ABSTRACT

Project Code: RSA/13/2545

Project Title: Development of Nanoscale Theory, Modeling and Simulation for

Soft-Condensed Matters and Application to Protein Modeling

Investigator: Asst. Prof. Dr. Teerakiat Kerdcharoen

E-mail Address: sctkc@mahidol.ac.th

Project Period: November 1st, 2001 – October 31st, 2004

This research project was aimed to develop combined quantum mechanical and molecular mechanical method that is capable of studying soft condensed phase, for instances, liquid and solution. The project includes development of algorithm and computer code to have more efficiency, which targets the achievement of a model of ion solvation in metalloprotein. A new technique based on ONIOM method was implemented, in which exchange of solvents (XS) between subsystems (i.e. between QM and MM parts) is allowed - we called it the ONIOM-XS method. In this method, a switching layer sandwiched between "high-level" and "low-level" subsystems was introduced to help morphing of exchanging particle from one region to another. A rigorous treatment of the energy expression by this method also opens new opportunities for such as Monte Carlo and free energy simulations. The new technique was applied to investigate the coordination of Ca²⁺ in liquid ammonia. A coordination number of 6 is found. Previous simulations based on pair potential or pair potential plus three-body correction gave values of 9 and 8.2, respectively. The new value is the same as the coordination number most frequently listed in the Cambridge Structural Database (CSD) and Protein Data Bank (PDB). N-Ca-N angular distribution reveals a near-octahedral coordination structure. Inclusion of many-body interactions (which amounts to 25% of the pair interactions) into the potential energy surface is essential for obtaining reasonable coordination number. Analyses of the metal coordination in water, water-ammonia mixture and in proteins reveal that cation/ammonia solution can be used to approximate the coordination environment in proteins.

Keyword: QM/MM, Ion Solvation, First Principles Simulation, Metalloprotein

บทคัดย่อ

รหัสโครงการ: RSA/13/2545

ชื่อโครงการ: โครงการ การพัฒนาทฤษฎี โมเดล และซิมูเลชันระดับนาโนสำหรับ

สสารสภาพควบแน่นแบบอ่อน และการประยุกต์ไปสู่การโมเดลโปรตีน

ชื่อหักวิจัย: ผศ. ดร. ธีรเกียรติ์ เกิดเจริญ

E-mail Address: sctkc@mahidol.ac.th

ระยะเวลาโครงการ: 1 พ.ย. 2544 – 31 ต.ค. 2547

โครงการวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาระเบียบวิธีผสมกลศาสตร์ควอนตัม/กลศาสตร์โมเลกุลให้สามารถ ศึกษาสสารสภาพควบแน่นแบบอ่อน เช่น ของเหลว สารละลาย ไปจนถึงชีวโมเลกุลอย่างเช่นโปรตีน ได้ รวม ้ ถึงการพัฒนาอัลกอริทึม โค้ดคอมพิวเตอร์ ให้มีประสิทธิภาพมากขึ้น นอกจากนั้นยังมีเป้าหมายให้ได้โมเดล ของไอออนโลหะในสารละลายที่สามารถจะนำไปอธิบายความเป็นอยู่ของไอออนโลหะในโปรตีนได้ อันจะทำ ให้เข้าใจบทบาทของไอออนโลหะในเมทัลโลโปรตีน ผู้วิจัยได้พัฒนาระเบียบวิธีใหม่ขึ้นมา เรียกว่า ONIOM-XS ์ ซึ่งจะทำการจำลองโมเลกุลด้วยการแบ่งระบบควบแน่นแบบอ่อนออกเป็น 2 ระบบย่อย (เช่น ระบบย่อย QM และระบบย่อย MM) โดยจะนำส่วนที่มีความสำคัญและผู้วิจัยต้องการรู้อย่างถูกต้องแม่นยำกว่าไปอยู่ในระบบ ย่อย QM และนำส่วนที่สำคัญน้อยกว่าไปอยู่ในระบบย่อย MM แต่อนุญาตให้มีการแลกเปลี่ยนอนุภาคได้ในชั้น แลกเปลี่ยน ซึ่งจะทำหน้าที่ให้การแลกเปลี่ยนเกิดขึ้นโดยไม่สะดุด ได้ทำการศึกษาและพิสูจน์พบว่าระเบียบวิธี นี้กว่าของเดิมที่มีผู้วิจัยมาก่อนหน้านี้ไม่ต่ำกว่า 30 เรื่อง และได้ทดลองนำระเบียบวิธีใหม่นี้ไปประยุกต์เพื่อ ์ ศึกษาไอออนโลหะ Ca²⁺ ในสารละลายแอมโมเนียเพื่อจำลองสภาพของไอออนโลหะในโปรตีน พบว่าระเบียบ วิธีนี้สามารถให้คำตอบในเรื่องเลขโคออร์ดิเนชันเป็น 6 ซึ่งเท่ากับผลที่ได้จากการทดลอง นับเป็นครั้งแรกที่ โดยได้อธิบายว่าเหตุใดงานที่มีการทำมาก่อนหน้านี้ถึงผิดพลาดและไม่ งานทางทฤษฎีสามารถอธิบายได้ สามารถนำมาสู่คำตอบนี้ได้อย่างละเอียด ผลงานวิจัยสามารถต่อยอดเพื่อศึกษาสภาพแวดล้อมของไอออน โลหะอื่นๆในโปรตีน และอาจนำไปสู่คำอธิบายหน้าที่ของโลหะในโปรตีน และข้อสงสัยที่ว่าทำไม 1 ใน 3 ของ โปรตีนในธรรมชาติจึงต้องมีโลหะเป็นองค์ประกอบด้วย

คำสำคัญ: การจำลองโมเลกุล โปรตีน แอมโมเนีย ไอออนโลหะ สสารสภาพควบแน่น