. minimus females was used in excito-repellency tests. Each test was replicated at least 4 times. To fulfill the goals of this research, test was performed to compare insecticides used in malaria control program, different concentrations of insecticides, insecticide resistant versus insecticide susceptible populations, colony versus field-caught populations, insecticide contact versus non-contact, and short term (30 minutes) versus long term(four hours) exposure etc.

Observations on mortality of test populations were made immediately after each test was compared, i.e., the number of dead specimens inside the exposure chamber was recorded. Additionally, test specimens collected from the exposure chamber were held separately for observations on 24 hour mortalities.

We used the tife table method, a survival analysis approach, to estimate mosquito escape rates (or rate of mosquitoes staying in the chambers) and then compare differences in mosquito escape among populations, insecticides and concentrations (doses) of insecticides). With this method, we estimated the mosquito escape rate one-minute intervals. We treated mosquitoes that escaped as "deaths" and those remaining in the exposure chamber as "survivals". The time in minutes for 50% and 90% of the test population to escape was estimated with the life table method and these estimates were used as the "escape time" summary statistics (ET50 and ET90).

MATERIALS

AN EXCITO REPELLENCY ESCAPE CHAMBER SYSTEM (ERECS)

Four ERECS were used for a complete development of tests for quantifying behavioral responses of malaria vectors to insecticides. Standardized method was included as described in Method and Experimental Design Section. Today, there are no adequate standardized tests for quantifying the behavioral responses of malaria vectors to insecticide sprayed house walls. Another component of the proposed research was to continue developing and evaluating tests for quantifying vector responses to insecticides. The test systems were evaluated against level and types of behavioral responses measured both in the laboratory and in the field. This ERECS system was developed by PI using the Thailand Research Fund (TRF) grant (PDF 67/2540).

MOSQUITO POPULATIONS

1. Field populations: Anopheles minimus was chosen as the test species as it is one of the most important malaria vector in Thailand. Based on our previous work, in addition, An. minimus, is endophagous, and anthrophilic, and thus is likely to come into contact with DDT and pythrethroids used in bed net impregnation and intradomicillary spraying. Anopheles minimus populations will be obtained from landing collection near a slow running stream of Ban PuTuey, Ta Soa County, Ti Yok Nai District, Kanchanaburee Province, western Thailand, and Chumporn Province, south of Thailand. Anopeles minimus populatiom from Mea Sot was also tested as a compared field species.

2.Laboratory colony: This colony has been maintained in the laboratory since 1994. It was originally collected from human landing collection in Prae Province, north of Thailand in 1994. Subsequently, it has been maintained in the laboratory-controlled condition at the Malaria Division, Department of Communicable Disease Control (CDC), Ministry of Public Health, Nontaburee Thailand. The colony was received from the Malaria Division (CDC) and is currently maintained in an insectary at the Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.

3. Aedes aegypti field and laboratory populations. Aedes aegypti populations were used for standardization processes. Six field populations, three from Thailand and three from Indonesia, and 3 laboratories were used for these analysis.

INSECTICIDES

- 1.DDT (Dichloro-diphenyl-trichloroethane) (99% purity). This chemical will be obtained through World Health Organization (WHO), Penang Malaysia,
- 2.Deltamethrin [(S)-a cyano-3-phenoxybenzyl (IR)-cis-trans-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylate]. This chemical will be obtained from AgrEvo Environmental Health (UK),
- 3.Lambdacyhalothrin:(+)-cyano-3-phenoxybenzyl(+)cis-trans-3(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate. This chemical will also be obtained from Agr Evo Environmental Health (UK), and
- 4. some other pyrethroids (depending upon availability)

WORLD HEALTH ORGANIZATION TEST KITS

The World Health Organization Susceptibility Test Assay will be purchased from WHO, Geneva, Switzerland. In order to fulfill the goal, 4 sets of kits will be ordered thru Vector Biology Research Unit, Sains University, Penang, Malaysia.

RESULTS (see attached manuscripts)

- 1. Factors tested (สรุปแยกดามปัจจัยดูรายละเอียดเพิ่มเติมใน manuscripts ที่แนบมา)
 - 1. Temperature

 เปรียบเทียบที่ 27[°]C และ 32 [°]C พฤติกรรมการสนองตอบต่อสารเคมีจะเร็ว

 ขึ้นและซุดควบคุมมีการ alert มากขึ้น เมื่อเทียบกับการทดสอบที่อุณหภูมิต่ำ
 - Humidity
 ความซึ้นที่มากกว่า 75% เหมาะที่สุดในการทดสอบพฤดิกรรมการหลีกหน็ต่อ สารเคมี ในการศึกษาครั้งนี้จำเป็นต้องศึกษารายละเอียดเพิ่มเดิม เนื่องจากมี ปัญหาจำนวนยุงที่ใช้ทดสอบ
 - Populations

Laboratory populations
จำกการศึกษาพบว่ายุงทุกกลุ่มประชากรแสดงพฤติกรรมหลีกหนีสารเคมีฆ่า
แมลงได้อย่างดี ซึ่งความรุนแรงของการแสดงออกขึ้นอยู่กับลักษณะเฉพาะ
ของประชากรนั้นๆ

Field populations จากการศึกษาพบว่ายุงทุกกลุ่มประชากรแสดงพฤติกรรมหลีกหนีสารเคมีฆ่า แมลงได้อย่างดี

- Holding period
 จากการศึกษานำยุง (ทั้งในพื้นที่และจากห้องทดลอง) มาพักไว้ 0 4 8 12 24
 ชั่วโมง พบว่า 4 ชั่วโมง ก่อนการทดลองจะให้ผลการทดลองที่ดีที่สุด
- 5. Chemicals
 สารเคมีที่ใช้ (ดีดีที่ และ ไพรีทรอยด์) มีฤทธิ์ในการขับไล่มากกว่าฆ่ายุง ซึ่ง
 ความรุนแรงของสารเคมีขึ้นอยู่กับสารเคมีชนิดนั้น ๆ ได้ทดสอบ deltamethrin,
 permethrin, resmethrin, cypermethrin, lambdacyholothrin, alpha
 cypermethrin, biomethrin DDT
- Nutritional condition

เปรียบเทียบ unfed sugarfed early bloodfed late bloodfed parous nulliparous พบว่าการนำยุง unfed ที่งดการให้อาหารอย่างน้อย 6 ชั่วโมงจะ ให้ผลการทดลองที่เสมอตันเสมอปลายมากที่สุด

- 7. Age composition
 อายุของยุงมีอิทธิพลต่อการสนองดอบต่อสารเคมีที่ใช้ในการศึกษาทดลอง
 ทั้งสิ้น พบว่ายุงอายุ 3-5 วัน เหมาะที่จะนำมาใช้ในการศึกษามากที่สุด
- Time of the test
 ได้เปรียบเทียบเวลา 0600-2000 น. พบว่า การทดลองในช่วง 0800-1600 น จะให้ผลไม่แตกต่างกัน
- 9. Resistant mosquitoes vs. Susceptible mosquitoes จากการศึกษาไม่พบความแดกด่างการตอบสนองต่อสารเคมีระหว่างยุงที่ ด้านทานต่อสารเคมีและไม่ต้านทานต่อสารเคมี
- 10. Level of Insecticide
 พบว่าความเข้มข้นของสารเคมีมีอิทธิพลต่อพฤติกรรมการสนองตอบการหลีก
 หนี ระดับความเข้มขันมีอิทธิพลต่อการขับไล หากมากเกินไปจะได้มีฤทธิ์ใน
 การขับไล่
- 11. Contact vs. noncontact
 พบว่ายุงกันปล่องได้หลีกหนีสารเคมีจากทั้ง contact และ noncontact แต่การ
 ตอบสนองใน contact test มีมากกว่า ยกเว้น ยุง Anopheles minimus
 species A จากอำเภอแม่สอด

2. Percent mortalities (indicating of resistance) to 3 compounds in field mosquito populations according WHO protocol (1992)

Populations	DDT	Deltamethrin	Lambdacyhalothrin	
An. minimus A	0	0	0	
Tak				
An. minimus C	0	0	0	
Kanchanaburi				
An. minimus A	0	0	0	
Petchaboon				
An. dirus	0	0	0	
Kanchanaburi				
An. maculatus	0	0	0	
Kanchanaburi				
An. swadiwongporni	0	0	0	
Kanchanaburi				
Ae. aegypti	6	77	67	
Bangkok				
Ae. aegypti	7	64	60	
Pathomtani				
Ae. aegypti	12	68	54	
Nontaburi				
Ae. aegypti	7	65	76	
Kanchanaburi				

3. Excito repellency test (see attached manuscripts for more details)

Discussion (see attached manuscripts)

ช่วนนี้ได้ discuss ในรายละเอียดไว้ใน manuscript ที่ได้แนบมาด้วยแล้ว

References

- Bondareva NI, Artem'ev MM, Gracheva GV. 1986. Susceptibility and irritability caused by insecticides to malaria mosquitoes in USSR. Part 1. Anopheles pulcherrimus. Med Parazitol Parazit Bolezni 6: 52-55.
- Chareonviriyaphap T, Roberts DR, Andre RG, Harlan HH, Manguin S, Bangs MJ. 1997.

 Pesticide avoidance behavior in *Anopheles albimanus*, a malaria vector in the Americas. *J Amer Mosg Control Assoc* 13(2) 171-183.
- Chareonviriyaphap T, Aum-Aong B. 2000. Improved excito-repellency escape chamber for behavioral tests on mosquitoes. *Mekong Malaria Forum* 5: 82-86.
- Evans, R.G. 1993. Laboratory evaluation of the irritancy of bendiocarb, lambdacyhalothrin, and DDT to *Anopheles gambiae*. *J Am Mosq Control Assoc* 9: 285-293.
- Mantel N, Haenzel W. 1959. Statistic aspects of the analysis of data from retrospective studies of diseases. *J Natl Cancer Inst* 22: 719-748.
- Ree HI, Loong KP. 1989. Irritability of Anopheles farauti, Anopheles maculatus, and Culex quinquefasciatus to permethrin. Jpn J Sanit Zool 40: 47-51.
- Roberts DR, Alecrim WD, Tavares AM, Mc. Neil KM. 1984. Influence of physiological condition on the behavioral response of *Anopheles darlingi* to DDT. *Mosq News* 4: 357-361.
- Roberts DR, Andre RG. 1994. Insecticide resistant issues in vectors. *Amer J Trop Med Hyg* 50 (Suppl): 21-34.
- WHO 1970. Insecticide resistance and vector control (17th report of WHO Expert Committee on Insecticides). Instruction for determining the irritability of adult mosquitoes. WHO Technical Rep. Ser 433: 158-163.

Output จากโครงการที่ได้รับทุนจาก สกว.

- 1. Chareonviriyaphap, T., Parbaripai, A. and S. Sungvornyothrin. 2002. An improved excitorepellency escape test system. J. Vector Ecology 27(2) (250-225).
- 2. Charconviriyaphap T, Prabaripai A, Bangs MJ, Aum Aung B 2003. Sesonal abundance and blood feeding activity of *Anopheles minimus* Theobald (Diptera: Culicidae) in Thailand. *J. Med. Entomol.* 40(6) 876-881.
- 3. Chareonviriyaphap T, Parbaripai A, Bangs MJ. 2004. Excito-repellency of deltamethrin on the malaria vectors, Anopheles minimus, Anopheles dirus, Anopheles swadiwongporni and Anopheles maculatus in Thailand. J. Amer. Mosq. Control Assoc. 20(1) 45-54.
- 4. Kong Mee M, Parbaripai A, Akraratanakul P, Bangs MJ, Chareonviriyaphap T. 2004. Behavioral responses of *Aedes aegypti* (Diptera: Culicidae) exposed to deltamethrin and possible implications for disease control. *J. Med. Entomol.* 41(6) 1155-1168. (correspondence author)

กำลังคำเนินการ (attached manuscripts)

- 1. Pothikasikorn J, Chareonvirlyaphap T. Differences in behavioral responses to insecticides between two species in *Anopheles minimus* taxon. *Amer. J. Trop. Med. Hyg.* (Preparation: correspondence author)
- 2. Chareonviriyaphap T. Standardization method for an excito-repellency test system for behavioral tests in mosquito vectors. J. Vec. Ecol. (Preparation: correspondence author)

2. การนำผลประโยชน์งานวิจัยไปใช้

- Platform presentation on excito-repellency at the 2002 American Mosquito Control Association, Arizona 2-6 March 2002 USA.
- Platform presentation on behavioral responses of malaria vectors by DDT and deltamethrin in Thailand. American Mosquito Control Association, Minnesota 4-10 April 2003 USA.
- Poster presentation. Effect of nutritional and physiological status of Aedes aegypti, on behavioral responses to ditamethrin
- Lecture to Staff of Malaria Division and Vector Borne Disease Zone (1-6) on "AN IMPROVEMENT ON VECTOR CONTROL-CHEMICAL AND BEHAVIRORAL RELATIONSHIP" 6 พฤษภาคม 2545 ภูเก็ต

- 5. ได้ร่วมมือกับหน่วยงานต่างประเทศในประเทศฟิลิปปินส์ ประเทศอินโดนีเซีย และ สหรัฐอเมริกา ทดสอบความเป็นไปได้ของการใช้ excito-repellecy test system กับ ยุงและแมลงพาหะหลายชนิด โดยการทดสอบนี้ได้เน้นที่ความสัมพันธ์ระหว่าง สารเคมีและพฤติกรรม (Chemical/behavioral relationship) ที่ได้ประดิษฐ์ขึ้นที่ ประเทศไทย
- Lecture to Staff of Malaria Division and Vector Borne Disease Zone (1-6) on "Insecticide Resistance on Malaria and Dengue Vectors" 29 มิถุนายน 2547 โรงแรมเชียงใหม่ภูคำ เชียงใหม่
- International Workshop on Excito-Repellency Test System for Mosquito Vector in Thailand at Kasetsart University Bangkok Thailand. 20-23 September 2004.

3. ผลงานวิชาการตีพิพม์ในวารสารในประเทศไทย

- 1.อัจฉริยา ปราบอริพ่าย และ ธีรภาพ เจริญวิริยภาพ 2544. ยุงพาหะนำ โรคมาลาเรียและสถานภาพการ กินเลือคของยุง กันปล่อง Anopheles minimus อำเภอไทรโยค จังหวัดกาญจนุบุรี วารสารโรคติดต่อ กระทรวงสาธารณสุข 26 (1): 61-67.
- ราบอริฟาย และคณะ ผลของอุณหภูมิต่อพฤติกรรมการหลีกหนีสารเดลตร้าเมทธริน และดีดีที่ในยุงกันปล่องมินิมัส วารสารโรคติดต่อ (submitted)
- 2. อัจฉริยา ปราบอริพ่าย และคณะ พฤติกรรมการหลีกหนีของยุงพาหะนำโรคมาลาเรียมินิมัสต่อ สารเดลตร้าเมทริน วารสารกีฏวิทยาและสัตววิทยา (submitted)

ABSTRACT

Although several evidences support the existence of behavioral responses of insecticides by malaria vectors worldwide, no standardized test method has yet been available. This study attempts to standardize the test system using an improved excito-repellency test chamber, as described by Chareonviriyaphap (1999), by defining the relationships between number of escaping and various variables using laboratory colony of <u>Anopheles minimus</u> mosquitoes. Those variables include biological conditions of mosquitoes i.e. nutritional and physiological states of mosquitoes, and environmental factors such as times of test, temperature and humidity against 3 compounds. Results indicated that variables tested influents the test results differently as described herein.

There was statistically significant in escaping when times of test were compared (P<0.05). Test performed in the morning is recommended due to a consistency of test results. Responses to insecticides by young mosquitoes are higher than the old ones. However, there was no statistically different in escape pattern between young and old female mosquitoes. No statictical significance was found in escape pattern under various temperature and humidity tested from all 3 compounds (P>0.05). Obvious responses to DDT and 2 synthetic pyrethroids by mosquitoes were observed when unfed mosquitoes were compared to the others, sugar fed, early blood fed, late blood fed and gravid (P<0.05). We conclude that both biological conditions of mosquitoes and environmental factors effect the test results. Therefore, careful and intentional monitoring should be aware. Datails are included herein.

INTRODUCTON

Although behavioral responses of insecticides by malaria vector remains enigma for years, several reports firmly supported the existence of behavioral responses in malaria vectors (Spark et al. 1989). In the past, behavioral responses have been normally overlooked in national malaria control programs, with focusing exclusively on biochemical (toxicological) responses to insecticides. Today, the development of insecticide resistance in insect pests and disease vectors occurs in some countries, but it has been very limited in many areas in spite of an extensive use of chemicals to control insect pests and disease vectors (Roberts and Andre, 1994; Chareonviriyaphap et al. 1997). This phenomena suggests that behavioral avoidance could be a critical espect in effective reduction of human-vector contact than toxicology (Roberts et al. pers comm).

Assays for evaluating behavioral responses of insecticides by malaria vectors have been progressively reviewed (Roberts et al. 1997 and Rutledge et al. 1999). Most tests in the past were done using modified WHO excito-repellency test box (Bondareva et al., 1986, Ree & Loong, 1989, Pell et al., 1989, Quinones & Suarez, 1989 and Rutledge et al., 1999) and do not discriminate between contact and noncontact conditions. All tests rely exclusively on the concept of the responses of malaria vectors to insecticides only after physical contact with the chemical insecticides and this concept is prejudicial and unrealistic (Roberts et al. 1997). Furthermore, a qualified and accepted method for behavioral responses by malaria vectors has never been available.

Method of excito-repellency study including testing, analyzing and interpreting was not totally accepted. (Roberts et al. 1984, Evan 1993 and Chareonviriyaphap et al. 1997), compounding difficulty of analyzing and interpreting test data. Recently, Roberts et al. (1997) proposed a valuable test system to discriminate between contact irritancy and noncantact repellency and used a survival analysis approach to estimate mosquito escape rate from chamber. The test system was used by Chareonviriyaphap et al. (1997) and, subsequently by Bangs et al. (submitted). Unfortunately, this test system was cumbersome, and required much time to attach the test papers, especially in the field condition. Chareonviriyaphap et al. (1999) developed an improved collapsible, metal excito-repellency test chamber for behavioral tests on mosquitoes. But, little is

known about standardizing the test chamber system against various parameters that might influent the test results.

The objective of this study is to standardize the test system for quantifying the behavioral responses of malaria vectors to insecticides. This is conducted by defining the series of the relationships between numbers escaping from test chamber and variations in some different environmental factors such as temperature, humidity and physiological and nutritional states of mosquitoes against those variables under laboratory-controlled conditions. The results are the subject of this report.

MATERIALS AND METHODS

Anopheles minimus test populations:

Mosquito colony. This colony has been maintained in the labolatory for at least 5 years. It was originally collected from human biting collection in Prae Province, north of Thailand in 1993. Subsequently, it was maintained in laboratory-controlled conditions at the Malaria Division, Department of Communicable Disease Control (CDC), Ministry of Public Health, Nontaburi 11000 THAILAND. The colony was received from CDC and was raised in the insectary at the Division of Biology, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsean Campus, Nakhon Pathorn 73140 Thailand in 1998. This colony was completely susceptible to DDT, delatmethrin and lambdacyhalothrin.

Mosquito rearing:

Anopheles minimus colony was reared following the method of Chareonviriyaphap et al. (1997), with only minor modification. All life stages were maintained under the insectary controlled condition (25±5°C and 80±10% relative humidity) at the Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsean Campus, Nakhon Pathom 73140 Thailand. Adults were provided cotton pads soaked with 10% sugar solution from the day of emergence and adults were maintained in the 12x12x12-in. screened cage. Female mosquitoes were permitted to have a human blood meal on the fourth day post-emergence. Two days post blood feeding, oviposition dishes were placed in the cage with the gravid females.

Insecticide papers.

Test papers (27.5x35.5 cm²) were impregnated, based on WHO diagnostic doses, with 0.025% deltametrin and 0.1% lambda-cyhalothrin. In the case of DDT, field rate at 2 g/m²DDT was used. DDT and deltamethrin impregnated papers were supported by Division of Tropical Public Health, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland and those received were prepared according to World Health Organization (WHO) specification. 0.1% Lambda-cyhalothrin papers were purchased from WHO, Vector

Control Unit, Penang, Malaysia. All papers were treated at the rate of 2.75 ml of the insecticide solution per 180 cm².

Test Parameters

1. Physiological age : 3-5 days-old female mosquitoes vs. 7-10 days-old female

mosquitoes

2. Times of test : (0500-0730, 0830-1100, 1300-1630 and 1800-2030)

3. Insecticides : 2 g/m²DDT, 0.1%deltamethrin, 0.05%lambda-cyhalothrin

4. Nuititional stages : Unfed, sugar fed, early blood fed, late blood fed and gravid

5. Temperature : 20-24°C, 25-29°C and 30-36°C

6. Humidity : 40-60%, 61-80%, and >80%

Behavioral tests:

The test system used in this study was collapsible as described by Chareonviriyaphap and Ratanstham, (1999). A full test required 4 chambers, a pair of treatment chamber and a pair of control chamber. Tests were performed as described in the recent publication of Chareonviriyaphap et al. (1997) with some modifications.

Data analysis

Survival analysis method was used for excito-repellency data as a method of choice (Chareonviriyaphap et al. 1997). With this method, we can minimize the loss of useful information and are able to estimate the mosquito escape rate at 1-min interval. The log-rank method was used to compare pattern of escape behavior (Mantel and Haenzel 1959). The methods of analyzing excito-repellency data has been recently described by Roberts et al. (1997).

RESULTS

The excito-repellency test system was standardized by defining the series of the relationships between numbers escaping from test chamber and variations in an ambient temperature, relative humidity and nutritional and physiological states of mosquitoes under laboratory controlled-condition against 3 currently used insecticides in national malaria control program in Thailand, namely DDT, deltamethrin and lambda-cyhalothrin (Tables 1-6 and Figures 1-8).

This finding indicated that escape patterns of Anopheles minimus from the contact trial to all 3 chemical insecticides was considerably higher than those from the control and noncontact, regardless of physiological and nutritional conditions of the test populations. Significant differences in escape patterns were found, in all cases, when noncontact trial was compared to the controls. We also found that high number of gravid females escaped from the control chambers for all 3 compounds. In addition, higher number of mosquitoes took off from the controls when the test was performed in the late evening. There is no statistically significant in extremes temperature and humidity. Low mortality of escape mosquitoes was observed, in all cases, as indicated in Tables 1-6. In brief, nutritional conditions of mosquitoes and some environmental factors, to a certain extent, affect mosquito responses to insecticides tested.

Table 1 showed mortalities of 2 test populations, 3-5 days-old and 7-10 days-old test populations, after a 24-h holding period from contact and noncontact trials. In contact trial, percent mortality of escape and nonescape specimens from 2 test populations was very low (<10%) from all 3 compounds. High percent mortality was found in nonescape specimens of 7-10 days-old test specimens when tested against lambdacyhalothrin (100%) and deltamethrin (55%). Deltamethrin (>90%) produced more number of escaping from 2 test populations, followed by Lambdacyhalothrin (>80%) and DDT (72%). In contrast, low number of specimens escaped from the controls for all 3 compounds. In noncontact trial, percent mortality of escape and nonescape of 2 test populations was also low (<9% for the escape and <3% for nonescape) (Table 1). Higher number of take off mosquitoes was observed in the chamber treated with lambdacyhalothrin (45% for 7-10 days-old mosquitoes and 26% for 3-5 days-old mosquitoes), followed by deltamethrin (39% for 7-10 days-old mosquitoes and 24% for 3-5 days-old

mosquitoes) and DDT (21% for 7-10 days-old mosquitoes and 23% for 3-5 days-old mosquitoes. Low percent mortalities were found in all the control trials of 2 test populations.

Mortalities of unfed females, at 4 different times of test, after a 24-h holding period from contact and noncontact trials are given in Table 2. Again, with all 3 compounds, low percent mortalities (<10%) of escape and nonescape mosquitoes from contact, noncontact and 2 controls were observed, except nonescape specimens from contact trial with deltamethrin (100%) of population tested in the afternoon (1300-1530) and lambdacyhalothrin (46.7%) of population tested in the morning (0800-1130). Lambda-cyhalothrin and deltamethrin produce higher number of escaping than DDT does in all cases. Perfect escape (100%) from the chamber was observed in contact trial with lambdacyhalothrin in the afternoon test (1300-1530 pm). Interestingly, in contact trial, higher escape specimens were oberved in the control in the morning test, 0800-1130 am, compared with those in the afternoon, 1300-1530, of all 3 compounds. Due to shortage of mosquito specimens, no test was performed during 0500-0730 am and 1800-2000 pm.

Mortalities of unfed females, performed at different temperature, after a 24-h holding period from contact and noncontact trials are given in Table 3. Overall mortalities were very low as seen in contact, noncontact and control of escape and nonescape mosquitoes. In contact trial, lambdacyhalothrin produced higher escape specimens almost 100% when temperature is between 25-36 °C. However, mortalities after 24-h holding period were higher in the tests conducted at higher temperature. In contact trial, higher number of mosquitoes takes off, in all cases, in the chambers treated with deltamethrin and lambdacyhalothrin than those with DDT.

Mortalities of unfed females, performed at different humidity, after a 24-h holding period from contact and noncontact trials are given in Table 4. In contact trial, low mortality was seen in contact, noncontact and 2 controls of escape and nonescape mosquitoes. However, mortalities after 24-h post-treatment were higher in the tests conducted at extremely low humidity. Number of escape mosquitoes is more likely to be related to percent humidity for all 3 compounds. In the case of DDT, 64%, 87% and 75% escaped from the chamber tested at 40-60%, 61-80% and >80%, respectively. For

Lambdacyhalothrin, 100% of mosquitoes escaped from the chamber when tested at 80% relative humidity. In noncontact trial, percent mortalities from escape, nonescape and control trials were also low as indicated in Table 4. Higher mortalities of escaped and nonescaped mosquitoes were observed in the tests conducted at lower percent humidity.

Tables 6 and 7 disclosed the escape pattern in different nutritional states of female An. minimus in contact and noncontact trials. In contact trial with DDT, low percent mortality was observed in escape and nonescape specimens. With deltamethrin in contact trial, percent mortality of nonescape unfed and late blood fed were 33.6 and 18.2%. With lambda-cyhalothrin, comparatively high percent mortality was found in unfed (87.5%), sugarfed (25.8%), early blood fed (90%), late blood fed (48.3%) and gravid (61.5%) of nonescape mosquito tested. In noncontact trial with all 3 compounds, percent mortality was very low in escape and nonescape mosquitoes at different nutritional states.

Multiple comparisons of escape patterns of each variable tested in contact, noncontact and control trials against 3 compounds are given in Tables 7 and 8. The patterns of escape responses were tested with the log rank method and significance was determined by the 0.05 level of probability. In contact trial with DDT, deltamethrin and lambdacyhalothin, significant differences in escape patterns were found 1) when unfed compared to the other nutritional status 2) when test population conducted at 1800-2030 pm was compared with the other test times (P>0.05). In noncontact trial with DDT, deltamethrin and lambdacyhalothrin, mark differences in escape patterns were found when unfed was compared with the other nutritional sates and 2) when test population conducted at 1800-2030 pm was compared with the other nutritional sates and 2) when test

Figures 1-8 demonstrate the proportions of mosquitoes remaining in the exposure chambers under different physiological and nutritional states of mosquitoes including environmental factors such as temperature, humidity and times of test. These proportions are used to develop patterns of escape rates and are indicative of escape probabilities between contact and noncontact (Fig 1), contact and control (Figs 2-7), and noncontact and control trials (Fig 8) with laboratory colonized <u>An. minimus</u> population.

There were significant differences in escape patterns for all 3 compounds when contact trials were compared with control and noncontact trials (P<0.05). In contact trial, escape rate was higher in lambdacyhalothrin compared with DDT and deltamethrin (not illustrated) as seen in Figure 1(P<0.05). With all 3 compounds, escape rates of younger test populations in contact and noncontact trials was higher than those from the older test populations as shown in Figure 2 (deltamethrin was not illustrated) (P<0.05). significant differences were found in escape patterns when young and old populations were compared (P>0.05). Rapid escape responses in contact and noncontact (not illustrated) trials were observed with those conducted in the afternoon (1300-1532) and morning (0800-1130) tests compared with early morning (0500-0730) and late evening (1800-2030) (Figure 3). Significant differences were seen when the afternoon test (1300-1500) was compared to the others. Higher number of female mosquitoes escaped from the control chambers, of all cases, when tests were performed in the late evening. especially 0700 pm. More escape responses in contact trial were observed in female mosquitoes tested at higher temperature compared with the lower temperature (Figure 4). With deltamethrin, similar escape patterns in temperature differences were seen (not illustrated). However, no significant differences were found in all 3 compounds (P<0.05). The patterns of escaping females from contact and control trials under different humidity were similar to those of temperature (Figure 5). Dramatic escape responses of female mosquitoes in contact trials were observed in gravid females compared with the other nutritional states for lambdacyhalothrin (Figure 6). escape patterns were seen in both DDT and deltamethrin (not illustrated). Responses of sugar-fed female mosquitoes in both contact and noncontact trials for 3 compunds were Significant contact irritancy was seen when gravid females were comparatively low. compared to all the other nutritional states for all 3 compounds (P<0.05). Significance in the escape patterns of female mosquitoes to DDT, deltamethrin and lambdacyhalctnrin in noncontact trials was observed when compared to the controls (P<0.05) (Figure 7).

DISCUSSION

ON THE PROCESS

ACKNOWLEDGEMENT

Authors would like to thank Malaria Division, Comunicable Disease Control (CDC), Ministry of Public Health for providing the <u>Anopheles minimus</u> mosquito colony. We also Ms. Atchareeya Praparipay of Division of Biostatistics, Faculty of Liberal Arts and Science, Kasetsart University, Kampheangsean Campus, Nakhon Pathom, Thailand for her assistance in data analysis. We would like to thank Dr. Roberts of the Uniformed Services University (USUHS) for providing papers impregnated with DDT and Deltamethrin. This project was funded in full by Thai Research Fund (TRF).

REFERENCES CITED (Related workd for discussion)

- Bondareva, N.L., Artem'ev, M.M. & Gracheva, G.V. 1986. Susceptibility and irritability caused by insecticides to malaria mosquitoes in the USSR. Part 1. <u>Anopheles pulcherrimus</u>. Medit. Parazitol. Parazit. Bolezni 6: 52-55.
- Chareonviriyaphap, T., Roberts, D.R., Andre, R.G., Harlan, H. and Bangs, M.J. 1997.

 Pesticide avoidance behavior in <u>Anopheles albimanus</u> Wiedemann. Amer. J. Mosq. Con. Assoc. 13 (2).
- Chareonviriyaphap, T. and Rattanatham, S. 1999. An improved excito-repellency escape chamber for behavioral test in mosquitoes. Southeast Asian J. Trop. Med. Public Health.
- Evan, R.G. 1993. Laboratory evaluation of the irritancy of bendiocarb. lambdacyhalothrin, and DDT to <u>Anopheles gambiae</u>. J. Am. Mosq. Control Assoc. 9: 285-293.
- Pell, J.K., Spinney, M.A., & Ward, K.J. 1989. Observations on the behavior of apult Anopheles gambiae encountering residual deposits of lambda-cyhalocorin compared with the other major classes. Fourth Annu: Conf. Soc. Vector Eco. Eur. Region 18 pp.
- Quinones, M.L. & Suarez, M.F. 1989. Irritability to DDT of natural populations of the primary malaria vectors in Colombia. J. Am. Mosq. Control Assoc. 5: 56-59.
- Ree, H.I. & Loong, K.P. 1989. Irritability of <u>Anopheles farauri</u>, <u>Anopheles maculatus</u>, and <u>Culex quinquefasciatus to permethrin</u>. Jap. J. Sanit. Zool. 40: 47-51.
- Roberts, D.R., Chareonviriyaphap, T., Harlan, H. H. and P. Hshieh. 1997. Methods for testing and analyzing excito-repellency responses of malaria vectors to insecticides. Amer. J. Mosq. Con. Assoc. 13 (1) 13-17.
- Roberts, D.R., Alecrim, W.D., Tavares, A.M. & Mc Neill, K.M. 1984. Influence of physiological condition on the behavioral response of <u>Anopheles darlingi</u> to DDT. Mosq. News 4: 357-361.
- Roberts, D.R. and Andre, R.G. 1994. Insecticide resistance issues in vectors. Am. J. Trop. Med. Hyg. 50 (Suppl.): 21-34.

Rutledge, L.C., Echana, N.M. and Gupta, R.K. 1999. Responses of male and female mosquitoes to repellents in the World Health Organization insecticioe eritability test system. J. Amer. Mos. Control. Assoc. 15(1): 60-64.

Spark et al. 1989.

TABLES and FIGURES

- Table 1. Mortalities of unfed <u>Anopheles minimus</u> females after a 24-h holding period following exposures in contact and control trials of excito-repellency tests.
- Table 2. Mortalities of 3-5 unfed <u>Anopheles minimus</u> females at different test times after a 24-h holding period following exposures in contact and noncontact trials of excito-repellency tests.
- Table 3. Mortalities of 3-5 days-old unfed <u>Anopheles minimus</u> females tested at different temperature—after a 24-h holding period following exposures in contact and noncontact trials of excito-repellency tests.
- Table 4. Mortalities of 3-5 days-old unfed <u>Anopheles minimus</u> females tested at different humidity after a 24-h holding period following exposures in contact and noncontact trials of excito-repellency tests.
- Table 5. Mortalities of unfed, sugar fed, early blood fed, late blood fed and gravid

 Anopheles minimus females after a 24-h holding period following exposures in contact trials of excito-repellency tests.
- Table 6. Mortalities of unfed, sugar fed, early blood fed, late blood fed and gravid

 Anopheles minimus females after a 24-h holding period following exposures in noncontact trials of excito-repellency tests.
- Table 7. Comparison of escape patterns (in excito-repellency test) of different nutritional stages, ages, times of test, temperatures and humidity by insecticides for laboratory <u>Anopheles minimus</u> colony in contact trials
- Table 8. Comparison of escape patterns (in excito-repellency test) of different nutritional stages, ages, times of test, temperatures and humidity by insecticides for laboratory <u>Anopheles minimus</u> colony in noncontact trials
- Figure 1. Proportions of 3-5 days-old unfed female <u>Anopheles minimus in exposure</u> chambers in contact and noncontact trials with 2 g/m² DDT and 0.1%lambdacyhalothrin
- Figure 2. Proportions of 3-5 days-old (Y) and 7-10 days-old (O) unfed female <u>Anopheles</u>

 <u>minimus</u> in exposure chambers in contact and control trials with 2 g/m² DDT

 and 0.1%lambdacyhalothrin

- Figure 3. Proportions of 3-5 days-old unfed female <u>Anopheles minimus</u> in exposure chambers in contact and control trials with 2 g/m² DDT and 0.1%lambdacyhalothrin [tests were performed at 0500-0730 (E), 0800-1130 (D), 1300-1530 (P) and 1800-2030 (A)]
- Figure 4. Proportions of 3-5 days-old unfed female <u>Anopheles minimus</u> in exposure chambers in contact and control trials with 2 g/m² DDT and 0.1%lambdacyhalothrin at differrent temperature [(tests were performed at 20-24°C (L), 25-29°C (M) and 30-36°C(H)]
- Figure 5. Proportions of 3-5 days-old unfed female <u>Anopheles minimus</u> in exposure chambers in contact and control trials with 2 g/m² DDT and 0.1%lambdacyhalothrin at different humidity [(tests were performed at 40-60%(L), 61-80% (M) and >80%(H)]
- Figure 6. Proportions of unfed, sugar fed (SF), early blood fed (EBD), late blood fed (LBD) and gravid (G) female <u>Anopheles minimus</u> in exposure chambers in contact and control trials with 0.1%lambdacyhalothrin
- Figure 7. Proportions of 3-5 days-old unfed female <u>Anopheles minimus</u> in exposure chambers in noncontact and control trials with 2 g/m² DDT, 0.025%deltamenthrin and 0.1%lambdacyhalothrin

RUNNING HEAD

Standardization test system behavioral study malaria vectors

RESULTS (เพิ่มเติม)

TABLE 1

Insecticides	3-5 Days-old mosquitoes			7-10 Days-old mosquitoes				
	Number		%Mortality		Number		%Monality	
	Tested	Escaped	Escaped	Not escaped	Tested	Escaped	Escaped	Not escaped
CONTACT								
100	100	72	5 5	7 1	100	72	4.2	? 2
ODT-C	100	16	0	1.2	100	5	0	2
Del	100	90	0	10	100	96	2	100
Del-C	100	6	0	1.06	100	14	0	0
Łam	100	86	9.3	7.1	100	80	1,2	55
Lam-C	100	24	4.1	0	100	9	0	C
NONCONTACT								
TOO	100	23	0	2.5	100	21	4.7	0
DDT-C	100	12	0	0	100	10	0	1:
Del	100	24	4.1	0	100	39	2.6	32
Del-C	100	6 '	0	1.1	100	13	0	0
Lam	100	26	0	2.7	100	45	2.2	ð
Lam-C	100	12	8.3	0	100	13	0	0

DDT: 2 g/m²DDT,

Del: 0.025% Deltamethrin

Lam: 0.1% Lambdacyhalothrin

C. Control

TABLE 2

IsinT	Test-time	insecticides	Number		%Mortality		
			Tesled	Escaped		Not escape	
CONTA							
	0500-0730	DDT	100	•	-		
		DDT-C	100	-	-		
		Del	25	22	0	2.5	
		Del-C	25	7	0	0	
		Lam	100	-		-	
		Lam-C	100				
	0800-1130	DOT	100	71	5.6	6.8	
		DDT-C	100	22	0	1 ,	
		Del	100	90	0	20	
		Det-C	100	5	0	1.0	
		Łam	100	85	9.4		
		Lam-C	100	23	4.3	46	
	1300-1530	DDT	100	78	5.1	() 	
		DDT-C	100	10		7 5	
		Del	100	98	0	2	
		Del-C	100	7	1	7.79	
		Lam	100	100	Ů	2	
		Lam-C	100		0	٥	
	1800-2030	ODT		19	0	Ċ	
	1000 2000	DDT-C	50 50	46	0	,	
		Del		4	0	Ĵ.	
		Del-C	50	48	0	Ü	
			50	7	O	0	
•		Lam	100	•	-		
NONCO	ONTACT	Lam-C	100	-	-		
10110	0500-0730	007					
	0300-0730	700	100	-	•	•	
		DDT-C	100				
		Det	25	13	0	0	
		Del-C	25	11	0	0	
		Lam	100				
		Lam-C	100	-	•	-	
	0800-1130	TOO	100	20	5	1 2	
		DOT-C	100	15	0	0	
		Del	100	23	0	0	
		Del-C	100	4	0	0	
		Łam	100	18	0	0	
		Lam-C	100	4	0	0	
	1300-1530	DDT	100	27	0	1 3	
		DDT-C	100	14	O	0	
		Del	100	14	0	ō	
		Del-C	100	6	0	0	
		Lam	100	27	0	e	
		Lam-C	100	10	0	Ű	
	1800-2030	700	50	16	Ö		
		DDT-C	50	13	0	0	
		Del	50	14	0	0.0	
		Oeí-C	50	7	0	υ	
		Lam	100	•	U	0	
		Lam-C	100	-	•		

DDT: 2 g/m²DDT, Del:0.025% Deltamethrin, Lam 0.1% Lambdocyhalothrin, C: Control , (- non applicable)

TABLE 3

Trial	Temperature	Insecticides	Nu	mber	%Mort	%Mortality		
		_	Tested	Escaped		Not escape		
CONTA								
	20-24°C	DDT	100	74	2.7	3 5		
		ODT-C	100	7	0	1 *		
		Del	100	92	4.3	3-		
		Del-C	100	6	0	:		
		Lam	100	90	5.5	-,		
		Lam-C	100	14	7,1	4 €		
	25-29°C	TOO	100	84	5.9	8.2		
		DOT-C	100	15	0	. 2		
		Del	100	97	0	33.		
		Del-C	100	9	0	: ;		
		Lam	100	99	9.1	:		
		Lam-C	100	17	5.8	:		
	30-36°C	DDT	106	87	5.7	- 		
		DDT-C	100	5	0	. `		
		Del	100	80	ō			
		Del-C	100	10	0			
		Lam	100	32	ō			
		Lam-C	100	16	o			
NONCO	DNTACT				v	•		
	20-24°C	DDT	100	16	6.2	0		
	•	DDT-C	100	5	0	3		
		Del	100	15	6.6	0		
		Del-C	100	6	16.1	7.5		
		Lam	100	34	12.5	25.7		
		Lam-C	100	20	0	0		
	25-29°C	DDT	100	21	4.7	12		
		DDT-C	100	11	0	0		
		Del	100	28	ō	0		
		Def-C	100	5	2	0		
		Lam	100	30	0	0		
		Lam-C	100	8	ŏ			
	30-36°C	DDT	100	38	0	1.1		
		DDT-C	100	6	0	3 2		
		Del	100	27	3.7	0		
		Del-C	100	13	0	0		
		Lam	100	27		0		
		Lam-C	100	3	0 0	0		

DDT: 2 g/m²DDT, Del : 0.025% Deltamethrin, Lam : 0.1% Lambdacyhalothrin, C : Control

TABLE 4

Trial	Humidity	Insecticides	. Nu	mber	%Mort	ality
			Tested	Escaped		Not escape
CONTACT				_		
	40-60%	DDT	100	64	12.5	35.9
		DDT-C	100	12	83	3
		0el	100	84	5.9	62
		Oel-C	100	11	9.1	1 1
		Lam	100	97	0	્
		Lam-Ç	100	10	0	3
	61-80%	TOO	100	87	5.7	~ ċ
		DDT-C	100	12	0	: 1
		Del	100	92	0	67
		Oel-C	100	11	0	1 12
		Lam	100	97	0	33
		Lam-C	100	22	4.5	٥
	>80%	DDT	100	75	5.3	8
		DOT-C	100	18	5.5	٥
		Del	100	93	0.82	:20
		Del-C	100	18	0	0
		Lam	100	100	0	ō
		Lam-C	100	14	0	Š
NONCONTACT						·
	40-60%	700	100	14	0	ð
		DDT-C	100	11	9.1	ō
		Oel	100	17	5.8	Š
		Det-C	100	6	0	ő
		Lam	100	16	6.2	0
		Lam-C	100	7	0	2.1
	61-80%	DDT	100	21	4.7	1.2
		DOT-C	100	14	0	0
		Del	100	32	0	0
		Oel-C	100	6	0	ō
		Lam	100	32	0	0
		Lam-C	100	10	0	0
	>80%	DDT	100	24	0	2.6
		DDT-C	100	14	0	0
		Del	100	27	3.7	0
		Del-C	100	14	0	0
		Lam	100	30	0	0
		Lam-C	100	24	0	0

DDT: 2 g/m 2 DDT, Del : 0.025% Deltamethrin, Lam : 0.1% Lambdacyhalothnn, C : Control

TABLE 5

Chemicals	Mosquitoes	Nur	mber	%N	lortality
		Tested	Escaped	Escaped	Not escaped
DOT	Unfed	100	71	4.2 (3/71)	6.8(2/29)
DDT-C `	Unfed	100	16	0(0/16)	1.2(1/84)
DOT	Sugar fed	100	55	0(0/55)	4 = (2.45)
DDT-C	Sugar fed	100	7	0(0/7)	0(3 93)
DDT	Early blood fed	100	54	(1/54)	6 6(3/45)
DDT-C	Early blood led	100	11	0(0/11)	0(0/89)
DDT	Late blood fed	100	65	1.5(1/65)	5.7(2/35)
DDT-C	Late blood fed	100	4	0(0/4)	0(0.96)
TOO	Gravid	50	31	22(7/31)	0
ODT-C	Gravid	50	20	15(3 20)	0
Del	Unfed	100	94	4.2(4/94)	33 3(2/6)
Del-C	Unfed	100	8	0(0/8)	1.1(1/92)
Del	Sugar fed	100	67	1 5(1/67)	0(0/33)
Del-C	Sugar led	100	0	0(0)	0(3/100)
Del	Early blood fed	100	75	5.3(4/75)	8(2/25)
Del-C	Early blood (ed	100	7	14.2(1/7)	1.1(1/93)
Del	Late blood fed	100	78	2.6(2/78)	18.2(4/22)
Del-C	Late blood fed	100	5	0(0/5)	1.1(1/95)
Del	Gravid	50	43	16.2(7/43)	0
Del-C	Gravid	50	19	21(4/19)	10(2/19)
Lam	Unfed	100	92	7.6(7/92)	87.5(7/8)
Lam-C	Unfed	100	20	5(1/20)	0(0/80)
Lam	Sugar led	100	65	4.6(3/65)	25.8(9/35)
Lam-C	Sugar fed	100	10	0(0/10)	1.1(1/90)
Lam	Early blood fed	100	80	11.3(9/80)	90(18/20)
Lam-C	Early blood fed	100	12	0(0/12)	4.5(4/88)
Lam	Łate blood fed	100	69	18.8(13/69)	48.3(15/31)
Lam-C	Late blood fed	100	6	16.7(1/6)	6.4(6/94)
Lam	Gravid	100	87	6.8(6/87)	61.5(8/13)
Lam-C	Gravid	100	37	0(0/37)	3.1(2/63)

DOT: 2 g/m²DOT, Del:0.025% Deltamethrin, Lam:0.1% Lambdacyhalothrin, C: Control

TABLE 6

Chemical	Mosquitoes	Nu	mber	%Mo	ortality
		Tested	Escaped	Escaped	Not escaped
TOO	Unfed	100	24	0(0/24)	2.6(2/76)
DDT-C ,	Unfed	100	15	6.6(1/15)	1.2(1/85)
DDT	Sugar fed	100	8	0(0/8)	1.1(1/92)
DDT-C	Sugar fed	100	6	0(0/6)	0(0/94)
DDT	Early blood fed	100	21	9.6(2/21)	0(0/79)
DDT-C	Early blood fed	100	12	0(0/12)	0(0/88)
DDT	Late blood fed	100	18	0(0/18)	0(0/82)
DDT-C	Late blood fed	100	5	0(0/5)	0(0/95)
TOO	Gravid	50	32	25(8/32)	16.6(3/18)
D01-C	Gravid	50	22	4.5(1/22)	14.2(4/28)
Del	Unfed	100	20	5(1/20)	1.3(1/80)
Del-C	Unfed	100	6	0(0/6)	1.1(1/94)
Del	Sugar fed	100	7	0(0/7)	0(0/93)
Del-C	Sugar led	100	5	0(0/5)	0(0/95)
Del	Early blood fed	100	11	18.2(2/11)	1.1(1/89)
Oel-C	Early blood fed	100	5	0(0/5)	2.1(2/95)
Del	Late blood fed	100	15	0(0/15)	1.2(1/85)
Del-C	Late blood fed	100	3	0(0/3)	2.1(2/97)
Del	Gravid	50	19	25(2/8)	0
Del-C	Gravid	50	25	16(4/25)	0
Lam	Unled	100	24	4.2(1/24)	0(0/76)
Lam	Unfed	100	8	0(0/8)	1.1(1/92)
Lam	Sugar fed	100	1	0(0/1)	1(1/99)
Lam-C	Sugar fed	100	1	0(0/1)	4(4/99)
Lam	Early blood fed	100	22	4.5(1/22)	1.3(1/78)
Lam-C	Early blood fed	100	11	9.1(1/11)	4.5(4/89)
Lam	Late blood fed	100	15	13.3(2/15)	3.5(3/85)
Lam-C	Late blood fed	100	4	0(0/4)	2.1(2/94)
Lam	Gravid	100	66	0(0/66)	5.8(2/34)
Lam-C	Gravid	100	26	0(0/26)	1.3(1/74)

DDT:2 g/m²DDT, Del:0.025% Deltamethrin, Lam:0.1% Lambdacyhalothrin, C: Control

TABLE 7

nsecticide	Nutritional stage	Times of test	Temperature	Humidity	Age
2 g/m²DOT	UF vs. SF*	E vs. D	L vs. M*	1 vs. 2	Y vs. 0
	UF vs. EBF*	E vs. P	L vs. H*	1 vs. 3	
•	UF vs. LBF*	E vs. A*	M vs. H	2 vs 3	
	UF vs. G*	P vs. A*			
	SF vs. EBF	D vs. P			
	SF vs. L8F	Ovs. A*			
	SF vs. G				
	EBF vs. LBF				
	EBF vs. G				
	LBF vs. G				
0.025%Dellam	ethrin UF vs. S F*	E. vs. D	L vs. M*	1 vs. 2	Y vs. O
	UF vs. EBF*	E vs. P	L vs. H*	1 vs. 3	
	UF vs. LBF*	E vs. A*	M vs. H	2 v\$ 3	
	UF vs. G*	P vs. A*			
	SF vs. EBF	Dvs P			
	SF vs. LBF	D vs. A*			
	SF vs. G				
	EBF vs. LBF				
	EBF vs. G				
	LBF vs. G				
0.1Lambdacyl	halothrin				
	UF vs. SF*	E vs. D	L vs. M*	1 vs. 2	Yvs. O
	UF vs. EBF*	E vs. P	L vs. H*	1 vs. 3	
	UF vs. LBF*	E vs. A*	M ∨s. H	2 vs. 3	
	UF vs. G*	P vs. A*			
	SF vs. EBF	D vs. P			
	SF vs. LBF	O vs. A*			
	SF vs. G				
	EBF vs. LBF				
	EBF vs. G				
	LBF vs. G				

UF: UNFED, SF: SUGAR FED, EBF: EARLY BLOOD FED, LBF: LATE BLOOD FED, G: GRAVID

£: 0500-0730AM, D: 0800-1130AM;P: 1300-1530PM,A: 1800-2030PM, L: $20-24^{\circ}$ C,H: $25-29^{\circ}$ C,M. $30-36^{\circ}$ C

1:40-60%, 2:61-80%, 3: >80% Y: 3-5 DAYS-OLD, O: 7-10 DAYS-OLD

The * identifies results of log-rank tests with statistically significant (0.05 level of probability) differences in patterns of escape behavior between biological and environmental factors.

TABLE 8

nsecticide	Nutritional stage	Times of test	Temperature	Humidity	Age
700°m/g	UF vs. SF	£ vs. D	L vs. M*	1 vs. 2	Y vs. O
	UF vs. EBF	£ vs. P	L vs. H*	1 vs. 3	
`	UF vs. LBF	E vs. A*	M vs. H	2 vs. 3	
	UF vs. G	P vs. A*			
	SF vs. EBF	Ovs. P			
	SF vs. L8F	Đ vs. A*			
	SF vs. G				
	EBF vs. LBF				
	EBF vs. G				
	LBF vs. G				
0.025%Deltam	ethrin UF vs. S F*	Evs. O	L vs. M*	1 vs. 2	Y vs O
	UF vs. EBF*	Evs P	L vs. H*	1 vs. 3	
	UF vs. L8F*	E vs. A*	M vs. H	2 vs.3	
	UF vs. G*	P vs. A*			
	SF vs. E8F	Dvs. P			
	SF vs. LBF	Dvs A*			
	SF vs. G				
	E8F vs. LBF				
	E8F vs. G				
	L8F vs. G				
0.1Lambdacył	halothrin				
	UF vs. SF*	E vs. D	L vs. M*	1 vs. 2	Y vs. C
	UF vs. EBF*	E vs. P	L vs. H*	1 vs. 3	
	UF vs. L8F*	E vs. A*	M vs. H	2 vs. 3	
	UF vs. G*	P vs. A*			
	SF vs. EBF	D vs. P			
	SF vs. LBF	D vs. A*			
	SF vs. G				
	E8F vs. L8F				
	88F vs. G				
	Ł8F vs. G				

UF: UNFED, SF: SUGAR FED, EBF: EARLY BLOOD FED, L8F: LATE BLOOD FED, G: GRAVID

E: 0500-0730AM, D: 0800-1130AM,P: 1300-1530PM,A: 1800-2030PM L: 20-24°C,H: 25-29°C,M: 30-36°C

1:40-60%, 2:61-80%, 3: >80% Y: 3-5 DAYS-OLD, O: 7-10 DAYS-OLD

The "identifies results of log-rank tests with statistically significant (0.05 level of probability) differences in patterns of escape behavior between biological and environmental factors.

Correspondence proof
Theeraphap Chareonviriyaphap, Ph.D.
Division of Biology
Faculty of Liberal Arts and Science,
Kasetsart University
Kamphaengsaen campus,
Nakhon Pathom 73140 THIALAND
Tel 66-34-351895 ext 458
Fax 66-34-351894
E-mail faasthc@nontri.ku.ac.th

Am Journal of Tropical Medicine and Hygiene

BEHAVIORAL RESPONSES TO DDT AND PYRETHROIDS BY TWO
SUBSPECIES OF *ANOPHELES MINIMUS* COMPLEX (DIPTERA: CULICIDAE),
A MALARIA VECTOR IN THAILAND

JINNAPA POTIKASIKORN¹, THEERAPHAP CHAREONVIRIYAPHAP²

¹ Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400 Thailand

²Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900 Thailand

ABSTRACT. The study was designed to compare the behavioral responses between two field populations in *Anopheles minimus* species A and C to 2 g/m² of DDT, 0.02g/m² of deltamethrin, and 0.03 g/m² of lambdacyhalothrin using an Improved excito-repellency escape chamber. The first population was collected from Turn Suae County, Mae Sot District, Tak Province and the second was from Pu Teuy County, Tri Yok District, Kanchanaburi Province, west Thailand. Results showed that females of both test populations rapidly escaped from direct contact with DDT, deltamethrin, and lambdacyhalothrin. Repellency function of DDT and 2 pyrethroids was significantly pronounced when tested exclusively against *An. minimus* species A. No strong repellency action was observed on *An. minimus* species C. We conclude that non-contact response plays a significant role in escape responses of An. minimus A whereas contact irritant action is limited to An. minimus C. Both contact irritancy and non-contact repellency are involved in *An. minimus* escape responses.

Key Words: Avoidance Behavior Excito-repellency Malaria Vector

INTRODUCTION

Anopheles minimus Theobald is one of the most efficient malaria vectors throughout the Oriental Region (Reid 1968 and Rao 1984). In Thailand, An.minimus is considered to be the primary vectors of malaria (Ayurakit-Kosol and Griffith 1962, Sucharit et al. 1988) and is found exclusively in the forested hilly and clear forested foothill areas (Nutsathapana et al. 1986). This species was reported to be mostly endophilic and endophagic (Sambasivan et al. 1953). After DDT was used to interrupt the malaria transmission, An. minimus appears to be an outdoor feeding and preferably feeds on domestic bovids (Ziegler 1967 and Ismail et al. 1976). Even though DDT provided a considerable effect on reduction of indoor biting mosquitoes, it seems that this method could not completely interrupt the malaria transmission. A certain group of this species remains feeding and resting indoor (Chareonviriyaphap et al. 2003). Similar observation was also reported from Vietnam (Bortel et al. 1999). This raises some questions on behavioral variations in An. minimus taxon.

Bases on information on morphological variation and genetic basis, at least two close'y related species within this taxon were documented in Thailand (Sucharit et al. 1988 and Green et al. 1990) and all have been incriminated as vectors of malaria. Species A is the predominant species and commonly distributed throughout the country (Green et al. 1990) whereas species C is restricted to the areas along the western Thai-Myanmar border, especially in Tak and Kanchanaburi Provinces (Sucharit et al.1988 and Baimai 1989). In addition, *An. minimus* species D have been proposed in Thailand by Baimai (1989) but no sufficient information is available to support the species status. Although *An. minimus* species A and C are occurring in sympatry in Thailand, differences in biting, resting and feeding behaviors, anthropophily, and ecology may influence the vector capacity of 2 species in this taxon.

Behavioral divergences of this complex were reported and the differences between two species in terms of biting and resting behavior were observed (Bortel et al. 1999). Specie A demonstrated five time endophilic behavior than those of specie C. In addition, *An. minimus* complex from various areas has been reported to have a different level in responding to intradomicilary use of insecticides (Harrison 1980, Parajuli et al. 1981, Lien 1991, Chareonviriyaphap et al. 1999 and 2001). In Thailand, indoor house spray has been conducted to interrupt man-vecter contact (Chareonviriyaphap et al. 2001). Knowing the behavioral responses to insecticides of different species especially within the same taxon will facilitate the

vector control and help to target disease vector. Behavioral responses (behaviroral avoidance) to insecticides can be divided into two important classes, contact irritancy and noncontact repellency. Irritancy is referred to those leave the treated surfaces upon contact with insecticide whereas repellency is those leave the treated area before making contact with insecticides (Roberts et al. 1999). Although, behavioral responses have been conducted to test behavioral responses of various populations of *Anopheles* mosquitoes from Thailand using an excito repellency test box (Chareonviriyaphap et al 1997, 2001, and 2003 and Sungvornyothrin et al. 2000 and Kong-Me et al. 2004), none has been performed to compare behavioral responses between two species within *An. minimus* taxon (species A and C). Described herein the results from experimental trials using the excito repellency test system to determine behavioral responses between field populations of *An. minmus* species A and C to field rates of DDT (2 g/m2), deltamenthrin (0.02 g/m2) and lambdacyhalothrin (0.03 g/m2). These experimental observations are subject of this report.

METERIALS AND METHODS

Anopheles minimus test populations:

- 1. Anopheles minimus Species A: This population was obtained from human collections at Ban Tum Saue, Mae Sot District, Tak Province, West of Thailand in September- December 2004.

 This population was found physiologically susceptible to DDT, deltamethrin, and lambdacyhalothrin (Chareonviriyaphap et al. unpublished data).
- 2. Anopheles minimus Species C: This population was obtained from human bait collections at Putuey County, Ta-Soa Village, Tri-Yok District, Kanchanaburi Province, West of Thailand in January-December 2003. This population was physiologically susceptible to DDT, deltamethrin, and lambda-cyhalothirn (Chareonviriyaphap *et al.* unpublished data).

Mosquito collections

Anopheles minimus specie A and C: females were collected as adults by human baits during the night (1800-0600 hrs). Behavioral tests were performed during the next day. Temperature and relative humidity were recorded during the tests. All mosquitoes were starved approximately 4 hours before tests (Chareonviriyaphap et al. 2001).

Mosquito identification

To obtain a correct species, *Anopheles minimus* complex were identified based on morphological keys of Payton and Scanton (1966), Harrrison (1980) and Rattanarithikul and Punthusiri (1994). Species A and C were differentiated by the presence or absence of the humeral pale spot on the costal vein on wings. Previous study using diagnostic enzyme (ODH) showed those without HP spots belonged to species A at 95% and species C at 73% (Green et al. 1990). Molecular method was applied to confirmed species C from Kanchanaburi (Manguin Pers Comm.).

Insecticide papers.

Insecticide impregnated papers with field dosages at 2 Alg/m² of DDT, 0.02 Al g/m² of deltamethrin, and 0.03 Al g/m² of lambdacyhalothrin were prepared using diluent according to World Health Organization (WHO) protocol (8usvine 1958).

Behavioral tests.

- 1. Test chamber. In this study, we used the improved test chamber for all tests as described in a recent publication (Chareonviriyaphap and Aum-Aong 2000).
- 2.Tests performed. *An. minimus* specimens were used in excito-repellency tests. The wild population was deprived of water for a minimum of 4 hours before tests. Tests were performed during the day and each test was replicated at least 4 times. Tests were conducted to compare two wild populations in contact vs. non-contact against 3 insecticides, DDT, deltamethrin, and lambdacyhalothrin. After a test was completed, the number of dead specimens were recorded separately for exposure and escape chambers. In addition, the escaped specimens and those remaining in the chamber, both controls and treatments, were maintained separately and 24-h mortalities were recorded.
- 3. Data analysis. Behavioral response data was analyzed using a life table method, a survival analysis approach, to estimate the escape rate and compare differences in mosquito escape response among different populations and insecticides. The mosquito escape rate was estimated at 1-min intervals. Mosquitoes that escape were treated as "deaths" and those remaining in the test chamber were treated as "survivals" (Chareonviriyaphap *et al.* 1997). The ET_{50} , ET_{50} and ET_{90} , the time in minutes for 50, 75 and 90% of the test population to escape,

respectively, were estimated with the life table method. The log-rank method was used to compare patterns of escape responses (Mantel and Haenzel 1959). A statistical software package, STATA, was used for this analysis as described by Roberts *et al.* (1997).

RESULTS

Behavioral responses of two wild populations of *Anopheles minimus* species A and C against 2g/m² DDT, 0.02 g/m² deltamethrin, and 0.03g/m² lambdacyhalothrin were compared using an excito repellency escape system. Behavioral responses, regarding contact mancy and noncontact repellency, to all three compounds were observed and percent mortal ties of escape and non escape specimens from exposed chamber were recorded (Table 1).

In contact trial, percent escape of An. minimus species A (92-96%) from the insecticide treated chamber was generally higher than those from An. minimus species C (51-97). regardless of compounds used. Higher number of An. minimus specie A (92%) escaped from DDT treated chamber than those of specie C (77%). Similarly, percent escapee of species A was also higher from two synthetic pyrethroids (Table 1). Pattern of escape responses were stronger in An, minimus species A than An, minmus C for all 3 compounds. Percent manality of escape mosquitoes from both test populations was low (0-13.3%) whereas those remained in the test chamber (nonescape mosquitoes) gave high percent mortality (42.8-100%). There was a complete mortalities from non escape specimens when tested against deltamethrin and lambdacyhalothrin (Table 1). In noncontact trial, An. minimus species A demonstrated dramatically escape responses to all three compounds as compared to specie C. Percent escape responses were 96% for DDT, 92% for deltamethrin, and 87% for lambdacyhalothrin in An. minimus A whereas 24% for DDT and deltamethrin and 18% for lambdacyhalothrin. Percent mortalities of escaped and nonescaped specimens were very low, ranging from 1.1-4.5%. For controls, a comparatively low degree of test specimens took off from the chamber (12-23% for contact and 10-15% for noncontact (Table 1).

Times in minutes for test population to escape from the exposure chambers were defined in Table 2. The escape patterns from chambers containing insecticides were determined as times for 50, 75, and 90% of the test population to take off from the exposure chambers (ET50, ET75, and ET90). In contact trial, the ET50, ET75, and ET90 values of An. minimus A for 2 g/m2 DDT were 5, 12.5, and 24, for 0.02 g/m2 deltamethrin were 2.5,6, and 16 and for 0.03g/m2 lambdacyhalothrin were 7, 23.5, and 30 respectively (Table 2). The ET50 value of An. minimus C was 5, 8.5 and 6 for 2 g/m2 DDT, 0.02 g/m2 deltamethrin and 0.03 g/m2 lambdacyhalothrin. The ET75 and ET90 values for all three compounds against An. minmus C could not be calculated. Lisewise, the ET50, ET75 and ET90 values for An. minimus C against all

three compounds in noncontact trial could not be estimated (Table 2). For An. minimus A in noncontact trial, the ET50, ET75, and ET90 values for 2 g/m2 DDT were 5, 4.5, and 14, for 0.02 g/m2 deltamethrin were 5.6, 8, and 25 and for 0.03g/m2 lambdacyhalothrin were 6.5 and 23.5 (Table 2).

Comparison of escape responses between An. minimius species A and C in contact and noncontact trials was analysed with the log rank method at the 0.05 level of probability (Table 3). Statistically significant differences in escape patterns between An. minimus A and C were found in noncontact trials for all three compounds (P<0.05). In contact trial, significant differences in escape responses between An. minimus A and C were observed when tested against DDT and deltamentrhin exclusively (P<0.05) (Table 3). Comparison of escape responses between contact and control, contact and noncontact, and noncontact and control trials for An. minimus A and C for all 3 compounds was given in Table 4. No significant difference in escape responses of An. minimus A was found when contact and noncontact trials were compared (P>0.05). Escape probabilities in contact and noncontact trials were significant higher than in the controls for all tests (Table 4).

Figures 1-3 show the proportions of mosquitoes remaining in the exposure chambers under different test conditions. These proportions provide the patterns of escape rates and are indicative of escape probabilities between An. minimus A and C for DDT (Fig 1), deltamethrin (Fig 2) and lambdacyhalothrin (Fig 3). Significant differences were seen when contact trials were compared with control and noncontact trials (P<0.05). Escape patterns in all noncontact repellency were significantly higher than those from the controls for all three compounds.

DICUSSION

This is the first finding to demonstrate the behavioral responses of An. min mus species A and C.

ACKNOWLEDGMENTS

This research project was supported in full by the Thailand Research Funds (Grant # PDF 67/2540), Thailand.

REFERENCES CITED (PREVIOUS RELATED WORKS prepared for the discussion)

Ayurakit-Kosol L, Griffith ME. 1963. *Progress toward malaria eradication in Thailand*. Proc. 9th

Pacific Sci. Congr., 17, 122-136.

Bondareva NI, Artem² ev MM, Gracheva GV. 1986. Susceptibility and irritability caused by insecticides to malaria mosquitoes in USSR. Part 1. *Anopheles pulcherrimus*. *Med Parazitol Parazit Bolezni* 6: 52-55.

Busvine JR. 1958. Experiments concerned with the development of World Health Organization test for resistance in adult mosquitoes. *Indian J Malariol* 12:279-286.

Chareonviriyaphap T, Roberts DR, Andre RG, Harlan HH, Manguin S, Bangs MJ. 1997.

Pesticide avoidance behavior in *Anopheles albimanus*, a malaria vector in the Americas. *J Amer Mosq Control Assoc* 13(2) 171-183.

Chareonviriyaphap T, Aum-Aong B, Ratanatham S. 1999. Current insecticide resistant pattern in mosquito vectors. *Southeast Asian J Trop Med Public Health* 30: 130-141.

Chareonviriyaphap T, Aum-Aong B. 2000. Improved excito-repellency escape chamber for behavioral tests on mosquitoes. *Mekong Malaria Forum* 5: 82-86.

Davidson G. 1953. Experiments on the effect of residual insecticides in houses against Anopheles gambiae and Anopheles funestus. Bull Entomol Res 44: 231-254.

Evans, R.G. 1993. Laboratory evaluation of the irritancy of bendiocarb, lambdacyhalothrin, and DDT to *Anopheles gambiae*. *J Am Mosg Control Assoc* 9: 285-293.

Mantel N, Haenzel W. 1959. Statistic aspects of the analysis of data from retrospective studies of diseases. *J Natl Cancer Inst* 22: 719-748.

Nutsathapana S, Sawasdiwongphorn P, Chiprarop V, Cullen JR. 1986. The behavior of Anopheles minimus Theobald (Diptera: Culicidae) subjected to differing levels of DDT selection pressure in northern Thailand. Bull Entomol Res 76: 303-312.

Poolsuwan S.1995. Malaria in prehistoric Southeast Asia. Southeast Asian J Trop Med Public Health 26: 3-22.

Prasittisuk M. 1995. Comparative study of pyrethroids impregnated bednets with DDT residual spraying for malaria control in Thailand. Ph.D. Thesis, Mahidol University Bangkok Thailand, 225 pp.

Quinones ML, Suarez MF. 1989. Irritability to DDT of natural populations of the primary malaria vectors in Colombia. *J Am Mosq Control Assoc* 5: 56-59.

Reid JA, 1968. <u>Anopheles</u> mosquitoes of Malaya and Bomeo. Studies of the Institute for Medical Research, Malaysia, No. 31, 520pp.

Rawlings P, Davidson G, 1982. The dispersal and survival of *Anopheles culicifacies* in a Sri Lankan village under malathion spraying. *Bull Entomol Res* 72: 139-144.

Ree HI, Loong KP. 1989. Irritability of *Anopheles farauti, Anopheles maculatus*, and *Culex quinquefasciatus* to permethrin. *Jpn J Sanit Zool* 40: 47-51.

Roberts DR, Alecrim WD, Tavares AM, Mc. Neil KM. 1984. Influence of physiological condition on the behavioral response of *Anopheles darlingi* to DDT. *Mosq News* 4: 357-361.

Roberts DR, Andre RG. 1994. Insecticide resistant issues in vectors. *Amer J Trop Med Hyg* 50 (Suppl): 21-34.

Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P. 1997. Methods of testing and analyzing excito-repellency responses of malaria vectors to insecticides. *J Amer Mosq Control Assoc* 13(1) 13-17.

Roberts DR, Alecrim WD, Hshish P, Grieco JP, Bangs M, Andre RG, Chareonviriyaphap T. 2000. A probability model of vector behavior: Effects of DDT repellency, irritancy, and toxicity in malaria control. *J Vector Ecol* 25(1) 48-61.

Rutledge LC, Echana NM, Gupta RK. 1999. Responses of male and female mosquitoes to repellents in the World Health Organization insecticide irritability test system. *J Amer Mosq Control Assoc* 15(1) 60-64.

Sucharit S, Komalamisra N, Leemingsawat S, Apiwathnasorn C, Thongrungkiat S. 1988.

Population genetic studies on the *Anopheles minimus* complex in Thailand. *Southeast Asian J Trop Med Pub Health* 19: 717-723.

Suwonkerd W, Aum-Aong B, Rimwangtrakul K, Wongkattiyakul S, Kattiyamongkool B, Chitprarop U, Takagi M. 1990. A field study on the response of *Anopheles dirus* to DDT and fenetrothion sprayed to huts in Phetchabun province, Thailand. *Trop Med* 32: 1-5.

Threlkeld SFH. 1985. Behavioral responses in Drosophila melanogaster associated with permethrin and ectiban. Proceedings of the thirty-second annual meeting, Canadian Pest Management Society. 1985 June 24-26; Charlottertown, Prince Island. p 29-36.

Table 1.

Condition	Population CI	nemical	Number		%Mort	ality
			#Test	Escaped(%)	Escaped	not escaped
CONTACT						
	An. minimus A	TGQ	85	78(92)	0	42.8
		ODT-C	85	10(12)	0	С
		Del	76	73(96)	0	.00
		Del-C	75	17(23)	0	c
		Lam	77	72(94)	1.4	100
		Lam-C	78	18(23)	0	C
	An minimus C	TOG	100	77(77)	1.3	c
		DDT-C	100	15(15)	13.3	1.2
		Del	98	50(51)	2	C
		Del-C	94	13(14)	0	1.2
		Lam	97	94(97)	1.1	C
		Lam-C	100	18(18)	0	C
NON-CONTAC	T					
	An, minimus A	DDT	85	82(96)	0	100
		DDT-C	83	22(27)	0	0
		Del	76	70(92)	0	66.7
		Del-C	75	22(29)	4.5	0
		Lam	77	67(87)	1.5	50
		Lam-C	77	21(27)) 0	0
	An. minimus C	DOT	100	24(24)	0	0
		DDT-C	100	10 (10)	0	0
		Del	100	20(24)	0	0
		Del-C	100	10(10)	0	1.1
		Lam	95	17(18)	0	0
		Lam-C	95	14(15)	0	0

Codes for chemicals and doses DDT=2g/m² of DDT; Del= 0.02 g/m² of deltamethrin, Lam=0.03 g/m² of lambdacyhalothrin

DDT-C, Del-C and Lam-C are codes for controls (without insecticides).

Table 2.

Test condition	Population/		DOT'			Del ²		Lan	n ³	
	Colony				ET ₅₀	ET ₇₅	ET ₉₀	ET ₅₀ *	ET ₇₅	EΥ _{\$\lambda}
Contact									-	
	Min A	5	12.5	24	2.5	6	16	7	23.5	30
	Min C	5	-	-	8.5	-	-	6	12.5	-
Noncontact										
	Min A	2	4.5	14	5.6	8	25	6.5	23.5	-
	Min C	-	-	-	-	-	-	-	-	-

DDT at 2 g/m²

²Deltamethrin at 0.02/ g/m²

³Lamdacyhalothrin at 0.03 g/m²

⁴Survival analysis was used to estimate the time in minutes for 50 and 90% of test populations to exit exposure chambers.

Table 3.

Insecticides	Contact trial	Non contact trial	
DOT	Min A vs. Min C*	Min A vs. Min C*	
Del	Min A vs. Min C*	Min A vs. Min C*	
Lam	Min A vs. Min C	Min A vs. Min C*	

DDT= 2 g/m² of DDT

Del=0.02 g/m² of deltamethrin

Lam=0.03 g/m² of lambdacyhalothrin

The * identifies results of log-rank tests with statistically significant (0.05 level of probability) differences in patterns of escape behavior.

Table 4.

DDT* Oel	DDT* Del*	DDT*
Oel	Del*	Dol*
		Del*
Łam	Lam*	lam*
DDT*	DĐT*	DDT*
Del*	Del*	Del*
	Lam*	Lam*
		Del* Del*

DDT= 2 g/m²of DDT

Del=0.02 g/m² of deltamethrin

Lam=0.03 g/m² of lambdacyhalothrin

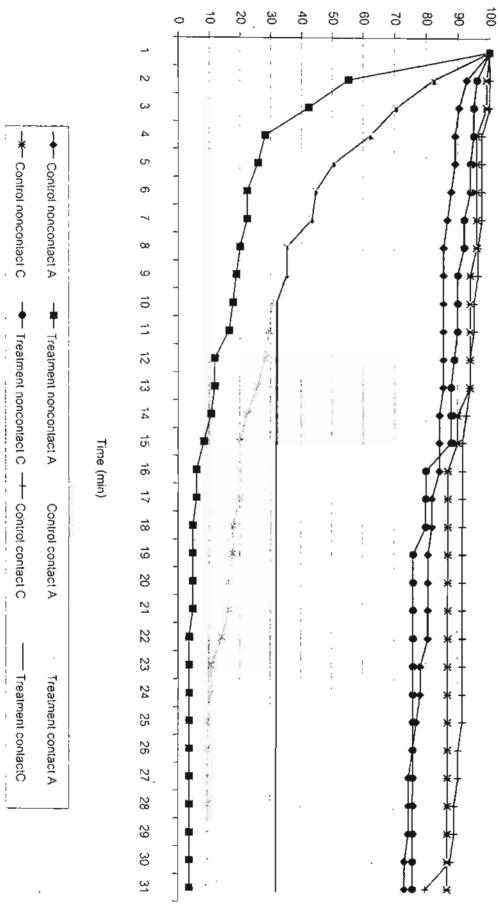
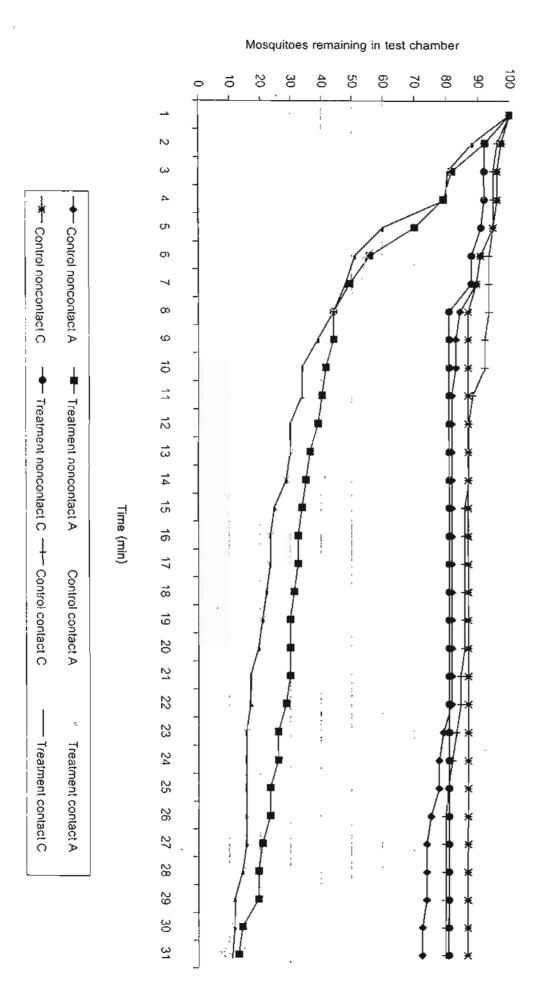

The * identifies results of log-rank tests with statistically significant (0.05 level of probability) differences in patterns of escape behavior.

TABLE LEGEND

- Table 1. Mortalities of *Anopheles minimus* females after a 24-h holding period following exposures in contact trials of excito-repellency tests.
- Table 2.Time in minutes for 50 (ET₅₀) and 90% (ET₉₀) of *Anopheles minimus* females to escape from exposure chambers (in excito-repellency tests) treated with $2 \text{ g/m}^2 \text{ s}^2 \text{ DDT}$, 0.02 g/m² of deltamethrin, and 0.03 g/m² of lambdacyhalothrin.
- Table 3.Comparison of escape responses between 2 test populations of *Anopheles minimus* females in contact versus non-contact trials by insecticides.
- Table 4. Comparison of escape responses between contact versus non-contact, contact versus control and non-contact versus control for 2 test populations.

DDT MIN A AND C


Mosquitoes remaining in test chamber

29

30 31

Deltamethrin MIN A AND C

Scientific Note

An improved excito-repellency test chamber for mosquito behavioral tests

Theeraphap Chareonviriyaphap^{1,3}, Atchariya Prabaripai², and Sungsit Sungvornyothrin¹

Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkean, Bangkok 10900
Thailand

²Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsean Campus, Nakhon Pathom 73140
Thailand

3Corresponding Author

Received 28 February 2002; Accepted 29 April 2002

Despite significant gains in its control, malaria remains a serious threat in Thailand especially in areas border with neighboring (Chareonviriyaphap et al. 2000). The prevention of malaria transmission in Thailand relies on the effective treatment of infections and the reduction of contacts between vectors and humans. Understanding the behavioral responses of malaria vectors, especially avoidance behavior to residual insecticides, is of particular importance to any vector control program. There have been numerous attempts to accurately measure the behavioral responses of mosquitoes to insecticides using various types of excito-repellency test systems (Roberts et al. 1984, Rutledge et al. 1999, Sungvornyothin et al. 2001). However, no test system has been fully accepted as a standardized method of testing and analyzing avoidance responses (Roberts et al. 1984 and Evans 1993). Charconviriyaphap et al. (1997), using an experimental escape chamber system (Roberts et al. 1997), provided information on both contact irritability and non-contact repellency for behavioral response tests on Anopheles albimanus under laboratory and field conditions. Unfortunately, this prototype test system was cumbersome and required extended time to attach the test papers onto the inner walls. To overcome this problem, a collapsible excito-repellency test chamber was developed (Chareonviriyaphap and Aum-Aong 2000). This test system evaluated the behavioral responses of a laboratory colony and field populations of Anopheles minimus to DDT, deltamethrin and lambdacyhalothrin [Chareonviriyaphap et al. 2001]. Although the chamber

system could be disassembled for transport and results were reproducible, this test system required much time to assemble. Moreover, test paper holders were affected by the assembly screws penetrating the inner chamber, complicating test set-up. To overcome these technical problems, an improved version of the excito-repellency test chamber design was developed as described in this report.

The improved version of the excito-repellency test system is shown in Figure 1. As in previous models, the outer chamber is constructed with four metal sides, each side wall measuring 33.5 x 33.5 cm2. Walls are constructed of stainless steel (thickness 0.7 mm) with an aluminum sliding rib on each end, The screened inner chamber is a_ 4 side-box slightly smaller than the outer chamber walls, measuring 33.5 x 22.5 cm² each. The inner chamber functions as the test paper holder, each wall having 2 functional sides. Each side of the wall has a framed panel to hold the test paper in place. Depending upon the objective of the test, the impregnated papers can be placed on either side of the panel in a position to allow or prevent mosquitoes from making physical contact with the test paper surface. There is a 0.9 cm gap between the test paper and screen barrier to prevent mosquitoes making direct contact with the test paper surfaces during the non-contact repellency test. A Plexiglas™ holding frame is used to hold the Plexiglas panel in place and secure the whole system tightly without the use of metal screws. The panel has a rubber door of 15 cm diameter made of a split sheath of dental dam, allowing mosquitoes to be placed inside the chamber or to remove them after the testing period. A forward exit portal is a composed of a horizontal opening, 15 cm long and 2 cm wide, at the end of an outward projecting funnel. A stainless steel

Keyword Index; Excito-repellency, improved system, behavioral test.

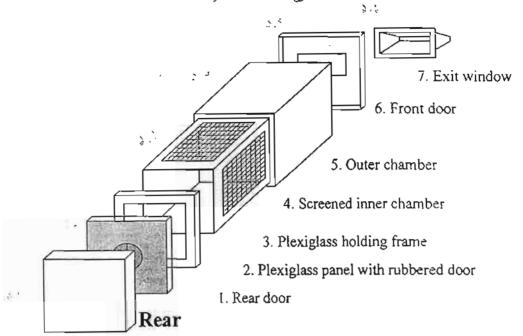


Figure 1. An improved excito-repellency test system for behavioral study.

cover secures the rear door tightly.

Insecticide treated surfaces (insecticideimpregnated or non-impregnated control papers) are attached to one side of each holding frame depending on the test objective (either contact and non-contact test design). There are four small spring clamp mechanisms on each corner to firmly secure the test papers. To assemble the excito-repellency chamber, the four inner walls are connected by sliding the appropriate aluminum tongue and groove elements together to construct the screened inner chamber. Each inner wall also serves as the test paper holder in either the contact or non-contact mode. A spring mechanism on each corner of the wall secures the test paper. The four outer walls are connected by sliding the appropriate corner tongue and groove elements together to form a box. The inner chamber with attached papers is then carefully inserted into the outer chamber so that no part of the inner chamber is exposed outside and the rear door cover can be attached. The front door is then attached to the chamber together with the front escape funnel. The rear metal door cover is attached. A Plexiglas holding frame is attached to secure the entire system. A receiving box, 6 x 6 x 6 cm³, is constructed of stiff paper carton material with screen netting on top for observation of escaped mosquitoes. The box has a square hole the same size of the outward projection of the escape funnel and is attached to the exterior exit portal of the chamber. A hole,

5 cm diameter and sealed with a piece of split dental dam, is placed on the front face of the receiving cage to allow collection of the escaped mosquitoes with an aspirator.

Test methods and analysis have been described elsewhere (Sungvornyothrin et. al. 2001, Roberts et al. 1997). Only female specimens are used in excitorepellency tests. After a test is completed (30 or 60-min exposure times), the number of dead and live specimens is recorded separately in the exposure chamber and receiving box. Immediately following the test, all live specimens in control and treatment test chambers are maintained separately by lot (escaped or nonescaped) and given a 10% sucrose diet to observe post-exposure 24-h mortalities.

This recent version of the excito-repellency test system has been used to measure the behavioral responses of An. minimus and Anopheles dirus laboratory colonies exposed to paper surfaces impregnated with 2 g/m² DDT and 20 mg/m² deltamethrin. Results showed that female An. minimus and An. dirus demonstrated a dramatic escape response to DDT and deltamethrin compared to mosquitoes exposed to the untreated control chambers. A more rapid response in time to escape to both insecticides was observed with An. minimus compared to An. dirus. Results revealed that most specimens escaped the test chamber without acquiring a lethal dose at 24-h post-exposure. DDT and deltamethrin demonstrated a small degree of non-contact repellency with both species. Details from these excito-

pellency tests will be reported in a future study. This odified excito-repellency test system is a vast provement, with more desirable operational attributes impared to previous designs regarding ease of use and reproducibility of test observations. The entire test is stem is easy to assemble and can be disassembled in mutes. It is also much easier to remove remaining osquitoes from the test chambers after the test is impleted compared to the previous versions. We have und the new test system can generate consistent and andardized results for measuring mosquito behavioral roidance and separate contact irritancy and non-contact pellency responses.

Acknowledgments

We thank Michael J. Bangs, U.S. Naval Medical esearch Unit No.2, Jakarta, Indonesia for his advice uring implementation of this work and review of the anuscript. We also thank Dr. D.R. Roberts, Department Preventive Medicine and Biometrics, the Uniformed crvice University of the Health Sciences, Bethesda, laryland for his valuable comments on the ER test stem. Finally, we would like to thank the Thailand esearch Fund Organization and the Kasetsart University esearch and Development Institute, Bangkok, Thailand of funding support.

REFERENCES CITED

hareonviriyaphap, T., D.R. Roberts, R.G. Andre, H. Harlan and M.J. Bangs. 1997. Pesticide avoidance behavior in *Anopheles albimanus* Wiedemann. J. Am. Mosq. Contr. Assoc. 13:171-183.

- Chareonviriyaphap, T. and B. Aum-Aong 2000. An improved excito-repellency escape chamber for behavioral test in mosquitoes. Mekong Malaria Forum 5: 82-85.
- Chareonviriyaphap, T., M.J. Bangs, and S. Ratanatham. 2000. Status of malaria in Thailand. Southeast Asian J. Trop. Med. Publ. Hlth. 31: 225-237.
- Chareonviriyaphap, T., S. Sungvornyothin, S. Ratanatham, and A. Prabaripai 2001. Pesticide-induced behavioral responses of Anopheles minimus, a malaria vector in Thailand. J. Am. Mosq. Contr. Assoc. 17: 13-22.
- Evans, R.G. 1993. Laboratory evaluation of the irritancy of bendiocarb, lambda-cyhalothrin, and DDT to Anopheles gambiae. J. Am. Mosq. Contr. Assoc. 9: 285-293.
- Roberts, D.R., W.D. Alecrim, A.M. Tavares, and K.M. Mc Neill. 1984. Influence of physiological condition on the behavioral response of *Anopheles darlingi* to DDT. Mosq. News 4: 357-361.
- Roberts, D.R., T. Charconviriyaphap, H.H. Harlan, and P. Hshieh. 1997. Methods for testing and analyzing excito-repellency responses of malaria vectors to insecticides. J. Am. Mosq. Contr. Assoc. 13: 13-17.
- Rutledge, L.C., N.M. Echana, and R.K. Gupta. 1999.
 Responses of male and female mosquitoes to repellents in the World Health Organization insecticide irritability test system. J. Am. Mosq. Contr. Assoc. 15: 60-64.
- Sungvomyothrin S., T. Chareonviriyaphap, A. Prabaripai, V. Trirakhupt, S. Ratanatham, and M.J. Bangs. 2001. Effects of nutritional and physiological status on behavioral avoidance of *Anopheles minimus* (Diptera: Culicidae) to DDT, deltamethrin and lambdacyhalothrin. J. Vector Ecol. 26: 202-215.

POPULATION BIOLOGY/GENETICS

Seasonal Abundance and Blood Feeding Activity of Anopheles minimus Theobald (Diptera: Culicidae) in Thailand

THEERAPHAP CHAREONVIRIYAPHAP, ATCHARIYA PRABARIPAI, MICHAEL J. BANGS. AND BOONSERM AUM-AUNG

J. Med. Entomol. 40(6): 876-881 (2003)

ABSTRACT Anopheline mosquito larvae and adults were sampled at Ban Pu Teuy, Tri-Yok District, Kanchanaburi Province, western Thailand, from January 2000 to December 2001. Over the period of 2 yr, Anopheles minimus sensu lato was the most commonly collected species, followed by Anopheles swadiwongporni and Anopheles dirus sensu lato; all three species are important vectors of malaria in Thailand. Attempted blood feeding by An. minimus occurred throughout the night, with two distinct feeding peaks: strong activity immediately after sunset (1800–2100 hours), followed by a second, less pronounced, rise before sunrise (0300–0600 hours). Anopheles minimus were more abundant during the wet season compared with the dry and hot seasons, although nocturnal adult feeding patterns were similar. Anopheles minimus fed readily on humans inside and outside of houses, showing a slight preference for exophagy. The human-biting peak of An. minimus in our study area differed from other localities sampled in Thailand, indicating the possible existence of site-specific populations of An. minimus exhibiting different host-seeking behavior. These results underscore the importance of conducting site-specific studies to accurately determine vector larval habitats and adult activity patterns and linking their importance in malaria transmission in a given area.

KEY WORDS Anopheles minimus, blood feeding, mosquito abundance, exophagy, Thailand

IN THAILAND, MALARIA is still one of the important infectious diseases, with more than 100,000 reported cases each year (Department of Communicable Disease Control 1985-2001). Surveillance data has indicated malaria continues to occur sporadically over much of the country and has reemerged in previously malaria-free localities (Department of Communicable Disease Control 1985-2001). Malaria remains prevalent along the underdeveloped national borders between Thailand and eastern Myanmar and western Cambodia (Chareonviriyaphap et al. 2000). Nearly one half of all reported malaria cases in the country have been from the mountainous western frontier and international borderlines with Myanmar extending from Tak to Kanchanaburi Provinces. These areas are especially vulnerable, because of uncontrolled tribal population movements associated with occupational activities, including gem mining, hunting, and logging. Anopheles minimus, a confirmed and important malaria vector in Thailand, is abundant in the border frontier area (Chareonviriyaphap et al. 2000).

The taxon An. minimus Theobald represents a complex of closely related species that are difficult to distinguish morphologically (Rattanarithikul and Punthusiri 1994). Members of this species complex are common along the Thai-Myanmar border, particularly in Kanchanaburi Province (Green et al. 1990). In Thailand, at least three related species are present (Sucharit et al. 1988, Baimai 1989, Green et al. 1990): species A is found throughout the country; whereas species C and D are more commonly collected along the western Thai-Myanmar border, including Kanchanaburi Province (Baimai 1989). This complex has been reported to be primarily zoophilic in feeding habits, preferring to feed and rest out of doors, especially in response to indoor residual spraying (IRS) of insecticides (Nutsathapana et al. 1986). Behavioral avoidance of structures by the An. minimus group in response to IRS also has been reported from Vietnam (Van Bortel et al. 1999). During the past two decades, disease vector research in Thailand had been reorganized and gained useful information on the public health importance of vectors. As a consequence, the number of Anopheles species and species complexes reported has increased (Baimai 1989). In recent years, infrastructural development, expanded housing, and facility-based tourism in forest and forest-fringe areas has resulted in the adaptation of many malaria vectors to these ecological changes. Information on the life history, blood feeding activity, and ecological relationships for pathogens transmission by An. minimus

³ Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900 Thailand.

² Division of Mathematics, Biostatistics and Computer, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaengsean, Nakhon Pathom 73140 Thailand.

³ U.S. Naval Medical Research Unit No.2, Jl. Percetakan Negara No. 29, Jakarta, 10560, Indonesia.

⁴ Malaria Division, Department of Communicable Disease Control, Ministry of Public Health, Nonthaburi 11000 Thailand.

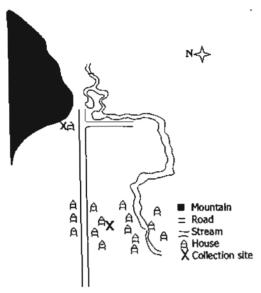


Fig. 1. Map of Ban Pu Teuy and collection sites (marked X).

requires careful study and reassessment, especially in areas in which sympatric sibling species coexist. Taking a stratified approach, the host-locating habits of mosquito vectors in malaria endemic areas are of particular concern for vector incrimination and to acquire information on the epidemiological factors related to high malaria risk areas. Research on larval habitat variability related to seasonal adult density and blood feeding behavior of An. minimus s.l. were conducted in Ban Pu Teuy, Tri-Yok District, Kanchanaburi Province to provide information on this malaria vector in relation to malaria transmission.

Materials and Methods

Study Area. The study was conducted at Ban Pu Teuy. Tri Yok District, Kanchanaburi Province (14°17′N, 99°11′E), ≈50 km southwest of Bangkok. The site is located in mountainous terrain surrounded by deep forest (Fig. 1). Local occupations are linked closely with the forests, principally logging, hunting, and forest preservation. The area was determined to be an excellent habitat for An. minimus (Baimai 1989). There was a narrow, slow moving stream (~2 m in width and average of 1 m in depth) with native vegetation along its margins, running through the low hill zone across the village that served as reference point for all collection activities. IRS using DDT (2 g/m2) had been routinely applied in homes for 40 yr (1960-2000), but was not done during the investigation period.

Larval Surveys. All potential aquatic habitats associated with the stream were surveyed every month from January 2000 to December 2001. Surveys took place during morning (0800-1200 hours) and afternoon (1300-1600 hours) hours, 3 d each month. Two collectors sampled the margin of the steam for ~300 m

upstream (2 m width) from the field laboratory station using a 500-ml dipper. Approximately 20-30 dips were taken by each collector along a designated area of the stream. All samples were kept alive in plastic bags and returned to the laboratory at the Department of Entomology, Kasetsart University, Bangkok, for processing and species identification.

Adult Surveys. Collections during the first year were made ~200 m from the stream bank by two teams of four persons each. One team collected mosquitoes from 1800 to 2400 hours, followed by the second team collecting from midnight to dawn (0000-0600 hours). Each group including both indoor and outdoor collectors was rotated between early and late collection periods to decrease bias. Paired, outdoor and indoor landing collections from human volunteers (two collectors per site) were conducted in a uniform manner throughout hourly collection intervals of 50 min/h with a 10-min break, Each collector exposed their lower legs and collected all landing mosquitoes individually in glass vials. Outdoor collection sites were ≈10 m from the dwellings where the indoor collections were conducted. Specimens were recorded by collection hour and identified to species the following morning. Human-landing collections were made two nights each month from the same localities. Adult collections during the second year were shifted to the village, which is ≈400 m from the first year collection site. All collection methods were the same as described for the first year. Hourly ambient outdoor temperature and humidity readings were made during the period of mosquito collection. Rainfall data were obtained from the local Meteorological Station located in the Tri Yok District, Kanchanaburi Province.

Data Analysis. Three main factors, involved in human landing collections, are selected for analysis including, seasons [wet (June to November), dry (December to February), and hot (March to May)}, time periods [evening (1800–2100 hours), late night (2100–2400 hours), before dawn (0100–0300 hours), and dawn (0300–0600 hours)] and indoors and outdoors.

Nocturnal blood-feeding cycles of An. minimus were tabulated by number per human per hour for indoor and outdoor collections during the 2-yr period. The differences in number for mosquitoes landing were analyzed by three-way analysis of variance, with year as a block factor and differences among groups determined by Duncan multiple range test. All data were analyzed using SAS program package (SAS Releases 6.10, SAS Institute, Cary, NC).

Results

Mosquito larval survey results from January 2000 to December 2001 are summarized in Table 1. All Anopheles mosquitoes were identified to species using illustrated morphological keys to adult Anopheles in Thailand (Harrison 1980, Rattanarithikul and Panthusiri 1994, Department of Communicable Disease Control 1985-2001). Three genera, Anopheles, Culex, and Aedes, were collected along the grassy margins of the

Table 1. Monthly collection of larval mosquitoes of three Anopheles species by two collectors in a stream at Ban Pu Teuy, Kanchanaburi Province, 2000 and 2001

Year	Month	An. m inimus s.l. Total (%)	An. dirus Total (%)	An. swadiwongporni Total (%)	Total
2900	January	985 (99.7)	2 (0.2)	1 (0.1)	963
	February	1295 (99.6)	2 (0.2)	2 (0.2)	1299
	March	587 (98.2)	3 (0.5)	8 (1.3)	59S
	April	773 (97.8)	5 (0.6)	13 (1.6)	791
	May	1276 (96.4)	2 (0.2)	18 (1.4)	1296
	June	967 (97.5)	2 (0.2)	23 (2.3)	992
	July	623 (95.9)	6 (0.9)	21 (3.2)	650
	August	856 (98.5)	1 (0.1)	12 (1.4)	869
	September	445 (94.7)	1 (0.2)	24 (5.1)	470
	October	645 (91.9)	1 (0.1)	56 (8.0)	703
	November	142 (89.9)	4 (2.5)	12 (7.6)	158
	December	132 (85.2)	0 (0)	23 (14.6)	155
2001	Јапиагу	555 (99.6)	1 (0.2)	l (0.2)	557
	February	665 (99.7)	0 (0)	2 (0.3)	667
	March	543 (99.3)	1 (0.2)	3 (0.5)	547
	April	1224 (99.7)	1 (0.1)	3 (0.2)	1228
	May	976 (99.1)	1 (0.1)	8 (0.8)	985
	June	897 (99.5)	2 (0.2)	3 (0.3)	902
	July	923 (98.6)	l (0.1)	12 (1.3)	936
	August	623 (99.5)	0 (0)	3 (0.5)	626
	September	434 (99.3)	1 (0.2)	2 (0.5)	437
	October	443 (98.5)	1 (0.2)	6 (1.3)	450
	November 1	189 (96.4)	0 (0)	7 (3.6)	196
	December	156 (99.4)	0 (0)	1 (0.6)	157

slow running stream. Both margins of the stream contained shallow, stagmant water, often covered with dense vegetation along the edges, which served as habitats for An. minimus and An. swadiwongporni. Mosquito larvae were more abundant in the first half of the year (January-July) than in the second half of the year (August-December). Low numbers of larvae were collected in November and December. Anopheles minimus was the most common species encountered, comprising 84-99% of the total larval mosquito collected. Anopheles swadiwongporni larvae were relatively abundant, ranging from 0.1 to 17.4% of total anophelines depending upon time of year. Larvae of Anopheles dirus s.l. were uncommon in this stream environment compared with the other two species generally <1%). Because of the relatively low number of larvae and adult An, swadiwongporni and An. dirus s.l., results focused on An. minimus.

Human-landing collection (HLC) rates of An. minimus were recorded from indoor and outdoor collections over a 2-yr period. Generally, outdoor collection of An. minimus exceeded indoor collection. During the first year, the outdoor HLC began to increase in June, reaching a peak in October, before dramatically decreasing in November. Similarly, indoor catches showed an elevated peak in October and November. In the second year, the outdoor landing rate was consistently higher than the indoor landing rate throughout the year. An outdoor activity peak was observed in April, without a corresponding indoor peak that followed much later in November. The lowest indoor and outdoor activity was observed in February. The mean HLC was higher in October than in all other months of the year (Fig. 2).

Indoor and outdoor feeding cycles of An. minimus were observed during the 2-yr period. In the first year,

peak outdoor biting activity was observed from 1800 to 2100 hours, with a maximum at 1900–2000 hours. Lowest outdoor biting activity of An. minimus was observed from 0100 to 0300 hours. Indoor collections consistently peaked in the early evening between 1800–1900 hours, with only a moderate peak observed just before dawn at 0100–0300 hours. In the second year, outdoor feeding activity was ~2 times greater than that of the paired indoor collections. The mean HLCs were elevated at dusk (1800–2000 hours) and dawn (0300–0600 hours) in both indoor and outdoor collections over the period of 2 yr (Fig. 3).

Total numbers landing per hour were used in a three-way analysis of variance, with seasons, indoors and outdoors, and time periods as main effects. No significant differences (P > 0.05) in HLCs were observed between the 2 yr of collection. Significant differences were found among seasons (F = 13.09; df = 2, 23; P < 0.001), between indoor and outdoor (F =8.02; df = 1, 23; P = 0.009), and among time periods (F = 6.12; df = 3, 23; P = 0.003). Strong interactions between seasons and indoors and outdoors were observed [F = 4.15; df = 2, 23; P = 0.029, Fig. 4). There was no interaction between seasons and time periods (F = 2.1; df = 6, 23; P = 0.092), between time periods and indoors and outdoors (F = 1.95; df = 3, 23; P =0.15), and among seasons, time periods, and indoors and outdoors (F = 0.99; df = 6, 23; P = 0.457) (Fig. 4).

Discussion

Anopheles minimus s.l. is regarded as an important malaria vector in forest fringe and hill areas of Thailand (Reid 1968, Ismail et al. 1978). Members of this widely dispersed species complex are indistinguishable morphologically from one another (Rattana-

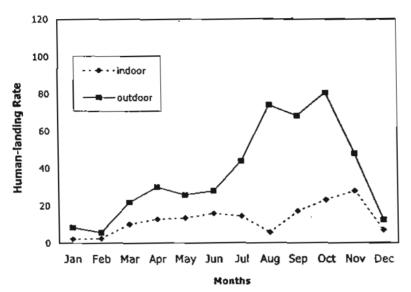


Fig. 2. Monthly indoor and outdoor human-landing rates of Anopheles minimus over the 2-yr period.

rithikul and Punthusiri 1994). In Thailand, this group contains at least three genetically related species, designated An. minimus A, C, and D (Sucharit et al. 1988, Baimai 1989, Green et al. 1990, Baimai et al. 1996, Kengne et al. 2001).

In our study, An. minimus s.l. was the most commonly collected mosquito species along the stream margins and represented more than 95% of the total larvae collected for each month of the 2-yr period. Low numbers in November and December were attributed to the removal of water plants along the stream to improve drainage. This activity commonly was conducted at the end of wet season and temporarily modified larval habitats. In Kanchanaburi Province. An. minimus generally is abundant throughout the year (Department of Communicable Disease Control 1985-2001). As seen in our study, ambient temperature. humidity, and rainfall patterns appear to

impact the abundance of An. minimus. As the mean air temperature decreased, a corresponding reduction in number of adult mosquitoes was observed.

In Ban Pu Teuy, Anopheles minimus A. C. and D are sympatric, with species C the most common species during preliminary sampling at our study site (Baimai 1989). Because of routine IRS using DDT, An. minimus populations have decreased dramatically along the peninsula and have almost disappeared from the central plains of Thailand (Nutsathapana et al. 1986). The species complex, however, remains abundant in the foothill and forest fringe areas. Explanations range from poor coverage by IRS to differences in adult vector behavior (greater exophagy) in areas in which IRS has been applied (Nutsathapana et al. 1986). It has been speculated that the feeding habits of An. minimus have changed to include a greater perference for host-seeking outdoors and feeding on domestic animals

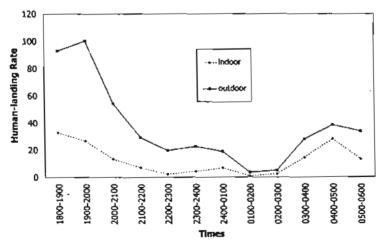


Fig. 3. Hourly indoor and outdoor human-landing frequency of Anopheles minimus over the 2-yr period.

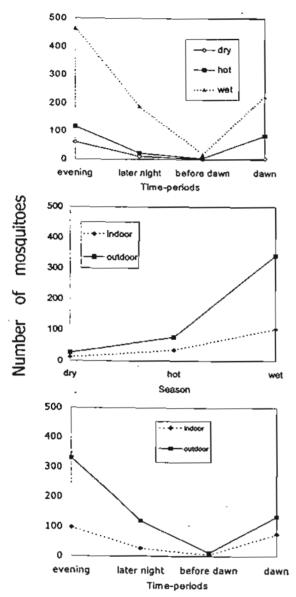


Fig. 4. Interaction of main factors between seasons and time periods, seasons and in-out doors, and in-out doors and time periods.

(Harrison 1980). Ismail et al. (1978) reported that the outdoor biting of An. minimus from Muallek District, Saraburi Province was 4.4-5.8 times greater than indoor biting in studies conducted in 1972-1974. The outdoor biting rate of An. minimus in Pakchong District. Nakhon Rachseema Province, was 2.5 times greater than the indoor biting rate (Ratanatham et al. 1988). In our study, outdoor biting was 2.8 and 2.1 times greater than indoor biting during the first and second year collections, respectively. Despite changing collection locations between the first and second years, exophagy was the predominant behavior. Mi-

crohabitats differed between the two collection sites in our study. In the first year, adult mosquito collections were made near the forest fringe, ~100 m from the stream, and were surrounded by dense vegetation and shrub trees. There was only one house in the area, which served as the collection point. The house was sprayed with DDT once each year until 2000. Because of conditions beyond our control, the second year collection was moved to the village area of Ban Pu Teuy, ≈400m from the first year collection site (Fig. 1). In the village, there were ≈50 houses clustered in small groups of ≈4-5 houses: most houses were sprayed with DDT once each year until 2000. Again, outdoor feeding activity was higher than indoor entering and feeding. The relative predominance of exophagic behavior by An. minimus could have been the result of the annual IRS activities, because of behavioral avoidance of sprayed structures by these vectors (Chareonviriyaphap et al. 2001).

The blood feeding activity of An. minimus has been reported in Thailand. In Mae Tha Waw Village, Tak Province, this species exhibited feeding activity throughout the night with peaks between 2100-2200 hours (Harbach et al. 1987). Ratanatham et al. (1988) reported two feeding peaks for An. minimus collected in Pakchong District, Nakhon Ratchasima Province; the first and largest peak occurring during early evening (1900-2200 hours), and a second much weaker morning peak occurring at dawn (~0500 hours). Rattanarithikul et al. (1996) also reported two outdoor feeding periods for An. minimus from southern Thailand, one beginning from 1800 to 2300 hours, and a second, more moderate, peak beginning at 0100 hours and declining throughout the second half of the night. In our study, feeding activity in Ban Pu Teuy differed from previously published observations. Two peaks of activity were seen in indoor and outdoor collections, regardless of season. The first peak was seen immediately after the sunset (1800-1900 hours) and the second peak was at dawn (0500 hours). However, the feeding pattern during the first half of the night was limited in duration (1800-1900 hours) compared with the broad time period (1800-2200 hours) of increased activity seen by Ratanatham et al. (1988). The biting peak in the second half of the night in our study occurred close to 0500 hours, whereas it was less distinct in the study of Ratanatham et al. (1988) with activity elevated between 0100-0500 hours, depending upon the season of the year. These marked differences in feeding patterns between studies may be the result of normal biological variability between populations of the same species or the result of adaptation or selection induced by focal extrinsic events. At Kanchanaburi Province, there are at least two different sibling species of An. minimus, species A and C. Therefore, it becomes important to determine the biting activity of different field populations and sibling species of An. minimus to provide site-specific activity patterns estimating the relative risk of malaria transmission.

Acknowledgments

We thank all students of Department of Entomology, Faculty of Agriculture, Kasetsart University and entomological staff of Malaria Division, Ministry of Public Health, Nontaburee for their assistance in mosquito collections. Special thanks to Dr. P. Hshieh of Uniformed Services University of the Health Science for his valuable assistance and suggestions for data analysis. We gratefully thank the Thailand Research Fund (TRF). Center of Agricultural Biotechnology (CAB), and the Research and Development Institute (KURDI), Kasetsart University, Bangkok for the generous funding support.

References Cited

- Baimai, V. 1989. Speciation and species complexes of the Anopheles malaria vector in Thailand. Chiang Mai, Thailand. The Third Conference on Malaria Res., Thailand, 18-20 October 1989: 146-162.
- Baimai, V., U. Kijchalao, and R. Rattanarithikul. 1996. Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: V. The Myzomyia series, subgenus Cellia (Diptera: Culicidae). J. Am. Mosq. Cont. Assoc. 12: 97-105.
- Chareonviriyaphap, T., S. Ratanatham, and M. J. Bangs. 2000. Status of malaria in Thailand. Southeast Asian J. Trop. Med. Publ. Hlth. 31: 225-237.
- Chareonviriyaphap, T., S. Sungvornyothin, S. Ratanatham, and A. Prabaripai. 2001. Insecticide-induced behavioral responses of Anopheles minimus, a malaria vector in Thailand. J. Amer. Mosq. Cont. Assoc. 17: 13-22.
- Department of Communicable Disease Control. 1985-2001.
 Annual Malaria Reports. Malaria Division, Department of Communicable Disease Control, Ministry of Public Health, Nontaburi, Thailand.
- Green, C. A., R. F. Gass, E. Munstermann, and V. Baimai. 1990. Population genetic evidence for two species in Anopheles minimus in Thailand. Med. Vet. Entomol. 4: 25-34.
- Harbach, R. E., J. B. Gingrich, and W. P. Lorrin. 1987. Some entomological observations on malaria transmission in a remote village in Northwestern Thailand. J. Amer. Mos. Cont. Assoc. 3: 296-301.
- Harrison, B. A. 1980. Medical entomology studies XIII. The Myzomyia Series of Anopheles (Cellia) in Thailand, with

- emphasis on intra-interspecific variations (Diptera: Culicidae). Contrib. Am. Entomol. Inst. (Ann Arbor) 17(4): 1-195
- Ismail, L.A.H., S. Phinichpongse, and P. Boonrasri. 1978. Responses of Anopheles minimus to DDT residual spraying in a clear forested foothill area in central Thuiland. Acta Trop. 35: 69.
- Kengne, P., H. D. Trung, V. Baimai, M. Coosemans, and S. Manguin. 2001. A multiplex PCR-based method derived from random amplified polymorphic DNA (RAPD) markers for the identification of species of the Anopholes minimus group in Southeast Asia. Insect Mol Biol. 10: 427-435.
- Nutsathapana, S., P. Sawadiwongphorn, U. Chitprarop, and J. R. Cullen. 1986. The behavioral of Anopheles minimus subjected to different levels of DDT selection pressure in Northern Thailand. Bull. Entomol. Res. 76: 313–320.
- Reid, J. A. 1968. Anopheles mosquitoes of Malaya and Borneo. Studies of the Institute for Medical Research, Malaysia, no. 31.
- Ratanatham, S., E. S. Upatham, C. Prasittisuk, W. Rojanasunan, N. Theerasilp, A. Tremongkol, and V. Viyanant. 1988. Bionomics of Anopheles minimus and its role in malaria transmission in Thailand. Southeast Asian J. Trop. Med. Publ. Hlth. 19: 283-289.
- Rattanarithikul, R., and P. Punthusiri. 1994. Illustrated keys to the medically important mosquitoes of Thailand. Southeast Asian J. Trop. Med. Publ. Hlth. 25 (Suppl): 1-66.
- Rattanaríthikul, R., E. Konishi, and K. Linthicum. 1996. Observations on nocturnal biting activity and host preference of Anophelines collected in southern Thailand. J. Amer. Mosq. Cont. Assoc. 12: 52-57.
- Sucharit, S., N. Komalamisra, S. Leemingsawat, C. Apiwathnasorn, and S. Thongrungkiat. 1988. Population genetic studies on the Anopheles minimus complex in Thailand. Southeast Asian J. Trop. Med. Publ. Hlth. 19: 717-723.
- Van Bortel, W., H. D. Trung, N. D. Manh, P. Roelants, P. Verle, and M. Coosemans. 1999. Identification of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences. Trop Med Int Health. Apr., 4: 257-65.

Received for publication 2 November 2002; accepted 3 May 2003.

EXCITO-REPELLENCY OF DELTAMETHRIN ON THE MALARIA VECTORS, ANOPHELES MINIMUS, ANOPHELES DIRUS, ANOPHELES SWADIWONGPORNI, AND ANOPHELES MACULATUS, IN THAILAND

THEERAPHAP CHAREONVIRIYAPHAP! ATCHARIYA PRABARIPAI² AND MICHAEL J. BANGS³

ABSTRACT. This study compared the behavioral avoidance responses of 4 mosquito majaria vectors, Anopheles minimus, Anopheles dirus, Anopheles maculatus form B, and Anopheles swadiwongporni, to deltamethrin. the primary insecticide used for indoor residual spraying for malaria vector control in Thailand. Six test populations, representing 4 laboratory colonies and 2 wild-caught populations, were observed during and after exposure to deltamethrin at the operational dose (0.02 g active ingredient/m²) in excito-repellency escape chambers. The laboratory colonies included a deltamethrin-susceptible colony and a deltamethrin-resistant colony of An. minimus species A, 1 colony of An. dirus species B, and 1 colony of An. maculatus form B. The 2 wild-caught populations included An. swadiwongporni and members of the An. dirus complex. Times to escape by female mosquitoes during 30 min of exposure to deltamethrin-treated papers were observed in all populations and compared to nontreated paired controls in contact and noncontact test configurations. Strong behavioral avoidance was observed in the deltamethrin-resistant colony of An. minimus, followed by An. swadiwongporni and An. maculants. The slowest escape response was observed in the colony of An. dirus species B. All 6 populations of Anopheles showed marked contact irritancy to deltamethrin compared to paired controls and noncontact repellency trials, in both controlled laboratory colonies and field-caught populations. The degree of repellency was less profound than irritancy but, in most cases, produced a significant escape response compared to paired controls. Avoidance behavior appears to be an innate behavior of mosquitoes, as indicated by the general avoidance response detected in all 4 species, regardless of deltamethrin susceptibility status, age, or nutritional and physiological status. Excito-repellency assays of the type described in this study should become an integral part of the overall assessment of an insecticide's ability to control disease transmission in any given area.

KEY WORDS Behavioral avoidance, irritancy, repellency, deltamethrin, Anopheles minimus. Anopheles maculatus, Anopheles dirus, Anopheles swadiwongporni, Thailand

INTRODUCTION

In Thailand, malaria remains a major and reemerging health problem (Charconviriyaphap et al. 2001). The primary vectors in Thailand include Anopheles dirus Peyton and Harrison, Anopheles minimus Theobald, Anopheles maculatus Theobald, and Anopheles swadiwongporni Rattanarithikul and Green, all members of the subgenus Cellia. Each species represents a member in broader species complexes, including An. dirus, An. minimus, and An. maculatus (which contains An. swadiwongporni), respectively (Rattanarithikul and Green 1986, Subbarao 1998). Many members within these species complexes exhibit both endophagous and exophagous behavioral patterns conducive for efficient malaria transmission (Pinichpongse and Bullner 1967, Suwonkerd et al. 1990, Chareonviriyaphap et al. 2000). Anopheles dirus and An. minimus are members representing individual species complexes, of which the respective sibling species often are not distinguishable morphologically from one another (Baimai 1989, Rattanarithikul and Panthusiri 1994). Anopheles maculatus and An. swa-

Deltamethrin, a common synthetic pyrethroid, is frequently and widely used for indoor residual spraying of house surfaces to control anopheline mosquitoes (Patipong 2000). This compound generally is applied in 1 or 2 spray rounds per year in malaria-endemic areas of Thailand (Ministry of Public Health 2000). The true mode of action of deltamethrin on the control of vectors and malaria is still open to investigation in terms of the relative importance of the lethal properties and behavioral responses of vector populations (Roberts et al. 2000). Because most pyrethroids demonstrate a significant and immediate excito-repellency action on exposed mosquitoes, the proposed wide-scale use of deltamethrin for malaria control in Thailand has stimulated the need for well-designed studies on the significance of pyrethroid avoidance behavior and its overall efficacy in reducing human-vector contact. Moreover, the respective roles of irritability and repellency of deltamethrin against the impor-

diwongporni are morphologically distinct members in the An. maculatus group (Rattanarithikul and Green 1986). One of the principal methods of malaria abatement in Thailand has been use of various methods of vector control to reduce transmission risk. For many years, DDT was the chemical of choice and was used extensively in malaria-endemic areas. Because of reported adverse impact on the environment and general negative public attitudes, DDT use was gradually phased out between 1995 and 2000 for the control of malaria vectors in Thailand (Chareonviriyaphap et al. 1999).

Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkean, Bangkok, 10900, Thailand

Faculty of Liberal Arts and Science, Kasetsart University. Kamphaengsean Campus, Nakhon Pathom, 73140, Thailand.

³ U.S. Naval Medical Research Unit No. 2, Jl. Percetakan Negara No. 29, Jakarta, Indonesia.

tant malaria vectors in Thailand merit careful investigation before launching programs that use this compound exclusively.

Two different types of behavioral avoidance responses by mosquitoes are recognized: irritancy and repellency (Rutledge et al. 1999, Roberts et al. 2000). Irritability occurs when insects actually make physical contact with chemical residues before eliciting a stimulus-mediated response, whereas repellency is defined as a stimulus acting from a distinct distance from the insecticide-treated surface that deters insects from entering treated areas or otherwise disrupts normal patterns of behavior. Excito-repellency bioassays for describing and quantifying the irritant effects of insecticides on mosquitoes were developed beginning in 1963 and have been modified over the years (Rachou et al. 1963. Shalaby 1966, WHO 1970). Initial laboratory investigations on behavioral response of Anopheles to various insecticides were conducted by using the World Health Organization (WHO) excito-repellency test box design (Coluzzi 1963, Bondareva et al. 1986, Pell et al. 1989, Quinones and Suarez 1989, Ree and Loong 1989). Presently, no method for the assessment of mosquito behavioral responses has been universally endorsed as a standard for conducting excito-repellency testing, data analysis, and interpretation (Brown 1964, Roberts et al. 1984, Evans 1993, Rutledge et al. 1999, Roberts et al. 2000. Chareonviriyaphap et al. 2001). Recently, a controlled-design excito-repellency box was developed for testing both contact irritancy and noncontact repellency (Roberts et al. 1997, Chareonviriyaphap et al. 2001). This initial system has been modified further into a collapsible chamber designed for greater ease of use (Chareonviriyaphap et al. 2002). Described herein are the behavioral responses when using contact and noncontact assays and colonized An. minimus species A, An. macularus form B, and An. dirus species B, and 2 field populations, 1 of An. swadiwongporni and the other of members of the An. dirus complex, against the standard field dosage of deltamethrin (0.02 g/m²).

MATERIALS AND METHODS

The irritability and repellency of deltamethrin were determined by observing the number of mosquitoes escaping from matched test and control chambers when using 4 species of Anopheles mosquitoes considered vectors of malaria in Thailand. Of the 6 different populations tested (Chareonviriyaphap, unpublished data), only 1 was considered to be resistant to residual deltamethrin based on the standard WHO contact bioassay (WHO 1975). All behavioral tests were conducted under near-identical laboratory-controlled conditions (temperature and humidity), between 0800 and 1630 h, at the Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.

Test populations: Anopheles dirus species B

(DISB) originally was collected from wild-animal footprints in Ban Paung District, Chantaburee Province, eastern Thailand, in 1987, and was maintained in insectary-controlled conditions at the Armed Forces Research Institute of Medical Science (AF-RIMS), Bangkok, Thailand. The colony was obtained by the Malaria Division, Department of Communicable Disease Control (CDC), Ministry of Public Health, Nontaburi, Thailand, in 1995 and obtained in 1998 by the Department of Entomology, Kasetsart University, for the purposes of this study. This colony was found to be completely susceptible to deltamethrin at the field operational dosage of 0.02 g/m2 when using the standard WHO contact bioassay and impregnated papers supplied WHO. Susceptible An. minimus species A (MISA) originally was collected from animal quarters in Rong Klang District, Prae Province, northern Thailand, in 1993 and maintained in insectary-controlled conditions at the CDC, Nontaburi, beginning in 1995. The colony was received from the CDC in 1998 and raised in the Department of Entomology, Kasetsart University. This colony was determined to be completely susceptible to the field dosage of deltamethrin. The origins and colonization of resistant An. minimus species A (MIRA) have been described in a previous study (Sungvornyothrin et al. 2001). This colony exhibited between 50 and 60% resistance to deltamethrin at the operational dosage based on standard contact bioassay. Anopheles maculatus form B (MASB) was obtained from resting collections in animal quarters at Ban Khun Hauy, Mae Sot District, in 1999. The colony was initially maintained at the Department of Entomology, AFRIMS, and was provided to the Department of Entomology, Kasetsart University, in February 2002. The colony was found to be completely susceptible to deltamethrin. Anopheles swadiwongporni (SASA) was collected by evening resting collections from animal quarters in Ban Pu Teuy, Tri Yok Noi, Kanchanaburi Province, during January and February 2001. The wild-caught females were determined to be completely susceptible to deltamethrin. Anopheles dirus complex (DISC) was obtained from human-landing collections in the foothill area of Ban Pu Teuy during January and February 2001. A determination of the ratio of An. dirus species A, B, C, and D in the collection was not made. The field-caught females were determined to be susceptible to deltamethrin.

Mosquito rearing: Mosquito colonies were reared by following the method of Chareonviriyaphap et al. (1997), with only minor modifications. Each colony was maintained in separated rooms within a common insectary under controlled conditions (25 \pm 5°C; 80 \pm 10% relative humidity) at the Department of Entomology, Kasetsart University. Adult insects were provided cotton pads soaked with 10% sugar solution from the day of emergence and were maintained in 12 \times 12 \times 12-in, screened cages. Female mosquitoes were per-

mitted to imbibe a blood meal from restrained laboratory hamsters on the 4th day after emergence. Depending on the mating requirements, some strains required forced copulation before oviposition. Approximately 2–3 days after bloodfeeding, oviposition dishes (moist filter paper in petri dishes) were placed in the cages with the gravid females. Larval stages were reared in enameled pans under identical physical and nutritional conditions throughout the study period.

Insecticide-impregnated papers: Only a single standard field dose of deltamethrin was used in this investigation, based on current malaria control policy in Thailand. The amount of active ingredient varied only slightly from the dosage (0.025 g/m²) generally recommended by WHO (WHO 1992). Test papers (27.5 × 35.5 cm²), impregnated with 0.02 g/m², were purchased from WHO, Vector Control Unit, Penang, Malaysia. All papers were treated at the rate of 2.75 ml of the insecticide solution per 180 cm² and used before their specified time of expiration.

Behavioral tests: Tests were conducted to compare the behavioral responses (irritancy and repellency) of An. minimus species A, An. dirus s.l. and species B, An. maculatus form B, and An. swadiwongporni to an operational dosage of deltamethrin applied to a paper surface. For all bioassays, slightly modified test chambers from those previously described were used in paired control and treatment trials (Chareonviriyaphap et al. 2002). Details of the chamber design and test methodology follow closely those of Sungvornyothrin et al. (2001) and Roberts et al. (1997). For colonized populations, only unfed, nulliparous female specimens were used in excito-repellency tests, whereas field-collected mosquitoes represented a mix of different physiological and nutritional states. All tests were performed during the day (0800-1630 h) based on availability of mosquitoes.

Each test series consisted of 2 insecticide test chambers and 2 paired control boxes. Mosquitoes were maintained in holding cups approximately 2-3 h before testing. For a complete test, 25 mosquitoes, 3-5 days old, were carefully introduced into each of 4 chambers by using a mouth aspirator, after which the outer rear door was closed and secured. A receiving cage (6 × 6 × 6-cm paper box) was connected to the exit portal for collecting any escaped mosquitoes. Mosquitoes were allowed a 3min resting period to permit adjustment to test chamber conditions, after which the escape funnel was opened to begin the observation period. Mosquitoes escaping from the chamber into the receiving cage were recorded at 1-min intervals for a period of 30 min.

All trials were replicated 3 or more times for each particular test combination. Immediately after 30 min of exposure, the number of dead specimens remaining inside the chamber and those that had escaped to the receiving cage were recorded for

treatment and control chambers. Additionally, all live specimens that had escaped or remained inside the chamber after 30 min were collected, provided sugar solution, and held in separate lots to record mortality during the 24-h postexposure period.

Data analysis: A survival analysis method described by Roberts et al. (1997) was used to analyze and interpret the behavioral response data (Chareonviriyaphap et al. 1997). The escape response data were subjected to Kaplan-Meier survival analysis as the preferred and most robust statistical treatment for excito-repellency data (Kleinbaum 1995). Unlike other methods of analysis that have attempted to quantitatively describe the behaviorial responses (irritability) to insecticide deposits, the generation of survival curves minimizes the loss of useful information and allows an estimation of mosquito escape probability over time of exposure. A log-rank method (Mantel and Haenzel 1959) was used to compare patterns of escape behavior within and between different treatment groups and biological conditions.

RESULTS

Excito-repellency patterns of 4 important malaria vector species in Thailand exposed to field-rate deltamethrin (0.02 g/m²) were performed in contact and noncontact exposure chambers. Overall percentage and rate of escape response was found to be higher in contact trials compared to noncontact and control trials in all test populations (Table 1). Contact rate of escape patterns from treated chambers allowing physical contact with residual deltamethrin were significantly higher than those from paired controls, although escape rates varied by test populations (Figs. 1 and 2). For example, a rapid escape response during the 30-min exposure was observed in populations MIRA (100%), MASB (99%), MISA (96%), and SASA (90%), whereas a more subdued response 70 and 80% escape, respectively, was observed in DISB and DISC test populations. Comparatively low numbers of female mosquitoes (≤25%) departed from the control chambers, with the exception of the DISB control where almost 60% escaped during the test time (Fig. 2). Unusually high escape patterns in control tests occur from time to time for reasons that are unclear. Repeated trials under the same or nearly identical conditions normally see these high rates of escape among controls as an unexplained anom-

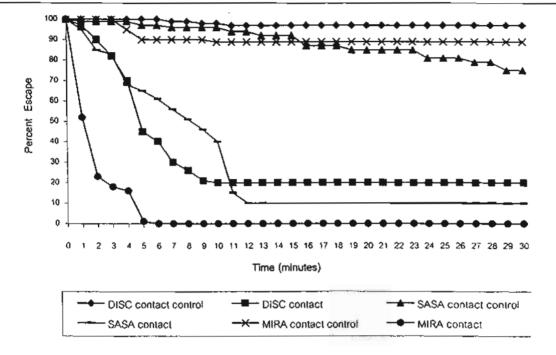
In the noncontact trials, marked escape responses were observed in MISA (75%), DISB (72%), and DISC (58%) test populations, compared to the MASB (33%), SASA (49%), and MIRA (50%) populations after 30 min of exposure (Figs. 1 and 2). In some cases, a higher percentage of mosquitoes escaped from the control chambers, as observed in DISB (62%), MISA (58%), and SASA (25%) test populations when compared to MIRA

Table 1. Summary of escape response and mortality of female Anopheles species exposed to deltamethrin at 0.02 g/m² in contact and noncontact trials.

		No. observed		% п	nortality
Test'	Tested	Escaped	% escaped	Escaped ²	Not escaped ³
Contact	_				
DISB-C	200	114	57	6.1 (7/114)	0
DISB	200	140	70	1.4 (2/140)	96.7 (58/60)
MISA-C	100	21	21	0	O
MISA	100	98	98	3.1 (3/98)	100 (2/2)
MIRA-C	200	22	11	0	O
MIRA	200	200	100	2.0 (4/200)	U
MASB-C	75	10	13	0	0
MASB	75	74	9 9	0	300 (1/1)
SASA-C	200	50	25	0	0
SASA	200	180	90	0	100 (20/20)
DISC-C	200	8	4	0	0
DISC	200	160	80	3.1 (5/160)	100 (40/40)
Noncontact					
DISB-C	200	124	62	1.6 (2/124)	0.13 (1/76)
DISB	200	144	72	0	0.053 (3/56)
MISA-C	100	58	58	0	0
MISA	100	75	75	0	0
MIRA-C	200	28	14	0	0
MIRA	200	100	50	2.0 (2/100)	0.04 (4/100)
MASB-C	75	5	7	0	0
MASB	75	25	33	0	0
SASA-C	100	25	25	4.0 (1/25)	0
SASA	100	49	49	2.0 (1/49)	0
DISC-C	100	8	8	0	0
DISC	100	- 58	58	Ö	0

DISB, An. dirus species B (laboratory population); MISA, An. minimus species A; MIRA, An. minimus species A; MASB, An. maculatus form B; SASA, An. swadiwongporni; DISC, An. dirus complex (field population); C, control test without insecrecide.

2 Dead/no. escaped given in parentheses.


Dead/no. remaining inside chamber given in parentheses.

(14%), MASB (7%), and DISC (8%) populations. As noted in other studies, the repellent effect on mosquito behavior is far less evident compared to the irritant effect caused by direct physical contact with an insecticide in the pyrethroid class or DDT.

Times of escape from treated and control chambers, measured in 1-min intervals, were defined as escape time (ET), in terms of the time elapsed for 50% (ET₅₀) and 75% (ET₇₅) of the test population to depart the exposure chamber from the single exit aperture (Table 2). Because contact tests showed a greater and more rapid response than noncontact trials, escape patterns reflected this in time of escape. In contact trials, all 6 populations had ETso values of between 2 and 9 min, and an ET25 of ≤13 min (3-13 min) for 5 of the populations. As noted in the within and between population comparisons, DISB had the lowest percent escape and highest mortality in contact trials compared to the other populations. In the noncontact trial, the ET508 for DISB, MISA, MIRA, and DISC are 7, 18, 5, and 12, respectively (Table 2). The ET25 values for DISB could not be calculated. In noncontact trials, some ET₅₀ and ET₇₅ values for test populations could not be calculated for a 30-min exposure period because a few specimens escaped from the exposure chamber.

Female mosquito mortality from different test populations after a 24-h postexposure holding period in all contact and noncontact treatment and control trials are provided in Table 1. In general, low percent mortality was observed in females from all test populations managing to escape in both contact (0-6.1%) and noncontact trials (0-4%). All females that remained inside the chambers after 30 min of exposure in contact trials had died within 24 h, whereas most noncontact test specimens survived with a low percent mortality (0.04-0.13%) after the 24-h holding period.

Within-population comparisons of escape responses between contact trials and paired controls, contact and noncontact trials, and noncontact and paired controls for the 6 test populations are shown in Table 3. Significant differences were observed in all combination comparisons except in DISB. This population showed no difference when comparing irritancy and repellency responses (P = 0.962) or any differences between noncontact and paired control designs (P = 0.07), indicating that this long-

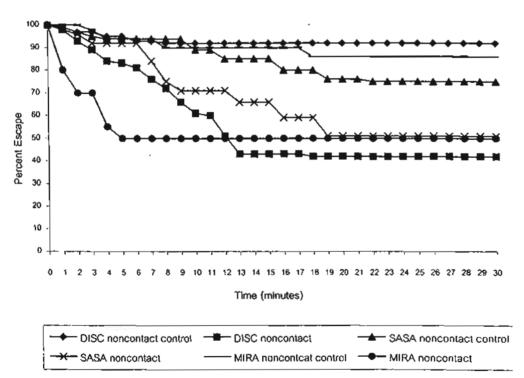
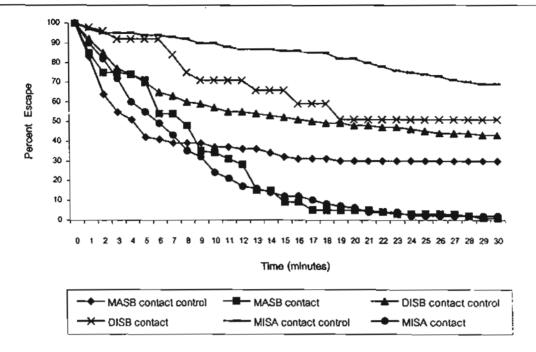



Fig. 1. Escape probability of Anopheles dirus complex (DISC), An. swadiwongporni (SASA), and resistant An. minimus species A (MIRA)-mosquito populations in contact and noncontact trials and respective paired controls when using deltamethrin at 0.02 g/m².

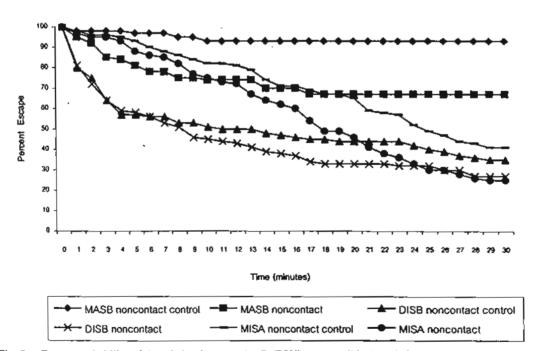


Fig. 2. Escape probability of Anopheles dirus species B (DISB), susceptible Anopheles minimus species A (MISA), and Anopheles maculatus form B (MASB) mosquito populations in contact and noncontact trials and respective paired controls when using deltamethrin at 0.02 g/m³.

Table 2. Escape time in minutes for 50% (ET₃₀) and 75% (ET₃₅) of female Anopheles species to escape from exposure chambers treated with deltamethrin.

	DI	\$B	MI	SA .	MI	RA .	SA	SA	M.A	SB	DI	SC
Test	ET,50	ET,5	ET,	ET,	EL ²⁰	ET,	ET ₅₀	ET ₇₅	ET,	ETns	ET ₅₀	ET,,
Contact	5		6	10	2	3	9	11	9	13	5	9
Noncontact	7	_	18	_	5	_	_		_	_	12	-

DISB. An. dirus species B (laboratory population); MISA, An. minimus species A; MIRA, An. minimus species A; MASB, An. maculatus form B; SASA, An. swadiwongporni; DISC, An. dirus complex (field population). A dash indicates that too few specimens escaped from exposure chambers to allow calculation of an ET₃₀ or ET₃₂.

standing laboratory colony showed no marked repellent response to deltamethrin.

Multiple comparisons of escape patterns (rate of escape) between the 6 test populations of female Anopheles in contact and noncontact trials were analyzed with the log-rank method at the 0.05 level of probability (Table 4). In contact trials, significant differences were found in all cases, except for DISB vs. SASA, DISB vs. DISC, and MISA vs. DISC population comparisons. For noncontact trials. only 2 paired population comparisons failed to show a significant difference (MIRA vs. MASB and MASB vs. SASA). In this study, only An. minimus (MIRA) was found to be physiologically resistant to deltamethrin and significant differences were found in escape responses between MIRA and the 5 deltamethrin-susceptible populations in contact tests

DISCUSSION

The mathematical framework for understanding the repellent, irritant, and toxic properties of insecticides on mosquitoes and how they function in control of malaria has been proposed by Roberts et al. (2000). This work, along with other related stud-

Table 3. Within-population comparison of escape response between paired control and contact trials, contact and noncontact trials, and paired noncontact and control trials for 6 test populations of female Anopheles against deltamethrin at the field rate of 0.02 g/m².

				<u> </u>
No repli- cates contact/ non- contact	Test population	Control vs. contact (P)	Contact vs. noncontact (P)	Noncontact vs. control (P)
8/8	DISB	0.0120	NS	NS
4/4	MISA	0.0001	0.0001	0.0080
878	MIRA	0.0001	0.0001	0.0001
3/3	MASB	0.0001	1000.0	0.0001
8/4	SA\$A	1000.0	0.0001	0.0010
% 4	DISC	0.0001	0.0001	0.0001

DISB. An. dirns species B (laboratory population); MISA, An. minimus species A; MIRA, An. minimus species A; MASB, An. moculatus form B; SASA, An. swadiwongporni; DISC, An. dirus complex (field population); P < 0.05 indicates log-rank tests with significant differences in avoidance behavior patterns; NS = P > 0.05

ies, has clearly suggested that the excito-repellent and toxicological actions must be accurately assessed by using different vectors and chemical insecticides throughout malaria-endemic areas (Chareonviriyaphap et al. 2001, Sungvornyothin et al. 2001). This study observed the behavioral responses of 4 important malaria vectors from Thailand to the standard operational field dose of residual deltamethrin, the currently approved indoor residual insecticide for malaria control in Thailand, These results contribute to the ongoing work to optimize and standardize an excito-repellency test system that is deemed an essential component for assessing public health insecticides and their mode of action in disease vector and transmission control. We also compared the behavioral responses between a deltamethrin-susceptible and deltamethrin-resistant laboratory population of An. minimus species A.

Significant avoidance responses were observed in contact trials, compared to noncontact and control trials, and significant differences in escape responses were documented between noncontact trials and contemporaneous paired controls. The most dramatic behavioral avoidance response after phys-

Table 4. Comparison of escape patterns between test populations of female *Anopheles* in contact and noncontact trials with deltamethrin.

Test population	Contact trial	Noncontact	
comparisons	(P)	trial (P)	
DISB vs. MISA	0.0001	0.0001	
DISB vs. MIRA	0.0001	0.0004	
DISB vs. MASB	0.0001	0.0001	
DISB vs. SASA	NS	1000.0	
DISB vs. DISC	NS	0.0009	
MI\$A vs. MIRA	0.0001	0.0001	
MISA vs. MASB	1000.0	0.0121	
MISA vs. SASA	0.0469	0.0032	
MISA vs. DISC	NS	0.0001	
MIRA vs. MASB	0.0020	NS	
MIRA vs. SASA	0.0001	0.0287	
MIRA vs. DISC	0.0001	0.0001	
MASB vs. SASA	0.0001	NS	
MASB vs. DISC	0.0001	0.0001	

DISB, An. dirus species B (laboratory population); MISA, An. minimus species A; MIRA, An. minimus species A; MASB, An. maculatus form B; SASA, An. swadiwongporm; DISC, An. dirus complex (field population); P < 0.05 indicates log-rank tests with significant differences in avoidance behavior patterns; NS $\approx P > 0.05$.

ical contact with deltamethrin was observed in MIRA, followed by MASB, and SASA test populations. A colonized population DISB demonstrated the weakest responses to deltamethrin. Noncontact repellency was detected at significant levels compared to paired controls, except in the DISB colony. Strong repellency was observed in MIRA and DISC, with more than 50% of the test population escaping from the test chambers within 30 min. Repellency was less pronounced in MASB, SASA, and MISA but remained significant compared to the controls. These observations on repellency action are in agreement with the results from previous studies (Chareonviriyaphap et al. 1997, 2000; Sungvornyothin et al. 2001), which reported an intermediate avoidance response compared to irritancy, yet significant overall repellency effects of deltamethrin to Anopheles albimanus Wiedemann from Central America and An. minimus from Thailand, respectively. Mortality was low in mosquitoes escaping the treated chambers in contact and noncontact trials, an indication that behavioral avoidance greatly reduces the opportunity for residual insecticides to impact survival through toxicity.

Of the mosquitoes under study, DISB produced higher numbers of escaped mosquitoes from the control chambers compared to the other 5 test populations. The reason for this is unclear. Because this colony has been maintained in the laboratory for more than 16 years, it may have lost some ability to respond normally to insecticides. A similar phenomenon was observed in the 20-year-old colony of An. albimanus from the Walter Reed Army Institute of Research (WRAIR). The WRAIR colony showed virtually no response to all chemicals tested, and all mosquitoes that remained in the treated test chamber did not survive past the 24-h postexposure holding period (Chareonviriyaphap et al. 1997). The poorer escape response compared to the other populations appears to be colony-related, because DISB has been continuously maintained under artificial conditions in the laboratory for nearly 2 decades before this study. Long-term colonization possibly has unintended effects on normal behavioral patterns in mosquitoes, although this would not appear to be the case with An. dirus when comparing contact escape responses between colony and field populations (P = 0.56).

Irritancy, a result of physical contact with insecticide-treated surfaces, by mosquitoes were recognized even before the early stages of broad-scale use of insecticides to control vector mosquitoes (Kennedy 1946). Subsequent observations indicated that some insecticides also could induce a repellent effect, without actual physical contact with a treated surface. Repellency effects to insecticides used in malaria control have been reported in several anopheline species (Roberts and Alecrim 1991, Roberts et al. 1997, Chareonviriyaphap et al. 1997). One of the 1st species of mosquitoes to demonstrate a repellent effect, Anopheles culicifacies Giles from

India, provided further evidence of noncontact repellency in mosquito vectors, a phenomenon that has been long been ignored or discounted as important in malaria control. One of the reasons for the poor understanding of avoidance behavior in mosquitoes was the lack of an adequate test system to measure both irritancy and noncontact repellency, which eventually was satisfied by Roberts et al. (1997) with the development of a true excito-repellency test system. When properly configured. this test system allows observations that distinguish irritancy and repellency, and was 1st used to measure behavioral responses of An. albimanus to DDT and some pyrethroids under laboratory and natural field conditions (Chareonviriyaphap et al. 1997). Subsequently, improved excito-repellency escape chambers have been developed that provide information on both irritant and repellent responses (Chareonviriyaphap and Aum-Aung 2000; Chareonviriyaphap et al. 2002). Improved test systems have been used to quantify the insecticide-induced behavioral responses of wild-caught An. minimus in Thailand (Chareonviriyaphap et al. 2001).

Our findings on behavioral responses of malaria vectors to insecticides are similar to those of previous studies (Ree and Loong 1989; Evans 1993; Chareonviriyaphap et al. 1997, 2001; Bangs 1999). The behavioral responses to deltamethrin by female mosquitoes from different test populations varied depending on innate characteristics of each test population. Although the nutritional and physiological status of laboratory mosquitoes was carefully controlled, field-caught mosquitoes were naturally heterogeneous in age and nutritional status. Because avoidance behavior is significantly influenced by the nutritional and physiological condition of the mosquito, the interpretation of avoidance responses to insecticides derived from field populations should be interpreted with caution (Sungvornyothin et al. 2001).

Pyrethroid-class insecticides have long been known to elicit excito-repellent responses in insects (Threlkeld 1985). The combined effects of irritancy and repellency produced in the presence of an insecticide can have a dramatic impact on the effectiveness of chemical control of mosquito vectors. thus profoundly impacting the local transmission of disease. Behavioral avoidance of treated surfaces, especially irritancy, generally prevents sufficient contact with a residual insecticide, thus greatly reducing the risk of premature mortality in bloodseeking anophelines. However, a reduction in the toxic effects of a chemical may not necessarily equate to an increase in risk of human-vector contact inside houses (Roberts et al. 2000). We believe a convincing argument exists that the consequence of the combined effect of repellency and irritancy in reducing house-entering mosquito densities and interrupting patterns of bloodfeeding behavior exerts a profound influence on transmission, likely overriding the influence of contact toxicity. The implications of these and other findings that describe the dramatic display of mosquito avoidance of insecticide-treated surfaces (wall surfaces and impregnated bed-nets) warrant continued study. We believe excito-repellency assays of the type described in this study should become an integral part of the overall assessment of an insecticide's ability to control disease transmission.

In conclusion, deltamethrin exerted remarkable excito-repellency in 4 species of Anopheles, all of which are regarded as important vectors of malaria in Thailand. All 6 populations showed vigorous contact irritancy to the operational dosage of deltamethrin compared to paired controls and noncontact repellency trials, in both controlled laboratory colonies and field-caught populations, regardless of nutritional and physiological status of the test populations. However, the degree of repellency was less profound than that of irritancy, and in most cases produced a significant avoidance response compared to paired controls. The differences in escape responses between the long-standing colony of An. dirus and the other species tested appear to be a consequence of prolonged colonization and isolation from varying natural stimuli. Additional efforts are currently underway to promote development of standardized excito-repellency response tests.

ACKNOWLEDGMENTS

We thank the staff of the Malaria Division, CDC, Ministry of Public Health, for providing the colonies of An. minimus and An. dirus. Special thanks are extended to the Department of Entomology, AFRIMS, for kindly providing An. maculatus form B. We are grateful to all anonymous reviewers for comments and suggestions on this manuscript. This project was funded by the Thailand Research Fund, Kasetsart University Research and Development Institute, and Center of Agricultural Biotechnology, Kasetsart University, Bangkok, Thailand.

REFERENCES CITED

- Baimai V. 1989. Speciation and species complexes of the Anopheles malaria vector in Thailand. In: Proceedings of The Third Conference on Malaria Research, Thailand, 1989 October 18-20; Chiang Mai, Thailand, Bangkok, Thailand; Malarial Division, p 146-162.
- Bangs MJ. 1999. The susceptibility and behavioral response of Anopheles albimanus Weidemann and Anopheles vestitipennis Dyar and Knab (Diptera: Culicidae) to insecticides in northern Belize, Central America. Ph.D. dissertation. Uniformed Services University of the Health Sciences. Bethesda, MD.
- Bondareva NL, Artem'ev MM, Gracheva GV. 1986. Susceptibility and irritability caused by insecticides to malaria mosquitoes in the USSR. Part 1. Anopheles pulcherrimus. Med Parazitol Parazit Bolezni 6:52-55.
- Brown AWA. 1964. Experimental observations governing the choice of test method for determining the DDTirritability of adult mosquitoes. Bull WHO 30:97-111.
 Chareonviriyaphap T, Aum-Aung B. 2000. Improved ex-

- cito-repellency escape chamber for behavioral tests on mosquitoes. Mekong Malaria Forum 5:82-86.
- Chareonviriyaphap T, Aum-Aung B, Ratanatham S. 1999. Current insecticide resistance patterns in mosquito vectors in Thailand. Southeast Asian J Trop Med Public Health 30:184-194.
- Chareonviriyaphap T, Bangs MJ, Ratanatham S. 2000. Status of malaria in Thailand. Southeast Asian J Trop Med Public Health 31:225-237.
- Chareonviriyaphap T, Prabaripai A, Sungvornyothin S, 2002. An improved excito repellency for mosquito behavioral test. J Vector Ecol 27:250-252.
- Charconviriyaphap T, Roberts DR, Andre RG, Harlan H. Bangs MJ. 1997. Pesticide avoidance behavior in Anopheles albimanus Wiedermann, a malaria vector in the Americas. J Am Mosq Control Assoc 13:171-183.
- Chareonviriyaphap T, Sungvornyothin S, Ratanatham S, Prabaripai A. 2001. Pesticide-induced behavioral responses of Anopheles minimus, a malaria vector in Thailand. J Am Mosq Control Assoc 17:13-22.
- Coluzzi M. 1963. Studies on irritability of DDT to anopheline mosquitoes. WHO Vector Control 33:1-22.
- Evans RG. 1993. Laboratory evaluation of the irritancy of bendiocarb, lambda-cyhałothrin, and DDT to Anopheles gambiae. J Am Mosq Control Assoc 9:285-293.
- Kennedy JS. 1946. The excitant and repellent effects on mosquitos of sublethal contacts with DDT. Bull Entomol Res 37:593-607.
- Kleinbaum DG. 1995. Survival analysis New York: Springer-Verlag.
- Mantel N, Haenzel W. 1959. Statistic aspects of the analysis of data from retrospective studies of diseases. J Natl Cancer Inst 22:719-748.
- Ministry of Public Health. 2000. Annual malaria report 2000 Available from Malaria Division, Department of Communicable Disease Control, Ministry of Public Health, Nontaburce, Thailand. 186 p.
- Patipong S. 2000. Protecting against mosquito bites. Mekong Malaria Forum 5:86-88.
- Pell JK, Spinney MA, Ward KJ. 1989. Observations on the behavior of adult Anopheles gambiae encountering residual deposits of lambda-cyhalothrin compared with the other major classes. In: Fourth Annual Conference of the Society for Vector Ecology European Region. p 1-18.
- Pinichpongse S, Bullner GR, 1967. The current status of malaria entomology in Thailand. Warasan Malar 11: 43.
- Quinones ML, Suarez MF. 1989. Irritability to DDT of natural populations of the primary malaria vectors in Colombia. J Am Mosq Control Assoc 5:56-59.
- Rachou RG, Moura LM, Duret JP, Kerr JR. 1963. Experiences with the excito-repellency test box—model OPS. In: Proceedings of the 50th Annual Meeting of the New Jersey Mosquito Exterminators Association and the 19th Annual Meeting of the American Mosquito Control Association. p 442-447.
- Rattanarithikul R, Green CA. 1986. Formal recognition of the species of the Anopheles maculatus group (Diptera: Culicidae) occurring in Thailand, including the description of two new species and a preliminary key to females, Mosq Syst 18:246-278.
- Rattanarithikul R, Panthusiri P. 1994. Illustrated keys to the medically important mosquitoes of Thailand. Southeast Asian J Trop Med Public Health 25:60-183.
- Ree HI, Loong KP. 1989. Irritability of Anopheles farauti,

- Anopheles maculatus, and Culex quinquefasciatus to permethrin. Jpn J Sanit Zool 40:47-51.
- Roberts DR, Alecrim WD, 1991. Behavioral response of Anopheles darlingi to DDT sprayed house walls in Amazonia. PAHO Bull 25:210-217.
- Roberts DR, Alecrim WD, Tavares AM, McNeill KM. 1984. Influence of physiological condition on the behavioral response of Anopheles darlingi to DDT. Mosq News 4:357-361.
- Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P. 1997. Methods for testing and analyzing excito-repellency responses of malaria vectors to insecticides. J Am Mosq Control Assoc 13:13-17.
- Roberts DR, Alecrim WD, Hshieh P, Grieco J, Bangs M, Andre RG, Chareonviriyaphap T. 2000. A probability model of vector behavior: effects of DDT repellency, irritability, and toxicity in malaria control. *J Vector Ecol* 25:48-61.
- Rutledge LC, Echana NM, Gupta RK. 1999. Responses of male and female mosquitoes to repellents in the World Health Organization insecticide irritability test system. J Am Mosq Control Assoc 15:60-64.
- Shalaby AM. 1966. Observations on some responses of Anopheles culicifacies to DDT in experimental huts in Gujarat State, India. Ann Entomol Soc Am 59:938-944.
- Subbarao SK. 1998. Anopheline species complexes in South-East Asia Technical Publication, Southeast Asia

- Regional Office 18. p 82. Available from the World Health Organization, New Delhi, India.
- Sungvornyothin S, Chareonviriyaphap T, Prabaripai A, Trirakhupt T, Ratanatham S, Bangs MJ. 2001. Effects of nutritional and physiological status on behavioral avoidance of Anopheles minimus (Diptera: Culicidae) to DDT, deltamethrin and lambdacyhalothrin. J Vector Ecol 26:202-215.
- Suwonkerd W, Aum-Aong B, Rimwangtrakul K. Wong-kattiyakul S, Kattiyamongkool B. Chiprarop U. Takagi M. 1990. A field study on response of Anopheles dirus to DDT and fenitrothion sprayed to huts in Phetchabun Province, Thailand. Trop Med (Nagasaki) 32:1~5.
- Threlkeld SFH. 1985. Behavioral responses in *Drosophilia melanogaster* associated with permethrin and ectiban. In: Proceedings of the 32nd Annual Meeting, Canadian Pest Management Society. 1985 June 24-26; Charottetown, Prince Edgard Island, Canada.
- WHO [World Health Organization]. 1970. Insecticide resistance and vector control (17th report of the WHO Expert Committee on Insecticides). Instructions for determining the irritability of adult mosquitoes to insecticide. WHO Tech Rep Ser 433:158–163.
- WHO [World Health Organization]. 1975. Manual on practical entomology in malaria. Part II. Methods and techniques. WHO Offset Publ 13:1-191.
- WHO [World Health Organization]. 1992. Vector resistance to pesticides. WHO Tech Rep Ser 818. p. 2-50.

VECTOR CONTROL, PEST MANAGEMENT, RESISTANCE, REPELLENTS

Behavioral Responses of Aedes aegupti (Diptera: Culicidae) Exposed to Deltamethrin and Possible Implications for Disease Control

MONTHATHIP KONGMEE, ATCHARIYA PRABARIPAL, PONGTHEP ARKARATANAKUL, 1.3 MICHAEL J. BANGS, AND THEERAPHAP CHAREONVIRIYAPHAP

J. Med. Entomol. 41(6): 000~000 (2004)

ABSTRACT Behavioral responses of nine Aedes aegypt (L) strains, six from recent field collections and three from the long-established laboratory colonies, were tested under laboratory-controlled conditions by using an excito-repellency test system. All nine strains showed significant behavioral escape responses when exposed to deltamethrin at the standard field dose (0.02 g/m2), regardless of background insecticide susceptibility status (susceptible or tolerant/resistant). Insecticide contact irritancy played a predominate role in overall female mosquito escape responses, whereas moncontact repellency was not observed at levels significantly different from paired noncontact control tests (P> 0.01). Among the six field populations, the Jakarta (Indonesia) Toba (north Sumatra), and Bangkok female mosquitoes showed rapid exit (>78%) during 30 min of direct contact with insecticide-treated surfaces, whereas the other three strains demonstrated only moderate escape responses (32-56%) from the chambers. Moderate escape responses during direct insecticidal contact also were observed in the three laboratory test populations (44-60%). Higher percentage of mortality was observed from laboratory strains (8-33%) that failed to escape compared with nonescape females of field strains (2-16%), possibly a reflection of background deltamethrin susceptibility status. We conclude that contact irritancy is a major behavioral response of Ae. aegypti when exposed directly to deltamethrin and that rapid flight escape from areas exposed to space sprays or surfaces treated with residual pyrethroids could have a significant impact on the effectiveness of adult mosquito control and disease transmission reduction measures.

KEY WORDS Aedes aegypti, behavioral avoidance excito-repellency, deltamethrin

BILLIONS OF PEOPLE, ESPECIALLY in the tropical and subtropical world, are at risk of infection for dengue fever and dengue hemorrhagic fever. Annually, 50-100 million people are estimated as being infected with dengue viruses worldwide (Gubler 1997). The viruses responsible for dengue disease in humans are transinitted primarily by Aedes aegupti (L.), a notoriously efficient vector mosquito that often resides in and near human dwellings and preferentially feeds on humans (Gubler 1997). Despite research progress, a completely effective and commercially available dengue vaccine is not yet available. Prevention of this disease remains almost entirely dependent on using vector control, most methods of which remain the most effective means of reducing virus transmission potential in the usually densely populated and impoverished regions of the world (Reiter and Gubler 1997, WHO 1999). Unfortunately, Ae. aegipti has proven tremendously difficult to control because of its close association and exploitation of domestic and peridomestic human environments. The most effective proven methods for disease prevention has been by vector reduction, either through larval habitat elimination ("source reduction"), or control of habitats, often using more expensive (and less efficient) approaches for mosquito vector control by various chemical or biological means.

Although some populations of Ae. aegypti have been found physiologically resistant to a wide range of insecticides (Brown and Pal 1971, WHO 1992), the true impact of resistance on adult and larval vector control has been circumstantial. In addition to toxicity, many synthetic pyrethroids have inherent properties that irritate (excite) and/or repel insects (Threlkeld 1985). Dating back >25 yr, reports have documented the excito-repellency properties of deltamethrin on mosquitoes, mainly examining behavioral responses of Anopheles species (Coosemans and Sales 1977, Pell et al. 1989, Roberts et al. 2000, Chareonviriyaphap et al. 2001). Relatively little has been published on the avoidance behavior of Ae. aegypti exposed to any insecticide (Kennedy 1947, Lal et al. 1965, Hadaway et al. 1970, Moore 1977).

Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900 Thailand.

² Faculty of Liberal Arts and Science, Kasetsart University, Nakhonpathom, 73140 Thailand.

Center for Agricultural Biotechnology, Kaselsart University, Bangkok, 10900 Thailand.

U.S. Naval Medical Research Unit No.2, Jl. Percetakan Negara No. 29, Jakarta, 10560, Indonesia.

The majority of insecticide studies have concentrated on the direct toxicological effects of chemicals on mosquitoes, whereas little focus has been placed on the behavioral response and outcome to exposure. Many insecticides are locomotor stimulants, causing profound excitation and premature movement of insects away from sprayed surfaces, a kinetic mechanism resulting in "avoidance." In general, behavioral responses by insects to insecticides can be classified into two categories: irritability and repellency (Davidson 1953; Lockwood et al. 1984; Roberts and Andre 1994; Chareonviriyaphap et al. 1997, 2001; Rutledge et al. 1999). Irritability is defined as insects leaving an insecticide-treated surface after physical (tarsal) contact with the residual chemical, whereas repellency is strictly a function of an insecticide to act from a distance (area effect), diverting insects away from treated surfaces without actual physical contact with the chemical (Roberts et al. 1997).

2

Several insecticides that have long been used in public health control programs have been shown to exert behavioral responses by mosquitoes and other insects, most notably DDT and the synthetic pyrethroids (Kennedy 1947; Roberts and Alectim 1991; Chareonviriyaphap et al. 1997, 2001, 2004). Deltamethrin is currently one of the most commonly used insecticides in public health programs and has been the mainstay for the emergency control of Ae. aegypti adults in Thailand since 1994. Deltamethrin formulations are also commercially available to the general public for use in homes for protection against indoor biting mosquitoes and other arthropod pests. Given its common usage, it is important to investigate how deltamethrin might influence As. aegypti behaviorally, an understanding that could dramatically impact the suc cess of a vector control program.

Behavioral responses can be objectively and quantitatively assessed by using an excito-repellency test system (Roberts et al. 1997). The World Health Organization (WHO) first developed a behavioral test system attempting to access the behavioral responses of mosquitoes to insecticides (WHO 1970) and was later referred to as an "excito-repellency" box (Rachou et al. 1963). The test system was further modified to evaluate the behavioral responses of several mosquito species to DDT and some of the prototypic synthetic pyrethroids (Bondareva et al. 1986, Quinones and Suarez 1989, Ree and Loong 1989, Evans 1993). Up to that time, however, no test system had been specifically designed to accurately discriminate between contact (irritancy) and noncontact (repellency) behavioral responses. In 1997, an improved test system was developed to distinguish between these two distinct types of behavioral responses, irritancy and repellency, and tested using Anopheles albimanus (Chareonviriyaphap et al. 1997, Roberts et al. 1997) Subsequently, a more field-friendly test system that was more both easily transportable and set up was designed (Chareonviriyaphap et al. 2002). With this improved test chamber system, assays can better demonstrate the innate avoidance response of mosquitoes

exposed to environmental conditions with varying doses of residual insecticides.

There is a lack of information about how Ae. aegypti responds after contact with potentially toxic chemicals. We investigated the active properties (toxic and nontoxic) of deltamethrin, one of the more commonly used insecticides for dengue vector control in Asia, by using nine Ae. aegypti test populations. Irritancy and repellency responses were quantitatively assessed using the improved excito-repellency test system.

Materials and Methods

Mosquito Strains. Nine populations of Ae. aegypti were used to evaluate excito-repellency responses. All mosquitoes were reared at the Department of Entomology, Faculty of Agriculture, Kasetsart University. Thailand until testing.

 Bangkok strain was collected in January 2003 as larvae from indoor habitats in Bangkean (13° 51' 4.8" N, 100° 34'7.3" E), an urban area of Bangkok.

 Pathumthani strain was obtained in November 2002 as larvae from outdoor container habitats in Lad Lumkaew District (13° 57'23" N, 100° 24'28" E). Pathumthani Province, east of Bangkok in November 2002.

 Nonthaburi strain was obtained in February 2003 as larvae from outdoor container habitats in Bang Yai "District (13°, 54'42.8" N, 100° 26'58" E), Nonthaburi Province, an area west of Bangkok.

 Jakarta strain was collected as larvae from an urban area in west Jakarta (06° 11'27" S, 106° 51'30" E), Java. Indonesia. The colony was obtained from the U.S. Naval Medical Research Unit No. 2 (NAMRU-2), Jakarta as F1 eggs.

5. Cepu strain was collected as larvae from an urban area located in eastern Java (07° 11'29" S, 111° 42'57" E), Indonesia. The colony was obtained from NAMRU2 in July 2003 as F1 eggs.

6. Toba strain was collected as larvae from a rural village area of north Sumatra (02°33'15"S, 98° 43'34" E), Indonesia on Samosir Island located on Lake Toba. The colony was obtained from NAMRU-2 in

July 2003 as F1 eggs.

 Bora Bora strain from the Society Islands (French Polynesia) was obtained from the Institute of Research and Development (IRD), France. It had been maintained in an insectary for >25 yr before

obtaining eggs.

 CDC (Thailand) strain was originally collected as larvae from Ayutthaya Province, Central Thailand, and continuously maintained in the laboratory for nearly 10 yr at the Malaria Division, Center for Disease Control, Ministry of Public Health, Thailand. Colony material was provided in June 2003.

 AFRIMS strain was originally collected as larvae from urban Bangkok in 1987 and continuously maintained at the U.S. Armed Forces Research Institute and Medical Sciences (AFRIMS), Bangkok, Thailand. Colony material was provided in June 2003.

3

KONGMEE ET AL.: Ae. aegypti Behavioral Responses to Deltameterin

Insecticide-Impregnated Papers. A single standard field dose of deltamethrin (0.02 g/m2), impregnated onto test papers measuring 27.5 by 35.5 cm, were obtained from the WHO Collaborating Center, Vector Control Unit, Penang, Malaysia. All papers were treated at the rate of 2.75 ml of the insecticide solution per 180 cm2 and used before their specified expiration date.

Insecticide Susceptibility Tests. The susceptibility of each population to deltamethrin was assessed by exposing unfed, 3-5-d-old female mosquitoes to a single diagnostic dose (0.05%) on insecticide-treated test papers, as recommended by World Health Organization and following standard testing procedures (WHO 1998). After 60-inin exposure, test and control mosquitoes were transferred to separate clean holding containers and mortality recorded after 24-h postexposure. The test was repeated three times and an average susceptibility level was derived for each strain. Based on percentage of mortality in each population, mosquito survival was indicative of the degree of physiological resistance.

Behavioral Avoidance Tests. Tests were carried out to compare the behavioral responses of nine strains of Ae. aegypti exposed to 0.02 g/m2 deltamethrin applied to a paper surface as described above. For all experinents, test chambers from those described previously modified slightly to allow for quicker assembly of the devices but did not after the inner surfaces and general design of the chambers. Details of the chamber design and test methodology are described elsewher (Chareonviriyaphap et al. 2002). Only nonblooded 3-5-d-old nulliparous female mosquitoes were used in excito-repellency tests. All tests were conducted be tween 0800 and 1630 hours.

Each test series consisted of two deltamethring treated test chambers and two paired control chain bers. Female mosquitoes were kept in Let holding cups for ≈8-10 h before testing, being provided only water soaked on cotton. For each test chamber, 25 starved mosquitoes were carefully introduced into each of four chambers by using a mouth aspirator followed by closure of the outer rear door. A receiving cage (6 by 6 by 6-cm paper carton) was connected to the exit portal for collecting exiting mosquitoes. Mosquitoes were allowed a 3-min resting period to permit adjustment to inside conditions of the test chamber before opening the escape funnel to begin the observation period. Mosquitoes escaping from the chamber into receiving cage were recorded at 1-min intervals for a period of 30 min.

All trials were replicated four times, Immediately after the 30-min exposure, the number of dead or knock-down specimens remaining inside the chamber and those that had escaped into the receiving cage were recorded for each treated and control chamber. All live specimens were collected, transferred to clean holding cups, and provided a 10% sugar solution for nutrition. All test mosquitoes were maintained sepa-

Table 1. Mean susceptibility of Ac. acgypti field and laboratory strains a diagnostic dosage (0.05%) deltamethrin

Strains tested	% isoriality*
Field	
Nonthaburi	68
Pathumthani	64
Cepu	48
Jakorta	84
Bangkok	77
Toba	95
Laboratory	
AFRIMS	97
Bora Bora	100
CDC	94

[&]quot;Sample size each test n = 100.

rately in lots during the 24 h postexposure period to record mortality.

Data Analysis. In contact susceptibility tests, for control mortalities exceeding 5%, Abbott's formula was used to adjust and report the baseline susceptibility level in the test population (Finney 1964). A Kaplan-Meier survival analysis method was used to analyze and interpret the behavioral response data (Roberts et al. 1997, Charconvinyaphap et al. 2002). Survival analysis is the preferred and most robust statistical treatment for excito-repellency data (Kleinbaum 1995). Unlike other methods of analysis that were used in paired control and treatment trials have attempted to quantitatively describe the behav(Charconvirian paired control and treatment trials have attempted to quantitatively describe the behav(oral evolutiones to residual insecticides the generation ioral avoidance to residual insecticides, the generation of survival curves helps to minimize the loss of useful information while allowing an estimation of mosquito escape probability over time. A log-rank method was willing compare patterns of escape behavior within this between difference treatment groups and biologcal conditions (Mantel and Haenzel 1959). Statistical significance for all tests was set at P < 0.05.

Results

Nine test populations of Ae. aegypti, six from the field and three from the laboratory, were exposed to 0.02 g/m² deltanethrin-treated papers to assess susceptibility to the compound. Field populations demonstrated varying levels of physiological resistance to deltamethrin (23-52% survival after 24-h postexposure), whereas laboratory colonies proved highly susceptible (94-100% mortality). The one exception was the Toba (north Sumatra) population that showed 95% mortality (Table 1).

Escape responses of Ae. aegypti to deltamethrin were measured using contact and noncontact exposure test chambers. The Ae. aegypti escape responses varied significantly, depending upon populations tested (Table 2). The three field test populations, one from Thailand (Bangkok) and two from Indonesia (Jakarta and Toba), showed dramatic contact escape responses (>78% within 30 min) compared with two Thai populations (Nonthaburi and Pathumthani) and one other population from Indonesia (Cepu). The Pathumthani population demonstrated the weakest contact response to deltamethrin (32% escape during

72

JOURNAL OF MEDICAL ENTOMOLOGY

Table 2. Summary mean escape response and mortality of male As. aegypti exposed to 0.02 g/m2 deltamethrin in contact and noncontact trials

Test condition/test population	% escaped*	% inortality			
T		Escape	Not Escape		
Contact \					
Field					
Nonthaburi	56	1.8 (1/56)	23 (1/44)		
Pathumthan)	32	0	0		
Сери	36	0	3.1 (2/64)		
Jakarta	81	1.23 (1/81)	16.7 (2/12)		
Bangkok	\$0	0	D		
Toba	78	5.1 (4/78)	0		
-Laboratory					
AFRIMS	44	4.5 (2/44)	8.9 (5/56)		
Bora Bora	60	5.0 (3/60)	32.5 (13/40)		
CDC	51	5.8 (3/51)	26.5 (13/49)		
Noncontact					
Field					
Nonthaburi	3	٥	0		
Pathumthani	2	0	0		
Cevu	2	0	0		
Jukurta	8	0	Ö		
Bangkok	0	0	0		
Toba	4	0	0.		
Laboratory		•	٠.		
AFRIMS	0	0	0		
Bora Bora	ĭ	ő	o		
CDC	3	ő	ő		

[&]quot;Sample size each test series n = 100.

30-min exposure), followed by Cepu (36% escape). The number of escaped females was relatively low for the three laboratory test populations, ranging from 44 to 60%; the AFRIMS strain demonstrated the weakest overall response to deltamethrin (44%). In contact trials, percent age of mortality of escape mosquitoes was very low, ranging from 0 to 5.8%, whereas mortality was higher from those female remaining in the test chamber, varying from 0 to 32.5% (Table 2). In general, percentage of mortalities of nonescape females from laboratory colonies were relatively higher (9-32.5%) compared with a recently collected field population (2,2-16.7%). In all noncontact trials, mortality was not recorded during the 24-h posttest holding period and only a small number of escapees were observed for all test populations (0-8%). Among field test strains, Jakarta showed the greatest repellency response to deltamethrin (8% escape).

The time required in minutes for Ae. aegypti females to escape from contact chambers treated with deltamethrin were calculated and escape patterns were defined as percentages 30% (ET30), 50% (ET50), and 75% (ET75) of the test population that escaped the test chamber during 30-min period as defined by Kaplan-Meier survival analysis (Table 3). For field populations, ET30 were recorded at <6 min for Jakarta, Bangkok, Toba, and Nonthaburi, with greater delay (18 min) seen with Cepu and Pathumthani strains. For the laboratory populations, the ET30 ranged from 2 to 10 min. ET50 values ranged from 6 to 21 min for six strains analyzed. Because of low percentage of escapees during testing, only two popula-

Table 3. ET in minutes for ET30, ETS0, and ET75 of As, asgrati females to escape contact chamber treated with deltamethrin during 30-min exposure

Test pop	ET30	E120	E175
Nonthaburi	6	16	
Pathumthani	18	_	_
Сери	18	_	_
Jakarta	2	6	11
Bangkok	2	12	
Toba	3	6	18
AFRIMS	10	_	
Bora Bora	2	7	_
CDC	4	21	_

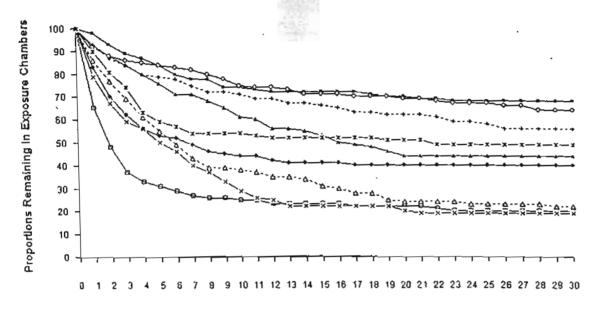
^{*} Insufficient number of mosquitoes escape from test chamber. ETS0 and ET75 could not be calculated.

tions (Jakarta and Toba) could provided a reliable ET75

Significant differences in escape patterns were observed in comparisons of paired control versus contact, and contact versus noncontact tests for all popplations (P < 0.001). In paired noncontact versus control, there were no statistically significant escape responses between any two pairs (P > 0.05), indicating a very weak repellency response. Comparison events could not be analyzed for the test populations from Bangkok and AFRIMS. In contact trials, significant differences were observed between Jakarta compared with Nonthaburi, Pathumthani, Cepu, AFRIMS, and CDC, and between Toba compared with Pathumthani, Cepu, and AFRIMS (P < 0.0001). In noncontact trials, no significant differences were seen between any population pairs except for Jakarta and Toba compared with Bangkok and AFRIMS (P < 0.01 and P < 0.05, respectively).

Figures 1-2 illustrate the proportion of Ae. aegypti females remaining in the exposure chambers treated with deltamethrin during a 30-min exposure period. The proportions used to develop patterns of escape were used to calculate the escape probabilities for the nine mosquito strains in contact (Fig. 1) and noncontact (Fig. 2) tests. In contact trials, two field strains from Indonesia, Jakarta and Toba, showed significantly greater escape responses compared with the other field and laboratory strains (P < 0.001). Among field populations from Thailand, Pathumthani demonstrated the weakest contact behavioral response. In noncontact trials, very few mosquitoes escaped from the treated and control chambers. Although a greater number of Jakarta and Toba mosquitoes escaped, the exit was not significantly different from their respec-

tive paired controls (P > 0.05).


Discussion

Behavioral responses of insects exposed to insecticides remain poorly studied and relatively little understood. We believe this area of research is often neglected, yet an important aspect to understanding how vector control methods function and to making sound decisions on pesticide selection. Mosquito behavior is of prime epidemiological importance to the

5

November 2004

KONCMER ET AL: Ae, aegypti BEHAVIORAL RESPONSES TO DELTAMETHRIN

Time (Minutes)

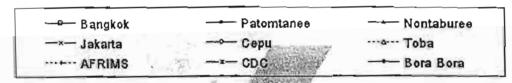
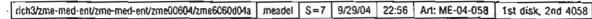
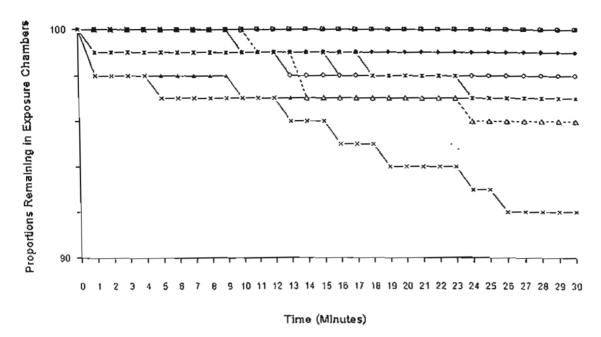



Fig. L. Survival analysis showing cumulative proportions of nine strains of Ae aegypti escaping test chambers during 30-min contact exposure to 0.02 g/m2 deltamethrin.

extent it either favors or arrests a mosquito feeding on a human, potentially imbibing an infectious blood meal or transmitting a pathogen to a susceptible host. An excito-repellency evaluation of Ae. aegypti to deltamethrin (or other pyrethroids) has not been adequately documented, despite the general notion that behavioral avoidance by mosquito vectors in the presence of insecticides has been considered a detriment to effective mosquito vector control programs (Davidson 1953, Rawlings and Davidson 1982, Quinones and Suarez 1989, Ree and Loong 1989). Evidence to the contrary, however, has shown that excito-repellency properties and the interference caused by toxic residues on mosquito behavior can actually advance control efforts by reducing vector-human contact and thus the risk of pathogen transmission (Roberts and Andre 1994, Roberts et al. 2000). Quantitatively, the combined effects of repellency and irritancy can potentially exert the dominant actions of an insecticide on an insect vice the lethal properties that are more commonly attributed to a chemical's effectiveness. For example, in Brazil, the excito-repellency action of DDT afforded almost complete protection of humans indoors from Anopheles darlingfor nearly 2 mo after the houses had been sprayed (Roberts and Alecrim 1991). Long recognized in importance, the actual amount of study concerning mosquito behavior has been imadequate in relation to insecticides' impact on limiting disease transmission (Muirhead-Thomson 1960, Mattingly 1962).


In this study, all Ae. aegypti strains demonstrated clear behavioral avoidance responses to deltamethrin, regardless of background insecticide susceptibility status present at the time of the assays. Greater escape responses from deltamethrin-treated chambers were documented among field populations compared with the laboratory-adapted colonies. Most tests showed mosquitoes departed treated surfaces and chambers before acquiring a lethal dose of insecticide. Higher percentages of mortalities were observed in nonescape versus escape females in laboratory (8-32%) and field (2-16%) populations. The three laboratory strains used in this study had been colonized continuously for 15-20 yr and seem to have lost some of the natural behavioral avoidance response to deltamethrin. Similarly, suppressed avoidance responses were observed in two colonized populations of An. albimanus from Panama and El Salvador (Brown 1958, Chareonviriyaphap et al. 1997). Both populations had been maintained in laboratories for more than two decades and showed much less avoidance to insecticide exposure compared with wild-caught popula-

JOURNAL OF MEDICAL ENTOMOLOGY

6

Vol. 41, no. 6

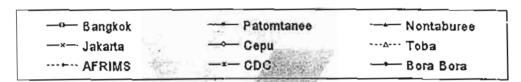


Fig. 2. Survival analysis showing cumulative proportions of nine strains of Ae. aegypti escaping test chambers during 30-min noncontact exposure to 0.02 g/m² deltamethrin.

tions. A long-term (~15-yr) colonized strain of Anopheles dirusals odemonstrated a lower escape response to deltamethrin compared with other strains from Thailand (Chareonviriyaphap et al. 2004). Use of longestablished colonized mosquito populations should be carefully considered before extrapolation of findings to "normal" wild-type behavioral patterns of mosquitoes in natural settings.

All nine Ae. aegypti populations showed significant irritancy responses to deltamethrin contact, whereas showing no significant repellency when comparing paired noncontact and control tests. In all populations, repellency did not seem to play a significant role in behavioral escape patterns regardless of background toxicological susceptibility patterns. Ae. aegypti mosquitoes may have greater tolerance (i.e., less sensitive) to exogenous chemicals detected from a distance compared with some Anopheles species. Previous work on several populations of Anopheles mosquitoes from both field and laboratory demonstrated a strong contact irritancy to several insecticides compared with a weaker noncontact repellency; however, in many cases repellency was shown to be significantly different compared with paired noncontact controls. (Chareonviriyaphap et al. 1997, 2001, 2004; Sungvornyothin et al. 2001). Nevertheless, noncontact repellency has consistently been shown to be far less pronounced with all insecticides tested compared with irritancy.

In Thailand and Indonesia, chemical means of control is still regarded as a primary method to combat Ae. aegupti larval and adult mosquitoes. In Thailand's national vector control program, temephos (Abate) has been used in great measure to control larvae and deltamethrin for control the adult mosquitoes (CDC 2003). Additionally, many insecticides, including synthetic pyrethroids are commonly used by homeowners to control household mosquitoes and other arthropod pests. We demonstrated that Ae. aegupti field test populations from Thailand had some degree of physiological resistance (27-36%) to deltamethrin (Table 1). A high degree of resistance also was observed in the Indonesian Cepu population (52%). The resistance seen was likely the result of selection pressure generated from agricultural use of similar insecticides. Ae. aegypti demonstrated significant contact irritancy to deltamethrin, regardless of background susceptibility status, making it unclear what role, if any, behavioral avoidance may play in selection of resistance. We surmise our results would be reflective of other Ae. aegypti populations in Thailand where November 2004

KONCMEE ET AL: Ae. aegypti BEHAVIORAL RESPONSES TO DELTAMETHRIN

insecticide resistance has been reported (Chareonviriyaphap et al. 1999, Somboon et al. 2003).

Two possible origins of behavioral responses have been proposed by Chareonviriyaphap et al. (1997); either behavioral and physiological resistance occurs in tandem, but under different genetic control, or the responses evolve independently. Although resistance and behavioral avoidance have been considered an outcome from insecticide selection pressure (Lockwood et al. 1984), as yet, no directly linked relationship between the two responses was apparent in our investigations. The strong contact irritancy observed in two Indonesian field strains (Jakarta and Toba) seems to be an innate avoidance response, given the relatively low level of background physiological resistance seen. Similarly, the lower excito-repellency to deltamethrin in one field population from Indonesia (Cepu) and one from Thailand (Pathumthani), both of which presented the highest levels of resistance, may have influenced the overall escape response because of greater tolerance to insecticide and ability to withstand increased exposure. The escaped females from Cepu also had among the lowest percentage of mortality compared with other strains (Table 2). The relatively high physiological resistance in the Pathumthani population (36%) also may have contributed to the zero mortality in both nonescape and escape individuals. Moreover, the possibility that nonescapees could have survived by avoiding prolonged contact with insecticide-treated surfaces seems unlikely (Chareonviriyaphap et al. 2002).

The poor sustainability of Ae. aegypti control in most areas of the world is well documented (Gubler and Clark 1994, Gubler 1997, Reiter and Gubler 1997). The predicable host-seeking activities, indoor resting hab its, and high predilection to feed on humans inside houses would presumably lend this species to be more; easily controlled. However, the strongly endophagic to technology, Bangkok, Thailand. endophilic behavior of Ae. aegupti has presented a huge challenge to vector control professionals to devise new or improved methods to effectively reduce mosquito populations and disease transmission risk. Evidence has shown residual insecticides applied indoors by using conventional portable ultralow-volume devices, mist blowers, and thermal fogging machines can provide longer lasting control of adult Aedes (Pant et al. 1974, Sulaiman et al. 1993, Reiter and Gubler 1997, Perich et al. 2001). Pant et al. (1974) reported up to 7 mo of effective control of Ae aegypti indoor densities by using fenitrothion applied by aerosol mist blower. Former antimalarial campaigns that relied heavily on indoor residual insecticide applications also documented the dramatic reduction of Ae. aegypti populations (Giglioli 1948, Brown and Pal 1971).

Many chemical compounds, including organophosphates, carbamates, and synthetic pyrethroids, have long been used in public health vector control prograins (Reiter and Gubler 1997). In 1994, deltainethrin was introduced in Thailand for controlling household nuisance and vector mosquitoes, including Ae. aegypti (Chareonviriyaphap et al. 1999). Deltamethrin also has been used to attempt interruption of mosquito

virus transmission after reports of dengue cases. The need for more effective residual formulations and application technology is an area of continued investigation for adult mosquito control. We would strongly encourage others examining the use of residual insecticides to carefully document the behavioral responses of Ae, aegypti in the study design. An understanding of behavioral avoidance by mosquitoes that can interfere with vector feeding and alter other behavioral pattems (e.g., oviposition site preference) of adult mosquitoes, must be considered when assessing the true effect of insecticides on dengue control, remembering the primary measure of successful control should be reduction of disease transmission (case incidence). not simply the quantitative reduction of vector mosquito densities.

Despite over a century of study, there remains much to understand about the biology and behavior of Ae. aegypti that influences dengue transmission. The behavioral responses of mosquito vectors to insecticides are of great importance to better understand the mechanisms involved that may influence transmission and support the rationale for ongoing mosquito control activities and expenditures. We believe excitorepellency assays should be an integral component of any evaluation of an insecticide's full capabilities and potential to abate disease transmission.

: Acknowledgments

We thank the Malaria Division, Communicable Disease Control the Armed Forces Research Institute of Medical Sciencess Bangkok, and the Dengue Vaccine Institute for providing some of Ae. aegupti strains used in this study. We also thank Rapeepun, Mahidol University for providing three field strains of Ae. aegupti. This project was funded by the Thailand Research Fund and the Center of Agricultural Bio-

References Cited

Bondareva, N. L., M. M. Artem'ev, and G. V. Gracheva. 1986. Susceptibility and irritability caused by insecticides to malaria mosquitoes in the USSR. Part I. Anopheles pulcherrimus. Meditsinskaia Parazitologha I Parazitarnye Bolezni (Moskva) 6: 52-55.

Brown, A.W.A. 1958. Laboratory studies on the behavioristic resistance of Anopheles albimanus in Panama, Bull, World Health Organ. 19: 1053-1061.

Brown, A.W.A., and R. Pal. 1971. Insecticide resistance in arthropods, ed 2. Monogr. Ser. 38. World Health Organization.

Charconviriyaphap, T., D. R. Roberts, R. G. Andre, H. Harlan, and M. J. Bangs. 1997. Pesticide avoidance behavior in Anopheles albimanus Wiedemann, J. Am. Mosq. Control Assoc. 13: 171-183.

Chareonviriyaphap, T., B. Aum-Aung, and S. Ratanatham. 1999. Current insecticide resistance patterns in mosquito vectors in Thailand, Southeast Asian J. Trop. Med. Public Health 30: 184-194.

Chareonviriyaphap, T., S. Sungvornyothin, S. Ratanatham, and A. Prabaripai. 2001. Pesticide-induced behavioral responses of Anopheles minimus, a malaria vector in Thailand. J. Am. Mosq. Control Assoc. 17: 13-22.

JOURNAL OF MEDICAL ENTOMOLOGY

Vol. 41, no. 6

Charconviriyaphap, T., A. Prabaripai, and S. Sungvornyothin. 2002. An improved excito-repellency for mosquito behavioral test. J. Vector Ecol. 27: 250-252.

Chareonviriyaphap, T., A. Prabaripai, and M. J. Bangs. 2004. Excito-repellency of deltamethrin on the malaria vectors, Anopheles minimus, Anopheles dirus, Anopheles swadiwongporni, and Anopheles maculatus, in Thailand. J. Am. Mosq. Control Assoc. 20: 45-54.

[CDC] Communicable Disease Control, 2003. Vectorborne Disease Annual Report, CDC, Ministry of Public Health, Nonthaburi, Thailand.

Coosemans, M. H., and S. Sales. 1977. Stage VI evaluation of five insecticide-OMS-1821, OMS-1825, and OMS-1988 against Anopheline mosquitoes at the Sourousso Experinnental Station, Bobo Dioulasso, Upper Volta, WHO/ VBC/77.663, Geneva, Switzerland.

Davidson, G. 1953. Experiments on the effect of residual insecticides in houses against Anopheles combine and Anopheles funestus, Bull. Entomol, Res. 44: 231-255.

Evans, R. G. 1993. Laboratory evaluation of the irritancy of bendiocarb, lambdacybalothrin, and DDT to Anopheles gambing, I. Am. Mosq. Control Assoc. 9: 285-293.

Finney, D. J. 1964. Statistical methods in biological assays. Charles Griffin Co. Ltd., London, United Kingdom.

Giglioli, C. 1948. An investigation of the house-frequenting habits of mosquitoes of the British Guinna coastland in relation to the use of DDT, Am. J. Trop. Med. 28: 43-70.

Gubler, D. J. 1997. Dengue and dengue haemorrhagic fever: its history and resurgence as a global public health problem, pp. 1-22. In D. J. Gubler and C. Kuno [eds.], Dengue and dengue haemorrhagic fever. CAB International, New York.

Gubler, D. J., and G. G. Clark. 1994. Community-based integrated control of Aedes aegypti: a brief overview of current programs. Am. J. Trop. Med. Hyg. 50 (suppl.): 50 - 60

Hadaway, A. B., F. Barlow, J.E.H. Grose, C. R. Turner, and L. S. Flower. 1970. Evaluation of compounds for insec ticidal activity on adult mosquitoes. Part 1: Response of adult mosquitoes to some new insecticides. Bull. World Health Organ, 42: 353-368,

Kennedy, J. S. 1947. The excitant and repullent effects on mosquitoes of sub-lethal contacts with DDT. Bulls Entomol. Res. 37: 593-607.

Kleinbaum, D. G. 1995. Survival analysis. Springer, Nev

Lal, H., S. Ginocchio, and E. J. Hawrylewicz. 1965. Effect of allethrin on feeding behavior of insects. Proc. Soc. Exp. Biol. Med. 120: 441-443.

Lockwood, J. A., T. C. Sparks, and R. N. Story. 1984. Evolution of insect resistance to insecticide: a reevaluation of the roles of physiology and behavior, Bull. Entomol. Soc. Am. 30: 41-51.

Mantel, N., and W. Haenzel. 1959. Statistic aspects of the analysis of data from retrospective studies of diseases. J. Natl. Cancer Inst. 22: 719-748.

Mattingly, P. F. 1962. Mosquito behavior in relation to disease eradication programmes. Annu. Rev. Entomol. 7: 419-436.

Moore, C. G. 1977. Insecticide avoidance by ovipositing Aedes aegypti. Mosq. News 37: 291-293.

Muirhend-Thomson, R. C. 1960. The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. World Hlth. Organ. 22: 721-734.

Pant, C. P., H. L. Mathis, M. J. Nelson, B. Phanthumachinda. 1974. A large-scale field trial of ultra-low-volume fenitrothion applied by a portable mist blower for the control of Aedes aegypti. Bull. World Health Organ. 51: 409-415.

Pell, J. K., M. A. Spinne, and K. J. Ward. 1989. Observations on the behavior of adult Anopheles gambiae encountering residual deposits of lambda-cyhalothrin compared with the other major classes, p. 18. In Proceedings, 4th Annual Conference of the Society for Vector Ecology, European Region, Society for Vector Ecology, Santa Ana, CA.

Perich, M. J., C. Sherman, R. Burge, E. Gill, M. Quintana, and R. A. Wirtz. 2001. Evaluation of the efficacy of lambdacyhalothrin applied as ultra-low volume and thermal fog for emergency control of Aedes compti in Honduras. J. Am. Mosq. Control Assoc. 17: 221-224.

Quinones, M. L., M. F. Suurez. 1989. Irritability to DDT of natural populations of the primary malaria vectors in Colombia, J. Am. Mosq. Control Assoc. 5: 56-59.

Rachou, R. G. M. Moura Lima, J. P. Duret, and J. R. Kerr. 1963. Experiences with the excito-repellency test boxmodel OPS, pp. 442-447. In Proceedings, 50th Annual Meeting of the New Jersey Mosquito. Exterminators Association and the 19th Annual Meeting of the American Mosquito Control Association. P 4 4 2-44 P Rawlings, P., and G. Davidson. 1982. The dispersal and sur-

vival of Anopheles culicifacies Ciles (Diptera Culiculae) in a Sri Lanka village under malathion spraying, Bull, Entomol. Res. 72: 139-114.

Ree, H. J., and K. P. Loong. 1989. Irritability of Anopheles forauti, Anopheles maculatus, and Culex quinquefasciatus to permethrin, Jpn. J. San. Zool. 40: 47-51.

Reiter, P., and D. J. Gubler. 1997. Surveillance and control of urban dengue vectors, pp. 425-462. In D. J. Cubler and C. Kuno [eds.], Dengue and dengue haemorchagie fever. CAB International, New York.

Roberts, D. R., and W. D. Aleerim. 1991. Behavioral response of Anopheles darlingi to DDT sprayed house walls in Amazonia, PAHO Bull. 25: 210-217.

Roberts, D. R., and R. G. Andre. 1994. Insecticide resistance issues in vector-borne disease control Am. J. Trop. Med. Hyg 50-21-34.

Roberts, D. R., T. Charconvirispphap, E. H. Harlan, and P. Hishieh. 1997. Methods for testing and analyzing excito-repellency responses of malaria vectors to insecticides. J. Am. Mosq. Control Assoc. 13: 13-17.

Roberts, D. R., W. D. Alecrim, P. Hshieh, J. Grieco, M. J. Bangs, R. G. Andre, and T. Charconviriyaphap. 2000. A probability model of vector behavior: effects of DDT repellency, irritability, and toxicity in malaria control. J. Vector Ecol. 25: 48-61

Rutledge, L. C., N. M. Echana, and R. K. Gupta. 1999. Responses of male and female mosquitoes to repellents in the World Health Organization insecticide irritability test system, J. Am. Mosq. Control Assoc. 15: 60-64.

Somboon, P., L. Prapanthadara, and W. Suwanakerd. 2003. Insecticide susceptibility tests of Anopheles minimus, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus in northern Thailand, Southeast Asian J. Trop. Med. Public Health 34: 87-93.

Sulaiman, S., M. A. Karim, B. Omar, J. Jeffery, and F. Mansor. 1993. The residual effects of the symmetric pyrethroids lambda-cyhalothein and cyfluthrin against Aedes aegypti (L.) in wooden huts in Malaysia, Mosq. Borne Dis. Bull. 10: 128-131.

Sungvornyothin, S., T. Charconviriyaphap, A. Prabaripai, T. Trirakhupt, S. Ratanatham, and M. J. Bangs. 2001. Effects of nutritional and physiological status on behavioral avoidance of Anopheles minimus (Diptera: Culicidae) to DDT, deltamethrin and lambdacyhalothrin. J. Vector Ecol. 26: 202-215.

Threlkeld, S.F.H. 1985. Behavioral responses in Drosophilla melanogaster associated with permethrin and ectiban,

rich3/zme-med-ent/zme-med-ent/zme00604/zme6060d04a meadel S=7 9/29/04 22:56 Art: ME-04-058 1st disk, 2nd 4058 November 2004 9 KONCMEE ET AL.: Ae. aegypti BEHAVIORAL RESPONSES TO DELTAMETHRIN pp. 29-36. In Proceedings, 32nd Annual Meeting of the [WHO] World Health Organization. 1998. Report of Canadian Pest Management Society, 24-26 June, 1985, WHO informal consultation. Test procedures for insec-Charottetown, Prince Island, Canada, ticide resistance monitoring in malaria vectors. WHO, [WHO] World Health Organization. 1970. Insecticide re-Geneva, Switzerland. AQ: 7 sistance and vector control. 17th report of the WHO WHO] World Health Organization. 1999. Prevention and Expert Committee on Insecticide. Instructions for detercontrol and dengue and dengue haemorrhagic fever: mining the irritability of adult mosquitoes to insecticide. comprehensive guidelines. WHO Regional Publ., SEARO WHO Tech. Rep. Ser. 433, Geneva, Switzerland. No. 29, New Delhi, India. [WHO] World Health Organization, 1992. Vector resistance to pesticides. WHO Tech. Rep. Ser. 818. WHO. Received 23 March 2004; accepted 7 September 2004. Ceneva, Switzerland. WHO 1998 Test procidere de test insudicide resistance monitoring in materia vectors, bio-efficacy and persistence of insections on treated signices. Document WHO/CDS/CPC/MAL/ 98.12. Geneva, Suitzerland

พฤติกรรมการหลีกหนีของยุงพาหะนำโรคมาลาเรียมินิมัส ชนิด เอ ต่อสารเดลต้าเมทธริน Avoidance Behavior of deltamethrin by *Anopheles minimus* Species A, a maiaria vector in Thailand

อัจฉริยา ปราบอริพ่าย ¹ ณัฐวรรณ พุทธางกูรสันตติ ²
 Atchariya Prabaripai ¹ Nutthawan Putthangkoonsantati ²
 อมรา นาคสถิตย์ ² ธีรภาพ เจริญวิริยะภาพ ³
 Amara Naksathit ² Theeraphap Chareonviriyaphap ³

ABSTRACT

ł

The behavioral responses of a colonized population of *Anopheles mini*mus to deltamethrin were characterized using an excito-repellency escape chamber test system. A full test compared the escape responses of test population from each of 4 chambers; one with direct contact with insecticide treated surface, one without direct contact with treated surfaces and 2 control boxes (one with and one without direct contact with surfaces) treated with the carrier only. A dramatic escape response of test population was seen in test chambers that affording direct contact with deltamethrin treated surfaces. Female mosquito escaped in greater numbers from chambers without direct contact with treated surfaces than escaped from the 2 controls. Results also revealed that significant differences of escape responses were found in the test system between that used WHO impregnated papers and those from our own-made impregnated papers. We conclude that behavioral responses of *An. minimus* are important in insecticide-malaria control program equation.

Key words: Avoidance behavior, Excito - repellency, Pyrethroid, Anopheles minimus

[&]quot; คณะศิลปศาสตร์และวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์
Division of Mathematics, Statistics and Computer, Faculty of Liberal Arts and Science, Kasetsart
University, Kamphaengsean Campus, Nakhon Pathom 73140

² คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล Department of Biology, Faculty of Science, Mahidol University, Bangkean, Bangkok 10400

[¥] คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์

Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkean, Bangkok 10900

บทคัดย่อ

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อติดตามพฤติกรรมการตอบสนองของยุงมินิมัส เอ เมื่อ ทดสอบกับสารเดลด้าเมทธริน ทั้งที่มีโอกาสสัมผัสและที่ไม่มีโอกาสสัมผัสกับสารเคมี โดยใช้ชุด ทดสอบพฤติกรรมการหลีกหนีสาร นอกจากนี้ได้ทำการเปรียบเทียบประสิทธิภาพของกระดาษ ทดสอบที่สั่งชื้อจากองค์การอนามัยโลกและที่ทำชื้นใหม่ในห้องปฏิบัติการของภาควิชากีฏวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ ผลการศึกษาชี้ให้เห็นว่าสารเดลต้าเมทธรินมีประสิทธิ ภาพในการขับไล่ยุงกันปล่องมินิมัสได้ หลังจากที่ยุงได้สัมผัสกับสารเคมีฆ่าแมลงโดยตรง อย่างไรก็ ตามพบว่ายุงมินิมัสที่ไม่ได้สัมผัสสารเคมีบินออกจากชุดทดลองมากกว่าในชุดควบคุมด้วย การศึกษาเปรียบเทียบกระดาษทดสอบสองชนิดพบว่า มีประสิทธิภาพในการใช้งานต่างกันอย่างมีนัย สำคัญ (P<0.05) การศึกษาครั้งนี้ชี้ให้เห็นว่ายุงมินิมัสมีพฤติกรรมหลีกหนีต่อสารเคมือย่างรุนแรง และสามารถนำไปใช้เป็นข้อมูลพื้นฐานที่สำคัญในการวางแผนควบคุมยุงพาหะนำโรคมาลาเรียต่อไป

คำหลัก: พฤติกรรมหลีกหนีสารเคมี ไพรีทรอยด์, ยุงกันปล่องมินิมัส

คำน้ำ

โรคมาลาเรียเป็นปัญหาสำคัญด้านสาธารณสุขของประเทศในแถบร้อนขึ้นมาตลอด และ พบว่าประเทศไทยมีโรคมาลาเรียระบาดมากในจังหวัดตามแนวขายแดนที่ติดกับประเทศพม่า กัมพูชา โดยเฉพาะในแถบปาเขา บ้าขึ้นเขตร้อน (Chareonviriyaphap et al., 2000) โดยประชา กรกลุ่มเสี่ยงคือ วัยทำงาน อายุ 15-57 ปี มีเชื้อปรติต Plasmodium spp. เป็นสาเหตุที่ก่อให้เกิด โรค (Rattanarithikul and Panthusiri, 1994) และมียุงกันปล่องเป็นพาหะนำโรค พบว่ายุง กันปล่องมินิมัสมีความสำคัญมากในการแพร่เชื้อและมีความใกล้ชิดกับมนุษย์ค่อนข้างมากใน ขณะนี้

ยุงมินิมัลในบางพื้นที่ชอบเข้าไปดูดกินเลือดเหยื่อภายในบ้านในตอนกลางคืน (Nutsathapana and Sawadiwongphom, 1986; Poolsuwan, 1995) แหล่งเพาะพันธุ์โดยทั่วไป เป็นแหล่งน้ำตามธรรมชาติบริเวณชายป่า ดังนั้นมาตรการหลักในการควบคุมยุงพาหะนำโรค มาลาเรียสำหรับประเทศไทยตั้งแต่ปี 2492 จนถึงปัจจุบัน คือการใช้สารเคมีฆ่าแมลงฉีดพ่นตามฝา ผนังบ้านด้านในปีละ 1-2 ครั้ง โดยสารเคมีตัวแรกที่ใช้คือ ดีดีที่ (Hongvivatana et al., 1982) แต่ ปัญหาที่ตามมาหลังจากการใช้ดีดีที่ติดต่อกันเป็นเวลานานคือ ปัญหาสิ่งแวดล้อมเนื่องจากดีดีที่ สลายตัวช้า มีพิษตกค้างในธรรมชาติได้นาน มีความเป็นพิษต่อสัตว์เลี้ยงลูกด้วยนม และที่สำคัญ พบว่ายุงกันปล่องบางชนิดเริ่มสร้างความต้านทานต่อดีดีที่ (WHO, 1992) ประเทศไทยจึงยกเลิก การสั่งชื้อดีดีที่ตั้งแต่ปี 2538 ทำให้ต้องหาสารเคมีอื่นขึ้นมาทดแทนโดยเฉพาะสารเคมีในกลุ่มไพรีทรอย์

ลังเคราะห์ เช่น เพอร์เมทธริน เดลต้าเมทธริน เป็นต้น ซึ่งสารเคมีในกลุ่มนี้มีความเป็นพิษต่อสัตว์ เลี้ยงลูกด้วยนมต่ำ สลายตัวง่ายในธรรมชาติ (Prasittisuk, 1994) และมีคุณสมบัติเด่นในการขับไล่ ยุงพาหะเช่นเดียวกับดีดีที่ (Chareonviriyaphap et al., 1997)

เดลด้าเมทธรินเป็นสารเคมีฆ่าแมลงในกลุ่มไพรีทรอยด์สังเคราะห์ที่มีประสิทธิภาพสูงออก ถุทธิ์ได้อย่างรวดเร็วและนำมาใช้ควบคุมยุงพาหะนำโรคมาลาเรียในประเทศไทยตั้งแล้ปี 2537 โดย ฉีดพ่นตามฝายนังบ้านด้านใน เพื่อให้ยุงที่เข้ามากัดคนในบ้าน และเกาะพักบนฝายนังได้รับพิษ ของสารเคมี และตายก่อนที่จะขยายพันธุ์ต่อไป แต่ผลจากการศึกษาบางแห่งพบว่า ยุงกันปล่องจะ บินเข้าไปในบ้านที่ฉีดพ่นด้วยสารเคมีฆ่าแมลงน้อยกว่าบ้านที่ไม่ได้ฉีดพ่นหรือ ยุงพาหะจะบินหนี ออกจากบ้านที่ฉีดพ่นด้วยสารเคมีฆ่าแมลง นักกีฏวิทยายังไม่พบว่ามียุงตายในบ้านที่พ่นสารเคมีฆ่าแมลง (Robertsłand Andre, 1994) ทั้งนี้อาจเนื่องมาจากยุงแสดงพฤติกรรมการหลีกหนีหรือ เรียกอีกชื่อหนึ่งว่า "การต้านทานเชิงพฤติกรรมของยุงต่อสารเคมีฆ่าแมลง" (Roberts and Andre, 1994; Chareonviriyaphap et al., 1997; Roberts et al., 2000) ซึ่งพฤติกรรมการต้านทานต่อ สารเคมีของยุงพาหะนี้อาจจะสามารถช่วยลดโอกาสที่ยุงจะเข้ากัดคนและถ่ายทอดเรื่อมาลาเรียลง ได้ แต่การศึกษาเกี่ยวกับเรื่องนี้มีน้อยมาก ส่วนหนึ่งเพราะขาดแคลนเครื่องมือที่มีประสิทธิภาพ และการวิเคราะห์ผลที่ดี ทำให้ไม่ได้รับการขอมรับ ซึ่งดูได้จาก ไม่มีรายงานที่แสดงให้เห็นชัดเจนว่า ยุงมีพฤติกรรมการตอบสนองต่อสารเคมีอย่างไรในระหว่างที่เข้าไปหาเหยื่อในบ้าน

ชุดทดสอบพฤติกรรมการด้านทานสารเคมีฆ่าแมลงนี้ได้รับการปรับปรุงและพัฒนาให้มี ความพิเศษจากรูปแบบเดิมในอดีต โดย Chareonvinyaphap et al., (2001) คือสามารถพับเก็บ ได้และสะดวกในการเคลื่อนย้ายสำหรับการทดสอบในภาคสนาม โดยเสียนแบบบ้านหรือกระท่อม ในธรรมชาติที่ฉีดพ่นด้วยสารเคมีฆ่าแมลง ชุดทดสอบนี้จะช่วยอธิบายกลไกทางด้านพฤติกรรมการ ตอบสนองต่อสารเคมีฆ่าแมลงของยุงพาหะนำโรคมาลาเรียทั้งสองแบบคือ ยุงที่มีโอกาสสัมผัสและ ไม่มีโอกาสสัมผัสกับสารเคมีฆ่าแมลงได้อย่างชัดเจน

ในการทดลองครั้งนี้ใช้กระดาษซุบสารเคมีฆ่าแมลงชนิดเดลต้าเมทธริน ซึ่งสั่งซื้อมาจาก องค์การอนามัยโลก และทำขึ้นใหม่ในห้องปฏิบัติการของมหาวิทยาลัยเกษตรศาสตร์ เพื่อเปรียบ เทียบประสิทธิภาพการตอบสนองของยุงก้นปล่อง การศึกษานี้มีวัตถุประสงค์คือ

- (1) เพื่อติดตามพูญติภรรมการตอบสนองต่อสารเคมีฆ่าแมลงชนิดเดลต้าเมทธรินของยุง กันปล่อง มินิมัส เอ โดยใช้ชุดกล่องทดสอบพฤติกรรมการหลีกหนีสารเคมีฆ่าแมลง
- (2) เพื่อเปรียบเทียบประสิทธิภาพของกระดาษชุบเดลต้าเมทธรินที่สั่งซื้อจากองค์การ อนามัยโลกและที่ทำขึ้นให[้]มในห้องปฏิบัติการของมหาวิทยาลัยเกษตรศาสตร์

อุปกรณ์และวิธีการ

1. ยุงกันปล่องมินิมัส เอ

ประชากรยุงที่ใช้ในการทดลองได้นำมาจากกองมาลาเรีย กรมควบคุมโรคติดต่อ กระทรวงสา ธารณสุขในปี 2542 ซึ่งจับมาจากคอกสัตว์ที่ ต.ร้องกวาง จ.แพร่ เป็นยุงมินิมัส เอ เมื่อปี 2536 พบ ว่าเป็นประชากรยุงที่มีความไวต่อสารเคมีฆ่าแมลงชนิดเดลต้าเมทธริน

ยุงมินิมัล เอ ถูกเลี้ยงไว้ภายในห้องเลี้ยงแมลงที่อุณหภูมิ 25±5°C และความขึ้นสัมพัทธ์ 80±10% ตามวิธีการของ Chareonviriyaphap (et al., 1997) โดยนำลูกน้ำอายุ 1 วันที่ฟักภาย ในถ้วยไข่ลงในถาดพลาสติกสำหรับเลี้ยงลูกน้ำซึ่งมีน้ำสูงประมาณ ¾ ของถาด ให้อาหารลูกน้ำ อย่างน้อยวันละ 1 ครั้ง และเพิ่มขึ้นตามระยะและขนาดของลูกน้ำจนเข้าสู่ระยะตัวโม่ง จะถูกแยก ใส่ถ้วยขนาดเล็กไว้ในกรงเล็กจนกลายเป็นตัวเด็มวัย เมื่อตัวเด็มวัย อายุครบ 4 วัน นำหนูตะเภามา ให้ยุงดูดเลือดเพื่อจะวางไข่ต่อไป โดยตั้งแต่เข้าสู่ระยะตัวเต็มวัยยุงจะได้รับสารละลายน้ำตาล ความเข้มข้น 10% (น้ำหวาน) เป็นอาหารด้วย

จำหรับยุงที่ใช้ในการทดลองนี้ คือยุงตัวเต็มวัยเพศเมียอายุ 3-6 วันที่ไม่ได้กินเลือด ให้เฉพาะ น้ำหวานเป็นอาหารเท่านั้น และก่อนการทดลองต้องให้ยุงอดน้ำหวานก่อนประมาณ 10 ชั่วโมง

2. กระดาษชุบสารเคมีฆ่าแมลง

กระดาษชุบสารเดลต้าเมทธริน ความเข้มข้น 0.02 กรัมต่อตารางเมตร ขนาด 27.5x35.5 ซม.² มีแหล่งที่มา 2 แหล่ง คือ

- (1) สั่งซื้อจากองค์การอนามัยโลก (กระดาษ WHO) ซึ่งผลิตขึ้นในเดือนธันวาคม ปี 2544
- (2) ทำขึ้นใหม่ในห้องปฏิบัติการของภาควิชากีฏวิทยา คณะเกษตร มหาวิทยาลัย เกษตรศาสตร์ (กระดาษ KU) ในเดือนมีนาคม ปี 2545 โดยใช้อัตราความเข้มข้น เท่ากัน กับ กระดาษขององค์การอนามัยโลก

3. ชุดทดสอบพฤติกรรมการหลีกหนีสารเคมีฆ่าแมลงในยุงพาหะนำโรค

ชุดทดสอบพฤติกรรมการหลีกหนีสารเคมีฆ่าแมลงของยุงประกอบด้วยกล่องทดสอบสี่ เหลี่ยม ทำจากโลหะลแลนเลส 4 กล่อง ขนาด 40.5x33.5x33.5 ซม.³ สามารถถอดแยกขึ้นส่วน และประกอบขึ้นเป็นกล่องได้ มีช่องประดูทางเข้าและช่องหน้าต่างสำหรับให้ยุงบินออกอย่างละ หนึ่งช่อง ส่วนผนังขั้นในทำด้วยแผ่นลวดตาช่ายเพื่อกีดขวางไม่ให้ยุงได้สัมผัสกับสารเคมีฆ่าแมลง และมีที่ยึดกับกระดาษทดสอบด้วย (Chareonviriyaphap et al., 2001)

การทดสอบพฤติกรรมการหลีกหนีสารเคมีฆ่าแมลงของยุงมี 2 ลักษณะคือ

- (1) การหลีกหนีของยุงก่อนการสัมผัส (Repellency) คือสภาพที่ไม่ให้ยุงได้มีโอกาสสัมผัส กับสารเคมีฆ่าแมลง ประกอบด้วยกล่องทดสอบ 2 กล่อง กล่องแรกจะยึดกระดาษฐบสารเคมีฆ่า แมลงไว้ระหว่างผนังขึ้นในกับผนังขึ้นนอก เพื่อไม่ให้ยุงมีโอกาสสัมผัสกับสารเคมีฆ่าแมลง และอีก กล่องหนึ่งใช้กระดาษที่ไม่ซุบสารเคมีฆ่าแมลงเป็นกล่องควบคุม (Noncontact)
- (2) การหลีกหนีของยุงหลังจากได้สัมผัส (Irritancy) คือสภาพที่ยุงมีโอกาสสัมผัสกับสารเคมี ฆ่าแมลง ประกอบด้วยกล่องทดสอบ 2 กล่อง กล่องแรกจะยึดกระดาษฐบสารเคมีฆ่าแมลงไว้ด้าน ในกล่อง เพื่อให้ยุงมีโอกาสสัมผัสกับสารเคมีฆ่าแมลงโดยตรง และอีกกล่องหนึ่งให้ยุงมีโอกาส สัมผัสกับกระดาษที่ไม่ซุบสารเคมีเป็นกล่องควบคุม (Contact)

โดยแต่ละลักษณะจะทำการทดสอบเปรียบเทียบระหว่างกล่องที่ยืดกระดาษชุบสารเคมีฆ่า แมลง (Treatment) และกระดาษที่ไม่มีสารเคมีฆ่าแมลง (Control) อย่างละ 1 กล่อง

4. วิธีการทดลอง

การดำเนินการทดลองจัดสภาพการทดลอง 2 ลักษณะ โดยใช้ชุดทดสอบ EREC ซึ่งมี กล่องทดลอง 4 กล่อง คือ

- (1) ให้ยุงมีโอกาสสัมผัสกับสารเคมี จำนวน 2 กล่อง ให้กล่องหนึ่งมีกระดาษชุบสารเคล ต้าเมทธริน 0.02 กรัมต่อตารางเมตร บุที่ผนังด้านในกล่องทดลอง (Contact Treatment) และอีกกล่องหนึ่งมีกระดาษชุบน้ำมัน บุที่ผนังด้านในกล่องเป็นกล่องควบคุม (Contact Control)
- (2) ให้ยุงไม่มีโอกาสสัมผัสกับสารเคมี จำนวน 2 กล่อง ให้กล่องหนึ่งมีกระดาษชุบสาร เดลด้าเมทธริน 0.02 กรัมต่อตารางเมตร บุที่ระหว่างผนังชั้นนอกและผนังชั้นในของกล่อง ทดลอง (Noncontact Treatment) และอีกกล่องหนึ่งมีกระดาษชุบน้ำมัน บุที่ะหว่างผนัง ชั้นนอกและผนังชั้นในของกล่องทดลองเป็นกล่องควบคุม (Noncontact Control)

ทำการทดลองในช่วงเวลากลางวันระหว่างเวลา 08.00 – 16.00 น. และบันทึกอุณหภูมิ
กับความขึ้นสัมพัทธ์ขณะทำการทดลองด้วยทุกครั้ง ทำซ้ำ 4 ครั้ง การทดลองแต่ละครั้งจะใช้
แอลกอฮอล์ซุบสำลีเช็ดทำความสะอาดกล่องทดลองก่อนใช้ แล้วสุ่มกล่องทดลองให้ได้รับสภาพ
การทดลองอย่างใดอย่างหนึ่งข้างต้น ดำเนินการทดลองโดยนำยุงใส่เข้าไปในกล่องทดลองแต่ละ
กล่อง ๆ ละ 25 ตัว และปิดประตูทางเข้าและทางออกเป็นเวลา 3 นาที เพื่อให้ยุงปรับสภาพแวด
ล้อมภายในกล่องทดลอง หลังจากนั้นเปิดช่องทางให้ยุงบินออก และนับจำนวนยุงที่บินหนีออก
จากกล่องทั้ง 4 กล่อง บันทึกจำนวนยุงที่บินหนีออกจากกล่องทดลองทุก ๆ 1 นาที ใช้เวลาในการ
ทดลอง 30 นาที ตามวิธีการของ Charoenviriyaphap et al., (1997) หลังจากนั้นน้ำยุงที่บินหนี

ออกจากกล่อง และที่คงเหลืออยู่ในกล่องมาเลี้ยงต่อ ให้น้ำหวานตามปกติ และบันทึกจำนวนยุงที่ ตายภายหลังการทดลอง 24 ชั่วโมง

ทำการทดลองโดยใช้กระดาษชุบสารเดลต้าเมทธริน 0.02 กรัมต่อตารางเมตร ที่สั่งซื้อจากองค์ การอนามัยโลก (กระดาษ WHO) และทำการทดลองอีกครั้งโดยใช้กระดาษชุบสารเดลต้าเมทธริน 0.02 กรัมต่อตารางเมตร ที่ทำขึ้นใหม่ในห้องปฏิบัติการของคณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ (กระดาษ KU) เพื่อเปรียบเทียบประสิทธิภาพของกระดาษทั้งสองแหล่งนี้

5. การวิเคราะห์ข้อมูล

จำนวนยุงที่บินหนีออกจากกล่องทดลองแต่ละกล่องวิเคราะห์โดยใช้ Probit analysis เพื่อ หา เวลาที่ประชาตรยุงจำนวน 50% (ET_{so}) และ 90% (ET_{so}) บินหนีออกไปจากกล่องทดลอง แล้ว ใช้วิธีการวิเคราะห์การอยู่รอด (Survival analysis) โดยใช้วิธีการทดสอบ Log-Rank test เพื่อ เปรียบเทียบพฤติกรรมการตอบสนองต่อสารเดลต้าเมทธริน ระหว่างกระดาษ WHO และกระดาษ KU

ผลการทดลองและวิจารณ์

การศึกษาครั้งนี้พบว่าสารเดลต้าเมทรินมีผลต่อพฤติกรรมการตอบสนองของยุงมินิมัลทั้ง ก่อนและหลังจากการสัมผัส โดยดูจากจำนวนการหลีกหนีของยุงจากชุดทดลอง ตารางที่ 1 แสดง ให้เห็นว่าสารเดลต้าเมทธรินมีความเป็นพิษต่ำต่อยุง โดยดูจาก เปอร์เซ็นต์การตายของยุงที่บินหนี ออกมา หลังจากสิ้นสุดการทดลอง (0-27%) ดังนั้นสารเดลต้าเมทธริน 0.02 กรัมต่อตารางเมตร มี ฤทธิ์ในการข่ายุงมินิมัสเพียงเล็กน้อยหรือแทบจะไม่มีเลย แต่มีฤทธิ์ในการขับไล่ยุงมากกว่า โดย เฉพาะเมื่อยุงมีโอกาสสัมผัสกับสารเดลต้าเมทธรินโดยตรง (Contact Treatment) ซึ่งทำให้ยุงเกิด การระคายเคือง มียุงที่บินหนีออกมาขณะทดลองถึง 96% เมื่อใช้กระดาษ WHO และ 98% เมื่อใช้ กระดาษ KU ในขณะที่หลังจากมีการสัมผัสกับกระดาษที่ไม่มีสารเคมีฆ่าแมลง (Contact Control) มีเพียง 7% ในกระดาษ WHO และ 32% ในกระดาษ KU ส่วนการทดลองที่ยุงไม่ได้สัมผัสกับสาร เดลต้าเมทธรินโดยตรง (Noncontact Treatment) ก็สามารถขับไล่ยุงให้บินหนีออกจากกล่อง ทดลองภายใน 30 นาที่ได้เช่นกัน โดยจำนวนยุงที่บินหนีออกจากกล่องที่ทดลองมีถึง 31% ใน กระดาษ WHO และ 75%ในกระดาษ KU ซึ่งมากกว่าจำนวนยุงที่บินหนีออกจากกล่อง Noncontact Control แต่ก็ยังน้อยกว่ากล่อง Contact Treatment

ตารางที่ 2 เป็นการศึกษาในสภาพที่ยุงมีโอกาสลัมผัสกับสารเดลต้าเมทธริน (Contact Treatment) จำนวนยุงที่บินหนีออกจากกล่องทดลองจำนวน 50 เปอร์เซ็นต์ (ET_{so}) เท่ากับ 3 และ 5 นาทีเมื่อใช้กระดาษ WHO และ KU ตามลำดับ ส่วนค่า ET_{so} เท่ากับ 13 และ 17 นาที เมื่อใช้ กระดาษ WHO และ KU ตามลำดับ ซึ่งต่ำกว่าค่า ET_{so} และ ET_{so} ในสภาพที่ยุงไม่มีโอกาสสัมผัส กับสารเดลตัวเมทธริน (Noncontact Treatment) คือ ET_{so} ของกระดาษ KU เท่ากับ 18 นาที ใน ขณะที่ ET_{so} ของกระดาษ WHO และ ET_{so} ทั้งกระดาษ WHO และ KU ไม่สามารถหาค่าได้ ภายใน 30 นาที เนื่องจากจำนวนยุงที่บินหนีออกมาจากกล่องทดลองมีไม่ถึง 50% และ 90% ตามลำดับ

ตารางที่ 3 แสดงการเปรียบเทียบพฤติกรรมการตอบสนองของยุงทั้งแบบก่อนสัมผัส และ หลังการสัมผัสสารเคลต้าเมทรินระหว่างกระดาษ WHO และ KU ในการทดลองให้ยุงมีโอกาส สัมผัสกับสารเคมี 2 การทดลอง คือ Contact Treatment และ Contact Control และในการ ทดลองที่ให้ยุงไม่มีโอกาสสัมผัสกับสารเคมี 2 การทดลอง คือ Noncontact Treatment และ Noncontact Control โดยใช้วิธีการทดสอบ Log ~ Rank test ผลการทดสอบพบว่า ยุงแสดงพฤติ กรรมการตอบสนองด้วยการหลีกหนีก่อนการสัมผัสกับสารเดลต้าเมทธรินระหว่างกระดาษของ WHO กับ KU แตกต่างกันอย่างมีนัยสำคัญ (P=0.0001) ทุกการทดลองยกเว้นในการทดลอง Contact Treatment

ตารางที่ 4 พฤติกรรมการตอบสนองของยุงมินิมัสต่อสารเคลต้าเมทธริน 0.02 กรัมต่อตา รางเมตร ระหว่างทรีทเมนต์ต่าง ๆ เมื่อใช้กระดาษ WHO และ KU พบว่า ยุงมีพฤติกรรมการตอบ สนองต่อกระดาษ WHO และ KU เปรียบเทียบระหว่าง Contact Treatment กับ Noncontact Treatment และระหว่าง Contact Treatment กับ Contact Control แตกต่างกันอย่างมีนัยสำคัญ (P=0.0001) และระหว่าง Noncontact Treatment กับ Noncontact Control มีความแตกต่าง อย่างมีนัยสำคัญ (P=0.0080) ยุงแสดงพฤติกรรมการตอบสนองในการทดลองที่ให้ยุงมีโอกาส สัมผัสกับสารเคมีด้วยการบินหนีออกจากกล่องทดลองแบบ Contact Treatment มากกว่า Contact Control อย่างมีนัยสำคัญ (P=0.0001) ทั้งกระดาษ WHO และ KU เช่นเดียวกับในการ ทดลองที่ยุงไม่มีโอกาสสัมผัสกับสารเคมี พบว่ามียุงบินหนีออกมาจากกล่องทดลองแบบ Noncontact Treatment มากกว่า Noncontact Control อย่างมีนัยสำคัญ (P=0.0080) และเมื่อ เปรียบเทียบระหว่างยุงที่มีโอกาสสัมผัส และไม่มีโอกาสสัมผัสกับสารเคมี พบว่า มียุงบินหนีออก มาจากกล่องทดลองแบบ Contact Treatment แตกต่างจาก Noncontact Treatment อย่างมีนัย สำคัญ (P=0.0418) ทั้งกระดาษ WHO และ KU แสดงให้เห็นว่าสารเคมีต่าแมลงชนิดเดลต้าเมทธ รินมีฤทธิ์ในการขับไล่ โดยเฉพาะเมื่อยุงมีโอกาสสัมผัสกับสารเคมีโดยตรง (Contact Treatment)

ถึงแม้ว่าสถานการณ์ของโรคมาลาเรียในประเทศไทยในปัจจุบันนี้ได้ลดความรุนแรงลง แต่ โรคมาลาเรียยังคงจัดเป็นโรคติดต่อที่สำคัญโรคหนึ่ง ทั้งนี้อาจเนื่องมาจากปัจจัยเสริมหลายปัจจัย ทำให้ยากต่อการจัดการควบคุม ยุงอาจมีการพัฒนาการต้านทานเชิงพฤติกรรมขึ้นตามชีวนิสัยใน การหาเหยื่อ นอกเหนือจากการได้รับสารเคมีฆ่าแมลงที่ต่อเนื่องกันเป็นประจำ ซึ่งอาจทำให้เกิด การต้านทาน (physiology resistance) เช่นยุงมินิมัส ที่มีนิสัยชอบเข้าไปหาเหยื่อในบ้านในบาง พื้นที่ เมื่อบ้านมีการฉีดพ่นด้วยสารเคมีฆ่าแมลงทำให้ยุงเกิดการระคายเคืองเมื่อได้สัมผัสกับสาร เคมี และบินหนีออกไป หรือถูกขับไล่ออกจากบ้านโดยที่ไม่ได้สัมผัสกับสารเคมีโดยตรงแต่อาจเนื่อง มาจากกลิ่นของสารเคมีหรือเกิดขึ้นทั้ง 2 แบบ ทำให้ยุงมีพฤติกรรมตอบสนองโดยการสร้างการ ต้านทานเชิงพฤติกรรมขึ้นมา โดยยุงจะบินหนีออกจากบ้านนั้นทันที การต้านทานเชิงพฤติกรรมนี้ อาจมีบทบาทในการช่วยลดโอกาสในการถ่ายทอดเชื้อมาลาเรียลงได้ (Roberts et al., 2000)

จากพฤติกรรมการตอบสนองของยุงต่อกระดาษชุบเดลต้าเมทธรินทั้งกระดาษ WHO และ KU โดยที่ชาของยุงได้สัมผัสกับสารเคมีโดยตรง จนเกิดการระคายเคืองต้องบินหนีออกจากกล่อง ทดสอบและบางส่วนก็สลบไป แต่หลังจากการทดสอบผ่านไป 24 ชั่วโมง พบว่ายุงที่สลบส่วนใหญ่ จะพื้น ทำให้ทราบว่าเดลต้าเมทธริน 0.02 กรัมต่อตารางเมตร ไม่ได้มีฤทธิ์ในการฆ่ายุงแต่ทำให้ยุง เกิดการระคายเคือง ดูได้จากอัตราการหนีของยุงออกจากกล่อง Contact Treatment มากกว่า Contact Control (P<0.05) ส่วนการที่ยุงไม่ได้สัมผัสโดยตรงจากกระดาษชุบเดลต้าเมทธรินและมี ฤทธิ์ในการขับไล่ยุง ดูได้จากอัตราการหนีของยุงออกจากกล่องที่มีทรีทเมนต์ Noncontact Treatment แตกต่างจากกล่องควบคุม Noncontact Control (P<0.05) ซึ่งช่วยลดโอกาสในการ เข้ากัดคนของยุงมินิมัสได้ และจากผลการเปรียบเทียบประสิทธิภาพของกระดาษชุบเดลต้าเมทธ รินระหว่างกระดาษ WHO และ KU โดยพิจารณาจากการแสดงพฤติกรรมการตอบสนองของยุง ทุกทรีทเมนต์แล้วพบว่าให้ผลที่แตกต่างกันทั้งสิ้น (P<0.05) ดังนั้นในการทดลองครั้งต่อไปคงจำ เป็นต้องใช้กระดาษ WHO ซึ่งเป็นที่ยอมรับในเชิงคุณภาพ หรือต้องปรับปรุงพัฒนาวิธีการผลิต กระดาษทดลองขึ้นใหม่ให้มีประสิทธิภาพในการใช้งานไม่แตกต่างจากกระดาษขององค์การ อนามัยโลก

ในการศึกษาครั้งนี้ยุงมินิมัส ที่ได้สัมผัสโดยตรงกับสารเคมีเดลต้าเมทธรินที่ชุบกระดาษทั้ง กระดาษ WHO และ KU มีพฤติกรรมการตอบสนองต่อเดลต้าเมทธรินมากกว่าการที่ยุงไม่ได้สัมผัส โดยตรง ดูได้จากจำนวนยุงที่บินหนีออกมาจากกล่องที่มีทรีทเมนต์แบบ Contact Treatment มี มากกว่ากล่องที่มีทรีทเมนต์แบบ Noncontact Treatment (ตารางที่ 1) และค่า ET₅₂ กับ ET₅₂ จาก กล่องที่มีทรีทเมนต์แบบ Contact Treatment ต่ำกว่ากล่องที่มีทรีทเมนต์แบบ Noncontact Treatment (ตารางที่ 2) จากงานวิจัยของ Chareonviriyaphap (2001) ใช้กระดาษฐบเดลตัวเมทธ รินความเข้มข้น 0.0625 กรัมต่อตารางเมตร ทดสอบกับยุงมินิมัสที่เลี้ยงในห้องเลี้ยงแมลง เปรียบ เทียบกับการศึกษาในครั้งนี้ที่ใช้ความเข้มข้นเพียง 0.02 กรัมต่อตารางเมตร ก็น่าจะเพียงพอแล้ว เพราะถ้ายิ่งใช้สารเคมีฆ่าแมลงที่มีความเข้มข้นสูงมาก ยุงอาจจะสร้างความต้านทานทางสรีระ มากขึ้น ทำให้การควบคุมยุงพาหะนำโรคมาลาเรียยากขึ้น เช่นเดียวกับผลงานวิจัยของ Chareonviriyaphap (1997) ในประชากรยุงอัลบิมานุส (An. albimanus Wied.) ในอเมริกากลาง

และอเมริกาใต้ที่เป็นโคโลนีรุ่นลูกจากห้องเลี้ยงแมลงประเทศกัวเตมาลา และประชากรยุงที่เก็บ จากภาคสนามที่ประเทศเบลิส เปรียบเทียบพฤติกรรมการตอบสนองเกี่ยวกับการระคายเคือง เมื่อ ยุงได้สัมผัสกับเดลต้าเมทธรินโดยตรงระหว่างความเข้มข้น 0.0003 กรัมต่อตารางเมตร กับ 0.0019 กรัมต่อตารางเมตร พบว่า สารเดลต้าเมทธรินความเข้มข้น 0.0003 กรัมต่อตารางเมตร ทำ ให้ยุงบินหนืออกจากกล่องทดสอบมากกว่า และค่า ET₅₀ กับ ET₅₀ ก็ต่ำกว่าความเข้มข้น 0.0019 กรัมต่อตารางเมตร ด้วย

อัตราการตายของประชากรยุงทั้งที่บินหนีออกมา และยังคงอยู่ในกล่องทดสอบต่ำ ซึ่งเป็น ตัวบ่งชี้ว่ายุงสร้างการต้านทานเชิงพฤติกรรมต่อเดลต้าเมทธรินอย่างเข้มแข็ง แต่บางที่อัตราการ ตายของยุงที่ยังคงอยู่ในกล่องทดสอบต่ำ อาจจะเนื่องมาจากยุงหลีกเลี่ยงการเกาะบนกระดาษชุบ เดลต้าเมทธริน โดยบินไปเกาะพักอยู่ตามมุมของกล่อง หรือตรงส่วนที่ไม่มีกระดาษชุบเดลต้าเมทธรินก็ได้ (รายละเอียดเกี่ยวกับลักษณะและส่วนประกอบของกล่องทดสอบอธิบายโดย Chareonviriyaphap and Aum-Aong (2000)

อายุของยุงมินิมัล ที่ใช้ในการทดลองนี้เกี่ยวข้องกับผลการทดลองด้วย ซึ่งสนับสนุนสมมติ ฐานของ Hamon and Eyraud (1961) ในเรื่องอายุของยุงแกมเบีย (An. gambiae) และยุงฟูเนตุส (An. funestus Giles.) ที่ใช้ในการศึกษาพฤติกรรมการตอบสนองเกี่ยวกับการระคายเคืองต่อ DDT คือยุงที่มีอายุมากจะตอบสนองเกี่ยวกับการระคายเคืองต่อสารเคมีฆ่าแมลงน้อยกว่ายุงที่มีอายุ น้อย ในการทดลองนี้ เราจึงใช้ยุงอายุ 3-6 วันเท่านั้น และจากการหดลองครั้งนี้พบว่าเวลาที่ประชา กรยุงจำนวน 50% และ 90% ใช้ในการบินหนีออกจากกล่องทดลอง เมื่อสัมผัสกับกระดาษฐบเดล ต้าเมทธรินของ KU โดยตรง ข้ากว่า (คือค่า ET_{so} และ ET_{so} สูงกว่า) กระดาษของ WHO ซึ่งความ แตกต่างกันนี้ (P<0.05) บางทีนอกจากอายุของยุงที่ใช้ทดสอบแล้ว อาจจะเนื่องมาจากปัจจัยอื่น ด้วย เช่น ความสมบูรณ์ของยุงที่ใช้ทดสอบแล้ว อาจจะเนื่องมาจากปัจจัยอื่น ความสมบูรณ์ของยุงที่ใช้ทดสอบแล้ว อาจจะเนื่องมาจากปัจจัยอื่นด้วย เช่น ความสมบูรณ์ของยุง, Gonotrophic cycle ของยุง ซึ่งอธิบายโดย Busvine (1964) หรือแม้แต่อุณหภูมิ, ความชื้นสัมพัทธ์ของสภาพแวดล้อมที่ทำการทดสอบ, ช่วงเวลาในการทดสอบ, ผู้ช่วยทดสอบ (กลิ่นตัว,สีเลื้อ,เพศ) ก็มีผลกับพฤติกรรมการหลีกหนีของยุงทั้งสิ้น

การศึกษาครั้งนี้ทดลองเฉพาะยุงที่เลี้ยงไว้ในห้องเลี้ยงแมลงเท่านั้น เพื่อให้การศึกษาพฤติ กรรมการตอบสนองต่อเดลต้าเมทธรินมีความสมบูรณ์ และมีประโยชน์ต่อการควบคุมยุงมินิมัสใน ประเทศไทยได้ดี ควรจะทำการทดลองกับประชากรยุงที่เก็บได้ในภาคสนามหรือพื้นที่ที่มีการ ระบาดของยุงชนิดนี้อยู่ด้วย และชุดกล่องทดสอบพฤติกรรมการหลีกหนีนี้สามารถใช้ทดลอบพฤติ กรรมการต้านทานของยุงชนิดอื่น ๆ ต่อสารเคมีฆ่าแมลงได้ทุกชนิดด้วย

Table 1. Mortalities of *Anopheles minimus* females after a 24 holding period following exposures in contact and noncontract trials with WHO and KU deltamethrin impregnated papers in excito-repellency tests.

			Nu	ımber	% Mortality	
Condition	Paper	Trials	Tested	Escaped	Escaped	Not
				(%)		escaped
Contact						
	WHO	Treatment	100	96 (96)	27	0
		Control	100	7 (7)	0	0
	KU	Treatment	100	98 (98)	2	0
		Control	100	32 (32)	0	0
Noncontact						
	WHO	Treatment	100	31 (31)	0	0
	,	Control	100	19 (19)	0	0
	KU	Treatment	100	75 (75)	0	0.
		Control	100	59 (59)	0	0

Table 2. Time in minutes for 50 (ET50) and 90 (ET90) of *Anopheles minimus* females to escape from WHO and KU exposure chambers with 0.02 g/m2 deltamethrin.

	Contact T	reatment	Noncontact Treatment		
Types of papers	ET _{so} (นาที)	ET _{so} (นาที)	ET₅₀ (นาที)	ET _∞ (นาที)	
WHO	3	13	-	-	
KU	6	17	18	-	

Table 3. Comparison of escape responses of *Anopheles minimus* between WHO and KU 0.02 g/m² deltamethrin impregnated papers

Test Populations	Contact Treatment			Noncontact Control
Anopheles minimus	WHO vs. KU	WHO vs. KU*	WHO vs. KU*	WHO vs. KU*

^{*} จากวิธีทางสถิติ พบว่ามีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

Table 4. Comparison of escape responses of *Anopheles minimus* between contact and noncontact trials, contact and control trials and noncontact and control trials with WHO and KU impregnated papers.

Dose of insecticide	Contact	Contact	Noncontact
Deltamethrin 0.02	Treatment vs.	Treatment vs.	Treatment vs.
g/m²	Noncontact	Contact Control	Noncontact
	Treatment		Control
WHO	P=.0001	P=.0001	P=.0080
KU	P=.0001	P=.0001	P=.0418

เอกสารอ้างคิง

- Busvine JR. The significance of DDT irritability tests on mosquitoes. Bull WHO 1964; 31: 645-656.
- Chareonviriyaphap T, Roberts DR, Andre RG, Harlan HH, Manguin S, Bangs MJ.

 Pesticide avoidance behavior in *Anopheles albimanus*, a malaria vector in the Americas. J Am Mosq Control Assoc 1997; 13: 171–183.
- Chareonviriyaphap T,Aum-Aong B. Improved excito-repellency escape chamber for behavioral tests on mosquitoes. Mekong Malaría Forum 2000; 5:82–86.
- Chareonviriyaphap T, Sungvornyothin S, Prabaripai A. Insecticide-induced behavioral responses of *Anopheles minimus*, a malaria vector in Thailand. J Am Mosq Control Assoc 2001;17:13-22.
- Hamon J, Eyraud M. Study of physiological factors conditioning in *Anopheles* irritability to DDT. Riv Malariol 1961; 40: 219-640.
- Hongvivatana T, Leerapan P, Smithsampan M. An observational study of DDT house spraying in a rural area of Thailand. J Trop Med Hyg 1982; 85: 245-250.
- Mantel N, Haenzel W. Statistic aspects of the analysis of data from retro-spective studies of diseases. J Nati Cancer Inst 1959; 22: 719–748.
- Nutsathapana S, Sawadiwongphorn P, Chitprarop U, Cullen JR. The behavior of Anopheles minimus theobald (Diptera: Culicidae) subjected to differing levels of DDT selection pressure in northern Thailand. Bull Entomol Res 1986; 76: 303-312.
- Poolsuwan S. Malaria in prehistoric Southeast Asia. Southeast Asian J Trop Med Public Health 1995; 26: 3-22.
- Prasittisuk M. Comparative study of pyrethriods impregnated mosquito nets with DDT residual spraying for malaria control in Thailand. Bangkok, Thailand: Mahidol University, 1994. PhD. Thesis.
- Rattananthikul R, Panthusiri P. Illustrated keys to the medically important mosquitoes of Thailand. Southeast Asian J Trop Med Public Health 1994; 25 (suppl 1): 1-66.
- Roberts DR, Andre RG. Insecticide resistance issues in vector bome disease control. J Trop Med Hyg 1994; 50: 21-34.

- Roberts DR, Alecrim WD, Hshieh P, Grieco JP, Bangs M, Andre RG, Chareonviriyaphap

 T. A probability model of vector behavior: effects of DDT repellency, irritancy,
 and toxicity in malaria control. J Vector Ecol 2000; 25: 48-61.
- WHO. Vector resistance to pesticides. Fifteenth Report of the WHO Committee on Vector Biology and Control. 1992; 35: 143-148.

ผลของอุณหภูมิต่อพฤติกรรมการหลีกหนีสารเดลตร้าเมทรินและดีดีที่ใน ยงกันปล่องมินิมัส เอ

อัจฉริยา ปราบอริพ่าย พบ.ม.(สถิติประยุกต์)
กณะศิลปศาสตร์และวิทยาศาสตร์
มหาวิทยาลัยเกษตรศาสตร์
อมรา นากสถิตย์ Ph.D.(Medical Entamology)
นภารัตน์ ชลศฤงการ วท.บ. (Biology)
กณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
ธีรภาพ เจริญวิริยะภาพ Ph.D.(Medical Entamology)

คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์

Atchariya Prabaripai M.S. (Applied Statistics)

Faculty of Liberal Arts and Science.

Kasetsart University

Amara Naksatit Ph.D.(Medical Entamology)

Naparat Cholsalingkal, B.Sc. (Biology)

Faculty of Science, Mahidol University

Theeraphap Chareonviriyaphap, Ph.D.

(Medical Entamology)

Faculty of Liberal Arts and Science.

Kasetsart University

บทคัดย่อ

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อประเมินพฤติกรรมการตอบสนองของขุงมินิมัสต่อสารเคลดาเมทธ
รินและดีดีที่ในห้องปฏิบัติการ ได้ทำการศึกษาที่อุณหภูมิ 2 ระดับ คือ ในห้องปรับอากาศ (27.0-33.0°c) และ นอก ห้องปรับอากาศ (33.1-38.0°c) โดยใช้ชุดทดสอบการด้านทานสารเคมีผ่าแมลงเชิงพฤติกรรม ในแต่ละการทดลอง จะใช้กล่องหดลอง 4 กล่อง ประกอบด้วยชุดทดสอบ 2 กล่องซึ่งถูกออกแบบไว้ให้ขุงได้มีโอกาสสัมผัสและไม่ สัมผัสต่อสารเคมีผ่าแมลง และชุดกวบคุม 2 กล่องซึ่งถูกออกแบบให้ขุงได้มีโอกาสสัมผัสและไม่สัมผัสกับ กระดาษชึ่งไม่ชุบสารเคมี ผลการศึกษาพบว่าขุงที่สัมผัสกับสารเคมี บินหนีออกมาจากกล่องทดลองมากที่สุด รองลงมากือขุงที่ไม่สัมผัสกับสารเกมี สำหรับขุงที่สัมผัสและไม่สัมผัสกับกระดาษในชุดกวบคุมออกน้อยที่สุด สารเกลดาเมทธรินมีฤทธิ์ไล่ขุงมากที่ระดับอุณหภูมิในห้องปรับอากาศ และสารดีดีที่ที่ระดับอุณหภูมินอกห้อง ปรับอากาศ ในการเปรียบเทียบระหว่างสารเคมีผ่าแมลงสองชนิดดังกล่าว พบว่าขุงที่สัมผัสกับสารเคมีทั้งสอง ชนิดมีพฤติกรรมการหลีกหนีที่ไม่แตกต่างกัน (p=.069) แต่ขุงที่ไม่สัมผัสกับสารเคมีมีพฤติกรรมการตอบสนอง ต่อสารเกมีทั้งสองชนิดแตกต่างกัน (p=.021) การศึกษาครั้งนี้ชี้ให้เห็นพฤติกรรมการหลีกหนีสารเคมีผ่าแมลงของ ขุงมินิมัสต่อสารเคมีสองชนิดซึ่งมีความสำคัญและสามารถนำมาใช้เป็นข้อมูลพื้นฐานในการวางแผนควบคุมขุง พาหะนำโรกมาลาเรียชนิดนี้

ABSTRACT

The objective of this study was to evaluate behavioral responses of deltamethrin and DDT by Anopheles minimus A under a laboratory controlled conditions. Tests were conducted under two different temperature levels, 27.0-33.0°c and 33.1-38.0°c. A full test compared the escape responses of test population from each of 4 chambers; one with direct contact with insecticide treated surface, one without direct contact with treated surfaces and 2 control boxes (one with and one without direct contact with surfaces) treated with the carrier only. A more escape response of test population against DDT was seen when tests were performed outdoor as compared to the indoor. In contrast, deltamethrin showed higher responses from indoor tests than

outdoor tests. There was no significant differences in behavioral contact responses between deltamethrin and DDT (P=0.069). Statistically significant responses in escape pattern between DDT and deltamethrin were found under noncontact conditions (P=0.021). We conclude that behavioral responses of An. minimus are important in insecticide-malaria control program equation.

ประเด็นสำคัญ Key words ดีดีที่, เคลด้าเมทธริน, มาลาเรีย, ยุงกันปล่อง DDT, Deltamethrin, Malaria, Anopheles มินิมัส เอ, พฤติกรรมการหลีกหนีสารเคมี minimus Species A, Avoidance behavior, Excito-repellency

บทนำ

มาลาเรียเป็นโรคคิดต่อที่สำคัญในประเทศไทย มีเชื้อปรสิตพลาสโมเดียม (Plasmodium) เป็นสาเหตุที่ ก่อให้เกิดโรค" และมียุงกันปล่องเป็นพาหะนำโรค จากสถิติรายงานประจำปีของกองมาลาเรียในปี 2545 พบว่ามี ผู้คิดเชื้อมาลาเรียจำนวน 47,948 รายจากจำนวนผู้ตรวจเลือด 3,936,014 คน และพบว่ามีอัตราป่วย 0.82 ต่อ ประชากร 1,000 คน (2) โรคมาลาเรียในประเทศไทยนำโดยยุงกันปล่องที่สำคัญได้แก่ยุงมินิมัสซึ่งจัดเป็นยุงพาหะ ชนิดซับซ้อน ที่นำเชื้อมาลาเรียและแพร่กระจายอยู่ทั่วประเทศ ยุงพาหะชนิดซับซ้อนกลุ่มนี้มีอยู่อย่างน้อย 3 ชนิด ในประเทศไทย คือ Species A พบกระจายอยู่ทั่วไป Species C และ D พบเฉพาะที่จังหวัดกาญจนบุรีและจังหวัด ตาก ยุงชนิดนี้เพาะพันธุ์ตามลำธารที่มีน้ำใสสะอาดไหลเอื่อยๆ จะไม่เพาะพันธุ์ในแหล่งน้ำนิ่งหรือน้ำไหล แรงๆ "กับตับวัยเพศเมียมีนิสัยซอบดูดเลือดคนทั้งภายในบ้าน (endophagic) และนอกบ้าน (exophagic) ทำให้ยุง ชนิดนี้มีความสำคัญมากในการแพร่เชื้อ และมีความใกล้ชิดกับมนุษย์มากที่สุด(4)

สำหรับประเทศไทย กรมควบคุมโรคติดต่อ กระทรวงสาธารณสุข เป็นหน่วยงานหลักในการคูแลและ ควบคุมสถานการณ์ใช้มาลาเรียทั่วประเทศ กองมาลาเรียได้นำดีดีที่เข้ามาใช้ควบคุมยุงพาหะนำโรคมาลาเรียดั้ง แต่ปี พ.ศ.2483 เป็นค้นมา⁽⁵⁾ โดยนำมาพ่นที่ฝ่าผนังบ้านด้านใน ณ พื้นที่ที่มีใช้มาลาเรียระบาด (endemic area) ปี ละ 1-2 กรั้ง แต่ในระยะค่อมานักอนุรักษ์สิ่งแวคล้อมได้ให้ความสนใจเกี่ยวกับปัญหามลพิษที่อาจจะเกิดขึ้นตาม มาหลังจากมีการใช้ดีดีที่ติดต่อกันเป็นระยเวลานาน เนื่องจากการสลายตัวช้า (long persistence) และมีพิษต่อสิ่ง มีชีวิตชนิดอื่น (non-target organism) ทำให้ดีดีทีที่ใช้ในการควบคุมยุงพาหะนำโรคมาลาเรียในประเทศไทยถูก เลิกสั่งซื้อและใช้น้อยลงไปตามลำดับตั้งแต่ปีพ.ศ.2530 นอกจากนี้ยุงพาหะนำโรคมาลาเรียเริ่มสร้างความด้านทาน ต่อดีดีที่ ทำให้ต้องหามาตรการอื่นขึ้นมาทดแทน เช่นการใช้สารเคมีในกลุ่มไพรีทรอยด์สังเคราะห์ซึ่งมีความเป็น พิษต่ำต่อสัตว์เลี้ยงลูกด้วยนมและสลายตัวง่ายในธรรมชาติ สารไพริทรอยด์สังเคราะห์ที่นำมาใช้ เช่น เคลดาเมทธ ริน (deltamethrin) ใช้โดยการพ่นฝาบ้านด้านในและเพอร์เมทธริน (permethrin) นำมาใช้ชุบมุ้งและแจกจ่ายให้กับ ประชาชนที่อยู่ในพื้นที่ที่เสี่ยงต่อการเกิดโรคมาลาเรีย นอกจากนี้สารเคมีในกลุ่มนี้มีคุณสมบัติเด่นในการขับและ ไล้ (excito-repellency) ยุงพาหะนำโรคมาลาเรียเช่นเดียวกับดีดีที ⁽⁶⁾

เคลคาเมทธรินเป็นสารเกมีในกลุ่มไพรีทรอยค์สังเคราะห์ที่มีประสิทธิภาพสูง ออกถุทธิ์ได้อย่างรวค เร็ว และนำมาใช้ควบคุมยุงพาหะนำโรคมาลาเรียในประเทศไทย โดยฉีคพ่นตามฝาผนังบ้านด้านใน เพื่อให้ยุงที่เข้า มากัดคนในบ้าน และเกาะพักบนฝาผนังได้รับพื้นของสารเคมีและตายก่อนที่จะขยายพันธุ์ต่อไป ผลจากการศึกษา พบว่า ยงพาหะนำโรคจะบินเข้าไปในบ้านที่ฉีดพุ่นด้วยสารเคมีฆ่าแมลงน้อยกว่าบ้านที่ไม่ได้ฉีดพุ่น หรือ ยุงพาหะ จะบินหนีออกจากบ้านที่ฉีดพ่นด้วยสารเกมีฆ่าแมลง^(7,8,9) ทำให้คิดว่าการที่ไม่มียงตายในบ้านที่พ่นสารเคมีม่า แมลงอาจจะเนื่องมาจากยงสร้างความด้านทานต่อสารเคมีฆ่าแมลงในระดับหนึ่ง หรือสารเคมีที่นำมาใช้ด้อยประ สิทธิภาพไม่สามารถฆ่ายงได้ ในทางครงกันข้ามการที่ยงเกิดการระคายเคืองเนื่องจากสัมผัสกับสารเคมีฆ่าแมลง หรือถูกขับไล่ออกจากบ้านที่ฉีดพ่นด้วยสารเคมีฆ่าแมลง เป็นการช่วยลดโอกาสที่ยุงจะเข้ากัดคนและถ่ายทอดเชื้อ บาลาเรียให้น้อยลง ซึ่งสภาพการณ์เช่นนี้เรียกว่า "การด้านทานเชิงพฤติกรรมของยงพาหะนำโรคที่มีต่อสารเคมีมา แมลง (Behavioral resistance)"^(7,8,9) ในการศึกษาถึงพฤติกรรมการตอบสนองของยูงในการศึกษาครั้งนี้ใช้เครื่อง ้ มือทุคสอบที่มีชื่อว่า "กล่องทุคสอบพฤติกรรมการหลีกหนีของยงพาหะนำโรคมาลาเรียที่มีต่อสารเคมีฆ่าแมลง [Excito-Repellency Escape Chamber (EREC)]" โดยที่เครื่องมือนี้ถูกออกแบบคล้ายบ้านจำลองหรือกระท่อม ในธรรมชาติ มีลักษณะเป็นกล่องสี่เหลี่ยมที่ทำด้วยสแตนเลส มีประตูทางเข้าและหน้าต่างด้านละหนึ่งช่องทาง ภายในกล่องออกแบบไว้ให้ยุงสัมผัสสารเคมีได้ 2 แบบ คือให้ยุงได้มีโอกาสสัมผัสโดยตรงต่อสารเคมีโดยบุกล่อง คัวยกระดาษที่ชบด้วยสารเคมีซึ่งขึ้ดติดกับผนังด้านในกับอุปกรณ์ชนิดพิเศษ และไม่สัมผัสโดยตรงต่อสารเกมีโดย มือปกรณ์ชั้นในอีกชั้นหนึ่งซึ่งทำคัวยตาง่าย (มังลวค) กั้นไว้ เพื่อไม่ให้ส่วนใดๆของยงได้สัมผัสสารเคมีฆ่าแมลง เลย และติดตามดูพฤติกรรมที่เกิดขึ้น เครื่องมือที่ใช้ในการศึกษาครั้งนี้ได้ปรับปรุงและพัฒนาจากรูปแบบเดิมที่ ประดิษฐ์โดย Roberts et al. (1997)⁽¹¹⁾ คือสามารถพับเก็บได้ เพื่อสะควกในการเคลื่อนย้ายสำหรับการทคสอบใน ภาคสนาม

การศึกษาในครั้งนี้มีวัตถุประสงค์เพื่อศิคตามพฤติกรรมการตอบสนองต่อสารเคมีฆ่าแมลงชนิคเคลตา เมทธรินและคีคีทีในยุงกันปล่องมินิมัส และเพื่อเปรียบเทียบประสิทธิภาพของกระคาษชุบสารเคลตาเมทธรินและ กระคาษชุบสารคีคีทีที่สั่งซื้อมาจากองค์การอนามัยโลกในการขับไล่ยุง มินิมัส

วัสดุและวิธีการศึกษา

1. ยุงกันปล่องมินิมัส เอ

ยุงมินิมัส เอ ที่นำมาทคสอบนี้ได้มาจากการเก็บตัวอย่างจากกอกเลี้ยงสัตว์ อำเภอร้องกวาง จังหวัดแพร่ ในปี 2537 และนำมาเลี้ยงไว้ภายใต้เงื่อนไขของกองมาลาเรีย กรมควบคุมโรคติดต่อ กระทรวงสาธารณสุข จังหวัดนนทบุรี ต่อมาได้นำมาเลี้ยงไว้ในห้องเลี้ยงแมลงของภาควิชากีฏวิทยา คณะเกษตรศาสตร์ มหาวิทยาลัย เกษตรศาสตร์ วิทยาเขตบางเขน กรุงเทพมหานคร ยุงชนิดนี้เป็นยุงที่มีความไวต่อสารเกมีชนิคคีดีที่และเคลตา เมทธริน รายสะเอียดเพิ่มเดิมของยุงมินิมัสจากรายงานของ Charconviriyaphap et al. (2001) (9)

ยุงมินิมัส เอ เลี้ยงตามวิธีการของ Chareonviriyaphap et al. (1997) ^(ช) สำหรับยุงที่ใช้ในการทคสอบ คือ ยุงตัวเต็มวัยเพศเมียอายุ 3-5 วันที่ไม่ได้กินเลือด (งคเลือด 6 ชั่วโมงก่อนการทคสอบ) ให้แต่เฉพาะสารละลายน้ำ ตาลความเข้มข้น 10% นำยุงมาทำการทคลองโดยไม่ต้องให้อดน้ำหวานก่อนการทคลอง

2. กระดาษฐบสารเคมีฆ่าแมลง (Insecticide-Impregnated papers)

กระคาษฐบสารเคลตาเมทธริน (deltamethrin) ความเข้มขึ้น 6.66 มิลลิกรัมต่อตารางเมตร และกระคาษฐบ สารคีดีที่ (DDT) ความเข้มขึ้น 2 กรัมต่อตารางเมตร ขนาด 27.5 x 35.5 ซ.ม.² สั่งซื้อมาจากองค์การอนามัยโลก (WHO)

3. วิธีการทดลอง (Methods)

ในการทคลองครั้งนี้ใช้สารเคมี 2 ชนิค คือ สารเคลเมทธริน และสารคีคีที ที่อุณหภูมิ 2 ระคับ คือ ใน ห้องปรับอากาศช่วงอุณหภูมิระหว่าง 27.0-33.0 องศาเซลเซียส และนอกห้องปรับอากาศช่วงอุณหภูมิระหว่าง 33.1-38.0 องศาเซลเซียส บันทึกความขึ้นสัมพัทธ์และเวลาขณะทำการทคลองค้วยทุกครั้ง ทำซ้ำ 4 ครั้ง การ ทคลองแค่ละครั้งจะใช้แอลกอฮอล์ซุบสำลีเซ็คทำความสะอาคกล่องทคลองก่อนใช้ แล้วสุ่มกล่องทคลองให้ได้รับ สภาพการทคลองอย่างใดอย่างหนึ่งข้างคัน คำเนินการทคลองโดยนำยุงใส่เข้าไปในกล่องทคลองแค่ละกล่องๆ ละ 25 คัว และปีคประตูทางเข้าและทางออกเป็นเวลา 3 นาที เพื่อให้ยุงปรับสภาพแวคล้อมภายในกล่องทคลอง หลัง จากนั้นเปิดช่องทางให้ยุงบินออก และนับจำนวนยุงที่บินหนืออกจากกล่องทั้ง 4 กล่อง บันทึกจำนวนยุงที่บินหนืออกจากกล่องทคลองทุก ๆ 1 นาที ใช้เวลาในการทคลอง 30 นาที ตามวิธีการของ Chareonviriyaphap et al (1997) หลังจากนั้นนำยุงที่บินหนืออกจากกล่อง และที่คงเหลืออยู่ในกล่องมาเลี้ยงต่อให้น้ำพวานตามปกคิ และ บันทึกจำนวนยุงที่ทายภายหลังการทคลอง 24 ชั่วโมง

การคำเนินการทคลองจัคสภาพการทคลอง 2 ลักษณะ โคยใช้ชุดทคสอบ EREC ซึ่งมีกล่องทคลอง 4 กล่อง คือ

- (1) ให้ขุงมีโอกาสสัมผัสกับสารเคมี จำนวน 2 กล่อง ให้กล่องหนึ่งมีกระคาษชุบสาเคมีบุที่ผนังค้านใน กล่องทคลอง (Contact Treatment) และอีกกล่องหนึ่งมีกระคาษควบกุมบุที่ผนังค้านในกล่องเป็นกล่อง ควบกุม (Contact Control)
- (2) ให้ยุงไม่มีโอกาสสัมผัสกับสารเคมี จำนวน 2 กล่อง ให้กล่องหนึ่งมีกระคาษชุบสารแคมีบุที่ ระหว่างผนังชั้นนอกและผนังชั้นในของกล่องทคลอง (Noncontact Treatment) และอีกกล่องหนึ่งมี กระคาษควบคุมบุที่ะหว่างผนังชั้นนอกและผนังชั้นในของกล่องทดลองเป็นกล่องควบคุม (Noncontact Control)

4. การวิเคราะห์ข้อมูล (Data analysis)

ข้อมูลที่ได้จากการพลองคือจำนวนยุงที่บินออกมาจากกล่องพลอองในแต่ละนาที คำนวณหาเวลาที่ ประชากรยุงจำนวน 50% (ET_{ss}) และ 90% (ET_{ss}) บินหนืออกไปจากกล่องพลออง โดยใช้ Probit analysis เปรียบ เทียบพฤติกรรมการหลีกหนีของยุงค่อสารเคมี 2 ชนิด โดยใช้การวิเคราะห์การอยู่รอด ด้วยการพลสอบแบบ Logrank test โดยใช้โปรแกรม SAS (Release 6.10)

ผลการศึกษา

ตารางที่ 1 แสดงเปอร์เซ็นต์ยุงที่บินหนีออกมาจากกล่องทดลอง และเปอร์เซ็นค์การตายของยุงมินิมัส ทั้งที่บินหนีออกมา (Escaped) และ ไม่บินหนีออกมา (Not escaped) จากกล่องทดลอง เมื่อใช้กระดาษชุบสารเดล ตาเมทธริน 6.66 มิลลิกรับต่อตารางเมตร และ ดีดีที่ 2 กรับต่อตารางเมตร ในการทดลองที่ยุงสัมผัส (Contact, C) กับสารเกมี และ ไม่มิสารเกมี (หน่วยควบคุม) พบว่าอยู่ในช่วง 0-3 % เมื่อใช้กระดาษชุบสารเดลตาเมทธริน ที่ อุณหภูมินอกห้องปรับอากาศ ไม่ปรากฏว่ามียุงตายเมื่อใช้กระดาษชุบสารคีดีที่ ทั้งสารเดลตาเมทธรินและคีดีที่มี ประสิทธิภาพในการขับไล่ยุงได้ดี (> 60%) ทั้งสองระดับอุณหภูมิที่ทำการทดสอบ โดยสารเดลตาเมทธรินขับไล่ ยุงได้ถึง 87% ที่อุณหภูมิในห้องปรับอากาศ และ 73% ที่อุณหภูมินอกห้องปรับอากาศ เปรียบเทียบกับชุดควบคุม

พบว่ามียุงบินออกมาจากกล่องทดลอง 31% ที่อุณหภูมิในห้องปรับอากาศ และ 75% ที่อุณหภูมินอกห้องปรับ อากาศ สำหรับสารคีคีที่ขับ ไล่ยุงได้ถึง 68% ที่อุณหภูมิในห้องปรับอากาศ และ95% ที่อุณหภูมินอกห้องปรับ อากาศ เปรียบเทียบกับชุคควบคุมพบว่ามียุงบินออกมาจากกล่องทดลอง 16% ที่อุณหภูมิในห้องปรับอากาศ และ 25% ที่อุณหภูมินอกห้องปรับอากาศ

การพลองที่ขุงไม่ได้สัมผัส (Noncontact, NC) กับสารเคมี (คารางุที่ 1) เปอร์เซ็นต์การตาขของขุงที่บิน หนื และ ไม่บินหนี ออกมาอยู่ในช่วง 0-2% เมื่อใช้กระคาษชุบสารเคลตาเมทธริน ที่อุณหภูมินอกห้องปรับอากาศ ไม่ปรากฏว่ามีขุงตายเมื่อใช้กระคาษชุบสารคีดีที่ ทั้งสารเคลตาเมทธรินและคีคีทีมีประสิทธิภาพในการขับไล่ขุง ได้คีเกินกว่า 50% ที่อุณหภูมิทั้งสองระคับ โดยสารเคลตาเมทธรินขับไล่ขุงได้ถึง 72% ที่อุณหภูมิในห้องปรับอากาศ เปรียบเทียบกับชุงที่ไม่สัมผัสกับสารควบคุม พบว่ามีขุงบินออก มาจากกล่องหคลอง 48% ที่อุณหภูมิในห้องปรับอากาศ และ58% ที่อุณหภูมินอกห้องปรับอากาศ และ สำหรับสาร คีตีทีมีฤทธิ์ขับไล่ขุงได้ 51% ที่อุณหภูมิในห้องปรับอากาศ และ 76% ที่อุณหภูมินอกห้องปรับอากาศ เปรียบเทียบ กับขุงที่ไม่สัมผัสกับสารควบคุม พบว่ามีขุงบินออกมาจากกล่องทดลอง 33% ที่อุณหภูมิในห้องปรับอากาศ และ 52% ที่อุณหภูมินอกห้องปรับอากาศ และ 52% ที่อุณหภูมินอกห้องปรับอากาศ และ 52% ที่อุณหภูมินอกห้องปรับอากาศ และ

จากการทคลองทั้งหมดพบว่า การที่ยุงสัมผัสกับสารเคมีทั้งสองชนิคนั้นมีประสิทธิภาพในการขับไล่ยุง ได้ดีกว่า ยุงที่สัมผัสกับสารควบคุม ยกเว้นกรณีเคียวที่ยุงสัมผัสกับสารเคมีที่ใช้สารเคลตาเมทชริน (Contact Treatment) ที่อุณหภูมินอกห้องปรับอากาศซึ่ง มีจำนวนยุงบินออกมาจากกล่องทคลองที่ใช้สารควบคุมมากกว่าที่ ใช้สารเคมี

ตารางที่ 2 และ กราฟที่ 1-4 แสดงเปอร์เซ็นต์ยุงที่บินหนืออกมาในแค่ละนาที และคำนวน ค่า ET_{50} ของ ยุงที่บินหนืออกจากกล่องทดสอบพฤติกรรมการหลีกหนีในการทดลองที่ยุงสัมผัส (Contact) กับกระดาษชุบสาร ดีดีที่ และ สารเดลตาแบทธริน ได้ว่า สารดีดีที่ที่อุณหภูมิในห้องปรับอากาศ และนอกห้องปรับอากาศ มีค่า ET_{50} เท่ากับ 10 และ 2 นาที ดามลำดับ ช่วนค่า ET_{50} ที่อุณหภูมินอกห้องปรับอากาศ เท่ากับ 5 นาที และที่อุณหภูมิใน ห้องปรับอากาศ ยุงบินหนืออกจากกล่องไม่ถึง 75% สำหรับสารเดลตาแบทธรินที่อุณหภูมิในห้องปรับอากาศ และนอกห้องปรับอากาศ มีค่า ET_{50} เท่ากับ 3 และ 7 นาที ตามลำดับ ช่วนค่า ET_{50} ที่อุณหภูมิในห้องปรับอากาศ เท่ากับ 8 นาที และที่อุณหภูมิในห้องปรับอากาศ เท่ากับ 8 นาที และที่อุณหภูมินอกห้องปรับอากาศ ยุงบินหนืออกมาไม่ถึง 75%

การางที่ 2 แสดงค่า ET_{so} และ ET_{rs} ของชุงที่บินหนืออกจากกล่องทคสอบพฤติกรรมการหลีกหนีในการ ทดลองที่ยุง ไม่สัมผัส (Noncontact) กับสารคีคีที่และสารเคลตาเมทธริน พบว่า สารคีคีที่ที่อุณหภูมิในห้องปรับ อากาส และนอกห้องปรับอากาส มีค่า ET_{so} เท่ากับ 29 และ 12 นาที ตามลำคับ ส่วนค่า ET_{rs} ที่อุณหภูมิ T_{s} เท่ากับ 28 และ 21 นาที ตามลำคับ ส่วนค่า ET_{so} เท่ากับ 18 และ 21 นาที ตามลำคับ ส่วนค่า ET_{rs} ที่อุณหภูมินอกห้องปรับอากาส เท่ากับ 30 นาที เมื่อเปรียบเทียบค่า ET_{so} ของสารเกมีทั้งสองชนิด ปรากฏว่าค่า ET_{so} ในการทดลองที่ยุงสัมผัส มีค่าค่ำกว่าในการทดลองที่ยุงไม่สัมผัส และ ที่อุณหภูมินท้องปรับอากาส ปรากฏว่าไม่มียุงบินหนืออกมาเกิน 75% ในการทดลองที่ใช้สารคีคีทีทั้งยุงที่สัมผัส กับสารเกมีและสารควบกุม

เปอร์เซ็นต์ยุงที่บินหนืออกจากกล่องทคลองระหว่างทรีทเมนต์ต่าง ๆ เมื่อใช้สารเคมีทั้ง 2 ชนิด และสาร ถวบกุม (ตารางที่ 3) พบว่าพฤติกรรมการตอบสนองของยุงระหว่างทรีทเมนต์ ต่าง ๆมีความแตกต่างกันอย่างมี นัยสำคัญทุกภู่ (P< 0.05) แต่เมื่อเปรียบเทียบระหว่างสารทั้ง 2 ชนิด ในการทคลองที่ให้ยุงสัมผัสกับสารเคมีพบ ว่าพฤดิกรรมการตอบสนองของยุงไม่มีความแตกต่างกัน (P > 0.05)

ตารางที่ 1 เปอร์เซ็นต์ยุงที่บินหนีออกมาจากกล่องทดลอง และเปอร์เซ็นต์การตายของยุงมินิมัส เอ ทั้งที่บินหนี ออกมา (Escaped) และ ไม่บินหนีออกมา (Not escaped) จากกล่องทดลอง เมื่อใช้กระดาษชุบสารเดลตาเมทธริน 6.66 มิลลิกรับต่อดารางเมตร และดีดีที่ 2 กรับต่อดารางเมตร ในการทดลองที่ยุงสัมผัส (Contact, C) และไม่สัมผัส (Noncontact, NC) กับสารเกมี (Treatment) และสารควบคุม (Control) ที่อุณหภูมิในห้องปรับอากาศ (T₁) และนอก ห้องปรับอากาศ (T.)

			Esca	ped	% Mortality			
Insecticides	Temperature	Condition	С	NC	Ésca	ped	Not Escaped	
			(%)	(%)	С	NC	С	NC
คีดีที	T,	Control	16	33	0	0	0	0
*	Τ,	Treatment	68	51	0	0	0	0
	T ₂	Control	25	52	0	0	0	0
	Т,	Treatment	95	76	0	0	0	0
เคลตาเมทธริน	T,	Control	31	48	0	0	0	0
	Τ,	Treatment	87	72	0	0	0	٥
	T ₂	Control	75	58	0	0	0	ι
	Т,	Treatment	73	60	0	0	3	2
			<u> </u>					

ดารางที่ 2 เวลา (นาที) ที่ยุงมินิมัส เอจำนวน 50% (ET_{se}) และ 75% (ET_{re}) บินหนืออกมาจากกล่องทคลองที่ ทศสอบด้วยกระคาษชุบสารคีดีที่ 2 กรัมต่อตารางเมตร และสารเคลตาเมทธริน 6.66 มิลลิกรัมค่อตารางเมตร ใน การทคลองที่ยุงสัมผัส (Contact,C) และ ใม่สัมผัส (Noncontact, NC) กับสารเคมี ที่อุณหภูมิในห้องปรับอากาศ (T_e) และนอกห้องปรับอากาศ (T_e)

Insecticides	Temperature	ET _{so}		ET,,	
		С	NC	С	NC
คีลีถื	T,	10	29	-	-
	T_z	2	12	5	25
เคลดาเมทธริน	T,	3	38	8	-
	T ₂	7	21	-	30

ตารางที่ 3 เปรียบเทียบยุงมินิมัส เอที่บินหนืออกจากกล่องทคลองระหว่างทรีทเมนต์ต่าง ๆ เมื่อใช้สารเคมี และ สารควบคุม

Insecticide	Comparing groups	P-value	
คีคีที	Contact Control vs Contact Treatment	100.0	
	Contact Control vs Noncontact Treatment	0.025	
	Contact Treatment vs Noncontact Treatment	0.001	
เคลตาเมทธริน	Contact Control vs Contact Treatment	0.001	
	Contact Control vs Noncontact Treatment	0.025	
,	Contact Treatment vs Noncontact Treatment	0.001	
,	Contact Treatment ดีดีที่ vs เดลตาเมทธริน	0.069	
	Noncontact Treatment ดีดีที่ vs เคลคาเมทชริน	0.021	

วิจารณ์

การด้านทานสารเคมีเชิงพฤติกรรมหมายถึงการที่ยุงหลีกหนีสารเคมีที่อาจจะก่อให้เกิดอันตรายแก่ตัวเอง ซึ่งการหลีกหนีสามารถแบ่งออกเป็น 2 ประเภทคือ การหลีกหนีหลังจากได้สัมผัสกับสารเคมี และการหลีกหนี ก่อนที่จะสัมผัสกับสารเคมี ยุงที่ทดสอบได้มีการพัฒนาการอย่างต่อเนื่องในการหลบหนีหรือหลีกหนีสารเคมีซึ่ง ภาวะปกติยุงไม่สามารถทนทานได้ พฤติกรรมการหลีกหนีสารเคมีฆ่าแมลง (Behavioral Avoidance) หรือการ ต้านทานเชิงพฤติกรรมนี้สามารถลดโอกาสที่ยุงจะเข้าไปกัดคนในบ้านพักอาศัย ถ้ายุงสร้างพฤติกรรมการหลีก หนีมากขึ้นเท่าไร ก็ลดโอกาสที่ยุงจะกัดคนและถ่ายทอดเชื้อมาลาเรียสู่คนให้น้อยลง มากกว่าการใช้สารเคมีฆ่า แมลงฆ่ายุงพาหะเสียอีก (Roberts et al., 2000)⁽⁷⁾

พฤติกรรมการคอบสนองค่อสารคีดีที่และสารเคลตาเมทธรินในยุงมินิมัส เอ อาจเป็นเพราะบริเวณส่วน ปลายขา (tarsi) ของยุงสัมผัสสารเคมีโคยตรงแล้วยุงเกิดการระคายเคืองจนต้องขินหนืออกจากกล่องทดสอบไป ยุงจำนวนเล็กบ้อยที่ตายในการทดสอบ อาจเป็นเพราะยุงที่ใช้ทกสอบมีความอ่อนแอ (เนื่องจากผู้ทดสอบได้เก็บ ยุงไว้ในแก้วก่อน 1 วัน) ส่วนรูปแบบที่ไม่สัมผัสสารเคมีโดยตรง ยุงได้รับสารเคมีโดยประสาทรับสัมผัสบน Antennae กระตุ้นให้ยุงเกิดพฤติกรรมการหลีกหนีไป ผลการทดสอบที่ได้ออกมาพบว่ารูปแบบที่มีการสัมผัสสาร เคมีโดยตรงยุงแสดงพฤติกรรมการตอบสนองออกมามากกว่ารูปแบบที่ไม่สัมผัสสารเคมีโดยตรง ซึ่งเราสามารถ นำมาเลือกใช้วิธีการที่เหมาะสมในการควบคุมยุงพาหะชนิดนี้และหาความเข้มข้นของสารเคมีที่นำมาใช้ในสถาน การณ์จริงได้โดยไม่ก่อให้เกิดพิษแก่คนและสัตว์

อัตราการตายของประชากรยุงที่บินหนืออกมา และไม่บินหนืออกมา จากกล่องทคลองยังคงต่ำอยู่ แสดงว่ายุงมีความต้านทานเชิงพฤติกรรมต่อสารคีดีที่และสารเคลตาเมทธรินอยู่มาก ไม่ใช่ว่ายุงทุกตัวมีพฤติ กรรมการค้านเชิงพฤติกรรมต่อสารเคมี แต่ยุงบางตัวอาจไม่ได้รับสารเคมีโดยการบินไปเกาะพักอยู่ตรงส่วนต่างจุ ของกล่องทคลอบบริเวณที่เป็นสแตนเลส ปัจจัยที่ทำให้รูปแบบการหลีกหนีมีความแปรปรวนอาจได้แก่

- 1) อายุของยุงที่ใช้ทคสอบ กวรใช้ยุงอายุ 3-5 วัน เพราะว่ายุงที่มีอายุมากขึ้นจะตอบสนองต่อสารเคมีนำ แมลงได้น้อยกว่ายุงที่มีอายุน้อย
- 2) ความสมบูรณ์ของขุง ในขณะที่เคลื่อนข้าขขุงเพื่อไปทำการทคสอบ การปล่อยขุงเข้ากล่องทคสอบ และการนำขุงออกจากกล่องกระคาษแข็งรองรับขุงด้านนอก ควรใช้หลอคลูค (mouth aspirator) ที่มีขนาคเส้น ผ่านศูนย์กลางขนาคใหญ่ เพื่อให้ขุงกระทบกระเทือนน้อยสุด เพราะถ้าขุงมีสภาพไม่สมบูรณ์ (ปีกหัก, ขาหลุด) จะทำให้ผลการทคสอบกลาดเคลื่อนได้
- 3) เวลาที่ทุคสอบต้องอยู่ในช่วง 8.00-16.00 น. เพราะช่วงเวลาหลัง 16.00 น.เป็นช่วงเวลาที่ยุงออกหา เหยื่อ ยุงอาจแสคงพฤติกรรมการตอบสนองคลาดเคลื่อนไป
 - 4) ความขึ้นสัมพัทธ์และอุณหภูมิที่ทำการทดสอบ
 - 5) ลมหายใจ, กลิ่นตัว ของผู้ทุคสอบ

ในการทคสอบครั้งนี้เป็นเพียงการทคสอบในห้องปฏิบัติการ ซึ่งพคสอบกับยุงที่เลี้ยงไว้ในห้องเลี้ยง แมลง ถ้าค้องการให้การศึกษาพฤติกรรมการตอบสนองต่อสารคีคีที่และสารเคลตาเมทธรินมีข้อมูลมากกว่านี้ และสามารถนำไปใช้ควบคุมยุงมินิมัส เอ ได้ในสถานการณ์ระบาคจริงๆ ควรจะทำการทคสอบในภาคสนามหรือ ในพื้นที่ที่มีการระบาคของยุงอยู่ด้วย

เอกสารอ้างอิง

- Rattanarithikul R, Panthusiri P. 1994. Illustrated keys to the medically important mosquitoes of Thailand.
 Southeast Asian J. Trop. Med. Public Health; 25 (supply 1): 1-66.
- 2. www.moph.go.th กองมาลาเรีย กรมควบคุมโรคคิ๊คต่อ กระทรวงสาธารณสุข.
- หวิ หอมชง, 2543. แมลงศัตรูของคนและสัตว์, พิมพ์ครั้งแรก องค์การค้าของคุรุสภา กรุงเทพฯ.
- Annual Malaria Reports. 1985-1998. Mararia Division, Department of Communicable Disease Control (CDC), Ministry of Public Health, Thailand.
- 5. ธีรภาพ เจริญวิริยะภาพ และบุญเสริม อ่วมอ่วง, 2544. กล่องทคสอบการต้านทานสารเคมีฆ่าแมลงเชิงพฤติ กรรมในยุงพาหะนำโรคมาลาเรีย, สาขาวิชาชีววิทยา คณะศิลปะศาสตร์และวิทยาศาสตร์ มหาวิทยาลัย เกษลรภาสตร์ กรุงเทพฯ.
- Roberts DR, Andre RG.1994. Insecticide resistance issues in vector borne disease control. Am. J.
 Trop. Med. Hyg.; 50 (supply): 21 34.
- Roberts DR. Alecrim WD, Hshish P, Grieco JP, Bangs M, Andre RG, Chareonviriyaphap T. 2000. A
 probability model of vector behavior: effects of DDT repellency, irritancy, and toxicity in malaria
 control. J. Vector Ecol.; 25: 48-61.
- Charconviriyaphap T, Roberts DR, Andre RG, Harlan HH, Manguin S, Bangs MJ. 1997. Pesticide avoidance behavior in Anopheles albimanus, a malaría vector in the Americas. J. Am. Mosq. Control Assoc.; 13: 171 - 183.
- Charoenviriyaphap T, Sungvornyothin S, Rattanatham S, Prabaripai A. 2001. Insecticide-induced
 Behavioral responses of Anopheles minimus, a malaria vector in Thailand. J. Am. Mosq.
 Control Assoc.;17:13-22.

- Charoenviriyaphap T, Aum-Aong B. 2000. Improved excito-repellency escape chamber for behavioral tests on mosquitoes. Mekong Malaria Forum; 5: 82 - 86.
- Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P. 1997. Methods of testing and analyzing excitorepellency responses of malaria vectors to insecticides. J Am Mosq Control Assoc. 1997 Mar;13(1):13-17.

3